
TECHNICAL MA~UAL NO 13

PDP - 10 COBOL REFERENCE MANUAL

UNIVERSITY OF QUEENSLAND
COMPUTER CENTRE

UNIVERSITY OF QUEENSLAND

Computer Centre

TECHNICAL MA~UAL NO 13

PDP-10 COBOL REFERENCE MANUAL

Sarah Barry

'"

This manual is authorized by the Director of the Computer Centre.

4
\

First Edition

MANUAL STATUS

iii

1 July 1971

.-

MNT-13
IJul71

ACKNOWLEDGMENT

MNT-13
lJul7l

COBOL is an industry language and is not the property of any company or group of

companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the COBOL

Committee as to the accuracy and functioning of the programming system and

language. Moreover, no responsibi I ity is assumed by any contributor, or by the

committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries con­

cerning the procedures for proposing changes should be directed to the Executive

Committee of the Conference on Data Systems Languages.

The authors and copyright holders of the copyrighted material used herein are:

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming

for the Univac (R) I and II, Data Automation Systems copyrighted 1958,

1959, by Sperry Rand Corporation; IBM Commercial Translator Form

No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760,

copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole or in part,

in the COBOL specifications. Such authorization extends to the reproduction

and use of COBOL specificatio~s in programming manuals or similar publications.

v

FOREWORD

MNT-13
lJul7l

This manual describes COBOL as it has been implemented on the PDP-lO. Chapter 1
tells how to get started with COBOL on the PDP-10. Chapter 2 discusses language
elements, conventions used in the manual, and the structure of a COBOL program.
Chapters 3 through 6 detail the four major divisions of a COBOL program. The
COBOL library is described in Chapter 7 and I/O processing is discussed in
Chapter 8. Several Appendices have been included in the manual. Appendices A
and B contain the COBOL reserved words and the character collating sequence.
The ENTER procedure, used to link COBOL programs to programs and subroutines
written in other languages, is described in Appendix C. Appendix D details the
elements of the COBOL command that invokes the COBOL compiler. Appendices E
and F describe programming information of use to COBOL programmers.

It is assumed that the reader has a knowledge of the COBOL language. This manual
is intended primarily for reference and is not a tutorial guide for beginning
COBOL programmers. Those wishing to learn the COBOL language are referred to the
following books.

Davis, G.B. and Litecky, C.R., Elementary COBOL Programming - A Step
by Step Approach, McGraw-Hill, Inc., 1971.

Stern, Nancy B. and Stern, Robert A., COBOL Programming, John Wiley
and Sons, Inc., 1970.

McCracken, Daniel D. and Garbassi, Umberto, A Guide to COBOL
Programming, Second Edition, New York, John Wiley and Sons, Inc.,
1970.

The COBOL programmer should be familiar with the operating system commands and
the editing language of the PDP-10. The commands are discussed in the System
User's Guide, MNT-8; the Editor is described in MNT-6.

This manual has been adapted from the Digital Equipment Corporation manual.
While some of the features are not available on the University of Queensland
computer system they have been included in this manual for the sake of
conformity with the standard COBOL requirements.

The use of console switches is not permitted either through Batch or Teletypes.
In a timesharing environment several users might require the same switches to
be set differently at the same period of time. This is most impractical and
unnecessary.

vii

MNT-13
lJuI7l

The only peripherals available to users are the disk and the Teletype to
terminal users; and the disk and card reader to batch users. The line
printer can be used by both. Batch operates via a phenomenon known as the
pseudo-Teletype. Users running programs through Batch must assign their
card input files to TTY and their line printer output files to TTY. Care
must be taken that two files assigned to TTY are not both open at the same
time. This problem can be overcome by assigning the printer output file to
the disk and then listing it at the termination of the program by the LIST
conunand.

Chapter 7 discusses the COpy verb and the COBOL library. At present, users
cannot create their own libraries nor maintain them. Chapter 7 has been
left in for completeness only. Later revisions to the COBOL manual will
give full details of library creation and maintenance.

viii

CHAPTER 1
1.1
1.1.1
1.1. 2
1.1. 3
1.1.4
1.2
1.2.1
1. 2. 2

CHAPTER 2
2.1
2.1.1
2.1. 2
2.2
2.2.1
2.2.2
2.2.3
2.2.3.1
2.2.3.1.1
2.2.3.1.2
2.2.3.2
2.2.4
2.2.4.1
2.2.4.2
2.3
2.3.1
2.3.2

CHAPTER 3
3.1
3.2

·CONTENTS

GETTING STARTED WITH PDP- OJ 0 COBOL
PDP-IO COBOL
Modes of Operation
On-Line Editing and Debugging
Sharable Code
Peripheral Devices
Using COBOL on the PDP-IO
COBOL Programming in Timesharing Mode
COBOL Programming in Batch Mode

INTRODUCTION TO COBOL LANGUAGE
Symbols and Terms
Symbols
COBOL Terms
Elements of COBOL Language
Program Structure
Character Set
Words
COBOL Reserved Words
Figurative Constants
Special Registers
User-Created Words
Literals
Numeric Literals
Nonnumeric Literals
Source Program Format
Standard Format
Non-standard Format

THE IDENTIFICATION DIVISION
General Structure
Technical Notes

CHAPTER 4 THE ENVIRONMENT DIVISION
4.1
4.2
4.3

General Structure
Configuration Section
Input-Output Section

ix

MNT-13
IJul71

page

1-1
1-1
1-2
1-2
1-3
1-3
1-3
1-8

;.:

2-1 .
2-1
2-2
2-2
2-2
2-3
2-4
2-4
2-4
2-5
2-6
2.:..6
2-7
2-7
2-7
2-8
2-10

3-1
3-1

4-1
4-3
4-8

MNT-13
lJu17l

CHAPTER 5
5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.4
5.5

CHAPTER 6
6.1
6.1.1
6'.1. 2
6.1. 3
6.2
6.3
6.4
6.4.1
6.4.2
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.6
6.6.1
6.7
6.8

CHAPTER 7

CHAPTER 8
8.1
8.1.1
8.1. 2
8.2
8.2.1
8.2.2
8.2.3
8.3
8.3.1

THE DATA DIVISION
File Section
Working-Storag!= Section
Data Descriptions
Elementary Items and Group Items
Independent Items and Nonindependent Items
Records and Files
Qualification
Subscripting and Indexing

THE PROCEDURE DIVISION
Syntactic Format of the Procedure Division
Statements and Sentences
Paragraphs
Sections
Sequence of Execution
Segmentation and Section-Name Priority Numbers
Arithmetic Expressions
Arithmetic Operators
Formation and Evaluation Rules
Conditional Expressions
Relation Condition

. Class Condition
Condition-Name Condition
Switch-status Condition
Sign Condition
Logical Operators
Formation and Evaluation Rules
Abbreviations in Relation Conditions
Common Options Associated with the Arithmetic Verbs
The SIZE ERROR Option
The Corresponding Option
Procedure Division Verb Formats

THE COBOL LIBRARY

STANDARD 1-0 PROCESSING
Access Mode
SEQUENTIAL Mode
RANDOM Mode
Recording Mode
Default Conditions
DISPLAY-7
DISPLAY-6
File Tables
Explanation of Fields

x

5-1
5-2
5-2
5-2
5-2
5-3
5-3
5-4

6-1
6-1
6-3
6-3
6-4
6-4
6-5
6-5
6-6
6-6
6-7
6-8
6-9
6-9
6-10
6-10
6-11
6-14
6-14
6-15
6-16
6-16

8-1
8-1
8-2
8-3
8-3
8-3
8-3
8-3
8-5

CHAPTER 8
8.4
8.5
8.5.1
8.5.2
8.6
8.6.1
8.6.2
8.7
8.8
8.9
8.10

APPENDIX A

APPENDIX B

APPEI~DIX C

APPEI~DIX D
D.l
D.2
D.3
D.4

APPENDIX E
E.l
E.2

APPENDIX F

F.l
F .1.1
F.1. 2
F.1. 3
F.1. 4
P.2

contd

Channel Tables
Blocking
Reading and Writing Blocked Files
Reading and Writing Unblocked Files
Label Records
Standard Label Records
Non-standard Label Records
Multiple-File Tape
Same Area Clause
Same Record Area Clause
File-Limits

COBOL RESERVED WORDS

CHARACTER COllATING SEQUENCE

THE ENTER PROCEDURE

THE CObOL COMMAND
Command Format
General Description
Abbreviations
Example

PROGRAMMING IN COBOL
Efficient COBOL Programming
Linking COBOL Programs

INPUT-OUTPUT CONSIDERATIONS
File Formats
Definition of Terms
Data Structure
Blocking
Labels
Use of Sixbit Input/Output

xi

on the PDP-10

MNT-13
lJu171

8-8
8-8
8-8
8-9
8-9
8-9
8-10
8-10
8-11
8-11
8-11

D-l
D-l
D-2
D-3

E-l
E-2

F-l
F-l
F-2
F-4
F-4
F-4

MNT-13
lJul71

ILLUSTRATIONS

8.1
F.l
F.2
F.3
F.4

TABLES

6-1
6-2
6-3
8-1
8-2
8-3

Structure of a File Table
Sixbit Record
ASCII Record
Write After Advancing
Write Before Advancing

Procedure Verb and Statement Categories
Types of Segments
CLOSE Options and File Types
Flags and Fields in File Table
Channel Table Entry
Standard Label for Nonrandom-Access Media

xii

8-4
F-2
F-2
F-3
F-3

6-2
6-4
6-23
8-6
8-8
8-10

•

CHAPTER 1

GETTING STARTED WITH PDP-IO COBOL

MNT-13
lJul71

COBOL (Corrmon-Business-Oriented Language) is an industry-wide data processing
language designed for business applications, such as payroll, inventory control,
and accounts-receivable. In COBOL, the programmer can describe his data and
the processing of it in simple, English-like statements. COBOL programs are
written in terms that are easily recognized by the business user; thus, little
programmer training is required, the programs are virtually self-documenting,
and programming of desired applications is accomplished quickly and easily.

1.1 PDP-10 COBOL

The COBOL implemented for the PDP-10 conforms to American National Standards
Institute (ANSI) specifications as described in the document USA Standard
COBOL, X3.23-196S.

PDp·-10 COBOL operates within the PDP-10 operating system, thereby offering the
COBOL user the business processing capability of COBOL, in addition to the
many features of the PDP-10. Some of these features are:

a. Batch and timesharing modes of operation,

b. On-line editing and debugging,

c. Sharable compiler and object code.

1.1.1 Modes of Operation

The PDP-10 operating system supports both interactive and batch modes of
operation. The COBOL programmer can use either or both of these operating
environments to develop his applications. In a timesharing system, a program
can be written at an interactive terminal, edited and debugged while the usr
is on-line, and then run immediately. The turn-around time normally
associated with preparing an error-free program can be substantially reduced,
because the programmer receives the results of his program immediately and
can determine, on the spot, whether or not his program is runningrc,properly.

1-1

MNT-13
lJul71

Programs that need no interaction with the user, that require large amounts
of data, or that are very long can be entered into the batch system through
a noninteractive device such as the card reader. Through commands in his
batch job~ the programmer can specify the processing that he requires, the
constraints that must be fulfilled (e.g., deadlines, priorities, and time
limits), and the devices that are necessary. The normal tasks required of
the interactive terminal user (e.g., logging in and out) are performed by
the batch system.

Whether the user needs fast interaction with the system or rapid throughput,
the PDP-I0 operating system can offer him both.

1.1.2 On-Line Editing and Debugging

To develop error-free programs, the COBOL user can take advantage of the
system programs Editor and DDT. Editor is the system editing program, and
DDT (Dynamic Debugging Technique) is the system program used for debugging
programs during execution.

Editor is a simple, easily-learned program for editing disk files. It
performs editing on lines in these files. Within a line, the user can add,
delete, and change characters. New lines can be added to the file and
unwanted lines can be deleted by means of simple commands. The interactive
user, when creating programs at his terminal, must use the editor to place
his programs into files on disk.

DDT is a system program that allows the user to perform checkout and
debugging of his programs. By typing commands to DDT, the user can set
breakpoints in his program and examine and modify the contents of any
location. At the user's option, insertion and deletion of code can be
performed in source language or in various numeric or text modes. DDT is
described in detail in the Utility Programs manual, section 3 of MNT-12.

1.1.3 Sharable Code

The COBOL compiler, like most of the system software, is divided into high
and low segments so that most of its code can be shared by many users. The
high segment of the compiler is reentrant; that is, it contains code that
all COBOL users share. The low segment, containing tables, data names,
procedure names, and the like, is unique to each user. This reentrant
capability means that only one copy of the compiler must be resident in
core at anyone time to serve all COBOL users, thus minimizing the amount
of core used by COBOL compilations.

The user can, if he desires, write his COBOL programs so that they are also
sharable. This feature is advantageous if a great many people need to use
the same program simultaneously.

1-2

1.1.4 Peripheral Devices

MNT-13
lJul7l

The PDP-10 COBOL user has available to him a choice of peripheral devices,
whether he is operating in interactive or batch mode. Programs and data can
be entered from interactive terminals, paper-tape reader, card reader, or
disk. Program listings and program output can be printed on the line
printer and on the user's interactive terminal. They can be stored on paper
tape, or disk.

The PDP-10 System has been designed to provide maximum speed, efficiency, and
.ease of operation for a large number of simultaneous batch and timesharing
users. Because COBOL has been fully integrated into this system, the COBOL
programmer can take advantage of the full range of capabilities provided by
the PDP-10, in addition to the power of the high-level, ANSI-standard, PDP-10
COBOL.

1.2 USING COBOL ON THE PDP-10

Two sample COBOL runs are shown below,. The first demonstrates operations in
timesharing mode; the second shows batch mode.

1.2.1 COBOL Programming in Timesharing Mode

A sample COBOL program is illustrated and described below, along with all
the steps necessary to create, compile and execute it. This example shows an
interactive session, using the timesharing mode of operation. The source
program format is the non-standard format, not the conventional COBOL format.
Both formats are acceptable to the COBOL compiler; they are described in
Chapter 2. The sample run is shown in its entirety first. Each part is then
described in detail. Input from the user is underlined in all of the examples •

. LOGIN<cr>
JOB 11 MON 3/17 MAS
PROJECT #46<cr>
COST LIM: l~.~~<cr>
PASSWORD: password<cr>

IDENT. TTT14 to

.CREATE SALESI/CBL<cr>
INPUT:
IDENTIFICATION DIVISION.<cr>

1-3

MNT-13
lJul71

<tab >STOP RUN.<cr>
<cr>
*FILE<cr>

EXIT
tc

.COBOL(LIST, NONSTD) SALES1/CBL, LST=SALES1/LST<cr>
COBOL: SALES1

EXIT
tc

. RUN<cr>
LOADING

LOADER 2K CORE
EXECUTION

EXIT
tc

.LIST SALES1/LST, SLSMRS<cr>
-LISTING THESE FILES-

SALES1/LST
SLSMRS

EXIT
tc

The first step is logging in to the timesharing system. The monitor types
a period to indicate that it is ready to receive a command. The user types
the LOGIN command with his project number and cost limit. The system returns
a job number, the version of the monitor, the system it is running on, and
then requests the user's password. The password is not echoed to the
terminal to preserve the security of the user's project number. After the
correct password is typed, the system types the date, time, and any pertinent
messages .

. LOGIN<cr>
JOB 11 MaN 3/17 MAS
PROJECT 1t46<cr>
COST LIM:10.00<cr>
PASSWORD:password<cr>

IDENT. TTY14 to

1-4

'II

MNT~13

IJul71

After logging in, the user creates his COBOL program through the Editor.
The user issued the CREATE monitor command to cause the Editor to open a
disk file with the specified name and extension. When the Editor returns
the message 'INPUT:', the user can enter his program by typing the text of
his program .

. CREATE SALESl/CBL<cr>
INPUT:
IDENTIFICATION DIVISION.<cr>

To end the insert (his program),
transfers control to edit mode.
monitor, the user types FILE.

<cr>
>'~FILE<cr>

EXIT
tc

the user must press an extra return which
To close the file and return to the

The sample program uses a transaction file SLSTRS to update a master file
SLSMRF. The resulting master file produced is called SLSMRS. All three
files are maintained on disk and on completion of the program the new
master file is listed on the line printer.

To compile, load, and execute his COBOL program, the user issues the COBOL
and RUN monitor commands. To signal that the program has completed
execution, the system types EXIT .

. COBOL(LIST, NONSTD) SALESl/CBL, LST=SALESl/LST<cr>
COBOL: SALESI

EXIT
tC

.RUN<cr>
LOADING

LOADER 2K CORE
EXECUTION

EXIT
tC

1-5

MNT-13
lJu17l

The system will automatically enter the compilation listing of the program
and the son master file into the line printer queue when the user issues
the LIST command .

. LIST SALESI/LST SLSMRS<cr>
-LISTING THESE FILES-

SALES1/LST
SLSMRS

EXIT
tc

The compilation listing is shown below together with a portion of the output
master file. Note that although the original file did not have sequence
numbers the compiler has supplied them automatically.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027

PRO G RAM SAL E S 1

IDENTIFICATION DIVISION.
PROGRAM-ID. SALES1.
REMARKS. THIS PROGRAM UPDATES THE SALES MASTER FILE.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT OLD-MASTER
SELECT NEW-MASTER
SELECT TRANSACTION

ASSIGN TO DSK.
ASSIGN TO DSK.
ASSIGN TO DSK.

DATA DIVISION.
FILE SECTION.
FD

01

FD

01

OLD-MASTER
LABEL RECORDS ARE STANDARD
VALUE OF IDENTIFICATION IS "SLSMRF
DATA RECORD IS OLD-MAST.

OLD-MAST DISPLAY-7.
02 PRODUCT-NUMBER PICTURE XeS).
02 UNIT-PRICE PICTURE 999V99.
02 YTD-SALES PICTURE 9(s)V99.
NEW-MASTER

LABEL RECORDS ARE STANDARD
VALUE OF IDENTIFICATION IS "SLSMRS
DATA RECORD IS NEW-MAST.

NEW-MAST
02 PRODUCT-NUMBER
02 UNIT-PRICE
02 YTD-SALES

1-6

DISPLAY-7.
PICTURE XeS).
PICTURE 999V99.
PICTURE 9(s)V99.

"

"

0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
r)()71
r)()72
r)rjJ73
r)rjJ74
f/JrjJ75
f/J076

MNT-13
IJul71

FD TRANSACTION

01

LABEL RECORDS ARE STANDARD
VALUE OF IDENTIFICATION IS "SLSTRS
DATA RECORD IS TRANS.

TRANS DISPLAY-7.
PICTURE X (5) .
PICTURE 999.
PICTURE XX.
PICTURE X.

02 PRODUCT-NUMBER
02 QUANTITY
02 SALESMAN
02 DISTRICT

"

WORKING-STORAGE SECTION.
77 TOTAL-PRICE PICTURE 9(5)V99 VALUE ZEIWS.

PICTURE 9(5)V99 VALUE ZEROS.
PICTURE X (5) .

77 PRODUCT-TOTAL
77 SAVE-TRANS-PROD-NO
PROCEDURE DIVISION.
HOUSEKEEPING.

OPEN INPUT TRANSACTION, OLD-MASTER
OUTPUT NEW-MASTER.

MOVE SPACES TO NEW-MAST.
READ TRANSACTION RECORD, AT END GO TO LAST-TRANSACTION.
MOVE PRODUCT-NUMBER IN TRANSACTION TO SAVE-TRANS-PROD-NO.

READ-OLD-MASTER.
READ OLD-MASTER RECORD, AT END GO TO WRAPUP.

TESTING-l.
IF SAVE-TRANS-PROD-NO IS EQUAL TO PRODUCT-NUMBER

IN OLD-MAST GO TO PROCESS.
TESTING-2.

PROCESS.

IF PRODUCT-NUMBER IN OLD-MAST IS LESS THAN
SAVE-TRANS-PROD-NO WRITE NEW-MAST FROM OLD-MAST
GO TO READ-OLD-MASTER, ELSE STOP
"FILE SEQUENCE ERROR OR INVALID TRANS PRODUCT NUMBER".

MULTIPLY UNIT-PRICE IN OLD-MAST BY QUANTITY
GIVING TOTAL-PRICE.

ADD TOTAL-PRICE TO PRODUCT-TOTAL.
READ TRANSACTION RECORD, AT END GO TO LAST-TRANSACTION.
MOVE PRODUCT-NUMBER IN TRANSACTION TO SAVE-TRANS-PROD-NO.
IF SAVE-TRANS-PROD-NO IS EQUAL TO PRODUCT-NUMBER

IN OLD-MAST GO TO PROCESS.
DIFFERENT-PRODUCT.

ADD PRODUCT-TOTAL TO YTD-SALES IN OLD-MAST.
WRITE NEW-MAST FROM OLD-MAST.
MOVE ZEROS TO PRODUCT-TOTAL.
GO TO READ-OLD-MASTER.

LAST-TRANSACTION.

WRAPUP.

MOVE HIGH-VALUES TO SAVE-TRANS-PROD-NO.
GO TO DIFFERENT-PRODUCT.

CLOSE TRANSACTION, OLD-MASTER, NEW-MASTER.
STOP RUN.

NO ERRORS DETECTED

1-7

MNT-13
1 Jul7l

S L S MRS

A23l500l000000000
A32900009500l0450
B9266035750007l50
B9754

At the end of this task, the user can log off the system or he can continue
to perform other tasks at his terminal.

1. 2. 2 COBOL Programming in Batch Mode

The sample program described in this section shows the steps that are
necessary to run a program using the Multiprogramming Batch system. The
input card deck, which contains the program, data, and the batch control
commands, is shown first. Each part of the sample deck is then described
in detail. The output from the program, and a listing of the program are
shown below.

·e.o;r
. L.IST EXp,\Io\t'L/LST sP.W/fJ

file Si!po.:.o..tcrl" to.:rd

. C080L. (L.,~) EXI\I'4f'l./CSL

.,Jot!. I'J' "1Lt.' M ~ &R.o~N c ·6

The programmer writes his program and punches it on cards in ASCII code to
be input to the Batch system. The sample program is coded in non-standard
format as in the previous example. This program reads a list of items sold,
sorts them into ascending alphabetic order, and prints a report containing
the items grouped according to type, the price of each item, and the
subtotal for each group of items. The program requests display of the
number of items sold and the gross income from the sales.

1-8

..

l'lNT-13

IJul71

The data for the program, which is a group of items sold, is also placed
on cards. This data is shown below.

/WIlEl'lC\\ oooo;tlo5

/Wft~"'CII 0OOO2.LL.0

/SAW OOOI2.4.S

/ SCtE.~.tl>tt"IEit 0000118

/ tU\J't\M~({. OOOOlDoo

/3Aw 000 0 115l- ,...
/ .", t(,E.",c.1\ 00001"'0 -

/ ItAMM.ER. 00004S5 r-
/st.fU:.H'DQ.I'I(~ 00002.30 t-

/SAW oooo~5"l. ~

/ ~~MeR. 0000515 ~

~ ,...
,...

~

The programmer sets up his job as an input deck containing his program, data,
and Batch control commands on cards. The following Batch commands are used for
this job.

.:roS Il)ENTlf'C.ATION c.A@

The Job Identification card contains the job's sequence number. This card is
compulsory.

The .JOB command contains the user's name and project number, and the cost limit
for the job.

1-9

MNT-13
lJul7l

The .COBOL command contains the name of the COBOL program. This command is
followed immediately by the deck containing the program. When the job is run,
the program is compiled, and a listing is produced. The listing is printed with
the output of the job.

The .RUN command is immediately followed by the deck containing the data. The
.RUN command causes the program (or programs) that precedes it to be executed
when the job is run by the batch controller.

The .LIST command will transfer the listing of the program and the output of
the program from the user's disk area for later printing by the line printer
symbiont program.

1-10

MNT-13
lJul71

The end of the job is signalled by the .EOJ card.

The user inputs his job deck through the card reader and then simply waits for
his output. The Multiprogramming Batch system reads the cards, runs the job,
and spools the output to the line printer. The output is in the form of a
printed listing that begins with a header page and ends with a trailer page.
Both the header and trailer contain the user's name, project number, date,
time, system name, and monitor version. Between the header and trailer are the
compilation listing, the loader map, and the output from program. 1tJith the
exception of the header and trailer pages and the loader map, the listing is
shown. Note that the compiler assigns sequence numbers to the compilation
listing even though the user did not place sequence numbers on his program.

0\2101
0\2102
0(,2l\213
0\21\214
0\2105
0\2106
0\2107
0\2108
0\21\219
0\2110
0\2111
0\2112
0\2113
0\2114
0\2115
0\2116
0017
0018
9\2119
9020
9021
9\2122
9023
9024
9025
0026
0027
0028
9fJ 29
G030
G031
G032
G033
G034

PROGRAM E X AMP L

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPL,
REMARKS, READS A LIST OF SALES AND PRINTS

A REPORT WITH SUBTOTALS FOR ITEM TYPES.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-10.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

ASSIGN TO TTY. SELECT SALES,
SELECT TEMP,
SELECT REPT,

ASSIGN TO DSK, DSK, DSK.
ASSIGN TO TTY.

DATA DIVISION.
FILE SECTION,
FD SALES, VALUE OF IDENTIFICATION
01 SALES-CARD, DISPLAY-7.

3D
01

02 ITEM, PIC X(20).
02 PRICE, PIC 9(5)V99.
TEMP.
SORT-REC.
02 ITEM, PIC X(2r/J).

PIC9(n.

IS "SALES CDS".

FD
C;H

02 FILLER,
REPT, VALUE
REPT-LINE.

OF IDENTIFICATION [S "SALES REP".

r/J2 R-ITEM, PIC X(2r/J).
02 FILLER, PIC xCS).
02 R-PRICE, PIC Z(8).99.

01 HEADER, PIC X(36).
WORKING-STORAGE SECTION.
01 REC-STORE.

77
n

r/J2 REC-lTM,
912 REC-PR,
NUM,
GROSS-TMP,

PIC X(2~),
P:(C 9 (5) V9 9 .
PIC 9 (62 .
PIC 9 (8)V99.

1-11

HNT-13
IJul71

~~35
~~36
~~37
C}lC}l38
C}lC}l39
C}lC}l40
~C}l41
C}lC}l42
C}lC/J43
C}lC/J44
~C/J45
C}lC}l46
~C}l47
C}lC}l48
C}lC}l49
C}lC}l5C}l
C}lC/J51
C}lC}l52
C}lC}l53
C}lC/J54
C}lC/J55
C}lC}l56
C}lC}l57
C}lC/J58
C}lC}l59
C}lC}l6C}l
C}lC/J61
C}lC/J62
~C}l63
C/JC/J64
C}lC/J65
C}lC}l66
C}lC/J67
C}lC/J68
C}lC/J69
C}lC}l7C}l
C}lC/J71
C}lC/J72
C}lC/J73
C}lC}l74
C/JC}l75
C/JC}l76
C}lC/J77
C/JC/J78
C}lC/J79

77 GROSS, PIC Z(8).99
PIC 9(8)V99.
PIC X(2C}l).

77 SUBTOT,
77 LAST-ITEM,
PROCEDURE DIVISION.
MAIN SECTION .
BEGIN.

SORT TEMP ON ASCENDING KEY ITEM OF SORT-REC,
USING SALES,
OUTPUT PROCEDURE MAKE-REPORT.

DISPLAY "NUMBER OF ITEMS SOLD ", NDM.
MOVE GROSS-TMP TO GROSS.
DISPLAY "GROSS INCOME ", GROSS.
STOP RUN.

* OUTPUT PROCEDURE FOR SORT
MAKE-REPORT SECTION.
INIT.

LOOP.

LOOP-2.

FINIS.

OPEN OUTPUT REPT.
MOVE ZERO TO NUM, SUBTOT, GROSS-TMP.
MOVE "SALES REPORT" TO HEADER.
WRITE HEADER BEFORE ADVANCING 2 LINES.

RETURN TEMP INTO REC-STORE, AT END GO TO FINIS.
IF GROSS-TMP = C/J, GO TO LOOP-2.
IF REC-ITM NOT = LAST-ITEM

MOVE SPACES TO R-ITEM,
MOVE SUBTOT TO R-PRICE,
MOVE ZERO TO SUBTOT,
WRITE REPT-LINE BEFORE ADVANCING 2 LINES.

SET NUM UP BY 1.
ADD REC-PR TO GROSS-TMP
ADD REC-PR TO SUBTOT.
MOVE REC-ITH TO R-ITEM ..
MOVE REC-PR TO R-PRICE,
WRITE REPT-LINE.
MOVE REC-ITM TO LAST-ITEM.
GO TO LOOP.

MOVE SPACES TO R-ITEM.
MOVE SUBTOT TO R-PRICE.
WRITE REPT-LINE BEFORE ADVANCING 2 LINES.

MOVE "TOTAL" TO R-ITEM.
MOVE GROSS-TMP TO R-PRICE.

WRITE REPT-LINE.
CLOSE REPT.

NO ERRORS DETECTED

SALES REPORT

HAMMER
HAMMER
HAMMER

5.75
4.35
6.55

16.65

1-12

I
I tJ

HNT-13
IJu171

"
SAW 8.52
SAW 12.45 .
SAW 8.52,

29.49

SCREW DRIVER 2.30
SCREW DRIVER 1. 78

4.08

WRENCH 1.60
WRENCH 2.65
WRENCH· 2.40

6.65

TOTAL 56.87

1-13

Chapter 2

HNT-13
IJul71

Introduction to COBOL Language

The conventions, special terms, language elements, and formats acceptable to COBOL are described

below to aid the user in writing COBOL programs. The source language statements are discussed in sub­

sequent chapters.

2. 1 SYMBOLS AND TERMS

The symbols and terms used in the following chapters of this manual are either necessary to describe the

language or are commonly-used COBOL terms.

2. 1 .1 Symbols

The symbology used in this manual to illustrate the various COBOL statement formats is ess,entially the

same as that used in other COBOL language manuals and is based on the CODASYL COBOL reference

document.

Symbology

Lower-case char<lcters

Upper-case charcJcters, underscored

Upper-case characters, not underscored

Braces

Meaning

Represent information that must be supplied by the
programmer, such as values, names, and other
parameters.

Key words in the COBOL lexicon that must be used
when the formats of which they are a part are used.

Other words in the COSOL lexicon that serve only
1'0 make the COBOL statement more readable. Their
IJse is optional and has no effect on the meaning of
l"he formats of which they are a part.

Indi cate that a choi ce must be made from the two or
more lines enclosed.

(continued on next page)

2-1

MNT-13
IJul71

Brackets

Ell ipsis .••

Symbology

2.1.2 COBOL Terms

Meaning

Indicate an optional feature. The contents of the
brackets are used according to the rules above if
tl,e feature is desired.

Indicates that the information contained within the
preceding pair of braces or brackets can be repeated
at the programmer1s opti on.

The terms block, record, and item have special meanings when used in a COBOL program.

Term

Block

Record

Item

Meaning

Signifies a physical grouping of records. This term commonly
refers to a physical block of records on some storage medium.

Signifies a logical unit of information. In relation to a data
file, a record is the largest unit of logical information that can
be accessed and processed at a time. Records can be subdivided
into fields or items.

Signifies a logical field or group of fields within a record. A
group item is one that is further broken down into subitems (e.g. 1

a group item called TAX might be broken down into subitems
called FED-TAX and STATE-TAX). Subitems can be further
broken down into other subitems. An item that has no sub items
is called an elementary item.

2.2 ELEMENTS OF COBOL LANGUAGE

2.2. 1 Program Structure

A COBOL program consists of four divisions, all of which must be present. Within each division are the

program statements; some are required, others are optional.

Division

IDENTIFICATION DIVISION

ENVIRONMENT DIVISION

DATA DIVISION

PROCEDURE DIVISION

Meaning

Identifies the source program.

Describes the computer on which the source program is to be
compiled, the computer on which the object program is to
run, and certain relationships between program elements and
hardware devices.

Describes the data to be processed by the object program.

Describes the acti ons to be performed on the data.

2-2

l1NT-13
~ IJu171

2.2.2 Character Set

Within a source program statement I the ASCII characters are volid except:

a. null, delete, and carriage return (which ore ignored);

b. line feed, vertical tab, form feed, and the printer control characters (208 through 248),
which mark the end of a source line;

c. Control-Z, which marks the end-of-file.

