
SECT ION 3 

00T- 10 

T. H. Ke rri dge 

UNIVERSITY OF QUEENSLAND 
COMPUTER CENTRE 

1 

• 

I 





I 

, , 

/ 

TECHNICAL MANUAL NO 12 

SECTION 3 

00T-I0 

T. H. Kerridge 

M,NT-12 
9Aug71 





CONTENTS 

CHAPTER 1 
INTRODUCTION 

1.1 SPECIALCliARACTERS AND DDT RESPONSES 
1.2 ELEMENTARY DDT FOR FORTRAN USERS 

1.2.1 General 
1.2.2 FORTRAN Program and Subroutine Listing 
1.2.3 DDT Example 

1.3 SETTING BREAKPOINTS 
1.4 TYPE OUT MODES 
1.5 TYPE IN MODES 

CHAPTER 2 
BASIC DDT COMMANDS 

2.1 EXAMINING STORAGE WORDS 
2.2 TYPE OUT MODES 2-1 
2.3 MODIFYING STORAGE WORDS 
2.4 TYPE IN MODES 
2.5 SYMBOLS 
2.6 EXPRESSIONS 
2.7 BREAKPOINTS 

2.7.1 Setting Breakpoints 
2.7.2 Breakpoint Rest~ictions 
2.7.3 Breakpoint Type Outs 
2.7.4 Removing and Reassigning Breakpoints 
2.7.5 Proceeding From a Breakpoint 

2.8 STARTING THE PROGRAM 
2.9 DELETING TYPING ERRORS 
2.10 ERROR MESSAGES 
2.11 SUMMARY 

CHAPTER 3 
DDT COMMANDS 

3.1 EXAMINING THE CONTENTS OF A PROGRAM STORAGE WORD 
3.2 CHANGING THE CONTENTS OF A WORD 
3.3 INSERTING A CHANGE, AND EXAMINING THE CONTENTS OF 

THE LAST TYPED ADDRESS 
3.4 STARTING THE PROGRAM 
3.5 ONE TIME TYPEOUTS 

3.5.1 Type out Numeric 
3.5.2 Type out Symbolic 
3.5.3 Type out in Current Mode 

iii 

MNT-12 
9Aug71 

1-2 
1-3 
1-3 
1-3 
1-6 
1-10 
1-11 
1-12 

2-1 
2-1 
2-2 
2-3 
2-3 
2-4 
2-4 
2-5 
2-5 
2-5 
2-6 
2-6 
2-6 
2-6 
2-7 
2-7 

3-1 
3-2 
3-3 

3-5 
3-5 
3-5 
3-5 
3-5 



MNT-12 
9Aug71 

3.6 

3.7 

3.7.1 

3.7.2 

3.7.3 

3.7.4 

3.8 

3.9 

4.1 

4.2 

4.2.1 

4.3 

4.3.1 

4.3.2 

4.3.3 

4.3.4 

4.3.5 

4.3.6 

4.3.7 

4.3.7.1 

4.3.7.2 

4.3.8 

4.4 

4.5 

5.1 

5.2 

5.3 

CO NTE NTS (Cont) 

Symbols 

Typing In 

Typing In Symbolic Instructions 

Typing In Numbers 

Typing In Text Characters 

Arithmetic Expressions 

Delete 

Error Messages 

CHAPTER 4 
MORE DDT -10 COMMANDS 

Changing the Output Radix 

Type-Out Modes 

Primary Type-Out Modes 

Breakpoints 

Setting Breakpoints 

Removing Breakpoints 

Restrictions for Breakpoints 

Restarting After a Breakpoint Stop 

Automatic Restarts from Breakpoints 

Checking Breakpoint Status 

Conditional Breakpoints 

Using the Proceed Counter 

Using the Conditional Break Instruction 

Entering DDT from a Breakpoint 

Searches 

Miscellaneous Commands 

CHAPTER 5 
SYMBOLS AND DDT ASSEMBLY 

Defining Symbols 

Deleting Symbols 

DDT Assembly 

iv 

Page 

3-5 

3-6 

3-7 

3-7 

3-7 

3-8 

3-8 

3-8 

4-1 

4-1 

4-2 

4-3 

4-3 

4-3 

4-4 

4-4 

4-4 

4-5 

4-5 

4-6 

4-6 

4-7 

4-7 

4-9 

5-1 

5-2 

5-2 



5.4 

5.5 

5.6 

5.6.1 

5.6.2 

5.7 

5.8 

A.1 

A.2 

A.3 

A.4 

A.5 

A.6 

A.7 

A.8 

A.9 

A.10 

A.ll 

A.12 

A.13 

A.14 

A.1S 

A.16 

A.17 

A.18 

A.19 

CO NTENTS (Cont) 

Field Separators 

Expression Evaluation 

Special Symbols 

Order of Symbol Table Search 

Order of Symbol Table Search for Symbol Education 

Special Symbols 

Binary Value Interpretation 

APPENDIX A 
SUMMARY OF DDT FUNCTIONS 

Type-Out Modes 

Address Modes 

Radix Change 

Prevailing vs. Temporary Modes 

Storage Words 

Related Storage Word 

One-Time Only Typeouts 

Typing In 

Symbols 

Special DDT Symbols 

Arithmetic Operators 

Field Delimiters in Symbolic Type-Ins 

Breakpoints 

Conditional Breakpoints 

Starting the Program 

Searching 

Unused Functions 

Zeroing Memory 

Special Characters 

v 

Page 

5-3 

5-4 

5-4 

5-4 

5-5 

5-5 

5-5 

A-1 

A-1 

A-1 

A-1 

A-2 

A-2 

A-3 

A-3 

A-4 

A-4 

A-5 

A-5 

A-5 

A-6 

A-6 

A-6 

A-7 

A-7 

A-7 

MNT-12 
9Aug71 



MNT-12 
9Aug71 

CONTENTS (Cant) 

APPENDIX B 
STORAGE MAP FOR USER MODE DDT 

TABLES 

3-1 . SPECIAL CHARACTER FUNCTIONS 

vi 

3-4 



ABSTRACT 

MNT-12 
9Aug7l 

DDT was developed at MIT for the PDP-l computer in 1961. At that time DDT 
stood for 'DEC Debugging Tape'. Since then, the idea of an on-line de­
bugging program has propagated throughout the computer industry. DDT 
programs are now available for all DEC computers. Since media other than 
tape are now frequently used, the more descriptive name 'Dynamic Debugging 
Technique', has been adopted, retaining the DDT acronym. 

This manual describes the use of DDT-lO which is a debugging program 
designed specifically for the PDP-lO. The manual is based on the original 
Digital DDT-lO documentation but the Computer Centre has rewritten and 
expanded Chapter 1 to make the manual more easily understood by the novice 
user. This chapter describes the basic functions of DDT and some of the 
more common and often used commands. For this reason some material may be 
repeated in later sections of the manual. Chapter 1 also includes a 
complete example of DDT being run on a FORTRAN program and subroutine. 

As with all other manuals the Centre would apprectate comments on this 
section so that it may be improved by later revtsions. 

vii 





CHAPTER 1 

INTRODUCTION 

MNT~12 

9Aug71 

Under a batch system the only method of debugging a program, apart from desk 
checking, is to insert statements in the program at strategic points to 
print out the contents of important variables. This technique serves the 
dual purpose of checking the values of the variables and providing a trace 
of the execution path of the program. 

When debugging a program from a terminal it is quite possible to use this 
technique. However, it can be an expensive approach. Each time a test run 
is set-up the source program has to be edited, the test statements inserted 
and the program recompiled. It is. not always easy to determine where to 
place these statements as this will depend considerably on the progress of 
the program. 

Because of these limitations a Dynamic Debugging Technique, referred to as 
DDT, has been developed. This technique is ideally suited to interactive 
operation. DDT enables a programmer to test a program by executing it, 
stopping it any stage to examine or change any location of the program. 
The FORTRAN user can examine and change the contents of variables during 
program execution.· The MACRO user can change both data locations and 
program instructions. 

DDT is invoked by the DDT option in the RUN command which causes the user's 
program and any associated subroutines to be loaded with a DDT program. 
The user's program is then run under the control of the DDT program. At 
the start of execution DDT requests instructions from the user. The 
repertoire of instructions is large and each of the instructions is explained 
in later chapters of this manual. However, generally a very limited subset 
of the repertoire is quite sufficient to enable programmers to derive great 
benefit from DDT. 

Basically DDT provides three facilities: 

(a) It allows a user to specify points in his program where he wishes 
execution to pause. 

(b) Either before the program is started, or while it is in a 'pause I state 
any location may be examined and its contents output in any format 
(e.g. integer, floating point). 

(c) The contents of any location may be changed while the program is in a 
'pause' state or prior to execution commencing. 

1-1 



MNT-12 
9Aug71 

These points where the program is required to pause are called bpeakpoints 
and are specified to DDT by the user. This is done immediately prior to 
program execution commencing, or during any p~use at a previously defined 
breakpoint. Up to eight breakpoints may be set simultaneously but as these 
can be cancelled and re-specified this is not a limitation. While the 
program is waiting at a breakpoint, the programmer may e~amine or change 
the contents of any location (by means of DDT commands). 

The following example (sections 1.2.2 and 1.2.3) is intended to help the 
novice DDT user become conversant with the concepts and purpose of DDT. 
The example is very simple and shows how a FORTRAN program can be run with 
DDT. It is not intended to provide examples of all the DDT commands but 
rather show the basic commands so the user will understand the operation 
of DDT. When the user has experience in the use of DDT, Appendix A, 
which gives a summary of all the DDT commands, will prove a useful 
reference. 

1.1 SPECIAL CHARACTERS AND DDT RESPONSES 

(a) Rubout 

DDT does not behave in the usual way when the 'RUBOUT' key is typed. 
It has the effect of cancelling the entire command being typed not 
just the character typed. DDT signals this by typing 

XXX 

(b) A1tmode 

The symbol '$' refers to the character <a1tmode> (or <escape> for 
some Teletypes) throughout this document. This applies to both 
input from the Teletype and output from DDT to the Teletype. 

(c) Return 

The <cr> key may be used at the completion of any command to 
reposition the Teletype at the beginning of the next line. 

Cd) Responses from DDT 

Generally DDT indicates that it is ready to receive commands by 
typing a <tab>. However this does not occur at the start or after 
a return and the user should assume DDT is ready and proceed to 
type a command. 

If DDT cannot understand a command it responds with either '?' or 
'U'. 'u' is typed if DDT cannot recognize a symbol typed by the 
user (e.g. a variable name) and '?' is used if the format of the 
command is not correct or if an attempt is made to set more. than 
eight breakpoints. 

1-2 



1.2 ELEMENTARY DDT FOR FORTRAN USERS 

1. 2.1 General 

MNT-12 
9Aug71 

Although in practice any location in a program can be referenced by DDT 
(whether it be a data location or a machine instruction), for those users 
not conversant with MACRO, it is suggested that only variables be examined 
or altered and that only statement numbers be used for specifying break­
points. During the FORTRAN compilation process statement numbers are 
suffixed by the letter P. Thus statement 16 should be specified to DDT 
as l6P. Breakpoints may not be set at statement numbers referring to 
Format statements. This will cause an error to occur when the program is 
being executed. Although it is quite possible to specify locations before 
or after a particular statement number this is not advisable unless the 
user is conversant with the MACRO language and has a macro expansion 
listing of the FORTRAN program which is being debugged. To run a program 
using DDT it is necessary to have a relocatable version of the program, 
that is the program must have been previously compiled. The RUN command 
is used with DDT specified as an option, e.g. 

