
NOTICE:

The Arnor products for the Amstrad CPC and Amstrad PCW are © Copyright 1997-2002 Brian Watson. All rights reserved .

For support and printed manuals for these products please contact Brian at:

BrianWatson,
"Number Six",
Windmill Walk,
Sutton,
ELY
Cambs
CB6 2NH
ENGLAND

or

brian@spheroid.demon.co.uk

This manual has been reproduced with his permission.

Manual scanned by Paul Collins.
OCRed by Kevin Thacker.

18-August-2002

MAXAM
Z80 Development System

??Assembler
??Monitor
??Text Editor

AMSTRAD CPC464/CPC664
(C) ARNOR LTD 1985

MAXAM ASSEMBLER

Contents

1. What is MAXAM? 4
2. First things first 5
3. Using MAXAM 6
4. Meet the assembler 7
5. The assembler - in detail 9
6. Two applications 26
7. Menu-driven utilities 30
8. The text editor 34
g. Reference section and index 41

Copyright (c) Arnor Ltd., 1985

 All rights reserved. It is illegal to reproduce or transmit either this manual
or the accompanying computer program in any form without the written permission of the
copyright holder. Software piracy is theft.

 Contact Arnor for details of how to upgrade to the ROM or disc version of MAXAM
- You can return your current version in part exchange.

 correspondence relating to Arnor products is welcomed. Specific comments should
quote the version number. The assembler and editor each have a version number which is
displayed when they are used. The MAXAM ROM also has an overall version number which
is displayed by typing |HELP.

Published by Arnor Ltd., P.O. Box 619. LONDON SE25 6JL.

All that is gold does not glitter.
Not all those who wander are lost;
The old that is strong does not wither.
Deep roots are not reached by the frost.

From the ashes a fire shall be woken.
A light from the shadows shall spring;
Renewed shall be blade that was broken,
The crownless again shall be king

J.R.R. Tolkein

1. WHAT IS MAXAM?

 MAXAM is a comprehensive machine code development system written specially for
the Amstrad CPC 464/664. The whole program was carefully designed to complement the
excellent Amstrad firmware, and is compatible with Amstrad BASIC down to the finest
detail. In particular it supports the ability to create hybrid BASIC/machine code
programs. Z80 source code may for simplicity be entered as part of a BASIC program.
 The assembler itself is perhaps the most powerful and the most user friendly
currently available on any home computer. Although just about every conceivable
feature is included, it is easy for the beginner to get started - most of the
facilities are optional and the assembler will do something sensible if not
specifically directed.
 Debugging machine code programs is made much easier by using MAXAM. A special
breakpoint instruction is added to the set of Z80 mnemonics, which allows interactive
debugging from BASIC with the minimum fuss.
 MAXAM also includes a full feature screen editor, which can be used for
entering assembler or BASIC programs, or as a simple word processor for writing
letters, reports, etc. The editor produces pure ASCII files which YOU can then use
with, for example, other editors, languages, and CP/M utilities.
 Other utilities provided by MAXAM include: disassembler, memory dump, move
block, relocate, find string, compare blocks, and a powerful memory editor. Self
explanatory menus guide you through using all these commands.
 All parts of MAXAM run in either 40 or 80 column mode. When in the 40 column
mode colours are used to make the display clearer: the 80 column display is required
for the full professional assembler listing, and is more useful for editing.
 This manual does not attempt to teach machine code programming, and assumes
basic familiarity with the Z80 assembly language. If you are a newcomer to machine
code programming you will need to consult a book on the subject. Though it may seem
bewildering at first, persevere; machine code programming is both rewarding and
enjoyable. You have made the right decision to purchase MAXAM - it is the ideal system
for learning machine code.
 An essential reference for machine code programming on the Amstrad CPC 464/664
is the “Complete firmware specification”. published by Amsoft. This gives full details
of all operating system routines that are needed for communication with the hardware.

About this manual

Section 2 explains how to get started.
Section 3 introduces MAXAM's commands and mentions some general points.
Section 4 provides a gentle introduction to using the assembler with example

programs which can be typed in and experimented with.
Section 5 describes every feature of the assembler in detail.
Section 6 describes two application programs.
Section 7 describes MAXAM's utility commands.
Section 8 describes the text editor.
Section 9 is a reference section with index and glossary. This includes a

complete list of all the Z80 mnemonics.

