
ERROR DETECTION, RECOVERY AND

REPORTING REFERENCE MANUAL

Order No. EK-SEDR R-R F-001

ERROR DETECTION, RECOVERY AND

REPORTING REFERENCE MANUAL

Order No. EK-SEDRR-RF-001

digital equipment corporation · maynard. massachuset.ts

First Printing, February 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright ~ 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECsystem-20

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-10
TYPESET-ll

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

1.1
1.2
1.3
1. 3.1
1. 3.2
1. 3.3
1. 3.4
1.4
1. 4.1
1. 4.2
1. 4.3
1. 4.4
1. 4.5
1.5
1. 5.1
1. 5.2
1. 5.3
1.6
1.7
1.8
1.9

2

3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4

4.1
4.2
4.3
4.4
4.4.1
4.5
4.5.1
4.6
4.6.1
4.6.2
4.7
4.7.1
4.7.2
4.7. 3

CONTENTS

INTRODUCTION AND OVERVIEW

BACKGROUND
ERROR CATEGORIES
USER PROGRAMMING ERRORS

Violation of System Architecture
Data Programming Errors
Storage Allocation Errors
Control and Recovery of User Programming Errors

MONITOR ERRORS
Bad Programming
Unexpected Combinations
Outside Errors
Monitor Self Checks
Recovery of Monitor Errors

HARDWARE ERRORS
CPU
Controllers and Channels
I/O Errors

CHECKPOINT/RESTART AND BACKUP
OPERATOR MESSAGES AND SYSTEM RECONFIGURATION
ERROR REPORTING TO FIELD SERVICE
SUMMARY

TOPS20 ERROR DETECTION AND RECOVERY (to be supplied.)

HOW TO RUN SYSERR

INTRODUCTION
BEFORE RUNNING SYSERR
GENERAL COMMAND STRING
OTHER CONTROL SWITCHES
EXAMPLES
OTHER COMMANDS
INDIRECT COMMANDS

SYSERR REPORT FORMATS

INTRODUCTION
REPORTING CONVENTION USED IN SYSERR
HEADER FORMAT
TOPS20 SYSTEM RELOAD

Reload Breakdown
TOP20 BUGHLT-BUGCHK

Report Contents
MASSBUS DEVICE ERRORS

Sample Report
Report Description

FRONT END DEVICE ERRORS
Report Description
LP20 Report Description
CD20 Report Description

iii

Page

v

1-1

1-1
1-2
1-3
1-3
1-3
1-3
1-3
1-5
1-5
1-5
1-5
1-6
1-6
1-7
1-7
1-7
1-8
1-11
1-12
1-13
1-14

2-1

3-1

3-1
3-2
3-3
3-5
3-6
3-8
3-9

4-1

4-1
4-2
4-3
4-4
4-4
4-5
4-6
4-7
4-7
4-10
4-11
4-11
4-12
4-12

CONTENTS (Cont.)

4.7.4 DHll
4.7.5 KLCPU
4. 7. 6 KLERROR
4.7.6.1 Report Description
4. 8 FRONT END RELOADED
4.8.1 Report Description
4.9 PROCESSOR PARITY TRAP
4.9.1 Report Description
4.10 PROCESSOR PARITY INTERRUPT
4.10.1 Report Description
4.11 SUMMARY REPOHT
4.11.1 Report Description

CHAPTER 5 TROUBLESHOOTING DECSYSTEM20 WITH SYSERR

APPENDIX A ERROR MESSAGES

APPENDIX B ERROR FILE DESCRIPTIONS

APPENDIX C ASSEMBLY INSTRUCTIONS FOR SYSERR PACKAGE

INDEX

iv

Pa~

4-]
4-]
4-]
4-]
4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-3

5-1

A-1

B-1

C-1

Index-1

PREFACE

"To err is human. To really foul things up takes a computer."

Ever since the birth of computers, these collections of solder, wire,
silicon, and germanium have borne the brunt of many jokes. Most of
these jokes are about what happens when things go wrong. Even the
most knowledgeable people "inside the industry" quietly laugh when
computers make mistakes. These are the people who know the inner
workings of computers, and who often, unknowingly, refer to computers
as "he" or "she". Much information is available concerning how
computers do things right, but little is told about what really
happens when computers do things wrong. What happens when a
DECsystem-20 makes a mistake is the subject of this manual.

v

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

At first, computers were designed and operated to solve problems for
one person at a time. This person was knowledgeable in the workings
of the computer and its programs. Usually, when things went wrong,
the only visible indication was either smoke or a very wrong answer.
Since these early computers were most frequently used for long term
research projects, the identification and correction of problems was
not a pressing issue. If a problem took 3 days or longer to correct,
only one person at most was unhappy, and the new invention or theory
would be discovered a little later then otherwise expected.

As the usefulness and complexity of computer systems increased so did
the dependency on the computer's output. Computers were being used to
design new products, maintain inventory control, keep accounting
records for whole companies, and produce employee's paychecks. Here,
errors meant lost production time, shortages of critical parts,
serious errors in a company's financial reports, and late paychecks.
When errors were detected, the result was often lengthy "re-runs" of
jobs after the problem was identified and corrected by the computer
system maintainers. This identification process involved special test
equipment and programs, and while the system was "down" no useful work
was accomplished.

The computer systems of today are extremely complex,
highly-sophisticated packages capable of serving hundreds of people at
the same time, doing many different tasks. But the computers still
make mistakes or break down. However, today the computer system
recognizes its own errors or breakdowns. The system (both hardware
and software) has been specifically designed to try to recover from
its problems and provide system maintainers with detailed information
regarding the errors or malfunctions. If the system is unable to
recover from the error, the next goal of the system is to minimize the
effect of the error. By doing this, only the fewest number of jobs or
users are stopped from completing their tasks, and the rest may run to
successful completion.

The development of more effective and defensive error detection,
recovery, and reporting has played a major part in the development of
today's system because people have become more and more dependent on
computers to provide fast, accurate answers to their questions.

1-1

INTRODUCTION

1.2 ERROR CATEGORIES

In any discussion about error recovery , a brief description of the
errors likely to be seen is first necessary. These errors to he
aetected by the system can generally be divided into three basic
types:

1. User programming errors

2. Operating system or monitor errors

3. Machine failures

1.3 USER PROGRAMMING ERRORS

Although the identification and repair of user programming errors is
not the responsibility of field service engineers, you should be aware
that these errors occur and understand how they affect the entire
system. For this reason, only brief descriptions of these errors and
their general handling procedure are included here.

1.3.1 Violation of System Architecture

There are several types of user programming errors. One is the
violation of the architecture or the basic design of the system. The
programmer must follow the rules set by the designers of the system if
he is to use the system to get his job done. The best example of this
basic system design or architecture is the machine's instruction set.
Certain instructions may not be allowed to be executed by a user
program but are reserved for the programs which both serve and control
the users. These programs are called the operating system or monitor
and the reserved instruction may do I/O functions or control the
allocation of core memory. If a user program attempts to execute one
of these reserved instructions or attempts to execute an instruction
the machine doesn't understand, the user has violated the system
architecture and the error will be caught.

1.3.2 Data Programming Errors

Another type of user-programming error involves data programming which
may include either using the wrong format for data or incorrectly
handling the input/output resources. An example of wrong data format
might be incorrect specification of record length or operations on
data using the wrong assumptions about the data's layout. Incorrect
handling of the input/output devices might result from trying to do
data input from a device, such as a paper-tape punch or line printer,
that can only perform output.

1.3.3 Storage Allocation Errors

Still another type of user-programming error is an attempt to use or
address more storage space than has been allocated or reserved for the
program. This might even include trying to access more storage than
is physically present on the system. This would usually occur only in
programs which attempt to increase their storage capacity after the
program has started its run. This class of error may also include
attempting to access I/O devices which the program has not reserved or
which may not exist on the system.

1-2

INTRODUCTION

1.3.4 Control and Recovery of User Programming Errors

Control and recovery for user programming errors is accomplished by
both the system hardware and operating system software. In the case
of violation of system architecture, the CPU will most likely notice
the problem and alert the system software via an interrupt or perhaps
a trap. In any case, the user program is prevented from violating the
rules and the offending job is automatically stopped and given an
error message describing the violation. Data programming errors are
usually caught by the data management section of the operating system
as it performs the input/output request. Here the monitor may detect
that the wrong type device has been selected, the requested data is
not present, or that the data is different than that which the user
expects. In cases where data for several different users resides on
the same or similar devices (such as disk packs) the monitor will also
check that the user is accessing his own data or is not trying to
modify someone else's data. Usually errors of this type will also
cause early termination of the user's job. The user's program may,
however, include special routines to attempt to figure out what went
wrong and correct the problem. In the event the operating system or
the hardware or both detect a user trying to access storage space or
devices not allocated to him, control is immediately transferred to
the monitor and the user's job is stopped. The monitor may, in some
cases, attempt to allocate the additional storage the user tried to
access. If the monitor is successful, the user's program will be
continued; otherwise the appropriate error message will be given and
the user's job cannot be continued (will be aborted).

Almost all user programming errors will result in that user's job
being stopped. The rest of the users continue to run and in this
manner the system has minimized the effect of these errors.

1.4 MONITOR ERRORS

The second cause of errors to be considered is the operating system or
monitor. Here full identification of the error is sometimes much more
complex than identification of user programming errors. Again the
correction of pure monitor errors is not the responsibility of field
service engineers, but they must be aware of much more information
about this class of errors because many of the errors may be caused by
intermittent hardware problems. Field service engineers should be
capable of discussing monitor errors with software specialists to
determine if software or hardware is the cause of the failure.

Monitor or system software errors can be attributed to three major
causes:

1. Bad programming initially

2. Unexpected error combinations

3. Undetected errors or outside errors

1.4.1 Bad Programming

Operating systems or monitors are developed by highly
systems programmers who have an intimate knowledge of both
hardware and software architecture; but they are still
sometimes make mistakes. Most of these mistakes occur when
designer doesn't consider each possible eventuality when

1-3

competent
the system
human and
the system
developing

INTRODUCTION

the system. In some cases the programmer may consider how a system
may arrive at a given point but he may not know how to get out of the
point. This may occur when three or four or more situations occur at
the same time with each situation interacting with the others to make
the point more complex. Without extremely careful consideration by
the developer, the monitor may take an erroneous path out of the
situation and cause some violation to be detected several hundred
instructions later. In cases such as this (which occur very seldom)
the system may not be able to recover at all and must stop all jobs.

1.4.2 Unexpected Combinations

Indeed, some of these interacting situations which are seldom
encountered are in fact unforeseeable by the programmer wh~n he is
developing the monitor. It is not easy, if possible at all, 1n most
cases to determine whether the real error is a programmer's mistake or
a combination of unexpected events. Usually some method of feedback
is provided to inform the system developers of the failure so that it
may be prevented from happening again if possible. The effect of this
type of error can be serious if outside means of protection are not
employed as discussed later in this chapter.

1.4.3 Outside Errors

Other monitor errors may occur if another part of the system goes awry
without being detected. The most frequent of these errors causes
either a user program or the monitor to use bad data, make a wrong
decision, or otherwise get itself in trouble. The results are the
same.

1.4.4 Monitor Self Checks

Some errors detected by the monitor are the results of checks made by
the monitor on its own integrity. Frequently, different sections of a
monitor are used to perform some specific function using data supplied
when the function is needed. Although the exact data is not known
when the section is written, the data can often be described to be
within a certain range of values or in a specific format. In most
cases like this, the monitor checks these parameters of the data
before the numerical values are used. For example, an argument (data)
for a sub-routine may always have to be between 1 and 10. If the
subroutine always checks the argument to be within range, an earlier
undetected error may have caused the value to be 15 and the monitor
will detect the error. These forms of checking are sometimes called
range checks or consistency checks. The recovery depends on the
seriousness of the function. If the function is called to support
only one job at a time and is not capable of being retried, only that
job would be stopped. However, if the function affects all users or
the integrity of the operating system, then the monitor will stop all
jobs on the system. This is often called "crashing" either a single
job or the entire system.

