EK-KD11D-TM=PKE

PRELIMINARY

KD11-D Processor Manual (PDP-11/0L)

The information in this document 1s subject to
change without notice and should not be construed
as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no

responsibility for any errors that may appear in
this manual.

Printed in U,.S.A,

Copyright C 1975 by Digital Equipment Corporation

Written by PDP-11 Engineering

(.Y B>
D
2

[P PON PURVE R PR PV S R Y]
DO A L W= =

=N

()

) &) =

O AR D D W Wi =
) =

) B ==

® ® & o

&) A ==

W & W W s N ==

OOV ARARANUILUVIA D & D d bW WwwNOUONRDNAONAOUNONNN =
B) N ==

e o 2 @ © ®» ®» ® 9 © © © @ ® @ ® © ® ©® Y @ © 0 VY © ©® e o @ 2 ® ® ® @ e 2

BARVVPARARARAARARRAAAANVNARAAVRAVTAROTABAAUTAR A

@ [] (-] ®
TR R A ==
R) ==

Page 2

CONTENTS

PREFACE
OVERALL DESCRIPTION

INGTRUCTION SET

Introduction

Adaressing Modes

Ingtruction Timing

Ingtruction Deseriptions

Disgferences Between KD1i1D and KDiiB
Pregramming Differenceg Between PDPiis
Bug Latenecy Times

CPU OPERATING SPECIFICATIONS

DETAILED HARDWARE DESCRIPTION
Introduction

Data Path Circuitry

General Deseription

ALU

Serateh Pad Memory

Serateh Pad Cireuitry
scrateh Pad Address Multiplexer
Seratch Pad Register

B pegister

B rRegister Circuitry

B LEG Multiplexar

AMyX

Processor Status Word (PSW)
Condition Codes

General Deseription

Carry and Overflow Decede
Byte Multiplexing

UNIBUS Address and Data Interfaces
UNIBUS Drivers and Receivers
Bus Address Generation
Internal Address Decoder

Bus Data Line Interface
Instruetion Decodinag

General Deseription
Instruction Register
Ingstruetion Decoder

Double Operand Instructions
Singdle Operand Instruetions
Braneh Instruéetions

Operate Instructioens
Auxiliary ALU Control
General Description

Control Cireuitry

Double Operand Instructioens
Single Operand Instruetions

e » o » ®» » ® ®w ® ® ©
O SRV ENENESNESESES RV
O W~ G W A=

2 o ©® ° L o o e 9

Data Transfer Control
Geneéral Description
Contrel Cirecuitey
Proecessor Cloek Inhibit
UNIBUS Synchrenization
Bug Control

MSYN/SSYN Timeout

Bus Errors

Parity Errors

End of Transfers
DATA=IN=PAUSE Transfers
0dgq Address Detection
Power Fail/Auto Restart
General Deseription
Power=Up

PowereFajil

Process Clock Circuitry
priority Arbitration
Bus Requests

Nopn Processor Regquests
Hajijt Grant Reguests
Serviece Circultry
General Description
Cipcuit Operation
Control Store

General Description ,
Branching Within Microroeutines
Control Store Fields

MICROCODE
Mieroprogram Flows
Flew Notation
Mieroprogram Examples

Page 3

Page 4

1.0 PREFACE

This manual describes the KDi{D Central Processor Unit (M7263),
Complete understanding of its contents requires that the user have a
general knowledge of digital eireuitry and a baslic understanding of
PDpe11 computers, The following related documents may be valuable as
references,

PDpii Peripherals Handbook
phpii pPrecessor Handbooks
PDpl1/04 Users Manual

2,0 OVERALL DESCRIPTION

The KD{1D is a oneeboard central procegsor unit (CPU) designed for the
PDP=11/04 computer series, The unit conneets directly to the UNIBUS
as a subsystem and {8 capable of controlling the ¢time allocation of
the UNIBUS for peripherals, performing arithmetic and loagic operations
and instruction deecoding, It ean perform data transfers directly
between I1/0 devices and memoryy does both single=and doublee=operand
addressing and handlesg boeth 16ebit werd and 8=bit byte data,

The KD11D is program compatible with the KD1i{B presently being used in
the PDP=11/0g5, It also provides all the processing capability
previously available at a significantly higher speed, Features
available on the KDiiB which are not provided on the KD11D are
console, serjial communication line, and l1ine cloek <circuitry, These
options will now be provided as separate UNIBUS options in the
traditional PDPe=iil sense,

3,06 INSTRUCTION SET

3,1 1Introduction

The KD11D is definmed by its {nstruction set, The gequences of
processor obperations are selected according to the instruction
decoding, The following deseribes the PpPDP={{ instructions and
instruction set addressing modes along with {instruction set
differences from those of the previous KD{1B'

3,2 Addressing Modes

Data stored Iin memory must be accessed, and manipulated, Data
handling s specified by & PDP~1{ instruction (MOV, ADD etec,) which
usually indieates:

i. The function (operation code),

page 5

2, A general purpose register te be used vwhen locating the
source operand and/or locating the destination operand,

3, An addressing mode (to speecify how the selected register(s)
{g/are to be used),

Sinee a large portion of the data handled by a computer 1is usually
structured (in character strings, in arrays, in 1lists etc,) the PDP=11
hags been desjigned to handle structured data efficiently and flexibly,
The general registers may be used with an instruction in any of the
foliowing ways?

1, As accumulators, The data to be manjipulated resides within
the reagister,

2., A8 pointers, The contents of the register is the address of
the operand, rather than the operand itself,

3, BAs pointers which automatically steps through core locations,
Autematically stepping forward through consecutive core
locations is Known as autoincrement addressingy
autematically steppina backwards 18 known as autodecrement
addressing, These modes are particularly useful for
processing tabular data,

4, As index registers, In this instance the contents of the
register, and the word following the {mstruction are summed
to produce the address of the operand, This allowg easy
access to variable entries in a list,

PDP-1is also have Instruction addressing mode combinations which
facilitate temnorary data storage structures for convenient handling
of data whicp must be freguently accessed, Thig Is Kknown as the
”StaCK“.

In the PDP=11 any register can be used as a "stack pojinter" under
program control, however, certain {nstructions associated with
subroutine linkage and interrupt service automatically use Register 6
as a "hardware stack pointer", For this reason R6é is frequently
reterred to as the "SP",

R7 is used by the processor as its program countepr (PC),
Two types of instructions utilize ¢the addressing modes: single

operand and double operand, Figure | shows the formats of these two
types of instructioms, The addressing modes are listed in Table 1,

Page 6

rigqure | Addressing Mode Instruetion Formats

3,2,1 1Instruction Timing

The PDPeli1 is an asynchronous processor in whiech, in many cases,
memeIry and processor operations are overlapped, The execution time
for an instryction i{is the sum of a basiec instruction time and the time
to determine and fetch the source and/or degtination operands, Table
2 shows the addressing times required ¢for the various mode of
addressing source and destination operands, All PDP=11/04 times
stated are suybject to +10% varliation and are based on a ¢typical core
memory access time of 375 ns, a tvoical MOS memory access time of 504
ng and a proceéssor clock cycle time of 260 ng, PDP=11/05 times are
based on a 319 ns processor clock cycle time and 8 MM11L memorv,

3,3 PDPe11/p4 Instructions
The PDP=11 instructions can be divided into £ive groupingss

1, Single=Operand 1Instructions (shifts, multiple precision
instructions, rotates)

2, Douple=Operand Instructiens (arithmetic and logical
instructions)

3, Program Control Instruetions (branches, subroutines, traps)
4, Operate Group Instructions (processSer control operations)

5. Condltion Codes Operaters (processor status word bit
instruections)

Tables 3 through 7 list each instruection, ineluding byte {Instructions
for the regpective Iinstruction grouops, Figure 2 shows the six
different 1imstruction formats of the instruction set, and the
individual imstructions in each format,

Page 64

2l * A 2 4
T 1 1 1 T i 1] L} T T : L] ¥
MODE '@ Rn
1 L 1 1 L L L A . 1 L 1 1
15 6 , 5 4 3 2 [)
Y Y
OP CODE DESTINATION ADDRESS FIELD
#=SPECIFIES DIRECT OR INDIRECT ADDRESS
##=SPECIFIES HOW REGISTER WILL BE U
w0 = SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS
(a)
F * HEE L33 & T
T T T T | T 1 T T
OP CODE MODE | (@ Rn MODE | @ Rn
L L 1 1l 1 1 ! L 1
15 12 T 10) 8 6 5 4 3 2 o
[\ v A ~ 4
SOURCE ADDRESS FIELD DESTINATION ADDRESS FIELD

2 DIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
#xn= SPECIFIES HOW SELECTEQ REGISTERS ARE TO BE USED
#uw= SPECIFIES A GENERAL REGISTER

(b)
n-1227

Figure 1 Addressing Mode Instruction Formats

Page 7

3,4 Instruction Set Differences

Table 8 lists the differences between the PDP=11/0% and PDP=11/04
instruetion sets,

Binary
Code

heo

aie

oo

iio

081

#1114

i01

111

@10

611

111

Name

Register

Autelnerement

Autedeerement

Index

Register Deferred

Auteinerement
Deferred

Autecdecrement

IndeX Deferred

Immediate
Bbsolute

Relative

Relative Deferred

Page 6

Tahle 1

hddressing Modes

Agsembler
8yntan

Ra

(RA)¢

= {Rn)

XCRR)

RRRA
6% (Rn)

8(Rnl)+

@e{RN)

8X(RR)

#n

@RA

@n

Funetion

DIRECY MODES

Reglister czontains oparand,

Raglgter coentaeling addresg of eperand, Register
contente ineremented after reference,

Regigter econtents decremented before referance
regigter containg address of eperand,

Value X (stered Imn @& werd gellewing the
imstruetion) 48 added te (Rn) to produce sddress
of operand, MNeither X ner (Rn) are medified,

DEFERRED MODES

Reglgter esntaing the address of the eperand,

Regigter 18 ¢lrst used a8 & pointer te & werd
eentalining the aeddregss o6f the operand, then
ineremented (always by twoy even £er byte
ingtructions),

Reglegter is deecremented (always by tweg aeven £6°
byte instructiens) and then used as a pointer te a
werd containing the address ©f the eperand,

Value ¥ (stered in a word tellewing the
ingtruetien) and (Rn) are edded and the sum i8
used as a pointer to & word containing the address
of the operand, WNeither X nor (Rn) are medified,

PC ADDRESSING

Operand f£ollews instruetion,
Apgolute address follows instruetion,

hddress of A, relative to the instructien, follews
the ins8truetion,

Address of lecatien contalning address of A,
relagive to the instruetion, follevws the

Page 9

insteuetion,

Ran = Registep
Xon,A 3 next Program counter (PC) voerd (eonstant)

Deuble Operand

Instruction

ADD, SuB, BIC, BIS

CMp, BIT

MOV

Single Operand

Instruction

CLR, COoM, INC, DEC,
NEG, ADC, SBC

ROR, ROL, ASR, ASL

SWAB

Table 2
Basic Times

Machine

11764

11704

11/¢4

Machine

11/04

11724

11/04

11/04

Memory
Option

CORE
CORE PARITY
MO8
MOS PARITY

CORE
CORE PARITY
MOS
MOS PARITY

CORE
CORE PARITY
MOS
MOS PARITY

Memory
Option

CORE
CORE PARITY
MOS
MOS PARITY

CORE
CORE PARITY
MOS
MOS PARITY

CORE
CORE PARITY
Mos
MOS PARITY

CORE
CORE PARITY
MOS
MOS PARITY

Page 1@

Rasic
Time (usec)

3,27
3,17
3,17
3,33

2.81
2,91
2,91
307

2.81
2,91
2,91
3,07

Rasiec
Time (usec)

2,55
265
2,65
2,81

2,81
2,91
2.91
3.07

2,29
2.39
2,39
2455

2.81
2,91
2.91
3.27

Page 11

Single Operamd (cont®d)

Memery Bagic
Ingtruetion Maechine Option Time (usec)

All Branehes {branch true) 14/064 CORE 2.55
CORE PARITY 2,68

MOS 2.65

MOS PARITY 2,81

All Branches (branch false) 11/04 CORE 1077
CORE PARITY 1,87

MOS8 1.87

MOS PARITY 273

Jump Imstructions
Memory pasic
Instruction Machine Opeion Time (usee)

JMP 11/@4 CORE B84
CORE PARITY PeB1

MOS PARITY 9,88

JSR 11/04 CORE 3,27
CORE PARTITY 3,27

MOS8 3,27

MOS PARITY 3627

Coentrol, Trap, and Miscellaneoug Instructions

Memory pasic
Ingtruction Machine Option Time (usec)

RTS 11/04 CORE 3,91
CORE PARITY 4.11

Mos 4,11

MOS PARITY 4,43

RTI, RTT 11/04 CORE 8,01
CORE PARITY 5,31

MO S 5631

MOS PARITY 8,79

Set N,2z,V,C 11/04 CORE 2,29
CORE PARITY 2039

Mos 2,39

Cleat N,;Z,V,C

HALT

WAIT

RESET

10T, EMT, TRAP, BPT

11/04

11/04

11/04

11/04

11/04

MOS8 PARITY

CORE
CORE PARITY
Mos
MOS PARITY

CORE
CORE PARITY
MoSs
MOS PARITY

CORE
CORE PARITY
MOS8
MOS PARTTY

CORE
CORE PARITY
MOS
MOS PARITY

CORE
CORE PARITY
MoSs

MOS PARITY

ms
m§
ms
mé

Page 12

Mede

ADDRESSING FORMAT

Desecription

REGISTER

REGISTER
DEFERRED

AUTOINCREMENT

AUTOINCREMENT
DEFERRED

AUTODECREMENT

BUTODECREMENT

DEFERRED

INDEXED

INDEXED

symbolic

R

&R
or
(R)

(R)¢

B(R) ¢+

=(R)

Be(R)

+X(R)

Re X (R)
0OR
B (R)

Table 2a,
Addressing Times

Memory
Maehine Option

11/04 CORE
CORE PARITY
MOS
MOS8 PARITY

11704 CORE
CORE PARITY
MOS
MOS PARITY

11/04 CORE
: CORE PARITY
MOS
MOS PARITY

11/04 CORE
CORE PARITY
MOS
MOS PRRITY

11724 CORE
CORE PARITY
MO S
MOS PARITY

11/04 CORE
CORE PARITY
¥“0Ss
MOS PARITY

11704 CORE
CORE PAPITY
MO S
M0S PARITY

11704 CORE
COFF PARITY

MOS
MOS PARITY

Source#
4
2]
*
A

6.86
Ae94
Pe94
1.10

1,10
1,20
1.20
136

2,46
2,66
2:66
2.98

1410
1,20
1,20
1,36

2,46
2.66
2,66
2,98

272
2,92
2.92
3.24

4,78
4,38
4,38
4,86

Page 13

TIME (us)

Destination##

oanes

1,45
1,58
1,48
1,67

1,74
1,84
1,76
1,95

3,87
3,30
3,85

1,71
1,84
1,76
1,95

3,07
3,30
3.2@
3,55

3,33
3,56
3,46
3,81

4,69
5,02
4,92
5,43

#For Source time, add the folowing for
0odd byte addressing

suFor Destination time, modify as follows

a, Add for odd byte addressing with a
nonemoditying instruction

b, Rdd for odd byte addressing with a
modifying imstruction MODES {7

€, Subtract for all non-moditying
instructions except MODE @

d, Add for MOVE instructions MODES ie=7

e, Subtract for JUMP and JSR imstructions
MODES 3, 5, 6, 7

£, HAdd for all ROTATE even byte
instructions

g, Add for all ROTATE odd bvte
instructions = Modes 1,2,4

he Add for gll ROTATE odd byte
instructions except Modes @,1,2,4

Memory
Machine option
11704 N/A
11/04
11/04
11/04 CORE

CORE PARITY
MOS
MOS PARITY
11/04 N/A
11/04
11/05
11008
11/05%
iiAas N/A
11/05%
11708

Time (us)

P,52

1,04

Peb61
G,64
8,54
0,57

2,26

Page 14

Table 3

Single Operand Instructions

Mnemonic/

Instruction Time OP Code Operation Condition Codes Description
CLR ' 0050DD* (dst)Jr <0 N: cleared Contents of specified destination are replaced with zeroes.
CLRB 1050DD Z: set
34 us V: cleared

C: cleared
COM 0051DD (dst) < n (dst) N: set if most éignificant Replaces the contents of the destination address by their
COMB 1051DD bit of result is O logical complement (each bit equal to 0 set and each bit equal
3.4 us Z: setif result is O to 1 cleared).

V: cleared

C: set
INC 0052DD (dst) « (dst) + 1 N: set if result is less than 0 Add 1 to the contents of the destination.
INCB 1052DD Z: setif resultis O
34 pus V: set if (dst) was 077777

C: not effected
DEC 0053DD (dst) « (dst) -1 N: set if result is less than O Subtract 1 from the contents of the destination.
DECB 1053DD Z: setifresultisO
3.4 us V: set if (dst) was 100000

C: not effected
NEG 0054DD (dst) « - (dst) N: set if result is less than O Replaces the contents of the destination address by its 2°s com-
NEGB 1054DD Z: setifresultis O plement. Note that 100000 is replaced by itsclf.
3.4 us V: set if result is 100000

C: cleared if result is O
ADC 0055DD (dst) « (dst) + C N: sct if result is less than O Adds the contents of the C-bit into the destination. This permits
ADCB 1055DD Z:. setifresultis O the carry from the addition of the low order words/bytcs to be
34 us V: sctif (dst) is 077777 and | carried into the high order result.

Cis!
C: set if (dst) is 177777 and

Cisl

51 7bey

—

Table 3 (Cont)
Single Operand Instructions

bit of the destination

Mnemonic/
Instruction Time OP Code Operation Condition Codes Description
SBC 0056DD (dst) « (dst) C N: set if result is Jess than O Subtracts the contents of the C-bit from the destination. This
SBCB 1056DD Z: setif resultisO | permits the carry from the subtraction of the low order words/
3.4 us V: set if (dst) was 100000 bytes to be subtracted from the high order part of the result.
C: cleared if (dst) is 0O and C
is 1
TST 0057DD (dst) « (dst) N: set if result is less than O Sets the condition codes N and Z according to the contents of
TSTB 1057DD Z: setif result is O the destination address.
34 us V: cleared
C: cleared
ROR 0060DD | (dst) < (dst) N: set if high order bit of Rotates all bits of the destination right one place. The low
RORB rotate right the result is set " order bit is Joaded into the C-bit and the previous contents of
34 us one place. Z: set if all bits of result the C-bit are loaded into the high order bit of the destination.
are 0
V: loaded with the exclusive-
OR of the N-bit and the
C-bif as set by ROR
ROL 0061DD (dst) « (dst) N: set if the high order bit of | Rotate all bits of the destination left one place. The high
ROLB 1061DD rotate left ~ the result word is set order bit is loaded into the C-bit of the status word and the
34us one place. (result < 0); cleared previous contents of the C-bit are Joaded into the low order
otherwise bit of the destination.
Z: set if all bits of the
result word = 0; cleared
otherwise
V: loaded with the exclusive-
OR of the N-bit and C-bit
(as set by the completion
of the rotate operation)
C: loaded with the high order

91 26e,

Table 3 (Cont)
Single Operand Instructions

Mnemonic/
Instruction Time OP Code Operation Condition Codes Description
ASR 0062DD (dst) < (dst) . set if the high order bit Shifts all bits of the destination right one place. The high
ASRB 1062DD shifted one of the result is set order bit is replicated. The C-bit is Joaded from the low order
34 us place to the (result < 0); cleared bit of the destination. ASR performs signed division of the
right. otherwise destination by two.
: set if the result =0,
cleared otherwise
: loaded from the exclusive-
OR of the N-bit and C-bit
(as set by the completion
of the shift operation).
: loaded from low order bit
of the destination
ASL 0063DD (dst) « (dst) . set if high order bit of the | Shifts all bits of the destination left one place. The low order
ASLB 1063DD shifted one (result < 0); cleared bit is loaded witha 0. The C-bit of the status word is loaded
3.4 us place to the left. otherwise from the high order bit of the destination. ASL performs a

. set if the result = O; cleared

otherwise

. loaded with the exclusive-
OR of the N-bit and C-bit
and C-bit (as set by the
completion of the shift
operation)

. loaded with the high order

bit of the destination

signed multiplication of the destination by 2 with overflow
indication.

/1 ﬁQEJ

Tzable 3 (Cont)

Single Operand Instructions

Mnemonic/
Instruction Time

OP Code

Operation

Condition Codes

Description

JMP
1.0 us

SWAB
4.3 us

0001DD

0003DD

PC « (dst)

Byte 1/Byte O
Byte O/Byte 1

Not effected.

. set if high order bit of

low order byte (bit 7)
of result is set, cleared
otherwise

. set if low order byte

of result = 0; cleared
otherwise

: cleared
. cleared

JMP provides more flexible program branching than provided
with the branch instruction. Control may be transferred to any
lecation in memory (no range limitation) and can be accom-
plished with the full flexibility of the addressing modes. with
the exception of register mode 0. Execution of a jump with
mode 0 will cause an illegal instruction condition. (Program
control cannot be transferred to a register.) Register deferred
mode is legal and will cause program control to be transferred
to the address held in the specified register. Note that in-
structions are word data and must therefore be fetched from
an even numbered address. A boundary error trap condition
will result when the processor attempts to fetch an instruction
from an odd address.