2. FIRST THINGS FIRST

ROM version

 The ROM version of MAXAM is supplied in a 16K EPROM in an adaptor. The adaptor
is attached to the edge connector marked 'FLOPPY DISC' on the back of the computer,
and has an edge connector at the back for connecting a disc drive to. Consult the
separate fitting instructions before attempting to fit the adaptor.
 When installed MAXAM is immediately available to the user, being automatically
initialised by BASIC. MAXAM uses just 256 bytes of RAM (background ROM workspace). You
may find that some programs will not run because they need to use this memory. If so,
enter the command ‘|MAXOFF’. This will cause the machine to be reset as if MAXAM were
not installed.

Disc version

Reset the machine first by typing CTRL-SHIFT-ESC. This is important.
Insert the MAXAM disc and type ‘RUN “MAXAM”’.
You will then be given the option of loading
 (1) the complete program.
 (2) the editor only.
 (3) everything except the editor.
When loaded the program will be relocated to the highest possible address in memory.
Only as much memory as required is used, so by loading only the editor more memory
will be available for text.
Finally you will be asked:
“How many bytes do You want to reserve for code?”
 You can just press ENTER in response, in which case no action will be taken. If
a number is entered, HIMEM is reduced by this number to reserve memory for storing
machine code (the use of this is explained in section 5).
 The loader program may be configured to initialise the machine however you wish
(e.g. set colours, program function keys). To do this load the program 'MAXUSER'
(which is unprotected BASIC). This contains instructions as to where to insert your
code.

Cassette version

Reset the machine by typing CTRL-SHIFT-ESC. This is important.
Two copies are supplied, one on each side of the tape. To load type:
 RUN “MAXAM”
 or just RUN “
You will then be asked: “Do you want to load the editor?”
 If you do not want to use the editor at all answer ‘N'. and you will leave more
memory free.
Finally you will be asked:
“How many bytes do you want to reserve for code?”
 You can just press ENTER in response, in which case no action will be taken. If
a number is entered, HIMEM is reduced by this number to reserve memory for storing
machine code (the use of this is explained in section 5).

3. USING MAXAM

 When MAXAM is installed, a number of commands are added to the system. These
are known as external commands and are called from BASIC by prefixing the command name
with a vertical bar (SHIFT @). For completeness the commands are all listed here.
though they are dealt with in detail in the relevant section.

Commands available on all versions

MAXAM enter the main MAXAM menu, from which the text editor and
utility commands are available.

MAXAM,2 enter the main menu in mode 2.
M same as MAXAM.
ASSEMBLE assemble Z80 code within BASIC program.
ASSEM as ASSEMBLE, suppressing all messages.
CAT catalogue files in the same way as the BASIC command CAT.
CLEAR delete the editor text.
FIND search for a string in assembler section of BASIC program
MODE switches between mode 1 and mode 2.
SPEED set cassette write speed.

Commands available on ROM version only

HELP list all ROMs with version numbers.
HELP,n list commands for ROM number n.
MAXOFF turn off MAXAM.
MSL move screen memory low.
MSH move screen memory high.
ROMOFF turn off selected ROMs.

Note: CLEAR, FIND, and HELP may be prefixed with 'M' (for MAXAM). This is in case any

future ROMs use these command names and intercept the command before MAXAM.
However, we hope that writers of ROM software will avoid these names.

Some general points

 1. Throughout MAXAM, the ESC key works in the same way as in BASIC. This means
that any operation can be halted by pressing ESC once. Pressing ESC again will abort,
any other key will resume. If MAXAM is trying to send a character to the printer when
the printer is not ready the cursor will be turned on. Either put the printer on-line.
or press ESC to give up (you may have to hold the ESC key for about half a second).
 2. The DEL key works in the same way as in BASIC, i.e. it deletes the last
character typed.
 3. The cursor is disabled when any operation is being carried out. Whenever the
cursor is visible the computer is waiting for some input. If no prompt is given it is
simply waiting for any key to continue or ESC to abort the current operation. This
again is consistent with BASIC.
 4. MAXAM uses colour displays when in 40 column mode. The default ink settings
are used. Since one of the default colours is red, which does not show clearly on a
green screen monitor you may want to change it. For example, to change red to bright
green enter 'INK 3,8' from BASIC.

4. MEET THE ASSEMBLER

 The aim of this section is to provide a gentle introduction to using the
assembler. There are two complete short programs in this section, with full
explanations of what they are doing. Typing these programs in and running them is
recommended, particularly if you have not used an assembler before. One or two details
are glossed over here and are fully explained in section 5.