In some cases the system software may arrive at a point or condition
that the programmer did not believe possible but coded for the
eventuality anyway. Usually the error detected here is minor and
affects no jobs. In this instance only a warning is usually given to
the system operator and the monitor continues.

1-4

INTRODUCTION

1.4.5 Recovery of Monitor Errors

Most errors detected by software, either user or monitor, are
considered more serious than any other errors. These errors usually
can not be recovered by restarting the function in progress. For this
reason almost all of these errors cause the abnormal termination or
crash of at least one job on the system. These errors are detected
only by the software without any indication of trouble from the
hardware. These errors are serious because software or programs do
not usually go bad with age. After the program is initially debugged
it does not change or degrade because of heat as hardware does. If an
error is later detected by the system, it is considered to be caused
by an event or eventuality the programmer did not consider, and
usually there is no program or function provided to correctly handle
the situation.

1.5 HARDWARE ERRORS

The third type of error detected by the system is caused by the
hardware or the machine itself. This is the most frequent type of
error and the responsibility for identification and correction of
these failures falls directly on field service engineers. The system
hardware can age and cause intermittent failures. These failures are
not permanent, i.e., the failure may not occur during two sequential
attempts at the same operation. For this reason the operating systems
of today expend a lot of effort to recover from this type of failure.
These hardware errors can be divided into three categories:

1. CPU-instruction and addressing failures

2. Controller and channel failures

3. I/O errors.

Because the system hardware cannot be expected to operate continuously
without failure, producers of the hardware include facilities to check
the hardware operation. The most frequently used error checking
scheme is anyone of several types of parity networks although many
other schemes are available. Once the hardware has detected an error
it may either signal the CPU and system software that an error has
occurred or attempt to recover from the error and notify the software
if it cannot recover successfully.

1.5.1 CPU

Failures occurring in the CPU and main storage section of the system
are perhaps the most difficult to handle correctly. These failures
can easily modify either the operating system software or a user
program or cause instructions to be incorrectly executed. A failure
in an addressing section may cause the system to operate with wrong
data or unknowingly modify some other job's program or data. For
these reasons CPU errors will ordinarily cause the crash of a job or
the entire system regardless of whether a user or the monitor is in
control. The most recently developed CPU's have attacked this problem
by adding more checking circuits specifically designed to stop the bad
effects of an error once it has been detected. For example, if a word
(either an instruction or data) sent to the CPU by the memory fails a
parity check, the operation in progress is stopped before the bad data
is used. In this way, the system localizes the effect of the error

1-5

INTRODUCTION

and the impact of the failure is reduced. The operating system may
crash all jobs as a result but the system's data base (user's data
files and programs) will not be affected. In other instances the
operating system may be able to retry the failing instruction or
memory reference successfully and not have to crash any users at all.

1.5.2 Controllers and Channels

The second major section of the system is that section composed of the
various controllers and channels. The system controllers monitor and
control several I/O devices of the same type, and the channels of
various types connect the CPU and/or main storage units with the I/O
controllers or devices. Failures in this portion of the system can
usually depend on rather extensive recovery procedures to overcome a
problem. However, these errors are likely to affect several jobs or
users because each controller or channel can handle several I/O
devices being used by many jobs. The checking circuits employed here
are of the same type and perform the same function - ensure the device
is correctly performing the requested operation and ensure the device
is transferring the requested data correctly. Detected errors are
signaled to the CPU and monitor and may stop the current operation if
the error is serious. An example here might be a controller's parity
check of a command issued by the cPU. If this parity check fails, the
command would not be performed and the error would be signaled back to
the cPU.

The recovery procedure invoked by the operating system may be as
simple as retrying the failing operation a number of times or as
elaborate as finding another path to the same point, such as using
another controller attached to the same group of devices. Some of the
controller/channel errors are concerned with data errors. Here the
recovery procedure may include correcting the data after it is in main
storage using error information provided by the controller or channel.

1.5.3 I/O Errors

Errors detected by a single I/O device are recovered in the same
manner as channel or controller failures but usually the error will
affect only one job or task. The most frequently used form of error
recovery is the simple retrying of the failing operation. If the
failure continues for a specified number of consecutive retries, the
job or task is crashed. These retry procedures may include other
steps every so often during the recovery operation. These steps may
include such action as repositioning the heads of a disk drive before
every 5th retry or moving a magnetic tape over a tape cleaner
mechanism before every 4th attempt to recover. Other forms of I/O
error recovery may include moving the data media to a different unit
if possible. For example, a reel of magnetic tape (the media) may be
moved to a different tape drive and the operation started again.

So far we have seen that there are several methods which may be
employed to attempt to recover from errors after they have been
detected. Those detected by software alone are more difficult to
recover and have more severe impact on the system. Those errors
detected by the system hardware vary in both system impact and
recoverability. The impact and recoverability of the errors is
basically related to the logical distance away from the cPU as
summarized in Figure 1-1.

1-6

i-'
I

--.J

I
I
I
I
I ,

SOFTWARE

[MONITOR

USER
PROGRAMS

MAIN
STORAGE

ON·LlNE
STORAGE

Errors have increasiflg effect on system

- - - - - - Increasing capability to recover from errors

HARDWARE

CPU

CONTROLLERS/
CHANNELS I~------------~

CARDS

I/O DEVICES PAPER TAPE

+

H
Z
>-'3
~
o
o
c
n
>-'3
H
o
Z

INTRODUCTION

The methods already described only cover the initial attempts made to
recover from the error. Many of the errors still result in the
abn~rmal termination or crash of a job or the whole system. Recent
hardware and software development in the area of error detection and
rec?very has reduced,the number of errors which result in crashing the
7nt~re system. Th~s helps to achieve the goal of localizing the
~mpact of errors. Additionally, new hardware and software have been
designed to be more reliable and to fail less often. This all has the
effect of increasing system availability which is a measure of a
system's continuing ability to handle requests for computation.

1.6 CHECKPOINT/RESTART AND BACKUP

Another aspect of error recovery is the effort involved to get back to
the point of processing the job just before the error occurred.
Consider, far example, a job that requires eight hours to process. If
an error occurs during the 6th hour of the job's run, one of two
events will occur; either the error will recover successfully and the
job will continue (possibly without even knowledge of the error) or
the job will be crashed while other jobs continue to run. If the job
was crashed, the recovery cycle would not be complete until the job
was back at the point six hours into the "rerun". The recovery time
would include the six hours rerun time plus any additional time needed
to recover the original data.

In order to reduce this rerun time and help increase availability,
features generally known as checkpoint/restart are included in most
systems. This technique is simply the stopping of a job at regular
intervals and saving in auxiliary storage the current state of the job
and any program data, then continuing processing of the job. If a
fatal error occurs, the subsequent rerun of the job may start at the
last checkpoint instead of at the beginning. In our example, if
checkpoints were taken every 1/2 hour, the rerun time would be no
longer than 1/2 hour instead of six hours or more. The advantage of
this facility is obvious and is always employed in any system
environment where jobs are processed on a tight schedule or the output
must meet a deadline. The disadvantage is the requirement of the
additional auxiliary storage needed to hold the checkpoint.

This same general procedure is also employed to backup the entire
system data set. In most computer systems all of th~ system's data
base, both programs and data files, is saved on magnetic tape and
stored in special areas such as vaults. By using this facility the
system's data is never totally lost in case of a major disaster such
as a fire in the computer center. This method of backing up the data
may be done monthly, weekly, or even daily depending on the
consequence of losing the most current data. Some computer centers
may even back up their data to fire storage each time the data is
changed.

1.7 OPERATOR MESSAGES AND SYSTEM RECONFIGURATION

The second goal of error detection and recovery is to localize the
effects of every detected error. This can also be accomplished by
reducing the number of times the error occurs. If the error can be
prevented from repeating itself, the effects are limited. In most
cases of monitor and hardware errors a message is sent to the
operator's teletypewriter or display. Also, special programs have
been developed to report the status of the system, including error
counts, etc., to the system operator. In this manner the system
operator is knowledgeable of what the system is currently doing. If
errors start to occur, the operator may seek assistance to determine
the cause and find a solution for the errors.

1-8

INTRODUCTION

If several errors can be traced to a single unit, the operator may
attempt to recover whatever data was lost and then switch the units to
a duplicate device and inform the monitor that the defective piece of
hardware or software is no longer available. This process is called
reconfiguration.

After reconfiguration the system may operate more slowly or at a
reduced efficiency rate, but at least still operate until the faulty
device can be fixed. In some cases backup units may be used to keep
the system running at the same level. This method is rather expensive
in terms of additional hardware but may be required in critical
applications.

Several of the error messages for the operation will also include
directions for corrective action or steps to be performed as part of
the recovery sequence. For example, if a deck of cards being read by
the system has an error, the message to the operator would state the
error and tell the operator to put the deck back into the input hopper
of the card reader and restart the job. In another case the operator
might be notified of several non-recoverable errors while reading a
magnetic tape and the operator may be asked to move the tape to a
different unit and try the job again.

More sophisticated operating systems may even mark a device or unit
unavailable to itself after the error rate has crossed a specified
threshold. In this case, the operator would be notified after the
fact and may even be directed to contact the system maintainers about
the faulty device.

All of the methods and procedures discussed so far have dealt with
detecting errors and controlling the effects of these errors. Any
computer system which incorporates all or several of these functions
will provide more data integrity for its users. When errors occur,
the operating system and hardware will detect them and either attempt
to recover or crash the appropriate job to prevent damage to the user,
his data, or other jobs on the system. If several errors occur in a
non-critical section of the system, the faulty device may be taken out
of the system configuration until it can be repaired.

1.8 ERROR REPORTING TO FIELD SERVICE

In addition to providing more data integrity, more recent operating
systems help field service repair faulty devices or systems by acting
as a form of diagnostic when errors occur. This aspect of an
operating system or monitor is called error recording and reporting.
This capability has proven itself to be one of the most valuable tools
available to field service engineers. This facility has eliminated
many hours from system or device repair times, making the field
service engineer's job easier and increasing system availability to
the customer at the same time.

For the purpose of this discussion, a diagnostic may be considered to
consist of only two basic sections. The first section is an e~erciser
which creates activity (perhaps of a closely controlled type) on some
portion, if not all, of a system. Once an error is detected, the
second section of the diagnostic generates and presents to its user
information concerning the failure. This information either directly
identifies the failing component or provides enough information for
the user of the diagnostic to determine the failing component. This
information is presented to the user, usually field service, in a
manner and form that is easily understood by him.

1-9

INTRODUCTION

Because a monitor drives all of the system hardware in an interactive
manner for long periods of time, it can be considered one of the best
exercisers available. Once an error occurs, the error recording
sections of the monitor gather all of the available hardware and
software information concerning the error and preserve this
information in auxiliary storage for later reporting to field service.
The reporting section of the package, upon command, presents this
information to field service in a manner that is understandable and
useful in identifying the failing section or component of the system.

By using this capability long-term, exhaustive diagnostics do not have
to be run to recreate the errors and provide error information after
the error was originally detected by the monitor. Field service
engineers need only collect and analyze this data preserved by the
operating system to determine which devices are detecting errors.
Using the detailed information concerning these devices, field service
can then determine the most efficient method to accomplish the repair,
usually not requiring any diagnostic runs at all.

In addition to preserving information regarding hardware and software
errors, the monitor may also use this method to save information
regarding significant operational events such as system reloads and
system activity rates to help in determining overall system
performance and error rates for system devices.

