
PRE LIM I N A R Y

KDII-D Processor Manual (PDP-ll/04)

The information in this document is subject to
change without notice and should not be construed
as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no
responsibility for any errors that may appear in
this manual.

Copyright C 1975 by Digital Equipment Corporation

Written by PDP-II Engineering

3 8 0
3~1
1~2
3.3
l@4
le!5
]0 6
).7

5 e 0
5.1
5 m2
5.2g1
5.2,,2
5,2 .. 3
5.2,.3.1
5.2.3.2
5.2.3.3
5 0 2 .. 4
5.2 .. 4.1
5.2 .. 4.2
5,2.5
5.2.6
5.3
5.3.1
5.3.2
5.3.3
5.4
S.4 g 1
5.4@2
5 8 4111
5 0 4,.4
S.5
5.5,,1
5;5.2
5.5,,3
5.5.3 0 1
5.5.3.2
5,5.3.3
5 8 5.3 6 4
5.6
5.6.1
5.6.2
5.6.2.1
5.6.2.2

PREFACE

OVE~ALt DESCRIPTION

INsT~UCTION SET
Introduction
Addressing ModIs
Instruction Timing
In~truet1on Dtlcriptlonl
Dlffer~ncei a,tween KOlle and KOllS
Programming Diftereneel B~twlen pepita
SUI L~tency Tim@1

CPu OPERlTING 5PECIFICATID~S

DETAILED HARDWARE DESC~ltTION
IntrOduction
Data path Circuitry
General D~serlpt1on
ALU
Scratch Pad Mtmory
Scratch P~d Circuitry
SCrateh P~d Addr~11 MUltlplex.r
SCrateh Pad Regilter
B J:H'!qilil ter
B ReQister CircuItry
8 L~G MUltl~lex@r
AMUX
Pfoeellof statuI Word (PSW)
Con<Htion COd@i
G~neral De~erl~tlon
Carry and overflow Decode
Ayte Multiplexing
UNIBUS Addf@$5 and Data Interfaces
U~IBUS Dr1v~rl and ~lee1Vtrl
Bus Addr~s~ Generation
Internal Addrf$$ D@coder
Bus Data Line Interface
Instruet10n DeCoding
General De~er1pt1nn
Instruction Re91lt~r
Instruetlon Decoder
Doubl~ O~erand InltrYetions
Single Operand Inltruetlons
Branch In$truetionl
Op~rate rn~truet1ons
Auil11ary ALU Control
G~ntral Delcrlptlon
COntrol Circuitry
Double Op@rand Instructions
Singl@ nDef~nd Instruet10ns

5.7
5,7,1
5,7,2
5,7,2,1
5,7,2.2
5,7.2,3
5.7,2.4
5,7.2.5
5.7.2.6
5,7.2.7
5.7.2.8
5,7,2,9
5,8
5,8.1
5,8.2
5,8.3
5,9
5,10
5.U".1
5,10.2
5.U~.3
5.11
5,11,1
5.11.2
5,12
5.12.1
5,12.2
5,12.3

Data Transfer Control
General Descr1ption
Control CIrcuItry
Procelsor Cloek Inhibit
UNIBUS Synchronization
BUs Control
MSyN/SSYN Timeout
Bus Error.
partt,y Errors
End of Transfers
DATA-IN-PAUSE Transfers
Odd Address DetectIon
power Fall/Auto P.estart
General Description
Power-Up
power-Fail
Process ClOCK Circuitry
priorIty ArbItration
Bus Requests
NOn Procelsor Requests
Halt Grant Re~uelts
Serv1ce Circuitry
General Description
Circuit Operation
Control store
General Descript10n
BranchlnQWlthln Mlcroroutine.
COntrol store f1elds

MICROCODE
MicrOPfOqram FloWS
FloW NotatIon
MicfOproQram Examples

PaQe 3

Page 4

1,0 PREFACE

ThIs ma~ual describ •• the KDllD Central Proee.lor Unit CM7263),
ComDlete understanding of it. contents requires that the user have a
genefal knowledge of dlqital c1rcuitry and a belic understanding of
PDp-1t computer., The followIng related documents may be valuable as
reference ••

POpll peripheral. Handbook
POpll proees.or HandbooKs
PDpll/04 Uler. Manual

2,0 OVERALL DESCRIPTION

The KDllO is a one-board central processor unit CCPU) designed for the
POP-11/04 computer Ifrie., The unit connects directly to the UNIBUS
as a subsystem and il capable of controlling the time allocation Of
the UNIBUS for ~eripherals, performing arithmetic and logiC operat10ns
and instruction decodIng. It can perform data transfers dIrectly
between 1/0 devices and memory, does both Single-and double-operand
addressing and handle. both 16-bit .ord and 8-blt byte data.

The KOll0 15 program compatible with the KOllB presently being used in
the Pop-tl/eS, It also provides all the Drocessing C8P~bility
previOUSlY aV~ilable at a 11qnlficantly hiQher sP~fd, Features
available oothf KDllB which are not provided on the KOIID are
eonsOle, serial communicatIon line, and line ClOCK cirCUitry, These
options w111 now be provIded as separate U~IBUS opt1ons 1n the
trad1t1onal POP-it sens ••

3.0 INSTPUCTION SET

3,1 IntrodUction

The KD11D Is def1ned by tts 1nstruction set, The sequences ot
processor operations are selected accordinq to the instruction
decoding. The following describes the PDP-li instructions and
instruction set addressing modes along with instruction set
differences trom those of the previous KDllS:

3,2 Addressing MOdes

Data stored 1n memory
handlIng Is speCified
usuallY indieatesl

must be accessed, and manipUlated. Data
by a POP-It instruct10n (MOV, ADD etc,) which

1. The functton (operation code).

2e A 9®neral purpole re;ister to b~ UI~d wh@n locatlnQ tne
lourc~ operand and/or locat1nQ the destination o~er.ndo

3. An addf@8Sinq mOde (to ~pee1fy how the sel~ct@d register(s)
tl/~r~ to be Ulld),

Slnee a large portion of th@ data handled by a comput@r is u~uallY
~truetured (in character ItrinQs, 1n arrays, in lists ttc@> the PDP~il
h., been deslQn@d to h~ndl~ ,tructurtd dat& effiCientlY and flexibly,
The q~n~ral r.q!~t@r~ may be ul~d wIth an instruction In any of tne
followina w.y;~

1. A~ .ccumulatcf$0 Th~ data to be manlpul~ted resides wlth!n
the reqister.

2. A~ co!nters. Th~ cont@ntl ot the feQ1ster 1s the address Of
the operand~ rather th~n th~ operand lteelfe

3. As pOinters which automatieallv steps through core locations.
Automatically stepping forward through eons@cutlve core
loeations 1~ known .5 autoinCf@ment addressing,
automatleallv steppina backwardl Is known as autodecrement
addrfS$lnQ. The&e modes are particularly usefUl for
processing t~bular data.

4. ~s ind@x register;. In this 1n5t~nce the content~ of tne
r~qist@r9 and the word following the instruction are summed
to produce the addr~ss of the operand. ThiS allows easy
acCeSs to variable entries in a 11sto

PDPwl1s al~o have instruction addressing mode combinations which
facilitate temoorary data storage structures for convenient handlinq
of data whiCh must be fr@Quently &CC~ls@d. This 11 known as the
n§tac~".

In the PDp o ll any register can be us~d as a "stack pointer" under
program control, however, eertain instructions a~sociated with
SUbroutln~ l1nKaq@ and interrupt service. &utomatleally us@ ~eglster 6
a5 a ~har1ware stack po1nter"e FOr this r~&son R6 Is freauently
r~terred to as tn~ "SP"e

R' i$ used by tne Draee~lor &1 itl program counter (PCl.

Two typel Of 1n5truetlo~i utl1iZI the addreliing mOde~: ilnQl~
operand and double opera~dw Figure 1 shows th@ format~ of tn~!e two
type. of lnStructlon~. The addr~lilng modes are 11$t~d 1n Table la

PaQe 6

riqure t Addressing MOde Instruction Formats

3.2.1 Instruction Timing

The PDP-lt is an asynchronous processor In which, in many cases,
memOry and ~roce5sor operations are overlapped. T~e execution t1me
for an instruction is the sum of a basic instruction time and the time
to determine and teteh the source and/or destination operands, Table
2 ShOws the addressing times r~qulred for· the various mo~e of
addressing source and destination operandS, All PDP·l1/~4 times
stated are su b 1ect to +10\ variation and are based on a typieal core
memOry access time of 375 ns, a tyo1cal MOS memory access time of 500
ns and a processor clock cycle time of 260 nl, PDP-l1/05 times are
based on a 31~ ns processor clock cycle time and a MM11L memory.

3.3 POP-11/04 Instruct10ns

The PDP-l1 instructions can be d1vided into five grOUPings I

1. Sinale-Operand InstrUctions (shifts,
instructions, rotates)

multiple

2. DOUble-Operand
inStrUctions)

Instructions (arIthmetiC and

precision

3. proaram Control Instruetions (branChes, subroutines, traps)

4. Operate Grou~ Instructions (~rocelsor control operations)

5. Condition Codel Operators (processor
!nstruct1ons)

statlJs word bit

Tlble. 3 through 7 l1st each instruction, including byte instruct10ns
for the respective 1nstruction grouos. Figure 2 ShOWS tne six
different instruction formats of the instruction set, and the
indiVidual instructions 1n each format,

15 6
A

T
OP CODE

,,-SPECIFIES DIRECT OR INDIRECT ADDRESS
*"'SPECIFIES HOW REGISTER WILL BE USED

_ .. SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS
(0)

*" II fl"

?P COD~ M+E (Q) Rn

15 12 11 10 9 8 6
T

A

SOURCE ADDRESS FIELD

.. DIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
n' SPECIFIES HOW SELECTEO REGISTERS ARE TO BE USED

* SPECIFIES A GENERAL REGISTER
(b)

** "
MO:DE (ci)

5 4 3

DESTINATION

"" ..
MO~E (Q)

5 4 3

DESTINATION

Figure 1 Addressing Mode Instruction Formats

-*
Rn

2 0
T
ADDRESS FIELD

Rn

2 0
T
ADDRESS FIELD

11-1221

la4 Instruction Set Differences

T~bl~ e 11jt~ the dl!f~rencel b.tw@en the PDP§11/05 and PDP~11/~4
instruction s~tso

Binery
COd'

000

010

100

110

001

011

101

111

010

011

110.

111

Name

Register

Autolncrement

Autot.!ecrement

IndeX

Regilter Deferred

Autolncrement
Deferred

Autodeerel!lent

Index Deterred

Immediate

Absolute

Relative

Relative Deferred

Paqe 8

Tah le 1
Addressing Mode,

Aisembler
syntax

Rn

eRn)+

XCPn)

8Rn
or eRn)

"ePn)+

@X(Pn)

I.-A

A

Functlon

DIRECT MODES

Reqister contain. operand.

Reqlst.r contaln. addresl of operand. Re;l.ter
content. 1ncrementtd after ref.renee.

Reqi.ter contents decremented before reference
req1,ter contains addr.11 of operand.

ValUe X (Itored 1n a word followlnQ the
instruction) 11 added to eRn) to produce addre ••
of operand. N.ither X nor CRn) ar. mod1fled,

DEFERRED MODES

Reqlster contain. the addre •• of the operand.

Register 11 flrlt uled al a pointer to a word
eontaininQ the addrel. of the operand, thtn
incremented (always by two, even for byte
instructions).

Register 11 decremented (alwaYI by two, ,ven tor
byte instructionl) and then Uled a. a pointer to a
word conta1n1ng the addrels of the operand.

Value X (stored In a word followina the
1nltruct10n) and eRn) are added and the .um 11
used as a pOinter to a word conta!n1n; the address
of the operand. Ne1ther X nor eRn) are mcd1fied.

PC ADDRESSING

O~erand follows inltruction,

~blolute address folloWS instruction,

Address of A, relat1ve to the Instruet1~n, follows
the instruct1on.

Address of locat1on contalnln9 address of A,
relative to the 1nstruction, fo1lowl the

Paqe 9

lnltrUc:t!on,

Rn • Pf!ol.ter
X,n,A • next Proora~ counter (PC) word (eon.tent)

Instruction

ADD, SUB, IHC, 6IS

eMP, BIT

MOV

Sinc;le Oper<?!lnd

Instruction

C l.!;j>. COM, INc, DEC,
NEG, AOe, Si3e

ROR, POL, ASp, ASL

1ST

SWAB

Table 2
BasIc Times

Mac~lne

11/04

11/04

),1/04

M~ch1l"1e

11 /04

11/04

11/04

11/04

M@lT1ory Basie
OPtion Time (usee)

CORE 38 0 7
CORE PARITY 3.17

MaS 3.11
MaS P~RITY 1.:B

COFU: :2.81
CORE:: PARITY 2.91

1-105 2,91
Mas PARI"!'Y 3,0;

CORE 2. A 1
CORE J:)ABIT~ 2,91

MOS 2,91
MOS pAf!ITY :'3.917

M~mory Paste
OPtion Time (usee)

COR~; 2.55
CORE PARITY 2.65

MOS 20~!5
MOg PAF!I1'Y 2. £q

CORE i .81
C;OP.E PARITY 2.91

MaS 2.91
MOS PARITY ,.07

CORE '2.'29
CORE PA~ITY 2&]9

MOS 2e lq
MOS pARITY ~.55

COPE 2.81
CORE PARITY '2m 9 1

MOS i.91
MOS PillHTY 3.07

Pao. 11

Memory ea.ic
InstructIon Machine OPtion Tlm@ (usec)

All Branches (branch true, 11/04 CO~E 2.55
COR! PARITY 2.65

MOS 2.65
MOS PA~ITY 2.81

All Branches (branch falle) 11/04 CO~! 1 .. 77
CO~E PARITY 1.A7

MOS 1.97
MOS PAPITY 2.03

Jump Instructions

Memory Baslc
Instructlon Machine OptIon T1me (usec)

JMP 11/04 CO~E 0.84
CORE ~ARITY A.8l

MOS 0.91
MOS pARITY 0.88

JSR 11/04 CORE 3.27
CORE PARITY 1.27

MOS 3.27
MOS PAEHTY 1.27

Control, Trap, and Miscellaneoul InstructIon,

Memory easlc
Instruction Machine OPtion Time (usec)

RTS 11/04 CORE 3.91
CORE PARITY 4.11

MOS 4.11
MOS pARITY 4.43

RTI, RTT 11/04 CORE 5.01
COpE PARITY 5.31

MOS 5.31
MOS PARITY 5.79

Set N,Z,V,C 11/04 CORE 2.29
CORE PARITY 2.39

MOS 2.39

Paqe 12

MOS PAfHTY £.55

Clear NeZ,V,C 11/04 CORE 2g29
ea~E PARITY 2.3Q

MOS 2.39
MOB pARITY 2.55

HALT 11/04 COPE 1.36
CORE PARITY 1.46

Mas 1 ~ 46
MOS pARITY 1 a 62

WAIT 11104 CORE 2@0)
CORE PARITY :2 .13

MOS 2013
MOS PAR!TY 2.29

RESET 11/04 CORE 100 ",5

CORE PARITY 100 ml
MOS 'lltJ0 rna

MOS pARITY 100 ms

IOT o EM!, TRAP, 8PT 11/04 CORE "1.79
CORE PARITY fla16

Mas '7095
MOS PARITY f4 i1 49

Page 13

Table 2a.
AddressinQ' Tlmes

ADDRESSING rORMAT TIME CUI)

Memory
"1ode DescriPtion SY!'IIbol1c Machine OCltion source* Destination**

" PEGISTE~ R 11/~4 CO~E '" 0
CORE PARl'IY C'l " MOS PI " MOS PARITY 0 "

1 ~EGISTER Ip 11/04 CORE 0.86 1.45
DEFERRED or CORE PARITY 0.94 1.58

00 MOS 0.94 1.41
MaS PAPITY 1.1''1 1,67

2 AUTOINCREMENT C R)+ 11/04 CORE 1.10 1,71
CORE ,PARITY 1.20 . 1.84

MaS 1.20 1.76
MOS PARITY 1.36 1.95

3 AUTOINCPEMENT tieR)+ 11/04 COPE 2.46 3.07
DEFERRED COPE PARITY 2,66 3,:10

MOS 2.66 3.20
MOS p,a.PITY 2.98 3.55

4 AUTODECRE:~ENT -(P) 11/04 COFlE 1.1 p 1.71
CORE PARITY 1.21fl1 1.84

MOS 1.20 1.76
MOS PARITY t.36 1.95

5 bUTODECREMENT ~·(R) 11/04 COPE 2.46 3.07
DEYERQED COFeE pA~ITY 2.66 1.3~

I~OS 2.66 3.20
MOS PARITY 2.98 3.5S

TNDExrO +XO:/) 11/04 CORE 2.72 3.33
COPE PAPITY 2.92 1.§6

MOS 2.92 3.46
~OS PA~ITY 3.24 3.81

7 INO[Xf'rl Ia+X(Fl) 11/04 COPE 4."'8 4.69
or< cl')P~ P~RI'TY 4.38 5.~1

~ un MOS 4.)8 4.92
"105 pARITY 4.96 5.4.1

*ror Source tlme, add the folow1ng tor
odd byte addressing

**ForDestlnatlon time, mod1fY .s folloWl1

a. Add for odd byte addressing w1th a
non~modliYlnQ Instruction

b. A~d for odd byte address1ngw1th a
m6dltylno instruct10n MODES 1-7

c. SUbtract for all non-mod1fying
instructions except MODE ~

d. Add for MOVE instructions MODES 1-7

e. SUbtract for JUMP and JS~ inltructionl
MODE'S 3, 5, 6, 7

f. Add for all ROTATE even byte
instructions

9. Add for .11 ROTATE odd byte
lAstructions • Modes 1,2,4

h. A~d for all ROTATE odd byte
Instructions except Model 0,1,2,4

Machine

11/04

11104

11/04

11/04

11/04

11/04

11/05
11A05

11/05
llA05

11/05
11 A0S

Memory
oPtion

N/A

CO~E
COR! PA~ITY

MOS
MOS PA~ITY

N/A

N/A

T1me CUI)

0.61
1.64
0.54
0.57

0.26

o
0.75

Pag. 14

Table 3
Single Openmd Instructions

Mnemonic/
Instruction Time OP Code Operation Condition Codes Description

CLR· OOSODD* (dst)t ~ 0 N: cleared Contents of specified destination are replaced with zeroes.
CLRB 10S0DD Z: set

3.4 JIS V: cleared
C: cleared

COM OOSIDD (dst) ~ n (dst) N: set if most significant Replaces the contents of the destination address by their

COMB 10SIDD bit of result is 0 logical complement (each bit equal to 0 set and each bit equal

3.4 JIS Z: set if result is 0 to 1 cleared).
V: cleared
C: set

INC 00S2DD (dst)~(dst)+ 1 N: set if result is less than 0 Add 1 to the contents of the destination.

INCB IOS2DD Z: set if result is 0

3.4 JIS V: set if (dst) was 077777
C: not effected

DEC 00S3DD (dst) ~ (dst) -1 N: set if result is less than 0 Subtract 1 from the contents of the destination.

DECB 10S3DD Z: set if result is 0

3.4 JIS V: set if (dst) was 100000
C: not effected

NEG 00S4DD (dst) ~ -(dst) N: set if result is less than 0 Replaces the contents of the destination address by its 2's com

NEGB IOS4DD Z: set if result is 0 plement. Note that 100000 is replaced by itself.

3.4 JIS V: set if result is 100000
C: cleared if result is a

ADC OOSSDD (dst) ~ (dst) + C N: set if result is less than 0 Adds the contents of the C-bit into the destination. This permi ts

ADCB IOS5DD Z: set if result is a the carry from the addition of the low order words/bytes to be

3.4 JIS V: set if (dst) is 077777 and carried into the high order result.
Cis 1 ~

~
C: set if (dst) is 177777 and ~

Cis 1
- - - ---

Q-\

Mnemonic/
Instruction Time OPCode Operation

SBC 005,6DD (dst) +-(dst)-C
SBCB 1056DO
3.4 ps

TST 005700 (dst) +- (dst)
TSTB 105700
3.4 ps

ROR 006000 (dst) +- (dst)
RORB rotate right
3.4 J.l.S one place.

ROL 006100 (dst) +- (dst) ,

ROLB 106IDO rotate left
3.4ps one place.

Table 3 (Cont)
Single Operand Instructions

Condition Codes

N: set if result is less than 0
Z: set if result is 0
V: set if (dst) was 100000
C: cleared if (dst) is 0 and C

is 1

N: set if result is less than 0
Z: set if result is 0
V: cleared
C: cleared

N: set if high order ,bit of
the result'is set

Z: set if all bits of result
are 0

V: loaded with the exclusive-
OR of the N-bit and the
C-bifas set by ROR

N: set if the high order bit of
the result word is set
(result < 0); cleared
otherwise

Z: set if all bits of the
re,sult word = 0; cleared
otherwise

V: loaded with the exclusive-
OR of the N~bit and C-bit
(as set by the completion
of the rotate operation)

C: loaded with the high order
bit of the destination

I

Description

Subtracts the, contents of the C-bit from the destination. This
permits the carry from the subtraction or the low order words!
bytes to be subtracted from the high order part of the result.

Sels the condition codes Nand Z according to the contents of
the destination address.

Rotates all bits of the destination right one place. The low
order bit is loaded into the C-bit and the previous contents of
the C-bit are loaded into the high order bit of the destination.

Rotate all bits of the destination left one place. The high
order bit is loaded into the C-bit of the status word and the
previous contents of the C-bit are loaded into the low order
bit of the destination.

~
~
~ -<r--

Mnemonic/
Instruction Time OP Code Operation

ASR 0062DD (dst) +- (dst)
ASRB 1062DD shifted one
3.4 J.1s place to the

right.

ASL 0063DD (dst) +- (dst)
ASLB lO63DD shifted one
3.4 p.s place to the left.

~--

Table J (Cont)
Single Operand Instructions

Condition Codes

N: set if the high order bit
of the result is set
(result < 0); cleared
otherwise

Z: set if the result = 0;
cleared otherwise

V: loaded from the exclusive-
OR of the N-bit and C-bit
(as set by the completion
of the shift operation).