RUN (DDT) MYPROG, MYSUBR 

1. 2. 2 FORTRAN Program and SubroutirieLiSt;lng 

This section contains the listing of a FORTRAN program and a FORTRAN 
subroutine which will be used to explain the basic concepts of DDT. 

The main program, named MYPROG, sets values for the variables COM, I, J, K 
and L, types out these values, calls the subroutine named MYSUBR and on 
return from the subroutine again outputs the values of COM, I, J, K and L. 

The subroutine, MYSUBR, doubles the value of the common variable COM, negates 
the argument I and outputs these values. It then sums all integers from 
1 to 300 into the variable ISUM, prints the value of ISUM and returns to 
the main program. 

The listings of MYPROG and MYSUBR follow: 

.FORTRAN(LIST) MYPROG<cr> 

MYPROG/F4 V23-F3 3-AUG.,.. 71 15 :17 rAGE 1 

1-3 



MNT-12 
9 Aug 71 

I ' , 18, / 

CONSTANTS 

C THIS IS A PROGRAM TO DEMONSTRATE THE USE OF DDT 
C 
C 

COMMON COM 
COM=123.45 

1 1=987 
J='ABCD' 
K=-567 
L="112233445566 

2 WRITE (6,1~) COM,I,J,K,L 
10 FORMAT ('0MYPROG VALUES ARE ',/,' COM = ',F8.3,/,' 

1 ,'J = ',A5,/,'K = ',I8,/,'L = ',012) 
3 CALL MYSUB (I) 
4 WRITE (6,1~) COM,I,J,K,L 

END 

2~7755631463 1 4~605~3421~~ 2 112233445566 

CO:MMON 

COM / .COMM. /+0 

SUBPROGRAMS 

FORSE. JOBFF FLOUT. FLIRT. INTO. INTI. ALPHO. ALPHI. OCTO. 
OCTI. MYSUB EXIT 

SCALARS 

COM ~ I 70 J 71 
K 72 L 73 

.F4(L) MYSUBR<cr> 

MYSUBR/F4 F4~ V23-F3 3-AUG-71 15:24 PAGE 1 

SUBROUTINE MYSUB(I) 
C THIS IS A SUBROUTINE TO DEMONSTRATE THE USE OF DDT 
C 
C 

COMMON COM 
COM=COM+COM 
1=-1 

2 WRITE (6,1~) COM,I 

1-4 



I ' ,18) 
FORMAT ('~MYSUBR VALUES ARE ',/,' COM 

ISUM=~ 
DO 6 INDEX=l,3~~ 

4 I SUM= I SUM+INDEX 
6 CONTINUE 

WRITE (6,2~) ISUM 

MNT-12 
9Aug71 

',F8.3,/, , 

2~ FORMAT ('~THE SUM OF ALL INTEGERS FROM 1 TO 3~~ 
, ,IS) 

GLOBAL DUMMIES 

I 72 

COMMON 

COM /.COMM./+~ 

SUBPROGRAMS 

FLOUT. FLIRT. INTO. 

SCALARS 

MYSUB 
ISUM 

73 
74 

RETURN 
END 

INTI. 

COM 
INDEX 

~ 
75 

I 72 

The following section describes a run using DDT on the sample programs 
listed above. 

In the description given below the actual Teletype I/O is given on the left 
hand side of the page. According to standard convention, the instructions 
which must be input by the user are underlined. 

A description of the run, the use of DDT in the run and an explanation of 
some of the elementary features of DDT are given on the right hand side of 
the page, opposite the type-out to which they apply. 

It is suggested that a user attempts the following example. Before typing 
the last $P command it is suggested that the user sets more breakpoints and 
does some experimentation with this example before using DDT in a 'live' 
situation with a large program. 

1-5 



MNT-12 
9Aug71 

Copies of the main program and subroutine may be copied to the user's disk 
area by the commands. 

COPY $LEARN.MYPROG/F4, user's filename 

COPY $LEARN.MYSUBR/F4, user's filename 

It will be necessary for the user to compile both the main program and the 
subroutine before using the RUN command. 

1.2.3 DDT Example 

.RUN(DDT) MYPROG MYSUBR<cr> 
LOADING 

LOADER 4K CORE 
EXECUTION 

MAIN. $: $$l(aR 2P$B $G 

At this stage the program is waiting for a 
command from the user. 

MAIN. $: 
This command is in two parts. 
(a) MAIN. 

The name given automatically to the 
main FORTRAN program. 

(b) $: 
This is the command telling DDT that 
all symbols, i.e. statement numbers 
and variable names for the program 
specified in part (a) of the command, 
are required. 

$$l;1R 

Changes the output radix so that all numbers 
typed by DDT are in decimal, not octal. 

2P$B 

This command is in two parts. 
(a) 2P 

This specifies the statement numbered 2 
in the main program. 

(b) $B 
This tells DDT to set a breakpoint in 
this position. The effect of a break­
point is that the execution of the program 
will be held up immediately prior to the 
execution of the instruction at this 
statement number. 

1-6 



$lB»2P COM/ 

987. 

MNT-12 
9Aug71 

Breakpoints are numbered 1 to 8. When using 
this command a breakpoint is automatically 
allocated the lowest free breakpoint number. 

$G 

Instructs DDT to start the user's program. 
The program is now executed until the 
instruction at statement 2 is reached. Note 
that if it is not reached for any reason the 
program will just continue. 

MOVSS l5.,2~9715.(13.) COM$F/ 123.44999 <cr> 

$lB»2P 

<cr> 

This typeout from DDT indicates a breakpoint 
has been reached. 
lB indicates it is breakpoint 1. 
2P indicates the location of the breakpoint. 
At this stage DDT waits for further commands 
from the user. 

COM/ 

DDT always attempts to type out the contents 
of a location as an instruction. If the 
contents are not a valid instruction it types 
out the contents as a numeric field. 

COM$F/ 

Instructs DDT to type out the value of the 
variable COM in floating point format. 

I/ 

Type the contents of field I. 

ANDM 1.,11577 6. (8. ) J$T/ 

J/ 

ABCD <cr> 

-567. <cr> 

Type the contents of field J. 

J$T/ 

Instructs DDT to type the field out as ASCII 
characters. 

K/ 

Type the contents of field K. 

1-7 



MNT-12 
9Aug71 

38~43.,,15~39~. $8R:? 

MOVSS 15.,2~9715.(13.) 

mSUB$: 4P$B n 

MYPROG VALVES ARE 
COM 123.45~ 
I 987 
J ABCD 
K -567 
L 112233445566 

MYSUBR VALUES ARE 
COM = 246.9~~ 
I -987 
$2B»4P INDEX,,4P$2B $p 

L$8R/ 112233,,445566 <cr> 

L/ 

Type the contents of field L. 

$8R: 

This is an invalid DDT command and DDT 
responds with '?'. 

L$8R/ 

Type out contents of field L as an octal 
number. 

=18248839987. <cr> 

COM/ 

Note after a field has been typed out in any 
format it can be repeated in numeric form by 
typing an equals sign '=' 

MYSUB$: 

Instructs DDT to refer to symbols in the 
subroutine MYSUB. 

4P$B 

Instructs DDT to set a breakpoint at statement 
4 in the subroutine. 

$p 

Proceeds with program execution. 
The program and subroutine proceed to output 
the following results until the breakpoint in 
the subroutine is reached. 



$2B»4P INDEX/ 2. 3$P 

$2B»4P INDEX/ 5. 

$2B»4P INDEX/ 8. 

$2B»4P INDEX/ 9. 

$2B»4P INDEX/ 19'. 

$2B» 4P INDEX/ II. 

$2B» 4P INDEX/ 12. 

$2B»4P INDEX/ 13. 

$1!B» 4P INDEX/ 14. 

$2B»4P 

MNT-12 
9Aug7l 

Typeout from DDT signifying that statement 4 
has been reached. 

INDEX~~4P$2B 

When setting a breakpoint it is possible to 
tell DDT to type out the contents of a 
variable automatically. This command tells 
DDT to reset breakpoint 2 at statement 4p 
and on reaching this breakpoint type out the 
contents of variable INDEX. 

$p 

Proceed with execution. 

3$P 

Instructs DDT to stop at the current breakpoint 
on the third occasion the breakpoint is reached. 

3$$P 

The double $ instructs DDT to proceed auto­
matically from the breakpoint. In this example 
the breakpoint is active initially for the third 
time and thereafter every time the statement 
number is reached. To get out of this automatic 
operation type any character while DDT is 
typing out the breakpoint information and then 
re-assign the breakpoint as required. 

1-9 



MNT-12 
9Aug71 

$2B»4P INDEX/ 15. 

$2B»4PPPP INDEX/ 16. PP~$lBU ~$lB 

PPyJ$lB 

This is illegal, and DDT responds with 'U'. 

f1$lB 
This command to DDT removes breakpoint 1. 
Note that breakpoints can be reassigned by 
respecifying a particular breakpoint. 

$B 

Removes all specified breakpoints. 

$p 

Program will proceed to termination as no 
breakpoints are specified. 

THE SUM OF ALL INTEGERS FROM 1 TO 3~~ = 45l5~ 

MYPROG VALUES ARE 
COM = 246.9~~ 
I -987 
J ABCD 
K -567 
L 112233445566 

EXECUTION TIME: 
TOTAL ELAPSED TIME: 

1.88 SEC. 
11 MIN. 29.~~ SEC. 

NO. OF ERRORS 
3 

ERROR TYPE 
INTEGER OVERFLOW 

? 
EXIT 
tC 

·1.3 SETTING BREAKPOINTS 

LOCA$B sets next available breakpoint to location LOCA 

LOCA$nB 

LOCA$$B 
LOCA$$nB 

n = 1 - 8 sets the specific breakpoint n 

stops at breakpoint but proceeds immediately after 
typing breakpoint identified. 

1-10 



MNT-12 
9Aug71 

LOCB. ,LOCA$B 
LOCB, ,LOCA$$B 
LOCB, ,LOCA$nB 
LOCB, ,LOCA$ $nB 

when breakpoint is reached the field LOCB is typed out. 

If the format $B is used and all breakpoints are already in use then DDT 
types I?'. If the format $nB is used and breakpoint n is already in use, 
the breakpoint is reassigned with the new value. 

If the breakpoint is accepted DDT responds with a 

When a breakpoint is reached, DDT types 

$nB»LOCA 

$nB»LOCA LOCB/xxxxx 

Breakpoints can be removed- in the following ways: 

(a) A specific breakpoint can be removed by 
(i) Respecifying it with a different value 

e.g. LOCA$6B 
(i~) Typing ~$6B 

horizontal tab. 

(b) All breakpoints may be removed by the command $B. 