This tool for field service, built into operating systems, coupled
with a functional level of understanding monitor error detection and
recovery procedures, can enable field service engineers to effectively
maintain systems in a professional manner with minimum interference to
customer's operating schedules.

1.9 SUMMARY

As the usefulness and complexity of computer systems increased with
development, so did the dependency on the computer's output. This
dependency was on both turnaround time and accuracy of information
which are affected by the error detection, recovery, and reporting
capabilities of the computer system.

The errors possible from a system are basically:

1. User programming errors

2. Monitor errors

3. Hardware errors

Those errors occurring in either a user's program or the monitor
usually have a more serious effect on either the user's job or the
entire operating system. Such errors are difficult to recover from
because of their complexity, but recent developments have helped to
reduce significantly the overall effects of these errors.

Hardware detected errors vary in recovery capabilities depending on
where the errors are detected. Recovery procedures may vary from
simple retry to more elaborate alternate path methods.

The effects of non-recoverable errors have been reduced through the
use of checkpoint/restart and backhlp procedures. Reoccurring errors
may sometimes be prevented by system reconfiguration techniques or
backup devices.

1-10

INTRODUCTION

All errors are usually reported to the operator of the system and
detailed information about errors may be preserved in auxiliary
storage for field service analysis. Effective use of these recording
facilities of the monitor can enable field service to diagnose system
malfunctions without running long duration diagnostics to recreate the
problem. This tool may be the most used and most helpful tool in the
field service engineer's toolbox.

1-11

CHAPTER 2

TOPS20 ERROR DETECTION AND RECOVERY

(to be supplied)

2-1

CHAPTER 3

HOW TO RUN SYSERR

3.1 INTRODUCTION

SYSERR is a user program to list the contents of the system error
file. To run the program you must be "logged in" and have maintenance
privileges. If you are not familiar with how to "log in" to the
system, refer to the manual GETTING STARTED WITH TOPS20.

3.2 BEFORE RUNNING SYSERR

After logging in and before running SYSERR you must have two special
areas defined for you to access. These two areas are <SYSTEM>, where
the error file exists; and <SUBSYS>, where the compatibility package
exists. To do this, type the following on your TTY:

@DEFINE(SPACE)SYS: (SPACE) <SYSTEM>,<SUBSYS) (CR)

NOTE

All commands which are input to the
system are underlined, "(CR)" means
carriage return and "(SPACE)" means a
single space.

If you have already defined the logical name SYS, redefine it to
include <SYSTEM> and <SUBSYS>.

To check your logical name-assignment, type

@INF(SPACE)LOG(CR)

NOTE

As described in Appendix C, the SYSERR
package consists of 3 modules, SYSERR,
SYSERD, and SYSERS. All 3 must reside
in the same directory. Normally this
directory is <SUBSYS>; however, if the
3 modules are in your own directory the
logical name SYS must be defined to
include "DSK:" as the first logical name
in the assignment for the package to
work correctly. The correct command for
this is

@DEFINE(SPACE)SYS: (SPACE)DSK:,<SYSTEM>,<SUBSYS>(CR)

3-1

HOW TO RUN SYSERR

To call the program SYSERR, type on your TTY:

@SYSERR (CR)

and the program will respond with

*
indicating it is ready to accept your commands.

3.3 GENERAL COMMAND STRING

The general form of a command string to SYSERR is:

* ODEV:OFILE.TYP=IDEV:IFILE.TYP/SWITCH/SWITCH ... (CR)

where:

ODEV:

OFILE.TYP

IDEV:

IFILE. TYP

/SWITCH:

The output device where you want the listing file.
May be any device which can perform output.

NOTE

will If "ODEV:" is "LPT:"
automatic spooling;
"PLPTO:" output will go to
printer O.

you
if "ODEV: "

physical

The name and type of the listing file.

get
is

line

The input
resides.
input.

device
May be

where
any

the system error file
device which can perform

The name and type of the input file.

The control switches which tell SYSERR what types
of errors or listings you desire.

It is not necessary to type a full command to SYSERR because certain
portions have a default value which SYSERR uses if you have not
specified that portion of the command string. The default values used
by SYSERR are:

COMMAND PORTION

ODEV:

OFILE. TYP

IDEV:

IFILE. TYP

/SWITCH

DEFAULT

DSK: in your own area

The default is
specified such
MASALL.LST.

SYS:

ERROR.SYS

the listing control switch
as /MASALL. Output file would be

/ALLSUM - If this default is used the output file
name default is ERROR.LST.

3-2

HOW TO RUN SYSERR

The listing control switches available for use include:

/ALL

/ALLPAR

/ALLPER

/ALLSUM

/CPUALL

/CPUPAR

/CPUPER

/CPUSUM

/MASALL

/MASPAR

/MASNXM

/MASSUM

LIST ALL ENTRIES

LIST ALL THOSE CAUSED BY PARITY ERRORS

LIST ALL PERFORMANCE ENTRIES

GIVE ALL DEVICE SUMMARY

LIST ALL PROCESSOR RELATED ENTRIES

LIST THOSE CAUSED BY PARITY ERRORS

LIST ALL CPU PERFORMANCE ENTRIES

GIVE PROCESSOR SUMMARY

LIST ALL ENTRIES CONCERNING MASSBUS DEVICES
(TU16, TU45 & RP04)

LIST ONLY THOSE CAUSED BY PARITY ERRORS

LIST THOSE CAUSED BY NXM

LIST SUMMARY INFORMATION

3.4 OTHER CONTROL SWITCHES

Other control switches are also available to further control the
listing. This type of switch is used to select a particular device,
group of devices, or only errors occurring during a specific date/time
period. Switches of this type include:

/BEGIN:MM-DD-YY:HH:MM:SS Begin listing of entries logged on date
specified by MM-DD-YY. Other date
formats such as DD-MM-YY and JAN-16-1976
are acceptable.

/END:MM-DD-YY:HH:MM:SS

/DEV:name

/DEV:type

End listing
specified.
acceptable.

Select for
entries

of entries
The same

1 isting

on the
formats

only

date
are

those

which involve the device specified by
name or type. Available device types
include KLCPU, llCPU, LP20, CD20, DHll,
TU45, TU16, and RP04.

To indicate a specific disk drive (DP)
or magtape drive (MT) by /DEV:name, you
must use the form DPabc or MTabc, where

3-3

HOW TO RUN SYSERR

/DE'I'AIL :

/RE'IRY:

3.5 EXAMPLES

a

b

c

= the logical controller address.

the logical MASSBUS address.

= the logical slave address for
and 0 for DP.

NOTE

You will find these logical
addresses, by generating the
first summary listing.

MT

If /DEV:name is used, the listing
control switch, such as /MASALL, must be
used.

For TOPS20 systems, using only /DEV:type
listed above without a listing switch,
such as /MASALL, causes SYSERR to
examine each entry and force listings
for those entries whose device type
match that specified.

List all information for Massbus
magtape instead of brief listing.
be abbreviated to "/DET".

List only
count is
specified.

those entries
greater than

whose
the

and
May

retry
value

Following are several examples of command strings and explanations of
how they are interpreted by SYSERR.

EXAMPLE #1

* TTY: = (CR)

This is the first command which should be given to SYSERR. It will
list summary information about the entire contents of the error file
on your TTY. By examining this printout you may determine those
portions of the system which are of interest to you and give further
commands to SYSERR to list only the desired reports. Note that this
command used several default values. The values which were defaulted
are enclosed in [] and if the whole command were typed it would look
like:

*TTY: [ERROR.LST] = [SYS:ERROR.SYS/ALLSUM] (CR)

EXAMPLE #2

* TTY: =/BEGIN:-ID (CR)

3-4

HOW TO RUN SYSERR

This is basically the same command as Example #1. However, this time
only those errors which have occurred in the last 24 hours are
considered. The value specified in the /BEGIN: switch may be as
shown, or changed to increase number of days (-7D for 1 week), or a
specific date included as described under /BEGIN:

EXAMPLE #3

* =/DEV:RP04/DETAIL (CR)

This command tells SYSERR to provide complete, detailed reports for
all entries which concerned any RP04 in an output file called
ERROR.LST on your disk area. Again several defaults were used.

EXAl>lPLE #4

* = (CR)

This is the easiest command to type to SYSERR and it uses all of the
default values. It is identical to the action of Example #1 except
that the listing file, called ERROR.LST is generated on your disk
area.

EXAMPLE #5

* =/MASALL/BEGIN:JAN-1-76:13:00/END:JAN-7-76:13:00/DEV:DP030/DETAIL(CR)

This command will tell SYSERR to create a file named MASALL.LST on
your disk area which contains detailed information about all the
errors detected by device DP030 between the period from 1 PM on Jan.
1, 1976 to 1 PM Jan. 7, 1976.

EXAMPLE #6

* MTAl: =MTA2:/MASALL/CPUALL/BEGIN:-30D/END:-3D (CR)

This command tells SYSERR to create the list file on MTAI and read the
error file from MTA2. All entries concerning either a massbus device
or the CPU during a period beginning 30 days ago and ending 3 days aqo
will be listed. This example points out that SYSERR can process
multiple commands from one command string and does not need to always
have the input and output files on disk.

EXAMPLE #7

* /HELP (CR)

This command tells SYSERR you have forgotten how to give SYSERR
commands. The program will list a HELP file on your TTY which gives
abbreviated information on how to run the SYSERR program.

After each command is processed by SYSERR, the program gives a
carriage return, line feed and another prompt character (*) indicating
it is ready for another command. If no more commands are required,
type

* tc (control C)

and the program will exit back to monitor. If the output files were
created on your disk area they may be listed on the line printer with
the monitor command

@ PRINT XXX.LST (CR)

where XXX is the name of the file you want to list.

3-5

HOW TO RUN SYSERR

3.6 OTHER COMMANDS

If you are running SYSERR on an LA36 with wide paper, such as from the
local DEC office, an additional command to the monitor before you call
SYSERR will allow the full width of the paper to be used when summary
listings are printed on this TTY. The command is:

@ TERMINAL WIDTH 132 (CR)

3.7 INDIRECT COMMANDS

SYSERR has the capability of processing commands from a disk file as
well as from your TTY. This is called indirect command files and is
useful if you have several "favorite" commands to use in succession.
To use this function create a file of commands just as you would type
them on your TTY.

NOTE

SYSERR does not support line-sequence
numbers.

To tell SYSERR to use this file the command is:

* @ DEV:NAME.TYP (CR)

where DEV: is the location of the file (DEFAULT is DSK:) and NAME.TYP
is the name of the command file.

3-6

CHAPTER 4

SYSERR REPORT FORMATS

4.1 INTRODUCTION

This chapter describes each of the reports generated by SYSERR. It is
the intent of SYSERR to make each report self-explanatory for those
people who are knowledgeable of the system. This chapter is included
to provide information for those who are not familiar with the system
or who are inexperienced with SYSERR.

4-1

SYSERR REPORT FORMATS

4.2 REPORTING CONVENTIONS USED IN SYSERR

All numbers output by SYSERR are either octal, decimal, or otherwise
noted. All decimal values are followed with a period (.) to indicate
that they are decimal. All other values are octal. Values printed in
half-word format have leading zeros suppressed in each half of the
word and the halves are separated with a comma (,).

All register values which are translated to text, such as a CONI
value, have text translations only for bits or bytes of interest and
the whole value is dumped. For example, the CONI value listed might
include a DONE bit and a PI assignment, but these bits are not
translated to text.

All dates and times used by SYSERR, both in command strings and report
listings are local time unless otherwise stated. The internal
day/time maintained by the TOPS20 monitor and all day/time values
stored in the error file are recorded as GMT.