The lower case ASCII characters are translated to upper case characters except when they appear in non­

numeric literals.

Of this character set I 37 characters (the digits ° through 9, the 26 letters of the alphabet I and the hyphen)

can be used by the programmer to form COBOL words, such as data-names, procedure-names, and identi­

fiers.

Punctuation characters include:

(space)

(comma)

(semicolon)

(period)

Special editing characters include:

+ (plus sign)

(minus sign)

$ (dollar sign)

(comma)

(decimal point)

"

)

-I

*
Z

B

0

CR

DB

(quotation mark)

(\ eft parenthesis)

(right parenthesis)

(horizonta I tab)

(check protection symbol)

(zero suppression)

(blank insertion)

(zero insertion)

(credit)

(debit)

Special characters used in arithmetic expressions include:

+

*

(addition)

(subtracti on)

(multipl ication)

/
**

(division)

(exponentiation)

(exponentiation)

Special characters used in conditional (IF) statements include:

(equal) > (greater than) <

2-3

(less than)

}Ji'IlT-13
lJul71

2.2.3 Words

A COBOL word is composed of not more than 30 characters chosen from the 37 characters given in the

previous section. A word is terminated by a space, period, right parenthesis, comma, semicolon, or

horizontal tab. If the terminator is not a space or horizontal tab, at least one space or tab must follow

the terminator.

Words used in writing COBOL source programs are of two types: COBOL reserved words and user-created

words.

2.2.3.1 COBOL Reserved Words - COBOL reserved words are those words that constitute the COBOL

lexicon and have a special meaning to the compiler (e.g., DIVISION, PROCEDURE, ADD); these words

are listed in Appendix A. They include all the COBOL division, section, and paragraph names, descrip­

tive clauses, procedure verbs, certain prepositions, figurative constants, and special registers. Reserved

words must be spelled and used exactly as shown in the formats given in this manual.

2.2.3.1.1 Figurative Constants - Figurative constants are reserved words that specify certain fixed

values. When these reserved words are to be used as figurative constants, they must not be enclosed in

quotati on marks; otherwise they wi II be treated by the compi ler as nonnumeri c literals.

The figurative constants are given below. Except for one case (the ALL constant), singular and plural

forms are given; these forms are equivalent and can be used interchangeably.

Figurative Constant

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

Use

Represents the value 0 or one or more of the character 0 depending on con­
text •

Represents one or more blanks or spaces.

For DISPLAY-6 and DISPLAY-7 items this represents the highest value in the
collating sequence. For CaMP and COMP-1 items, this represents the
largest number that can be placed in the machine word(s} containing the item.

For DISPLAY-6 and DISPLAY-7 items, this represents the lowest value in the
collating sequence. For CaMP and COMP-l items, this represents the
smallest number (most negative) that can be placed in the machine word(s)
containing the item.

(continued on next page)

2-4

•

Figurative Constant

QUOTE
QUOTES

ALL any-literal

Use

MNT-13
lJul71

Represents one or more quotati on marks ("). It can be used anywhere that the
quotation mark character (") is valid, except to delimit nonnumeric literals
(see Nonnumeric Literals). QUOTE(S) is frequently used where an actual
quotation mark character would erroneously appear to delimit a nonnumeric
literal. For example, if the user wanted his program to type out the exa<:t
character string

MOUNT TAPE LABELLED "MASTER" ON DRIVE 3

he could use the procedure statement

DISPLAY "MOUNT TAPE LABELLED II QUOTE
"MASTER" QUOTE II ON DRIVE 3 11 •

Represents repetiti ons of the string of characters that constitute either a non­
numeric literal or a figurative constant (other than ALL any-literal). If a
figurative constant is used, the ALL is redundant; thus, ZEROS and ALL
ZEROS are equivalent.

Figurative constants generate a string of characters whose length is determined, based on context, by the

compiler. For example, if TOTAL-AMOUNT is a five-character field, the procedure statement MOVE

ALL ZEROS TO TOTAL-AMOUNT moves a string of fivE~ zeros to the field TOTAL-AMOUNT; MOVE ALL

"AB" TO TOTAL-AMOUNT moves "ABABA" to TOTAL-AMOUNT. If the length cannot be determined

by context, a single character (or a single-character sequence, in the case of ALL) is generated. For

example, the procedure statement DISPLAY ALL QUOTES will result in the output of a single quotation

mark (") to the user's terminal.

Examples of Use of Figurative Constants:

DATA DIVISION Usage:

PROCEDURE DIVISION Usage:

02 AMOUNT PICTURE IS 9999.99 VALUE IS ZERO.
04 MESSAGE PICTURE IS A (10) VALUE IS SPACES.

MOVE ZEROS TO AMOUNT. (Puts the value of zero in the
AMOUNT field)
MOVE SPACES TO MESSAGE. (Puts spaces in the MESSAGE
field)
IF TOTAL IS EQUAL TO ZERO ..•.
EXAMINE FLD-A TALLYING LEADING ZEROS.

2.2.3.1.2 Special Registers - In addition to figurative constants, COBOL recognizes two other special

reserved-word constants: TALLY and TODAY.

TALLY is the name of a fixed five-digit signed computarional field. It is used primarily to hold informa­

tion produced by the EXAMINE verb. However, the programmer can utilize TALLY in any situation where

a signed numeric field is valid (e.g., temporary storage of any integer value of five or fewer digits).

2-5

MNT-13
lJul71

TODAY is a 12-character alphanumeric display field i'hat contains the current date and time. Its format

is:

)/ymmddhhmms5

where yy is the year (last two digits)

mm is the month

hh is the hour

mm is the minute

55 is the second dd is the day

2.2.3.2 User-Created Words - User-created words rJre labels for the various parts of the user's data (files,

records, and fields) and the user's procedures (sections and paragraphs). They can contain only the symbols

o through 9, A through Z, and the hyphen. With thE~ exception of procedure names, they cannot be all

digits. A user-crea'red word can nAither begin nor <3nd wi'l'h a hyphen.

User-created words can be further subdivided into several categories. To understand the remainder of this

manual, the user should be familiar with the -following types of words.

data-name

file-name

record-name

procedure-name

identifier

mnemonic-name

condition-name

index-name

index dai'o-name

2.2.4 Literals

The user-crea~'ed rame assigned to an item (field) wil-hin a record.

The user-erected name assigned to Ci data file.

The user-created name assigned to a data record within a file.

The user'''created name (Jssigned to a paragraph or section in the PROCEDURE
DIVISION. When assigned to a section, it is referred to as C! section-name;
and when assigned to a paragraph, it is referred to as a paragr~~-;:--

A user-created name used in PROCEDURE DIVISION statement formats to
indicate a data-name followed, ClS required, by the syntactically correct
combination of qualifiers r and/or subscripts, and/or indexes necessary to
make referen'.':~ to a unique item of daI'a.

A user-created name assigned 1'0 a hardware device,

A user-creai"t3d name assigned to a value or range of values of the associated
datc ;'~em. Condil-;on-names can al$O be assigned 1'0 console switch seti'ings.

A user-created name defined in ,the INDEXED BY clause (see OCCURS in
Chapl'er 5).

A user-creed'ed name defined with USAGE INDEX.

A literal is a string of charaders{ the value of which is idel1tical to tha ch:1raders that compose the literal.

literals are of two types: numeric and nonnumeric.

2-6

..

HNT-13
lJul71

2.2.4.1 Numeric Literals - A numeric literal is a string of 1 to 18 numeric characters (0 through 9). It

cannot contain any alphabetic characters. It can be preceded by a plus sign (+) or a minus sign (-); if

no sign is used, the literal is assumed to be positive. A decimal point can appear anywhere in j-he literal

except to the left of the sign or as the rightmost charclcter. If no decimal point is used, the literal is

assumed to be an integer. A numeric literal is considered to be of the numeric class; that is .. it can be

used legitimately as a value in arithmetic expressions.

Examples of Numeric Literals:

1'23 -123

-. 123456789

+123 1.23456

1234567890.12345678

.123456789

-1234567890.12345678

2.2.4.2 Nonnumeric Literals - Nonnumeric literals, are character strings containing from 1 to 120 char­

acters enclosed in quotation marks. The value of the literal is equal to the characters, including any

spaces, enclosed by the quotation marks. Any ASCII character except the quotation mark, null, delete,

carriage return, and printer control can appear within a literal.

All nonnumeric !iterals are considered to be in the alphanumeric category; they cannot be used as val­

ues in arithmetic operations, and numeric editing cannot be performed on them. If a literal conforms

to the rules for formation of a numeric literal, but is enclosed in quotation marks, it is considered fO be

a nonnumeric literal. That is, "120.45" is not equivalent to 120.45.

Examples of Nonnumeric Literals:

IIA" "THIS ACCOUNT HAS A CREDIT BALANCE" " RETURN II

"-125.50" "DEDUCT 10% IF PAID BEFORE JAN. 31 ST"

2.3 SOURCE PROGRAM FORMAT

Two source program formats are acceptable to PDP-10 COBOL: standard format and

non-standard format. The compiler assume.s that the source program is written in

standard format unless the NONSTD option is used in ,the command string (refer to

Appendix D).

2-7

HNT-13
lJul7l

2.3,1 Standard Format

The standard format is used when l'he programmel" wishes his source programs to be compatible wi!'h

other COBOL compilers. It is the formal" that is normally used when input is fiOm the card reader. A

line of standard format is shown below; the numbers refer to card columns, although this formot can

be use.d with any input medium.

MARGIN L

~

CONTINUATION
COLUMN

1 r"'" MARGIN B

~

TOE NT I FICA[ION
COLUMN

j MARGIN R

+
2 3 4 5 6 7 8 9 10 11 12 13 72 73 • 80

~----r---------.-J ~ '-----v----" '----.-----.,-. ----------, \.-----,..-----------'
SEQUENCE I AREA A AREA 8 IOEIHIFICATION

NUMBER AREA I AREA

COtnlNUATION
AREA

Margin L designates the lefhnost (firsl') character position of a line.

The conti nuot; on co! umn des: gnol'esrhe seventh character positi on relative to the left margin.

Margin A designqtes the eighi'h character position relal'ive to the left margin.

Margin B designates the twelfi-h character position relative to !'he left margin.

The identifica~lon cOlumn designo'rcs the seventy-third character position rei ative j'o the left margin 0

Margin R designaj'es rhe rightmost (eighI'ieth) character position of a line.

The sequence nLJmbnr are:(~i$ a six-character field beginning at margin L that normally contains a sequence

number. The campi ler ignores this fieid.

The continuation meG occupies one character position in the continuation column. The continuation area

is used whenevH it';5 necessary to splil' a word, CI numeric literal, or a nonnumeric literal between the

end of one line and the beginning of J'he next I or when a commenT line is to be inserted. The following

rules appl)f fo comment or continual'ion lines.

cloThe programmer can insert a comment line in a program by placing an asterisk (*) in the
continuation Gree.

b. To continue a iine wi'thout splitting a word or literal, the programmer must begin the first
continuing word on the second line at, or after, margin A. The continuation arCQ IS leff
blank. As many spaces as desired can follow the last word on the first line, or the word
can continue up to the identification column (column 73) 0

(continued on next page)

2-8

c. To split a word or numeric literal from one line to the next I the programmer places a
hyphen in the continuation area of the second line and begins the first continuing char­
acter of the word or literal at, or after, margin A. As many spaces as desired can occur
after the last character of the word or numeric literal on the first line, or the last char­
acter can occur immediately before the identification column.

d. To split a nonnumeric literal between two lines, the user must ensure that the last char-·
acter to be placed on the first line occurs immediately before the identification column.
Otherwise, all spaces following this character on the first line will be treated as parI'
of the literal. A hyphen is placed in the continuation column of the second line, and
a quotation mark is placed at, or after, margin A, followed by the first continuing
character ofthe literal. In cases where the last character of the literal appears imme­
diately before the identification column on the first line and only the quotation mark
that ends the literal remains to be entered, the same rule applies (a hyphen in i'he con­
tinucltion field, a quotation mark at, or after, margin A followed by the terminating
quotati on mark).

Examples

Columns
72 73

000123 ... "TOTAL HOURS WORK i

MNT-13
IJul71

000124-IED".. I
Y I LMargin A Identification

~Continuation
, Sequence number

Margin L

Columns
72 73

000456••..•••.••....•••.••••••••...••••••• "TOTAL HOURS WORKED

~00045-~IL'Ma'r~;~'A'" ..•.••••••.••.••.•••.•••••••.•.••.•••.••.•.•••. v ~d' of' ,.
, ::~""·f; l {'Q'i'"'()n

Continuation ',' ~"" ""-"-I --- Sequence number
I_--Margin L

e. A cont'jnuation I ine cannot be immediately preceded by a blank line or a commen, line.

Area A occupies four character positions beginning at margin A. All division-names, section-tlClmeS, ond

paragraph-names must begin in area A. In the DATA DIVISION, the FD and level-number entries can

begin in area A, but are not required to.

Area B occupies 61 character positions beginning at margin B and ending at column 72. All remaining

entries begin in area B.

The identification area occupies eight character posi1'ions beginning at the identification column and

ending at margin R. This area is reserved as an identification field into which any combination of eight

or fewer characters can be punched to identify the card deck. This identification is printed on a listing

of the source program.

2-9

l'lNT-13
lJul71

2.3,2 Non-standard Format

This format 'I; ol'c'flded ror r:los$"; p;'C','-irCirmnm~ vvho are more familia;- with the format normally , ' .

used in PDP-lO op2rai'lons. It dlffe,s frO,':'1 ~he standard formal In I-ha!' sequence numbers and identi­

fication arp. not u3.'xl, becau:;e most PDP'·W programs do nol' require either. A line in non-standard format

is shown belove'; !-iw 1~;UiYlb~.s represen; character posii"ions.

COLU~~N 0

MARGIN R

~
j MARGIN A

~
"----.~ ,-,~_~ 3 __ "_' _) \.. 5 ()

CONTINUATIOhl
.~REA

i\RE.~ A

MARGI~I R

~
vr----~--~--~--~----·~)

AREA 13

10- 0738

Coiumn 0 deslgnai'e~ c C:~(:I~ac:"~(~:'OSmO:l ('ilCJr is n01' counted by rhe compilero It /s only used for comment

or continlJal'ion. A .' as!'erlsk, at space in column 0 is recognized by the compiler, but it is not

counted by the c\)mpiler as G dKli'ac~er posl'~lon. Thus, if l'he user typed a space, hyphen, or asterisk in

column 0 and I-hen tYP30 '~hree Clddi~'!onci 50aces, he would still be in area A, not at margin B. In other

words, five spaces or a nGd2.onral i'cb i~ required to move to margin B.

Margin A designGl'l%

Margin B designates the fifth charadei' posi\'lon rek!tive to Margin A (not column 0) 0 To reach margin B,

the user shou Id 1'1::,e horizonta! iC!~).

Margin R designah';s the rlgh~mo$~ charQd,,;r position of a line.

The coni'inuatiol1 area occup:es onD charac''''.;r posH-ion in column O. The con'rinuatlon area is used when-----
ever it is neces~o;y to spHI';:l \fIa:eI , (1 T'!:"<or!~ literal, or a nonnumeric litercd bcl-wec:1 the end of one line

and the beginning of j-he nex\' r or when C' comment line is to be inserted. The foi lowing rules apply to

comment or conl'lnuation !;neso

a. The programmer can Insert a comment line in a progrqrn by placing an as'rerisk (*) in the
continuation area"

b. To cOi1rlnUG C1 lin:::. wHhDU~ splitring a word or literal, I'he programmer must begin the first
conHnui::g ',\lo"d en the secGnd line at, or (lfl'&r I mar!;,lin A. The continual-ion area is left
blank. As 11'1any spaces as desired can follow i'he lasj· word on the first line, or the word
can continue up j'o margin :<,

c. To $p!i1- a '.vord 01" nurn(~ric lirecc:1! from one !inc to i-he nex-f, the proaraml11er places Ci hypher;
in the conllnva'!'!on area of ,'ne $8cond 11n8, and begins the f:rst continuing character of
the word or iitercd at or after margin A. As many spaces as desired can occur cHer i-he
last charade. of '!'l18 w():-d or nUIYlfH'ic Ill-era; on the first line, or i'he last charad€r can
occur o·t n1cugin R.

MNT-13
IJul71

d. To split a nonnumeric literal between two lines, the user must ensure that the last charader
to be placed on the first line occurs at margin R. Otherwise, all spaces following this
character on the first line wili be treated as part of the literal. A hyphen is placed in the
continuation column of the second line, and a quotation mark is placed at, or after I margin
A, followed by the first continuing character of the literal. In cases where the last chClrac­

ter of the literal appears at Margin R on the first line and only the quotation mark that ends
the literal remains to be entered, the same rule applies (a hyphen in the continuation field,
a quotation mark at I or after, margin A followed by the terminating quotation mark).

,Margin R

••....• , •••••.•...•••••••••.••••••••••••••••.•••• "TOT AL HOURS WORK
"ED" - L M~;~i'n' A .. .
~ Conti nuati on

~Margin R

••••••••••••••••• , ••••••••••••••• 0 ••••••••••••• "TOTAL HOURS WORKED
1111 f L~~'r~;~ .~ .. .

Conti nuatj on

e. A continuation line cannot be immediately preceded by a blank line or a comment line.

Area A occupies four character positions beginning at margin A, All divi si on-names I section-names, and

paragraph-names must begin in area A. In the DATA DIVISION, the FD and level-number entries can

begin in area A, Ibut are not required to begin there.

Area B occupies up to 101 character positions, beginning at margin B. All remaining entries begin in

area B. On an interactive terminal, the user can reach margin B by typing horizonfal-tab anywhere in

area A (or in column 0).

2-11

Chapter 3

The IDENTIFICATION DIVISION

MNT-13
lJul7l

The IDENTIFICATION DIVISION is required in every source program and identifies the source program

and the output from compi lation. In addition, the user may include other documentary information such

as the name of the program's author, the name of the installation, the dates on whi ch the program was

written and compiled, any special security restrictions, and any miscellaneous remarks.

3.1 GENERAL STRUCTURE

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name [comment paragraph] :.

[AUTH OR. comment paragraph:.]

[INSTALLATION. comment paragraph.:.]

[DATE-WRITTEN. comment paragraph:.]

[DATE-COMPILED. [comment paragraph.:.]]

[SECURITY. comment paragraph.:.]

[REMARK S. comment paragraph.:.]

3.2 TECHNICAL NOTES

a. The IDENTIFICATION DIVISION must begin with the reserved words IDENTIFICATION
DIVISION followed by a period and a space.

b. The PROGRAM-ID paragraph contains the name identifying the program. The program­
name may have up to six characters, and must contain only letters, digits, and the hyphen.

This paragraph must be present.

c. The remaining paragraphs are optional and, if used, may appear in any combination and in
any order. A comments paragraph consists of any combination of characters from the COBOL
character set organized to conform to COBOL sentence and paragraph format. All text appears
as written on the output listing, except the DATE-COMPILED paragraph, which will be replaced
by the current date.

3-1

Chapter 4

The ENVIRONMENT DIVISION

MNT-13
IJul71

The ENVIRONMENT DIVISION, required in every COBOL source program, allows the programmer to

describe the particular computer configurations upon which the compilation and resulting object program

are to be run, and to specify the hardware features of his computer configuration.

4.1 GENERAL STRUCTURE

ENVIRO NMENT DIVISIO N.

CONFIGURATION SECTION.

[SOURCE-COMPUTER. [comment-paragraph J]

GO BJECT -CO MPUTER. PDP-10

{
CHARACTERS}

[MEMORY SIZE integer-l WORDS
MODULES

[SEGMENT -LIMIT IS integer-2] _:.]

SPECIAL-NAMES. [CONSOLE IS mnemonic-name-l]

[CHANNEL (m) IS mnemonic-name-2

[, CHANNEL (n) IS mnemonic-name-3] .. J

lSWITCH (m)

IS mnemonic-name-4 [;01'-1 STATUS IS condition-name-1]

[;OFF STATUS IS condition-name-2]

ON STATUS IS condition-name-1

[; OFF STATUS IS condition-name-2J

OFF STATUS IS condition-name-2

[; 0 N STATUS IS conditi on-name-l]

4-1

MNT-13
lJul7l

[SWITC H (n)] .. J
[CURRENCY SIGN IS literal]

[DECIMAL-POINT IS COMMA] .

INPUT-OUTPUT SECTION.

FILE-CONTROL. SELECT [OPTIONAL] file-name

ASSIGN TO device-name-l [,devi ce-name-2J ...

[FO R MULTIPLE {REEL }]
UNIT

[RESERVE {integer-2} ALTERNATE [AREA J~
NO AREAS ~

[{
FILE-LIMIT IS } [{data-name-l} THRU] {data-name-2}

FILE-LIMITS ARE literal-l -- literal-2

[{ data-name-3} {data-name-4}]]
, THRU ...

literal-3 -- literal-4

[ACCESS MODE IS {SEQUENTIAL}]
RANDOM

[PROCESSING MODE IS SEQUENTIAL]

[ACTUAL KEY IS data-name-5] .

[SELECT] ...

{
END OF{BEiL }}

I-O-CONTROL. 'RERUN EVERY UNIT OF file-name~ll
l integer-l RECORDS J

[SAME [RECORD 1 AREA FOR F; le-nome-2, fHe-nome-3 [, f;le-nome-41. • .J
[MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-l]

[fi le-name-6 [POSITIO N integer-2]] .. J ~

4-2

4.2 CONFIGURATION SECTION

MNT-13
IJul71

The CONFIGURATION SECTION allows the user to describe the computer configurations on which he

will compile hissource program and run the resulting object program. It also allows him to assign mne­

monic names to certain hardware features.

CClNFIGURATION SECTION.

[SOURCE-COMPUTER. [comment-paragraph]J

[0 BJECT -CO MPUTER. PDP-10

[; MEMORY SIZE integer-l WORDS] {
CHARACTERS}

MODULES

[SEGMENT-LIMIT IS integer-2].:.. J

SPECIAL-NAMES. [CONSOLE IS mnemonic-name-l]

[CHANNEL {m} IS mnemonic-name-2

[,CHANNEL {n} IS mnemonic-name-3] .. J

[SWITCH {m}

IS mnemonic-name-4 [;ON STATUS IS condition-name-l]
[OFF STATUS IS condition-name-2]

ON STATUS IS condition-name-l
[OFF STATUS IS condition-narne-2]

OFF STATUS IS conditi on-name-2
[ON STATUS IS condition-name-l]

[SWITCH {n}] ... J
[CURRENCY SIGN IS literal]
[DECIMAL-POINT IS -=C...:.O..;.;,.M..;.;,.M.:..;;.A...;..;] _

Technical Notes

a. This section must appear in every source program.

b. All commas and semicolons are optional. A period must terminate the entire entry in each·
of the three paragraphs.

4-3

MNT-13
IJul71

SOURCE-COMPUTER

Function

The SOURCE-COMPUTER paragraph describes the computer on which the program is to be com pi led.

Genera I Format

[SOURC E-C OMPUT ER. [comment-paragraph ~ ~

Technical Notes

a. This paragraph is optional.

b. This paragraph is for documentation only. The comment paragraph is replaced in the listing
by the word PDP-lO.

4-4

•

MNT-13
lJul7l

OBJECT -COMPUTER

Function

The OBJECT -COMPUTER paragraph describes the computer on which the program is to be executed.

General Format

OBJECT-COMPUTER. PDP-lO

[MEMORY SIZE integer {~~~~CTERS}l
MODULES J

[~;EGMENT -LIMIT IS integer-2] ..:..

Technical Nohes

a. This paragraph is optional.

b. PDP-lO must appear as the first entry following the paragraph-name OBJECT -COMPUTER.

c. The MEMORY SIZE clause is optional. If it is omitted, 262,144 WORDS are assumed. If
it appears, the following ranges are applicClble.

CHARACTERS

WORDS

MODULES

Up to 1,572,864 (262,144 words x 6 character/word)

Up to 262, 144

Up to 256 (1 module equals 1024 words)

The MEMORY SIZE clause indicates the amount of core for the object code only I and does not
include the core required by the COBOL operating system.

d. If the SEGMENT-LIMIT clause is given, only those segments having priority numbers from
o up to, but not including, the value of integer-2 are considered as resident segments of the
progrclm. Integer-2 must be a positive integer in the range 1 to 49.

If the SEGMENT -LIMIT clause is omitted, segments having priority numbers from 0 through 49
are considered as resident segments of the program (that is, SEGMENT-LIMIT IS 50 is assumed).

More on segmentation can be found in Chapter 6.

4-5

MNT-13
IJul71

SPECIAL-NAMES

Fvnc,tion

, Th~ SPECIAL-NAMES paragraph provides a means of associating hardware devices with user-specified

mnemonic names.

Genera I Format

SPECIAL-NAMES. [CONSOLE IS mnemonic-name-l]

[CHANNEL {m} IS mnemonic-name-2

[CHAN NEL {n} IS mne~on ic -name-3] ...]

[{
IS mnemonic-name-4 [; ON STATUS IS

SWITCH {m} ON STATUS IS condition-name-l [; OFF
OFF STATUS IS condition-name-2 [; ON

condition-name-l] [; OFF STATUS IS condition-name-2]}

STATUS IS conditior.-name-2]
STATUS IS conditior.-name-l]

[SWITCH (n) ••••••] .•]

[CURRENCY SIGN IS literal]

[DECIMAL-POINT IS COMMA] :

Technical Notes

,a. This paragraph is optional.

b. The name CONSOLE refers to the user's Teletype console. The assigned mnemonic-name
may be used with the ACCEPT and DISPLAY verbs in the PROCEDURE DIVISION to input data
from and output data to the console.

c. The name CHANNEL refers to a channel on the line-printer control tape. m and n represent
any integer from 1 to 8 and refer to anyone of the eight channels on the tape. Control tape
channels can be referred to in the ADVANCING clause of the WRITE verb in the PROCEDURE
DIVISION to advance the paper form to the desired channel position. For example, if the entry

4-6

..
CHANNEL (1) IS TOP-OF-PAGE

MNT-13
IJul71

is included in this paragraph, the following procedure statement will print the line and then
skip to the top of the next page.

IF LINE-COUNTER IS GREATER THAN 50 WRITE PRINT -RECORD BEFORE
ADVANCING TOP-OF-PAGE.

d. The name SWITCH refers to the hardware switches on the PDP-l0 console. m and n repre­
sent any integer from 0 to 35 and refer to the corresponding console switches ..

The mnemonic-name can be used in conditional expressions in the PROCEDURE DIVISION. For
example, if the entry

SWITCH (4) IS INPUT-1

is included in this paragraph, the following condition is considered to be true if switch (4) is on.

IF INPUT-1 IS ON •...

~f a condition-name is specified for the ON or OFF STATUS of a switch, that condition-name
can be used in a conditional expression. For example, if the entry

SWITCH (4) IS INPUT-1; OFF STATUS IS NO-INPUT

is included in this paragraph, the following procedure statements are functionally equivalent.

IF INPUT -1 IS OFF

IF NO-INPUT

e. The literal which appears in the CURRENCY SIGN clause must be used in PICTURE clauses
(DATA DIVISION) to represent the currency symbol. If this clause is not present, only the
standard $ may be used as a currency symbol in a PICTURE clause.

This literal is limited to a single printable character and must not be one of the following char­
acters:

digits 0 through 9

alphabetic characters A, B, C, D, P, R, S,V, X, Z

special characters * + - , . ; () "

f. The clause DECIMAL-POINT IS COMMA, if present, causes the functions of the comma
and the period to be interchanged in any PICTURE clause character-string and in any numeric
literal.

4-7

MNT-13
lJul71

4.3 INPUT-OUTPUT SECTION

. The INPUT-OUTPUT SECTION names the fi les and external media required by the object program and

provides information required for transmission and handling of data during execution of the object

program,

INPUT-OUTPUT SECTION.

FILE-CO NTROL. SELECT [OPTIONAL] file-name

ASSIG N TO [i nteger-l] device-name- 1 [, device-name-2]

[FOR MULTIPLE (~~iT}]

[RESERVE (integer-2} ALTERNATE [AREA J~
NO AREAS ~

~(FILE-LIMIT IS }rCata-name-l} J (data-name-2}

L' FILE-LIMITS ARE L literal-l THRU Uiteral-2

[, (data-name-3} (data-name-4}] J
I, 1 3 THRU I' 1 4 '" Itera - -- Itera -

[ACCESS MODE IS {SEQUENTIAL}I
----- RANDOM

[PROCESSING MODE IS SEQUENTIAL]

[ACTUAL KEY IS data-name-S] :.

[SELECT. .. .J ...

I-O-CO NTROL.

[RERUN EVERy{END OF { ~~iT }} OF file-name-~
. integer-l RECORDS 'J

4-8

f

[SAME [RECORD] AREA FOR file-name-2, file-name-3 [, file-name-4] .. J

[MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-2]

[, file-name-6 [POSI~ION integer-3]~ .•. .!.

Technical Notes

a. This section is optional.

MNT-13
IJul71

b. All semicolons and commas are optional. Each SELECT statement in the FILE-CONTROL
paragraph must end with a period. The entire entry in the I-O-CO NTROL paragraph must end
with a period.

4-9

MNT-13
lJul71

FILE-CONTROL

Function

The FILE-CO NTROL paragraph names each file, identifies the fi Ie medium, and allows

hardware assi gnments.

General Format

FILE-CO NTROL. SELECT [OPTIONAL] fi Ie-name

ASSIGN TO devi ce-name-l [, devi ce-name-2J

[FOR MU' TIPLE (REEL)] L UNIT

I RESER\iE (integer-2) ALTERNATE L -------- ~--J 0
[AREAJ~

AREAS IJ
rr FILI-IJJ'~\}l ISt [rdata-name-l}.] (data-name-2)

l~ FILE-LIMITS ARE) \!iteral-l ~-lRU literal-2

l-ACCESS MnnE IS {SEQUEt'HIAL}-',
~ u RAI'mOM I

~

[PROCESSING MODE IS SEQUENTIAL]

[ACTUAL KEY IS dota-name-S] :..

L [~LECT J ..

4-10

Technical Notes

MNT-13
lJul71

a. Each file described in the DATA DIVISION must be named once and only once as a file­
name in a SELECT statement. Conversely, each file named in a SELECT statement must have a
File Description entry in the DATA DIVISION. Each file-name must be unique within a pro­
gram.

b. The key word OPTIONAL is required for input files that are not necessarily present each
time the object program is run. When an OPEN statement is executed for a file that has been
declared OPTIONAL, the question "IS file-name PRESENT?!! is typed and the operator re­
sponds with "YES" or IINO!!. If the response is "YES II , the file is processed normally; if the re­
sponse is "NOli, the first READ statement executed for the file will immediately take the AT
END or INVALID KEY path.

c. The ASSIGN clause specifies the file medium. Device-names may be either physical
device-names or logical device-names.

Physical device-names are fixed mnemonic-names that are associated with specific peripheral
devices. When specified in an ASSIGN clause, a physical device-name assigns the associated
file to that device. Physical device names presently employed are:

DSK for the disk
TTY for the Teletype

Since Batch uses a phenomenen known as the pseudo-Teletype for input and
output, users must assign card files to TTY, and printer files to TTY,
ensuring that these files are not open at the same time in the program.

More than one device may be assigned to a file to avoid delay when switching from one reel or
unit to the next. When more than one device is specified, the object program automatically
uses the next device, in a cyclical manner, when an end-of-reel condition is detected.

Whether or not multiple devices are assigned, the FOR MULTIPLE {~~~ } clause must be in­
cluded for any file that occupies (or might occupy) more reels than the number of devices as­
signed.

d. The RESERVE clause allows the user to specify The number of input-output buffer areas to be
allocated by the compiler to this file.

If the access mode is RANDOM, this clause is ignored, and only one buffer area is assigned.

If the NO opti on is used, only two such areas wi II be allocated.

If the integer-2 option is used, the integer specifies the number of areas to be assigned in ad­
dition to the two areas always assigned by the compiler. Integer-2 must be positive.

e. The FILE-LIMIT clause is required only for files whose access mode is RANDOM; it is op­
tional for files with SEQUU--JTIAL access mode residing on mass-storage devices; if' is ignored in
a II other cases.