There are a couple of points to be noted when typing in these programs.
(i) Anything may be typed in either upper or lower case - it makes no
difference at all.
(ii) Take care to enter the single quote character where it appears after a line

number. This is the SHIFT-7 character.

Program 1 displays the ASCII character set. The equivalent BASIC program is given.

Program 1(a): Machine code Program 1(b): BASIC

 10 MEMORY HIMEM-11 10 FOR I%=32 TO 127
 20 start=HIMEM+1 20 PRINT CHR$(I%);
 30 GOSUB 1000 30 NEXT
 40 CALL start
 50 END
1000 |ASSEMBLE
1010 'LD A,32 ; first ASCII code in accumulator
1020 '.loop ; define a label 'loop'
1030 'CALL &BB5A ; CALL txt_output, the firmware output routine
1040 'INC A ; move to next character
1050 'CP 128 ; have we done them all?
1060 'JR C,loop ; no - go back for another one
1070 'RET ; yes - return
1080 'END ; stop assembler
1090 RETURN

Line by line explanation of program 1(a)

10 : This reserves memory for the machine code routine. In this case 11
bytes are needed.

20 : The BASIC variable 'start' is made to contain the start address of the
machine code routine.

30 : The subroutine assembles the code. It is good practice to put the
assembler instructions in a separate subroutine.

 40 : Calls the (now assembled) machine code program.
1000 : An external command which calls the assembler, and causes the assembly

language instructions In the subsequent lines to be assembled.
1010 : The machine code program. The quote characters tell BASIC that these

lines are comments, and therefore to ignore them. The semicolons tell
the assembler that what follows is a comment.

1090 : The assembler returns control to BASIC which returns from the
subroutine.

 When you run the program you will notice 2 things. First, when the assembler is
called it announces itself by displaying a title line which includes the assembler
version number. Second, on completion of the assembly the number of errors and
warnings that occurred is reported. A warning is not necessarily an error, just a
message from the assembler suggesting that you might have meant something else. Any
errors that occur are explained in plain English - you never have to look up error
codes.

 Program 2 reads a character from the current cursor position on the screen,
returning its ASCII code in a BASIC integer variable. The coordinates required are the
same as those used by the BASIC LOCATE statement. If no recognisable character is
found zero is returned.

Program 2

 10 MEMORY HIMEM-50
 20 GOSUB 1000
 30 rdchar=HIMEM+1
 40 char%=0 ‘ BASIC variable to return character in
 50 INPUT “Enter screen position:”,x,y
 60 oldx=POS(#0):oldy=VPOS(#0)
 70 LOCATE x,y
 80 CALL rdchar,@char%
 90 LOCATE oldx,oldy
 100 PRINT
 110 PRINT “The character code found was “;char%;” which is “;CHR$(char%)
 120 END
1000 |ASSEMBLE
1010 'dec a:ret nz ; return if no parameter supplied
1020 'ld l,(ix) ; get low byte of @char%
1030 'ld h,(ix+1) ; get high byte of @char%
1040 'call &bb60 ; firmware routine TXT RDCHAR
1050 'ld (hl),a ; put character in char%
1060 'inc hl:ld (hl),0 ; zero in high byte of char%
1070 'ret
1080 'end
1090 RETURN

5. THE ASSEMBLER - IN DETAIL

Program format

 The program to be assembled consists of a sequence of statements. Each
statement has the format:
<label_field> <instruction_field> <comment_field>
 One line may contain several statements, separated by colons, just as in BASIC.
A statement is made up of the three parts shown above, each of which may be empty. The
comment field, if present, must start with a semicolon - the effect of a semicolon is
that the assembler will ignore all characters until the next colon or end of line. To
allow colons in comments use two semicolons together. All characters to the end of the
line are then ignored.
 Instructions and names used in the source code may be typed in upper or lower
case. Thus 'START', 'start' and 'Start' all refer to the same label.
 The label may be preceded by a full stop. This tells the assembler tnat what
follows is a label. If there is no full stop the assembler will attempt to recognize a
Z80 instruction or assembler directive, and if it fails will take the first item as a
label. Labels must begin with a letter and can be any length.
 Thus to use a Z80 instruction as a label it must be prefixed with a full stop.
e.g. '.halt'.
 A warning message is given if a label that is not preceded by a full stop
starts with the name of a mnemonic or directive. So if you accidentally leave out a
space (e.g. by typing ‘inca' instead of ‘inc a') the assembler will warn you. Putting
in the full stop will prevent the warning message if you meant to declare a label.