C: loaded from low order bit
of the destination

N: set if high order bit of the
(result < 0); cleared
otherwi~e

Z: set if the result :: 0; cleared
otherwise

V: loaded with the exclusive-
OR of the N-bit and C-bit
and C-bit (as set by the
completion of the shift
operation)

C: loaded with the high order
bit of the destination

Description

Shifts all bits of the destination right one place. The high
order bit is replicated. The C-bit is loaded from the low order
bit of the destination. ASR performs signed division of the
destination by two.

Shifts all bits of the destination left one place. The low order
bit is loaded with-a, O. The C-bit of the status word is loaded
from the high order bit of the destination. ASL performs a
signed multiplication of the destination by 2 with overflow
indication.

~
~
~ -'.J

Mnemonic/
Instruction Time OP Code Operation

JMP OOOWD PC ~ (dst)
1.0 J..1.S

SWAB 0003DD Byte l/Byte 0
4.3 J..1.s Byte O/Byte 1

-- ._-

* DD = destination (address mode and register)
t (dst) = destination contents

Table 3 (Cont)
Single Operand Instructions

Condition Codes

Not effected.

N: set if high order bit of
low order byte (bit 7)
of result is set, cleared
otherwise

Z: set if low order byte
of result = 0; cleared
otherwise

V: cleared
C: cleared

Description

JMP provides more flexible program branching than provided
with the branch instruction. Control may be transferred to any
location in memory (no range limitation) and can be accom-
plished with the full flexibility of the addressing modes. with
the exception of register mode O. Execution of a jump with
mode 0 will cause an illegal instruction condition. (program
control cannot be transferred to a register.) Register deferred
mode is legal and will cause program control to be transferred
to the address held in the specified register. Note that in-
structions are word data and must therefore be fetched from
an even numbered address. A boundary error trap condition
will result when the processor attempts to fetch an instruction
from an odd address.

Exchanges high order byte and low order byte of the destinatio
word (destination must be aword address).

n

""'10
v

~ -""'G

Mnemonic/
Instruction Time OP Code Operation

MOV OlSSDD* (dst) +- (src) t
MOVB 11SSDD
3.7 iJ.s
3.1 j.lS mode 0

CMP 02SSDD (src) - Cdst)
CMPB 12SSDD [in detail,
3.7 j.lS (src) +-

(dst) + 1]

Table 4
Double Operand Instructions

Condition Codes

N: set if (src) < 0; cleared
otherwise

Z: set if (src) = 0; cleared
otherwise

V: cleared
C: not effected

N: set if result < 0; cleared
otherwise

Z: set if result = 0; cleared
otherwise

V: set if there was arithme tic
overflow, i.e., operands
were of opposite signs
and the sign of the des-
tination was the same
as the sign of the result;
cleared otherwise

C: cleared if there was a
carry from the most sig-
nificant bit of the result;
set otherwise

Description

Word: Moves the source operand to the destination location.
The previous contents of the destination are lost. The source
operand is not effected.
Byte: Same as MOV The MOVB to a resistor (unique among
byte instructions) extends the most significant bit of the low
order byte (sign extension). Otherwise, MOVB operates on
bytes exactly as MOV operates on words.

I

Compares the source and destination operands and sets the
condition codes, which may then be used for arithmetic and
logical condition:!l branches. Both operands arc uneffected.
The only action is to set the condition code~. The compare is
customarily followed by a conditional brallch instruction. Note
that unlike the subtract instruction the order of operation is
(src) - Cdst), not (dst) - (src).

~
~

"­
~

Mnemonic!
lnstruction Time OP Code Operation

BIT 03SSDD (src) 1\ (dst)
BITB 13SSDD
3.7 j1S

SIC 04SSDD (dst) «- - (src)
BICB 14SSDD 1\ Cdst)
3.7 J1S

DIS 05SSDD (dst) «- (src)
RISB 15SSDD 1\ (dst)
3.7 Jl,S

ADD 06SSDD (dst) +- (src)
+ (dst)

Table 4 (Cont)
Double Operand Instructions

Condition Codes

N: set if high order bit of
result set; cleared other-
wise

Z: set if result = 0; cleared
otherwise

V: cleared
C: not effected

N: set if high order bit of
result set, cleared other-
wise

Z: set if n~sult = 0; cleared
otherwise

V: cleared
C; not effected

N: set if high order bit of
result set; cleared other-
wise

Z: set if result = 0; cleared
otherwise

V: cleared
C: not effected

N: set if result 0; cleared
otherwise

Z: set if result = 0; cleared
otherwise

Description

Performs logical AND comparison of the source and destination
operands and modifies condition codes accordingly. Neither
the source nor destination operands are effected. The BIT in-
struction may be used to test whether any of the corresponding
bits that are set in the destination are clear in the source.

Clears each bit in the destination that corresponds to a set bit
in the source. The original con tents of the destination are lost.
The contents of the source are uneffected.

Performs inclusive-OR operation between the source and des-
tination operands and leaves the result at the destination
address; i.e., corresponding bits set in the destination. The
contents of the destination are lost.

Adds the source operand to the destination operand and stores
the result at the destination address. The original contents of
the destination are lost. The contents of the source are not
effected. Two's complement addition is performed.

~
\.C
~
~
o

Mnemonic/
Instruction Time OP Code Operation

ADD (Cont)

SUB 16SSDD (dst) +- (dst)-
3.7 p.s (src) in detail,

(dst) + (src)
+ 1 (dst)

• SS = source (address mode and register)
t (src) = source contents

Table 4 (Cont)
Double Operand Instructions

Condition Codes

V: set if there was arithmetic
overflow as a result of the
operation; that is both
operands were of the same
sign and the resul t was of
the opposite sign; cleared
otherwise

C: set if there was a carry from
the most significant bit of
the result, cleared other-
wise

N: set if result < 0; cleared
otherwise

Z: set if result = 0; cleared
otherwise

V: set if there was arithmetic
overflow as a result of
the'operation, Le., if
operands were of op-
posite signs and the sign
of the source was the
same as the sign of the
result, cleared otherwise

C: cleared if there was a
carry from the most
significant bit of the
result; set otherwise

-- -- -

Description

Subtracts the source operand from the destination operand and
leaves the result at the destination address. The original content
of the destination are lost. The contents of the source are not
effected. In double precision arithmetic, the C-bit, when set,
indicates a borrow.

s

~
~
N

Mnemonic/
Instruction Time OP Code Operation

BR 000400 PC+-PC+
2.5 flS xxxt (2 X offset)

BNE 001000 PC +-PC +
1.9 flS no branch xxx (2 X offset)
2.5 flS branch ifZ= 0

BEQ 001400 PC +- PC +
1.9 flS no branch xxx (2 X offset) if
2.5 flS branch Z=l

BGE 002000 PC +- PC +
1.9 flS no branch xxx (2 X offset) if
2.5 flS branch NvV=O

TableS
Program Control Instructions

Condition Codes

Uneffected

Uneffected

Uneffected

Uncffected

Description

Provides a way of transferring program control within a range
of -128 to + 127 words with a one word instruction. It is an
unconditional branch.

Tests the state of the Z-bit and causes a branch if the Z-bit is
is clear. BNE is the complementary operation to BEQ. It is
used to test inequality following a CMP, to test that some bits
set in the destination were also in the source, following a BIT,
and generally, to test that the result of the previous operation
was not O.

Tests the state of the Z-bit and causes a branch if Z is set. As
an example, it is used to test equality following a CMP opera-
tion, to test that no bits set in the destination were also set in
the source following a BIT operation, and generally, to test
that the result of the previous operation was O.

Causes a branch if N and V are either both clear or both set.
BGE is the complementary operation to BLT. Thus. BGE
always causes a branch when it follows an operation that
cuused addition to two positive numbers. BGE also causes a
branch on a 0 result.

~
\.:..;::
~

,....

tl

Mnemonic/
Instruction Time OP Code Operation

BHI 101000 PC +- PC +
1.9 J.ls no branch xxx (2 X offset) if
2.5 J.ls branch C=O

BLOS 101400 PC+-PC+
1.9 J.lS no branch xxx (2 X offset) if
2.5 J.ls branch CvZ=l

BVe 102000 PC+-PC+
1 .9 J.ls no branch xxx (2 X offset) if
2.5 J,lS branch V=O

BVS 102400 PC+-PC +
I .9 J,lS no branch xxx (2 X offset) if
2.5 p.s branch V= 1

BCC 103000 PC+-PC+
BHIS xxx (2 X offset) if
1.9 p.s no branch C=O
2.5 J.lS branch

BCS 103400 PC +- PC +

BLO xxx. (2 X offset) if
1 .9 J.lS no branch C=1
2.5 p.s branch

I

Table 5 (Cont)
Program Control Instructions

Condition Codes

Uneffected

Uneffected

Uneffected

Uneffected

Uneffected

Uneffected

Description

Causes a branch if the previous operation causes neither a carry
nor a 0 result. This will happen in comparison (CMP) operations
as long as the source has a higher unsigned value than the
destination.

Causes a branch jf the previous operation caused either a carry
or a 0 result. BLOS is the complementary operation to BHI.
The branch occurs in comparison operations as long as the
source is equal to or has a lower unsigned value than the
destination. Comparison of unsigned values with the CMP
instruction to be tested for "higher or same" and "higher" by
a simple test of the C-bit.

Tests the state of the V-bit and causes a branch if the V-bit is
clear. BVe is complementary operation to BVS.

Tests the state of V-bit (overflow) and causes a branch if the
V-bit is set. BVS is used to detect arithmetic overflow in the
previous operation.

Tests the state of the C-hit and causes a branch if C is clear.
BCC is the complementary operation to BCS.

Tests the state of the C-bit and causes a branch if C is set. It is
used to test for a carry in the result of a previous operation.

~
'-.c
~

~
\N

Mnemonic!
Instruction Time or Code Operation

BLT 002400 PC +- PC +
1.9 f.1S no branch xxx (2 X offset) if
2.5 f.1S branch NV= 1

BGT 003000 PC -+- PC +
1.9 f.1S no branch xxx (2 X offset)
2.5 f.1S branch ifZv(N¥

V)=O

BLE 003400 PC -+- PC +
1.9 f.1s no branch xxx (2 X offset) if
2.5 IlS branch Z v (NVV)

= 1

BFL 100000 PC -+- PC +
J .9 IlS no branch xxx (2 X offset) if
2.5 IlS branch N=O

BMl 100400 PC +- PC +
1.9 }.1S no branch xxx (2 X offset) if

2.5 IlS branch N = 1

Table 5 (Cont)
Program Control Instructions

Condition Codes

Uneffected

Uneffected

Uneffected

Uneffected

Uneffected

_ .. -

Description

Causes a branch if the exclusive-OR of the N- and V-bits are I.
Thus, BLT always branches following an operation that added
two negative numbers, even if overflow occurred. In particular,
BLT always causes a branch if it follows a CMP instruction
operating on a negative source and a positive destination (even
if overflow occurred). Further, BLT never causes a branch when
it follows a CMP instruction operating on a positive source and
negative destination. BLI does not cause a branch if the result
of the previous operation was 0 (without overflow).

Operation of BCT is similar to BCE, except BCT does not
cause a branch on a 0 result.

Operation is similar to BLT but in addition will cause a branch
if the result of the previous operation was O.

Tests the state of the N-bit and causes a branch if N is clear.
BPL is the complementary operation of BM!.

Tests the state of the N-bit and causes a branch if N is set. It is
used to test the sign (most significant bit) of the result of the
previous operation.

f
)...
~

Mnemonic/
Instruction Time OP Code Operation

(No mnemonic) 000003 '" (SP) +- PS
8.2 J1S '" (SP) +- PC

PC +- (14)
PS +- (16)

IOT 000004 '" (SP) +- PS
8.2 J1S '" (SP) ~ PC

PC ~(20)
PS ~(22)

EMT 104000 '" (SP) ~ PS
8.2J1s + (SP) ~ PC

PC ~ (30)
PS +- (32)

TRAP 104400 to + (SP) +- PS
8.2 J1S 104777 + (SP) ~ PC

PC ~ (34)
PS ~ (36)

-

NOTE: Condition Codes are uneffected by these instructions

txxx = offset, 8 bits (0-7) of instruction format
R = register (linkage pointer)

Table 5 (Cont)
Program Control Instructions

Condition Codes

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

N: loaded from trap vector
Z: loaded from trap vector
C: loaded from trap vector

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description

Performs a trap sequence with a trap vector address of 14. Used
to call debugging aids. The user is cautioned against employing
code 000003 in programs run under these debugging aids.

Performs a trap sequence with a trap vector address of 20. Used
to call the I/O executive routine lOX in the paper-tape software
system, and for error reporting in the disk operating system.

All operation codes from 104000 to 104377 are EMT instruc-
tions and may be used to transmit information to the emulating
routine (e.g., function to be performed). The trap vector for
EMT is at address 30; the new central processor status (PS) is
taken from the word at address 32.

CAUTION
EMT is used frequently by DEC system software and
is therefore not recommended for general use.

Operation codes from 104400 to 104777 are TRAP instructions
TRAPs and EMTs are identical in operation, except that the
trap vector for TRAP is at address 34.

NOTE
Since DEC software makes frequent use of EMT, the
TRAP instruction is recommended for general use.

~
~
~ "',

Mnemonic!
Instruction Time OP Code Operation

JRS 004RDD (tmp) +- (dst)
3.8 ps (tmp is an inter-

nal processor
register)
.j. (SP) +- reg
(push reg con-
tents onto proces-
sor stack)
reg+- PC PC
holds location fol-
lowing JSR; this
address PC +-
(tmp) , now put in
(reg)

RTS 0OO20R PC +- (reg)
3.8 ps (reg) +- SP t

Table. ·5 (Cont)
Program Control Instruction

Condition Codes

Uneffected

Uneffected

Description

In execution of the JSR, the old contents of the specified
register (the linkage pointer) are automatically pushed onto
the processor stack and new linkage information placed in
the register. Thus, subroutines nested within subroutines to an
depth may all be called with the same linkage register. There
is no need either to plan the maximum depth at which any
particular subroutine will be called or to include instructions
in each routine to save and restore the linkage pointer. Furthe
since all linkages are saved in a re-entrant manner on the pro-
cessor stack, execution of a subroutine may be interrupted,
and the same subroutine re-entered and executed by an in-
terrupt service routine. Execution of the initial subroutine car
then be resumed when other requests are satisfied. This pro-
cess (called nesting) can proceed to any level.

JSR PC, dst is a special case of the PDP-II subroutine call
suitable for subroutine calls that transmit parameters.

Loads contents of register into PC and pops the top element
of the processor stack into the specified register.

Return from a non-re-entrant subroutine is typically made
through the same register that was used in its call. Thus, a
subroutine called with a JSR PC, dst exits with an RTS PC,
and a subroutine called with a JSR R5, dst may pick up
parameters with addressing modes (RS) +, X (RS), or @X (RS:
and finally exit, with an RTS RS.

y

~
~
~

~
~

Table 6
Operate Group Instructions

Mnemonic/
Instruction Time OP Code Operation Condition Codes

HALT 000000 Not effected
1.8 fJ.S

WAIT 000001 Not effected
1.8 fJ.s

RESET 000005 PC (SP) Not effected
20 ms PSW (SP)

.- ---

Description

Causes the processor operation to cease. The console is given
control of the processor. The console data lights display the
address of the HALT instruction plus two. Transfers on the
Unibus are terminated immediately. The PC pOints to the next
instruction to be executed. Pressing the CON key on the consoli
causes processor operation to resume. No INIT signal is given.

Provides a way for the processor to relinquish use of the bus
while it waits for an external interrupt. Having been given a
WAIT command, the processor will not compete for bus by
fetching instructions or operands from memory. This permits
higher transfer rates between device and memory. since no
processor induced latencies will be encountered by bus re-
quests from the device. In WAIT, as in all instructions, the PC
points to the next instruction following the WAIT operation.'
Thus, when an interrupt causes the PC and PS to be pushed ont
the stack, the address of the next instruction following the
WAIT is saved. The exit from the interrupt routine (Le., execu-
tion of an RTI instruction) will calise resumption of the in-
terrupted process at the instruction following the WAIT.

Sends INlT on the Unibus for 20 ms. All devices on the Unibus
arc reset to their state at power-up.

o

~
~.
~
--...J

Mn@monic/
Instruction Time

eLC
eLZ
CLN
eLV
set au ecs
Clear all ces
Clear v and C
No operation
No operatIon

P8Qe 28

Table 7
Condition Code Operators

OP Code

000241
01210242
000244
12100250
12100277
0~0257

0('1024121
0002691

DescriPtIon

Set and clear eond1tion code bits.
Selectable combination of these bIts
may b~ cleared or set tOQether.
ConditIon code bIts corresponding to
bIts in the COndItion code operator
(bIt 0-3) are modif1ed according
to the lense Of bit .4, the set/clear
bit 'Of the operatorJ 1.e., let
the bit sDeclfied by bit ~, 1, 2, or
3 It bit 48' a 1. Clear corresponding
bits if bit 4=121.

Figure 2 POP-11 InstructIon Formats

1.Singl. Operand Group (CLR ,ClFlB,COM,COMB ,INC, I NCB, DEC, DECB, NEG,NEGB, AOC, ADCB, sec, SBCB, TST,TSTB, ROA, RORS, ROl ,ROlB,ASR, IISR B,
ASL, ASlB, JMP, SWAB)

01' Code
I

15

2.00ubl. Operand Group(BIT,BITB,BIC,BICB,BIS,BISB,ADD,SUB)

[01' Code
I

15

3.Program Control Group
o.B"flch(ali branch inslruclionsl

15

b.Jump To SubrOYlin~ (JSRI

c. Sub,o'llin. Relurn (RTS)

o o

d. Traps (br&ok point, lOT, EMT, TRAP)

4.0perole Groupe (HAlT,WAIT,RTl,RESET)

12

01' Code
I

o

Sfc
I

reg

2

01' CODE

6

o

offsel

osl
I

clSI
I

S.e/dsl
I

o

o

o

~--,
01' CODE

5.Condition Cod. Operalon (all condition code instructions)

o o o 2 4 N z v C

11-1226

Figure 2 PDP-II Instruction Formats

Page 29

TABLE R
DJnrE~ENCESg

POP-l1/05 (KD11~)

II If a eUs ERROR occurs due to a transfer
to nOnexistent memory durln~ an auto!n­
crement transfer (Mode 2), a~ instruction
feteh, or stack pop, the associated
register will be incremented.

Exam!:>!es I

a. FETCH ROUTINE

BA (-_. PC, DATI
PC (_.- PC Plus 2
(BUS ERROR detected and recognized)

BP4NCH TO SEPVICE

b. AUTOINCREMENT ROUTI~E (SOURCE)

SA < ••• P [Sl , DATI, ALBYT
B (.... R [SJ Plus BYTE BAR PlllS 1
R [5] (-•• B
(BUS ERROR d@tected and recognized)

BRANCH TO SERVICE

c. AUTOINCRE~ENT ROUTINE (DESTINATION)

BA <-•• ~ [OJ , DATIP, ALBYT
B < ••• R [OJ PlUS 1 PlUS BYTE BAR
f([D] (•• B
(9.US ERROR detected and recognized)

BRANCH TO SERVICE

d. STACK POPS

SA <-.'" R (6] , D~TI

8 <"' •• P (6) Plus 2
R [61 < ••• B
(BUS gPROR detecterl and recognized)

BRANCH TO SERVICE

PDP-11/04 (KOl1D)

II It a 8US ERROR occurs due to • transfer
to nonexistent memory durIng an auto­
Incremeht transfer (Mode 2), an in.truc­
tion fetch, or stack pop, the associated
register wIll not be incremented.

Examplesl

a. FETCH ROUTINE

SA e._· PC, PATI
BiIR (••• UNI8US DATA
(BUS ER~OR detected and reco;nlZed)

BRANCH TO SERVICE

b. AUTOINCREM!NT ROUTINE (SOURCE)

BA <-•• R [5] , DATI, ALBYT
B (••• UNIBUS DATA
CBUS ERROR detected and recognized)

BRANCH TO SERVICE

e. AUTOINCREMEN! ROUTINE (DESTINATION)

SA (••• R [0] , OATIP, ALBYT
B < ••• UNIBUS DATA
(BUS ERROR detected and recoQnlzed)

BRANCH TO SERVICE

d. STACK POPS

SA <oO R [61 , DATI
B < ••• UNI8IJS nATA
(HUS ERROR detected and recognized)

BR~NCH TO SERVICE

II. for JUMP autolncrement (Mo~e 21 instrue~
t101'15, JMP (R)+ or JSH reQ, (RH·@ thE~

contents of R arf iner!m~nt@d by 2, thin
Uled a; the n_w PC address. This feature 11
compatible wlt~ the PDP~11/20.

IIt~ The Proeessor can access 1tl genersl
%'@QiHI!l'S; usinq their UNIBUS addre5'H's~

ExamPl@s: CLR ~# 171700
MOV R', @# 177700

Note: These aCC@!!HleS do n'l1:; operate
correctlY ~nd are not :supported.

IVo The KOIIH CPU contains a lin@ clock,
seri~l co~mYnic~tion line, and
proqra~mers con$ol~ elreultry. These
deviCeS answer to the UNIBUS addresses
172540, 17 7560, and 17757~ re~pectlyelY~

V$ The Kol1R provide~ for a 15 usee SACK
time-out when recoqnlz1ncr BUS lnterruDts~

VI. The consol@ ~ALT switch haz the lowest
priority level. This feature allows
the user to s1nqle-in5truetion·ste~
tnrouon an interru~t.