1.4 TYPE OUT MODES 

DDT is initialized to type out the contents of locations as 'symbolic 
Macro instructions'. That is it analyzes the location as if it were an 
instruction. If however, it decides that because of the value of the 
location it could not possibly be an instruction it then assumes that the 
word is holding two constants, that is one constant in each half of the 
word, and it prints these out separated by two commas ',,'. 

It is possible to change the mode of typeout, either permanently or 
temporarily, and this procedure will now be detailed. The general format 
of commands to set type out modes is as follows: 

(a) (i) $symbol 

(ii) $$symbol 

Command (i) sets the particular mode specified for all locations 
typed out until a return is typed. 

Command (ii) sets the mode permanently (i.e. until another permanent 
assignment-is made). 

Note that temporary assignments always take priority over the 
permanent mode assignment. 

(b) The output radix of any numeric field typed by DDT can be set as 
follows: 

1-11 



MNT-12 
9Aug71 

(c) 

(d) 

$nR 
$$nR where 2 ~ n ~ 10 

In particular, n=lO gives decimal output and DDT prints a period 
following the number to indicate that the field is in decimal. 

To type out a field as a floating point number. 

$F 
$$F 

e.g. ~ LOCBI 123.45 

To type out a field as characters (7-bit ASCII codes). 

$T 
$$T 

e.g. $T LOCAl ABCDE 

(e) In addition to these a field can always be typed as a constant by 
typing '=' immediately after the contents have been printed. 

e.g. LOCAl ABCDE ~40605(lJ,.3422l2 

(f) There are several other modes which can be specified and these are given 
in Chapter 4 of this manual. 

1.5 TYPE IN MODES 

Contents of a field can be altered by typing in the new value immediately 
after the original contents have been typed. 

e.g. LOCBI 423 546<cr> 

in the example the original value of 423 in LOCB has been replaced by the 
value 546. 

The new value to be placed 
many different modes. The 
out' mode discussed above. 
later chapter but the more 

in the particular location can be specified in 
type in mode is not affected by the current 'type 

The full list of 'type in' modes is given in a 
useful ones are listed below. 

(a) 

(b) 

(c) 

To type in an octal value 

e.g. LOCAl 983. l234<cr> 

To type in a fixed point decimal number 

e.g. LOCAl 983. 1(lJ869.<cr> 

To type in up to 5 characters (7-bit) left justified 

e.g. LOCAl 983. lIiABCDEi<cr> 

Note that the 'I' is a delimeter and may be any character that is not 
in the string to be inserted. 

1-12 



CHAPTER 2 

BASIC DDT COMMANDS 

MNT-12 
9Aug71 

The DDT commands most frequently used by programmers are described in this chapter. Many 

programs are debugged successfully using only these basic commands. 

This chapter introduces the main features of DDT to the uninitiated user. Later chapters 

describe in detail these basic commands, less frequently used commands and other more complex options. 

2.1 EXAMINING STORAGE WORDS 

By US! ng DDT, a programmer may exami ne the contents of any storage word by typi ng the 

address of the desired word followed immediately by a slash (/). For example, to type out the con­

tents of a location whose symbolic address is CAT, the user types, 

CATI 

DDT now types out the contents (preceded and followed by tabs) on the same line 1. 

CATI MOVEM AC.DOG+21 

The word labeled CAT is now considered to be opened, and DDT has set its location pointer 

to point to this address. 

2.2 TYPE-OUT MODES 

The preceding example showed DDT typing out the contents of location CAT as a symbolic 

instruction with its address field also relative to a symbol. This is the type-out mode in which DDT is 

initialized. It is also inii"ialized to type ali numbers in the octal radix. The user may ask DDT to re-
2 

type the preceding quantity as a number in the current radix by typing an equal sign (=). For example I 

CATI MOVEM AC.DOG+21 = 202400 •• 6736 

DDT has numerous commands which reset the type-out mode permanently f temporari Iy, or 

for only one typeouT. The modes that can be selected include numeric constants, floating point numbers, 

ASCII and SIX BIT text modes, and half-word format. Absolute or relative addressing and different 

radixes may similarly be selected. For example, to change the current type-out mode to ASCII text, 
3 

the user types the command 

ST 

lIn this manual information typed out by the user is underlined to distinguish DDT output 
2from user-typed input. 

The two commas i ndi cate that 202400 is in rhe ! eft ha I f of CAT, and 6736 is in the 
i9ht half. 
The Teletype keys ALTMODE (ALT), PREFIX (PREFIX), or ESCAPE (ESC) are all 
equivalent and echo as $. 

2-1 



MNT-12 
9 Aug 71 

or, to change the current type-out mode to hal f-word format, he types 

$H 

or, to select decimal numbers in his typeouts, he types 

$10R 

Using these commands (and others described in Chapter 3), a programmer may examine any 

location in the mode most appropriate to the information stored there. A semicolon (;) commands 

DDT to retype the preceding quantity in the current mode. Combining this command with a mode 

change gives results such as the following: 

CATI MOVEM AC,DOG+21 $10R; MOVEM AC,DOG+17 

or CATI MOVEM AC,DOG+21 $H; 2024'10"DOG+21 

or TEXT/ ANDM 1,342212(10) $T; ABCDE 

2.3 MODIFYING STORAGE WORDS 

Once a word has been opened, its contents may be changed by typing the desired new con­

tents immediately following the typeout produced by DDT. A carriage return will command DDT to 

make the indicated modification and close the word. For example, 

CATI MOVEM AC,DOG+21 MOVNM AC2,DOG+21 ) 

The carriage return simply closes the previously examined register without opening another 
1 

The line feed ( , ) may also be used to close a word after examining (and optionally modifying) it. The 

line feed commands DDT to (1) echo a carriage return, (2) close the current word (making a modi­

fication if one was typed), (3) add one to DDT's location pointer, and (4) type out the new pointer 

value and the contents of that address. Thus, if a line feed had been used in the previous example, 

the result would be: 

CATI MOVEM AC,DOG+21 MOVNM AC2,DoG+21+ 

CAT+l/ AOBJN XR6,LOOPS 

Location CAT+l is now open and may be modified if desired. 

The vertical arrow (t ) is similar to the line feed command except that the location counter 

is decremented by one. Therefore, if the user continued the previous example by typing t the result 

would be 

CAT+ll AOBJN XR6, LOoPSt 

CATI MOVNM AC2,DoG+21 

lThe carriage return command has the additional property of causing temporary 
type-out modes to revert to permanent mode. 

2-2 



MNT-12 
9Aug71 

Location CAT is thus displayed and shows the result of the modification made in the previous 

example. 

The tab ( -4 ) and backslash (\) both close the current register and open the address last 

typed (whether typed by DDT or the user), However, tab sets DDT's location pointer (. ) to this new 

address while backslash leaves it unaltered. A more complex example may clarify the usefulness of 

these commands. 

CAT+II AOBJN XR6.LOOP5 ~ 

LOOPS! 

LOOP5+11 

CAMGE AC2.TABL(XR6) CAMG AC2JTABL+1 (XR6)\SETZI 0=4010~0 •• 01 
JUtv)PL AC3 .. FAULT JUIVPL AC2 .. FAULT-I 

F,4UL T I 

2.4 TYPE-IN MODES 

The examples in the preceding section showed modifications made as symbolic instructions in 

a form identical to MACRO-lO ~achine language. It is also possible to enter various numbers and 

forms of text, 

Octal values may be typed in as octal integers wHh no decimal point. Numeric strings 

with numbers following the decimal point imply decimal floating-point numbers. The E-notation may 

also be used on floating-point numbers. Some examples are: 

Octal: 1234 777777777777 -6 0 

Decimal integers: 6789 99999999. -25. O. 

Floating-point numbers: 78.1 O.249876E-l0 -4.00E+20 0.0 

Incorrect formats: 76E+2 76. E+2 (instead write 76.0E+2) 

To enter ASCII text (up to five characters, left justified in a wordL type a double quote ( ") 

followed by any printing character to serve as a delimiter, then type the one to five ASCn characters 

and repeat the delimiter. For example: 

"/ABCDEI 

"ABCDA 

(/ is the delimiter) 

(A is the delimiter) 

t--Iote that the mode of a quantity lyped in is determined by the user's input format and is 

unaffected by any type -out mode setH ngs. 

2.5 SYMBOLS 

The user's symbol tables are loaded by the linking Loader when it loads programs and DDT. 

However, initially DDT is set to treat only global symbols (created by INTERNAL and ENTRY pseudo-

ops in MACRO-lO) as being defined. This means only globa! symbols will be used for relative 



MNT-12 
9 Aug 71 

address type outs and, likewise, only these globals can be referenced when typing in symbolic modifica­

tions. In order to make the local symbols within a particular program available to DDT, the user types 

the program name (this comes from the MACRO-l0 TITLE statement or the FORTRAN IV SUBROUTINE or 

FUNCTION statement) followed by ALTMODE and a colon ($:). For example, the command 

ARCTAN$ : 

will unlock the local symbols in the program named ARCTAN. This provision in DDT permits the user to 

debug several related subroutines simultaneously and reference the local symbol table of each indepen­

dently without fear of multiply-defined local symbols. If the user's program is not titled, the command 

MAIN.$: will unlock the local symbol table. 

NOTE 

DDT is not quite so stringent on the use of local sym­
bols as indicated above (see Section 5.6). However, 
the user is advised to unlock symbols with $: until he 
is fairly familiar with DDT. 

The user may also insert symbols into the symbol table. To insert a symbol with a particular 

value, type the value, followed by a left angle bracket «), the symbol, and a colon (:). Some exam-

pies are 707<CONS: 27<5: 12.1E+<NUMB: ADR+12<ADRX: 

To assign a symbol with a value equal to DDT's location pointer, simply type the symbol fol­

lowed by a colon. For example, 

XREF+41 JRST @ TABL(3) BRNCH: 

will cause BRNCH to be defined with the value XFER+4. 

2.6 EXPRESSIONS 

DDT permits the user to combine symbols and numeric quantities into expressions by using the 

following characters to indicate arithmetic operators. 

+ The plus sign indicates 2's complement cr\j;i Ivn 

The minus sign indicates 2's complement subtraction 

* The asterisk indicates integer multiplication 

The single quote or apostrophe indicates integer division (remainder discarded)-­
slash cannot be used to indicate division since it has another use in DDT. 

As usual in arithmetic expressions, the evaluation proceeds from left to right with multiplica­

tion and division performed before addition and subtraction. 

2.7 BREAKPOINTS 

The breakpoint facility in DDT provides a means of suspending program operation at any de­

sired point to examine partial results and thus debug a program section by section. The simpler facts 

2-4 



9Aug71 

about breakpoints are presented next; the use and control of conditional breakpoints is deferred to Para­

graph 4.2. 

