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CHAPTER 1 
INTRODUCTION AND SYSTEM OVERVIEW 

1.1 MANUAL SCOPE AND RELATED DOCUMENTS 
This technical description is intended for use as a field reference for DIG ITAL Field Service personnel 
and as a resource for training programs conducted by Educational Services and Manufacturing. 

Chapter I is a general description of the VAX-II /730 system. The remaining chapters provide a de­
tailed technical description of the VAX-I 1/730 Central Processing Unit (CPU). All CPU components 
with the exception of the memory (and UNIBUS) control logic are described. A description of the 
memory (and UNIBUS) control logic is included in the technical description for the VAX-II /730 
Memory System. This and other related documents detailing VAX-II system architecture and the vari­
ous system components are listed in Table I-\. 

Table 1-1 Related VAX-l 1/730 Documents 

Title 

VAX-I 1/730 Memory System Technical Description 

FP730 Floating-Point Accelerator Technical Description 

Integrated Disk Controller Technical Description 

H7202B Power System Technical Description 

DMF32 Multi-function Communications Interface 
Technical Description 

VAX-II /730 System Installation Guide 

VAX-II /730 Hardware User's Guide 

VAX-II /730 Systems Maintenance Guide 

VAX-II /730 Diagnostic System Overview Manual 

V AX Hardware Handbook 

VAX-II Architecture Handbook 

Micro 2 User's Guide 

I-I 

Document Number 

EK-MS730-TD 

EK-FP730-TD 

EK-RB730-TD 

EK-PS730-TD 

EK-DMF32-TD 

EK-SI730-IN 

EK-11730-UG 

EK-11730-MG 

EK-DS730-UG 

EB-I7281 

EB-17580 

AA-H53IA-TE 



1.2 INTRODUCTION TO THE VAX-llj730 
The VAX-II /730 is the current low-end member of the VAX-II family of 32-bit computer systems. 
The synchronous microprogrammed CPU executes the VAX-II instruction set (in native mode) and 
supports the VAX/VMS operating system. Non-privileged PDP-II instructions may also be executed 
(in compatibility mode), allowing existing user mode PDP-II programs to be run without modification. 
System features include: 

• A main memory using standard array modules that allow expansion in 1.0 MB increments to 
a maximum capacity of 5.0 MB 

• Virtual memory management employing a hardware translation buffer that minimizes mem­
ory references for virtual to physical address conversion 

• An instruction buffer that allows for the fetching of the next instruction while the current 
instruction is executing 

• Sixteen 32-bit general registers 

• Thirty-two interrupt priority levels 

• Optional floating-point accelerator and implementation of all floating data types including 
GRAND and HUGE 

• Interval timer and time of year clock 

• A microprocessor-controlled console subsystem that (optionally) supports remote diagnosis of 
the system from a DIGITAL diagnostic center 

• A UN IBUS integral to the system that allows the connection of the general purpose UN­
IBUS peripherals supplied by DIGITAL as well as UNIBUS-compatible devices supplied by 
the customer. 

1.3 VAX-llj730 SYSTEM CONFIGURATION 
A V AX-II /730 system block diagram is shown in Figure I-I. The KA 730 CPU consists of three stand­
ard H EX modules; the data path (DAP) module, the writable control store (WCS) module, and the 
memory controller (MCT) module. Included in the CPU is an 8085A console processor that contains 
three full-duplex asynchronous line interfaces for connecting an LA 120 console terminal, a TU58 
(dual) cassette tape unit, and a modem to the system. The modem (and supporting hardware and soft­
ware) is an option that allows for the remote diagnosis of the system by a DIG IT AL diagnostic center. 
The modem port is also used for APT (automated product test) during system manufacture. 

Other possible VAX-II /730 system components each consisting of a standard HEX module, include an 
FP730 Floating-Point Accelerator (FPA), an RB730 Integrated Disk Controller (lDC), and a DMF32 
synchronous/asynchronous serial line controller. The DMF32 also contains a parallel interface that 
may be operated as either a line printer control (an enhanced LP II control) or as a general purpose 
interface similar to the DRII-C. 

The FPA and IDC are connected to the CPU by the FPA/Port bus. This is a VAX-I 1/730 reserved bus 
that allows CPU microcode control of both options. The DMF32 connects to the CPU via the UN­
IBUS. The UNIBUS is the VAX-I 1/730 system's peripheral I/0 bus. 
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VAX-I 1/730 peripherals, other than the DMF32 and its associated I/O devices, include the TSII 
magnetic tape drive, LP32 line printer and other VAX-II supported UNIBUS options. An R80 (or 
RL02) disk drive and up to three RL02 disk drives may be connected to the system through the IDe. 
Disk data transfers by the IDC are over the FPA/port bus, not the UNIBU? 

The main memory in the V AX-II /730 consists of from one to five MaS memory array modules con­
nected to the CPU by the array bus. Access to the array modules (and UNIBUS device registers) is 
controlled by the memory (and UNIBUS) control logic in the CPU. Up to five 1.0 MB array modules 
may be installed to give a maximum memory capacity of 5.0 MB. The minimum memory configuration, 
which is 1.0 MB, consists of one array module. Whenever a TS II is connected to the system, memory 
capacity is reduced by 1.0 MB. This is because the TS 11 UN I BUS interface module is installed in a 
module slot otherwise reserved for an array module. 

The module designs for the CPU and the FPA, IDC, and DMF32 options all make extensive use of 
semi-custom designed programmed array logic (PAL) chips to increase logic density and reduce cost. 
(PALs are described in Appendix A.) The high logic density allows most system configurations to be 
contained in a single H9642 cabinet. An H9642-DH expander cabinet is required only when the instal­
lation of more than two disk drives or of optional UNIBUS peripherals requires expansion out of the 
basic cabinet. 

1.3.1 KA 730 Central Processing Unit (CPU) 
The hardware for the CPU is contained on the MCT (M8391) module, the WCS (M8394) module, and 
the DAP (M8390) module. The major components are the 8085A console processor, the CPU data path 
and associated microcontroller (CPU control store and CPU microsequencer), and the memory (and 
UNIBUS) control logic. A basic block diagram is shown in Figure 1-2. 

The console processor is contained mostly on the WCS module. Its main logic element is an 8-bit 8085A 
microprocessor supported by 16KB of RAM and 4KB or 6KB of ROM. (The basic ROM is 4KB but an 
additional 2KB is installed as part of the remote diagnosis option.) The console processor is the main 
operator interface to the system, acting in response to switch panel control and a console command 
language entered via the local terminal (the LA 120) or the remote terminal. It also interfaces to the 
system a mass storage device (the TU58) that is used mainly for bootstrapping and diagnostic purposes. 
The console processor is controlled by a console program executed by the 8085A. Part of the console 
program is resident (in ROM) and the rest is loaded (into the RAM) from the TU58 during the system 
bootstrap operation. 

The CPU data path, which is contained on the DAP module, performs the arithmetic and logical oper­
ations necessary to execute the instruction set. The principal data path components are 2901 A 4-bit 
processor slices. Eight 2901 As are connected in parallel to give an arithmetic and logical processing 
element 32-bits wide. The data path also contains a 256 location X 32-bit local store (a RAM) that 
contains among other things the general registers and several of the architecturally defined privileged 
processor registers. 

The data path and other hardware on the DAP module used for instruction processing purposes (e.g., 
instruction and interrupt processing hardware) are controlled by microcode executing in the CPU's mi­
crocontroller. The microcontroller consists of a microsequencer on the DAP module and a soft (writ­
able) control store on the WCS module having a basic storage capacity of 16K 24-bit microwords. An 
additional 4K of control store can be installed as an option to support the IDC and to provide user 
expansion space. The CPU microcode is loaded into the control store from the TU58 during the system 
bootstrap operation. 
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The memory (and UNIBUS) control logic controls the data transfers to and from the main memory 
array modules over the array bus, and the transfers to and from the peripheral devices over the UN­
IBUS. Transfers are initiated by the CPU data path under the control of the CPU microcode, or by the 
UNIBUS devices when direct (NPR) data transfers are made between the UNIBUS devices and main 
memory. 

The memory (and UNIBUS) control logic contains a translation buffer for virtual to physical address 
conversion, a UNIBUS arbitrator, a data rotating and substituting network for aligning memory data, 
and its own microsequencer and control store. These, and the other major components (except for the 
UNIBUS data transceivers and latches which are on the WCS module) are contained on the MCT 
module. Communications between the MCT module and the WCS and DAP modules during memory 
and UNIBUS device references are over the processor's internal memory control (MC) bus. 

1.3.2 Main Memory Array 
Main memory consists of one to five memory array modules that use 64K MOS (metal oxide semi­
conductor) RAM chips for data storage. An array module stores 1.0 MB of data. This allows V AX-
11/730 memory capacities ranging from 1.0 MB to 5.0 MB. 

The array modules are connected to the CPU by the array bus. Memory data transfers over the array 
bus are 39 bits; that is, one 32-bit longword (four bytes) of data and seven associated ECC (error cor­
rection and checking) bits are transferred at a time. The ECC bits provide for the detection and correc­
tion of all single-bit errors when a longword is read from the memory array. Double-bit errors are de~ 
tected but not corrected. The error detection and correction circuitry is part of the memory (and 
UNIBUS) control logic on the MCT module. 

1.3.3 FP730 Floating-Point Accelerator (FPA) 
The optional FPA (M8389) module is an independent processor that works in parallel with the CPU to 
speed the execution of floating-point instruCtions. The principal processing elements used by the FPA 
(as by the CPU) are the 2901A 4-bit processor slices. A basic block diagram of the FPA is shown in 
Figure 1-3. 
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When an FPA is installed in a system, the standard floating-point microcode is not executed in the 
CPU. Instead, for certain instructions, the CPU sends operands to the FPA over the FPA/Port bus, and 
the FPA then performs the floating-point arithmetic at a high speed using its own dedicated hardware 
and microcode. When calculations are complete, the results are sent back to the CPU, again over the 
FPA/port bus. The CPU's IB bus also connects to the FPA to supply opcode information. 

1.3.4 RB730 Integrated Disk Controller (IDC) 
The optional IDC (M8388) module interfaces an R80/RL02 disk drive and from one to three RL02 
disk drives to the system. The R80, which has a non-removable disk with a storage capacity of 124 MB, 
has an average seek time of 25 ms, an average latency of 8.33 ms, and a peak data transfer rate of 1.2 
MB per second. An RL02, which has one removable cartridge with a capacity of 10 MB, has an aver­
age seek time of 55 ms, an average latency of 12.5 ms, and a peak data transfer rate of 0.5 MB per 
second. 

Data transfer between the IDC and CPU are over the FPA/port bus and controlled in part by dedica­
ted microcode in the CPU. One 32-bit longword (four bytes) of disk read/write data is transferred at a 
time, following the generation of a micro level (fast) processor interrupt request by the IDe. Data silos 
(FIFOs) in the IDC provide up to one KB of data buffering for both read and write data. 

A basic block diagram for the IDC is shown in Figure 1-4. As indicated, the IDC connects to the UN­
IBUS in addition to the FPA/port bus. This is for generating interrupts other than the fast interrupts 
generated for disk data transfers. (The IDC asserts a UNIBUS BR line.) The IDC's UNIBUS con­
nection also provides for monitoring the system's power fail levels. 
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1.3.5 DMF32 
The DMF32 (M8396) module, a UNIBUS option, controls eight serial asynchronous lines, one serial 
synchronous line, and a parallel port that may be operated as either an enhanced LP \\ line printer 
control or as a DRCll-C general purpose interface. The main data processing clement is the 290lA 4-
bit processor slice which is also used on the CPU and FPA modules. A basic block diagram is shown in 
Figure \-5. 

UNIBUS 

~3~----I DMF32 DATA 

SYNC ASYNC LPll/DRCll-C 
LINE LlNES(8) INTERFACE 

TK-6641 

Figure 1-5 OMF32 

The asynchronous line control portion of the OMF32 operates as an enhanced version of the OZI1-A. 
Enhancements include split baud rate and extended modem control for two channels, plus transmit data 
silos (32 characters) for all channels. 

The DMF32's synchronous line control transfers message data to and from main memory by means of 
NPR data transfers. It also provides low-level support (e.g., framing messages, generating and checking 
CRC) for OOCMP, SOLC, HOLC, and BISYNC protocols. All high-level network support functions 
are performed by the CPU. 

The DMF32's parallel port, in line printer operating mode, acts as an enhanced LPII control that al­
lows LPII-compatible line printers (such as LP25 and LP26) to be connected to the system. This en­
hanced LPII control does (optionally) several formatting functions previously done by software. In its 
parallel operating mode, the parallel port is used as a DRC II-C general purpose interface that allows 
user peripheral devices to be connected to the system. 
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1.4 SYSTEM ARCHITECTURE 
VAX-II /730 system architecture (including data types, instruction set, addressing, processor registers, 
interrupts and exceptions) is discussed in detail in the V AX-II Architecture Handbook and the VAX 
Hardware Handbook. The information will not be duplicated in this technical description. 

1.5 SWITCHES AND INDICATORS 
The VAX-II /730 has two front panel switches and four front panel indicators. One of the switches is a 
six-position key switch for powering up the system and for setting the mode of operation for the sys­
tem's local and remote terminals. The other is a three-position toggle switch for bootstrapping the sys­
tem and controlling automatic restarts. 

One of the four indicators (LEDs) indicates normal power on. Two other indicators are controlled by 
the 8085A console program. One shows the system's run state and the other shows the status of the 
remote diagnostic link. A fourth indicator, marked BATT, is reserved for future use. Switch and in­
dicator functions are discussed in detail in the VAX-II /7 30 Hardware User's Guide. 

1.6 CONSOLE COMMANDS/BASIC OPERATOR CONTROL 
The console program running in the 8085A console processor is normally operating in one of two modes; 
that is, either in console mode or program mode. In console mode, commands from the local terminal 
(the LA 120) and/or the remote terminal are directed to the 8085A console processor. By means of the 
V AX-II console command language, an operator may use the console processor to perform a number of 
console functions such as resetting and bootstrapping the system, depositing and examining memory, 
and halting and starting program execution. In program mode, terminal input and output data is gener­
ally passed directly to or from the CPU, character by character. The data is handled by the V AX-
11/730 VMS level software. Refer to the VAX-IIj730 Diagnostic System Overview Manual for a de­
tailed description of the various console commands and the basic operator control functions. 

1.7 DIAGNOSTIC AND MAINTENANCE AIDS 
Diagnostic and maintenance aids in the VAX-II /730 are listed in Table 1-2. They are discussed where 
applicable in this technical description and in the other manuals in the VAX-II /730 document set. 

System Component(s) 

CPU/Memory 

Table 1-2 VAX-ttj730 Diagnostic and Maintenance Aids 

Diagnostic and Maintenance Aid(s) 

Control store has parity and microsync test point. 

Control store register (CSR) and micro-PC may be written and read by 
microdiagnostics. 

Basic clocks may be single-stepped by microdiagnostics. 

ECC bits provide single-bit error correction and double-bit error 
detection. Error address register and syndrome bit control are 
implemented. 

Translation buffer has parity. Virtual address and translated physical 
address are readable. UN I BUS address and data loopback capability is 
provided. 
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Table 1-2 VAX-llj730 Diagnostic and Maintenance Aids (Cont) 

System Component(s) 

Console processor 

FPA 

IDC 

Diagnostic and Maintenance Aid(s) 

Independent 8085A console processor allows testing of other system 
components by console-based microdiagnostics. 

Remote diagnostics option provides automated checkout capability. 

ROM-resident self-test is invoked (optionally) at power-up and on 
command. 

Voltage monitoring circuits are incorporated to check + 15 Vand + 5 V. 
UNIBUS AC La and DC LO are also monitored. 

Control store has parity. 

Micro-PC is writable and readable. 

Diskless data loop is provided (RL02 port only). 

1.8 PHYSICAL DESCRIPTION 
The major physical components in the VAX-l 1/730 basic (H9642) cabinet are an 874 Power Control, 
an H7202B Low-End Modular (LEM) Power Supply, a BAII-Z Mounting Box, and the dual-drive 
TU58. The basic cabinet can also accommodate two of the rack-mounted disk drives supported by the 
IDC; that is, either two RL02s or one RL02 and an R80. The major components in the (H9642-DH) 
expander cabinet are an 874 Power Control and a BAII-A Mounting Box. There is also space for one 
RL02. Another cabinet is required if a fourth disk drive (an RL02) is installed in the system. A detailed 
physical description of the VAX-I 1/730 is included in the VAX-Ilj7 30 System Installation Guide. 

1.9 SYSTEM TIMING 
The system's basic clocks are generated on the CPU's WCS module. The clocks sequence the basic 
machine (the CPU's microcontroller and data path) on the WCS and DAP modules, and control the 
generation of clocks on several other modules (such as MCT and FPA) so the system's operations are 
synchronized. 

The basic clock is a continuous clock train with a 90 ns period. Three other clocks are also generated, 
each 90 ns out of phase with the one before. The first two clock phases (PO and PI) are free-running 
like the basic clock. The third clock phase (P2) is gated to produce and define the CPU microcycle. 
Timing of this basic machine cycle is the time required to execute a single CPU microinstruction. Tim­
ing for the system's basic clocks is shown in Figure 1-6. 
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Figure 1-6 Basic System Clocks 

1.10 SYSTEM BUS SUMMARY 
The system buses which interconnect the modules in the VAX-II /730 system are the UNIBUS, the 
memory control (MC) bus, the memory array bus, the FPA/port bus, the console bus, and the IB bus. 
(Those buses that are completely contained within a module are not discussed in this section.) Figure 1-
7 shows data flow over the system buses during the major data transfer operations. 
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Figure 1-7 Major Bus Data Transfers, Data Flow 
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1.10.1 UNIBUS 
The UNIBUS connects the CPU to the system's peripheral I/O devices. Most of the CPU's UNIBUS 
control logic, including the bus arbitrator, is on the MCT module. However, the transceivers for the 16 
UNIBUS data lines are located on the WCS module, requiring that data be transferrcd over the MC 
bus in addition to the UNIBUS during a UNIBUS operation. (The MC bus is discussed in Paragraph 
1.10.2.) 

Figure 1-8 shows the UNIBUS lines and their connection to each of the CPU modules and the other 
V AX-II /730 components. Bus signals are described in Table 1-3. A dctailed description of UNIBUS 
operation is given in the VAX-l 1/730 Memory System Technical Description. 

I 
I 

~ 
A<17:00> 
C1/CO/BBSY 
MSYN/SSYN 

Signal(s) 

A(l7:00) 

0(15:00) 

CPU 

I I -, I-
MGT I I wcs I I 

T T T 
L_ 

DClOI AClOI 

INTRI 
DClO INITI 

BBSY NPRI 
SACK 16 

DAP 

T 
BR 
<7:4> 

I I 
I I 

-.J L 

T 
AClOI 
DCLO 

OTHER UNIBUS 
OPTIONS 

I 
IDC I 

T 
-.J 

BR5 

TK-6639 

Figure 1-8 VAX-l 1/730 UNIBUS 

Table 1-3 VAX-II /730 UNIBUS Signal Summary 

Assertion 
Level 

L 

L 

Description 

Address lines (18). Select UN IBUS device register when asserted 
by CPU (MCT module). Select memory address (via UNIBUS 
map registers in MCT module's translation buffer) when asserted 
by UNIBUS device during an NPR transfer. 

Data lines (16). Travsfer data between UNIBUS device and CPU. 
UNIBUS transceivers are on WCS module. Data is transferred 
between WCS and MCT modules over MC bus. 
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Signal(s) 

CljCO 

MSYN 

SSYN 

INTR 

BR(7:4) 

BG(7:4) 

NPR 

NPG 

SACK 

BBSY 

INIT 

ACLO 

DCLO 

Table 1-3 VAX-II /730 UNIBUS Signal Summary (Cont) 

Assertion 
Description 

L 

L 

L 

L 

L 

H 

L 

H 

L 

L 

L 

L 

L 

Level 

Control lines (2). Asserted with address lines to specify type of data 
transfer. 

Cl 

o 
o 
1 
1 

co 

o 
1 
o 
1 

Function 

DATI 
DATIP 
DATO 
DATOB 

Master synchronize. Asserted by bus master to initiate a data 
transfer. 

Slave synchronize. Asserted by slave in response to MSYN. 

Interrupt. Asserted by UNIBUS device to initiate an interrupt 
vector transfer to CPU. 

Bus request (4). Asserted by UNIBUS device to request use of bus 
for interrupt vector transfer. 

Bus grants (4). Asserted by bus arbitrator in CPU (MCT module) 
to grant use of bus for interrupt vector transfer. 

Non-processor request. Asserted by UNIBUS device to request use 
of bus for data transfer. 

Non-processor grant. Asserted by bus arbitrator in CPU (MCT 
module) to grant use of bus for data transfer. 

Selection acknowledge. Asserted by UNIBUS device to 
acknowledge bus grant (BG or NPG). 

Bus busy. Asserted by bus master when it assumes control of bus for 
data (or interrupt vector) transfer. 

System reset. Asserted by CPU (console processor on WCS 
module) to initialize UNIBUS devices. 

Indicates loss of ac power. 

Indicates loss of dc power. 
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1.10.2 Memory Control (MC) Bus 
The memory control (MC) bus interconnects the three CPU modules: the MCT, WCS, and DAP mod­
ules. It is used to transfer address and data information during memory and UN IBUS references by the 
CPU. It is also part of the data path during NPR data transfers between a UNIBUS device and the 
memory array. This is because the UNIBUS data transceivers are on the WCS module and not on the 
MCT module which connects to the array. As a result, the MC bus is used to transfer the NPR data 
between the two modules. The MC bus signals connecting to each of the CPU modules are shown in 
Figure 1-9. Bus signal descriptions are summarized in Table 1-4. 

MEMORY REal CPU GRANTI MEMORY REal CPU GRANTI CURR MODE<1 :0>1 GATE DIRI CURR MODE<1 :0>1 GATE DIRI 
DATA TYPE<1 :0>1 MEMORY BUSYI DATA TYPE<1 :0>1 MEMORY BUSYI 
COMPAT MODEl LOAD IBI COM PAT MODEl LOAD IBI 
DATA REal ERR SUM DATA REal ERR SUM 
DATA RCVDI 

~ 
CSR<19:16.0B,07> 16 DATA RCVD 

"-~ CSR<19: 16.08,07> 

1<1~> ~<3.!Jl.0> ~<~O> 
I I 

I MCT I I WCS I I DAP I 
L -.J L -.J L -.J 

CPU 

TI(-6636 

Figure 1-9 VAX-ll/730 Memory Control (MC) Bus 

Table 1-4 VAX-ll/730 Memory Control (MC) Bus Signal Summary 

Assertion 
Signal(s) Level 

D(31:00) H 

MEMORY REQ H 

CURR MODE( \ :0) H 

Description 

Data lines (32). Transfer address and data information 
between MCT and DAP modules during CPU memory and 
UNIBUS references. Low-order 16 lines also transfer 
UNIBUS data between the MCT module and the UNIBUS 
transceivers on the WCS module. 

Memory request. Asserted by DAP module to initiate a CPU 
memory or UNIBUS reference. 

Current mode lines (2). Asserted by DAP module to specify 
processor's current access mode. 

CURRMODE 
1 0 PROCESSOR ACCESS MODE 

o 
o 
I 
1 

o 
1 
o 
\ 
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Signal(s) 

DATA TYPE( \ :0) 

COMPAT MODE 

CSR( 19:16, 
08,07) 

CPU GRANT 

MEMORY BUSY 

GATE DIR 

DATA REQ 

LOAD IB 

DATA RCYD 

ERR SUM 

Table 1-4 VAX-ll/730 Memory Control (Me) Bus 
Signal Summary (Cont) 

Assertion 
Level 

H 

H 

H 

L 

H 

H 

H 

H 

H 

L 

Description 

Data type lines (2). Asserted by DAP module to specify type 
of data transfer requested. 

DATA TYPE DATA MODE 
1 0 

0 0 Byte 
0 I Word 
I 0 Not used 
I I Longword 

Compatibility mode. Asserted by DAP module to indicate 
processor is executing a PDP-II program. 

The six memory function lines specify type of CPU reference. 
Signals come from control store register on WCS module. 

Asserted by MCT module to grant CPU memory reference 
request. 

Asserted by MCT module to indicate memory control logic is 
busy performing a CPU memory or UNIBUS reference. 

Gate direction. Negated by MCT module during execution of 
a CPU memory or UN IBUS reference that sends data to the 
DAP module (e.g., memory read). Asserted at all other times. 
Used to condition MC bus transceivers on DAP module. 

Data request. Asserted by DAP module to request transfer of 
read/write data following a CPU memory or UNIBUS 
reference request. 

Asserted by MCT module to load prefetched instruction data 
from data lines into the instruction buffer (the PFR) on DAP 
module. 

Data received. Asserted by DAP module to signal end of 
read/write data transfer. 

Error summary. Asserted by MCT module to indicate one or 
more error conditions detected. 
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The MC bus has 32 data lines. During CPU memory and UNIBUS references, each of which consists 
of two seperate MC bus cycles, the data lines transfer both address and data information. 

During the first MC bus cycle of a memory or UNIBUS reference by the CPU, the DAP module as­
serts the MEMORY REQ line and transmits the address information on the data lines. This request (or 
address-out) cycle is followed by a data cycle. For all references except a prefetch of instruction data, 
the data cycle is initiated by the DAP module when it asserts the DATA REQ line on the bus. The 
read/write data is then transferred over the data lines to end the MC bus operation. A detailed descrip­
tion for this type of CPU reference over the MC bus is given in Paragraph 6.11. 

For a prefetch of instruction data, the MCT module (not the DAP module) initiates the data cycle by 
transmitting the instruction data on the data lines and asserting the LOAD IB line. LOAD IB automat­
ically loads the instruction data into the DAP module's instructions buffer. No bus signals need be as­
serted by the DAP module to transfer the data. Bus operation during the instruction data prefetch oper­
ation is detailed in Paragraph 5.2.1.2. 

During memory references by the CPU, the only data flow over the MC bus data lines is between the 
DAP and MCT modules. (The MCT module transfers data to and from the memory array over the 
array bus, which is discussed in Paragraph 1.10.3.) However, during UNIBUS references by the CPU, 
additional data transfers take place over the MC bus between the WCS and MCT modules. That is, 
during a UNIBUS read reference and following the MC bus request cycle, incoming UN IBUS data is 
transferred from the UNIBUS transceivers on the WCS module to the MCT module's data rotator. 
This is so the UNIBUS read data may be repositioned (if necessary) on the MC bus data lines before it 
is transferred to the DAP module during the MC bus data cycle that follows. 

During a UNIBUS write reference, data may also need to be repositioned, and (similar to a memory 
write) it is first transferred from the DAP module to the MCT module during the MC bus data cycle. 
The data is then sent from the MCT module to the UNIBUS transceivers on the WCS module for 
transfer to the device. 

1.10.3 Memory Array Bus 
The memory array bus connects the MCT module to the memory array modules. The bus signals are 
shown in Figure 1-10. Their functions are given in Table 1-5. 

Fifteen array bus lines are used to select the referenced 39-bit (32-bit longword plus 7-bit ECC) memo­
ry location in the array. Depending on the physical memory address, the MCT module asserts one of 
five lines to select one of the five array modules, and two bank select lines to select a 64K-location bank 
within the selected module. It also asserts a row address followed by a column address on eight multi­
plexed address lines to address a location in the (256 row X 256 column) MOS chips in the selected 
bank. 

Address strobes are asserted on the bus by the MCT module to load the row and column addresses on 
the address lines into the MOS chips. A write strobe is also asserted for memory write references. A 
read enable is generated to specify a memory read reference. Refer to the VAX-II /7 30 Memory Sys­
tem Technical Description for a more detailed description of array bus operation. 
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Figure 1-10 VAX-llj730 Memory Array Bus 

Table 1-5 VAX-llj730 Memory Array Bus Signal Summary 

Assertion 
Level Description 

MEM SEL(A:E) L Memory (module) select lines (5, 1 per array module). One 
line is asserted by MCT module to select a module in memory 
array. 

BSEL(I:O) H Bank select lines (2). Asserted by MCT module to select one 
of four banks in selected array module. 

BSEL 
1 0 Bank 

0 0 Bank 
0 1 Bank 1 
I 0 Bank 2 
1 1 Bank 3 
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Signal(s)* 

A(7:0) 

0(31 :00) 

CB(T,32,16 
8,4,2, I) 

RAS TIME 

CAS TIME 

WRTTIME 

OREN 

REFCYC 

FP4A/3A 
FP4B/3B 
FP4C/3C 
FP40/30 
FP4E/3E 

Table 1-5 VAX-ll/730 Memory Array Bus Signal Summary (Cont) 

Assertion 
Level 

H 

L 

L 

L 

L 

L 

L 

L 

L 
L 
L 
L 
L 

Description 

Multiplexed row/column address lines (8). Asserted by MCT 
module to select one of 64K longword locations in selected 
bank. 

Data lines (32). Transfer memory read/write data between 
MCT module and selected location in memory array. 

Check bit lines (7). Transfer ECC read/write data between 
MCT module and selected location in memory array. 

Row address strobe. 

Column address strobe. 

Write strobe. 

Data read enable. Enable data and check bits from selected 
location in memory array onto data lines. 

Refresh cycle. Asserted by WCS module to refresh a row 
address in all storage elements in memory array. Selects all 
array modules and allows address strobes for all four banks to 
be generated. Causes refresh address (a row address) to be 
asserted on A lines. 

Fingerprint lines (10, two per array 
module). 

FP4x FP3x Status 

o 
1 

Module x not present 
Module x present, fully-populated 

*Signal names listed are as given in MeT module print set. Refer to Figure 1-10 for signal names as they are given in array 
module print set. 
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1.10.4 FPAjPort Bus 
The FPA/port bus connects both the FPA and the IDC (the only current port device) to the CPU. (A 
port device can transfer data to and from the CPU by means of the CPU's fast interrupt facility.) 

Bus line connections are shown in Figure I-II. Table 1-6 describes the bus signals. 

The 32 data lines on the FPA/port bus are an extension of the CPU's Y bus within the DAP module. 
During FPA transfers, the data lines transfer operand data to the FPA and result data from the FP A. 
The FPA's micro-PC may also be read and written over the data lines. During port transfers, the data 
lines transfer commands and device write data to the IDC, and status and device read data from the 
IDe. One 32-bit longword of device read/write data is transferred at a time, following a fast interrupt 
request by the IDe. 

The other FPA/port bus lines (other than data lines) are the data strobes and synchronizing signals 
necessary to control the different types of transfers over the bus. The function and time relation of these 
signals during a transfer are discussed in Paragraph 6.12 of this technical description and in both the 
VAX-llj730 Floating Point Accelerator Technical Description and the VAX-llj730 Integrated Disk 
Controller Technical Description. 
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Figure I-II VAX-I 1/730 FPA/Port Bus 
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Signal(s) 

0(31 :00) 

IRDSTATE 

CPU DATA 
AVAIL 

ACC SYNC 

SEL ACC IN 

READ PORT 

TRAPACC 

READ ~PC 

CSR(17:10) 

PORTINSTR 

PORT XFER 
REQ 

XFER GRANT 

Table 1-6 VAX-llj730 FPAjPort Bus Signal Summary 

Assertion 
Level 

H 

L 

L 

H 

H 

L 

L 

L 

H 

H 

L 

L 

Description 

Data lines (32). Extension of Y bus in CPU. Transfer data 
between CPU and FPA or port device (e.g., IDC). 

Instruction decode state. Asserted by DAP module during 
class decode operation by CPU. Used to indicate to FPA that 
opcode data is asserted on IB bus. 

CPU data available. Asserted by DAP module to indicate to 
FPA that operand data is present on the data lines. 

Accelerator synchronize. Asserted by FPA to synchronize the 
transfer of result data over the data lines to the CPU. Also 
synchronizes transfer of operand data from the CPU during 
execution of POLY instruction. 

Select accelerator. Asserted by DAP module to select FPA 
for transfer of result data over the data lines. 

Asserted by DAP module to indicate that CPU is ready to 
receive result (or micro-PC) data from FPA or device read 
data from port device. 

Trap accelerator. Asserted by DAP module to cause FPA to 
trap to micro-address asserted on data lines. 

Read accelerator micro-PC. Asserted by DAP module to 
indicate CPU wants to read FPA's micro-PC over data lines 
during next CPU microcycle. (READ PORT asserted by 
DAP module during next microcycle.) 

Command byte for port device. Signals are from control store 
register on WCS module. 

Port instruction. Asserted by DAP module to indicate to port 
device that command byte is present on CSR lines 
CSR (17: 1 0). Device write data (or other data depending 
upon the command) may be present on data lines .. 

Port transfer (interrupt) request. Asserted by port device to 
indicate to CPU that it is ready to transfer device read/write 
data. Causes a fast interrupt in the CPU. 

Transfer grant. Asserted by DAP module to clear fast 
interrupt request (PORT XFER REQ) in port device. 
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1.10.5 Console Bus 
The 8-bit console bus is a buffered extension of the AD bus in the 8085A console processor. It transfers 
data between the console processor on the WCS module and the data path on the DAP module as dis­
cussed in Paragraph 2.6. 

1.10.6 IB Bus 
The 8-bit I B bus, which is part of the instruction processing hardware on the DAP module, connects to 
the FPA so that the FPA may sample opcode data during the CPU's class decode operation. The trans­
fer of opcode data is discussed in Paragraph 6.12. 

1.11 DEFINITION OF THE CPU FOR DOCUMENTATION PURPOSES 
As described previously, the KA 730 CPU consists of the MCT, WCS, and DAP modules. However, for 
documentation purposes, the memory (and UNIBUS) control logic which is located on the MCT mod­
ule and partly on the WCS module (the UNIBUS data transceivers and memory refresh logic are lo­
cated on the WCS module) is treated as part of the memory system (described in the VAX-II j7 30 
Memory System Technical Description). 

NOTE 
The memory (and UNIBUS) control logic described 
in the VAX-ll/730 Memory System Technical De­
scription is sometimes referred to as the memory 
controller (MCT) in the following chapters. 

The chapters that follow in this technical description describe the rest of the CPU on the WCS and 
DAP modules. This hardware, hereafter referred to in this document as the CPU, consists of the follow­
ing major logic groups. 

1. 8085A console processor 
2. CPU clock generator 
3. CPU control store and microsequencer 
4. Instruction processing hardware 
5. Data path 
6. Interrupt processing hardware 

These major logic groups are connected as shown in Figure 1-12. 
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2.1 INTRODUCTION 

CHAPTER 2 
CONSOLE PROCESSOR 

The CPU's console processor provides the main operator and maintenance interface to the VAX-
11/730. A block diagram is shown in Figure 2-1. 

The principal logic element in the console processor is an 8-bit 8085A microprocessor that executes a 
program controlling all console functions. Associated with the 8085A is a 4K X 8-bit ROM that stores 
the resident portion of the console program, (the ROM is 6K X 8 bits if the RD option is installed), and 
a 16K X 8-bit RAM that stores the main body of the console program loaded from the TU58 during 
the system bootstrap operation. The RAM also stores the console-based microdiagnostics and micro­
diagnostic monitor executed by the 8085A and loaded from the TU58 during diagnostic operations. 

Other logic elements in the console processor include an interval timer and three universal synchro­
nous/asynchronous receiver/transmitters (USARTs) for interfacing the CPU to the console terminal; 
the TU58; and the remote line (connecting to a modem) that is used in the field for remote diagnostic 
purposes. The remote line is also used for automated product testing (APT) during the manufacturing 
process. 

Data and address information is multiplexed and transferred within the console processor over the bidi­
rectional AD bus. This 8-bit bus is an extension of the internal address/data bus in the 8085A 
(AD(7:0». During console operations, address information is first transmitted on the bus by the 
8085A. Read/write data is then transferred over the bus between the 8085A and the addressed console 
device. 

The address information transmitted on the AD bus is either the low-order eight bits of a memory 
(ROM or RAM) address, or an 8-bit I/O address. I/O addresses are the addresses of console devices 
other than memory, such as the interval timer or USARTs. Other I/O devices in the console processor 
include console command (output) registers and input data multiplexers as shown on sheet 2 of Figure 
2-1. 

The I/O address transmitted by the 8085A on the AD bus is also transmitted on a set of eight conven­
tional (non-multiplexed) address lines. These address lines (A ( 15:08», not the AD lines, are used to 
select most of the console's I/O devices. The A lines also address the memory devices (together with 
the AD bus) and supply the high-order portion of a ROM or RAM address. 

Although most of the console processor is located on the WCS module, the 8-bit console write register 
(CWR) and the 8-bit console read register (CRR) are located on the DAP module. These registers are 
used to transfer data, one byte at a time, between the console processor and the CPU's data path. The 
CWR is addressed and loaded by the 8085A and then read onto the data path's 0 bus by the CPU 
microcode. The CRR is addressed and read by the 8085A after being loaded by the CPU microcode 
from the data path's Y bus. Other parts of the console processor located on the DAP module include a 
command register and an input data multiplexer. These components, plus the CWR and CRR, are 
shown on sheet 3 of Figure 2-1. 
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The transfer of information between the WCS and DAP modules is over the 8-bit console (CONS) bus. 
This bus is a buffered extension of the WCS module's AD bus. As a result, device address and data 
information is multiplexed on the console bus as described previously for the AD bus. 

2.2 8085A MICROPROCESSOR 
The 8085A is an 8-bit parallel CPU that executes the program stored in the console processor's ROM 
and/or RAM. A block diagram of the 8085A is shown in Figure 2-2. Input/output pin definitions are 
given in Table 2-1. 
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Pin(s) 

A(l5:08) 

AD(7:0) 

SI, SO 

RD 

WR 

10 

HOLD 

HOLDA 

INTR 

INTA 

RST 7.5, 
6.5,5.5 

Table 2-1 8085A Input/Output Pin Definitions 

Function 

Address line outputs (tri-state). The eight most significant bits of memory 
address or the eight bits of I/O address. A ( 15) is the most significant 
address bit. 

Multiplexed address and data bus inputs/outputs (tri-state). The eight 
least significant bits of memory address or the eight bits of I/O address 
during the first machine state (Tl) of a machine cycle. Data bus during 
second and third machine states (T2 and T3). 

Status outputs. Encoded status of the machine cycle as follows: 

SI SO Status 

0 0 Halt 
0 1 Write 
1 0 Read 
1 1 Instruction fetch 

Read. An output (tri-state) that indicates current machine cycle is a 
memory or I/O read operation and that the AD bus is available for data 
transfer. Asserted during T2. Negated during T3. 

Write. An output (tri-state) that indicates current machine cycle is a 
memory or I/O write operation. Write data may be strobed from AD bus 
at trailing edge. Asserted during T2. Negated during T3. 

I/O operation. An output (tri-state) that indicates the current machine 
cycle is an I/O read or write operation. (Negated during a memory read 
or write operation.) 

Not used in console processor. 

Not used in console processor. 

Not used in console processor. 

Not used in console processor. 

Restart (interrupt) inputs. Cause automatic jump to interrupt service 
routine. 

RST 

7.5 
6.5 
5.5 

Restart 
Address 

3C 
34 
2C 

2-6 

Comments 
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Pin(s) 

TRAP 

READY 

SOD 

SID 

X2, Xl 

CLK 

RSTIN 

RSTOUT 

Table 2-1 8085A Input/Output Pin Definitions (Cont) 

Function 

Not used in console processor. 

Ready input. If asserted at start of T2, indicates read/write data may be 
transferred during next machine state (T3). If not asserted at start of T2, 
indicates 8085A is to wait for READY to be asserted before completing 
read or write operation. 

Serial output data line. 

Serial input data line. 

Clock inputs (10 mHz in console processor). Divided by two to determine 
the internal clock frequency. 

Internal clock output (5 mHz in console processor). 

Reset input. Clears interrupt enable and HOLDA flip-flops. Resets 
program counter to zeros. 

Reset output. Indicates 8085A is being reset. 

The execution of instructions in the 8085A consists almost entirely of a series of read or write data 
operations between the 8085A and the PROM, RAM, and console I/O devices. Of course the devices 
addressed, the data (as it is processed by the 8085A), and the sequence of read/write operations vary 
depending on the instructions being executed. 

Each read or write operation that occurs during the execution of an 8085A program is called a machine 
cycle, and each 8085A instruction requires from one to five machine cycles for execution. Each ma­
chine cycle, in turn, consists of a minimum of three to six machine states where a state is equal to one 
8085A clock period (T). The clock period for the type of 8085A used in the console processor (an 
8085A-2) is 200 ns. 

The types of 8085A machine cycles are the instruction fetch, memory read, memory write, I/O read, 
I/O write, interrupt acknowledge, and bus idle. The 8085A input/output signal timing for all cycles but 
the interrupt acknowledge (which is not invoked by the console program) and the bus idle cycle (which 
reads or writes no console devices) is shown in Figure 2-3. 

One of the first 8085A output signals asserted during a machine cycle is an address latch enable 
(ALE). This control signal is asserted during the first machine state (TI) of all machine cycles to facil­
itate loading of the address information on the AD bus into external latch circuits. This is necessary 
because the multiplexed AD bus lines also carry data later in the machine cycle. For example, during 
an instruction fetch cycle, which is the first (and sometimes only) machine cycle during execution of an 
8085A instruction, the low-order memory address is transmitted on the AD bus by the 8085A during 
the first machine state only. The AD bus lines are then used to transfer instruction data from the ad­
dressed ROM or RAM location to the 8085A. 
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Figure 2-3 8085A Machine Cycles Timing Diagram 

Other 8085A outputs asserted at the beginning of a machine cycle are an 10 signal and two status lines, 
S I and SO. These three outputs define the type of machine cycle. The 10 signal is asserted for the 
entire machine cycle when accessing an I/O (not a memory) device. 

The status lines, which are also asserted for the entire cycle, further define the machine cycle as a read 
or write. That is, SI and SO have a binary value of 01 for both an I/O write cycle and a memory write 
cycle, and they are equal to 10 for both an I/O read and a memory read. Also, the status lines specify 
an instruction fetch when they are equal to 11, and a bus idle cycle (due to a processor halt) when they 
are 00. 
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Two 8085A outputs are provided to act as read/write data enable or strobe signals during a machine 
cycle. An RD signal, which is asserted after Tl of a read cycle, is used to gate data onto the AD bus 
from an addressed console device following the transmission of the address data on the bus. A WR 
signal, the trailing edge of which occurs during T3 of a cycle, is used to strobe or latch write data 
asserted on the AD bus into an addressed device. 

Except for an instruction fetch, the machine cycles transferring data to or from a console device require 
only three consecutive machine states to execute normally. (The instruction fetch requires a minimum 
of four or six states.) However, when more time is required to read or write data from a particular 
device, the 8085A's READY input may be negated to introduce additional time between T2 and T3 in 
the cycle. The READY signal is negated in the console processor to cause a wait time equal to one 
8085A clock period (TW) when reading and writing the RAM or the USARTs. 

2.3 2651 USARTS 
The console processor contains three 2651 universal synchronous/ asynchronous receiver/transmitters 
(USARTs). One USART connects to the console terminal, the second to the TU58, and the third to the 
remote line modem. Each USART operates in asynchronous mode to transfer data over a serial line to 
and from its connecting device. A block diagram of the 2651 USART is shown in Figure 2-4. Table 2-2 
defines the input/output pins. 
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Figure 2-4 2651 USART 
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Pin(s) 

(7D:OD) 

AI, AO 

WR 

EN 

TXRDY 

RXRDY 

TXD 

RXD 

DSR 

Table 2-2 2651 USART Input/Output Pin Definitions 

Function 

Data bus inputs/outputs (tri-state). Transfer read/write data plus command 
and status information. 7D is the most significant bit. 

Address inputs. Select internal registers. 

Write input. Specifies a read when negated. 

Chip enable input. Perform operation specified by AI, AO, and WR. 

EN Al AO WR R/W Operation 

o o o 

o o 

o o 

o 

o o 

o 

o 

o 

Read data (receive holding) 
register 

Write data (transmit holding) 
register 

Read status register 

Write SYNI/SYN2/DLE registers 

Read mode registers I and 2 

Write mode registers I and 2 

Read command register 

Write command register 

No transfer - data bus off 
(tri-state condition) 

Transmit ready output. Transmit holding register ready to accept a character. 
Negated when holding register is loaded. 

Receive ready output. Receive holding register contains a character. Negated 
when holding register is read. 

Serial data output from transmitter. 

Serial data input to receiver. 

Data set ready input. Also ring indicator condition input. 
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Table 2-2 2651 USART Input/Output Pin Definitions (Cont) 

Pin(s) Function 

DCD* Data carrier detect input. Must be asserted for receiver to operate. 

CTS* Clear to send input. Must be asserted for transmitter to operate. 

DTR Data terminal ready output. 

DSCHG Not used in console processor. 

BRCLK Not used in console processor. 

TXC Transmitter clock input. 

RXC Receiver clock input. 

RESET Reset input. Force idle state. Clear mode, command, and status registers. 

* I nput from modem. Always asserted (pin tied to ground) at input to console (local) terminal USART and TU58 USART. 