Using the assembler from BASIC

 MAXAM can be used in two ways; either by entering Z80 source code as part of a
BASIC program, or by using the full screen editor. The editor is left to section 8.
 The assembler is called from within a BASIC program by the command '|ASSEMBLE'.
It will then read Z80 assembly language instructions from the subsequent lines of the
BASIC program. The lines cannot be entered directly, because BASIC would attempt to
tokenise the line. So every line of Z80 code must begin with a single quote.

e.g. 100 'LD A,10
Source code may be entered on the same line as |ASSEMBLE:
 e.g |ASSEMBLE:'ld a,”?”:jp &bb5a
This can be executed in direct mode.
 The quote character tells BASIC to treat the line as a comment, and so
completely ignore it. At the end of a section of machine code - which is automatically
detected by the assembler when it finds a line without a quote BASIC resumes execution
at the line following |ASSEMBLE. The assembler source code will then be skipped over,
and BASIC lines after the assembler lines will be executed.
 Any number of sections of assembly language may be contained within a program.
each preceded by |ASSEMBLE. It is good practice to put each assembler section in a
separate subroutine as in the example programs in this manual.

Correcting errors

 The program can be edited in exactly the same way as any BASIC program. If a
quote is accidentally missed out in an assembler section the assembler will terminate
and BASIC will attempt to execute the line. This will almost certainly give a syntax
error, and BASIC will enter the line editor - allowing the correction to be made very
easily.

The |FIND command

 FIND is a utility included to speed up program editing. Type '|FIND' and you
will be asked for a string to find. All occurrences of the string in lines beginning
with a quote character will be found and the line number displayed in each case. This
is designed for finding occurrences of a particular symbol in a assembly language
program, and does not work with BASIC variables because of the unusual way that BASIC
tokenises its lines.
The maximum string length is 17 characters.

Debugging and breakpoints

 Debugging machine code programs is made much easier by using MAXAM, and can be
done from BASIC - there is no need to learn to use a lot of complicated commands.
 This is achieved by allowing breakpoints to be placed anywhere in the program.
A breakpoint is a special instruction which, when executed, causes a subroutine jump
to a routine which displays the values of the Z80 registers and disassembles the next
instruction to be executed. By examining the values held in the registers you can see
whether the program is working correctly. If not, press ESC to return to BASIC, check
the program, make the necessary correction, re-assemble and try again. If the
registers are correct press a key and execution will continue to the next breakpoint
or the final RET instruction.

The mnemonic for a breakpoint is 'BRK'.
 In fact, BRK is the same as RST 6, which means that if you intercept RST 6 for
your own purposes a BRK instruction will cause your routine to be executed instead of
the MAXAM breakpoint routine. Reset the machine to restore MAXAM’s routine.

Look at program 1(a) again and add the following line:
1025 ‘ BRK

 Now when the program is run the registers will be displayed every time the loop
is executed.

Running hybrid BASIC/machine code programs

 If ESC is pressed while assembling, then whether assembly is aborted (by
pressing ESC again) or not, BASIC will wait afte completion of the assembly as if ESC
had been pressed once. Thus to abort the assembly and stop the BASIC program, ESC
should be pressed 3 times.

Invisible assembly, the |ASSEM command

 When a program has been fully debugged it may be desirable to assemble the code
without the assembler displaying any messages. This can be done by replacing |ASSEMBLE
with |ASSEM. The effect is to suppress all output from the assembler except error
messages.

Assembler error messages

Whenever an error occurs during an assembly the offending line is listed, a beep
is sounded, and a self explanatory message is displayed.

There are 3 degrees of severity of error that can be produced by the assembler.
The most serious is 'fatal error' which causes the assembler to give up immediately.
There are 10 different fatal errors, and they are listed in the reference section.

With one exception ('Code limit exceeded') fatal errors are reported on the first
pass. All other errors are reported on the second pass, and do not cause the assembler
to give up. Instead the numbers of each type are counted and the total numbers are
printed when the assembly is finished.

The least serious is 'warning'. A warning message is given for something which can
be assembled but it is likely that the programmer meant something different. This
occurs in the following cases:

1. A label not preceded by a full stop starts with the name of a Z80 mnemonic or
assembler directive or command.e.g. INPUT.

2. An expression evaluates to more than 8 bits, when an 8 bit value is required.
e.g. LD A,300. Note: a warning is not given if the high order 8 bits are all
1, so e.g. LD C,-3 is allowed.

3. Spurious text is found after the statement has been correctly assembled. This
may be the result of missing out a colon or semicolon.