2.7.1 Setting Breakpoints 

The programmer can automatically stop his program at strategic points by setting as many as 

eight breakpoints. Breakpoints may be set before the debugging run is started, or during another break­

point stop. To set a breakpoint I the programmer types the symbolic or absolute address of the word at 

the location point in which he wants the program to stop, followed by $B. For example, to stop when 

I ocati on 6004 is reac hed I he types 1 

6(1)04$8 

Breakpoint numbers are normally assigned by DDT in sequence from 1 to 8. The user may in­

stead assign breakpoint numbers himself when he sets a breakpoint by typing, 

$NB 

when n is the breakpoint numoer (1~n~8), for example, 

CAT+3§48 DOG+I$78 6004$88 

When the programmer sets up a breakpoint he may request that the contents of a specifi ed 

word be typed out when the breakpoint is reached. To do this, the address of the word to be examined 

is inserted I followed by two commas I before the breakpoint address. Some examples are 

DOG"CAT$38 AC1"LOOP+2$B X;~6004$88 

2.7.2 Breakpoi nt Restri cti ons 

The I ocati ons where breakpoi nts are set may not 

a. be modified by the program 
b. be used as data or litera Is 
c. be used as part of an indirect addressing chain 
d. contain the user mode monitor command INIT 
e. be accumu I ator O. 

2.7.3 Breakpoint Type-Outs 

When the breakpoint location is reached, DDT suspends program execution without executing 

the i nstructi on at the breakpoi nt I oeati on. DDT then types the breakpoi nt number and the Program 

Counter value at the time the breakpoint is reached (this value will differ from the typed-in breakpoint 

address if the breakpoint is executed by an XCT instruction elsewhere in the program). The format of 

this typeout is as shown in the following examples: 

$~R » CAT+3 578 » DOG+l $86 » 6004 

If the user requested that a specified address be examined at that breakpoint f it will be 

opened; for example, 

S3R » CAT DOG! SOJGE 3,GOAT+6 

2-5 



MNT-12 
9Aug71 

2.7 .4 Removing and Reassigning Breakpoints 

The user may remove a breakpoint by typing, 

('lliNB 

where n is the number of the breakpoint to be removed. For example, 

0li2B 

removes the second breakpoint. All assigned breakpoints are removed by typing 

liB 

The user may reassign a breakpoint without formally removing it. Thus, if he has set breakpoint No.2 

at location ADR (via the command ADR$2B) he may reassign No.2 to LOC+6 by typing LOC+6$2B. 

2.7.5 Proceeding From a Breakpoint 

Program execution may be resumed (in sequence) following a breakpoint stop by typing the 

proceed command, $P. 

If the user does not wish to stop until the nth time that this breakpoint is encountered he 

types, 

f\!$P 

Then this breakpoint will be passed n-l times before a break occurs. 

2.8 STARTING THE PROGRAM 

The program is started by typi ng 

SiG 

This starts the program at the previously specified starting address in location JOBSA. (Typically this 

is the address from the MACRO-lO END statement.) The programmer may start at any other location 

by typing that address followed by $G. For example, 

40121e;liG 

starts the program at the instruction stored at location 4000. BEGIN$G starts the program at the sym­

bolic location BEGIN. 

The start command may also be used to restart from a breakpoint stop when it is not desired 

to continue in sequence from the point where program execution was suspended. 

2.9 DELETING TYPING ERRORS 

Any partially typed command may be deleted by pressing the RUB OUT key. This causes 

DDT to ignore any preceding (unexecuted) partial command, and DDT types XXX. The correct com­

mand may then be retyped. 

2-6 



2. 10 ERROR MESSAGES 

MNT-12 
9Aug71 

If the user types an undefined symbol which cannot be interpreted by DDT, U is typed back. 

If an illegal DDT command is typed, or a location outside the user's assigned memory area is referenced 

? is typed back. 

2. 11 SUMMARY 

As was said in the beginning, these basic commands are sufficient for debugging many 

programs. Complete descriptions of all DDT commands are explained in the following chapters. 

2-7 





CHAPTER 3 

DDT COMMANDS 

MNT-12 
9Aug71 

When DDT is initialized, it is set to type out in the symbolic instruction format with relative 

addresses, and to type out numbers in octal radix. 

3.1 EXAMINING THE CONTENTS OF A PROGRAM STORAGE WORD 

To type out the contents of a storage word, the programmer types the address, followed imme­

diately by a slash (/). For example, to examine the contents of a word whose symbolic address is ADR, 

the user types, 

ADRI 

DDT types out the contents on the same line. In this manual, information typed out by DDT is under­

lined. 

ADRI MOVE A,CCI 

The word labeled ADR is now considered to be opened, and DDT continues to point to this address. 

The point, or period, character (.) represents DDTls location pointer, and may be used to type out its 

contents, as in the following command . 

• 1 MO V E A, C C 1 

Since we did not change the contents, they are the same, but we used the location pointer to re­

examine the currently opened word. Similarly, the programmer may use the period (.) as an arithmetic 

expression component, such as 

.+51 SOJGE 2,ADR+3 

DDTls location pointer is set to a new value by the / command when immediately preceded by an ad­

dress. For example, 

20. 1 1 (il 

sets the location pointer to 201. If the user types / without typing an address, the contents of the loca­

tion addressed in the last typeout are typed. 

6671 MOVE ),6 1 0 

.1 tIJOVE 1,6 

Location 667 contains the instruction MOVE 1,6. The second slash displays the contents of Accumu­

lator 6, which is zero. This does not change the location pointer, which is still pointing to location 667. 

ADRI MOVE A,CC) 1 ADO 2,SUM+7 

It should also be noted that the spaces, which occur after DDT completes the typing of the con­

tents of ADR, are automatically produced by DDT, not the user. 

3-1 



MNT-12 
9Aug71 

The left square bracket ([) 1 has the same effect as the slash, (the address immediately 

preceding the [ wi II be opened). However, [forces the typeout to be in numbers of the current radix. 

ADR[ 11 (OCTAL) 

ADRJ 9. (DECI~AL) 

The right bracket (J) 1 has the same effect as the slash except that it forces the typeout to be in sym­

bolic instructions. 

ADR+23J MOVE IS .. LIST+2 

The exclamation point (!) works like the slash except that it suppresses type out of contents 

of locations until either /, [, or] is typed by the user. The LINE FEED P) commands DDT to type 

out the contents of ADR+ 1. 

ADR! tvlOVE AC .. S5S. . 
ADR+l!) 

ADkl MOVE AC .. SSS 

(}) 

(2 ) 

(3 ) 

Thus, in step (1) of the example the contents of ADR are not typed out, but the address is opened to 

modification and MOVE AC,555 has been typed in by the user. 

Step (2) of the example shows that the location pointer has been incremented by one and the 

contents of ADR+1 are not typed out. This is because the exclamation point is still in effect and will 

continue to take effect until /, [, or ] is typed in by the user. In this case, the slash terminates the 

effect of the exclamation point. 

Step (3) shows that the modification (MOVE AC,555) of ADR typed in Step (1) has been 

accompl ished • 

3.2 CHANGING THE CONTENTS OF A WORD 

After a word is opened, its contents can be changed by typing the new contents following 

the type out by DDT, followed by a carriage return. For example, 

ADRI MOVE A .. CC 1 t'-1OVE A,CC2 ~ 

The carriage return closes the open word, but does not move the location pointer. A LINE FEED P) 

command could also be used to make this modification. A LINE FEED causes a carriage return, adds 

1 
On Teletype Models 33 and 35 the left square bracket ([) is produced by holding the SHIFT key down 
and striking the K key. The right square bracket (J), is produced by holding the SHIFT key down and 
striking the M key. 

3-2 



one to DDT's location counter (moves the pointer), types out the resulting address and the contents of 

the new address. Thus, if we conclude our last example with a LINE FEED 

ADRI MOVE A,CCI ~OVE A,CC2t 

ADR+ll ADD 3,CC3 

ADR+l is now open, and may be modified by the user. 

The vertical arrow (t) 1 works simi larly I except that one is subtracted from the location 

pointer. The open word is closed (modified if a change is given) and the new address and contents are 

typed out. 

ADR + 11 

ADRI MOVE A,CC2 

Since the vertical arrow subtracts one from the pointer, the resulting address is ADR, and 

the contents now show the change made in the previous example. 

3.3 INSERTING A CHANGE, AND EXAMINING THE CONTENTS OF THE LAST TYPED 
ADDRESS 

The horizontal tab (-I) causes a carriage-return line feed, then sets the location pointer to 

the last address typed (the new address if a modification was made) of the instruction in the register 

just closed. Then DDT types this new address, followed by a slash and the contents of that location, 

as shown below. 

ADR51 Jf<ST ADR 1 JRST ADR-I 

ADRI 

CC21 

MOVHl B ,CC2 .::i 
666 

The backslash (\)2 opens the word at the last address typed and types out the contents. 

However, backslash does not change the location pointer. The backslash closes the previously opened 

word and causes it to be modified if a new quantity has been typed in. 

ADRI MOVE A,CC2 JRST X, MOVE AC,3 

The use of the backslash accomplishes two things. First it changes ADR by replacing its contents with 

JRST X. Second, the backslash causes DDT to type out the contents of X, namely, MOVE AC,3. The 

location pointer continues to point to ADR, but now location X is open and may be modified if desired. 

1 t is produced by SHIFT-N on Teletype Models 33 and 35. The backspace key may be used instead of 
t on Teletype Model 37. 

2\isproduced by SHIFT-L on Teletype Models 33 and 35. 

3-3 

MNT-12 
9Aug71 



MNT-12 
9Aug71 

. 
If the line-feed control character and the vertical arrow were used in conjunction with the 

backslash, the results would be as follows. 

ADRI MOVEM B,CC2 MOVE A,CCl\ 1057761 

ADR+ll MOVE A,C JL 
ADRI MOVE A,CCI \ 105776 

The following is a summary in table form of these special control characters and their cor­

responding functions. For example, the chart shows that the forward slash (/) will examine the con­

tents of an address, type out in the current mode, open the address, change the location pointer to the 

address just opened, but it does not cause a new quantity to be inserted in that address. 

Table 3-1 
Special Character Functions 

Change Insert New 
Command Type Out 

Mode 
Address 

Location 
Qty If New 

Character Contents Opened 
Pointer 

Qty Has Been 
Typed 

/ Yes Current I [ Yes Numeric 1 
) Yes Yes No 

] , Yes Symbolic 

! No None ~ 

\ Yes 
2 

Current Yes No Yes 

TAB (-I) Yes 
2 

Current Yes Yes Yes 

t or backspace Yes 
2 

Current Yes Yes (.-1) Yes 

Line-feed P) Yes 
2 

Current Yes Yes (.+1) Yes 

Carriage No None No No Yes 
return ()) (closes) 

A ? typed by DDT when examining a location indicates that the address of the location is 

outside the user's assigned memory area. A? typed when depositing indicates that the location cannot 

be written in, because it is either outside the assigned memory area or inside a write-protected memory 

segment. 

~If a user-typed quantity preceded. 
If ! has not suppressed typeout. 

3-4 



3.4 STARTING THE PROGRAM 

The program is started by typing 

$G 

MNT-12 
9Aug71 

This starts the program with the instruction beginning at the user's previously specified starting address 

taken from location JOBSA. The programmer may start at any other instruction by typing the address of 

that instruction followed by $G. For example, 

4000$G OR ADR+S$G 

starts the program at the instruction stored at location 4000 or, in the second part, at the symbolic 

address ADR+5. The start command may also be used to restart from breakpoints when the user does not 

wish to proceed to the next instruction. 

3.5 ONE-TIME TYPEOUTS 

These commands cause a single typeout of the opened word in the mode indicated. 