Each pair of operands within this clause represents a logical portion of the file. If the first of a
pair of operands is not specified, it is assumed to be 1.

The operands represent logical record numbers relative to the beginning of the file.

The logical beginning of a random-access file is considered to be that record represented by the
firsT operand of the FILE-LIMIT clause. The logical end of a random-access file is considered
to be that record represented by the last operond .

4-11

MNT-13
IJul71

The value of data items specified in this clause is utilized by the object operating system only
when the fi Ie is opened by an OPEN procedure statement.

f. The ACCESS MODE clause is required only for random-access files; it is ignored in all
other cases.

If ACCESS MODE IS SEQUENTIAL, the random-access records are obtained or placed sequen­
tially. That is, the next logical record is made available from the file on a READ statement
execution, and an output record is placed into the next available area on a WRITE statement
exec uti on. Thus, sequential access processing on a random-access device is functionally similar
to the processing of a magnetic tape file.

If ACCESS MODE IS RANDOM, the contents of the data item associated with the ACTUAL KEY
specifies which record, relative to the beginning of the file, is made available by a READ state­
ment, or where the record is to be placed by a WRITE statement.

g. PROCESSING MODE IS SEQUENTIAL is for documentation only; records are always pro­
cessed in the order in which they are accessed.

h. If a sort-name is selected, at least three devices must be assigned. The devices must be
retrievable, i.e., disks, DECtapes, or magnetic tapes.

i. The ACTUAL KEY data item must be defined as a level-77 COMPUTATIONAL item, the
PICTURE of which contains only the characters 5 and 9.

4-12

MNT-13
IJu171

I-O-CONTROL

Function

.. The -I-O-CONTROL paragraph specifies the points at which a rerun dump is to be performed, the memory

area which is to be shared by different files, and the location of files on a multiple-file reel.

Genera I Format

I-O-CONTROL.

[RERU N EVERY { END OF {REEL}}] UNIT OF file-name-l
integer-l RECORDS

[SAME [RECORD] AREA FOR fi le-name-2, H le-nome-3 [file-name-4J •• .J

[MULTIPLE FILE TAPE CONTAINS file-narne-5 [POSITION integer-2]

[, fi le-name-6 [POSITION integer-3]] .. .]!.

[SEGME NT -LIMIT IS integer-4J _

Technical Notes

a. This paragraph is optional.

b. The RERUN clause specifies when a rerun dump is to be performed.

The dump is always written onto a disk file, l'sing the program-name (from the PROGRAM-ID
paragraph in the IDENTIFICATION DIVISION) as the filename, and an extention of RER.

If the END OF {~E~lT} option is used, a rerun dump is taken at the end of each input or output
reel of the specified file.

If the integer-1 RECORDS option is used, a rerun dump is taken whenever a number of logical
records equal to a multiple of integer-1 is either read or written for the file.

c. The SAME AREA clause specifies that two or more files are to use the same area during
processing; this includes all buffer areas and the record area.

4-13

MNT-13
lJul71

If the RECORD option is specified, the files share only the record area (i .e., the area in which
the current logical record is processed). If the RECORD option is not used, only one of the
named files can be open at one time.

d. The MULTIPLE FILE clause is required when more than one file shares the same physical
reel of tape. This clause is invalid for media other than magnetic tape.

Regardless of the number of files on a single reel, only those files defined in the program may be
listed. If all files residing on the tape are listed in consecutive order, the POSITION option
need not be given. If any file on the. tape is not listed, the POSITION option must be included;
integer-2, integer-3, etc., specify the position of the file relative to the beginning of the
tape.

All files on the same reel of tape must be ASSIGNED to the same device in the FILE-CONTROL
paragraph.

Not more than one file on the same reel of tape can be open at one time.

4-14

MNT-I3
lJuI7l

Chapter 5
The DATA DIVISION

The DATA DIVISION/ required in every COBOL program/ describes the characteristics of the data to be

processed by the object program.

This data can be divided into two major types:

a. Data contained in files/ both input and output.

b. Data initially stored as part of the program (e.g./ constant data such as messages/ tables
of fixed values/ etc .)/ or data developed during processing (e.g./ intermediate information
such as partial arithmetic results).

To handle these two types of data/ the DATA DIVISION consists of two sections:

a. The FILE SECTION/ which describes the characteristics and the data formats for each file
processed by the object program.

b. The WORKING-STORAGE SECTION/ which contains any fixed values and the working
areas into which intermediate data can be stored.

5. 1 FILE SECTION

In the FILE SECTION, the characteristics of each file to be processed are described by two types of

entries.

The first type of entry i the file description (FDL d~scribes the physical aspects of the file. These

aspects include

a. How the logical data records of the file are physically grouped into blocks on the file
medium

b. The maximum length of a logical record

c. Whether or not the file contains header and trailer labels and/ if so/ whether the format
of these labels is standard or nonstandard

d . The names of the records conta i ned in the fiI e .

5-1

MNT-13
lJul71

The second type of entry f the data description, describes the data formats of the logical records in the

fil es .

The FILE SECTION begins with the section-header FILE SECTION.

5.2 WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION is used to define (1) data (such as constant values and messages)

that is to be initially stored when the object program is loaded and (2) areas that are to be used for

storing intermediate results. The WORKING-STORAGE SECTION is similar to the FILE SECTIO N f ex­

cept that (1) it cannot contain FD and SD entries and (2) it may contain level-77 entries.

The WORKING-STORAGE SECTION begins with the section-header WORKING-STORAGE SECTIO N.

5.3 DATA DESCRIPTIONS

5.3.1 Elementary Items and Group Items

The basic user-defined datum in a COBOL program is called an elementary item; it may be referenced

directly only as a unit. An elementary item may be associated with contiguous elementary items to

form blocks of data; these blocks are called group items. Group items may be associated with other

group items and/or elementary items to form more inclusive group items. Thus an elementary item may

be contained within more than one group item, and a group item may contain more than one elementary

item.

5.3.2 Independent Items and Nonindependent Items

Items fall into one of two classes: independent items and nonindependent items. Independent items are

those that are not contained within any other data item; independent items may be either group items or

elementary items. Nonindependent items are those contained within some other item; nonindependent

items may be either group or elementary items. Every nonindependent item must belong to some inde­

pendent item.

5.3.2.1 Level Numbers - The level number indicates the class to which a data item belongs. Inde­

pendent items must be assigned a level number of 2 through 49, or the special level number 66. Inde­

pendent items with a level number of 1 are called records; they may contain nonindependent items.

5-2

MNT-13
IJul71

Independent items with a level number of 77 are called noncontiguous elementary items; they may not

contain nonindependent items (hence, level 77 items must be elementary items).

The sequence of level numbers in definitional entries is the means of determining the association of

items into blocks. Each independent item is a block; the independent item ends where another indepen­

dent item begins, signified by the occurrence of a level number of 1 or 77, or when the special level

number 66 or a section or division header, or one of the special level indicators FO or SO is encoun­

tered. A non independent item is a block that ends when another item of the same or a numerically low­

er level number is encountered, or when the independent item containing it is terminated (as determined

by the criteria stated above).

Level-66 data items are special blocks that contain an explicitly specified portion of a record (or pos­

sibly the whole record). These items are explained in detail under the RENAMES clause.

5.3.3 Records and Files

Records may be divided into two categories: those associated with a file and those not associated with a

file. A file is the highest level of data organization in COBOL; and in POP-10 COBOL, a file repre­

sents a collection t of data held on some external medium, i.e., not wholly in real or virtual core

storage.

5.4 QUALIFICATION

Any data item whi'ch is to be referenced must be uniquely identified. This can be achieved by assigning

a unique name to each item; however, i£l many appliccltions this is tedious and inconvenient (1) because

of the large number of names required and (2) because items containing the same type of information on

different blocks would have different names. Therefore, qualification is introduced to allow similar

non independent items and certain records to have identical names.

Qualification is simple; it means giving enough information about the item to specify it uniquely. In

COBOL this information is the names of the blocks containing it, in order of increasing inclusiveness.

It is not necessary to name each block containing it but only enough blocks so that no other item with

the same name as the original item could be identically qualified. It is also unnecessary to name each

successively higher block containing the item until a unique qualification is made; any set of block

names that uniquely describe the item may be used.

t A collection may be thought of as a block.

5-3

MNT-13
IJul71

Example:

01
02

03
04

RECORD-l.
ITEM-l.

SUB-ITEM.
FIELD PIC X.

01
02

03
04

RECORD-2.
ITEM-2.

SUB-ITEM.
FIELD PIC X.

FIELD in the left-hand example can be referenced uniquely in any of the following ways:

FIELD OF SUB-ITEM OF ITEM-l OF RECORD-l.
FIELD OF SUB-ITEM OF ITEM-l .
FIELD OF SUB-ITEM IN RECORD-l .
FIELD IN lTEM-l OF RECORD-l .
FIELD IN RECORD-l .
FIELD IN ITEM-l .

Since the connectives OF and IN are equivalent, they may be used interchangeably.

The only data items which need have unique names are level-77 items and records not associated with

files, since they are not contained in any higher level data structure. Records associated with files may

be qualified by the file name, as may any item contained within the record. File names must be

unique.

Level-66 items may be qualified only (1) by the name of the record with which they are associated and

(2) by the name of any file with which that record is associated.

5.5 SUBSCRIPTING AND INDEXING

In some appl ications, it is convenient to specify a block of data as consisting of repetitions of some

block of data. The COBOL facility for this function is the OCCURS clause (described below), which

specifies that the block of data in which the clause appears actually consists of some user-specified num­

ber of repetitions of the same block. This does not mean that the block is a group item containing the

repetitions, but rather that the block itself, regardless of whether it is a group or elementary item, is

repeated and that any block containing this block actually contains all of the identical blocks.

Since each of these repeated blocks has the same name as the originally described block and is at exact­

ly the same place in the same hierarchy, qualification is not sufficient to specify which of these blocks

one wishes to reference; subscripting (or indexing, which is identical to subscripting in PDP-lO COBOL)

must be used to distinguish among the repetitions.

Subscripting is merely a formal method of specifying which repetition of the block is desired and must

be used whenever reference is made to any block described with an OCCURS clause or to any item

5-4

MNT-13
IJu171

contained within such a block, since each of the latter also is part of each of the repetitions. Thus, if

an OCCURS clause appears in an entry contained in a block with an OCCURS clause, it is necessary to

specify (1) in which of the repetitions of the more inclusive block the desired item can be found, and

then (2) which of the repetitions of the less inclusive block within the particular repetition of the more

inclusive block, is desired. The format for subscripting is described in the OCCURS clause.

5-5

MNT-13
lJul71

FILE DESCRIPTION (FD)

Function

The File Description (FD) furnishes information concerning the physical structure, identification, and

record names pertaining to a given file.

Genera I Format

FD file-name

[BLOCK CONTAINS [;ntege,-l TO] ;nteg«-2 (~~~~~~~ERS}]
[RECORD CONTAINS [integer-3 TOJ integer-4 CHARACTERS]

r LABEL (~~~g~~sI~RE) r ~~~~:~D }]
lrecord-name-.l [, record-name-2] ...

I VALUE OF rIDENTIFICATION} IS rdata-name-l}r r DATE-WRITTEN } L --- lDATE-WRITTEN l'iteral-l t l IDENTIFICATION IS

{ ~;~:~:~~;e-2 }] 1
rr r RECORD IS }
LATA l RECORDS ARE

record-namE,-3 [record-name-4 J .. J ..::..
Technical Notes

a. An FD entry must be present for each file-name selected in the FILE-CONTROL paragraph
of the ENVIRONMENT DIVISION.

b. All semicolons and commas are optional. The entire FD entry must terminate with a period.

c. The clauses may appear in any order within the File Description entry.

d. Each of the above clauses appears in alphabeti cal order on the following pages.

5-6

)

Function

The BLOCK CONTAINS clause specifies the size of a physical block ..

General Format

MNT-13
IJul71

BLOCK CONTAINS

[BLOCK CONTAINS [;nteger-I TO] ;n'eger-2 (~~~~WR5}]

Technical Notes

a. If this clause is not present, the records wi II be read or written without regard to any phys­
ical boundaries imposed by the device.

b. IftheCHARACTERS option is used, the physical block size is specified in terms of the num­
ber of character positions required fo contain the record. If the recording mode is ASCII (that
is, all records for the file are described, explicitly or implicitly, as USAGE DISPLAY-7), it is
assumed that the size is specified in terms of DISPLAY-7 characters. If the recording mode is
SIXBIT (that is, the records for the file are all described as other than USAGE DISPLAY-7), it is
assumed that the size is specified in terms of DISPLAY-6 characters. See "USAGE" for a dis­
cussion of the USAGE of group items, including records.

c. Integer-l and integer-2 must be positive integers. If only integer-2 is specified, it repre­
sents the exact size of the physical block. If both integer-l and integer-2 are given, they rep­
resent the minimum and maximum sizes of the physical block.

5-7

M'NT-13
lJul71

DATA RECORD

Function

The DATA RECORD clause cross references the record descriptions with their associated file.

General Format

(RECORD IS l
DATA RECORDS ARE)

Technical Notes

record-name-3 ['ecord -no me -4]

a. This clause is optional. If this clause is not included, all records not associated with a
LABEL RECORDS clause will be assumed to be data records.

b. Both record-name-3 and record-name-4 must be the names given in Ol-Ievel data entries
subordinate to this FD. The presence of more than one such record-name indicates that the file
contains more than one type of data record. These records may have different descriptions.
The order in which they are listed is not significant.

c. All records within a file share the same area.

5-8

I~
,

I l)

FD

Function

MNT-13
IJul71

file-name

The FD file-name clause identifies the file to which this file description entry and the sl!bsequent

record descriptions relate.

General Format

FD fi Ie-name

Techni cal Notes

a. This entry must begin each file description.

b. The file-name must appear in a SELECT statement in the FILE-CONTROL paragraph of the
ENVIRONMENT DIVISION.

5-9

MNT-13
lJul71

LABEL RECORD

Function

The LABEL RECORD clause specifies whether or not labels are present on the file and, if so, identifies

the format of the labels.

General Format

Technical Notes

r RECORD IS }
l RECORDS ARE

{
OMITTED }]
STANDARD
record-narne-1 [, record-name-2] ..•

a. If the clause is omitted, LABEL RECORDS ARE STANDARD is assumed.

b. The OMITTED option is used when the file has no header or trailer labels.

c. The STANDARD option is used when the file has header and trailer labels that conform to
the PDP-10 standard format (see Chapter 8). LABEL RECORDS ARE STANDARD must be
specified for files on disk

d. The record-name option is used when the file labels do not conform to the PDP-10 standard
format. The record-names must appear as the name of a record desr.ription (Ievel-Ol) subordinate
to this FD; the record-names must not appear in a DATA RECORDS clause.

5-10

..

MNT-13
IJul71

RECORD CONTAINS

Function

The RECORD CONTAINS clause specifies the size of the data records in this file.

General Format

[RECORD CONTAINS ~nlege'-I TO] 1nlege,-2 CHARACTER~

Technical Notes

a. Because the size of each data record is completely defined by its record description entry I
this clause is for documentation purposes only and is never required. However, if it is used,
the following rules must be observed.

b. Integer-l and integer-2 must be positive integers. Integer-2 may not be less than the size
of the largest record.

c. The data record size is specified in terms of the number of character positions required to
contain the record.

5-1J

MNT-13
Uul71

SO fiie=name

Function

The SD file-name clause identifies the sort file to which this file description entry and the subsequent

record descripti ons relate ~

General Format

SD file-name

Technical Notes

a. This entry must begin each sort file description.

b. The file-name must appear in a SELECT statement in the FILE-CONTROL paragraph of the
ENVIRO NMENT DIVISION.

c. The DATA RECORD and RECORD CONTAINS clauses are the only descriptive clauses al­
lowed.

5-12

MNT-13
lJu171

VALUE OF IDENTIFICATION/DATE-WRITTEN

Function

The VALUE OF clause provides specific data for an item within the label records associoted with a

fi Ie.

General Form'Jt

{IDENTIFICATION] IS fdata-name-,}
lDATE-WRITTEN l!iteral-l [VALUE Of

[
{DATE-WRITTEN l rdata-name-2l In

, ~IDENTIFICATIONJ IS ~iteral-2 J U

Technical Notes

a. The VALUE OF IDENTIFICATION clOluse is required only if label records are standard; it is
ignored in all other cases. The VALUE OF DATE-WRITTEN is always optional.

b. Only one value may be specified for IDENTIFICATION, and only one value for DATE­
WRITTEN, for each file.

c. IDENTIFICATION represents the file·-name and file-name extension of a file with standard
labels. If a data-name is specified, it must be associated with a data item nine characters in
length. If a literal is specified, it must be a nonnumeric literal nine characters in length. The
first six characters are taken as the file-nome, and last three characters are taken os the exten­
sion. The programmer must provide spaces as required to conform to this convention.

Examples:

(1) VALUE OF IDENTIFICATION IS "COST L6. TST"

(2) VALUE OF IDENTIFICATION IS FILE-l-NAME

(WORKING-STORAGE SECTIOI'-l.)

77 FILE-l-NAME PICTURE IS X(9).

d. DATE-WRITTEN represents the date that a fi Ie (with STANDARD labels) was written. If
a data-name is specified, it must be associated with a data item six characters in length. If a

5-13

MNT-13
IJul71

literal is specified, it must be a nonnumeric or numeric I iteral six characters in length. The
first two characters are taken as year, the next two as month, and the last two as day. The
DATE-WRITTEN clause is ignored when the file is OPENed for output; instead, the current date
is used. '

Examples:

(1) VALUE OF IDENTIFICATION IS "RANDOMXYZ", DATE-WRITTEN IS 690612

(2) VALUE OF IDENTIFICATION IS "DATA.6..6..6..6..6.", DATE-WRITTEN IS FILE-1-DATE

(WORKING-STORAGE'SECTION.)
77 FiLE-1-DATE PICTURE IS 9(6).

\

e. For input files, this information is checked against the file when the file is OPENed. For
output files, the VALUE OF IDENTIFICATION is written when the file is OPENed. See Chapter
8, "Standard Label Procedures".

f. All data items must be either level-77 or level-01 items in working-storage, with usage
either DISPLAY-6 or DISPLAY-7.

5-14

"

MNT-13
IJul71

RECORD DESCRIPTIONS

Following the FD for a file, a record description is given for each different record format in the file.

A record description begins with a level-Ol entry:

01 data-name

where the data'-name is one of those listed in the DATA RECORDS clause of the FD.

A complete record description may be as simple as

01 data-name PICTURE picture-string.

or it may be more complex, where the Ol-Ievel is followed by a long series of data description entries

of varying hierarchies that describe various portions and subportions of the record.

Record Concepts

A record description consists of a set of data description entries which describe a particular logical re­

cord. Each data description entry consists of a level-number followed by a data-name (or FILLER) which

is followed, as required, by a series of descriptive clauses.

The general format of a data description entry follows.

5-15

MNT-13
lJul71

DATA DESCRIPTION ENTRY

Function

A data description entry describes a particular item of data.

General Format

;data-name-II
level-number 1JILLER)

[REDEFINES data-name-2]

[a:~TUI\!;} IS p;ctu,e..,.t,;ng]

l
[

[
[
[

USAGE IS

COMPUTATIONAL
COMP
COMPUTATIONAL-1
COMP-1
DISPLAY
DISPLAY-6
DISPLAY-7
INDEX

CSYNCHRONIZED}C LEFT J]
SYNC RIGHT

CUSTlFIED}C RIGHT}]
JUST LEFT

BLANK WHEN ZERO]

VALUE IS literal-1]

~o CC UR S [; ntege,-I TO 1 ; ntege,-2 Tl MES ~ N DEXE D BY ; ndex-name- 1 [,; ndex -name-2 1 ... J
[DEPENDING ON data-name-1 ~

5-16

RENAMES ENTRY

66 data-name-l RENAMES data-name-2 [THRU data-name-3]

CONDITION-NAME ENTRY

88 cond; Ii on~name (0 ~~ ~~SI~RE) I; teraH [TH R U I; tera 1-2]

Technical Notes

MNT-13
lJul7l

a. Each data description entry must be terminated by a period. All semicolons and commas
are optional.

b. The clauses may appear in any order, with one exception: the REDEFINES clause, when
used, must immediately follow the data-name.

c. The VALUE clause must not appear in a data description entry which also contains an
OCCURS clause, or in an entry which is subordinate to an entry containing an OCCURS clause.
The latter part of this rule does not apply to condition-name (level-88) entries.

d. The PICTURE clause must be specified for every elementary item, except a USAGE INDEX
or COMP-l item.

e. The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO can be
specified only at the elementary level.

f. The clauses shown in the General Formal' appear in alphabetical order on the following
pages.

5-17

MNT-13
IJul71

BLANK WHEN ZERO

Function

The BLANK WHEN ZERO clause causes the blanking of an item when its value is zero.

General FormClt

[BLANK WHEN ZERO]

Technical Notes

a. When the BLANK WHEN ZERO option is used and the item is zero, the item is set to
blanks.

b. BLANK WHEN ZERO can be specified only at the elementary level and only for numeric or
numeric-edited items whose usage is DISPLAY-6 or DISPLAY-7.

c. More comprehensive editing features are available in the PICTURE clause. If a PICTURE
clause appears in the same data description entry and contains the zero suppression symbol *
(zero suppress and replace with *), the field is replaced with * (see PICTURE).

5-18

: .

MNT-13
IJul71

condition-name (level-SS)

Function

To assign a name to a value or range of values of the associated data item.

General Format

88 d· . (VALUE IS l I' I 1 r,THRU I' I 2J con Itlon-name lVALUES ARE) Itera - L-- Itera-

[Hteral-3 ~HRU Hteral-4] J
Technical Notes

a. Each condition-name requires a separate level-88 entry. This entry contains the name
assigned to the condition, and the value or values associated with that condition. Condition­
name entries must immediately follow the data description entry with which the condition-name

. is to be associated • .

b. A condition-name entry can be associated with any elementary or group item except·

':(1) another condition-name entry, or

(2)· a ievel-66 item.

c. Some examples of possible level-88 entries are given below.

(1) 05 B-FIELD PICTURE IS 99.
88 B1 VALUE IS 3.
88 B2 VALUES ARE 50 THRU 69.
88 B3 VALUES ARE 20, 25, 28, 31 THRU 37.
88 B4 VALUES ARE 70 THRU 75, 80 THRU 85, 90 THRU 95.

(2) 02 C-FIELD PICTURE IS XXX.
88 C-YES VALUE IS "YES".
88 C-NO VALUE IS "NO 8" .

d. The data item with which the condition-name is associated is called a conditional variable.
A conditional variable may be used to qualify any of its condition-names. If references to a
conditional variable require indexing, subscripting, or qualification, then references to its
associated condition-names also require the same combination of indexing, subscripting, or
qual ification.

5-19

MNT-13
lJul71

e. A condition-name is used in conditional expressions as an abbreviation for the related
condition. Thus, if the above DATA DIVISION entries (note c) are used, the statements in
each pair below are functionally equivalent.

Relational Expression

(1) IF B-FIELD IS EQUAL TO 3

(2) IF B-FIELD IS GREATER THAN 49
AND LESS THAN 70 .•••

(3) IF B-FIELD IS EQUAL TO 20 OR
EQUAL TO 25 OR EQUAL TO 28
OR GREATER THAN 30 AND LESS
THAN 38 •.• '.

(4) IF B-FIELD IS GREATER THAN 69
AND LESS THAN 76 OR GREATER
THAN 79 AND LESS THAN 86 OR
GREATER THAN 89 AND LESS
THAN 96 •.••

(5) IF C-FIELD IS EQUAL TO "YES"

Condition-Name

IF B1

IF B2

IF B3

IF B4 ••••

IF C-YES ••.•

. f. Literal-1 must always be less than literal-2, and literal-3 less than literal-4. The values
given must always be within the range allowed by the format given for the conditional variable.
For example, any condition-name values given for a conditional variable with a PICTURE of
PP999 must be in the range of .00000 to .00999. (See Note i under PICTURE in this-chapter for
the meaning of P in a picture-string.)

5-20

Function

MNT-13
lJul71

data-name/FILLER

A ,data-name specifies'the n'ame of the 'data being described. The word FILLER specifies an unreferenced

porti~n of the logical record.,

General Format

level-number
[data-name\'
IJILLER J

Technical Notes

a. A data-name or the word FILLER must immediately follow the level-number in each data
description entry.

b. A data-name must be composed of a combination of the characters A through Z, 0 through
9, dnd the hyphen. It must contain at least 1 alphabetic character and must not exceed 30
characters in length. It must not duplicate a COBOL reserved word.

c. The key word FILLER is used to name an unreferenced elementary item in a record (that is,
an item to which the programmer has no reason for assigning a unique name). A FILLER item
cannot, under any circumstances, be referen·ced directly in a PROCEDURE DIVISION statement.
However, it may be indirectly referenced by referring to a group-level item of which the
FILLER item is a part.

5-21

, /

MNT-13
IJul71

JUSTIFIED

Function

The JUSTIFI ED clause specifies nonstandard positioning of data within a receiving data item.

General Format

[(JUSTIFIEI?l (RIGHT)]
(JUST J'lLEFT

Technical Notes

a. The JUSTIFIED clause cannot be specified at a group level, or for numeric or numeric
edited items. If neither RIGHT nor LEFT is specified, RIGHT is assumed.

b. The standard rules for positioning data within an elementary data item are as follows:

(1) Receiving data item described as numeric or numeric-edited (see definitions in Notes
f and i under PICTURE in this chapter).

The data is aligned by decimal point and is moved to the receiving character positions with
zero fi II or truncati on on either end as required.

If an assumed decimal point is not explicitly specified, the data item. is treated as if it had
an assumed decimal point immediately following its rightmost character, and the sending
data is aligned according to this decimal point.

(2) Receiving data item described as alphanumeric (other than numeric edited) or alpha­
betic (see definitions in Notes e and g under PICTURE in this chapter).

The data is moved to the receiving character positions and aligned at the leftmost character
position with space fill or truncation at the right end as required.

c. When a receiving item is described as JUSTIFIED LEFT, positioning occurs as in b (2) above.

d. When a receiving data item is described with the JUSTIFIED RIGHT clause and is larger
than the sending data item, the data is aligned at the rightmost character position in the re­
ceiving item with space fill at the left end.

When a receiving data item is described with the JUSTIFIED RIGHT clause and is smaller than
the sending data item, the data is aligned at the rightmost character position in the receiving
item with truncation at the left end.

Examples are given below.

5-22

03 ITEM-A PICTURE IS
X(8) VALUE IS "ABCDEFGH".

03 ITEM-B PICTURE IS
X(4) VALUE IS "WXYZ".

03 ITEM-C PICTURE IS X(6) ..

03 ITEM-D PICTURE IS X(6) .
JUSTIFIED RIGHT. .

MOVE ITEM-A TO ITEM-C.

MOVE ITEM-A TO ITEM-D.

MOVE ITEM-B TO ITEM-C.

MOVE ITEM-B TO ITEM-D.

Contents of Receiving Field

/CIDIEIFIGI8J

Iwi xl yl zi ~I ~I

I ~I ~I Wi Xl Y I z I

5-23

MNT-13
IJul71

MNT-13
IJul71

level-number

Function

The.level-number shows the hierarchy of data within a logical record. In addition, special level­

numbers are used for condition-names {level-88}, noncontiguous WORKING-STORAGE items {level-

77}, and the RENAMES clause {level-66}.

General Format

I eve I-nu mber

Technical Notes

{data-name}
l,!ILLER

a. A level-number is required as the first element in each data description entry.

b. Level-numbers may be placed anywhere on the source line, at or after margin A.

c. Level-number 88 is described under "condition-name (level-88}", and level-number 66
is described under "RENAMES (level-66}", both in this section.

d. A further description of level-numbers and data hierarchy can be found in the introduction
to thi s chapter.

5-24

Function

MNT-13
IJul71

OCCURS

Th~ OCCURS clause eliminates the need for $eparate entries for repeated data and supplies information

.required for the application of subscripts and indexes •

. General Format

[OCCURS [integer-l TO] integer-2 TIMES ~NDEXED BY index-name-l [, index-name-2] .. J
[DEPENDING ON data-name-l]]

Technical Notes

a. This clause cannot be specified in a data description entry that has a 66 or 88 level-number,
or in one that contains a VALUE clause.

b. The OCCURS clause is used in defining tables or other homogeneous sets of repeated data.
Whenever this clause is used, the associated data-name and any subordinate data-names must
always be subscripted or indexed when used in a PROCEDURE DIVISION statement.

c. All clauses given in a data description entry that includes an OCCURS clause apply to each
repetition of the item.

d. The integers must be positive. If integer-l is specified, it must have a value less than in­
teger-2. No value of a subscript may exceed integer-2; in addition, if data-name-l is speci­
fied, no subscript may exceed the value of data-name-l at the time of subscripting.

e. An index-name is not defined elsewhere; its appearance in an INDEXED BY clause is its
only definition. There may be no items of the same name defined elsewhere. The usage of
each index-name is assumed to bE'! INDEX.

f. Subscripting is described in the introduction to this chapter.

5-25

. ,

MNT-13
IJul71

PICTURE

. Function

The PICTURE clause describes the general characteristics and editing requirements of an elementary

item •

. General Format

Technical Notes

a. A PICTURE clause may be used only at the elementary level. It may not be used with an
item described as USAGE INDEX or COMP-1 .

b. A picture-string consists of certain allowable combinations of characters in the COBOL
character set used as symbols. These symbols are as follows:

(1) Symbols representing data characters

9 represents a numeric character (0 through 9)

A represents an alphabetic character (A through Z, and the space)

X represents an alphanumeric character (any allowable character)

(2) Symbols representing arithmetic signs and assumed decimal point positioning

V represents the position of the assumed decimal point

P represents an assumed decimal point scaling position

S represents the presence of an arithmetic sign

(3) Symbols representing zero suppression operations

Z represents standard zero suppression (replacement of leading zeroes by spaces)

* represents check protection (replacement of leading zeroes by asterisks)

(4) Symbo I s represent i ng insert i on characters

$ represents a dollar sign (this sign floats from left to right and replaces rightmost
leading zero when more than one $ appears) t

tIf the CURRENCY SIGN IS clause appears in the SPECIAL-NAMES paragraph, the symbol specified
by the literal must be used in all instances in place of the $.

5-26

11

, represents an insertion comma t

• represents an actual decimal point t

B represents an insertion blank

o represents an insertion zero

(5) Symbols representing editing sign-control symbols

MNT-13
lJul7l

+ represents an editing plus sign These float and replace rightmost leading zero

- represents an editing minus sign when more than one + or - appear

CR represents an editing Credit symbol

DB represents an editing Debit symbol

,

(6) Consecutive repetitions of a picture··string symbol can be abbreviated to the symbol
followed by (n), where n indicates the number of occurrences.

c. A maximum number of 30 symbols can appear in a picture-string. Note that the number of
symbols in a picture-string and the size of the item represented are not necessarily the same.
There are two reasons for this discrepancy. First, the abbreviated form for indicating consecu­
tive repetitions of a symbol may result in fewer symbols in the picture-string than character po­
sitions in the item being described. For example, a data item having 40 alphanum~ric character
positions can be described by a picture-string of only 5 symbols:

PICTURE IS X(40)

The second reason is that some symbols are not counted when calculating the size qf the data
item being described. These symbols include the V (assumed decimal point), P (decimal point
scaling position), and S (arithmetic sign); these symbols do not represent actual physical char­
acter positions within the data item. For example, the character-string

S999V99

represents a 5-position data item.

Other size restrictions for numeric and numeric edited items are given under the appropriate
headings below.

d. There are five categories of data that can be described with a PICTURE clause: alphabetic,
numeric, alphanumeric, alphanumeric edited, and numeric edited. A description of each cate-
gory is given in the notes below. .

e. Definition of an Alphabetic Item

(1) Its picture-string may contain only the symbol A.

(2) It may contain only the 26 letters of the alphabet and the space.

f. Definition of a Numeric Item

(1) Its picture-string may contain only the symbols 9, P, S, and V. It must contain at
least one 9.

(2) It may contain only the digits 0 through 9 and an operational sign.

tIf the DECIMAL-POINT IS COMMA clause appears in the SPECIAL-NAMES paragraph, the function
of the comma and decimal point is reversed.

