TECHNICAL MANUAL NO

ABSOLUTE OVERLAYS

12

e e i o — > Pa—— R = —_— LR T e T . . .

5 LTI O S M S e

TECHNICAL MANUAL NO 12

ABSOLUTE OVERLAYS

Edited Lisha Kayrooz

MNT=-12
| May 1974

This manual has been authorized by
the Director of the Computer Centre.

MNT-12

| May 74
CONTENTS
Chapter Page
I. Absolute (Overlays - Introdguction 1-1
1ol Overlay Structure 1-1
1.2 Overlay Creation by the User : 1-6
1.3 Overlay Creation by the System 1-9
2. Use of Overlays 2-1
2.1 Calling Overlays 2-1
2.2 Communication between Overlays 2=-2
3. Accessibility of other Areas 3-1
3.1 Library Routines 3-1
3.2 Common 3-1
3.3 Data Statements : 3-1
4. Errors in QOverlays 4-1
4,1 Errors detected during Creation 4-1
4,2 Errors during Loading of an Overlay 4-1
4.3 Undetected Errors 4-2
D Example 5-1

iii

MNT=12
lilay 74

iv

MNT=12
1 May 74

le ABSQLUTE OVERLAYS = INTRODUCTION

This document describes the structure and usage of an absolute
overlay system. A subroutine OVERLAY is provided in the standard
library of subroutines which can be used from a FORTRAN or MACRO
program to call the overlays.

To1 OVERLAY STRUCTURE

An overlaid program consists of a permanent segment and one or
more overlaid segments. Each segment can contain one or more
FORTRAN or MACRO subroutines or functions, but the MAIN program
must be in the permanent segment if FORTRAN is used.

The program overlay structure may conveniently be described in
terms of a tree structure as shown in Figure 1.1. There are s
number of alternative hranches in the tree, each representing one
combination of coexisting segments in core. Communication can bhe
carried out directly along branches, hut only indirectly between
branches through common branch links. The root of the tree is
the permanent segment.

Each overlay segment or link has three attributes:
(a) Overlay Number

A decimal integer representing the order of the overlay at
creation time, that 1is, the order 1in which they are
presented to the Linking Loader. This numher may be used in
calling subroutine OVERLAY to indicate which particular
overlay is to be called. In Figure 1.l, the overlay numhers
are in roman numerals,

(b) Overlay Area

An octal digit indicating the topological area of core intn
which the overlay segment 1is to be loaded. The overlay
areas are numbered consecutively from | along any hranch of
the tree. Area | 1s the first overlay area after the
permanent area. In Figqures l.l and 1.2 the overlay areas

1-1

MNT=12
I May74

(c)

are shown in arabic numerals. An example of possible core
usage is shown in Figure 1.2 and illustrates that the actual
position of an area depends on those below it in the branch.
The total core area used depends on the 1length of the
longest branch.

Overlay Name

An optional name with a maximum of five ASCII characters
which may be vused as an alternative to the overlay number
when calling the overlay. The name may be the same as that
of a subroutine within the overlay.

MNT=12

IMay 74
!
!
!
permanent !
segment !
! 0
!
LEGEND ;
lg0e0,viii overlay VRN
number -/ \
O¢ocoael overlay / \
area / \
/ \
/ \
ANNE / \
/ AN
i / i AN
/ PAT \
/ \
/ vi \
/ \
/ \
/N /\
/N / N\
/ N\ / \
ii 7/ 2 N2 /2 N2
/ \ GAIL 7/ \
HELEN / \ / \
/ \ vii / JENNY \
/ ELSA \ / \
/ \ / viii
/ v \ /
/ \
/\
/ N\
/ \
iii 7/ 3 N3
/ \
MARY / \
/ \
/ \
/ DIANE \
/ \
/ -oiv \
/ \

Eigure 1.1 Tree Representation of Program Overlay Structure

MNT=12

I May 74
Number Area Name

i 1 ANNE
ii 2 HELEN
iii 3 MARY
iv 3 DIANE
\s 2 ELSA
vi 1 PAT
vii 2 GAIL
viii 2 JENNY

Table 1=1 Summary of Overlay Attributes for Figure

1.1

Throughout this description reference is made to overlays
This refers to the area numbhers which

or lower in a

commence at

ELSA’s is 2.

branch.