Exchanges high order byte and low order byte of the destination
word (destination must be a word address).

* DD = destination (address mode and register)
1 (dst) = destination contents

A1 25¢y

Table 4

Double Operand Instructions

Mnemonic/
Instruction Time OP Code Operation Condition Codes Description
MOV 01SSDD* (dst) « (src) t : set if (src) < 0; cleared Word: Moves the source operand to the destination location.
MOVB 11SSDD otherwise The previous contents of the destination are lost. The source
3.7 us . set if (src) = 0; cleared operand is not effected.
3.1 us mode 0 otherwise Byte: Same as MOV The MOVB to a resistor (unique among
: cleared byte instructions) extends the most significant bit of the low
. not effected order byte (sign extension). Otherwise, MOVB operates on
bytes exactly as MOV operates on words.
/
CMP 02SSDD (src) - (dst) : set if result <0, cleared Compares the source and destination operands and sets the
CMPB 12SSDD [in detail, otherwise condition codes, which may then be used for arithmetic and
3.7 us (src) +~ . set if result = 0; cleared logical conditional branches. Both operands are uneffected.
(dst) + 1] otherwise The only action is to set the condition codes. The compare is

. set if there was arithmetic

overflow, i.e., operands
were of opposite signs
and the sign of the des-
tination was the same
as the sign of the result;
cleared otherwise

. cleared if there was a

carry from the most sig-
nificant bit of the result;
set otherwise

customarily followed by a conditional branch instruction. Note
that unlike the subtract instruction the order of operation is
(src) - (dst), not (dst) - (src).

4/ 7b¢)

Table 4 (Cont)

Double Operand Instructions

Mnemonic/
Instruction Time OP Code Operation Condition Codes Description
BIT 03SSDD (src) A\ (dst) : set if high order bit of Performs logical AND comparison of the source and destination
BITB 13SSDD result set; cleared other- operands and modifies condition codes accordingly. Neither
3.7 us wise the source nor destination operands are effected. The BIT in-
. set if result = 0; cleared struction may be used to test whether any of the corresponding
otherwise bits that are set in the destination are clear in the source.
: cleared
. not effected
BIC - 04SSDD (dst) < ~ (src) . set if high order bit of Clears each bit in the destination that corresponds to a set bit
BICB 14SSDD A\ (dst) result set, cleared other- in the source. The original contents of the destination are lost.
3.7 us wise The contents of the source are uneffected.
. set if result = 0; cleared '
otherwise
. cleared
. not effected
BIS 05SSDD (dst) < (src) . set if high order bit of Performs inclusive-OR operation between the source and des-
BISB 15SSDD A\ (dst) result set; cleared other- tination operands and Jeaves the result at the destination
3.7 us wise address; i.e., corresponding bits set in the destination. The
. set if result = 0; cleared contents of the destination are lost.
otherwise ‘
: cleared
: not effected
ADD 06SSDD (dst) « (src) . set if result 0; cleared Adds the source operand to the destination operand and stores
+ (dst) otherwise the result at the destination address. The original contents of

. set if result = 0; cleared

otherwise

the destination are lost. The contents of the source are not
effected. Two’s complement addition is performed.

o7 ?6@/

Table 4 (Cont)
Double Operand Instructions

Mnemonic/
Instruction Time OP Code Operation Condition Codes Description

ADD (Cont) V: set if there was arithmetic
overflow as a result of the
operation; that is both
operands were of the same
sign and the result was of
the opposite sign; cleared
otherwise

C: set if there was a carry from
the most significant bit of
the result, cleared other-
wise

SUB 16SSDD (dst) « (dst) - N: set if result < O; cleared Subtracts the source operand from the destination operand and

3.7 us (src) in detail, otherwise leaves the result at the destination address. The original contents

(dst) + ~ (src) Z: set if result = 0; cleared of the destination are lost. The contents of the source are not

+1 (dst) otherwise effected. In double precision arithmetic, the C-bit, when set,

V: set if there was arithmetic |indicates a borrow.
overflow as a result of
the operation, i.e., if
operands were of op-
posite signs and the sign
of the source was the
same as the sign of the
result, cleared otherwise

C: cleared if there was a
carry from the most
significant bit of the
result; set otherwise

* §S = source (address mode and register)
t (src) = source contents

4 ?[8d

Table 5
Program Control Instructions

Mnemonic/

Instruction Time OP Code Operation Condition Codes Description

BR 000400 PC+«PC+ Uneffected Provides a way of transferring program control within a range

2.5 us xxxt (2 X offset) of - 128 to +127 words with a one word instruction. It is an
unconditional branch.

BNE 001000 PC«PC+ Uneffected Tests the state of the Z-bit and causes a branch if the Z-bit is

1.9 us no branch XXX (2 X offset) is clear. BNE is the complementary operation to BEQ. It is

2.5 us branch ifZ=0 used to test inequality following a CMP, to test that some bits
set in the destination were also in the source, following a BIT,
and generally, to test that the result of the previous operation
was not 0.

BEQ 001400 PC«PC+ Uneffected Tests the state of the Z-bit and causes a branch if Z is set. As

1.9 us no branch XXX {2 X offset) if an example, it is used to test equality following a CMP opera-

2.5 us branch Z=1 tion, to test that no bits set in the destination were also set in
the source following a BIT operation, and generally, to test
that the result of the previous operation was 0.

BGE 002000 PC < PC + Uncffected Causes a branch if N and V are either both clear or both set.

1.9 us no branch XXX (2 X offset) if BGE is the complementary operation to BLT. Thus. BGE

2.5 ps branch NvV=0 always causes a branch when it follows an operation that
caused addition to two positive numbers. BGE also causes a
branch on a 0 result.

< T 9;376/

Table S (Cont)
Program Control Instructions

Mnemonic/

Instruction Time OP Code Operation Condition Codes Description

BHI 101000 PC«<PC+ Uneffected Causes a branch if the previous operation causes neither a carry

1.9 us no branch XXX (2 X offset) if nor a 0 result. This will happen in comparison (CMP) operations

2.5 us branch C=0 as long as the source has a higher unsigned value than the
destination.

BLOS 101400 PC«<PC+ Uneffected Causes a branch if the previous operation caused either a carry

1.9 us no branch XXX (2 X offset) if or a 0 result. BLOS is the complementary operation to BHI.

2.5 us branch CvZ=1 The branch occurs in comparison operations as long as the
source is equal to or has a lower unsigned value than the
destination. Comparison of unsigned values with the CMP
instruction to be tested for ‘“higher or same” and “higher” by
a simple test of the C-bit.

BVC 102000 PC«PC+ Uneffected Tests the state of the V-bit and causes a branch if the V-bit is

1.9 us no branch XXX (2 X offset) if clear. BVC is complementary operation to BVS.

2.5 us branch V=0

BVS 102400 PC«<PC+ Uneffected Tests the state of V-bit (overflow) and causes a branch if the

1.9 us no branch XXX (2 X offset) if V-bit is set. BVS is used to dctect arithmetic overflow in the

2.5 us branch V=1 previous operation.

BCC 103000 PC+PC+ Uneffected Tests the state of the C-bit and causes a branch if C is clear.

BHIS XXX (2 X offset) if BCC is the complementary operation to BCS.

1.9 us no branch Cc=0

2.5 us branch

BCS 103400 PC+PC+ Uneffected Tests the state of the C-bit and causes a branch if C is set. It is

BLO XXX (2 X offset) if used to test for a carry in the result of a previous operation.

1.9 us no branch C=1

2.5 us branch

¢z 2hey

Table 5 (Cont)
Program Control Instructions

Mnemeonic/ .

Instruction Time OP Code Operation Condition Codes Description

BLT 002400 PC«PC+ Uneffected Causes a branch if the exclusive-OR of the N- and V-bits are 1.

1.9 us no branch XXX (2 X offset) if Thus, BLT always branches following an operation that added

2.5 us branch NV=1 two negative numbers, even if overflow occurred. In particular,
BLT always causes a branch if it follows a CMP instruction
operating on a negative source and a positive destination (even
if overflow occurred). Further, BLT never causes a branch when
it follows a CMP instruction operating on a positive source and
negative destination. BLT does not cause a branch if the result
of the previous operation was 0 (without overflow).

BGT 003000 PC+PC+ Uneffected Operation of BGT is similar to BGE, except BGT does not

1.9 us no branch XXX (2 X offset) cause a branch on a 0 result.

2.5 ps branch ifZ v (N

V)=0

BLE 003400 PC«PC+ Uneffected Operation is similar to BLT but in addition will cause a branch

1.9 us no branch XXX (2 X offset) if if the result of the previous operation was 0.

2.5 us branch Zv(N¥»V)

=1

BPL 100000 PC«PC+ Uneffected Tests the state of the N-bit and causes a branch if N is clear.

1.9 us no branch XXX (2 X offset) if BPL is the complementary operation of BMI.

2.5 us branch N=0 :

BMI 100400 PC «<PC+ Uneffected Tests the state of the N-bit and causes a branch if N is set. It is

1.9 us no branch XXX (2 X offset) if used to test the sign (most significant bit) of the result of the

2.5 us branch

N=1

previous operation.

A7 75E,)

Program Control Instructions

Table 5 (Cont)

Mnemonic/

Instruction Time OP Code Operation Condition Codes Description
(No mnemonic) 000003 { (SP)«PS N: loaded from trap vector Performs a trap sequence with a trap vector address of 14. Used
8.2 us { (SP) « PC Z: loaded from trap vector to call debugging aids. The user is cautioned against employing

PC < (14) V: loaded from trap vector code 000003 in programs run under these debugging aids.

PS < (16) C. loaded from trap vector
10T 000004 { (SP) < PS N: loaded from trap vector Performs a trap sequence with a trap vector address of 20. Used
8.2 us | (SP) < PC Z: loaded from trap vector to call the 1/O executive routine I0X in the paper-tape software

PC «(20) C: loaded from trap vector system, and for error reporting in the disk operating system.

PS < (22)
EMT 104000 { (SP) «PS N: loaded from trap vector All operation codes from 104000 to 104377 are EMT instruc-
8.2:us { (SP) « PC Z: loaded from trap vector tions and may be used to transmit information to the emulating

PC < (30) V: loaded from trap vector routine (e.g., function to be performed). The trap vector for

PS «(32) C: loaded from trap vector EMT is at address 30; the new central processor status (PS) is

taken from the word at address 32.
CAUTION
EMT is used frequently by DEC system software and
is therefore not recommended for general use.

TRAP 104400 to { (SP) < PS N: loaded from trap vector Operation codes from 104400 to 104777 are TRAP instructions
8.2 us 104777 { (SP) « PC Z: loaded from trap vector TRAPs and EMTs are identical in operation, except that the

PC « (34) V: loaded from trap vector trap vector for TRAP is at address 34.

PS <« (36) C: loaded from trap vector

NOTE
Since DEC software makes frequent use of EMT, the
TRAP instruction is recommended for general use.

NOTE: Condition Codes are uneffected by these instructions

txxx = offset, 8 bits (0-7) of instruction format
R = register (linkage pointer)

g7 b0

-

Table. § (Cont)

Program Control Instruction

Mnemonic/

Instruction Time OP Code Operation Condition Codes Description

JRS 004RDD (tmp) < (dst) Uneffected In execution of the JSR, the old contents of the specified

3.8 us (tmp is an inter- register (the linkage pointer) are automatically pushed onto
nal processor the processor stack and new linkage information placed in
register) the register. Thus, subroutines nested within subroutines to any
1 (SP) « reg depth may all be called with the same linkage register. There
{push reg con- is no need either to plan the maximum depth at which any
tents onto proces- particular subroutine will be called or to include instructions
sor stack) in each routine to save and restore the linkage pointer. Further,
reg « PC PC since all linkages are saved in a re-entrant manner on the pro-
holds location fol- cessor stack, execution of a subroutine may be interrupted,
lowing JSR; this and the same subroutine re-entered and executed by an in-
address PC « terrupt service routine. Execution of the initial subroutine can
(tmp), now put in then be resumed when other requests are satisfied. This pro-
(reg) cess (called nesting) can proceed to any level.

JSR PC, dst is a special case of the PDP-11 subroutine call
suitable for subroutine calls that transmit parameters.
RTS 00020R PC < (reg) Uneffected Loads contents of register into PC and pops the top element
3.8 us (reg) « SP t of the processor stack into the specified register.

Return from a non-re-entrant subroutine is typically made
through the same register that was used in its call. Thus, a
subroutine called with a JSR PC, dst exits with an RTS PC,
and a subroutine called with a JSR R5, dst may pick up
parameters with addressing modes (R5) +, X (RS), or @X (R5)
and finally exit, with an RTS RS5.

9T 2b¢)

Table 6
Operate Group Instructions

Mnemonic/
Instruction Time OP Code Operation Condition Codes Description

HALT 000000 Not effected Causes the processor operation to cease. The console is given

1.8 us control of the processor. The console data lights display the
address of the HALT instruction plus two. Transfers on the
Unibus are terminated immediately. The PC points to the next
instruction to be executed. Pressing the CON key on the console
causes processor operation to resume. No INIT signal is given.

WAIT 000001 Not effected Provides a way for the processor to relinquish use of the bus
1.8 us while it waits for an external interrupt. Having been given a
WAIT command, the processor will not compete for bus by
fetching instructions or operands from memory. This permits
higher transfer rates between device and memory, since no
processor induced latencies will be encountered by bus re-
quests from the device. In WAIT, as in all instructions, the PC
points to the next instruction following the WAIT operation.
Thus, when an interrupt causes the PC and PS to be pushed onto
the stack, the address of the next instruction following the
WAIT is saved. The exit from the interrupt routine (i.e., execu-
tion of an RTI instruction) will cause resumption of the in-
terrupted process at the instruction following the WAIT.

RESET 000005 PC (SP) Not effected Sends INIT on the Unibus for 20 ms. All devices on the Unibus
20 ms PSW (SP) arc reset to their state at power-up.

~
w
§§.
N
~

Mnemonic/
Instruection Time

cLC

CLZ

CLN

CLvV

Set all CCs
Clear all CCs
Clear V and C
No obPeration
No operation

Page 28

Table 7

Condition Code Operators

0P Code ' Deseription
4090241 Set and clear conditioen code bits,
000242 Selectable compination of these bits
PON244 may be cleared or set together,
PAR250 Condition code bits corresponding to
200277 bits in the condition code operator
220287 (bit P=3) are modified according
to the sense of bit 4, the set/clear
bit ‘of the operator; i,e,, set
the bit specified by bit v, 1, 2, or
3 it bit 4 a8 a {1, Clear corresponding
bits if bit 4=9,
0PR240
poR260

Figure 2

PDP={1 Imstruction Formats

1.Single Operand Group (CLR,CLRB,COM,COMB,INC,INCB, DEC,DECB,NEG,NEGB, ADC,ADCB,SBC,SBCB,TST,TSTB,ROR,RORB,ROL ,ROLB,ASR,ASRB,
ASL,ASLB, JMP, SWAB)

fage 254

OP Code Dst
] | 1 \] 1 \ L |) L
15 o
2.Double Operand Group(BIT,BIT8,BIC,BICB,BIS,BISB,ADD,SUB)
OP Code . Sre dst
1 | 1] il 1 I 1 1
15 12 11 0
3.Progrom Control Group
a.Branch (all branch instructions)
OP Code offset
1 L | 1 1 1 1 ! 1
15 8 7 [¢]
b.Jump To Subroutine (JSR)
reg Src/dst
1 \ 1 1) 1 1 | 1)
¢.Subrontine Return (RTS)
o] (o] [¢] 2 reg
]] 1 | 1 L 1 1 1 L 1
d.Traps (breck point, IOT,EMT,TRAP)
OP CODE
| 1 1 | L 1 | i) 1 1 L !
4.0perate Groupe (HALT,WAIT,RTI,RESET)
OP CODE
| 1 L | 1 1 | L L L) L
5.condition Code Operators(all condition code instructions)
(o] o] (o] 2 N 4 v c
1 \ 1 | 1 1 | 1 1
1-1226
Figure 2 PDP-11 Instruction Formats

I.

ae

b

€o

do

DIFFERENCESS

pDPp=11/2% (KDiig)

If a RUS ERROR occurs due to a transfer
to nenexistent memory during am autoine
ceremepnt transfer (Mode 2), an imstruction
feteh, or stack pop, the associated
register will be incremented,
Exampies:
FETCH ROUTINE

BA ¢==«= PC, DATI

PC ¢==+« PC Plus 2

(Blls ERROR detected and recognized)

BRANCH TO SERVICE
AUTOINCREMENT ROUTINE (SOURCE)

DATI, ALBYT
Plus BYTE BAR Plus i

BA ¢==e R [S] ,
B (=== R [§])
R [8) === B
(BUs ERROR detected and recognized)

BRANCH TO SERVICE
AUTOINCREMENT ROUTINE (DESTINATION)

DATIP, ALBYT
Plus 1 Plus BYTE BAR

BA ¢=== R [D] ,
B (=== R [D])
R (0] €== B
(BUs ERROR detected and recognized)

BRANCH TO SERVICE

STACK POPS
BA ¢=e~ R (6] , DATI
B «e== P (6] Plus 2

R [6] {eeoe= B
(RUS ERROR detected and recognized)

BRANCH TO SERVICE

TABLE R

I,

b

Co

Page 29

PDP=11/04 (KD11D)
If a BUS ERROR ocecurs due to a transfer
to nonexistent memory during an auto-
inerement transfer (Mode 2), an instruce

tion fetch, or stack pop, the assocliated
reqgister will not be incremented,

Exampless
FETCH ROUTINE
BA <=== PC, DATI
BsIR <«==e UNIBUS DATA
(BUS ERROR detected and recognized)
BRANCH TO SERVICE
AUTOINCREMENT ROUTINE (SOURCE)

BA ¢=e= R [S) , DATI, ALBYT

B <«=e= UUNIBUS DATA
(BUS ERROR detected and recognized)
BRANCH TO SERVICE

AUTOINCREMENT ROUTINE (DESTINATION)

RA <wee R [D]] DATIP' ALBYT

B <¢e== UNIBUS DATA
(BUS ERROR detected and recognized)
BRANCH TO SERVICE
STACK POPS
BA <e== R [6] , DATI

B g==e [UNIBIIS NATA
(R1JS ERROR detected and recognized)

BRANCH TO SERVICE

IT,

I1T,

iv,

Ve

Vi,

For JUMP autoinerement (Mode 2) instrucse
tiens, JMP (R)+ or JSR req, (p)+, the
contents of R are incremented by 2, then
ysed as the mew PC address, This featuyre is
eompatible with the PDP=1{/2@¢,

The processor can access its general
registers using their UNIBUS addresses,

CLR @# 177700
MOV RY, @% 17770¢@

Exampies:

Note: These accesses do nut operate
correctly and are not supported,

The KpiiB CPU contains & line clock,
serial eemmynication line, and
programrmers console circuitry, These
devices answer to the UNIJBUS addresses
1792540, 17756@, and 177576 respectively,

The KD11B provides for a 15 usec SACK
time=out when recognizinag BUS Interrupts,

The console HALT switech has the lowest
priorjty level, This feature allows
the user to single=instruction=step
through an interrunt,

The PnPe11/75 priority order for trabs
and interrupts 1s as f£ollows:

RUS ERRORS

HALT INSTRUCTION
TRAp IMNSTRUCTIONS
TRACE TRALP

STRCK QVERFLOW
POWER FATL
INTEFRUPTS

HALT NN CONSNLE

11,

117,

v,

Ve

VI,

Page 30

For JUMP autolncrement (Mode 2) {instructions,
JMP (R)¢ or JSR reg, (R}+ the jinitial
econtents o6f R reglister are used as the new
FC, This feature is compatible with the
PDP=11/40,

The processor cannot access {ts general
registers using their UNIBUS addresses,

In the 11/04, these accesses to the general
registers will return SSYN and not time out,
Reads will return zerc and writes will not
cause any change in the register contents,

The KDi11D CPU does not contain a line
elock, serial communication line, or
console circuitry, These features will

be provided as UNIBUS options in the
traditional PDP=1i1 sense, In systems that
do not contain these options, attempts to
address them will result in & noneexistent
memory trap,

The KDP11D has no provisions for SACK
timee=out on the basic CPU module, A SACK
return eircult is provided on the M93@2
Terminator module which must be used with
the KD11D at the end of the UNIBUS, This
device autematically returns SACK if no
peripheral accepts a GRANT issued by the
CPU,

The console HALT switch has a higher
priority level than {nterrupts and
therefore, does not allow the user to
single=instruction=step fthnrough an
interrupt,

The PDP=11{/44 priority order for traps
and {nterrupts is as follo#4s:

HALT INSTRUCTION
RIIS ERRORS

TRAP INSTRUCTIONS
TRACE TRA#

STACK QVERFLOW
POWER FAIL

HALT SWITCH
INTERRUPTS

VIit,.