3.5.1 Type Out Numeric 

Although DDT is initialized to type out in symbolic mode, it is often useful to change to 

numeric typeout. When the programmer types the equal sign (=), the last expression typed is retyped by 

DDT in the current radix (initially octal). This is useful when a symbolic typeout is meaningless. Since 

this usually indicates that numeric data is stored in that word, the user can verify this by typing = and 

checking the value. 

3.5.2 Type Out Symbolic 

If a typeout is numeric, and the user wants to examine it in symbolic mode, he types the left 

arrow (-). The last typed quantity is retyped as a symbolic instruction. The address mode is determined 

by $A or $R. 

3.5.3 Type Out in Current Mode 

To retype a typeout in the current mode, the user types a semicolon (;). This may be used, 

for example, if the user has changed the typeout mode. For example, 

TE,XTJ ANDM 1..342212 (10) $T; ABCDE 

3.6 SYMBOLS 

Before DDT commands can be used to reference local symbols in the program Symbol Table, the 

user should type the program name as specified in the MACRO-lO TITLE statement, or the FORTRAN IV 

3-5 



MNT-12 
9 Aug 71 

SUBROUTINE or FUNCTION statement, followed by an ALTMODE and a colon. For example, 

{VA I N$: 

makes the local symbols in the program called MAIN available. Since the user can debug several re­

lated subroutines simultaneously, reference to several independent symbol tables is permitted, each of 

which may use the same local symbols with different values. DDT allows the user to reference unique 

local symbols in other programs without respecifying the program name with $: (see Section 5.6.2). 

However, to access a local symbol that is used in several programs, the user must specify the program 

name to remove the ambiguity. Global symbols, such as those specified in MACRO-10 INTERNAL 

statements, maya Iways be referenced. 

The l!ser may insert (or redefine) a symbol in the symbol table by typing the symbol, followed 

by a colon. The symbol will have a value equal to the address of the location pointer (.). 

XI ADDl 3.N TAG: 

causes TAG to be defined with the same value as X. All user defined symbols are global. 

The user may also directly assign a value to a symbol by typing the value, a left angle 

bracket «) and the symbol, terminated by a colon. This is the equivalent of a MACRO-10 direct as­

signment statement. Some examples are, 

707<CONS: 12.1E+2<NUM8: 
27<X: l01<MIL: 

3.7 TYPING IN 

To change or modify the contents of a word, the user may type symbolic instructions, num­

bers, and text characters. Type-ins are interpreted by DDT in context. That is, DDT tests the data typed 

in to determine whether it is to be interpreted as an instruction, a number (octal or decimal), or text. 

Typeout mode settings, such as $S, $C, and $nR, do not affect typed input. 

The user may type the following: 

a. Symbol ic Instructions 

b. Numbers 

(1) Octal integers 
(2) Fixed-point decimal integers 
(3) Floating-point decimal mixed numbers 

c. Text 

(1) Up to five PDP-10 ASCII characters, left justified in a word 
(2) Up to six SIX BIT characters, left justified in a word 
(3) A single PDP-10 ASCII character, right justified in a word 
(4) A single SIXBIT character, right justified in a word 

d. Symbols 

Anything that is not a number or text is interpreted by DDT as a symbol. 

3-6 



3.7.1 Typing In Symbolic Instructions 

MNT-12 
9Aug71 

In general, a symbolic instruction is written for insertion by DDT, in the same way the in­

struction is written as a MACRO-1O source program statement. For example, 

XI 0 ADD AC1,DATE 

where a space terminates the operation field, and a comma terminates the accumulator field. For 

example: (1) In DDT, the operation code determines the interpretation of the accumulator field. If 

an I/o instruction is used, DDT inserts the I/o device number in the correct place, and (2) indirect 

and indexed addresses are written, as in MACRO-l0 statements, where @ precedes the address to set 

the indirect bit, and the ~ndex register specified follows in parentheses. 

X/0 ADD 4,@NUM(17) 

To type in two 18-bit halfwords, the left and right expressions are separated by two commas. 

For example, 

This is similar to the MACRO-l0 statement 

XWD A,B 

3.7.2 Typing In Numbers 

A typed-in number is interpreted by DDT as octal if it does not contain a decimal point. 

The following examples are octal type-ins: 

1234 -101101 

772 777777777777 

Fixed-point decimal integers must contain a decimal point with no digits following. 

1234. -99. 877. 

Floating-point numbers may be written in two formats. With a decimal point and a digit following the 

decimal point: 

10101 1234.5 999.0 -2.71828 

Or as in MACRO-l?, with E indicating exponentiation: 

12.0E+2 77.0E+5 12.34E2 31.4159E-l 

3.7.3 Typing In Text Characters 

To type in up to five PDP-l0 ASCII characters, left justified in an opened word, the user 

types a quotation mark, followed by any printing delimiting character, then the text characters, and 

terminated by the delimiting character. The following examples are legal: 

"/TEXTI "ABCDEF'A 

3-7 

In these cases, / and A are 
the delimiting characters 



MNT-12 
9Aug71 

To type in up to six SIXBIT characters, left justified in an opened word, the user types ALTMODE quo­

tation mark ($"), followed by any delimiting character, then the text characters, and terminated by re­

peating the delimiting character. Lower case letters are converted to upper case. Characters outside 

the SIXBIT set are illegal, and DDT types a question mark. The two examples below are SIX BIT type ins. 

$"/DIVIDE/ $"EXXXXXXE 

To type in a single PDP-l0 ASCII character, right justified in an opened word, the user types 

a quotation mark, followed by a single ASCII text character, then by an ALTMODE. 

"Q$ "/$ "?$ 

To type in a single SIXBIT character, right justified in an opened word, the user types an 

ALTMODE, followed by a quotation mark, a single SIXBIT text character and terminated by an ALT­

MODE. 

$"Q$ $" M$ $"$$ 

3.7.4 Arithmetic Expressions 

Numbers and symbols may be combined into expressions using the following characters to in-

dicate arithmetic operations. 

+ The plus sign means 2's complement integer addition. 

- The minus sign means 2's complement integer subtraction. 

* The asterisk means integer multiplication. 

The single quote means integer division with any remainder discarded. (The slash has 
another functi on .) 

Symbols and numbers are combined by +, -, *, 'to form expressions. Examples: 

3.8 DELETE 

6+2 
S'2.51+BASE 
2*3+1 

Any partially typed command may be deleted by pressing the RUB OUT or DELete key. This 

causes DDT to ignore any preceding (unexecuted) partial command and DDT types XXX. The correct 

command may then be retyped. 

3.9 ERROR MESSAGES 

If the user types an undefined symbol which cannot be interpreted by DDT, U is typed back. 

If an illegal DDT command is typed, ? is typed back. Examining or depositing into a location outside 

the user's assigned memory area causes DDT to type a ? Depositing in a write-protected high memory 

segment also results in a ? typeout. 

3-8 



CHAPTER 4 

MORE DDT-10 COMMANDS 

MNT-12 
9Aug71 

This chapter describes other type-out modes, conditional breakpoints, searches and addition­

al features. Commands are available to change modes from the initial settings so that numeric data can 

be typed out in a radix chosen by the user, in floating-point format, in RADIX50 format, as halfwords 

(two addresses) and as bytes of any size. The contents of a storage word may also be typed out as 7-bit 

PDP-10 ASCII text, or SIXBIT text characters. (See MACRO-10 Manual, Appendix E.) 

Searches can be made in any part of the program for any word, not-word (inequality), or ef­

fective address. The user specifies the instruction or data to be searched for and the limits of the 

search. 

Breakpoints can be set conditionally, so that a program stop occurs if the condition is satis­

fied. In addition, a counter can be set up allowing the user to specify the number of times a breakpoint 

is passed before a program stop occurs. 

4. 1 CHANGING THE OUTPUT RADIX 

Any radix (~2) may be set by typing $nR, where n is the radix for the next typeout only, and 

n is interpreted by DDT as a decimal value. The radix is permanently changed when the double ALT­

MODE is used in the command $$nR. To change the type-out radix permanently to decimal, the user 

types, 

$$10R 

When the output radix is decimal, DDT follows all numbers with a point. 

4.2 TYPE-OUT MODES 

When DDT-10 is loaded, the type-out modes are initialized to produce symbolic instructions 

with addresses relative to·symbolic locations. For numeric typeouts, the radix is initially set to octal. 

These modes may be changed by the user. The duration, or lasting effect of a type-out mode 

change is also set by the user. Prevailing modes, which are semipermanent, are preceded by two ALT­

MODEs. Temporary modes are preceded by a single ALTMODE. In addition, some mode changes ef­

fect only one typeout, such as the equal sign, which causes DDT to retype the last typed quantity in 

numeric mode. 

In general, prevailing modes are changed by replacing them with another prevailing mode or 

by reinitializing the system. Temporary modes remain in effect until the user types a carriage return 

() ), or re-enters DDT. One-time modes apply only to a single typeout. 

4-1 



MNT-12 
9Aug71 

4.2.1 Primary Type-out Modes 

$S (OR $$S) 

$A (OR $$A) 

$R (OR $$R) 

$C (OR $$C) 

$F (OR $$F) 

$T (OR $$T) 

$6T < OR $$6T> 

$5T (OR $$5T) 

$H (OR $$H) 

$NO <OR $$NO) 

Type out symbolic instructions. The address part interpretation 
is set by $R or $A. 

$S ADRI ADD AC1,TABLE+3 

Type out the address parts of symbolic instructions, and both 
addresses when the mode is halfword, as absolute numbers in the 
current radix. 

$A ADRI ADD 4002 

Type out addresses as re lative addresses. 

Type out constants, i.e., as numbers in the current radix. 

$C ABLEI 254111,,4050 - ---
If the output radix is octal and the left half is not 0, the word 
will be divided into halves separated by commas. 

Type out the contents of storage words as floating-point numbers. 

$F XI 0.17516230E-45 

Unnormalized numbers are typed out as signed decimal integers. 

Type out as 7-bit ASCII text characters. Left-justified charac­
ters are assumed unless the leftmost character is null. If the 
leftmost character is null, then right-justified characters are 
assumed. 

$T REXI ABCDE 

Type out as SIXBIT text characters. 

$6T HEXI ABCDEF 

Type out symbols in radix 50 mode. (See MACRO-10 Manua I, 
Appendix 6.) 

$5T 137741 4 CREF • 40003,,261550 

This command causes the typeout to be in halfwords, the left 
half separated from the right half by double commas. The ad­
dress mode interpretation is determined by $R or $A. 

$A $H ZI 4503,,4502 

$R $H ZI TABL+14"TABL+13 

Type out in n-bit bytes, where n is decimal. (Use the letter 0, 
not zero). 

$60 BYTSI 22,23, 1, 73, 51, 46 

As in all DDT typeouts, leading zeros are suppressed. 