All other errors are labelled 'error'. If any occur the program will have to be
re-assembled before calling the machine code. If any errors or warnings occur the
BASIC program will be stopped. This avoids any possibility of calling a routine which
was assembled incorrectly.

Where to store the object code

When writing machine code programs great care must be taken to store the code in a
section of memory not used by anything else. MAXAM provides a convenient and useful
way to do this.
Consider the memory map of the computer's RAM:

Address
0 Firmware workspace
40 Background ROM workspace
(40) BASIC input buffer
(170) BASIC program area
 BASIC variables
 *** free memory (shrinks as program grows) ***
 BASIC strings
HIMEM+1 *** free memory (reserved by altering HIMEM) ***
(A578) User defined characters
 MAXAM code and workspace (disc and cassette versions)
(A5F8) Background ROM workspace, including MAXAM and AMSDOS
AC00 BASIC workspace
B100 Firmware workspace
C000 Screen memory

 Addresses given in brackets are for a machine with AMSDOS and the MAXAM ROM,
but no other ROMs. They should not be used in programs.
 The most useful address on this map is HIMEM. BASIC will only use memory below
HIMEM for program and variable storage. So the best place to put machine code programs
is above HIMEM. To do this simply reduce HIMEM:

e.g. MEMORY HIMEM-100
This will reserve 100 bytes. which will not be touched by BASIC.

Notes: (i) It is often convenient to reserve the required amount of memory from within

a program. The MEMORY statement can of course be included in a program,
but this has the disadvantage that each time the program is run HIMEM
will be reduced further. A possible solution Is as follows:
10 GOTO 30
20 MEMORY HIMEM - 100

 30 REM rest of program
Use RUN 20 the first time the program is run, and RUN thereafter.
(ii) If you need the SYMBOL AFTER statement it must be used before setting

HIMEM. Apart from this restriction HIMEM can be changed at any time.

 This method of reserving memory for object code is strongly recommended. Two
features are built into the assembler which make the above procedure both safe and
easy to use. These are:
 1. In the absence of a directive telling the assembler where to put the code it
will automatically store it immediately above HIMEM.
 2. The assembler will check that the object code does not overwrite the user
defined symbols area, the background ROM workspace or (in the case of the disc or
cassette version) the MAXAM code. If there is insufficient space to store the complete
machine code program the error message 'Code limit exceeded' will be given. If this
occurs reduce HIMEM and try again.

The ORG directive

 The above mechanism is ideal for testing virtually all programs, but sometimes
a program is required to execute in a different part of memory. The ORG directive
tells the assembler what address to use. There are 2 forms:

Syntax: 1. ORG <expression>

2. ORG <expressionl> , <expression2>

 With the first form the assembler will evaluate the expression, and use this as
the 'Code origin' (i.e. the address where the code is to run). The assembled code will
be stored starting at this address.
 Often it is not possible to store the code at the address where it is to run,
because it is being used by something else (e.g. MAXAM or BASIC). In this case use the
second form. The assembler will evaluate both expressions, set the code origin to the
first, but store the code at the second address (the 'storage location'). This is
usually only necessary when a program is fully debugged, and is to be saved and run
from disc or tape.
Notes: (i) Any number of ORG directives may be used.

(ii) The expressions may not contain undefined symbols.

The LIMIT directive

 If an ORG directive is used the assembler still cheeks for the code overwriting
the user defined characters. The way it does this is by keeping an internal variable
called 'LIMIT', which is set to the highest byte of memory available for storage of
object code. Initially this is set to the address of the byte just below BASIC's user
defined character buffer. However it can be set to any value:

Syntax: LIMIT <expression>

Three uses of the LIMIT directive:
1. To prevent memory used by something else being overwritten.
2. When writing a program with a fixed maximum size (e.g. the size of an EPROM).
3. Many programs will intercept firmware routines (see the Amsoft dicumentation for
details of how to do this). The firmware jump blocks are higher in memory than the
default LIMIT, so the LIMIT directive must be used before it is possible to assemble
directly into the firmware jump block. 'LIMIT &FFFF' will allow assembling in any area
of memory.
Notes:

(i) LIMIT only affects storage of code In memory, not the code location (if
this is different).

(ii) The checking is only done on pass 2, since code is only stored on pass
2.

NOCODE and CODE

Syntax: NOCODE
Syntax: CODE

 Occasionally it is useful to assemble a program without storing any code -
perhaps just to check that it assembles correctly, or to assemble a small routine
which is to be input in hexadecimal (maybe on another computer). The directive NOCODE
achieves this. The directive CODE cancels the effect of NOCODE, and causes storage of
object code to be resumed.