Viiz,

IX,

The KD11iR has no PBRITY ERROR detection
capabjlities and therefore does not
support pari{ty memorvy,

First instruetion after RTI {s quarans
teed t0 be executed,

RTT imngtructions are not implemented,

Page 31

Vi, The KD1iD CPU contains PARITY ERROR
detection eircuitry, and will support
parity memory options,

I¥
VIIT, AThe RTI sets the T bit, the T bit trap is
acknowledged immediately after the RTI
instructions,

IX, First instruction after RTT 18 quaranteed
to be executed,

TABLE OF PROGRAMMING DIFFERENCES

11/15 & 11/20

GENERAL REGISTERS (Including PC & SP)

OPRZR, (R)+

or OPR%R,-(R)
OPRER,@(R)+
OPR%R, @-(R)

(Using the same reg.
as both source &
destination).

JMP(R)+ or
JSR reg, (R)+

(Jump using auto-
increment mode).

MOV' PC, @#A or
MOV PC,A

(Moving the incre-
mented PC to a memory
address referenced by
the PC).

Stack Pointer (SP),
R6 used for referen-
cing.

Contents of R are
incremented by 2 (or
decremented by 2)
before being used

as the source operand.

Contents of R are
Incremented by 2,
then used as the
new PC address.

Location A will
contain the PC of
+he Move instruc-
tion +4.

Using the SP for
pointing to odd
addresses or non-
existent memory
causes a HALT
(double bus error).

11/05 & 11/10

Initial contents
of R are used as
the source operand.

Same as 11/20

Location A will
contain PC+2.

Same as 11/20

11/35 & 11/40

Same as 11/20

Initial contents
of R are used as
the new PC.

Samé as 11/20

0dd address of non-
existent memory
references with SP
cause a fatal trap,
with a new stack
created at locations
0 & 2.

11/04

Same as 11/05

Same as 11/40

Same as 11/05

Same as 11/05

2 ¢ obey

Stack Overflow

. TRAPS & INTERRUPTS

instruction

RTT instruction

TABLE OF PROGRAMMING DIFFERENCES (Cont)

11/15 & 11/20

Stack limit fixed
at 400 (octal).
Overflow (going
lower) checked
after @-(R6), JSR,
traps, and address
modes 4 & 5. Over-
flow serviced by an
overflow trap. No
red zone.,

First instruction
after RTIl is guaran-
teed to be executed.

Not tmplemented

11/05 &11/10

Same as 11/20

Same as -11/20

Not Implemented

11/35 & 11/40 11/04

Variable limit

with Stack Limit
option. Overflow
checked after JSR,
traps, and address
modes 1, 2, 4, & 6.
Non-altering refer-
ences to stack data
is always al lowed.
There is a 16-word
yellow (warning)
zone. Red zone

trap occurs if stack
is 16 words below
boundary; PS & PC
are saved at locations
0 & 2.

If RTI sets the T

bit, the T bit trap is
acknowledged immediate-
ly after the RTI
instruction.

First instruction
after RTT is guaran-
teed to be executed.
Acts like RTI on the
11/20.

Same as 11/05

If RTI sets the 7
Lit, the T bit trap
is acknowledged
immediately after th
RTl instruction.

First instruction
after &I7 is
guaranteed to te
executead,

\\

;s obe

53

Processor Status
(PS) odd byte at
location 777-777.

T bits of PS

Bus Errors

PC contains
odd address

PC contains
address in
nonexistent
memory

Register con-
tains odd
address and
instruction
Mode 2.

Register contains
address in non-
existent ‘memory
and instruction
Mode 2.

TABLE OF PROGRAMMING DIFFERENCES (Cont)

11/15 & 11/20

Addressing odd
byte of PS (bits
15-8) causes an
odd address trap.

T bit can be
loaded by direct
address of PS, or
from the console.

PC ‘Unincremented

PC Incremented

Reglister Unincremen-
ted

Register -Incremented

11/05 & 11/10

0dd byte of PS
can be addressed
without a trap.

Same as 11/20

Same as 11/20

PC Incremented

Same as 11/20

Same ass 11/20

11/35 & 11/40

Same as 11/05

Only RTI, RTT
traps, and
interrupts can
load the T bift.

Same as 11/20

PC Unincremented

Register Incremen-
ted

Register Incremen-
ted

11/04.

Same as 11/05

Same as 11/05

Same as 11/05

Same as 11/05

Same as 11/05

Register Unincremented

h¢ 26e)

Interrupt Service
Routine -

Priority order of
Traps & Interrupts

MISCELLANEOUS

SWAB and V bit

Instruction Set

TABLE OF PROGRAMMING DIFFERENCES (Cont)

11/15 & 11/20

The first instruc-
tion in the routine
is guaranteed to

be executed.

0dd address
Timeout

HALT from console
Trap instructions

‘Trace trap

Stack.overflow
Power fail

SWAB instruction
conditionally sets
the V bit.

Basic set.

11/05 & 11/10

The first in=-
struction will
not be executed
if another
interrupt occurs
at a higher
priority.

0dd address
Timeout

HALT instruction
Trap instructions
Trace trap

Stack overflow
Power fail

HALT from console

V blit is cleared.

Same as 11/20

11/35 & 11/40

Same as 11/05

Odd address

Stack overflow (red)

Timeout

Mem. Mgt. violation
HALT

Trap instructions
Trace trap

Stack overflow (yellow)

Power fail

‘Same as 11/05

Bésic set '+ MARK,
RTT, SOB, SXT, XOR.

EIS adds:
ASH, ASHC.

MUL, DIV,

Floating Point adds:
FADD, FSUB, FMUL, FDIV.

11/04

Same as 11/05

HALT instruction
Bus errors
TRAP instructions
TRACE TRAP

- STACK overflow

Power Fail
HALT Switch
Interrupts

Same as_11/05 cxcept
that RTT is implcmented

Same as 11/05

¢ 7b€)

Page 36

3,5 Bus Latency Times

The tvpieal pus latency timeg for bus requests (BR4 through BR7) and
Nen-Processor requests (NPR) are as follows, Note that there are many
gaps in these timing gequences that are a fumnction of the length and

leading o0of the UNIBUS and the gpeed realizZed by the users peripheral
eireuitry,

BUS REQUESTS =

BR te BG o maximum time is length of longest
instruction eycle of KD11D,

BG to SACK = function of UNIBUS length and loading and
the usersg peripheral,

SACK to BG OFF e 300 ng
BG OFF to SACK OFF = fundtion of peripheral,

SACK OFF to FIRST INTR ROUTINE FETCH =

Memory Coretl 6,36 us
Core Parity 6,63
MOS8] 6,43
MOS Parity 6,81

NON=PROCESSOR REQUESTS =

NPR to NPG = 340 ns

NPR to BUS CONTROL = Cores 3,52 us
Core Parity 3,66
MOS 3,56

MOS Parity 3,75

4,2 CPU OPERATING SPECIFICATIONS

Temperaturesj TBD

Relative Humiditv: 20% to 95% (with condensation)

Input Power:s +SVDC +5% at 4 amperes,

Physical Sizes Single Hex module (8 1/2 x 15 inches)
Interface Reguirementss All I/0 signals are avallable on

connectors A and B, These signals are oin
compatible with UNIBUS pinout as shown in
Table 9,

Page 37

Power and Ground
Pinoutss +5ve: pins AA2, BAR2, CA2, DAZ,
EAZ; FA2.

GND 3 pins AB2, AC2, ANi, AP1,
AR1, AS1, AT, AV2,
BB2, BC2, BDi, BEi,
BTL, BV2, €C2, CTi,
DCZ, DTI: Ec20 ETiy
FC2, FTi,

Numper of Integrated
Cireuitss 137

PIN

AAY
RA2
AB1
AB2
ACH
AC2
AD1Y
AD2
AE1
AE2
AF1
AF2
AH1
AH2
AJ1
AJ2
AK1
AK2
AL1
AL2
AMi
AM2
AN1i
AN2
AP1
AP2
AR1
AR2
A8t
AS?2
AT
AT2
AUd
AU2
AvVi
AvV2

TABLE 9 |
MODIFIED UNIBUS PIN ASSIGNMENTS

SIGNAL

INIT L
POWER (+5V)
INTR L

TEST POINT

DOO L

GROUND
DO2

Do1

DC4

D03

D06

DO%

Dog

Doy

Dio

De9

D12

D11

D14

D13

PA L
D15 L(3)

P1

PB L

Po

BBSY L

BRAT BACKUP +15V
SACK L

BAT BACKUP =15V
NPR L

GROUND

BRR .7L

$20V

BR 6L

+20V

+20V

[adt i ol 2l o ol 2l o F o ofl o o f ~ N =

PIN

BA{
BA2

BB1
BB2

BCi
BC2
BD{
BD2
BE1
BE2
BF{
BF2
BH1
BH2
BJ1
BJ2
BK1
BK2
BL1
BL2
BMi
BM2
BN
BN2
BPR}
BP2
BRY
BR2
RS1{
BS§2
BTi
BT2
BU1
BU2
BVi
BV2

SIGNAL

SPARE

POWER (+5V)
SPARE

TEST POINT

BR SL

GROUND
BAT=BACKUP +5V
BRe4[

INT, SSYN,
PAR: DET,

ACLO L

DCLO L

AD1
ADO
A3
A02
ADS
AB4
AQ7
A6
AG9
AGS8
Al
Al@
Al3
A12
AlS
a14
a17
Al6
GROUND
Ci L
SSYN L
ce 1
MSYN L
=8V

[l N ol ol o ol o fF 2 2l ol 2 F 2l 2 ol ol a8 2 o

Page 38

Page 39

5,0 DETAILED HARDWARE DESCRIPTION

5.1 Introduection

The following is a detalled circuit desecription of the KD1iD Central
Processor Unit (CPU) being used in the PDP11/04 computer, Various
segments of the CPU, as shown in Figure 4, will be analized separately
allowing the extensive use of bloek diagrams for {improved
clarification, KD11D circuit schematiecs will be referenced throughout
the deseriptions,

5.2 Data Path

5.2,1 General Description

The simplified KD11D data path congists of five functional vunits as
shown {in Figuyre 3,

Figure 3 DATA PATH

fa9¢ 394

uNeusS
OATA InfuT U us
DATA OutfuT
KRRATCH| 1, Q
PAD 2\ w .
?“‘.‘: ?"\S(‘“‘“ P b\‘ L@ \\ ' =
L 1 o
< I \ ST\ “To
A F—rp At 2 > sreucrien
u o ‘ 3 REGISTER,
) - A 3
_ . _L\ CONSTANTS A\
REGST e
P
g
PATHA (ATH

F\C:\LQE 3

ALU

AMUX

BeRegister (BREG)

PSW

Serateh Pad Memory (SPM)

Page 40

The heart of the data path (s an
arithmetie logle unit capable of
performing 16 arithmetic or 16 loglical
(Boolean) operations on the two
avallable 16ebit input words,

A foureto=one multiplexer which controls
the {ntroduetion of new data and the
circulation of avajilable deta around the
data path,

This 16=bit ghift reaglister and its
complementary logie {5 used to store one
of the operands required for most ALU
operations, It is also needed to
implement ROTATE and SHIFT {nstructions,
as well as introducing the constant +1
and generating the 8ign extended low
byte of the B Register econtents,

Eight bit register containing
information on the current oprocessor
priority, eendition eodes (N,Z,V and C)
degcribing the results of the 1last
instruction, and an irndicator for
detecting the execution of an
instruetion to be trapped during progranm
debugging,

This 16 word by 16ebit random access
memory (RAM) contains eight processor
dedicated registergs and ejght ageneral
purpose (user available) registers., Of
the eight general purpose reqgisters, one
is ugsed as a stack polinter (SP) and
another as the progpam counter (PC),

AS
N
14
(k1)
S TR
AUY (<)
AU
LR, (K COMTRO
éCADE
ROM
ﬁ\'BP:M(*S({’I Bur D(R:;):
rmkee [DECODE
o P
(3~3 MPC
] <
§35)
3 CLOCK
'COrxx*rr,(é,rt_35 *(wio) l (L
STORE
REC RS
ROM] N g8
¥ PROY
COMTROL N+ Chso) LXK
{TERE
Ra™3TER
—O
. .
l CoNTROL
| SianALS
—0
L—o

Frgave 4 ! &D{

4 J\"‘ e A% i"f
L A
-4 ()}
SP ¢) A\, |ee Ao
REGISTER <Rs TRD Mex [zoptReL
I BA f RoM N4
o) 1(“"— —
K4 K8) (A>3
[S.P M, 4 e
| K> SPA. POW.
Mux (¢
_L_L——I»NEPJ’
13
\
INT (O
N MDRT,
(xi~4) DT CoDE f‘
Conempyrs '
41 e
‘x - 4 D
(Ki=a) R
AMUX
—{D)o
4 ‘
< 7
ST R e T S T i 2T L e T ARG T

D BLO

M~y

LN

DIAG

-

M|

e et T30

fage 414

FROM AUX N g\ \ 8 m‘i\
N
{ CONTROL | i 4 4
T , —
INSTRUCTION AUX CONDITION B MO] pE | : s"rAB SCRATCH
REGISTER conNTRGL] CODE 1:0 BREG | | PAD ‘
MUX ! | BUFFER - o
4 g 1 18 R 12:8 IR 2:0 |
y l l~ BA 3: ROM SPA 3:0
LOAD CC's ENAB +1 g e . e e o
R AUXILIARY l | - ; : , P A MUX 110 U
DECODE CONTROL l . i SCRATCH A 3:0 | :ggATCH '
] LOAD PSW] PSW ENABSEX | g LEG MUX t| PAD ~ t . i
L J____,] | MEMORY ADDRESS N
S I B VT G—
ALU,CC, and R | _ . S S _
CONTROL Y\ ¢ \ g - !
MICRO BUT : - N ‘t b SR ! ‘ S - S SRR S § '-1“.»-1-. r s
BRANCH DECODER A ; V= g k A KM_E;PL; o
CONTROL ‘ » B R . = L . N S
l ALus 3:0 P X) - N y t N E | ¥ ‘:r;’
ALY MODE._5, ; P ol | e
F4a oL : -, SRR ! [e
) CONTR ALU CIN INTERNAL _
N b+ 4+ | ADDRESS o
. . I B —— e - o D“:‘mﬂ -+ —_— . ‘ h
N B 1
. TRAP 4 N o I
rCONTROL CONSTA , ;
l STORE 1 . } i [N 16 9(. . DATAJM S
4 : . -; ..,_.,y. PR : PR . . i . r —_— 4 -
SPM REG ASSIGNMENT A : ‘» ™~ BUS ERROR !
RO-R5 GENERAL PURPOSE AMIXS ; ‘ L,
, R6 STACK POINTER ' Mux. , BUS ,‘
: R7 PROGRAM COUNTER ' DATA TRAM 5 CONTROL.
CONTROL R10 SOURCE ADDRESS POWER FAIL/]
ST?RE R11 SOURCE OPERAND C 10 _» RESTART, |
LATC R12 DESTINATION ADDRESS N | ' AND 1
- R13,14 TEMPORARY ~ 16 ALLOW BYTE___5 PARITY
R15,16 UNUSED CONTROL
BUT 2i0 R17 SWAB PSW 7:5 e
MPC 7:0 |~ DATAPATHCONTROL
v } DATA 16:00
CLOCK INH. | PROC CLK |
K
\ cLoc

= REG CLK I//',jc\\e //ﬁz

Page 42

Contfol and Data Flow

Data flow through the Data Path {8 controlled elther directly or
indireetly by the CONTROL STORE cireuitry (Figure 4) on prints K9 and
Ki®, Eaeh CONTROL STORE Rom location (miecroinstruction) g¢generates a
unigue sget of outputs capable of contrelling the above data path
elements and determining the ALU function performed, Sequences of
these ROM mieroinstructions are combined into microroutines which
perform the varifous PDP11 instruetion operations, (See section 5,11
for further detaills),

§,2,2 Arithmetic Leoglc Unit (Prints Ki,K2,K3,Ké)

ORGANIZATION

The Arithmetie Logiec Unit (ALU) is divided into four 4e=bit slices,
(K1,K2,K3 and K¢ each contaln & sliee) each conslsting of one 4=bit
ALU chip (74181) and part of a ULook Ahead Carry Generator chip
(74182), See Appendix for specifications for the 74181 and 74182
integrated cireuits,

INPUTS TO ALU

The A-input to each ALU chip comes from one of the Scratch Pad Memory
(SPM) registers as specified by the CONTROL STORE microinstruction
being performed (see section 5,2,3 for details), B=inputs to each ALl
are specified by the BeLeg Multiplexer logie and ean take the forms of
eithery the full 16 bit B Register contents, the lower byte of the
BeRegister eontents 8Sign extended, the econstant one (+1) or the
congtant zereo (A) (see section §,2,4 for further description),

ALU FUNCTIONS

The funetion performed by the ALU {8 controlled by the four selection
bits (83,82,851,80), the Mode bit (M) eand the Carry im bit (CIN), The
following taple lists the ALU funetions used in the XDiiD and the
corresponding bit patterns for the six control signals, Additjional
funetions are shown in Table {2,

ARITHNETIC LBGIC OINT
LOcATED, ON PRINTS K|
KA, K3, i\4-

'[- - - - T/ T/ 7/ /M
| Lok NHEAD CARRY G eHEeRATOR R |
KS ALL CN g & | [—E GG/PO Cocx ,QI P Col G2 P nit l
. | K v ;
g l il P : . _
FROM ﬁ—_— S VI - ﬁ"" ~ R
SPM . c.u § P G : T o |
-) | N C;
:}:/ AL g1 —=C "\'/\L\A(p} | " /L\LU@: ANALL()ﬂ) |
-I—-? B ‘——/'b B _::>.~6 l =) F I
S M {9 ™M N Y S M
- I A K& Y :
F RoM - — —
E;LEZ MR | op P
- _ _ _ >
A i TO
Lo V\\ ’\L \\m:l l
FFO\JK \T§ l l
D sepe iy
* ALU BUNCcTIoN l l
AL i '
ey | |
° ‘
e \ L ——— -
TeRE iy fﬁ?f?‘

| ALU MobE g:
i (AR\I W ’
: oR Losic) {\-"

oo -

Fguwe 5 ALU BLOCK DIAGRAM

g 9%

Page 44

ALU FUNCTION ALU CONTROL SIGNALS
M 83 82 81 8/ CIN
%] i @ %] i i 1
A]) @]] i
B 1 i 7] i 4] i
A Plus A 9 i i]] 1
A Plus 1 2 %} 7] 7} @ @
A Pius B] i 7] 2 i {
A Plus B pPlusg 1 @ i (7} "] i [}
A Mimug B Minpus 1 2 %) i i (%) {
A+ B] 4] @ (%] 1 1
A (=B)] 2 i i i 4
A Minug B]] 1 i] @
A.B Mipus @ i] i i i
=B i] i] i 1
Table (€

ALU FUNCTIONS

5:.2,3 Scrateh pad Memory

5.2,3,1 Scrateh Pad Circuitry

ORGANIZATION

The Scrateh pad funetion 18 comprised of three functional units
(FigVre 6) = Scratch Pad Register, Seratch Pad Address Multiplexer and
Scratch Pad Memory, The Scratch Pad Register and 8cratch Pad Memory
are divided {nto gfour 4=bit gslices one of which is shown on either
prints Ki, K2, K3, or K4, Scratech Pad Addregs Multiplexer clircuitry
is showh on primt K8,

DATA INPUT
Data to be wrpitten into the Scratech Pad is channeled from the AMUX and
clecked {nte the Scratech Pad Register in either normal form.or with

high and 1loWw bytes reversed (for implementation of the SWAB
instruction),

ADDRESSING THE SCRATCH PAD

Page 45

The Scrateh pad Memery (SPM) reglgter address to be aecessed g
generated by the Scratch Pad Address Multiplexer (SPAM), Depending on
the state of the select lines to the SPAM, any of the following can be
the Source of the addresst

a, Bus Address
b. Instruction Register Source Field IR1{eIRA9
€, Instruction Reglster Destination Fleld IRG5=IRG3 or

d, the CONTROL STORE ROM (ROMSPA@3=ROMSPAPQ),

CLOCKING THE SCRATCH PAD

Cloeking data from the AMUX lines into the SP Register and writing
that data into the SPM, are both accomplished by the REG CLK H clock
signal, Data 1s latched into the SP Register on the rising edge of
REG CLXK H and i{g immediately written into the SPM until REG CLK H
returns low (legle °0°),

LATCH DATA (AN P REG.