5-27

MNT-13
lJul71

g. Definition of an Alphanumeric Item

(1) Its picture-string can consist of ali Xs, or a combination of the symbols A, X, and 9
(except 01195 or all As). The item is treated as if the character-string contained all Xs .

. (2) Its contents can be any combination of characters from the complete character set
(see Section 1.2, Chapter 1) .

. h. Definition of an Alphanumeric Edited Item.

(1) Its picture-string can consist of any combination of As, Xs, or 95 (it must contain at
least one A or one X), plus at least one of the symbols B or O.

(2) Its contents can be any combination of characters from the complete character set.

i. Definition of a Numeric Edited Item

(1) Its picture-string must contain at least one of the following editing symbols:

* + z o B CR DB $

It may also contain the symbols 9 f V, or P.

The allowable sequences are determined by certain editing rules for each symbol and can be
found in Note i.
The picture-string must have from 1 to 18 digit positions.

(2) The contents can be any combination of the digits 0 through 9 and the editing
characters .

i. The symbols used to define the category of an elementary item and their functions are as
follows.

A Each A in the picture-string represents a character position which can contain only a
letter of the alphabet or a space.

BEach B in the picture-string represents a character position into which a space charac­
ter will be inserted during editing.

Examples: (A-FlD contains the value 092469)

MOVE A-FLD TO B-FlD.

MOVE A-FLDTO B-FLD.

~-FLD picture-string

99B99B99

9999BBBB

Also see Note n, "Simple Insertion Editing".

Result

10191 11 12 14111161 9 1
101912141111111111111

PEach P in the picture-string indicates an assumed decimal point scaling position and is
used to specify the location of an assumed decimal point when the point is outside the
positions defined for the item. Ps are not counted in the size of the data item. They
are counted in determining the maximum number of digit positions (18) allowed in nu­
meric edited items or numeric items. Ps can appear only to the left or right of the
picture-string and must appear together. The assumed decimal point is assumed to be
to the left of the string of Ps if the Ps are at the left end of the picture-string and to

5-28

MNT-13
IJul71

the right of the string of Ps if the Ps are at the right end of the picture-string. If the V
symbol is used in this case, it must appear in either of those positions; it is redundant.

Examples:

PPP9999 (or VPPP9999) defines a data item of four character positions whose contents will be
treated as .000nnnn during any decimal point alignment operation (such as in a MOVE or ADD).

9PPP (or 9PPPV) defines a data item of one character position whose contents will be treated as
nOOO during any decimal point al ignment operation.

5

V

X

Z

*

An 5,in a picture-string indicates that the item has an operational sign and will retain
the sign of any data stored in it. The 5 must be written as the leftmost character in the
picture-string. If 5 is not included, all data will be stored in the item as an absolute
value and will be treated as positive in all operations. The 5 symbol is not counted in
the size of the data item.

A V in a picture-string indicates the location of the assumed decimal point and may
appear only once in a picture-string. The V does not represent a physical character
position and is not counted in ~he size of the data item. If the assumed decimal point
position is at the right of the rightmost character position of the item, the V is redun­
dant (that is, 9999 is functionally equivalent to 9999V).

Each X in a picture-string represents a character position which can contain any allow­
able character from the complete character set.

Each Z In a picture-string represents the leftmost leading numeric character positions
in which leading zeroes are to be replaced by spaces. Each Z is counted in the size of
the item.

Each * in a picture-string represents the leftmost leading numeric character positions in
which leading zeros are to be replaced by *. Each * is counted in the size of the item.

Examples: (A-FLD contains the value 00305)

B-FLD picture-string Result

MOVE A-FLD TO B-FLD 999999 10 0 o 1310151

MOVE A-FLD TO B-FLD ZZ9999 It. t. o 131 0151

MOVE A-FLD TO B-FLD ZZZZZZ It. t. t.1 3 1 0 1 5 1

MOVE A-FLD TO B-FLD ZZZZ.ZZ I t.13 0 5 I . I 0 1 0 I
Also see Note 5, "Zero 5uppression Editing".

9 Each 9 in a picture-string represents a character position which can contain a digit.
Each 9 is counted in the size of the item.

o Each 0 in a picture-string represents a character position into which a zero will be in­
serted. It is counted in the size of the item. The 0 symbol works in the same manner
as the B symbol.

Each, in a picture-string represents a character position into which a comma will be
inserted.

5-29

MNT-13
IJul71

Examples: (A-FLD contains 362577)

MOVE A-FLD TO B-FLD'

MOVE A-FLD TO B-FLD

B-FLD picture-string

9,999,999
Z,ZZZ,ZZZ

Also see Note n, "Simple Insertion Editing".

\0 \, \316\ 2\ , \ 5\ 7\ 7\
I Ll\ Lli 3 161 2\ ' \ 51 7\ 71

A . (dot or period) in a picture-string is an editing symbol that represents an actual deci­
mal point. It is used for decimal point alignment and also indicates where a point (.) is
to be inserted. This cymbol is counted in the size of the item. Only one . may appear
in a picture-string.

Examples: (A-FLD contains 352~9) t

B-FLD picture-string

MOVE A-FLD TO B-FLD

MOVE A-FLD TO B-FLD

MOVE A-FLD TO B-FLD

99,999.99
ZZ,ZZZ.ZZ

99999.9999

10 \31, \5\2\6\ .\9191
I Lll31, 1512161 ·19191

I 0 I 3 15 12161 . 19 191 0 1 0 1

See Noted under MOVE in Chapter 6 for a clarification of the rule governing the third example.

Also see Note 0, "Special Editing".

+
Each of these symbols is used as an editing sign-control symbol. When used, they

represent the character position(s) into which the editing sign-control symbol will be

placed. Only one of these symbols can appear in a character-string.

The + and - symbols can appear either at the beginning or at the end of a picture-string. The
CR and DB symbols can appear only at the end of a picture-string.

+ The character position containing this symbol will contain a + if the sending field either
was unsigned (absolute) or had a positive operational sign; it will contain a - if the send­
ing field had a negative operational sign.

The character position containing this symbol will contain a space if the sending field
either was unsigned (absolute) or had a positive operational sign; it will contain a - if the
sending field had a negative operational sign.

CR!, Each of these symbols requires two character positions. The character positions containing
DB J either of these symbols will contain spaces if the sending field either was unsigned

(absolute) or had a positive operational sign; they will contain the symbol specified if the
sending field had a negative operational sign.

tThe caret (1\) symbol is used to indicate the location of the assumed decimal point.

5-30

Examples: (A-FLO contains 345625, B-FLO contains -345625) t

" "
C FLO picture-string Result

MOVE A-FLO TO C-FLO 9999.99BCR 345 6

MOVE B-FLO TO C-FLO 9999.99BCR 345 6

MOVE A-FLO TO C-FLO +9999.99 1+ 3 4 5 6 2 5

MOVE B-FLO TO C-FLO +9999.99 1- 345 6 2 5

MOVE A-FLO TO C-FLO -9999.99 2 5

MOVE B-FLO TO C-FLO -9999.99 1- 3 4 5 6 .1 2 1 5

MOVE A-FLO TO C-FLO 9999.990B 3 4 5 6

MOVE B-FLO TO C-FLO 9999.990B 13 4 5 6

MOVE B-FLO TO C-FLO $9999.99+

Also see Note p, "Fixed Insertion Editing".

MNT-13
IJul71

The + and - can also be used to perform floating insertion editing, a combination of zero sup­
pression and symbol insertion. Floating insertion editing is indicated by the occurrence of two
or more consecutive + or - symbols at the beginning of the picture-string. The total number of
significant positions in the editing field must be at least one greater than the number of signifi­
cant digits in the data to be edited. The floating + or - moves from left to right through any
high-order zeros until a decimal point or the picture character 9 is encountered.

Examples: (A-FLO contains 005625; B-FLO contains -005625)
1\ 1\

C-FLO picture-string' Result

MOVE A-FLO TO C-FLO ++999.99 1 ~I+ 1015 6 21 51

MOVE B-FLO TO C-FLO ++++9.99 [~I ~1-15 6 21 51

MOVE ZERO TO C-FLO ++999.99 I ~I+ 1010 0 01 0 I
MOVE ZERO TO C-FLO +++++.++ I ~I ~I ~I ~ ~ ~ ~I ~I

(In order for floating to go past decimal point I all numeric positions of item must be represented
by the floating insertion symbol)

MOVE A-FLO TO C-FLO --999.99 1~1~loI5161· 2 51

MOVE B-FLO TO C-FLO --999.99 I ~I- 10 15 16 I· 2 51

MOVE ZERO TO C-FLO ---99.99 1 ~I ~I ~I 0 101· 0 01

MOVE ZERO TO C-FLO ----- -- L11~I~I~I~I~ ~ ~I

Also see Note 0, "Floating Insertion Editing".

tThe caret (1\) symbol is used to indicate the location of the assumed decimal point.

5-31

MNT-13
lJul71

Note that the + and - symbols are distinct from the S (operational sign) symbol. Normally,
the + and - symbols are used to describe display items that are to appear on some printed report;
they provide visual sign indication and cannot be used with items appearing as operands in
arithmetic statements.

$ A $ (or the symbol specified by the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph) represents the character position into which a $ (or the currency symbol) is to
be placed. This symbol is counted in the size of the item.

Examples: (A-HD contains 345675)

MOVE A-FLO TO B-FLO

MOVE A-FLO TO B-FLD

" B-FL D c haracter-stri ng

$9,999.99

$999,999.99

Also see Note p, "Fixed Insertion Editing" 0

The $ symbol can also be used to perform floating insertion editing. Floating insertion editing
is indicated by the occurrence of two or more consecutive $ symbols at the beginning of the
character string. The total number of significant positions in the editing field must be at least
one greater than the number of significant digits in the data to be edited. The floating $ symbol
floats from left to right through any high-order zeros until a decimal point or the picture char­
acter 9 is encountered.

Examples: (A-FLD contains 005625)

"
B-FLO pi cture-stri ng

MOVE A-FLO TO B-FLO

MOVE A-FLO TO B-FLO

MOVE ZERO TO B-FLO

MOVE ZERO TO B-FLO

$$9,999.99

$$$,$$$.99

$$$,999.99

$$$,$$$.$$

Also see Note q, "Floating Insertion Editing",

Result

k. There are two general methods of performing editing in the PICTURE clause:

(1) insertion, or

(2) suppression and replacement.

There are four types of insertion editing available:

(1) Simple insertion

(2) Special insertion

(3) Fixed insertion

(4) Floating insertion

There are two types of suppression and replacement editing:

(1) Zero suppression and replacement with spaces

(2) Zero suppression and replacement with asterisks

5-32

MNT-13
IJul71 .

I. The type of editing that may be performed upon an item depends on the category to which
the item belongs.

Category Type of Editing Allowed

Alphabetic None

Numeric None

Alphanumeric None

Alphanumeric edited Simple insertion: o and B

Numeric Edited All (except for the restrictions given in Note m)

.m. Floating insertion editing and zero suppression/replacement editing are mutually exclusive
in a PICTURE clause. Only one type of replacement can be used with zero suppression in a
PICTURE clause.

n. Simple Insertion Editing (, B O)

The, (comma), B (space), and 0 (zero) constitute those editing symbols used in simple
insertion editing. These insertion characters represent the character position in the item into
which the character will be inserted. These symbols are counted in the size of the item.

o. Special Insertion Editing (.)

The. (decimal point) symbol is used in special insertion editing. In addition to its use as
an insertion character, it also represents the position of the decimal point for decimal point
alignment. This symbol is counted in the size of the item. The symbols. and V (assumed

decimal point) are mutually exclusive in a PICTURE clause. If the. is the last symbol in the
character-string, it must be immediately followed by one of the punctuation characters (semi-
colon or period) followed by a space.

p. Fixed Insertion Editing ($ + - CR DB)

The currency symbol ($) and the editing sign control characters (+ - CR DB) constitute the
characters used in fixed insertion editing. Only one $ and one of the editing sign control
characters can be used in a PICTURE character-string. When the symbols CR or DB are used,
they represent two character positions in determining the size of the item. The symbols + or -
when used must be the leftmost or rightmost character positions to be counted in the size of the
item. The $ when used must be the leftmost character position to be counted in the size of the
item, except that it can be preceded by a + or - symbol. A fixed insertion editing character
appears in the same character position in the edited item as it occupied in the PICTURE
character-string.

Editing sign control symbols produce the following results depending on the value of the
data being edited.

5-33

MNT-13
lJul71

Editing Symbol in
PICTURE character-string

+

-
CR

DB

Data Positive

+

space

2 spaces

2 spaces

q. Floating Insertion Editing ($$ ++ --)

Result
Data Negative

-
-

CR

DB

The $ and the editing sign control symbols + and - are the floating insertion editing char­
acters and are mutually exclusive in a given PICTURE string.

Floating insertion editing is indicated in a PICTURE character-string by using a string of at
least two of the allowable insertion characters to represent the leftmost numeric character
positions into which the insertion characters can be floated. Any of the simple insertion
characters embedded in the string of floating insertion characters or to the immediate right of
this string are part of the floating string.

In a PICTURE character-string, there are only two ways of representing floating insertion
editing:

(1) Represent any two or more of the leading numeric character positions on the left of the
decimal point by the insertion character. The result is that a single insertion character will be
placed in the character position immediately preceding the leftmost nonzero digit of the data
being edited or in the character position immediately preceding the decimal point, or in the
character position represented by the rightmost insertion character, whichever is encountered
first.

(2) Represent all numeric character positions in the character-string by the insertion char­
acter. If the value is not zero, the result is the same as when the insertion character appears
only to the left of the decimal point. If the value is zero, the entire item is set two spaces.

A picture-string containing floating inserting characters must contain at least one more
floating insertion character than the maximum nLimber of significant digits in the item to be
edited. For example, a data field containing five significant digit positions requires an edit­
ing field of at least six significant positions.

All floating insertion characters are counted in the size of the item.

r. Zero Suppression Editing (Z *)

The suppression of leading zeroes and commas in a data field is indicated by the use of the
Z or the * symbol in a picture-string. These symbols are mutually exclusive in a given picture­
string. Each suppression symbol is counted in the size of the item. If a Z is used, the re­
placement character is a space. If an * is used, the replacement character is an *.

Zero suppression and replacement is indicated by a string of one or more Zs or *s to repre­
sent the leading numeric-character positions which are to be replaced when the associated
character position in the data contains a leading zero. Any of the simple insertion characters.
embedded in this string of zero suppression symbols or to the immediate right of this string are
part of the stri ng .

If the zero suppression symbols appear only to the left of the decimal point, any leading
zero in the data that corresponds to a zero suppression symbol in the string is replaced by the
replacement character.

5-34

MNT-13
lJul7l

Suppression terminates at the first nonzero digit in the data represented by the suppression
symbol in the string or at the decimal point, whichever is encountered first.

If all numeric character positions in the picture-string are represented by the suppression
symbol and the value of the data is not zero, the result is the same as if the suppression char­
acters were only to the left of the decimal point. If the value is zero, the entire item will be
set to the replacement character (with the exception of the decimal point if the suppression
symbol is an *).

When the * is used and the clause BLANK WHEN ZERO appears in the same entry and
zeros are moved to the field, all character positions with the exception of the decimal point·
are replaced by ,~.

s. The symbols + - * Z and $ when used as floating replacement characters are mutually ex­
clusive within a given picture-string.

t. The following chart shows the order of precedence of the various picture-string symbols.
Each "Y" on the chart indicates that the symbol in the top row directly above can precede the
symbol at the left of the row in which the "Y" appears.

{ } indicate that the symbols are mutually exclusive.

The P and the fixed insertion + and - appear twice.

P9, +9, and -9 represent the case where these symbols appear to the left of any numeric
positions in the string.

9P f 9+, and 9- represent the case where these symbols appear to the right of any numeric
positions in the string.

The Z, *, and the floating ++, --, and $$ also appear twice.

Z., *. I $$., ++., and --. represent the case where these symbols appear before the
decimal point position .

. Z, . *, .$$, ,++, end .-- represent the case where these symbols appear following the
decimal point position.

5-35

MNT-13
lJui 71

z
o
i=
c.::
w
Vl

Z
Cl
w
X
u..

c.:: w
::r:
I-o

B

0

1
49)
-9

f9+)
9-

~~.
$
A
X

P9

9P

S

V

;}
,---'

t;}
9

c:}
{:)
$$.

.$$

B

Y

Y

Y

Y

Y

y

Y

Y

Y

Y

y

Y

y

y

. y

y

FIXED INSERTION

0 . I
(+~
-~ ~~ f~~)

Y Y Y Y

Y Y Y Y

Y Y Y Y

Y Y Y

y y y

y y y

y

Y

Y Y Y Y Y

Y Y Y Y Y

Y Y Y

y y y y

Y Y Y Y

y y

y y y

y y y

y y y y

OTHER

$ A P9 9P S V {;J [:;} 9 l(++~} I:~~} $$. . $$
X ~--.

Y Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y y Y Y Y Y

Y Y Y Y Y Y

Y Y

y y y y y y y y

y y y y y y y y

y y

Y Y

Y Y Y

Y Y y y y y y

y Y Y Y Y Y Y

Y Y

y y y y y

Y Y Y Y Y Y Y Y Y

y y

y y y y y

y

y y y y

5-36

MNT-13
lJul71

REDEFINES

Function

The REDEFINES clause allows the same core memory area to be allocated to two or more dara items.

General Format

level-number data~name-l REDEFINES dara-name-2

Technical Notes

a. The REDEFINES clause, when used, must immediately follow data-name-l.

b. The level-numbers of data-name-l and data-name-2 must be identical.

c. This clause must not be used for level-number 66 or 88 items. Also, it must not be used
for level-Ol entries in the FILE SECTION; implicit redefinition is provided by specifying more
than one data-name in the DATA RECORDS ARE clause in the FD.

d. When the level-number of data-name-2 is other than level-Ol, it must specify a storage
area of the same size as data-name-l. FILLER items may be used to comply with this rule.

e. This entry must immediately follow the entries describing the area being redefines.

f. The data description entry for data-name-2 cannot contain an OCCURS clause or be sub­
ordinate to an entry that contains an OCCURS clause. Also I the redefinition entries cannot
contain VALUE clauses, except in condition-name (level-S8) entries.

g. Data-name-2 must not be qualified.

h. The following example iliustmres the use of the REDEFINES entry. The entries shown
cause AREA-A and AREA-B to occupy the same area in memory.

04 FIELD-l PICTURE IS X (7).

04 FIELD-2 PICTURE IS A(13).

04 FIElD-3.

5-37

MNT-13
IJul71

05 SUBFIELD-l PICTURE IS

S999V99 USAGE IS COMP.

05 SUBFIELD-2 PICTURE IS

S999V99 USAGE IS COMP,

03 AREA-B REDEFINES AREA-A.

04 FI ELD-A PICTURE IS X(22).

04 FIELD-B PICTURE IS X(5).

04 FILLER PICTURE IS X (5).

Note how the length of each area is calculated so that AREA-B can be defined so that its
size is equal to that of AREA-A.

AREA-A: FIELD-l 7 6-bit characters (DISPLAY-6 assumed)

FIELD-2 13 6-bit characters (DISPLAY ~6 assumed)

SUBFIELD-l 6 6-bit characters (COMP items occupy one word, or
six 6-bit character positions)

SUBFIELD~2 6 6-bit characters (COMP items occupy one word I or
six 6-bit character positions)

Total 6-bit characters 32

AREA-B: FIELD-A 22 6-bit characters (DISPLAY-6 assumed)

FIELD-B 5 6-bit characters (DISPLAY-6 assumed)

FILLER 5 6-bit characters (needed to make AREA-B size equal
to AREA-A)

T ota i 6-bit characters 32

5-38

MNT-I3
lJuI7l

RENAMES (level-66)

Function

The RENAMES clause permits alternate, possibly overlapping, groupings of elementary items.

General Format

66 data-name-1 RENAMES data-name-2 [THRU data-name-3J •

Technical Notes

a. All RENAMES entries associated with items in a given record must immediately follow the
last data description entry for that record.

01 data-name-a

(data description entries)

(level-66 entries associated with this logical record)

01 data':"name-b.

b. Data-name-1 cannot be used as a qualifier, and can be qualified only by the names of the
level-01 or FD entries associated with it.

c. Data-name-2 and data-name-3 must be the names of items in the associated logical re­
cord and cannot be the same data-name.

Neither data-name-2 nor data-name-3 can have a level-number of 01, 66, 77, or 88.
Neither of these data-names can have an OCCURS clause in its data description entry, nor be
subordinate to an item that has an OCCURS clause in its data description entry.

Data-name-2 must precede data-name-·3 in the record description, and data-name-3 can­
not be subordinate to data-name-2. If there is any associated redefinition (REDEFINES), the
ending point of data-name-3 must logically follow the beginning point of data-name-2.

When data-name-3 is specified, data-name-1 is a group item that includes all elementary
items starting with data-name-2 (if data-name-2 is an elementary item) or the first elementary
item in data-name-2 (if data-name-02 is a group item) and concluding with data-name-3 (or
the last elementary item in data-name-3).

5-39

MNT-13
lJul71

If data-name-3 is not specified, data-name-2 can be either a group or elementary item.
If it is a group item, data-name-1 is treated as a group item and includes all elementary items
in data-name-2; if data-name-2 is an elementary item, data-name-1 is treated as an elementary
item with the same descriptive clauses.

d. The following examples illustrate the use of the RENAMES entry.

01 RECORD-NAME.

02 FIRST-PART.

03 PART-A.

04 FIELD-l PICTURE IS .•.

04 FIELD-2 PICTURE IS ...

04 FIELD-3 PICTURE IS .•.

03 PART-B.

04 FIELD-4 PICTURE IS ..•

04 FIELD-5.

05 FIELD-SA PICTURE IS .•.

05 FIELD-5B PICTURE IS ..•

02 SECOND-PART.

03 PART-C.

04 FIELD-6 PICTURE IS •..

04 FIELD-7 PICTURE IS ...

66 SUBPART RENAMES PART-B THRU PART-C.

66 SUBPARTl RENAMES FIELD-3 THRU SECOND-PART.

66 SUBPART2 RENAMES FIELD-5B THRU FIELD-7.

66 AMOUNT RENAMES FIELD-7.

5-40

MNT-13
lJul71

SYNCHRONIZED

Function

The SYNCHRONIZED clause specifies the positioning of an elementary item within a computer word

(or words).

General Format

[·C SYNCHRONIZEQl
SYNC J

Technical Notes

CLEFT lJ
RIGHT)

a. This clause can appear only in the data description of an elementary item.

b. This clause specifies that the item being defined is to be placed in an integral number of
computer words and that it is to begin or end at a computer word boundary. No other adjacent
fields are to occupy these words. The unused positions, however, must be counted when cal­
culating (1) the size of any group to which this elementary item belongs, and (2) the computer
core allocation when the item appears as the object of a REDEFINES clause. However, when
a SYNCHRONIZED item is referenced, the original size of the item (qS indicated by the
PICTURE clause) is used in determining such things as truncation, iustification, and overflow.

c. SYNCHRONIZED LEFT or SYNC LEFT specifies that the item is to be positioned in such a
way that it will begin at the left boundary of a computer word.

SYNCHRONIZED RIGHT or SYNC RIGHT specifies that the item is to be positioned in
such a way that it will terminate at the right boundary of a computer word.

d. When the SYNCHRONIZED clause is specified for an item within the scope of an OCCURS
clause, each occurrence of the item is SYNCHRONIZED.

e. Any FILLER required to position the item as specified will be automatically generated by
the compiler. The content of this FILLER is indeterminate.

f. COMP(UTATIONAL) and COMP(UTATIONAL)-l items are always implicitly
SYNCHRONIZED RIGHT.

5-41

MNT-13
IJul71

USAGE

Function

The USAGE clause specifies the format of a data item in computer storage.

General Fmmat

[USAGE IS

Technical Notes

COMPUTATIONAL
COMP
COMPUTATIONAL-1
COMP-1
DISPLAY
DISPLAY-6
DISPLAY-7
INDEX

]

a. The USAGE clause can be written at any level. If it is written at a group level, it
applies to each elementary item in the glroup. The USAGE clause of an elementary item can­
not contradict the USAGE clause of a group to which the item belongs.

The implied USAGE of a group item is DISPLAY-7 if all items subordinate to it are de­
fined as DISPLAY-7i otherwise, its USAGE is DISPLAY-6 (DISPLAY).

b. This clause specifies the manner in which a data item is represented within computer
memory.

c. COMPUTATIONAL (COMP)

(1) COMP is equivalent to COMPUTATIONAL.

(2) A COMPUTATIONAL item represents a value to be used in computations and must be
numeric. Its picture-string can contain only the symbols: 9 S V P
Its value is represented as a binary number with an assumed decimal point.

(3) If a group item is described as COMPUTATIONAL, the elementary items in the group
are COMPUTATIONAL. However, the group item itself is not COMPUTATIONAL and
cannot be used as an operand in arithmetic computations.

(4) COMPUTATIONAL items of not more than 10 decimal positions will be SYNCHRO­
NIZED RIGHT in one computer word. COMPUTATIONAL items of more than 10 decimal
positions will be SYNCHRONIZED RIGHT in two full computer words.

5-42

(5) The following illustrations give the format of a COMPUTATIONAL item.

, sign

I I
o 1 ~

l~WORD COMPUTATIONAL ITEM

.,,--__ 51gn ,
I I
o 1 35

=-__ not used •
I I
o 1 35

2~WORD COMPUTATIONAL ITEM

d. COMPUTATIONAL-l (COMP-1)

(1) COMP-l is equivalent to COMPUTATIONAL-l.

MNT-13
IJul71

·(2) A COMPUTATIONAL-l item can contain a value, in floating point format, to be
used in computations and must be numeric. A COMP-l item must not have a PICTURE.

(3) If a group item is described as COMPUTATIONAL-l, the elementary items within
the group are COMPUTATIONAL-l, However, the group item itself is not COMPUTA­
no NAL -1 and cannot be used as an operand in arithmeti c computati ons.

(4) COMPUTATIONAL-l items will be SYNCHRONIZED in one full computer word.

(5) The following illustration gives the format of a COMPUTATIONAL-l item.

I

tS:---1 sign
binary

exponent

o 9

e. DISPLAY-6 (DISPLAY)

(1) DISPLAY is equivalent to DISPLAY-6.

mantissa

35

(2) A DISPLAY-6 item represents a string of 6-bit characters. Its picture-string may
contain any picture symbols.

(3) DISPlAY-6 items may be SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT, as
desires; otherwise, they may share a computer word with other DISPLAY-6 items.

(4) The illustration below gives the format of a DISPLAY-6 word.

o 6 12 18 24 30 35

5-43

MNT-13
IJul71

(5) If the USAGE clause is omitted for an elementary item, its USAGE is assumed to be
DISPLAY-6 (DISPLAY).

f. DISPLAY-7

(1) A DISPLAY-7 item represents a string of 7-bit ASCII characters. Its picture-string
may contain any picture symbols.

(2) If any item in a record is DISPLAY-7, all items in that record must be DISPLAY-7.

(3) DISPLAY-7 items can be SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT, as
desired; otherwise, they may share a computer word with other items. If the item is
SYNCHRONIZED RIGHT, the last character of the item will end in bit 34 of a computer
word.

(4) The illustration below gives the format of a DISPLAY-7 word.

o 7 14 21 28 35

g. INDEX

(1) An elementary item described as USAGE INDEX is called an index data-item. It is
treated as a COMP item with PICTURE S9(5).

(2) An index data-item must not have a PICTURE.

(3) If a group item is described as INDEX, the elementary items within the group are
treated as INDEX. However I the grQup item itself is not INDEX and cannot be used as
an operand in arithmetic statements.

(4) Index data items and index-names (defined in the OCCURS clause by the INDEXED
BY option) are equivalent.

5-44

MNT-13
IJul71

VALUE

Function

The VALUE clause defines the initial value of WORKING-STORAGE items, and the values associated

with condition-names (level-S8).

General Format

FORMAT 1: [VALUE IS literal]

FORMAT 2: [(VALUE IS J literal-l [THRU literal-2]
VALUES ARE

[, 1;'0'01-3 [THRU 1;,0,"1-4J] ... J
Technical Notes

a. Format 2 can be specified only for !evel~88 items.

b. In the FILE SECTION, the VALUE clause can be used only with level-88 items. In the
WORKING-STORAGE SECTION, it can be used at all levels, except level-66. It must not
be stated in a data description entry that contains an OCCURS clause or that is subordinate to
an entry containing an OCCURS clause. Also, it must not be stated in an entry that contains
a REDEFINES clause or that is subordinate to an entry that contains a REDEFINES clause {unless
the VALUE clause is part of a level-S8 entry}.

c. If the VALUE clause is used at a group level, the literal must be a figurative constant or
a nonnumeric literal. The group item is initialized to this value without consideration for the
individual elementary or group items contained within this group 0 No VALUE clauses can ap­
pear at subordinate levels within the groupo

d. If no VALUE clause appears for a WORKING-STORAGE item, the initial value of the
item is unpredi ctabi eo

eo More informati on concerning Format 2 can be found under "condition-name {level-88)"
in thi s chapter 0

5-45

MNT-13
lJu171

f. The VALUE clause must not conflict with other clauses in the data description entry or in
the data description entries within the hierarchy of the item. The following rules apply:

(1) If the category of an item is numeric, all literals in the VALUE clause must be nu­
meric. All literals in a VALUE clause must have a value within the range of values in­
dicated by the PICTURE clause; for example, an item with PICTURE PPP9 may have only
the values in the range .0000 through .0009.

(2) If the category of the item is alphabetic or alphanumeric, all literals in the VALUE
clause must be nonnumeric literals. The literal will be aligned according to the normal
alignment rules (see "JUSTIFIED") except that the number of characters in the literal must
not exceed the size of the item.

(3) If the category of an item is numeric-edited or alphanumeric-edited, no editing of
the value is performed.

g. The figurative constants SPACE(S), ZERO(E)(S), QUOTE(S), LOW-VALUE(S), and HIGH­
VALUE(S) may be substituted for a literal. If the item is numeric, only ZERO(E)(S) is allowed.

5-46

•

Chapter 6

The PROCEDURE DIVISION

MNT-13
lJu171

This processing is described by a series of COBOL pr?cedure statements. Statements, sentences, para­

graphs, and sections are generally described in Section 1.7 in Chapter 1. The PROCEDURE DIVISION

must contain at least one paragraph, and each paragraph must contain at least one sentence. Sections

are optional and permit a group of consecutive paragraphs to be referenced by a single procedure-name;

sections can also be used for segmentation purposes (see "Segmentation"). If any section appears in the

PROCEDURE DIVISION, then all paragraphs must appear within a section.

The first entry in the PROCEDURE DIVISION of a source program must be the division-header.

PROCEDURE DIVISION.

The next entry must be either the DECLARATIVES header (see "USE"), or a paragraph-name or section-

name.

6.1 SYNTACTIC FORMAT OF THE PROCEDURE DIVISION

The PROCEDURE DIVISION consists of a series of procedure statements grouped into sentences, para­

graphs, and sections. By grouping the statements in this manner, reference can be made to them via a

procedure-name (i .e., a paragraph-name or a section-name). The order in which procedure-statements

are executed can be controlled by using the sequence-control verbs ALTER, GO TO, and PERFORM.

6. 1 . 1 Statements and Sentences

Statements and sentences are generally described in Chapter 1. Statements fall into three categories:

imperative, conditional, and compiler-directing, depending upon the verb used. Verbs, in turn, ar,e

also classified into certain categories. These categories and their relationship to the three statement

categories are given in Table 6-1.

6-1

. •...

.. MNT-13
i.J~171

Verb

ADD
. COMPUTE .

DIVIDE'
MULTIPLY
,SUBTRACT

. ALTER
·GOTO
.PERfORM

EXAMINE
. MOVE

SET

ENTER
SORT
STOP

ACCEPT
CLOSE
OJ SPLAY
OPEN
READ
SEEK
WRITE

IF

COPY
EXIT
NOtE
USE

Table 6-1
Procedure Verb and Statement Categories

Verb Category Statement Category

ARITHMETIC IMPERATIVE

SEQUENCE-CONTROL

DATA MOVEMENT

MISCELLANEOUS

1-0

CONDITIONAL CONDITIONAL

COMPILER-DIRECTING COMPILER-DIRECTING

A statement or sequence of statements terminated by a period forms a sentence. Sentences are classified

. into the same three categories as statements.