4-2

4.3 HEADER FORMAT

The top portion of each
type, when the entry
time, or uptime, at the
number of the CPU where

SYSERR REPORT FORMATS

report is the header. It describes the entry
was recorded by the monitor, the monitor run

time the entry was recorded, and the serial
the error was detected.

TOPS20 SYSTEM ~ELOADED(CODE 101)

LOGGED ON MON 12 JAN 76 9115105PM MONITOR UPTIME WAS 0100112
DETECTED ON SYSTEM. 1011.

The code number in parenthesis after the report name is the event type
number, as described in Appendix B, and is used by SYSERR to determine
how to list this entry.

4-3

SYSERR REPORT FORMATS

4.4 TOPS20 SYSTEM RELOAD

SAMPLE:

***********************.** •• *******************
TOPS20 SYSTEM ~ELOADEDCCODE 1~1)

LOGGED ON TUE 13 JAN 76 6115103PM MONITOR UPTIME WAS 0100.22
OETE~TED ON SYSTEM' 1031,

****.** •• *** ••••• *.********************.****.*.

CON~IGURATION INrORMATION
SYSTEM NAMEI V
MONITOR BUILT ONI
CPU SERIAL "
MONITOR VERSION.

RELOAD BREAKDOWN.
WHY PELOADI SA

1,02,35, TOPS-20
'PI 9 JAN
t031,
10235,

DEVELOPMENT SYSTEM '10l1
76 7136.27PM

This entry is created each time the TOPS20 monitor is loaded. The
configuration information section includes the system name specified
at the time the monitor was built, the version number and the date the
monitor was built.

4.4.1 Reload Breakdown

This section explains why the monitor was reloaded. If a BUGHLT
occurred and the system was set for auto-reload, the BUGHLT address
will be listed and a Code 102 (BUGHLT/BUGCHK Report) entry will
provide information about the BUGHLT which caused the reload. If the
reload was other than an auto-reload caused by a BUGHLT, this section
will list the operator's answer to the "WHY RELOAD" question asked by
the system software at startup. There are no restrictions on what the
operator may say; however, the answer should describe either what
happened to cause the reload, such as "BAD MICROCODE" or the expected
future status of the system such as "NEW VERSION," or "SCHEDULED."

4-4

SYSERR REPORT FORMATS

4.5 TOP20 BUGHLT-BUGCHK

SAMPLE:

TOPS20 BUGHLT-BUGCHK(CODE 102)

LOGGED ON TUE 13 JAN 76 tl35116PM MONITOR UPTIMF. WAS 2.36.29
DETECTED ON SYSTEM 1 1~31.

SYSTEM NAMEI V 1.02.35, TOPS-20 DEVELOPMENT SYSTEM 11031
SYSTEM SEPIAL •• 1031.
MONITOR BUILT ONI rRI 9 JAN 76 7136.27PM
MONITOR VERSIONI 10235.

ERROR INFORMATION.
DATE-TIME OF ERRORI TUE 13 JAN 76 1r35110PM
• OF ERRORS SINCE RELOAD. 1.
FOPK • , JOB '1 51,12
USER'S CONNECTED DIR,

LOGGED IN OIRITPORADA , MCKIE
PROGPAM NAME. EXEC
ERROR. BUGCHK
ADOPESS OF ERRORI 52211
NAMEI ILLUUO
DESCRIPTION. KIBADU. ILLEGAL UUO FROM MONITOR CONTEXT
CONTENTS OF AC'S.

01 0,0
11 0,215365
2. 0,303770
31 0,30
4 777777,13
5 40000,0
6 ~,100000
7 0,51

10 3,0
11 0,777777
12 0,370
13 22,356774
14 0,0
15 260740,301107
16 0,0
17 777642,777541

PI STATUSI 0,177
SELECTED VALUESI 2
0,0
4000,1
0,0
~,0

This report is generated each time the TOPS20 monitor detects anyone
of three general types of monitor software errors: BUGHLT, BUGCHK, or
BUGINF. The most serious of these is BUGHLT which will always crash
the system. At this point something is very seriously wrong and the
monitor doesn't have enough integrity to attempt any further error
recovery. The monitor will, however, collect pertinent information
for error recording. When the monitor is reloaded, this information
will be extracted from the crash dump file, if present, and
transferred to ERROR.SYS. BUGCHK and BUGINF are less serious, perhaps
correctable monitor-detected errors which may only affect particular
users instead of the entire system. These errors mayor may not crash
the user depending on the error which occurred. For a more complete
description of these types of errors, refer to Chapter 2.

4-5

SYSERR REPORT FORMATS

4.5.1 Report Contents

The upper section of this report describes the version and name of the
running monitor and is identical to the same section of the system
reload report. The ERROR INFORMATION section contains the majority of
information for this error. The date and time of the error are
included primarily to cover the situation of a BUGHLT finally being
reported some length of time after it occurred.

The number of errors since reload are listed because only 5
occurrences of this type error entry are allowed in the monitor's
error recording buffer at anyone time. In the case of an error
occurring in a tight loop, more than 5 entries could overflow the
buffer and the information for the first (and usually most
interesting) occurrence might be lost. These numbers should increment
by one for each report listing; however, if the sequence is broken,
it is an indication that more than 5 entries occurred before the error
logger module in the monitor could empty the buffer.

The FORK # and JOB # are the numbers associated with the current user
at the time of the error. A value of -lor 777777 indicates that the
monitor was performing an overhead function (such as scheduling) and
there was no current user. Note that the FORK # and JOB # indicate
the current user and not necessarily the user being serviced by the
monitor interrupt level routines (e.g., BUGCHK detected at interrupt
level during I/O for a different user).

The user's connected directory and logged in directory are also for
the current user and are listed along with the user's program name to
aid in identifying the person running at the time of the error. If
several reports indicate the same user and/or program, talking with
that user or examining that program should help in identifying the
source of the problem.

Following the user identification is information specifically
identifying the name and description of the error. If the "/DETAIL"
switch is used with the SYSERR command string, more information will
be listed which is useful for further analysis of the error. Included
are the contents of the monitor's block of AC's and the PI system
status. Some particular errors will also include "SELECTED VALUES." A
maximum of 4 values may be preserved in the error file. Description
of these values is dependent on the type of error which occurred and
may be obtained from the monitor listings.

4-6

SYSERR REPORT FORMATS

4.6 MASSBUS DEVICE ERRORS

This entry is recorded in the ERROR.SYS file by the monitor each time
an error is detected in the Massbus System including the Massbus
devices (RP04, TU45, and TU16), the RH20 controller, and certain
errors occurring in the channel logic.

4.6.1 Sample Report

The next two pages show sample Massbus device error reports.

4-7

SYSERR REPORT FORMATS

MASSBUS DEVICE ERROR(CODE III'

LOGGED ON TUE 13 JAN 76 12115103PM MONITOR UPTIME WAS 1116117
DETECTED ON SYSTEM I 1031.

UNIT NAMEI
UNIT TYPEI
VOLU"'E 101

DPI10
RP04

LBNI 59184.
CYL. 155. SURF.
OPERATION AT ERRORI
USFRiS CONNECTED DIR,

LOGGED IN OIPIUNKNOWN
USER'S PG"'I
USER'S FILEI

•
14. SECT. 4.
DEV.AVAIL., GO +

, UNKNOWN

200000,7
2.

FINAL ERROR STATUSI
RETRIES PERFOR"'ED'
ERROR. RECOVERARLE DRIVE EXCEPTION,

CONTROLLER INFOR"'ATION.
RH20 I 1

READ DATA(70)

CONTROLLER.
CONI AT EPRORI
COtJl AT ENOl
nATAl PTCR AT
DATU PTCR AT
DATAl PBAR AT
DATAl PBAR AT

0,202415 • DRIVE EXCEPTION,
0,2405. NO ERPOR BITS DETECTED

ERROR. 732201,177471
END. 732201,177771
ERROR. 720001,7004
END. 720001,7007

CHANNEL INFORMATION.
CHAN STATUS WD 0.

cw II 620000, '73 1000
CHN STATUS WD II

200000,200374
CW2. 0,0
!l40100,200375
604000,73161!0

• NOT saus ERR,NOT we • 0,LONG WC ERR,
CHtJ STATUS WD 2.

DEvICE REGISTER INFORMATION.
AT END OIry. TEXT

CR(00)
SR (01)
ER(02)
MR(03)
nA(A!)
OT(06)
LA (Ql7)
OF (11)
DC(12)
CC (13)
EP (!6)
PL(171

AT ERROR
4070 4010 60 DEV.AVAIL., READ DATA(70)
50700
100000
400
7007
24020
1740
I 0001/!0
233
233
5432
2000

DEVICE STATISTICS AT TIME OF

• OF READS. 94212. • or
I SOFT READ ERRORSI 1.
I HARD READ ERRORS. 0,

• soFT POSITIONING ERRORS.
I OF MPEI 0. I or NXMI 0.

10700 40000 ERR,MOL,DPR,DRY,VV,
0 100000 DCK,

400 0
7010 17 D. TRK • 16, D,SECT, • 7
24020 0
1320 460
100000 0 AT END. OFFSET • NnNE
233 0 155,
233 0 15!!.

0 5412
0 2000

ERRORI
WRITESI 87776, • or SEEKS • 20330,

I SOFT WR ITE ERRORS. 0.
I HARD WR ITE ERRnAll. 0.
0. I HARD POSITIONING ERRnRS. 0 •
I or OVERRUNS. 0.

4-8

SYSERR REPORT FORMATS

•••
MASSBUS DEVICE ERRORCCODE 1111
~OGGED ON TUE 11 JAN'6 114111RPM MONITOR UPTI~E WAS 2142111

DETECTED ON SYSTEM. 1911,
•••

UNIT NAME I
UNIT TYPEI
UNIT SERIAL II
VOLUME 101

MT952
TU45
0024

664, OF rILE • 0, LOCATIONI RECORD
OPERATION AT ERROR I
USER'S CONNECTED DIR,

DEV,AVAIL, GO + READ FWD, C101

~OGGED IN DIRIDEMO-I
USER'S PGMI AEGIS
USER'S FILEI
FINAL ERROR STATUS I
RETRIES PERFORMED 1
ERRORI NON-RECOVERABLE

, DEMO-I

II! ,I
31,
DRIVE LXCEPTION,

CONTROLLER INFORMATION I
CONTROLLER I
CONI AT ERPORI
CONI AT ENOl
DATAl PTCR AT
DATAl PTCR AT
DATAl PBAP AT
DATAl PBAR AT

RH2111 • 0 TM02'1 5
0,202415 • DRIVE EXCEPTION,
0,202415 • DRIVE EXCEPTION,

ERROR I 712205,17'771
E~DI 73221115,177'71
E~RORI 720005,111
ENOl 720005,0

CHANNEL INFORMATION I
CHAN STATUS WD 01 20000~, 43572

CWII 400120,546'63
CHN STATUS WD II
CHN STATUS WD 21

cw21 615520,257000
51110000,435'4 • NOT SBUS
60111111110,25"65

DEVICE REGISTER INFORMATION I

CRC0011
SRC0111
ER(02) I
MP(03)1
'C(05)1
DT(06)1
CK (07)1
SN C 1011
TC (1) I

AT ERROR
4970
54629
10931110
45600
3410
142012 "4
44
191062

AT END
4070
54620
IIII0llH"
45600
1410
142012
774
44
101062

OEVICE STATISTICS AT TIME or EPRnRI

Dlr"
o
o
o
o
o
o
o
o
o

ERR,

TUT
DEV,AVAIL, READ FWD,(71)

ERR,MOL,WRL,DPP,DRY,SDWN,
COR/CRC,PE"LRC,INC/VPE,

ACCL, .008PI NRI 10 CO~PATIBLE SLAVE .2

• or READS I 2754,' or WRITESI 0, • or SEE~SI I,
sorT READ ERRORS I 4, • SOFT WRITE ERRORS I III,
HARD READ ERRORSI ., • HARD WRITE ERRORS I III,
sorT POSITIONING ERRORSI 0, • HARD POSITIONING ERRORS I 0,

• OF MPEI III, • or NXMI 0, • or OVERRUNS I 0,

4-9

SYSERR REPORT FORMATS

4.6.2 Report Description

The UNIT NAME refers to the physical Massbus unit active at the time
of the error. This is a 5 character name of the format XXABC where:

XX is the device type

DP disk drive (RP04)

MT mag tape (TU45 and TU16)

A is the logical address of the RH20 controller for this device
(0-7)

B is the logical Massbus address for this device (0-7).
magtape units this is the TM02 address on the Massbus

For

C is the slave number of this magtape unit. For RP04 devices
this number is always O.