The END directive

Syntax: END

 The END directive simply tells the assembler to stop. It may be omitted. but
has two uses:
 1. To avoid assembling the whole program - temporarily put in an END directive.
 2. END causes the storage location to be output in the listing. A useful ploy
is to put 'LIST:END' as the last line of source code so you can see where the end of
the program is.

Expressions

 Arithmetic expressions may be used throughout the assembler - wherever a number
is required. This includes operands of Z80 instructions and assembler directives. The
expression evaluator works from left to right and allows the following:

NUMBERS:

1. decimal constants. e.g. 132.
 2. hexadecimal constants. e.g. &BB5A or #2A. Either & or # may be used for
compatibilty with BASIC and the firmware documentation.

3. binary constants. e.g. %1011101
 4. character constants. e.g. 'A',”3”,’”’. Either single or double quotes
may be used - to specify a quote character enclose it in the other type of quote. The
value of a character constant is the ASCII code of the character, so “3” is the same
as #33. A null character constant,”” has the value 0.

5. an identifier.
6. one of the two special symbols:

 $ represents the current code location (program counter).
 @ represents the current storage location.

OPERATORS:

1. Arithmetic operators +,-, *, /, MOD.
2. Bitwise logical operators AND, OR, XOR.

All expressions are evaluated to 16 bit unsigned integers. Overflow is ignored,

and the least significant 16 bits of the result is used.

Symbols

 The assembler keeps a table of symbols, each with an assigned 16 bit value. A
Symbol is similar to a BASIC variable. The assembler makes two passes; on the first
pass it sets up the symbol table and on the second pass it creates the object code
using the symbol table to calculate jump addresses etc. On the first pass, when a
symbol that has not yet been defined is referred to it is put into the symbol table.
The value is filled in when the symbol is defined. These forward references must all
be resolved on the first pass; error messages will indicate any symbols that remained
undefined. No symbol may be assigned different values on the two passes - if this
occurs the assembler may generate many errors.
 There are some assembler directives which do not allow any forward references
because the expression value must be known on pass 1. These include ORG - the code
origin must be well-defined for it would otherwise be impossible for the assembler to
generate the correct symbol table. The full list of these directives is given in the
reference section.
 An identifier is the name of a symbol. Valid identifiers must satisfy the
following rules:

1. the first character must be a letter.
 2. The other characters may any of: letter, digit, question mark (?), full stop
(.), underline (_).

There is no length restriction, nor are there any reserved words.

4 ways to define a symbol

 1. As a label. This is an identifier at the start of a statement, possibly
preceded by a full stop. The symbol is assigned the value of the current code
location.

2. By the EQU (equate) directive.
<identifier> EQU <expression>

The symbol is defined and assigned the value of the expression, which must be
well-defined (i.e. contain no forward references). If the symbol is already defined an
error message will be given (unless the old value and the new are the same). In other
words, EQU may not be used to redefine a symbol.

3. By the LET directive.
LET <identifier> = <expression>

 This has the same effect as EQU except that LET allows redefinition of symbols.
Note: for compatibility with other assemblers this may be written

<identifier> DEFL <expression>.
4. By the GET directive. See section on GET and PUT.

Putting data into the object code

 The 3 directives explained in this section cause data to be assembled at the
current code location. In all cases both the code location and storage location are
incremented.

BYTE <list of expressions and strings>
TEXT <list of expressions and strings>

 BYTE and TEXT are different names for the same thing. They take a list of
parameters, each of which can be an arithmetic expression or a text string. Each
expression is evaluated and the result put in the objecr code. Each string is sent
directly to the object code, character by character. Strings may be enclosed in either
single or double quotes; if the closing quote is omitted the string is assumed to be
the rest of the line.
 Note: a single character string is considered a numeric constant. expressions
such as “A”+&80 are allowed.

Examples: BYTE 1,3,count*3+1,”q” or 128
TEXT “A string ending with cr-lf”,13,10

WORD <list of expressions>

 Each expression is evaluated and the 2 byte result put in the object code,
low byte first.
 Example: WORD &C000,address

RMEM <expression>

 RMEM causes the assembler to reserve the specified number of bytes of memory.
Both the object code and the storage location are incremented by the value of the
expression. The reserved space is filled with zeros. The expression may not contain
forward references.