}

REG CLKH L

—_——

WRITE DATA
INTO SPM,

SCRATCH PAD CLOCK ENABLES

The K9 SPW HIGH H and K9 S8SPW LOW H enabling signals generated by the
CONTROL STORE determine whether a write operation will be performed
durirng a particular REG CLK cycle, These 1lines also dictate which
bytes (either high or low or both) will be written into the SPM,

SCRANTOA fi

fage 46 PATCY:

AD
IMYER T QuTPuTs

& sPA MUK

‘—"——"‘."—_——]

]
£ (Ka) |

o

ABCD I

==l

e — —— —— — e — o— ot

Page 47

5,2,3,2 Scratch Pad Register (SP REG)

Figure 7 SCRATCH PAD REGISTER

OVERVIEW OF SCRATCH PAD REGISTER

The SP REG consists of four Multiplexer Latch (74298) circuits which
allow data trom the AMUX lines (AMUX@5=AMUX0@) to be latched with the
hRigh and low bytes reversed or in normal fashion,

LATCHING OF HIGH AND LOW BYTES

If K1 SWAR L {8 unasserted (meaning that PEGISTER 17 1is not being
accessed In the SPM), the 74298 B inputs are enabled and data stored
in the output of the AMUX, 1f, however, K{ SWAB L ig asserted, the
74298 A={pnputs are enabled and the data {8 stored with the AMUX high
and low bvtes swapped, This feature is used when performing a SWAB
{netruection and operating on byte instructions,

The CONTROL STORE outputs K9 SPW HIGH H and K9 §SPw LOW H determine
whether the low, high or total AMUX lines will be lateched into the SP
REG at the time K5 REG CLK H ocecurs, With K9 SPWw HIGH H enabled, the
high byte of the AMUX will be latched and correspondingly the low byte

Fage 47H

Sceren Pan Kesisrer (vt Ki k2 K3,k9)
AMUX
ovt PUT 7 - -
2
B2 R2
A2
To sPM
B\
Al RI
AMIX B¢
BYTES | e B |
REVERSED ws oLk
K\ SwWAB L T
XY SPW Low L

(K3 SPW H\GH L)

Figure 7 Gevatfch Pad RegisleY

Page 48

will be entered when K9 SPW LOW H i8 true,

5,2,3,2 8Scrateh Pad Address Multliplexer (SPAM)

SPAM ORGANIZATION

The SPAM generates the four address signals that select the desired
SPM word, The SPAM consists of two Tyre 745153 Dual 4=Line<to=i Line
Data Multiplexers, The SPAM is shown in print Kg8, Each of the four
4=line-to=i=1ine multiplexers (two per 745153 package) has a common
strobe {input signal (GND) and common address input sianals (K@ SPA MUX
2@ H and K? SPA MuUX @{ H), Four data input sources are used and they
are connected so that when the SPAM {8 addressed and strobed, 1t
generates opne 4=bit output, selected from one of the four SsSources,
Table {1 11sts the sources of the SPAM {mput data that are a function
of the state o0f the processor,

Table 11
SPAM Input Data Sources

SPAM : Source

Function Input source Print
source Operand Register B Instruction Register K11
selection Bits 06=78
Destinatien Operand C Instruetion Register Ki1i
Register seleetion Bits 0002
Gemeral Purpose A Bug Address Kj
Register selection Bits 0003
From Console
Register selection D Control Store ROM Ki¢

By Mieroprogram

SPAM SELECT 1NPUTS

The SPAM address inputs are S1 (signal Ki@ SPA MUX @1 H) and 5S¢
(signal Ki@ sPA MUX 2@ H), They are generated by the CONTROL STORE on
print Ki@,

The data input selected is a function of the states of Si and S@ as
shown below,

Page 49

Address Inputs

Si 1] Output
L L A
L H B
H L C
H H D

5,2,3,3 Serateh Pad Memory (SPM)

Figure 8 Seratch pad memory

SPM ORGANIZATICON

The Seratch pad Memorv (SPM) is a 16-word by 16=bit random access
read/write memory composed of four (6=woerd by 4=bit bipolar (Type
3101A) memory units found on KD11D logie prints Ki=K4,

The 16eword pyY 16=bit organization of this memory provides 16 sStorage
registers that are utilized as shown below,

(K SPW HigH H)

Cersrrrt Fap Memory

Page ¥9#

K9 BN wTG0 L T,
(K9 SPW Low) (o Pw HIGH V)
1 X\ K svs, Lew! 3330A
ZYo0)_J
K5 RESCLK H 83) ,) j
W E j —
—_— D ‘J)‘ (%) (\\ C l ‘ p
FRaM —0 M23Y, O j
s P I NN ‘ 7486
REG\S*T‘E'R t? 3 &>
—Dn !Ad>(\\} Y- P—::')
A A2 Al A9 ‘))
. K2 sPA g3 H | :) D
7]\ KD, 5PA¢1H i:<<._3‘ 1 =y ,,‘;\)H
K2 SPA @I H
KS SPA ¢gg H

ﬁgkY@ Y

Sev N rad He paor Yy

(primts ¥\, £2,k3,K4)

Page 50

FIGURE 9
Register Utilization in SPM

Register Number Description
RQ@
Ri
R2 Genera)l Purpose
R3 Registers
R4
RS
FrYE A RN L LE LYY Y XYL EE R XY Xy Yy rr gy X
R6 Procesgor Stack Pointer
R7 Program CouUnter
PR LR KRR AR N LYY SRR FY 8 By R X n g
Ri@ Source Address Storage
29 PP RO P R TR RPN PPN PP Yo R RO e®PS
R11 Source Data 8Storage
R12 Destination Address Stoerage
CL A K K- R X N X KR -R AR B N N3 L LN L X X-EJ K X-F N F-EFLXEX ¥ X LK Z-F L J X §_J]
R13 Temporary Sterade
CL AKX E- R X N X A R B F N R N N X X ¥ R-N F-F X N-N ¥ -N F-E_§ X N E K ¥ X N X B N K J N RN J
R14
R1S Unused
Ri6
CAL AR X B N RN R B R L X-J A R -2 R E-N-L N E EXJN J-F ¥ X KFX QNN F-X L KX XX JN-JFEJJ
R17 Temporary Storage for SWAR

SPM DATA QUTPUTS

Data inputs to the SPM are obtained frem the previously described S°P
REG, The output of the scratch pads (3121A) are fed into a set of
exclusive = 0R (7486) gates which recomplement the memory output data
(Data read from the 3101A {s always the complement of what was written
inte it) on read operations,

When the INVERT (1) H signal i8 used iIn conjunetion Wwith the SPM
enable {nput, ENAB REG (1) L, the exclusive = OR gates allow the
AUXILIARY ALy CONTROL elrecuitry, on print Kii to force (a) all 19s (b)
all 6°s (c) the complement of the SPM data or (d4) true SPM data onto
the ALEG of the ALY,

Page 51

INVERT (1) H ENAB REG (1) L ALU ALEG DATA
@ a All 1°s8
4] i Complement of SPM
data
1 2 All @°s
i i True SPM data

- Figure 10 ALU ALEG DATA

Another SPM gnable imput, WRITE ENABLE, allows elther the CONTROL
STORE or INTERNAL ADDRESS DECODE cirecuitry te perform write operations
on the 8PM, To write into the lew byte of the memory, the K9 SPW LOW
H signal is enabled and on the next REG CLK H lowetes=high transition,
the byvte {s written, Writing into the hiogh byte of the memory s
accompiished {n a gimilar manner except that the K9 sSPW HIGH H signal
{8 enabled, Full word operations oceur when both K9 SPW LOW H and K9
SPW HIGH H are enabled simultaneously,

5,2,4 B Register

The B Register (B REG) is a general purpose gstorage reagister on the
Beleg of the ALU consisting of four 4ebit bidirectioenal shift
registers (74194), It is used ¢to store one of the two operands
required for most ALU operations and as a shifteleft/shifteright
register during rotate, shift and byte instructions, Between the BREG
and the ALU i8 a block of multielexer logle (Figure i11) whieh pertormsg
the following functions,

1, Permits the sign of the operand in the lower byte of the BREG
to be extended through the upper byte before it enters the
ALU,

2., Can foerce the constant +1 jinte the ALU Beleg 4inputs during
eperations where a scratch pad register is being incremented
of decremented by twe,

3, Can force the constant @ inte the ALU Beleg inputs during
operations where a scrateh pad register 18 being incremented
or decremented by one, (ALU CIN provides for the one)

Data from the AMUX lines, AMUXi85sAMUX@@, can be clocked inte the BREG
by the KS BREG CLK L signal,

Kl SERIAL s FT

P T i — . -
k4 € MODC 81 £ /Q?e_fz/
st 5@ SR | K4BEew(i o3 |
A3 :
E22 2, E28
KaAnex 12"54[::> 74194 s ST b K4 BLEG 12-I5H
BREG ——8BLEG v v aLu
K49&EG|L('}H?8¢ MUY i °
1 ‘Ad i
LR LK S ' STB So |
.+3\£h“)
£6 CLICL o
Ef SREE |7’(ﬂ‘h" :
KV ENA B SN L
K4E2C6e-12 () H
Kb
'%5: SP SR (k3 RGO H a3
i . ; -
; 23 éz EXy
k3 AMUX ¢8-11 H :> 74194 $2714157 __> K3 BLEG @311 H
| BREG &l gLec ! T Te ALu
£d " ’
: o Mux
(R K Sk | | $TR S
2 e Y
. K2EREGCPUYA
KII’SHIFTIU(WH
K9 EMopg pdbe
kIBMOBL I L — K2 BLEG ¢7 H
St < SRKsz&"m(‘)ﬁq {
7408)—;
E2|
k2 AMux ¢4~¢7H::> 44194 1448 L K2 BLEG P4-P1H
i To AL
!_ BREG iﬂ)—‘
ce e SL T me9—
A
Ks Bs?s,e-ﬁ!gl. _'—_? E21
ki ZREBTMH
K3 EMope &p L
K4 BMODE. B L k2 BREC 940} 4
SUSe SR ki SW(!)H_ég T
E24 A3 E30
K AMUX & - B3H > 74194 82 74151 ~ K BLEG-$d ~03H
BREG- 8 S 7 T Ay
Ral i
. *;6(’
LR ek s L J Ao S¢
y L e Y
k5 9R§J3C\{_QL ' fRTMHH ; /7%
K SEAIAL SHIETH KFenagH L~ PREGISTER

FGwrE

Page 53

The type of eoperation performed by the BREG ig determined by the
states of mode control Iinputs 1 and @ as shown belew,

BMode Control

21 20 Operation

H H Parallel Load

L H Shift Right (towards LSR)
H L Shift Left (towards MSB)
L L Hold (eleck 1nn1b;ted)

SOURCE OF BMODE CONTROL

The primary source for the BMODE control signals 1is the CONTROL STORE
(print K9), A wired=OR connection allows these control signals to
also be generated by the ROTATE and SHIFT ROM (Eg7) in the AUX CONTROL
logic on print Kii,

BREG SHIFT CAPABILITIES

A key to the discussion of the BREG shifting operations s the
symbolie representation of the BREG bit structure ag shoewn in Figure
13, Eaeh of the four 74194 Shift Registers which make up the BREG has
a shifteleft (SL) serial Iinmput and a shi¢teright (SR) serial input
Wwhich are interconnected in such a way as to create a £full 16=bit
shift register,

When SL or SR is enabled, the other input {8 disabled, ¢therefore,
depending opn the instruction being performed only one serial input
will acecept the Kil SERIAL SHIFT H signal generated by the ROT/SHFT
ROM (EB7), specific SERIAL SHIFT signals are shown in Figure 12,

Value of Kii

Instruction SERIAL SHFT H Remarks
ASL GND L @ to BREG bit 9 via SL input
ASR BREG 15 (1) H Bit 15 of BREG output to bit 1S5 of
BREG via SR input
ROL COUT (1) H C bit BREG bit @ via SL input
ROR COUT (1) H - C bit to BREG bit 15 via SR input

Figure 12 B REGISTER SHIFT SIGNAL INPUTS

Page 54

Figure 13 B REGISTER BIT STRUCTURE

BYTE SHIFTS

This register alse handlesg bpyte shifting as required by Iinstructions
ASLB, ASRB, ROLB, and RORB, Signal Kii SHIFT IN 87 H is used as a
serial right (SR) input to bit @7 to handle replication of bit 07 for
an ASRB instruction and to load the previous contents of the Ce=bit for
an RORB instruetion, This signal is also required to perform the word
shifting ¢fop {nstructions ASR and ROR because there is no direct
connection hetween bits 48 and @7 for a shift=right overation, Signal
Kii SHIFT Iy 07 H is generated by BYTE MUX E66 and it represents BREG
output bit 08 (K3 BREG 08 H) during word instructiens ASR and ROR,

SPECIFIC SHIFT AND ROTATE OPERATIONS

The shifting requirements for the ASL, ASR, ROL, and ROR instructions
are degecribed briefly below,

Arithmetic Shift Left (ASL) - Shitts all bits left one place, Bit @
loaded with a @,

The BREG is shifted left one place, The ROT/SHFT ROM (EB87) selects

/%51: sy

el]
]

J
E— M SERIAL SHFT H

Shift left serial input
Shift right serial input

seT M7 H
L socoueuT cucx
(From bit 08 oulput of
BREG vie BYTE MUX for
shift and rotate word
instruction)

Figure |13

B Register Bit Structure

Page 55

ASlL, input whieh is ground, Kii SERIAL SHFT H = @ and is loaded into
BREG bit 00 vyia the SL input,

Arithmetic Shift Right (ASR) = Shifts all bits right one place, Bit
15 {8 loaded with BREG output bit 1§,

The BREG is sghifted right one place, The ROT/SHFT ROM (EB7) selects
ASR input [K11 CCNH], whieh is output bit 15 of the BREG, Ki1 SERIAL
SHFT H equals the bit 15 output of the BREG and {s loaded into BPEG
bit 15 via the SR {nput, This is replication of pit 15, K11 SHIFT IN
@7 H from ROT MUX (E66) equals the bit #8 output eof the BREG and {is
loaded into BREG bit @7 via the SR input to provide the connection
from bit @8 to bit a7,

Rotate Left (ROL) = Rotates all bits left one place, Rit @0 1loaded
with C=bit,

The BREG is shifted left one place, The ROT/SHFT ROM (EB87) selects
ROL {nmput [K{ CRIT (1) H], which i8 the value of the Cebit prier to
execution of the inmstruction, Kil SERIAL SHFT H equals thls value of
the Cebit and 1s loaded into BREG bit 6@ via the SL input,

Roetate Right (ROR) - Rotates all bits right one place, Bit 15 1loaded
with C'bit e

The BREG is shifted right one place, The ROT/SHFT ROM (EB7) selects
ROR input (K1 CBIT (1) H), which is the value of the Cebit prior to
eXxeeUtion of the {nstruction, Kil SERIAL SHFT H equals this value of
the Cehit and is loaded into bit 15 via the SR input, Kii SHIFT IN ©7
H equals the bit @8 output of the BREG and 1s loaded into BREG bit @7
via the SR Iinput to provide the connection from bit 08 to bit @7,

In each of these Instructions, the Cebit is loaded with a new value
trom the BREG, This fumction is discussed in the description of the
PSW logle,

BMUX OPERATION

The 16<bit output of the BREG is fed into a set of 2=te=1 multiplexers
(Type 74157), and AND gates (Tvpe 7498) as shown in Figure i1, These
circuits allow the CONTROL STORE output signals K9 ENAB +1 L and Ki1¢
ENAR SEX L to control whether the BREG unmodified, BREG sign extended,
constant 9, or constant +! will be passed on to the ALU Be=word inputs,
The followina truth table shows the various states of these control
signals,

K9 ENAB K1® ENAB ALU BLEG DATA
+1 L SEX L

H H BREG centents unmodified

H L BREG contents sign extended

L L Constant +1 or ¢ depending on state of
K8 IN H +1 L 8ignal,

Page 856

SIGN EXTENSION OF BREG DATA

When the K9 ENAB +1 L and Ki@ ENAB SEX L signals request the sign
extension o©o¢f BREG data, the unmodified low byte of the BREG {s passed
to the ALU ajong with its highest bit (BREGA7) extended (makes ALU
BLEGO® thru BLEGIS the same as BLEGAT) through the high byte,

CONSTANTS +1 AND @

The -purpose of generating the coenstants ¢+1 and @ on the BLEG inputs of
the ALU. is to aid the processor Iin performing autoincrement and
autedeesrement operations, During either operation, ¢ a word
instruetion 1is being performed, the specified register is incremented
or decremented by two, 1§ however, a bvte instruetion s being
performed, the register is incremented (decremented) only by one, The
aetuyal ALU operation 1s as follows,

RESULT = ALEG DATA + BLEG DATA ¢ ALU CIN

The ALU always uses the Ki1@ ALU CIN @2 L signal to {ncrement or
decrement the ALEG input by one; which means that the BLEG inbut must
provide the constant +1 or @ to eobtain the correct autoincrement or
autodecrement result for both byte and word instructions,

A BLEG econstant +1 |s generated by enabling the least significant BLEG
bit (BLEG ¢Y) and forcing all ether bits (RLEGP1=BLEGi5) to ©, If a
censtant ? is desired, even the least signifiecant bit (BLEGAY) 1is
cleared, The actua)l constant generated is defined by the state of the
K8 INH «1 L giognal as shown in Figure 11,

The state of the K8 INH +1 L signal {8 determined by the CONTROL STORE
output Ki@ ALLOW BYTE H and the outputs of the Scratch Pad Address
Multiplexer (SPAM) shown {in the elreuitry on primt K8, This 1legie
alse prevents the ALU from ever incrementing the PC or SP by one,

5,2,5 AMUX

The AMUX cireultry on prints Ki thru K4 consists of foeur 4 to
Multiplexers (Tvpe 74153) and two 2 to | Multiplexers (Type 74157),
These cireuits can channel either the ALU output data, data received
from the UNIBUS, the BUT SERVICE constants (K8 C2 H, K8 C3 H, and K8
C4 H), or the contents of the PSW Reglister onto the AMUX @@ H thru
AMUX 15 H 1lines whieh feed ¢the Scratch pad Register, Instruction
Register, B Register and PSW Reglister, The specific data to be
channeled g dependent on the two enable lines Ki1® AMUX SO L and Kio
AMUX 81 L, primary source of these econtrol signals is the CONTROL
STORE (print KiP), A wire=OR connection capabllity also allows these
siagmnals to be generated by the BUT SERVICE RoM (E71 print K8), and the
INTERNAL ADDRESS DECODER ROM (E48 ©print K8), The follewing truth
table shows the relationship between channeled data and the select
lines,

Page 57

DATA AMUX AMUX
SELECTED 80 L St L
UNIBUS DATA H H
BUT SERVICE CONSTANTS H L
ALU DATA L H
PSW DATA L L

5,2,6 Procegsor Status vord

The processor status word register (PSW) contalins information on the
current priority of the proecessor, the result of the previous
operation, and indieates a processor trap during debugaing, The PSW
bit assignments and use are shown in Table 12, '

Table 12
Processor Status Word Bit Assignments
Bit Name Use
3705 priority Set the processor priority,
04 Trace When 8et, the ©processor traps the trace

veecter, Used for program debuqging,

@3 N Set when the result of the last data
. manipulation is negative,

@2 Z Set when the result of the last data
manipulation is zero,

21 v Set when the result of the last data
manipulation produces an overflow,

2 (o} Set when the result of the last data
manipulation produces a carry from the most
gianificant bit,

The PSW is loaded as a result of instruction execution, proaram trars,
I/0 interrupts, and returns to main=line code, In the case of a
program trap, interrupt, or return, the PSW ig8 lonaded with the second
word of the vector from the Unibus data 1lines via the AMUX,
Otherwise, tnhe PSW is loaded through a network of multiplexers and
combinational 1logie that is controlled by the particular instruction
being executed, :

The PSW is an 8-bit f£lip=flop register (prints K1 and K2), The
condition code bits (N, Z, V, and C) are stored in 74175 quad Detype
flip=flop (print Ki), The priority bits and Tebit are stored in a
7417% gquad D=type flipe=flop called PSW 734 (Print K2), The output of
the Tebit flip=flop is sent to another flip=flop (T DEL) whiech is used

Page 58

as the trap flag.