An imperative sentence consists solely of one or more imperative statements. Except for imperative

sentences containing one of the sequence control verbs, control passes to the next procedural sentence

. following execution of the imperative sente~ce. If a GO TO or STOP RUN statement is present in an

imperative sentence, it must be the last statement in the sentence.

6-2

MNT-13
IJul71

A conditional sentence performs some test and, on the basis of the results of that test I determines

whether a "true" or a "false" path should be taken. A cond itiona I sentence is one that contai ns the

conditional verb (IF) or one of the option clauses ON SIZE ERROR (used with arithmetic verbs) 1 AT

END (used with the READ verb), or INVALID KEY (used with the READ verb for mass storage devices).

A compi ler-directing sentence consists of a single compi ler-directing statement. Compi ler-directing

sentences are used to indicate the end point of a PERFORM loop (EXIT), insert comments in the

PROCEDURE DIVISION (NOTE), and specify procedures for input-output errors and label handling

(USE). Generally f compi ler-directing sentences generate no object program codi ng.

6. 1 .2 Paragraphs

A single sentence or a group of sequential sentences can be assigned a paragraph-name for reference.

The paragraph-name must begin in Area A (see Chapter 2) and terminate with a period. The first sen­

tence of the paragraph can begin after the space following this period or it can begin on the next line,

beginning in Area B.

A paragraph-name must be unique within its section, but need not be unique within the program. A

non-unique paragraph-name must be qual ified by its section-name except when it is references from

within its own section.

6.1.3 Sections

A single paragraph or a group of sequential paragraphs can be assigned a section-name for reference.

The section-name must begin in Area A and be followed by the word SECTION followed by a priority

number, ifdesired, followed by a terminating period.

section-name SECTION nn.

If the section-name is in the DECLARATIVES portion, it may not have a priority number. A USE state­

ment may appear following the terminating space after the period.

The section-name applies to all paragraphs following it until another section-header is encountered.

6-3

MNT-13
IJul71

All section-names must be unique within a program. Sections are optional within the PROCEDURE

DIVISION, but if a DECLARATIVES portion is used there must be a named section immediately following

the END DEC LARA TIVES statement.

When a section-name is referenced, the word SECTION is not allowed in the reference.

6.2 SEQUENCE OF EXECUTION

In the absence of sequence-control verbs, sentences are executed consecutively within paragraphs,

paragraphs are executed consecutively within sections, and sections are executed consecutively within

the PROCEDURE DIVISION (with the exception of sections within the DECLARATIVES portion, which

are executed ind ividua lIy when the related condition occurs).

6.3 SEGMENTATION AND SECTION-NAME PRIORITY NUMBERS

COBOL source programs can be written to enable certain portions of the PROCEDURE DIVISION code

to share the same core memory area at object run time, thus decreasing the amount of core required to

run the object program. The method used to achieve this reduction is called segmentation.

Segmentation consists of dividing the PROCEDURE DIVISION sections into logically related groupings

called segments. The programmer defines a segment by assigning the same priority-number (a priority­

number follows the word SECTION in the section-header, and can be in the range 00 through 99) to all

the sections he wants included in that segment; these sections need not appear consecutively in the

source program.

Segments are classified into three groups, depending upon their priority-number. These three groups

are described in Table 6-2.

Priority-Number

None, or 00 up to
SEGMENT -LIMIT
minus 1

SEGMENT -LIMIT
up to 49

Type

Resident
Segment

Nonresident;

Table 6-2
Types of Segments

Description

This segment is always resident in core and is
never overlaid.

These segments are nonresident and are brought
ALTERed GO into core when needed. Any ALTERed GO TOs
TOs retained retain their most recently set values.

6-4

Priority-Number Type

Table 6-2 (Cont)
Types of Segments

Description

Nonresident; These segments are also nonresident and are

MNT-13
lJul7l

50 through 99
ALTERed GO brought into core when needed. Any ALTERed

TOs reset GO TOs do not retain their latest values, but
are reset to their original setting each time the
segment is entered from another segment.

In addition to the resident segment, all data areas described in the DATA DIVISION are resident at all

times. Thus, memory can be thought of as being divided into two parts:

a. A resident area, in which reside all data areas and the resident segment, and

b. A nonresident area, equal to the size of the largest nonresident segment, into which each
nonresident segment is read when needed. Since each nonresident segment reads into the same
memory area, any previous nonresident segment in that area is overlaid and must be brought in
again when it is to be executed again.

The resident segment should consist of those sections that constitute the main portion of the
processing. Infrequently used sections can be allocated to the nonresident segments.

6.4 ARITHMETIC EXPRESSIONS

An arithmetic expression is an identifier of a numeric elementary item, or a numeric literal, or such

identifiers and I iterals separated by arithmeti c operators.

Algebraic negation can be indicated by a unary minus symbol.

6.4. 1 Arithmetic Operators

There are five arithmetic operators that may be used in arithmetic expressions. They are represented by

specific character symbols that must be preceded by a space and followed by a space.

Arithmetic Operator

+

*
/
**

6-5

Meaning

Addition or unary plus
Subtraction or unary minus
Multiplication
Division
Exponenti ati on
Expone nt i at ion

MNT-13 •
IJul71

6.4.2 Formation and Evaluation Rules

The following rules for formafion and evaluation apply to arithmetic expressions.

a. Parentheses specify the order in which elements within an arithmetic expression are to be
evaluated. Expressions within parentheses are evaluated first. Within a nest of parentheses,
the evaluation proceeds from the elements within the innermost pair of parentheses to the outer­
most pair of parentheses. When parenthes~s are not used, or parenthesized expressions are at
the same level of inclusiveness, the following hierarchal order of operations is implied:

First: unary +, unary -

then

then

and then

** and t

* and /

+ and -

(exponentiation)

(multiplication and division)

(addition and subtraction)

b. When the order of a sequence of operations on the same hierarchal level (e.g. , a sequence
of + and - operations) is not completely specified by use of parentheses, the order of operations
is from left to right.

c. An arithmetic expression may begin only with one of the following:

(- + variable

and may end only with one of the following:

) variable

d. There must be a one-to-one correspondence between left and right parentheses in an arith­
metic expression; each left parenthesis must precede its corresponding right parenthesis.

6.5 CONDITIONAL EXPRESSIONS

A conditional expression causes the object program to select between alternate paths (called the true

and false paths) of control depending upon the truth value of a test. Conditional expressions can be

used in conditional (IF) statements and in PERFORM statements (options 3 and 4). A conditional ex­

pression can be one of the following types:

Relation condition

Class condition

Condition-name condition

Switch-status condition

Sign condition

Each of these types is discussed be low.

(greater than, equal to, less than)

(numeric or alphabetic)

(level-88 condition-names)

(SPECIAL-NAMES paragraph)

(positive, negative, zero)

6-6

6.5.1 Relation Condition

MNT-13
Uul71

A relation condition causes a comparison of two operands, each of which may be an identifier, a literal,

a figurative constant I or an arithmetic expression. Comparison of two numeric operands is permitted re­

gardless of their formats as described by their respective USAGE clauses. Comparison of two operands is

permitted if each is either DISPLAY-6 or DISPLAY-7. However, for all other comparisons, the operands

must be described as having the same USAGE.

A numeric-edited operand may not be compared to a numeric operand. An alphanumeric operand may not

be compared to a numeric operand that has decimal places.

6.5.1.1 Format of a Relation Condition - The general format for a relation condition is

identifier-1

literal-1 relati ona I-operator

identifi er-2

literal-2

arithmeti c-expressi on-1

figurative-constant-1

ari thmet i c -express i on-2

figurative-constant-2

The first operand is called the subject of the condition; the second operand is called the object of the con­

dition. Either the subject or the object must be an identifier or an arithmetic expression.

6.5.1.2 Relational Operators - Relational operators specify the type of comparison to be made in the

relation condition. Relational operators must be preceded by a space and followed by a space.

Relational Operator

IS [NOT] GREATER THAN

IS [NOT]2THAN

IS [NOT] LESS THAN

IS [NOT] <THAN

IS [NOT] EQUAL (EQUALS) TO

IS [NOT 1= TO

Meaning

Greater than, not greater than

Less than, not less than

Equal to, not equal to

6.5.1.3 Comparison of Numeric Items - For operands with a numeric category I a comparison results in

the determination that the algebraic value of one of the operands is less than, equal to, or greater than

the other operand. The number of digits contained in the operands is not significant. Zero is considered

a unique value regardless of the sign (i .e., +0 and -0 are considered equal). Unsigned numeric operands

are considered positive for purposes of comparison.

6-7

MNT-13
IJul71

6.5.1.4 Comparison of Nonnumeric Items - For operands whose category is nonnumeric (or where one

operand is numeric and the other is nonnumeric), a comparison results in the determ,ination that one of

the operands is less than, equal to, or greater than the other operand with respect to a specified col­

lating sequence of characters (see Appendix B). The size of an operand is the total number of characters

in the operand.

There are two cases to consider: operands of equal size, and operands of unequal size.

a. Operands of equal size - If the operands are of equal size, characters in corresponding
character positions of the two operands are compared, starting at the higher-order (leftmost) end
and conHnuing through the low-order end. If all pairs of characters compare equally through
the last pair, the operands are considered to be equal. If they do not all compare equally, the
first pair of unequal characters encountered is compared 1'0 determine their relative position in
the collating sequence. The operand containing the character that is positioned higher in the
collating sequence is considered to be the greater operand.

b. Operands of unequal size - If the operands are of unequal size, the comparison of characters
proceeds from the high-order end to the low-order end until either

(1) A pair of unequal characters is encountered, or

(2) One of the operands has no more characters to compare.

If a pair of unequal characters is encountered, the comparison is determined in the manner
described for equal-sized operands.

If the end of one of the operands is encountered before unequal characters are encountered, .
this shorter operand is considered to be less than the longer operand unless the remaining char­
acters in the longer operand are spaces, in which case the two operands are considered equa!.

6.5.2 Class Condition

The class condition determines whether the operand is numeric (i .e., whether it consists entirely of the

digits 0 through 9, with or wHhout an operational sign) or alphabetic (i .e. , whether it consists entirely

of the characters A through Z and i·he space).

6.5.2.1 Format of a Class Condition - The general format of a class condition is

identifier IS [NOT] (~~p~~~I~TIC}

The identifier mus't be described ,. implicitly or explicitly, as DISPLAY, DISPLAY-6, or DISPLAY-7.

6-8

MNT-13
o IJu171

6.5.2.2 The NUMERIC Test - The NUMERIC test cannot be used with an item that is described as al-

phabetic. If the item being tested is not described as containing an operational sign, it will be con­

sidered numeric only if the contents are numeric and an operational sign is not present.

6.5.2.3 The ALPHABETIC Test - The ALPHABETIC test cannot be used with an item that is described

as numeric. The item being tested is determined to be alphabetic only if the contents consist entirely

of any combination of the alphabetic characters A through Z and the space.

6.5.3 Condition-Name Condition

In a condition··name condition, a conditional variable is tested to determine whether or not its value is

equal to one of the values associated with a condition-name (Ievel-SS).

6.5.3. 1 Format of a Condition-Name Condition - The general format for a condition-name condition

is

[J:::!IOTJ condHion-name

If the condition-name is associated with a range of values, then the conditional variable is tested to

determine whether or not its value falls within this range I including the end values.

The rules for comparing a conditional variable with a condition-name value are the same as those spec­

ified for relation conditions.

The result of the test is true if one of the values associated with the condition-name equals the value

of its associated conditional variable.

6.5.4 Switch-Status Condition

A switch-status condition determines the on or off status of a hardware switch.

6.5.4.1 Format of a Switch-Status Condition - The general formats for a switch-status condition are

Format] :

Format 2:

Format 3:

[NOT] condition-name

mnemonic-name IS [NOT] {g~}

SWITCH (integer) IS [NOT] {g~}

6-9

MNT-13
IJul71

In format 1, condition-name is associated with a SWITCH IS ON or OFF STATUS clause in the

SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

In format 2, mnemonic-name is associated with a SWITCH (not an ON or OFF STATUS) in the SPECIAL­

NAMES paragraph of the ENVIRONMENT DIVISION.

In format 3, integer must be in the range from 0 through 35.

In format 1, the result of the test is true if the switch is [NOT] set to the position associated with the

condition-name.

In formats 2 and 3, the result of the test is true if the switch is [NOT] set to the position specified in

the conditi on.

6.5.5 Sign Condition

The sign condition determines whether or not the algebraic value of a numeric operand is less than,

greater than I or equa I to zero.

6.5.5.1 Format of a Sign Condition - The general format for a sign condition is

(
identifier) {POSITIVE J
.. . IS [NOT] NEGA TIVE

arithmetic-expression -- ZERO

An operand is positive if its value is greater than zero, negative if its value is less than zero, and zero

if its value is equal to zero (the sign is ignored if the value is zero).

6.5.6 Logical Operators

The interpretation of any of the above conditions is reversed by preceding the condition with the logical

operator NOT. Any of the above types of conditions can be combined by either of two logical opera­

tors. A logical operator must be preceded by a space and followed by a space.

Logical Operator

OR

AND

Meaning

Entire condition is true if either or both of the
simple conditions are true.

Entire condition is true if both of the simple con­
ditions are true.

6-10

6.5.7 Formation and Evaluation Rules

MNT-I3
lJuI7l

A conditional expression can be composed of either a simple-condition or a compound-condition. A

simple-condition is one that performs a single test. A compound-condition is one that contains a string

of simple-conditions connected by the logical operators AND, OR. A compound-condition can contain

any combination of types of conditional expressions (relational, class, condition-name, switch-status,

and sign).

The evaluation rules for conditions are analogous to those given for arithmetic expressions, except that

the following hierarchy applies:

ar i th met i c -express io ns
all relational operators
NOT
AND
OR

Parentheses may be used either to improve readability or to override the effects of the hierarchy given

above. Each set of conditions within a pair of parentheses is reduced to a single condition. When this

is accompl ished, reductions which cross parentheses are done.

Examples:

a. Us i ng parentheses for ease of read i ng .

The following expression

A = B OR C > D AND F < G AND H IS ALPHABETIC OR I IS NEGATIVE

can be parenthesized for readability without changing its effect as shown below.

(A = B) OR (C > D AND F < G AND H IS ALPHABETIC) OR (I IS NEGA lIVE)

If all the conditions within any of the three sets of parentheses are true, then the entire con­
ditional expression is true.

The diagram below illustrates the effect of this statement and the order of evaluation.

6-11

MNT-13
IJul71

b. Using parentheses to override normal order of evaluation.

TRUE

To illustrate this usage, a compound-conditional is shown in three forms, each accompanied by a How

diagram showing the result of each.

AND F3 =F4 OR FS = F6 AND F7 = F8

FALSE FALSE

FALSE FALSE

6-12

_ i

AND (F3 = F4 OR F5 =F6

FALSE

FALSE

FALSE

FI = F2 AND ((F3 = F4 OR FS = F6) AND F7 = F8)

FALSE

6-13

AND F7 = F8)

FALSE

MNT-13
IJul71

MNT-13
IJul71

6.5.8 Abbreviations in Relation Conditions

When a string of consecutive relation conditions appears in a statement, abbreviations can be used, in

certain cases, for any relation condition other than the first. The subject, or the subject and rela­

tional operator, or the subject, relational operator and logical connective may be omitted. In each of

these cases, the effect of the abbreviated relation condition is as if the omitted parts were the same as

those in the nearest preceding complete relation condition within the same sentence. There are three

valid forms of abbreviation.

a. Abbreviation 1

If the subject is identical in a series of relational conditions, it can be omitted in all the
relational conditions except the first.

Example: A = B OR A < C AND A = D OR A = E

can be abbreviated to

A = B OR < C AND = D OR = E

b. Abbreviation 2

If subjects and relational operators are identical in a series of relational conditions, they
can be omitted in all the relational conditions except the first.

Example: A = B OR A = C AND A = D OR A = E

can be abbreviated to

A = B OR C AND D OR E

c. Abbreviation 3

If the subjects, relational operators, and logical connectives are all identical in a series
of relational conditions, the subject and relational operator can be omitted in all the rela­
tional conditions except the first, and the logical connective can be omitted in all the rela­
tional conditions except the last.

Example: A = B AND A = C AND A = D AND A = E

can be abbreviated to

A = B, C, D, AND E

6.6 COMMON OPTIONS ASSOCIATED WITH THE ARITHMETIC VERBS

Associated with the five arithmetic verbs (ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT) are

two options: the ROUNDED option, and the ON SIZE ERROR option. These two options are described

here to avoid the necessity of including their descriptions with each of the arithmetic verbs.

If the ROUNDED option is specified, the absolute value of the item is increased by 1 if the leftmost

truncated digit is greater than 4.

6-14

Example: result:

resultant-identifier picture:

stored result without
ROUNDED option:

stored result with
ROUNDED option:

567/\ 8756

999V99

MNT-13
IJul71

When the low-order positions in a resultant-identifier are represented by the symbol P in the PICTURE

associated with the resultant-identifier, rounding or truncation occurs relative to the rightmost integer

position for which storage is allocated.

Example: result:

resultant-identifier picture:

stored result without
ROUNDED option:

stored result with
ROUNDED option:

5388

99PP

53

54

6.6.1 The SIZE ERROR Option

If, after decimal point alignment, the number of significant digits in the result of an arithmetic opera­

tion is greater than the number of integer positions provided in the result-identifier, a size error con­

dition occurs. Division by zero always causes a size error condition. The size error condition applies

to both the intermediate results and the final result of an arithmetic operation. If the ROUNDED option

is specified, rounding takes place before checking for size error. When such a size error does occur,

the subsequent action depends upon whether or not the ,SIZE ERROR option is specified.

If the SIZE ERROR is not specified and a size error condition occurs, the value of the resultant-identifier

is unpredictable, and no additional action is taken.

If SIZE ERROR is specified, and a size error condition occurs, then the values of the resultant­

identifier(s} affected by the size errors are not altered. Values for resultant-identifier(s} for which no

size error condition occurs are unaffected by size err?rs that occur for other resultant-identifier(s}. Af­

ter completion of the execution of the arithmetic operation, the statement after SIZE ERROR is executed.

Example: ADD A TO B ON SIZE ERROR GO TO OVERFLOW.

A: 954

B:

Result:

PICTURE IS 999; VALUE 954.

The contents of B are left unchanged and control is transferred
to the paragraph or section named OVERFLOW.

6-15

MNT-13
lJul7l

6.7 THE NG OPTION

The CORRESPONDING option is used in the formats of two of the arithmetic verbs (ADD and SUBTRACT)

and in the format of MOVE verb.

Forthe purpose of this discussion, d 1 and d2 represent identifiers that refer to group items. A pair of

data items, one from d 1 and one from d2 , correspond if the following conditions exist:

a. A data item in d 1 and a data item in d2 have the same data-name and the same qual ifica­
tion up to, but not inciuding, d 1 and d2 ,

b, Both of the data items are elementary numeric data items in the case of an ADD or SUBTRACT
statement with the CORRESPONDING option.

Neither d 1 nor d2 may be data items with level-number 66 f 77, or 88.

Each data item subordinate to dl or d2 that contains a RENAMES, a REDEFINES or an
OCCURS clause is ignored. However, d1 and d2 may have REDEFINES or OCCURS clauses or
be subordinate to data items with REDEFINES or OCCURS clauses.

See "ADD f" "MOVE," and "SUBTRACT" for informaTion on the specific formats and results of the use

of the CORRESPONDING option.

6.8 PROCEDURE DIVISIO''.! VERB FORMATS

The format of PROCEDURE DIVISION verb is given on -the following pages. The verbs are pre-

sented in alphabetical order,

The word "identifier" is a data-name followed, as required, by any qualification, subscripts, and/or

indexes to make the data -name un i que.

6-16

Function

MNT-13
IJul71

ACCEPT

The ACCEPT sl'atement causes low-volume data to be read from the user's Teletype console.

General Format

ACCEPT identifier-l [, identifier-2] .0. [FROM mnemonic-name]

Technical Notes

a. The ACCEPT statement causes the next set of data available from the hardware device to
replace the contents of the item named by identifier-l, identifi er-2, ••••

b. If the FROM option is specified, the mnemonic-name must appear in the CONSOLE IS
clause of the SPECIAL-NAMES paragraph.

6-17

MNT-13
UuI7l

ADD

Function

The ADD statement computes the sum of two or more numeric operands and stores the result.

General Format

Option 1

Option 2

. Option 3

ADD [identifier-l""\ [, {identifier-2\l

~iteral-l j literal-2 j
[, identifier-n [ROUNDED] J
[ON SIZE ERROR statement.:..]

TO identifier-m ~OUNDEDJ

ADD {identifier-l\ , {identifier-2) [,{ ;denHfie'-3'\j .•.

literal-l j literal-2 literal-3 J .
GIVING identifier-m [ROUNDED] [identifier-n [ROUNDED]] ...

[ON SIZE ERROR statement':]

{
CORRESPONDING)

ADD identifier-l TO identifier-2
CORR .
\;:--

, [ROUNDED] [ON SIZE ERROR statement!.]

6-18

Technical Notes

MNT-I3
lJuI7l

a. Each ADD statement must contain at least two operands (i .e., an addend and an augend).

In options 1 and 2, each identifier must refer to an elementary numeric item, except that
identifiers appearing to the right of the word GIVING may refer to numeric edited items. In
option 3, each identifier must refer to a group item.

Each literal must be a numeric literal; the figurative constant ZERO is permitted.

b. The composite of all operands (i .e., the data item resulting from the superimposition of
all operands aligned by decimal point) must not contain more than 19 decimal digits.

c. Option 1 causes the values of the operands preceding the word TO to be algebraically
summed. The resultant sum is then added to the current value of identifier-m and this result
replaces the current value in identifier-m. If other identifiers follow, the same process is re­
peated for each of them.

d. Option 2 causes the values of the operands preceding the word GIVING to be algebrai­
cally summed. The resultant sum then replaces the current contents of identifier-m. If other
identifiers follow, their contents are also replaced by this resultant sum. The current values of
identifier-m, identifier-n, ... do not enter into the arithmetic computation.

e. Option 3 causes the data items in the group item associated with idenfifier-l to be added
to the current value of the corresponding data items associated with identifier-2, and each re­
sult re'piaces the value of the corresponding data-items associated with identifjer-2. The cri­
teria used to determine whether two items are corresponding are described under "The COR­
RESPONDING Option" at the beginning of this chapter.

£, The ROUNDED and ON SIZE ERROR options are described earlier in this chapter under
"Common Options Associated with Arithmetic Verbs" . .

6-19

MNT-13
IJul71

ALTER

Function

The ALTER statement changes the object of one or more GO TO statements.

Genera I Format

ALTER procedure-name-I TO PROCEED TO procedure-name 2

C procedure-name-3 TO PROCEED TO procedure-name-4]

Technical Notes

a. During execution of the object program, the ALTER statement modifies the GO TO statement
in the paragraph named procedure-name-I, procedure-name-3, .•. replacing the object of the
GO TO by procedure-name-2, procedure-name-4, ... , respectively.

b. Each procedure-name-I, procedure-name-3, must be the name of a paragraph that
contains only a single GO TO statement without the DEPENDING option.

c. Each procedure-name-2, procedure-name-4, ... must be the name of a paragraph or sec­
tion within the PROCEDURE DIVISION.

d. A GO TO statement in a section whose priority is greater than or equal to 50 must not be
referred to by an ALTER statement in a section with a different priority.

e. An ALTER statement in a procedure not in the DECLARA TIVES portion of the program may
not reference a procedure name within the DECLARA TIVES; conversely, an ALTER statement
with the DECLARA TIVES may not reference a procedure-name not in the DECLARA TIVES.

f. Restrictions similar to those in Note e also apply to the INPUT PROCEDURES and to the
OUTPUT PROC EDURES associated with sort verbs.

6-20

c

a

Function

MNT-13
IJul71

CLOSE

The CLOSE statement terminates the processing of input and output files, reels, or units.

General Format

. [f.REEL}.l CLOSE file-name (UNIT J

r . [r REEL)] ~ -r NO REWIND~JJ L flle-name-l l UNIT LWITH l LOCK)

Technical Notes

a. Each file-name must appear as the subject of an FD entry in the FILE SECTION of the
DATA DlVISIO N.

b. The REEL, UNIT, and NO REWIND options apply only to magnetic tape files. UNIT
is synonymous with REEL.

c. For the purpose of showing the effect of various CLOSE options as appli ed to I·he various
storage media, all input, output, and input-output files are divided into the following three
mutually exclusive categories:

(1) NON-REEL

(2) SINGLE-REEL

A file whose device is such that the concepts of REWIND,
REEL, or UNIT have no meaning. This category includes
files residing on disk, punched cards, paper tape, line
pri nter, and Tel etype.

A file that is entirely contained on one reel or unit.

(3) MUL TI-REEL A file that may be contained on more than one reel or unit.

The results of each CLOSE option for each of the above types of files are summarized in
Table 6-6. The definitions for the symbols used in this table are given below. Where the
definition depends upon whether the file is an input or output file, alternate definitions are
given; otherwise, the single definition given applies to both input and output files.

6-21

MNT-13
lJu171

A Any subsequent reels of this file will not be processed.

B The current reel is not rewound.

C Standard CLOSE File Procedure

INPUT and 1-0 Files (see "OPEN ")

If the file is positioned at its end, the user's ENDING FILE LABEL PROCEDUREs
are performed, if the user has specified any via a USE statement. An input file
is considered to be at the end-of-file if the imperative-statement in the AT END
clause of a READ for the file has been executed, and no CLOSE statement for
the file has been executed.

OUTPUT Files

If LABEL RECORDS are STANDARD, an ending label is created and written on
the output medium. Then, any user ENDING FILE LABEL PROCEDUREs are per­
formed.

D The current reel is rewound and unloaded.

E Any attempt to subsequently OPEN this file will result in an error message being typed
and the run terminated.

F Standard CLOSE REEL Procedure

INPUT Files

(1) If the file is assigned to more than one device, the next device specified in
the ASSIGN clause becomes the current device. If no other device is specified,
the first device mentioned becomes the current device.

(2) The standard beginning reel label procedure and the user's BEGINNING
REEL LABEL PROCEDURE (specified in a USE statement) are performed for the
new reel.

OUTPUT and 1-0 Files

(1) The standard ending reel label procedure and any user's ENDING REEL
LABEL PROCEDURE are performed.

(2) If the file is assigned to more than one device, the devices are swapped. A
halt occurs to allow the user to mount an available -reel.

(3) The standard beginning reel label procedure and any user's BEGINNING
REEL LABEL PROCEDURE are performed.

G The tape is rewound.

X Illegal. This is an illegal combination of a CLOSE option and a file type.

6-22

CLOSE

CLOSE
WITH LOCK

CLOSE WITH
NO REWIND

CLOSE REEL
c
0 CLOSE REEL .-
J? WITH LOCK 0
UJ

CLOSE REEL VI

0 WITH NO ...J
u REWIND

Table 6-3
CLOSE Options and File Types

File Type

NON-REEL
SINGLE

REEL/UNIT

C C,G

e,E C,G,E

X C,B

X X

X X

X X

MULTI-REEL

C,G,A

C,G,E,A

C,B,A

F,G

F ,D

F,B

MNT-13
lJul7l

d. If a file is OPENed but not CLOSEd before the STOP RUN statement is execut'ed, the file
wi II be automatically CLOSEd.

e. If the file has been specified with an OPTIONAL clause in the FILE-CONTROL paragraph
of the ENVIRONMENT DIVISION and the file was not present for this run, the CLOSE has no
effect.

L If a CLOSE statement without the REEL or UNIT option has been 09xecuted for 0 fi Ie, a
READ, WRITE, or CLOSE statement for that file must not be executed until another OPEN for
that file has been executed.

6-23

MNT-13
lJul71

COMPUTE

Function

The COMPUTE statement assigns to a data item the value ofa numeric data item, literal, or arithmetic

express io n .

General Formal"

{
EQUALS }

COMPUTE identifier-l [ROUNDED] . ~AL TO {
identifier-2 }
literal-l
arithmet ic -expression

[ON SIZE ERROR statement..:']

Technical Notes

a, The COMPUTE statement allows the user to combine arHhmetic operations without the
restrictions on the composite of operands and/or receiving data items imposed by the arithmetic
statements ADD, SUBTRACT, MULTIPLY, and DIVIDE. If the composite operand exceeds 19
decimal digits I the composite is converted to COMP-l format.

b. Identifier-l must be em elementary numeric or numeric edited item.

c. Identifier-2 must be em elementary numeric item. Literal-l must be a numeric literal.

The identifier-2 and literal-l options provide a method for setting the value of identifier-l
equal to identifier-2 or literal-I"

d. The rules for forming arithmetic expressions and the order of evaluation are given earlier
in this chapter under "ArHhmetic Expressions."

e. The ROUNDED and SIZE ERROR opticm are described earlier in this chapter under
"Common Options Associated with the Arithmetic Verbs".

6-24

Function

MNT-13
lJul71

DISPLAY

The DISPLAY statement causes low-volume data to be written on the user's Teletype console.

Genera I Format

DISPLAY (Iiteral-l l [(literal-2 tJ
identifier-1) , identifier-2J

[UPON mnemonic-name J

Technical Notes

o. The contents of each operand are written on the user's Teletype console in the order listed.

b. Each of the I iterals can be numeric or nonnumeric, or one of the figurative constants. If
a figurative constant is specified as one of the operands, only a single occurrence of that con­
stant is written on the device.

c. The mnemonic-name must appear in the CONSOLE clause in the SPECIAL-NAMES para­
graph of the Environment Division.

6=25

MNT-13
IJul71

DIVIDE

Function

The DIVIDE statement divides one numeric item into another and sets the value of a data item equal to

the result.

Genera I Format

Option 1

Option 2

Option 3

Option 4

[0 N SIZE ERROR statement.!..]

DIVID E C1t::\~ ;,-2) BY ;dent;n e,- I [fa UN D ED] [REMAI ND ER ;dent ;ne,-4J

[ON SIZE ERROR statement.:..]

DIVIDE (i~entifier-l) INTO fi~entifier-2) GIVING identifier-3
hteral-l -- ~ Iteral-2

[ROUNDED] [REMAINDER identifier-4]

[ON SIZE ERROR statement-=-]

DIVIDE ridentifier-2} BY (identifier-l\ GIVING identifier-3
'lliteral-2 - litE!ral-l)

[ROUNDED] [REMAINDER identifier-4]

[ON SIZE ERROR statement..:']

6-26

Technica I Notes

MNT-13
IJul71

a. The value of identifier-lor literal-l is divided into the value of identifier-2 or Iiteral-2.

In option 11 the resulting quotient replaces the value of identifier-2. In option 2, the re­
sulting quotient replaces the value of identifier-l. In options 3 and 4, the resulting quotient
replaces the va lue of identifier-3.

b. Each DIVIDE statement must contain two operands (i .e., a dividend and a divisor). Both
of these operands (identifier-l and identifier-2) must refer to elementary numeric items. Iden­
tifier-3 may be an elementary numeric or numeric edited item. Each literal-lor literal-2 must
be a numeric literal.

c. The ROUNDED and SIZE ERROR options are described earlier in this chapter under "Com­
mon Options Associated with Arithmetic Verbs".

d. If the REMAINDER clause is used, the resulting remainder replaces the value of identifier-4.

6-27

MNT-13
IJu171

ENTER

Function

The ENTER statement allows the execution of MACRO and FORTRAN IV subroutines in conjunction with

the COBOL program.

General Format

{ MACRO }
ENTER FORTRAN-IV external-name

[~Identifier-l)] {identifier-2 }]
USING literal-l literal-2

procedure-name-'I ,procedure-name-2 .. .J
Technical Notes

a. The ENTER statement generates a subroutine call followed by the address in which the
items associated with the USING clause are located. The ENTER statement is discussed fur­
ther in Appendix C.

6-28

MNT-13
lJul7l

EXAMINE

Function

The EXAMINE statement replaces or counts the number of occurrences of a given character in a data

item.