Examples: .buffer256 RMEM 256
.word RMEM 2

 Occasionally the reserved space needs to be filled with a value other than
zero. This can be done by giving a second expression parameter. The space is filled
with the least significant byte of the expression's value.

Example: RMEM &200,&FF

Compatibilty with other assemblers:

The following alternarive directive names are allowed:
 DEFB, DB, DEFM ... same as BYTE, TEXT.
 DEFW, DW ... same as WORD.
 DEFS, DS ... same as RMEM.

GET and PUT

 GET and PUT are the two directives used to pass parameters between a BASIC
program and the assembler at the time of assembly. Uses for this include:

1. passing the address where code is to be stored.
2. passing variables to control conditional assembly.
3. returning entry point addresses to BASIC.

 To use these directives, a list of parameters is appended to the |ASSEMBLE
command, separated by commas.

e.g. |ASSEMBLE,start,x,@startl
 Each parameter must be either a BASIC numeric variable or constant, or the
address of a BASIC numeric (integer or real) variable (e.g. @startl).
 The GET directive is used within the assembler program to read the values of
these parameters.

Syntax: GET <list of identifiers>
 So a GET directive corresponding to the parameters list example above could be:
 GET start,x,start_adr
 The effect of this is just to assign the 2 byte values to the symbols listed in
the GET Instruction. The names chosen have no connection with the names of the BASIC
variables, but it is a good idea to use the same name to avoid confusion. There is no
need to read all the values with a single GET. so the following is equally good:

GET start
GET x,start-adr

 An error message will be given if an attempt is made to GET a parameter when
there are none left.

Examples of use of GET

1. To pass an address to the assembler.

 10 GOSUB 1000
 20 CALL start
 30 END
1000 start=HIMEM+l
1010 |ASSEMBLE,start
1020 'GET start
1030 'ORG start
1040 ‘; source code follows here
 ‘...
1999 RETURN

 The value of HIMEM+1 is assigned to the BASIC variable 'start' and passed to
the assembler which GETs it into the assembly-time variable 'start' and sets the code
origin to that value. Later, BASIC executes the statement 'CALL start' to call the
machine code routine.
 Note: in this example GET is not necessary, but adds to the clarity of the
program. Since the assembler sets the code origin by default to HIMEM+1 the above
program is equivalent to:
 10 |ASSEMBLE
 20 ‘; source code follows here
900 CALL HIMEM+1

2. To pass variables for conditiorial assembly.

See the section on conditional assembly.

3. To return entry point addresses to BASIC.

 Often a machine code program has more than one entry point. The simple use of
GET only allows calling the start of the code, but by using PUT as well, any number of
addresses can be returned to BASIC.

Syntax: PUT <expression> . <expression>

 The action of PUT is to assign a value to a BASIC variable (integer or real).
However the names of BASIC variables mean nothing to the assembler so a more
complicated method is needed to achieve this. This is the procedure that must be
followed:

1. Create the BASIC variable by, for example:
entry=0

2. Pass the address of the variable to the assembler:
|ASSEMBLE,@entry

3. GET the address into an assembler variable:
GET entry_adr

4. (Optional but recommended for clarity). At the entry point of the code
define a label:

.entry
5. PUT the entry address into the BASIC variable:

 PUT entry-adr,$
or PUT entry_adr,entry

 PUT is similar to the BASIC command POKE. In that it takes a value and stores
it in a specified memory address. The difference is that POKE takes a single byte
value, whereas PUT takes a two byte value and converts to floating point if necessary.
 Warning: PUT may only be used with a variable reference as the first parameter.

 Note: GET is an assembly-time facility. Parameters that change each time the
routine is called should be passed with the BASIC 'CALL' statement, as illustrated by
program 3.