2.3.1 Basic Operations 
One of the basic functions of a USART is to accept data characters in parallel format and then convert 
them into a continuous serial data stream for transmission. The other is to receive a serial data stream 
and convert it into parallel data characters. In the console processor, USART operations are controlled 
by the 8085A microprocessor. Bit maps and I/O addresses for the 2651 registers that may be accessed 
by the 8085A for control purposes are shown in Figure 2-5. 

Register addressing in the USARTs is controlled by two address inputs, Al and AO, which connect to 
two of the 8085A's A lines (A09 and A08). The A lines select either a data register address, a mode 
register, the command register, or a status register whenever a USART's chip select level is true. (Gen­
eration of the chip select levels is described in Paragraph 2.5.4.1.) Whether the addressed register is to 
be read or written is determined by the USART's WR input. This input is asserted by 8085 WRT CYC 
during an AD bus write operation. The 8085 WRT CYC signal is derived from one of the 8085A's 
status line outputs (S 1). 

The 8085 loads a character into the USART's data register to transmit the character over a serial line. 
(A write to the data register address loads the character into the USART's TX hold register.) However, 
the USART must be conditioned to transmit prior to the load. That is, the data set ready (DSR) input 
pin must be asserted, the data terminal ready (DTR) output is asserted, and the transmit enable 
(TXEN) bit must be set in the command register. The transmit ready (TXRDY) bit is asserted to in­
dicate that the USART is ready to transmit data. Loading the TX hold register causes TXRDY to be 
negated. The data in the TX hold register is loaded from TX hold into the TX shift register, and TX 
RDY is asserted again. Request to send (RTS) is asserted and the USART waits for clear to send 
(CTS). The contents of the TX shift register are transmitted over the transmit data (TXD) line. 
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10 
REGISTER ADDRESS READ/WRITE 07 06 05 04 03 02 01 00 

DATA 40(U3) W CHARACTER TO BE TRANSMITTED I 44(U2) I I I I I I I 

4B(Ul) 

07 06 05 04 03 02 01 00 
DATA 40(U3) R I 44(U2) RECEIVED CHARACTER 

4B(Ul) I I I I 

STATUS 41(U3) R 
45(U2) 
49(Ul) 

DSCHG TXRDY 

MODEl 42(U3) R/W 
(SEE NOTE 3) 46(U2) 

4A(Ul) 

1 = EVEN PAR 
00 = SYNC, ClK 
01 = ASYNC, ClK 

o 0 = ODD PAR 
• 10 = ASYNC, ClK/16 

11 = ASYNC, ClK/64 
00 = INVALID 00=5BITS 

o 01 = 1 STOP BIT 01 = 6 BITS 
10 = 1% STOP BITS 10 = 7 BITS 
11 = 2 STOP BITS o 11 = B BITS 

TK-6560 

10 
REGISTER ADDRESS READ/WRITE 

01 

MODE2 42(U3) R/W 
(SEE NOTE 3) 46(U2) 

COMMAND 

4A(Ul) 

43(U3) 
47(U2) 
4B(Ul) 

R/W 

\ J 1 (NOT USED IN 
o 0 = EXTERNAL CONSOLE PROCESSOR) 

1 = INTERNAL 

o 00= NORMAL 
01 = AUTO ECHO 

o 10 = lOCAL lOOP BACK 
11 = REMOTE lOOP BACK 

(WRITE ONLY, 
AUTO-CLEAR 
AFTER SET) 

NOTES: 1. SYNCHRONOUS MODE REGISTERS (SYN1/SYN2/DlE) AND SYNCHRONOUS MJDE CONTROL BITS 
IN OTHER REGISTERS NOT USED IN CONSOLE PROCESSOR AND ARE NOT SHOWN. 

2. AN ASTERISK (0) INDICATES PARAMETERS USED IN CONSOLE PROCESSOR. 
3. ADDRESSING OF MODE 1 AND MODE 2 REGISTERS (WHICH HAVE THE SAME I/O ADDRESS) IS CYCLIC. 

THAT IS, THE FIRST READ OR WRITE ADDRESSES MODE 1, THE SECOND MODE 2. THE MODE 1 REGISTER 
IS ALWAYS READ OR WRITTEN WHEN THE MODE REGISTERS ARE ADDRESSED FOllOWING A RESET 
OR A COMMAND REGISTER READ. 

TK-6488 

Figure 2-5 Bit Formats for 2651 USART Registers 
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The USART is conditioned to receive data over the serial line when the data carrier detect (DCD) 
input is asserted and the receive ready (RXEN) bit in the command register is set. Whenever a com­
plete character has been assembled in the USART's RX shift register, it is transferred into the RX 
holding register and the RXRDY output (also a status register bit) is asserted to indicate the 8085A 
may take the data. 

To take a received data character, the 8085A reads the USART's data register address. (Reading the 
data register address transmits the RX holding register contents onto the USART's data outputs and 
thus onto the console processor's AD bus.) RXRDY, which is negated by the data register read, is then 
reasserted whenever the next data character has been assembled in the RX shift register and trans­
ferred into the RX holding register. 

Errors that may be detected when receiving data are overrun (OVN) errors, parity (PAR) errors, and 
stop bit (STB) errors. Each type of error sets a bit in the USART's status register which may be read 
by the 8085A. The overrun error indicates that a data character was not read by the 8085A before a 
new character was assembled and loaded into the RX holding register. The parity error indicates re­
ceived bad parity. The stop bit error indicates that the received character was not framed by the correct 
number of stop bits. 

Error bits are cleared when the receiver is disabled (RXEN cleared in the command register) or by a 
reset error command (CLR ERR set in the command register). 

NOTE 
The USART parity error flag is not checked by the 
8085A console program. 

The operating mode for a USART (character length, the number of stop bits, etc.) is specified by writ­
ing the appropriate bits in the USART's two mode registers. Asterisks entered on the register bit maps 
(Figure 2-5) indicate the operating modes used in the console processor. For example, character length 
is 8 bits which is specified by making the 2-bit CHAR LENGTH field in mode register 1 equal to a 
binary 11. 

2.3.2 USART Clocks 
All three USARTs in the console processor use an external clock source. Also, the transmit and receive 
clock input pins for any USART are tied together. The mode register is set so that the USART divides 
the clock input by 16. 

The USART's external clock generator and related logic is shown in Figure 2-6. The clock outputs are 
derived from the 200 ns 8085A clock, which is divided by four and used to clock a counter. The counter 
outputs, when divided by 16 by the USART, then provide the clocks for operation at baud rates of 
38,400,9600,2400, 1200, and 300. The counter also provides an output (REQ 8085 REF) that is used 
to initiate the refresh cycle for the 8085A RAM on a periodic basis; that is, every 12.8 p,s. 

The USART for the TU58 operates at a baud rate of 38,400. The clock for the USART connecting to 
the remote line (REMOTE BAUD CK) also is 38,400 baud, but only during APT. During remote diag­
nostic operation, operation is switch-selectable at baud rates of either 300 or 1200. The clock for the 
console terminal's USART (TER BAUD CK) is also switch-selectable and operation may be at baud 
rates of 9600, 2400, 1200, or 300. 
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(SP8) 

APT 
PRESENT 

CLK BAUD 
....---..., GEN BAUD 

CLK (200 NS) 

PAL(WCSJ) 

9600 
SEL 1 
SEL 0 

2400 

SEL 1 
SELO 

1200 
SEL 1 
SEL 0 

300 
SEL 1 
SELO 

SEL 1 

SEL 0 

CLK/4 
CNTR 
(WCSD) 

GEN 

CNTR 

(WCSA) 

REO 8085 REF (12.8/lS PERIOD) 

1-t--38.4K (TO U2) 

9600 

2400 

1200 

300 

TER BAUD CK (TO U1) 

REMOTE 
BAUD CK 
(TOU3) 

TK~502 

Figure 2-6 Baud Clock Logic 

2.3.3 Terminal and Tape Data Transfers 
The way that data transfers are made to and from a terminal or a tape via the USART differs, depend­
ing on whether the console program is operating in console mode or program mode. 

In console mode, the data transfers are controlled completely by the console program itself. That is, the 
program determines when to transmit characters (prompts and error messages to a terminal, for ex­
ample) or when to read and process received characters (e.g., indirect command data from a tape). The 
program examines a USART's TXRDY bit to determine when the next character to be transmitted 
may be loaded into the USART's data register. Similarly, it examines a USART's RXRDY bit to de­
termine when a received character may be read from the data register. The program examines the 
TXRDY and RXRDY bits by reading the console processor's ready bit status register. (The I/O 
READ address is equal to 20.) The ready bits are read through the ROM multiplexer as discussed in 
Paragraph 2.5.4.2. 
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In program mode, terminal and tape data transfers are controlled by the console program; but the data 
is passed to and from the data path following processor interrupts, and only in response to MFPRs and 
MTPRs executed by the program running in the CPU. 

To control the generation of interrupts, the console program (when in the program mode idle loop) polls 
the USART's status registers to check the state of the TXRDY and RXRDY bits. Then, when one is 
asserted, the program sets a corresponding bit in an 8-bit interrupt summary register. A TXRDY bit 
from either the local or remote terminal's USART sets one bit in the register; an RXRDY bit sets 
another. Two other bits in the register correspond to TXRDY and RXRDY in the TU58's USART. 
This interrupt summary register is not a hardware register. It is a software register contained in the 
console program (a RAM address). Bit formats are shown in Figure 2-7. 

06 04 

INHRRUPT SUMMARY REGISTER 

• TERM • TERM 
RXRDY TXRDY 

TU5B 
TXRDY 

TU5B 
RXRDY 

03 00 

INTERRUPT PRIORITY REGISTER NOT USED 

TU5B 
RX 
INTERR 

• TERM 
RX 
INTERR 

TU5B 
TX 
INTERR 

• TERM 
TX 
INTERR 

• NOTE: 
TERMINAL MAY BE EITHER LOCAL OR 
REMOTE TERMINAL. 

TK-6628 

Figure 2-7 Bit Formats for Interrupt Summary and Priority 
Registers in Console Program 

Associated with each of the four interrupt summary register bits set as result of an asserted USART 
ready bit is an interrupt enable bit. Each enable bit is set by an MTPR (with bit 06 in the register data 
equal to one) that addresses the corresponding transmit or receive control/status register for the termi­
nal or tape. Bit formats for the console and tape device registers are given in Figures 2-8 and 2-9. 

The transmit and receive control/status registers for the terminal are the TXCS and RXCS. Those for 
the tape are the CSTS and CSRS. (The other registers in Figures 2-8 and 2-9 are the transmit and 
receive data buffer registers for the te .. minal and tape.) The control/status registers (as well as the data 
buffer registers) are pseudo registers, in that they are not dedicated hardware registers. They are imple­
mented by the console program and CPU microcode. For example, when an MTPR instruction address­
ing a control/status register is executed, the CPU microcode sends the interrupt bit as part of a data 
packet from the data path to the console processor over the console bus. The console program then sets 
the appropriate interrupt enable bit in the console interrupt summary register. The transfer of data 
packets between the CPU microcode and console processor is discussed in Paragraph 2.6. 

2-15 



PROC 
REG 

RXCS 

RXDB 

TXCS 

TXDB 

IPR READ 
ADRS WRITE 31 08070605 00 

RIW I I II I 20 

21 

22 

23 

R 

R/W 

W 

MBl MBl 

IIJTEN 

DONE (READ ONLY) 

31 161514 1211 0807 00 

I 0 II 0 I SELECT I DATA I 
I 

I ERROR 

0= LOCAL/REMOTE TERMINAL 
F = MISC. COMMUNICATIONS (SEE NOTE) 

31 08070605 00 

MBl I II MBl I 
IIJTEN 

READY (READ ONLY) 

31 1211 0807 00 

MBl I SELECT I DATA I 
I 

0= LOCAL/REMOTE TERMINAL 
F = MISC. COMMUNICATION (SEE NOTE) 

NOTE: SELECT FIELD EQUAL TO F INDICATES 
TXDB HAS SPECIAL FUNCTION SPECIFIED 
BY DATA FIELD 

SELECT/DATA 

F/1 
F/2 
F/3 

F/4 

FUNCTION 

SOFTWARE DONE 
BOOTSTRAP CPU 
CLEAR WARM RESTART 
FLAG 
CLEAR COLD RESTART 
FLAG 
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Figure 2-8 Bit Formats for Console Terminal Data and 
Control/Status Registers 

If an interrupt enable bit in the interrupt summary register is set by an MTPR, it causes processor 
interrupt requests to be generated [at an IPL of 14 (HEX)] by the console program when or if the 
associated interrupt summary bit is set. The console program generates an interrupt request by first 
setting one of four bits in another software register, the interrupt priority register (Figure 2-7). 

The bit set depends on which interrupt summary bit (and interrupt enable bit) is set; that is, what type 
of data transfer request has been made (i.e., terminal read or write, or tape read or write). The console 
program then asserts CONS ATTN to interrupt the program running in the CPU. After asserting 
CONS ATTN, the console program returns to the program mode idle loop where it continues to check 
the USART's TXRDY and RXRDY bits. 

Whenever a USART data transfer interrupt request (CONS ATTN) is serviced by the CPU micro­
code, a data packet (one byte) is sent from the data path to the console processor to acknowledge the 
request. In response, the console program clears CONS ATTN and returns the contents of the interrupt 
priority register in another data packet (again, one byte) so that the CPU microcode may determine 
which USART data transfer request (or requests) has caused the interrupt. (More than one USART 
ready bit may be asserted at a time.) If there is more than one USART data transfer request, the con­
sole program also reasserts the CONS ATTN signal. 
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PRoe IPR READ/ 
REG ADDRESS WRITE .=.31.:....-______________ o~8'.;:.07:.;;:0::;:;60::::5------:0:::,0 

e-S-RS---1-e---R-/W- Lr ________ M_Bl _______ ~I~I~I~-M-Bl-~1 

IIJTEN 
DONE (READ ONLY) 

31 161514 0807 00 

eSRD ID R ~I _______ O _______ I~I~_O __ ~I ___ DA_TA __ ~I 
I 

ERROR 

31 08070605 01 00 

eSTS IE R/W MBl I II MBl II 

I I~T LlNIE 
EN BREAK 

READY (READ ONLY) 

31 0807 00 

eSTD IF W MBl I DATA I 

TK-6493 

Figure 2-9 Bit Formats for Console Storage (Tape) Data and 
Control/Status Registers 

When the CPU microcode receives the contents of the interrupt priority register, it initiates a dispatch 
to an instruction level interrupt service routine for the highest priority USART data transfer request. 
As shown in Figure 2-7, the tape read transfer has the highest priority and the terminal transmit oper­
ation has the lowest. 

During the instruction level interrupt service routine, an MTPR is executed to transfer transmit data to 
a terminal or tape, or an MFPR is executed to transfer received data from a terminal or tape. The 
MTPR or MFPR addresses a data buffer register. The data buffer registers for the terminal are the 
TXDB and RXDB. The tape's data buffer registers are the CSRD and CSTD. 

With reference to Figures 2-8 and 2-9, the transmit data character (one byte) is contained in the low­
order eight bits of register data for the TXDB and CSTD. When an MTPR referencing either one of 
these data buffer registers is executed by the program, the transmit data character is passed from the 
data path to the console processor (as part of a data packet) by the CPU microcode. 

The console program loads a character sent in response to a TXDB reference into a pseudo transmit 
data buffer. It then loads the character into the data register of the appropriate USART for transmis­
sion to either the local or remote terminal. A character sent in response to a CSTD is loaded directly 
into the data register of the USART for the TU58. Also, for both a TXDB and CSTD, the console 
program clears the appropriate interrupt summary bit in the interrupt summary register, and the appro­
priate "interrupt pending" bit in the interrupt priority register, now that the interrupt request has been 
serviced. Once a USART's data register is loaded, the transmit data character is sent out serially to the 
terminal or tape. 
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The select field in the TXDB's register data is equal to zero for transmit data transfers. It can also be 
an F to indicate miscellaneous communications between the CPU microcode and the console program. 
In this case, the data field specifies an operation (other than a transmit data transfer) to be performed 
by the console program (bootstrap, etc.). 

An MFPR referencing the RXDB or CSRD causes the console program (after receiving a command 
data packet from the CPU microcode) to read both a software data buffer, which contains the received 
data character, and the software control/status register for the USART. (The received character was 
read from the USART's data register and stored in the software data buffer following the assertion of 
the USART's RXRDY bit.) 

The received character and software control/status register are then sent to the CPU microcode as part 
of a two-byte data packet. The CPU microcode unpacks the information and assembles it into the cor­
rect register bit format for the MFPR. The received data character is placed in the low-order eight bits 
of the RXDB or CSRD data. Also, an error bit in the RXDB or CSRD data (bit 15) is made equal to 
one when any of the error bits in the control/status information supplied by the console program are set. 
These are the data overrun and stop bit errors sensed by the USART. Parity errors sensed by the 
USART will not cause the MFPR's error bit to be set. This is because the USART's parity error bit is 
masked out by the console program whenever the USART's status register is loaded into the software 
control/status register. 

The software control/status register is also sent to the CPU microcode by the console program when an 
MFPR is executed addressing the TXCS, RXCS, CSRS, or CSTS. In this case, the CPU microcode 
uses the TXRDY or RXRDY bit in the control/status information to set DONE (bit 07) in the register 
data it assembles. (The DONE bit indicates to the program the transmit or receive ready status of the 
terminal or tape.) The state of the corresponding interrupt enable bit is also made part of the register 
data (bit 06) assembled for MFPR. This bit is not part of the control/status data sent by the console 
program. The bit was stored previously by the CPU microcode at the time it was last set or cleared by 
an MTPR. 

2.4 THE 9513 INTERVAL TIMER 
The 9513 interval timer chip contains a 16-bit frequency scaler, a 4-bit divider circuit, and five general 
purpose 16-bit counters. Each counter and its associated control circuitry, called a counter logic group, 
may be programmed to specify a number of count modes, count sources, and input/output control func­
tions. The 9513, which is controlled by the 8085A, also contains a data bus interface that connects to 
the console processor's AD bus. The data bus interface consists of both a data port and a control port 
for addressing the various registers internal to the chip. A block diagram of the 9513 interval timer is 
shown in Figure 2-10. Input/output pin definitions are given in Table 2-3. 

Each counter logic group in the 9513 contains a 16-bit load register for pre-setting the counter, and a 
16-bit hold register for storing the current count. Also, counter logic groups 1 and 2 contain an alarm 
register and a comparator circuit. If enabled to do so, the counter logic group's single output pin is 
asserted whenever the counter has a value equal to the alarm register contents. 
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Figure 2-10 9513 Interval Timer Block Diagram 
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Pin(s) 

DB (07:00) 

CS 

RD 

WR 

C-/D 

GATE (5:1) 

SOURCE (5:1) 

Table 2-3 9513 Interval Timer Input/Output Pin Definitions 

Function 

Data bus inputs/outputs (tri-state). Transfer command/status information and 
register read/write data. DB (07) is the most significant bit. (DB (15:08) not 
used; that is, data bus may be configured for 16-bit or 8-bit width and only 8-bit 
configuration is implemented in console processor.) 

Chip select input. Enables data bus read/write transfers. 

Read input. Specifies a data bus read. 

Write input. Specifies a data bus write. 

Control not/data input. Select port used for read/write transfers. 

CS C-/D RD WR Operation 

0 Write command register 

0 Read status register 

0 0 Write data register addressed by 
'data pointer 

0 0 Read data register addressed by 
data pointer 

No transfer. Data bus off 
(tri-stated) 

0 No transfer. Data bus off 
(tri-stated condition) 

Gate inputs. A GATE n signal enables the counter in logic group n, n + 1, or 
n - 1 to count its source. The logic group counter enabled depends upon the 
gating control bits in the logic group's counter mode register. The same control 
bits also determine if the counter is enabled to be active when GATE n is high 
or low, or following a high or low transition of GATE n. 

Source inputs. The SOURCE n signals provide an external count source for any 
or all of the counters (i.e., logic group counters and FOUT divider). Selection is 
by control bits in the counter mode registers (for the logic group counters) or 
the master mode register (for the FOUT divider). The control bits may also 
select any of the gate inputs or the outputs of the frequency scaler as count 
sources, and determine whether a count occurs on the positive or negative 
transition of the source. 
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Pin(s) 

(5: I) 

FOUT 

X2,Xl 

Table 2-3 9513 Interval Timer Input/Output Pin Definitions (Cont) 

Function 

Counter outputs (tri-state). Each output n signal is the output from the counter 
in the corresponding logic group (logic group n). Output may be a pulse, square 
wave, or have a complex duty cycle as determined by control bits in the logic 
group's counter mode register. 

Frequency out. Output of FOUT frequency divider. The input (source) for the 
divider may be divided by any value from 1 through 16, as determined by 
control bits in the master mode register. The source for the divider, which may 
be any of the SOURCE or GATE inputs, or any of the outputs of the frequency 
scaler, is also determined by control bits in the master mode register. 

Clock inputs (one kHz in console processor). Determines frequency of internal 
oscillator which provides the input to the frequency scaler. 

In addition to its use as an interval timer, the 9513 chip provides a time of year count and a power fail 
time-out. The utilization of the five counter logic groups to implement these three functions is shown in 
Figure 2-11. 

INTERVAL 
TIMER 

CNTR LOGIC GROUP .--_-, 

POWER FAIL 
TIMER TIME OF YEAR 

~ 4 5 

fCNT'R31 ~CNTR 4 H CNTR 5 I 
1IlS~OMS 

TIMER INT 
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Figure 2-11 Utilization of 9513 Counter Logic Groups 

2.4.1 9513 Register Addressing 
Bit maps and I/O addresses for the registers in the 9513 accessible by the 8085A are shown in Figure 2-
12. When the 9513 is referenced, the chip select (CS) input and either the read or write (RD or WR) 
input is asserted. Also, either the control or data bus port is selected, depending on the state of the 
control not/data (C-/D) input. Registers accessed via the 9513's control port are the command and 
status registers. All other addressable registers (as well as the status register) may be accessed via the 
9513's data port. 
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REGISTER 

COMMAND 

STATUS 

DATA 

10 
ADDRESS 

ID 

ID 

IC 

READ/WRITE 

W 

R 

R/W 

07 06 05 04 03 02 01 00 

I COMMAND CODE 

I ~ , 

C5 C4 Q C2 (;l CO FUNCTION 

o 0 0 E2 El G4 G2 Gl LOAD DATA POINTER REGISTER 
o 1 0 0 0 DISABLE DATA POINTER SEQUENCING 
o 0 0 0 0 ENABLE DATA POINTER SEQUENCING 

(SEE TABLE FOR OTHER COMMAND CODES) 

DATA 

POI NTE R l..-...L..---L-+----'-_J....,...J 

~L BYTE POINTER I 0= MOST SIGNIFICANT BYTE 

GROUP POINTER 1 = LEAST SIGNIFICANT BYTE 

000 = ILLEGAL ELEMENT POINTER 

010= 2 OO=MODE REG}ELEMENT 
011 = 3 01 = LOAD REG INCREMENT 

001 = CNTR GROUP 1}-

100= 4 10=HOLDREG 
101 = 5 11 = HOLD REG/GROUP INCREMENT 

110= ILLEGAL OO=ALARM REG lJ 
111 = CTL GROUP_ 01 = ALARM REG 2 ~~~X~~~NT 

10 = MASTER MODE 
11 = STATUS REG/NO INCREMENT 

07 06 05 04 03 02 01 

DATA 
I 

00 
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Figure 2-12 Bit Formats for 9513 Interval Timer Registers 
(Sheet 1 of 2) 

An 8085A I/O write operation to the 9513's control port address loads the command register. An I/O 
read to the control port address reads the status register. The register accessed by an I/0 read or write 
to the data port address is determined by a previously loaded 6-bit data pointer internal to the 9513. 

The data pointer consists of a 3-bit group pointer, a 2-bit element pointer, and a I-bit byte pointer as 
indicated on sheet 1 of Figure 2-12. It is loaded by writing the command register with the appropriate 
command code. (Command codes in the range 00 to 1 F load the data pointer.) For example, to allow 
the load register in counter group 1 to be accessed, a command code is first loaded which sets the group 
pointer to a binary value of 001 and the element pointer to a binary value of 01 (command code equals 
09). 

The byte pointer, a single bit, is automatically set when the data pointer is loaded. If not in 16-bit mode 
(the 9513 in the console processor operates in 8-bit mode), the byte pointer toggles following a data port 
access so that the high-order 8-bit byte in the selected register may be read or written over the eight AD 
bus lines, after the read or write of the low-order 8-bit byte. All registers accessed via the data port 
(except for the command and status registers) are 16-bits wide. 
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REGISTER 07 06 05 04 

MASTER MODE HI(BP=O) 

SCLR 
CTL VIOTH 

*O=BINARyl* O=B-BITBUS 
1 = BCD 1 = 16-BIT BUS 

* 0 = EN DATA PNTR INC FOUT 
1 = DIS DATA PNTR INC GATE 

* 0= FOUT ON 
1 = FOUT OFF 

*1010= 

1110= 
1111 = 

10 

14 
15 

MASTER MODE LO(BP = 1) 

COUNTER 
MODE 

COUNTER 
MODE 

HI (BP=O) 

LO (BP=l) 

* 0000 = Fl (OSC) 
0001 - 0101 = SRC1-SRC5 
0110 - 1010 = GATE 1 - GATE 5 
1011 -1111 = Fl - F5 

000 = NO GATING 
001 = HI LEVEL (TCN-1) 
010 = HI LEVEL (GATE N+1) 
011 = HI LEVEL (GATE N-l) 
100 = HI LEVEL (GATE N) 
101 = LO LEVEL (GATE N) 
110 = HI EDGE (GATE N) 
111 = LO EDGE (GATE N) 

OXXXX = DISABLE SPECIAL GATE 
lXXXX = ENABLE SPECIAL GATE 
XOXXX = RELOAD FROM LOAD 

* 00 = DISABLED 
01 = ENABLED, /5 
10 = ENABLED, /6 
11 = ENABLED, /10 

OXXXX = ACTIVE HIGH SENSE 
1 XXXX = ACTIVE LOW SENSE 
XOOOO = TCN-l 
X0001-X0101 = SRC1-SRC5 
XOll0-X1010 = GATE1-GATE5 
Xl0ll-Xllll = Fl-F5 

X1XXX = RELDAD FROM LOAD OR HOLD 
XXOXX = COUNT ONCE 

000 = INACTIVE, OUTPUT LO 
001 = TERM CNT PLS, HI 
010=TOGGLE (DLYDl. HI 

011 = TOGGLE, HI 
XX1XX = COUNT REPETITIVELY 
XXXOX = BINARY COUNT 
XXXl X = BCD COUNT 
XXXXO = COUNT DOWN 
XXXXl = COUNT UP 

100 = INACTIVE, OUTPUT HI Z 
101 = TERM CNT PLS, LO 
110= TOGGLE (DLYDl. LO 
'111 = TOGGLE, LO 

NOTE: AN ASTERISK (*) INDICATES MASTER MODE PARAMETERS USED IN CONSOLE 
PROCESSOR. COUNTER MODE PARAMETERS USED VARY FOR EACH 
COUNTER LOGIC GROUP. 

Figure 2-12 Bit Formats 9513 Interval Timer Registers 
(Sheet 2 of 2) 
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In addition to the automatic toggling of the byte pointer, the element and group pointers can be made to 
increment so that the entire data pointer will sequence through all register addresses in the counter 
logic groups, (Only the element pointer will sequence when accessing the control group via the data 
port.) When the element pointer is sequencing, it sequences only through the range 00 to 10. If the 
element pointer is loaded with a value of 11 for a counter logic group address, it causes a special se­
quencing mode. That is, only the group pointer increments, allowing only the hold registers in all logic 
groups to be accessed one after the other. When the group pointer indicates a control group address, 
then an element pointer value of 11 will point to the status register (no automatic increment). 
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2.4.2 9513 Control Registers 
The command and status registers are accessed via the 9513's control port, as described previously. The 
various command codes that may be loaded into the command register (and their functions) are listed 
in Table 2-4. The bits that may be examined in the read-only status register include the byte pointer bit 
in the data pointer and five bits indicating the state of the counter logic group's output pins (05:01). 

Table 2-4 9513 Command Code Summary 

Command Code 
C7 C6 C5 C4 C3 C2 Cl CO Function 

0 0 0 E2 El G4 G2 Gl Load data pointer register with 
contents of E and G fields. 

0 0 S5 S4 S3 S2 Sl Arm counting for the selected 
counters. 

0 0 S5 S4 S3 S2 SI Load contents of specified source 
into the selected counters. 

0 S5 S4 S3 S2 SI Load and arm the selected counters. 

0 0 S5 S4 S3 S2 Sl Disarm and save selected counters. 

0 S5 S4 S3 S2 SI Save the selected counters in hold 
register. 

0 S5 S4 S3 S2 SI Disarm the selected counters. 

0 N4 N2 Nl Set output bit n (n= 000 to 101). 

0 0 N4 N2 NI Clear output bit n (n= 000 to 101). 

0 N4 N2 Nl Step counter n (n= 000 to 101). 

0 0 0 0 Disable data pointer sequencing. * 

0 0 Gate off FOUT. * 

0 Enter 16-bit mode. * 

0 0 0 0 0 Enable data pointer sequencing. * 

0 0 0 Gate on FOUT. * 

0 0 Enter 8-bit mode. * 

Master reset. * 

*Sets or clears appropriate bit in master mode register. 
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Other control registers in the 9513 include a mode register for each counter logic group and a single 
master mode register. These 16-bit registers are accessed via the data port, one byte at a time. Each of 
the five counter mode registers controls the gating, counting, source, and output select functions within 
its corresponding logic group. The master mode register controls those functions not controlled by the 
individual counter mode registers. 

The gating control field in a counter mode register determines when the counter, if armed (enabled), is 
allowed to count. (A counter is armed by loading the appropriate command code in the command regis­
ter.) Gating is mainly by the chip's five-gate input pins GATE(5:1). For example, a gating control field 
of 101 allows counting to proceed only when the corresponding gate input (GATE n) is at a low level. 
Gating by a high level, high or low edge, or other gate input (GATE n+ 1 or GATE n-l) may also be 
specified. A field of 000 allows counting to proceed unconditionally, as long as the counter is armed and 
clocked. 

The source control field in a counter mode register selects the clock input to the counter and the active 
edge (high or low) that is counted. The counter inputs that may be selected include anyone of the 
chip's five source inputs SOURCE(5:1) or anyone of the gate inputs. Also, anyone of the chip's inter­
nally-generated frequency scaler outputs (F (5: 1» may be selected as well as the terminal count of the 
adjacent lower-numbered counter (TCn-l). The TCn-l option allows one 16-bit counter to be internally 
concatenated with another, in order to give a longer count capability. For example, counters 4 and 5 are 
configured together in the console processor to form the 32-bit time of year counter, with the count 
rippling from counter ~ to counter 5. 

The other control bits in a counter mode register are the count control field and the output control field. 
The count control field specifies the type of count (i.e., up/down, binary/BCD, etc.). The output con­
trol field specifies the type of signal asserted by the counter logic group's output pin (such as, high or 
low terminal count pulse or toggle). 

The master mode register controls the 16-bit frequency scaler, the 4-bit divider circuit, and other circui­
try including the enables for the comparator circuits in logic groups 1 and 2. The output from the divi­
der circuit is a chip output (FOUT). 

The frequency scaler may be programmed to operate in binary or BCD. The outputs from the scaler 
(which is driven by the internal oscillator, which in turn is controlled by an external 1 kHz oscillator) is 
the oscillator frequency itself (Fl) plus four scaled (divided) outputs (F2 through F5), as shown in 
Table 2-5. In the console processor, the scaler is programmed for binary operation but only the Fl 
(OSC) output is used. That is, the master mode register is set to select Fl as the input to the FOUT 
divider. Also, the divider is programmed to divide the Fl input by 10 to provide a FOUT frequency of 
100 Hz. This 100 Hz signal is connected externally to the SOURCE 1 input pin and is used to clock the 
low-order time of year counter. 

Output 

Fl 
F2 
F3 
F4 
F5 

Table 2-5 9513 Frequency Scaler Ratios 

BCD 
Scaling 

OSC 
Fl/I0 
Fl/100 
Fl/1000 
Fl/I0,000 
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Scaling 

OSC 
Fl/16 
Fl/256 
Fl/4,096 
Fl/65,536 



2.4.3 CPU Interval Timer (Counter Logic Groups 1 and 2) 
The CPU interval timer is a I J.,LS time base that can also generate processor interrupts at specified time 
intervals. As a time base, it can be used to make high-resolution elapsed time measurements. Its inter­
rupt capability is used mainly for scheduling and accounting by the operating system. 

Most of the circuitry for the CPU interval timer is contained in counter logic groups 1 and 2 of the 
9513 chip. The two counters are programmed to form a single counter 32 bits wide that increments at a 
rate of 1 J.,LS per count. Other logic external to the 9513 (shown in the upper half of Figure 2-13) gener­
ates a signal called TIMER INT when the timer reaches its specified count. The external logic also 
generates a timer reset pulse. 

Instruction level control of the CPU interval timer is by the interval count register (ICR), the next 
interval count register (NICR), and the interval counter control and status register (ICCS). These reg­
isters (which may be accessed by the MTPR and/or MFPR instructions) are like the instruction level 
data and control/status registers that control USART data handling, in that they are pseudo registers 
implemented in the console program and the CPU microcode. Bit formats are shown in Figure 2-14. 

ClK 
(200 NS) 

9513 
INTERVAL 
TIMER 

DATA 01 L-.,J.---....... 
OUT 02 D----.-'L---a 

(l"S) 

D--...-+TIMER INT l 

o 

(RESET l) 

(l"S) 

T'." "" :~'-I-__ -+ _____ ~~ x~*- f 
y I .~ 

(RESET l) ~""_-'-----''-
STOP ~ 
COUNT f LRESTART 

COUNT 

lOAD REG (O's) -+ CNTR 

Figure 2-13 Interval Timer Control Logic 
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REGISTER READ/WRITE ,::.3.;,...1 ____________________ ----:0::;0 

ICR R ~1 ______ IN_T_E_RV_A_L_C_O_U_NT_(_-_n_M_IC_RO_S_E_CO_N_D_S_) _____ ~I 

NICR 

ICCS 

W 

R/W 

31 

NEXT INTERVAL COUNT (- n MICROSECONDS) 

3130 

" M8Z 

I 
ERROR 

NOTES: 
1. ERROR (81T 31) AND INTERRUPT REQUEST (BIT 07) 

CLEARED BY WRITING A ONE TO CORRESPONDING 
BIT POSITION. 

2. SINGLE CLOCK (BIT 05) AND TRANSFER (BIT 04) 
ARE WRITE·ONL Y 81TS AND ARE READ AS A ZERO. 

080706050403 

" " I II~TII EN XFR 

INT 
REQ SGL 

00 

0100 

II 
I 

RUN 

TK-6510 

Figure 2-14 Bit Formats for Interval Timer Control Registers 

The program specifies an interval count by loading the negative count n into the NICR, where n is the 
period in microseconds. Ordinarily, the NICR value determines what the next interval count following 
the current count will be. However, the NICR value may be made the current count at any time by 
setting the XFR bit in the ICCS. This is how a current count value is loaded initially when the CPU 
interval timer is started. 

The interval timer is started by setting the RUN bit in the ICCS. It then increments at a one f.,LS rate 
until the RUN bit is cleared. (The current count may be determined at any time by reading the ICR.) 
Whenever RUN is cleared, the interval timer may be single-stepped by setting the SGL (single clock) 
bit in the ICCS. 

When the end of the current count n occurs, the TNT (interrupt) bit is set in the ICCS. Also, if or when 
the INT EN (interrupt enable) bit in the ICCS is set, a processor interrupt is generated at an TPL of 18 
(HEX). The INT bit and the processor interrupt are cleared by clearing the INT EN bit in the ICCS or 
by writing a 1 bit into the INT bit position in the ICCS. If INT has not been cleared by the end of the 
next count, the ICCS's ERROR bit is set. The ERROR bit, like the TNT bit, is cleared by writing a one 
bit into its bit position in the register. 

Basic operation of the CPU interval timer with respect to its instruction level control registers is as 
follows. When the NICR or ICSS is loaded by an MTPR, the CPU microcode sends the register data, 
as part of a data packet to the console where it is stored in assigned RAM locations. (The microcode 
assembles the six TCCS control bits that are used into one data byte for the transfer and for storage by 
the console.) Also, if the NICR is loaded, the register data (four bytes) is complemented by the CPU 
microcode so that a positive count is stored by the console program. 

When the ICCS is loaded and if the XFR bit in the register data is set, the console program loads the 
32-bit positive count, previously stored in the RAM locations reserved for NICR data, into the two 
alarm registers in counter logic groups 1 and 2. (The hold registers and counters in the two logic groups 
are loaded with zeros during system initialization.) Also, when or if RUN is set in the ICCS, the con­
sole program asserts command register output START INTRVL TMR to start the count. The counters 
in logic groups 1 and 2 are programmed as shown in Table 2-6. 
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Register /Function 

Table 2-6 Counter /Master Mode Selection for Counter 
Logic Groups 1 and 2 

Mode Selected 
Counter 1 Counter 2 

Counter Mode Register 

Gating control Low level, gate 1 None 

Source selection Active high, source 2 Active high, TCn-l 

Output control* Active high, TC pulse Active high, TC pulse 

Count control Enable special gate Enable special gate 

Reload from load Reload from load 

Count repetitively Count repetitively 

Binary Binary 

Up Up 

Master Mode Register 

Compare enables* Enabled Enabled 

TOD mode Disabled Disabled 

*Compare enables in master mode register override output control field in counter mode register to cause a logic group output 
whenever the counter is equal to the alarm register. However, the polarity of the output is still defined by the output control 
field. 

START INTRVL TMR starts the count by driving the 9513's GATE 1 and 2 inputs low. Counter 1, 
the low-order 16 bits of the counter, then begins a binary up-count at the 1 J.LS clock rate. (The 1 mHz 
clock, which connects to the 9513's SOURCE 2 input, is the 5 mHz 8085A clock divided by five by a 
counter external to the chip.) Counter 2, the high-order 16 bits of the counter, is incremented by the 
terminal count from counter 1. 

When the counters have reached a value equal to the alarm register contents, the comparator circuits 
within the 9513 cause both logic group outputs to be asserted, setting TIMER INT in the interval 
timer's external control logic. A reset pulse is also generated, which causes the chip's GATE 1 input to 
go high. This stops the count and loads counter 1 with zeros from its load register. Counter 1 then 
begins incrementing again when the reset signal goes false. Timing is shown in the lower half of Figure 
2-13. 
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When the console program detects the assertion of TIMER INT, it clears counter 2 by loading zeros 
from its load register (this counter is not cleared by the reset pulse), and it generates a processor inter­
rupt request by asserting command register output INTRVL TIM INT if the INT EN bit is set in the 
ICCS. The console program also reloads the alarm registers if the NICR data has been changed since 
the last load, and it sets the INT bit in the ICCS unless it is already set, in which case it sets the 
ERROR bit. 

After the INT (or ERROR) flag is set, the console program clears the TIMER INT flip-flop in the 
external control logic by negating the 8085A's serial output. The interval timer will continue to in­
crement setting TIMER INT at the end of each specified count until the RUN bit in the lCCS is 
cleared. Whenever RUN is cleared, setting the SGL bit in the ICCS causes the console program to 
load a command code in the 9513 that single-clocks counter 1, incrementing the interval count by one. 

NOTE 
During normal operation, the count in the NICR is 
decremented by three before it is loaded in the alarm 
registers. This is to compensate for the inherent ex­
ternal logic delay in clearing the low-order counter. 
(The undecremented NICR value is loaded when sin­
glestepping the counter.) Also, the software delay in 
clearing the high-order counter prevents proper op­
eration for very small time intervals. (See system 
specifications for exact values.) 

Processor interrupts by the interval timer are not only generated when a time-out occurs with lNT EN 
previously set in the ICCS, but also during a count if the INT bit is set in the lCCS and the ICCS is 
reloaded with INT EN = 1. The processor interrupt signal is cleared by the console program whenever 
the ICCS is loaded with INT = 1 or INT EN = O. 

When the ICCS or the ICR is read with an MFPR, the register data is transferred (in a data packet) 
from the console program to the CPU microcode. If the ICCS is referenced, the CPU microcode must 
unpack the one byte of register data (containing the six ICCS control bits) stored by the console pro­
gram into the proper 32-bit format for transfer by the MFPR. If the ICR is referenced, the console 
program gets the current interval timer count by loading counters 1 and 2 into their respective hold 
registers. 

The hold register data, a positive count, is then read out of the 9513 chip and sent to the CPU micro­
code (four bytes), where it must be converted to a negative count for transfer by the MFPR. To make 
the conversion, the microcode adds the positive count supplied by the console program to the last NICR 
value. This value, a negative count, is saved by the microcode every time the NlCR is written by a 
MTPR and before it is converted to a positive count for storage by the console program. 

2.4.4 Time of Year Clock (Counter Logic Groups 4 and 5) 
The time of year clock, which is configured from counter logic groups 4 and 5 in the 9513, is a 32-bit 
binary up-counter that increments at a rate of 10 ms per count. It has no interrupt facility, acting only as 
a long-term elapsed time indicator for the operating system. 

The counter mode registers for counter logic groups 4 and 5 are programmed as shown in Table 2-7. 
The 10 ms time of year clock source, which is the output from the 9513's FOUT pin and is generated by 
the frequency scaler from an external 1 kHz oscillator (Paragraph 2.4.2), connects to the 100 Hz stall 
latch. This latch allows the 8085 to stall a clock edge while the time of year clock is being accessed 
(read or write). The output of the 100 Hz stall latch connects to the SOURCE 1 pin and clocks counter 
4. This counter provides the low-order 16 bits of the time of year count. Counter 5, the high-order 16 
bits of the count, is clocked by the terminal count from counter 4. 
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Table 2-7 Counter Mode Selection for Counter Logic Groups 4 and 5 

Mode Selected 
Function Counter 4 Counter 5 

Gating control None None 

Source selection Active high, source I Active high, TCn-l 

Output control Inactive Inactive 

Count control Disable special gate Disable special gate 

Reload from load Reload from load 

Count repetitively Count repetitively 

Binary Binary 

Up Up 

The time of year counter may be accessed by the CPU program at any time by referencing the time of 
year register (Figure 2-15) with an MTPR or MFPR. The register data is passed between the CPU 
microcode and the console program in data packets as when accessing other console-based processor 
registers such as NICR and ICR. 

REGISTER READ/WRITE r3_' ____________________ 0...,0 

TODR R/W L.1 ________ T_IM_E_O_F_y_E_AR_C_O_U_N_T _______ ....J 

TK-6509 

Figure 2-15 Time of Year Register Bit Format 

When the time of year register is written with an MTPR, the console program takes the unsigned 32-bit 
binary count sent by the CPU microcode (four bytes) and writes it into the load registers for counters 4 
and 5. It then loads the counters from the load registers. 

When the time of year register is read by an MFPR, the console program loads the current count in 
counters 4 and 5 into their respective hold registers, reads the hold registers, and then sends the count 
to the CPU microcode (four bytes). 

There is no instruction level on/off control for the time of year clock. Once the counter mode registers 
are programmed by the console program, the counters will increment continuously, as long as power is 
applied to the 9513 chip, the I kHz oscillator chip, and the chip containing the oscillator's output gate. 
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At system power-up, the console program checks the counter mode registers for counters 4 and 5 to 
verify that they are set correctly. If not, the time of year count (even though active during the power 
down period due to standby power backup) is assumed to be inaccurate and the console program stops 
the count, clears the counters, and sets the mode registers to their correct value. It then restarts the 
count from zero. 

2.4.5 Power Fail Timer (Counter Logic Group 3) 
Counter logic group 3 is reserved for use by the console program as a 2 ms timer. It is configured as a 
binary up-counter and uses the same clock source as the CPU interval timer, causing it to increment at 
a rate of I /-LS per count. The counter mode register is programmed as shown in Table 2-8. 

Table 2-8 Counter Mode Selection for Counter Logic Group 3 

Function Mode Selected - Counter 3 

Gating control None 

Source selection Active high, source 2 

Output control Active low, TC pulse 

Count control Disable special gate 

Reload from load 

Count repetitively 

Binary 

Up 

The power-fail timer is used when a system power-fail condition has been detected. (UNIBUS AC 
LOW asserts SEE AC LO, which interrupts the 8085A at its RST 7.5 input.) When a power-fail oc­
curs, the console program asserts AC LO (to eliminate, a transient condition). The 8085A checks a flag 
in console RAM. The flag indicates whether the 8085A was in program mode or console I/O mode 
when AC LO was asserted. If it was in console I/O module, the 8085A goes to its power-up routine 
(described below). However, if it was in program mode, the 8085A asserts the power-fail interrupt (lev­
el IE) to the CPU, starts the power-fail timer (2 millisec), and goes back to the normal loop for pro­
gram mode. 

The CPU handles the power-fail interrupt very soon (due to high priority level of interrupt, IE) and 
goes to the operating system power-fail routine. The power-fail routine ceases normal operation, saves 
all necessary information, and performs a branch self instruction (forever). 