The input source for the condition code bits 4is the output of the
condition code multiplexer (CC MUX)' The CC MUX (print K1) is a Type
74157 Quad 2-Line-toe=i-Line Multiplexer, One of the two 4=bit Inputs
is selected by the state of the select (S) input, When S is high, the
Beinput is passed to the D=inputs of the condition code latches (NBIT,
ZBIT, VBIT, and CBIT), The B=input consists of BMUX outputs Ki AMUX
0 H=03 H, when 8 is low, the Aeinput I8 selected, The Ae=input
consists of signals from the BYTE MUX (print Ki@d) and the C and V BIT
ROM (print Ki{@), These devices are part of the logle used in setting
the econdition codes as a function of instruction execution and are
described in detall in sSubseguent paragraphs,

The input source for the prilority bits (PSW @5=287) consists of AMUX
outputs K2 AMUX @5 H=d7 H which are sent to De=inputs D, D2, and D3 ot
the 74175, signal K2 AMUX 24 H is gent to Deinput D@ of the 74175 as
the source of the Tebit,

Each bit of the PSw is clocked by REG CLK H when the CONTROL STORE
(print Ki1©0) output LOAD PSW L i{s enabled, The conditien code hits N,
Z, Vi, and C can be loaded separately by the same REG CLK H when the
CONTROL STORE output LOAD CC L is enabled, The T=bit and PSw<734> can
also be loaded separately by REG CLK H when the JINTERNAL ADDRESS
DECODER ROM (E48 print K8) enables EXT LOAD PSW L,

5,3 Condition Codes

The logle necessary for determining the coendition codes {8 shown on
print Kil and can be subdivided inteo three parts as follows,

The condition codes are determined by the CC MUX (pripmpt Ki) previously
discussed, ¢the C and V BIT ROM (print Kid@), the BYTE MUX (print Kif?)
and the ROT/SHF ROM (print Ki@2), The constralints for each condition
code bit are shown in the instruetion set specifications of section
3,9,

5.,3,1 Instryction Catagorizing ROM

The CATEG ROM (E93) on print Kil decodes the instructions in the IR
register and catagorizes them into eight groups based on thelr effecy
on the carry and overflow condition codes, The&e groups are as
foliowss

Page 59

GROUP INSTRUCTIONS
{ MOV,BIT,BIS,BIC, and non PDPi1 INSTR,
2 INC, DEC
3 CLR, TST, SWAB
¢ ADD, ADC
5 NEG,CMP,COM
6 SUB, SBC
7 ROTATES
8 UNUSED

Three of the four outputs of this ROM are used to provide a binary
repregentation of one of the above ingtruction catagories for the C &
vV BIT ROM (E99), The fourth output (BYTEL) decodes the fact that the
instruetion {in the IR is a byte ingtruetion,

Figure 14 C AND V CONDITION CODE ROMS

1y 5973

KIT IRis5()H 6
wit 18wy —t e
£33
K1 R 130) H—
K1 iR 120)H—1% CATEG |11
x4
K IR iBO)H g 3lex
Kl IR@3O)H 9
Kit IRes()H 3
Kl IRD7(1)H ‘2 1o xll BYTE L
Kl IR @G(iyH
_ Irs
-) 9
/5 23-R29A2 €S woroc cd
£99
71 civ
' Dﬁ—%’r’:: VH
K4 ALES IS H
Ke BLEG ISH =B
Kir cc N H e
6
K1 cBir() H——
Kil leorca/m)if’———4
13]14

Cand V CONDITion oDE ROMS'
FIGURE I4

Page 60

§5,3,2 C & V BIT ROM

The € & V Bit ROM (E99) on print Kii{ determines the values of the
carry and overflow condlition code bits as a function of the
instruetion pbeing performed, Inputs te this ROM eome from the ALU
ALEG (K4 ALEG 1% H) and BLEG (K4 BLEG 1% H), the ROT SHFT ROM (Eg§7=Kii
ROT CBIT (1) H), the PSW (Ki C BIT (1) H), the output of the ALU (Kil
CCN H) amnd the CATEG ROM (E93), Outputs Kil1 CC ¢ H and Ki{ CC V H are
fed into the CC MUX (E12) on print Ki,

5.3,3 Byte Multiplexer

Figure 15 BYTE MULTIPLEXER

The BYTE MUX (E66 print Kii) 18 & 74157 Quad 2 to { 1line mnmultiplexer
whieh determines the N and Z condition code bits and the Kii SHIFT IN
@7 H sianal for the BREG (print K2), A single select input (Kii BYTE
L) is wused to oppose the Asinputs when a byte operation is performed
and the B inputs when not a byte,

ODutput K11 CeN H assumes the level of K4 AMUX 15 H when the
{nstruction being performed Iis & word operation and the level of K2
AMUX @7 B when the instruyction is a byte, The latter is also possible
for instructions performing operations om the high bvte of a word
becalUse the proeessor microcode (section 6,0) has already swapped the
high and 1leow bvytes of the input word before the condition codes are
detected,

The CC Z H output assumes the level of the K{l @=15 = @ H input when
the instruction pbeing performed is a word operation, and Kii 0«7 = @ H
when the instruction is a byte operation, Both Kif 0=15 = # H and Kii
=7 8 @ H are determined by logic on print Kii and the Type 8815 gates
connected to the ALU outputs on prints Ki, K2, K3 and K4, Kii 0=7 = 0
H {s true 1f the low byte of the processor operation is zere, Kii
P15 = ? H {s true {f the 16 bit result is zero,

For shift right operations, the Kii SHIFT IN @7 H output assumes the
level of the K3 BREG 98 (i) H (print K3) {nput when the instruction
performed is a word operation anmd the level of the Kii SERIAL SHIFT H

BNTE MULT\PLEXER,

74187
11| _£66
K2 AMUX @7 H = =3 2 9 Kii €C adod
K4 ANUX 15 H ———{52
)i g1:¢ H —SHA0 ¢

for——Ki1 2 M

Kil @-15=3 H Zle3

KIl SERAL S+ rf#—-———r"' 0z K1 ST N @ET M
K3 BREG ¢8(1) H =48
A e
73 2
L3ea
£73 Je

S/ !I
o

Kif arf 8 —

/290 Cor?

QYTE MuLniPLEXER
RIGURE \5

Page 61

(erint Ki1) output of the ROT/SHFT ROM (EB7) for byte operations, To
understand the reasons for these signals, the following dliagrams
irnd{cate the operations performed by the various ROTATE instructions,

Page 62

Byte:
E;, o 'jdﬁ . B
RSt
A‘)LB Word:

E]’"[TSJL.ILin-LL

Byte:

J--o
L 1 | I A

o]

l:}‘°’“L7L N =

EVEN ADDRESS o

(L.
15

L |
000 ADDRESS

page 63

"[‘51..1LL1',1-1 J

,._
-
L
-
L
L

] —

159 0 T
m I o
| |
oL,
Rot B
Word:
BL_:[!SI S | |' N ST S l,o—l
Bytes:

Page 64

5,4 UNIBUS ADDRESS and DATA Interface

5,4,1 UNIBUg Drivers and Recelveres

Standard bus transeceiver circuits Type 8641 are used to Interface the
procesgsor data path to the UNIBUS address (BUS APBG=A15) and data (BUS
DPBd=D15) 1ines, These circuits are shown on prints Ki thru K¢, A
logic dlagram for a 8641 ig shown below,

Figure 16 UNIBUS TRANSCEIVER

5.4,2 UNIBUS Address Generation Circuitry

A unique feature of the KDiiD is that there 18 no BUS ADDRESS
REGISTER, Durimg UNIBUS transfers, bus addresses are obtained
directly from the Secratch pPad Memory (SPM) previously discussed, The
contents of the selected SPM location 1s complemented by the
Exclusive=0R gates at the outputg of the Scratch Pad and driven onto
the UNIRUS by a set of Type 8641 Bus Transcelvers (Prints Ki, K2, K3
and K4), The driver outputs of these transcelvers are enabled by the
signal K6 ASSERT ADDRESS I. whose Source is the data transfer clrcuitry
on print K6,

5,4,3 INTERNAL ADDRESS DFECODER

The receiver half of the above mentioned bus transcelivers continually
monitors the 'INIBUs address lineg, If the procegssor is runming, these
transcelivers only allew the INTERNAL ADNDRESS DECODER circuit (print
K&8) teo detect transfers toe or from the PSW regjster, While the
proceggor 1s halted, this decoder e¢irciut enables data transfers
between CPU Registers and UNIBUS peripheral devices, A list of these
CpU reglstersg and their UNIBUS addresses follows,

PSW 777776 Rig 777710
RO 777700 R1L 777711
RL 777701 R12 777712
P2 777702 R13 777713

R3 7777083 R14 777714

tage 64 H

UNIBUS TRANCEIVER
FIGVRE /é

Puge 65

R4 777704 RIS 777718
RS 777705 R16 777716
R6 777706 R17 777717
RT 177797

One point of clarification that should be noted, {is that while the CPlU
is8 runming, only the PSW can be accesgsed through its UNIBUS address:
the General Registers cannot be accessed {in this manner, Wwhile the
processor is halted all CPU Registers and the PSW can be accesgs<d
througn UNIBUS addressing,

5,4,5 UNIBUS DATA Transcelvers

The Cata Path circuitry also contains UNIRUS Transceivers Type 85641
(Prints Ki, K2, K3 and K4) whieh send and receiver data from the
UNIBRUS data 1ines D?@-D1%5, The receiver sgection o0f these circults
inputs data to the Deinputs of the AMUX (Figure 4) where it may be
channeled to either the Instruction Register (IR), B Register, or PSWw
upoen reauest

The driver sections of these transceivers obtains data from the AMUX
output lines AMUX@P=AMUX15 (prints K1 thru K4) and drives it onto the
UNIBUS when the signal ENAB DATA L {8 generated by the DAT TRAM
cirevuitry (print Ké),

5.5 1Instructlion Decoding

5,5,1 General Description

Two methods are uUsed to control instruetion decoding, One uses
microroutine selection and the other uses auxiliary ALU control, ULual
control is required pecause of the large number of instructions that
require sourcesdestination <calculations, Auxiliary ALU eontrol s
evoked whenever the microcode executes the action X.RY OP B as a
result of a specific instruction,

There are two prerequisites to a thorough understanding of the
ingstruetion deeoding procedure, One {s a knowledae of the
microbranching process (Section 5,11) and the other is a knowledge of
the PDP=11 ipnstruction format (Section 3,9),

Certain facts concerning the PDP=11 instruction set are listed bhelow,

1, In general, the PDPe{l operation code ig variable from 4 to
16 bits,

2., There are a number of instructioms that require two address
caleulations and a larger number that reguire only one
address calculation, There are also &8 number of instructions

Page 66

that redguire addresg caleculationg, but do not operate on
data,

3, All OP codes that are not implemented in the KDii{-D processor
must be trapped,

4, There are illegal combinations of {nstructions and address
modes that must be trapped,

8, 'There exists a 1list of exceptions8 in the execution of
instruetions having to do0 with both the treatment of data and
the setting of conditlon codeg in the program status word,

5,5.2 JInstruction Reglister

Each PDP=i1 instructien obtained from memory is stored in the 16=bit
INSTRUCTION REGISTER (IR) on print Kii, This register consists of
three 6«bit D=Type Registers (Tvype 74174) and one D=Type Flip=Flop
(Type 7474), The purpose of the IR {8 to store the instruction for
the complete instruction ecycle go the IR DECODE (print Ki2) and
AUXILIARY ALU CONTROL (print Kii) circuits can decode the correct
control gignals throughout the instruction cvele,

The IR latches data from the AMUX@Q0=AMUX{S5 (prints Ki thry K4) lines
on ejither the trailing edge of K5 SERV IR H or on K192 LOAD IR L and
the trailing edge of K5 BREG CLK L,

When K5 PROC INIT H eecurs, all the IR bits except Kii IR 15(1) H are
cleareds K11 IR 15(1) H is set by K5 PROC INIT L, This means that
the IR DECODER ecircuit will {nterpret +his new IR outPut as a
conditional branch while K5 PROC INIT H 1s true. This prevents
processor frem decoding a HLT instruction on any INITIALIZE condition,

If a trap Instruction is 1loaded {nto the IR and decoded, it 1is
necessary teo elear that Instruction from the IR before the micro=pC
does to the next SERVICE routine, Fallure to do this will cause the
SERVICE routine to loop on the trap instruction, The BUT SERVICE PROM
(E71 print Kg) asserts K8 INST TRAP SER L whieh im turn causeg K5 SERV
IR H, On the trai{ling edge of K5 SER IR H, Kii IR15 (1) H is set by
K8 INST TRAP SER L and all other bits of the IR are loaded with zeros
from the AMUx lines, This results in a conditional branch instruction
being leoaded into the IR,

If a BUS ERROR (BE) occurs while the CONTROL STORE output signal ENAB
DBE L 1is asserted, the whole IR register is cleared (FDP-=11 Halt)
causing the processor to automatically halt, Bus errors occuring
without the ENAR DBE L signal have no effect on the IR,

$5.5.3 Instruction Decoder

Page 67

5,5,3.,1 Instruction Decoder Cireuitry

The INSTRUCTION DECODE and CONTROL STORE ROM cireuitry om orint K9,
Kig, K11 and K12 could be thought of ag an internal microprocessar
whieh interprets PDPei1l instructions and translateg them into a set of
microinstructions each consisting of 38 control signals, ThesSe
contrel signals then 4determine the operation of the data path &nd
UNIBRUS econtrol circuitry,

A block diagram of the CONTROL STORE and INSTRUCTION NECODFR is shown
in Figure 4, Note that all outputs of the CONTROL STORE ROMS (prints
K9 and Ki?®) are latched in Hex I Type Registers (Type 74174),

Eight of these latched Signals (K9 MpPC 37 L=K9 MpC @4 L) are fed back
te the inputs of the CONTROL STORE ROMS as the next micreeinstruction
address and can thus be called the micro=PC, The Wire=OR capability
of these 1ines allows the IR DECODER circultry to force microbrancninga
addresses on certain enarling conditiens, The actual microbranch
address will be dependent on the {nstruction being decoded, the
i{nstruction mode used (MODES @=7), and the operand required (source or
destinmation),

The INSTRUCTION DECODER circuitry is shown on prinmt K12, ‘It <consists
of 8Seven 256x4 bit ROMs and several Tvpe 74Hpi, Type 7442 and Type
7424 loale gates, To better understand the operation of this 1loglc,
the £ollowing descriptions are based on ingtructioen types,

5¢5,3.,2 Double Operand Imnstructiens

Double operand instructions reguire two address calculatiens, one for
the sourece and one for the destination operand, The microebranch to
the sequence of microinstructions which determine the source operand
is 1initiated by the CONTROL STORE output signal K9 IR DECODE (1) H,
When this signal is enabled, the IR DOFCODER Rom DnP DECODE (ER9)
(Print Ki2) checks the {nstructien in the TR (OP CODPE b{ts IR14-12),
If the instruction {s a double operand type, the ROM outruts are
asserted as follows:?

ROM QUTPUTS

TYPE K12 KQ K9 K9
INSTRUCTION IR CODE @@ L MPC 95 L MPC A4 L MPC 3 L
Double Operand Inst, 1] Q 1
Reserved Inst, (EIS) A i 1 1
Other Instructions 1 { 1 1

Coupled with the micro=PC outouts of the NDOP LEC ROM are the outputs
of a set of Type 74HV!1 gates on print Ki2, These gates «hen enabled
place the contents of the source mode field (JR11=JR¥9) of <the PDP1}Y
imstruection pbeing decoded on the MPC @¢d L=MPC @2 L lines, These gates
are enabled only when the instruction being decoded 1s of the double

Page 68

operand type (Ki2 IR12={480 H true), the K9 IR DECODE (1) H signal is
asserted and the instruction 18 net reserved (K12 IR CODE 9@ L
unasserted),

A summary of the various source micro addresseg is shown below,

SOURCE OCTAL
INSTRUCTION MODE MICRO BRANCH ADDRESS
DoP 2 60
i 61
2 62
3 63
4 64
5 65
6 66
7 67
RESERVED DOP aa

Note that a ground on the MPC lines represents a logic "i" (negative
logie).,

The DOPp DEC ROM deseribed above is also used to decode the microe=PC
address for the various CONTROL STORE destination operand routines,
When the K9 BUT DEST L input is asserted by the Control sStore
cireuitry, the DOP DEC ROM decodes the instruction, determines if {t
is a modifvying or nonemodify instruction and asserts either the
address ?05(8) or 006(8) on the K9 MPC 05-K9 #MPC A3 lines, If a MOV
instruction {8 decoded and the Ki2 DM@ H (destination Mode @) inmput {s
asserted, tnhe micro address @01(8) is placed on the K9 MPC 93=K9 MPC
25 lines, '

Similar to the eircuitry described above for micre=addressing the
source .operand routine, a set of Type 74HO1 gates on pPrint Ki2 are
also used to decode the destination mode field (K1{ IR @3 (1) H = Kit
IR @5 (1) H) of the instruction being decoded and place its contents
on the K9 MPC 2@ = K9 MPC 22 linmes when enabled, For double operand
{instruetions, enabling occurs when the CONTROL STORE asserts Ki2 RUT
DEST L,

A summary of the varlous destination micro-addresses is as follows,

OCTAL
DESTINATION MICRO=BRANCH
INSTRUCTION MODE ADDRESS

49
41
42
43
44
45

MODIFY INSTRUCTIONS
(ADD,SUBR,BIC,BIS, and MOV
not DM2)

[I PV S R

Page 69

46
47

~ O

50
51
52
53
54
55
56
57

NON MODIFY INSTRUCTIONS
(CMP,BIT)

R, T I NP O

=

MOV DESTINATION MODE @ i0

INSTRUCTIONS

5,5,3.3 sSingle Operand Instructions

Unlike double operand instructions, single operand dinstructions only
regquire one address calculation te obtain the necessary operand,
Complete SOP Instruction decoding is dome with the two 256x4 Bit ROMs,
SOP MICRO BRANCH (ES81) and SOP DEC (E75), both on print Ki2,

The SNP MICRO BRANCH ROM (EB1) monitors the necessary IR {Input lines
and asserts the correct micro=pPC address op lines K9 MPC @23 = K9 MPC
25 when the K9 IR DECODE I, signal i{s asserted and the SOP enable
signal K12 IR 12=1430 L s true, The K12 DEST L output is also
activated when a SOP instruction is decoded, This Signal enables the
destination mode monitoring cireultry deseribed {n the dauble operand
instruction decoding section, Microaddresses for SOP instructlons are
shown below, : '

The SOp MICRO BRANCH ROM is alse used to decode JSR i{nstructions,
This deeoding |Is performed exactly as described above for §SOP
instructions, The Ki2 DM@ H {input to the ROM is used to detect the
{llegal insgruction JSR degtination mode @, When this occurs, no
microepc address is allowed on the ROM opoutputs,

INSTRUCTION DESTINATION MICRO BRANCH
MODE ADDRESS

S0P MODIFY INSTRUCTIONS o 40
(CLR,COM, INC,DEC,NEG,ROTATE 1 41
AND SHIFT INST,) 2 4?2

3 43

4 44

5 45

6 46

7 47

SOP NQN MODIFY INSTRUCTIONS] 50
(TST) i 51
2 52

Page 7@

/

53
54
55
56
57

I ON W

A
21
22
23
24
25
26
27

JSR INSTRUCTIONS

~I O AL WN - D

THE SOp DEC rOM monitors the same Iinput signals as the SOp BRANCH ROM,
Its purpose however, {s to decode 1illegal, reserved and trap
instruetions, The three output signals IR CODE 0@ L, = 92 1L are
enabled as follows,

IR CODE
INSTRUCTIONS n2 @1 a0
RESERVED INSTRUCTIONS 1 1 a
ILLEGAL INSTRUCTION i 4 1
(JSR MODE®Q)
EMT INSTRUCTIONS 4] 1 7
TRAP INSTRUCTIONS] @ 1

5,5.,3,4 Brapch Instructions

Conditional branch instructions are completely decoded by the BRANCH
DEC ROM (Eg?) on print Ki2, This Rom 1§ enabled when IR bits
IR11=TR14 are all low (IRi11~14=% L) and the IR DECODE 1 signal 1is
active, The {nput 11ines monitored are the four condition code bits
(N,Z,V and C) and four IR bits (IR15,10,9,8), When a branch 1is
decoded., the MPC 06 I, output signal {s enabled, The branch
instruction microcode routine in the CONTROL STORE will sign extend
the branch offeset and shift it left one place,

$,5.,3,5 Opepate Instructions

There are three 256x4 Bit ROMs in the instruction decoding circultry
for decoding PDPii operate instructions, Thege ROMs are T BIT DKC,
TRAP DEC, and OP BRANCH whieh are found on Print Ki2,

The OP BRANCH ROM (EB2) meniters the IR output lines IR@® (1) H = IRQ7
(1) H, It 1s enabled when IRG8 (1) H thru IR15 (i) H are all low
(IRP8=15a00 1) and IR DECODE L {8 active, The PDpil operate

Page 71

instructions are decoded inte the following micro=pc addresses on the
ROM eutputs MPC AP L = MpPC 02 L,

INSTRUCTION MICRO BRANCH
ADDRESS
RESET 2
RTI 3
SET CONDITION CODES 4
CLEAR CONDITION CODES 5
RTS 6
WAIT 7

The T BIT DEc ROM (E76) has the same inputs and enables as the OP
BRANCH ROM, Its purpose is to decode RESET, RTT, and RTI instructions
and activate the outputs START RESET L and ENAB TBIT L aceordingly,

The TRAP DEC ROM (E7@) aaain has the same inputs as the previous two
ROMs , Its purpose s to decode HALT, reserved, trap and illedgal
instruetions and enable the outputs aeccordingly,

IR CODE
INSTRUCTION w2 01 @@
RESERVED INSTRUCTIONS 1 1 0
ILLEGAL INSTRUCTIONS 1 % i
BPT INSTRUCTIONS 1 7 4
IOT INSTRUCTIONS] i 1
HALT INSTRUCTIONS Enable HLT RQET L

5,6 Auxiliary ALU Control

The AUX Coentrol eircuitry or the KDiiD consists of three bipolar ROMS
shown en primt Kitf,

ROM NAME
32X8 Bit AUX DOP E94
256X8 Bit AUX SOP E89
256X4 Blt ROT/SHFT ER7

These ROMs determine the ALU operation to be performed whenever the
microcode executes the action X.Y OP B where Y designates a scratch
pad register and X designates either Register B or a scratech pad
register,

The AUX PDOP pOM decodes double operand instructions and Is enabled by
the CONTROL STORE sianal AUX SETUP H, The following table expresses
the outputs of this ROM as a funetion of the instruction beinqg

Page 72

performed, B represents the B Register and A represents any scratch
Pad register,