General Format

TALLYING LEADING literal-1 {
ALL }

UNTIL FIRST ----
EXAMINE identifier

{
ALL }

REPLACING LEADING
[UNTIL] FIRST -- --

literal-1

[REPLACING BY literal-2]i

BY literal-2

Technical Notes

a. The USA~E of identifier must be DISPLAY or DISPLAY-7, implicitly or explicitly.

b. Each I iteral must consist of a single character belonging to a class consistent with that of
the identifier. A I iteral may be any figurative constant.

c. Examination starts at the leftmost character of the identifier and proceeds to the right.

d. When the TALLYING option is used, a count is kept of

(1) Occurrences of literal-1 when the ALL option is used.

(2) Occurrences of literal-1 prior to a character other than literal-l when the LEADING
option is used.

(3) Characters prior to the first occurrence of literal-1 when the UNTIL FIRST option
is used.

6-29

MNT-13
IJul71

This count replaces the contents of the special register called TALLY (see "Special Registers,"
Chapter 1) . TALLY has a PICTURE of S99999 I and can be referenced in any statement where an
identifier referring to an elementary numeric data item is valid.

If the REPLACING BY clause is used with the TALLYING option l replacement is performed
accordi ng to the rules below.

e. When either of the REPLACING BY options are used, replacement rules are

(1) If the ALL option is used, literal-2 is substituted for each occurrence of literal-l.

(2) If the LEADING option is used, the substitution of literal-2 for literal-l terminates
as soon as a character other than literal-l is encountered.

(3) If the UNTIL FIRST option is used, literal-2 is substituted for each character prior to
the first occurrence of litera 1-1 .

(4) If the FIRST option is used, literal-2 is substituted for only the first occurrence of
literal-l.

f. If the identifier is classified as numeric, it must consist solely of numeric characters. It
may possess an operational sign, but this sign is ignored by the EXAMINE process.

6-30

Function

MNT-13
IJul71

EXIT

The EXIT statement provides a common end point for OJ series of routl nes executed by OJ PERFORM or

USE statement.

Ge nero I Format

paragraph-name. EXIT,

Technical Notes

o. EXIT must be the first sentence in a pamgraph. Only NOTE may follow.

b, The EXIT statement may be used to provide an end point for a series of paragraphs that are
PERFORMed, or at the end of a section in the DECLARATIVES, By using EXIT at the end of
the range of a PERFORM or USE, a variety of exits from the performed procedure Can be aC­
complished by making each point at which an exit is required a transfer to the EXIT paragraph.

Example:

PERFORM TAX-ROUTINE THROUGH EXIT-RTE.

TAX-ROUTINE.
IF TOTAL-TAX IS EQUAL TO OR GREATER THAN TAX-LIMIT
GO TO EXIT -RTE,
MULTIPLY,., ..

DEDUCTION-RTE.
IF NO-Of-DEPENDENTS IS EQUAL TO ZERO
GO TO EXIT -RTE.
MULTIPLY !'lO-OF-DEPENDENTS BY DEP-DEDUCT

EXIT -RTE . EXIT.

c. If control reaches an EXIT statement and no associated PERfORM or USE statement is active,
contro I passes through the EXIT paragraph to the fi rst statement of the next paragraph.

6-31

MNT-13
lJul71

GO

Function

The GO TO statement causes control to be transferred from one part of the PROCEDURE DIVISION to

another 0

Genera I Format

Option 1

Option 2

GO TO procedure-name-l, procedure-name-2 [, procedure-name-3] 000

DEPENDING 0 N identifier 0

Technical Notes

a 0 Each procedure-name is the name of a paragraph or section in the PROCEDURE DIVISIO N
of the program 0

b 0 Option 1 causes transfer of control to the specified procedure-name, or to some other
procedure-name if the GO TO has been previously ALTERed 0

In order to be alterable, Option 1 must appear as the first sentence in a paragraph; only
NOTE may follow 0

If procedure-name-l is not specified, the GO TO must be alterable and an associated
ALTER statement must be executed prior to executing this GO TO 0

When this form of GO TO appears in an imperative sentence, it must appear as the last
or only statement in the sentence, except for NOTE 0

co Option 2 causes transfer of control to procedure-name-l, procedure-name-2, 000 or
procedure-name-n depending on whether the value of the identifier is 1, 2, 000 or n, re-
spectively 0 •

The identifier must refer to an elementary numeric item having no positions to the right of
the decimal point. The item may not be USAGE COMPUTATIONAL-lo

If the value of the identifier is other than the positive integers 1, 2, 000 or n, the GO TO
statement is by-passed 0

6-32

Function

MNT-13
IJul71

IF

The IF statement causes a conditional expression to be evaluated and the subsequent operations to be

performed to be determined as a result of this evaluation.

General Format

. • . { statement-1 } [{ statement-2 - }] 1f conditional expression NEXT SENTENCE ; ELSE NEXT SENTENCE .!.

a. Conditional expressions are discussed in Paragraph 6.5 in this chapter.

b. The subsequent action of the program is determined by whether the conditional expression
is true or false.

(1) If the conditional expression is true and statement-1 is given, statement-1 is executed
and, provided that it does not contain a GO TO or STOP RUN, control passes to the next
sentence.

If the conditional expression is true and NEXT SENTENCE is given, control passes to
the next sentence.

(2) If the conditional expression is false and statement-2 is given, statement-2 is exe­
cuted and, provided that it does not contain a GO TO or STOP RUN, control passes to
the next· sentence.

If the conditional expression is false and either ELSE NEXT SENTENCE is given or
the entire ELSE clause is omitted, cont'rol passes to the next sentence.

c. Statement-1 and statement-2 may be any statement or sequence of statements.

Either statement may contain another IF statement;. in this case, this second IF statement
is said to be nested. Nested IF statements may be considered paired IF and ELSE combinations.
Each subsequent ELSE encountered is considered to apply to the nearest precedin9 IF that has
not already been paired with an ELSE. In other words, the pairing process begins with the in­
nermost nested IF .•. ELSE pair and works outward.

6-33

MNT-13
IJul71

Example: (c = condition; s = statement)

rf1 I
IF c-l IF c-2 s-2 ELSE IF c-3 s- 3 ELSE s-4 I ELSE s-5,1 Y I I L __

6-34

MNT-13
IJul71

MOVE

Function

The MOVE statement transfers data in accordance with the rules of editing, from one data area to one

or more data areas,

General Format

Option 1

MOVE (identifier-it TO 'ldentl'f'ler-2 ['d 'f' 3J ~ l'iteral-1) , I entl ler-

Option 2

MOVE r CORRESPONDI NGJ identifier-1 TO identifier-2 l CORR

Technical Notes

a, IdEmtifier-1 (or literal-l) represents the data to be moved and is called the sending item.
Identifier-2, identifier-3, '" represent the receiving data items,

b,

c, The following rules apply to both group and elementary items; a group item is treated as
a single alphanumeric field,

(1) A numeric edited, alphanumeric edited, or alphabetic data item must not be moved to
a numeric or numeric edited data item,

(2) A numeric or numeric edited item must not be moved to an alphabetic data item,

(3) A numeric item whose implicit decimal point is not immediately to the right of the
least significant digit must not be moved to an alphanumeric or alphanumeric edited item,

All other moves are legal,

6-35

MNT-13
lJul7l

d. The following rules apply to legal moves.

(1) When an alphanumeric, alphanumeric edited I or alphabetic item is the receiving item,

(a) If the size of the sending field is greater than the size of the receiving field, the
least significant {rightmost} characters are truncated if the receiving field is not de­
scribed by a JUSTIFIED RIGHT clause; the most significant (leftmost) characters are
truncated if the receiving field is described as JUSTIFIED RIGHT.

(b) If the size of the sending field is less than the size of the receiving field, spaces
are placed in the remaining rightmost characters of the receiving field if the receiving
field is not described by a JUSTIFIED RIGHT clause; spaces are placed in the remain­
ing leftmost characters of the receiving field if the receiving field is described by a
JUSTIFIED RIGHT clause.

(c) If the sizes of the sending and receiving fields are equal f no truncation or filling
with spaces takes place.

(2) When a numeric or numeric edited item is the receiving item, the sending and re­
ceiving fields are aligned by decimal point. If the sending field is not numeric, the deci­
mal point is assumed to be on the right. Any necessary zero filling takes place before
editing. If the receiving item has no operational sign, the absolute value of the sending
item is stored. If the receiving item has fewer digits to the left or right of the decimal
point than does the sending item, the excess digits are truncated. If the sending item
contains any nonnumeric characters, the result is unpredictable.

(3) Any necessary conversion of data from one form of internal representation to another is
performed automatically during the move, along with any editing specified by the PICTURE
of the receiving item.

e. Any move that is not an elementary move (that is, both the sending and receiving items are
not elementary items) is called a group move. A group move is treated as if it were an alpha­
numeric to alphanumeric elementary move, except that there is no conversion of data from one
form of internal representation to another. In other words, the individual data descriptions of
the items within the sending group item and the receiving group item are completely ignored
and both items are treated as though they were described by a PICUTRE IS X(n) clause, where n
is the: number of character positions in the particular item.

6-36

MNT-13
IJul71

MULTIPLY

Function

The MULTIPLY statement causes one data item to be multiplied by another data item and the resulting

product to be stored in a data item.

General Formal'

Option 1

MUlTlPL Y C1t::II~~'-1) BY Identm ... -2 [ROUNDED]

[ON SIZE ERROR statement..:...]

Option 2

MULTIPLY Ci~entifier-l) BY Ci~entifier-2) GIVING identifier-3
Iiteral-l - Ilteral-2

[ROUNDED] [ON SIZE ERROR statement.!,.]

Technical Notes

a. Each MULTIPLY statement must contain at least two operands (a multiplicand Ilnd a multi­
plier). Each identifier must refer to an elementary numeric item f except that identifier-3 may
refer to either a numeric or a numeric edited item. Each literal must be a numeric literal; the
figurative constants ZERO and TALLY are permitted.

b. Option 1 causes the value of identifier-] or literal-l to be multiplied by the value of
identifier-2. The resultant product replaces the value of identifier-2.

c. Option 2 causes the value of identifier-lor literal-l to be multiplied by the value of
identifier-2 or literal-2. The resultant product replaces the value of identifier-3.

d. The ROUNDED and SIZE ERROR options are described earlier in this chapter under "Com­
mon Options Associated with Arithmetic Verbs".

6-37

MNT-13
lJul71

NOTE

Function

The NOTE statement allows the programmer to inserl> comments in the PROCEDURE DIVISION of his

program.

Genera I Format

t'>lOTE character-string ,:

Technica! Notes

a. comb ination of characters from the character set may be included in the
chOiracter~stri ng.

b. If the NOTE sentence appears as the first sentence in a paragraph, the entire paragraph
is considered to be part of the character-stri ng.

c. If the NOTE statemen\' appears a:) other than the first sentence in a paragraph, the
chOiracter~5tring ends at the first period followed by a space.

d. The contents of the character-string Clppear on the compilation listing, but are not compiled,

MNT-13
IJul71

OPEN

Function

The OPEN statement initiates the processing of files and I where necessary r performs the checking and

writing of labels.

General Format

{
{~'0T~~T } file-name-l [WITH NO REWIND] [, file-name-2 [WITH NO REWIND]] ...

OPEN

{ I-O }
INPUT-OUTPUT file-name-3 [, file-name-4] ...

T echn i ca I Notes

a. The OPEN statement must be executed for a file prior to the execution of any SEEK,
READ, WRITE, or CLOSE for that file.

b. A second OPEN statement for a fi Ie cannot be executed prior to the execution of a CLDSE
statement for that fi Ie.

c. An OPEN statement does not obtain or release the first record of a file. A READ statement
must be executed to obtain the first record (or a WRITE statement must be executed to release
the first record).

d. More than one file can be opened at a time. The key word INPUT, OUTPUl, INPUT­
OUTPUT, or 1-0 applies to each subsequenj· file-name until another such key word is encoun­
tered or until the end of the OPEN statement is reached.

e. The NO REWIND option has meaning only for magtape files and is ignored fQr all other
devices. If the NO REWIND clause is not specified for a tape file r the tape is n~wound to the
beginning of tape.

f. If a file has been described as LABEL RECORDS ARE STANDARD, standard Iclbel checking
or label writing is performed; the user's BEGINNING LABEL (USE) routines are executed if
provided. If a fi Ie has been described as LABEL RECORDS ARE data-name-l, the user's BE­
GINNING LABEL (USE) routines are executed. If a file has been described as U'\BEL
RECORDS ARE OMITTED, no label checking or writing is performed.

6-39

MNT-13
lJul71

g. If an INPUT file is described as OPTIONAL (in the FILE-CONTROL paragraph), the
operati ng system wi II type the message

IS file-name PRESENT?

and wait for the user to type "YES" or "NO". If the user types "NO", the first READ state­
ment for this file causes the imperative-statement at the AT END or INVALID KEY clause to
be executed.

h. The 1-0 or INPUT -OUTPUT options permit the opening of a file on a random-access de­
vice for both input and output processing. Since this option requires the existence of a file, it
cannot be used when initially creating the file. When the 1-0 option is specified, the execu­
tion of the OPEN statement causes the standard beginning label procedures (see Chapter 8) and
the user's BEGINNING LABEL routines, if specified by a USE statement, to be executed.

6-40

Function

MNl'-13
IJul71

PERFORM

The PERFORM statement is used to depart from the norma I sequence of execution in order to execute

one or more procedures and then return control to the norma I sequence.

Genera I Format

Option 1

Option 2

Option 3

Option 4

PERFORM procedure-name-l [THR!,l procedure-name-2]

PERFORM procedure-name-l [THRU procedure-name-2]

{ identifier-l} TIMES
integer-l --

PERFORM procedure-name-l [THRU procedure-name-~

UNTIL condition-l

PERFORM procedure-name-l [THR.1! procedure-name-2]

VARYING identifier-l FROM {Iiteral-l } l identifi er-2

{ I iteral-2 }
BY "d t'f' 3 UNTILcondition-l

- I en I ler-

[AFTER VARYING identifier-4 FROM {literal-3 }
lidentifier-5

6-41

MNT-13
lJul71

[literal-4 } ..
BY .d ·f· 6 UNTIL condltlon-2

- 1 entl ler-

rAFTER VARYING identifier-7 FROM r~diterta.lf:5 s} l.: \.1 en 1 ler-

{ I iteral-6 } .. 3J] BY ·d ·f· 9 UNTIL condltlon-
- 1 entl ler-

Technical Notes

a. Each procedure-name is the name of a section or paragraph in the PROCEDURE DIVISION.
Each identifier must refer to a numeric elementary item described in the DATA DIVISION.
Each I iteral must be a numeric literal or the figurative constants ZERO and TAllY.

b. When the PERFORM statement is executed~ control is transferred to the first statement
of procedure-name-l. An automatic return to the statement following the PERFORM
statement is established as follows. The procedures executed constitute the range of the
PERFORM.

(1) If procedure-name-l is a paragraph-name and procedure-name-2 is not spec ified, the
return is after the last statement of proc(,dure-name-l .

(2) If procedure-name-l is a section-name and procedure-name-2 is not specified, the
~eturn is after the last statement in the last paragraph in procedure-name-l .

(3) If procedure-name-2 is a paragrclph-name, the return is after the last statement in that
paragraph.

(4) If procedure-name-2 is a section-name, the return is after the last statement in the last
paragraph of that section.

c. There is no relationship between procedure-name-l and proced,··e-name-2, except that the
sequence of operations beginning at procedure-name-l must eventually end with the execution
of procedure-name-2 in order to effect the return at the end of proredure-name-2. Any number
of GO TO and/or PERFORM statements may occur between proceciure-name-l and procedure­
name-2.

d. If control passes to these procedures by means other than a PERFORM statement, control
passes through the return point to the following statement as though no return mechanism were
present.

e. No perform statement may terminate until all PERFORM statements that it has executed
have terminated. No PERFORM statement may be executed which terminates at the same
procedure-name as another active PERFORM.

6-42

f. Opti on 1 causes the PERFO RM range to be executed once, followed by a return to the
statement immediately following the PERFORM.

MNT-13
IJu171

g. Opti on 2 causes the PERFO RM range to be executed the number of ti mes specifi ed by
identifier-lor integer-l. The value of identifier-lor integer-l must not be negative; it may
be zero. Once the PERFORM statement has been initialized, any modification to the contents
of identifier-l has no effect on the number of times the range is executed.

h. Option 3 causes the PERFORM range to be executed unti I the condition specified in the
UNTIL clause is true. If this condition is true at the time the PERFORM statement is initial­
ized, the range is not executed. Conditions are explained under "Conditional Expressions"
earlier in this chapter.

i. Option 4 is used to augment the value of one or more identifiers during the execution of
a PERFORM statement.

In option 4, when only one identifier is varied, identifier-l is set equal to identifier-2
or literal-2 when the PERFORM statemenl' is initialized. If the condition specified is deter­
mined to be faise at this point I the PERFORM range is executed once. Then the value of
identifier-l is augmented by identifier-3 or literal-3 and the test of the condition is done
again. This cycle continues until condition-l is true; at this point f control passes to the
statement following the PERFORM statement. If conditi on-l is true at the beginning of the
execution of the PERFORM, control immediately passes to the statement following the PER­
FORM.

The flow chart below illustrates the logic of the PERFORM cycle when two identifiers are
varied.

6-43

MNT-13
lJul71

Sl't tlll'qlmi

tu d:! ur Il

S('t d4 I:(IUIII

to ds Of 15

Execute

PI ITHRU P21

Augment d4

by d6 or 16

6-44

TRUE

TRUE

~m,'h d j r('pre-senls lin identifier

eac.:h 1 i representN a literal

each ci represents a condition

each Pi represents a procedure·name

Sel d4 equal

to ds Of Is

Augment dt

bydJor IJ

MNT-13
lJul71

The following flow chart illustrates the logic of the PERFORM cycle when three identifiers
are varied.

Setdl tod20r 12

Set d4 to ds or IS

Set d7 to d8 or 18

Execute PI

ITHRU P21

Augment d7

by d90rl 9

TRUE

TRUE

TRUE

Set d7 to

d8 or 18

Augment d4

by d6 0r 16

Set d4 to

ds or IS

Augment dl

by d3 0r 13

i. A PERFORM statement that appears in a section whose priority is less than the SEGMENT­
LIMIT can have in its range only those procedures contained in sections

(1) Each of which has a priority number less than 50, or

(2) Wholly contained in a single segment whose priority number is greater than 49.

A PERFORM statement that appears in a section whose priority number is equa I to or greater
than SEGMENT LIMIT, can have in its range on Iy those procedures contained in sections

(1) Each of which has the same priority number as that containing the PERFORM statement,
or

6-45

MNT-13
IJul71

(2) Each of which has a priority that is less than the SEGMENT -LIMIT.

When a procedure-name in a segment with a priority number greater than 49 is referred to
by a PERFORM statement contained in a segment with a different priority number I the segment
referred to is made available in its initial state (that is, with all ALTERable GO TOs set to their
initial setting) for each execution of the PERFORM statement.

k. A PERFORM statement in a section not in the DECLARATIVES may have as its range, pro­
cedures wholly contained within the DECLARATIVES; however, a PERFORM statement in a
section within the DECLARATIVES may not have any non-DECLARATIVE procedures within its
range.

I. A PERFORM statement within an INPUT or OUTPUT PROCEDURE associated with a SORT
verb may not have within its range any procedures outside of that INPUT or OUTPUT proce­
dure.

6-46

MNT-13
lJul7l

READ

Function

The READ statement makes available a logical record from an input file and allows performance of a

specified imperative statement when end-of-file or invalid key is detected.

General Format

READ file-name RECORD

[INTO identifier] ; { ~~~~~D KEY} statemGnt.

Technical Notes

a. An OPEN INPUT or OPEN 1-0 statement must be executed for the file prior to execution
of the first READ statement for that file.

b. The AT END clause is valid only for those files whose ACCESS MODE IS SEQUENTIAL
(explicitly or implicitly).

The INVALID KEY clause is valid only for those files whose ACCESS MODE IS RANDOM.

If an end-of-fi Ie conditi on is encountered during the executi on of a READ statement for a
sequential file, the statement specified in the AT END clause is executed, and no logical
record is made available.

The logical end-of-file depends upon the type of device to which the file is assigned

After execution of the imperative-statement in the AT
END clause, no further READ statements can be executed for that file without first executing a
CLOSE. statement followed by an OPEN statement for the file.

If, during the execution of a READ statement for a file whose ACCESS MODE IS RA.NDOM,
the ACTUAL KEY is found to contain a value not within the range specified by the FILE-
LIMITS clause for that file, the statement specified in the INVALID KEY clause is executed
and no logical record is made available.

c. If a file described by an OPTIONAL clause is not present, the imperative-stotement in
the AT END or INVALID KEY clause is executed on the first READ for that file. Any specified
USE procedl:res are not performed.

d. If logical end-of~reel is recognized during execution of a READ statement, I'he following
operati ons are card ed out.

6-47

MNT-13
IJul71

(1) The reel is rewound and the user's ENDING LABEL PROCEDUREs are executed, if
specified in a USE statement.

(2) If the file is assigned to more than one device, the devices are swapped. The pre­
vious reel is rewound and the message

MOUNT REEL nn OF file-name ON device-name

is typed on the user's Teletype console. The program then waits for the operator to type

CONTINUE

after he has mounted the next reel.

(3) The standard beginning label procl~dure (see Chapter 8) and the user's BEGINNING
LABEL PROCEDURE are executed, if specified in a USE statement.

(4) The first data record on the new rE/el is made available.

e. If a fi Ie consists of more than one type of logical record, these records automatically share
the same storage area. This is equivalent to an implied REDEFINE for the record area. Only
information in the current record is accessible ..

f. If the INTO identifier option is specified, theREAD statement is then equivalent to a
READ without the INTO option, followed by a MOVE of the record area associated with the
file-name to identifier.

6-48

MNT-13
IJul71

RELEASE

Function

The RELEASE sTatement transfers records to the initial phase of the sort operation.

Genera I Format

RELEASE record-name [FROM identified

Technical Notes

a. A RELEASE statement may be used only in an input procedure associated with a SORT
statement for a file whose SD description contains record-name.

b. If the FROM option is used, the contents of identifier are moved to record-name, then the
contents of record-name are released to the sort subroutines.

c. After the RELEASE statement is executed, the contents of record-name may no longer be
available.

6-49

MNT-13
IJul71

RETURN

Function

The RETURN statement obtains sorted records from the final phase of a sort operation.

General Format

RETURN file-name RECORD [INTO identified; AT END stateme~t.

Technical Notes

a. File-name must be described by an SD file descriptor.

b. A RETURN statement may be used only in an output procedure associated with a SORT
statement for fi Ie-name.

c. If the INTO phrase is specified, the current record is moved from the record area associ­
ated with file-name to identifier.

d. After executing the statement in the AT END clause, no RETURN statements may be exe­
. cuted unti I another SORT is executed.

6-50

MNT-13
IJul71

seEK

Function

The SEEK statement initiates the accessing of a mass storage data record for subsequent reading or

writing.

Genera I Format

SEEK file-name RECORD

Technical Notes

a. The SEEK statement uses the contents of the ACTUAL KEY item to position the read-write
arms on a mass storage device. If the key is invalid, no action is taken; however, if the con­
tents of ACTUAL KEY are not changed before the next READ or WRITE statement is executed,
that READ or WRITE statement wi II then take the I NVALID KEY path.

b. The file must be assigned to a mass-storage device, and the ACCESS MODE must be
RANDOM.

6-51

MNT-13
IJul71

SET

Function

The SET statement allows a data-item to be incremented, decremented, or set to a value.

Genera I Formclt

SET identifier-l [, identifier-2] ... {~ BY }
DOWN BY

Technical Notes

{ identifier-3}
literal-l

a. All identifiers must be numeric elementary items described without any positions to the
right of the assumed decimal point.

All I iterals must be integers, or the figurative constant ZERO.

b. The SET statement causes identifier-l, identifier-2, ..• to be set (TO), incremented
(UP BY), or decremented (DOWN BY) the value of identifier-3 or literal-l.

6-52

MNT-13
IJu171

SORT

Function

The SORT statement provides the capability of ordering a file of records according to a set of user­

specified keys within a record.

General Format

{ ASCENDING}
SORT file-name-l 0 N DESCENDING. KEY data-name-l

r ASCENDING }
[I data-name-2] ... [; 0 N L DESCENDING KEY data-name-3

[I data-name-4] ...] ...

r ; iNPUT PROCEDURE IS procedure-name-l [THRU procedure-name-2J}
L ; USING file-name-2

r ; OUTPUT PROCEDURE IS procedure-name-3 [THRU procedure-name-4J}
L ; GIVING file-name-3

Technical Notes

a. File-name-l must be described in an SD file description entry in the Data Division. Each
data-name must represent data items described in records associated with fi le-name-l .

b. File-name-2 and file-name-3 must be described in an FD file description, not an SD file
description, in the Data Division. All records associated with file-name-2 must be large
enough to contain all of the KEY data-names.

c. The data-names following the word KEY are listed il'\ order of decreasing significance
without regard to how they are divided into KEY clauses.

d. The data-names may be qualified but not subscripted.

e. SORT statements may appear anywhere in the Procedure Division except in the Declara­
tives portion or in an input or output procedure associated with a sort.

f. When the ASCENDING clause is used, the sorted sequence is from the lowest value to
the highest value; when a DESCENDING clause is used! the sorted sequence is from the
highest value to the lowest value.

6-53

MNT-13
lJul7l

g. The input procedure, if present, must consist of one or more sections or paragraphs that
appear contiguously in a source program and do not form a part of any output procedure. The
input procedure must contain at least one RELEASE statement in order to transfer records to the
sort subroutine.

h. The output procedure, if present, must consist of one or more secti ons or paragraphs that
appear contiguously in a source program and do not form a part of any input procedure. The
output procedure must contain at least one RETURN statement in order to make sorted records
avai lable for processing.

i. ALTER, GO and PERFORM statements in the input procedure are not permitted to refer to
procedure-names outside the input procedures; similarly, ALTER, GO and PERFORM statements
in the output procedure are not permitted to refer to procedure-names outside the output pro­
cedures.

i. If an input or output procedure is specified, those procedures are PERFORMed by the SORT
statement, and all rules relating to the range of a PERFORM must be observed.

k. If the USING option is specified, all the records in file-name-2 are automatically trans­
ferred to the sort subroutine. At the time of the execution of the SORT statement, file-name-2
must not be open. Any USE procedures associated with fi le-name-2 will be executed as ap­
propriate.

The USING option is equivalent to the following input procedure:

% 1. OPEN INPUT file-name-2

%2. READ file-name-2 INTO sort-n~cord; AT END GO TO %3.
RELEASE sort-record.
GO TO %2.

%3. CLOSE file-name-2.

I. If the GIVING option is specified, all the sorted records in file-name-l are automatical­
ly transferred to file-name-3. At the time of the execution of the SORT statement,
file-name-3 must not be open. Any USE procedures associated with file-name-3 will be exe­
cuted as appropriate.

The GIVING option is equivalent to the following output procedure:

%4. OPEN OUTPUT file-name-3.

%5. RETURN sort-file INTO record-name-3; AT END GO TO %6.
WRITE record-name-3.
GO TO %5.

% 6. CLOSE file-name-3.

6-54

Function

The STOP statement halts the object program.

Genera I Format

STO P [I iteral)

lRUN

Technical Notes

MNT-13
IJul71

STOP

a. If the literal option is used, the literal is displayed on the user's Teletype console, and the
program waits for the operator to type

CONTINUE

Following receipt of this message, the program continues execution at the statement following
the STOP.

The literal may be a figurative constant; in this case, a single character is displayed.

b. If the RUN option is used, a II fi les currently open are closed, and execution of the program
is terminated.

6-55

MNT-13
!Jul71

SUBTRACT

Function

The SUBTRACT statement is used to subtract one l or the sum of two or morel numeric items from one or

more numeric items and set the values of one or more items to the result.

Genera I Format

Option 1

Option 2

Option 3

SUBTRACT (i~entifier-l) [I (i~entifi er-2Jl ...
Ilteral-l Ilteral-2 J

FROM ;den.;F;"'-m [ROUNDED] [;dent;f;e,-n ~OUNDE~] ..•

[ON SIZE ERROR statement.:.']

SUBTRACT (i~entifier-lJ ~ (i?entifier-2t] '"
Ilteral-l L Ilteral-2)

FROM r i~entifier-m} GIVI NG identifier-n I ROUNDEDl
--lilteral-m ---- [J

tdent;fle,-p ~OUNDEDJ J ..
[ON SIZE ERROR statement~]

SUBTRACT (~ESPONDING) ;cien.me,-I FROM ;den.m ... -2

[ROUNDEP] [ON SIZE ERROR statement.!]

6-56

Technical Notes

MNT-13
IJul71

a. Each SUBTRACT statement must contain at least two operands (,.e. , a subtrahend and a
minuend),

In options 1 and 2, each identifier must refer to an elementary numeric item, except that
identifiers to the right of the word GIVING may refer to numeric edited items. In option 3,
each identifier must refer to a group item,

Each literal must be a numeric literal or the figurative constant ZERO,

b. The composite of ail operands (i .e. I the data item resulting from the superimposition of
all operands aligned by decimal point) must not contain more than 19 decimal digits,

c. Option 1 causes the values of the operands preceding the word FROM to be odded together,
and this sum to be subtracted from the values of identifier-m, identifier-n, etc.

d. Option 2 causes the values of the operands preceding the word FROM to be added together f
the sum subtracted from identifier-m or literal-m, and the result stored as the new values of
identifier-n, identifier-p, etc. The current values of identifier-n, identifier-p, etc. f do not
enter into the computation,

e. Option 3 causes the data items in the group item associated with identifier-l to be sub­
tracted from and stored into corresponding data items in the group item associated with iden­
tifier-2. The criteria used to determine whether two items are corresponding are described
under "The CORRESPONDING Option" at the beginning of this chapter.

f. The ROUNDED and SIZE ERROR options are described earlier in this chapter under "Com­
mon Options Associated with Arithmetic Verbs".

6-57

MNT-13
IJul71

USE

Function

The USE statement specifies procedures for input-output label and error handling that are in addition to

the standard procedures provided.

Genera I Format

Option 1

Option 2

USE AFTER STANDARD ERROR PROCEDURE ON

file-name-l
INPUT
OUTPUT
1-0
INPUT -OUTPUT

{ BEFORE) [~BEGINNINGJ~ ~~REELJ~ USE STANDARD FILE
AFTER ENDING UNIT

fi le-name-l
INPUT

LABEL pROCEDURE ON OUTPUT
1-0
INPUT -OUTPUT

Technical Notes

a. USE statements may appear only in the DECLARATIVES portion of the PROCEDURE DIVI­
SION.

The DECLARATIVES portion follows immediately after the PROCEDURE DIVISION header
and begins with the word

DECLARATIVES.

The DECLARATIVES portion ends with the words

END DECLARATIVES.

6-58

Following this must be a section-header as the first entry of the main portion of the
PROCEDURE DIVISION.

The DECLARATIVES portion itself consists of USE sections, each consisting of a section­
header, followed by a USE statement, followed by the associated procedure paragraphs.

The general format for the DECLARATIVES portion is given below.

PROCEDURE DIVISION.

DECLARATIVES.

section-name-1 SECTION. USE

paragraph-name-1a. (statement)

~aragraph-name-1 b . (statement 8
~ection-name-2 SECTION. USEJ

END DECLARATIVES.

sect ion -name -m SECTI 0 N •

MNT-13
IJu171

b. The USE statement may follow on the same line as the section-header and must be terminated
by a period followed by a space. The remainder of the section must consist of one or more pro­
cedural paragraphs that define the procedures to be used.

c. The USE statement itself is never executed, rather it defines the conditions calling for the
execution of the USE procedures.

d. The designated procedures are executed at the appropriate time as follows (see also Chap­
ter 8):

(1) Format 1 causes the designated procedures to be executed after completing the stand­
ard input-output error routine.

(2) Format 2 causes the designated procedures to be executed at one of the following times,
depending upon the options used.

(a) Before or after a beginning or ending input label check procedure is executed.

(b) Before a beginning or ending output label is created.

(c) After a beginning or ending output label is created, but before it is written on
tape.

(d) Before or after a b.eginning or ending input-output label check procedure is
executed.

e. There must not be any references to any non-DECLARA TIVES procedure within a USE pro­
cedure. Conversely, there must be no reference to procedure-names that appear within the
DECLARATIVES portion in the non-DECLARATIVES portion, except that PERFORM statements
may refer to a USE section or to a procedure contained entirely within such a USE section.