'.~ l , 

4-2 



4.3 

4.3.1 

BREAKPOINTS 

Setting Breakpoints 

MNT-12 
9Aug71 

The programmer can automatically stop his program at strategic points by setting up to eight 

breakpoints. Breakpoints may be set before the debugging run is started, or during another breakpoint 

stop. To set a breakpoint I the programmer types the symbol ic or absolute address of the word at the 

location whi ch he wants the program to stop, followed by $B. For example, to stop when location 

4002 is reached, he types, 

4002$8 

If all eight breakpoints are in use, DDT will type a question mark. The user may assign breakpoint 

numbers when he sets a breakpoint by typing ADR $nB, where n is the breakpoint number (1 <11<8). For 

example, 

SYM$38 ADR$78 

If n is not entered DDT wili assign 1 through 8 in sequence. In the previous example, when 

ADR is reached, DDT types, 

$78 » ADH 

indicating that the break has occurred at location ADR, and breakpoint No.7 was encountered. The 

break always occurs before the instruction at the breakpoint address is executed. 

If the instruction at the breakpoint location is executed by an XCT instruction, the typeout 

will show the address of the XCTinstruction, not the location of the breakpoint. The program stops at 

each breakpoint address, and the programmer can then type other commands to examine and debug his 

program, 

When the programmer sets a breakpoint, he may request that the contents of a word be typed 

out when a breakpoint is reached. To do this, the address of the word to be examined is inserted, 

followed by two commas, before the breakpoint address. 

X".4002$28 

When address 4002 is reached, DDT types out, 

$28»4002 XI ADD AC,Y+2 

where ADD AC, Y+2 is the contents of X. Location X is left open at this point. location 0 may not 

be typed out in this way because a zero argument implies no typeout. 

4.3.2 Removing Breakpoints 

The user may remove a breakpoint by typing, 

0$N8 

4-3 



MNT-12 
9Aug71 

where n is the number of the breakpoi nt to be removed. Therefore, 

0$28 

removes the second breakpoint. All assigned breakpoints are removed by typing 

$8 

The user may reassign a breakpoint. If he has set breakpoint No.2 at location ADR (ADR$2B), he may 

reassign No.2 to ADR+l by typing ADR+l$2B. 

4,3,3 

4,3.4 

Restrictions for Breakpoints 

Breakpoints may not be set on instructions that are 

a 0 Modifi ed by the program 

b. Used as data or I Hera is 

c. Used as part of an indirect addressing chain 

d. The user mode monitor command, I NIT 

A breakpoint at any other monitor command will operate correctly, except that if 
the monitor command is in error I the monitor wi II type out an error and the Program 
Counter, but the Program Counter will be internal to DDT and meaningless to the 
user, 

e. A breakpoint may not be assigned to accumulator O. 

Restarting After a Breakpoint Stop 

To resume the program after stopping at a break poi nt, the user types the proceed command, 

$P 

The program is restarted by executing the instruction at the location where the break occurred. If the 

user types n$P, this breakpoint will be passed n-1 times before a break can occur; the break will occur 

the nth time. If n is not specified, it is assumed to be one. If the user proceeds by typing $$P (or 

n$$P), the program will proceed automatically when the program breaks again. If DDT encounters an 

XCT loop or the monitor command INIT when proceeding f a question mark will be typed. 

Alternatively, the user may restart at any location by typing the start command, 

ADR$G 

where ADR is any program address, or $G, which restarts at the previously specified starting address in 

iocation JOBSA. 

4.3.5 Automati c Restarts from Breakpoi nts 

If the user requests DDT to type out the contents of a word and then continue program execu­

tion without stopping I he types two ALTMODES when specifying the breakpoint address. 

AC .... ADR$$8 

4-4 



MNT-12 
9Aug71 

When ADR is encountered, the contents of AC are typed out and program executi on contin­

ues. To get out of the automatic proceed mode, type any Teletype key during the typeout, and then re­

move the breakpoint or reassign it with a single ALTMODE. 

4.3.6 Checking Breakpoint Status 

The user may determine the status of a breakpoint by examining locations $nB, $nB+ 1, and 

$nB+2. 

$nB contains the address of the breakpoint in the right half and the address of the location to 

be examined in the left half. If both halves equal zero, the breakpoint is not in use. 

$nB+1 contains the conditional breakpoint instruction. (See Paragraph 4.3.7.) 

$nB+2 contains the proceed count. 

4.3.7 Conditional Breakpoints 

Breakpoints may be set up conditionally in two ways. The user may provide his own instruc­

tion or subroutine to determine whether or not to stop, or he may set a proceed counter which must be 

equal to or less than zero in order for a break to occur. 

When a breakpoint location is reached, DDT enters its breakpoint analysis routine consisting 

of five instructions. 

SKIPE 

XCT 

SOSG 

JRST 

$NB+l 

$NB+l 

$NB+2 

break routine 

JRST proceed routine 

; Is the conditional break instruction O? 

; No, execute conditional break instruction 

; Decrement and test the proceed counter 

If the contents of $nB+1 are zero (indicating that there is no conditional'instruction), the 

proceed counter at $nB+2 is decremented and tested. If it is less than or equal to zero, a break occurs; 

if it is greater than zero the execution of the user's program proceeds with the instruction where the 

break occurred. 

If the conditional break instruction is not zero, it is executed. If the instruction (or the 

closed subroutine) does not cause a program counter skip, the proceed counter is decremented and tested 

as above. If a program counter skip does occur, a break occurs. If the conditional instruction is a call 

to a closed subroutine which returns skipping over two instructions, execution of the user's program pro­

ceeds. 

4-5 



MNT-12 
9Aug71 

If the user wishes a break to occur based only on the conditional instruction, he should set 

the proceed counter. to a large positive number so that the proceed counter wi II never reach zero. 

4.3.7.1 Using the Proceed Counter - If the user wishes to proceed past a breakpoint a specified 

number of times, and then stop, he inserts the number of passes in $nB+2, which contains the proceed 

count. 

The proceed counter may be set in two ways. The first way is by direct insertion. For 

example, 

$N8+21 (') 20 

sets the counter to 20. The second method is as follows. After stopping at a breakpoint, the proceed 

count may be set (or reset) by typing the count before the proceed command: 

20$P 

($P will proceed from the interrupted instruction sequence even if the breakpoint has been removed or 

reassigned .) 

4.3.7.2 Using the Conditional Break Instruction - The user inserts a conditional instruction, or a call 

toa closed subroutine at $nB+1-. For example, 

$38 + 11 0 CA I GE ACC .. 1 5 ~ 

or 

$48+11 0 ~J~S_A ____ ~1~6~ .. ~T~E~S~T~1 

When the breakpoint is reached, this instruction or subroutine is executed. If the instruction does not 

skip or the subroutine returns to the next sequential location, the proceed counter is decremented and 

tested, as explained in Paragraph 4.2.7. If the instruction skips or the subroutine returns skipping over 

one instruction, the program breaks. If the subroutine causes a double skip return, the program pro­

ceeds with the instruction at the breakpoint address. 

Examples of Conditional Breakpoints 

If address 6700 is reached and DDPs No.4 breakpoint registers are as follows: 

$481 AC1 .... 6700 

$48 +11 CAIE AC1 .. 100 

$48+21 200 

ACl contains 100, and DDT types 

$48>6700 ACll 100 

Since ACl contains 100, the compare instruction skips and the program breaks. If ACl did not contain 

100, $4B+2 would be decremented by one and the user's program would continue running. 

4-6 



MNT-12 
9Aug71 

If the conditional break instruction transfers to a subroutine which, after the subroutine is 

executed, returns to the calling location +3, a break will~occur regardless of the proceed counter. 

Example: If the internal DDT breakpoint registers ($2B and $2B+1) have the following contents, a break 

would not occur unless accumulator 3 contains 100. 

$281 

$28 +11 

TESTI 

TEST+ll 

TEST+21 

TEST+31 

TEST+LJI 

ADR 

JSR TEST 

o 

AOS TEST 

CAlE 3 . .100 

AOS TEST 

JRST @ TEST 

(contains PC when JSR to subroutine 
TEST is made) 

The subroutine TEST causes a double skip (the return is to the third instruction after the call) in DDT if 

accumu lator 3 does not equa I 100. A break wi II never occur at address ADR (regard less of the proceed 

counter) unless accumulator 3 contains 100. 

4.3.8 Entering DDT from a Breakpoint 

When a break occurs, the state of the user's program is saved, the JSR breakpoint instructions 

are removed, and the programmer1s original instructions are restored to the breakpoint locations. DDT 

types out the number of the breakpoint and a symbol indicating the reason for the break, >for the con­

ditional break instruction, »for the proceed counter and the address in the user's program where the 

break occurred. 

Example: If address ADR is reached in the user's program and DDPs breakpoint registers contain: 

$281 ADR 

$28+11 0 

$28+21 

DDT stops the program and types, 

$28»ADR 

4.4 SEARCHES 

o (proceed counter contains zero) 

There are three types of searches: the word search, the not-word search, and the effective 

address search. 

Searches can be done between limits. The format of the search command is, 

a< b >c$ { W~ 

4-7 

Word search 

Not-word search 

Effective address search 



MNT-12 
9Aug71 

where: 

a Is the lower limit of the search; 0 is assumed if this argument and its delimiter are not 
present. 

b Is the upper I imit of the search. The lower numbered end of the symbol table is assumed 
if this argument and its delimiter are not present. 

c Is the quantity searched for. 

The effective address search (E) will find and type out all locations where the effective 

address, following all indirect and index-register chains to a maximum depth of 6410 levels, equals 

the address being searched for. 

Examples: 

4517<5000>X$E 

INPUT <5000>700SE 

Examples of DDT output, when searching for X in the above example, are as follows. 

45171 SETZM X 

4721 1 MOVE 2 .. X 

50001 MOVE 3 .. @ 4721 
(indirectly addresses X through 
address 4721) 

The word search 0N) and the not-word search (N) compare each storage word with the word 

being searched for in those bit positions where the mask, located at $M, has ones. The mask word con­

tains all ones unless otherwise set by the user. If the comparison shows an equality, the word search 

types out the address and the contents of the register; if the comparison results in an inequality, the 

word search will type out nothing. The not-word search types nothing if an equality is reached. It 

types the contents of the register when the comparison is an inequality. 

Examples: 

INPT<INPT+10>NUM$W 

INPT<INPT+10>0SN 

$MI This command types out the contents of the mask register, which is then 
open. The contents of the mask register are ordinarily all ones unless 
changed by the user. 

NSM Inserts n into the mask register. 

0$M F IRST<LAST>(2)IJJ Lists a block of locations by setting the MASK to 
zero then performing a word search for zero. 

4-8 



4.5 MISCELLANEOUS COMMANDS 

S;Q $Q represents the value of the last quantity typed. 

ADRI 100 S;Q+I~ 

ADRI 101 

INSTS;X Causes the instruction INST to be executed. 

Example: 

JRST ADR$X would cause the user's program to be started at ADR. 

There are a number of circumstances when the user will want to zero out certain memory 

location(s}. The following command provides this capability: 

FIRST<LAST $$Z This command wi II zero out the memory locations between the 
indicated FIRST address and LAST oddress inclusively. If the 
FIRST address is not present, the location 0 is assumed. If 
the LAST address is not present I the location before the low­
numbered end of the symbol table is assumed. In no case 
will locations 20-137 nor any part of DDT or DDT's symbol 
tab I e be zeroed. 

4-9 

MNT-12 
9Aug71 







MNT-12 
9Aug71 

Example: 

4001 ADD 2 I 1 2 (1 1 2 X: 

This puts the symbolic tag X into DDT-lO's symbol 
tabl e and sets X equa I to 400, the address of the 
last register opened. 