The LBN listed for RP04 reports refers to the Logical Block Number of
the pack being addressed when the error occurred and is translated to
cylinder, surface, and sector to provide physical location. For
magtapes, the record and file number are listed to show location.

The OPERATION AT ERROR is a decode of the last command issued to the
device before the error occurred. If this command does not agree with
the listed contents of the device's control register (with the
exception of the GO bit) an error in the control bus may have
occurred. The user's connected and logged in directory, and program
are listed for magtape units to aid in finding bad tapes which may be
causing errors. The ERROR statement is a text translation of the RH20
CONI at error. If the error was non-recoverable, the monitor sets bit
2 in the IORB status word (MB%IRS) and SYSERR states the error is
NON-RECOVERABLE.

The CONTROLLER INFORMATION lists the controller type and logical
address; and (for magtapes only) the TM02 logical address. This
section also lists the CONI's and DATAl's. PTCR is Primary Transfer
Control Register and PBAR is Primary Block Address Register. The
CHANNEL INFORMATION lists the contents of the channel's status and
logout area. The values listed for CWI and CW2 are the contents of
the address pointed to in the right half of Channel Status Word 0 and
the contents of the address pointed to +1.

The DEVICE REGISTER INFORMATION lists the contents of the device's
registers at the time of error and after the last retry, the XOR
difference and the text translation for the value at error. The only
exception to this is the RP04 OFFSET register. The text translation
for this register is the value at end and is noted by "AT END:".

If both the AT ERROR and AT END values for any register are zero, that
register is not listed.

The DEVICE STATISTICS provide an indication of the error rate. The
number of reads and writes for magtape indicate frames of tape
transferred and for disks this is the number of blocks transferred.

4-10

SYSERR REPORT FORMATS

4.7 FRONT END DEVICE ERRORS

These types of entries are recorded in the system error file by the
monitor as a result of a request for error logging from the front end.
These errors are detected by the front end and it gathers the error
information and passes the packet to the monitor across the DTE-20 for
error logging. The errors detected by the front end fall into two
basic types: those concerning the front end hardware and software;
and those concerning the KL CPU hardware and software. Descriptions
of the error detection, recovery and reporting for the front end may
be found in Chapter 2. Currently, reports are created for the
following "devices:" - LP20, CD20, DHll, KLCPU, and KLERROR.

4.7.1 Report Description

The top section for all reports is basically the same and includes the
DTE-20 logical address for this front end, the version number of the
front end Software, the FORK # and JOB # associated with this error.
If the FORK # and JOB # are 777777, 777777, this is an indication that
the TOPS20 monitor knows of this device but it is not currently
assigned to any fork or job. 777776, 777776 indicates the TOPS20
doesn't know anything about this device.

The upper section of these reports also includes the user's connected
and logged in directories and program name as well as the device name
and logical address. It also lists the octal value and text
translation for the standard status word generated by the front end
for each transfer across the DTE-20. It is the ERROR LOG REQUEST bit
in this word which causes the packet to be recorded into the error
file.

The remainder of each device report is dependent on the
being reported. If SYSERR does not know how to list
fact will be stated in the report and the entry will
octal.

4-11

type of device
a device, this
be listed in

SYSERR REPORT FORMATS

4.7.2 LP20 Report Description

FRONT END DEVICE EPRO~(CODE t30)

LnGGF.D ON WED 7 JAN 76 12138120PM MONITOR UPTIME WAS 0121145
DETECTED ON SYSTEM. 1031.

DTE20 " 0.
FE SnFTWARE VERI 0.
FORK ."JOell 35,t5
USER'S CONNECTED DIR,

LOGGED IN DIPIPORCHER , POPCHER
USER'S PROGRAMI TEeO
DEVICE. LP20 • 0,

STD. STATUS I 120 = ERROR LOG REQUEST,
LP2~ GEN STATUS. 0. NO ERROR BITS DETECT~D
LP20 DEVICr REGISTERS
LPCSRAI tt4102 • ERROR,DAVFU,ON LINE,INT ENB,PAR ENS,
LPCSRBI 10~e3 • LPT DATA PAR, DEMAND TIMEOUT,GO ERRnR,
LPBSADI 1~4504

LPRrTRI 354
LPPCTRI 7734
LP~A~OI t0V.0~

LPCCT~I 1~2 COL. CNTR. D 0 CHAR. BUF • 152

LPTDATI 1554t2 CHKSU~. 333 LPT DATA. 12

The device-specific section of this report includes the LP20 GENERAL
STATUS created by the front end software and contents of the various
LP20 controller registers. Text translations are also included for
both status registers and LPCCTR and LPTDAT. If the contents of a
register are zero in the error file, that register if not listed.

4.7.3 CD20 Report Description

••••••••••••••••• * •• ** •••• * •• ********* •• ******.
r~ONT END DEVICE ERRORCCODE 130)

LOGGED ON THU 8 JAN 76 111~8149AM MONITOR UPTIME WAS 2102150
DETECTED ON SYSTEM. 1031,

.******.***.* •••• * •••••• * •••• *.** •••••• ** ••

D1E20 '1 0.
rE SOFTWARE VERI 0.
FORK ."JOB'I 777777,777777
USER'S CONNECTED DIR,

LOGGED IN DIRIUNKNOWN , UNKNOWN
USER'S PROGRAM I
DEVICE I CD20 • 0.

STD, STATUS I 106 • ERROR LOG REQUEST,HDWR ERR OPR REQ'O,OFF LINY,
CD20 GEN STATUS I 17 • HOPPER EMPTY,STACK CHECK,PICK CHECK,REA~ CHECK,
C020 DEVICE REGISTERS
CDllST 10304 • OFF.LINE,REAOY,INT £NB,HOPPER CHECK,
COllDBI 177777

4-12

SYSERR REPORT FORMATS

As with the LP20 the remainder of this report includes the CD20
GENERAL STATUS word maintained by the front end software and the octal
contents and text translation of the CDll device controller's
registers.

4.7.4 DHll

This entry is created by the front end each time it detects one of two
errors associated with a DHll. These two errors are DEVICE HUNG and
LOST INTERRUPT. Samples of each report are shown below.

FRONT END DEVICE ERRO~CCODE 130)

LOGGED ON MON 5 JAN 76 12152155AM MONITOR UPTIME WAS ~106106
DETECTED ON SYSTEM I 1031.

OTE20 II 0.
FE SOFTWARE VERI 0.
FOPK ."JOB'I 777776,777776
USF.R'S CONNECTED DIR,

LOGGED IN OIRIUNK~OWN , UNKNOWN
USEP'S PROGRAMI
DEVICEI DH1t • 0.

STD. STATUSI 1100 • DEV HUNG, ERROR LOG REQUEST,
CONTENTS OF COUNTERS I 24
36
36
40

FRONT END DEVICE ERRORCCODE 130)
L~r.GF.D ON MON 5 JAN 76 121481S8AM MONITOR UPTIME WAS 0102.09

DF.TECTEO ON SYSTEM I 1031.

01[20 •• 0.
FE SOFTWARE VEPI 0.
fORK ."Joeli 777776,777776
USER'S CONNECTED DIP,

LOGGED IN OIRIUNKNOWN , UNKNOWN
USER'S PPOGRAMI
DEVICE. ~H11 I 0.

STn. STATUSI 2100 • LOST INTERRUPT,ERROR LOG REQUEST,
PAGE AODR OF DH WHICH FAILEDI 160020

4-13

SYSERR REPORT FORMATS

4.7.5 KLCPU

This entry is created each time the front end reloads the CPU without
the front end itself reloaded. If both are reloaded the generated
entry is SYSTEM RELOADED (CODE 101). If the KL reloads the front end
a FRONT END RELOADED (CODE 131) entry is created. If the front end
reloads the KL, this report is created. The report includes the
reason for reload as determined by the front end software.

FRONT E~D DEVICE ERRORCCODE 130)

LOGGED ON TUE 13 JAN 76 10t59t45AM ~ONITOR UPTIME WAS 0100158
DETECTED ON SYSTEM _ 1031.

DTE20 ~t 0.
FE SOFTWARE VERt 0.
FORK ."JOB~I 777776,777776
USER'S CONNECTED DIR,

LOGGED IN DIRtUNKNOWN , UNKNOWN
USER'S PROGRAMI
DEVICEt KLCPU
STD. STATUSI 100 • ERROR LOG REQUEST,
KL RELOAD STATUS FROM FRONT ENOl 20 • KEEP ALIVE STOPPED,

4.7.6 KLERROR

This report is perhaps the most complex of the error file entries. If
the KL clock stops for any of several errors (FAST MEMORY PARITY
ERROR, CRAM PARITY ERROR, DRAM PARITY ERROR, or FIELD SERVICE STOP) a
software routine is called in the front end to gather a snapshot of
the KLCPU. This routine creates an output file on either the
dual-ported RP04 or the floppy disk. The next time the system is
reloaded the front end passes the contents of this file across the
DTE20 and then into the system error file in several entries. SYSERR
pieces this file back together in core and then lists its contents.
For a complete description of this portion of error detection and
recording, refer to Chapter 2.

SAMPLE REPORT

The following page shows an example of the report for the first
record. The listing format of the 2nd record is identical.

4-14

..,.
1

t-'
U1

** •• ***.***.*.* •••• * •••••••••••••••••••••••••••
FRONT END DEVICE EPROP(CODE 130)

LOGGED ON TUE 1~ JAN 76 10.59.46AM MONITOR UPTIME WAS 0.00.59
DETECTE~ ON SYSTEM. t03t •

• * ••••••• * •••• * ••• * ••• * ••••••••••••••••••••••••

OTE20 •• 0.
FE SOFTWAPE VEP' 0.
~OP~ a"JOB.. 777776,777776
USER'S CONNECTED DIR,

LOGGED IN DIP.UNKNOWN , UNKNOWN
USER'S PROGRAM.
DEVICE. KLCPU
CONTENTS or KLEPROR FILE.

CONTENTS or PECORD'1 SEEN AT FIRST ERROR
CREATED. 1.13.76 AT. 10.131\0 FILr.
U-CODE VEP. 0. FE SEP ••

FOR~AT VERSION. 1
0, KL SER "

PECORO LENGTH. 1000 BYTES
0.