The pnrel1/0~ priority order for traps
~nd interruots is as follows:

BUS ERROPS
!-HILT INSTRUCTION
TRAp I~STRuCrtONs

TF!AC'E iPAP
STACK OVERFLOll'l
PO'·oJER FA lL
It\JTEPRIIP1S
HALT f)~ CONSI1LE

II, rot JUI>IP autolnc:rement (tv'ode 2) instructj.ons,
J~P CAl. or JSR req. (Rl. the initial
eontents of R register are useM ~s the new
PC. Thl~ feature Is compatible with the
PDP"'l! !4~) ~

1110 The processor cannot acce5S its general
registers using their UNraus addresses,
Tn the 11/04 q these accelse~ to tne general
r~qlst@rs will return SSYN and not time out.
Reads will return zero and writes will not
eaus@ any change 1n the req1~ter contents.

IV. The KDI1D CPU do~~ not contain a line
clOCk, ~erlal eommunication line, or
console clrcultrYe The~e features will
b~ provided ~s UNIBUS OPtions 1n the
traditional PDP-II sense. In systems that
do not contain these options, attempts to
address thtffi will result 1n a non-existent
memory tra!:).

V. The KDllD has no Dfovls10ns for SACK
timemout on the basie CPU modUle. ~ SACK
return circuit 1s provided on the M9302
Terminator module which must be used w1t~
theKD1I0 at the end of the UNIBUS, ThiS
devlee autom~tlCAllY returns SACK It no
oerloh@ral accepts a GRANT lssued by the
CPU q

VI. The eonsol~ HALT switch has a higher
Dr!ority level than interrupts and
therefore, does not ~llow tne user to
single-instruction-step tnrough an
lnterrllpt@

T~~ PDP011/04 priority order tor traps
and interrupts is a~ follo~s:

HALT INSTPUCrlO')
EllIS ERRORS
T RAP p: S T R IJ C T I 0 ~J S
TRAC'F TRH'
STACK OVERfLOW
PO\·j~R FAIt,
HALT SwITCH
IN'I'ERRUPTS

VIti The K0118 hal no PA~lT~ ERPOP detection
capabilIties and tnerefore does not
IUPPor t parItv m.emory.

VIII. YIrst instructIon after ~TI is guaran­
teed to be executed.

IX. RTT Inltructlons are not implemented.

VII. The KDI1D CPU contains PARITY ERROR
detection circuitry, and will support
Darity memory options,

H

Pa;e 31

VIII. ATne RTI Iits the T bit, the T bit trap 1s
aCKnowled;ed immediately atter the RTI
instructions,

IX. First instruction after RTT 11 guaranteed
to be executed,

TABLE OF PROGRAMMING DIFFERENCES

11/15 & 11/20

i. ~EN£RAL REGISTERS (Including PC & SP)

A.

B.

C.

OPR%R, CR)+
or OPR%R,-(R)

OPR%R,@(R)+
OPR%R,@-(R)

(Using the same reg.
as both source &
destination).

JMP(R)+ or
J SR reg, (R)+

(Jump using auto­
increment mode).

f.l0V' PC,@#A or
MOV PC,A

(r-.'ov I ng the i ncre­
menTed PC to a memory
address' referenced by
the PC),

D. Stack Pointer (SP),
R6 used for referen­
cing.

Contents of Rare
incremRnted by 2 (or
decremented by 2)
before being used
as the source operand.

Contents of Rare
Incremented by 2,
then used as the
new PC address.

Location A 'wl'll
contain the PC of
the Move Instruc­
tion +4.

Using the SP for
pointing to odd
addresses or non­
existent memory
causes a HALT
(double bus error).

11/05 & II/tO 11/35 & 11/40 11/04

Initial contents Same as 11/20
of R are used as

Same as 11/05

the source operand.

Same as 11/20

Locatj on A wi II
contain PC+2.

Same as 11/20

Initial contents
of R are used as
the new PC.

Same as 11/20

Same as 11/40

Same as 11/05

Odd address of non- Same as 11/05
exi stent memory
references with SP
cause a fatal trap,
with a new stack
created at locations
o & 2.

:ff
~
\,J

t-I

:~

E. Stack Overflow

I I. TRAPS & INTERRUPTS

A. RTI instruction

B. RTT instruction

TABLE OF PROGRAMMING DIFFERENCES (Cont)

11/15 & 11/20

Stack limit fixed
at 400 (octa I).
Overflow (goi'1g
lower) checked
after @-(R6), JSR,
traps, and address
modes 4 & 5. Over­
flow serviced by an
overflow trap. No
red zone.

11/05 & 11/10

Same as 11/20

First instruction Same as 11/20
after RTI is guaran-
teed to be executed.

Not Implemented Not Implemented

11/35 & 11/40 11/04

Variable I imit Same as 11/05
with Stack Li mit
option. Overflow
checked after JSR,
traps, and address
modes 1, 2, 4, & 6.
Non-altering refer-
ences to stack data
is always al lowed.
There is a 16-word
yellow (warning)
zone. Red zone
trap occurs if.stack
is 16 words below
boundary; PS & PC
are saved 3t locations
o & 2.

If RTI sets the T
bit, the T bit trap is
acknowledged immediate­
ly after the RTI
instruction.

First instruction
after RTT is guaran­
teed to be executed.
Acts I ike RTI on the
11/20.

If RTI sots the 1
hit, the T bit trap
is acknowled£)8d
immediately after th
RT I i nsiruct ion.

First instruction
after RTT is
guaranteed to be
executed.

~
(t>

'v.J
\,J

r<1
,r.

C. Processor Status
(PS) odd byte at
location 777-777.

D. T bits of PS

E. Bus Errors

1. PC contains
odd address

2. PC contains
address in
nonex i stent
memory

3. Register con-
tains odd
address and
instruction
Mode 2.

4. Register contains
address in non-
exi stent 'memory
and instruction
Mode 2.

TABLE OF PROGRAMMING DIFFERENCES (Cont)

11/15 & 11/20

Ad.dress i n9 odd
byte of PS (bits
15-8) causes an
odd address trap.

T bit can be
loaded by direct
address of PS, or
from the console.

11/05&11/10 11/35 8. 11/40

Odd byte of PS Same as 11/05
can be addressed
without a trap.

Same as 11/20 Only RTI, RTT
traps, and
interrupts can
load the T bit.

11/04.

Same as 11/05

Same as 11/05

PC'Unincremen+ed Same as 11/20 Same as 11/20 Same as 11/05

PC Incremented PC Incremented

Register Unincremen- Same as 11/20
ted

PC Unincremented Same as 11/05

Register Incremen- Same as 11/05
ted

Reg i ster ·1 ncremente.d Same ass 11/20 Register Incremen- Register Unincremented
ted

~
~.
~
.~

~

-:t
r<"I

F. Interrupt Service
Routine

G. Priority order of
Traps &. Interrupts

II I. MISCELLANEOUS

A. ·SWAB and V bit

B. Instruction Set

TABLE OF PROGRAMMING DIFFERENCES (Cont)

11/15 &. 11/20

The first i ns·truc­
tion In the routine
is guaranteed to
be executed.

Odd address
Timeout
HALT from console
Trap instructions
.Trace trap
Stack overflow
Power fa i.I

. SWAB instruction
c0nditionallysets
the V bit.

Basic set.

11/05 & 11/10 11/35' & 11/40 11/04

The first in- Same as 11/05 Same as 11/05
struction wi II
not be executed
if another
interrupt occurs
at a higher
prior i ty.

Odd address Odd address HALT instruction
Timeout Stack overflow (red) Bus errors
HALT instruction Timeout TRAP instructions
Trap instructions Mem. Mgt. vio/"atlon TRACE TRAP
Trace trap HALT . STACK overf I ow
Stack overf low Trap instructions Power Fa i I
Power fa i I Trace trap HALT Switch
HAL T f rom con so I e Stackoverflow (yellow) Interrupts

Power fai I

v bit is cleared •. Same as 11/05 Same as 11/05 except
that RTT is imp I cmcnte~

Same as 11/20 Basic set + MARK, Same as 11/05
RTT,SOB, SXT, XOR.

EIS adds: MUL, DIV,
ASH, ASHC.

Floating Point adds:
FADD, FSUB, FMUL, FDIV.

~
't
\N

'\

Page 36

3.5 8u. LatenCY T1me.

The tyoical bUS latency time. for bu. requests (BP4 throuqh BR7) and
Non-Processor reque.ts (NP~) are a. follows. Note that there are many
qaps in the •• tI~lnQ .eqUlnee. that are a ~unction of the length and
loading of the UNIBUS and the speed realized by the users peripheral
circuttry,

BUS ~EQUESTS •

ell' to SG

SG to SACK

• ma~imum tim. 1s length
instruction cycle of KD11D.

of lOnQe5t

• function of'UNIBUS length and lOad1ng and
the Ulers peripheral.

SACK to BG orF • 300 ns

8G OFr to SACK OFr • fundtion of perIPheral.

SACK OFr to FIRST INT~ ROUTINE rETCH •

Memory Corel 6,]6 us
6.63
6,43

NON.P~OCESSOR REQUESTS •

Np~ to NPG • 340 nl

Core Parity
MOS
"lOS parity 6, B1

NPR to BUS CONT~OL • Corel 3.52 us
3.66
3,56
3.75

Core parIty
MOS
MOS Parity

4,0 CPU OPE~ATING SPECIFICATIONS

Temperature.

Relative Humidity,

Input powerl

Physical Sizel

Interface ReQuirements.

TBD

20' to 95' (with condensatton)

+SVOC +5' at 4 amperes.

Single Hex module (8 1/2 x 15 1nches)

AU 1/0
connectors
compatIble
Table 9.

Signals are available on
A and B. These slqnall are Din
with UNIBUS pInout as shown 1n

Paoe 37

Power and Ground
Pinout •• +I5V. pin. AA2, BA2, CA2, OA2,

EA2, P'A2,

GNOt pln. AB2, AC2, AN1, APi,
ARt, A~H , AT1; AV2,
BB2, BC2, B01, BEl,
BTl, BV2, CC2, CT1,
OC2, OT1, EC2, ET1,
rC2, 'Tl,

Number of Integrated
Circuit .. 137

TABLE 9
MODIFIED UNIBUS PIN ASSIGNMENTS

PIN SIGNAl! PIN SIGNAL

AA1 INIT L SAl SPA~E

AA.2 POWER (+5'11) 8A2 pOWE~ (+!5V)
AS! INTR L SBl SPARE
AS2 TEST POINT BB2 TEST POINT
ACt 000 L BCt sP 5L
AC2 GROUND BC2 GROUND
A01 002 L 1301 BAT"'SACKUP +SV
AIJ2 001 L 6D2 B~ .. 4L
AEi DC4 L BEt INT m SSYN.
AE2 DOl L BE2 PARr DETs
AFt 006 1.1 8F1 ACtO L
AF2 DOS L BF2 DCLO L
Alii DOl:! L SHi A01 L
AH2 DOi' L BH::! 1.00 L
A.Jl 010 L BJl ACU L
AJ2 D139 L BJ2 AI2I2 L
Al(l D12 L SKI 1\05 L
ltK2 D11 L BI<2 .1\04 L
ALi 014 L BLl A07 L
AL2 D13 L SL2 A~6 L
AMi PA L BMl A09 L
AM2 D15 to) 8M2 A08 L
ANt PI aNt A11 L
AN2 PB LA BN2 ~10 L
APl 1'0 BPt AU L
111'2 BBSY L 8P2 U2 L
lHH RAT BACKUP +115'11 SRi US L
AR2 SACK L BR2 U4 L
ASl BAT BACKUP ..,15'11 FlSl Ai'? L
AS2 NPR L 882 A16 L
AT1 GROUND BTl (,H~OUND

AT2 p.~ .1L 8T2 Cl L
AU! +20'11 BUi SSYN L
JHJ2 BR 6L BU;2 C0 1
AVl +20'1 BV! MSYN L
AV2 ~20V aV2 ... !!IV

Page 39

5.0 DETAILED HAPDWARE DESCRIPTION

5,1 Introduction

The followlnq 1s I detailed circuit description ot the K011D Central
Processor Unit (CPU) being uled in the PDP11/04 co~puter. Various
seoments of the CPU, as shown in Figure 4, will be anallzed separatelY
alloWing the extensive use of hlock diagrams for improved
clarifieation, KDliD circuit Ichematics will be referenced throughout
the delcriptions,

5.2 Data Path

5.2.1 Generel Deler1~tlon

The simplified KD11D data path eonSists of five functional units as
shown in Figure 3.

Figure 3 OATA PATH

StQ,-\Tc.H l(p

PAD
It"

t\LIJ. F

e
IG ~CC~(t .. ;1 ttl

OA11='1 fAi\4
t=:'\e:,,,, a. E '3 ..

u, ..

lHJt6\.lS
CAr A Ou.:\" PUT

-"To AHU'(1----+-;-7
Ito " 11\J~:)r\<\"l(TIO"-'

R£GISTfQ.

ALU

AMUX

e-Re9ister CBREG)

PSW

Scratch Pad Memory (SPM)

- The heart of the data
arithmetic logic unit
performing 16 arith~.tlc or

PaQ' 40

path 1s an
capable of

16 logical
the two (Bool,an) ODeration. on

aVailable 16-blt input words.

- A four-to-on. multiplexer Which controls
the introduction of new data and the
circulation of available data aroun~ the
data path.

- Th1s 16-blt .hift reqister and its
comPlementary logic 11 used to store one
of the operand. required for most ALU
operations. It is also needed to
implement ROTATE and SHIFT instruction.,
as well .s introducing the constant +1
and generating the Sign extended low
byte of the 8 Register contents.

- Eight bit regi.ter containing
1nformation on the current proceslor
priority, condition codel (N,Z,V and C)
de.crlbinq the resultl of the last
instruct1on, and an l~dlcator tor
detecting the execution of an
1n.truction to be trapped ~uring pr.ogram
debuQg1ng,

- ThiS 16 word bY 16-b1t random access
memory CRAM) conte1n. eight processor
dedicated registers and eight qeneral
purpose (user available) registerl. Of
the eight general purpo.e register., one
15 uled .s a stack po1nter CSP) and
another al the program counter (PC),

R '" 't> 'to 'Ii- ii- 1 .1.. fe.
~~

(~'
CON"Tr<o\..
STORE
,.~O:·1

co.~rRO:" (~)I+Ck"')
~ 'ic?i;
Rr.r.,~T1l:,1(

i

CO~OL.
S'~NAI.:3

1\

CLOCK

RE~
c.~¥.

PR.o~
~l..'r;.

8~5~
~Lk

COM::iI\!J\~
'I ~ y. V-;f., r= .. J.

'l::Rt)

l~vr..rRo""
~ _ i

(1<8) I tNT,
"'-tlr-::.. '
D'E.C o1>E:

4 I c..~ . ~o.;" I "'\\.IX r (,I>,rrPJ)L.

-{It

+
(Y:11~)

P.S.'\I.

,~

C(l:1»

,,/' Y t - ~~
UNIBUS t '~! ..

D~S:~O>

'J
r:)u..y~ "I

r ". ''''''-''" ~""hr!7'""-"" -....... ,,":"'1]
KDflD BLOLI\ DIAGRA~j\

~
~
~.

~ Wi ··~..:::':"~i '" ...•. ;,..:..;; . .:.;.tz:..:. ... ~::.: ... : _ ~ : . .:_:~:..::: !O!.-;::::: ... l --

.. ------.. ~ --------,,-----

".-'

INSTRUCTiON

REGISTER

t
IR AUXiLIARY

DECODE CONTROL

~-~·A~U'C
C, aoo

lit
--B'REG

r
.... ~NT ROL

WCRO BUT
~ BRANCH

CONTROL
DECODER

1
t' -'! CONTROL j , I

I CONTROL I
I l STORE I

CONTROL
STORE
LATCH

--.. - .. -

BUT 210

MPC 7,oTI
DATA PATH CONTROL

CLOCK, iNH.~.~ __ :J= PROC .. _ CLOCK CLK

REG CLK

fROMAUX
CONTROL

AUX 1 CONDITION

CONTROl-;>'O' CODE
MUX

lOA,CC'S

-=-

LOA~ PSW _ L~_PSV>' __ j

SPM REG ASSiGNMENT

RO-R5 GENERAL PURPOSE
RS STACK POINTER
R7 PROGRAM COUNTER
Rl0 SOURCE ADDRESS
R 11 SOURCE OPERAND
R12 DESTINATION ADDRESS
R13,14 TEMPORARY
R15,16 UNUSED
RU SWAB

S~ AS
SCRATCH

"----'!:iiO>l PAD

ENAB +1
I ~ I

EN1B SEXJ B Uiq MUX

",l-- --

AlU S 3:0 l...--.....

ALfMODE 'j!!!ol

AlU CIN

TRAP
OONST A"""""""-l>,,--,

AMUXS
1:0

BUFFER

SCRATCH
PAD

I--~ MEMORY
L-... -+-__Jl

+-- . --~"-

SP 3:0

, I

ScRATCH
tAD
AOORESS

"TERNAl
AOORIESS
~A-.

BUS
DATA TR.M:t.lII-.I CONTROL.

C 1:0

16 ALLOW BYTE

PSW 7:5

POWER fAill
RESTART,
AND
PARITY
CONTROL

DATA 15:00

Page 42

Control and Data Flow

Data flow throUgh the Data Path il controlled either directlY or
indirectlY bY the CONTROL STORE circuitry (Figure 4) on prints K9 and
K10. Each CONTROL STORE RO~ location C~lcroinltructlon) generates a
unique let of outputs capable of controlllnq the above data path
ele~.nt. and determining the ALU fUnctIon ~erformed. sequences of
these ROM microinstructionl are combined into mlcroroutines whiCh
perform the varioul POP11 instruction operatlona. (See section 5.11
for further deta1ll).

ORGANIZATION

The Arithmetic Logic unit (ALU) 11 d1vided 1nto four 4-bit slice.,
(Kl,K2,K3 and K4 each contain a sliee) each consiltlnQ Of one 4-bit
ALU ChIp (74181) and part of a Look Ahead Carry Generator chip
(74182). See APpendix tor speCifieations tor the 74t91 an~ 74182
integrated cirCUits.

INPUTS TO ALU

The A-input to eaCh ALU Chip comes from one of the Scratch Pad Memory
(5PM) registers a. specif1ed by the CONTROL STORE mIcro1nstruction
being performed (lee lectlon 5.2.3 for detal11). ~-!nputs to e~ch AL1I
are specifIed by the 8-Le~ Multiplexer logiC and can take the forms ot
either the full 16 bit R Register contents, the lower byte of the
a-RegIster contents siQn extended, the constant one (+1) or the
constant zero (0) (lee lection 5.2.4 for further description).

ALU FUNCTIONS

The functIon performed by the ALU 11 controlled by the tour selection
bits (53,52,51,50), the Mode bit eM) end the Carry 1n bit (eIN). The
follOwing table lists the ALU functIon. used in the ~D11D and the
correspondinq bit patterns for the sIx control signall. Additional
functions are shown 1n Table 12.

f\RIlf-\ M"=.T.IC. L~. t;,1c:.. IJtl \T~
LOCf\.TEb 01\) P~\NTS "I,
Q,K3,1(4 ,

fSt I. i i 9 !ttL!lU!Z't ..

,.

r .. - ... ' -- --------------.. ---~

I ..

LO:~ I\HEf\D <:ARR,,{ C; tJ l t-. RI\,o f~, I
KS

(\LErg

I ~·1t.r- (-:';tl'P,., C'~"X~I PI en-+'I ~1 P.2...,
AL.\J C)~ I/J¢. '-: J. ' r" ~-- I .' .;",1 " .. ' . . _l~ til 111i\

I _ ".'.~_ ' .. '"_
fRO(\\
SPM ~ c'". ~ v"ICJ~'" ~ p." \. t .,. {, '" ~

I ,t-, f'\u;. . ~ > ~ I:II\LlJ. f-- / ALu \= t--
e., r- ~\j F, . ,e.

BLEGi
FR'OM

BL..sG. If\,

r,·,8M CiS MI r""'iSN\
1 ' l.\ .;.~. ' , .h-i~ ,,' , i_A

IU)< i - II' =:J I -I~
/+,uA

54 -53.
~M

c..()lv\f::0L
5:~

I
I

\~ I r Foul"-. ~IT~ I
, Sf·l.el l
~ ALIJ Fli c'tl~ I

I I
I

I
. -cif- 1(4)

r' .,
-\ '.~'r>. :-

1

I .~ C,t! (~.'~)

AALU F
. /~ i-

'e>
:7 S N\

II. • fl.'

i-.,--

I
I
I
I
I
I
I f\.LO

MOU£
~G~
c..oNJRo'l­
ST6f?E

~ L_, ____ _
-------___ ..J

f=s~mlh""""" i At.v fo'»b-E -
i (ARIT'd,';,'-lI~ :j
i o~ l.0c0Ic.LP r;5,,"vt 5'" ALU BLOCK D1AC;R/1J.;\

.....

7 -'

,0
A~~

~
~
(I:::l

I~
~

-lit

Ii ,

u~

Page 44

ALU FUNCTION AJ.,U CONTROL SIGNALS
M 53 S2 81 50 eIN

" 1 " " 1 1 1
A " " " " " 1
B 1 1 0 1 " 1

A Plus A 0 1 1 " " 1
A Plus 1 " " " " " " A Plus B " 1 " " 1 1
A Plus e PlUS 1 " 1 " " 1 " A Minus B Minus 1 " " 1 1 " 1
A + B " " " " 1 1
14 (-8) " " 1 1 1 " A Minus 8 " 0 1 1 " " A.B Minus 1 " 1 0 1 1 1

-8 1 " 1 " 1 1

Table 10
ALU FUNCTIONS

~.2.3 scratch ~ad Memory

5.2.3.1 scratCh Pad Circuitry

ORGANIZATION

The Scratch ped function 11 compri.ed of three functional units
(FigUre 6) • Scratch Pad Regilter, scratch Pad Address Multiplexer and
ScratCh Pad Memory. T~' scratch Pad Regllter and scratch Pad Memory
are diVided Into four 4-blt Iliees one Of WhiCh 15 shown on .ith~r
pr1nts ~1, K2, K3, or K4. scratch pad Addre.1 Multiplexer clrcu1try
1s shown on ~rlnt Ka. .

DATA INPUT

Data to be written Into the ScratCh Pad II Channeled trom
clocked into the Seratch Pad Reol.~.r In e1ther normal
high and loW bytes reverled (for implementation of
instruetlon) '.