5.2 DELETING SYMBOLS 

There are times when the user will want to restrict or eliminate the use of a certain few de-

fined symbols. The following three ways give the user of DDT-lO these capabilities. 

SYMBOL $$K SYMBOL is killed (removed) in the user's symbol table. SYMBOL can 
no longer be used for input or output. 

SYMBOL $K 

$0 

5.3 DDT ASSEMBLY 

Example: 

X$$K 

This command removes the symbol X from the symbol table. 

This command prevents DDT from using this symbol for typeout; it can 
still be used for typei n. For example, the user may have set the same 
numeric value to several different symbols. However, he does not wish 
certain symbol(s) to be typed out as addresses or accumulators. 

XI MOVE JI SAV J$K .. (v.O\lE N .. SAV NtK .. ~!OVI!: AC .. ~AV --- - --- -
Since the user does not wish J to be typed out as an accumulator, he 
types in J$K, followed by a left arrow to type out the contents of X 
agai n and MOVE N, SAV is typed out. He then repeats the above pro­
cess unti I the desired result, namely AC, is typed out. Any further 
symbolic typeouts with the same number in the accumulator field of the 
instruction will type out as AC. 

The last symbol typed out by DDT has $K performed on it. The value of 
the last quantity output is then retyped automati ca Ily. For example, 

When improvising a program on-line to the PDP-lO on a Teletype, the user will want to use 

symbols in his instructions in making up the program. In this and in other situations, undefined symbols 

may be used by following the symbol with the number sign (#). The symbol wi II be remembered by DDT 

from then on. Until the symbol is specifically defined by the use of a colon, the value of the symbol is 

taken to be zero. Successive use of the undefined symbol causes DDT to type out #. Appp.nding # to 

all subsequent uses of the symbol enables the user to readily identify undefined (not yet defined by a 

colon) symbols. When an undefined symbol is finally defined, all previously tagged (#) occurrences of 

the symbol will be filled in. 

5-2 



Example: 

MOVE 2,VALUEU 

VALUE is now remembered by DDT and may be used further without the user appending the #. If subse­

quent instructions are given involving VALUE, DDT appends a # automatically to that symbol. Thus 

VALUE will always appear as VALUE followed by the # (until VALUE is defined). 

Example: 

START! MOVE 2,VALUEU. (user types the #) 

START+l! ADD! 2, 50. 

START+2! MOVEM 2, VALUE. 

U (DDT types #) 

START+3! 

START+4! 

JRST VALUE+#.!l. (DDT types # after the plus sign be­
cause only at that point does DDT 
realize the symbol VALUE is complete.) 

Undefined symbols can be used only in operations involving addition or subtraction. The undefined 

symbols may be used only in the address field. 

Example: 

MOVEI 2,3*UNDEF# 

This is an illegal operation - multiplication with a symbolic tag (UNDEF) which has not pre­

viously been defined. 

The question mark (?) is a command to DDT to list all undefined symbols that have been used 

in DDT up to that point in the program. 

Example: 
? 

VALUE 

UNDEF 

5.4 FIELD SEPARATORS 

The storage word is considered by DDT to consist of three fields: the 36-bit wholeword field; 

the accumulator or I/O device field; and the address field. Expressions are combined into these three 

fields by two operators: 

Space The space adds the expression immediately preceding it (normally an op 
code) into the storage word being formed. It a Iso sets a flag so that the 
expression going into the address field is truncated to the rightmost 18 
bits. 

5-3 

MNT-12 
9Aug71 



MNT-12 
9Aug71 

Single Comma 

Double Comma 

The comma does three things: the left half of the expression is 
added into the storage word; the right half is shifted left 23 bits 
(into the accumulator field) and added into the storage word. If 
the leftmost three bits of the storage word are ones, the comma 
shifts the right half expression left one more place (I/O instruc­
tions thus shift device numbers into the device field). The com­
ma also sets the flag to truncate addresses to 18 bits. 

Double commas are used to separate the left and right halves of 
a word with contents expressed in halfword mode. 

The address field expression is terminated by any word termination command or character. 

5.5 EXPRESSION EVALUATION 

Parentheses are used to denote an index field or to interchange the left and right halves of 

the expression inside the parentheses. DDT handles this by the following generalized procedure. 

A left parenthesis stores the status of the storage-word assembler on the pushdown list and re­

initializes the assembler to form a new storage word. A right parenthesis terminates the storage word 

and swaps its two halves to form the result inside the parentheses. This result is treated in one of two 

ways: 

a. If +, -, " or * immediately precede the left parenthesis, the expression is treated as 
a term in the larger expression being assembled and therefore may be truncated to 18 bits if part of the 
address field. 

b. If +, -, " or * did not immediately precede the left parenthesis, this swapped quantity 
is added into the storage word. 

Parentheses may be nested to form subexpressions, to specify the left half of an expression, or 

to swap the left half of an expression into the right half. 

5.6 SYMBOL EVALUATION 

5.6.1 Order of Symbol Table Search 

DDT references two symbol tables: (1) a built-in operation table containing the machine 

language instructions and monitor UUOs (e.g., MOVE, JRST, and INIT) and (2) a symbol table con­

structed by LOADER during the loading process, containing all the user-defined symbols. When a user 

types into DDT a symbol, which must be converted into a binary value, DDT has two places to look for 

the symbol. If the.expression (see Section 5.5) constructed has a zero value (the normal case when 

typing in the operation code of an instruction such as the JRST part of a JRST ADDRESS instruction), 

DDT looks for the symbol first in its internal operation table, and then, if the symbol is not found, in 

the LOADER constructed symbol table. If the expression constructed is non-zero, DDT searches the 

LOADER constructed table first, and then the internal operation table. This method of searching the 

5-4 



tables allows instructions such as JRST JRST to work correctly (the first JRST is an operation code, and 

the second JRST is a user-defined address location). 

5.6.2 Order of Symbol Table Seorch for Symbol Evaluation 

When DDT searches the lOADER constructed symbol table to evaluate a symbol typed in, it 

begins the search by looking through the symbols specified by <program name >$: (see Section 2.5). 

DDT searches the table in the following order: 

1. looks for the symbol as a local or global symbol in the currently unlocked (by $:) pro-
gram symbols. 

2. Looks for the- symbol as a global symbol anywhere in the symbol table. 

3. Looks for the symbol as Cl local symbol in the symbol table of one and only one program. 

4. Looks for the symbol as a local symbol that appears in the symbol table of more than one 
program, but with the same value in each table. (If the symbol appears with different 
values in different rabies, it I not be recognized as defined because there is no way 
to resolve the ambiguity.) 

5. If all the above fail, the symbol is undefined unless it appears in ,the internal operation 
table of the DDT. 

Fortunately, the searching is accomplished with a single pass over the symbol table. 

If one of the several identical local symbols (in step 4) is redefined, it becomes a global, 

and the symbol is then found at either step 1. or step 2. 

This procedure relaxes the requirement of Sections 2.5, 3.6, and the beginning of Chapter 5 

on the use of $: to unlock local symbols. 

5.7 SPECIAL SYMBOLS 

The @ sign sets the indirect bit in the storage word being formed. 

Example: 

MOVE AC ,@X 

5.8 BINARY VALUE INTERPRET A no N 

When DDT is typing the symbolic equivalent of a binary word or address, it looks for the sym­

bol with a value that best matches the binary. DDT looks through the symbol values in the following 

order: 

1. Searches the symbols of the currently unlocked (by $:) program for a local or global sym­
bol with a value that exactly matches the binary to be interpreted. 

2. Searches for a global symbol outside the currently unlocked program with a value that 
exactly matches the binary to be interpreted. 

5-5 

i'1NT-12 
9Aug71 



MNT-12 
9Aug71 

3. Searches all the other local symbol tables for one or more entries with values that match 
the binary to be interpreted. If more than one symbolic equivalent is found, the DDT 
does not use any of them but goes on to step 4. If exactly one symbolic equivalent is 
found (this includes the case of the same symbol with the same value in more than one 
local symbol table), then this symbol is used. However, the symbol has a # appended to 
it to warn the user that this symbol might have a different value in some other local sym­
bol table. 

4. Searches the currently unlocked program symbols for a local symbol, and sea~ches the 
entire symbol table for a global symbol, with the value closest to but less than the binary 
to be interpreted. The closest symbol is then used for typeout if it is not more than 64 
smaller than the binary being interpreted. 

If a usable symbol is not found in any of the above steps, the binary is typed out as an integer in the 

current output radix. 

The purpose of this complicated procedure is to output the best symbol without forcing the 

user to continually respecify the program symbol table names by using $:. 

5-6 



APPENDIX A 

SUMMARY OF DDT FUNCTIONS 

A.l TYPE-OUT MODES 

The following are used to set the type-out mode: 

Symbolic instructions 

Numeric, in current radix 

Floating point 

7-bit ASCII text 

SIXBIT text 

RADIX50 

Halfwords, two addresses 

Bytes (of n bits each) 

A.2 ADDRESS MODES 

$C 

$F 

51T 

$6T 

SiST 

$NO 

Sample Output(s) 

ADD 4 .. TAG+l 
ADD 4.. 4002 

69. 
105 

0ol25E-3 

PQRST 

TSRQPO 

4 DOTEND 

4002 .... 4005 
X+l .... X+4 

$8€l COULD YIELD 
0 . .14 .. 237.>123 .. 0 

The following are used to set the address made for typeout of symbolic instructions and half­

words (see examples above): 

Relative to symbol ie address 

Absolute numeric address 

A.3 RADIX CHANGE 

$R 

$A 

TAG+l 

4005 

The foil owi ng is used to change the rad i x of numeri c type-outs 

to n (for n~ 2): $NR $2R COULG YIELD 
110101100000010000000000011100101100 

A.4 PREVAILING VS. TEMPORARY MODES 

The following are used in prevailing 'Is. temporary modes: 

To set a temporary type-out or 
address mode or a temporary 
radix as shown in the commands 
above, type 

A-l 

$C 
$10R 

MNT-12 
9Aug71 



MNT-12 
9Aug71 

To set a prevailing type-out 
or address mode on a preva iI­
ing radix, in the commands 
above, substitute 

To terminate temporary modes 
and revert to prevailing modes, 
type a carriage return 

Initial prevoi I ing (and tempo­
rary) ~odes are 

A.5 STORAGE WORDS 

Type 

$$ 

) 

$$S 
$$R 

$$8R 

The following are used to examine storage words: 

To open and examine the con-
tents of any address in current 
type-out mode 

To open a word, but inhibit the 
type out of contents 

To open and examine a word as 
a number in the current radix 

To open and examine a word as 
o symbolic instruction 

To retype the last quantity typed 
(particularly used after changing 
the current type-out mode) 

A.6 RELATED STORAGE WORD 

adr/ 

adr! 

adr[ 

cdr] 

Sample Output(s) 

$$C 

$$10R 

LOCI 254020"DDTEND 

LOC! 