ROM QUTPUTS

INSTRUCTION OPERATION INVERT S1 S¢@ CIN MODE

»
Wd
n
[V

MOV (B) B.A

CMP (B) B.A MINUS B

ADD B.A PLUS B

suB B==A PLUS B PLUS 1

BIT (B) A,B
BIC (B) Ba(=A),B
BIS (B) BuA+B

= b2 2) =2 5 pa
V- QR =R
TR e s e
RS IO B B
- NS D
o b a IS e S e
- e S D

The AUX SOP ROM decodes single operand instructions and 1s enabled by
the CONTROL STORE signal AUX SETUP H, The following table eXxpresses
the ROM outputs as a function of the SOP instructions decoded,

ENAB ROM OQUPUTS
INSTRUCTION FUNCTION REG INVERT 83 82 s1 S CIN ©0ODE
CLR (B) B2 @ 1 1 | a "] 9 2
COoM (B) B_=B ? 1 1 ? 1 2 P 1
INC (B) B.® PLUS B PLUS 1 Q i @ i i %] @ Q
DEC (B) B.(1,B) MINUS 1)] @ 1 4 2 1 ?
NEG (B) R.® MINUS B 2 1 1)) 1 ? o
TST (B) B.B ' i Q i % 1 1 1
ADC (R) B.? PLUS B PLUS CIN 2 i @ i i 7] i n
SBC (B) B.(1,B) MINUS 1 PLUS =C 1 2 @ i % %} ? 2l

The INVERT H anda ENAB REG L outputs are used to create the @ and |
inputs on ¢the ALEG of the ALU as described previously in tne ALU
section,

Auxiliary controel signals are alse necessary for performing rotate and
shift oeperations, The ROT/SHFT ROM on oprint Ki@ decodes these
instructions and outputs those control signals required te shift the
contents of the BREG, Inputs BREG @@(1) H, CC N H, and CRBIT (1) H
also determine the SERIAL SHIFT H and ROT CBIT (1) H signals, The
SERIAL SHIFT H sicgnals is sent to the BYTE MyX (print KiP¥) where it {s
used in determining the SHFT IN @7 H signal used in the B PEG shifting
operation, ROT CBIT (1) H is used in the calculation of the new carry
conditien (C & Vv BIT ROM), Note that for all rotate and shift
operations the AUX SETUP is performed on the B.B step before each X.Y
OP B step previously mentioned, This is dene to allow the condition
code8 to be getup without slowing the processor,

A summary of the AUXILIARY CONTROL i{s shown in the Table enclosed,

N «(14)

faqe
TABLE 12
Auxiliary Control for Binary and Unary Instructions
Condition Codes
R ALU
1nst. Nand Z A\ C Function CIN B
MOV (B) | Load Cleared Not Effected A Logical 0 Load
CMP (B) | Load Load like SUBTRACT | Load like SUBTRACT | A-BA¥ ® | Load
BIT(B) | Load Cleared Not Effected A ‘3 ""3“’“ 0 Load
BIC (B) | Load Cleared Not Effected ~AQ@B Llogwpl 0 | Load
BIS(B) | Load Cleared Not Effected s AR Lﬂ%&gl Load
ADD Load Set if OP’s same sign Set if carry out Aplus B 0 Load
' ’ and result different.
SUB Load +-(-)=- } S Set if Carry A plus B +1 | Load
. et

~(E)()=+
CLR (B) | Load Cleared (like ADD) Clear 0 0 Load
COM (B) | Load Cleared Set ~B Logical 0 Load
INC(B) | Load Set if dst held 100000 | Not Effected Adwe B +1 | Load

before OP w
NEG (B) | Load Set if result is 100000 Cleared if result is 0; A-B#A G | Load
‘ set otherwise p\ 0

us

ADC (B) | Load Set if dst was 077777 Set if dst was 177777 W +C | Load

and C=1. and C=1. 2

. . s
SBC (B) | Load Sct if dst was 100000. if dﬁa&aﬁ'g ﬁ ~C
and C = 1; g other- L -6) MNuS|
wise.
TST(B) | Load Cleared Cleared ﬁ Logical 0 Load
ROR(B) | Z+(C:01) | NeC (0) Shift Right
N« C
"ROL(B) | Z(14:C) NeC (15) Shift Left
N« (14) B(7)
ASR(B) | Z+(15:01)| NeC C < (15) Shift Right
‘N«N

ASL(B) | Z < (14:01) Cc<(5) Shift Left

Page 74

5,7 Data Transfer Circuitry

5,7.,1 General Descriptioen

All UNIBUS data transfers are controlled by the DAT TRAN eircultry on
print K6, This logic moniters the busy status of the UNIBUS, controls
the processor bus control lines BBSY, MSYN, €1 and C@, and detects
PARITY ERRORS (PE), BUS ERRORS (BRE) and EOT ERRORS (ENOT),

Se7,2 Control Cireuitry

5,7.2.,1 Proeessor Clock Inhibit

All processor data transfers on the UNIBUS are {nitiated by the
CONTROL STORE output Ki@ DAT TRAN (1) H (primt Ki?), This signal
comblnes with the signal Ke EOT (2) H (normally a logic "i" bhetween
transfers) to create K6 TRANS INy I, stopping the processor clock,

5.7,2,2 UNIBUS synchronizatioen

The synehronizer logie shown in Figure 17 (from print Ke6) arbitrates
whether the processor or some other UNIBUS peripheral will control the
UNIRUS,

FIGURE 17 DATA TRANSFER SYNCHRONIZER

A logiec "1" 1evel (43v) on the set input of the Ei21 £flip=£flop
specifies that the bus is presently in use., Each of the inputs which
combine to create this level monitors a specltic set of bus
conditions,

NPR = A UNIBUS peripheral has aserted a Non Processor
Request (NPR) and wishes to gain Contrel of the bus

Paae 7[/14

BUS SSYN L —— KL SSyN H
—1 7
KL DATIP (B¢ @___J\
K BRSY M B
R ———">
K71 NPG H —_—

K1 No SACK TD ¢

Bus IN USE M

BN .
e l

NN NG
| 4’3-f'F7 d]‘K(p START TRA! k

oo - .
X6] NH .
Kb EOT (¢) H — TRAK 1

KA Oav AN H

DA?A FTRANSFER SyscHRoNIZER

page 75

immediately,

BBSY » Another UNIBUS peripheral already has control of the
pus and is asserting a bus bhusy (BBSY) signal,

NPG e An NPR device has requested control of the (UNIBUS
and the KDI!iD processor has {ssueéd a non=processor
request grant (NPG), The condition may exist where
the NPR device has already recognized the NPG ang
has dropped its NPR signal while not having asserted
a SACK or BBSY vet,

NO SACK TD L

An NPR device has requested control of the UNIBUS,
the KD1iD processor has issued NPG and the device
has returned SACK L eausing NO SACK TD L to go hiah,
The condition may exist where only SACK L remains on
the UNIBUS for a period of time before the
peripheral asserts BBSY,

DATIP (2) L When this input is true, all of the apbove signals
are overridden, Generated on print K&, 1t indicates
that the processor is performing 5 DATIP
(readeModify=Write) operation and has control of the
UNIRUS (BRSY asserted), NPR devices may, however,
be gqranted bus eontrol but must wait until the
processor releases to BBSY before asserting theirs,
(DATIP operations dictate worst case bus latencies
for NPR devices),

BUS SSYN L - Another data transfer {s still being ecompleted and
therefore the processor . must wait hefore
initializing another,

If none of the above BUS IN USE conditions exist, the Ki¢¥ DAT TRAN (1)
H signal clears the E121 flip=flop and activates Ké START TRAW F
(start transfer), The RC circuit on the output of E121 {lliminates
any nolse that may result from the synehronizer under worst case
conditions,

5,7,2.3 Bus Control

Once the K6 START TRAN H signal is activated, the DAT TRAN circuitry
begins a UNIBUS data transfer operation by asserting K& ASSERT ADDRESS
L, As shown in the loglec diagram of Ficure 18, K6 ASSERT ADDRESS L
triggers the following bus actiens,

1. Enables the BUS ADDRESS (BUS AP@=BUS BA1S5) drivers (print Ki
thru K4),

2. Enaples the BUS BBSY driver (print K6),

3, Enables the bus control signals RUS C® and BUS C(C1 which
determine the type of transfer being perforred,

Page 76

c1 ce QOPERATION

a 4] DATI

] i DATIP
i 2 DATIO
1 1 DATOR

The actual condition of these control lines 1§ determined by
the_CONTROL STORE outputs KI10® C0 (i) H and K1@ C1 (1) H,

4, Enaples the BUS DATA (BUS D@@-BUS D15) drivers 1{f the
operation belng rerformed (s a DATO,

Figqure 18 DATA TRANSFER BUSs CONTROL

5,7.,2,4 MSYN/SSYN TIMEOUT Circuitry
UNIBUS specifications require that the BUS MSYN . conmntrol signal be
enabled no sooner thanm 150 mns after the bus address, data, and control

lines have been asserted, To meet this regquirement, the elircultry |in
‘Flgure 19 has been incorporated into the DAT TRAN logic (print Ke),

Fiagure 19 MSYN/SSYN CONTROL

The €{rst one=shot, E98, delavs the triggering of the SSYN TIMEOUT

ﬂ}ﬂg 7% A

KS T DT H — %
Y 1doz O Kb EAMAD Duri L
— K6 C/ L I » o
NEOTS 0 PV ~ o r- - ;;). QrIL
—1 &0 : K9 ¢t) H i ‘({> » ch K
K§oCd) B — ;',f’;" MW BUS Cp L
b | .] Ky e H Ko coH
’— — : -"Uo a‘sseu—; A _‘_4 "s",‘“ - . BUS BASY ¢
K5 PRoC ,N'TL———J ! Jeo : B s 3V —3)_[5: Ki BBsY A
KL START TRAM H ~ 1 ¢ p—t——0d - P o BUS msyal ¢
g_.d / A1)
Mo ENAQ (\H — w0 @) L 4 S>——— K sy M
Moyl EAIR el
PN BN o e s
O

Attow BYTE H

AT TRANSFER Bus CoNTROL

POOLRE .
+Sv +5v
' R2G
R24
i 30X
5.6K| ca
Co
szpf 22 BPP
H, ¥
I -
b2 o4 9602
H
, - _ 43Ve 9602b’7 5 98
Ao STRRT TRAN H—-@ €98 | 1o oavc-—D o
o9 o
13 >
+3vC

Mo TRUAEG ()

- K6 TRAN (L% ¥

K6 SSYN H 2

FIGvRE

/9

M S)/A//SSy/!/ conNTRolL

Page 77

onesshot (E9B8) until approximately 250 ns after the assertion of Ké
START TRAN H, Once fired, the output of the SSYN TIMEQUT c¢ne=8hot
enables the BUS MSYN I bus driver and waits for the bus peripheral
being accessed to return a BUS SSYN L, When BUS 8SYN L {8 returned,
E98 {s cleared 75 ns after the SSYN ig received negating M8YN angd
cloeking data obtained frem memory into the BREG or INSTRUCTION
REGISTER, -

5:7,2,5 BUS Ervors

Once the SSYN TIMEOUT one=shot is triggered, SSYN must be Teturned
within 22 mieroseconds, If 8S8SYN {s net returned in thils time, E98
times out setting the BUS ERROR (BE) flipe=flep E115, llpon entering
the next SERVICE microcode state, the processor will moniter the
status of the BE flip=£flop and trap {f the PE flip=flop is set,

5,7.,2,6 PARTTY Errors

Along with clocking data {nte the BREG, IR, and BE latch, the timeout
of E98 also clocks, The parity error detection logic shown in Flgure
20,

Figure 2¢¥ PARITY ERROR CIRCUIT

If a data transfer is being performed with a parity memory option
(MS{1=Fp, MglieHP, MMiieCP or MMii=DpP) all parity errors detected by
the memory will be reflected back to the KD11D or the UNIBUS lines BUS
PA L and BUS PB L,

CONTROL ERROR
PA PB DESCRIPTION

Ne Parity Error

Parity Frror on DATI
Reserved for future use
Reserved for future use

Eandl o BN
—_ S S

Page 774

+3VDB

g
—1-2_ ke PE (Y H

12
BUS PA L o E ‘{883\" T K6 Tt L ;400). 8 [
£20 633} 2 Ei04 1474
& €121
ANZ '_ ~ - _,‘,______"_(;PE @ \g
BuS P8 L SSYN TIMEOUT () o
; |!9ua

PARITY 512
ENABLE W i

K9 DAT TRAY (1) H—

PARITY QRROR QuRen\T
FouRE 20

vage 78

Errors found while performing a DATIP or DATT (Ké €i L s tr.ei #1111
result im the PARITY ERROR flip=flobp (Ei121) being set when E98 times
out, Processor operations resulting ¢€rom PARITY ERROS wili nbpe
discussed further in the BUT SERVICE section to follow,

Note that the entire PARITY ERROR circuit can be disahled by Tremoving
jumper Wi and 1inserting another Jumper in the space provided for
jumper W2, Note also, that the detection of a PARITY ERROR forces &
BUS ERROR conditoen,

5:7.2,7 End of Transfer Cireculitry

To synehronlize the DAT TRAN logie with the main KD11D processor elock,
the END OF TRANSFER (EQI) clreuitry has been incorporated into.the CPU
(print Ké6), Approximately 109 ns after the SSYN TIMEOUT onee=shot
(E98) times out, the EOT €£lip=flop (E{15) is clocked removing the
previously discussed processor clock disabling signal K6 TRAN INH L,
It a BUS ERROR hag been detected, the delaved signal that clocked the
EOT £1lipeflop generates a 1090 ns pulse on the K6 FORCE SERV H 1line,
This pulse eclears the microe=pc address latches (MPCO@=MPCV7) on print
K9 forecing the processor to enter the SERVICE mieroroutine on the next
PROC CLK L lowetoe=nhigh transitien, An explaination of the terms
microepc and microroutine is available in the CONTROL STORE section
whieh followsg later,

Figure 21 ENDeQF=TRANSFER CIRCUITRY

5¢7,2,8 Data=InePause Transfer

Another eircult ineluded in the DAT TRAN 1logiec deteet DATA=IM=PAUSFE
(DATIP) trapnsfers and controls the bus econtrol signal RRSY, Uporn
initiating a DATIP (READ=MODIFY=WRITE) bus speration, the flip=flop

fage 754

KG PE (M H

¢ —24¢ F-e—xe B\ W
Ko SSYN H ?'4_"4 SERDY I
£1s
K9 DAT TRAN () H . lEELe
s TwmBouT (i <“Tafs =Ne Sy
W 2 B3 ~ MG FORCE STRY o
5v + 3% L
+
2 N 8
:E% 24_'45 L..'9
R Ens
= . "%; H EQT;Cg
SEIN TIHEOUT (1) rus 22w ot @i m
47d¢t =

ENMD - oF ~TRANSEER Qi
fieue Y

rage 79

E97 1s latehed forcing the processor to hold Kg BUS BZsY L until fLhe
DATO portion of the routine has been completed, Whi{ile BBRSY 1is
asserted, ne other UNIBUS peripheral can seize control of the w»nus,
This feature often determines the maximum bug lateney for NPR devices,

Figure 22 DATA=INePAUSE CIRCUITRY

5,7.2,9 0dd Address Detection

To prevent odd addressing errors, two NOR gates (E68) have Dveen
ingerted begtween the SSYNVN TIMEOUT one=8Shot (E98) and the BUS MSYN
driver, Thege gates prevent the asgsertion of MSYN {f an odd bus
address 1{s being placed on the UNIRUS (Ki SP?@ [, {8 true) without the
approval of the mieroroutine being performed (CONTROL STORE output Ki@
ALLOW BYTE H true), I1f this econdition exists, the SSYN TIMEOUT
one=g8hot would be allowed to timeout withoeut ever asserting BUS MSYN L
and thus never receiving BUS SSYN, The end regult of this operationm
would be the detecti{on of a BUS ERROR,

5.8 Power Fall/Aute Restart

The KD11D power fail/auto restart eircuitry (print KS5) serves tUll.e¢
following purposes?

1. Initlalizes the microprogram, the Unibus contrel, and the
Unipus to a known state immediately after power {s appblied to
the computer,

2, Notifies the microbrogram of an impending power failure,

3, Prevents the processor from responding te an impending power
falijure for 2 ms after {nitial startup,

The actual power fall/aute restert seguences are microprogram
routines, The operation of the power fall/auto restart clircuitry
depends on the proper sequencing of two bus signals: AC LO and DC LO,
Because of the electrical prorerites of the Unibus drivers and

Ki0 Cl () H 8 gan® R

K5 PRot \W\T L

DATA- 1N - QAuQE QrcutRY
FIGURE 2

+sv (
Bus ACLOL gy |
BUS DC LO L '2: |
4
e Jawsoms L [
POWER UP [l
. PDWN f l

1-ne7

Fleuf 1% :
~~Fizai@dietd BUS AC LO and BUS DC LO Timing Diagram

(39¢ 79A

Paege 8¢

recelvers, the entire computer system must be powWered up ¢for the
machine toe operate, Therefore, the processor is notifled of a power
fail in peripherals as well as in its own ac source,

The notification of power status of any PDP=i1 system conmponent is
transmitted frem each device by the signals BUS AC LO L and Bus DC LO
L (Figure 23), The powere-up sequence 8hows that Bus DC L0 L {is
unasserted pefore BUS AC LO L is unasserted, Wnen BUS DC LO L {s not
asserted, it 18 assumed that the power {n every component of the
system is sufficient to operate, When BUS AC LO L is not asserted,
there {s sufficient stored energy in the regulator capacitors of the
power s8supply to operate the computer for § ms, should power be shut
down immediately, .

Figure 23 RUS AC LO and BUS DC LO Timing Diagram

As AC power jis removed, BUS AC LO L is asserted first by the powver
supply warning the processor of an {mpending power fallure, When BUS
DC LO L is agserted, it must be assumed that the. computer system can
no longer oberate predlctably, Memories manufactured by DEC use BUS
PC LO L as a switch signal, turming them off, even if power is still
available, Time A +2 (Figure 23) is the time delav between the
assertion of BUS AC LO L and the assertion of BUS DC LO L, it must be
greater tham 5 ms, This allows for power to be rapidly evcled on and
off, According to PDP=11 specifications, UuUpon System startup, a
minimum of 2e<ms grun time s gquaranteed before a power fajl trap
eecurs, even it the line power {8 removed simultaneously with the
beginning of the powere=up sequence, After the power fall trap ocecurs,
a8 minimum of 2=ms run time 15 guaranteed before the system shuts down,
Given the tolerances permitted Iin the timing cirecuitry used in most
equipment, A +2 must be greater tham 5 ms,

Page 81

When a pending power fall is sensed, a program trap ocecurs causing the
present contentg of R7 and the PSW to be pushed onto the memory stack,
as determined by the contents o0f R6 (Stack polinter register), R7 s
then 1loaded with the contents of memory location 24(8), the PSW is
loaded with the contents of locatlon 26(8B), Proecessing {8 continued
with the new R7 and pS8SW, The user’®s program must prepare for the
impending bpower failure by storing. away volatlile registers and
reloading lecation 24(8) and 26(8) with a power=up vector, This
vector pointg to the beginning o¢ & regtart routine,

When power 1s restored, the processor loads R7 with the contents of
location 24(8) and the PSW with the econtents of location 26(8), After
loading these reglsters, the user prodgram bpresumaply will oprepare
locations 24(8) and 26(8) for another power failure, If the HLT RQST
L input 1s agsserted by an external switeh elosure, the bprocessor
powers up through locatioms 24(8) and 26(8) and halts,

Sehenatics feor the power fall, auto restart, and bus reset logic are
found on print KS, One=shot Ei1@ generates a 15% ms processSor IMNIT
pulse as soon as BUS DC LO L i8s nonasserted after power is applied to
the processor, At the end of 150 ms, the PUP one=ghot, E1¥3, is fired
if BUS AC LO L {s not asserted and the processor bedgins the R7 and PSW
load routine, The PUP oneeghot generategs a 2=ms pbulse, during which
the assertion of BIUS AC LO L I8 {gnored,

The triggering of the 154 ms INIT ome=shot aiso presets the POWER INIT
flipeflop E{199, Setting thieg lateh forees the CONTROL STORE to run
the power up routine beginning at microepe addregs @01, It is this
routine that reads locations 24(8) and 26(8) for the mew pC and pSW¥,

After pPUP has been reset, the assertion of BUS AC L[O I, fires the
one=shot, PDWN, E1083, Flio=flop E97 is set causing a power fall trap
to be recognized by the microprogram on entering the next SERVICE
state, Varjious traps are arbitrated by the BUT SERVICE ROM E71 (print
K8),

If a momentary power fallure oeceurs whieh causes the assertion of RUS
AC LO L but does not cause the agsertion of BUS DC LO L, the processor
will restart when the PDWN (@) L onee=shot times eut, retriggering the
INIT one=shot simultaneously with DC LO H beeoming nonasserted,

When a RESET Instruetion is decoded by ROM E76, the ROM output =signal
Kf2 START RESET L 1s eclocked into the START RESET flipeflop E1419
(erint KS5), This flipeflop output triggers a 1@¢ ms INIT, afterwhiceh
the processor continues operation,

5,9 PROCESSOR CLOCK

The KD{1D processor clock eilrcuitry is shown in Figure 24 and on print
KS . A single delay line is ugsed to generate a pulsge train to which
the entire processor is synchronized, Since it {8 & £fully clocked
processor, events that result i{n the alterationm of storage reqgisters
occur onlyv on defined edoes of the processor c€lock,