ADDRESSING THE SCRATCH PAD

the AMUX and
form·or w1th

the St-IAB

Page 45

The Scratch pad Memory (SPM) reqilter addrelS to be acce.sed 1s
qenerated by the Scratch Pad Address MUltiplexer (SPAMl. Depending on
the state of the select lInes to the SPAM, anY of the followIng can be
the lourCI of the addressl

a. Bus Address

b. Instruction Register Source Field IR11-IR09

c. Instruction Register Destination Field lR0S-IR03 or

d. the CONTROL STORE ROM (ROMSPA03-ROMSPA00).

CLOCKING THE SCRATCH PAD

Clocking data from the AMUX lines into the SP Register and wrIting
that data into the SPM, are both accomplIshed by the PEG CLK H clock
signal. Data 1s latched into the SP Reqi.tlr on the rising edge ot
REG CLK Hand 11 ImmediatelY written into the SPM untl1REG eLK H
returns low (logiC '0'),

LATCH DATA ,iii ..rP AE(f.

~
REG CLKH ~ ~I _----I

SCR~TCH PAD CLOCK ENA6LES

~
wAlr~ DATA

Ix TO ~ 1'/11\.

L

The K9 Spw HIGH Hand K9 SPW LOW H
CONTROL STORE determine Whether
during a particular REG CLK cvcle.
bytes (either hloh or low or both)

enabling signals generate~ by the
a write operation will be performed

These lines allo dIctate which
will be wr1tte" into the SPM,

ItWERr

~rs 1Z.-J5

II-
I
I
i

f

I
I

r!gure' SCRATCH pAD REGISTER

OVERVIEW or sCRATCH PAD PEGISTER

The SP REG Consists ot four Multiplexer Lateh (74298) c1rcuit6 which
allow data from the AMUX 11n@i (AMUX05gAMUX~0) to be latched with the
hiQh and low bytes reversed or in normal fashion.

LATCHING OF HIGH AND LOw BYTES

If Kl SWA~ L is unass@rted (meaning that REGISTER 17 1s not being
accessed in the SPM), the 74298 B inputs art enahled and data stored
in t~e output ot the AMUX. If, however, Kl SWAB L 1; a58erttd~ the
,4299 ~~1nputl art enabled ~nd the data 1s Itored ~ith the AMUX high
and low byte$!w&pped g This t@atufe il used whe~ ptrform1nq a SWAB
instruction and operating on byte inltructionS@

The CONTROL STORE outcuts ~Q SPW HIGH Hand K9 5PW LOW H determine
WhIther the low, hlQh or total AMUX lines Will be latch~d into the SP
REG at the time K5 REG eLK H occurs. With K9 spw HIGH H @nabled, the
high byte of the AMUX will be latched and corr@spond1ngly the low byte

~'C. -~

r·;=.,

B':l.

f\;j,

'0\

r\1

&b
f...¢
~s

S:'Nf\~' L I
PN LOW I.., ~\ S

(k"3 5PW l-\\~~ L)

R3

R2

RI

R4>
~L~

v

taJe tiff}

(pr'h1"s 1<1 ,f(2, K3 a K4)

TO S?N\

PaCle 48

~111 be entered when Kg SPW LOW H il true,

5,2.3.2 scratCh Pad Addr@s. MUltiplexer (SPAM)

SPAM ORGANIZATION

The SPAM Qenerates the four address signals that select the desired
SPM word. The SPAM eonsists of two Type 745153 Dual 4-Line-to-, Line
Data MultiPlexers, The SPAM 1s shown 1n print K8, Each of the four
4-l1ne-to-l-1ine multiplexers (two per 74 5153 package) has a com~on
strobe input Signal (GND) and common address 'input sionals (K0 SPA MUX
00 Hand K0 SPA MUX 01 H). Four data input sOUrces are used and they
are connected 10 that when the SPAM 1s addressed and strobed, it
generatel one 4-bit output, selected frOm one of the four sources,
T.ble 11 lists the sources of the SPAM input data that are a fUnction
of the state Of the processor.

Tahle jl
SPAM Input Data Sources

SPAM Source
function Input source print

Source OPerand ReQlster B Instruction Register Kl1
selection Bits eJ6-~8

Destination Operand C Instruction Register 1\11
Regilter selection Bits 00-02

General Purpose A Bus Address K1,
p,eqister selection Bits ~H"-03
From Console

peq1Ster selection D Control Store RO~1 K10
By Microproqram

SPAM SELECT INPUTS

The SPAM address inputs are 51 (s!qnal K10 SPA MUX 01 H) an~ S0
(si~nal K10 SPA MUX ~0 H), They are generated by the CONTROL STOP£ on
print K10.

The data input selected is a function of the states of 51 and 50 as
shown beloW.

Paoe 49

Addre •• Inputs

51 80 OutPut

L L A
L H B
H L C
H H 0

Flgure 8 scratch pad ~emory

SPM OPGANIZATIO~

The Scratch pad Memorv (SPM) II a 16-word bY 16-blt random access
read/write memory composed of four 16-word bV 4-blt bIpolar CTVpt
3101A) memory units found on K01l0 logic ~rints Kl-K4,

The 16-word bY 16-bit organization Of thIs memory provides 16 storaQe
reoister. that are utilIzed as shown below,

(1<'# Spw HI61i Ii)
(t<'"j5P'l'l t..OW H)

k5 RE6CLk'H

Sc.I<~,-z:\-t ~ b MEMoR'1
K<:.) 'E:"tt:~ <,,(:'; L

KR SP~ 4~ H

k 9-, S~A <$'- H

li·-:'

l):'.

\)1

beb

~">.:. "'2 {"I

',(r~, SP" ¢" H ______ ..---l

Kco O&PA ¢ rJ H

E

t<\, c\)

1\'2('·,

1/ " ~.':)

INt)(,)

~rf>

P JJ}<!!- ¥'i 11-

r-v-~ tS" (pYin/s KI)PJk31k4)
:> 330.A-,

~ f)>---

D-
74-8'6

D-
D~-

10
"LUI
\..)tvll:i.JS1
\ t-Jr, f\DK.,

·b·\o..·-r'i)..Y

FIGURE 9
Re;ister Utilization in SPM

Regilter Number

R0
R1
R2
R3
R4
RS

DescriPtion

General PUrDoie
Peglsters

••
R6 processor stack pointer -_ ...•...•.................•.....
R7 proqram Counter•.................. -....... .
R10 source Address Storage .. -.. -..... ~.-.-................•....•..........
R11 Source Data storage

••
R12 Destination Addres. Storaae

••
R13 Temporary Storaae

••
R14
R15
R1b

unused

....... -.......................••..•.•..........
Rt7 Tem~or.ry storaae tor SWA6

••

SPM DATA OUTpUTS

Page 50

Data input. to the SPM are obtained from the previously descr1bed SP
RF.G. The out~ut ot the scratch ~adl (3101A) are fed into a let of
eXClusive • OR (7486) gates which recomplem~nt the memory output data
(Data read from the 3101A 1s always the complement of what was written
into it) on read operations,

When the INVERT Cl) H lignal i. used in conjunction W1th the SPM
enable lnput, [NAB REG (1) L, the exclusive. OR gates allow the
AUXILIARY ALU eONTROL circuitry, on print K!l to force Ca) all 1'. (b)
all 0'1 eCl the complement of the SPM data or Cd) true SPM data onto
the AL!G ot the ALU,

INVERT (1) H

'" o

1
1

P'igure 10

!NAB REG

'" 1

'" 1

ALU AL!G

Plqe 51

(1) L ALU ALEG D~TA

All l' I
ComDlement of 5PM
data
All 0'.
True 5PM data

DATA

Another 5PM enable input, WRITE ENABLE, allows either the CONTROL
STO~E or INTERNAL ADDRESS DECODE circuItry to perform wrIte operations
on the SPM. To wrIte Into the low byte of the memory, the K9 SPW LOW
H signal 1s enabled and on the next REG CLK H low-tO-high transItion,
the byte 1s wrItten. Wr1tIng into the hiQh byte of the memory 15
acco~Dlished in a limilar manner except that the K9 Spw HIGH H signal
1s enabled. Full word operationl occur when both K9 SPW LOW Hand K9
5PW H!GH H are enabled limultaneoully,

The 8 Register (8 REG) is a qeneral pur pOle Itoraoe reQlster on the
e-leg of the ALU coniisting of four 4-blt bidIrectional shift
reg1sters (74194), It 11 used to Itore One of the two operandi
required for mOlt ALU operat10ns and al a .hltt-lett/lhlft-right
register durinq rotate, shift and byte instructionl, Between the BREG
and the ALU il a bloc~ of mUltl~lexer loOlc (Figure 11) WhiCh performs
the fOllowlnq functional

1 •

3.

permits the siqn of the operand 1n the lower byte of the BREG
to be extended thfouoh the upper byte before it enters the
ALlJ.

Can force the constant +1 Into the lLU e-leq inputs durIng
operations where a Icratch pad register is belnq incremented
or decremented by two.

Can torce the conltant 0 Into the ALU B-leg inputs dUring
operations where a ICfatch pad reqi.ter II belnqincremented
or decremented by one, (ALU elM provides for the one'

Data from the AMUX lines, AMUX15-AMUX00, can be clocked 1nto the BREG
by the KS BREG eLK L signal.

J< IISt;.tlAl. HHFT~t+ __ _
I<..q i/''100(~ __ -.
K,\-«MOO(dlI L , I

J\4MiUX 12-/SI/)

SI sf/J stt

£22-
74-1'f4
SRf.G- b t:'4 rsL£G 12. -15 J.I

,-0 ALLl

'b 'R£(;\S r f)2..
F\~\)..~·e. ~ .,

the tyPt of oPlr~t16n ~Irtorm~d by the 8REG 1~ determined by the
ItAt~1 of mOde eontrol in~utl 1 and 0 al shown b.low~

SModlf Control
01 00

H Pi
L H
H L
L L

SOU~CE or 8MbDE CONTROL

Pu'allll, Load
Shift Right (towards LSB)
Shift LIft (towards MBa,
Hold Celoek inhibited)

rh~ pr1m~rY sOUfe~ for the SMODt control 8ignals 1s the CONTROL STORE
(print K9)e ~ w1r~d~O~ conn~et1on allows th@se control 51qnals to
allo b~ generat~d bY the ~OTATE and SHIFT ROM CEQ7) in the AUX CONTROl,
logiC on print Kl1~

BREG SHtFT CAPABILITIES

A keY to the d11cUIs1on of the BREG Ihifting operations is the
Iymbolie re~resentatlon ot the BREG bit Itructure as shown In Figure
13. Eaeh of th~ tour 74194 Sh1tt ~~~llterl whiCh make up the BREG has
& shiftuleft CSL) serial input Ind a Ih1ft-riqht eSP) serial input
Which are interconnected In sueh ~ way @i to create a full 16-blt
shift register.

When SL or SR is enabl.d~ the other input il disabled, therefore,
dtP@ndln~ on the instruction be1nQ p.rfor~@d only one s~rial input
will acee~t the K11 SERIAL SHIFT H li~nal qenerated by the ROT/SHFT
ROM CEI7). SP@clflc SERI_L SHIFT 11Qnali are shown In Figure 12.

Value of 1<11
11'l5tructlon SE:RIAL SHFT H Remarks

1St GND L o to BREG bit o via 5L input

AISP BREG 15 en H Bit 15 of BREG out~ut to bit 15 of
BREG via SR input

ROL COUT 0) H C bit BREG bit 0 vi~ SL Input

!=lOR COUT (1) H C bit to BREG bit 15 vi~ SR input

F1QUf@ 12 B REGISTER SHIFT SIGNAL INPUTS

Figure 13 B REGISTE~ BIT STRUCTURE

BYTE SHIFTS

This regIster also handlel byte shifting as required by instructions
ASLS, ~SRB, ROLS, ~nd RORB. Signal KI1 SHIFT IN 07 H Is uled as a
serial right (SR) input to bIt 01 to handle replication of bit 07 tor
an ASRB instruction and to load the previous eontents of the C-blt for
an RORS instructIon. ThiS siqnal Is also required to perform the word
shlftlna for In~truetlon& ASR and RDR because there is no dir@ct
conneetion b@tw@en bitl 0S and 07 for a Shift-right ooeration. Signal
Kil SHIFT IN 07 H 11 generated bY BYTE MUX E66 and it repf@sentl BREG
output bit 08 (K3 BREG 09 H) dur1nQ word instruetions ASR' and ROR@

SPECIFIC SHIFT AND ROTATE OPE~ATION5

The Shifting requirementl for th~ ASt. ASR, ROL, and ROR lnltructlons
are deserlb~d briefly b@low,

Arithmetic Shift Left (Ast) • Shift' &11 bits left one pl~ce@
loaded with a 0~

Bit 0

~ SERIAL SHFT H

~ Shol' 'e" s.rool Inpul

G Sh,I' rogh' 5."01 Inpu' Fj3I4.Y~)3
B Register Bil Structure

S~'f froJ fiJ.., \-{
&'ltd!! ~:G'IT SIIFT 87 II
(From bit OS- output of
BREG via BYTE MUX lor
shl't and rotate word
Instruction)

Page 5S

ASL input which Is ground. Kl1 SERIAL SHFT H • 0 and Is loaded Into
BREG bit 00 via th. SL input.

Arithmetic Shift RiQht (ASR) - Shifts all bits rlQht one place. Bit
15 15 loaded With BREG output bit 15.

The BREG Is shifted right one place, Tht ROT/SHFT ROM (E87) selects
ASR input [K11 CCNH], Which Is output bit 15 of the BREG. K11 SERtAL
SHFT H equals the bit 15 output of the BREG and is loaded Into SREG
bit 15 via the SR Input. This Is replleatlon of bit 15, Kit SHIFT IN
07 H from ROT MUX (E66) equals the bit 08 output of the BREG and Is
loaded into BPEG bit 07 via the SR Input to provide the conneetion
from bit A8 to bit 07,

Rotate Left (ROL) - Rotates all bits lett one plaee.
with C.blt.

Bit 00 loaded

The BPEG Is shitted lett one place. The ROT/SHFT ROM eE8?) selects
ROL input [Kl cerT (1) HJ, whiCh 11 the Value of the C.blt prior to
execution of the InstructlDn. Kl1 SERIAL SHFT H equals th1s value of
the C-blt and Is loaded into 8REG bit 00 via the SL input.

Rotate Plqht (ROR) - Rotates all bitl right one plaee. Bit 15 loaded
with C-bit~

The BREG 1& shifted r1qht one Place. The ROT/SHrT ROM (gel) selects
RDR in~ut [K1 CBrT (1) H), which Is the value of the C.b1t prior to
eXecution of the instruction. K11 SERIAL SHrT H equalS thiS value Of
the C.blt and 15 loaded 1nto bit 15 via the SR InDut. K11 SHIFT IN 07
H equals the bit 08 output of the BREG and 15 loaded into BREG bit 07
via the SR inPut to Provl~e the connection from blt 08 to bit ~l.

In each of these instructions, the C-bit 11 loaded with a new value
from the BREG. This function is disculsed In the description ot the
PSW logiC,

BMUX OPERATION

The 16-blt output of the BPEG Is fed into & set of 2-to-l mUltlo1~xers
(Type 74157), and AND qates CType "7408) as shown In Floure 11. These
cirCUits alloW the CONTROL STORE output si;na1s K9 ENA9 +1 Land K10
ENAA SEX L to control whether the BREG unmodIfied, BREG s1gn extended,
constant 0, of constant +1 w111 be passed on to the ALU B-word inputs.
The followlnQ truth table shows the various states of tnese control
signals.

K9 ENAB K10 ENAB ALU BLEG DATA
+1 L SEX L

H H BREG contents unmOdified
H L BREG content. slqn extended
L L Constant +1 or o dependlnQ on state of

KB IN H +1 L li9na1,

Paql 56

SIGN EXTENSION OF BREG DATA

When the K9 ENAB +1 Land K10 ENAB SEX L 11qnal. request the 81gn
extension of BREG data, the unmodif1ed low byte of the BREG Is pal sed
to the lLU along with 1tl hiqhest b1t CBPEG~7) extended (maKes ALU
BLEG00 thru BLEGl5 the same al BLEG07) throUqh the hlqh byte.

CONSTANTS +1 AND 0

The-purpose ot generat1ng the constants +1 and ~ on the BLEG inputs of
the ALU, is to aid the processor 1n Derformin9 autolncrement and
autodecrement operat1ons. Dur1ng e1ther operatton, it a word
instruction is being performed, the spec1fied reqllter is incremented
or decremented bV two. If nowever, a byte instruction is being
performed, the register is 1ncremented (decremented) only by one. The
actu~l ALU operation 15 as follows.

RESULT = ~LEG DATA + BLEG DATA + ALU CIN

The ALU always uses the K10 ALU CIN A0 L S1qn8l to increment or
decrem~nt the ALEG 1nput hy one, Which mea~ that the BLEG input must
provide the constant +1 or 0 to obtain the correct autoincrement or
autodecrement result for both byte and word instructions.

A BLEG constant +1 1s generated bY enabling the least significant BLEG
bit (BLEG 00) and forcing ell other bits (BLEG01-SLEG15) to 0. If a
constant 0 is de~ired, even the least significant bit CBLEG0~) 1s
cleared, Th. actUal constant ~enerat~d 1s defined by the Itate of the
K8 INH +1 L siqnal as shown 1n Figure 11.

The state of the K8 INH +1 L siqnal 1s determined bY the CONTROL STORE
output K10 ALLOW BYTE H and the outputs of the ScratCh Pad Address
MUltiplexer (SPAM) shown in the circuitry on print Ke. This logic
also prevents the ALU from ever incrementing the PC or SP by' one.

The AMUX circuitry on prints Kl~thru K4 cons1sts of four 4 to 1
MUltlo1exers CType 74153) end two 2 to 1 Multiplexers (Type 74151).
These clrcuit~ can channel either the lLU OUtput data, data received
from the UNIBUS, the BUT SEPVICE constants eKB C2 H, KB C) H, and K9
C4 H), or the contents ot the PSW Reaister onto the AMUX 00 H thru
A~UX 15 H lines wh1ch teed the scratch pad Register, Instruction
Regi.ter, 8 Register and P5W Register. The specifiC date to be
channeled 15 dependent on the two enable lines K10 AMUX S0 Land Kl0
AMUX 51 L. primary source of these control siqnels 1s the CONTROL
STORE (print KI0). A wire-OR connection capability also allows these
slqn&ls to be generated by the BUT SERVICE ROM (E71 print KS), and the
INTERNAL ADORESS DECODER ROM (E48 print K8). The fOllowinq truth
table snowl the relationship between Channeled data and the select
l1nel.

DATA
SELECTED

UNIBUS DATA
SUT SERVICE CONSTANTS
ALU DATA
PSw DATA

AMUX
80 L

H
H
L
L

AMUX
51 L

H
L
H
L

Page 57

5,2.6 proceslor Status Word

The proc@slor status word register (PSW) contains intormation
current priority of the proeelsor, the result of the
operation, and ind1cates a processor trap dUrinq debuqginq,
bit assi9nments and use are shown in Table 12.

on the
previous
The psw

B1t

07-05

04

03

02

01

00

Table 12
Processor Status Word Bit Assignments

Name

priority

Trace

N

Z

V

C

Use

set the processor priority,

When let, the processor traps the trace
veetor, Uled for proqram debUqQing.

set when the result of the
manipulation 11 neqatlve.

set when the result of the
manipulation Is zero.

last

last

data

data

set When the result of the last data
manipulation produces an overflow.

set when the result of th~ last data
manipulation produces a carry from the most
11qnlficant b1t,

The psw is loaded as a result Of instruction execution, prooram .traDS,
1/0 interrUpts, and returns to main-line code. In the ease of a
proqram trap, interrupt, or return, the PSW is loaded with the sec:o-nd
word of the vector from the UnibUs data ltnes via the AMlIX,
Otherwise, the PSW is loaded throuqh. network of multiplexers and
eomb1natlonal logic that is controlled by the particular instruction
belnq executed.

The PSW 1s an a-bit flip-floP reqlster (prints Kl and K2), The
condition code bits eN, z, ~, and C) are stored in 7417S quad O-type
flip-flOP (print Kl), The priority bits and T-bit are stored In a
74175 ~uad o-type flip-flop called PSW 714 (Print K2). The output Of
th. T-blt flip-flop is sent to anoth.r flip-floP (T DEL) which Is used

Page 58

al the trap fla~.

The input lource for the condition code bits Is the output of the
condition code mUltiplexer (CC MUX): The CC MUX (oflnt Kl) is a Type
14157 Quad 2.Llne-to-l-Line MultiPlexer. One of the two 4-bit Inputs
il selected bY the state of the select (S) inPut. When S Is hlqh, the
e-input 1s Passed to the 0-lnputl ot the condition code latches (NaIT,
ZeIT, V8IT, and CelT). The a-input consists of AMUX outputs K1 AMUX
00 H-01 H. when S Is low, the A-Input Is seleeted. The A-input
consists of signals from the BYTE MUX (print K10) and the C and V RIT
ROM (print K1 0). The •• devices afe part ot the logIc used In settinq
the eonditlon eodes al a function of instruction execu~ion and are
descr1bed in detal1 in sUblequent paragraphS.

The Input souree for the prlorlty bits (PSW 05-07) consi~t8
outouts K2 AMUX 05 H-07 H whleh art lent to 0-lnputa Ol, 02,
the 74175, signal K2 AMUX 04 H 1s lent to P-Input 00 of the
the source Of the T-blt.

Of . AMUX
and OJ ot
74175 as

Each bit of the PSW i.clocked by REG CLK H when the CONTROL STO~E
(print K10) output LOAD PSW L 11 enabled. The condItion code bits N,
Z, V, and C can be loaded leparately by the same REG elK H when the
CONTROL STORE out~ut LOAD CC L 11 enabled. The T-blt and Psw<714> can
also be loaded separately by PEG CLK H when the INTERNAL ADDRESS
DECODEP ROM Cg48 print K8) enables EXT LOAD PSW L.