I from the permanent segment.
ANNE is lower in the branch than ELSA since ANNE“s area is 1| and

Thus,

in

fiqgure

higher

]0]'

PERMANENT OVERLAY etc.

! !
! !
! !
! 0 !
! !
Ny
! ! !
! ANNE ! PAT !
! [} |
e 1 ! ! !
\ ; !
R — !
| ! ' !
! ! ! !
! ELEN ! ELSA l=mm—memmm oo}
! ! ! ' !
! 2 to2 ! !
! ! ! GAIL ! JENNY !
! ! ! ! !
! ! ! 2 ! 2 1
P —— ! ! !
! ! ! ! ! !
! ! ! P !
! ! ! VAV AVAVE !
! ! ! AV !
! ! ! VAV AVAVAVE !
IMARY !DIANE! AV AV !
! ! ! VAL !
13 1 3 lem—e VAV AV AV !
! ! AV AV AV AVE !
! ! VAV ARV AV !
! ! VAV AV AV !
! ! VAV AV AV AV AV !
! ! V' /LSS S S)
! ! VAV AV VAV AV A AV
! ! AV A ANV
! ! VAV AV VAV VYAV AV AV AV AV
. AV AV AV VAV AV AVAVS.
'/ 7 /) VYAV AV VAV AV AV
AV AV AV AV AVAVS.
v/ /) VAV VAV A AV AV VAN
VAV VAV AV A AV AV
v/ /0 VAV VAV ANV VAV AV

Eigure 1.2 Example of Possibhle Core Usage

MNT-12
IMay 74

MNT=12
I May 74

1.2 OVERLAY CREATION BY THE USER

The user indicates to the system the routines to be included 1in
each overlay. Basically, the Loader is given a list of files to
load with separators inserted in the list at the beginning of
each overlay indicating the overlay area and name.

[he order of the overlays is important as this determines the
core layout. Each branch must be completed in an orderly fashion
as described more fully in section 1,3.

The user must indicate where ezch overlay starts. This 1is done
with a loader string that indicates the overlay area and its

name.

The standard system loader is the Digital 5-series loader. To
use the overlay system the special overlay loader OVLOAD should
be used to load the main program and the necessary overlay
routines.

The appropriate switches for this loader are:

/nZ is the “overlay’ switch.
n is the “area” number. (assumed to be 1 if /Z).

/M type out a map (/1M at the start causes symbol listing).
/G finish loading and exit to the monitor.
/E execute after loading.

/F forces library search. (needed hefore a map).

MNT=-12
| May 74

Following the order given in table 1-1, a suitable command string
might read:

.R OVLOAD run the overlay loader.

(x/1M) if a symbol map is required.
*MAINPG, FSTSUR permanent segment of files,
*SNDSUR MAINPG, FSTSUR &SNDSUR.

more main segment routines,
overlay | named ANNE,
comprising file TRDSUB.
overlay 2 named HELEN,
comprising file FTHSUR,
overlay 3 named MARY,
comprising file DISUR.
overlay 4 named DIANE,
comprising files DESUR and
FFASUR, to go into overlay
area 3 when called.

*ANNE=/1ZTRDSUB
*H=L EN=/2ZFTHSUB
*MARY=/3ZDISUR

*DIANE=/3ZNDESURB, FFASUR

W0 V0 VO WO We WO DO V6 WO A Vo VO VO WO 90 @O

*/G

In order to guard against typing errors, it is wise tn keep the
overlay loader strings in a separate file. This file can bhe
referenced by the overlay loader using an indirect command.

Example:
The file MYOV.CMD contains the following:?

MAIN, FSTSUB,SNDSUR
ANNE=/1ZTRDSUB
HELEN=/2ZFTHSUB
MARY=/3ZDISUR
DIANE=/3ZDESUB, FFASUB
/F/M

/G

To create the overlays:

R OVLOAD

*MYQve Searches for .CMD file first,
then for null extension.

Note that the overlay area name can be omitted if desired.
e.g. The line
HELEN=/2ZFTHSUB

-7

MNT=12
IMay74

could bhe replaced hy
=/2ZFTHSUB
in the above file MYOV.CMD.