6-59

MNT-13
lJul71

f. Format 1 causes the associated procedures to be executed after the standard input-output
error routine has been executed. If the INPUT option is used, the procedures will be executed
for all INPUT files; if the OUTPUT option is used, they will be executed for all OUTPUT files;
if the 1-0 or the INPUT-OUTPUT option is used, they will be executed for all INPUT-OUTPUT
files; if the file-name-l option is used, they will be executed only for that particular file.

g. Format 2 causes the associated procedures to be executed at the appropriate times, as in­
dicated by the options selected (see note d and Chapter 8). If the words BEGINNING or
ENDING are not included in Format 2, the designated procedures are executed for both the
beginning and ending labels. If neither UNIT I REEL, nor FILE is included, the designated
procedures are executed for both REEL (or UNIT) labels and for FILE labels.

If the INPUT, OUTPUT, INPUT-OUTPUT, or 1-0 option is specified, the label procedure
applies to every file of that type except those files described as LABEL RECORDS ARE
OMITTED.

If the file-name-l option is used, its file description must not contain a LABEL RECORDS
ARE OMITTED clause.

h. Within a given format, a file-name must not be referred to, either implicitly (i.e., by an
INPUT, OUTPUT, INPUT-OUTPUT, or 1-0 option) or explicitly (i.e., by a file-name-l op­
tion), in more than one USE statement.

I. The following chart indicates the valid combinations of USE formats and file types.

Function

MNT-13
lJul7l

WRITE

The WRITE statement transfers a logical record to an output file.

Genera I Format

Option

WRITE record-name-l [FROM identifier-1J

[{ BEFORE~
AFTER j {

ideni'ifier-2 LINES}]
ADVANCING integer~ 1 LINES

mnemonic-name

Option 2

WRITE record-name-l [FROM identifier-1J ; INVALID KEY statement.

Technical Notes

a. An OPEN OUTPUT or OPEN 1-0 or OPEN INPUT -OUTPUT statement must be executed
for the fi Ie pri or to the executi on of the WRITE statement.

b. After the WRITE is executed f the data in record-name-l may no longer be available.

c. Record-name-l must be the name of a logical record in a DATA RECORDS clause of the
FILE SECTIO N of the DATA DIVISIO N.

d. Format 1 is valid for any file currently open for output, with ACCESS MODE IS SEQUEN­
TIAL.

The ADVANCING clause allows control of the vertical positioning of the paper form for
print files as follows.

(i) If the ADVANCING clause is not specified and the recording mode is ASCII (see
Chapter 8L BEFORE ADVANCING 1 LINE is assumed.

(2) If identifier-2 or integer-l is specified, it must represent a positive integer or zero.
The form is advanced the number of lines equal to the value of identifier-2 or integer-l.

(3) If mnemonic-name is specified, the form.is.advanced until the specified channel is
encountered on the paper-tape format control loop 0 Mnemonic-name must be defined by
a CHANNEL clause in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

6-61

MNT-13
IJul71

(4) If the BEFORE option is used, the record is printed before the form positioning.

(5) If the AFTER option is used, the record is printed after form positioning occurs, and
no form positioning takes place after the printing.

If end-of-reel is encountered while writing on magtape, the WRITE statement performs the
following operations.

(1) The user's ENDING LABEL PROCEDURE is executed, if specified by a USE statement.

(2) A file mark is written, and the tape is rewound.

(3) If the fi Ie was assigned to more than one tape unit, the units are swapped.

(4) The operating system types the message.

MOUNT AVAILABLE TAPE ON device-name

and waits for the operator to type CONTINUE.

(5) A label is written on the new tape, if labels are not OMITTED, and any user's BE­
GINNING LABEL PROCEDURE is executed.

e. Format 2 is valid only for random-access files whose ACCESS MODE IS RANDOM.

The imperative-statement in the INVALID KEY clause is executed when an attempt is made
to execute a WRITE to a segment outside the range of the FILE-LIMITS of the file.

f. When executing a WRITE statement for a SEQUENTIAL file opened for 1-0 (or INPUT­
OUTPUT), the logical record is placed on the file as the next logical record, if the previous
input-output operation was a WRITE, or it replaces the previous record, if the previous input­
output operati on was a READ.

g. If the FROM option is used, the statement is equivalent to:

MOVE identifi er-l TO record-name-l

WRITE record-name-l (without the FROM option)

6-62

~- J

Chapter 7
The COBOL Library

The COBOL Library contains source language entries that are available for inclusion in a user's source

program at compile time.

For example, a library entry might consist of a PROCEDURE DIVISION section containing procedure

statements associated with a frequently used rate computation. If a programmer wishes to inc lude this

computation procedure in his program, he need only write a COpy statement referencing this library

entry at the point where he wants this procedure included; it is unnecessary for him to write out the

MNT-13
IJul71

full procedure himself. The effect of the COpy is the same as if the text contained in the library entry

were actually written as part of the source program. In addition to PROCEDURE DIVISION entries,

ENVIRONMENT DIVISION paragraphs and DATA DIVISION FDs and record descriptions can be copied

from the library into a user's source program.

7-1 ,

MNT-13
lJul71

COpy

Function

The COpy statement causes inclusion of a library entry into a COBOL source program at the point where

the COpy statement appears.

General Format

COpy library-name

~ {
WOrd-2}

REPLACING word-l BY identifier-l
procedure-name-l

[{
word-4 }] J ' word-3 BY identifier-2!..

procedure-name-2

Technical Notes

a. The COpy statement may appear as follows:

(1) In any of the following paragraphs of the ENVIRONMENT DIVISION:

OBJECT -COMPUTER '. COpy library-name .. '':'

SPECIAL -NAMES. COpy library-name .. '':'

FILE-CONTROL.

I-O-CONTROL.

COpy library-name .. '':'

COpy library-name .. ''':''

(2) In place of any clause in the data or file descriptor in the DATA DIVISION.

(3) In a paragraph in the Procedure Division:

paragraph-name. [statement-l] COpy statement. [statement-2].

statement-l may not start with NOTE.

7-2

. ...::

MNT-13
IJul71

. b. In the ENVIRONMENT DIVISION, no other statement or clause may appear in the same
. sentence as the COpy statement.

c.' COPYcauses the specified library text to be copied from the COBOL Library, and the re­
sult of compilation is the same as if the text were actually a part of the source program. The
COPYing process is terminated by the end of the library text.

d. Both the COpy statement itself and the statements of the library text, after any specified
replacing has been performed, appear on the output I isting produced by the compiler.

e. The text in the I ibrary entry must not contain any COpy statements .

. 'f. If the REPLACING option isus~d,each word specified in the format is replaced by the
stipulated.word, identifier, or' procedure-name that is associated with it in the format. That
is, word':'2, identifier-l, or procedure-name-l replaces every occurrence of word-l in the
text copied from the library. The library entry itself is not altered .

. Word-l and word-3 may be a data-name, procedure-name, condition-name, mnemonic­
name, or file-name.

Word-2 and word-4 may be any COBOL word, including literals but excluding picture­
strings.

Example:

COpy LIBOOl REPLACING ITEM 1 BY AMOUNT OF INCOME-REC.

Library entry:

TAX-CALC. MULTIPLY ITEMl BY TAX-RATE GIVING TAX-DUE

Result of COPY:

TAX-CALC. MULTIPLY AMOUNT OF INCOME-REC BY TAX-RATE

GIVING TAX-DUE

7-3

Chapter 8

Standard 1-0 Processing

This chapter describes how the data is structured, stored, accessed, and moved in 1-0 operations at

run-time. Each of the following topics is described and explained in detail.

a. Access mode

b. Recording mode

c. File tables

d. Channel tables

e. Blocking

f. Label records

g. Multiple-file tape

h. SAME AREA clause

i. SAME RECORD AREA clause

I· File-limits

8. 1 ACCESS MODE

MNT-13
IJul71

Each file has either SEQUENTIAL or RANDOM access mode. For random-access files the mode must be

specified by means of the ACCESS MODE clause of the FILE-CONTROL paragraph in the ENVIRON­

MENT DIVISION (see page 4-12).

8. 1.1 SEQUENTIAL Mode

In the SEQUENTIAL mode records are accessed in the order in which they appear on the file. Each

READ (after the first) brings into memory from the peripheral device the logical record on that device

that immediately follows the logical record previously read from or written on that device.

8-1

MNT-13
IJul71

If the file is open for output, each write appends the record to the end of the file. If the file is open

for input-output I the write replaces either the record previously read (if the last operation was READ) or

the record following the one previously written (if the last operation was WRITE).

8.1.2 RANDOM Mode

The record to be accessed is specified by the contents of the ACTUAL KEY f without regard to the physi­

cal characteristics of the device. The following conditions must exist:

a. The device must be a random-access medium.

b. The records must be blocked (the blocking factor may be 1).

c. If the recording mode is DISPLAY-7 (see Section 8.2), the blocking factor must be 1.

The contents of the ACTUAL KEY determine which record, relative to the beginning of the file, is to be

read or written. For example, to read the fifth record of a file, the following statements would appear

in the source program.

Example:

SELECT FILE ASSIGN TO DSK;
ACCESS MODE IS RANDOM.
ACTUAL KEY IS FILE-KEY.

MOVE 5 TO FILE-KEY.
READ FILE; INVALID KEY GO TO YOU-LOSE.

NOTE

File-key is a computational item defined by the user.
It consists of 10 or fewer digits with no decimal
places.

8-2

8.2 RECORDING MODE

8.2.1 Default Conditions

MNT-13
IJu171

At both compilation time and run time, assumptions are made regarding the structure, or recording mode,

of data as it appears on the external devices. At compilation time, the recording mode for a file is as­

sumed to be DISPLAY-7 if all the data records for that file are described implicitly or explicitly as

DISPLAY-7, or if the WRITE verb is used with the ADVANCING option. In all other cases, the re­

cording mode is assumed to be DISPLAY-6. At run time, if the device is found to be other than mag­

netic tape DECtape, or a random-access device the recording mode is assumed to be DISPLAY-7. Con­

versions necessary to conform to the USAGE of the records are .made automatically by the 1-0 routines.

8.2.2 DISPLAY-7

DISPLAY-7 records contain a contiguous set of characters. Each record is terminated by a printer con­

trol character (ASCII code 12-15, 20-24), or by a string of such characters. The first record in a block

storts in the first c:haracter position; each succeeding record in that block starts in the first character

position following the previous record.

8.2.3 DISPLAY-6

DISPLAY-6 records contain a contiguous set of words. The right half of the first word, supplied by the

1-0 routines, contains the number of characters in the record. The last word in the record will, if

necessary, have filler added to insure that the record ends at a word boundary, so that records always

occupy an integral number of words.

8.3 FILE TABLES

There is a file table for each file named in a SELECT statement in the user's program (see SELECT state­

ment on page 4-11). The address of the last file thus named is contained in the right half of the global

FILES ..

Figure 8-1 shows the structure of a file table. The various fields in that table qre described in the

paragraph following the figure.

8-3

MNT-13
lJul7l

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

!

o 4 6 12 18

I
NAME OF THE FILE (IN SIXBIT)

NOT
CHANNEL NUMBER OF ADDRESS OF FIRST DEVICE NAME

USED DEVICES

NUMBER OF
BLOCKING FACTOR POSITION ADDRESS OF NEXT FILE TABLE FILE LIMITS

NUMBER OF
RECORD SIZE RERUN COUNT BUFFERS

FLAGS ADDRESS OF RECORD AREA

MAXIMUM SIZE OF ANY NO N-ST ANDARD
MUL TIPLE-FILE ADDRESS LABEL

BUFFER LOCATION ADDRESS OF ACTUAL KEY

BYTE POINTER FOR VALUE OF IDENTIFICA TIO N

BYTE POINTER FOR VALUE OF DATE-WRITTEN

ADDRESS OF A FILE TABLE THAT SHARES
ADDRESS OF ERROR USE PROCEDURE BUFFER AREA

ADDRESS OF BEFORE BEGINNING REEL ADDRESS OF BEFORE BEGINNING FILE

ADDRESS OF AFTER BEGINNING REEL ADDRESS OF AFTER BEGINNING FILE

ADDRESS OF BEFORE ENDING REEL ADDRESS OF BEFORE ENDING FILE

ADDRESS OF AFTER ENDING REEL ADDRESS OF AFTER ENDING FILE

FILE-LIMIT PAIRS (AS NEEDED)

I
Figure 8 0 1 Structure of a File Table

8-4

35

8.3.1 Explanation of Fields

NAME OF THE FILE

CHANNEL

NUMBER OF DEVICES

ADDRESS OF FIRST DEVICE
NAME

NUMBER OF FILE-LIMITS

BLOCKING FACTOR

POSITION

ADDRESS OF NEXT FILE
TABLE

NUMBER OF BUFFERS

RECORD SIZE

RERUN COUNT

FLAGS

MNT-13
lJul71

The name specified by the SELECT clause. It is used only for
error messages,

The rei ative address of the channel tabl e entry assigned to thi s
fi I e when opened.

The number of devices specified by the ASSIGN clause (see
page 4-11). This number cannot exceed 63.

The address of the first device name in the device-name table,
Device names are kept in a table in the order in which they are
assigned. After the first name, the addresses of any other as­
signed device names follow in sequence (i .e. r each one is con­
secutive and contiguous to its predecessor).

The number of file-limit pairs associated with the file (see
FILE LIMIT clause on page 4-11).

The number of records in a block, as specified by the BLOCK
CO NT AI N Sci ause (see page 5-7).

The position of this file relative to the beginning of a multi-file
tape. This position is specified by the POSITIO N clause in the
1-0 CONTROL paragraph (see page 4-13).

The address of the first word of the next file table. Each file
tabl e poi nts to the succeedi ng tabl e, in reverse order to that in
which the files are named in the SELECT statement. The last
file table has zeros in this field,

The number of buffers requested from the monitor. If the access
mode is RANDOM or RELATIVE this number is 1. If the access
mode is SEQUENTIAL, this number is 2, unless the user requests
a different number of buffers by means of the RESERVE clause
(see page 4- 11) .

The size of the record given in bytes if the recording mode of
the file is FIXED I or VARIABLE ASCII. However, if the re­
cording mode is VARIABLE and not ASCII, the size of the larg­
est record is given in words.

The value of the integer, if the RERUN EVERY integer RECORDS
clause is given for this file.

A half-word containing flags and fields with the meanings shown
in Table 8-1.

8-5

MNT-13
lJu171

Bits

0-1

2-3

4

5

6

7

8

9

10

11

12

13

14-15

16

17

Table 8-1
Flags and Fields in File Table

Meaning

Type of data on the device:

00::: SIXBIT (DISPLAY-6)
01 ::: BINARY
10::: ASCII (DISPLAY-7)

",

Type of labels:

00::: OMITTED
01 ::: STANDARD
10::: NON-STANDARD

This fill9 is open for input.

This file is open for output.

This is a random-access device.

AT END path has been taken.

Device is a console

Type of' record:

0::: Fixed length
1= Variable length

Rerun iii to be taken at end of reel.

Rerun iii to be taken every now and
then (see RERUN COUNT field).

File is .optional and not present.

File is optional.

Type of data in core:

00 = SIX BIT
01 = BINARY
10::: ASCII

Data and Recordi ng modes di ffer .

Access mode:

0::: SEQUENTIAL
1 ::: RANDOM

8-6

ADDRESS OF RECORD AREA

MAXIMUM SIZE OF ANY
NO N-ST ANDARD LABEL

MULTIPLE FILE ADDRESS

BUFFER LOCATIO N

ADDRESS OF ACTUAL KEY

BYTE POINTER FOR VALUE
OF IDENTIFICATION

BYTE POINTER FOR VALUE
OF DATE-WRITTEN

ADDRESS OF A FILE TABLE
THAT SHARES BUFFER AREA

ADDRESS OF ERROR USE PRO­
CEDURE

FILE-LIMIT PAIRS

MNT-13
IJu171

The address of the first location in core memory allocated to
a record in this file.

The size of the largest label re60rd described in the FD
clause . '

The link between file tables which share a device. If the
same devi ce is used by more than one fil e, the fi I e tabl es
will be linked in a circular, or round-:-robin r manner through
this field.

The first location used by the 1-0 routines for "buffers.

The address of the word containing the value to be used as an
actual key.

A byte pointer that points to the byte preceding the first
character of a string of characters containing the value of
identification.

A byte pointer that points to the byte preceding the first
character of a string of characters containing the value of
date-written.

The link between file tables which share a buffer area. If
this file appears in a SAME AREA clause, all associated files
in that clause are linked in a circular, or round-robin, man­
ner through this field.

The address (words 14 through 18) of the first instructions of
the USE procedure as declared in the DECLARATIVES (see
page 6-58). The compiler generates the following code to
call a USE procedure:

PERF. 17, %Y
JRST <use procedure>
POPJ 17,

%Y is a location in working storage that will contain the re­
turn location for a PERFORM. When the 1-0 routines want
to executEl a USE procedure, they pi ck up the appropri ate ad­
dress in al1 AC and then execute.

PUSHJ 17, (AC)

For each file-limit, three words are allocated. The left­
half of word 1 contains the address of the lower limit; the
right-half of word 1 contains the address of the higher limit.
Words 2 and 3 contain the actual values of these limits, at
OPEN time.

8-7

MNT-13
lJul71

8.4 CHANNEL TABLES

For each open file, a lO-word entry is placed in a channel table. Table 8-2 shows the contents of each

word in that entry.

Word

1

2

3

4

5

6

7-9

10-12

13

14

15

8.5 BLOCKING

Table 8-2
Channel Table Entry

Contents

Number of bytes per word.

Relative number of the current physical block.

Number of buffers per logical block.

Number of buffers yet to be processed for current block.

Number of records required to fill current logical block.

IOWD pointing to device-name being used with multi-device file.

A 3-word header used for output.

A 3-word header used for input.

Number of records remaining until next rerun dump.

Current record number.

Characteristics of the device, as returned by a DEVCHR UUO.

A fi Ie is said to be blocked when a BLOCK CO NT AINS clause is part of its description; conversely, a

file is unblocked when no BLOCK CONTAINS clause is specified. The number of records in a block is

termed the blocking factor. The next two paragraphs show how 1-0 processing differs for blocked and

unblocked files.

8.5.1 Reading and Writing Blocked Files

For each READ statement referencing a SEQUENTIAL blocked file, the 1-0 routines transfer to the re­

cord area (i .e., core memory allocated to contain the current record) the next consecutive record from

the file. If a number of records, equal to the blocking factor, have been transferred since the previous

block was read, the 1-0 routines do a physical read of the device.

When a RANDOM blocked file is read, both the blocking factor and the ACTUAL KEY are used to spe­

cify which physical segment to read and which record in that segment to transfer to the record area.

8-8

MNT-13
IJu171

Writing SEQUENTIAL blocked files is accomplished in a manner similar to the reading of them, ex.cept

that records are transferred from the record area to the buffer area.

When a RANDOM blocked file is written, the 1-0 routines do the following:

a. Read a physical segment whose address is determined by the blocking factor and the
ACTUAL KEY, if necessary.

b. Transfer the record to a portion of that segment.

c. The segment is written either when another segment is to be read or when the file is
closed.

8.5.2 Reading and Writing Unblocked Files

When an unblocked file is either read or written, the 1-0 routines have complete control over the time

when the actual read or write takes place. The user need not concern himself with the physical charac­

teristics of the device; in fact, he does not have to know anything about such characteristics as block or

segment sizes.

8.6 LABEL RECORDS

The term label records refers to header or trailer labels on the file. The presence or absence of label

records is specified by the LABEL RECORDS clause (see page 5-10). Their format can be standard or non­

standard.

8.6. 1 Standard Labe I Records

The standard label for DECtape and random-access devices is the directory block used by the monitor.

For magnetic tape, the standard label is 30 characters in length and is written in a separate block from

the data, with the same recording made as the data. Table 8-3 shows the contents of each character in

a standard label for non-random-access devi ces. '

8-9

----~~-~

MNT-13
lJu171

Characters

1-4

5-13

14-21

22-27

28-31

32-41

42-47

48-80

Table 8-3
Standard Label for Nonrandom-Access Media

Contents

HDR 1 = Beginning file.
EOF1 = Ending file.
EOV1 = Ending reel.

Value of identification.

Always spaces.

Not used.

Ree I number. The first reel is always 0001.

Not used.

Creation date: two characters each for the year, month,
and day, respectively.

Not used.

8.6.1.1 Ending Labels - Magnetic tapes are the only devices with ending labels. Each ending label

is preceded by and followed by an end-of-file mark.

8.6.2 Non-Standard Label Records

Non-Standard labels are specified by the LABEL RECORDS clause (see page 5-10). Similar to standard

labels, they are written ina separate block on the devi ce.

When a file is opened, the beginning non-standard label will be read (as input) or written (as output)

automatically by the 1-0 routines. If the file is being opened for output, the data for the record must

be supplied by a USE procedure in the DECLARATIVES (see page 6-58). If the file is being opened for

input, no checks are made by the 1-0 routines to determine the validity of the label; the user may write

any check in a USE procedure.

8.7 MULTIPLE-FILE TAPE

Only magnetic tapes can contain multiple files in the COBOL sense. This may seem to conflict with the

obvious fact that random-access devices contain more than one file, but the programmer will recall that

files on a random-access device are treated by the monitor as though they are on separate devices. Each

file on a multi-file magnetic tape must have labels, and must be wholly contained on one reel.

8-10

8.8 SAME AREA CLAUSE

HNT-13
lJul7l

The SAME AREA clause specifies that two or more files are to share the same memory area during pro­

cessing. Since the area shared includes all storage areas (including alternate areas) assigned to the

files specified in this clause, only one file at a time can be open.

8.9 SAME RECORD AREA CLAUSE

The SAME RECORD AREA clause specifies that two or more files are to use the same memory for pro­

cessing the current logical record. All or any of the files specified in this clause may be open at any

ti me. The record area contains only one record at any time.

8.10 FILE-LIMITS

File-limits must be specified for RANDOM files. They may also be specified for input SEQUENTIAL

files, in which case only that portion of the file that is within the file-limits is read.

File-limits for files whose access mode is RANDOM specify the allowed range, or ranges, for the AC­

TUAL KEY (see ACTUAL KEY on page 4-12). When the contents of the ACTUAL KEY fall outside all

ranges given in the FILE-LIMITS clause for that file, the read or write transfers control to the statement

specified in the associated INVALID KEY clause (see pages 6-47 and 6-62).

8-11

Appendix A
COBOL Reserved Words

In the listing below, words preceded by no symbols are standard COBOL reserved words that are also

reserved in PDP-lO COBOL. Words preceded by a single * are standard reserved COBOL words that

are not reserved in PDP-10 COBOL, but should be avoided for compatibility with other COBOL com­

pilers. Words preceded by ** are reserved in PDP-lO COBOL only and should be used for checking

programs written for other COBOL compilers.

A B **COMPUTA TIO NAL-1 -
ACCEPT BEFORE

COMPUTE

ACCESS BEGINNING CONFIGURATION

ACTUAL
BLANK

**CONSOLE

ADD
BLOCK CONTAINS

ADVANCING
BY

*CONTROL

AFTER *CONTROLS

ALL C COPY

ALPHABETIC CH CORR

*ALPHANUMERIC **CHANNEL CORRESPONDING

ALTER CHARACTERS CURRENCY
ALTERNATE CF D
AND *CLOCK-UNITS -

*APPLY CLOSE DATA

ARE COBOL DATE-COMPILED

AREA *CODE DATE-WRITTEN

AREAS *COLUMN *DE

ASCENDING COMMA DECIMAL-POINT

ASSIGN COMP DECLARATIVES

AT **COMP-l DEPENDING

AUTHOR COMPUTATIONAL DESCENDING

A-l

MNT-13
lJul71

MNT-13
lJul71

*DETAIL GREATER *LIMIT

DISPLAY *GROUP *LIMITS

**DISP LAY-6 H LINE -
**DISPLAY-7 *HEADING *LINE-COUNTER

DIVIDE HIGH-VALUE LINES

DIVISION HIGH-VALUES LOCK

DOWN *HOLD LOW-VALUE

E I LOW-VALUES
- -

ELSE 1-0 M

END I-O-CONTROL MEMORY

ENDING IDENTIFICATIO N MODE

ENTER IF MODULES

ENVIRONMENT IN MOVE

EQUAL INDEX MULTIPLE

EQUALS INDEXED MULTIPLY

ERROR *INDICATE N

EVERY *INITIATE NEGATIVE

EXAMINE INPUT NEXT

EXIT INPUT -OUTPUT NO

F INSTALLATION NOT -
FD INTO NOTE

FILE INVALID *NUMBER

FILE-CONTROL IS NUMERIC

FILE-LIMIT J 0

FILE-LIMITS JUST OBJECT -COMPUTER

FILLER JUSTIFIED OCCURS

*FINAL K OF -
FIRST KEY OFF

*FOOTING KEYS OMITTED

FOR L ON -
FROM LABEL OPEN

G *LAST OPTIONAL

*GENERATE LEADING OR

GIVING LEFT OUTPUT

GO LESS

A-2

MNT-13
IJul71

P *REPORT STANDARD -
*PAGE *REPORTING STATUS

*PAGE-COUNTER *REPORTS STOP

**PDP-6 RERUN SUBTRACT

**PDP-1O RESERVE *SUM

PERFORM *RESET **SWITCH

*PF RETURN SYNC

*PH *REVERSED SYNCHRONIZED

PIC REWIND T -
PICTURE *RF TALLY

*PLUS *RH TALLYING

POSITION RIGHT TAPE

POSITIVE ROUNDED *TERMINATE

PROCEDURE RUN THAN

PROCEED S THROUGH
-

*PROCESS *SA THRU

PROCESSING SAME TIMES

PROGRAM-ID SD TO

Q *SEARCH **TODAY

QUOTE SECTION *TYPE

QUOTES SECURITY U -
SEEK UNIT

R - SEGMENT -LIMIT UNTIL
RANDOM

SELECT UP
*RD

SENTENCE UPON
READ

SEQUENTJ:AL USAGE
RECORD

SET USE
RECORDS

*SIGN USING
REDEFINES

SIZE V
REEL -

SORT VALUE
RELEASE

*SOURCE VALUES
REMAINDER

SOURCE-COMPUTER VARYING
REMARKS

SPACE W
RENAMES

SPACES WHEN
REPLACING

SPECIAL-NAMES WITH

A-3

MNT-13
IJul71

WORDS

WORKING-STORAGE

WRITE

Z

ZERO

ZEROES

ZEROS

A-4

Appendix B
Character Collating Sequence

MNT-13
IJul71

The following table gives the collating sequence for ASCII (DISPLAY-7) fields as used in condition com-

parisons.

ASCII Character ASCII Character ASCII Character ASCII Character

040 blank 070 8 120 P 150 h

041 071 9 121 Q 151

042 .. 072 122 R 152 i
043 # 073 123 S 153 k

044 $ 074 < 124 T 154 I

045 % 075 ::: 125 U 155 m

046 & 076 > 126 V 156 n

047 077 ? 127 W 157 0

050 100 @ 130 X 160) p

051 101 A 131 Y 161 q

052 * 102 B 132 Z 162 r

053 + 103 C 133 [163 s

054 104 D 134 \ 164 t

055 105 E 135] 165 u

056 106 F 136 166 v

057 / 107 G 137 ... 167 w

060 0 110 H 140 170 x

061 111 141 a 171 y

062 2 112 J 142 b 172 z

063 3 113 K 143 c 173 (
064 4 114 L 144 d 174 I
065 5 115 M 145 e 175)
066 6 116 N 146 f 176 ALT MODE

067 7 117 0 147 g 177 DEL

B-1

Appendix C
The ENTER PROCEDURE

MNT-13
IJul71

The ENTER verb is used for linkage to subroutines external to the COBOL program. These subroutines

may be written in either MACRO or FORTRAN-IV language.

If the ENTER verb is ENTER MACRO f the subroutine linkage is

PUSHJ 17, user-routine

If the ENTER verb is ENTER FORTRAN-IV I the subroutine I inkage is

JSA 16, user-routine

If the USING clause appears, a single parameter for each identifier or literal follows the subroutine

linkage. (ARG is a PDP-]O instruction that does nothing.)

a, For l-word CaMP, index data items, and index-names:

ARG 0, identifier

b. For 2-word CaMP:

ARG 11, identifier

c. For COMP-l:

ARG 2, identifier

d, For DISPLAY-6 or DISPLAY-7:

ARG 10, byte-poi nter

("byte-pointer" contains a byte pointer to the identifier)

e. For Procedure-names:

ARG 17 f procedure-name

C-1

MNT-13
lJu171

C . 1 EXAMPLES OF CALL PROCEDURES

Example 1

77 FIELD 1 PICTURE S9(6) CaMP.

77 FIELD2 USAGE INDEX.

77 FIELD3 PICTURE S9(15) CaMP.

77 FIE LD4 PICTURE XX; DISPLAY -7.

77 FIELD5 PICTURE XX.

01 DUMMY.

02 FIELD6 OCCURS 3 TIMES INDEXED BY FIELD7.

ENTER MACRO ROUTIN USING FIELDl, FIELD2, FIELD3, FIELD4, FIELD5, FIELD7.

The preceding coding wi II generate:

PUSHJ

ARG

ARG

ARG

ARG

ARG

ARG

% LIT: POINT

POINT

17, ROUTIN

0, FIELD1

0, FIELD2

11 ,FIELD3

10,%LIT

10,%LIT+l

0, FIELD7

7, FIELD4

6, FIELD5

C-2

Example 2

PROCEDURE DIVISIO N.

ONLY SECTION.

PARA-NAME. ENTER FORTRAN-IV ROUTIN.

The preceding will generate:

JSA 16, ROUTIN

C-3

MNT-13
IJul71

"

MNT-13
lJu171

APPENDIX D

THE COBOL COMMAND

D.I COMMAND FORMAT

COBOL

BIN

NOBIN

LIST

NOLIST

MACRO

MAP

STD

NONSTD

BIN LIST STD .
COBOL (NOBIN' NOLIST' MACRO, MAP, NONSTD)

{IN=}filename-l, {BIN=}filename-2, {LST=}filename-3

places the COBOL compiler into execution, to compile programs
written in the COBOL programming language.

produces a binary file suitable for execution.

suppresses the production of the binary file. This facility
is useful when only a compilation listing of the program is
required.

will give a listing of the source program as the file is compiled.

will suppress the program listing although the file will be
compiled.

produces a listing of the code generated by the program.
This will be listed after the source listing.

produces a listing showing the parameters of each user-defined
item. This is listed after the source listing.

indicates that the file has sequence numbers in the source
program.

indicates that the source program does not have sequence numbers.
This is generally the case with program files prepared via the
Teletype.

'filename-I' is the name of the source file.

'filename-2' is the name of the binary file.

'filename-3' is the name of the listing file.

D-I

MNT-13
lJul7l

D-2 GENERAL DESCRIPTION

The source file is input to the COBOL compiler. This produces an output
file unless the option NOBIN was specified.

If the input file is omitted then it is assumed to come from the job input
device. The end of file must be signified in the usual manner; tZ through
terminals, a file separator card through Batch.

If the BIN file is omitted then a relocatable file is created bearing the
same name as the source file but with a processor program name of REL.

If the LST file is omitted then a list file is sent to the job output
device, If the list file has no processor program name specified then LST
will be assumed.

D,3 ABBREVIATIONS

COBOL may be abbreviated to COB or CBL

BIN may be abbreviated to B

NOBIN may be abbreviated to NOB

LIST may be abbreviated to L

NOLIST may be abbreviated to NOL

MACRO may be abbreviated to M

NONSTD may be abbreviated to NS

The minimum command possible is COB or CBL. in this
expected to come from the job input device,

The default options are BIN, NOLIST and STD.

D.4 EXAMPLE

(i) ,COBOL(I1ACRO) COBREC/CBL LST=COBREC/LST<cr>
COBOL: COBREC

EXIT
tC

D-2

case the file is

APPENDIX E

PROGRAMMING IN COBOL

E.l EFFICIENT COBOL PROGRAMMING ON THE PDP-10

MNT-13
lJul7l

One basic consideration the programmer must remember is that, basically~ COBOL
is a language that manipulates bytes, whereas the PDP-10 is most efficient
when manipulating words.