Meanwhile, the console processor is in its program mode loop. The 8085A checks the power-fail timer 
in this loop and will eventually sense the end of the two-millisecond period. The 8085A will then stop 
the CPU clock, disable main memory references, and go to its power-up routine. The 8085A will stay in 
this routine until power goes away completely (main ac power loss or keyswitch to off) or until ac power 
returns (keyswitch from STD BY to an on position). If ac power returns, the 8085A will attempt a 
restart if the AUTO-RESTART/BOOT switch is in the on position (to the left). 
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2.5 CONSOLE READ/WRITE OPERATIONS 
As stated previously, 8085A operation, as controlled by the executing console program, consists essen­
tially of a series of read/write operations to the various console processor devices, both memory and 
I/O. The memory devices are the ROM and the RAM. All other addressable console processor devices 
(such as the USARTs and 9513 interval timer) are I/O devices. 

The general types of memory and I/O read/write operations are listed in Table 2-9. Addresses are also 
indicated. As can be seen, memory addresses are 16 bits, with the 6K ROM having addresses in the 
range of 0000 to 17FF, and the 16K RAM having addresses in the range 4000 to 7FFF. I/O addresses 
are eight bits, ranging from 00 to a maximum value of EC. The 6K ROM is the maximum con­
figuration; the basic configuration is 4K. 

Table 2-9 Console Read/Write Operations 

Transfer Type Address Operation 

Memory 0000-17FF Read ROM 

Memory 4000-7FFF Read/write RAM 

I/O 00-07 Read switch and power status 

I/O 08-0A Write control store write register 

I/O lC,ID Read/write interval timer registers 

I/O 20 Read ready bit summary register 

I/O 20-2F Write console command register 0 

I/O 30-3F Write console command register 1 

I/O 40-4B Read/write USART registers 

I/O 80-87 Read console read register, CPU status 

I/O AO-AF Write console command register 2 

I/O CC Write console write register 

I/O EC Write console read register from Y bus 
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2.5.1 Read/Write Control Logic 
The control logic associated with console read/write operations consists of decode logic that generates a 
number of read/write select levels, and miscellaneous control logic required for RAM and USART 
read/write operations. The RAM and USART control logic is detailed in Figure 2-16. 
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o 
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Figure 2-16 RAM/USART Control Logic (Sheet 1 of 3) 

2-33 



PAL(WCSD) 

START 8085 CYCLE 
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CTlR STATE----,L--.J 

REQ 8085 REFR 

CON STORE REFR 

8085 ROWST8 

lATCH ADRS,-,.----;,.J 

CTlR STATE 

8085 ROWSTB 
(SEl ROW ADRS) 
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CTlRSTATE K 0 

;0--+--8085 REFR CYCLE 

ClK 

8085 CO l SToB 

ClK 
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Figure 2-16 RAM/USART Control Logic (Sheet 2 of 3) 

The majority of the console's read/write select levels (Table 2-10) are derived from the device address 
(on the A lines) and the control signals (RD, WR, 8085 10) asserted by the 8085A during its machine 
cycle. For example, SEL TIMER is generated for an I/O reference (808510 = 1) to address lC or ID 
(A (15: 11) = 00011); that is, when the 9513 interval timer's control or data port is addressed. (SEL 
TIMER asserts the 9513's chip select level.) The various select levels and the RAM/USART control 
logic are discussed in Paragraphs 2.5.2 through 2.5.4. 
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Figure 2-16 RAM/USART Control Logic (Sheet 3 of 3) 

Table 2-10 Console Read/Write Select Levels 
(Generated from A Lines) 

TK-6507 

Read/Write 
A15 A14 A13 A12 All AIO A09 A08 Select Signal 

0 0 0 SELROMMUX 
0 0 1 0 0 SELROMMUX 
0 0 0 0 0 SELSTATUS 
0 0 0 0 1 WRITE WWD REG 
0 0 1 1 SEL TIMER 
0 0 1 0 WRITE MO 
0 0 1 1 WRITE Ml 
1 0 0 0 0 SELCPUREGS 
1 0 0 0 0 (DIR) 
1 SELCPUREGS 
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2.5.2 ROM Operations 
The 4K (or 6K) X 8-bit ROM consists of four (or six) 2K X 4-bit read-only memory chips. The chips 
are configured into two (or three) 2K X 8-bit banks of two chips each. During an 8085A memory refer­
ence, the two most significant bits of ROM address on A lines 12 and 11 select a bank. The rest of the 
address bits on the A lines and the AD bus select a location within the selected bank. 

A Lines 

( 12: 11 ) 

( 10:08) 

AD Bus 

(7:0) 

Addressing Function 

Select 1 of 3 possible banks 

Select 1 of 2K possible locations within the selected bank. 

The AD bus lines do not address the ROM directly as shown on the console processor block diagram, 
Figure 2-1. Because address and data information is multiplexed on the AD bus, the eight low-order 
memory address bits which are asserted at the beginning of the 8085A machine cycle are stored in a 
latch circuit. (Actually, the buffered AD bus outputs, CONS DATA (7:0), connect to the latch.) The 
latch circuit outputs, which connect to the ROM chips, then assert the low order memory address for 
the entire machine cycle. 

Timing for the ROM read operation is shown in Figure 2-17. The 8085A's ALE output (LATCH 
ADRS) is used to latch the low-order memory address on the AD bus into the latch circuit. After the 
8085A has negated the bus address bits, SEL ROM MUX (a read select level) is asserted to gate the 
ROM data outputs through a multiplexer and onto the AD bus, where they are read by the 8085A. The 
SEL ROM MUX signal, generated for all ROM addresses when the 8085A's RD signal is asserted 
(Table 2-10), enables only the multiplexer. The appropriate multiplexer inputs (the ready bit summary 
register is also read through this multiplexer) are selected by A line 13, which is a zero for all ROM 
references. 
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:MEMORY ADDRESS 
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Figure 2-17 8085A ROM Read Operation Timing Diagram 
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2.5.3 RAM Operations 
The 16K X 8-bit RAM in the console processor consists of eight parallel-connected 16K X I-bit MOS 
chips. The MaS chips are dynamic RAMs and must be refreshed periodically. 

The 16K (128 row X 128 column) RAM chips have seven address lines. During a RAM read or write 
operation, a 7-bit row address is transmitted on the RAM's address lines, followed by a 7-bit column 
address. The row and column addresses are generated by multiplexing the memory address asserted by 
the 8085A on the A lines and the AD bus. (The latched AD bus memory address bits are used as for 
ROM addressing.) The even-numbered address bits on the A lines and AD bus select a row in the RAM 
chips. The odd-numbered address bits select a column. 

A Lines 

13,11,09 

12,10,08 

AD Bus 

7,5,3,1 

6,4,2,0 

Addressing Function 

Select 1 of 128 possible row addresses 

Select 1 of 128 possible column addresses 

Timing for a RAM read or write operation is shown in Figure 2-18. One more machine state, a wait 
state (TW), is required to access the dynamic RAM chips, than when accessing the ROM chips. The 
wait state occurs when the 8085A's READY input is negated by LONG CYCLE asserted in the 
RAM/USART control logic (Figure 2-16, sheet 1). The LONG CYCLE signal is asserted when A line 
14 is a 1 (as it is for RAM addresses), and when START 8085 CYCLE has been set by LATCH 
ADRS, which occurs at the beginning of every 8085A machine cycle. 
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Figure 2-18 8085A RAM Read/Write Operations Timing Diagram 
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For a RAM address, START 8085 CYCLE also generates the first of two address strobes that load the 
row and column address into the dynamic RAM chips. The first strobe, 8085 ROW STB, is a flip-flop 
set directly by START 8085 CYCLE. The second strobe, 8085 COL STB, is a flip-flop held in the off 
state as long as a row address is being gated through the RAM address multiplexer. The row address is 
selected at the multiplexer inputs by a normally-asserted J-K flip-flop (Figure 2-16, sheet 2). Once 8085 
ROW STB is asserted, the J-K flip-flop changes state to gate the column address through the multi­
plexer and allow 8085 COL STB to set. 

When the column address strobe is generated for a RAM read operation, the data in the RAM location 
selected by the row and column addresses is transmitted by the RAM chips onto the AD bus and read 
by the 8085A. For a RAM write operation, the column strobe causes the write data asserted by the 
8085A on the AD bus to be loaded into the selected RAM location. A write operation is specified by 
8085 WRITE CYC, which is derived from the status lines asserted by the 8085A throughout the ma­
chine cycle. This signal connects directly to the RAM chip's write enable inputs. 

To prevent loss of stored data, each storage cell in a dynamic RAM chip, such as those used in the 
console processor's RAM, must be recharged (refreshed) at least once during a specified time interval 
called the refresh interval (i.e.; specified at 2 ms or less for the 16K chips in the console processor). A 
single row address strobe refreshes all cells in a row address. Thus, the storage cells for all chips in the 
console processor's RAM (128 row X 128 column chips connected in parallel) may be refreshed by 128 
strobes to all the possible row addresses. A refresh cycle is initiated every 12.8 f.,LS, giving a refresh 
interval of approximately 1.7 ms. 

RAM refresh timing is shown in Figure 2-19. A refresh cycle is initiated by REQ 8085 REF, which is 
one of the outputs from the free-running counter used to generate the baud clocks for the USARTS 
(Paragraph 2.2.3). REQ 8085 REF has a 12.8 f.,LS period, and its positive-going edge sets 8085 REFR 
CYC in the RAM/USART control logic. 

Once 8085 REFR CYC is set, it disables the RAM address multiplexer, and it enables the outputs of a 
7-bit binary (wrap-around) up-counter, called the refresh counter, to drive the RAM chip's address 
lines. 8085 REFR CYC then generates a row address strobe, refreshing the row addressed by the re­
fresh counter's current value. The trailing edge of 8085 REFR CYC increments the refresh counter so 
that it steps through all possible row addresses as refresh cycles continue to be initiated at the 12.8 f.,LS 

rate. 

When a refresh request is generated and a RAM read/write operation is in progress, the setting of 8085 
REFR CYC and the resulting refresh cycle is delayed until the read/write completes. 

NOTE 
A RAM refresh is also delayed if a USART 
read/write operation is in progress. (See Paragraph 
2.5.1. ) 

If a refresh request is generated (or pending) when a RAM read/write is started, the refresh is done 
with START 8085 CYCLE remaining set and asserting LONG CYCLE long enough to cause an extra 
wait state in the machine cycle. A normal read/write operation takes place immediately after the re­
fresh cycle. Timing for the extended machine cycle is shown in the lower part of Figure 2-19. 
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Figure 2-19 8085A RAM Refresh Operation Timing Diagram 
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A synchronizing flip-flop is used to allow 8085 REFR CYC to set and then cleared just after (and only 
after) the positive-going edge of the 12.8 /.LS REQ 8085 REFR signal. The flip-flop, which is set by 8085 
REFR CYC and cleared when REQ 8085 REF goes false, is called CON STORE REFR and is also 
used to initiate the refresh cycle in basic control store. The control store's refresh cycle (Paragraph 
4.3.5) is initiated by the negative-going edge of CON STORE REFR, at the same 12.8 /.LS rate as the 
console processor's refresh cycle. 
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2.5.4 I/O Operations 
The control and data bits written and read for the range of I/O addresses in the console processor are 
shown in Figure 2-20. 

The USART's control and data registers (I/O addresses 40 through 4B) and the 9513 interval timer's 
control and data registers (1 C and 1 D) have been discussed. Other registers include the console read 
and write registers (80 and CC), the control store write register (08 through OA), and the ready bit 
summary register (20). In addition, individual bits in the console processor's command registers may be 
asserted or negated one at a time (20 through 3F, and AO through AF), and one or two status bits may 
be read at a time via the console processor's input data multiplexers (00 through 07, and 82 through 
87). 

10 ADDRESS READ/WRITE 07 00 
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07 
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R 

R 

R 

R 

R 

R 

R 

W 

W 

W 

-
R/W 

RIW 

-

R 

J- "PC SHF OUT ("PC <14» 

r MISC IN 2 BOOTSW -f 
r UNIBUS DC LOW HALTSW -f 

DISABLE CTL-P -f 
r CSL SELF TEST EN SW APT -f 
r CPU +5 V OK REM S CARR (N.U.) -f 
r SLOW CLK (100 HZCP) REMOTESW -f 
f- CPU±15VOK REM RING IND (N.U.) -f 
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CS WRITE REGISTER <15:0B> 

CS WRITE REGISTER <23:16> 

NOT USED 

INTERVAL TIMER DATA 

INTERVAL TIMER CONTROL (COMMAND/STATUS) 

NOT USED 

READY BIT SUMMARY REGISTER 

07 L 00 

07 06 05 04 03 02 01 00 

READY BITS l J J I I I 
PWR ~AIL TUJB 

TUJB LoLL RX RDY 
r-IME·OUT (DONE) TX RDY TX RD Y 

TIMER REMOTE LOCAL REMOTE 
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(DONE) (DONE) 
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Figure 2-20 8085A I/O Space (Sheet 1 of 4) 
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10 ADDRESS READIWRITE 
07 00 

20 W CLEAR CPU RUN 

21 W SET CPU RUN 

22 W ClR CPU SSTP (ClR CPU ClKS) 

23 W SET CPU SSTP (SET CPU ClKS) 

24 W ClR CSR SSTP (ClR CSR ClK) 

25 W SET CSR SSTP (SET CSR ClK) 

26 W ClR "PC SSTP (ClR UPC ClK) 

27 W SET" PC SSTP (SET UPC ClK) 

28 W ClR MCT cn 0 (NOT USED) 

29 W SET MCT cn 0 (NOT USED) 

2A W ClR MCT CTl 1 (NOT USED) 

2B W SET MCT cn 1 (NOT USED) 

2C W ClR START INTRVl TMR (STOP TIMER) 

2D W SET START INTRVl TMR (START TIMER) 

2E W ClR UNIBUS BBSY 

2F W SET UNIBUS BBSY 

30 W SET UNIBUS DC lO 

31 W ClR UNIBUS DC lO 

32 W SET UNIBUS AC lO 

33 W ClR UNIBUS AC lO 

34 W ClR CINIT (UNIBUS INIT) 

35 W SET CINIT (UNIBUS INIT) 

36 W ClR WRITE WCS (END CS WRITE) 

37 W SET WRITE WCS (START CS WRITE) 

07 00 
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Figure 2-20 8085A I/O Space (Sheet 2 of 4) 

10 ADDRESS READ/WRITE 07 00 

38 W ClR CSR SHF IN 

39 W SET CSR SHF IN 

3A W ClR 100 HZ STAll 

3B W SET 100 HZ STAll 

3C W ClR RUN (TURN OFF RUN LIGHT) 

3D W SET RUN (TURN ON RUN LIGHT) 

3E W ClR AUTOTEST ACT (TURN OFF REMOTE LIGHT) 

3F W SET AUTOTEST ACT (TURN ON REMOTE LIGHT) 

40 R/W USART 3 (REMOTE) DATA REGISTER 

41 R USART 3 (REMOTE) STATUS REGISTER 

42 R/W USART 3 (REMOTE) MODE REGISTERS 

43 R/W USART 3 (REMOTE) COMMAND REGISTER 

44 R/W USART 2 (TU58) DATA REGISTER 

45 R USART 2 (TU58) STATUS REGISTER 

46 RIW USART 2 (TU58) MODE REGISTERS 

47 R/W USART 2 (TU58) COMMAND REGISTER 

48 R/W USART 1 (lOCAL) DATA REGISTER 

49 R USART 1 (lOCAL) STATUS REGISTER 

4A R/W USART 1 (lOCAL) MODE REGISTERS 

4B R/W USART 1 (lOCAL) COMMAND REGISTER 

4C-7F NOT USED 

80 R CONSOLE READ REGISTER 

81 NOT USED 

82 R CPU ACKn 

83 R CPU ATTN+-f 

07 00 
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Figure 2-20 8085A I/O Space (Sheet 3 of 4) 

2-41 



10 ADDRESS READll!'lRITE 07 00 

84 R 
UPC SHF OUT (UPC <14»- -

85 R CSR <7> ---1 

86 R CSR <15>- ---J 

87 R CSR<23>- ---f 
88-9F NOT USED 

AO W SET HALT ON PE (ENABLE STALL ON PAR ERR) 

A1 W CLR HALT ON PE (DISABLE STALL ON PAR ERR) 

A2 W CLR PARAL LD CSR (SET CSR SHIFT MODE) 

A3 W SET PARAL LD CSR (SET CSR NORMAL MODE) 

A4 W SET INTRVL TIM INT 

A5 W CLR INTRVL TIM INT 

A6 W SET EN MEMORY REF (ENABLE MEM REQ) 

A7 W CLR EN MEMORY REF (DISABLE MEM REQ) 

A8 W SET CONS ACK 

A9 W CLR CONS ACK 

AA W SET CONS ATTN 

AB W CLR CONS ATTN 

AC W SET PWR FAIL INT 

AD W CLR PWR FAIL INT 

AE W SET CONS HALT 

AF W CLR CONS HALT 

BO-CB NOT USED 

CC W CONSOLE WRITE REGISTER 

CD-EB NOT USED 

EC W LOAD CONSOLE READ REG FROM Y BUS 

ED:FF NOT USED 

07 00 
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Figure 2-20 8085A I/O Space (Sheet 4 of 4) 

Timing for the read/operations made to the various I/O addresses is given in Figure 2-21. The I/O 
address is transmitted by the 8085A on the A lines and also on the multiplexed AD bus at the beginning 
of the machine cycle. The A lines connect to most of the I/O devices. However, the devices on the 
CPU's DAP module are accessed over the console bus, which is an extension of the AD bus. Thus, 
similar to low-order memory addressing, the AD bus address asserted at the beginning of the machine 
cycle is stored in a latch circuit by the LATCH ADRS signal. The latch circuit outputs can then be 
used to address the I/O devices on the DAP module for an entire I/O read or write cycle. 

After the 8085A asserts the I/O address and LATCH ADRS (and the 8085 I/O signal), the console 
processor's read/write control logic causes the addressed I/O device to either transmit read data onto 
the AD bus (where it is read by the 8085A), or to load write data from the AD bus. 

2.5.4.1 Reading and Writing the USART Registers - Timing for an I/O read or write to a USART 
register is shown in the upper half of Figure 2-21. Like RAM addresses, USART I/O addresses have A 
line 14 equal to 1, and START 8085 CYCLE asserts LONG CYCLE to cause a wait state during the 
machine cycle. 

START 8085 CYCLE also asserts a decoder enable level, and the decoder's output sets one of three 
flip-flops (SEL U 1, U2, or U3). (Refer to Figure 2-16, sheet 3.) The flip-flop that is set depends on 
which of the three USARTS in the console processor is referenced by the I/O address bits on A lines 
11 and 10. The flip-flop's outputs connect directly to the USART's chip enable inputs. 
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10 READ/WRITE (USARTS) 

j.--Tl -I- T2 -I" TW -I" T3~ 

A<15:0S> 

AD<7:0> 
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(R/W SELECT LEVEL) L ----Lr-----....I--oJ 
10'RD/WR 
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Figure 2-21 8085A I/O Read/Write Operations Timing Diagram 

A lines 09 and 08 also connect directly to the USARTs. These I/O address bits specify the register to 
be accessed. When the chip enable line is asserted, the addressed register in the enabled USART is 
either written from, or read onto, the AD bus. As for RAM references, 8085 WRT CYC (which con­
nects to the USART's write enable inputs) specifies the type of operation. 

Because some of the read/write control logic is used for both USART and RAM operations (e.g.; 
LONG CYCLE), a RAM refresh request may extend a USART reference. As for an extended RAM 
cycle, the machine cycle is extended by one wait state when the refresh request occurs at the beginning 
of the USART read/write operation. Also, a RAM refresh will be delayed if the refresh request occurs 
when a USART read/write is in progress. 
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2.5.4.2 Reading and Writing the Other I/O Devices - Read/Write select levels for I/O devices other 
than the USARTs are included in Table 2-10. With one exception, the select levels are asserted when 
the 8085A generates either RD or WR during the machine cycle. (The leading edge of RD and the 
trailing edge of WR define when data is to be transferred to and from the AD bus.) The exception is 
SEL TIMER, the chip select level for the 9513 interval timer. It is asserted by 8085 I/O at the begin­
ning of the machine cycle. However, the RD and WR signals connect directly to the 9513 chip to en­
sure correct timing for the I/O data transfer. 

Two of the select levels generated for I/O read operations are SEL STATUS and SEL ROM MUX. 
(The latter is also asserted for a ROM read.) SEL STATUS allows the panel switches, the self-test 
switch, the power monitoring levels, and several other status bits to be read by a pair of input data 
multiplexers. Two status bits are read at a time, with one multiplexer connecting to AD bus line 7 and 
the other to AD bus line O. (A lines 10 through 08 select the status bits at the multiplexer inputs.) 

SEL ROM MUX is asserted during an I/O read of the ready bit summary register. It causes the 
USART's ready outputs plus the timer interrupt and power fail time-out flags to be gated onto the AD 
bus through the ROM multiplexer. A line 13, which is equal to 1 when reading the ready bit summary 
register, deselects the ROM outputs and selects the status bits at the ROM multiplexer inputs. 

An I/O write to the control store write register asserts WRITE WWD REG. One byte in the 24-bit 
register is written at a time, with each 8-bit section of the register having its own separate clock. That 
is, WRITE WWD REG enables a decoder, causing one of its outputs (one of three used as the register 
clocks) to load the addressed byte. The decoder output asserted is selected by the I/O address bits on A 
lines 09 and 08. The register is loaded from the AD bus by the trailing edge of the decoder's output. 

The WRITE MO and M 1 select levels cause a single bit to be written in command registers 0 and 1, 
respectively. When a command register (which is an 8-bit addressable latch circuit) is enabled by a 
select level, the output addressed by its select inputs is either asserted or negated, depending upon the 
state of its data input. The other outputs are not changed. 

All outputs are latched to their current state when the select (enable) level is negated. The command 
registers are not written from the I/O write data asserted on the AD bus. Three of the four low-order 
I/O address bits on the A lines select the bit to be loaded while the fourth, the least significant I/O 
address bit, is used as the data input to set or clear the selected bit. For example, an I/O address of 20 
sets output 0 of command register 0 (i.e., CPU RUN). An I/O address of 21 clears the same output. 

I/O device selection for the console components on the DAP module is by the address latch outputs 
(not the A lines), and by the outputs from an address decoder that is enabled by the SEL CPU REG 
select level generated in the WCS module. Another select level generated in the WCS module controls 
the transceivers that gate AD bus data to and from the DAP module over the console bus. During an 
I/O write, this select level is negattd, causing the transceiver to transmit AD bus data to the DAP 
module. The select level is asserted to change the direction of the data transfer only during an I/O read 
to a DAP module device. 

Command register 2 on the DAP module is loaded much the same way as command registers 0 and 1. 
When command register 2 is addressed, the address decoder on the module asserts the register's enable, 
and the four low-order I/O address bits select and assert or negate an output. 

An output from the address decoder also clocks the console write register (CWR) when it is addressed. 
The register is loaded with the I/O write data on the console bus by the trailing edge of the decoder's 
output. Another address decoder output reads the console read register (CRR) onto the console bus. 
The low-order register bit is gated to console bus line 0 through an input data multiplexer. The three 
low-order bits of I/O address, which are equal to 0 for the read of the CRR, select the appropriate 
multiplexer input. Other values for the low-order I/O address bits read a single DAP module status bit 
through the same multiplexer. Such status bits as CPU ACK and CPU ATTN may be read. 
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The CRR is normally loaded from the Y bus by the CPU microcode (Paragraph 2.6), but it can also be 
loaded by an I/O write operation. That is, the I/O address asserts an address decoder output that sim­
ply clocks the register. The current data on the Y bus (not the I/O write data on the conso\c bus) is 
loaded into the register by the trailing edge of the decoder's output. This feature is used by the console­
based microdiagnostics when verifying the console processor's basic data transfer capability to and 
from the CPU's data path. That is, data is loaded into the CWR where it is read onto the data path's D 
bus, through the data path's 2901As, and onto the data path's Y bus. The CRR is then clocked to load 
the data from the Y bus into the CRR, where it may be read and checked. Various data patterns are 
used to verify CWR and CRR operation before further testing of CPU components (via the CWR and 
CRR). 

NOTE 
The microdiagnostics load a MOVE micro­
instruction (D ADRS field = Fe) into the CPU's 
control store register to enable the transfer of CWR 
data through the data path's 2901As to the Y bus. 
The control store register is loaded one bit at a time 
as explained in Paragraph 4.3.3. 

2.6 COMMUNICATIONS BETWEEN CONSOLE PROCESSOR AND DATA PATH 
Communication between the console program running in the console processor and the CPU microcode 
controlling the data path in the CPU is by means of data transfers over the console bus. The bus trans­
fers, one byte at a time, are through either the console write register (CWR) or the console read register 
(CRR) depending upon the direction of the transfer. 

The console program sends data bytes to the data path over the console bus by writing the CWR. After 
a byte is loaded in the CWR, it can be read from the CWR into the data path by the CPU microcode. 
The read is by a MOVE microinstruction (discrete register address = FC) as described in Paragraph 
6.9. 

The CPU microcode sends data bytes from the data path to the console processor by first writing the 
CRR. The write is by a MISC microinstruction (function 2 field = 7). The data bytes are transferred 
over the console bus when the console program reads the CRR following each CRR write operation. 

Data bytes are transferred over the console bus in groups (data packets). The number of bytes in a 
packet, as well as the number of packets interchanged during a transfer of information, are predefined 
and depend upon the machine mode (i.e., console mode or program mode) and the specific function 
being performed. 

2.6.1 Communications in Console Mode 
Except for a special case when a halt address packet is transferred during a program halt (Paragraph 
2.6.2), communications over the console bus, when the console program is operating in console mode, 
are in response to console commands that require some action by the CPU microcode. For example, 
only the CPU microcode can access memory, and an examine memory command requires that the con­
sole program first send the CPU microcode a memory address over the console bus. The CPU micro­
code then makes the memory access and returns the memory data over the console bus so that it may be 
typed out by the console program. 

Because they are the result of console commands, communications over the console bus in console mode 
are initiated by the console program. Furthermore, except for memory transfer commands (i.e., load 
memory command or an X command during APT), data packets sent by the console program or re­
turned by the CPU microcode are a fixed size (10 bytes). 
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The types of transfers and the data packet formats in console mode are shown in Figure 2-22. The 10-
byte packet sent by the console program to initiate an operation contains one byte of opcode, one byte 
reserved for use as an opcode modifier, four bytes reserved for address information, and four bytes 
reserved for data. Although an opcode modifier, an address, or data is not always required for an oper­
ation, a 10-byte packet is always sent over the bus. 
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DATA (10 
BYTES) ~ DAP 

DATA (10 
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CONSOLE 
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DIRECTION AND SYNCHRONIZATION 
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IN CWR 
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(SEE NOTE) ACK I I 
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IN CWR 

BYTE 9 I 
IN CWR 

~ 
BY+E 9 I 
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-
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-
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READ 

BYTE 2 
READ 
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I 
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~ 
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BYTE 10 
READ 

RETURN PACKET (10 BYTES) 

DATA PATH 

SUCCESS CODE 

MODIFIER 

- -
- ADDRESS -

- -

- -
- DATA -

- -

NOTE: OPCODE MAY SPECIFY EXAMINE, DEPOSIT, INITIALIZE, 
CONTINUE, OR MEMORY TRANSFER. 
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Figure 2-22 Communications Over Console Bus in Console Mode 
(Sheet 1 of 2) 
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BYT'E 1 I 
READ 

BYTE 2 
READ 

BYTE n 
IN CRR 

• 

BYTE n-1 I 

~ 
BYTE n-1 I 
READ BYTE n 

READ 

TRANSFER FROM MEMORY (n BYTES) 
• 

DATA PATH 

DATA 

DATA 

DATA 

Tt(·6480 

Figure 2-22 Communications Over Console Bus in Console Mode 
(Sheet 2 of 2) 

The CPU microcode responds to the lO-byte packet sent by the console program by first performing (or 
attempting to perform) the operation specified by the opcode. It then returns a lO-byte packet to the 
console program to indicate whether the operation was completed successfully or unsuccessfully, and to 
supply any necessary address and/or data information. Format for this return packet is similar to that 
sent by the console program. However, a success code rather than an opcode is contained in the packet. 

For all operations except the memory transfer operations invoked by the L and X commands, the only 
console bus activity is the exchange of the two lO-byte packets; that is, the packet that initiates the 
operation and the packet that is returned to signal the end of the operation. However, if a memory 
transfer is specified by the first (command) packet, a variable length data packet containing the memo­
ry data is transferred next over the bus. (The data bytes in the command packet contain a byte count 
that specifies the length of the memory transfer.) This is followed by the lO-byte return packet that 
ends the operation. The variable length data packet is transferred to or from the data path depending 
upon the direction of the memory transfer. A positive byte count in the command packet specifies a 
transfer to memory. A negative count specifies a transfer from memory. 
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The console commands other than the memory transfer commands that initiate communications over 
the console bus are the examine, deposit, initialize, and continue commands. Examines and deposits 
may be made to physical memory, virtual memory, a GPR, an internal register address, or a machine 
specific register (i.e., PSL or CSR 0, 1, or 2 in the MCT). The type of ac.cess is specified in the low­
order nibble of the opcode modifier. When applicable, the high-order nibble specifies the size of the 
transfer (i.e., byte, word, or longword). 

The initialize command, which initializes the various CPU registers and generates masks and constants 
in local store, requires no opcode modifier nor any address or data information in the command packet. 
The continue (CPU program execution) command also requires no address or data information, but the 
modifier specifies either a normal start or the execution of a single instruction. (Single step mode is set 
previously by another console command.) Packet contents for the variable length memory transfer com­
mands have been discussed. Modifier values and other data packet parameters for the various console 
bus operations in console mode are given in the CPU Microcode Listing. 

The transfer of the individual data bytes in a packet is synchronized and controlled by the attention and 
acknowledge signals generated in both the console processor and data path. 

For transfers to the data path, the console program asserts CONS ATTN to signal to the CPU micro­
code that the first data byte is in the CWR. The CPU microcode then reads the byte in the CWR and 
asserts CPU ACK to signal that the console program may reload the CWR with the next byte. When 
the next byte is loaded, the console program negates CONS ATTN. Correspondingly, the CPU negates 
CPU ACK when the byte is read. This alternate assertion and negation of the attention and acknowl­
edge signals continues until all bytes in the packet have been transferred. 

Transfers from the data path are synchronized and controlled in a similar fashion, except that CPU 
ATTN (not CPU ACK) is asserted and negated by the CPU microcode and CONS ACK (not CONS 
ATTN) is asserted and negated by the console program. A transition of CPU ATTN indicates the CPU 
microcode has loaded the CRR. The responding transition of CONS ACK indicates the byte in the 
CRR has been read by the console program. 

Proper operation during console bus communications is checked by the console program. If the CPU 
microcode does not respond to a transition of CONS ATTN or CONS ACK by toggling its own syn­
chronizing signal (CPU ACK or CPU ATTN), a time-out occurs in the console program which causes it 
to flag the communication error by typing an error message. The console program then enters the con­
sole idle loop. 

2.6.2 Communications in Program Mode 
Communications over the console bus in program mode are initiated by the CPU microcode. Data 
transfers are mainly in response to MTPRs or MFPRs directed to the console-based registers con­
trolling the interval timer, the time of year clock, and the data transfers to and from the console termi­
nal (local and remote) and the TU58. The types of transfers are shown in Figure 2-23. 

Data packet size for the transfers in program mode is variable (one to five bytes) and depends upon the 
operation. The first (and sometimes only) byte sent by the CPU microcode is an opcode byte, which is 
used as an offset by the console program to index into the execution code for the specified operation. 
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Two operations for which only an offset is sent to the console program are those specifying a program 
halt and a UNIBUS INIT. (The program halt causes the console program to enter console mode, after 
which the CPU microcode sends a lO-byte halt address packet.) The other console bus communications 
in program mode are in response to interrupts or to MTPRs and MFPRs, and these transfer additional 
data. For example, a byte of data is sent in addition to the offset when interval timer control data is 
loaded by an MTPR (MTPR addressing the ICCS). Similarly, four bytes of additional data are sent to 
load a next interval count (MTPR addressing the NICR). 

Other operations in program mode result in data being returned to the CPU microcode after it sends 
the offset. Of course, this is the case during the execution of MFPRs to the console-based registers. For 
example, one byte of register data is returned when interval timer status is read (MFPR addressing the 
ICCS). Other MFPRs cause two bytes or four bytes of register data to be returned. 

An operation other than an MFPR that causes a return of data is an interrupt acknowledge sequence. 
Following the assertion of CONS A TIN by the console program (CONS ATTN interrupts the pro­
gram executing in the CPU), the CPU microcode sends an offset which causes the console program to 
return a byte indicating the interrupting data transfer request. The interrupts occur during the transfer 
of terminal and TU58 data, as discussed in Paragraph 2.6.1. 

The transfer of individual data bytes in program mode are synchronized and controlled by CPU ATTN 
and CONS ACK. When bytes are sent to the console processor from the data path, the CPU microcode 
asserts or negates CPU ATTN when it has loaded the CRR. The console program responds by asserting 
or negating CONS ACK when it has read the CRR. When bytes are returned to the data path from the 
console processor, CONS ACK is used to indicate the console program has loaded the CWR, whereas 
CPU ATTN is used to indicate the CPU microcode has read the CWR. 

The console program checks CPU microcode response during console bus communications in program 
mode just at it does in console mode. When the CPU microcode fails to respond correctly to a transition 
of CONS ACK, a time-out occurs in the console program that causes it to enter the console mode idle 
loop. An error message is typed to flag the communication error. 
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3.1 INTRODUCTION 

CHAPTER 3 
CPU CLOCK GENERATOR 

The CPU clock generator on the WCS module produces the 90 ns basic system clock and CPU clock 
phases 0, 1, and 2. Clock distribution to the CPU's DAP module and other system modules is shown in 
Figure 3-1. 

PORT CLOCK CPU CLOCK (90 NS) 
(90 NS) 

FPA CPU P2 (PHASE 2) WCS 
CPU P2 (PHASE 2) 

DAP 
CPU P2B (PHASE 2) 

I MCT CLOCK (90 NS) 

IDC CPU P2 (PHASE 2) MCT 

TK-54S8 

Figure 3-1 Clock Distribution 

3.2 CLOCK GENERATOR CIRCUIT 
The clock generator circuitry (Figure 3-2) consists of a 44.4 mHz oscillator and a divide-by-four fre­
quency divider that produces the continuous 90 ns (11.1 mHz) basic clock, and a three-stage ring 
counter that produces the three CPU clock phases. Figure 3-3 shows clock generator output timing. 

The first two stages of the ring counter generate CPU clock phases 0 and 1 (PO and PI). These outputs 
are free-running to produce continuous clock trains. The phase 0 and phase 1 clocks are used mainly to 
generate the signals necessary to read, write, and refresh the dynamic RAMs in basic control store. 

The third stage of the ring counter (CPU clock phase 2) actually has three independent outputs. These 
are not always free-running, and are gated by the clock generator's start/stop/step control. Each phase 
2 output performs a different function. CPU P2 is used mainly to generate the CPU data path clocks, 
thus executing the current microinstruction. CPU P2B is used to generate the micro-PC clock. The 
third phase 2 output is used to generate CLK CSR, which normally loads the control store register 
(CSR) with the next microinstruction. The CPU microcycle is discussed in Paragraph 4.3.4. 
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Figure 3-2 CPU Clock Generator Block Diagram 
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Figure 3-3 CPU Clocks Timing Diagram 

3.3 CLOCK START jSTOP jSTEP CONTROL 
The phase 2 clocks, by executing the current microinstruction and loading the next, are the controlling 
factor in sequencing CPU operation. Thus, these are the clocks that are gated to start, stop, and step 
the CPU. 

3.3.1 Clock Control by the Console 
The 8085A console processor provides the primary clock control. CPU RUN is asserted by the console 
program to start the phase 2 clocks, and it must remain asserted for normal full-speed CPU operations. 
If CPU RUN is negated, the phase 2 clocks are stopped, unconditionally halting all instruction level 
processing. The CPU is then considered to be in maintenance mode. 
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Whenever the CPU is in maintenance mode (CPU RUN = 0), the console program may assert signals 
to single-step the phase 2 clocks and thus CPU operations. Furthermore, all or parts of the CPU may be 
single-stepped depending on which clocks are generated. The signals asserted by the console program 
and the clocks they produce are as follows. 

Signal 

CPU SSTP 

PC SSTP 

CSR SSTP 

CPUP2 
(DP Clocks) 

x 

CPU P2B 
(CLK ~PC) 

x 

x 

(CLK CSR) 

x 

x 

The CPU SSTP signal single-steps all three phase 2 clocks, causing a single CPU microinstruction to be 
executed. The signal is asserted by the 8085A console-based microdiagnostics when testing the CPU at 
single-step speeds. 

The console program may also assert PC SSTP to single-step CPU P2B (and thus generate CLK ~PC), 
but not the other phase 2 clocks. Similarly, CSR SSTP single-steps only one phase 2 clock to generate 
CLK CSR. The signals are asserted by the console program during microdiagnostics and system boot­
strap; PC SSTP when parallel loading and shifting the micro-PC, and CSR SSTP when parallel loading 
and shifting the control store register (CSR). 

3.3.2 Clock Stalls 
Even when full-speed CPU operation has been enabled by the console program (CPU RUN = 1), it is 
sometimes necessary to temporarily stop CPU processing. This is accomplished by delaying (stalling) 
the generation of the phase 2 clocks. The clocks are delayed until the stall condition has been removed. 
Clock stalls are caused by control store refresh cycles, control store parity errors, and CPU interaction 
with memory. 

A control store refresh cycle (REFR REQ = 1) stops the phase 2 clocks for just one 270 ns clock 
period. This inhibits just one microcycle in control store, allowing the basic control store's dynamic 
RAM storage array to be refreshed during the stall interval (Paragraph 4.3.5). 

A control store parity error (CS PARITY ERR = 1) asserts CLOCK STALL and delays the phase 2 
clocks until the error is removed. The error, which also interrupts the 8085A console processor, in­
dicates that bad parity has been detected for the microinstruction in the CSR (Paragraph 4.3.7). 

There are three types of clock stalls due to CPU interaction with memory. All three assert CLOCK 
STALL until the stall condition is removed. 

One stall condition occurs when a memory request has been made by the CPU (MEMORY REQUEST 
= 1) and the memory controller does not respond immediately to the request (CPU GRANT = 0). 
Response can be delayed if the memory controller is performing a UNIBUS operation. The stall is 
released when the memory controller is ready to accept the memory request (CPU GRANT = 1). 
Memory requests are made by the MEM REQ microinstruction (Paragraphs 5.2.1 and 6.11) or by the 
DECODE microinstruction when an automatic refill of the prefetch register is initiated (Paragraph 
5.2.1 ). 
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A second stall condition can occur for DECODE microinstructions (DECODE INSTR = 1) that are 
not making a memory request (MEMORY REQUEST = 0). The stall occurs when the DECODE 
microinstruction is to use prefetch register data (ENABLE IB STALL = 1) but the register does not 
yet contain valid instruction data (STALL ON IB = 1); that is, the memory controller is still busy 
doing a previously initiated instruction fetch (MEMORY BUSY = 1). The stall is released when the 
prefetch register is filled (MEMORY BUSY = 0). 

The third stall condition due to interaction with memory occurs when the CPU is making a data trans­
fer request (DATA REQ = 1) and the memory controller is not ready for the transfer of read/write 
data (MEMORY BUSY = 1). Stalls occur because of memory refresh cycles, soft read data errors, or 
because read data is unaligned. The stall is released when the data transfer is finally made (MEMORY 
BUSY = 0). For soft errors, the transfer is made after the data has been corrected. For unaligned data, 
it is made after the memory controller has aligned the information. Memory data transfers are initiated 
by the MOVE microinstruction (Paragraph 6.11). 

NOTE 
If the prefetch register cannot be filled or if a data 
transfer cannot be made due to a hard error (NXM, 
uncorrectable read error, etc.), the memory con­
troller negates MEMORY BUSY when the hard er­
ror is detected to prevent an indefinite stall from oc­
curring. 

Clock stall conditions also affect the phase 2 clocks if they are being single-stepped in maintenance 
mode. That is, a control store refresh cycle will delay all clocks (for 270 ns) just as it normally does 
when the CPU is operating at full-speed. However, the other clock stall conditions only completely in­
hibit CPU P2 (data path clocks). The remaining phase 2 clocks, which clock the micro-PC and the 
CSR, are not completely inhibited and can still be single-stepped. This prevents conditions forced by 
the single-stepping microdiagnostics from blocking further operations; for example, the micro­
diagnostics shift data into the CSR one bit at a time, and the random parity errors produced would 
otherwise block further shift operations. 
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4.1 INTRODUCTION 

CHAPTER 4 
CPU CONTROL STORE AND MICROSEQUENCER 

The execution of system-level instructions and operations in the VAX-II /730 system is sequenced and 
controlled by the microprogram contained in the CPU's writable control store (WCS). The control 
store, which is loaded during system bootstrap, provides storage for up to 20K microinstructions. (The 
basic control store is 16K but an additional 4K may be installed to support port devices and supply 
storage for user microcode.) Each microinstruction is 24 bits and contains several control fields, each of 
which control a specific CPU function. 

Associated with the control store is a 24-bit control store register (CSR) which holds the micro­
instructions as they are read from control store and executed. The control store, including the CSR, is 
contained on the WCS module. 

The sequence of microinstructions read from the control store and loaded into the CSR is determined 
by the microsequencer located on the DAP module. The microsequencer presents a IS-bit next micro­
address derived from either a micro-PC, a subroutine stack, or from the jump address field in the cur­
rent microinstruction. (The current microinstruction is the microinstruction currently in the CSR.) The 
microaddress supplied by the micro-PC or stack can be incremented to provide a microprogram skip 
function. Also, part of the jump address may be OR'd with outputs from the operand specifier (OS) 
register located in the data path, or part of the jump address may be supplied by either of the two 
mapping ROMs in the instruction processing hardware. 

4.2 MICROINSTRUCTION FORMATS 
There are seven basic types of microinstructions used to execute the microcode in the CPU. These are 
the BASIC, MOVE, EXTENDED, MEM REQ, MISC/PORT, JUMP, and DECODE. Micro­
instructions are 24 bits long, 23 bits of which are used for opcode and control information. One bit, the 
high order bit in each microinstruction (bit 23), is used to generate odd parity for the microword. Op­
code and control bit formats for the various CPU microinstructions are shown in Figure 4-1. 

An expanding opcode scheme is used to specify CPU microinstruction type. That is, a BASIC is speci­
fied when a single op code bit is set (CSR (22) = 1). However, if this op code bit is not set, a second op 
code bit that is set (CSR (21) = 1) defines the next two types of microinstructions, depending upon 
the state of a third bit (CSR (20»). (A MOVE has CSR (20) = 0; an EXTENDED has CSR (20) = 
1.) The other microinstructions are defined in a similar fashion with four opcode bits required to specify 
a MEM REQ, MISC/PORT, JUMP, or DECODE. The advantage of an expanding opcode is that it 
allows more control bits in some microinstructions than would be possible with a fixed-length opcode 
field. 

Control bits for the CPU microinstructions are defined in Tables 4-1 through 4-9. They are described in 
more detail in the appropriate sections of this manual; for example, the various microsequencer oper­
ations specified by the microinstruction's skip and jump control fields (SCTL and JCTL) are discussed 
in Paragraphs 4.4.4 through 4.4.8. 
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Figure 4-1 Bit Formats for CPU Microinstructions 

Table 4-1 Control Bit Definitions for BASIC Microinstruction 

Field 

apcaDE 

DP 

DADRS 

B 

Function 

Bit (22) = 1 defines microinstruction as a BASIC. 

Data path control. Controls 2901 A data processor. Local store 
or discrete register written when DP = 20:3F. 

Data address. Selects local store location or discrete register 
read and written. 

B address. Selects 2901 A working register read (from ports A 
and B) and written. 
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CSR Bit(s) 

(06:05) 

(04:00) 

CSR Bit(s) 

(22:20) 

(19: 17) 

(16:09) 

(08:07) 

(06:05) 

(04:00) 

Table 4- I Control Bit Definitions for BASIC Microinstruction (Cont) 

Field 

CC 

SCTL 

Function 

Condition code (and data type) control. 

CC Operation 

00 Use longword, hold CCs 
01 Use longword, load CCs 
10 Use size, load CCs 
11 Copy CCs 

Skip control. Defines microsequencer skip condition or special 
function. 

Table 4-2 Control Bit Definitions for MOVE Microinstruction 

Field 

OPCODE 

MOP 

XD ADRS 

B 

CC 

SCTL 

Function 

Bits (22:20) = 011 define microinstruction as a MOVE. 

Data path control. Controls 2901 A data processor. Memory 
data request made when MOP = 0, 1, or 4. Local store location 
or discrete register read when MOP = 1,2,3,5,6, or 7 and 
written when MOP = 0,4,5,6, or 7. 

Data address (extended). Selects local store location or discrete 
register read and written. 

B address. Selects 2901A working register read (from ports A 
and B) and written. Working register address is B+4 when 
MOP = 2. 

Condition code (and data type) control. 