MONITOR VERI 0. FE SOFTWARE VER. 0,
ERROR CODE. 0 • NONE
OTE DIAG STATUSI 2104
DTE OIAG 11 1400 DTE DIAG 21

PEADS
1021
1101
1161
1241
1321
1401
1461
1541
1621
170'
1761

o DTE [lUG 31 21000
VALUES RETURNED fROM DIAGNOSTIC FUNCTION

\001 000377602664 1011 000000002600
1061 00000~642000 107. 000000614640
1141 000000005700 1151 000033702\57
1221 000000000001 1231 000072000000
\301 32006p204000 1311 121210021207
\361 000000042004 1371 000000002004
1441 000~0e050005 1451 000000000125
\521 000001044014 1531 600001044031
1601 051600035230 1611 700002235322
1661 000000000000 1671 000000000000
1741 000000000000 1751 000000000000

00('10\ 3400222
0P1107067462
000000101'1000
0700541'160000
5305040""303
00000004001(/14
211003016024
01/10(11Q'1044031
146010137664
"'13"'630000010
000000100"'000

103. 000024252024
1111 001500002O03
1171 70031'1000571'10
1251 0141'160720000
1311 000201000001
1411 00000000'''104
1471 211006276700
1551 100021/1000204
1631 265040125355
1711 "'00011/10010000P
1771 00000000100100

1041 000000032422
112' 00'10~000000
1'01 1'101'10001'100000
1261 000000414000
1341 500000001010
1421 0~"'0000!2405
150. 21100620611t14
1561 360000726722
1~41 020001'1337365
1721 ~00000"'00"'00

1051 000000002421
113. 000000000000
121' 0000000000'-1
1271 1]0046404000
115. 001210021207
141. ~0000000240!
151' 000001044000
1571 020100635722
1651 340000! 33305
173. 00100000000010

til
t<
til
t'l
~
~

~
t'l
'd o
~
8

~
o
~
::s:
:J>I
8
til

SYSERR REPORT FORMATS

4.7.6.1 Report Description - The date and time in the header of this
report indicates when the last packet of the KLERROR file was entered
in the system error file. The date and time following CREATED is the
date and time of the error as recorded by the front end. The format
is MM:DD:YY AT: HH:MM:SS. The RECORD LENGTH is the length of this
record in PDPll bytes (8 bits=l byte). The ERROR CODE is the octal
value and text translation of what error was seen (CRAM PARITY, DRAM
PARITY, etc.) when the snapshot was taken. The DTE DIAG words are the
values read by the front end from these registers in the DTE-20. The
values returned from the diagnostic function reads are identified with
the FR number and the values listed are 12 octal characters (36 bits)
wide and are in the same format as that listed on the CTY when
performing a function read command.

If the front end has problems gathering and recording this snapshot,
an error code is included in the file and the SYSERR listing will
state that the data may not be valid and list the 3 character error
code stored in the error file. These error codes are listed here in
alphabetical order with an expanded description of the error:

Code

APC

AMP

APN

APP

APR

APS

BAE

BUG

CAE

CCC

CCR

CCS

CES

CFH

CSC

CSR

DAE

DMF

DNP

DSF

FRONT END ERROR CODES
Description

Cache Directory Parity Error

Memory Bus Parity Error

KLIO NXM

KLIO Page Failure

KLIO APR Error

KLIO S-Bus Error

Argument out of range

Command not implemented

KLIO CRAM Address Error

Cannot Clear KLIO Clock

Cannot Clear KLIO RUN Flop

Cannot Start KLIO Clock

KLIO Clock Error Stop

Cannot Find KLIO Halt Poop

Cannot Sync KLIO Clock

Cannot Set KLIO RUN Flop

KLIO DRAM Address Error

Deposit KLIO Memory Failed

DTE-20 Not Privileged

DTE-20 Status Failure

4-16

EPE

ECT

EOA

ESD

EMF

ESE

FRF

FWF

FXF

lAS

IFC

ILA

ILC

ILL

ILS

IPE

KLN

KLR

KNC

f1AE

MUL

NSC

OFC

RPT

RSX

SAZ

TAA

TIN

TNS

UNL

VFY

WRM

SYSERR REPORT FORMATS

E-Bus Parity Error

EBox Clock Timeout

PDPll ODD Address Illegal

EBox Stopped-Deposit

Examine KLIO Memory Failed

EBox Stopped - Examine

Function Read Failed

Function Write Failed

Function XCT Failed

Illegal Argument for Set/Clear

Illegal Function Code

Illegal Argument for Command

Illegal Character In String

Illegal Line to Command Passer

Illegal Separator Character II?"

Internal Program Error

Command

Program Error - KLIO Number Out of Range

Illegal while KLIO Running

KLIO Cannot be Continued

Examine/Deposit Mode Illegal

Ambiguous Command

No Such Command

Odd Function Code

Repeat Count Changed

Impossible Error From RSX

Zero Starting Address Illegal

Task Already Active

Illegal Name for Task

No Such Task

Micro Code Not ·Loaded

Verify Cycle Failed

Command Not Available

4-17

SYSERR REPORT FORMATS

XCR KLIO Did Not Return to Halt Loop

UO Unmatched Error Code

As discussed in Chapter 2, the KLERROR file may contain 2 records. If
both exist in the system error file, both will be listed by SYSERR
using identical formats.

4-18

SYSERR REPORT FORMATS

4.8 FRONT END RELOADED

FRO~T END RELOADEO(COOE 131)

LOGGED ON MON 5 JAN 76 tl22136PM MONITOR UPTIME WAS 0102155
D~TF.CTED ON SYSTEM. 1031.

FRONT END'I P~IVILEG!D o
STATUS AT ~ELOADI NO E~RO~ BITS DF.TECTED
RETRIES I 0
FILENAME FO~ DUMPI

This report is recorded in the error file each time the KL CPU detects
that the front end has halted or is in a loop. The KL will attempt to
copy a crash dump file onto disk from the front end's memory and then
reboot the front end.

4.8.1 Report Description

The front end number is the logical address of
states if this FE is privileged. The status
text any errors which occurred during the
filename of the core dump is also listed
successful. This information will be useful to
for the front end failure.

4-19

this front end and
at reload describes in
reboot process. The
if the crash dump was

determine the reason

SYSERR REPORT FORMATS

4.9 PROCESSOR PARITY TRAP

PRUC~SSUK PAK1IY IHAPlCUDE IbO)
LOGG~U DN w~U il JAN Jb ~:~b:32AM MO~ITUM UPTIM~ wAS 4:2b:5b

U~T~~I~D UN SYSr~M * lU31.

STAIUS Al ~RRUK:

~AU DAfA U~r~CIEU bY: AR
PAG~ fAlL wU AI IMAe: 3bb420,~~2000
SAO UAIA ~URU: li34~7,b~4321

GOUD UAIA wORD: 1234~b,b54321
Ulff~k~~CE: 1,0
PH~SICAL M~M ADOM.

AI f~lLURE: 0,~41~
MECO~~~Y: CO~l. US~M
R~rR~ :UUN1: ~.

fDH~ I & JU~ .: 23,14
USER'S CUNNECTED DIR,

LUGG~D IN UIR;ACCUU~15 • UPERAtUR
PRUGRAM NAME: 001

This report is recorded each time a page fail trap occurs
as a result of an AR, ARX or PAGE TABLE parity error.
will attempt to recover from these errors as described in
this manual.

4.9.1 Report Description

in the CPU
The monitor

Chapter 2 of

The information listed as GOOD DATA WORD is valid only if the error is
recoverable, otherwise the data will be 0,0 and the DIFFERENCE DATA
will be a copy of the BAD DATA WORD. The DIFFERENCE is the result of
an XOR between the bad and good data words. If this error also was
detected with an APR interrupt, a Processor Parity Interrupt report
will be generated.

4-20

SYSERR REPORT FORMATS

4.10 PROCESSOR PARITY INTERRUPT

.* •• * ••••••••• *.*.** •••••••• *.**.**** ••••••
p~OCESSOR PARITY INTERRUPTCCODE 161)

LOGGED ON TUE 13 JAN 76 1~159146AM MONITOR UPTIME WAS AI~1100
DETECTED ON SYSTEM. 1031.

* •• *** •••••••••••• * •••••••••••••••• **** ••• *.*.*

CONI APRI
E~AI

3440,511 • MB PAP ERR,SBUS lOOP PAR ERR,
26000,445614 • WD .0 E-BOX STORE

BASil: PHY. ~EM
AT FAILURE I

ADDR.
445614

PC AT INTERRUPTI 63321
• ERRORS ON THIS SWEEP 0.
LOGICAL AND OF
BAD ADDRESSES. 777777,777777
LOGICAL OR OF
BAD ADDRESSES I ~,0
LOGICAL AND OF
BAD DATAl 777777,777777
LOGTCAL OR OF
BAD DATAl 0,0

SYSTEM MEMORY CONFIGURATION I

CONTPOLLERI .0 MA20 64 K
F0. 6000,0 Fli 16100,16012

INTERLEAVE MODEl 4-WAY
REQ ENABLEDI 0 2
LOWER ADDRESS BOUNDARY I
UPPIl:R ADDRESS BOUNDARY I
ERRORS DETECTEDI

CONTROLLER I .1 MA20 64 K

o
177777
NONE

F01 6000,0 Fll 36t00,160AS
TNTERLEAVE MODEl 4-WAY
REO ENABLED I 1 3
LOWER ADDRESS BOUNDARYI
UPPER ADDRESS BOUNDARY I
ERRORS DETECTED I

CO~TROLLERI .2 MA20 64 K

o
]77777
NONE

F0: 16000,0 Fll 16100,436012
INTERLEAVE MODEl 4-WAY
REO ENABLED I 0 2
LOWP.R ADDPESS BOUNDARY I
UPPEP ADDRESS BOUNDARY I
ERRORS DETECTED I

CONTROLLER I .3 MA2A 64 K

400000
777777
ADDR PARITY

F0i 16000,0 Ftl 36100,436005
INTE~LEAVE MODEl 4-WAY
REO ENABLEDI 1 3
LOWER ADDPESS BOUNDARY I
UPPER ADDRESS BOUNDARY I
ERRORS DETECTED I

ERROPS DETECTED DURING SWEEPI
ADDRESS DATA

400000
777777
ADDP PA~ITY

4-21

SYSERR REPORT FORMATS

4.10.1 Report Description

This entry is recorded in the error file each time the monitor
receives an APR interrupt because of a parity error after all of
physical memory has been scanned looking for more errors. If the
original error also generated a page fail trap, the monitor will also
create an entry for the processor parity trap. Complete details of
the system recovery procedures may be found in Chapter 2 of this
manual.

The CONI APR and ERA values reported are the contents of these
registers at the time the first error occurred. The PC AT INTERRUPT
value includes the flags in the left half. The BASE PHYsical Memory
ADDRess AT FAILU~E is from the right half of the contents of the ERA.

The NUMBER OF ERRORS on this sweep refers to the number of parity
errors detected during this sweep of physical memory. If the value is
zero, there were no errors detected and the LOGICAL AND function for
both bad addresses and bad data will be 777777, 777777 and the LOGICAL
OR functions will be 0, O.

The section of this report labeled SYSTEM MEMORY CONFIGURATION lists
the physical memory configuration and any detected errors at the time
of the first error. These are the results of S-BUS DIAGNOSTIC
FUNCTIONS for all memory controllers on this CPU.

The octal values for both FUNCTION 0 (FO:) and FUNCTION 1 (Fl:) are
listed as well as the text translations for these values.

The last section of this report lists the first 10 errors detected
during the sweep if any errors were detected. Only the first 10
addresses and data values are listed as the logical and logical or
data reported in the top section will identify any common bits in
either address or data if more than 10 errors occur on the sweep.

4-22

SYSERR REPORT FORMATS

4.11 SUMMARY REPORT

Each listing generated by SYSERR includes a SYSTEM SUMMARY at the end
of the listing regardless of the listing control switches specified in
the command string. This report will point out counts of all entries
seen in the system error file within the date and time period
specified in the command string. If the user, for example, was only
interested in RP04 errors, this portion of the listing will also point
out any other errors (such as memory parity) which may be of interest.

The following pages are a sample of one SYSTEM SUMMARY REPORT.