Page 82

Figure 24 PROCESSOR CLOCK

If all eloeck disable inputs are unasserted, the clock will begiln
runaning as soon as +5 volts is applied, The period of the oscillator
pulse output 1ls fixed at 26¢ ns as per Figuyre 25,

Ko TRAN CLK H

KIO DAT TRAN (1) v — £ K5 BREG

Lk o

K& INST TRAP SER L — S 7o
3 | IO} — «s s2RY IR M

K5 PROL WIILT Lg K5 PROC CLK W

KT BG INK L 57420\ 8 13 g
K6 TRAN INH L —— — &0 E92 74503\, 0
ey 3 2] €9 o\
I l 5 — £Z PROC Cik

3 R22 E8E :
MmAN Y 1K +Sv
CLK ENAB L b= _23 L—,'Q’ 273\ s 2
' D
1K 9 ' £9|)3 4523\ 3 4
" . DUl \ _JE < ~as33 [" |
AN CLK L= 37 s £94 A @ K3 RES CLK H
! T ' (TO PSW SF)

 PROCESLSOR. QLo
Aoule 24

Page 83

Figure 25 PROCESSOR CLOCK TIMING DIAGRAMS

The cloeck is turned on and off by means of gating the feedback through
its delay 1ine, It is turned off under the following conditions by

the appropriate signal}

During @ BUS INIT from another device,
The INIT portion of power up routine,

The INIT portion of power down routine,
During a RESET,

During the BUT SERVICE arbitration delay,
During @ priority interrupt,

while BUS SACK is asgerted,

During bus data transfers,

After executing a HALT {nstruetioen,

Wwhen the manual elo¢k is enabled,

DO DI WD

[y

S,17 PRIORITY ARBITRATION

5,1#,1 BUS Requests

fage ¥34

TNPehL
Cack PERIGD

be—— 26005 o

fRor QW L 1 ME e 185 W —

<\ GotK CONTRDL
SToRE LATCHE

Ploc. o H |

————

CREG QLK L

TuxK DATA (NTe & QK AMux DATA
ea Pow AT rs\:p\e&’ WTo LATCHeg, (BREC ok IR)

Peo e

\/‘(‘\J

PERFORM LRATLH PAD
WRTE. OPERATION

TROESWDR. QDL TIMIRG DIAGRAMS
HGULRT 295

Page 84

The KD{i=D reSponds to bus requests (BRs) in a manner similar to that
of the other PDPeii processors, Peripherals may request the use¢ of
the Unibus im order to make data transferg or to interrupt the curyrsnt
preeessar program by asserting a 8ignal on one of four BR 1ines,
numbered 4, 8, 6, and 7 in order of increasing priority, For examnpie,
1§ twoe deviees, one at priority 5 and the other at prierity 7, assert
BRs simultaneously, the deviece at prierity 7 118 serviced first,
Furthermore, Lf the processor priority, determined by bits (27=05) of
the PSW, is at level 4, only devices that request BRs at levels higher
than 4, suech as BR 7, BR 6, or BR 5, are serviced, Table 13 contains
the order of priorities for all BRs and other traps,

priority Service Order
Highest HALT Instruction
BUS ERRORS

INSTRUCTION TRAPS
TRACE TRAPS
STACK OVERFLOW
POWER FAIL
HALT SWITCH
BR7
BR6
BRS
BR4
Lowest Next instruction feteh

PRIORITY SERVICE ORDEPR
TABLE 13

Sinee a BR cah cause a pregram inteprrupt, it mgy be serviced only
after the completion of the current instruction in the TR, A device
that reguests a program Iinterrupt must at the aporepriate time place a
vector address on the Unibus data lines, The processor first stacks
away the eurrent contents of PSW and R7p3 then a new R7 is loaded from
the contentg of the vector address, and a new pPSW is loaded frum the
contents of the veector address plus two, Further desceriptions of how
the processor handles this BR routine will be digcussed imn the SERVICE
sectlon te folloew,

Arbitration 10gic for BRs is shown on print K7 and in Figure 26, All
BRs are Treceived directly from the UNJRUS (UNIBUS receivers E2¢, and
E32) and latehed into reqister Fi14 (74174 Quad D=Type lateh) when the
microprogram enters the next SERVICE state (K9 BUT SERVICE (1) H {is
true), The RR PRIORITY ABRITRATION ROM (E7) then determines whether
the present procegsor priority (PSW <7:4>) 18 higher than the highest
BF received and {f not, which BR received has the highegt priority,
Arbitration performed by E7 in the order of priority are shown below:

HLT RQST
PSwW7
BR7Y
PSW6

Page 95

BRe
PSwd
BRg
PSw4
BR4

It the highegt BR received is of a higher priority level than the
processor, the corresponding grant enable ROM output is asserted low,
With no HLT RQST or trap instruetion pending, the processor clock will
be di{sabled by the K7 BG INH L signal, The actual BUS GRANT i{s not
transferred to the UNIBUS until the ENABLE BG flipe=flop ES55 {8 set,

Pow 7 (oM
swe(yH | BR o S
el /7 | L)(f'?
psw sCYe | PRIORITY S
] O g - e Bus
2 RoM 86
DS RS O — _ e - I 8us
o Ry F 3 ” L
c3 3 ORI -
o2 N] [i e e e
o ;'1 (—¢- b o e . i3vs
‘1 R \ B & 4
v Ra KZ SERVICE TRAL N ‘1 ___JL
CLrR cLK —_— . .
KT PFAIL FRAPGYH Ero el -
S SRANT H
HALT ReguesT L O - Eq _r) o '
127 E¥ o~ 1 Q .
S ENAB :
o £R Er) H ‘ BG PENDING REa H KT
—"—C/ \ e ceid I) Be-t4
K9 BUT SERVICE RS
H : SACK ? — K5 RESET,
1/ ; ; RET
Ll =
E12A EIJ/J\ ‘ -1 EI4 al SACK
& —{EvA) —o— REtURN ()L
o T AF—AA—T o \
E]l |
CLK -
/77 L 8l
O
Low/uW?RuRlch 4 _ 1 &7
Mo SAck TS |
________—_C—ﬂ
E/?A v A
Bvs spck L A . | Ea2z ‘
SA 518\ Kg BUT.S‘E:WIcTL‘L e
i T o
l Ea20 R
I _BG PRICRITY ARBITRATION ®
INIT. H
Fl16.26

Page 87

BR

eoyed b C‘sd‘.!(\: +o
/ 1 / ne Xt ‘13,‘_0:“_& "3

BG INH L

Stop clock when \ow

ENAB B8R ¢ }J

S
2 | &
BUS GRANT Héi—-—l,) : A /?)\ | \

BUS SAck L 1 \ N) / /
Sack TD / &l
Sack RET -)
No SACK To, L |
Figure 27

BUS REQUEST TIMING
Grants both BG and NPG are controlled by the synenronizer logic
below and on print K7,

ghown

Figure 28 GRANT SYNCHRONIZER

L NPR L TN

Kg But service (1) H

|
7424

77 L t—JWvI

smirn —CL__/

| i

L"K'? NPRH

(;R/J,/\/T SYNCHRONIZER

FIGURF A8

& D
i 7414
O— .

7‘H‘f

NO SACK TD H -——-——J,_ -

/BSQ Y 7H

7408— CLK B¢ ENAB
M

-
—‘7’—?}— CLK NPG
s

Page 88

This cireuityy arbitrates whether a BG or an NPG (NonsProcessor
Request Granted) will result depending on which £lip=flop input line
(set or reget) was deactivated first, If the set {nput K9 BUT SERVICE
(1) H {8 detected first, the Q@ output of E73 (pin 9) will transition
low, After a delay of 17% ms, this signal will cleck the ENAB BG
¢lip=€flop ES5 provided there is no BUS SACK L s{gnal on the UNIBUS,
Once E5%5 {8 get the bus grant arblitrated by ROM E7 i8 channeled onto
the UNIBUS (bus drivers E26), Once the requesting peripheral receives
BG, it then returns BIJS SACK L,

Upon receiving BUS SACK L, the processor then clears {ts ENAR BG
flip=flop rqmovinq the BUS GRANT from the UNIRUS and sets the SACK
RETURN flipe=g#lop to Keep the processor clock disabled,

Removal of BUS GRANT causes the peripheral to drop its BUS SACK L,
assert BUS INTR L and enable a vector address onto the UNIBUS data
lines, The processor then deskews the removal of SACK, clears the
SACK RET flipeflop (E73) and enables the processor clock again, Once
in operation, the processor cloeks the peripheral vector address into
the BREG, returns BUS SSYN L and begins runninag the microcode trap
routine which branches the processor to the interrupt handling program
determined by the vector obtained,

5,12,2 Non=Processor Requestsgs (NPR)

NPRg are a faclility of the Unibus that permit devices on the Unibus to
communicate with each other with minimal participation of the
processor, The function of the processor {n servicinog an NPR s
simply to give up control of the bus in a manner that does not disturb
the execution of an i{nstruction by the processor, For example, the
processor will not relinauish the bus following the DATI portion of a
DATIP transfer,

When the reset inpbut of E73, K7 NPR H becomesg unasserted before the
set {nput, the Q output will transition low causing the NPG flip=flop
ES5 to be set i{f BUS SACK L 18 not true, The output of this €flipeflop
enables the BUS NPG K Unibus 1line granting the bus to the
Nen=Processor device, The requesting device will them return BUS SACK
L eclearing the NPG and will wait until the bys is free (no BBSY),

Page 89

Figure 29 NPG PRIORITY ARBITRATION

$5.,19,3 Halt Grant Reguests

Unlike all previous PDP=11 processors the KD{1D has {imrplemented what
could be considered another prierity levels K12 HLT RQST L, This
inpuyt {8 used to monitor the USER’S CONSOLE HALT/CQNTINUE switeh, I¢
a HALT is detected (K{i2 HLT RQEST L aectivated), the processor will
recognize it as an interrupt request (priority 1level s shown in
Figure 13) upon entering the next SERVICE microstate., The processor
will then innibit the processor cloeck (Figure 26) and return a
recognition signal (K7 HLT GRANT H), Upon receiving K7 HLT GRANT H,
the comsole drops the Ki2 HLT RQST L and asserts BRUS SACK L «gaining
complete control of beth the UNIBUS and KDiiD,

The User can maintain the processor in thig inactive (HALTED) state
indefinitely, = Upon releasing the HALT sgwiteh, the Users Console
releases BUS SACK L. and the processor continueg operation as 1if
nothing had nappened,

5,11 SERVICE TRAPS

BuT SERVICE()M

S
=379
Y e
ca ux & -—WW‘T'O{>\ LK g - Bus Nfe
Bus NPR L, - T

&) I
K§ Revp Iwrli_.QD

Bus SALL L —C

KS PReCINLE:
] Do

~

Lk

NPG PRICRITY ARBITRATL N
;\Q;\.&.QE 24

Page 90

$.,11.1 General Description

All interrupts, error traps, and instructien traps are recognized and
serviced by the KDiID when the precessor enterg What is called the!
SERVICE micro=instruetion state, The functions performed during this
state are most critical to the operation of the processor and should
be completely understood,

Upon entering the SERVICE state, all bu; 1hterfugts; error traps, and

iastruetion traps realized during the perfermance of - the last ==

instruetion are arpitrated by the SERVICE ROM E71 print K8), Each
trap condition is then serviced aceording te its prierity as shown in
Table 13,

5,112 Circuit Operation

Rom E71 services a speclfic trap by generating a vector address unigue
to that trap condition (Table 15), Upen leaving the SERVICE state,
the processor is forced to push {ts present program coeunter (PC) and
processor status word (PSW) onto its memory stack and fetch a new PC
from the location specified by the vector address, A new FSW Is then
obtained ¢frem the next memory location after the veector, The end
result of these operations, 'is that the processor is now performing a
software suproutine written by the user which could correct or
indicate that a specific error occured,

The various trap conditioens whiech cause the orocessor to vector are as
follows,

BUS ERRORS = A BUS ERROR indicates that the processor
has attempted to access none=existent
memorvy or a memory lecation that did not
return BUS S8YN within 22 usec, The
detection circultry for bus errors was
previously desecribed in the DAT TRAN
gection,

Once detected, the bugs error econdition of
flipeflop E115 (print Ke6) 1s clocked into
lateh Ei1?21 (print Ki@) on the next
lowetoeniah transition of PROC CLK L
ereating the error s8{gnal K BE FLAG (1) H,
Double buffering 1s required hecause E115
is cleared at the end of the data transfer
mieroeingtruction step and used again to
detect a Double Bus Error condition during
the trap routine,

STACK OVERFLOW ERROR = Any attempt by the precessor of
decrementing the contents of the STACK
POINTER FREGISTER (R6) bevond the 49
location stack limit (Kil 8~1520 L) of the
KN1iD will result in the STACK OVERFLOW

PARITY ERROR

POWER FAILURE

TRACE TRAP

Page 91

flipeflop E134 (print K8) being set on the
next highetowlow transitien of PROC CLK H,

Figure 3@ STACK OVERFLOW

= &8 PARITY ERROR indicates that the

processor attempted ¢to {input data from a
parity memory and that memory Iindicated a
parity error,

The PARITY ERRQOPR deteetion cireujitry was
previousgly described in the DAT TRAN
section, Once detected the error
condition of flip=flop FE121 1{s clocked
into laten Ei101 (print Ki#) on the next
PROC CLK L lowe=to=high transition creatino
Ki1@ pE FLAG (1) H, Double buffering 1is
necessary because FEi12]1 is cleared at the
end of the data transfer microinstruction
step allowing E115 te detect a double bus
error condition,

The output of the PWR FAIL ¢£lipeflop E97
(print K8) is set when the power supply
asserts BUS AC LO L indlcating loss of AC
poewer,

This trap is program controlled by the
user allowing him to insert a
procegsor/user interactive subroutine into
nis main program, The trap is enapled by
setting the PsSW TRIT (K2 T8IT (1) L),
Upon completion of the next instruction
(Ki2 ENAB TBIT L), the J=K flipeflop E134
is set creating the KT BIT FLAG (1) H
gsignal,

frge A

KII 8-15= o5 L

K R6L
K9 Enag sTov L K& PRoC cLk O

T keSTDV(I)H
>~

K5 PRoc /811

7l

K8 SToV Ssrv L

47y

+3V¢

K9 BvT SeRviceE (D H— T K® 3uT SeRVICE L

STACK OVERFlLow

FIGURE 3o

KaTBITMmL EALILE
- - K8 TBIT FLAG C)H
KI2 EXAGTBITL M

¥
K& PRoz ik H—-Q

o
kaTel‘r'sé-zvr—__J jﬁ
Ks PRoc IMIT L

T BIT FLAG

FICURE 3]

Page 92

"Figure 31 TBIT FLAG

IR CODE @@L=1R CODE 22L = These three binary coded trap signals are
generated by the IR DECODE ROMS E69, E7#
and E75 on print Ki2, and indicate the
tellowing trap cenditions,

TRAP CONDITION IR CODE LINES
a2 24 e

HLT INSTRUCTION

TRAP INSTRUCTION

EMT INSTRUCTION

I0OT INSTRUCTION

BPT INSTRUCTION
TLLEGAL INSTRUCTION
RESERVED INSTRUCTION
UNUSED (rnone of above)

s e D DS D
Lol B B i N IR
R D e T e D)

TABLE 14

Upon entering the SERVICE microe=i{nmstruction state, the SERVICE Rem E71
moniters any combination of the above trap conditions, T1If any inmputs
are enabled; the Rom forces the processor to branch to a speecial TRAP
routine on the next micro step by asserting the microe-pc address line
MPCO2 L, While still in the SERVICE state, the Rom 8lso generates a
specifie veetor address (Table 15) using outputs €2, €3 and C4 and
channels it onte the processor AMUX lines by activatinq K9 AMUX S@& L
~where 1t is then latched in the BREG,

Before leaving the SERVICE state E71 also clears the condition wnich
caused to original trap, This 1s done by assertinc one of tne
fellowing ou¢butsy K8 TBIT SERV H, STOV SERV L, PFAI], SER L or INST
TRAP SER L, The first three of these outputs clear their respective
traep signals directly, For these traps specified by the IP CODFE
limes, noweveyr, it 1s necessary to remove the inmstruction in the IR,
This operatien is performed by the INST TRAP SER I, output which ORs
with the PROC CLK to generate K5 SERV IR L whien in turn removes the
trap instructienm from the IR, This operation prevents the processor
from looping on the same trap conditien, '

~ For BUsS REQUEST (BRs), the BUS INTR control signal is allowed te force
‘MPCe@ L ‘during SERVICE provided there are no other traps of higner

Page 93

priority. By enabling this line the processor will branch te the TRAPF
ROUTINE and vector to the address specified by the BR device, If
there {s a trap of higher priority BR interrupts are prevented from
receiving BG by the SERVICE TRAP L output of E71,

OCTAL UNIBUS

VECTOR ADDRESS TRAP CONDTITIONS
04 Time=out & other error
210 ITllegal & regserved {nmgtructions
P14 BPT, breakpoint trap
p20 10T, input/output trap
P24 Power Fall
230 EMT emulator Trap
A34 TRAP instruction
114 Memory Parity Error

VECTOR ADDRESSES
TABLE 15

5,12 CONTROL STORE

5,12,1 General Description

The CONTROL STORE circuit (erint K9 and K1¢) consists of five 256 word
by 8 bit blpolar Roms, seven Quad D=Type f£lip=flops and an assortment
of gates and multiplexers, This logic operates {n a similar fashion
to a micreprocessor having eight address lines and 3@ data output
lines with a fixed gset of Rom program routines,

Each CONTROL STORE Rom location can generate a specific set of outputs
capable of configuring the data path, determining the function
performed by the arithmetic/logic unts (ALU), influencing the DAT TRAN
eirevitry or in general controlling the total KD1iD, The contants of
each locatlon is configured in a manner that allows sequences of
locations to be combined into microroutines which perform the varlous
pDPeil instruction operations, Each Rom locatlion s therefore
conslidered a microinstruction or microstep,

5,12,2 Branehing Within Microroutines

Each microinstruction in the CONTROL STORE sSpecifies the location of
the next microstep in a sedquence, After the execution of a microstep,
the output of Rom E138 is loaded into the MPC (microprogram counter)
lateh to speclfy the location of the next micrestep, Conditiogral
pranching within a miecroroutine is accomplished by wire=ORing signals
denerated by external hardware onto the MPC Yines when directed by

Page 94

some other CONTROL STORE ecutput, Typical wire=Q0Red signals are as
follows,

Instruection peeode = As previously mentioned, the microroutines
contained in the CONTROL STORE are designed to
efficlently perform the operations specified by
the various PDp=11 instructiens, Specific
microroutines are implemented for specific
instruetions, The main purpose for the IR
DECODE eircuitry 4is to tranglate the PDP11
instruetion i{n the IR to a set o¢ hits that can
pe wire=ORed onte the MPC limes uron request (lPF
DECODE L) developing the next contrel word, An
adequate descriprtion of the speclfic addresses
for each i{nstruction was inecluded 1in the IR
DECODE section,

TRAP DECODE = Routines have also been included in the CONTROL
STORE to implement error routines which push and
pop the PC and PSW onte or off ¢the processor
stack, Upon reguest of the CONTROL STORE (BUT
SERVICE (1) H)Y, the MPC @@ line can bhe enabled
by the SERVICE ROM (E71) causing a microbranch
‘to one of these microroutines,

RRANCH ON BYTE « The various PDP=i1 instructions are dependent on
whether an even or odd byte operation 1is beina
performed, Modifications to the sequence of
microsteps used for sveclfic instructions can bne
made by enabling (BUT BYTE L) microhranches
pbased on even or odd byte instructions in the
iR,

PWR RESTART = UUpon performing a power restart, the MPC 1is
cleared by INIALIZE (INIT), The PwWwRpUP clrcultry
on print K5 then enables the MPC @4 1line (PWR
INIT £flip=flop Ei1?9) forcina the CONTROL STORE
to perform the PWR UP routine beginmina at HPC
address one (@d01),

In general, microsteps are not executed from numerically segquential
locations in the CONTROL STORE and care should therefore be taken {n
following the flows described imn Chapter 4,

Figure 32 shows the format of all 256 words in the XnD11D CONTROL
STORE, The fields, the possible values thevy c¢contain, and the
signitiecance 0f each value are described bhelow,

[N Ry

PAQP\, In)t.hnsmb\;da\\\ a-vgs

TE Funoid
I\
X
@
S
2L
g3snNA
, A
6t | 3¢ | 4¢g _ pr _ S€ ~ pe | £¢ | ze | se | o8 | bz _\3 _ LT _ 9T _ st _ st | stz | 1t T ot |
v TIND X7¢ FLAO
avet1 | x v vdS woy xow VvdS T n1Tv Qw3 Xow V¥V |metiv
T I R T B Smm\._m_m_.v~m_,naﬁ_am
’ A
7uivs 508 | MY L9 700w g s«“m% W_mw 14N> dS 2d W _