SAVING FILES THAT USE_OVERLAYS

Users can SAVE overlay programs by following the ‘procedure
outlined bhelow. (The success of the operation will depend on the
size of the two files produced and the wuser“’s file storage

limits).

(a) Load the main program and its overlays into core

€eFo Assume a main program called TESTI with twn overlay files
TEST2 and TEST3, both to be overlayed to area l.

<R OVLOAD
*TEST1
*BBB=/1ZTEST?2
*CCC=/1ZTEST3
*/G

(b) Save the program

« SAVE MYPRG<cr>

At this stage, there will be two files created on the user’s area
(i) MYPRG.SAV
(ii) BBB.ABS

Note that the ABS file takes the name of the first overlay area
after the permanent (area=0) section. In the example above this
is BBR. If there is no name providad in the loader string, the
default name of OVFIL will be used.

The program can now be referred to by name MYFRG. For example,
to run the program, type

« RUN MYPRG

The subroutine OVERLAY lonks for the .ABS file as follows:

MNT-12
1 May 74

l. Firstly, the .ABS is looked for on any ppn passed acronss in
the arguments to the first call to OVERLAY. This usage is
not recommended for future programs bhut is included for
compatibility with that provided in earlier systems.

2. Secondly, it is looked for on the ppn Tfrom which the .SAV
file came if run from a .SAV file.

3. Thirdly, it is looked for on the jobs ppn.

4. Finally, it is looked for on device SYS:

[Notet To implement 2, subroutine OVERLAY is given a starting -
address OVENT and must be loaded after a FORTRAN main program
(i.2. a program with starting address "MAIN."). This works
automatically when QOVERLAY is obtained from the Fortran library.]l

Note Lhat it is the overlay area that is indicated in the strina.
The overlay number 1is the number of the overlzy in the command
string and this has heen included in the example for clarity by
putting it after a comment indicator (3).

1.3 QVERLAY CREATION BY THE SYSTEM

Each overlay command indicates to the Linking Loader the overlay
area and name to bhe used. On receipt of this command 2 library
search is carried out so that any library routines mentioned in
the last or old overlay, which do not already exist lower in the
branch, can nhe included,

An entry is then created in an overlay table within the
subroutine (OVERLAY, containing the name and area information
given. The overlay number is the number of the entry in the
overlay table.

If the new overlay area numbher is greater than the old, the new
overlay 1is loaded into core immediately above the old overlay.
However, one or more old overlays must be overwritten if the new
area 1s less than or equal to the old area. In this case, the
core images of these old overlays are written out on an overlay
file and no further changes can be made to them. Information
about size and position of these overlays 1s placed in the
overlay table for later use by OVERLAY. The next location to be
loaded is then reset so that the new overlay 1is placed in the

1=9

MNT=12
| May 74

area previously used by the old overlay(s).

For example, in Figures 1.l and 1.2, consider the case when
overlay ELSA 1is reached. The old overlay at this time is DIANE
with an area of 3 compared with ELSA’s 2. Therefore DIANE 1is
written out. Now the old overlay is HELEN with area 2 and this
is again written out. Now the old overlay is ANNE with area |
and ELSA can be added immediately above it.

Note that this writing out process is done during creation and it
is at this stage that the overlay order is important as it
determines the <core wusage and the possible interconnectinns
between overlays. During actual execution of the program, the
order of usage can be quite different and no writing out of an
old overlay is done when a new overlay is brought in by OVERLAY.
The areas 1into which the overlays are brought are fixed
permanently at creation time. '

An alternative way of numbering and presenting the overlays for
the example is shown in Figure 1.3.

LEGEND
iyeee,viii overlay
number
Ogeesyd overlay
area
vi
/
HELEN /
/
/
/
/
/
/\
/7 \
/ \
viii / 3 \ 3
/ \
MARY / \
/ \
/
/ DIANE
/
/ vii
/

Eigure 1.3

Alternative Representation of Figure I.|

Permanent
Segment

ANNE 7/

iv

1=11

vem ccm Gum 0=m 0= sem O=m Cum

MNT=12
I May 74

MNT=12
IMay 74

Table 1=2

Number

>
;

<
WWMNN = NN —

Summary of Overlay Attributes for Figure 1.