4-23

"'" I
tv
,:,.

SYSTEM ERROR REPORT COMPILED ON THURSDAY, JANUARY 15, 1976 11148159 PA(;E '153
- SYSTEM SU~MARY FOR SYSTEM' 1031,

FIY,E ENVIRONMENT
SYSERR VERSION 5(210)
INPUT FILES: SYSIERROR,SYS CREATED I THU 15 JAN 76 1114,:40AM
OUTPUT FILEI DSKITU45,LST
SWITCHESI IDEVITU45/DETATLI IBEGJN, 13-JAN-76 AT 11146111 IFND: 14-JAN-76 AT 1,,46111
DATr. OF FIRST ENTRY PROC~SSED' MON 5 JAN 76 12147:07AM
DATE OF LAST ENTRY PROCESSED 1 THU 15 JAN 76 1114'140AM
• OF INCONSISTENCIES DETECTED TN ERROR FlLFI 18,

ENTRY OCCUPANCE COUNTS
TOTAL TOPS20 SYSTEM RELOADEDCCODE 10111
TOTAL TOPS2M BUGHLT-BUGCHKCCODE 10211
TOTAL MASS~US DEVICE ERRORCCODE 111)1
TOTAL FRONT END DEVICE ERRORCCODE 130)1

TOPS20 BUGHLT-SUGCHKCCODE 1(2)
BUGHLT/BUGCHK BREAKDOWN I

ILLUUO I,
PH2DNA 7,
OVRDTA '5,
If,USTI I,
MTANOr 2,
DIRB2S I,
DIRSY5 2,
PWRRES I,

5,
20,
433,
9,

en
><:
en
trl
::<:J
::<:J

::<:J
trl
'U
o
::<:J
>-'l

"'l
o
::<:J
3:
:J>o
>-'l
en

~
I

N
VI

SYSTEM EPROP PEPORT COMPILED ON THURsn~Y, J~NU~RY 15, \976 11:491~~

H~POW~RE OETECTED
PAR L~!C SWC RES ('HN OVP
EIlR EX(' ERR ERIl FRR ERR RAE PUN

MTP50 HAR['\ 1 1
SOFT

MT051 HARD 22 2
SOFT

MTI1I52 HARD 15
SOFT 8

MTP64 HARO
SOFT 59

MTPr,5 fo1ARD 1
SOFT 16

PIlr,F: 264 - MASSPU5 SY5TEM ANAtY51S(RH2111)

Ul
~
Ul
[!]

~
~

~
[!]

'U
o
~
>-3

"l
o
~ :s:
):<
>-3
Ul

~
I

N
0'\

SYSTEM ERPOP REPORT CO~PILFD ON THURSDAY. JANUAPY 15. Iq7~ It:4q:et

DP110 HARO
SOfT

HARDWARE DETECTED
PAR L~r SWC RES CHN nVR
ERR FXC ERR ERR ERR ERR RAE RtlN

PAC:f: "fi~ - "'AS5!~{JS SYSTF.101 ANHYSISCRli20)

Ul
>-<:
Ul
1:'1
~
~

~
tT1
'U
0
~
>-3

'"'J
0
~
:;;:
:l:"
>-3
Ul

"'" I
N
-..J

SYSTEM ERROP PEPORT COMPILED ON THURSDAY, JANUARY 15,
ERROP TOTALS DETECTED BY DEVICE

CC U 0 D N I F N PL IV I) F P R I
OR N P T E CF C S ER NP P M A M L
RC S I E F SM E G FC CE A T R P P

R

MT05(/1 H
S

MT051 H
S 13 7 22 9

MT052 H
S 22 22 23

MT064 H
S 51 26 48 8

MT065 H
S 2 3 14

197f. 1114'1""2

I
L
F

PAGE 26& -T"16 " TI145 DEVICE ANALYSIS

Ul
><
Ul
t'l
::0
::0

::0
t'l
"d
o
::0
1-3

"l
o
::0
:s:
:J>o
1-3
Ul

SYSTEM ERROR REPORT COMPILED ON THURSDAY, JANUARY 15, 1976 111 4 9103 PAGE 267 -PP~4 DEVICE ANALYSIS

ERROR TOTALS DETECTED BY DEVICE

- ERROP RF.:G, .1 . - ERROR Rf;G, .2 - • ERROR REG, 13 .
D IJ 0 n w T A H H E \II F' P R I *A P 3 N M IoJ F T T M C W C " *0 S D A P lJ V P
C N P T L A 0 C C C C E A M L L *C r, 1:1 X H H 11 E U D S S S 5 c: *C f(C C R W lJ 5
f(5 I E E E E R E H F' R R R R F *U 1I V E S S tJ N F F' E U 11 F' U *y I L L E R F U

C * U *L
DP110 H

S

(j)

t-<
(j)

t'l
~
~

~
t'l
'd

01:>
J

0
~

f-..J >-3
(X)

'TJ
0
~
3:
:t>
>-3
(j)

SYSERR REPORT FORMATS

...
'" N

W
~ ...
110

....
IS:

a-....

'"
a-

III

>-
a. ...
~
Z ...
":>

>< ...
Co ><
III IX.
IX ...
~ ::<
:r :f.
E- = III
Z
C a.

C
C- at;
Ia] Q.
..;J ..:
a. Ia]
::E U
a
v >

:.I
1-0 Co
a.
0 CN_
a. .z
W W
tx.

E--~
tx. Z<s'llo
0 CNU
a. at;Clo-J
IX. Ia.U,,",
W

::E
W
E-
u,
><
III

4-29

SYSERR REPORT FORMATS

4.11.1 Report Description

The first page of the report is always listed and
file, output file, command switches, and the counts
found in the error file during the time period
command string. The first page may also include
BUGHLT-BUGCHK entries, if any were detected.

shows the input
of all entry types
specified in the
a breakdown of the

The following pages list summaries for the Massbus devices and their
controllers. Only those devices are listed for which errors were
detected. The first pages list the counts for each error detected by
the controller. The maximum value listed for any type error is 9999.
The following pages list the same type summary for the error registers
for each type Massbus device. Here the maximum number listed is 99.

The last page of the summary lists a breakdown of the front end device
errors detected in the file. The sum of these numbers may be
different than the value listed on the first page of the summary for
the FRONT END DEVICE ERROR (CODE 130): entries. This is because 1
KLERROR will require several error file entries to contain all the
information.

4-30

CHAPTER 5

TROUBLESHOOTING DECSYSTEM20 WITH SYSERR

(How To Use SYSERR)

To Be Supplied

5-1

APPENDIX A

ERROR MESSAGES

Error messages from ~YSERR are of two types, FATAL and WARNING. Fatal
errors are preceded by a question mark (?), warning messages are
preceded by a percent sign (%).

The following fatal errors are currently output from SYSERR:

?ENTER ERROR ON OUTPUT FILE

This implies that SYSERR is unable to do an enter on device and
directory specified by user. The user should check for disk
quota exceeded or file protection failures.

?ERROR DURING OUTPUT

SYSERR detected an output error while writing the list file.

?CAN'T OPEN INPUT DEVICE

This implies that SYSERR was unable to perform an open on the
input device specified by the user.

?CAN'T OPEN OUTPUT DEVICE

This implies that SYSERR was unable to perform an open on the
output device specified.

?LOOKUP ERROR ON INPUT FILE

This implies that SYSERR was unable to lookup the input file
specified by the user. Check to see that the input file is on
the input device and is not read-protected.

?SYSERR TRYING TO DO LISTING

This error message indicates that the first high segment, SYSERR,
is about to try to produce a listing, however, none of the known
entry codes are processed by this segment.

The following warning messages are output by SYSERR:

A-I

ERROR MESSAGES

%EOF MARKER FOUND IN BODY OF SYSTEM ERROR FILE

SYSERR has seen an EOF word written by the monitor in the body of
the error file. This is normal if error files are combined.

%DUMPING UNKNOWN ERROR TYPE IN OCTAL

SYSERR detected an entry whose error code did not match any of
the known error types.

%EXCEEDED PAGE LIMIT . PERFORMING SUMMARY

SYSERR has output more than the allowable pages of listing,
currently defaulted to 1000, and is now terminating listing and
performing summary.

The reason for this limit is that 1000 pages of report, is more
than anyone can absorb. A repeated error can generate a lot of
repeated output. The user should examine the summary and select
the subset by date and device that he is interested in.

%ENTRY WITH ZERO LENGTH HEADER SPECIFIED

%ENTRY WITH ZERO LENGTH BODY SPECIFIED

Both of these messages are indications usually that SYSERR has
lost sync in the error file. The recovery is attempted as
started in Appendix B.

%SYRERI:FATAL ERROR READING INPUT FILE

SYSERR has encountered a checksum or parity error while reading
the current input file. The package will look to see if any
other input files process them, and then generate the summary
listings.

%UNKNOWN DEVICE NAME FOUND IN ENTRY

SYSERR has found a device name in the error file it doesn't
recognize such as DPA7 if SYSERR's configuration only knows about
6 DPA's. SYRUNV should be changed to reflect your system
configuration. See Appendix C for instructions concerning
compiling and loading.

%EXPECTED ERROR CODE NOT FOUND ON TABLE OF SUBJECT ERROR CODES

An event code has been found in the error file within the range
of those codes eligible for SYSERR processing (See Appendix B)
but none of the SYSERR modules have the ability to process it.
The entry will be dumped in octal in the output file.

%SYRRNR: RESTARTING IN THE NEXT BLOCK OF ERROR FILE

SYSERR has encountered problems and has lost sync in the current
block. It has gotten the next block of the file, found the
offset and has started processing again with the first entry in
this next block.

A-2

ERROR MESSAGES

%SYRCNR: CANNOT RE-SYNC, TRYING NEXT BLOCK

As above, SYSERR has lost sync and gotten the next block of the
file but there is no pointer word to the start of the first entry
in this block. SYSERR will look at each block until either it
finds a valid pointer word or end-of-file is encountered.

%DUMPING PARTIAL CONTENTS OF KLERROR FILE IN OCTAL

SYSERR was building the file in core and either of two events
occurred: 1) an inconsistency was detected in the system error
file, or 2) SYSERR detected the start of another KLERROR file.

A-3

APPENDIX 8

ERROR FILE DESCRIPTIONS

This appendix contains descriptions of the format of the error file
and contents of each type of entry. The file is created and appended
to by a portion of the monitor and read by SYSERR. Each entry is
considered a separate entity by SYSERR and is treated separately. The
recording program also considers each entry or record separately and
appends each to the end of the file. The only exception to this
policy is the synchronization word at the start of each block (128
words) . This word is a pointer or offset to the start of the first
entry in the current block and is used by SYSERR to get back in sync
in case of trouble. This word is required because entries may cross
block boundaries to conserve disk space. The use of this resync word
is described in Appendix A, SYSERR ERROR MESSAGES and the following
diagram shows the typical layout of entries across a block boundary.

BLOCK X

BLOCK Y

Pointer in BLOCK X points to next word
as the start of first entry in this
block.

The last entry in this block (ENTRY A)
crosses into BLOCK Y.

The pointer in BLOCK Y points to the
start of ENTRY B.

B-1

ERROR FILE DESCRIPTIONS

Each entry or record in the error file is composed of two sections, a
header section and a body section. The header section contains the
entry type, date and time the event was recorded, the processor serial
number which detected the error, and the length of the header and body
sections. The body section contains the various data items which make
up the entry. The format of the header section is constant for each
version of the header section regardless of the entry type and is
described below. The format of the body section for each entry type
is described on succeeding pages.

ENTRY HEADER FORMAT

This header is used to describe the contents of each entry.