CC Operation 

00 Use longword, hold CCs 
01 Use longword, load CCs 
lOUse size, load CCs 
11 Copy CCs 

Skip control. Defines microsequencer skip condition or special 
function. 
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CSR Bit(s) 

(22:20) 

(19:14) 

(13:11) 

( 10:09) 

(08:07) 

(06:05) 

(04:00) 

Table 4-3 Control Bit Definitions for EXTENDED Microinstruction 

Field 

OPCODE 

XDP 

SI 

A 

B 

CC 

SCTL 

Function 

Bits (22:20) = 010 define microinstruction as an 
EXTENDED. 

Data path control (extended). Controls 2901A data processor. 

Shift input control. Selects shift data inputs to 290 I A register 
(Q or working register). 

A address. Selects 290 I A working register (read from port A). 

B address. Selects 2901A working register (read from port B). 
The address to which data is written. 

Condition code (and data type) control. 

CC Operation 

00 Use longword, hold CCs 
01 Use longword, load CCs 
lOUse size, load CCs 
II Copy CCs 

Skip control. Defines microsequencer skip condition or special 
function. 
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CSR Bit(s) 

(22:19) 

( 18: 16,08:07) 

(15:09) 

(06:05) 

(04:00) 

CSR Bit(s) 

(22:19) 

(18) 

(07) 

(04:00) 

Table 4-4 Control Bit Definitions for MEM REQ Microinstruction 

Field 

OPCODE 

MF2,1 

DADRS 

DT 

SCTL 

Function 

Bits (22:19) = 0011 define microinstruction as a MEM REQ. 

Memory function. Specifies type of memory request. 

Data address. Selects local store location containing memory 
address data. 

Data type control. 

DT Operation 

00 Byte 
01 Word 
10 Use size 
11 Longword 

Skip control. Defines microsequencer skip condition or special 
function. 

Table 4-5 Control Bit Definitions for MISC/PORT Microinstruction 

Field 

OPCODE 

P 

R 

SCTL 

Function 

Bits (22: 19) = 0010 define microinstruction as a 
MISC/PORT. 

PORT /MISC select. P = 0 for MISe. P = 1 redefines MISC 
as a PORT. 

Working Register Address. Selects WR 0 when R = o. Selects 
WR 1 when R = 1. 

Skip control. Defines microsequencer skip condition or special 
function. 
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Table 4-5 Control Bit Definitions for MISC/PORT Microinstruction (Cont) 

CSR Bit(s) Field Function 

MISC (P = 0) 

(15: 12) M1 MISC function 

Ml Operation Ml Operation 

0 Clear STATE 1:0 8 Set SEL ACC IN 
I Clear STATE 1, 9 Clear SEL ACC IN 

Set STATE 0 
2 Set STATE 1, A Clear WSC PAG E 

Clear STATE 0 
3 Clear STATE 0 B Set WCS PAGE 
4 Clear STATE 1 C Clear CPU ATTN 

and CPU ACK 
5 Set STATE 0 D Set CPU ACK 
6 Set STATE 1 E Set CPU ATTN 
7 Set RBKUP FLAG F NOP 

(11 :09) M2 MISC function 2 

M2 Operation M2 Operation 

0 NOP 4 Assert READ 
ACC JLPC 

Mask interrupts 5 Assert XFER 
GRANT 

2 Assert CPU DATA 6 Mask halt and T 
AVAIL TRAP 

3 Assert TRAP ACC 7 Write CRR 
register 

PORT (P = 1) 

(17: 15) Device Select IDC = 7 

(14: 13) Operation Read = 0 
Write = 1 
Control = 2 

(12: 10) Hardware Select 
(14:13) = 0 or 1 (14:13) = 2 

12:10 = 0 Controll status register Clear FIFO Counter 
=1 Disk address register Reset BR 
=2 Data byte 
=3 Data longword Clear IDC 
=4 Pattern (read only) Set automode 
=5 Position (read only) Clear automode 
=6 Select FIFO A 
=7 Select FIFO B 
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CSR Bit(s) 

(22:19) 

( 18) 

(17:04) 

(03:00) 

CSR Bit(s) 

(22:19) 

(\8) 

(\7:12) 

11 :09) 

(08) 

(07) 

(06) 

(05) 

(04) 

(03:00) 

Table 4-6 Control Bit Definitions for JUMP Microinstruction 

Field 

OPCODE 

as 

JUMP 
ADDRESS 

JCTL 

Function 

Bits (22: 19) = 0001 define microinstructions as a JU M P. 

Select as. Causes OS(4:0) to be ORed with five low-order 
bits of jump microaddress. 

Specifies 14-bit jump microaddress. Bits (08:04) ORed with 
OS(4:0) if as = I. 

Jump control. Defines microsequencer jump condition or 
special functions. 

Table 4-7 Control Bit Definitions for DECODE Microinstruction 

Field 

OPCODE 

BKUP PC 

JUMPADRS 

IFUNC 

IBREQ 

SEL CM HI BYTE 

LDOS 

LDRDEST 

OPC/SPEC 

JCTL 

Function 

Bits (22:19) = 0000 define microinstruction as a 
DECODE. 

Backup PC. When equal to zero, causes PC to be stored in 
WR 0 (lFUNC = even) or WR 4 (lFUNC = odd). 

Specifies six high-order bits of 14-bit jump microaddress. 
Eight low-order bits supplied by OPCODE or SPEC 
mapping ROM. 

Defines a set of dispatch addresses for the DECODE by 
supplying the high-order address bits for mapping ROMs. 
Instruction data supplies low-order address bits. 

Enable byte of instruction data contained in PFR to drive 
IB bus. Increment PC. Refill PFR if last byte. Used in 
native mode. 

Enables high-order byte of instruction data contained in 
PFR to drive IB bus. Used in compatibility mode. 

Load as register from IB bus. Clear OS3 if compatibility 
mode and if LD RDEST = I. 

Load RDEST (register destination) FLAG if mode 
specifier = 5 (native mode) or 0 (compatibility mode). 

Selects OPCODE mapping ROM when OPC/SPEC = 1. 
Selects SPEC mapping ROM when OPC/SPEC = o. 

Jump control. Defines microsequencer jump condition or 
special function. 
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Table 4-8 SCTL Field Definitions 

Skip Skip 
SCTL Condition SCTL Condition 

00 NOTALUN 10 Return + 1 if NOT ERR SUM 

01 NOTALU Z 11 Loop if NOT ALU Z 

02 NOTALU V 12 Pop stack 

03 ALUC 13 Loop if ALU C 

04 NOTPSLC 14 Return 

05 BRANCH FALSE 15 No skip (NOP) 

06 GPR OEST 16 Return + 1 

07 NOT INTERR REQ 17 Loop if NOT INTERR REQ and 
NOTACCSYNC 

08 ALUN 18 CONSOLE ATTN 

09 ALUZ 19 CONSOLEACK 

OA ALUV lA PORT INT 

OB NOTALUC IB RBKUPFLAG 

OC STATE 0 lC ALU N XOR ALU V 

00 STATE 1 10 NOT ERR SUM 

OE NOT STATE 0 IE Skip 

OF NOT STATE 1 IF ACCSYNC 
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Table 4-9 JCTL Field Definitions 

Jump Jump 
JCTL Condition JCTL Condition 

0 NOT ALU N 8 ALUN 

NOTALU Z 9 ALUZ 

2 NOTALU V A ALUV 

3 ALUC B NOTALU C 

4 Jump C JSR 

5 BRANCH FALSE 0 JSR if IB VALID 

6 aPR DEST E No jump. Skip if IB VALID 

7 NOT INTERR REQ F IB VALID 

4.3 CONTROL STORE 
A block diagram of control store is shown in Figure 4-2. The main components are the 16K basic con­
trol store, the additional (optional) 4K of user control store, a control store write register, and the CSR. 
Microinstructions are read from either the basic or user control store onto the CS bus and into the 
CSR. The CS bus is also used to load microinstructions into basic or user control store from the control 
store write register. 

There are major differences between the basic and user control stores. The larger basic control store 
uses dynamic RAMs in its storage array which must be refreshed periodically. Associated circuitry 
includes address gates that generate a multiplexed row/column address, a refresh address counter, and 
a timing circuit that generates address select and strobe levels. 

The smaller user control store uses RAMs (not dynamic RAMs) as storage elements. As a result, re­
freshing is not required. Also, multiplexed addressing is not necessary and the only additional address­
ing circuitry is a bank select decoder that selects the appropriate RAM chips in the storage array. 

Addresses for basic control store are in the 0 to 16K range. User control store addresses are 16K to 
20K. 
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4.3.1 Basic Control Store Storage Array 
The dynamic RAMs used in basic control store are 16K (16,384) location X I-bit MOS chips. There 
are 24 chips, one for each bit in the microword, to provide the total storage capacity of 16K 24-bit 
locations. 

The basic control store has seven address lines CS ADRS (6:0) that parallel-connect to all 24 MOS 
chips. To access a location in the 16K (128 row X 128 column) chips, the address gates that drive the 
CS ADRS lines assert a 7-bit row address followed by a 7-bit column address. The row and column 
addresses are derived from the next microaddress presented by the microsequencer on the NAD lines. 

NAD Lines 

(13:11,03:00 
10:04) 

Addressing Function 

Select 1 of 128 possible row addresses 
Select 1 of 128 possible column addresses 

Also, because basic control store addresses are in the 0 to 16K range (NAD (14:00) = 0000 to 3FFF), 
the high-order NAD line (NAD 14 = 1) is used to deselect the basic control store by inhibiting the 
column address strobe for the storage array. (The column address strobe must be asserted before data 
can be read or written in the array's dynamic RAMs.) The generation of the address strobes is dis­
cussed in Paragraph 4.3.4. 

4.3.2 User Control Store Storage Array 
The RAMs in user control store are lK (1024) location MOS chips. Each chip stores four bits, and 24 
chips are used to provide the total storage of 4K (4096) 24-bit locations. The 24 chips in the storage 
array are configured into four lK X 24-bit groups (banks) of six chips each. One of these banks is 
selected by one of the four outputs from the bank select decoder whenever user control store is ad­
dressed. The bank select signals (SEL XCS (3:0») connect to the CHIP EN inputs on the appropriate 
MOS chips. 

The user control store is addressed directly by the NAD lines from the microsequencer. Two NAD lines 
select a 1 K bank, and the 10 low-order NAD lines (which parallel-connect to all chips in the array) 
select a location within the selected bank. 

NAD Lines 

(11:10) 

(09:00) 

Addressing Function 

Select 1 of 4 possible banks 

Select 1 of 1 K possible locations within the selected bank 

Because user control store addresses are in the 16K to 20K range (NAD (14:00) = 4000 to 43FF), 
NAD 14 = 0 is used to disable the bank select decoder and thus deselect all chips in the array when 
user control store is not addressed. 

4.3.3 Control Store Register (CSR) 
The CSR is normally loaded directly from the CS bus to hold the current microinstruction. This is a 
parallel load of all 24 bits in the microinstruction from either the basic or user control store storage 
array. The CSR also has a shift capability. The CSR load mode is controlled by PARAL LD CSR, 
which is normally asserted by the 8085A console processor. 

However, the console-based microdiagnostics may load and test the CSR by negating PARAL LD CSR 
and shifting data into the CSR's least significant bit position. CSR bits 07, 15, and 23 may then be 
examined as the test data is shifted through the register. CSR SHF IN, which may be set or cleared by 
the microdiagnostics, provides the shift data input. The CSR register clock, CLOCK CSR, is single­
stepped by the microdiagnostics during the shift operations. 
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4.3.4 Basic Microcycle 
Three CPU clock phases (0, 1, and 2) constitute a microcycle. The time that the CSR is clocked by 
CLK CSR to load the current microinstruction is defined at TO. This is the beginning of the microcycle 
and all other timing in the CPU is relative to this. 

For example, the local store (LS) in the data path is written by a pulse (LS WRT EN) asserted from 
T225 to T270 of the microcycle. Basic microcycle timing is shown in Figure 4-3. Note that T270 (the 
end) of one microcycle coincides with TO (the beginning) of the next. 

TO T90 T180 T270(TO) 
BASIC CLOCK 

WCSE PO L----i L 
WCSE P1 L-----;---..., 

I 

P2 (GATED)~-

WCSE CLK CSR H 

-,* 
BASIC I ~CLOCK 

:~~===~~M_I_C_RO_C_Y_CL_E~~_ XSTALL 

CSR REGISTER 
(WCSH CSR <23:00> H) J--I"4-....;C;.;;U....;R....;R;;..EN....;T_M....;I.;;,.CR....;O;.;.I...;,.NS;,..T....;R..;.UC;;..T...;,.IO;;..N~~L...lr-4 

NAD LINES NEXT MICROADDRESS 
(DAPJ/K NAD <14:00> L) )-....w::..--_________ --:-........, 

I 
I 

BASIC CLOCK (DELAYED BY 15 NS)~ 
BASIC CLOCK (DELAYED BY/30 NS)~ 

I I I I I 
I I 

WCSE SEL ROW ADRS I I I I I I 

WCSE SEL COL ADRS H--+---' 
I 

WCSE ROW ADRS STB L 

~ 
BASIC CONTROL STORE 
SIGNALS ONLY 

WCSE C\ ADRS STB L 

CS ADDRESS LINES 
(WCSE CS ADRS <6:0> H 

CS READ DATA (CS BUS) 
(BUS CS DOUT <23:00> H 

IF USER CONTROL IF BASIC CONTROL 
STORE ADDRESSED STORE ADDRESSED 

Figure 4-3 Basic Microcycle Timing Diagram 
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A microcycle is normally equal to a microstate; that is, the 270 ns interval from one CPU clock phase 0 
to the next. However, during clock stalls, CPU clock phase 2 is inhibited, causing CLK CSR and the 
data path clocks not to be asserted for some length of time depending on the stall condition. As a result, 
T270 may be delayed, extending the microcycle by some multiple of 270 ns microstates (e.g., 270 ns, 
540 ns, 810 ns, etc.). 

With reference to the block diagram (Figure 4-2) and the timing diagram (Figure 4-3), control store 
operation during the basic microcycle is as follows. 

At TO, the rising edge of CLK CSR loads the contents of the next microaddress from the CS bus 
directly into the CSR. This new microinstruction, now the current microinstruction, remains in the 
CSR for the entire microcycle. 

Once the current microinstruction is loaded into the CSR, its control bits are asserted to set up and 
condition the hardware. The CPU functions specified by the microinstruction are then executed near or 
at the end of the microcycle. Most CPU functions are executed at T270. 

The control bits in the current microinstruction also determine the next microaddress generated by the 
microsequencer. As a result, shortly after the CSR is loaded at the beginning of the microcycle, this 
new microaddress is transmitted to control store over the microsequencer's NAD lines NAD (14:00). 
The IS NAD lines address the basic and user control store storage arrays as described in Paragraphs 
4.3.1 and 4.3.2. 

For basic control addresses (N AD 14 = 0), the control store address gates first allow a row address to 
the MOS chips in the storage array. This is followed by a column address. The multiplexer is controlled 
by two select levels, SEL ROW ADRS and SEL COL ADRS. Two other signals, ROW ADRS STB 
(RAS) and COL ADRS STB (CAS) latch the row and column addresses in the MOS chips. Once the 
column address has been latched, the contents of the next microaddress are read onto the CS bus. 

For user control store addresses (NAD 14 = I), no address line multiplexing is done. The NAD lines 
connect directly to the array chip's address inputs and the contents of the next microaddress are read 
onto the CS bus following the assertion of a bank select level by the bank select decoder. 

After the contents of the next microaddress are read from either basic or user control store, the contents 
are loaded from the CS bus into the CSR to become the current microinstruction when the next 
CLOCK CSR occurs. 

The basic control store's address select levels and address strobes are generated by a timing circuit. The 
timing circuit generates the address signals using the basic clock, the basic clock delayed, and CPU 
clock phases 0 and 1. A simplified block diagram showing basic timing is given in Figure 4-4. Note that 
more than one row and column address select level is generated. Those that do not coincide with the 
corresponding address strobe have no effect on basic control store operation. 

As stated previously, during user control store references, NAD 14 = I disables the generation of the 
column address strobe. Also, extra row and column address select levels are generated but (again) this 
has no effect on basic control store operations. 

The column address strobe is also inhibited before and after the write interval during a control store 
write operation (by WCS ENABLE = 0) as discussed in Paragraph 4.3.6. Furthermore, during a re­
fresh cycle (REFR CYCLE = I), all outputs from the timing circuit are inhibited except for the row 
address strobe. The refresh cycle is discussed in Paragraph 4.3.5. 
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Figure 4-4 Control Store Timing Circuit (Simplified) 

4.3.5 Control Store Refresh Cycle 
Only the basic control store has to be refreshed. Like the dynamic RAM in the console processor which 
uses the same 16K (128 row X 128 column) MOS chips, the basic control store is refreshed by a series 
of row strobes to all 128 row addresses within the specified refresh interval. Also, a refresh cycle (which 
refreshes one row address) occurs every 12.8 f.Ls. 

The control store refresh cycle is initiated by the refresh control in the console processor. The refresh 
request signal is CON STORE REFR, (12.8 f.LS period), which is derived from a counter that is clocked 
continuously by the 8085A clock. The CON STORE REFR signal is synchronized to the control store 
microstate by three synchronizing flip-flops (clocked by CLK REFR CNTR) to generate REFR REQ 
when CON STORE REFR goes low. (Timing is shown in Figure 4-5, sheet 1.) REFR REQ, asserted 
for one microstate, then initiates a control store refresh cycle. It also initiates a memory refresh cycle 
by asserting MAIN MEM REFR. The memory refresh cycle, which occurs after the control store re­
fresh cycle, is described in the VAX-II j7 30 Memory System Technical Description. 
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Figure 4-5 Control Store Refresh Operation Timing 
Diagram (Sheet 2 of 2) 
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Timing for the control store refresh cycle initiated by REFR REQ is shown in Figure 4-5, sheet 2. 
REFR REQ first asserts REFR CYCLE. Then, during the microstate, REFR REQ stalls CPU clock 
phase 2 to prevent a microcycle, and REFR CYCLE conditions the control store address gates so that 
the outputs from a 7-bit refresh counter (a row address) are transmitted on the control store address 
lines. Also, REFR CYCLE inhibits all control store address select and strobe levels except for the row 
address strobe. This signal (ROW ADRS STB) is then asserted at its normal time to refresh the se­
lected row address and end the refresh cycle. 

The refresh counter (REFR ADRS (6:0» is incremented by the trailing edge of REFR CYCLE at the 
end of every refresh cycle and it increments through all the 128 possible row addresses during the 1.7 
ms refresh interval. 

NOTE 
SEE DC LO from the console processor asserts 
REFR CYCLE and forces continuous refresh cycles 
during system power-up and power-down sequenc­
ing. Otherwise, dc voltage transients that occur dur­
ing the normal control store read cycle could cause 
the control store's contents to be modified. 

4.3.6 Control Store Write Operation 
The control store is written by the 8085A console processor during system bootstrap, by certain console 
commands, and during microdiagnostics. The operation is performed with the CPU in maintenance 
mode (i.e., CPU clock phase 2 stopped). One 24-bit microword of control store data is written at a time. 

The console program (or console-based microdiagnostic monitor) running in the 8085A console proces­
sor writes a single control store location by first shifting the microaddress into the micro-PC. (CLK 
JLPC is single-stepped during this operation.) With the microinstruction in the CSR specifying a NOP 
function (previously loaded by the console processor), the microaddress in the micro-PC is transmitted 
by the microsequencer over the NAD lines to control store. 

Next, the console program (or console-based microdiagnostic monitor) loads three bytes of write data 
into the control store write register. It then asserts WRITE WCS. This causes a set of four synchro­
nizing flip-flops (clocked by CPU clock phase 0) to negate WCS ENABLE and to assert EN XCS WR 
DATA and WCS WRT EN. Timing is shown in Figure 4-6, sheet 1. 

The normally asserted WCS ENABLE signal allows generation of the column address strobes for basic 
control store. In addition, it allows the assertion of the bank select levels for user control store. Thus, 
when WCS ENABLE is negated at the start of the control store write operation, it prevents either of 
the two storage arrays from driving the CS bus. 

With the CS bus inactive, the other two signals generated by the synchronizing flip-flops do the follow­
ing. EN XCS WRT DATA, asserted 270 ns after WCS ENABLE goes false, now enables the pre­
viously loaded control store write register to drive the CS bus. (The CS bus lines connect to the array 
chip's write data input pins as well as to the read data output pins.) 

EN WCS WRT EN, generated at the same time as EN XCS WRT DATA, asserts the write enables 
for the storage arrays. (The enables parallel-connect to the array chip's write enable input pins.) The 
basic control store's write enable (CS WRITE EN) is conditioned by REFR REQ. The user control 
store's write enable (WRT XCS) is asserted only when NAD 14 = 1. 
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With the control store write register driving the CS bus, and with the array chips enabled to be written, 
WCS ENABLE is reasserted by the synchronizing flip-flops for as long as the console-generated write 
request is true. (The request will be true for several CPU microstates due to the comparatively slow 
speed of the 8085A console processor.) During the time WCS ENABLE is reasserted, called the write 
interval, it again allows column address strobes and bank select levels to be generated. This causes the 
console write register data transmitted on the CS bus to be written into the addressed control store 
location. 

During the write interval, the same data is written at the same microaddress, one CPU microstate after 
the other. The timing for a single write cycle is shown in Figure 4-6, sheet 2. If a refresh request occurs 
when writing basic control store, REFR CYCLE inhibits the array's write enable level. Because the 
refresh cycle takes just one microstate to complete, and because the write to a single control store loca­
tion repeats for several microstates, a refresh request cannot prevent a basic control store write oper­
ation from occurring. 

A write to user control store, which does not use dynamic RAMs, does not need to be inhibited by a 
refresh cycle. Both a user control store write cycle and a basic control store refresh cycle may occur 
simultaneously. 

WCSB WRITE WCS H 

SYNCHRONIZING FF 

SYNCHRONIZING FF 

WCSE WCS WRT EN H 

WCSE CS WRITE EN L 

WCSE EN XCSWR DATA L 

SYNCHRONIZING FF 

WCSE WCS ENABLE H 

CS BUS 
(BUS CS DOUT <23:00> H) ;.;.:;."'""'"="""L.....---L_....-~,------=.-=-..;---, __ .L.-_~ 

START 
WRITE 
CYCLES 

END 
WRITE 
CYCLES 

Figure 4-6 Control Store Write Operation Timing 
Diagram (Sheet 1 of 2) 
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The control store write interval ends when the console processor negates WRITE WCS, which in turn 
negates WCS ENABLE. Chip write enable levels and the write register's output enable are then ne­
gated (270 ns later). With nothing driving the CS bus, WCS ENABLE is reasserted to its normal state, 
ending the control store write operation. 

4.3.7 Control Store Parity and Microsync 
All microinstructions in control store contain a parity bit (bit 23) which is generated by the microcode 
assembler program when the microcode is created. The correct parity is odd, and it is checked when the 
microinstruction is loaded into the CSR as the current microinstruction. 
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If the parity of the current microinstruction is bad (even), and if an error halt has been enabled by the 
8085A console processor as it normally is (HALT ON PE = I), CS PARITY ERR is asserted to stall 
CPU clock phase 2 before the microinstruction can be executed. The error signal, by asserting PAR 
ERR, also interrupts the 8085A console processor directly at one of its restart (RST) inputs. (The inter­
rupt occurs at what would normally be T270 of the microcycle, had it been allowed to occur.) The 
console program may then read the micro-PC, which should be the address of the failing micro-
instruction + I, and abort CPU operation. . 

A maintenance feature of the VAX-II /730 system is that the control store parity checking circuits may 
be used to generate a scope sync relative to a specific microinstruction. This microsync signal is gener­
ated by loading bad parity into the desired microaddress and by negating HALT ON PE to prevent 
error halts. (Both may be accomplished by means of console commands.) Then, with the CPU running 
at full-speed, a scope sync will be generated every time the microinstruction with bad parity is the cur­
rent microinstruction. 

The microsync signal is brought out to a test point (TPI) at the handle end of the DAP (M8390) mod­
ule for easy accessibility. The signal is asserted during CPU clock phase 2. Thus, the execution of the 
microinstruction generating the sync signal may be viewed on the scope. 

During the testing of the storage arrays in control store by the microdiagnostics, the CSR is inadvert­
ently loaded with test data having bad parity. (Control store parity is not generated by hardware, only 
checked.) in these cases, the console processor may prevent clock stalls (if not single-stepping the 
clocks in console mode) by negating HALT ON PE. 

4.4 MICROSEQUENCER 
With reference to the block diagram (Figure 4-7), the basic logic elements in the microsequencer are 
the micro-PC, the subroutine stack including the stack pointer, the micro-PC bus and NAD bus, the 
incrementing logic connecting the two buses, and the NAD multiplexers that present the next micro­
address to control store. There are also circuits to decode the current microinstruction, the main one 
being the microsequencer control which decodes the microinstruction's SCTL/ JCTL fields, together 
with the various skip/jump/return conditions tested by the microprogram. The outputs from this circuit 
are the major signals used to sequence and control microsequencer operation. 

4.4.1 Micro-PC 
The micro-PC is a 15-bit register that drives the micro-PC bus (when EN JLPC = 1) and is parallel­
loaded from the NAD lines that present the next microaddress to control store. The load, which occurs 
at T270 of the microcycle, is not direct. That is, the micro-PC contains gating at its inputs which in­
crements the NAD line value. As a result, during normal- microsequencer operation, the micro-PC al­
ways contains the microaddress of the current microinstruction + I. 

The micro-PC is also a shift register. When the CPU is in maintenance mode, the 8085A console pro­
cessor may load and examine register data one bit at a time by shifting data into the least significant bit 
position and examining the most significant bit position. This is similar to the shift facility built into the 
CSR. As a matter of fact, PARAL LD CSR (the signal controlling shift operation in the CSR) controls 
shift operation in the micro-PC. 

To load data into the micro-PC, the console processor negates PARAL LD CSR and asserts or negates 
CONS ACK, which is the shift data input to the LSB. (CONS ACK, a jump or skip condition during 
normal microsequencer operation, can be used as the shift data input bit when the CPU is in mainte­
nance mode.) The register clock, CLK JLPC, is then single-stepped by the console processor to load and 
shift the data. 
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4.4.2 Subroutine Stack 
The subroutine stack is a IS-bit X 16 location static RAM, configured as a last in-first out (LIFO) 
stack. The stack saves microaddresses written from the micro-PC bus when a jump to subroutine (JSR) 
microinstruction is executed by the microsequencer. Saving the microaddress on the micro-PC bus (i.e., 
the microaddress of the JSR + 1) allows a return to the previous level of microprocessing once the 
subroutine has been executed. During a return, the stack drives the micro-PC bus to provide the return 
address. 

The 16-location stack allows for subroutine nesting; that is, the jumping from one subroutine to another. 
Up to 16 return addresses may be saved (pushed) on the stack, thus allowing up to 16 JSRs before a 
return (pop) need take place. 

Position in the stack during subroutine jumps and returns is determined by a stack pointer, as shown in 
Figure 4-8. The pointer addresses the 16-location RAM and consists of a 4-bit binary counter (enabled 
to count by ENABLE SP = 1) that supplies the RAM address through a set of stack address gates. 
The counter, which is down-counted by a JSR and up-counted by a return, normally addresses the top­
of-stack. The top-of-stack is defined as the RAM location containing the last microaddress pushed. 

NOTES 
The stack pointer counter is not a standard binary 
counter. It counts through all 16 possible values, 
which is all that is required for addressing the 16-
location stack, but (to contain the design within a 
single PAL) the count sequence does not give con­
tiguous ascending or descending values. Con­
sequently, the count direction ("down" for a 
pop/"up" for a push) is arbitrary. For reference 
purposes, the count sequence, and thus the stack ad­
dress sequence, is given in Figure 4-8. 

Note that the stack pointer counter is cyclic 
(wraparound). As a result, it is not necessary for the 
microprogram to pop all data off the stack at the 
end of an instruction execution; the current location 
entering an instruction execution becomes the new 
top-of -stack. 
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Figure 4-8 Subroutine Stack Addressing 
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During a JSR (PUSH p,STACK = 1), the stack is written from the micro-PC bus at T225 of the micro­
cycle by CLOCK REGS. Because the stack pointer is not down-counted to the new top-of-stack address 
until T270 of the microcycle, the stack address gating forces a preliminary down-count of the current 
counter value for the stack write operation. 

During a return (ENABLE RTS = 1), no preliminary up-count by the stack address gates is required 
because the counter is already at the current top-of-stack address. The microaddress in the top-of-stack 
location is transmitted on the micro-PC bus during the microcycle to select the next microinstruction 
(the return address). Then, at T270 of the microcycle, the counter is up-counted to the new top-of-stack 
value, provided the return is not a loop function. Detailed operation of the stack is described in Para­
graphs 4.4.7 and 4.4.8. 

4.4.3 State Register 
The state register consists of two flip-flops set and cleared by the MISC microinstruction's function 1 
field. The state register outputs, STATE 1 and STATE 0, are microsequencer skip conditions and may 
be used by the CPU microcode for internal housekeeping functions such as branch control and iteration 
(loop) count. STATE 1 and STATE 0 are negated during the class decode operation performed by the 
instruction processing hardware (i.e.; when IRD STATE = 1). 

4.4.4 Microsequencer Control 
The microsequencer control generates the basic control signals necessary to sequence and control mi­
crosequencer operation. The signals generated, which are listed in Tables 4-10 and 4-11, depend on the 
current microinstruction's SCTL or JCTL field, and the state of any skip, jump, or return conditions 
that have been specified by the SCTL/ JCTL field. 

Table 4-10 SCTL Field Decoding by Microsequencer Control 

Condition EN ENABLE ENABLE INCR 
SCTL Met Function p,PC RTS SP CIN 

15 NOP x 
17 No(lNT.SYNC) NOP x 
00:OF,18:1 D,I F No NOP x 

IE Skip x x 
10 No Skip x x 
00:OF,I8:ID,IF Yes Skip x x 

14 Return x x 

16 Return + 1 x x x 
10 Yes Return + 1 x x x 

11,13,17 Yes Loop x 

12 Pop x x 
11,13 No Pop x x 
17 No(SYNC) Pop x x x 
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Table 4-11 JCTL Field Decoding by Microsequencer Control 

Condition EN PUSH ENABLE INCR JUMP 
JCTL Met Function p.PC p.STACK SP CIN ENABLES* 

0:3,5:B, No Nap x 
D:F 

4 Jump x x 
0:3,5:B, Yes Jump x x 
F 
C JSR x x x x 
D Yes JSR x x x x 

E Yes Skip x x 

* Jump enables = ENABLE .JUMP/ENABLE JUMP La (.JUMP only) and ENABLE lR ROM (DECODE only) 

During a microcycie, the microsequencer control outputs cause one of eight basic microsequencer func­
tions as follows. 

1. Nap - Onfy EN p.PC is asserted to cause the micro-PC contents to be transmitted on the micro­
PC bus. The unmodified micro-PC contents (i.e., the microaddress of the current microinstruction 
+ I) become the next microaddress presented to control store. Thus, the microinstruction immedi­
ately following the current one in the microprogram will be executed next. A Nap occurs as a 
result of a specified skip or jump condition not being met; or it can be specified unconditionally 
(SCTL = 15) to allow stepping through the microprogram in a sequential fashion. 

2. Skip - Control signal INCR CIN is asserted in addition to EN p.pc. This causes the incrementing 
logic between the micro-PC and NAD buses to increment the micro-PC contents by one. Thus, the 
next microaddress is that of the current microinstruction plus two, causing a skip in microprogram 
sequence. 

3. Jump - EN p.PC is asserted (to cause a Nap when a jump condition is false), but with a jump 
condition true; or if a jump has been specified unconditionally, the micro-PC is ignored, and jump 
enable levels are asserted to select all or part of the next microaddress from the current micro­
instruction's jump address field in the CSR. (The five least significant bits of the jump address 
field may be OR'd with as (4:0), or the mapping ROMs in the instruction processing hardware 
can furnish the eight least significant bits.) The jump enable signals are ENABLE JUMP, EN­
ABLE JUMP La (JUMP microinstruction only), and ENABLE IR ROM (DECODE micro­
instruction only). 

4. Jump to Subroutine (JSR) - Actually a jump, with the jump enable levels selecting the next mi­
croaddress all or in part from the current microinstruction; but PUSH p.STACK is also asserted to 
push the contents of the micro-PC (transmitted on the micro-PC bus by EN p.PC) onto the sub­
routine stack. In addition, ENABLE SP is asserted to allow the stack pointer to down-count to a 
new top-of-stack address. 
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S. Return - ENABLE RTS causes the contents of the subroutine stack's top-of-stack address to be 
transmitted on the micro-PC bus. The unmodified contents then furnish the next (return) micro­
address. ENABLE SP is also asserted to pop the stack; that is, up-count the stack pointer to the 
previous top-of-stack address. 

6. Return + 1 - Same as a return function, except INCR CIN is also asserted to increment the 
return address by one. 

7. Loop - Same as a return function except ENABLE SP is not asserted, resulting in no change to 
the stack pointer. 

8. Pop - Essentially a NOP (or a skip in one case), but ENABLE SP is asserted in addition to EN 
~PC to up-count the stack pointer, thus discarding the top location on the stack. 

NOTE 
Only the low-order 11 bits of microaddress are in­
cremented during a skip or return + 1 function. 
This effectively divides the microprogram in control 
store into 2K sections (pages); that is, even though 
the microprogram can jump or no-op to another sec­
tion, it cannot move to another section by means of a 
skip or return + 1 function. 

4.4.5 Skip (Or No-Skip) Operations 
Skip operations provide for checking the various status bits in the machine. With one exception, skip 
operations are specified by the SCTL field of the current microinstruction, which can be any micro­
instruction but a JUMP or DECODE. (The exception is JCTL = E, which specifies a SKIP on IB 
VALID, and is used during instruction-stream decoding by the DECODE microinstruction.) Timing for 
a skip operation is shown in Figure 4-9. 

As discussed in Paragraph 4.4.4, once a microinstruction specifying a skip is loaded as the current mi­
croinstruction, it invokes either a skip function (unconditionally or when the specified skip condition is 
met) or a NOP (skip condition not met). In both cases, microsequencer control output EN ~PC is as­
serted to transmit the micro-PC contents (the microaddress of the current microinstruction + 1) on the 
micro-PC bus. 

With no jump enable levels asserted, the four MSBs of microaddress (BUS ~PC D (14:11» are gated 
directly through the NAD multiplexers to the corresponding NAD lines. However, the 11 LSBs of mi­
croaddress (BUS ~PC D (10:00» are passed through the incrementing logic (two parallel-connected 
adder circuits), between the micro-PC and NAD buses before being gated to the NAD lines via the 
NAD multiplexers. 

If the specified skip condition is met (e.g., ALU N = 0, STATE 0 = 1, etc.) or if an unconditional 
SKIP is specified (SCTL = IE), INCR CIN asserts the carry-in input to the incrementing logic, add­
ing one to the 11 LSBs of microaddress. The incremented value then becomes the skip address (the 
microaddress of the current microinstruction + 2) presented to control store. 

If a specified skip condition is not true, INCR CIN is not asserted, and the low-order 11 bits of micro­
address are gated through the incrementing logic unchanged. This results in a NOP function. (As 
stated previously, a NOP can be made to occur unconditionally by SCTL = IS.) Thus, a no-skip condi­
tion selects the next microinstruction in sequence. 
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Figure 4-9 Skip (Or No-Skip) Timing Diagram 

4.4.6 Jump (Or No-Jump) Operations 
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Jump operations, including the JSR, are specified by the JCTL field of the current microinstruction. 
The microinstruction can be either a JUMP or a DECODE. Timing is shown in Figure 4-10. 

As discussed in Paragraph 4.4.4, when the current microinstruction specifies a jump, either a jump or a 
no-op function results. The jump occurs when it is specified as unconditional or when a jump condition 
is met. The no-op occurs when a jump condition is not met. 

In both cases, EN /-LPC is asserted by the microsequencer control, placing the micro-PC contents on the 
micro-PC bus. This provides for loading the subroutine stack with a return address if the jump specified 
is a JSR. It also provides for executing the NOP when the jump condition is not met. The micro-PC 
contents are gated through the incrementing logic (unchanged) and NAD multiplexers to select the 
next microinstruction in sequence, just as happens when a skip condition is not met. 
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When the jump is unconditional (JCTL = 4 or C) or when the jump condition is met, two of three jump 
enable levels are asserted by the microsequencer control to deselect the micro-PC bus value at the 
NAD multiplexers, and select the next microaddress (also at the multiplexers) from the CSR and the 
CSR/OS MUX or mapping ROMs. The CSR bits are the current microinstruction's jump address 
field. Selection is as shown in Figure 4-11. 

NOTE 
Although the micro-PC and the subroutine stack are 
15 bits wide and may address both user and basic 
control store, the jump address fields in the JUMP 
and DECODE provide for only 14 bits of micro­
address. As a result, flip-flop WCS PAGE (which 
asserts NAD 14) is used as the high-order jump ad­
dress bit at the input to the NAD multiplexers. The 
flip-flop is set before changing to user control store 
and while executing a microprogram in user control 
store. It is cleared before changing to basic control 
store and while executing a microprogram in basic 
control store. WCS PAGE is set and cleared by the 
MISC microinstruction. 

One jump enable signal, ENABLE JUMP, is always asserted to select WCS PAGE and CSR (17:12) 
as the seven MSBs of jump address (NAD (14:08»). Another enable, ENABLE JUMP La, is asserted 
for a JUMP microinstruction only. It enables the CSR/OS MUX to drive the NAD bus which selects 
CSR 08:04, or CSR (08:04) OR'd with as (4:0), as the low-order portion of the jump address (NAD 
(04:00) ). 

NAD LINES 

14 13 05 04 00 

JUMP (CSR 18 = 0)1 ... ~_f~ ..... I _____ C_SR_<_17_:0_9_> ____ ....JI,--_c...:..;7~;";,i __ ~8...;;,~0",,x~_>_--II 

14 13 05 04 00 

JUMP (CSR 18 = 1) WpACGS CSR <17:09> CSR<08:04> + OS<4:0> 
~~ ___________ ~_~(O;";,S __ M...;;,U",,X)~~ 

14 13 08 07 00 

DECODE (CSR 04 = 0) l~f~1 CSR<17:12> SPEC DECODE 

14 13 08 07 00 

DECODE (CSR 04 = 1) l~f~1 CSR<17:12> OP CODE DECODE 
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Figure 4-11 Jump Address Selection 
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The ORing of the CSR and as bits occurs in the CSR/OS MUX when CSR 18 (the select as bit) is 
equal to one in the JUMP microinstruction. This hardware feature allows multiple microprogram 
branch addresses to be generated, depending on the as contents (e.g., register addresses, sign bits, 
etc.). The bits are OR'd to facilitate the masking of unused data; that is, a set bit in the micro­
instruction's jump field effectively masks the corresponding as bit. 

The remaining jump enable level, ENABLE IR ROM, is asserted for a DECODE microinstruction 
only. It enables either the SPEC or OPCODE dispatch ROMs to drive the NAD bus and provide the 
eight LSBs of jump address (NAD (07:00»). Thus, multiple branch addresses may be generated in the 
microprogram when decoding the current system-level instruction. The ROM selected depends on CSR 
(04) (the OPC/SPEC bit) in the DECODE microinstruction. CSR (04) = 1 selects the OPCODE 
ROM; CSR (04) = 0 selects the SPEC ROM. 

4.4.7 Subroutine Jumps and Returns 
A jump to subroutine (JSR) is like any other jump in that it can be unconditional (JCTL = C) or 
conditional (JCTL = D). Also, when a jump function is invoked, jump enables are asserted, and a jump 
address is selected for the JUMP and DECODE microinstructions (as described in Paragraph 4.4.6 and 
shown in Figures 4-10 and 4-11). Similarly, a Nap occurs and operation is described in Paragraph 4.4.6 
and shown in Figure 4-9 when the single jump condition (IB VALID) is not met. 

The difference between a JSR and other jump functions is that the jump address is the microaddress of 
a subroutine in the microprogram. Thus, the micro-PC contents must be saved on the subroutine stack 
for a subsequent return to the current level of microprocessing. JSR timing is shown in the first part of 
Figure 4-12. 

WCSE ClK CSR H~~·======_M_IC_R_OC_Y_C_lE _____ -.;LJ-~I"'·~~_-_-_-~_M_I_CR_O_C_YC_l_E_....,d-
I 

CSR REGISTER JSR (CS 03 0) 
(WCSH CSR <23:00>H _~~ ____ ---.;.;;.......;~R....:..:...=....:.:.... __ ~i"'I--!~~:"':"';;';';;';"'=;"';;':;''''';':' __ ~<1..I 

DAPJ ENABLE SP l 

NEW TOP OF STACK ADRS 

DAPB CLOCK REGS H 

WRITE RTSI 

JUMP ENABLES I 
JUMP I1ADRS -+NAD LINES 

RTS -+I1PC BUS 0 

___ .....l-IN~..£!.~ ~ RETURN + 1 
DAPJ INCR CIN H INC -+I1PC BUS 

NAD LINES 
DAP J/K NAD <14:00> l ~",-__ ....:.J_UM_P....:I1_A..:.D.;;..D R.....;E;.;..SS:....-__ -=-....:.R..:.ET.:....:U;.;..R....:.N.....;(O;.;..R:....;.R;..:;E.;...TU..:.R....:N_+..:.1:....:) I1:...;A.....;D;.;..R..:.S---t<:;Ll. 
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Figure 4-12 JSR/Return Timing Diagram 
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The microsequencer control outputs which control stack operation during a JSR are PUSH J.LST ACK 
and ENABLE SP. The PUSH J.LSTACK signal asserts the stack's write enable inputs, causing the mi­
cro-PC contents (transmitted on the micro-PC bus by J.LEN PC) to be loaded by the leading edge of 
CLOCK REGS. The ENABLE SP signal (also asserted during a return) then allows the stack pointer 
counter to be changed to the new top-of-stack address by the trailing edge of CLOCK REGS. For a 
JSR, CSR (03) is equal to zero, which causes the counter to be down-counted. 

As explained in Paragraph 4.4.2, because the stack pointer is not down-counted to the new top-of-stack 
address until after the stack write, the stack address gates between the counter and the stack force a 
preliminary down-count during the write operation. Again, CSR 03 is the controlling signal; that is, 
CSR (03) = 0 conditions the address gates to temporarily change the value of the counter outputs, just 
as if the counter had actually been down-counted before. 

Whereas JSRs are specified by the JCTL field of a JUMP or DECODE microinstruction, a return 
from the execution of a subroutine is specified by the SCTL field of any microinstruction other than a 
JUMP or DECODE. Returns are either to the address saved on the stack by the last JSR (the micro­
address of the JSR + 1) or to that address incremented by one (the microaddress of the JSR + 2). 
Timing is shown in the lower part of Figure 4-12. 

An unconditional return to the microaddress held in the top-of-stack is specified by SCTL = 14. The 
microsequencer control asserts ENABLE RTS, which transmits the top-of-stack contents onto the mi­
cro-PC bus to give the next microaddress. Also, as for a JSR, the microsequencer control asserts EN­
ABLE SP to allow the stack pointer to be changed to a new value at the end of the microcyc1e. For a 
return, however, CSR (03) is equal to one and the counter is up-counted to the previous top-of-stack 
address. 

A return to the top-of-stack contents + 1 (a return + 1 function) is the same as a return function, 
except that INCR CIN is also asserted by the microsequencer control. Like a skip function, the micro­
PC bus value (the unmodified top-of-stack contents in this case) is incremented by the adders between 
the micro-PC and NAD buses to give the next microaddress. The return + 1 function may be uncon­
ditional (SCTL = 16) or conditional (SCTL = 10). If the single return + 1 condition (ERR SUM = 
0) is not met, ENABLE RTS is not asserted. EN J.LPC and INCR CIN are asserted, however, to cause a 
standard skip function. The next microaddress will then be the micro-PC contents + 1. 

4.4.8 Iteration Control (Loops and Pops) 
The microsequencer provides a loop control feature for microinstructions (other than the JUMP and 
DECODE) that allows a single microinstruction to give an automatic jump to a loop address, following 
the test of certain machine status bits. Without this feature, two microinstructions (the test micro­
instruction followed by a "do-nothing" JUMP) would be necessary to perform the same function. The 
status bits tested are ALU Z = 0 (SCTL = 11), ALU C = 1 (SCTL = 13), and INTERR REQ = 0 
AND ACC SYNC = 0 (SCTL = 17). 

The loop control feature is implemented by holding the loop address on the top of the subroutine stack. 
The loop address is loaded on the stack by a JSR (to the loop address) in the control store location 
immediately preceding the loop address. A return function will then cause a jump to the loop address, 
provided the stack pointer remains at (or is at) the associated top-of-stack address. Thus, a loop is a 
return without the stack pointer being popped (ENABLE RTS = 1, ENABLE SP = 0). 