The lOQlc neeessary for determinlnq the conditlon codes Is shown on
~t1~t Ki1 and can be subdivided into three Parts as follows.

The condition codes are determined by the CC MUX (print Kl) previously
diseussed, the C and V elT POM (print K1e), the BYTE MUX (print K10)
and the ROT/SHF ROM (print K10). The constraints for each condition
code bit are shown ln the instruetion let speclf1cations ot sectlon
3.0.

5.3.1 Instruction CataQorlzlnQ POM

The CATEG POM CE93) on print ~11 decodes the lnstruction5 in the IR
reqllter and catagorizes them into ei9ht QfOUPS b.le~ on their effeCt
on the earry and overflow condition codes. These groups are as
follOWS'

Plge 59

GROUP IN.T~UCTIONI

1 MOV,8IT,8IB,BIC, Ind nbn PDP11 INSTR.
2 INC, DEC
) CLR,TST,8WA8
4 ADO,AOC
5 NEG,CMP,COM
6 SUB,S8C
7 ROTATES
8 UNUSED

Thrte of the tour outputl of tnl. ROM are uled to provide a binary
repre.entatlon of one of the above In.truction catagorlps for the C ,
V BIT ROM (~99). The fourth output caYTEL) decode. thf fact that the
lnltruetlon in th' tR 1. I byte In.truct1on.

Floure 14 C AND V CONDITIO~ CODE ROMS

Kif II:; !50)/-!

~If lR 14(I)H

XII JR !3(1) 1-1

XII If< 12{J) H

1<11 IR.I¢(I)H

KII lR(f!9(ljH

X/I lR~8(I)H

Kif !R(/)7(1)1-I

-'<1/ £R ac,,(I)H

f.

/4-

5

4

3

C

15

C]-/Ji.'l1'i9 f~

£93

CAUe; I I

S/2 < 4

9

10
~---+--+-I-- P(/I BYTE L

13

-=-

c ~.~ V (DNOa,L(iN COPt: RoMS I

FI&u.RE !4

5,3 m2 C' V BIT ROM

The C , V Bit ROM (E99) on print ~11 determine~ the value$ of the
carrY and overflow condition code bits as a function of the
lnztfuetlon being ~ertarmedQ Inputs to this ROM come from the ALU
ALEG CK4 ALEG 15 H) ~nd BLEG (K4 8LEG 15 H), the ROT SHrT ROM (E91 w Kl1
ROT CelT (I) H), the PSW (Kl C BIT (1) H), the output of the AtU (Kl1
CCN H] and th~ CATEG ROM CE9l). Outputs Kl1 CC CHand Kit CC v Hare
fed into the CC MUX (E12) an ~r1nt Kl~

Figure 15 BYTE MULTIPLEXE~

The BYTE MUX (E66 print K11) is 8 74157 Quad 2 to 1 line mUltiplexer
which determines the Nand Z condition code bit~ and the Kit SHIFT IN
07 H slanal for the BREG (print K2'. A Single ~elect input (Kil BYTE
L) 1s used to oppose th~ A-inputs wh~n a byte operation is performed
and the B inputs When not a byte.

Out~ut Kit CC N H assumes the l~v~l of K4 A~UX 15 H when th~
instruction belnq performed Is a word operation and the lev~l of K2
AMUX 07 H when the instruction 1s a byte~ The latt@f 1s ~lso pOi$lbl~
tor instructions performinQ operations on the hiqh byte ot a word
becaUse the pfOee$SOr microcode [section 6~0) has already swapped the
hiqh and law bytes of the in~ut word b@fore the condition codes ~r~

detected.

The CC Z H output assumes the l@y@l of the K11 0-15 ~ 0 H input When
the in!tfuet1on oelng performed i5 ~ word operation, and Kit 0-7 ~ 0 H
~h~n the Instfuetlon Is a byte operation. B~th Kit 0~15 : 0 H and Kit
0~7 ~ 0 H are determined by logic on print Ktt and the Type 8~15 gates
ccnn@ct@d to the ALU outguts on prints Kl, K2, Kl ~nd K4. Kit 0g7 : 0
H is true if th~ low byte of the proeessor operation 1s Z@fO. Kit
0·1~ $ ~ H Is tru~ if th~ 16 bit r@5ult i$ Zero.

For Shift rlaht operations, the Kit SHIFT TN 07 H output assumes the
level of the K3 BREG 08 ell M (print K3) input wh~n th~ instruction
performed is a word operation and the lev~l of the Kit 5EPIAL SHIFT H

KI/

7J'. 157

K2A0'.J)U~7 H I' .ofl>' (2 9
1(4 AMUX 15 H ~ i3~

K// 1#-7=¢ H c flO) "
~(Jf qJ-IS~r;, H 3 FE) e3
SEQ/A~ 1!;,.'-1 Cj - A.

U
7

1<3 BIUtj ~(,) J-/ b lY

14
~3 12

13
",,-~

c ,

.Ii :x 2'; H

I '\3'fr£ M u L'fl FUx £fZ
+IGU,~£ ,6'

(~flnt Kil) output of the ROT/SHFT ROM (E87) for byte operat1ons, To
understand the realonm tor the~t 11~n~1Ie the follow1nq d1aQraml
lndicatf th~ op@rationl performed by the varioug ~OTATE 1nstruet1ons~

Word: .

d> L-J..I --,-1_

Byte:

I\<;L

Pt.? l.-B Word:

Byte:

1_ 0
~-L~~~~--oo~

-~-Il-·o --------------~~ ~0~-1-7~1~~~VE~.~IA~~~I~SS~I--L-~0 r:I L-L~~I~~,~I~-- E ~- I '0:lQ ""DRESS 15

~t)~
(l..t>Rf.1>

Word:

0-1 I
t 15

Byte

I , I , I I I , I
154

I r 7,

0, I
'Q

GJ-~'

~L
RoLf,

Word:

[~}-I
.s!
: I I 15 to

Bytes:

I 000 I I I
EV[N I 15/

, I
f8

T I , ,

·0
I .~ __ ~r I

5.4 UNIBUS ADDRESS and DATA Interface

5.4.1 UNIBUs Drivers and Receivers

standard bUS transceiver circuIts Type 8641 are used to interface the
processor data path to the UNIBUS address (BUS A~0-A15) and data (8US
000.015) lineS, ThtSe circuits are shown on prints Kl thru K4. A
logic dlaqram tor a 8641 il shown below.

Figure 16 UNIBUS TRANSCEIVER

5.4.2 UNIBUs Address Generation Circuitry

A unique feature ot the KDllD 1s that there is no RUS AODRESS
REGISTEP. During UNIHUS transfers, bus addresses are obtained
directlY frOm the seratch pad Memory (SPM) previously discussed, Th~
contents of the selected SPM location 1s eomplemented by th@
Exclus1ve-OR Qates at the outputs of the Scratch Pad ~n~ driven onto
the UNIBUS by a set of Type 8641 Bus Transceivers (Prints Kl, K2, Kl
and K4). The driver outputs of these transceivers are enabled by the
slQnal K6 AssERT ADDRESS L whose source il tM@ ~ata tranSfer circuitry
on print K6.

5.4.3 INTERN~L ADDRESS Dr-CODEF

The receiver halt ot the above ment10ned bus transceivers continually
monItors the UNIBUS address lines. If the processor 1s running, these
transceivers only allow the INTERNAL ADnRESS DECODER circuit (pri~t
KB) to detect transfers to or from the psw re91ster. Wh1le the
processor is halted, this decoder clrc1ut enables data transfers
between CPU Reqisters and UNIBUS peripheral devices, A list of these
CPU reQisters and their UNIBUS addresses follOWS.

PSW
R0
Rl
P2
R3

777776
7777~0
777701
777702
777703

Rl~
Ri1
R12
P13
R14

777710
777711
777712
777713
777714

vtllBIlS rx.A)/C£IVER.

FIc;."'~E 16

R4
R5
Rb
R7

771704
777705
717706
7777A7

R15
R16
R17

777715
777716
777717

Puge 65

One point ot clarif1cation that should be noted, is that whIle the CPII
1s rUnninQ, only the PSW can be accessed throuQh its UNIBUS addresir
the General ReQlsterscannot be accessed in th1s manner. While tne
processor is halted all CPU ReQisterl and the psw can be access~d
through UNIBUS addressing.

5.4.5 UNIBUS DATA Transceivers

The Dat~ Path circu1try also contains UNIBUS Transceivers Type 8G41
(Prints Kl, K2, KJ and K4) which send and receiver data from the
UNIBUS data lines D00-D15. The receiver lection ot these circuits
inputs data to the D-input. of the AMUX (FiQure 4) where it may be
Channeled to either the Instruct10n Register eIR), B Register, or PSW
UPon re~uest.

The driver Sections of these transceivers obtains data from the AHUX
output lines AMUX00-AMUX15 (prints Kl thru K4) and drives it onto the
UNIBUS when the signal ~NAB DATA L is q,nerated by the OAT TRA~
eircuitry (Print K6l,

5.5 Instruction Deeodlnq

5.5.1 General Description

Two methods are used to control instruction ~eCOdinq. One uses
microroutine selection an~ the other use. auxiliarY ALU control. uual
control is reqUired oecause of the large number of instructions that
require source/destination calculations, AUXiliary ALU control is
eVOked whenever the microcode executes the action X_RY OP 8 as a
result of a specific instruction.

There are two prerequisItes to a thorough understanding of the
instruction decodlnQ procedure. On~ is a knowledoe of the
microbranehin9 process (Section 5.11) and the other Is a knowledge of
the PDP-11 instruction format (Section 3.0),

Certain facts concerning the POP-lt instruction set are listed beloW.

t. In oeneral, the PDP-11 operation code 1s variable fro~ 4 to
16 bits.

2. There are a nu~ber of instructions that require two address
calcUlations and a larger ~umber that require only one
adrlress calculation, There are alSo a numher ot instructions

Paqe 66

that require addreSI calculations, but do not ODerate on
da_ta.

3. All OP codes that are not 1mplemented 1n the KD11-D processor
mUSt be trapped.

4. Thert are illegal combinat1ons of instructIons and address
modeS that must ~e trapped.

5. There exist. a lIlt of exception. In tn. execution of
instructions havinq to dO with both the treatment of data and
the lettino of condlt1on codet In the program status word.

5.5.2 Instruction Reolster

Each PDP-i1 instruction obtained trom memory Is stored 1n the 16-blt
INSTRUCTION REGISTER (IR) on print K1l. Thi. register conslsts Of
three 64 blt O-Type Reqisters (Type 74174) and one D·Ty~e Flip-Flop
(Tv~e 7474). The purpose of the IR Is to Itore the instruction tor
the complete instructl~n cycle 10 the IR DECODE (print K12) and
AUXILIARY ALU CONTROL (or1nt K11) clrcuit1c.n decode the eorrect
control signalS throU;hout the instruction eyelet

The IR latcheS data from the AMUX00.AMUX1S (prints K1 thru K4) lines
On eitner the trailing edg~ of K5 SERV IR H or on ~10 LOAD IR Land
the trailln9 fdge of K5 SREG eLK L.

When KS PROC IN!T H occurs, all the IR b1ts except K11 IP 15(1) Hare
cle~red' KI1 IR 15(1) H is set by K5 PPOC INIT L. This meanl that
the IR DECODER circuit will interpret ;hi. new 1M output 85 a
conditional branCh While K5 PPOC INIT H Is true. Tnis prevents
proeessor trom decod1ng a HLT instruct10n on any INITIALIZE condition.

If a trap instruction is loaded into the lR and decoded, 1t is
necessary to clear that Instruction from the IR before the micro-PC
Qoes to the next SERVICE routine. failure to do eh1s will cause the
SERVICE routine to loop on thp- trap instruction. The BUT SERVICE PROM
CE71 print Kg) asserts K8 INST TRAP SER L whiCh in turn causes KS SERV
IP H. On the trail1ng edge of K5 SER IR H, K11 IRIS (1) H is set by
K8 INST TRAP SER L and all other bits ot the IR are loaded witn zeros
from the ~MuX·llnes. This reSUlts In a conditional branCh instruction
being loaded into the -IR.

If a BUS ERROR (BE) occurs wh1le the CONTROL STORE output s19~al ENAB
DBE L is asserted, the whole IR register 1. cleared (PDP-i1 Halt)
causing the Dfocessor to automaticallY halt. SUI errors occuring
without the ENAR D~E L s1qnal have no effect on the IP.

5.5.3 Instruction Decoder

Paoe 67

5.5.3.1 Instruction Decoder Circuitry

The INSTRUCTION DECODE an~ CONTROL STORE POM circuitry on print Kq}
K10, Klt and K12 coUld be thought of as an internal microprocessor
Which interprets PDP-l1 instructions and translates them Into a 5~t of
microinstructions each consisting Of 38 control Signals. These
control signals then 1etermine the operation of the data path ~nd
UNIBUS control circuitry.

A block dlaqram ot the CONTROL STORE and INSTRUCTION DECODFR 1s ShOW~
in Figure 4. Note that all outputs of the CONTROL STORE ROMS (prints
K9 and K10) art latched in Hex D Type Registers (TyP' 74174).

EiQht ot these latched siqnals (K9 MPC 01 L-K9 MPC 00 L) ar~ fe~ back
to the inputs of the CONTROL STORE ROMS as the next miero-instruetio~
address and can thus be called the micro-PC. The wire-OR capability
of these lineS allows the IP D~CODFR circuitrY to toree microbrancn{nQ
a~dresses on certain enablinq conditi~nl. The actual microhranch
address will be dependent o~ the instruction b~lno decoded, the
instruction mOde used (MOnES 0-1), and the operand required (source or
destination).

The INSTRUCTION DECODER circuitry is shown on print K12.lt conslst~

of seven 256x4 bit ROMs and several Type 74H~1, Type 7402 dnd Type
7404 looic gates. TO better un~erstand the operation of this logie,
the followino descriptions are based on instruction tYP~$.

5,5.3.2 DOUble Operand Instructions

Doubl~ operand instructions req~ire t~o address calCulations, one tor
the source and one tor the destination operand. T~e micro-branch to
the sequence Of microinstructions Which determine the souree operand
is initiated by the CONT~OL STORE output signal ~9 IR ~~COD~ (1) H.
When this sional is enabl~d, the IR DFCODER ~o~ Dnp DECOD~: (E~9)

(Print K12) CheCkS the instruction in the rA (OP conE bits IR14-12,.
It the instruction is a dOllhle operand type, the ROM out~~ts are
asserted &5 fOllows,

ROM OUTPUTS
TYPE K17 Kq K9 K9

INSTRUCTIO~ IR CODE 0~ L MPC 0~ L MpC 04 L MPC v3 L

DOUble Operand lnst. 1 ~ 0 t
Reserved lnst. (EIS) 0 1 1 1
Other Instruct10ns 1 1 1 1

Coupled with the micro-PC outouts of th~ nop tEC PO~ are th~ outputs
of a set o~ Type 74H01 oates on print K12. These Q~t~s ~hen ~nablerl
place the contents of the source mode fleln CJP11-IR09) of the PDP11
instruction bein~ decoded on th~ MPC 00 L-MPC ~2 L 11nes. Thes~ ~ates
are enabled only When the instruction b~inq deC~dpd is of the doubl~

oper_nd ty~e (K12 IR12~14a0 H true), the Kg JR DECODE (1] H signal 1!
asserted and the instruction 11 not reserved (K12 IR CODE 00 L
unallertedl.

SOURCE
INSTRUCTION MODE

cop 0

~ESERVED DOP

1
2
3
4
5
6
7

OCTAL
MICRO BRANCH ADDRESS

Note that a ~round on the MPC lin~5 represents a logic "1" (neqative
logic).

The COP DEC ROM described above is also used to ~eeode the micro-PC
address for the various CONTROL STORE destination oeerand routines.
When the K9 SUT DEST L input Is asserted by th~ Control store
circuitry, the DOP DEC ROM decodes the instruction, determines if it
Is a modifying or nonemodlty instruction and IS$@rts elth~r the
address 005(8) or 006(8] on th@ K9 MPC 0S-K9 MPC 03 lines, If ~ MOV
instruction is deCoded and the K12 DM0 H {destination Mod~ 0) input 1s
asserted, the micro address 001(8) 11 placed on the K9 MPC 0].K9 MPC
05 lines.

Similar to the circuitry described above for mlero-addressinq the
source operand routine, a s@t of Type 14H01 ~ate5 on p~l"t K12 are
also used to decode the destination mode field (Kii IB 03 (1) H· Kit
IR 05 (1) H) of the instruction being decoded and Plac@ its contents
on the Kg MPC 00 q Kg MPC 02 lines when enabled. for double operand
Instructlons i ~nabllng occurs when the CONTROL STO~E asserts K12 RUT
DEST L,

A summary af the various destination micro-addresses is as follows.

INSTRUCTION

MODIFY INSTRUCTIONS
CAOD e SUB,8IC,BIS, and MOV
not CM0)

DESTINATION
MODE

o
1
2
3
4
5

OCTAL
MICRO-BRANCH

ADDRESS

40
41
42
43
44
4~

NON MODIFY INSTRUCTIONS
(eMP,S!T)

MOV DESTINATION MODE 0
INSTRUCTtONS

5.5.3.3 Sinqle Operand Instructions

6
7

o
1
2
3
4
5
6
7

46
47

SCI!
S1
S2
53
54
55
56
57

1~

PaC;Je 69

Unlike double opera~d instructions, slnQl~ oDerand instructions o~lY
require one a~dress calculation to obtain the necessary oDerand.
ComDlete SOP instruction decoding Is done with the two 256x4 Bit ROMS,
SOP MICRO BRANCij (~gl) and SOP DEC (E7S), both on print K12.

The SOP MICRO BRANCH RO~ (ES1) monitors the necessary IR input ll~es
and asserts t~e correct micro.PC addr~ss On lines K9 ~PC 03 • K9 MPC
05 when the K9 IR D~CODE L ~Iqnal is asserted and the SOP enable
Signal K12 IR 12-14=0 L Is true. The K12 DEST L output Is also
activate~ when a SOP instruction is decoded. This 51qnal enables the
destination mOde monltorlnq c1rcuitry described In the dOUble operand
instruction decodlnq section, Microaddreslel tor sop l~structlons are
shown be low. -

The snp MTCRO BRANCH ROM is also used to decode JSR instructions.
This decoding 15 performed exactly 8S described above tor sop
instructions. The K12 OM0 H input to the ROM il used to detect the
illegal instruction JSR destination mode 0, When thiS occurs, no
miero-pc address is allowed. on the ROM outputs,

I~STRUCTrON DESTINATION
MODE

SOP MODIFY INSTRUCTIONS 0
(CLR,CQM,INC,DEC,NEG,FOTATE 1

AND SHIFT INST.> 2
3
4
5
6
7

sop NON MODIFY INSTRUCTIONS 0
(T51') 1

2

MICRO RRANCH
ADDRESS

40
4t
42
43
44
45
46
47

5~

51
52

Page 70

3 53
4 54
5 55
6 56
7 57

JSR INSTRUCTIONS " "'''' 1 21
2 22
3 23
4 24
5 25
6 26
7 27

THE sop DEC pOM monitors
Its purpOse howev@r,
instructlonl~ The three
enabled as ~ollows.

the same input signals as the SOP BRANCH ROM.
1s to decode illegal, reserved and trap
output signals IR CODE 0~ L· 02 L are

IP CODE
INSTRUCTIONS 02 01 "''''

RESERVED INSTRUCTIONS 1 1 0
ILLEGAL INSTRUCTION 1 " 1

(JSR MODE0)
EM! INSTRUCTIONS PI 1 '" TRAP INSTRUCTIONS (i'j

'" 1

5.5.3.4 BranCh Instruct10ns

ConditIonal branch InstructIons are completelY decoded ~Y the ~RANCH
DEC ROM (£60) on print K12, ThIs Rom Is enabled When IR bits
IRI1-IR14 are all low (IR11-14-0 L) and the IR DECODE L sign~l 1s
active. The input lInes monitored are the four Condition code bits
(N,Z,V and C) and four IR bits (IR15,10,9,Bl. Wh~n a branch is
decoded, the MPC 06 L output Signal Is enabled. The branCh
instruction microcode routine 1n the CONTROL STORE will Sign extend
the branch Off-set and shift it left one place.

5,5,3.5 Operate Instructions

There are three 256x4 B1t ROMs in the instruction deeoding circuitry
for decodino PDP11 operate instructions. These ROMs are ~ BIT D~C,
TRAP DEC, and OP BRANCH whIch are found on Pr1nt K12.

The Op BRANCH ROM (E82) mon1tors the IR outPut lines IR00 (1) H - IR07
(1) H. It 1s enabled when IR0R (1) H thru IRIS (1) ij are all low
CIR08-15a", L) and IP DECOPE L 11 active. The PDpl! oper~te

Paqe 71

instructions are decoded into the following micro-Pc addresses on the
ROM outputs MPC 00 L • MPC 02 L.

INSTRUCTION MICRO BRANCH
ADDRESS

RESET
RTI
SET CO~DITION CODES
CLEAR CONDITION CODES
RTS
ioJ'AIT

2
1
4
5
6
7

The T BIT DEC ROM (E76) h~s the same inputs and enables as the OP
SRANCB ROM, Its purpose Is to decode RESET, RTT, and RTI instructions
and activate the outputs START RESET Land ENAB TBIT L aceordinQ1Y.

The TRAP DEC ROM (E70) aq~ln has the same inputs as the previous two
ROMS. Its purpose 1s to decode HALT, reserved, tra~ and llleqal
instructions and enable the outputs acCordinqly.

IR CODf;
INSTRUCTION "'2 01 ~0

RESERVED INSTRUCTIONS 1 1 ~

ILLEGAL tNSTRUCTIONS 1 Ii) 1
BPT INSTRUCTIONS 1 0 '" lOT INSTRUCTIONS 0 1 1

HALT INSTRUCTIONS Enable HLT BGET L

5.6 AuxiliarY ALU Control

The AUX Control eircuitry or the K011D cons1sts of three b1polar ROMS
shown on print K1l.