1-12

Name

PAT
JENNY
GAIL
ANNE
ELSA
HELEN
DIANE
MARY

\

A
MNT=12
1 May 74

2. USE OF OVERLAYS

2.1 CALLING _OVERLAYS

When the program is executed, no overlays are 1in core and an
overlay must he brought into core before the routines in the
overlsy can be used. To call overlay 4 in the example, we could
use on~ of the following statementse

(a) CALL UYERLAY(4)

(b) J=4
CALL OVERLAY(J)

(c) CALL OVERLAY(“DIANEZ)

(d) NAME=’DIANE”Z
CALL OVERLAY(NAME)

DIANE will not be loaded if it is already in core.

Note that the call by name can only be used if the overlays have
been named, If any overlay 1is unnamed its name entry in the
overlay table will he zero.

When a call to load an overlay is made, overlays lower in the
branch will also be loaded if they are not already in core. For
example, HELEN and ANNE would be loaded if one of the above calls
to DIANE were made from the permanent segment and if they were
not already in core. Note that MARY, ELSA, PAT, GAIL and JENNY
would be marked as not being in core.

hen an overlay is loaded by a call to OVERLAY, 1its core image
will be returned to 1its state at creation time. Therefore,
values of variables set within the overlay during execution are
lost when reloaded.

MNT=12
1 May 74

2.2 COMMUNICATION BETWEEN OVERLAYS

Because of the structure of the overlay system, there may be
upwards and downwards communication between routines in a branch.
Thus, routines in the permanent segment can call routines in any
overlay and vice versa. In the example, routines in ANNE can
call those in DIANE and vice versa, but those in DIANE cannot
call those in ELSA. DIANE and ELSA can only pass data to each
other via some common arguments from ANNE, or through a COMMON
area located in ANNE or the permanent segment as described later
in section 3.2.

MNT=12
1May 74

3. ACCESSIBILITY OF OTHER AREAS

3.1 LIBRARY ROUTINES

Since a library search is carried out at the end of each overlay
and the permanent segment, library routines are placed in
overlays as necessary. For example, if SIN were used by HELEN,
it would be placed there if not already mentioned in ANNE or the
permanent segment. DIANE and MARY could both refer to HELEN“’s
SIN. However, a second copy would be placed in ELSA if SIN was
required there as well.

3.2 c N

Blank COMMON, named COMMON and BLOCK DATA can be thought of in
the same way as library routines. They are placed in the first
overlay in the branch that mentions them and are then available
to overlays further up the branch. Thus, a COMMON defined in a
permanent segment can be used by all overlays. However, a COMMON
first defined in HELEN is available to HELEN, MARY and DIANE only
and will be reset to its original values every time HELEN is
reloaded. Furthermore, if this COMMON is mentioned in ELSA, it
will be an entirely different one to that provided in HELEN.

3.3 DATA STATEMENTS

DATA statements can give subtly different effects on reloading
since they can refer to something in another area. It must be
remembered that DATA statements are set up at creation time and
not execution time. For example, suppose hlank COMMON is defined
in the permanent segment and suppose HELEN contains DATA
statements that refer to blank COMMON. In this case, reloading
of HELEN will not reset the data as they were set at creation
time. However, if HELEN“s DATA statements referred to variables
in HELEN or to a COMMON that was first mentioned in HELEN, then
they will be reset every time HELEN is reloaded as they have been
placed in the core image overlay that is reloaded.

MNT-12
| May 74

4. ERRORS IN OVERLAYS

4.1 ERRORS DETECTED DURING CREATION

?MISSING OVERLAY SUBROUTINE
.ssThere was no overlay call in the permanent segment.

?0VERLAY TABLE FULL
.o osMore than 20 overlays.

?MISSING OVERLAY AREA
«s s Numbering of overlay areas incorrecte

4.2 ERRORS DURING LOADING OF AN OVERLAY

All error messages generated by subroutine OVERLAY will indicate
the name or number of the overlay that is being called and the
octal address of the call. In addition, one of the following
messages will be outputs

OVERLAY NUMBER INCORRECT
ceoA call to OVERLAY with a numter O or greater than 20. Note
that a negative number is interpreted as a name.