NOTE 
Because the only requirement of the iteration control 
feature is that the stack pointer point to the stack 
location holding the loop address when the loop is 
invoked, there may be subroutine calls and/or rou­
tines using this feature inside the loop. 
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The loop control feature is disabled by popping the associated top-of-stack address. This may be done 
on command (SCTL = 12) or automatically when the test conditions for jumping to the loop address 
are not met; for example, if ALU Z = 1 (SCTL = 11) or if ALU C = 0 (SCTL = 13), the micro­
sequencer control asserts ENABLE SP and EN ,uPC. (The unconditional pop, SCTL = 12, asserts the 
same two signals.) With CSR 03 = 1, ENABLE SP up-counts (pops) the stack pointer, and (as for a 
NOP) EN ,uPC selects the micro-PC contents as the next microaddress taking the microprogram out of 
the loop. 

When SCTL = 17, and either or both of the two test conditions for maintaining the loop are not met, 
operation differs depending on the status bit that has changed. If ACC SYNC = 1, the stack is popped 
(ENABLE SP = 1), and INCR CIN is asserted in addition to EN ,u PC to cause a skip in the micro­
program when exiting from the loop. If ACC SYNC still equals zero but a processor interrupt request 
has been made (lNTERR REQ = 1), the stack is not popped. Only EN ,uPC is asserted to cause a 
NOP and select the next microinstruction for the exit. Operation of the SCTL = 17 loop function 
provides for efficient handling of interrupts while waiting (looping) on data from the FP A. 
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5.1 INTRODUCTION 

CHAPTER 5 
INSTRUCTION PROCESSING HARDWARE 

The instruction processing hardware consists of a 32-bit prefetch register, an 8-bit opcode register, 
three mapping ROMs, and assorted control logic. A block diagram is shown in Figure 5-1. 

The prefetch register (PFR) holds the instructions read from memory (over the MC bus) and executed 
by the CPU. During instruction evaluation and execution, the instruction data (op code, specifier, etc.) 
is removed from the PFR one byte at a time and transmitted on the instruction buffer (lB) bus. From 
the lB bus, the instruction data may be stored and/or used to generate dispatch (displacement) address­
es for the microprogram. The manipulation of instruction data is done by the DECODE micro­
instruction. 

I nstruction data can be stored in one of two registers. Opcodes are stored in the opcode (OPC) register; 
specifiers and other instruction data are stored in the operand specifier (OS) register, which is part of 
the CPU's data path. 

Instruction data on the lB bus generates microprogram dispatch addresses by accessing the OPCODE 
and SPEC mapping ROMs. That is, the DECODE microinstruction controlling the operation supplies 
the high order part of a jump address, and the mapping ROM outputs (asserted on the micro­
sequencer's NAD bus) supply the low-order part of the jump address. The OPCODE ROM allows a 
dispatch on opcode; the SPEC ROM allows a dispatch on specifier information. Only one of these two 
ROMs is enabled during a DECODE. 

The OPC CLASS mapping ROM, actually a ROM/PAL configuration, is not used for dispatch pur­
poses. When accessed by the opcode, its outputs define the data type and condition code class for each 
instruction. The ROM/PAL also contains logic to test the PSL condition codes during branch instruc­
tions. 

The PC, which is maintained in a local store location in the CPUs data path, is closely associated with 
the instruction processing hardware. The PC contents are used as a memory address when loading the 
PFR with instruction data over the MC bus. The native (V AX) mode PC is kept in local store location 
10. The compatibility (PDP-II) mode PC is kept in local store location 47. 
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5.2 INSTRUCTION PREFETCH REGISTER (PFR) 
The 32-bit PFR is an instruction buffer that holds four bytes of prefetched longword-aligned instruction 
data from memory. Because the CPU can operate in either native or compatibility mode, the instruc­
tion data loaded from memory into the PFR has two basic formats. 

In native mode, the variable length instructions are stored in contiguous byte positions in memory and 
are aligned on byte boundaries. The contiguous bytes of instruction data are referred to as the instruc­
tion stream. In compatibility mode, the PDP-II instructions are 16 bits, occupy two contiguous bytes, 
and are aligned on word boundaries. Basic formats are shown in Figure 5-2. 

NATIVE MODE 

OPERAND 
SPECIFIER N 

IMMEDIATE OPERAND SPECIFIER 
EXTENSION 

OPERAND 
SPECIFIER 1 DATA SPECIFIER 2 

(1 OR 2 BYTES) (1,2.4, or B BYTES) (1 OR 2 BYTES) (1 TO 6 BYTES) (1 OR 2 BYTES) 

COMPATABILITY MODE 

PDP-11 INSTRUCTIONS 
(2 BYTES) 

INSTRUCTIONS ~ 06 05 ~ 
~I~g~~ OPE RAN D ';':1 ::.......--..".~""~C,..."~..".~S.,,..E)--~;;,I=---:~:-::E B""S~:-TS-) ----:;';;1 

DOUBLE OPERAND 
GROUP 

15 
CONDITION CODE 

10 I 
0 OPERATORS 

15 
REGISTER SOURCE I 
OR DESTINATION I 

15 
SUBROUTINE 

10 I 
0 

RETURN 

15 

BRANCH 
1 

06 05 00 
SRC DEST 
(6 BITS) (6 BITS) 

05 04 03 00 

090B 0605 00 

I REG I 
(3 BITS) 

0 2 

DB 07 

OP CODE I (B BITS) 

SRCIDEST 
(6 BITS) 

0302 00 

0 I ~3E;ITS) I 
00 

OFFSET 
(8 BITS) 

Figure 5-2 Basic Instruction Formats (Native and 
Compatibility Modes) 

5.2.1 Loading the PFR 

OPCODE 
(1 OR 2 BYTES) 
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Instruction-stream data may be prefetched from memory and loaded in the PFR in two different ways. 
The PFR is loaded automatically in native mode when a DECODE microinstruction removes the last 
byte of prefetched instruction data contained in the register. The PFR may also be loaded on command 
by the MEM REQ microinstruction. The ability to prefetch and store instruction data greatly enhances 
overall operation of the CPU. 

NOTE 
The PFR cannot be loaded automatically when the 
CPU is operating in compatibility mode. 
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The automatic prefetch of instruction data in native mode occurs when a DECODE has the IB REQ bit 
(CSR(08» asserted (which causes a byte to be removed from the PFR and transmitted on the IB bus), 
and the two low-order bits of the PC are equal to three. It is the value of the PC, which is incremented 
automatically by every IB REQ and which points to the current (and in this case the last) byte of pre­
fetched instruction data being removed from the PFR, that initiates the refill. 

A memory request is made by CPU hardware and the next longword (the next contiguous four bytes) of 
instruction-stream data is loaded into the register. In order to address the next longword of instruction 
data, the memory controller (MCT) must increment the memory address (the current value of the PC) 
supplied by the CPU. 

The PFR is loaded on command by a MEM REQ microinstruction specifying a READ WITH RCHK 
IFILL operation (CSR (18:16, 8:7) = OE). Again, a memory request is made with the PC supplying 
the memory address, and another longword of instruction data is loaded in the PFR. Because all bytes 
of instruction data in the PFR have not necessarily been processed by the CPU, this operation is called 
a "flush and load." It is initiated in native mode when there is a jump in instruction-stream processing. 
It is the only way to fill the PFR in compatibility mode. 

NOTE 
In some cases in native mode, prefetched instruction 
data in the PFR is not strictly byte oriented (e.g., 
long literals, word or long displacement, etc.). In 
these cases, the data may be fetched by the CPU by 
means of a normal memory request (not a READ 
WITH RCHK IFILL) and processed in the data 
path independent of the instruction processing hard­
ware. This requires that the PC be updated manually 
after the data is processed, and that a flush and load 
be initiated to refill the PFR. 

5.2.1.1 Instruction Data in the PFR - In both types of PFR load operations, the PFR is always loaded 
with an aligned long word of instruction data. That is, if an opcode is in byte 0 of a memory longword, it 
is loaded into byte 0 of the PFR. This is illustrated in Figure 5-3, which shows native mode instruction 
data in memory, and the same data as it is loaded into the PFR. 

MEMORY 

BYTE 3 2 0 ADDRESS 

PFRI CO 52 51 I DO I 1000 DO OPCODE (MOVL) 

31 2423 1615 OB07 00 
1001 51 OPERAND SPECIFIER 1 

1002 52 OPERAND SPECIFIER 2 

1003 CO OPCODE (ADD L 2) 

1004 82 OPERAND SPECI FI ER 1 

1005 53 OPERAND SPECIFIER 2 

1006 

1007 

TK-5441 

Figure 5-3 Instruction Data in Memory and PFR 
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To ensure that an aligned longword reference occurs during the flush and load operation, the MCT 
ignores the two low-order bits of memory address from the CPU. For example, if a native mode instruc­
tion changes the PC to 1003, the MCT uses address 1000 during the accompanying flush and load 
operation (which is part of instruction execution), and the PFR is loaded as shown in Figure 5-3. 

During an automatic refill of the PFR, no action other than the normal incrementing of the memory 
address is necessary to ensure an aligned long word reference. This is because the two low-order bits of 
the PC, and thus the pre-incremented memory address, are always equal to three. As a result, the nor­
mal increment clears the two low-order bits of address to give an automatic aligned longword fetch. 

5.2.1.2 Detailed Operation for the PFR Load - Timing for the PFR load operation is given in Figure 5-
4. When a PFR load is initiated by either a DECODE or MEM REQ microinstruction, the CPU first 
asserts MEMORY REQ on the MC bus. This occurs at the beginning of the microcycle. Shortly after­
wards, the CPU transmits the memory address (the PC) on the MC bus data lines. 

lj DECODE.IB REG'PC~3 
OR I- MEM REO IBFILL 

ADDRESS 
OUT 

BUS MC D<31 :OO>H 

DAPA MEMORY REO H 

MCTE CPU GRANT L 

DAPF DATA RCVD H---~ 

MCTK MEMORY BUSY 

MCTK LOAD IB H I 

LOAD IB & INSTRUCTION 
DATA FROM MEMORY 
MAY BE ASSERTED ANY 
CPU CLOCK PHASE 

I "CO COAO ,,,m," " I.(~~-= __ ~-'-~~ 
I PFR REGISTER 

(IB LOADED L) 

DAPF IB VALID L~ 
DAPF STALL ON IB H~ r-----------/-t 

TK-5454 

Figure 5-4 PFR Load Operation Timing Diagram 
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After receiving MEMORY REQ, the MCT asserts CPU GRANT on the MC bus when it is ready to 
accept the memory address and begin the memory reference. If CPU GRANT is not asserted immedi­
ately (during clock phase 1), the CPU clock is stalled. (CLOCK STALL is asserted in the CPU clock 
generator.) A stall can occur if the MCT is performing a UNIBUS operation. 

Once CPU GRANT is asserted by the MCT (releasing a clock stall, if any), the CPU completes execu­
tion of the DECODE or MEM REQ microinstruction initiating the memory reference. IB VALID, a 
control flip-flop which (when set) indicates the PFR contains unprocessed instruction data, is cleared at 
this time. The IB VALID logic is shown in Figure 5-5. 

LOAD IB ---,---------\ 

PC EQUALS 3 

DECODE INSTR 

CSR08-~-----'" 

CPU P2----,r---.._/ 

MREQ IBFILL-----,._/ 
(FLUSH"LOAD) 

o 

o 

IB VALID 

o 

BASIC CLOCK 

Figure 5-5 IB VALID Control Logic 

.:>O-+-(lB LOADED) 

IB VALID 

~--L.-STALL ON IB 

PAL IDAPF) 

TK-5442 

Following the DECODE or MEM REQ that starts the memory reference, the CPU is free to execute 
microinstructions (not DECODEs) during the time that the instruction data is being fetched from 
memory. (Two microcycles may be executed before the instruction data can be fetched from memory 
and transmitted over the MC bus to the CPU.) When the data is valid on the MC bus data lines, the 
MCT asserts LOAD lB. 
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When received by the CPU, LOAD IB asserts the PFR clock (LOAD PREFETCH). This signal causes 
the 32-bits of instruction data to be strobed from the MC bus data lines directly into the PFR. IB 
VALID is also set at the end of the current microcycle to indicate that the PFR contains unprocessed 
instruction data. DECODE microinstructions may now be executed to remove and process the informa­
tion. 

As stated above, there is a two-microcycle delay before the PFR can be loaded from memory and a 
DECODE microinstruction executed to process the first byte of instruction data. However, this as­
sumes no extra delay in retrieving the data due to correctable memory errors, memory refresh cycles, 
etc. 

If a DECODE attempts to remove a byte from the PFR before the PFR IS filled, the CPU clock is 
stalled. That is, with the memory still busy fetching the instruction data (MEMORY BUSY = 1), 
STALL ON IB will be set because IB VALID is cleared (refer to Figure 5-5), and ENABLE IB 
STALL will be asserted because data is being removed from the PFR. (ENABLE IB STALL is dis­
cussed in Paragraph 5.2.2.) These signals, together with DECODE INSTR = 1, assert CLOCK 
STALL in the CPU clock generator to delay execution of the OECODE microinstruction until the PFR 
is filled (MEMORY BUSY = 0). 

If the PFR cannot be filled due to a hard error (NXM, uncorrectable read error, etc.), the MCT ne­
gates MEMORY BUSY, preventing or releasing a clock stall; but LOAD IB is not asserted and IB 
VALID stays cleared. Thus, DECODE microinstructions removing data from the PFR specify a jump 
(or skip) that is conditional on IB VALID. Then, if IB VALID is not set, a dispatch to the memory 
management microcode is made to recover from the error. 

S.l.2 Unloading the PFR 
The instruction data in the PFR is unloaded and processed by the DECODE microinstruction. In native 
mode, the DECODE's IB REQ bit (CSR (08=1» causes a single byte to be removed and transmitted 
on the 8-bit IB bus. If IB REQ is not asserted, no byte is removed and the op code register drives the IB 
bus. In compatibility mode, the unload is not conditional. A DECODE always removes a byte from the 
PFR. 

Whenever the PFR is to be unloaded, CSR (08) = 1 or COMPAT MODE = 1 assert ENABLE IB 
STALL. This signal, in turn, allows one of four enable levels (ENABLE IB3 through ENABLE IBO) to 
be generated, causing the corresponding PFR byte to be transmitted on the IB bus. (ENABLE IB3 
transmits byte 3 on the bus, ENABLE IB2 transmits byte 2, etc.) The single enable that is asserted 
depends mainly on the two low-order bits of the PC. This value is stored in control flip-flops, which in 
turn drive a decoder to generate the enables, as shown in Figure 5-6. 

The flip-flops storing the two low-order bits of the PC are loaded by all MEM REQ microinstructions 
initiating a flush and load of the PFR (MREQ IBFILL = 1), and by all DECODE microinstructions in 
native mode removing a byte from the PFR (CSR (08) = 1). In both cases, the value of the PC + 1 is 
asserted on the Y bus (as explained in Paragraph 5.7), and the two low-order bus bits (BUS Y 0 
(01 :00» are loaded into the flip-flops at the end of the microcycle. The incremented PC is loaded at 
the end of the DECODE so that during the next DECODE, the value held in the flip-flops will be that 
of the current pc. 
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MREQ 18FILL---.---r-......... 

BUS Y D01---i----r---i 
CPU P2 ---i--+---.--i 

DECODE INSTR:--r--+--+-t 
CSR 08-+--r--+-----11---t._--" 

BUS Y D01-+-+--~+-t 

COMPATMODE 

x 

Y 

BASIC CLOCK 

o 

DECODER 

...-----12 

(PC1) 

"'--..L...-PC EQUALS 3 

PAL (DAPF) 

ENABLE IBl 

ENABLE IBO 

ENABLE IB3 

ENABLE IB2 

ENABLE IB STALL 

TK·5437 

Figure 5-6 PFR Control Logic 

In native mode, the ENABLE IB level asserted (and thus the byte removed from the PFR) corresponds 
directly to the PC value held in the flip-flops. This is also true in compatibility mode, but provision is 
made to select byte 1 (when the PC equals 0) and byte 3 (when the PC equals 2) if the SEL CM HI 
BYTE control bit (CSR (07)) in the DECODE is asserted. Selection is shown below. 

Control Flip-Flops 
PCI PCO CSR07 

o 
o 
o 
1 
1 
1 

o 
o 
1 
o 
o 
1 

o 
1 (Com pat. mode only) 

o 
1 (Compat. mode only) 
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PFR Enable 

ENABLE IB 0 
ENABLE IB 1 
ENABLE IB 1 
ENABLE IB 2 
ENABLE IB 3 
ENABLE IB 3 



As the PC is incremented by successive DECODEs in native mode (i.e., CSR (07) always equal to 
zero), the corresponding PFR enables that are generated remove successive bytes from the PFR. That 
is, after byte 0 is removed, byte 1 is removed, followed by byte 2, etc. When byte 3 is removed, the 
current PC being equal to 3, control flip-flop PC EQUALS 3 (Figure 5-6) initiates an automatic refill 
of the PFR. 

In compatibility mode, the instruction data is not byte oriented, and the PC has values equal to zero or 
two (instructions aligned on word boundaries). It is for this reason that the DECODE's SEL CM HI 
BYTE is provided, to remove and process bytes 1 and 3 of the PDP-II instruction word. 

5.3 OPCODE REGISTER (OPe) 
The 8-bit OPC is loaded from the IB bus when an opcode is removed from the PFR. The load occurs 
during a class decode operation when the DECODE microinstruction specifies a PFR unload (EN­
ABLE IB STALL = 1), the DECODE's OPC/SPEC bit (CRS (04») is asserted, and the DECODE's 
IFUNC field (CSR (11 :09») is equal to one or three. (The class decode and other types of decode 
operations are discussed in Paragraph 5.7.) The OPC holds the opcode throughout the execution of an 
instruction. 

Although loaded from the IB bus, the opcode register may also drive the IB bus. It then provides a 
dispatch on opcode by addressing the IRD ROM. (This is called an opcode decode operation.) The 
opcode register drives the IB bus whenever ENABLE IB STALL = 0; that is, whenever a DECODE is 
not unloading the PFR. 

5.4 MAPPING ROMS 
There are three mapping ROMs used in the CPU's instruction processing hardware. Two of them, the 
lK X 8-bit OPCODE ROM and the 512 X 8-bit SPEC ROM, are used for microprogram dispatch 
purposes. The 512 X 4-bit OPC CLASS ROM (plus PAL) is used to generate data type and condition 
code class codes for each instruction. It also contains logic to implement the execution of branch on 
condition instructions. 

During a DECODE microinstruction, one of the two dispatch ROMs is selected to drive the micro­
sequencer's NAD bus (07:00). This provides the eight low-order bits of the DECODE's jump address 
when a jump or JSR is specified by the JCTL field. CSR (17:12), the DECODE's jump address field, 
provides the six high-order address bits. 

By supplying part of the jump address, the OPCODE ROM is used to dispatch on an instruction's 
opcode. Similarly, the SPEC ROM is used to dispatch on an instruction's operand specifiers. This in­
cludes dispatches in compatibility mode on a PDP-II instruction's opcode and destination fields. 

With reference to the block diagram (Figure 5-1), the dispatch ROM that is selected to drive the NAD 
bus depends on the DECODE's OPC/SPEC bit (CSR (04»). Microsequencer control output EN­
ABLE I R ROM will be asserted when a jump is to occur, and this signal together with CSR (04) = 1 
selects the OPCODE ROM. If ENABLE IR ROM is asserted and CSR (04) = 0, the SPEC ROM is 
selected. 

In one special case, the SPEC ROM may be selected even though the OPCODE ROM has been speci­
fied by the DECODE. When the DECODE's IFUNC field equals three (specifying a native mode class 
decode), and if an interrupt request of a priority level greater than the current CPU interrupt priority 
level is pending, the SPEC ROM is selected to force an 8-bit dispatch vector of all ones (FF) on the 
NAD bus. This provides an automatic dispatch to interrupt handler microcode after executing one in­
struction, and before starting execution of the next. 
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This function may be disabled by MASK INTS, a signal set by a MISC microinstruction immediately 
preceding the DECODE. MASK INTS is set by the microprogram for a few special cases only; for 
example, during T-bit trap handling and certain memory management functions. 

Both of the dispatch mapping ROMs are addressed by the instruction data on the IB bus and by the 
DECODE's IFUNC control bits. The OPC CLASS ROM/PAL is addressed by the IB bus and the 
COMPAT MODE control bit. Mapping ROM addressing is shown in Figure 5-7. 

DECODE I'INSTRUCTION 

22 

~9~ m03 
00 

CSR 10 0 0 JCTL 
1 J 

00 
BUS IB<07:00> 

(8) 

3 

08 0605 
SPEC ROM CSR<11:09> BUS IB<07:03> 
ADDRESS (3) (5) 

08 07 00 
OPC CLASS ROM/PAL 17 I BUS IB <07:00> 
ADDRESS ,,"~....:.(....:.1)....I..... ______ ....;('-='8)"--______ ...... 

LCOMPAT MODE 

TK-5465 

Figure 5-7 Mapping ROM Addressing 

The IFUNC field provides the most significant address bits for the two dispatch ROMs. This structures 
the contents of the dispatch ROMs (Figures 5-8 and 5-9). In the lK-word OPCODE ROM, the two 
low-order bits of the IFUNC field are used to partition the contents into four 256-word blocks. In the 
512-word SPEC ROM, all three IFUNC bits are used to partition the contents into eight 64-word 
blocks. 

SPEC ROM (512 X 8 BITS) 

IFUNC = 0 000 
SPEC 

03F 

OP CODE ROM (1 K X 8 BITS) 
IFUNC = 1 040 

FLOAT 

IFUNC = 0 000 
07F 

080 
ASRC 

CM.EXEC 
OFF 

IFUNC = 2 

IFUNC=1 100 
OBF 

CM.IRD IFUNC = 3 OCO 
INTERRUPT TRAP BLOCK 

OFF 
1FF 

200 IFUNC = 2 
VAX.EXEC 100 

VSRC 
13F 

2FF 

300 IFUNC=3 
VAX.IRD IFUNC = 5 140 

3FF ESRC 
17F 

TK·5444 IFUNC = 6 180 
CM.DST 

18F 
Figure 5-8 OPCODE ROM IFUNC = 7 1CO 

CM.SINGLE 
1FF 

TK-5443 

Figure 5-9 SPEC ROM 
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During instruction processing, the IFUNC field (which specifies the type of decode operation) selects a 
block of addresses in a dispatch ROM, and the opcode or specifier information on the IB bus selects a 
word in that block. For example, during a class decode in native mode, IFUNC = 3 selects a block of 
addresses in the OP CODE ROM from 300 to 3FF, labeled YAX.IRD in Figure 5-8. 

The opcode on the IB bus then selects a word in the Y AX.IRD block that dispatches the microprogram 
either to class'code that is specific to that instruction (to fetch the necessary operands before instruc­
tion execution), or directly to execution code for the fast instructions (MaY, CMP, etc.). The contents 
of the dispatch ROMs are given in the CPU Microcode Listing. The types of decode operations corre­
sponding to the various IFUNC field values are discussed in Paragraph 5.7. 

The OPC CLASS ROM/PAL configuration is shown in Figure 5-10. The ROM, which is addressed by 
the opcode and COMPAT MODE during a class decode, outputs two 2-bit codes that define the impli­
cit data type of the first operand, and the condition code class for each instruction. COMPAT MODE, 
the most significant address bit, partitions the 512-word ROM into two 256-word blocks. One block is 
dedicated for native mode class decodes; one for compatibility mode class decodes. 

OPC CLASS ROM (512 x 4 BITS) 

COMPAT MOOE=O 000 

VAX MODE 

OFF 
COM PAT MODE = 1 100 

CM 

1FF 

COMPAT MODE 

DTCLASS 1 

ROM 
DT CLASS 0 

f--

IB<07:00> -~ f- ,----
(CCCLASS 1) 

1 

V ~ 
( V .-- 0 

BRANCH '---
CLASS .---

(CC CLASS 0) 
1 

f- 0 

'---
'- f-. BRANCH ..----

COND 
TEST I-- f-- 1 

LOGIC 
PSLN,Z,V,C 

f-- O~, :== 1)[>, 
IBOO 1 

f- 0 
L.....-

PAL(DAPF) 

CLOCKREG~~ 
IRDSTATE ..........J 

Figure 5-10 OPC CLASS ROM/PAL 
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OPC 
TYPE 1 

OPC 
TYPE 0 

PRETEST) 

BRANCH 
FALSE 

(IBO SAVE) 
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Two of the four ROM outputs, DT CLASS 1 and DT class 0, specify the data type as follows. 

DTCLASS 
1 0 Data Type 

0 0 Byte 
0 1 Word 
1 0 (Not used) 
1 1 Longword 

The DT CLASS code is stored in the size register (in the CPU's data path control) for use during 
execution of the instruction. The ROM outputs specifying condition code (CC) class are stored in flip­
flops within the ROM/PAL itself. The PAL outputs, OPC TYPE 1 and OPC type 0, specify the CC 
class code as follows. 

OPCTYPE 
1 0 

o 
o 
1 
1 

o 
1 
o 
1 

CC Class 

Arithmetic ADD (copy N,Z,V,C) 
Arithmetic SUB (copy N,Z,V /invert C) 
CMP (XOR N with V /c1ear V /invert C) 
Logical (clear V /load Z,N/keep previous C) 

In addition to generating data type and CC class codes, the OPC CLASS ROM/PAL contains logic to 
test the PSL CCs during branch on condition (B) instructions. When a branch on condition op code is 
addressing the ROM during a class decode, three of the four ROM outputs (DT CLASS 0 and the two 
CC class outputs) specify the branch conditions to be tested. These are as follows. 

DATA 
TYPE 0 

o 
o 
o 
o 
1 
1 
1 
1 

CCCLASS 
1 0 

o 
o 
1 
1 
o 
o 
1 
1 

o 
1 
o 
1 
o 
1 
o 
1 

Branch Condition Tested 

Z 
C OKZ (less than or equal, unsigned) 
V 
C 
N OR Z (less than or equal) 
(N XOR V) OR Z (less than or equal, compatibility mode) 
N 
N XOR V (less than or equal, compatibility mode) 

PAL logic then tests the condition specified against the current state of the PSL CCs. To do this, the 
state of the specified CC bit (or logical combination of bits) is loaded into a PAL flip-flop (PRETEST) 
at the end of the microcycle. Also, the low-order bit of the op code is stored in a flip-flop (180 SAVE) 
at the end of the microcycle. The op code bit is stored because it implicitly specifies on which state of 
the branch condition the branch is to occur. For example, an opcode of 12 specifies a branch on Z = 0 
while an opcode of 13 specifies a branch on Z = 1. 

To complete the test, the outputs of the two flip-flops are XORcd to negate BRANCH FALSE when a 
branch condition has been met. BRANCH FALSE is a microsequencer jump or skip condition which 
may be testcd by the microcode. 
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5.5 REGISTER DESTINATION (GPR DEST) CONTROL BIT 
The GPR DEST control bit, a microsequencer skip and jump condition, is incorporated into the instruc­
tion processing hardware in order to speed execution of instructions specifying a GPR as an operand 
destination (i.e., a register mode address). 

With reference to Figure 5-11, GPR DEST is a flip-flop set at the end of the DECODE micro­
instruction when the DECODE's LD RDEST bit (CSR (05» is asserted, and provided REGISTER 
MODE is true. (GPR DEST is cleared otherwise.) REGISTER MODE will be true during a specifier 
decode operation when the instruction data specifies register mode addressing. 

OS cn l-----r--l 
iiiD5--.--+-; 
IB D3-t--+-l 

OS CTL l-t--.-+-l 
I B D7--f-+-+-; 

IBD4--+--; 

IBD6----; 
IBD4----; 

PAL(DAPH) 

RMODE A 

RMODE B 

CLOCK 
REGS 

a 

PAL(DAPF) 

REGISTER 
MODE 

.>o---+-GPR DEST 

PAL(DAPB) 

TK-5448 

Figure 5-11 GPR DEST Control Logic 

The instruction data specifying the address mode is sampled on the IB bus by RMODE A and B. Both 
of these signals will be true to assert REGISTER MODE when the specifier's address mode field is 
equal to five in native mode, or when the destination's address mode field is equal to zero in com­
patibility mode. One of the OS register control bits (OC CTL 1) is used to gate the IB bus data. During 
a specifier decode in native mode, OS CTL 1 = 0; in compatibility mode, OS CTL 1 = 1. 
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5.6 REGISTER BACKUP MASK FLAG 
In V AX-II /730 systems, it is required that all instructions which evaluate specifiers be restartable. 
The register backup mask flag, which is a microsequencer skip function, aids the microprogram in re­
starting the instruction. The RBKUP FLAG flip-flop is shown in Figure 5-12. 

SET 
RBKUP 

CLOCK REGS 

o 

RBKUP FLAG 

PALIDAPB) 

TK-5450 

Figure 5-12 RBKUP FLAG Control Logic 

RBKUP FLAG is set by a MISC microinstruction that has its function 1 field equal to seven. The 
microinstruction asserts SET RBKUP, which sets the flip-flop at the end of the microcycle. RBKUP 
FLAG is set by the microprogram the first time a bit in the register backup mask (2901 A working 
register 3) is set; that is, the first time a GPR is modified by the microprogram during execution of the 
instruction. (When a GPR is modified during specifier evaluation, the previous contents are stored in 
local store in case a restart is necessary, and a bit corresponding to that GPR is set in the low order 16-
bit portion of the register backup mask.) 

Following an instruction's execution, RBKUP FLAG is cleared, indicating the register backup mask is 
no longer valid. It is cleared by IRD STATE during the class decode operation for the next instruction. 

5.7 INSTRUCTION DECODE OPERATIONS 
The instruction decode operations performed in the CPU are executed by the DECODE mIcro­
instruction. A flow diagram for the DECODE is shown in Figure 5-13. 

Certain data path operations are performed by the DECODE no matter what control bits in the micro­
instruction are asserted. For example, the address of the native mode PC is forced in local store (ad­
dress = 10) and the local store latches are enabled to read the contents onto the D bus and, in turn, the 
MC bus. (This provides the memory address for an automatic refill of the PFR if the DECODE's IB 
REQ bit is asserted and the last PFR byte is being removed.) 

Also, the 2901 s are set up to increment the native mode PC asserted on the D bus and transmit the 
incremented value on the Y bus. (The new PC value may then be written into local store and the low­
order bits stored in flip-flops if IB REQ = 1.) The operations on the native mode PC are allowed to 
occur for any DECODE, even though the machine may be in compatibility mode, because IB REQ is 
equal to zero for all compatibility mode instruction decode operations. 

All other operations done by the DECODE depend on which control bits it asserts. The IFUNC field, 
together with the OPC/SPEC bit, provide the main control and determine the basic types of decode 
operations that are executed. The basic operations, and the control bits asserted for these operations, 
are listed in Tables 5-1 and 5-2. 
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CSR<22:19> = 0000 

PC = 3 

~ 
MAKE MEMORY 
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MEMORY REO = 1 
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ENABLE DPC 
TO DRIVE IB BUS 
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CLK·CPU P2 

CPU LEAVING ADRS­
OUT STATE AFTER IB 

FI LL REO 

DATA RCVD = 1 
(TO MCT) 

l 
CLocm. CLK 

T 
1-+IB VALID 

TK·5451 

LSWRT EN 

ENABLE 2901A'S TO 
INC D BUS AND STORE 
BCKUP PC (IF CSR 
18 = 0). ENABLE 
2901A OUTPUTS. 

DBUS(PC) + 1 
PC + 1 -+ Y BUS 
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CLOCK DP 
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TK-5436 

Figure 5-13 DECODE Microinstruction Flow Diagram 
(Sheet 1 of 2) 
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FROM SHEET 1 

CLOCK REGS 

T 
LOAD OPC, SIZE, CC 
CLASS. CLEAR RBKUP. 
TEST BRANCH CONDo 

IB BUS .... OPC 
OPCCLASS .... SIZE REG 
ROM/PAL <1 :0> 
OPCCLASS .... OPC TYPE 
ROM/PAL <1:0> 
0 .... RBKUP FLAG 
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ENABLE OP CODE 
ROM 

OP CODE 
ROM .... NAD BUS 

CLOCK REGS 

SET UP OS TO LOAD 
GPR ADRS FROM IB 
NEXT I'CYCLE. 

(1 .... CM IRD) 

NEXT I'CYCLE (NOT 
A DECODE) 

OS <5:2> .... OS <7:4> 
I B <2:0> .... OS <2:0> 

0"" OS 3 

YES 

ENABLE IR ROM 

ENABLE SPEC 
ROM 

SPEC ROM .... NAD BUS 

CSR 05 
(LD RDEST) 

IB .... OS 

YES 

COMPAT MODE 

0 .... OS3 (IF COMPAT 
MODE· CSR 05) 

Figure 5-\3 DECODE Microinstruction Flow Diagram 
(Sheet 2 of 2) 
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Vl 
I 

-..J 

Decode 
Operation 

Class (V;\X 
IRD) 

Specifier 

Opcode 

Get-Byte 

Decode 
Operation 

Class 
(eM IRD) 

Single 
Operand 

Destination 

No Operand 

BKUP PC 
(CSR<18» 

0 

BKlJP PC 
(CSR<18» 

Table 5-1 DECODE Control Bits for Native Mode Instruction Decodes 

SELCM OPC/ 
IBREQ HI BYTE SPEC LOAD OS 
(CRS<08» (CSR<07» (CSR<04» (CSR<06» 

0 0 

0 0 

0 0 0 

0 

Table 5-2 DECODE Control Bits for Compatibility Mode Instruction Decodes 

IB REQ 
(CRS<08» 

o 

o 

o 

o 

SELCM 
HI BYTE 
(CSR<07» 

o 

o 

o 

OPC/ 
SPEC 
(CSR<04» 

o 

o 

LOAD OS 
(CSR<06> ) 

LOAD 
RDEST 
(CSR<05» 

0 

0 

0 

LOAD 
RDEST 
(CSR<05» 

o 

o 

o 

IFUNC 
(CSR< 11:09» 

3 

0/1/2/4/5 

2 

IFUNC 
(CSR < 11 :09» 

7 

6 

o 



5.7.1 Class Decodes 
The class decode is the first instruction decode operation performed on a native mode or compatibility 
mode instruction. The DECODE microinstruction, a jump if IB VALID, removes the opcode from the 
PFR and uses it to address the OPCODE ROM and the OPC CLASS ROM/PAL. (The opcode is also 
loaded into the opcode register.) The OPCODE ROM then causes a dispatch to the appropriate class or 
execution flow for the instruction. Also, the OPC CLASS ROM/PAL supplies codes indicating the 
instruction's condition code class and the implicit data type for the first operand. 

With reference to the DECODE flow diagram (Figure 5-13), IB REQ (CSR (08» is asserted for a 
class decode in native mode to remove a byte (the opcode) from the PFR at the beginning of the micro­
cycle. Byte 0, 1, 2 or 3 may be removed, depending on the two low-order bits of the current Pc. 

IB REQ also updates the PC at the end of the microcycle by writing the PC value, now incremented 
and asserted on the Y bus, into local store. And, if the DECODE's BACKUP PC control bit is negated 
(CSR (18) = 0), the incremented PC is stored in a 2901 A working register location. Also, at this time, 
the low-order bits of the incremented PC are stored in the flip-flops that control PFR byte selection. 

In compatibility mode, IB REQ is always negated. However, a DECODE always removes a byte from 
the PFR in this machine mode. Without SEL CM HI BYTE asserted (CSR (07) = 0), byte 0 or byte 2 
would be removed from the PFR because 0 or 2 are the only values of the two low-order PC bits in 
compatibility mode. (PDP-II instructions are aligned on word boundaries, and the PC is not updated 
automatically when a byte is removed from the PFR.) During a class decode, however, SEL CM HI 
BYTE is asserted (CSR (07) = 1) to select either byte I or byte 3, which contains all or part of the 
opcode for most PDP-II instructions. 

The I FUNC field equals three for native mode class decodes. It is equal to one for compatibility mode 
class decodes. The OPC/SPEC bit is asserted (CSR (04) = I) in either mode. With the VAX or PDP-
11 opcode (or other data identifying the type of PDP-II instruction) removed from the PFR and as­
serted on the IB bus, OPC/SPEC = I normally selects the OPCODE ROM to provide part of the 
DECODE's jump address. The OPCODE ROM is addressed by the opcode and the IFUNC field to 
provide a dispatch address from the V AX.IRD or CM.IRD areas in the ROM (Figure 5-8). 

The OPCODE ROM is not always selected during a class decode. If an interrupt is to be serviced in 
native mode, the SPEC ROM is selected to cause a dispatch to interrupt handling microcode. As for 
the OPCODE ROM, the opcode and IFUNC field provide the SPEC ROM address. Consequently, 
IFUNC = 3 selects the ROM's interrupt trap block (Figure 5-9). Furthermore, because interrupt han­
dling is not dependent on the opcode (which selects a location within the interrupt trap block), allloca­
tions in the block contain the same dispatch address (FF). 

Whereas the OPCODE and SPEC dispatch ROMs are enabled only during a DECODE (by the 
OPC/SPEC bit and ENABLE IR ROM from the microsequencer), the ROM outputs from the OPC 
CLASS ROM/PAL are always asserted. However, the ROM outputs are not stored in flip-flops until 
the class decode operation; that is, when the opcode is addressing the ROM, and when OPC/SPEC = 

I and FUNC = I or FUNC = 3 asserts IRD STATE. The IRD STATE signal loads SIZE REG I and 
o and OPC TYPE I and 0 from ROM outputs at the end of the microcycle. IRD STATE also causes 
BRANCH FALSE to be asserted at this time if the opcode is for a branch on condition instruction, and 
the branch condition has not been met. 

Another flip-flop set by IRD STATE at the end of the microcycle (CM IRD) sets up the data path's 
OS register for a special function in compatibility mode. Ordinarily, the loading of the OS register from 
the IB bus is controlled by the DECODE's LOAD OS (CSR (06» and LD RDEST (CSR (05» con­
trol bits. Two control signals, OS CTL I and 0, are generated to perform the functions listed in Table 5-
3. For example, during the compatibility mode class decode, LD OS is asserted and LD RDEST is 
negated, which causes OS CTL I and 0 to equal 00. 
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Table 5-3 OS Control by the DECODE Microinstruction 

LOAD LOAD 
OS RDEST COM PAT OSCTL 
(CSR06) (CSR05) MODE 1 0 Function 

0 Nap OS(7:0) 

0 IB(7:0) to OS(7:0) (Clear OS3) 

0 0 0 IB(7:0) to OS(7:0) 

0 0 0 IB(7:0) to OS(7:0) 

NEXT STATE (CM IRD = 1 AND 0 OS(5:2) to OS(7:4) 
not DECODE) OSO to OS2 

IB(7:6) to OS(1:0) (Clear OS3) 

This results in a direct load of the opcode information into as at the end of the microcycle. It is at the 
end of the microcycle following the class decode, if the next microinstruction is not a DECODE, that 
the CM IRD flip-flop performs its special function. as CTL I and 0 are forced to a value of 01 to 
cause the bits in as (5:2) to be shifted into as (7:4), the bit in as (0) to be shifted into as (2), the 
low-order bits in the PFR's low byte (IB bus bits 7 and 6) to be loaded in as (1:0), and as (3) to be 
cleared. 

This operation on the data in as has significance for only the double-operand class of PDP-II instruc­
tions. As shown in Figure 5-14, the data is manipulated to assemble the source register address into the 
low-order bits of as. Following the class decode, a JUMP microinstruction ORing the jump field with 
as is done, masking out as (4) and as (0). 

PFR (BYTES 3,2 OR BYTES 1,0) 
15 1211 0605 00 

OPCODE I MODE S7C Rn I MODEDjST Rn I 

• I 
OS(AFTER CLASS DECODE) 

OS(AFTER NEXT MICROCYCLE) 

TK-5449 

Figure 5-14 Assembly of GPR Number in as Following 
Class Decode in Compatibility Mode 
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This results in a jump to microcode that evaluates the mode. At the end of the JUMP, the hardware 
shifts and reloads as so that in the microcode's source evaluation flows, the specified GPR can be read 
from local store. OS (3) is cleared during the shift and reload operation because four OS bits (OS 
(3:0» are used to address local store, and the PDP-II GPR number is only three bits long. 

5.7.2 Specifier Decodes 

NOTE 
When the special function to load the GPR number 
in OS is used, CSR (07) must be zero in the micro­
instruction following the DECODE. This is so that 
the GPR address bits in the low-order PFR byte will 
be loaded into OS. If CSR (07) were equal to one, 
the high order byte would be selected. 

Specifier decode operations are used mainly to dispatch from the class flows in the microcode to the 
specifier flows. The DECODE microinstruction removes the specifier information from the PFR and 
uses it to address the SPEC ROM. (The specifier information is also loaded in the data path's OS 
register.) The SPEC ROM outputs then provide a dispatch to the specifier flow that fetches (and 
stores) operands for that class of instruction. 

As in the class decode in native mode, a DECODE doing a specifier decode in native mode has IB REQ 
asserted, which removes a byte from the PFR (any byte depending on the PC) and increments and 
restores the PC as previously described. Unlike a class decode, however, the SPEC/OPC bit is negated, 
and both LD as and LD RDEST are asserted. 

With reference to Figure 5-13, OPC/SPEC = 0 selects the SPEC ROM to provide part of the jump 
address for the decode. The jump address is selected from one of eight blocks of data in the ROM. The 
block selected depends on the DECODE's IFUNC field, as shown in Figure 5-9. The various IFUNC 
field values for the specific decode in native mode are 0, I, 2, 4 and 5. The value is determined by the 
type of specifier information to be decoded (integer operand, address of operand, floating point oper­
and, etc.). This is a function of the opcode, and thus the result of the previous class decode. 

The assertion of LD OS during the native mode specifier decode causes a direct load of the specifier 
data on the IB bus into as. If the specifier contains a GPR number, the register address then provides 
an index for addressing the GPR location in local store. LD RDEST = I sets GPR DEST, a micro­
sequencer skip and jump condition, if the specified address mode is register mode. 

During a specifier decode in compatibility mode (lB REQ = 0, OPC/SPEC = 0), either byte 0 or 2 is 
removed from the PFR. The byte selected depends solely on the PC, as SEL CM HI BYTE is equal to 
zero for specifier decodes. The IFUNC field values in compatibility mode are equal to either six or 
seven. IFUNC = 6 is for decoding the destination field of PDP-II instructions; IFUNC = 7 dis­
patches on the low-order opcode bits (not the destination field) of the single-operand class of PDP-II 
instructions. 

As in native mode, LD OS is asserted for the compatibility mode specifier decode. Furthermore, LD 
RDEST is asserted to test for register mode if IFUNC = 6; that is, when the GPR number loaded into 
OS (3:0) is to be used for subsequent addressing of the GPR in local store. For this type of decode 
operation, OS(3) (the low-order mode bit) is cleared because the PDP-II GPR address is only three 
bits. OS CTL I and 0 have a value of 10 to perform this function (Table 5-3). 
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5.7.3 Other Decode Operations 
There are three other basic decode operations, two occurring in native mode and one in compatibility 
mode. 

The opcode decode in native mode does not remove a byte from the PFR (IB REQ = 0). Instead, the 
opcode stored in the opcode register during the class decode is used to address the OPCODE ROM 
(OPC/SPEC = 1). This type of decode operation (lFUNC = 2) is used to dispatch from the class 
flows to the execution flows for a specific opcode. 

The get-byte decode operation in native mode removes a byte from the PFR (IB REQ = I), but the 
data is not used to address the dispatch ROMs. (No jump or JSR is done.) Instead, the instruction data 
(displacements, immediate data, etc.) is loaded directly into as (LD as = 1). Once in as, the instruc­
tion data may be processed in the data path. 

The last basic decode operation is done in compatibility mode. It evaluates PDP-II instructions having 
no operands, such as HALT, RTT, etc. (It is also used to evaluate the SWAB instruction which has one 
operand, and the RTS instruction which specifies a register number.) IFUNC = 0 and the instruction 
data in PFR bytes 0 or 2 are used to address the OPCODE ROM (OPC/SPEC = 1). The instruction 
data is also loaded into as (LD as = 1, LD RDEST = 0). 
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6.1 INTRODUCTION 

CHAPTER 6 
DATA PATH 

The major components in the data path are the 2901 A data processor, the local store, and the operand 
specifier (OS) register. They connect between the Y bus and the D bus, as shown in Figure 6-1. Other 
logic elements include the condition code registers, the data type control (DT CTL), the sign extension 
control (SXT CTL), the register read/write control (REG R/W CTL), and the D bus multiplexer. 

The 2901 A data processor consists of eight cascaded 2901 A 4-bit microprocessor slices, configured for 
carry look-ahead and external shift control. The principal elements in the 2901As are a 16-location 
RAM, a high-speed ALU, and a separate shiftable holding register called the Q register. The RAM 
locations are used as CPU working registers. The ALU, in conjunction with the working registers and 
the Q register, performs the arithmetic and logical functions necessary to implement the CPU instruc­
tion set. Data enters the 2901As from the D bus; 2901A output data is transmitted on the Y bus. The 
output data is either the ALU output or the contents of a RAM (working register) location. 

The local store (LS) is a large (256 X 32-bit) RAM that contains the GPRs visible to the program, the 
backup GPRs, several of the privileged processor registers, and the many constants and masks used by 
the microprogram. In addition, it contains several locations used for temporary data storage. The local 
store may be addressed directly by the microprogram. The OS register may supply the four or five low­
order bits of address. This allows the OS register contents to be used as an index when accessing certain 
local store locations such as the GPRs, masks, etc. Data is read from local store onto the D bus; it is 
written into local store from the Y bus. 