ROM

32X.8 Bit
256X8 8it
256X4 Bit

NAME

AUX. DOP [94
AUX SOl? E89
ROT/SHFT [87

These ROMs determine the ALU operation to be performed whenever the
mlcroeode executes the act10n X_lOP B where Y deslQnates a scratch
~ad reqlster and X dellqnat~. either Reqllter B or a scratCh pad
reQuter.

The AUX OOP pOM decodes double operand instructions and 1s enabled by
the CONTROL STORE siqnal AUX SETUP H. The followin~ table expresses
the out~uts of this ROM as a function o~ the instruction belnq

PaQe 72

performed, B represent, the e ReQisttr and A representl any scratch
pad reql.ter~

ROM OUTPUTS
INSTRUCTION OPERATION INVERT S3 S2 81 50 CIN MODE:

MOV (8) B.A 1 QJ

'"
0 0 1 1

eMp (8) a.A. MINUS 8 1 1 0 0 1 0 0
~DD B_A PLUS 8 1 0 1 1 0 1 0
sua B_-A. PLUS a PLUS 1 0 1'21 1 1 '" 0 1'21

BIT ee) A,a 1 13 1 0 0 1 1
eIC (8) 8.C-A),B 1 1 1 ~ 1 1 1
sIS (8) B.AtB 1 13 0 0 1 1 1

The AUX SOP ROM d~codes single operand 1nstructions and is enabled by
the CONTROL STORE siQnal AUX SETUP H, The followlnq table expresses
the ROM outputs as 8 funct10n of the SOP instruct10ns decoded,

ENAB ROM OUPUTS
INSTRUCTION FU~CTION REG INVERT 53 S2 51 S,} CltIi

CLR (8) B.PI 0 1 1 1 0 (0 1:'1

COM eel 8_-B 0 1 1 '" 1 0 Ii'
tNC CS) 8_o PLUS B PLUS 1 1'21 t 0 1 1 0 0
DEC (8' 6.0.B) MINUS 1 0 1'21 0 1 0 0 1
NEG (8) 8.0 MINUS 8 13 1 1 0 0 1 0
TST (9) B_A

'" 1 0 1 0 1 1
ADe (B) B.?I PLUS 8 PLUS CIN 1'21 1 0 1 1 0 1
sse (8) 8_(1,8) MINUS 1 PLUS -C 1 1'21

'"
1 0 1'21 0

The lNVERT Hand ENA8 REG L outputs are used to ereat@ the 0 and 1
1nputs on the ALEG of the ALU a. described previouslY 1n tne ALU
section,

Auxiliary control signals are allo necessary for ~erformlnQ rotate and
shitt operations. The ROT/SHYT ROM on pr1nt K10 deco~es these
instructions and outputs those control 11qnall required to Shitt' the
contents of the 8R~G. Inputs BREG 00(1) H, ec N H, and CalT (1) H
al.o determine the SERI~L SHIFT H and ROT C9tT (1) H Signals, The
SERIAL SHIFT H SIgnals 1s lent to the BYTE NUX (prInt K10) Where it 11
used 1n determining the SHYT IN 07 H sIgnal used in the a PEG ShIft1ng
operation. ROT ealT (1) H Is used in the calculatIon of the new earry
cond1tlon (C , V 8IT ROM), 'Note that for all rotate and sh1ft
operations the AUX SETUP 1s performed on the B.a step before eaen X_y
op B step previouSly mentIoned, This is/done to allow the eondit1on
codes to be setup without slowing the processor.

A summary of the AUXILIARY CONTROL is Shown in the Table enclosed,

POOl:.

0
t
0
0
0
t
;;,

'"

"tABLE 11.

Auxiliary Control for Binary and Unary Instructions

Condition Codes
ALU

lnst. Nand Z V C Function ClN B

~lOV (B) Load Cleared Not Effected A Logical 0 Load

CMP(B) Load Load like SUBTRACT Load like SUBTRACT A- BII CV Load

BIT (B) Load Cleared Not Effected A~ ~II.A 0 Load

BIC (8) Load Cleared Not Effected ~A~ U,~ll).1 0 Load

BIS (B) Load Cleared Not Effected ~ MSw ~~! Load

ADD Load Set if OP's same sign Set if carry out A plus B 0 Load
and result different.

SUB Load +- (-)=-)
_ (_)(+) = + Set

Set if Carry A plus B +1 Load

CLR (B) Load Cleared (like ADO) ('lear 0 0 Load

COM CB) Load Cleared Set -B Logical 0 Load

INC (8) Load Set if dst held 100000 Not Eff~cted Ac\ib S +1 Load
before or 't::x~

NEG (B) Load Set if result is 100000 Cleared if result is 0; A-B. Gi' Load
set otherwise

1'i~l~~ii~ ADC (B) Load Set if dst was 077777 Set if dst was 177777 +C Load
and C = 1. and C = 1. • ~ SBC (B) Load Set if dst was 100000. . . if d~.i~1f~ ~~~

~C

and C = 1; __ other-
wise.

TST (8) Load Cleared Cleared 6 Logical 0 Load

ROR(B) Z~(C:Ol) NIDC (0) Shift Right
N~C

ROL (B) Z (14:C) NeC (15) Shift Left
N ~ (14) B (7)

ASR (B) Z ~(15:01) Nee e ~ (15) Shift Right
·N~N

ASL (B) Z+-(14:01) e ~ (i 5) Shift Left
N~(14)

Page 74

5,7 Data TranSfer CircuItry

5,1.1 General DescriptIon

All UNIBUS data transfer. are eontrolled by the OAT TRAN circuitry on
prInt K6. This logiC monitors the bUSY Itatus of the UNIBUS, controls
the processor bus control lines BBSY, MSYN, Cl and C0, and detects
PARITY ERRORS (PE), BUS ERRORS (BE) and EOT EPPORS (EOT).

5,1,2 Co~trol Circuitry

5.7.2.1 processor Clock Inhibit

All processor d~ta transfers on the UNIBUS are initiated by the
CONTROL STORE output K10 DAT TPAN (1) H (prl~t ~10). ThiS signal
combl~es wit~ the signal K& EOT (0) H (normally a leqIc "1" between
transfers) to create K6 TRANS INH L stopping the orocesser cloCk,

5.7,2.2 UNIBUS SYnChronization

The synchronizer logic Shown in Fl;ure 17 (from prInt Kb) arbitrates
whether the processor or some other UNIBUS periPheral will control the
UNIBUS.

FIGURE 17 DATA TRANSFER SYNCHRONIZER

A logic "1" level (+3Y) on the set input
specifies that the bus Is presently in use~
combine to Cf!ate th1s level monitors a
conditions.

of the E121 flip-flop
Each of the 1n~uts wnich
specifiC set Of bUS

NPR - A UNIBUS periPheral has aserted a Non Processor
Request (NPR) and wishes to gain control at the bus

K!& bllTfP (4) l.

KIP B~S.y #
~1 Nr'fI... H
K"I NrC;- j.I ----------1
1:.1 No s~ Til l..------t

· K{P 'SH\R.\ I~J .. ~\ >,
!

j((" T~AN INH .:.

BBSY

Page 75

~ Another UNIBUS ptriph@ral alrtady has control of the
buS and Is assert1n~ & bus busy (BSSY) siqnal.

~ An NPR device has requested control of the UNIBUS
and the KD11D processor has 1ssuerl a no~·proceS50r
request grant (NPG)i Th@ condition ~ay exist where
the NPR d~vice hal already recoqnized th@ NPG and
has dropped its NPR Signal while not having ass~rted
a SACK or BBSY yet.

NO SACK TD L • An NPR device has requested control of the UNIBUS,
the K011D processor has issued NPG and the device
h~s returned SACK L c~us1no NO SACK TD L to gO hlah.
The condition may exist where onlY SACK L rem~i~s on
the UNIBUS for a periOd o~ time before the
oeripheral ~55erts BSSY •

OATH' (0) L

BUS SSyN L

• When this input Is true, all Of the above signals
are overridden. Generated on print K6, It indicates
that the Droce5S0r 1s pertorminq ~ DATlp
CRead-Modltymwrite] operatton and h~s control of the
UNIBUS (B8SY ~s5erted)G NPP d~vlces maY, however,
be qranted bus control but must Wait until the
proeessor releases to BBSY before assertlnQ theirs.
(DATIP operations dlct~te worst case bUS latencies
for NPR devices).

u ~nother data transfer is still being completed and
therefore the processor. must wait \'I~fore

InitlalizlnQ another.

If none of the above BUS TN USE conditions exlst~ theKI0 DlI TRAN (1)
H $ 1 q n ale 1 ears the E 1 2 1 £11 P '" flo P an d a c t1 vat e is K 6 S TAR T T R II ,>1 F
(start tr~nsier). The RC circuit an the output of E121 111imlnates
any ~oise that may reSUlt trom th~ synchronlz~r under worst case
eoncUtions a

Onc~ th~ K6 START TRAN H signal 1$ actiVated, the DlT TR.N eircultry
be~ins a UNIBUS data transfer operation by assertSn; Kb ASSERT ADDRESS
La As shown in the logiC dlsqram of Y1Qure 19, K6 ASSERT ADDRESS L
triggers the followinq bus actions.

10 Enables the BUS ADDRESS (BUS A0@68US A15) drivers (print Xi
thru K4),

3 0 !nable~ the bus centrol ~lgnals BUS C0 anrl BUS Cl which
determine tne type of transfer bfino perfor~ed.

Cl

~

o
1
1

C0

~

1
o
t

OPERATION

DATI
DATIP
DATIO
DATOB

p~qe 76

The actual condItion of these control lines Is deter~lned by
the CONTROL STOPE outputs K10 C0 (1) Hand K10 C1 (1) H.

4. -Enables the BUS DATA (BUS D00-BUS 015) drivers If the
operation being oerformed Is a DATO.

Fiqure 1~ DATA TRANSFER BUS CONTROL

UNIBUS specifications require that the BUS MSY~ L control S!Qn~l be
enabl~d no sooner than r5~ ns after the bUS 4ddress, data, and control
lineS have been assert.d. To meet this reqUirjment, the circuitrv In

-Figure 19 has been incorporated Into the OAT TRAN logic (print K6),

~lqure 19 MSYN/SSYN CONTROL

The first one·Shot, E98. delays the trlqgerinQ of the SSYN TIMEOUT

Ie(~ tNT ~T.I Ii

KfD CI L

Id c, Cf) fi --+--1

1-\S'lu crvltG Q\H '. I

Mc.,\{tJ t..N~ ~ w~/:-'-~;-:-__ =_--d
\1.1 SP4>4> L

ALLOW 'bYTE. H

~\(-\ \~S~£X'Z ~LLS
\=\ hu..Q~__ \. c;e,

+5V

5

13 U.s l> i!>S-I L

k(' 'B~)I H

r------ 'BV5, /l1sil'f L

n----.+-c(>-- K(' nI.r:YN /4

~ 3VC
i4-~4

» ___ -+_-+--I-~" _l.E .. 8 -- K6 TRAN (~~: H

K6 ~~'11.1 H ---L.,.Vv_--~

FI6-vR..£ ler

M S'I.AI/SSYH c./),vrA.oL

Pac;re 77

one.shot (Eq8) until approximately 250 n5 after the assertion of K6
START TRAN H. Once fired, the output of the SSYN TIMEOUT o~e·lhot
enables the BUS MSYN L bus driver and waits for the bus peripheral
being accesSed to return a BUS SSYN L. When BUS SSYN L 11 rtturned,
E98 is cleared 75 ns after the SSYN il received negatinQ MS~N and
cloc~lnq data obtained from memory into tMe BREG or INSTRUCTION
REGISTER.

Once the SSYN TIMEOUTone-s~ot Is trlqgered, SSYN ~ust ~~ return!d
~1thin 22 microseconds, If SSYN 15 not returned In this ~lme, E9B
times out setting the BUS ~RROR (BE) flip-flop EllS. Upon enterinq
the next SERVICE microcode state, the ~rocessor will monitor the
status of the BE flip-flop ~nd trap if the BE fl~p.floP is set,

Along with ClOCking d~ta into the BREG, lR, and BE latch, the timeout
of E98 also .Clocks, The parity error detection lOQie shown 1n figure
20.

figure 20 PARITY E:RROR CIRCUIT

If ~ data transfer is being .performed with a oarity memory option
CMS11-FP, MSI1-HP, ~Mll-CP or MM11-0P) all parIty errors detected by
the memory will be reflected back to the ~D1tD or the UNIBUS l1nes BUS
p~ L and BUS PB L.

CONTROL
PA PB

(3

()J

1
1

o
1
o
1

E:RROR
DESCRIPTION

No Parity Error
Parity Error on DATI
Reserved tor future use
Reserved for future use

BuS PB l _AN_Z ____ --....J

"G ef L

II" , \,Ie
PP\l~ITV J---~
E"'~BLE WI -L.

K'l OAT TRP.'. (I) H--

(Jf\R\\y' ((«((oR <::\.RLLl\'1-
'RGC\.R.E.. "2..0

Errors found while p~rtormlnQ a DATIP Dr DATI (K6 Cl L 1s tr~~j ~111
result in th~ PARITY ERROR f11p~flOP (E121) be1nq let when E98 times
out. Proc@,;or operations relultlnQ from PARITY ERROS will be
discussed fUrther in the BUT SERVICE seetion to follow.

Note that tht entire PARITY
jumper Wi and inserting
jumptr W2.Not~ al~o, that
BUS EPROR conditon.

ERROR elreu1t can be disabled by remoVlnQ
anothff jumper in the space provld~d for
th~ detection af a PARITY ERROP fore@s a

5.7.2.7 End of Transfer Circuitry

To sYnchronize the DAT TRAN logic with the main KD11D processor clock,
the END OF TRANAFEP CEor) circuitry hes been incorporat@d into.the CPl'
(orint K6). ADDroxl~atelY 10~ n5 ~fttr th@ SSYN TIMEOUT onessnot
(F99) times out, the EOT flip-flop CEliS) 1s cloeKed remov!nQ th@
previously discussed prOC~510r clock disabling Signal K6 TPAN INH L.
If a BUS ERROR has been d@tect@d, the delayed lignal that clOCked th~
EOT tllp 0 tlop q@nerates e 100 ns pUlse on the K6 FORCE 5ERV H line.
This pulse clears the mlcro m pc addresi latChes (MPC00~MPe07) on print
K9 forcing the processor to enter the SERVICE m1croroutlne on the next
PROC eLK L lo.oto~hlgh transition, An eXPlalnatlon of the t@rms
micro-pc ~nd mierorout1ne 1s available 1n th~ CONTROL SrORE section
Which tollow~ later.

Anoth!f circuit Inclu~ed In the OAT fRAN logic deteet DATA·IN-PAUS~
(DATI?) tran5f~rs and controls tne bUI control siqnal PRSY. UPon
inltiatinq a DATI? (READ-MODIfY-WRITE) bus op@fatlon. the fllp-floD

KG PE. m H

Kb SSVN H

+5V

S
Q

- - K" EOT <Gil '1

~b:l P - Df - -r~jhJSF£K
~\GUvQ-C 2\

E97 1s latched torcin9 the processor to hOld K6 BUS BB~~ L U71ti' the
DATO portion of the routine has been completed. While BBSY 1s
asserted, no other UNIBUS periPheral can seize control of the ~U~,
This feature often d~ter~lne. the maximum bU. latency for NPR 1evte~$.

FiQure 22 DATA-tN-PAUSE CIRCUITRY

5.7.2.9 Odd Address Detection

To prevent odd addressinQ errors, two N6R Qate. CE68) have be~"
inlerted between the SSYN TIMEOUT one-Shot (E98) ~nd the BUS MSYN
driver. These gates ~revent the alsertion ot MSyN it an odd bus
address Is being placed on the UNIBUS (Kl SP00 L is true) without the
approval of the microroutine beinq performed (CONTROL STORE outout Kl~
ALLOW BYTE H true). If this condition eXists, the SSY~ TIMEOUT
one-Shot WOULd be allowed to timeout without eV~r asserting 8U5 MSyN L
and thUS neVer rece1vlnQ ~US SSYH. The end result of this operation
WOUld be the detection of a BUS ERROR.

5.8 Power Fail/Auto Restart

The KD11D power fail/auto restart circuitrY (print KS) serVeS tt.f
followlnQ PUrPoses I

1. Initializes tne m1croproQram, the Unibus control, and the
unibUS to a kno-n state ImmediatelY atter po-er is applied to
the computer.

2. Notifies the mlcro~roqrlm of an Impendln~ power failure.

3. Prevents the processor from respondl~q to an impendlnQ power
failure tor 2 ms after initial startup.

The actual power fail/auto restart .equences are mlcroPfoQram
routines. The operation of the power fall/auto restart circuitry
dependS on tht proper seQuenclnQ ot two bUS signals: AC LO and DC LO;
Blcause of the electrical properltes of the Ilnlbu5 drivers a~~

I<:w CJ L-.

KI0 CI (I) j.I

\(5 f> 1U>t. \ "'h r L

DI'1"A. I~ .- ~Au.':lE CHtt..U.\'1Q.Y

Fl~~€' '2.'2..

BUS AC LO L +;~ _____ .-I \~~ _____ _

+3V \1:~---BUS DC LO L OV __ ...J _

-I ~I I- l-l>tZ~s

INIT __ -JI ~1I>Oms 1 ____ ---oJ I
I_ jiilml--!

POWER UP
____________ ~I ----~I ____________ ___

I-Zms-j
PDWN

11-1187

"r\ (. {\.n..E: 1.")
-~'t4 nins ·BUS AC LO and BUS DC LO Timing Diagram

Peae 80

receivers, thl entire computer sYltem must be powered UP tor the
maChine to operate, Therefore, the processor 1s not1f1ed of a power
fall in peripherals as well 81 in itl own ae source,

The notificat1on of power status of any PDP-'1 system component ~s
transmitted from each device by the lignals 8US AC LO L and BUS DC LO
L (Figure 23). The power-up s,quence shows that BUS DCLO L 11
unas&erted before BUS AC LO 4 Is unaslerted. When BUS DC LO L 1s not
asserted, it is assumed that the power in every component of the
system 15 sUffiCient to operate, When BUS AC LO L Is not asserted,
ther. is 5utiiclent .tored enerqy In the regulator capaeitors of tne
power supply to operat~ the computer for 5 ml, should power be shut
dOWn immedi~telY.

rlaure 23· BUS AC LO and BUS DCL~ Timing Dla~iam

As AC power 15 removed, BUS AC LO L Is asserted first by the power
supply warning the proceSsor Of an Impendlna power fallure. When BUS
DC LO L Is asserted, it must be assumed that theeomputer system can
no lonqer operate predlctablY, Memories -manufae~Ured by DEC use AU!
De LO L as a switCh signal, turning them off, eve~ if power is stll1
available. Time A +2 (Floure 2)) 15 the time delav between the
aSSertion of AUS AC LO L and the assertIon Of BUS DC to L, it must be
greater thQn 5 ~S. This allows tor power to be rapidly cycled on and
off, ACCording to POP-i1 specifications, uPon system startup, 6
minimum of 2~ms rUn tlme 1s quaranteed before a .power fall trap
occurs, even if the line power 1s remov~d s1multan~ouSlY with the
beginning of the power·up sequence. After the power fall trap occurs,
a minimum of 2-ms run time is gUaranteed before the system shuts down,
Given the tolerances per~ltted in the timing circuitry used In most
equlp~ent, A +2 must be greater than 5 ml,

Paqe 81

When a pendIng power fall 1s senled, a program trap occurs causing the
present contents of R1 and the PSW to be PUlhed onto the me~ory stack,
as determined bV the contents of R6 (Stack pointer register). R7 is
then loaded with the contents of memory location 24(8), the PSW 1s
loaded with the contents of locat1on 26(8). Processing il continued
with the neW R7 and pSW. The user's ~roQram must prepare for the
impending power failure by storing. awaY v018tl1e regIsters and
reloading location 24(8) and 26(8' with a ~ower-up vector. This
vector points to the be~innlng ot a restart routine,

When Dower Is restored, the processor loadl R7 with the contents of
location 24(8) and the PSW with the contents ot location '6(8), After
10adinQ these registers, the user proqram presu~aoly will prepare
locations 24(8) and 26(8) for another power failure. It the HLT ROST
L inPut is asserted by an external swlteh closure, tne processor
powers up thrOUgh locations 24(8) and 26(8) and halts.

Schematics for the power tall, auto restart, and bus reset logic are
found on Print K5, One-shot E110 generates a 150 ~s processor I~IT
~ulse as SOOn as BUS DC LO L 1s nonas'erted atter power 15 app11ed to
the processor. At the end of 150 ml, the PUP one-shot, Et03, 1s fired
it BUS AC LO L 1s not asserted end the oroctslor begins the R7 and PSW
load routine, The PUP one-shot generates a 2-ms pulse, during which
the assertion Of BUS AC LO L Is ignored,

The trlqqering of the 150 ml IN IT one-shot alSO presets the POWF.R IN I!
flip-flOP E109, settinq this latch forees the CONTROL STOPE to run
the power UP routine beginning at micro-pc address 001. It Is this
routine that reads locations 24(8) and 26(8) tor the ~ew pC and psw,

After pUP has been reset, the a.sertlon of BUS AC LO L fires the
one.Shot, PDWN, E10~ F11p-flop [97 is lit causlng a power tail trap
to be recognized by the microproQram on entering the next SERVICE
state, VarioUS traps are arbitrated by the BUT SERVICE ROM E71 (print
K8).

It a momentarY PoWer failure oceurs which eauses th~ assertion ot ~us
AC La L but does not caule the assertion of BUS OC LO L, the proc@ssor
will restart When the POWN (0) L one-shot times out, retrlqqering the
INIT one-shot simUltaneously with DC La H becominq nonasserted.

When a ~ESET Instruetion is deCOded by ROM E'6, the ROM output 61;na1
K12 START RESET L Is clocked into the START RESET flip-flop E109
(~rlnt KS', This tli~·tlop out~ut trl9Qers a 100 ms INIT, atterwhich
the proceSSor continues operation,

5,9 PROCESSOR CLOCK

The KDI10 processor clock elrcuitry Is shown In Flqure 24 and on print
K5. A sinale delay line Is used to generate a pulse traIn to which
the entire Processor Is synChronized. Slnee it 11 a fullY clOCKed
proeessor, events that result In the alteration ot storaqe re9ilters
occur only on defined edges of the processor clOck.