OVERLAY NOT IN TABLE
.« «oIhe name in the overlay call does not exist, perhaps the
overlay was not named at creation time.

INCORRECT NUMBER OF ARGUMENTS
ERROR READING OVERLAY FILE
DISK UNAVAILABLE

OVERLAY FILE NOT PRESENT
seslrouble whilst trying to read the overlay file.

MNT=12
1May 74

OVERLAY WILL OVERWRITE CALLER
.sofFOor example, if DIANE trys to load ANNE or ELSA.

4.3 UNDETECTED ERRORS

The user can cause errors that are undetected by the system and
which will result In unpredictable results.

A call to a routine in an overlay that has not previously heen
loaded by a CALL OVERLAY or which has been overwritten by a later
call, will obviously be incorrect.

A call to a routine in another branch can result if, for example,
HeELEN calls a routine that is incorrectly placed in ELSA. This
leads to unpredictable results at creation time.

4-2

s

MNT=12
IMay 74

The following FORTRAN example illustrates the use of overlays.

file MAINPG.F4 =

Al=0.0
A2=0.0
A3=0.0

Fk ke READ RADIUS AND NUMBEK

OCOO0

5 READ 10, Al, NUM
10 FORMAT (F10.4, I1)
IF (A1 JEQ. 0.0) GO TO 50
C
C
Cxkxskx NUM = 1 (CIRCLE), 2 (CYLINDER), 3 (SPHERE)
C
C
IF (NUM = 2) 1, 2, 3
C
C
Cxk*x#+%x CIRCLE
Chkkdhk PERIMETER
Chkkikr AREA
C
C
1 CALL OVERLAY (/CIRCL“)
CALL CIR (A1,A2,A3)

PRINT 11
11 FORMAT (1H1/ 8H CIRCLEs//35H RADIUS PERIMETER AREA)

GO TO 40

C

C

CH*k%%% CYLINDER

Ckkx k*k SURFACE AREA

Ckkk kkk VOLUME

C

C

2 CALL OVERLAY (/CYLIN’)
CALL CIR (AT,A2,A3)
CALL CYL (A1,A2,A3)

PRINT 22
22 FORMAT (I1HI/10H CYLINDER:s/ 11H HEIGH1/
1 35H AND RADIUS SURF. AREA VOLUME)

5-1

MNT—12
I May 74

GO TO 40

C

C

CHhidedees: CDHEDE

Coke ke kok

C sk kk sk

C

C

3 CALL OVERLAY (/SPHER”)

CALL SPH (Al1,A2,A3)

SURFACE AREA
VOLUME

PRINT 33
33 FORMAT (1H1/ 8H SPHERE://35H
I VOLUME)
c
C
40 PRINT 45, A1,A2,A3
4% FORMAT (1H, F10.4, 2F12.4)
GO TO 5
50 STOP
END

file CIRCL.F4 :

SUBROUTINE CIR (RAD, PER, ARE)

PER = 2.0%3 14159%RAD
ARE = 3.14159%RAD*RAD
END

file CYLIN.F4 3

SUBROUTINE CYL (HGT, SAR, VOL)
SAR = SAR*(HGT+HGT)

VOL = VOL*HGT

END

file SPHER.F4 ¢

SUBROUTINE SPH (RAD, SAR, VOL)

SAR = 4,0%x3.14159%¥RAD¥RAD
VOL = (4.,0%3.14159%RAD*%3)/3.0
END

RADIUS SURF.

AREA

When this program is loaded, as follows,

.k OVLOAD

*MATNPG
TRCL

*=/17C

,}v::i/«'g Z(\.

.SAVE MAINPG

and then run with the following data,

oNeReRe)

e
©
e
®

O Ui U Ui

the results

CIRCLEs
RADIUS
5. 0000

CYLINDER s
HEIGHT

AND RADIUS
5.0000

SPHERE?

RADIUS
5.0000

are as follows

PERIMETER
31,4159

SURF. AREA
314.1590

SURF. AREA
314.1590

AREA
78.5397

VOLUME
392.6987

VOLUME
523.5983

MNT=12
IMay 74