HDRCOD

HDRDAT

HDRUPT

HDRPSN

*HDRCOD

*
Date & time of entry in Universal Format

System uptime at entry. LH = #days, RH = fraction of day

Processor serial # where entry was recorded

BITS

0-8

9-16

17

18-23

24-26

27-35

DESCRIPTION

Entry type, tells program how to process this entry.
See below for range of event codes.

Reserved.

This entry recorded by TOPS20.

Header Format Version, presently 1.

Header Length, presently = 4.

Entry Length excluding header, maximum 777.

B-2

ERROR FILE DESCRIPTIONS

Event Codes

All event codes are in the range of 0 to 777 with reservations as
described:

000 Illegal

1-376 Reserved by DEC for use with SYSERR.

400-477 Reserved for customer use with SYSERR.

500-577 Reserved by DEC for use with programs other than SYSERR.

600-677 Reserved for customer use with programs other than
SYSERR.

700-777 Reserved for all for error file control.

In some cases (mostly for error file control) only the first word
(HDRCOD) is included. This is the minimum required for any entry.
The current event codes used for file control are as follows:

377 The recording program has detected an error in the file
and has started using the next sequential error file.
See Appendix A of this manual.

775 Offset word in the first word of each block of the error
file. RH points to start of the first entry in this
block.

777 End of File, tells SYSERR to look for next file or to
start summary listings if no other files are found.

8-3

ERROR FILE DESCRIPTIONS

SYSTEM RELOADED EVENT CODE 101

SEC%RL==lOl ;Event code

RL%SVN==O

RL%STD==l

RL%VER==2

RL%SER==3

RL%OPR==4

RL%HLT==5

RL%FLG==6

RL%SIZ==7

RL%LEN==RL%SIZ+30

;System name (ASCIZ PTR)

;Time of system build (universal FMT)

;System version number

;APR serial number

;Operator answer to why reload (ASC PTR)

;Bughlt address (if auto reload)

;Flags

;Size of data block

;Size of whole block (incl 2 strings)

B-4

ERROR FILE DESCRIPTIONS

iBUGHLT/BUGCHK EVENT CODE 102

SEC%BG==102

BG%SVN==O

BG%SER==l

BG%VER==2

BG%SDT==3

BG%FLG==4

BG%CHK==lBl

BG%INF==lB2

BG%HLT==lB3

BG%ADR==5

BG%JOB==6

BG%USR==7

BG%PNM==lO

BG%MSG==l1

BG%ACS==12

BG%PIS==32

BG%RCT==33

BG%REG==34

BG%NAM==40

BG%DAT==41

BG%CNT==42

BG%SIZ==43

BG%LEN==BG%SIZ+30

iEvent code

iSystem name (ASCIZ)

iAPR serial number

iMonitor version

iTAD of Monitor build

iFlags

iBUGCHK type code

iBUGINF type code

iBUGHLT type code

iAddress of HLT/CHK

iFORKX"job number

iUser number

iProgram name (sixbit)

iMessage (ASCIZ)

iACS

iPI status

iRegister count

iRegisters (maximum of 4)

iSixbit name of check

iTime and date of BUGHLT/BUGCHK

iNumber of bug checks since startup

iSize of data Block

iLength of total block, incl 2 strings

B-5

ERROR FILE DESCRIPTIONS

MASSBUS DEVICE ERROR EVENT CODE III

SEC%MB==lll iEvent Code

MB%NAM==O

MB%VID==l

MB%TYP==2

MB%LOC==3

MB%FES==4

MB%CNI==5

MB%CIF==6

MB%SEK==7

MB%RED==lO

MB%WRT==l1

MB%UAD==42

MB%SPE==43

MB%HPE==44

MB%OVR==45

MB%ICR==46

iDevice name (if available)

iVolume ID (sixbit)

iChannel .• device type - see PHYPAR

iLocation of error - sector or file •• record

iFinal error state - device dependent

iCONI initial

iCONI final

iNumber of seeks

iNumber of blocks/frames read

iNumber of blocks/frames written

iUnit address

iSoft Positioning errors

iHard positioning errors

iOverruns

i Ini tial TCR

iThe following locations are the units Massbus registers in order

iFinal contents"initial error contents

MB%REG==47

MB%SIZ==MB%REG+20

MB%LEN==MB%SIZ

iSize of data block

iTotal length, currently no strings reported

B-6

ERROR FILE DESCRIPTIONS

FRONT END ERRORS EVENT CODE 130

SEC%FE==130

FE%FJB==O

FE%DIR==l

FE%ID==2

FE%PGM==3

FE%COD==4

FE%PRT==5

FE%DTE==6

FE%INF==7

FE%SIZ==7

FE%LEN==FE%SIZ

iEvent code

iFork number"job number

iDirectory numbers

iFront end software version

iSixbit name of program

iProtocol device code (lBO=unknown)

i-Length of data"start of data

iDTE number

iStart of error information

iSize of data block (header)

;Minimum block to allocate

B-7

ERROR FILE DESCRIPTIONS

FRONT END RELOAD ENTRY. GIVES -11 REBOOT INFORMATION

EVENT CODE 131

5EC%11==131

Rl%NUM==O

Rl%STS==l

.RIGTF==lBO

.RIOPF==lBl

.RIDPF==lB2

.R110E==lB3

. R111E==lB4

.RIASF==lB5

.RIRLF==lB6

.RIDPF==lB7

.RIPUF==lB8

.RIR/VIF==lB9

.RIBSF==lBIO

. RINRL==lB11

.RIRTC==6B35

Rl%FNM==2

Rl%SIZ==3

Rl%LEN==Rl%SIZ+~D20

;-11 Reload

i -11 number

iReload status bits

iGTJFN failed for dump file

iOPENF failed for dump file

iDump failed

iTo -10 error on dump

iTo -11 error on boot

iASGPAG failed on dump

iReload failed

i-II didn't power down

i-II didn't power up

;ROM did not ack the -10

i-II boot program didn't make it to the -11

;11 took more than 1 minute to reload .

;will cause a retry

;Retry count

;File name pointer

;Number of entries

;Allow long string

8-8

ERROR FILE DESCRIPTIONS

PROCESSOR PARITY TRAP EVENT CODE 160

SEC%PT==160

PT%PFW==O

PT%Bm-l==l

PT%GDW==2

PT%USR==3

PT%JOB==4

PT%PGM==5

PT%PMA==6

PT%TRY==7

PT%HRD==lBl

PT%CCF==lB2

PT%CCH==lB3

PT%ESW==lB4

PT%SIZ==lO

PT%LEN==TP%SIZ

;Event code

; Page fail word

;Bad data word

;Good data word

;User number

;FORKX"JOBN

;Program name (sixbit)

;Physical memory address

;Flags"retry count

;Hard error

;Cache failure

;Cache in use

;Errors on sweep to core

;Size of data block

;Length of total block

B-9

ERROR FILE DESCRIPTIONS

PROCESSOR PARITY INTERRUPT EVENT CODE 161

SEC%PI==161

PI %CNI==O

PI%ERA==l

PI%FP2==2

PI%SWP==3

PI%AAD==4

PI%OAD==5

PI%ADA==6

PI%ODA==7

PI%SBD==lO

iEvent code

iCONI APR

i ERA

iPC

iNumber of errors this sweep

iLogicl and of bad addresses

iLogical or of bad addresses

iLogical and of bad data

iLogical or of bad data

iLogical SBus diag function data

PI%NSD==~DIO iNumber of SBus diag fn words

PI%ADD==22

PI%DAT==34

iFirst 10. bad addresses

iFirst 10. bad data words

PI%N8W==~DIO iNumber of bad words

PI%SIZ==46

PI%LEN==PI%SIZ

iSize of data block

iLength of total block

8-10

(10 wds)

APPENDIX C

ASSEMBLY INSTRUCTIONS FOR SYSERR PACKAGE

The SYSERR package for DECsystem-20 is comprised of 4 source modules:

SYRUNV.MAC

SYSERR.MAC

SYSERD.MAC

SYSERS.MAC

Universal file containing revision history, macro
definitions, and low segment data area definitions
and storage locations, etc. This module is only
used during the assembly process and is not used
at run time.

Routines for file initialization and
parsing.

command

PROCSD routines used for listing DECsystem-20
entries.

Summary listing routines for all entries.

Additional routines required to load with the package include:

SCAN.REL

HELPER.REL

Command scanner, general utility
routines.

Finds and lists the HELP file.

and output

A separate file which gives brief instructions for running SYSERR is
SYSERR.HLP and should be located in the same directory as the SYSERR
package.

The easiest method to compile, load, and save the SYSERR package is to
use the batch control file distributed with the package. To submit
the job to batch, the command is:

@ SUBMIT SYSERR/RESTART:I/TIME:20:00/UNIQ:O

If CREF listings are desired add /TAG:CREF to the command. The
control file may also be listed and the commands typed on your
terminal as they appear in the file if you don't wish to use batch.
The package should always be loaded with local symbols to allow
debugging if required without having to re-compile or re-Ioad the
package.

C-1

/BEGIN, 3-3, 3-4
BUGHLT/BUGCHK, 4-4, 4-5, 4-6,

4-30

CD20, 3-3, 4-11, 4-12
COMMANDS, 3-1, 3-2, 3-3, 3-5
COMMANDS, Indirect, 3-6

DEFAULT, 3-2, 3-4, 3-6
DEFINE, 3-1
/DETAIL, 3-4, 3-5, 4-6
/DEV, 3-3, 3-5
DH11, 3-3, 4-11, 4-13

/END, 3-3, 3-5

FRONT END, 4-11 through 4-19,
4-30

/HELP, 3-5

IICPU, 3-3

KLCPU, 3-3, 4-11, 4-14

INDEX

LP20, 3-3, 4-11, 4-12, 4-13

MASSBUS, 3-3, 3-5, 4-7 through
4-10, 4-30

PRINT, 3-5

RELOAD, 4-3, 4-4, 4-19
/RETRY, 3-4

SUMMARY, 4-23 through 4-30

TERMINAL, 3-6

KLERROR, 4-11, 4-14 through 4-18

Index-l

Error Detection, Recovery and
Reporting Reference Manual
EK-SEDRR-RF-OOI

READER'S COMMENTS

NOTE: This form is for document corrments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

Name Date ________________________ ___

Organization __ __

Street __ _

City ___________________________ State _____________ Zip Code ____________ __

or
Country

If you require a written reply, please check here. []

---Fold lIere--

-- Do Not Tear· Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MA YNARD, MASS.

	A03.tif
	A04.tif
	A05.tif
	A06.tif
	A07.tif
	A08.tif
	A09.tif
	A10.tif
	A11.tif
	A12.tif
	A13.tif
	A14.tif
	A15.tif
	A16.tif
	A17.tif
	A18.tif
	A19.tif
	A20.tif
	A21.tif
	A22.tif
	A23.tif
	A24.tif
	A25.tif
	A26.tif
	A27.tif
	A28.tif
	A29.tif
	A30.tif
	A31.tif
	A32.tif
	A33.tif
	A34.tif
	A35.tif
	A36.tif
	A37.tif
	A38.tif
	A39.tif
	A40.tif
	A41.tif
	A42.tif
	A43.tif
	A44.tif
	A45.tif
	A46.tif
	A47.tif
	A48.tif
	A49.tif
	A50.tif
	A51.tif
	A52.tif
	A53.tif
	A54.tif
	A55.tif
	A56.tif
	A57.tif
	A58.tif
	A59.tif
	A60.tif
	A61.tif
	A62.tif
	A63.tif
	A64.tif
	A65.tif
	A66.tif
	A67.tif
	A68.tif
	A69.tif
	A70.tif
	A71.tif
	A72.tif
	A73.tif
	A74.tif
	A75.tif
	A76.tif
	A77.tif
	A78.tif
	A79.tif
	A80.tif