As with local store, the 8-bit OS register is read onto the D bus and loaded from the Y bus. However, it 
can also be loaded from the IB bus under control of the instruction processing hardware. It is this sec­
ond load path that implements the principal function of the OS register; that is, it provides an entry 
point into the CPU's data path for instruction data removed from the PFR. From the OS register, the 
instruction data may be used to address local store, and it may be transferred to the 2901As for data 
processing. 

The condition code registers consist of the PSL condition codes (N, Z, V and C) visible to the program 
running in the CPU, and the ALU condition codes (N, Z, V, and C) which are provided for testing at 
the microprogram level. The ALU CC register stores the result indicators generated by the 2901 A data 
processor (sign, overflow, etc.), and they may be loaded at the end of all microinstructions that use the 
2901 A data processor for arithmetic and logical operations. 

The ALU CCs are also microsequencer skip and jump conditions, and may be tested by the next micro­
instruction. At the end of an instruction's execution, the ALU CCs may be copied into the PSL CCs to 
indicate to the CPU program the result of the arithmetic or logical operation performed. Both the ALU 
and PSL CCs can be read onto the D bus. The ALU CCs, in addition to being conditioned by the 
2901A data processor, can be loaded from the Y bus. 
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Figure 6-1 Data Path Block Diagram 



The major logic element in the data type control is the size register, which is loaded with a code in­
dicating the implicit data type (byte, word, or longword) of an instruction's first operand during the 
class decode operation. The size register may also be loaded with an arbitrary value at any time during 
an instruction's execution. 

Although data transfers within the data path are generally 32 bits, the size of some transfers are limited 
when the size register and (in some cases) the current microinstruction specify a word or byte operation. 
For example, the size of the data written into local store is a function of the data type for some micro­
instructions. The size register in the data type control may be read onto the D bus and may be loaded 
from the Y bus. 

The function of the sign extension control is to append sign bits to word or byte data received from the 
memory controller (MCT). Read data from the MCT is gated from the MC bus onto the D bus and into 
the 2901 As for data processing. At this time, to aid in the data processing, the sign extension control 
samples the sign bit in the byte or word and transmits a copy onto all the high-order D bus data lines not 
carrrying data. The sign extension control also appends sign bits when OS register data is read onto the 
D bus and into the 2901 A data processor. 

The OS and condition code registers are read onto the D bus by way of the D bus multiplexer. Selection 
control is by the register read/write control, which also controls the direct read of the size register (and 
others) onto the D bus, as well as the loading of the OS, condition codes, and size register from the Y 
bus. 

6.2 BASIC DATA PATH TRANSFERS 
The basic transfers of data between the logic elements in the data path are shown in Figure 6-2. 

MEMORY DATA TRANSFERS 

LSTO MeT MeT TO LS MeTTO 2901AsWR (WR TO LS) 

FPA/PORT DATA TRANSFERS 

2901As to FPA/PORT FPA/PORTTO LS 

LS/REGS TO 2901 As 

GENERAL (LS/2901) DATA TRANSFERS 

LS/REGS TO 2901 As 
2901As IALU OR WR) 
TO LS/REGS 

2901As IALU OR WR) 
TO LS/REGS 

TK-5937 

Figure 6-2 Basic CPU Data Transfers 
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Addresses and write data to be transferred to the the memory controller (MCT) are read from local 
store onto the D bus and transmitted over the MC bus. Read data from the MCT is gated from the MC 
bus onto the D bus and passed through the 2901A data processor (unmodified) to local store. The read 
data can also be stored in a 2901A working register. In the latter case, the current contents of the 
working register are transmitted on the Y bus and written into local store before data from the MCT is 
loaded. 

The address information transferred to the MCT is read from local store by the MEM REQ micro­
instruction. Other data transfers from and to the MCT are by the MOVE microinstruction. 

Data transfers from and to the FPA or port device are over the Y bus. Transfers from the FPA or port 
device are made by the MOVE microinstruction, which loads the data directly into local store. Trans­
fers to the FPA or port device are by the MISC/PORT microinstruction, which reads the data onto the 
Y bus from a 2901A working register location. 

The other basic transfers in the CPU data path are between local store, or a discrete register such as the 
OS or a condition code register, and the 2901A data processor. 

In one general type of transfer, D bus data from local store or a CPU discrete register is passed through 
the 2901A ALU, and optionally loaded into the 2901A's internal Q register or an internal working reg­
ister. The path through the ALU allows the data to be processed independently, or in combination with 
the current contents of the Q register or a working register, during the data transfer. 

When D bus data is processed, the ALU output may be transmitted on the Y bus. This allows the sec­
ond general type of transfer. That is, from the Y bus, the processed data may be loaded back into the 
local store location or the discrete register that was read during the first part of the transfer. The 2901A 
data processor output may also be the contents of a working register, and this data may be loaded into 
local store or a discrete register as well. 

During the third general type of data path transfer, D bus data is not processed in the 2901As. The 
contents of a previously loaded 2901A internal register is processed instead. For example, the Q regis­
ter and/or a working register may be processed in the ALU and the ALU output (or a working register) 
transmitted on the Y bus. The 2901A output data is then loaded into local store or a discrete register. 
The three general types of data path transfers are initiated by the MOVE and BASIC micro­
instructions. 

Other data transfers in the data path are internal to the 2901A data processor only. No D bus data is 
processed, and no Y bus data is loaded into local store or a discrete register. Only working register and 
Q register data is processed in the 2901As. These operations are initiated by the EXTENDED micro­
instruction. 

6.3 BASIC DATA PATH TIMING 
Basic data path timing is shown in Figure 6-3. DISABLE D-BUS, LS WRT EN, CLOCK REGS, and 
CLOCK DP perform the major clocking functions. 

DISABLE D-BUS disables the transmission of all data on the D bus at the beginning of the microcycle 
(TO to T45). This is to prevent overloads and possible damage to tri-state output circuits during the 
interval just after TO. At this time, one set of D bus output circuits (such as the local store latches) 
could be turning on, and another set (such as the MC bus transceiver outputs) could be in the process of 
turning off. 
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DAPB CLOCK DP H ~ 

t 
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Figure 6-3 Basic Data Path Timing 

No more than one tri-state output circuit is allowed to drive the 0 bus at anyone time. 

LS WRT EN is the local store write clock. If enabled by the current microinstruction, the write occurs 
at the end of the microcycle (from T225 to T270) when LS WRT EN is true (low). Also, at the end of 
the microcycle, the trailing edge of CLOCK REGS clocks the discrete registers in the CPU, as well as 
the majority of the data path control logic. 

The 2901A data processor is clocked by CLOCK DP. When CLOCK DP is true (low), the 2901A ALU 
outputs may be written into a 2901A working register at the same time that local store is written. The 
ALU outputs may also be loaded into the 2901A's internal Q register. The Q register load occurs at the 
trailing edge of CLOCK DP. As for the other data path operations, the loading of the working registers 
and the Q register are controlled by the current microinstruction. 

6.4 2901A DATA PROCESSOR 
The CPU's data processor is made up of eight parallel-connected 2901 A 4-bit data processor slices. 
Each 2901 A contains a 16-word X 4-bit RAM, a high-speed ALU, a 4-bit Q register, and associated 
shifting, decoding, and multiplexing circuitry. A detailed block diagram of the 2901A is shown in Fig­
ure 6-4. I nput/ output pin definitions are given in Table 6-1. 
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Pin(s) 

00(:3 ) 

Y (0:3) 

OUTEN 

A(0:3 ) 

B(0:3 ) 

1(2:0) 

1(5:3) 

1(8:7) 

QR 

QL 

FR 

FL 

PROP,GEN 

CARRY IN 

CARRY OUT 

OVERFLOW 

Table 6-1 2901A Input/Output Pin Definitions 

Function 

Data inputs. May be selected as data source for ALU depending on source 
control. DO is the most significant bit. 

Data outputs (tri-state). When enabled, output data is from either RAM (port 
A) or ALU depending on destination control. YO is the most significant bit. 

Data output enable. When low, Y outputs are active (high or low). When high, 
Y outputs are off. 

RAM address inputs, port A. 

RAM address inputs, port B. 

Source control inputs. Select either D inputs, RAM (port A), or zeros as one set 
of data inputs to ALU; select either RAM (port A or port B), Q register, or 
zeros as the other set of data inputs to ALU. 

Function control inputs. Select the arithmetic or logical operation performed by 
the ALU. 

Destination control inputs. Select RAM (port A) or ALU as Y data outputs, 
and determine if (and what) data is deposited in the Q register and the RAM. 
Input to the Q register is from the ALU or the Q register itself (shifted left or 
right). Input to the RAM is from the ALU (unmodified or shifted left or right). 

Shift data input/output. Input to most significant bit of Q register during right 
shift operations; output from most significant bit of Q register during left shift 
operations. 

Shift data input/output. Input to least significant bit of Q register during left 
shift operations; output from least significant bit of Q register during right shift 
operations. 

Shift data input/output. Similar to QR, but at the most significant bit of the 
RAM. 

Similar to QL, but at the least significant bit of the RAM. 

Carry propagate and generate outputs for use by carry look-ahead circuits. 

Carry input to ALU. 

Carry output from ALU. 

Overflow output from ALU. Indicates that the result of arithmetic two's 
complement operation has overflowed into the sign bit. 
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Pin(s) 

F=O 

FSIGN 

CLOCK 

Table 6-1 2901A Input/Output Pin Definitions (Cont) 

Function 

Open collector output that indicates all four ALU outputs are equal to zero. 

Sign bit output. The most significant ALU output bit. 

Clock input. The RAM outputs are valid when the clock is high; the RAM is 
written when the clock is low. The Q register is loaded on the clock's low-to­
high transition. 

Connected together, the eight 2901 As provide a 32-bit wide CPU data processing element. A simplified 
block diagram is shown in Figure 6-5. 

Only six of the 16 32-bit RAM locations are currently used, and these are used only as working registers 
to hold data temporarily for a variety of functions. The 32-bit Q register is also used to hold data tempo­
rarily. This register, as well as the ALU outputs (at the input to the RAM), may be shifted right or left. 

Data enters the 290lA array from the D bus. The input data is applied to the ALU, where it (as one 
operand), and zeros or other data previously stored in the RAM or Q register (as the second operand), 
may be operated on as specified by the 2901A's function control lines. The ALU performs three arith­
metic functions and five logic functions. 

The D bus inputs are not always one of the operands applied to the ALU. The other ALU data sources, 
including the zero operand, may be selected in various combinations by the 2901A's source control 
inputs. For example, the contents of a RAM location read from the RAM's A port may be selected as 
one operand; and zeros, the Q register, or the contents of a RAM location read from the RAM's B port 
selected as the other operand. The RAM locations read from the A and B ports are determined by the 
2901A's A and B address inputs. 

The ability to select an operand of zeros, which is implemented by turning off the appropriate ALU 
input (R or S in Figure 6-5), allows a single operand to be processed separately without having to set 
zeros into another operand source. The zero operand may be selected in combination with anyone of 
the other ALU inputs (D, Q, or the RAM location read from port A or B). 

The ALU outputs (the F outputs in Figure 6-5) may be loaded into the RAM and/or the Q register. 
When the RAM is loaded, the ALU data may be shifted one bit left (equivalent to multiplying by two) 
or one bit right (equivalent to dividing by two). The Q register may also be shifted one bit left or right. 
In addition, shift control logic external to the 290lA array allows shift data to be rotated within the Q 
register and RAM, or shifted and rotated from one to the other (i.e., Q to RAM, or RAM to Q). 

Besides applying the input to the RAM registers and Q register, the ALU outputs may be selected as 
the output from the 2901A array. The contents of a RAM location read from port A can also be se­
lected as the output. The output selected, as well as the inputs to the RAM and Q registers, are con­
trolled by the 2901 A's destination control inputs. 

The control logic associated with the 2901As includes PAL logic to generate the RAM's A and B port 
addresses, a ROM/PAL configuration used to generate the carry input, the function, source, and desti­
nation control bits, and the external carry look-ahead and shift control circuits. 
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6.4.1 2901A RAM (Working Register) Addressing 

TK-5936 

The RAMs in the 2901A array are two-port devices in that two locations can be read simultaneously, 
one from the A port as specified by the A address, and the other from the B port as specified by the B 
address. If both A and B addresses are the same, the same location is read from both ports. At the end 
of a microcyc1e and when enabled by the 2901 A destination control bits, new data is written into the 
RAM location defined by the B address. 

Because only six of the 16 RAM locations (working registers) in the 290] As are used, address signals 
are generated for only three of the four B address inputs, and for only two of the four A address inputs. 
(The other 290lA address inputs are grounded.) PAL logic generates the address signals (B ADRS 2, 
I, and 0; and A ADRS ] and 0) from the control bits in the various microinstructions shown in Table 6-
2. 
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Table 6-2 2901A RAM Addressing 

AADRS BADRS 
Microinstruction 1 0 2 1 0 Remarks 

DECODE (Not used) CSR<09> 0 0 B ADRS = 0/4 

MEM REQ (Not used) 0 B ADRS = 5 

MOVE CSR<08> CSR<07> MDP= 2 CSR<08> CSR<07> B ADRS = B field (B 
field + 4 if MDP = 2) 
A ADRS = B field 

0'\ 
I - BASIC CSR<08> CSR<07> 0 CSR<08> CSR<07> B ADRS = A ADRS = 

0 
B field 

EXTENDED CSR<\O> CSR<09> 0 CSR<08> CSR<07> B ADRS = B field 
A ADRS = A field 

MISC/PORT CSR<08> CSR<07> 0 0 CSR<07> B ADRS = A ADRS = 0/1 
(CSR<08> must equal 0) 



During the DECODE microinstruction, either working register (WR) 4 or 0 is addressed. WR 4 is used 
to store the PC during class decode operations (when CSR (09) = 1), in the event instruction execu­
tion must be aborted and then restarted due to errors or page failures when accessing memory. The PC 
can also be stored in location 0 (when CSR (09) = 0). This is done during specifier decode operations 
for branch type instructions. 

In these cases, having the PC in a working register saves a microstate during the ensuing instruction 
execution. 

During the MEM REQ microinstruction, WR 5 is addressed to store the memory address that is also 
transmitted on the MCT bus to the memory controller. Like the backup PC, the memory address may 
then be referenced following page failures, or during error recovery operations. 

The MOVE and BASIC microinstructions have a B field (CSR (08:07») to address the working regis­
ters. The B field value is used to address both the A and B ports of the RAM. Ordinarily, only WR 0 
through WR 3 can be addressed. (The B field is only two bits wide.) However, when a MOVE's MOP 
field is made equal to two, address line B ADR 2 is forced to a one allowing WR 4 and WR 5 to be 
addressed. This is the microinstruction used by memory management and error recovery microcode to 
access the backup-PC and the memory address stored in these two RAM locations. 

The EXTENDED microinstruction has a 2-bit A field (CSR 00:09») in addition to a 2-bit B field 
(CSR (08:07»). Thus, port A and B RAM addresses may have different values, allowing greater flex­
ibility in the type of data processing done by this microinstruction. The EXTENDED is used to per­
form a variety of operations, some complex, and all occurring within the 2901A array itself. 

One of the functions of the MISC/PORT microinstruction is to transfer data from a working register to 
the FPA or a port device. A single address bit (CSR (07») selects either WR 0 or WR 1. Two working 
registers are made available for FPA/port transfers to provide additional data buffering and facilitate 
the loading of data during diagnostic operations. Working register usage is summarized in Table 6-3. 

Working 
Register 

o 
1 
2 
3 
4 
5 
6:F 

Table 6-3 2901A Working Register Assignments 

Use 

FPA/port data, general use 
FPA/port data, general use 
General use 
Register backup mask, general use 
Backup-PC 
Memory address 
Not used 
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6.4.2 2901A Control Bit Generation 
The 2901A control ROM (a ROM/PAL combination) is used to generate the source, function, destina­
tion, and carry input control bits for the 2901As. Four of these control bits, the three ALU function bits 
and the low-order destination control bit, are read from the 512 X 4-bit ROM. The remaining six con­
trol bits are generated by the PAL. The ROM address, and all the PAL inputs (except for a control 
signal called MPLIER LSB), are control bits in the current microinstruction. 

The three source control bits (SRC CTL 2,1, and 0) generated by the 290lA control ROM specify the 
ALU source operands; that is, the data gated to the ALU's Rand S inputs. Table 6-4 shows the eight 
combinations of inputs that can be selected. All 290lA register outputs [Q, working register read from 
port A, and working register read from a zero operand at the ALU inputs (SRC CTL codes 2, 3, 4, and 
7)] . 

Table 6-4 2901A ALU Source Operand Control 

SRCCTL Source 
2 1 0 Code Operands* Remarks 

0 0 0 0 A.Q R = WR(A) S=Q 
0 0 1 1 A.B R = WR(A) S = WR(B) 
0 1 0 2 O.Q R=O S=Q 
0 1 1 3 O.B R=O S = WR(B) 
1 0 0 4 O.A R=O S = WR(A) 
1 0 1 5 D.A R = D bus S = WR(A) 
1 1 0 6 D.Q R = D bus S=Q 
1 1 1 7 D.O R = D bus S=O 

*Source operand notation corresponds to that in the CPU Microcode Listing. 
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Also, the working register output from port A may be processed with either the Q register or the work­
ing register outputs from port B (codes 0 and 1). Finally, the D bus inputs may be processed with the 
working register outputs from port A or the Q register (codes 5 and 6). 

The three ALU function bits (ALU CTL 2, 1, and 0) specify the ALU operation to be performed on the 
operands selected by the source control bits. Three arithmetic and five logical operations may be se­
lected as shown in Table 6-5. The arithmetic operations are add, S minus R, and R minus S (ALU CTL 
codes 0, 1, and 2). The logical operations are OR, AND, MASK, XOR, and XNOR (codes 3 through 
7). Table 6-6 shows the ALU output (F) for the various values of the ALU function and source control 
bits. For the arithmetic operations, the ALU output also depends on the ALU carry input as indicated. 

Table 6-5 2901A ALU Function Control 

ALUCTL 
2 1 0 Code Function* Symbol Remarks 

0 0 0 0 R plus S R+S Add R with S 

0 0 S minus R S-R Subtract R from S 

0 0 2 R minus S R-S Subtract S from R 

0 3 RORS RVS OR R with S 

0 0 4 RANDS R S AND R with S 

0 5 NOTRANDS R S Complement R, then AND with S 
(mask function) 

0 6 RXORS R S XOR R with S 

7 RXNORS R S XOR R with S, then complement 
result 

* Function notation corresponds to that used in the CPU Microcode Listing. 
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Table 6-6 ALU Output (F) as a Function of ALU Source and Function Control 

AU) Carry ALU Source 
Function In O(A.Q) l(A.B) 2(0.Q) 3(0.B) 4(0.A) 5(D.A) 6(D.Q) 7 (D.O) 

o (R plus S) No A+Q A+B Q B A D+A D+Q D 
Yes A+Q+I A+B+I Q+I B+I A+I D+A+I D+Q+I D+I 

I (S minus R) No Q-A-I B-A-I Q-I B-1 A-I A-D-I Q-D-I -D-I 
Yes Q-A B-A Q B A A-D Q-D -D 

2 (R minus S) No A-Q-I A-B-I -Q-I -B-1 -A-I D-A-I D-Q-I D-I 
0\ Yes A-Q A-B -Q -B -A D-A D-Q D 1 

~ 

3 (R OR S) AVQ AVB Q B A DVA DVQ D 

4(RANDS) A Q A B 0 0 0 D A D Q 0 

5 (NOTR AND S) A Q A B Q B A D A D Q 0 

6 (R XOR S) A Q A B Q B A D A D Q D 

7 (R XNOR S) A Q A B Q B A D A D Q D 



The three ALU destination control bits (DEST CTL 2, I, and 0) generated by the 290lA control ROM 
determine where and how the ALU output is to be stored. As shown in Table 6-7, the ALU output may 
be stored unmodified in Q (code 0) or in the RAM (codes 2 and 3); or it may be shifted right or left and 
stored in the RAM without affecting Q (codes 5 and 7), or at the same time shifting Q right or left 
(codes 4 and 6). In addition, a NOP operation can be done (code I) which does not load a 290lA regis­
ter. 

Table 6-7 2901A ALU Destination Control 

DESTCTL 
2 1 0 Code Destination Remarks 

0 0 0 0 LOAD.Q Load Q, output ALU (F) 

0 0 NOP Hold all registers 

0 0 2 WRITE.B.A Write WR (B), output WR (A) 

0 3 WRITE.B.F Write WR (B), output ALU (F) 

0 0 4 RSHF.RAM.Q Right shift RAM and Q, output ALU (F) 

0 5 RSHF.RAM Right shift RAM, output ALU (F) 

0 6 LSHF.RAM.Q Left shift RAM and Q, output ALU (F) 

7 LSHF.RAM Left shift RAM, output ALU (F) 

* Destination notation corresponds to that in the CPU Microcode Listing. 

In all cases except one, the ALU output is the output from the 2901As that is transmitted on the Y bus. 
The exception (code 2) writes the output of the ALU to a working register (as code 3 does), but passes 
the working register read from port A to the Y bus. This allows two 32-bit transfers in one microcycle 
when a local store write from the Y bus is done also. 

The 290lA control ROM generates the control bits for the 2901A array by decoding the nine most 
significant bits in the current microinstruction (CSR < 22: 14». As shown in Table 6-8, these include the 
op code bits for all microinstructions, the data path control field for the -BASIC, MOVE, and EX­
TENDED, and the BPC (backup PC) bit for the DECODE. MPLIER LSB is also a control ROM 
input which can modify two operations by the EXTENDED, as explained in Paragraph 6.4.4. 
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Table 6-8 Decoding of Current Microinstruction by 2901A Control ROM 

CSR 2901A Specified 
Microinstruction 22 21 20 19 18 17 16 15 14 Operations By 

BASIC (6-BIT DP FIELD 64 DP field 

MOVE 0 ( MDP 8 MDP field 

EXTENDED 0 0 ( 6-BIT XDP FI ELD 64 XDP field 
0\ 
I 

0\ MEM REO 0 0 I (D to WR) 

MISC/PORT 0 0 0 I (WR to Y) 

JUMP 0 0 0 I (NaP) 

DECODE 0 0 0 0 BPC 2* BPC 

*D + I toY,and D + I toWR ifBPC = I. 



The 6-bit data path control fields of BASIC and EXTENDED allow up to 64 separate 290lA oper­
ations to be specified by each microinstruction; that is, one set of 290lA control bits are generated for 
each data path control field value. Similarly, the MOVE's 3-bit data path control field allows eight 
290 I A operations to be specified. 

Except for the DECODE, only a single 2901A operation is done by the other microinstructions. For 
example, during a MEM REQ, the 2901A control ROM generates the control bits necessary to transfer 
the D bus inputs (memory address data) through the ALU and store them in WR 5. 

During the DECODE, one of two 2901A operations can occur, depending on the microinstruction's 
BPC control bit (CSR( 18»). If BPC = 0, the D bus inputs (the PC) are incremented by the ALU and 
asserted on the Y bus. This also occurs when BPC = I, but the control bits generated by the 290lA 
control ROM specify that the ALU output (the incremented PC) must also be stored in a working 
register. 

The 290lA control ROM outputs are given in the CPU Microcode Listing. The control ROM partition 
for the various microinstructions are shown in Figure 6-6. Due to the addressing scheme (Table 6-6), 
blocks of ROM locations having identical contents are required for all microinstructions but the EX­
TENDED. For example, the MOVE requires 64 ROM addresses (OCO to OFF), although only eight 
2901 A operations are specified by its data path control field. As a result, eight blocks of eight identical 
ROM entries are required to generate the 2901A control bits for this microinstruction. 

BASIC/MOVE/ 
EXTENDED 

r--, 
I 2901A 

DATA 
I PROC I I... __ ...J 

<03:00> 

ALU RESU L T CSR 
INDICATORS <06:05> 
FOR BYTE. 
WORD, AND LONG­
WORD OPERATIONS, 

(NN/Z/C) 

r- -, 
DT I 

L3TL ...J 

CC 
CTL 
(DAPH) 

COpy CC 

"' .... 
I-'-T""-'-'.::.....IID B~ <03:00> 

'--__ ...J IMUX) 

~r1s;- , OPC TYPE<l :0> V / 

~~!!:AkI 
r-"'--"--L....., PS L 

PSL 
CC'. 
(DAPH) 

N,Z,V,C 

Figure 6-6 2901A Control ROM 
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An example of an entry in the microcode listing that shows the 2901A control ROM outputs is given 
below. 

SRCjD.O, ALUjR.PLUS.S, DSTjWRITE.B.F, CINjCIN 

The notation used to show the control bits generated is the same as in Tables 6-4, 6-5, and 6-7. The 
example chosen is for the DECODE, which causes the PC value at the D bus inputs of the 2901A to be 
incremented, asserted on the Y bus, and stored in a working register (BPC = 1). 

Using Table 6-6, note that inputs of the 2901A are a source of "D.O" (code 7), an ALU function of 
"R.PLUS.S" (code 0), and a "CIN" (carry input) which causes the ALU to increment the D bus inputs 
by + 1 as required. Using Table 6-7, note also that a destination of "WRITE.B.F" (code 3) causes the 
ALU output to be asserted at the 2901 A outputs (on the Y bus), and stored in a working register to 
complete the operation. 

6.4.3 Carry Logic 
Carry look-ahead (skipper) circuits are used in the 2901 A data processor to speed ALU operation. Con­
nection to the 4-bit 2901 A microprocessor slices is shown in Figure 6-7. 

CARRY 32 

31-28 

G8 P8 

IrA:;~~----'1 
(LONG) 

CAR RY 32 -I----L I 
I 

ALUC 
CARRY 16--+--~ 

CARRY 8-+---1 

CARRY4~----------------+i HALF CARRY 

1 0 1 
l.!!~~ ___ ...J 

CARRY 16 CARRY 8 CARRY 4 

29-24 23-20 19-16 15-12 11-08 07-04 03-00 

C4 C2 C1 C4 C2 C1 

G4 P4 G2 P2 G1 P1 G8 P8 G4 P4 G1 P1 

G P 
OUT OUT 

CARRY SKIPPER 

G2 P2 

CARRY SKIPPER CIN 

(DAPC) 

LOW WORD 
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Figure 6-7 2901 A Carry Logic 
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Each 290lA has a carry propagate output (P) and a carry generate output (G) for use by external carry 
logic. These are sampled by the carry skipper circuits to generate the carry inputs to all the 2901 As 
except the low-order one. (The low-order 290lA is for bits (3:0) in the data path.) 

The carry input to the low-order 290lA (ALU CARRY-IN), which is the carry input to the entire 
array, is generated by the 2901 A control ROM. The carry input may be asserted or not, depending on 
the 290 I A operation specified by the current microinstruction. 

In W:u of carry look-ahead circuitry, a slower ripple-carry scheme would have to be used whereby the 
carry output from one 290lA would connect to the carry input of the next. 

Carry outputs from the 290lAs connect to the ALU condition code logic. Depending on the size of the 
data being processed in the ALU (longword, word, or byte), the state of either CARRY 32, CARRY 
16, or CARRY 8 is set into carry status flip-flop ALU C at the end of the microcycle. ALU C is one of 
the ALU condition codes, and is a microsequencer jump or skip condition which may be tested by the 
microcode. 

An additional carry status flip-flop, HALF CARRY, stores the carry output from the low-order 2901A 
(CARRY 4). It is used during instructions performing packed decimal operations (ADDP, SUBP, etc.); 
that is, together with ALU C, it is used to generate the appropriate decimal constant to convert 2901A 
ALU results (which are in binary) to the packed decimal format. The packed decimal format has two 4-
bit decimal digits per byte. As described in Paragraph 6.9, the constant (00, 06, 60, or 66) is asserted on 
the 0 bus when a BASIC or MOVE microinstruction's 0 address field is equal to 70. 

6.4.4 Shift Control 
The 2901A microprocessor slice has four shift data input/output pins. Two are for the Q register, one 
for shifting data in or out of the least significant bit (LSB), and the other for shifting data in or out of 
the most significant bit (MSB). The other two shift data input/output pins are for shifting the ALU 
output data written into a RAM location (working register). As for the Q register, one input/output pin 
is for the LSB (ALU 0), and one is for the MSB (ALU 31). 

In the 2901 A array, the most significant Q or RAM shift data input/output pin in one 2901A connects 
to the least significant input/output pin of the next. This allows 32-bit right or left shifts of the Q regis­
ter, and a working register across the array. 

Also, the least significant shift data input/output pins at the low-order 2901A, and the most significant 
input/output pins at the high-order 2901A, connect to an external shift control. By gating data shifted 
out of one end of the array into the other end, the external shift control allows both 32-bit and 64-bit 
shift and rotate operations to take place. Also, trailing sign bits, zeros, or other data may be inserted in 
the shift data stream. 

Shift and rotate operations are controlled by the EXTENDED microinstruction. Control is by the mi­
croinstruction's data path control (XDP) field, working in conjunction with the shift input (SI) field. 
Only certain values of the XDP field initiate a shift operation. 

The XDP field (CSR (19:14», by addressing the 2901A control ROM (as discussed in Paragraph 
6.4.2), generates the control bits that specify the 2901A operation. 

For most of the shift operations initiated by the XDP field, the ALU output is specified as the unmodi­
fied contents of the working register read from the B port of the RAM. The ALU destination specified 
(code 4, 5,6, or 7) loads the working register contents back into the same RAM location, shifting it left 
or right. At the same time, the Q register may also be shifted left or right. 
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The 3-bit SI field (CSR (13: 11»), together with the 3-bit destination code generated by the XDP field, 
determine the operation of the shift control logic external to the 2901As. (A simplified diagram of the 
shift control is shown in Figure 6-8.) The SI field selects the shift data inputs to the high-order and low­
order 2901As. That is, shift data may be gated into anyone of the 2901 A shift data input/output pins 
(Q SHF MSB and RAM SHF MSB at the high-order 2901A, and Q SHF LSB and RAM SHF LSB at 
the low-order 2901A). 

The input data is the output from one of the shift data input/output pins at the other end of the array. 
The destination code is used to enable the gates driving the shift data input/output pins. Two of the 
four gates are enabled at a time. The gates that are enabled determine the direction of the shift. 
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Figure 6-8 2901A Shift Control 
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Shift data input selection by the SI field is shown in Table 6-9. For example, for SI = 0, the input 
gated to RAM SHF MSB (ALU 31) is RAM SHF LSB (ALU 0), and the input gated to RAM SHF 
LSB (ALU 0) is RAM SHF MSB (ALU 31). Selection for the Q register's shift inputs is similar, with 
conditions set up for gating data shifted out of one end of the 2901 A array through the shift control, 
and back into the other end of the array. Thus, working register and Q register data can be rotated 
either right or left, depending on the value of the destination code. 

Table 6-9 Shift Data Inputs 

Input to Input to Input to Input to 
SI SIIF MSD(ALU 31) RAM SHF LSD (ALU 0) Q SHF MSH (Q31) Q SHF LSH (Q4) 

0 RAM SHF LSB RAM SHF MSB o SHF LSB o SIIF MSB 
(ALU 0) (ALU 31) (00) (031 ) 

o SHF LSB o SHF MSB RAM SHF LSB RAM SHF \!ISB 
(00) (031 ) (ALU 0) (ALU 31) 

2 N LONG 
(SIGN) 0 0 () 

3 N LONG o SHF MSB RAM SHF LSB 0 
(SIGN) (031) (ALU 0) 

4 "J LONG XOR Y LONG 0 RAM SHF LSB () 

(SIGN XOR OYF) (ALU 0) 

5 CARRY 32 0 RAM SHF LSB 
(CRY OUT) (ALU 0) 

6 0 0 RAM SHF LSB 0 
(ALU 0) 

7 0 0 

The meaningful combinations of SI field and destination code values, and the right or left shift or rotate 
operations they produce, are given in Figure 6-9. Other combinations give unspecified results. 

For the preceding example where SI = 0, it can be seen that a destination code of 6, which left-shifts 
both RAM and Q data in the 2901As, causes data to be rotated within both a working register and Q 
register. Correspondingly, a destination code of 7, which left-shifts only RAM data in the 2901As, 
causes only working register data to be rotated. 

Most of the shift operations initiated by the EXTENDED's XDP field pass the contents of a single 
RAM location through the ALU unmodified. This results in simple I-bit shifts, left or right, of working 
register data. (Q register data is always shifted one bit left or right.) For example, with the usual ALU 
output, an SI field of two and a destination of seven results in a working register being shifted one bit 
left, with a trailing zero inserted by the shift control during the operation. (Refer again to Table 6-9 and 
to Figure 6-9.) 

6-21 



51 

0 

0 

2 

3 

SHIFT LEFT SHIFT RIGHT SHIFT RIGHT 

DEST SI DEST ,g DEST -
~ ~ ~ ~ ROTATE Q .. ~ Q ROTATE Q Q SHIFT RAM/Q 

(SIGNED PARTIAL 
6 - 0 4 - SIGN PROD.) 

~ ~ ~ ;J ROTATE RAM 
XOR - RAM 
OVF 

RAM ROTATE RAM RAM -- - -
~ ~ 0 5 ~ ~ ROTATE RAM 

~ 7 RAM ROTATE RAM RAM SHIFT RAM/Q 
5 4 (UNSIGNED PARTIAL - - PROD.) - -

~ 
ROTATE Q/RAM 

~ 
CRY _ 

6 ROTATE Q/RAM -4 

~ 
6 4 SHIFT RAM/Q - -

h 
SHIFT RAM 

7 RAM SHIFT RAM 2 5~ (ARITHMETIC) 0 -SIGN - 0 -- - 6 5 rl RAM SHIFT RAM 

~ ~ 
0 -SHIFT RAM/Q 

SHIFTOIRAM 3 4 ARITHMETIC 
6 

RAM - SIGN _ 

TK.s954 

Figure 6-9 Shift Configurations 

However, one XDP field value (8B) generates 290lA control bits that add a working register to them­
selves in the ALU, the destination code still being equal to 7. With the same SI field value of two, as in 
the preceding example, the result is not a I-bit shift, but a 2-bit shift due to the "add before shift" 
operation specified by XDP. 

Two other operations are not just simple shifts of unmodified working register data. One XDP field 
value (88) adds two different working registers together. Another (89) subtracts two working registers. 
Both generate a destination code of 4. In conjunction with SI field values of 4 and 5, these shift oper­
ations cause one cycle of a hardware multiply to execute. 

An SI field value of 4 is used for signed partial products (2s complement); and an SI field value of 5 is 
used for unsigned partial products (floating point). In one case (SI = 4), the trailing bit inserted by the 
shift control is the sign bit out of the 290lA array (N LONG) XOR'd with the overflow bit out of the 
array (V LONG). In the other case (SI = 5), the trailing bit is the carry output from the high-order 
2901 A (CARRY 32). 

Both the "add before shift" and "subtract before shift" operations used for the hardware multiply cycle 
are conditional. The add or subtract does not take place unless the LSB of the multiplier is set. The 
multiplier, which is held in the Q register during multiply operations, is right shifted by the microcode 
during the microcycle preceding each multiply cycle. (The multiplicand is stored in the working regis­
ter read from A; the partial product is stored in the working register read from B.) 
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The bit shifted out of Q, the LSB, is stored in control flip-flop MPLIER LSB (Figure 6-9). MPLI ER 
LSB is an input to the 2901A control ROM and controls the ALU source code during the upcoming 
hardware multiply cycle. IF MPLIER LSB is set, the source code will be 1 or 2 (depending on XDP), 
and the ALU selects the working registers read from A and B as the operands. This adds or subtracts 
the multiplicand and partial product. If MPLIER LSB is not set, the ALU source code will equal 3 and 
the working register read from B (the partial product) will be passed through the ALU unchanged. 
There is no hardware support for a divide operation. 

6.S LOCAL STORE (LS) 
The local store is a 256 location RAM that contains the 16 GPRs, 16 backup GPRs used for restart 
purposes, several of the privileged processor registers, a number of masks and constants generated by 
the microcode during system initialization, and several locations used for temporary data storage. It 
consists of eight parallel-connected 256 X 4-bit RAM chips, four 8-bit latch circuits, a set of RAM 
address gates, and read/write control logic. The resulting 256 X 32-bit configuration is shown in Figure 
6-10. 
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RAM (256 X 4) ------
RAM (256 X 4) 

WR 
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WR 

LSWRT EN 

ENABLE LONG 
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Figure 6-10 Local Store Configuration 
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As discussed in Paragraph 6.3, the local store is written from the Y bus with a pulse (LS WRT EN) 
asserted at the end of the microcycle (T225 to T270). The number of bits written is data-type depend­
ent, and controlled by three signals connecting to the RAM's write enable inputs. These write enable 
signals are ENABLE BYTE, ENABLE WORD, and ENABLE LONG. Only bits 7 to 0 are written 
during byte operations (ENABLE BYTE = 1). A word operation writes bits 15 to 0 (ENABLE 
WORD = 1 and ENABLE BYTE = 1), and a long word operation writes bits 31 to 0 (ENABLE 
LONG = 1, ENABLE WORD = 1, and ENABLE BYTE = 1). 

The local store outputs are enabled onto the D bus via the latch circuits. The latches have tri-state 
outputs that are turned on by two output enable signals, ENABLE LS HI and ENABLE LS LO. When 
local store is to be read, both of these enable signals are asserted (from T45 to T270), causing all 32 
local store bits to be transmitted on the D bus. The latch circuits are transparent until clock phase 2 
(CPU P2), at which time the outputs latch up for the remainder of the microcycle. 

The local store is addressed by the 7-bit D ADRS (data address) fields of the MEM REQ and BASIC 
microinstructions CSR (15:09», and the 8-bit XD ADRS (extended data address) field of the MOVE 
microinstruction (CSR (16:09». The local store locations accessed by the various values of D ADRS 
and XD ADRS are given in Tables 6-10 and 6-11. Local store address assignments are shown in Figure 
6-11. 

Table 6-10 Local Store Addressing for MEM REQ/BASIC Microinstructions 

LSADR Local Store 

D Field 7 6 5 4 3 2 1 0 Address Remarks 

00:77 0 ( D field ) 00:77 D address equals LS address 

78 0 0 0 (OS(3:0) ) 40:4F Base address 40 indexed by 
OS(3) = 0 

79 0 0 0 (OS(3:0) ) 20:2F Base address 20 indexed by 
OS(3:0) 

7A Not used 

7B 0 0 ( OS(4:0) ) 20:3F Base address 20 indexed by 
OS(4:0) 

7C:7F Address assigned to discrete registers 
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Table 6-11 Local Store Addressing for MOVE Microinstruction 

LSADR Local Store 
XD Field 7 6 5 4 3 2 1 0 Address Remarks 

00:77 ( XD Field 00:77 XD address equals LS 
address 

78 0 0 0 ( OS(3:0) ) 40:4F Base address 40 indexed 
by OS(3:0) 

79 0 0 0 ( OS(3:0) ) 20:2F Base address 20 indexed 
by OS(3:0) 

7A Not used 

7B 0 0 ( OS(4:0) ) 20:3F Base address 20 indexed 
by OS(4:0) 

7C:7F XD addresses assigned 
to discrete registers 

80:F7 ( XD Field ) 80:F7 Address equals LS address 

F8 0 0 ( OS(3:0) ) CO:CF Base address CO indexed 
by OS(3:0) 

F9 0 0 ( OS(3:0») AO:AF Base address AO indexed 
by OS(3:0) 

FA Not used 

FB 0 ( (OS4:0) AO:BF Base address AO indexed 
by OS(4:0) 

FC:FF Addresses assigned to 
discrete registers 
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Figure 6-11 Local Store Address Assignments 

Not all the RAM locations in local store are used to store data. 0 address values of 00 to 77, and 80 to 
F7, allow direct access to the corresponding addresses in local store; but addresses in the ranges 78 to 
7F, and F8 to FF, do not, In this second range of addresses, half (78:7B and F8:FB) are pseudo address­
es. The other half (7C:7F and FC:FF) are assigned to discrete registers such as the as register or the 
condition codes. Discrete register addressing is discussed in Paragraph 6,9. 

The pseudo addresses form the mechanism that allows the as register to access local store. For ex­
ample, a 0 address of 78 causes the local store address logic to generate a base address of 40 (LS 
ADRS 7:4 = 0100) and to gate the four low-order as bits as the four low-order local store address bits 
(LS ADRS 3:0 = as 3:0). The resulting local store address, 40 indexed by as, accesses one of 16 
locations in the range 40 to 4F, which is one of the GPRs. The local store address logic is shown In 

Figure 6-12. 

Other pseudo addresses allow the as register to access the MASKS, backup GPRs, and one of the 
temporary data storage areas in local store (see Figure 6-11). In some cases, the five low-order bits of 
as are used to generate the local store address, This allows indexing into 32-location blocks of mask 
and temporary storage data. 

The local store is written by the BASIC, MOVE, and DECODE microinstructions. The three write 
enable signals (ENABLE BYTE, ENABLE WORD, and ENABLE LONG) are generated as shown in 
Table 6-12. 

Only certain values of the data path control fields in a BASIC or MOVE instruction cause the local 
store to be written. For the BASIC, the DP field values are 20 to 3F, For the MOVE, XDP equals 0 and 
4 to 7. For both microinstructions, the local store write enables are inhibited by SEL REGS = 1. The 
SEL REGS signal is asserted by the local store address logic (Figure 6-12) when the 0 address is for a 
discrete register. 
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Table 6-12 Local Store Write Control 

DATA TYPE ENABLE 
Microinstructions 1 0 LONG WORD BYTE Write LS 

BASIC 
DP = 20:3F /D ADRS = 00:7B 0 0 0 0 

0 1 0 1 
1 1 1 1 

MOVE 
MDP = 0,4:7/XD ADRS = 00:7B, 80:FB 0 0 0 0 

0 1 0 1 
1 1 1 1 

DECODE (18 REQ = 1) 

MOVE CSR 21 LS ADRS 7 { CSR22D--

CSR 16 

MUX (DAPA) 

CSR 09 ---'-----+---++-r---... 

OS4 

CSR 10 

78 TO 7F/ {g~~ 1~ 
F8 TO FF CSR 13 

CSR 12 

BASIC/MEM REQ/ {CSR 22 
MOVE/MISC CSR 20 

Figure 6-12 Local Store Address Logic 
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The number of bits written into local store during the BASIC and MOVE is determined by control 
signals DATA TYPE 1 and 0 from the data type control logic. For byte operations, DATA TYPE 1 and 
o equal 00 to assert ENABLE BYTE and write the low-order eight bits of local store. For word oper­
ations, DATA TYPE 1 and 0 equal 01, which asserts ENABLE WORD (in addition to ENABLE 
BYTE) to write the low-order 16 bits of local store. Finally, during longword operations, DATA TYPE 
1 and 0 are equal to 11, which asserts ENABLE LONG (in addition to the other two write enables), 
and causes all 32 bits of local store to be written. 

The type of write operation specified by DATA TYPE 1 and 0 is determined by the CC field of the 
BASIC and MOVE, the size register, and the compatibility mode control bit. The CC field, which 
controls both data type and the condition codes, may specify longword operations while holding or load­
ing the ALU CO~ (CC field = 00 and 01), or it may specify the data type previously loaded in the size 
register while loading or copying the ALU CCs (CC field = 10 and 11). When longword operation is 
specified by the CC field, either directly or indirectly by means of the size register, word operations will 
take place if the machine is in compatibility mode. 

The DECODE microinstruction writes local store only when the incremented native mode PC is being 
restored following an unload of the PFR (i.e., IB REQ = 1). To address the PC, the DECODE simply 
disables the local store address gates generating an address of 10. The address is 10 instead of 00 be­
cause LS ADRS 4, unlike the other address gates, has inputs which are low when true. Thus, disabling 
the address gates is the equivalent to a D address of 10, which is the address used by the microcode 
when accessing the native mode PC by means of the BASIC and MOVE microinstructions. When the 
PC is written by the DECODE, all three write enables are asserted to write all 32 local store bits. 

NOTE 
Because the native mode PC is stored in local store 
location 10, location 4F in the GPR block is used for 
other purposes (e.g., temporary data storage). 

Local store read control is shown in Table 6-13. The read enables, ENABLE LS HI and ENABLE LS 
LO, are asserted during all microinstructions except when a discrete register is being addressed during 
the BASIC and MOVE, and except for even values of the MOVE's data path control fields (MDP = 0, 
2, 4, and 6). Even values of MDP prevent a local store read so that memory read data may be gated 
onto the D bus when MDP = 0 or 4. 

Table 6-13 Local Store Read Control 

Microinstruction 

BASIC 

MOYE(MDP = 1,3,5,7)jEXTENDED 

MEM REQjMISCjJUMPjDECODE 

ENABLE 
D Address LS HI LS LLO 

00:7B 

00:7B,80:FB 1 
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6.6 OPERAND SPECIFIER (OS) REGISTER 
The 8-bit OS register (OS(7:0», which can access local store, is loaded from both the Y bus and the IB 
bus. The register can be read onto the D bus when its contents are to be processed by the 2901 A data 
processor. 

The load from the IB is controlled by the DECODE microinstruction. Control is by the register's input 
select levels (OS CTL 1 and 0), as described in Paragraphs 5.7.1 and 5.7.2, and as summarized in Table 
5-3. 