LOC] JRST @OOTENO 

$6T,; 5%,,; <L 

The following are used to examine related storage words: 

To dose the current open word 
(mak i ng any modi fi cati on typed 
in) and to open the following re­
lated words, examining them in 
the current type-out mode: 

To examine ADR+ 1 

To examine ADR-l 

~ (line feed) 

t (or backspace, 
on the Teletype 
Model 37) 

A-2 



To examine the contents of the location 
specified by the address of the last 
quantity typed, and to set the location 
pointer to this address 

To examine the contents of address of 
last quantity typed, but not change the 
location pointer 

To close the currently open word, with­
out opening a new word, and revert to 
permanent type-out modes 

A.7 ONE-TIME ONLY TYPEOUTS 

The following typeouts occur only one time: 

To repeat the last typeout as a number 
in the current radix 

To repeat the last typeout as a symbolic 
instruction (the address part is deter­
mined by $A or $R) 

To type out, in the current type-out 
mode, the contents of the location spe­
cified by the address in the open in­
struction word, and to open that loca­
tion, but not move the location pointer 

To type out, as a number, the contents 
of the location specified by the open 
instruction word and to open that loca­
tion, but not move the location pointer 

To type out, as a symbolic instruction, 
the contents of the location specified by 
the open i nstructi on word, and to open 
that word, but not move the location 
pointer 

A.a TYPING IN 

-+I (TAB) 

\ (backs lash) 

) (carriage return) 

::: 

/ 

[ 

] 

MNT-12 
9Aug71 

Sample Output(s) 

Current type-out modes do not affect typing in; instead, the following are performed: 

To type in a symbolic instruction 

To type 'in half words, separate the left 
and right halves by two commas 

To type in octal values 

To type in a fixed-point decimal in­
teger 

A-3 

ADD ACl,@DATE(17) 

402,,403 

1234 

99. 



MNT-12 
9Aug71 

A.9 

A,10 

To type in a flool"ing-poin'f number 

To type in up to five 7-bit PDP~ 10 
ASCII characters, left justified, delim-
ited by any printing character 

To type i.n one PDP~ 10 ASCII character f 
right iustified 

To type in up to six SD(BIT characters, 
left lustified, delimited by any printing 
character 

To type in 0118 SIX BIT character, right 
justified 

SYMBOLS 

The following are DDT symbols: 

To permit reference to local symbols 
within a program titled name 

To insert or redefine a symbol in the 
symbol table and give it the value n 

To insert or redefine a symbol in the 
symbol table, and give it Cl value equal 
to the location pointer ( . ) 

To delete a symbol from the symbol 
table 

To k 111 a symbol for typeouts (but stll I 
permit it to be used for typing in) 

To perform $K on the last s}lmbol typed 
out and then to retype the last quantity 

To declare a symbol whose value is to 
be defined later 

To type out a list of all undefined sym-
bols (which were created by #) 

" 

SPECIAL DDT SYMBOLS 

The following are special DDT symbols: 

To represent the address of the location 
painter 

To represent the last quantity typed 

Type Sample Output(s) 

H11.11 

77. PIE +2 

"/ABCDEI (/ is delimiter) 

"Ali ($ must be AlTMODE) 

$"ABCDEFGA (A is delimiter) 

$"Q$ ($ must be ALTMODE) 

name$: !'-lAIN';;;: 

n<symbol: 14<TABL3 : 

symbol: SYM: 

symbol$$K LPCTf,SlK 

symbol$K TR ITS$K 

$D 

symbol# JRST AJAX# 

? 

. (point) 

$Q 



Sample Output{s) 

To represent the indirect address bit @ 

To represent the address of the search 
mask $M 

To represent the address of the saved 
flags, etc., (see Appendix D) $1 

To represent the pointers associated 
with the nth breakpoint $nB 

A.11 ARITHMETIC OPERATORS 

The following arithmetic operators are permitted in forming expressions: 

Two's complement addition 

Two's complement subtraction 

Integer multiplication 

Integer division (remainder discarded) 

A.12 FIELD DELIMITERS IN SYMBOLIC TYPE-INS 

The following are field delimiters: 

To delimit op-code name 

To delimit accumulator field 

To delimit two halfwords 

To delimit index register 

To indicate indirect addressing 

A.13 BREAKPOINTS 

The following are used for breakpoints: 

To set a specific breakpoint n{1<n<8) 

To set the next unused breakpoint 

To set a breakpoint with automatic pro­
ceed 

To set a breakpoint which will automat­
ically open and examine a specified ad­
dress, x 

A-5 

+ 

* 
• (apostrophe) 

one or more spaces 

, (comma) 

left, right 

( ) 

@ 

adr$nB 

adr$B 

adr$$nB 
adr$$B 

x, ,adr$nB 
x, ,adr$B 
x, ,adr$$nB 
x, ,adr$$B 

JRST SUBRTE 

-6nBEG IN-l 

CAR$88 

303$B 

CAR$$88 
303$$B 

AC3 .... Z+6$58 
AC4 .... ABLE$B 
AC3 .... Z+6$$58 
AC4 .... ABLE$S8 

MNT-12 
9Aug71 



MNT-12 
9Aug71 

To remove a specific breakpoint 

To remove a II breakpoi nts 

To check the status of breakpoint n 

To proceed from a breakpoint 

To set the proceed count and proceed 

To proceed from a breakpoint and 
thereafter proceed automatically 

A.14 CONDITIONAL BREAKPOINTS 

Type 

O$nB 

$B 

$nB/ 

$P 

n$P 

$$P 
n$$P 

The following are used for conditional breakpoints: 

To insert a conditional instruction 
(INST), or call a conditional routine, 
when breakpoint n is reached 

If the conditional instructi on does not 
cause a skip, the proceed counter is 
decremented and checked. If the pro­
ceed count ~O, a break occurs 

If the conditional instruction or subrou­
tine causes one skip, a break occurs. 

If the conditional instruction or subrou­
tine causes two skips, execution of the 
program proceeds. 

A.IS STARTING THE PROGRAM 

$nB+1/ 
$2B+1/ Q 

The following commands are used to start the program: 

To start at the starting address in JOBSA $G 

To start, or continue, at a specified ad­
dress 

To execute an instruction 

A.16 SEARCHING 

The following commands are used for searching: 

To set a lower limit (a), an upper limit 
(b), a word to be searched for (c), and 
search for that word 

A-6 

adr$G 

inst$X 

a<b>c$W 

Sample Output(s) 

0$88 

$8 

$P 

2S$P 

$$P 

2S$$P 

INST 
CAIE 3.0100 

$G 

LOC$G 

JRST 2 .. @JOBOPC$X 
returns to program after 
t C and DDT commands 

200<2S0>0$W 



Type 

To set limits and search for a not-word a<b>c$N 

To set limits and search for an effective 
address a<b>c$E 

To examine the mask used in searches 
(initially contains all ones) $M/ 
To insert another quantity n in the mask n$M 

A.17 UNUSED FUNCTIONS 

The following are unused: 

$U 

$Y 

A.18 ZEROING MEMORY 

The following are used for zeroing memory: 

To zero memory, except DDT, loca-
ti ons 20-137, and the symbol table $$Z 

To zero memory locations FIRST through 
LAST inclusive FIRST<LAST $$Z 

A.19 SPECIAL CHARACTERS 

The following special characters are used in DDT typeouts: 

Breakpoi nt stops 

Break caused by conditional break 
instruction > 

Break because proceed counter ~ 0 > > 

Undefined symbol cannot be assembled U 

Half-word type-outs left "right 

Unnormalized floating-point number #1.234E+27 

To indicate an integer is decimal. The 
decimal point is printed $10R 77=63. 

Illegal command ? 

If all eight breakpoints have been as-
signed ? 

RUBOUT echo XXX 

A-7 

Sample Output(s) 

351<731>0$N 

401 <471 >LOC+6$E 

$MI -I 

777000777777$M 

401~~402 

# 1 .234E+27 

MNT-12 
9Aug71 





APPENDIX B 

STORAGE MAP FOR USER MODE DDT 

See Figure 'B-l. The permanent symbol table, which contains all PDP-10 instructions and 

monitor UUOs, is an integral part of DDT. 

MNT-12 
9Aug71 

If the user's symbol table is overwritten DDT can still interpret all instructions and UUOs. It 

will not interpret I/o device mnemonics, internal $ symbols ($M, $1, $lB through $8B, DDT and 

DDTEND or the following: 

User 
Area 
(low 
seg­
ment) 

400000 

00 

JOV 

JEN 

HALT 

1---- DDT ----I 

Userls Symbol Table 

high segment 
(optional) 

< JOBREL (points to highest location in user area) 
< JOBDDT (XWD DDTEND, DDT) 
<: JOBSYM (XWD - we, 1st address of symbol table) 

< 1st address is DDT 

< Last address is DDTEND 

<: 1st address of symbol table 

< Highest location in low segment 

Figure B-1 Storage Map for User Mode DDT 

B-1 





A 

Assembly, 5-2 

B 

Binary value interpretation/ 5-5 
Breakpoi nts / 2-4, 4-3, A-5 

checking status, 4-5/ A-6 
conditional, 4-5, A-6 

INDEX 

proceeding from, 2-6, 4-4/ 4-6, A-6 
reassigning and removing, 2-6, 4-3, A-6 
restrictions, 2-5, 4-4 
setting, 2-5, 4-3, A-5 
type-outs, 2-5, A-l, A-3 

C 

Conditional break instruction, 4-6, A-6 

E 

Error messages, 2-7, 3...,8 
Examining storage words, 2-1, 3-1, A-2 

Expression evaluation, 5-4 
Expressi ons I 2-4 

F 

Field separators, 5-3, A-5 

L 

Loading procedure, 1-1, D-2 

M 

Miscellaneous commands, 4-9 
Modifying storage words, 2-2, 3-2 

P 

Proceed counter, 4-6, A-6 

R 

Radix, changing the, 4-1, A-l 

S 

Searches, 4-7, A-6 
Special symbols, 5-5, A-4 
Starting the program, 2-6, 3-5, A-6 
Storage map for user mode, B-1 
Storage words, 2-1, 3-1, A-2 

examining, 2-1, 3-1, A-2 
modifying, 2-2, 3-2 

Symbol evaluation, 5-4 
Symbols, 2-3, 3-5, 5-1, A-4 

defining, 5-1, A-4 
deleting, 5-2, A-4 

T 

Type-in modes, 2-3, A-3 
Type-out modes, 2-1,3-5,4-1, A-l 
Typing errors, 2-6, 3-8 
Typing in, 3-6, A-3 

arithmetic expressions, 3-8, A-5 
numbers, 3-7, A-3 
symbolic instructions, 3-7, A-3 
text characters, 3-7, A-4 

MNT-12 
9Aug71 



I 



COMMENTS 

Title of Publication: PDP-10 UTILITY PROGRAMS 

MNT-12 
9Aug71 

MNT-12 

The Computer Centre welcomes any suggestions that will assist in 
improving their publications. Please comment on the usefulness and 
readability of this manual. Suggest additions and deletions and indicate 
any specific errors and omissions. Please provide page and section 
references where relevant. 

Name 

Position 

Address 

ERRORS 

COMMENTS 

Please return to the Technical Writer, 
Computer Centre~ 
University of Queensland, 
St Lucia. 
QUEENSLAND 4067. 



' .. 

{ , 



I 



r---------------~------------~----------~~--------~~------------------------------------