Paqe 82

F19ure 24 PPOCESSO~ CLOCK

If all cloek disabl@ inputs are unasserted, the cloCk will be91n
runn1ng as soon as .5 volts 15 applied. The period otthe oscillator
pulse output 1s fixed at 260 n5 as per F1qure 25.

1(.5
1("1 S GIN H L ---:-;;-<..,.t

t<6 lP.ilN lNH L - -- .'>.''"<-__

Rca
, 'K t-t 5V

""Ad D~I
C'LI(EoN AS L:---"------

- f'Roc...Ss,<;O R..
;t0U..~€..

K& TRAM el.K 1-1 ------,

KI0 OAT TR~N

1<8 INST TfVIP S,ER L
;<5 5ERV 1.P. H

K.S PROC. eLI< W

PROt CU·
L

;(S RE:; ell<. H

(m PSW $P)

Pa:,e 83

FIQure 25 PROCESSOR CLOCK TIMING DIAGRAMS

Th~ cloCk 11 turned on and otf by means ot 9at1nq tne fee~back through
its ~elay line. It 1. turne~ otf under the followinq conditions b~
the a~~roprlate lignall

1. DUring a 8US INIT from another device.
2. The INIT portion of power up routine.
3. The INIT portion of power down routine.
4. During a RESET.
5. Durlnq the BUT SE~VICE arbitration delav.
6. DUr1ng a priority interrUPt.
7. While BUS SACK 11 alsert~d.
8. During bus data transfers,
9. After executing a HALT instruction.

10. when the manual cloCk 1. enabled.

5.10 PRIORITY ARBITRATION

'i\{pc.f.!~S()R CLOU, T\t--\\ ~j(-, "t>JV:)OJ'd .. {5,
flGu.Qf. '2.5

Pao. 84

The KD11-0 reSponds to bus requests CBRs) In a manner limilar to that
of tht other PDp-11 proceslors. PeriPherals may request the Ui~ of
the Unibus in order to ma~e data transfers ~r to interruPt the curr~r~t
processor PrOQram by assertlnQ a lional on one ot- four B~ ltnes,
numbered 4, 5, 6, and 7 in order of increasinO priority. [or exam~,e,
if two devices, one at priority 5 and the other at prtority 7,as.ert
BRs simultaneOUslY, the device at priorIty 7 is servieedflrst.
Furthermore, it the processor Driorlty, determined by bIt. (~7·05) of
the psw, is at level 4, only devices that request BRI at levels higher
than 4, SUCh as BR 7, BR 6, or BR 5, are serviced. Table 13 'contaIns
the order of priorlt1es for all BRs and other traps.

priority

LOWest

service Order

HALT InstructIon
BUS EPRORS
INSTRUCTION TRAPS
TRACE TRAPS
STACK OVERFLOW
POwER FAIL
HALT SwITCH
BR7
8R6
BR5
BR4
Next instruction feteh

PRIORITY SERVICE ORDEP
TABLE 13

Since a BR Can cause a program interrupt, It may be serviced only
after the completion of tne current instruction in the IR. A device
that re~uests a prOgram 1nterrupt mUlt at the apDropriate tlme place a
vector a~dreSS on the Unibus data lines, The processor first stacks
away the current contents of PSW and R7, then a new P7 15 loaded from
tne contents of the vector address, and a new PSW 1s loaded tr~m the
contents of the vector ad~ress PlUS two. FUrther descriptions of how
the processor handlel this BR routine will be dilcussed In the SERVICE
section to tollow.

~rbltratlon logic for BRI Is shown on print K7 and in riQure 26. All
BPs are rec~lved 11rectly trom the UNIBUS (UNIBUS receivers E20, and
E32) and latched 1nto register E14 (74174 Quad O.T~pe latch) when the
mlcroproQram enters, the next SERVICE Itate (K9 BUT SEPVICE (1) H 1s
true), The AR PRIORITY ABRITRATION ROM (E7) then determines Whether
the present processor priority (P5W <714» 1S higher than the highest
BP received and if not, which BR received has the hlghelt priority,
Arbitration performed by E7 1n the order of priority are shown beloWl

HLT RQST
PSw7
BR7
PSw6

BR6
PSwS
BR5
PSW4
B~4

Paqe 85

It the h1ghest SR rec.1ved 1s of a higher pr10rity level than the
processor, the corresPOnding grant enable ROM output 1s asserted low,
With no HLT RQST or trap Instruction pend1ng, the processor clOCk will
be disabled by the K7 SG INH L sl9nal~ The actual 8US. GPANT 1s not
tran.ferred to the UNIBUS until the E~ABLE SG f11p-flop E55 1s set.

(J.u" I3Il. 7

G<JS8lJ.6
r.;~

PJ_W''U_~_

Psw 6(,)fl

ps 'V !le.);!

DS' vaO If
[3 t/J _€_~~':-. r ' ~~

.--- DI

::~t~-~~ "-3-

Inl 1
Pol •

I)~

8"0$ BR 4
c,~ c.LK

Ra

; " i

NAL; Rf:Q"EsTL

PowER. 'FAIL (I) /-I

K <=t 8 u i S E. fI. V Ie IE H

8 11 .$ SAC'" L

-,
j[r o q
EI/

•• C.K. m 41l, iii

1
La w 0 IJ ({INC.

NPf{

.. "­f18;> ---~r

l

81{

RON\

£3

1

'>",

-------1 1--------------

-~-'I'-- -.-
I l-L._-L.

KIJ S€ ~Vtc£. TKo'" P H

,

EI:l.,A

~.~~~?
-- _rCf:-:>V~ 6 v S ~_,_~1.36-6

k~~ e·)"
~ l-Ze)C;..£cr:.-

•.. ~~13"S
'-...L--../ ../ .. ,'- , 6 Cr ~ --{' s.~> ~

J< 7 1-1 A LT

- <J.f.1.A",-TH"-t

PE#DIAl6- REQ H

Q

SAcK q

Rl?T
K!l·fJ .. £SE.-r fJ.

JAC-I<
RfTV~",{l) L

, (~

•. i 1-<7
£;l.I)()lNO SMJ(te· 1

Kg

86- PP..loP...liY A~!J/'iRATION
IN I r. H

PIG-.J...G

~
....:0

('t:I

~

~--,.! ';--+-+-------'

80S ~RP\NT

--------,. :~--- ---\---\0,--, " ,

5AC'..K TD

5AC~ RET

Figure 21 BUS ~EQUEST TIMING

Grants both eG and NPG ar~ ~ontrolled bY the synchronizer logic shown
below and on print K7.

k cf a /.I i .sF: R. v Ie. E (/) H ______ ----.

8 (j- E iliA '3
I p-

("

K 7NPR H
",.O.sACk TD H

.~ ..

6- R.. AN i' .s Y NC Ii RoN /Z £ R.
----- --~. "!"-~.: -- -~ .

This circuitrY arbltrat~1 whether G BG Of an NPG (Non.proce~sor
Requtst Gr~nt.d) wl11 relult de~~nd1nQ on whIch flip-floP input line
(let or relet) was de&etlv~ted firlt, It the set input K9 BUT SERVICE
(1) H 1s detected first, the Q output of £73 (pin 9) will transition
lo.~ After a d@lay of 175 nl, thll 11gnal will cloek the ENAB sa
flip~flOp E55 provid~d there 11 no BUS SACK L sIgnal on the UNIBUS,
Once E55 1~ let the bUi grant arbitrated by ROM E7 1s channeled onto
the UNIBUS CbUS drivers E26). Once the requ@lting periPheral receives
BG, it then returns BUS SACK L,

Upon receiv1n; BUS SACK L, the processor then clears Its ENAH BG
fl1~~flOP f@mov1nQ the aus GRANT from tho UNIBUS and sets the SACK
RETUPN fl1p·~lop to keep the procelsor clock dl~abled.

Remov~l of BUS GRANT caules the peripheral to drop its 8US SACK L.
assert BUS INTR L and enable a vector address ont~ the UNI8US data
11nese The ~rocessor then deskews the removal of SACK. clears the
SACK RET flioeflOD (E73) and enables the processor clock again, Once
1n op@ratlon, the processor ClOCKS th~ peripheral vector adrtrelS into
the BREG, returns BUS SSYN Land bea!ns runnina the microcode trap
routine WhiCh ~ranehes the PfoeelSOf to the interrupt handllnq proqram
det~rmined bv the vector obtalned~

NPRs are a facility of the Unibus that permit devices on the UnibUS to
eommun1eat~ with e~ch other with mlnlm~l ~artlcipation ot the
PToeessor. The fUnction ot the processor 1n servicina an NPR is
Simply to give UP control of the bus in 8 manner that does not disturb
the execution of an instruction bY the PTOCeSiOf. For example, the
processor will not relinqUiSh the bU; followln; the DATI portion of a
DATIP transfer.

~he" the reset input of E73, K1 NPR H beco~es unasserted before the
set input, the Q output w111 tr~nsltlon loW eaull~g the NPG flip-flop
E55 to be set If BUS SACK L Is not true. The output of this tllc-tlop
enables the 8US NPG H Unibus line granting the bus to the
Non~Proc~$Sor devices The request in; device w11l the~ return aus SACK
L clearing the N.PG and will wait until the bus is free (no BBSY).

Page 89

Figure 29 NPG PRIORITY ARBITRATION

5.10,) Halt Grant Requests

Unll~~ all Pre~ious PDP·l1~rocessors the KDl10 hal Im~lemented what
could. be considered another priority level' K12 MLT RQST L, Th1s
Input 11 used to m~nltor the USER'S CONSOLE HALT/CONTINUE switCh. If
a MALT 1& d.tected CK12 HLT RQST L activated), the Processor will
recoQnlze It as aninterr~pt reauest (priority level is shown in
FiQure 13)· upon enterln~ the next SERVICE mlcrostate~ The processor
will then Inhibit the processor cloek (FIQure 26) and return a
recoQnition Siana! CK7 HLT GRANT H). UPon reCeiving K7 HLT GRANT H,
the console drops the K12 HLT RQST L and al~ertl RUS SACK L qainlnQ
complete control Of both the UNIBUS and KOIIO,

The User can maintain the processor In thts inact1ve (HALTED) state
IndeflnltelY~ Upon releaslnQ the HALT ,witch, the users Console
releases BUS SACK L and the processor cont1nue, operat1on as if
nothing had happened.

5.11 SERVICE TRAPS

NPC) f<{!C~~\ T~

'\"- \G:, ll...R E..
fl~BI\l<.All 0 ~
2..,.(1

Page 90

5.11.1 General Description

All interrupts, error traps, and instruction traps are recognized and.
serviced bY tht 1(0110 when tht processor enters. what is eaUed-tl'1i}
SERVICE micro-instruction state. The tunctlo~1 pertor~ed during this
Itate are most critlcal to the operation Of the proees$or and snould
be completelv understood. . . .

UponenterlnQ the SERVICE state, all bu~ ihterrupts~ error traps, and
Instruction traps realized during ~he performance ot --the lai~ ~
instruction are arbitrated by the SERVICE ROM E71 Print ~8).Each
trap condition 11 then serviced accordinq. to Its pr lor!ty as -sho~n -h,
Table 13.

5.1t.2 CIrcuit Operation

Rom E71 services. a specIfic trap by qenerating a vector address unique
to that traP condition (Table 1S). Upon leavlnQ ·t-he SERVICt: state,
the proceSSOr is forced to push its present proQram counter (PC) and
processor status word (PSW) onto its memorYltack and fetch a new PC
from the loe~tlon specified by the vector ad~ress. A new PSW is tnen
o~talned from the next ~tmory locat1on after the vector. The end
result of these operations, Is that . the proc_essor ilnow performlnQ a
software SUbrout1ne written bV the user whlch could correct or
indicate that a specific error occured.

The various traD conditions whiCh cause the eTocessor to vector are as
follOWS.

BUS ERROPS

STACK OVERFL6W ERROP

- A BUS ERROR indicates that the processor
has attempted to ~cc~ss non-existent
memory or a memorY location that did not
return BUS S~YN within 22 usee. The
detection eircuitry for bus ~rrors was
preViously described in the O~T TPA~
sectlon,

Once detected, the bus error condition of
flio-flop EllS (print K6) Is clocked into
latCh E101 (print K10) on the next
low-to-hloh transition ot PROC eLK L
creating the error siqnal K BE FLAG (1) H.
DOUble buffer1nQ Is reqUired because EllS
1. cleared at the end of tne data transfer
micro-instruction step and used again to
detect a Double BuS Error condition durlnq
the trap routine.

• ~ny attempt bY the processor of
decrementing the contents of the STAC~
POINTER BEGISTF~ CR6) beyond the 400
location stack limit (Kl1 9-15=0 L) of the
KD11D will result In the STACK OVERFLOW

PARITY ERROR

POWEF FAILURE

f11~~flo~ E1l4 (prl~t K8) being set on the
next hlgh~to~low transition of PROC eLK H.

Figur@]0 STACK OVERFLOW

~ ~ PARITY ERRO~ indleat@s that th~
processor attempt@d to input dat~ from a
parity memory and th~t memory indicated a
Piflty ~rrof.

The PARtTY gRRO~ det~etion circuitry w~s

prevlou~lY described in the OAT TRA~
~ectlong Once detected the error
condition of fllp~floP ~12t 1s clocKed
into l~tc~ E101 (print Kl~) on the n~xt
PROC eLK L low~toehigh transition creatina
K10 pE FLAG (i) H@ DOUble huttering 1s
n@cessary because E121 1~ eleaf@d at the
end of the data tranSf@! microinstruction
Itep ~llowlnq E115 to ~eteet ~ double bus
@ffor condition.

- The Qutput of tne PWR FAIL fllp~flop E97
(print K5) is set when the po~er SUPPly
asserts SUS AC La L lndleatlng loss ot AC
POW@f.

• Th18 trap 1s pro~r~m eontrolled by the
user ~llowlnq hl~ to insert ~

processor/user interactive SUhroutine intD
n16 main program@ The tr~p 1~ enabl~d by
setting the PSW TBlT (K~ TBIT (1) L).
Upon compl@tlon of the next instruction
(K12 ENAB TBIT L), th~ J~K fliP-flop E1J4
is let cr~atlna th~ Kr BIT FLAG (1) H
liQn~l.

KI/ f1-/~= pit.

KS' R6 L

K'iJ fA/JIB S TDiI I-

71f1-/103
f----l~

ks PAQ(; /Jt rt L

.siACK OV€I'{FLoW

k:t t BIT(')L

10l EN'ASTO.T·L -----0

1<9 T BIT' s~~v ..,---L-.J

/(SPAOC INIT'L

i BIT FLAG-

k& 7131T FLAG- (I) H

HLT
TRAP
EMT
10'1'
BPT

.., TI'HUII! t h r e ~ bin a rye 0 d ~ d t rap s i q n a.1 s a r ~
;.nerated by the IR DECODE ROMS E69, E70
and E7§ on print K12~ and Indicate the
followln; trap conditions.

TRAP CONDIT!ON IR CODE LINFS
02 01 00

IN51'FWCTION 0 0 0
INSTRUCTION 0 0 1

INSTRUCTION 0 1 ~,

INSTRUCTION (1) 1 1
INSTRUCTION 1 (Jj 0

ILLEGAIJ INSTRUCTIO"l 1 0 1
RESERVED INSTRUCTION 1 1 0
UNUSEO (none of above) 1 1 j

TABLE 14

Upon ~nt~rlna t~e SERVICE m1cra~lnitructlon Jtat@c th~ SERVICE Rom E71
monitors any combin~tlon of the above trap condltlon5~ If any inputs
arf en~bled, th@ Rom force~ the pfaCe!50r to branch to a special TRAP
routine on the n~xt micro ste~ by a~sfrtlnq the mlcrc o pe addres~ line
MPC00 Lg While stUI in the 5EPVICE stl!ltep th~ ~OIT! aIGogenerat@$ oil

$~eelfle vect~r addres~ [Table IS] using outDuts C2, C3 and C4 and
ch~nDel~ It onto the processor AMUX lInes bV actlvatina K9 AMUX 50 L
wh~relt i5 then latChed 1n th~ BREG.

8efore leavinQ th~ SERVIC~ st~t@ E71 .lso cl~ars the condition wnlch
C~Uled to original trap. This Is done by ~ssertlna one of tn~
follow1n; OUtPut~J K8 TBIT aERY H, STOV SEMV ~, PFAIL SER L or INST
TFAP S!R L. The first thre@ of th@~~ outputs clear thplr resp@ctlve
trao $I;n~ls directlY. Far those traps SPeclfl@d by the IP CODE
11n~sf nowever, it 11 n@C~is.ry to f@move tn~ instruction In the lB.
This oD@ratlan 1$ ptrfarmed by the INS! TRAP SER L output w~lcn ORs
with th~ p~oc eLK to gen~r~t~ K5 SE~V IR L whlen In turn remOV~$ th~
trap instruction from the IR~ Th1$ operation prev@nts the croc~ssor
trom looping on the same trap condition.

ror BUS REQUEST t8R~), the BUS INTP control sl;nal Is allowed to force
MPceH') L dur!ng,sERVICE provieU~d there are noothl2t tr~ps ot hiqner

Pige 93

pr1ority. By entb11nq this 11ne the processor will branCh to the TRAP
ROUTINE Ind vector to the address IPecified bY the BR device. It
there 11 a triP of hlOher priority BR interrupti are prevented from
reeelvin; BG by the SERVICE TRAP L output of £71.

OCTAL UNIBUS
VECTOR ADDRESS TRAP CONDlTIONS

004 Time-out , other error
010 I1IIQa1 , reserved Instructions
014 BPT, breakpoint trap
020 lOT, input/output trap
024 Power rail
030 EMT emulator Trap
034 TRAP instruction
114 Memory parIty Error

5.t2 CONTROL STOPE

5,12.1 General Description

VECTOR ADDRESSES
TABLE 15

The CONTROL STORE circuit (orint K9 and K10) consists of five 25& wor~
bV 8 bit bicolar Roms, seven Quad O-Type flip-flops end an assortment
of gates and mUltiplexers, This logic operates In a similar fashion
to a mleroprocessor havlnq eiqht address lines and 3~ data output
lInes with a fixed set of Rom progr.m routines,

Each CONTROL STORE Rom l~eatlon can generate a specifiC set of outputs
capable of configuring the data path, determining th~ fllnction
performed by the arithmetic/logic unts CALU), influencing the OAT THAN
circUitry Or in general controllinq the total KDlID. The contents Of
eaCh location is configured 1n a manner that allows seQue"c~s of
locations to be combined into mieroroutlnes whieh perfor~ tne various
pDP-II instrUction operation5~ Each Rom location is therefore
considered a micrOinstruction or microltep.

5.12,2 Branehlnq wit~in Microroutinel

EaCh microinstruction 1n the CONTROL STORE s~ecitieS the location of
the next microstep In a sequence. After the exeeution of a microstep,
the out~ut Of Rom ~138 1s loa~ed into the MPC (microproqram counter)
latch to specifY the locat1on of the next microltep. Condltlo~al
branchlnq within a mieroroutine 15 aceompllshed bY wlre-O~inq Signals
qenerate~ bv external hardwar@ onto the MPC tines w.hen directed by

Page 94

lome other CONTROL STORE output. Typical wlre-ORed siQnals are as
follows,

lnstruction Decode • As previously mentioned, th~ mlcrorotlti~es
contained in the CONTROL STORE are desiqned to
efficiently perform the operations sP~clfied by
the varioul PDP-I! instructions. Specific
microroutine. are implemented for spec1fic
instructions, The main purpose tor the lR
DECODE circuitry is to translate the PDP1l
instruction in the IR to a set ot bits thet car,
be wire-Oped onto the MPC lines upon request (lP
DECODE L) developing the next control word. An
adequate descriPtion Of the specifiC addresses
for each instruction was included 1n the IR
DECODE section.

TRAP DECODE • Routines have also been included in tne CONTROL
STORE to imPlemehterror routines Which PUSh and
pop the PC and PSW onto or off the processor
stack. Upon request of the CONTROL STORE (SUT
SERVICE (1) H), the MPC 00 I1ne can be enabled
bV the SEPVICE ROM (E71) causing a mierobrancn
to one of these mlcrorouttnes.

BRANCH ON BYTE • Tne various POP-l1 instructions are depen~ent on
whether an even or odo byte operation 1s beinq
performed. Modifications to the sequence of
microsteps used for specific instructions can be
made by enahling CSUT BYTE L) microbranches
based on p,ven or o~d byte instructions 1n th~
IR.

PWR RESTART - Upon performing a power restart. the MPC Is
cleared by INIALIZE (INIT). The PWRUP circuitry
on print K5 then enables thp MPC 0~ line (P~R
INIT flip-floP £109) forcing theCONT~OL STORE
to perform the PWR UP routine beginnlna ~t MPC
address one (001),

In qeneral, mlcrosteps ere not executed trom numerically sequential
locations in tne CONTROL STORE and care should therefore be taken In
following the flows described 1n Chapter 4.

FiQure 32 shoWS the fo~mat of all 256 words in thp KOll0 CONTROL
STORE, The fields, the Possible values they cnntain, and the
s1Qnifieance Of each valu@ are described below,

""0: <:-.
JI-l
-'

",-I ... 1la ., ~
,<"

I'>

~
(') 1-.. « "'I

tL!. -
~
<l
.."

<.('0
<l.. ..,
'1

-
-I
<:>
!~

~ l.,
<:>

I"l
C:(

.q. ~ -

~
'0

V -
~
M

- x '"l ':)
r"

~ -
«

~ n..
V) ""

.... ...,.
-.I --
<.