The load from the Y bus, and the read onto the D bus, occur during data path transfers by the BASIC 
or MOVE microinstructions. LOAD Y TO OS, asserted by the CPU's register read/write control, 
loads an arbitrary value into OS from Y bus data lines 7 to 0 for certain values of the microinstruction's 
data path control fields, and when the OS register is addressed by the D address field. (The discrete 
register address for OS is 7C.) 

The same value of the data path control field causes the OS register to be gated onto D bus data lines 7 
to 0 via the D bus multiplexer. Again, control is by the register read/write control when the OS register 
is addressed by the microinstruction's D address field. Whenever the OS is read onto the D bus, its 
contents are sign extended. That is, D bus bits 31 to 8 are made equal to the state of OS (7) by the 
CPU's sign extension control. 

Finally, during microdiagnostic operations, the four low-order bits of OS (OS (3:0» may be transmitted 
on the UNIBUS BR lines. This is done by the 8085A console processor during microdiagnostic oper­
ations. The OS register is first loaded and then a MISC microinstruction with a function 2 field equal 
to 4 is executed. The ability to assert the BR lines allows the microdiagnostics to test the CPU's inter­
rupt logic. 

6.7 DATA TYPE CONTROL 
The data type control performs the following data path functions: 

1. Determines whether a byte, word, or longword of data is written into local store. 

2. Determines whether a byte, word, or longword of read data from the memory controller is 
gated from the MC bus onto the D bus. 

3. Controls the appending of sign bits on D bus data by the sign extension logic. 

4. Determines the set of 2901A ALU result indicators (i.e.; N, Z, V, and C for either a byte, 
word, or longword operation) that are loaded into the ALU CCs. 

The main logic element in the data type control is the size register. The data type control also includes 
the memory data type (MDT) register plus other control logic, as shown in Figure 6-13. 
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. The 2-bit size register, SIZE REG 1 and 0, is detailed in Figure 6-14. It is loaded by the DECODE 
microinstruction during class decode operations (lRD STATE = 1) with a code generated by the OPC 
ROM/PAL (DT CLASS 1 and 0) that specifies the data type of the instruction's first operand. The 
code, once in the size register, specifies the data type as follows. 

Size Register 

00 
01 
10 
11 

Data Type 

Byte 
Word 
(Not used) 
Longword 

If the data type in the size register must be changed after the start of an instruction's execution, the 
microcode may reload the size register from Y bus data lines 1 and o. The load from the Y bus is made 
by a MOVE or BASIC microinstruction using a discrete register address of 7D or 7E (LOAD STAT = 
1). If the discrete register address used is 7E, the same MOVE or BASIC that loads the size register 
reads the current value onto the D bus data lines 1 and o. The size register bits are asserted on D bus 
data lines 1 and 0 (by EN STAT REG = 1). 

How and if the size register controls data path operations is determined by the current micro­
instruction. For example, during a BASIC, MOVE, or EXTENDED microinstruction, the CC field 
(CSR (06:05)) may select the size register to generate control signals DATA TYPE 1 and 0 (Figure 6-
13). As discussed in Paragraph 6.5, DATA TYPE 1 and 0 determine the size of any data written into 
local store. These signals also control the ALU CCs if they are being loaded. Finally, DATA TYPE 1 
and 0 are asserted on the MC bus. When the current microinstruction is a MEM REQ, they indicate to 
the memory controller the size of the requested data transfer. 

6-30 



PAL (DAPB) 
DTCLASS 1 

IRD STATE--.._J 

IRD STATE 

LOAD STAT 

BUS Y DOl 

(NOP SIZE) 

MDTCTL 1 

(NOP SIZE) 

MDT CTL O---._J 

(NOP MDT) 

MDT CTL 1---'-...... 

MDT CTL O'---._J 
(NOP MDT) CLOCK 

REGS 

o 

o 

o 

o 

.----+-SIZE REG 1 

BUS D DOl 

...---+--+--SI ZE REG 0 

BUS D DOO 

.---+--I--MDT 1 

BUS D D07 

.---+--I--MDT 0 

EN 
STAT 
REG 

BUS D DOB 

TK-5941 

Figure 6-14 Size and MDT Registers 

The other data type-dependent functions in the data path are controlled by the 2-bit MDT register 
(MDT 1 and 0). (The MDT register is shown with the size register in Figure 6-14.) The MDT register is 
loaded by the MEM REQ microinstruction with the data type code asserted by DATA TYPE 1 and 0 
on the MC bus. The data type is specified by the MEM REQ's DT field which (like the CC field) is 
CSR(06:05) in the microinstruction. 

If the MEM REQ initiates a read operation in the memory controller, the MDT register outputs are 
used to control both the sign extension logic and the size of the data gated onto the D bus during the 
next MOVE, when the requested read data from the memory controller is transferred within the data 
path. (While the previously loaded MDT register controls the transfer of MC bus data during the 
MOVE, the MOVE's CC field generates DATA TYPE 1 and 0 to control any local store writes.) The 
MDT register cannot be loaded from the Y bus. However, it is read onto D bus (7:6) by the same 
MOVE or BASIC that reads the size register (discrete register address = 7E). 

The generation of DATA TYPE 1 and 0 by the various microinstructions is shown in Table 6-14. 
DATA TYPE 1 and 0, when equal to 00, specifies byte operation; 01 specifies word operation; and 11 
specifies longword operation. A yalue of lOis not used. 
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Table 6-14 Generation of DATA TYPE Control Signals 

Data 
Size 

Microinstruction 1 0 

BASIC/MOVE/EXTENDED 
CC(CSR<06:05» = 00 (Use longword context, hold CCs) 

= 01 (Use longword context, set CCs) 
= 10 (Use size, set CCs) 0 0 

o 1 
1 1 

= 11 (Copy CCs) 0 0 
o 1 
1 1 

MEM REQ 
DT(CSR<06:05» = 00 (Byte) 

= 01 (Word) 
= 10 (Use size) 

= II (Longword) 

DECODE/ JUMP /MISC/PORT 

*DATA TYPE<I:O> = 01 (Word) ifCOMPAT MODE = 1 

o 0 
o 1 
1 I 

Type 
1 0 

1 1 
1 1 
0 0 
0 1 
1 1 
0 0 
0 1 
1 1 

0 0 
0 1 
0 0 
0 1 
1 1 
1 1 

Data Type 

Longword* 
Longword* 
Byte 
Word 
Longword* 
Byte 
Word 
Longword* 

Byte 
Word 
Byte 
Word 
Longword* 
Longword* 

N/A 

Also shown in Table 6-14 is the dual function of the BASIC, MOVE, and EXTENDED micro­
instructions' CC field, which controls both data type and the condition codes. (The condition codes are 
discussed in Paragraph 6.8.) CC field values of 00 and 01 assert DATA TYPE 1 and 0 to cause long­
word operations (while holding or setting the CCs), provided the machine is not in compatibility mode. 
If the machine is in compatibility mode, these same CC field values generate DATA TYPE 1 and 0 to 
cause word operations. Only byte and word operations are allowed in compatibility mode. 

CC field values 10 and 11 specify a data type equal to the size register (while setting or copying the 
CCs). Again, this is conditional on the machine mode. If the size register contains a longword code in 
compatibility mode, word operations result. 

The MEM REQ microinstruction's DT field specifies only data type and has no other function. Condi­
tional on machine mode, DT field values of 00, 01, and 11 generate corresponding values for DATA 
TYPE 1 and 0, allowing byte, word, and longword operations to be specified. Also, when DT is equal to 
10, the data type is specified by the size register. 

Data type 1 and 0 load the MDT register during a MEM REQ by generating control signals MDT CTL 
1 and O. 
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Operation is as follows. 

DATA TYPE MDTCTL MDT Data 
1 0 1 0 1 0 Type 

0 0 0 0 0 0 Byte 
0 1 0 1 0 1 Word 
1 1 1 0 1 1 Longword 

During all microinstructions other than a MEM REQ, MDT CTL 1 and 0 are equal to 11, which causes 
the MDT register to hold its current value. 

6.8 CONDITION CODE (CC) LOGIC 
The condition code (CC) logic consists of the ALU CCs, the PSL CCs, and the control logic to load 
them. The ALU CCs are loaded from the 2901A ALU result indicators, to indicate to the micro­
program the result of a microinstruction's execution. The PSL CCs are loaded from the ALU CCs to 
indicate to the CPU program the result of a native or compatibility mode instruction's execution. A 
block diagram of the condition code logic is shown in Figure 6-15. 
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Figure 6-15 Condition Code Logic 

6-33 

en 
::J 
III 
C 



The ALU CCs consist of four flip-flops (ALU N, Z, V, and C), as shown in Figure 6-16. They may be 
loaded by a BASIC, MOVE, or EXTENDED at the end of the microcyc1e. The ALU result indicators 
that are specified to be loaded depend on the size of the data being processed in the 2901As, as shown 
in Table 6-15. 
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LOAD ALU CC 

N BYTE 

ALU cc (FT, Fa) ----t._-' 

NWORD 
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LOAD ALU CC 
ALU CC (Fl ;-FO) 

r------
BUS Y D02----1 

Z BYTE --,-----~ 

ZWORD 

Z LONG ----~~ 

I L ____ _ 
r-----

BUS Y D01---1 

V BYTE ~ 
I 

VWORD -, 

V LONG ----t 
I L _____ _ 

r------
BUS Y D00----l 

CAR RY B ----I 
CARRY 16~ 
CAR RY 32----1 

I 
I ... _----

o 

I 
o I 

I 
__...J --, 

I 
I 

I 
I 

o I 
__ --1 
---, 

I 
I 

I 
I 
I ___ J 
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Figure 6-16 ALU Condition Codes 
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ALU Operation 

Byte 

Word 

Longword 

Table 6-15 ALU Indicator to ALU CC Transfer 

ALU Indicators Loaded into ALU CCs 

N BYTE (ALU (7») to ALU N 
Z BYTE (ALU (7:0) = 0) to ALU Z 
V BYTE (OVF(7») to ALU V 
CARRY 8 to ALU C 

N WORD (ALU(l5») to ALU N 
Z WORD AND Z BYTE (ALU (15:00) = 0) to ALU Z 
V WORD (OVF( 15») to ALU V 
CARRY 16 to ALU C 

N LONG (ALU (31») to ALU N 
Z LONG AND Z WORD AND Z BYTE (ALU(31:00) = 0) to 
ALUZ 
V LONG (OVF(31») to ALU V 
CARRY 32 to ALU C 

The sign bit, which is the high-order bit of the ALU result, is loaded into condition code flip-flop ALU 
N. It is the high-order ALU output (F SIGN) from the appropriate 2901 A chip, that is, it is N BYTE 
(ALU(7») for byte operations, N WORD (ALU(l5») for word operations, and N LONG (ALU(31») 
for longword operations. The sign bit equals zero when the ALU result is positive. It is a one when the 
result is negative. 

The ALU Z flip-flop stores the state of the ALU's zero result indicators. Each 2901A has an open 
collector output (F = 0) that is asserted when all four ALU outputs in the chip are zero. The open 
collector outputs are wired together to assert Z BYTE when ALU (7:0) are all zeros, Z WORD when 
ALU ( 15:8) are all zeros, and Z LONG when ALU (31: 16) are all zeros. 

These signals are gated as necessary at the input to ALU Z to indicate a zero result for each data size. 
For example, all three signals are ANDed to load a longword zero result indication. 

ALU overflow status is stored in the ALU V flip-flop. An ALU overflow is indicated by V BYTE, V 
WORD, or V LONG. These signals are the output of a 2901A output pin (OVERFLOW) that is logic­
ally the XOR of the carry-in and carry-out of the high-order ALU output in the chip. The pins used as 
input to ALU V are for the high-order bit of the ALU result (ALU (31,15,7»), which indicates that the 
result of an arithmetic operation (twos complement) has overflowed into the sign bit for either a byte, 
word, or longword operation. 

The ALU C flip-flop is set by the carry-out signals from the appropriate 2901A. These are CARRY 8 
for byte operations, CARRY 16 for word operations, and CARRY 32 for longword operations. 

6-35 



The PSL CCs are detailed in Figure 6-17. They are loaded at the end of a CPU instruction's execution 
by a BASIC, MOVE, or EXTENDED. As with the ALU CCs, the load of the PSL CCs is dependent 
on data size. Also, the way the PSL CCs are loaded is dependent on the CC class defined for the in­
struction. The CC class (one of four) is specified by flip-flops OPC TYPE 1 and 0 in the OPC 
ROM/PAL, as shown in Table 6-16. OPC TYPE 1 and 0 are loaded during the class decode operation 
for the instruction. ' 

PAL(DAPH) 

ALU N 

ALU V 

OPCTYPE 1 
OPCTYPE a 

BUS Y 003 

LOAD PSL CC 

BUS Y 000 

LOAD PSL CC 

OPCTYPE 1 
OPC TYPE a 

LOAD PSL CC 
COpy CC 

CLOCK 
REGS 

Figure 6-17 PSL Condition Codes 
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Table 6-16 ALU CC to PSL CC Transfer 

OpcodeType 

OPC TYPE (1 :0) = 00 
(Arithmetic add) 

= 01 (Arithmetic 
subtract) 

= 10 (Compare) 

= 11 (Logical) 

ALU CCs Loaded in PSL CCs 

ALU N to PSL N 

ALU Zto PSL Z 
ALU V to PSL V 
ALU C to PSL C 

ALU N toPSL N 
ALU Zto PSLZ 
ALU Vto PSL V 
-ALU C to PSL C 

ALU V XOR ALU N to PSL N 
ALU Zto PSL Z 
OtoPSL V 
-ALU C to PSL C 

ALU N to PSL N 
ALU Z to PSL Z 
o to PSL V 
Hold PSLC 

If loading the PSL CCs, and the CC class as specified by OPC TYPE 1 and 0 is 00, a direct transfer of 
the ALU CCs to the PSL CCs takes place. This does not occur for the other CC classes, however. 
When OPC TYPE 1 and 0 are 01 and 10, the negation of ALU C is loaded into PSL C. Also, PSL C is 
not loaded at all for a CC class of 11; and ALU N is XOR'd with ALU V if loading PSL N when the 
CC class is 10. For both classes 11 and 10, PSL V is cleared during the CC transfer. 

Two control signals, ALU CC Fl and FO, determine ALU CC operation. ALU CC Fl and FO equal to 
00, 01, and 10 load the ALU indicators for byte, word, and longword operations, respectively. When 
ALU CC Fl and FO are 11, the ALU CCs are held at their current value. A third control signal, copy 
CC, enables the loading of the PSL CCs from the ALU CCs. The three control signals are generated as 
shown in Table 6-17. 

CC operation is specified by the CC field of the BASIC, MOVE, and EXTENDED microinstructions. 
As previously discussed, this field (together with the size register and COMPAT MODE) also controls 
the data type logic generating DATA TYPE 1 and O. As a result, in some cases, the DATA TYPE 
signals can be used in conjunction with the CC field to generate the required CC control signals. 

A CC field value of 00 is a NOP. Both ALU CC Fl and FO are asserted to hold the ALU CCs, and 
COPY CC is negated to hold the PSL CCs. A CC field of 01 is used to load the ALU CCs, following a 
longword operation in the ALU. CC equal to 10 uses the size register to define the loading of the ALU 
CCs. This is when the DATA TYPE signals are used to generate ALU CC Fl and FO. Because the 
DATA TYPE signals force word operation in compatibility mode when longword operation is specified 
by the size register, word operation is also forced when loading the ALU CCs in this instance. 
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Table 6-17 Generation of CC Control Signals 

Microinstruction 

BASIC/MOVE/EXTENDED 
CC(CSR<06:05> ) 

MEM 

= 00 (Longword context, hold CCs) 
= 01 (Longword context, set CCs) 
= 10 (Use size, set CCs) 

= II (Copy CCs) 

REQ/DECODE/JUMP/ 

MISC/PORT 

DATA 
TYPE 
1 0 

0 0 
0 I 
I I 

ALUCC 
FI FO 

I I 
I 0 
0 0 
0 I 
I 0 
I I 

COpy 
CC 

0 
0 
0 
0 
0 
I 

o 

CC Load 
Function 

"10 change 
ALU CCs:longword 
ALU CCs:byte 
ALU CCs:word 
ALU CCs:longword* 
PSL CCs rmlll ALL CCs 

NOP 

*Cannot occur in compatibility mode. Ifsize register specifies longword operation and COMPAT MODE = I, 

DATA TYPE < I :0> = 01 (word) causes ALU CC 1:1 AND FO to equal 01 (Load ALU CCs:word). 

When the CC field is 11, it asserts COpy CC to load the PSL CCs from the ALU CCs. The ALU CCs 
hold their current value following the transfer. Both the ALU CCs and PSL CCs hold their current 
value when microinstructions other than the BASIC, MOVE, or EXTENDED are executed. 

The ALU CCs are microsequencer skip conditions and may be tested by the microcode. They may also 
be tested by reading them (through the D bus multiplexer) onto D bus(3:0), and into the data path with 
a MOVE microinstruction using a discrete register address of FE. A MOVE can also write the ALU 
CCs (discrete register address FD or FE) from Y bus(3:0) at the end of the microcycle (LOAD ALU 
CC = 1). This allows the microcode to set the ALU CCs to any value during an instruction's execution. 

Of the PSL CCs, only PSL C is a microsequencer skip condition. However, like the ALU CCs, all four 
PSL CCs may be read into the data path through the D bus multiplexer and onto D bus(3:0). They 
may also be loaded from Y bus (3:0) (LOAD PSL CC = 1). The PSL CCs may be read and written by 
both a BASIC and a MOVE. The discrete register address used is 7F or FF. 

6.9 REGISTER READ jWRITE CONTROL 
A number of the discrete registers in the CPU may be accessed by the BASIC and MOVE. (A discrete 
register is a hardware register that is not a local store or 2901A RAM location.) The discrete registers 
that may be accessed are the ALU and PSL CCs, and the OS, microstatus, PSL, and console write 
registers. Also, the HALF CARRY flip-flop may be accessed. When read, HALF CARRY is gated to 
generate a decimal constant during packed decimal arithmetic operations. 

Discrete registers are read onto the D bus and written from the Y bus. Bus bit assignments are shown in 
Figure 6-18. Register read data is valid on the D bus shortly after the beginning of the microcycle when 
DISABLE-D BUS goes false, and the data remains valid for the rest of the microcycle. A register is 
written from the Y bus at the end of the microcycle when the register is clocked. 
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o ADRS READ/WRITE REG 

7C 

70 

7E 

7O/7E 

7F/FF 

7F/FC/FF 

FC 

FE 

FD/FE 

7F/FC/FF 

R/W 

R 

R 

W 

R 

W 

R 

R 

W 

W 

31 08 07 00 

CRY/2 _DECIMAlCONSTANTI 
II I I I II 

31 04 03 00 

PSlCCs N,~~~,cl 

00 

CWR_, CWR 
I I , , I 

31 04 03 00 

AlU CCs AlU I 
N,Z,V,C 

31 0403 00 

AlU CCs N,~~~,cl 

3130 26.251248 20 -1615 00 

PSl I _110 , 'il, 
I 

CM CUR MODE 
TK-5945 

Figure 6-18 Discrete Register Read/Write Bit Assignments 

The discrete registers are addressed by the D address fields of the BASIC and MOVE. As discussed 
previously, discrete register addresses are in the range 7C to 7F and FC to FF, causing SEL REGS to 
be asserted by the local store address logic. This signal, in conjunction with the D address and data path 
control fields of the BASIC and MOVE, asserts the control signals necessary to read and write the 
register. 
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The discrete register read/write control logic is shown in Figure 6-19. The control signals include three 
read enable levels (READ REGS, EN STAT REG, READ CONSOLE), a write enable (WRITE 
REGS), and two register select levels (REG SEL (l:0»). 

The MOVE or BASIC may read a register when one of the read enables is asserted, write a register 
when the write enable is asserted, or do both a read and write when a read enable is asserted together 
with a write enable. For registers which can be both read and written, register data read onto the D bus 
and into the data path may be examined and/or modified in the 2901A data processor during the BAS­
IC or MOVE, and the unmodified or modified data written back into the register at the end of the same 
microcycle. 

22 00 

BASI C~ ",",-__ D_P _-,--_D _"'~,"",'-J 
22 00 

MOVE~ MDP I XD ~ 

CSR 
<21:09> 

DISABLE D·BUS 

LOAD ALU CC 

LOAD PSL/LOAD PSL CC 

LOAD STAT 

LOAD Y TO OS 

(DAPH) 

EN 

REG 
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LOGIC 

(DAPA/H) 

REG SEL 
<1:0> 

WRITE REGS 

READ REGS 

EN STAT REG 

READ CONSOLE 

ALU CC s 

OS<7:4>/PSL CC s 
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OS<7:0> 

EN 

(DAPH) 

WRITE 
REGS 

READ STAT REG 
REGS 1. 

r.tl 
::::> 
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I CWR <07:00> 

LfJ 
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Figure 6-19 Register Read/Write Control 
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Except for the microstatus (STAT) and the console write register (CWR), register data is read onto the 
D bus through the D bus multiplexer. REG SEL (1 :0) select the D bus multiplexer's inputs. READ 
REGS enables the multiplexer's outputs. The reading of the STAT and the CWR are controlled by EN 
STA T REG and READ CONSOLE, which cause the corresponding register flip-flops to drive the D 
bus directly. The STAT register consists of the MDT and size registers in the data type control, as well 
as the interrupt identifier code stored in the CPU's interrupt logic. 

The same two levels that select register read data at the input to the D bus multiplexer also determine 
the register to be written. By selecting the output of a decoder, REG SEL (1 :0) generate the appropri­
ate write enable signal (LOAD Y TO OS, LOAD STAT, etc.) when WRITE REGS is asserted. 

Table 6-18 shows the read/write control signals generated by the BASIC and MOVE. The BASIC's 7-
bit D address may specify a discrete register address in the 7C to 7F range. As a result, it may access 
the OS and STAT registers, the PSL CCs, and the decimal constant. The MOVE can do the same, but 
with an additional D address bit, it may specify discrete register addresses in the range FC to FF, allow­
ing access to the ALU CCs, the CWR, and the PSL. 

Table 6-18 Register Read/Write Control Signal Generation 

REG SEL Read Register Write Register 
Microinstruction D Address 10 Signal* Read* Signalt Writtent 

BASIC 7C 1 1 OS LOADYTOOS OS 

70 10 CRY/2 LOAD STAT STAT 

7E 10 EN STAT REG STAT LOAD STAT STAT 

7F 01 PSL CCs LOAD PSL CC PLS CCs 

MOVE 

MOP = 0/1/3/4/5/7 7C 1 1 OS LOAD YTOOS OS 

7D 10 CRY/2 LOAD STAT STAT 

7E 1 0 EN STAT REG STAT LOAD STAT STAT 

7F/FF 01 PSL CCs LOAD PSL CC PSL CCs 

LOAD PSL PSL 

FC 01 READ CONSOLE CWR LOAD PSL CC PSL CCs 

LOAD PSL PSL 

FD 00 LOAD ALU CC ALU CCs 

FE 00 ALU CCs LOAD ALU CC ALU CCs 

MOP = 2/6 1 1 OS 

*The CWR (eonsole write register) and the STAT register are not read by a MOVE when MOP = 0/2/4/6. Other registers 
are not read when MOP = 0/4. Register reads are enabled by REG SEL < I :0>, except when REAO CONSOLE = I and 
EN STAT REG = 1. 

tNo register is written by a BASIC when OP = <00: I F>. or by a MOVE when MOP = 1/2/3. 
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The decimal constant and the CWR are read-only registers. The PSL is a write-only register, although 
the PSL CCs may be both read and written. When writing the PSL, an additional bit (T TRAP) is 
loaded, but not directly from the Y bus. T TRAP, which causes a hardware interrupt (Paragraph 7.5), 
is set by signal Tor TP (trace enabled or trace pending). T TRAP is the OR of Y bus bits 30 and 4. 

NOTES 
There are two copies of the PSL, the discrete part 
which supports hardware processing and another 
which is kept in a local store location (ID). Those 
bits in the discrete PSL which are modified directly 
by the microcode (by the BASIC or MOVE) are 
also copied in the local store location. (These are 
compatibility mode, current mode, and IPL control 
bits.) 

However, the PSL CCs are not updated in local 
store because these bits are set or cleared as a result 
of a hardware (ALU) calculation. Therefore, when 
the PSL is to be stored, it requires that the micro­
code first read the PSL CCs (with a BASIC or 
MOVE), and then assemble the current PSL from 
the PSL CCs and the contents of the local store lo­
cation. 

Whereas the discrete register address in the D address field of the BASIC or MOVE determines the 
register accessed, the microinstruction's data path control field determines whether the access is read­
only, write-only, or both a read and write. Register writes are inhibited for the BASIC when DP = 00 
to 1 F, and for the MOVE when MDP = 1, 2, or 3. 

These values of DP and MDP correspond to the data path operations that do not write local store from 
the 2901A data processor. Conversely, this means that any time a local store location can be addressed 
to store the 2901 A outputs, a discrete register address may be used instead to store the data in a writ­
able discrete register. 

The only restrictions when reading discrete registers are for the MOVE. When MDP = 0 or 4, no 
register can be read. (Memory read data is present on the D bus in these situations.) Table 6-19 gives 
the register addresses and summarizes the various read/write restrictions when accessing the discrete 
registers with the BASIC and MOVE. 

6.10 SIGN EXTENSION CONTROL 
When a word or byte of read data from the memory controller is gated from the MC bus onto the D bus 
and into the 290lA data processor during a MOVE, the sign extension control transmits copies of the 
sign bit on the high-order D bus data lines to aid in the data processing. For example, if a byte of read 
data which is gated onto data lines 7 to 0 is negative (data line 7 = 1), ones are transmitted on the high­
order data lines 31 to 8 by the sign extension control. 

Similarly, for a word of read data which is gated onto data lines 15 to 0, copies of the sign bit (data line 
15) are transmitted on high-order lines 31 to 16. The MC bus transceivers for the high-order data lines 
are disabled by the data type control during the read data transfers. This is so that the sign extension 
control may drive the D bus. 
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Table 6-19 Discrete Register Address and Read/Write Summary 

Register Microinstruction D Address Read Only Write Only Read/Write 

OS BASIC 7C YES (OP = 00: I F) NO YES (DP = 20:3F) 

MOVE 7C YES (MOP = 1/3) YES (MOP = 0/4) YES (MOP = 5/7) 
MOVE YES (MOP = 2/6) NO NO 

CRY/2 BASIC 70 YES NO NO 
MOVE 7D YES (MOP = 1/3/5/7) NO NO 

STAT BASIC 7D NO YES (OP = 20:3F) NO 
BASIC 7E YES (OP = 00: I F) NO YES (OP = 20:3F) 
MOVE 70 NO YES (MOP = 0/4/5/7) NO 
MOVE 7E YES (MOP = 1/3) YES (MOP = 0/4) YES (MOP = 5/7) 

0- PSI. CCs BASIC 7F YES (OP = 00:1 F) NO YES (OP = 20:3F) I 
.j::>. 

MOVE 7F YES (MOP = 1/3) YES (MOP = 0/4) YES (MOP = 5/7) w 
MOVE FC NO YES (MOP = 0/4/5/7) NO 
MOVE FF YES (MOP = 1/3) YES (MOP = 0/4) YES (MOP = 5/7) 

CWR MOVE FC YES (MOP = 1/3/5/7) NO NO 

ALU CCs MOVE FO NO YES (MOP = 0/4/5/7) NO 
MOVE FE YES (MOP = 1/3) YES (MOP = 0/4) YES (MOP = 5/7) 

PSL MOVE 7F NO YES (MOP = 0/4/5/7) ~O 
FC NO YES (MOP = 0/4/5/7) NO 
FF NO YES (MOP = 0/4/5/7) NO 



The sign extension control also transmits high-order sign bits when the OS register contents are read 
onto the D bus and into the 2901As during a BASIC or MOVE. The sign bit for the 8-bit OS register is 
OS(7). 

The sign extension control is shown in Figure 6-20. Multiplexers select the appropriate sign bit (OS(7) 
or MC bus (15) or (7» depending on the data transfer, and sign-send logic enables tri-state output 
latch circuits to transmit the selected sign bit on the high-order D bus data lines. There are two sets of 
tri-state output latch circuits, one to transmit the sign bit on data lines 31 to 16, and another to transmit 
the sign bit on lines 15 to 8. 

BASIC 

MOVE 

r---' 
I DT 
I CTL I 
L. __ ....J =ODI-=-SA~B::-LE=-D=-·="BU=S 

DATA REQ 

EN SXT HI WORD 

EN SXT BI 

LATCHES 

(DAPH) Vl 

LATCHES 

(DAPH) 

EN SXT B1 

::J 

'" C 

Figure 6-20 Sign Extension Control 
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Sign bit selection by the multiplexers is shown in Table 6-20. OS register data, not MC bus data, can be 
transferred by the BASIC; OS (7) is selected as the sign bit for this microinstruction. During the 
MOVE, which transfers both OS and MC bus data, DATA REQ = 1 indicates a memory controller 
reference. Thus, DATA REQ is used to select MC bus (15) or (7), depending on the state of MDT 0 
in the data type control. (The MDT register indicates the size of the data transfer, and MDT 0 is 
cleared for byte transfers and set for word transfers.) When DATA REQ is not asserted for a MOVE, 
OS (7) is selected as the sign bit. 

Microinstruction 

BASIC 

MOVE 
1 
1 

Table 6-20 Sign Bit Selection 

DATA REQ 
(MOVE:MDP=Ojlj4) 

o 
o 
1 

MDT 0 

MC(07) 
MC(15) 

Sign Bit 

OS(7) 

OS(7) 

Two signals control the latch circuits. EN SXT HI WORD enables the set of latches that transmit the 
selected sign bit on data lines 31 through 16; EN SXT B 1 enables the latches that transmit the sign bit 
on lines 15 to 8. Both signals are asserted when the OS or a byte of MC bus data is transferred on the D 
bus. Only EN SXT HI WORD is asserted when a word of MC bus data is present on the D bus. The 
two latch enables are generated as shown in Table 6-21. 

Table 6-21 Sign Send Control 

MDT ENSXT 
Microinstruction D Address I 0 HI WORD BI Remarks 

BASIC 00:7B 0 0 No sign send 
7C:7F I I OS<7> to D D<31 :08> 

MOVE 

MDP = 0/4 0 0 1 1 MC D<07> to D D<31 :08> 
0 1 1 0 MC D<15> to D D<31:16> 
1 1 0 0 No sign send 

MDP = 3/7 7C:7F,FC:FF OS<7> to D D<31 :08> 

MDP = 2/6 00:7F OS<7> to D D<31 :08> 

EXTENDED/MEM REO/ 

MiSe/JUMP/DECODE 0 0 ]\; 0 sign send 
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During a BASIC, both latch enables are asserted to transmit OS(7) as the sign bit (selected by the 
multiplexers) whenever the D address is for a discrete register. The microprogram ignores the trailing 
OS sign bits when the BASIC reads a discrete register other than OS over the D bus. 

During a MOVE, both latch enables are asserted to transmit the OS sign bit for discrete register ad­
dresses, but only when the data path control field (MDP) is 2, 3, 6, or 7. Of these, only MDP equal to 3 
and 6 actually move discrete register data from the D bus into the 2901As. (MDP = 6 always moves 
OS register data.) 

For values of MDP that move read data from the MC bus, which are MDP = 0 or 4, the latch enables 
asserted depend on the size of the transfer as indicated by the MDT register. MDT 1 and 0 equal to 00 
indicates a byte transfer and asserts both latch enables; MDT 1 and 0 equal to 01 indicates a word 
transfer asserting only EN SXT HI WORD. No latch enables are asserted, and no trailing sign bits 
need be transmitted, when MDT 1 and 0 are 11. In this case, all 32 data lines are being used to transfer 
a longword of MC bus data over the D bus. 

6.11 MEMORY REFERENCES 
A memory reference made to the memory controller (MCT) by the CPU usually requires the execution 
of at least two microinstructions. A MEM REQ microinstruction is executed to generate a memory 
request, and to transfer address information to the MCT over the MC bus. This is followed by a 
MOVE, which makes a data request and then transfers a longword of read/write data from/to the 
MCT over the MC bus. 

Exceptions to the two-microinstruction (MEM REQ/MOVE) memory reference include quadword and 
octaword references and references to fill the PFR with instruction data. Quadword references require 
two MOVEs following the MEM REQ to transfer the two longwords of memory data. Octaword refer­
ences require four MOVEs to transfer four longwords. When refilling the PFR (see Paragraph 5.2.1), a 
DECODE or MEM REQ makes the memory request, but a MOVE is not required. The PFR is loaded 
directly from the MC bus (by MC bus signal LOAD IB) without any data request by the CPU. 

NOTE 
Whereas octawords may be both read and written in 
the VAX-l1j730 system, only a quad word read ref­
erence is implemented. 

Timing for a CPU memory reference by the MEM REQ and MOVE microinstructions is shown in 
Figure 6-21. The MEM REQ microinstruction asserts MEMORY REQ on the MC bus at the begin­
ning of the microcycle. (A flow diagram for the MEM REQ is given in Figure 6-22.) Also asserted on 
the bus are DATA TYPE 1 and 0, which are generated by the CPU's data type control; CSR (19), 
which is a one for a MEM REQ microinstruction; and CSR (18:16), and CSR (08:07), which are the 
MEM REQ's memory function fields. 

The DATA TYPE signals specify the size of the memory data transfer (byte, word, or longword) and 
are controlled by the MEM REQ's DT field as discussed previously. (The DATA TYPE signals are 
sometimes ignored, such as when making a quadword or octaword reference.) The memory function 
lines specify the type of reference. For example, making CSR( 18: 16) and CSR(08:07) equal to 01000 
specifics the read of a virtual memory address. 
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Figure 6-21 CPU Memory Reference Timing Diagram 
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Figure 6-22 MEM REQ Microinstruction Flow Diagram 
(Sheet 1 of 2) 

6-47 



FROM SHEET 1 

CPU GRANT (FROM MCT) 

LOAD IB (FROM MCT) 

I 
CLK 

T 
LOAD INSTRUCTION 
DATA IN PFR 
REGISTER 

MC BUS -> PFR 

STALL CLOCK UNTIL 
CPU GRANT RECEIVED 
FROM MEMORY 

CLOCK STALL = 1 

CLK'CPU P2 

CPU LEAVING 
ADRS-OUT 
STATE AFTER 
MREO.IBFILL REO 

DATA RCVD = 1 
(TO MCT) 

l 
CLOCK P2'CLK 

T 
1 ->IB VALID 

TK-5942 

Figure 6-22 MEM REQ Microinstruction Flow Diagram 
(Sheet 2 of 2) 

In addition to the DATA TYPE and memory function signals, three PSL status bits are transmitted on 
the MC bus to indicate machine mode. These are COMPAT MODE and CURR MODE 1 and O. 
When the machine is in compatibility mode, COMPAT MODE prevents access to words in memory 
that are not aligned on word boundaries. The CURR MODE signals indicate the privilege level of the 
currently executing program. Depending on the access mode (e.g.; kernal, executive, etc.), reads and/or 
writes to certain memory addresses may not be allowed, as determined by the operating system and as 
specified by the protection bits in the MCT's translation buffer. 

Following the assertion of MEMORY REQ, the MEM REQ microinstruction reads 32 bits of address 
information from local store, and enables all MC data line transceivers to gate the address from the D 
bus onto the MC bus. The local store location containing the address .information is specified by the 
MEM REQ's D address field. 

When the MCT is ready to accept the address transmitted on the MC bus and begin the operation 
specified by the memory function signals, it asserts CPU GRANT on the MC bus. If this signal is not 
asserted immediately (during CPU clock phase 1), CPU clock phase 2 is stalled, delaying further exe­
cution of the MEM REQ. (A stall can occur if the MCT is already active transferring UNIBUS NPR 
data.) 
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When CPU G RANT is asserted, the stall (if any) is released and the MEM REQ completes its execu­
tion by storing the address transmitted on the MC bus in 2901 A working register 5, and by storing the 
state of the DATA TYPE signals in the MDT register in preparation for handling the read/write data 
during the upcoming MOVE (or MOVEs). After asserting CPU GRANT, the MCT asserts MEMO­
R Y BUSY on the MC bus to indicate it is busy processing the memory request. 

Following the MEM REQ and with MEMORY BUSY equal to 1, the microprogram usually executes 
one non-memory related microinstruction before doing a MOVE. (The MCT cannot be ready to accept 
write data or to return read data any sooner than this.) When the MOVE is executed, its operation 
depends on its MDP function field; that is, whether it is to transfer write data to the MCT (MDP = 1), 
or whether it is to transfer read data from the MCT (MDP = 0 or 4). A flow diagram for the MOVE is 
shown in Figure 6-23. 
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Figure 6-23 MOVE Microinstruction Flow Diagram (Sheet 1 of 3) 
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The MOVE requests the transfer of read/write data by asserting DATA REQ on the MC bus at the 
beginning of the microcycle. For a write transfer, the write data is also read from local store (the loca­
tion specified by the MOVE's D address field), and the data line transceivers for the MC bus are en­
abled to gate the write data from the D bus to the MC bus. As when address information is transmitted 
to the MCT by the MEM REQ, all 32 bits read from the local store location are enabled onto the MC 
bus by the MOVE. The high-order data lines not carrying write data during byte and word transfers are 
ignored by the MCT. 

If the data transfer is a read, the transceivers are also enabled, but only the transceivers for the lines 
carrying read data. That is, for byte and word transfers, the transceivers for the high-order lines are 
disabled so that the sign extension control may append trailing sign bits to the read data. 

The transceiver enables are EN XCVR HI WD, which enables bus bits 31 to 16; EN XCVR Bl, which 
enables bits 15 to 8; and EN XCVR BO, which enables bits 7 to o. They are generated as shown in 
Table 6-22. All three enables are asserted to pass the 32 bits of address data during the MEM REQ 
(and also the DECODE when initiating a refill of the PFR), and during the transfer of write data by the 
MOVE. 

Table 6-22 Generation of MC Bus and D Bus Transceiver Enables 

GATE MDT EN XCVR 
Microinstruction DIR 1 0 HI WD Bl BO REMARKS 

MEM REQ/DECODE Address to MCT 

MOVE (MDP = I) Write data to MCT 

MOVE (MDP = 0/4) 0 0 0 0 Read data (byte) to CPU 
0 1 0 1 Read data (word) to CPU 
1 1 1 1 Read data (Iongword) to CPU 

However, during the transfer of read data by the MOVE, the MDT register outputs disable the appro­
priate high-order lines. The transceivers are also conditioned by GATE DIR. This MC bus signal is 
normally asserted by the MCT to allow address and write data to pass from the D bus to the MC bus. 
However, following a MEM REQ requesting a read transfer, the MCT negates BUS DIR, allowing 
data to pass from the MC bus to the D bus. 

Following the assertion of DATA REQ by a MOVE during a write data transfer, the MCT, if not busy 
(MEMORY BUSY = 0), takes the write data off the MC bus and begins (or continues) the write 
reference. In the CPU, MEMORY BUSY = 0 allows clock phase 2 to be generated, which asserts 
DATA RCVD on the bus. This in turn causes the MCT to negate CPU GRANT, ending MC bus dia­
logue for the transfer of one longword of write data. 

For a read transfer, the read data from the MCT is valid on the MC bus whenever the MCT negates 
MEMORY BUSY. The read data is gated onto the D bus and into the 2901As by the MOVE, and 
(again) MEMORY BUSY = 0 allows CPU clock phase 2 to be generated. Clock phase 2 completes 
execution of the MOVE and asserts DATA RCVD on the MC bus to signal the end of the bus transfer. 
The read data is stored in a working register when the MOVE's MDP field is zero; it is stored in local 
store if MDP is equal to four. 

If the MCT is still busy (during clock phase 1) when a MOVE asserts DATA REQ and attempts to 
transfer data, CPU clock phase 2 is stalled, delaying the MOVE and the requested data transfer. The 
stall is released when MEMORY BUSY = O. 
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Stalls are caused by memory refresh cycles, soft read data errors, or because read data is not aligned in 
memory. Hard errors (such as nonexistent memory and uncorrectable read errors) or conditions requir­
ing intervention by the memory management microcode (such as TB entry not valid and access viola­
tion) may stall the MOVE; but when the condition is detected, the MCT asserts ERR SUM on the MC 
bus and negates MEMORY BUSY to release the stall. The ERR SUM (error summary) signal is a 
microsequencer skip condition, and MOVEs accessing the MCT usually skip on this error flag in order 
to dispatch to the memory management microcode when necessary. 

To determine why ERR SUM has been asserted, the memory management microcode reads the CSRs 
(controller status registers) in the MCT, using a MEM REQ and MOVE as when making other types of 
memory references. 

6.12 FPA/PORT DEVICE TRANSFERS 
Data is transferred to and from the FPA and a port device over the Y bus. Control is by the CPU's 
MISC/PORT and MOVE microinstructions. (A flow diagram for the MISC/PORT is shown in Figure 
6-24.) Opcodes are also transmitted to the FPA over the IB bus when a class decode operation is exe­
cuted by a DECODE. 
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Figure 6-24 MISC/Port Microinstruction Flow Diagram 

6-53 

ENABLE 2901A. TO 
OUTPUT WORKING 
REGISTER 

WR (0 OR 1) --+ Y BUS 

TK-5948 



Timing for the transfers that take place between the CPU and the FPA are shown in Figure 6-25. The 
FPA examines the opcodes of all instructions being processed by the CPU by monitoring the IB bus 
during class decode operations when IRD STATE is true. When the opcode is for one of the instruc­
tions that are executed by the FPA in conjunction with the CPU (ADDF, POLY, EMOD, etc.), the 
FPA first accepts operand data from the CPU. It then performs the calculations specified by the in­
struction and sends the results back to the CPU. 

The transfer of operand data to the FPA is made by the CPU's MISC microinstruction over the Y bus. 
Transfers are one long word at a time, and one MISC after the other is executed until all operand data 
has been sent. The MISC always transmits the contents of a 2901 A working register on the Y bus, but 
if the MISC's function 2 field is equal to 2, it also asserts CPU DATA A V AIL to the FPA, indicating 
the Y bus data is operand data. 
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Figure 6-25 CPU /FPA Transfers Timing Diagram (Sheet 1 of 2) 

6-54 



MICROADDRESS TO FPA 

MISC 

I I 
YBUS @ IlADRS I@ 

I I 
DAPK TRAP ACC L 1'--___ ........... 1 

FPA MICRO-PC TO CPU 

MISC MOVE 

IlPC READ GET IlPC 
REQ 

PO 

DAPK READ IlPC L 

DAPA READ PORT L 

FPAB ACC SYNC H 

TK-S935 

Figure 6-25 CPU jFPA Transfers Timing Diagram (Sheet 2 of 2) 

For all instructions except the POLY, operand data is taken by the FPA as fast as it can be sent by the 
CPU. However, during the POLY, coefficients must be processed by the FPA between transfers, and 
(as a result) the FPA is not always ready to accept data when the CPU asserts CPU DATA A V AIL. To 
synchronize transfers, the FPA asserts ACC SYNC when it is ready for data. Also, the CPU micro­
instruction transferring the data (the MISC) is contained in a loop address and enabled to loop on ACC 
SYNC = 0 (Paragraph 4.4.8). 

When the FPA is asserting ACC SYNC waiting for data, it responds to CPU DATA A V AIL by taking 
the data and negating ACC SYNC at the end of the current CPU microcycle (the MISC). If the FPA 
is not yet ready for the data (ACC SYNC = 0 when CPU DATA A V AIL is asserted by the CPU), the 
CPU's MISC instruction loops (repeats) until ACC SYNC is asserted, indicating the data has been 
removed from the Y bus. 

As can be seen, ACC SYNC and CPU DATA A V AIL work together to synchronize the transfer of 
each longword of operand data. That is, when only one synchronizing signal is asserted, the device as­
serting the signal (either the FPA or CPU) will stall operations until the other device asserts its own 
synchronizing signal, allowing the data transfer to complete. 

Once operands have been processed by the FPA, the results must be transferred to the CPu. Again, 
control is by the CPU and transfers are over the Y bus, one longword at a time. However, a MOVE 
microinstruction with its MDP field equal to 5 is used by the CPU instead of a MISe. 
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The MOVE disables the 2901 A outputs in the CPU and asserts synchronizing signal READ PORT to 
the FPA. The FPA responds if it is ready for the transfer by placing the result data on the Y bus. The 
MOVE then stores the data in the local store location addressed by its D address field. 

As for the transfer of coefficients during a POLY, ACC SYNC = 1 indicates the FPA is ready for a 
data transfer and the CPU microinstruction, which is asserting its own synchronizing signal (READ 
PORT in this case), loops on ACC SYNC = O. Whenever both synchronizing signals are asserted, the 
transfer is made. 

During the transfer of results by the MOVE, the FPA must be selected by the CPU generated signal, 
SEL ACC IN. This is a flip-flop controlled by the MISC and it must be set prior to the MOVE. It is set 
when the MISC has a function 1 field value of 8. It is cleared when the function 1 field value is 9. The 
select signal is necessary because the MOVE is also used to transfer data from a port device over the Y 
bus. 