WoY JY0LS FoYINDD

$S.12,3 CONTROL STORE FIELDS

FIELD

MPC

SP CONTROL

BUT BYTE

BUT SERVICE

BMODE

BUT

FIELD
LENGT

8

SP
CONTROL

H

21

Page 96

DESCRIPTION

Eight bit microepc address which specifies
the ROM location of the next microsten to
be perfermed,

Determines scratch pad operations
according to the following format,
sP OPERATION
CONTROL 0@
¢ Read
i Write low byte
2 Wwrite word and enable ENAB K
1 Write word,

Allows IR DECODE logic to force an MPC
branch {f the instruction heing performed
is a hyte, Branches will be a follows,
Even Byte +2
0dd Byte +3
Actual branch logic is shown on print Ki2,

Indicates that the processor has enteresd

the SERVICE microster, Enables the
SERVICE ROM E71, causing the pbrocessor to
recognize any pending errors or

interrupts,

Controls the operation 0f the BR=Register
during each microstep, The latched
outputs of this field can be wire=0Red by
other CPlU logic, Coding of these Signals
is as follows,

BMODE BMODE OPERATION

21 4%

@ ? HOLD DATA

2 1 SHIFT RIGHT

1 % SHIFT LEFT

1 i PARALLKL LOAD

Multiplexed control lines which generate
the following enable signals,

BUT DEST L = Enables microbranch to
destination operand microcode sequence,
Cerresponding logic is on print K9,

DAT TRAN (1) H

BUS CONTROL

ALLOW BYTE H

AMUX

Page 97

ENAB STOY L = Enables staek overflow
detectlion eircuit on orint K8, S

ENAB DBE L = Enables cireuitry which
forees procesgsor to halt on detecting a
bus error during this microstep,
Corresponding logiec on print Kii,

LOAD PSW L = Allows the PsW register to be
loaded upon completion of this microstep,
See prints K1 and K2,

LOAD CC L = Allows the coendition codes N,
2, V and C to be loaded upon completion of
this microstep. Cireuitry {i& shown on
print Ki,

BUT BUT BUT - OPERATION
22 21 he

0)) UNUISED

2 P 1 UNUSED

? 1 3 BUT NEST L
P 1 1 LOAD €CC L

1 @) FNAR DRE L
1) 1 LOAD PSW L
1 1) ENAB STOV L
1 1 { UNUSED

Enables data transfer circultry on print
Ké , Indicates that the processor 1is
performing a UNIRUS transfer during this
microstep,

Emrables the UNIBUS control lines BUS C¢ L.
and RUS C1 L as follows, ’

Cl(1)H ce(i)H TRANSFEPR

) @ DATI
? 1 DATIP
1 @ DATO
1 i DATOR

Gates the UNIBUS contreol BUS MSYN [when
byte instruetions are being performed
terint Ké6), Also helps agenerate the
signal K8 INH +1 L during byte operations,

Coentrols the select 1ines of the AMUX
accordinag to the follewina,

AMUX AMUX DATA
Si S0

Page 98

[} 7] PSW

15} i ALU outputs

i] service vector

i i UNTBUS DATA
ENAR SEX (1) L 1 Enableg the Data Path (prints K1 and K32)

logie whieh extends the sian of the data
in the loew byte of the BREG (bit 07)
through the bits of the uoper bvte,

ALU S3=ALU Sa, 6 Determine the operation performed by the
ALU MODE, and {6=b{t ALU according te Table 9, These
ALU CIN lines are also wire=0Red allowing the

AUXILTARY CONTROL ecircuitry to determine
the ALU operations accoerding to Tanle 12,

SPA MUX 2 Controls the select lines of the Sratch
Pad Rddress Multiplexer,
SPA MUX SPA MUX SPA OUTPUT

s1 sA

o * BUS ADDRESS BITS ¢@a=~03 ;

2 1 INSTRUCTION REGISTER BITS @6=d8

1] INSTRUCTION REGISTER BITS @pe=n2

1 1 CONTROL STORE ROM SPA #¢=03

ROM SPA 4 Allow microinstructions from the CONTROL
STORE to determine which Scratch Pad
register will be addressed during the next
microstep unless otherwise expressed oy
the SPA MUX control lines previously
mentioned,

AUX SETUP 1 Enables the AUXILIARY CONTROL Roms during
operate microinstructions,

LOAD IR i Allows loading of the Instruction
Register, (Print Kii)

6,0 MICROCODE

6,1 MICROPROGRAM FLOWS

A complete Set of microlnstruction flows {s 8hown In block diagrarm
form im the engineering circuit schematie paeckage, Figure 33 (s a
simplified version that provides an overview and aids {n using the
detalled flows, No attempt will be made in this manval to trace each
path of this mieroecode, but the following examples Should provide an
adeguate backqground for the reader,

[Fomp

KDJ/o

REST= |

RESTART
FRom
PWR ~FAIL

SIMPLIFIED Flow pDIAGRAM

/‘V

/:@;uYIL 23

Fl

puT
SERVICE

INSTRVCTIoN
FETCH

JR DECODE

TRAP OR INTERRVPT
TRAP—T‘L

TRAP
RouTINE

B8-1

STCRE oLD PC
CAICULATE NEW pc
CONTIHVE

TSR
STORE OLD PC
CALCULATE NEW PC
CoNTINVE

Swag 1
CALCVULATE DFST ADDR.
GET DEST DATA
PERFORM GPERATION

ROTATES)
CALCULATE DEST ADDR.

GET DEST DATA
PERFORM QPERATION

l

JMP ZAGLES/~ 7

(_rsR moovEsi-7

Sw8 mopEs o-7

ROT AMODES -7

-

BRANCH ‘

1 convDITION T
L,_'A/\E'r

cee-f

CLEAR ;

I corpiTION e |
CODES
sce=f
SET

| lconpiTion
CODES

w-/

| |

SOVRCE
CALCULATE S6URCE ADDR.
GET SoVRLE DATA

P0oS)TioN FOR BYTE INST,

L

SOURCE MoDES 0-7

DESTINATION

MODIFY DESTINATION
CALCULATE DEST ADR.
GET DEST DATA

PERFORM OPERATION

MOMP - MDM T

NON-MQDIFY OFST. |
CALCULATE DEST ADDR
GET DFST DATA

PERFARM OPERATION

(O S

ADMP~ NOM 7

L 75E

Page 10@¢

6,2 FLOW NOTATION

6,2,1 Mierostep Mnemonle Names

All microsteps have mnemonic names which signify the type i{nstruction
being performed, A microroutine will often weave back and reuse part
of another if the operations are identical, To understand the
significance of the various mnemonic names the follewing definitions
apply, All xs shown indicate the instruction mode and Y indicate the
step number,

MNEMONIC DEFINITION

SMXeY Source mode microsters for any double operand
instruetion,

MDMXeY Destination mode microsteps £or Modifyving Aouble and
single orerand instructions,

NDMXeY Destination mode microsteps for Nen Modifying double and
single operand instructions,

FY Microsteps contained in FETCH microroutine,

SERV SERVICE microcode state

TRAP=Y Mierosteps used upon recognition of an interrupt, or trao
{nstruetion (INT, BPT, EMT eor TRAP),

ROTX=Y Microsteps for ROTATE and Arithmetie Shift instructions,

SWBXeY Miecrosteps for SWABR instructions

JMPXeY Microsteps for JUMP instructions

JSRX=Y Mierosteps for JUMP to subroutine instructions,

RTS=Y Microsteps for Return from subroutine instructions

RTIeY Microsteps for Return from Interrupt RTI and Return fronm
TRAP (RTI) Inmstruetions,

WeY Microsteps for WAIT instructions

RSET=Y RESET {instruection microsteps

CCC =Y CLEAR Conditien Code microsteps

SCC=Y Set Condition Code microsteps

REST=Y Microgstep for restarting from a power failure,

SBE=Y

SBOe=Y

SMBEeY

SMBO=Y

MDB=Y

MXOBeY

MXEB=Y

NDER=Y

NDOBeY

NMOB=Y

NMEB=Y

MOVeY

ROTB=Y

ROBX=Y

REBX=Y

6,2,2

Page 101

8eurce routine microsteps fer even byte (except source
mode 2) instructions, ‘

Source routine microsteps for odd byte (except source

mode 2) instructions,

Souree routine mierosteps for Bource mode 2 even bvte
instruetions,

Source routine microsteps for source mode 2 odd byte
instruetions, - ,

Modify byte instruction miecrosteps for destination mode
P

Modify odd byte instruetien mierosteps for destination
mode X as shown,

Moedify even byte instruction microsteps for destimation
mede X as shown,

NomeModify even byte instruction miecrosteps for
destination modes ¢ and i,

NoneModity odd byte instruction micresteps for
destination mode 1,

NeneModity odd byte instruction microsteps for
destination mode 2,

Non=Mpdify even byte instruction microsteps for
destination mode 2,

Mierosteps for MOVE instruction destination mode @,

ROTATE byte instruction microsteps for destination mode
0,

ROTATE odd byte instruetion microsteps for destination
mode X, ’

ROTATE even byte instruction microsteps for destimation
mode X,

Flow Notatlon Glossary

The block flows should be selfeexplanatory, To aid in understanding

theme

the following glossary of flow notation should be reviewed,

Designatioen

BA

4
DATI
Plus
PC

B

IR

B SEX

RS

RD

Rn

ALBYT

ENAB OVER
ENAB DBE
DATO

DATIP

RDB

J/m

Rn OP B
BUT

COND CODES
UNIBUS DATA
B(SWAR)

MINUS

Page 102

FLOW NOTATION GLOSSARY
Definition

Unibus Bus Address lines

Assignment operater

separator _

Initiate DATI operatien on Unibus

Plus, the arithmetic operator

Program Counter = scratch pad register 7 (R7),
B Reglster

Instruction register

B Reg sign extended (bit 7 repeated in bits 8
15),

Seratch Pad Register specified by the source portion of
the eurrent instruction (IR (816)]

Seratch Pad Reaister specified by the
portion of the current instruction IR (2:0)]
scratch Pad Register n specified by the CONTROL
ROM SPA lines,

Allew byte Unibus reference

Enable the stack overflew detectlion logie,
Enable the double bus error detection loglc,
Initiate DATO operation on Unibus

Initiate DATIP operation on Unibus

Lower byte of the Scratech pad Register speclified by the
destination portion of the current instruction,
Specifies m ag the mnemonic of the next microsten,

ALY tunction determimed by the Auxiliary ALU <¢ontrol
logic as a functien of the instruction currently in the
Instruction Reglster,

Branch on miecrotest,

Set condition codes (N,Z,V and C) according to
of operation being performed by the ALU,

Data being received from the UNIBUS data lines BUS D@9
LeBUS D15 Ll
Contents of B
gwapped,
MINUS the arithmetic operator,

through

destination

STORE

result

Register with UuUpper and 1lower bytes

6,3 MICROPROGRAM EXAMPLES

6,3,1

pDP=11 Instruction Interpretation

To {llustrate the interpretation of PDP=i1 instructions, the execution

of a CMp instruction is traced through the mierocode,

The machine is

in the RUN state (i,e,, the machine is executing instructions) and the
insgruction (s located in memory location 1090@,

Page 103

Location Agsgembler Symbolic Octal
1000 CMp #15, CHAR 622767
ip02 @evels
1804 PRA100

[}
?
L]
1106 CHARY WORD 0

This instructlion compares the literal 15 to the econtents of CHAR and
sets the condition code accordingly, Source mode is immediate (mode
2, register 7 3 PC) and destination mode is relative (mode 6, register
7 = PC), Flgure 34 shows the simplified flow fopr the CMP example,

Figure 34 CMP #15, CHAR (022767), Simplified Flow Diagram

First the instruction is fetched from memory (microsteps F1 and F2),
This {8 the same fetch microroutine used to get each instructlion from
memorTy and update the PC,

CONSOLE
BUT SERVICE —’[F-1 FETCH (START OR CONTINUE)

!

(F-2.8UT 1R DECODE)

DOUBLE OPERAND INSTRUCTION

SM2-1 SOURCE MODE 2] (ADDRESS MODE 2)

Smo-2 BUT
DESTINATION

NpM 6 -1 DESTINATION

1 MODE 6

(ADDRESS MODE 6)

(SERv BUT seRvicE)

FETCH

Figure 34 CMP #15, CHAR (022767), Simplificd Flow Diagram

fage

103 A

LOCATION

122

123

NEXT MICROSTEP
LOCATION NAME ACTION

123 Fi BA.PC,DATI,
BoIRLUNIBUS DATA,
J/F2

@WIREQORED F2 PC.PC PLUS 2,

with offset BUT Ir DECODE, .

of instruction J/SERV

decoded

Sinee the instruction {8 of the double operand group,

to get the sSpurce data,
{mplies one 1evel of deferred addressing),

becomes an immediate mode,

Page {074

COMMENT

Drive the UNIBUS ADDRESS lires
with the contents of the

PC (R7) and initiate a DATI
transfer, Load the data
received £from memory into
both the B Register and the
Instructioen PReglister, Jump
to the next microstep F2
(Loe, 123),

Add two to the contents of the
Program Coeunter Branmch on
Micro tegt to the instruction

~routine determined by the

instruction decode logic,

the next step is
Source mode 2 ils autoincrement (Autoinerement
when used with R7 (PC), it

Page (@5

NEXT MICROSTEP
LOCATION LOCATION NAME ACTION COMMENT
62 114 WIREORED SM2={ BA.RS,DATI, Place the contents of the
with BYTE ALBYTE, source register specifed by IR
status : B.UNIBUS DATA, (2g106) on the UNIBUS Address

BUT BYTE,J/S5M202 lines, The register will

: contain- the Jlocation of the-

gource data (1002) 1in this

example, Initiate a UNIBUS

DATI te actually get the

data, ALBYT will allow an-

odd UNIBUS transfer, if the

Ir contains a byte

instruction and the BA

contains an odd address,

wWithout the ALBYT, a UNIBUS

transfer that addresses an

odd BAR results in a bus
error,

Input the data ¢rom memory
into the B Register and
microbranch to the following

locations depending on
vhether a bvte (odd or even)
instruction {s peing
performed,

SM2=2 for not byte

SMBE=1 for even bytes
SMBOe1 for odd bpytes,

114 1924 . SM2=2 RS.RS PLUS 2, Add two to the contents of the
J/8M@e2 source register, Microbranch
te the next microstep SM@=2
(124),
104 @ WIREORD SM@e2 R11.B, Store sopurce operand in
with dest mode BUT DEST,J/SERV Serateh pPad Register 11 and
microbranch to the

destination routine,

The microroutine starting in NDM6el will get the destination data and
perform the operation {ndicated by the Op CODE of the instruction,
Mode 6, when used with the PC, requires that the index contained 1in
the word currently pointed to by the PC be added to the updated PC
(address of the index word plus twe) to get the location of the source
data,

Page 176

NEXT MICROSTEP

LOCATION LOCATION NAME ACTION B COMMENT
56 233 NDM6=1 BALPC,DATI, Perform a UNIBUS DATI transfer
' BL.UNIBUS DATA, to ebtain the index word and
J/NDMé=2 place it in the B Register,
‘ © 'Microbranch to step NDMée=2,
233 ‘ 235 NDM6e2 PC-PC PLUS 2, Add two to the contents of tre
i o N J/NDM6ée=3 proegram counter and
) microbraneh to NDM6=3,
235 © 230 ‘ NDM6 =3 -B.B PLUS RD, Add index word to contents ogf

J/NDM3=3 destination register specified
e by IR (230) to obtain address
of destination operand,

230 231 NDM3e3 R12.B, TRANSFER address of destination

operand to scratch
J/NDM3e4 pad register 12,
231 164 NDM3=4 BA=R12,DATI, Place destination address
“ALBYT, (R12) om UNIBUS and perform
baunibus data, UNIRUS DATI operation, ALBYT

BUT BYTE,J/NDM@=2 will allow an odd UNIRUS
transfer £ the IR contains a

byte ingtruction, Input
degstination operand an store
it in the B Register,

Microbraneh if byte
instruction to one of the
following,

NDOB={ if odd byte

NDEB=i if even bvyte

NDM@e2 {f not byte,

164 (] NDM@ =2 - BRIl oP B, Operate (CMP) on source and
COND CODES, ~ destination operands and set
J/SERV) condition codes according to
: result, "Mierobranch to
SERVICE,
a 102 SERV BL.UNIBUS DATA, At the end of each linstruction,
' BUT SERVICE,J/F1 various situations that
) i attempt to intervene before
‘the next instruction is
feteched, Thelir oprioritires

are arnhitrated as shown {n
Table 13, If no conditions
with higher priority exist,
the mieroprogram proceeds to
the next FETCH (F1),

This completes the example of the microprogarm interpretation of CMP
#5,CHAR, It may be useful to trace this or seme other {nstruction

Page 107

through the detailed flow diagrams avallabie in the KDiiD print set,

6,3,2

Interrupts and traps are also accomplished by the

Intergupts and Traps

mieroprogram, The

follow 1is the mierococde necessary for these routines,

LOCATION
a

103

20

101

108

11e

113

118

120
121

NEXT
LOCATION

182

20

1914

1258

i10

113

1158

120

124
122

MICROSTEP

NAME

SERY

TRAP={}

TRAP=21

TRAP=31}

TRAP=4}

TRAP=53}

TRAP=61

TRAP=71%

TRAP=83

TRAP=93

TRAP=10G¢

TRAP=111

ACTION

B.UNIBUS DATA,
BUT SERVICE,
J/F4

R13_B,J/TRAP=2

R6L-R6 MINU8 2,
ENABOVER,
J/TRAP=3

BALR6,DATO,

ENAB DBE,

UNIBUS DATAPSW,
J/TRAP=4

R6-R6 MINUS 2,

ENABOVER,

J/TRAP=5
BPC,J/TRAPe6
BA-R6,DATO,
UNIBUS DATALB,
J/TRAPs=7
NOP,J/TRAP=8
BA-R13,DATI,
BLUNIBUS DATA,
J/TRAP=9

R13.R{3 PLUS 2,
J/TRAP=10

PCoByJ/TRAPel
BA-R13,DATI,

B_UNIBUS DATA,
J/TRAP=12

COMMENT
§BRANCH ON SERVICE REQUEST
JLOAD VECTOR INTO BREG
$IF SERVICE REQUEST GO TO TRAP={
pIF NOT SERVICE REQUEST GO TO Fi

JMOVE CONTENTS OF B REGISTER
9TO SP REGISTER 13

§SUBTRACT TWO FROM STACK
§POINTER, PERMIT OVERFLOW

JOUTPUT PROCESSOR STATUS TO
$ STACK, ENABLE DOUBLE
yBUS ERROS

$ SUBTRACT TWO FROM STACK POIMTER
JALLOW OVERFLOW
JMOVE CONTENTS OF PC TO B REGISTER

sOUTPUT PC TO STACK

JMOCK MIRCO=STEP
p INPUT NEW PC FROM MEMORY
ADDRESS SPECIFIED BY SP REGISTER

pADD TWO TO 8P REGISTER 13

$LOAD NEW PC

$INPUT NEW PROCESOR STATUS INTO REGISTER
yFPROM LOCATION SPECIFIED BY
9SP REGISTER 13,

122 @ TRAPe12¢ PSW.B,J/8ERV pLOAD NEW PROCESSOR BTATUS

9JINTO P8W REGISTER

6,3,3 Restarts From Power Fatlure

Upon restarting the KD11D, the processer begins running the microcode
routine at MPC location one, This routine allows the processor to
obtaim its PC (program counter) and P8W (Processor 8tatus Word) from
memery and then begin running the program specified, This Restart
routine i{s as follows,

NEXT MICROSTEP

Page 108

LOCATION LOCATION NAME ACTION COMMENT

1 362 RESTe=11} BoPC,J/REST=2 IPROGRAM COUNTER TO B REGISTER

362 363 REST=21¢ RS5<B, J/REST=3 §MOVE B REGISTER TO REGISTER 5

363 364 RESTe33 R13.0,J/REST=4 JZERO 8P REGISTER

364 365 REST=41 R13.R13 PLUS 2, JPERFORM NEXT 5 STEPS TO
J/REST=8

368 366 RESTe=5% R135R13 PLUS R13, $OPTAIN 24 A8 THE CONTENTS
J/RE8T=6

366 367 REST=61 R13.R13 PLUS 1, jOF Sp REGISTER 13
J/RE8T=7

367 370 REST=71% R13I.R{3 PLUS Ri3,
J/RE8T=8

37@ 113 RESTe=81 R13.R13 PLUS R13,

. J/TRAP=8

113 118 TRAP=81¢ BAoR13,DATI, §INPUT NEW PC FROM MEMORY
BLUNIBUS DATA, y)ADDRESS SPECIFIED BY SP REGISTER
J/TRAP=9

118 - 120 TRAP=9} R13.R13 PLUS 2/ 1ADD TWO TO 8P REGISTER 13
J/TRAP=10

120 121 TRAP=10y PC.B,J/TRAP=1}{ §LOAD NEW PC

121 TRAP=113 BA=R13,DATI, $ INPUT NEW PROCESSOR 8TATUS INTO REGISTER B
B_UNIBUS DATA, jFROM LOCATION SPECIFIED BY
J/TRAP=12 p8P REGISTER 13,

122 4] TRAP=123 PSWB,J/SERV JLOAD NEw PROCESSOR 8TATUS

JINTO P8W REGISTER

n

e