If a field described in the COBOL program occupies one or more full words,
COBOL will try to ge~erate word-move instructions (MOVE~BLT); if a field
occupies only part of a word, byte instructions (LDB.DPB) are employed and
consequently the program will run more slowly, In addition. when moving data
from one field to another. it is best if both fields have the same usage, and
both start at the same relative position within a word.

The programmer can ensure alignment of fields by using the SYNCHRONIZED clause
in his data description, or by remembering that there are 6 sixbit (DISPLAY-6)
bytes. and 5 ASCII (DISPLAY-7) bytes in each PDP-10 machine word. and setting
field sizes accordingly.

A second basic consideration the programmer must remember is that COBOL is a
decimal language, whereas the PDP-10 is a binary machine. The COMPUTATIONAL
usage is meant to alleviate this conflict. COMPUTATIONAL items are stored in
binary.

If the programmer describes a numeric field as having usage DISPLAY-6 or
DISPLAY-7, COBOL will generate code to convert the data to binary before
doing any arithmetic operation. This will not only result in a larger
program. it will also be much slower.

For example. take the following items:

77 CA PIC S99; COMPo
77 CB PIC S99; COMPo
77 DA PIC S99; DISPLAY-6.
77 DB PIC S99; DISPLAY-7.

the statement ADD CA TO CB would result in

MOVE 1.CA
ADDM 1.CB

E-l

MNT-13
lJul7l

whereas the statement ADD DA TO DB would result in

GD6. 1,[POINT 6,CA]
GD6, 3,[POINT 6,DA]
ADD 1,3
PD6. 1. [POINT 6,CA]

(GD6. and PD6. are UUO's which call subroutines to convert from sixbit to
binary and back). Execution time for the second example is 100-500 times
slower than that for the first example,

E.2 LlfflZING COBOL PROGRAMS

COBOL programmers interested in calling FORTRAN or MACRO subroutines are
referred to Chapter 6 and Appendix C of the COBOL manual for information
on the ENTER verb and the calling sequences generated by the COBOL compiler.

It is not possible to create COBOL subroutines. A COBOL program will always
be a main program,

E-2

:MNT-13
IJul71

APPENDIX F

INPUT-OUTPUT CONSIDERATIONS

F.l File Formats

P.1.l Definition of Terms

Logical Record

The smallest unit of data that can be processed by the operating
system. In COBOL, this is also called simply RECORD.

Physical Record

Buffer

The smallest unit of data that can be processed by the hardware
(e.g. 128 words for disk, 80 columns for the card reader).

An area of core memory into which the monitor reads or from
which the monitor writes, a physical record.

Blocking Factor

That number specified in the 'BLOCK CONTAINS' clause of the
File-descriptor for the file; if there is no 'BLOCK CON!AINS'
clause, the blocking factor is said to be zero.

Logical Block

File

Those buffers required to contain a number of contiguous records,
that number being the blocking factor. A logical block may
extend over many buffers, but always uses an integral number of
buffers; any usused portion of the last buffer is wasted. If the
smallest record of a file is much smaller than the largest
record, there could be several wasted buffers, since the number
of buffers required is always determined by the size of the
largest record mUltiplied by the number of logical records
contained in the logical block.

An ordered collection of contiguous logical records; the largest
unit of data that can be processed by the operating system.

F-l

MNT-13
IJul71

F.1. 2 Data Structure

A record may be either sixbit (Display-6) or ASCII (Display-7) and either
fixed or variable length.

A sixbit record is a set of contiguous words. The first word has, in the
right half, the number of characters in the record. The last word may be
padded to ensure that the record boundary coincides with a word boundary.
The amount of buffer space required is the number of characters in the
record plus six characters for the character count in the first word plus
the number of padding characters.

-
The t'~"'\: hill t
a! IRe 1 ~ ~ !>.lor-d.
eolA..to.;. 1\8 1M. I"\.\A",,-b e f'
of~w-~
ftCor-d CAI"€G\.,

-

- -

-

Figure F.l

-

R.ecor-d
At-eo...

-
- -

Sixbit Record

-

- -

-

i'!V\.\\ cho.f'O<...~ ru-e
~pr~Oed... to1~U O"'~
n::..e \Qsl- I/oiOrd.

An ASCII record is a set of contiguous characters terminated with a carriage
return. If the record was generated with a COBOL WRITE without the
advancing clause, a line feed is also appended. If the advancing clause
was used a string of up to 63 printer control characters either precedes or
follows the record. Word boundaries have no significance, the last character
of a record is immediately followed by the first character of the next
record. The amount of buffer space required is:

(i) Advancing clause was used; number of characters in the record plus the
number of printer control characters plus one for carriage return, or

(ii) Advancing clause was not used; number of characters in the record plus
two for carriage return and line feed.

I\~C \ \ ItLcnis fWA.,:\
b~tt\ GV\cl. e~d '\lI'>

oJ\j c1v~dt,
vas,nol'\"

~_J-___________ --I __ _

Figure F.2 ASCII Record

F-2

MNT-13
lJul71

Figure F-3 Write After Advancing

Figure F-4 Write Before Advancing

When reading a record, the operating system recognizes the following as
'end of lin~' characters;

ASCII codes 12,13,14,15

20,21,22,23,24
32
33,175,176

Line feed, vertical tab, form feed, and
carriage return
Printer control characters
Teletype end of file character, ctrl-Z
altmode codes

Leading end of line characters are ignored. A record terminates with the
first end of line character or a satisfied character count. If the first
character count was satisfied before an end of line character was
encountered, the remaining characters are discarded until and end of line
character is encountered. If the end of line character comes before the
character count is satisfied, ASCII spaces are passed until it is satisfied.
ASCII null characters are always ignored.

F-3

MNT-13
lJul7l

F.l. 3 Blocking

A file is considered blocked if the blocking factor is non-zero; it is
considered unblocked if the blocking factor is zero.

Files are blocked for two reasons:

(i) The output device is a magnetic tape. A non-standard buffer size is
used to reduce the number of inter-record-gaps. The non-standard
buffer size is set to contain one logical block.

(ii) At some time, the file is to be accessed randomly or the file is to be
open for input/output processing. The blocking factor enables the
operating system precisely and efficiently to locate a given record.

F.l. 4 Labels

Only two devices may have labels written out with the data file, a card
file, and a magnetic tape file. Directory devices use the directory for
the label. A card file has only a 'beginning-file-label' and it is the
first card of the file. A magnetic tape file may have 2 or more labels.
If the labeled file is a multi reel file, it has 2 labels for each reel.
A labeled file contained entirely on one reel has two labels. See the
Table 8-3 for the standard label format.

F.2 Use of Sixbit I/O

DISPLAY-6 (sixbit) files should be used only for applications where
speed and efficient use of file storage are important considerations
and where file compatibility with Digital software is not a concern.
Sixbit input/output is handled by COBOL only. Sixbit input/output
will not be handled by any system programs, editors, or symbiont
programs.

F-4

INDEX

A

ACCEPT Statement, 6-17
FROM Option, 6-17

ACCESS MODE Clause, 4-8, 4-10, 4-11, 4-12, 6-51, 6-61, 8-1, 8-6
ACTUAL KEY Clause, 4-8, 4-10, 4-12, 6-51, 8-2, 8-11
ADD Statement, 6-18
ADVANCING Clause, 4-6, 6-61
ALL Option (EXAMINE Statement), 6-29
Alphabetic Item, 5-27
ALPHABETIC Test, 6-9
Alphanumeric Item, 5-28
Alphanumeric Edited Item, 5-28, 5-46
ALTER Statement, 6-20, 6-54

DEPENDING Option, 6-20
GO TO Statement, 6-20

American National Standards Institute (ANSI), 1-1
Area A, 2-9, 2-11, 6-3
Area B, 2-9, 2-11, 6-3
Arithmetic Expressions, 6-5

Arithmetic Operators, 6-5
Rules ~or Formation and Evaluation, 6-6

Arithmetic Signs, Symbols Representing, 5-26
Arithmetic Verbs, Options Associated with, 6-14

ON SIZE ERROR Option, 6-15
ROUNDED Option, 6-14

ASCII Fields, B-1
ASSIGN Clause, 4-8, 4-10, 4-11, 6-22
Assumed Decimal Point Positioning, Symbols for, 5-26
AT END Clause, 4-11, 6-47

B

Batch Commands, 1-9, 1-10
Batch Mode, 1-1, 1-8
BLANK WHEN ZERO Clause, 5-16, 5-17, 5-18

PICTURE Clause, 5-17, 5-18
BLOCK CONTAINS Clause, 5-6, 5-7

CHARACTERS Options, 5-7
DISPLAY-6 Characters, 5-7
DISPLAY-7 Characters, 5-7

Blocked Files, 8-8, F-4
Blocking Factor, 8-8, F-l, F-4

1-1

l'1NT-13
IJu171

MNT-13
lJul7l

c

Categories of Files, 6-21
CHANNEL IS Clause, 4-3, 4-6
Channel Table, 8-8
Character Collating Sequence, B-1
Character Set, 2-3

Punctuation Characters, 2-3
Special Characters Used in Arithmetic Expressions, 2-3
Special Characters Used in Conditional (IF) Statements, 2-3
Special Editing Characters, 2-3

CHARACTERS Option (BLOCK CONTAINS Clause), 5-7
Class Condition, 6-8

ALPHABETIC Test, 6-9
Format of, 6-9
NUMERIC Test, 6-9

CLOSE Statement, 6-21, 6-39
Categories of Files, 6-21
NO REWIND Option, 6-21
OPEN Statement, 6-22, 6-23
REEL Option, 6-21
Standard CLOSE File Procedure, 6-22
Standard CLOSE REEL Procedure, 6-22
STOP RUN Statement, 6-23
UNIT Option, 6-23

COBOL Language, Elements of, 2-2
COBOL Library, 7-1
COBOL Reserved Words, A-l

PDP-10 COBOL Reserved Words, A-l
Standard COBOL Reserved Words, A-l

COBOL Source Program Format, 2-7
Standard Format, 2-8
Non-standard Format, 2-10

Command, General form of COBOL, D-l
Comment Paragraph, 4-4
Comparison of Nonnumeric Items, see Nonnumeric Items, Comparison of
COMP-l, 5-17, 5-26, 5-43
COMPUTE Statement, 6-24
COMPUTATIONAL Items, 5-41, 5-42, 5-43
Condition-Name, 2-6, 5-19, 7-3
Condition-Name Condition, 6-9
Conditional Expressions, 6-6, 6-33

Abbreviations in Relation Conditions, 6-14
Class Conditions, 6-8
Condition-Name Condition, 6-9
Formation and Evaluation Rules, 6-11
IF Statement, 6-33
Logical Operators, 6-10
Relation Condition, 6-7
Sign Condition, 6-10
Switch-Status Condition, 6-9

1-2

Conditional Sentence, 6-3
Conditional-Variable, 5-19
Configuration, Computer (ENVIRONMENT DIVISION), 4-1
CONFIGURATION SECTION, 4-3
CONSOLE Clause, 4-3, 4-6, 6-17, 6-25
Constants

Figurative, 2-4
Special, 2-5

Continuation Area, 2-2
Conventions Used in this Manual

Block, 2-2
Item, 2-2
Record, 2-2

COpy Statement, 7-2
CORRESPONDING Option, 6-16
CURRENCY SIGN Clause, 4-3, 4-6, 5-26, 5-32

o

Data Characters, Symbols Representing, 5-26
Data Description Entry, 5-2, 5-16

BLANK 1~EN ZERO Clause, 5-16, 5-17
Condition-Name (level-88), 5-19
Data-Name FILLER, 5-24
JUSTIFIED (JUST) Clause, 5-16, 5-22
Level-Number, 5-24
OCCURS Clause, 5-16, 5-17, 5-25
PICTURE (PIC) Clause, 5-16, 5-26
REDEFINES Clause, 5-16, 5-37
RENAMES Clause, 5-39
SYNCHRONIZED (SYNC) Clause, 5-16, 5-41
USAGE Clause, 5-16, 5-42
VALUE Clause, 5-17, 5-45

DATA DIVISION, 2-2, 5-1
FILE SECTION, 5-1
see FILE DESCRIPTION (FD)
see DATA DESCRIPTION ENTRY
WORKING-STORAGE SECTION, 5-2

Data Name, 2-6
Data-Name/FILLER, 5-21
DATA RECORD Clause, 5-6, 5-8, 5-10
DATA Types, 5-1
DATE-WRITTEN Clause, 5-14
DDT (Dynamic Debugging Technique), 1-2
DECIMAL-POINT IS COMMA Clause, 4-3, 4-6, 4-7, 5-27
Decimal Point Positioning (Assumed), 5-26
DECLARATIVES, 6-20, 6-46, 6-58 (see USE Statement)
DEPENDING Option (GO TO Statement), 6-20, 6-32
DEPENDING Option (OCCURS Clause), 5-25

1-3

MNT-13
IJu171

MNT-13
lJu17l

DISPLAY-6, 5-14, 5-18, 5-42, 5-43, 8-3, 8-6, C-l, E-l, F-2
DISPLAY-6 Characters, 5-7, 8-3
DISPLAY-7, 5-14, 5-18, 5-38, 5-42, 6-29, 8-2, 8-3, 8-6, C-l, E-l, F-2
DISPLAY-7 Characters, 5-7, 8-3, B-1
DISPLAY Statement, 6-25

CONSOLE Clause, 6-25
UPON Option, 6-25

DIVIDE Statement, 6-26
REMAINDER Clause, 6-26, 6-27

DOWN BY (SET Statement), 6-52

E

Edi ted Items,
Alphanumeric, 5-28
Numeric, 5-28

Editing Sign-Control Symbols, 5-27
Editing, Types of, 5-32
Elementary Item, 5-2, 5-21, 6-35, 6-52

Symbols Used to Define the Category of, 5-28
Elements of the COBOL Language, 2-2
Ending Labels, 8-10
ENTER Statement, 6-28, C-l

ENTER FORTRAN-IV, 6-28, C-l
ENTER MACRO, 6-28, C-l
USING Option, 6-28, C-l

ENVIRONMENT DIVISION, 2-2, 4-1
CONFIGURATION SECTION, 4-3

OBJECT-COMPUTER, 4-5
SOURCE-COMPUTER, 4-4
SPECIAL-NAMES, 4-6

INPUT-OUTPUT SECTION, 4-8
FILE-CONTROL, 4-10
1-0 CONTROL, 4-13

EXAMINE Statement, 6-29
ALL Option, 6-29
FIRST Option, 6-30
LEADING Option, 6-30
REPLACING BY Options, 6-30
TALLYING Options, 6-29, 6-30
UNTIL FIRST Option, 6-29

Execution, Sequence of, 6-4
EXIT Statement, 6-31

PERFORM Statement, 6-31
USE Statement, 6-31

1-4

F

FD File-name Clause, 5-9, 7-2
Figurative Constants, 2-4, 5-46, 6-31, 6-37, 6-52, 6-57
FILE-CONTROL Paragraph, 4-2, 4-8, 4-10, 5-6
FILE DESCRIPTION (FD) , 5-6

BLOCK CONTAINS Clause, 5-7
DATA RECORD IS Clause, 5-8
FD File-name Clause, 5-9
LABEL RECORD Clause, 5-10
RECORD CONTAINS Clause, 5-11
SD File-name, 5-12
VALUE OF Clause, 5-13

FILE-LIMIT Clause, 4-8, 4-10, 4-11, 8-11
File-name, 2-6, 7-3
File Option (USE Statement), 6-58, 6-60
FILE SECTION, 5-1
File, Standard CLOSE Procedure, 6-22
File Table, 8-4
Files, Categories of, 6-21
FILLER, 5-21, 5-37, 5-41
FIRST Option (EXAMINE Statement), 6-30
Fixed Insertion Editing, 5-33
Floating Insertion Editing, 5-34
Format of a Class Condition, 6-8
Format of a Relation Condition, 6-7
Format of a Sign Condition, 6-10
Format of Switch-Status Condition, 6-9
Format Rules and Conventions, 2-7
FROM Option (ACCEPT Statement), 6-17

G

GO TO Statement, 6-20, 6-32, 6-54
DEPENDING Option, 6-20, 6-32

Group Item, 5-2, 6-35

H

High Segment, 1-2

I

IDENTIFICATION DIVISION, 2-2, 3-1
AUTHOR Paragraph, 3-1
DATE-COMPILED Paragraph, 3-1

1-5

MNT~13

IJul71

MNT-13
1 Jul71

DATE-WRITTEN Paragraph, 3-1
INSTALLATION Paragraph, 3-1
PROGRAM-ID Paragraph, 3-1
REMARKS Paragraph, 3-1
SECURITY Paragraph, 3-1

Identifier, 2-6, 6-18
IF Statement, .6-33

Nested IF Statements, 6-33
Imperative Sentence, 6-2
INDEXED BY Clause, 5-25
INDEXING, 5-4

Subscripting, 5-4
Input Formats, 2-7
INPUT Option (OPEN Statement), 6-39, 6-60
INPUT-OUTPUT Options (OPEN Statement), 6-39, 6-40, 6-60
INPUT-OUTPUT SECTION, 4-8

ACCESS MODE Clause, 4-2, 4-8, 4-10, 4-12, 8-1
ASSIGN Clause, 4-2, 4-8, 4-10, 4-11
FILE CONTROL Paragraph, 4-2, 4-8, 4-10
FILE-LIMIT Clause, 4-2, 4-8, 4-10, 4-11
I-O-CONTROL Paragraph, 4-2, 4-8, 4-13
MULTIPLE FILE Clause, 4-2, 4-9, 4-13, 4-14
PROCESSING MODE IS SEQUENTIAL Clause, 4-2, 4-8, 4-10, 4-12
RERUN Clause, 4-2, 4-8, 4-13
RESERVE Clause, 4-2, 4-8, 4-11
SELECT Clause, 4-2, 4-10, 4-11

Insertion Characters, Symbols Representing, 5-26
INTO Identifier Option (READ Statement), 6-47, 6-48
INVALID KEY Option (READ Statement), 6-47, 6-61, 6-62, 8-11
INVALID KEY Path, 4-11, 6-51, 8-11
I-O-CONTROL Paragraph, 4-2, 4-8, 4-13

END-OF-REEL Option, 4-2, 4-13
END-OF-UNIT Option, 4-2, 4-13
MULTIPLE FILE Clause, 4-2, 4-9, 4-13, 4-14
POSITION Option, 4-2, 4-9, 4-13, 4-14
RECORD Option, 4-2, 4-9, 4-13, 4-14
RERUN Clause, 4-2, 4-8, 4-13
SAME AREA Clause, 4-2, 4-9, 4-13

1-0 Option (OPEN Statement), see INPUT-OUTPUT Options
Item

J

Elementary Item, 2-2, 5-2
Group Item, 2-2, 5-2
Independent Item, 5-2
Nonindependent Item, 5-2

JUSTIFIED (JUST) Clause, 5-16, 5-17, 5-22

1-6

1

L

LABEL RECORD IS Clause, 5-6, 5-8, 8-9
LABEL RECORDS ARE OMITTED, 5-6, 6-39
LABEL RECORDS ARE STANDARD, 5-6, 6-22, 6-39

Label Records, 8-9
Language, Elements of, 2-2
LEADING Option (EXAMINE Statement), 6-29, 6-30
Level-number, 5-2

Hierarchic, 5-24
Special, 5-3, 5-19, 5-24, 5-39, 5-45

Level-66, 5-3, 5-4, 5-39, 5-45
Level-77, 5-3, 5-4
Level-88, 5-19, 5-24, 5-39, 5-45

Literal Option in STOP Statement, 6-55
LITERALS, 2-6

Nonnumeric, 2-7
Numeric, 2-7

Logical Operators, 6-10
Low Segment, 1-2

M

MEMORY SIZE Clause, 4-3, 4-5
Mnemonic-Name, 2-6, 4-6, 6-25, 7-3
Modes of Operation, 1-1

Batch, 1-1, 1-8
Timesharing, 1-1, 1-3

MOVE Statement, 6-35
Multiple File Clause, 4-14
Multiple File Tape, 8-10
MULTIPLE REEL Clause, 4-10, 4-11
MULTIPLE UNIT Clause, 4-10, 4-11
MULTIPLY Statement, 6-37

N

Nested IF Statements, 6-33
NO REWIND Option (CLOSE Statement), 6-21, 6-23, 6-41
Nonnumeric Items, Comparison of, 6-8

Operands of Equal Size, 6-8
Operands of Unequal Size, 6-8

Nonnumeric Literals, 2-7
Non-Random-Access Devices, Labels for, 8-10
Non-standard Format, 2-10
Non-standard Label Records, 8-10
NOTE Statement, 6-31, 6-38, 7-3
Numbers, Sequence, 2-8

1-7

MNT-13
IJul71

MNT-13
1 Jul71

Numeric Edited Item, 5-22, 5-28, 5-46
Numeric Item, 5-22, 5-27, 5-46, 6-52, 6-56
Numeric Literals, 2-7, 5-46
NUMERIC Test, 6-9

o

OBJECT-COMPUTER Paragraph, 4-1, 4-3, 4-5
MEMORY SIZE Clause, 4-4, 4-5

OCCURS Clause, 5-16. 5-17, 5-25, 5-37, 5-41, 5-44, 5-45
INDEXED BY Clause, 5-25
VALUE Clause, 5-25

OPEN Statement, 5-14, 6-39, 6-47, 6-61
Operands of Equal Size~ 6-8
Operands of Unequal Size, 6-8
Operators

Arithmetic, 6-5
Logical, 6-10
Relational, 6-7

OPTIONAL, Key Word, 4-11
OUTPUT Option (USE Statement), 6-58, 6-60

p

Paragraphs, 6-3
Comment Paragraph, 4-4
Paragraph-Name, 6-3

PERFORM Statement, 6-31, 6-41, 6-54
PICTURE Clause, 5-16, 5-18, 5-20, 5-26, 5-44

Alphabetic Item, 5-27
Alphanumeric Edited Item, 5-28
Alphanumeric Item, 5-28
CURRENCY SIGN Clause, 5-26, 5-32
Decimal Point Positioning (Assumed), 5-26
Editing Sign-Control Symbols, 5-27
Numeric Edited Items, 5-28
Numeric Item, 5-27
Symbols of Data Characters, 5-26
Symbols Defining the Category of an Elementary Item, 5-28
Symbols of Insertion Characters, 5-26
Symbols of Zero Suppression Operations, 5-26
Type of Editing, 5-33
USAGE INDEX Clause, 5-26

POSITION Option (I-a-CONTROL Paragraph), 4-14
PROCEDURE DIVISION, 2-2, 6-1

ACCEPT, 6-17
ADD, 6-18
ALTER, 6-20
CLOSE, 6-2l
COMPUTE, 6-24

1-8

i)

DISPLAY, 6-25
DIVIDE, 6-26
ENTER, 6-23
EXAMINE, 6-29
EXIT, 6-31
GO TO, 6-32
IF, 6-33
MOVE, 6-35
MULTIPLY, 6-37
NOTE, 6-38
OPEN, 6-39
PERFORM, 6-41
READ, 6-47
RELEASE, 6-49
RETURN, 6-50
SEEK, 6-51
SET, 6-52
SORT, 6-53
STOP, 6-55
SUBTRACT, 6-56
USE, 6-58
WRITE, 6-61

Procedure-Name, 2-6, 7-3
PROCESSING MODE IS SEQUENTIAL Clause, 4-8, 4-10, 4-12
PROGRAM-ID Paragraph, 3-1
Program-name, 3-1
Program Structure

Q

DATA DIVISION, 2-2
ENVIRONMENT DIVISION, 2-2
IDENTIFICATION DIVISION, 2-2
PROCEDURE DIVISION, 2-2

QUALIFICATION, 5-3, 5-37

R

Example of Qualification, 5-4
Level-66 Items, 5-4
Level-77,Items, 5-4

Random-Access Medium, 8-2, 8-9
RANDOM Mode, 4-11, 4-12, 6-51, 8-2, 8-11
READ Statement, 4-13, 6-39, 6-47

AT END Clause, 6-47
INTO Identifier Option, 6-48
INVALID KEY Clause, 6-47
OPEN INPUT Statement, 6-47
OPEN 1-0 Statement, 6-47

1-9

MNT-13
IJul71

MNT-13
1 Jul71

Record, 2-2, F-l
Record Area, 8-7
RECORD CONTAINS Clause, 5-11
Record Descriptions, 5-15

DATA RECORDS Clause, 5-15
Recording Mode, 8-3

Default Conditions, 8-3
DISPLAY-6, 8-3
DISPLAY-7, 8-3

Record-Name, 2-6
Record-Name Option, 5-10
RECORD OPTION (1-0 CONTROL) Paragraph, 4-13, 4-l~

REDEFINES Clause, 5-16, 5-17, 5-37, 5-41, 5-45
DATA RECORDS Clause, 5-37'
FILE SECTION, 5-37
FILLER Items, 5-37
OCCURS Clause, 5-37
VALUE Clause, 5-37, 5-45

REEL Option (CLOSE Statement), 6-21
REEL Option (USE Statement), 6-58
REEL, Standard CLOSE Procedure, 6-22
Reentrant Code" 1-2
Relation Condition, 6-7

Abbreviations in, 6-14
Comparison of Nonnumeric Items, 6-8
Comparison of Numeric Items, 6-7
Format of a Relation Condition, 6-7
Relational Operators, 6-7
USAGE Clause, 6-7

RELEASE Statement, 6-49, 6-54
FROM Option, 6-49

REMAINDER Clause, 6-27
RENAMES Clause, 5-17, 5-24, 5-39
REPLACING BY Options (EXAMINE Statement), 6-29, 6-30, 7-2
RERUN Clause, 4-13
RESERVE Clause, 4-10, 4-11
Reserved Words

PDP-10, A-l
Standard, A-l

RETURN Statement, 6-50, 6-54
AT END Clause, 6-50
INTO Phrase, 6-50
SORT Statement, 6-50

ROUNDED Option (Arithmetic Verbs), 6-14
RUN Option (STOP Statement}, 6-55

s

SAME AREA Clause, 4-2, 4-9, 4-13, 8-11
SAME RECORD AREA Clause, 4-2, 4-9, 4-13, 8-11

I-10

SD File-Name, 5-12, 6-50, 6-53, 7-2
DATA RECORD Clause, 5-12
RECORD CONTAINS Clause, 5-12
SELECT Statement, 5-12

Sections, 6-3
Section-Name, 6-3

SEEK Statement, 6-39, 6-51
ACCESS MODE, 6-51
ACTUAL KEY Item, 6-51
INVALID KEY Path, 6-51

SEGMENT-LIMIT Clause, 4-1, 4-5
Segmentation, 6-4
SELECT Statement, 4-8, 4-9, 4-10, 4-11, 5-9
Sequence Numbers, 2-8
Sequence of Execution, 6-4
SEQUENTIAL MODE, 4-12, 6-61, 8-1, 8-8, 8-11
SET Statement, 6-52

DOWN BY Option, 6-52
TO Option, 6-52
UP BY Option, 6-52

Sharable Code, 1-2
Sign Condition, 6-10

Format of, 6-10
SIZE ERROR Option (Arithmetic Verbs), 6-15, 6-19, 6-26, 6-27
Sort File, 5-12
SORT Statement, 6-53

ASCENDING Clause, 6-53
DESCENDING Clause, 6-53
GIVING Option, 6-53
INPUT PROCEDURE, 6-20, 6-46, 6-54
OUTPUT PROCEDURE, 6-20, 6-46, 6-54
USING Option, 6-54

SOURCE-COMPUTER, 4-1, 4-3, 4-4
SOURCE-PROGRAM, 2-7
SOURCE PROGRAM Divisions

DATA DIVISION Format, 5-1
ENVIRONMENT DIVISION Format, 4-1
IDENTIFICATION DIVISION Format, 3-1
PROCEDURE DIVISION Format, 6-1

SPECIAL-NAMES Paragraph, 4-3, 4-6, 6-27
STANDARD LABELS, 5-13, 8-9
Standard Format, 2-8
Statements and Sentences, 6-1

Compiler-Directing Sentences, 6-3
Conditional Sentence, 6-3
Imperative Sentence, 6-2

STOP Statement, 6-55
Literal Option, 6-55
RUN Option, 6-55

Subgroupings of Words, 2-6

1-11

MNT-13
IJul71

MNT-13
1 Jul71

Condition-Name, 2-6
Data-Name, 2-6
File-Name, 2-6
Identifier, 2-6
Mnemonic-Name, 2-6
Procedure-Name, 2-6
Record-Name, 2-6

Subscripting, 5-4, 5-25
SUBTRACT Statement, 6-56
SWITCH, 4- 3, Lf-6, 4- 7, 6-10
Switch-Status Condition, 6-9

Format of, 6-9
Symbols

Arithmetic Signs, 5-26
Assumed Decimal Point Positioning, 5-26
COBOL Conventions, 2-1
Data Characters, 5-26
Editing Sign-Control, 5-27
Elementary Item Categories, 5-28
Insertion Characters, 5-26
Zero Suppression Operation, 5-26

SYNCHRONIZED Clause, 5-16, 5-17, 5-41, 5-42, 5-43, 5-44
COMPUTATIONAL, 5-41, 5-42

T

FILLER, 5-41
OCCURS Clause, 5-41
REDEFINES Clause, 5-41
SYNCHRONIZED LEFT, 5-41, 5-43, 5-44
SYNCHRONIZED RIGHT, 5-41, 5-42, 5-43, 5-44
Syntactic Format PROCEDURE DIVISION, 6-1

Paragraphs, 6-3
Sections, 6-3
Statements and Sentences, 6-1

TALLY (Special Constant), 2-5, 6-37
TALLYING Option (EXAMINE Statement), 6-29
Timesharing Mode, 1-1, 1-3
TODAY (Special Constant), 2-6

u

Unblocked Files, 8-8, 8-9
UNIT Option (CLOSE Statement), 6-21
UNTIL FIRST Option (EXAMINE Statement), 6-29
UP BY Option (SET Statement), 6-52
UPON Option (DISPLAY Statement), 6-25
USAGE Clause, 5-42, 6-7

COMPUTATIONAL (COMP), 5-42, 5-43, 5-·44
COMPUTATIONAL-l (COMP-l), 5-43

1-12

DISPLAY-6, 5-42, 5-43, 5-44
DISPLAY-7, 5-43, 5-44
OCCURS Clause, 5-44
PICTURE Clause, 5-44
SYNCHRONIZED LEFT, 5-43, 5-44
SYNCHRONIZED RIGHT, 5-43, 5-44

USE Statement, 6-31, 6-58
FILE Option, 6-60
INPUT Option, 6-60
INPUT-OUTPUT Option, 6-60
OUTPUT Option, 6-60
REEL Option, 6-60
UNIT Option, 6-60

USING Clause, C-l
UNIT Option (USE Statement), 6-60

v

VALUE Clause, 5-16, 5-17, 5-25, 5-37, 5-45, 5-46
Figurative Constant, 5-46
Numeric Literals, 5-46
OCCURS Clause, 5-45
REDEFINES Clause, 5-45

VALUE OF IDENTIFICATION Clause, 5-13
DATE-WRITTEN, 5-13

w

LABEL RECORDS ARE STANDARD, 5-13
OPEN Statement, 5-14

WORKING-STORAGE SECTION, 5-2
Level-77, 5-3

Words, 2-4
COBOL Reserved Words, 2-4, A-I
PDP-lO, A-I
Standard, A-I
User-Created Words, 2-6

WRITE Sta.tement, 4-12, 6-39, 6-61
ADVANCING Clause, 6-61
INVALID KEY Clause, 6-61

z

OPEN INPUT-OUTPUT Statement, 6-61
OPEN OUTPUT Statement, 6-61

Zero Suppression Operations (Symbols of), 5-26

1-13

MNT 13
IJul71

COMMENTS

Title of Publication: PDP-10 COBOL REFERENCE MANUAL MNT-13

MNT-13
lJul71

The Computer Centre welcomes any suggestions that will assist in improving
their publications. Please comment on the usefulness and readability of
this manual. Suggest additions and deletions and indicate any specific errors
and omissions. Please provide page and section references where relevant.

Name

Position

Address

ERRORS

COMMENTS

Please return to the Technical Writer,
Computer Centre,
.University of Queensland,
St Lucia,.
QUEENSLAND 4067.

."