There are two other types of data transfers between the FPA and CPU over the Y bus. In one case, the 
FPA's micro-PC may be loaded by the CPU. In the second case, the FPA's current micro-PC may be 
read by the CPU. 

When the FPA's micro-PC is loaded, it causes the FPA to abort its current operation and trap to the 
microaddress sent by the CPu. The trap in initiated by a MISC (function 2 field = 3) which asserts 
TRAP ACC to the FPA. The trap feature is used to abort the FPA during execution of memory man­
agement microcode, and to invoke microdiagnostic routines in the FP A. 

Reading the FPA's micro-PC takes two consecutive microinstructions by the CPu. A MISC (function 
2 field = 4) asserts READ JLPC to the FPA. This is followed by a MOVE, again with the MDP field 
equal to 5 as when reading result data. When the FPA receives READ PORT, it asserts ACC SYNC 
and gates the current micro-PC onto the Y bus. The CPU then takes the data. The MOVE is not made 
to loop on ACC SYNC in this case. The FPA will always respond with the micro-PC data immediately 
following the MISC, and when READ PORT is first received. 

Timing for port device transfers over the Y bus is shown in Figure 6-26. Both data and commands are 
transferred to a port device by a MISC with its port control bit CSR (18) asserted. CSR (18) = 1 
redefines the MISC as a PORT microinstruction, which in turn redefines the rest of the control bits in 
the microinstruction. That is, eight of the bits defined as part of the function fields for the MISC are 
redefined as a command byte for the PORT. These are CSR (17: 10), which connect directly to the 
port device over the FPA/port bus. 

When the PORT microinstruction is executed, PORT INSTR is asserted by the CPU causing the port 
device to load the command byte. Also, the PORT microinstruction (like the MISC) transmits the con­
tents of a 2901 A working register onto the Y bus. This may be device write data, data to be loaded in a 
control status register, etc; the type of data is defined by the command byte. 

A MOVE (MDP = 5) is used to transfer data from a port device, just as when collecting results from 
the FPA. READ PORT is asserted by the CPU, but there is no corresponding synchronizing signal 
generated by the port device. The port device always sends data when it first receives READ PORT. 
The data read by the CPU (device read data, status register contents, etc.) is specified by the command 
byte of a previous PORT microinstruction. The CPU MOVE instruction may follow the PORT micro­
instruction when the data is from a register or is a byte. When the data read is a longword, the CPU 
must delay at least one CPU cycle to allow the port device enough time to assemble the longword. 
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Figure 6-26 CPU jPort Device Transfers Timing Diagram 

During fast interrupt operations by a port device (Paragraph 7.6), a PORT microinstruction does not 
have to precede every MOVE. The CPU can send the PORT microinstruction for AUTOMODE reads. 
Then successive MOVEs can read the port device's data buffer. 

NOTE 
When executing the MOVE or PORT micro­
instructions to transfer port device data, the FP A 
must previously have been deselected by a MISe 
(function 1 field = 9). (Deselecting the FPA is 
equivalent to selecting a port device.) A port device 
also has an address assignment allowing more than 
one device to be connected to the Y bus. The device's 
address is specified in the high-order bits of the 
command byte. 
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7.1 INTRODUCTION 

CHAPTER 7 
INTERRUPT PROCESSING HARDWARE 

The interrupt processing hardware in the CPU consists of an interrupt request register, a priority enco­
der circuit, and interrupt control logic as shown in Figure 7-1. The circuitry flags and identifies hard­
ware generated interrupts and one type of exception (a trace fault), and it can cause an automatic dis­
patch to interrupt handling microcode in native mode. There is no dedicated CPU hardware for 
detecting software generated interrupts. 

The interrupt processing hardware flags a processor interrupt condition by setting flip-flop INTERR 
REQ. As described in Paragraph 5.4, INTERR REQ causes the automatic dispatch to interrupt han­
dling microcode in native mode by selecting the SPEC ROM in the instruction processing hardware 
during the next class decode; that is, following the execution of the current instruction and before exe­
cution of the next. (The automatic dispatch may be disabled by a mask bit, as discussed in Paragraph 
7.2.5.) 

INTERR REQ is also a microsequencer skip or jump condition allowing a dispatch to the interrupt 
handling microcode at defined points during the execution of long instructions. It also provides the 
means for flagging interrupts when the machine is in compatibility mode. 

7.2 INTERRUPT DETECTION AND IDENTIFICATION 
There are two classes of hardware generated interrupt requests, those which are assigned an interrupt 
priority level (lPL) and are serviced only when the processor's current IPL is at a lower value, and 
those which have no assigned IPL and are serviced on an immediate basis, regardless of the processor's 
current level of processing. Not included in either class are the processor interrupt requests generated 
(when T or TP is set in the PSL) by the trace fault control bits. 

These trace bits have no assigned IPL, but service is still dependent on the current level of processing. 
As a matter of fact, servicing of the trace bits is dependent on both the processor's IPL and the IPL of 
any other interrupt requests waiting for service. The trace bits are serviced only when there are no other 
interrupts having an IPL higher than the processor's. The various interrupt requests and their assigned 
IPL (if any) are given in Table 7-1. 

The 8085A console processor may interrupt the processor in four different ways. An AC low (power 
fail) condition, an interval timer time-out, and a console attention all have assigned IPLs. A console halt 
does not. It is one of the two interrupt requests that are serviced on an immediate basis, and are not 
compared to the processor's IPL. 

UNIBUS devices interrupt the processor by means of the four UNIBUS bus request lines, BR7 
through BR4. Each BR level has an assigned IPL with BR4 (which has the lowest priority) having the 
same IPL as a console attention. A port device, although it does not transfer read/write data over the 
UNIBUS, also uses a BR line to interrupt the CPU. 
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Table 7-1 Interrupt Conditions 

Interrupt 
Request 

Port (fast) interrupt 

Console halt 

Ac low 

Correctable memory errort 

Interval timer time-out 

BR7 (UNIBUS) 

BR6 (UN IBUS) 

BR5 (UNIBUS and/or port device) 

Console attention (CTY or TU58) 

BR4 (UNIBUS) 

Trace bits (T or TP) 

IPL 

IE 

lA 

18 

17 

16 

15 

14 

14 

Interrupt 
Identifier 

0-- -

- 0 0 0 

- 0 0 1 

- 0 1 0 

- 0 1 1 

- 1 00 

- 1 0 1 

- 1 1 0 

- 1 1 1 

Port 
Interrupt 
Flag 

Request 
Priority* 

2 

3 

N/A 

4 

5 

6 

7 

8 

9 

N/A 

* Priority is determined by both hardware and microcode. A priority of one is the highest. A priority of nine is the lowest. 

tMicrocode initiated interrupt. Does not assert INTERR REQ in interrupt processing hardware. Serviced like a software 
interrupt during REI instruction. 

In addition to asserting a BR line, a port device may generate a higher priority (fast) interrupt when 
read/write data is being transferred over the Y bus to and from the CPU. The fast interrupt, like a 
console halt condition, has no IPL and is serviced on an immediate basis. 

A corrected (I-bit) memory read error (CRD) condition may interrupt the processor. This interrupt 
condition, which has an IPL of lA, does not set INTERR REQ to interrupt the processor as the hard­
ware generated interrupts (or the trace bits) do. Instead, the interrupt is initiated by the CPU's inter­
rupt handling microcode. Also, this interrupt is serviced like a software interrupt and thus has no set 
priority in relation to the other interrupt conditions that set INTERR REQ. 

Although the trace bits set INTERR REQ, they also have no set interrupt request priority. Because the 
trace bits are serviced only when there are no interrupt requests having an IPL higher than the proces­
sor's, trace bit priority at anyone time is determined by the processor's current IPL, as compared to the 
IPL of any interrupt requests waiting for service. 
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The highest IPL value (1 F) is not assigned to any interrupt request. When the processor is operating at 
this level, all interrupt requests with assigned IPLs are effectively disabled, preventing the UNIBUS 
devices or the console (except when requesting a halt) from interrupting the processor. The processor's 
IPL is raised to I F, disabling further interrupt activity following the detection of serious system failures 
such as power fail, machine check exception, etc. 

The servicing of hardware-generated interrupt conditions and trace bits by the CPU's interrupt han­
dling microcode is shown in Figure 7-2. Port (fast) interrupts and console halts are serviced first, entire­
ly by the microcode itself. The microcode causes a dispatch to an instruction level service routine for 
the other types of interrupts. Details of CPU microcode operation responding to various interrupt condi­
tions are given in Paragraphs 7.3 through 7.6. 

The system control block (SCB) in main memory supplies the dispatch addresses for the instruction 
level interrupt service routines. To access the SCB, the CPU microcode adds a 10-bit vector quantity to 
the contents of the system control block base register (SCBB), which is located in local store location 
87. The high-order portion of the SCBB contains the base address of the two-page SCB. 

The 10-bit vector quantity added to the SCBB supplies the low-order address bits (an offset) to specify 
a location within the SCB. 

The offset added to the SCBB, and thus the SCB address generated, depends on the type of interrupt 
request being serviced. If CNSL/ ATTN interrupts the processor, indicating a read/write data transfer 
request by a terminal or a TU58 tape, the console program supplies additional interrupt status informa­
tion, and the microcode generates an offset for the highest priority transfer request enabled. 

Also, if a UNIBUS device causes a processor interrupt, its device vector supplies the offset's nine low­
order bits. (This is because more than one UNIBUS device may assert a BR line.) Because the loca­
tions corresponding to UNIBUS devices are in the second page of the SCB, the microcode first adds 
200 to the device vector before adding the resulting lO-bit offset to the SCBB. 

Once the address of a SCB location has been generated, the CPU microcode makes a memory refer­
ence to read its contents. The location that is read contains the virtual address of the appropriate inter­
rupt service routine. In addition, because the address is longword aligned, the two low-order bits of the 
SCB location are used as control bits to specify how the interrupt is to be handled. Currently, interrupts 
are only handled on a stack (either the kernel or interrupt stack); the microcode pushes the PSL and the 
PC on the stack, writes a new PSL and PC (using the dispatch address in the SCB location), and dis­
patches to the interrupt service routine. 

The IPL written into the new PSL indicates the new level of processing; that is, the IPL of the interrupt 
being serviced. (The current level of processing is maintained if a trace fault request is being serviced.) 
At the end of an interrupt service routine, the stack is popped by an REI instruction, and the PSL and 
PC are reloaded to return the processor to the level of processing prior to the interrupt. 

To determine the type of interrupt request interrupting the processor, the CPU microcode can read a 4-
bit interrupt identifier code generated by the interrupt processing hardware. (The identifiers for the 
various interrupt requests are listed in Table 7-1.) 

Note that there is no identifier for a port (fast) interrupt. This is because the port interrupt request 
signal is a microsequencer skip condition and may be tested directly by the microcode (SCTL = IA). 
Also, there is no identifier for a corrected memory error condition, as this interrupt is generated by the 
microcode and not the interrupt processing hardware. The 4-bit identifier, part of the STAT register, is 
read with a BASIC or MOVE (discrete register address = 7E). 
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7.2.1 Interrupt Request Register 
Except for the trace control bits, all of the conditions that cause a processor interrupt by setting IN­
TERR REQ are stored in the interrupt processing hardware's interrupt request register. (The trace bits 
are stored in the PSL.) 

A stored interrupt request remains in the register until the interrupting device itself negates the 
request. For example, during the servicing of a UNIBUS request, the CPU microcode makes a memory 
reference which causes the MCT to first assert the UNIBUS bus grant signal corresponding to the bus 
request that is being serviced, and then read the device's interrupt vector and transfer it to the CPU. 
During this operation, the bus grant line that is asserted causes.the interrupting device to negate its bus 
request, removing the interrupt condition. This cl~ars the UNIBUS request in the interrupt request 
register unless another UNIBUS device is asserting the same bus request signal. 

7.2.2 Priority Encoder Circuit 
The interrupt requests stored in the interrupt request register that have assigned IPLs connect to a 
priority encoder circuit. When more than one of these requests are asserted at anyone time, the enco­
der circuit resolves interrupt request priority (i.e., which request is to be serviced first) by generating a 
3-bit output code that specifies the highest priority request at its inputs. The request with the highest 
priority is the request with the highest IPL. 

For example, the AC low condition, which has the highest assigned IPL and which connects to the 
highest priority input (7), generates an encoder output of 7 regardless of what other requests are as­
serted. Correspondingly, an interval timer time-out which has the next lowest assigned IPL and which 
connects to next lowest priority input (6), generates an output code of 6. Of course, this only occurs if 
there is not an AC low condition present. Output codes 5 to 1 are generated in a similar fashion to 
determine priority for the other requests with assigned IPLs. An output code of 0 indicates that no 
interrupt requests are asserted at, the encoder inputs. 

7.2.3 Interrupt Control 
Whereas the priority encoder circuit resolves priority for interrupt requests with assigned IPLs, addi­
tional control logic is required to compare the encoder's output with the processor's IPL before a pro­
cessor interrupt may be generated. The interrupt control logic also samples the other types of interrupt 
requests and unconditionally generates a processor interrupt for each unless the request is masked. (In­
terrupt requests due to a console halt or the trace bits may be inhibited by a mask bit, as discussed in 
Paragraph 7.2.5.) 

In addition to generating the processor interrupt by setting the INTERR REQ flip-flop, the interrupt 
control also generates the 4-bit interrupt identifier that is read by the microcode. The identifier is held 
in four flip-flops that may be read onto the D bus when the STAT register is read (EN STAT = 1). 

The INTERR REQ flip-flop is set in two different ways. In one case, if there is a port (fast) interrupt, 
or if a trace bit is set (and not masked), INTERR REQ is enabled directly and set at the end of the 
current microcycle. In the other case, if there is a console halt condition (not masked) or a request with 
an assigned IPL higher than the processor's, a nonzero identifier code is first loaded into the four inter­
rupt identifier flip-flops at the end of the current microcycle. Then, with at least one identifier flip-flop 
set, INTERR REQ is set at the end of the following microcycle. 

It can be seen that more than one interrupt condition can cause INTERR REQ to be set. Also, IN­
TERR REQ remains set until all conditions causing a processor interrupt have been serviced, and the 
corresponding interrupt request signals negated. 
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The interrupt control compares a request's IPL with the processor's IPL by comparing the output of the 
priority encoder, which indicates the highest priority request at its inputs and thus (implicitly) the 
request's IPL, with the IPL held in the PSL IPL (4:0). When the request's IPL is higher and a proces­
sor interrupt is to be generated, the priority encoder output is loaded into the three low-order identifier 
flip-flops to first identify the interrupt condition and then set INTERR REQ. A console halt condition 
unconditionally sets the high-order identifier flip-flop to set INTERR REQ (if not masked). 

7.2.4 Interrupt Priority 

NOTE 
The identifier code as read by the microcode and 
given in Table 7-1 is the complement of the code 
held in the identifier flip-flops. That is, the negation 
of the flip-flop outputs are enabled onto the D bus 
when the STAT register is read. 

Interrupt priority for the conditions asserting INTERR REQ is determined by both hardware and mi­
crocode. A port (fast) interrupt, a console halt, and the trace bits all set INTERR REQ, regardless of 
the processor's IPL, so then the priority as determined by hardware is the same. 

However (with reference to Figure 7-2), the CPU microcode services a fast interrupt before a console 
halt, and it services the trace bits (T or TP) only when there are no other requests to be serviced; that is, 
after a fast interrupt and a console halt, and only when there are no requests with assigned IPLs higher 
than the processor's IPL. This is indicated when the three low-order bits of the identifier (as read by the 
microcode) are all ones. 

Although a request with an assigned IPL higher than the processor's is serviced by the microcode be­
fore the trace bits, it is serviced only after a fast interrupt or a console halt. Also, when more than one 
request with an assigned IPL is asserted, the hardware (the priority encoder circuit) determines the 
order in which they are serviced as discussed in Paragraph 7.2.2. Only one request with an assigned IPL 
may interrupt the processor at one time. The priority circuit asserts INTERR REQ, and selects and 
generates an output code that identifies the request with the highest IPL. 

7.2.5 Interrupt Mask Functions 
There are two interrupt mask functions. One is to prevent INTERR REQ from causing the automatic 
dispatch to the interrupt handling microcode between instructions in native mode. The other is to pre­
vent either a console halt condition or the trace bits from setting INTERR REQ in the first place. Both 
are invoked by the MISC microinstruction. 

Except during long instructions when INTERR REQ may be tested directly by the CPU microcode, 
the automatic dispatch (during the class decode) is the only dispatch to the interrupt handling micro­
code in native mode. As a result, the first of the two mask functions provides a convenient means in 
native mode to disable interrupt activity and allow processing to continue at the current level. 

Masking of the automatic dispatch is accomplished by executing a MISC (with its function 2 field 
equal to 1) immediately before the DECODE microinstruction that performs the class decode. This 
sets a flip-flop in the interrupt request register (MASK INTS) that prevents selection of the SPEC 
ROM in the instruction processing hardware, should an interrupt occur. The flip-flop is set for one 
microcycle only. As a result, a MISC must be executed before every class decode for which interrupts 
are to be disabled. 
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The second of the two interrupt mask functions makes it possible to mask console halt and the trace bits 
during interrupt polling; that is, when the INTERR REQ bit is being tested by the microcode. The 
major reason this mask function is provided is because it is desirable to service interrupts during the 
execution of long instructions, but only if the console is not halting the machine and there is no request 
for a trace fault. Otherwise, when a console halt condition causes instruction level processing to stop, 
the execution of the long instruction would not complete. 

A trace fault should never occur during the execution of an instruction. Trace faults are for tracing the 
sequence of program execution, and should interrupt the processor between instructions only. 

The masking of a console halt and the trace bits is accomplished by executing a MISC (with its func­
tion 2 field equal to 6) immediately before the microinstruction which tests for interrupts. The MISC 
asserts a signal that prevents the console halt or the trace bits from enabling the INTERR REQ flip­
flop. If there are no other interrupt requests waiting for service, INTERR REQ will then be clear when 
the bit is tested during the next microcycle. 

7.3 UNIBUS INTERRUPTS 
A UNIBUS device interrupts the processor by asserting its assigned BR line (one of BR7 through 
BR4). More than one BR level can be asserted at anyone time by the various UNIBUS devices, and 
more than one device can assert the same BR level. For example, more than one terminal may be caus­
ing the asynchronous line controller on the UNIBUS to assert BR4. 

Although the MCT arbitrates the transfer of data over the UNIBUS, the CPU determines BR signal 
priority as explained in Paragraph 7.1.4. (The BR signals have assigned IPLs.) BR7 has the highest 
priority; BR4 has the lowest. 

The servicing of UNIBUS interrupt requests is as shown in Figure 7-3. The interrupt handling micro­
code first makes a memory reference to the MCT in order to collect a device interrupt vector. In re­
sponse to the MEM REQ microinstruction by the CPU, the MCT asserts the BG line on the UNIBUS 
(one of BG 7 through BR4) that corresponds to the bus request being serviced. (The BG line to be as­
serted is specified by the CPU.) 

When received by the interrupting device, the BG level indicates that the device may become bus mas­
ter. The device then acknowledges selection as bus master (asserts SACK), negates its bus request, and 
assumes control of the UNIBUS (asserts BBSY). Once it is bus master, the device transmits its 9-bit 
device vector on the UNIBUS data lines and asserts a data strobe (INTR). It then relinquishes control 
of the UNIBUS when the MCT indicates it has stored the vector (MCT asserts SSYNC). 

After the MCT has stored the device vector, a MOVE microinstruction executed by the interrupt han­
dling microcode (to complete the memory reference) causes the vector to be transferred over the MC 
bus and collected by the CPU. The CPU clock will stall if the MOVE occurs before the MCT has 
received the vector from the device. 

When the microcode has stored the device vector, it generates an offset, adds it to the SCBB, and reads 
an SCB location (Paragraph 7.2.1). Reading an SCB location, which is in main memory, requires an­
other memory reference to the MCT. Following the second reference, the microcode uses the contents 
to dispatch to the interrupt service routine for the interrupting device. 
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Figure 7-3 UNIBUS Interrupt Request Handling 

7.4 CONSOLE INTERRUPTS 
The console program running in the 8085A console processor can interrupt the processor in four differ­
ent ways. 

1. PWR FAIL INT signals loss of AC power. 

2. INTRVL TIM TNT signals an interval timer time-out condition. 

3. CONS ATTN signals that a data transfer to/from the console terminal (local or remote) or 
the TU58 tape device may be initiated. 

4. CONS HALT indicates that the program running in the CPU is to halt. 
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The first three interrupt requests have assigned IPLs. As a result, the interrupt handling microcode 
services each of these requests by causing a dispatch to the appropriate instruction level interrupt ser­
vice routine as described in Paragraph 7.3. 

The generation of the interrupt request due to a power fail condition (lPL = 1 E) is discussed in Para­
graph 2.4.5. The interval timer interrupt request (lPL = 18) is discussed in Paragraph 2.4.3. The asser­
tion of CONS ATTN (lPL = 14) for a tape or terminal data transfer and the subsequent transfer of 
the console program's interrupt priority register contents are discussed in Paragraph 2.3.3. 

The four interrupt priority register bits indicate to the microcode the type of data transfer request (or 
requests) causing the assertion of CONS ATTN. The types of requests listed in the order of data trans­
fer priority (highest to lowest) are: 

1. Received character (tape) 
2. Ready for transmit character (tape) 
3. Received character (terminal) 
4. Ready for transmit character (terminal). 

The microcode causes a dispatch to the interrupt service routine for the highest priority data transfer 
req uest when more than one request is causing the assertion of CO NS ATTN. 

The last console-generated interrupt request, CONS HALT, causes no dispatch to an interrupt service 
routine. The console asserts CONS HALT when a CNTL-P is received from the console terminal, in­
dicating the machine is to stop instruction level processing; that is, the machine is to leave the program 
mode of operation and enter the console mode of operation. 

When the console halt interrupt request is serviced, the interrupt handling microcode first sends a halt 
code to the console processor. This causes the console program to negate CONS HALT, turn off the 
RUN indicator on the front panel, and enter console mode. The microcode then sends a halt address 
(the CPU's PC) to the console processor (this address and the halt condition are typed at the console 
terminal) and enters a wait loop. 

The microcode remains in the wait loop until it receives a command packet from the console program 
telling it to resume instruction level processing or to perform some other console command. (Commu­
nications between the CPU microcode and the console program are discussed in Paragraph 2.6.) 

7.5 TRACING 

NOTE 
The microcode also sends a halt code and halt ad­
dress to the console processor when a HALT in­
struction is executed by the CPU (in kernel mode) 
or for certain error conditions such as an invalid 
SCB vector, CHMX from/to the interrupt stack, 
etc. Refer to the CPU Microcode Listing or VAX-
11/730 Diagnostic System Oferfiew Manual to 
identify the conditions that halt instruction level pro­
cessing. 

A trace fault is an exception that occurs between instructions when tracing is enabled. Tracing is en­
abled by software during program debug and performance evaluation operations. It is designed so that 
one and only one trace fault occurs after the execution of one traced instruction and before the execu­
tion of the next instruction. 
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Tracing is controlled by two bits in the PSL. These are the T (trace enable) bit and the TP (trace pend­
ing) bit. I f either the T or TP bit is set, it causes a processor interrupt unless the interrupt is masked as 
discussed in Paragraph 7.2.5. 

To begin the tracing of a program, the system's debugging software sets the T bit (not the TP bit) in the 
PSL. Then, at the next class decode (as shown in the upper half of Figure 7-4), a processor interrupt is 
generated and the interrupt handling microcode sets the TP bit in the PSL, provided there are no other 
interrupt conditions. (Refer to the flow diagram of microcode operation in Figure 7-2.) 

TRACING WITH NO OTHER PROCESSOR INTERRUPTS 

CLASS 
DECODE 

O-+TP I 
(PUSH1T.TP) I (POP T·TP) 

I 
TRACE 
FAULT 

(T·TP) 

I 
TRACING WITH OTHER PROCESSOR INTERRUPTS I 

(PUSH T·TP) (POP T·rn 

W 
!'f·TP) 

(T·TP) 

~ 
(PUSH T·TP) (POP T·TP) 

I 
I 

(T·TP) 

ffi 
(PUSH i (POP T·TP) 

I 

(POPT·TP) 

TRACE 
FAULT 

(T·TP) 

Figure 7-4 Trace Operations 

TK-6625 

After setting TP, the microcode masks all interrupts and dispatches back to the class decode, which 
starts the processing of the execution code for the instruction to be traced. All interrupts are masked in 
native mode by the disabling of the automatic dispatch function. In compatibility mode, the lNTERR 
REQ flag is not polled. 
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Following execution of the instruction to be traced, T and (in this case) TP cause another processor 
interrupt during the class decode. If there are no other interrupts, TP equal to one then causes a dis­
patch to the appropriate instruction level service routine which (for a trace fault) is the debugging soft­
ware. 

When the microcode pushes the PSL and PC on the stack prior to the dispatch, TP = 0 is pushed so 
that another trace fault will not be generated following the return to normal processing. (The return, to 
the class decode of the next instruction, is made with an REI instruction which restores the previous 
PSL and PC.) Also, T and TP are made equal to zero in the PSL that is created prior to dispatch, so 
that no tracing occurs during the trace fault routine itself. 

Operation when there are other processor interrupt conditions in addition to the trace bits is shown in 
the lower half of Figure 7-4. As indicated, all other interrupts are serviced first. (Refer again to the flow 
diagram in Figure 7-2.) That is, following an interrupt during a class decode, all other interrupts are 
serviced before TP is set at the start (or continuation) of instruction execution, and before the trace 
fault is generated at the end of instruction execution. Because the microcode pushes the current value 
of the TP bit when servicing the other types of processor interrupts between instructions, one and only 
one trace fault is generated for each instruction that is traced. 

When interrupts are serviced during the execution of instructions being traced, the current value of TP 
(which is a one) is not pushed. Instead, TP = 0 is pushed because the return at the termination of the 
interrupt routine is to the class decode for the same instruction. (The PC is backed up before it is push­
ed with TP = 0.) If TP = I were pushed, it would cause two trace faults for the preceding instruction 
in the executing program. 

As for trace faults, the new PSLs that are created when interrupts occur have both T and TP equal to 
zero, so that tracing does not occur during the interrupt service routine. Because the servicing of excep­
tions by the microcode during tracing is similar to that for interrupts, the majority of interrupts and 
exceptions that occur are totally transparent to the executing program. 

7.6 PORT (FAST) INTERRUPTS 
Fast interrupts, which are requested by a port device, are serviced entirely by the microcode before any 
other interrupt request. To test for a fast interrupt following a processor interrupt, the interrupt han­
dling microcode first tests the port interrupt request flag (PORT INT). If it is not set, the microcode 
reads the interrupt identifier and services the highest priority interrupt condition generating the proces­
sor interrupt request. If the port interrupt flag is set, it means the port device is requesting write data 
from the CPU or it has read data for transfer to the CPU. The microcode then transfers the data over:­
the Y bus, as described in Paragraph 6.12. 

Following the transfer of the port read/write data, the interrupt handling microcode executes a MISC 
microinstruction (function 2 field equals 5) which transmits XFER GRANT to the port device. XFER 
GRANT clears the port interrupt request in the port device, removing the fast interrupt condition. 

With the fast interrupt serviced, the microcode tests the INTERR REQ flag to see if there are any 
other interrupt conditions. If not, it returns to the previous level of microprocessing. If there are still 
other interrupts, the microcode reads the identifier and services a second interrupt condition. 
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7.7 PORT (SLOW) INTERRUPTS 
In addition to the fast interrupt capability, a port device may interrupt the processor by asserting a BR 
line. (BR5 is currently used.) The BR line is normally asserted to signal the end of a read/write oper­
ation, caused either by normal termination when the correct number of longwords have been trans­
ferred, or by an error condition. 

When a BR5 level is to be serviced, the interrupt handling microcode first reads port device status. 
(The slow interrupt condition asserts a status register bit in addition to BR5.) If the port device is inter­
rupting, the microcode generates an offset, adds it to the SCBB, reads an SCB location, and dispatches 
to the appropriate interrupt service routine, as with other interrupt requests having an assigned IPL. If 
the port device is not interrupting, the UNIBUS device asserting BR5 is serviced (Paragraph 7.3). 

7.8 CORRECTED MEMORY ERROR INTERRUPTS 
An interrupt due to a corrected memory error is generated mainly to facilitate the instruction level 
reporting of the error condition. It differs from other hardware interrupts in that it is initiated by the 
microcode, not the INTERR REQ flip-flop in the interrupt processing hardware. Also, it is serviced 
like a software interrupt during the execution of an REI instruction. 

When ERR SUM is asserted by the memory controller indicating some type of memory error, the CPU 
microcode normally reads and stores memory status to (first) determine the type of error, and (second) 
to supply other data useful for fault diagnosis (physical memory address, syndrome bits, etc.). If the 
error flagged is a corrected read error and error reporting is enabled, the microcode sets bit 31 in local 
store location 88. (The low-order half of this location holds the software interrupt summary register.) 

Then, near the end of the next REI's execution with bit 31 in the local store location set, the microcode 
generates an offset and dispatches to the appropriate interrupt service routine, provided the IPL in the 
PSL is less than the IPL of the corrected memory error interrupt condition (I A). The interrupt service 
routine stores the error data previously read by the microcode on a disk so that it may be retrieved by 
error reporting software. 
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A.I INTRODUCTION 

APPENDIX A 
PROGRAMMED ARRAY LOGIC DEVICES (PALS) 

Programmed array logic devices (PALs) are logic arrays incorporating fusable-link technology, and 
which are manufactured on a chip using the TTL Schottky bipolar pIOcess used to make fusable-link 
PROMs. Like PROMs, PALS may be programmed to give a semi-custom designed chip unique to a 
specific requirement. 

The basic logic configuration used in PALs is shown in Figure A-I. The circuitry consists of a program­
mable AND array connecting to a fixed OR array. The AND array shown in the basic logic con­
figuration provides only four programmable (fusable-link) inputs for each of two fixed OR inputs. In 
the PAL circuits used in the VAX-II/730, up to 32 programmable AND inputs and up to 8 fixed OR 
inputs are used per output. 

INPUT 1 

F1 

OUTPUT 

FB 

INPUT 2 

TK-6630 

Figure A-I Basic PAL Logic Configuration 

An unprogrammed PAL has all fuses intact (Figure A-I). A PAL is programmed by first determining 
the AND inputs to be used, and then "blowing" the links for the unused AND inputs to give the desired 
AND before OR logic configuration. (A standard PROM programming device is used for this oper­
ation.) For example, the upper half of Figure A-2 shows the links blown to implement the XOR func­
tion AB V AB in the basic PAL logic configuration. 
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Figure A-2 XOR Logic Function Using PAL Logic 

This same logic function may also be represented as shown in the lower half of the figure where an 'X' 
represents the links that are left intact to perform the logical AND. This last method of showing an 
AND array configuration is the convention used in the PAL plot listings provided in the VAX-I 1/730 
microfiche set. 

A.2 PAL DEVICE TYPES 
The four types of PALs used in the VAX-ll/730 are listed in Table A-I. Logic diagrams for each PAL 
are given at the end of this appendix. 

With reference to the logical diagrams, it can be seen that the four PAL devices all use the basic AND 
before OR logic configuration discussed in Paragraph A.I. However, outputs from the 16L8 gate array 
chip are inverfed and six of the eight outputs feed back to the AND arrays for added functionals. 

In addition, the output inverters for these six outputs may be turned on and off by the AND arrays 
(programmable I/O). This provides added logic capability and (when the inverter is turned off) it also 
allows the corresponding output pin to be used as an input to the AND array, just like a designated 
input pin. 
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Table A-I PAL Device Types Used in VAX-llj730 

PAL Prog. Register 
Device Type Inputs Outputs I/O Outputs Description 

16L8 16 8 6 0 AND-OR gate array 

16R8 16 8 0 8 AND-OR array with registers 

16R6 16 8 2 6 AND-OR array with registers 

16R4 16 8 4 4 AND-OR array with registers 

Also note from the logic diagrams that the 16R8 chip has register outputs (D-type flip-flops) and no 
gate outputs. Again, outputs are fed back to the AND array, but not directly by way of the chip's 
output pins. Instead, the zero outputs of the flip-flops drive the array. As a result, the output pins, 
cannot be used as input pins, as for a 16L8. The other two PAL types, the 16R6 and the 16R4, have 
varying combinations of both gate and register outputs on the same chip. 

A.3 PAL SYMBOLOGY 
A typical PAL as represented in the VAX-ll/730 Engineering Print Set is shown in Figure A-3. Infor­
mation within the symbol includes the device type, part number, and chip location. For example, the 
PAL in the figure is type 16R4, and is located at E50 with part number 010K3. The PAL part number 
distinguishes one programmed PAL from another. Because PALs are programmed for specific appli­
cations, it is seldom that more than one PAL will have the same part number. 

BUS IB 006 H 2 00 

BUS IB 004 H 3 01 

BUS IB 002 H 4 02 

BUSIBDOOH 5 03 

BUS Y 006 H 6 04 

BUS Y 004 H 7 05 

BUS Y 002 H B 06 

BUS Y 000 H 9 07 

PAL 16R4 
010K3 
E50 

R 17 OAPH as 6 H 

R 16 OAPH as 4 H 

R 15 OAPH as 2 H 

R 14 OAPH as 0 H 

OAPH LOAO Y TO as L ----- 1/0 

1/0 OAPH RMOOE B L 

OAPB as CTL 1 H ---- 1/0 

OAPB as cn 0 H ---- 1/0 

OAPB CLOCK REGS H 1 CLOCK 
11 

ENABLE 

TK.a629 

Figure A-3 Typical PAL Symbology 
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Inputs to the designated PAL input pins are shown at the left of the PAL symbol. Outputs appear at the 
right. When an output pin is used as an input pin (as discussed in Paragraph A.2), the input signal i~ 
entered at the left of the symbol, and a dotted line (drawn across the PAL symbol) is used to show the 
connection to the output pin on the right. Pins having both input and output capability are labeled a! 
I/O on the PAL symbol. Gate outputs not having both input/output capability are labeled with an C 
(as for pins 12 and 19 of a 16L8). Register outputs are identified by an R. Finally, designated input pins 
are specified by a D. 

A.4 READING THE PAL PLOT LISTING 
An example of the PAL plot listing is shown in Figure A-4. The part number and PAL device type (a 
16R6 in this case) are at the top of the listing. The input or output associated with each PAL pin i~ 
given next. (An NC indicates no connection; VCC indicates the + 5 V power source.) A low assertion 
level for input/output signals on the listing is indicated by a slash ('j') immediately preceding the signal 
name. If there is no slash, the signal is asserted high. It should be remembered that input/output signal 
names on the listing are sometimes abbreviated and are not exactly the same as in the Engineering Print 
Set. 

PART NUMBER: 23-004K4-0-0 

DEVICE TYPE: PAL16R6 

PIN NUMBER = SYMBOL TABLE: 

1= CLOCK 
2= ALE 
3= REQUEST REFR 
4= IO -
5= A14 
6= 9600 BAUD 
7= 300 BAUD 

FUSE PLOT: 

OUTPIN 19 
---x 

xxxx xxx x 
xxxx xxxx 
xxxx xxx x 
xxxx xxxx 
xxxx xxxx 
xxxx xxxx 

OUTPIN 18 x---
---x 

xxxx xxx x 
xxxx xxxx 
xxxx xxxx 
xxxx xxxx 
xxxx xxxx 
xxxx xxxx 

OUTPIN 17 -x--

xxxx xxx x 
xxxx xxxx 
xxx x xxxx 
xxxx xxxx 
xxxx xxxx 
xxxx xxxx 

8= SEL 9600 BAUD 
9= RESET 

10= GROUND 
11= OUT EN 
12=/UART CHIP SEL 
13=/9600-300 BAUD 
14= REFRESH eyc 

(X = FUSE INTACT , -
---- ----
---- x---
xxxx xxx x xxxx xxx x 
xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx 
xxx x xxxx xxxx xxxx 
xxxx xxx x xxx x xxx x 
xxxx xxxx xxxx xxxx 

---- x--- --x-
xxxx xxxx xxxx xxx x 
xxxx xxxx xxxx xxxx 
xxx x xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx 
xxxx xxx x xxx x xxx x 
xxxx xxxx xxxx xxxx 

---x ---x 
xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx 
xxxx xxx x xxx x xxx x 
xxxx xxxx xxxx xxxx 
xxxx xxxx xxx x xxx x 
xxxx xxxx xxxx xxxx 

15= STATE 
16=/RAS 
17= REFRESH DONE 
18=/START 8085 CYC 
19=/LONG CYCLE-
20= VCC -

= FUSE BLOWN) 

---- VCC 
START 8085 CYC*A14 -xxx x xxx x 

xxxx xxxx 
xxxx xxx x 
xxxx xxxx 
xxxx xxx x 
xxxx xxxx 

---- ---- ALE 
---- REFRESH CYC*START 8085 CYC*AI4 

xxx x xxx x 
xxxx xxxx 
xxxx xxx x 
xxxx xxxx 
xxx x xxx x 
xxxx xxxx 

/REQUEST REFR 
---- /REFRESH=DONE*/REFRESH_CYC 

xxxx xxxx 
xxxx xxxx 
xxx x xxxx 
xxxx xxxx 
xxxx xxx x 
xxxx xxxx 

OUTPIN 16 --x- --x- ---- ---- /RAS*REFRESH_CYC 
---x --x- ---- RAS*STATE 

---x -x-- x-x- ---- START_8085_CYC*/RAS*/IO*AI4 
---- x--- RESET 

xxxx xxx x xxxx xxx x xxxx xxxx xxxx xxx x 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxx x xxxx xxx x 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

OUTPIN 15 --x- /START_8085_CYC 

Figure A-4 Sample PAL Plot Listing (Sheet 1 of 2) 
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OUT PIN 14 

OUTPIN 13 

---x ---- ---- ---- ---- RAS 
-X-- ---- ---- ---- ---- /A14 

xxxx xxxx xxxx 
xxxx xxx x xxxx 
xxxx xxxx xxxx 
xxxx xxx x xxxx 

xxxx xxxx xxxx xxxx xxxx 
xxxx xxx x xxx x xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx 
xxxx xxx x xxx x xxxx xxxx 

---x ---- ---- ---- START 8~85 CYC 
---x --X- ---- ---- RAS*REFRESH CYC 
---x --x- ---- ---- RAS*STATE -

---X ---- ---- /REFRESH CYC*/REQUEST REFR 
---X ---- ---- /REFRESH-CYC*REFRESH DONE 
---x ---- ---- /REFRESH-CYC*/RAS*ALE*/STATE 

-x--
--x-

x--- ---- --x- ---x 
---- ---- X--- RESET -

xxxx xxx x xxxx xxx x xxxx xxxx xxxx xxx x 

xxxx xxxx 
xxxx xxx x 
xxxx xxxx 
xxxx xxx x 
xxxx xxxx 
xxxx xxxx 

---- X--- ---- X--- ---- SEL 96~~ BAUD*96~~ BAUD 
---- ---- ---- X--- -X-- ---- /SEL 96~i BAUD*3~0-BAUD 
xxxx xxxx xxxx xxxx xxxx xxxx - - -
xxxx xxxx xxxx xxx x xxxx xxx x 
xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxx x xxx x xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx 
xxx x xxxx xxxx xxxx xxxx xxx x 

OUTPIN 12 ---- ---- ---- ---- ---- ---- ---- ---- VCC 
---- ---x x--- X-X- ---- ---- ---- ---- START 8085 CYC*IO*A14*/RAS 
---- ---- --x- --x- ---- ---- ---- /RAS*STATE-
xxxx xxx x xxxx xxx x xxxx xxx x xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxx x xxxx xxxx xxxx xxx x xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxx x 
xxxx xxxx xxxx xxxx xxxx xxx x xxxx xxxx 

Figure A-4 Sample PAL Plot Listing (Sheet 2 of 2) 

The rest of the listing consists of the AND array plots for each output pin. An 'X' represents the fusable 
links left intact; a dash ('-') represents a blown link. More importantly (in order to read the listing), to 
the right of each line in a plot is the list of signals selected by the intact links that make up the AND 
inputs. Because these individual AND terms are ORed by the PAL logic, the list of AND terms in the 
listing (ORed together) result in an easily read Boolean expression that represents the logic function 
performed. For example, output pin 12, which is a gate output (refer to Figure A-9) and the last plot in 
the listing, has the following input. 

VCC 
START_8085_CYC*IO*A14* jRAS 
jRAS*STATE 

The enable level for the gate output inverter (the top line) is connected to VCC, a logical 1. The dashes 
in the Boolean expression only represent a space (a blank character) in the signal name. An asterisk (*) 
between signal names specifies the logical AND operation. Discounting the enable level for the output 
inverter which in this case is always asserted, this input expression for output pin 12 
(jUART_CHIP_SEL) may be read as follows. 

UART CHIP SEL L = START 8085 CYC H. 10 H. A14 H. RAS H 
V 

RASH. VSTATEH 
NOTE:. = AND 

V=OR 

The PAL circuitry for this output may be represented as shown in the upper half of Figure A-S. The 
same circuit using Engineering Print Set conventions for signal names is shown in the lower half of the 
figure. 
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PAL CIRCUIT FOR OUTPUT PIN 12 

START 8085 CYC 

10 

THE SAME CI RCUIT USING PRINT SET CONVENTIONS 

START 8085 CYC H 

10 H 

A14 H---I-..... 

RAS L----LL~--

12 UARTCHIPSEL L 

TK-6631 

Figure A-5 PAL Circuit for Output Pin 12 on Sample Listing 

For a register output, the Boolean expression read from the listing specifies the output signal just as for 
a gate output. Of course, the output pin is not asserted or negated until the register flip-flop is clocked. 
Flip-flops are clocked by the positive-going transition of the clock. 

When the input statements given in the plot listing are read as AND terms ORed together as just de­
scribed, they define the actual PAL circuit and the conditions to make the PAL output go low. (In the 
example given, the PAL output signal is also asserted when it is low.) When a PAL output signal is 
asserted at a high level, it is sometimes more convenient to think of the PAL's AND before OR circuit 
in terms of its equivalent OR before AND configuration. For example, the Boolean equation for regis­
ter output pin 17 (REFRESH DONE) on the sample listing is as follows when read as AND before OR 
logic as done earlier in this section. 

REFRESH DONE L = REQUEST REFR H 
V 

REFRESH DONE H • REFRESH eye H 

However, the listing may also be read as OR before AND logic, as shown in the following. 

REFRESH DONE H = REQUEST REFR L 

REFRESH DONE L V REFRESH eye L 

As can be seen, the second expression more clearly indicates that REFRESH DONE is set by the asser­
tion of REQUEST REFR and REFRESH CYC, and that it remains set until REQUEST REFR is 
negated. The AND before OR circuit and the equivalent OR before AND circuit are diagramed in 
Figure A-6. 
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AND-OR PAL CONFIGURATION FOR OUTPUT PIN 17 

REQUEST REFR H------r-... 
17 (REFRESH DONE L) 

REFRESH CYC H 

REFRESH DONE H 
a 

CLOCK 

EQUIVALENT OR-AND CONFIGURATION 

REQUEST REFR L------or-"""I 
17 REFRESH DONE H 

REFRESH CYC L 

a 

CLOCK 

Figure A-6 PAL Circuit for Output Pin 17 on Sample Listing 

To summarize: 

1. When the plot listing is read as AND-OR, it specifies the input signal to give a low PAL 
output. The output line mayor may not be asserted low. 

2. If the PAL output line is asserted low, the AND-OR input expression is usually the best way 
to specify the output line. 

3. If the PAL output line is asserted high, the equivalent OR-AND input expression is usually 
the best way to specify the output line. 

A.S PAL LOGIC DIAGRAMS 
The logic diagrams for the 16L8, 16R4, 16R6, and 16R8 PAL devices are shown in Figures A-7 
through A-IO. 
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Figure A-7 16L8 PAL Device Logic Diagram 
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Figure A-8 16R4 PAL Device Logic Diagram 
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Figure A-9 16R6 PAL Device Logic Diagram 
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Figure A-lO 16R8 PAL Device Logic Diagram 
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APPENDIX B 
FLOW DIAGRAM SYMBOLS 

The flow diagram symbols used in this technical description for the VAX-II /730 CPU are shown and 
described in Figure B-1. 

Q 
c$=J 
.~ 
~ 
~ 
~ 

I 
x 
I 

----L-
x 

I 

o 
CJ 

x = DESCRIPTION OF AN EVENT OR ACTION 

X IS TRANSFERED TO Y 

FLIP-FLOP X IS SET 
SIGNAL Y (NOT A FLIP-FLOP) IS ASSERTED 

FLIP-FLOP X IS CLEARED 
SIGNAL Y (NOT A FLIP-FLOP) IS NEGATED 

FLOW FOLLOWS "YES" BRANCH IF 
CONDITION X IS TRUE. OTHERWISE, 
FLOW FOLLOWS "NO" BRANCH. 

FLOW IF CONDITION X IS TRUE 

DELAY FLOW UNTIL CONDITION X IS TRUE 

START OF FLOW OR ON-PAGE CONNECTOR 

OFF-PAGE CONNECTOR 

TK-6864 

Figure B-1 Flow Diagram Symbols 
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