(,l ..,
.J

~
<'I

-
tl.,
<'l

-
r-.,
C"'(

- '::}-

-..!
t{

- "'.-
t...
~

- -,.-

'¢
rt

<!:>

"'~ ~,
~'" I.U

X
....,
N

-::.
- ~-

'C -N

?; ,,-,
<l I- -0
4,>- "d'

:z~

Page 96

5.1?,3 CONT~OL STORE FIELDS

FIELD

MPC

SP CONTROL

BUT BYTE

81IT SERVICE

SMOOE

BUT

FIELD
LENGTH

2

SP
CONTROt, 1211

o
o
1
1

1

1

2

3

DESCRIPTION

Ei9ht bit micro-cc address which specifies
the ROM location of the next micros tee to
be performed.

Determines sCratch pad operations
according to the following format,

SP
CONTROL 00

o
1
o
1

OPERATION

Read
Write low byte
write word and enahle ENAB H
Write word,

Allows IR DECODE logic to torce an MPC
branch it the i~~truetlon being performed
11 a byte. Branches will be a follo~s.

Even Byte +2
Odd Byte +3

Actual branch loqic Is Shown on print K12.

I~dicates that the processor has entered
Enables the

Orocfssor to
t~e SEPVICE microstep.
SERVICE ROM E71, causln9 the
recognize anY pen rl lnQ errors or
interrupts,

Controls the operAtion of the B-Reqister
during each microstep. The latched
outputs of this tield can be wire-ORed by
other CPU logic. Coding of these slqnels
1s as follows,

BMODE
01

o
o
1
1

BMODE
00

'" 1
o
1

OPERATION

HOLD DATA
SHIFT RIGHT
SHIFT LEFT
PARALt.I: .. L LOAD

Multiplexed oontrol tines WhiCh 9@nerate
the following enable Siqnals.

bUT DEST L ~ Enables microbranch to
dest1nation operand microCCd9 sequence.
Corresponding loqjc is on print K9.

DAT 'fRAN (1) H

BUS CONTROL

ALLOW BY"!!: !-1 i

AM.UX

ENAB STOV L s Enabl~1 ~taek
det~ctlon circuit on ~rlntKB.

ENAB DBE L @ Enables
foreei proeessor to
bUI Irror durlnQ
Correlp~nd1ng loq!e on

circuitry wh!~h
~alt on netectlnQ a
this mlerostep.

print Kll.

LOAD PSW L e AlloWI the psw register to be
loaded upon comolet1on Of this mierostep.
See prints Kl 8nd K2.

LOAD CC L .. AllowS the eondi tiOI") codes fIl,

'1., V and C to be loaded UPO!"! eo mpl!et1on of
thIs Illierost~p. Circuitry is !lh(')Wn on
print Kl.

eUT BUT BUT OP€RA.TION
02 01 00

'" 0 0 UNIISED
ill 0 1 UNUSED
It! 1 " BUT nf:<;ST L

""
1 1 LOAD C:C L

1 0 0 F:NA8 DuE L,
1 0 1 [,OaD PSi'! L
1 1 0 ENAB STOV I,

1 1 1 UNUSED

Ena~lts data transfer circuitrY on print
K6. Innleates that the processor 15
performing a UNIRU5 transfer durlna this
mlc'fostePe

EI"HlbUiS tt'1e UNIBuS control lines BUS Ck\ L
and 8US Cl L a$ follows.

Ct(1JH C0 (1 H~ TRAI~SfEP

'" III DATI
0 1 DA'flP
1 0 DATO
1 1 OATOP>

Gat@s the UNIBUS control BUS M5YN L w~en
bvt~ instructions are beinQ ~erformed
(~rlnt Kil. Al~O helps qen@rate the
&1;nal Kg INH +1 L during bvt~ operations.

Controls the I!lect 11ne~ of the AMUX
aecordlncr to the followlnn.

ENAB SEX (1) L

lLU S3-lLU 50,
ALU MOO!, and
lLU CIN

SPA MUX

ROM SPA

AUX SETUP

LOAD IR

SPA MUX
51

o
o
1
1

6,0 MICROCODE

1

6

o
o
1
1

o
1
o
1

Paqe 98

PSW
lLU outputs
Service vector
UNI8US DATA

Enables the Data Path (prints ~1 and K2)
loqle which extends the Sign of the data
In the low byte of the BPEG (bit 07)
through the bIts ot the uoper byte.

Determine the operation performed by the
16-b1t ALU according to Table 9. These
l1nel are allo wire-ORect allowing the
AUXILIARY CONTROL circu1try to determine
the ALU operations accordIng to taole 12,

Controls the select lines ot the srateh
Pad Address MultIplexer.

SPA MUX SPA ~UTPUT
80

~ BUS ADDRESS BITS ~0·03
1 INSTRUCTION REGISTER BITS 06-08
o INSTRUCTION REGISTER BITS 00-02
1 CONTROL STO~E ROM SPA 00-03

4 Allow microinitruct1ons from the CONTROL
STORE to determine which Scratch Pad
reqllter will be addressed during the next
microstep unless otherwise expressed cy
the SPA MUX control lines previously
mentioned,

t

1

Enables the AUXILIARY CO~TROL ~oms during
operate microinstructions.

Allows loadlnQ of the Instruction
ReQlster, (print Kll)

A complete set of microinstruction flows 1s shown 1n blOCK dlaqra~
form 1n the en9ineerinQ circuit schematic package, figure 33 15 a
simplified version that provides an overview and aids 1n usinQ the
detailed floWS, No attemPt will be made in this manual to trace each
path of this microcode, but the tollowlnQ examples Should provide an
adequate back9round for the reader.

KDJ/D

SIMPllnr{) FLoIN' DIAGRAM

-.--~-
.,JUMP I

STORE OLD PC
CAICULA~= I'IE\1I FC I.
CONTltlvE:

JMP~J/-=-7---=:-1

\

~

F/31A. ye. ~}

;,iR.
ST:ORE: OI.D PC
CAL C U'-ATE NEW Pc.

coNTINUE:

.TSR MOOtS 1-7

I
I

I

SWAB

.lp,<Q
S.... •

CALCVLATE DES1"ADlJR.
GET OE:ST DA"TA

PfRF"aRM CPERAT''''''

SW8 MOD'S 0-7

t +

~"'v-.
,rI.

ROTATES

CA LCULAT E DEST A~DR.

GET DEST DATA
PE:RFoP.M OPERATlo,",

.qOT MOPE'S 0-7 ,

¥ "''''r "'" If{TERfl.VPT

i
:4--'

50VRCE
CALCULATE SOIJRC. "ODR.
GeT SoVA:tf' DATA

PDSIT;ON ~oR s;"c J"lST,

MD DJFY O£~TINi1T/ON
CP,lCVLATf DEST AI?R.
GET oEST OATA
PERrORM OPFP.ATION

MOMpj- MDM7

----l

-.

NON-MODIFY onT. 1
CALCULATe Ot"STADDRI

GET O.':T DATA ,
P'£"'F~R.\1 OPCfV.TION :

1/0"'1'- I'll"" 7_ ::J

I
I

I
.J

~
~
~
......s,.

Pa;e 100

6,2 FLOW NOTATION

6.2,1 Mieroltep Mnemonic Name.

All microsteDs have ~nemonic name. Wh1ch .lgnify the type instruction
being performed. A mleroroutlne w111 often weave back and reuse pert
of another if the operation. are 1dentical, To Understand the
signIficance of the various mnemonIc names the tollowln~ definitions
apPlY, All xs shown indicate the 1n.truetlon mode and Y indicate the
step number,

MNEMONIC

MDMX·Y

P'Y

SERV

TRAp·y

ROTX-Y

SWBX-Y

RSET-Y

CCC .y

SCC·Y

DEFINITION

Source mode
instruction.

mieroiteps tor any doUble operand

Destination mode microstepi for Modifyin; ~ouble and
slnqle operand instruct1ons,

Destination mode m1erosteps for Non Modifvlnq double and
sinqle operand instructions.

Micro.teps contained In FETCH microroutine.

SERVICE microcode stat.

MicrostePI used upon recogn1t1on of an interrupt, or trao
instruction (lOT, BPT, EMT or TRAP).

Micro.teps for ROTATE and Arithmetic Shift instruetions,

Mlcro.tepl for SWAB instructions

Mierosteps for JUMP instructions

Mierostep. for JUMP to SUbroutIne instructions,

Microltep. tor Return from subroutIne instructions

Microlteps for Return from Interrupt RTI and Return from
TRAP CRT!) Instructions,

MlerostePI for WAIT instructions

RESET instruction mlcro.tePI

CLEAR Condition Code microsteps

Set Condition Code micro.teps

Microltlp for rest.r~lnQ from a power failure.

5MBO-Y

MXOB-Y

MXEB-Y

NMES-Y

MOV·Y

ROTe-Y

PliljJ<; 101

Source routine mlcro-teps for even byte (except Bouret
mode 2) instructions,

Source routine microsteps for odd byte (except source
mode 2) instructionl,

Source·routine miero.teps tor lource mode 2 even byte
1 n. true t1 ons ,

Source routine microlteps tor source mode ··2 Odd byte
ins truet1ons,

ModifY byte Inlt r uct ion microl teps f or des tlnatlon ~lr,ode
0,

MOdify odd byte instruetion mierosteps for destination
mode X as shown.

ModifV even byte instruction mieroitepi for destination
mOde X as shown,

Non-ModifY even byte Inltruction
destination mOdes 0 and 1,

Non-Modify odd byte Inst ruction
destination mode 1 •

Non-ModUy odd byte instruction
destination mode 2,

Non-Modify even byte instruction
destination mode 2,

mlerosteps

micro8teps

mlcrosteps

microsteps

Mierosteps for MOVE instruction destination mode 0~

for

for

for

for

ROTATE byte InstrUction mierosteps f~r destination mode
0,

ROTATE Odd byte instruction mierolteps for destination
mode X,

ROTATE even byte Instruction mierolteps for destination
mode X.

6.2.2 Flow Notation GlossarY

The block floWS should be self-explanatory. To aid 11'1 understandlnQ
them, the fOllowlnQ QloSlary ~f flow notation should be reviewed.

Oesignatlon

SA -• DATI
PlUs
PC
B
IR
B Sf;X

RS

RO

Rn

ALBYT
ENAB OVER
ENAB DBE
DATO
D~-TtP
ROB

Jim
Rn OP B

SUT
COND CODES

UNIBUS DATA

S(SWAB)

MINUS

r~ow NOTATION GLOSSA~Y

Definition

UnibUs Bu. Address lint.
Assignment operator
separator
Initiate DATI operation on unibUs
Plus, the arithmetic operator
Program Counter. scratch pad register 7 (R7).
e Register
In.truction register

Paoe 102

B Reg sign extended Cbit 7 repeated in bits 8 through
15) •
Scratch Pad Register speCified by the source portion Of
the current Inltructlon rIP (916)J
scratch Pad Reqllter specified by the destination
portion of the current instruction IR (210)]
scrateh Pad ~'91.t.r n specified by the CONTROL STORE
ROM SPA Une ••
Allow byte Unibus reterenee
Enable the Itack overflow detection logic.
Enable the dOUble bus er-ror detectton logic.
Initiate OATO operation on UnibUS
Initiate OATIP operation on UnibUS
Lower byte ot the Scratch pad Register specified bY the
destination ~ortion of the current instruction.
Specifies m as the mnemonic Of the next ~lerostep.
ALU function determined by the Auxiliary ALU control
lOQlc al a function ot the instruction currentlY In the
Instruction Reqlster.
Branch on mlcrotest.
Set condition codes CN,Z,V and C) accordinq to result
of operation being performed bY the ALU.
Data being received from the UNIBUS data lines BUS 000
r.,-aus 015 L.
Contents of B ReQister with upcer and lower bytes
swapped.
MINUS the arithmetic operator.

6.3 MICROPROGRAM EXAMPLES

6,3.1 PDP-11 Instruction Interpretation

To Ulustrate the interl:)retatlon of! PDP-i1 instruct ions, the execut10n
of a CMp instruction is traced throuQh the microcode. The machine is
in the RUN state Cl,e., the maChine 11 executing instructions) and the
instruction is located in memory location 100~,

Location

1000
10.02
1004

•

•
1106·

A"embler. SymbolIc

eMp U5, CHAR

CHARI WORD 0

Octal

022767
11.100015
090100

Page 103

ThIs Instruction~com~arel the literal 15 to the contents of CHAR and
sets the condItion code accordingly. Source mode is immediate (n'ode
2, regIster 7 a PC) and destination mode 11 relatIve (mode 6, reqlster
7 a PC).~laure 34 .hows the simplified flow for the C~p example,

Figure 34 eMp *15, CHAR (022767), SimPlified Flnw Dlaqram

First the Instruetion is fetched from memory (microsteps Fl and F2).
This Is the same fetch microroutine used to get each instruction from
memory a~d uDdate the PC,

BUT SERVICE
CONSOLE
(START OR CONTINUE)

(ADDRESS MODE 6)

FETCH

Figure 34 CMf' # 15, CHAR (022767), Simplified Flow Diar.r:JIll

Loe UlON
NEXT

LOCATION
fvlICRonEP

0WIFlEORI!:D F2
with oUut
ot inHruction
deeod4!!d

NAME ACTION

r1 SA_Fe,DAT!,
B.!~~UNIBU5 DATA,
J/F2

PC_PC PLUS 2,
BUT Ip DECODE,
J/StRV

COMMENT

DriVe tl'H!! UNIBUS ADDRESS lil"'es
with the contents of the
PC (R7) and initiate a DATI
tran$fer. Load the data
reeelY~d from memory into
both tnt B Register and the
Instruction ~eglst~r. Jump
to tne next mierostep f2
(Loe. 123).

Add two to the contents ot the
Prograw Counter Braneh on
~icro telt to the instructiol'"
routine deter~1ned by the
In6truetlon decode logic.

Since the in~truetlon 11 of the doubl~ O~tr~nd qroup, the ne~t ite~ is
to get the ~ourc~ data. Sourc@ mod~ 2 11 autolncr~ment[Autolner~ment
implies one l@V~l of d@f@rr~d ~ddr~lslnq)e Wh@n ~I@d with R7 (pelf it
becomtm an imm~dlate moot.

LOCATION

62

114

104

NEXT
LOCATION

114 WIREORED
with BYTE
.utus

104

o wIREORD
wi th .dut lIIode

MICROST!P
NAM! ACTION

8M2-1 BA.RI,DATI,
ALen!,
B_UNIBUS DATA,
BUT BYTE,J/SM202

5M2-2 RS.RI PLUS 2,
J/SM0-2

Rl1.B,
BUT OEST,J/SFRV

Paqe 105

COMMENT

Place the contents of the
lource register I~ecifed by IP
(08106) on the UNIBUS Address
line.. The register will
cont41n- the locat ion of the
louree data (1002) in this
example, Initiate a UNIBUS
DATI to actually qet the
data. ALBIT w1ll allow an
Odd U~IBUS transfer, '1f the
IR contains a byte
Inltructlon and the SA
contains an Odd address.
Without the ALBIT, a UNIBUS
transfer that addresses an
odd BA reSUlts in a bUS
error.

InPut the data from memory
1nto the B Register and
microbranch to the followinq
locat1ons dependinq on
Whether a byte (odd or even)
instruction is ~einq
performed.

SM2-2
SM.BE-1
5MBO·1

tor not byte
for even bytes
for odd bytes,

Add two to the contents of the
lource register. M1crobranch
to the next m1crostep SM0-2
(104) •

Store source operand
scratch Pad Register 11
microbranch to
deltination routine.

1n
and
the

~he mlcroroutlne start1ng in NDMS-l will get the destination data an~
perform the operatiori· Indicated bY the Op CODE of the instruct1on.
Mode 6. when used with the PC. requires that the index contained in
the word currentlY pOinted to by the PC be added to the updated PC
(address of the index .wordplus twO) to qet the locat1on of the source
data,

LOCATION

235

235

231

164

164

MICROSr€p
NAME ACTION

NDM6-1 BA.PC,DATI,
B ... UNUWS DATA,
J/NDM6 .. 2

NDM6~2 PC~PC PLUS 2~
J/NDM6 .. 3

NDM6-3B_B PLUS RD,
. JINDM] ... a

~D~]·4 BA.R12gDATI,
ALen,
b_unllHllt datA,
BUT B!TE,J/NDM0~2

NDM0-2 8_Rll OF B~
COND CODES~
J/SEFlV

SEFW B.,.UNI8US DATA,
BUT SERVICE,J/Fl

COMMENT

perform a UNIBUS DATI transfer
to obtaIn the index wor~ and
pl_ee it 1n the B Register.
Mlerobrenen to step NDM6 s 2.

Ad~ two to the eontent$ of tne
pro~ram counter and
mierobr&neh to NOM6-3.

Add index word to contents at
destination reqlster specitied
bY IR (2!0) to obtain address
of d~stinetlon operand.

TRANSFER addre~s of destination
operand to $Cratch
pad UQUtlH 12.

Place d<inatlon address
(Ri2l on UNIBUS and perform
UNIBUS DATI operation. ALBYT
.111 allow an odd UNIBUS
transfer If the IP contains a
byte instruction. Input
destination operand an store
it In the B Reqister.
Microbr&n~h If byte
instruction to one of the
£0110wlr'l\3.

NDOg-1 if odd byte
NOES-! It even byte
NDM0 e 2 If not byte.

operate (CMP) on source and
d~!U1'\aUon OPerands find set
condition eode~ accordinG to
re§ult.Mierobranch to
SERVICE.

At the end ot e~Ch In$tructlon~
yarlous situations that
~ttempt to lnterveMe before
the next instruction 1s
f~tened. Their prloilt1res
~re arhitrated a~ shown in
T@ble 13. If no conditions
with hlqhar priority exist,
the mlcro~roqram p~oceeds to
the next FETCH CFtJ.

This eompletel the example of the mierQProq_rrn Interpr~tetion of CMP
~S,CHA~. It may be useful to tr~ee thil or some other 1nitruetlon

Interruptm And trapl ~rs &180 &~compllsh@~ by th~ mlcropro~r~m. Th@
follow Is t~e mieroeode n@Cl8sary fer the$e routine~.

NEXT MICROSTEP
LOCATION LOCATION NAME ACTION

o 102 SERV B_UNIBUS DATA,
BUT SERVICE,
v/F1

20 101 TRAP-2a R6.R6 MINU$ 2,
I!NABQVE:R.
JITPAP"]

101 105 TRApeli BA.R6 9 DATO,
[NAB DB!:,
UNISUS DATA ... PSW,
,,/TRAP"'"

105 110 TRAP-4g R6~R6 MINUS 2,
ENABOVER~

JITRAP"S

111 112 TRAP~62 BA~R6/DATO,
UNIBUS DATA ... B,
J /TRAP.,7

112 113 TRAP-'s NOP,J/TRAP*8

113 115 TRAP-B. BA.Rll,DAT1,
e ... mlIBUS DUA,
J/TRAP .. g

115 120 TRAP~91 Rll_R13 PLUS 2,
JITRAP"10

120 121 TRAP-10g PC_B,J/TRAP-11

121 122 TRAP-iii BA_Rl1,OATI,
B~UN:nU.s DATA,
JIT~AP"12

COMMENT

'BRANCH ON SERVICE REQUEST
,LOAD VECTOR INTO BREG
,IF SERVICE REQUEST GO TO TRAP~l
,If NOT SERVICE REQUEST GO TO Fl

!MOVE CONTENTS OF B REGIST~R
,TO 5P REGISTER 13

,SUBTRACT TWO FRO~ STACK
,POINTER, PERMIT OVERfLOW

,OUTPUT PROCESSOR STATUS TO
J5TACK, ENABLE DOUBLE
,BUS UROl>

,SUBTRACT TWO FROM STACK POlhTER
,ALLOW QVIl.':RP'LOW

,MOVE CONTENTS Of PC ~O B REGISTER

,OUTPUT PC TO STACK

,MOCK MIReD-STEP

,INPUT NEW PC FROM MEMOBY
ADDRESS SPECIFIED BY SF REGISTER

,ADD TWO TO SP REGIST8R 13

SLOAD NEW PC

,INPUT NEW PROCE50R STATUS INTO REGIST£R
,FROM LOCATION SPECIFIED BY
, SP REGISTER 13.

122 °

6.1.3 Reltarta From Power Failure

,~OAD NEW PROCESSOR ITATUa
,INTO paw REGISTER

Upon relterting thl KOltD, the proel.,or beginl running the mieroeode
routine at MPC loeation one. Thil routine allowl thl proelilor to
obtain itl PC (program eounter) and paw (Proeellor s~atu. Word) from
memory and then begin runnlnq the program IPeelfied. Th11 Rlltart
routine 11 as followi.

NEXT MICROSTEP
LOCATION LOCATION NAME

362 REST-I,

362 363 REST-21

363 3H REST-3,

364 365 REST-41

365 366 REST-51

366 367 RE:ST-6t

367 lHJ REST-"

370 113 REST-S,

113 115 TRAP-Bt

115 120 TRAP-9t

120 121 TRAP-101

ACTION

B.PC,J/REST-:Z

R5.B,J/REST-3

Rll.0,J/REST-4

P13.RU PLUS 2,
J/REST-5

Rll-RU PuUS RU,
J/REST-fj

RU.RU P~US 1,
J/REST-'

RU.RU PLUS RU,
J/REST-a

Rll.RU P~US Rll,
J/TRAP-a

BA.JH 3, DATI,
B.UNIBUS DATA,
J/TRAP-9

RD.RU PuUS 2,
J/TRAP-10

PC.B, J/TRAP-ll

COMMENT

,PROGRAM COUNTER TO B REGISTER

,MOVE B REGISTER TO REGISTER 5

,ZERO SP REGISTER

,PERFORM NEXT 5 STEPS TO

,OPTAIN 24 AI THE CONTENTS

,OF SP REGISTER 13

,INPUT NEW PC FROM MEMORY
,ADDRESS SPECIFIED BY IP REGISTER

,ADD TWO TO SP REGISTER 13

,LOAD NEW PC

Page 108

121 TRAP-11I BA.RU,DATI,
B.UNIBUS DATA,

,INPUT NEW PROCESSOR ITATUS INTO REGISTER B
,tROM LOCATION SPECIrIED BY

122 0 TRAP-121

JITRAP-12

PSWB,J/SERV

,SP REGISTER 13.

,LOAD NEW PROCESSOR STATUS
,INTO paw REGISTER

:
Ij

t

II