Program 3 : illustrating the use of PUT

 10 GOTO 30 ‘ RUN 20 the first time to reserve memory
 20 MEMORY HIMEM-100
 30 GOSUB 1000
 40 CALL hexout2,7
 50 PRINT
 60 CALL hexout4,&1e2b
 999 END
1000 REM machine code routines to output hex number
1010 hexout2=0:hexout4=0 ‘ variables to hold entry addresses
1020 |ASSEMBLE,@hexout2,@hexout4
1030 'GET hexout2_ref,hexout4_ref
1040 'LET txtoutput=&BB5A
1050 '
1060 '.hexout4 PUT hexout4_ref,$
1070 ' LD A,(IX+1) ; get high byte of parameter
1080 ' CALL hexout2 ; output in hex
1090 ' LD A,(IX) ; get low byte
1100 ' CALL hexout2 ; output it
1110 ' RET
1120 '
1130 ' PUT hexout2_ref,$
1140 ' LD A,(IX) ; get (low) byte
1150 '.hexout2
1160 ' PUSH AF ; save A
1170 ' RRCA:RRCA:RRCA:RRCA ; shift right 4 bits
1180 ' CALL hexout1 ; output high order hex digit
1190 ' POP AF ; restore A and output 2nd digit
1200 '.hexout1
1210 ' CALL binasc ; convert binary to ASCII
1220 ' CALL txtoutput ; output ASCII character
1230 ' RET
1240 '
1250 '.binasc
1260 ' AND &F ; mask out top 4 bits
1270 ' ADD A,&30 ; convert decimal digits to ASCII
1280 ' CP &3A ; is it decimal?
1290 ' RET C ; yes, so we've finished
1300 ' ADD A,7 ; no, so it's hex between A and F
1310 ' RET
1320 '
1330 ' END
1340 RETURN

Note: the CALL statement sets up the registers as follows:
 A = the number of parameters.
 IX = the address of the parameters.
 All other registers undefined.

The parameters are listed in reverse order, low byte first.

Conditional assembly

 Conditional assembly is used when two or more versions of a program are needed
(e.g. cassette version and disc version). This feature enables any number of different
versions to be assembled from the same source code.
 This is done by defining blocks of source code that are to be assembled only if
some condition holds. The formats of IF blocks are:

1. IF <expression>
<code to be assembled if expression is true>
ENDIF

2. IF <expression>

<code to be assembled if expression is true>
ELSE
<code to be assembled if expression is false>
ENDIF

 The expression may be any arithmetic expression. In this context the value of
the expression is considered to be a signed 16 bit number, with 'true' represented by
any positive number (i.e. between 1 and 32767) and 'false' by zero or any negative
number.
 The recommended use is to define a variable which holds the value 1 for true
and 0 for false.

 Example: suppose a program comes in two versions, for cassette and disc, and
there are a few differences between the two. Define a variable at the start of the
source code:

LET cassette=l ; to assemble the cassette version
LET cassette=0 ; to assemble the disc version

 Then enclose each section where the code differs in an IF block, as follows:
IF cassette
<code for cassette version>
ELSE
<code for disc version>
ENDIF

Testing inequalities

 Often a program is required to fit into a fixed number of bytes. The IF
directive allows the assembler to test the current code location against the highest
available location and act accordingly. (Note: the LIMIT directive only tests the
storage location).

Example: labels ‘start’, and 'end' are declared. The length of the program must
not exceed 'maxlength'. which is passed as a parameter.
1000 |ASSEMBLE,maxlength
1010 ‘GET maxlength
1020 ‘.start
 <code here>
1900 '.end
1910 'IF end-start-maxlength ; true if end-start > maxlength
1920 ‘PRINT”Code too long!”
1930 ‘ENDIF
1940 RETURN

Logical operators

 AND, OR and XOR may be used with care in IF directives. These are bitwise
logical operators, and will work as expected if true is only represented by 1 and
false only by 0. So if variables which only ever hold the values 0 or 1 are used the
usual results hold (1 OR 0 is true, 1 AND 0 is false, 1 XOR 1 is false, etc.)

Example: IF cassette_version AND English_version
 Warning: although 1 and 2 both represent true, the expression 1 AND 2 evaluates
to 0 (i.e. false).

IFNOT

 For convenience IFNOT may be used instead of IF. It simply reverses the logic
of the IF directive:

IFNOT <expression>
<code to be assembled if expression is false>
ELSE
<code to be assembled if expression is true>
ENDIF

Nesting IF blocks

 IF blocks may be nested up to a depth of 10. It is, however, unusual to need
nesting deeper than 2 levels.

Example:
IF rom_verclon
<ROM code>
ELSE : IF disc_version

<disc code>
ELSE
<cassette code>
ENDIF

ENDIF

IF1, IF2

 These special forms of the IF directive return the value 'true' on pass 1 and 2
of the assembly, respectively. They may be of some use for printing different messages
on each pass, but Z80 instructions and directives should not be placed within an IF1
or IF2 block.

Reading source code from a file

Syntax: READ <filename>

 When the assembler finds a READ directive it will open the specified file (on
the currently selected input filing system), assemble the contents of the file, and
then return to the line in memory following the READ directive.
 The file may be a BASIC file (tokenised or ASCII format) or a text file
(produced by the MAXAM editor, or a word processor). The first nonblank character
after the word 'READ' is taken as the filename delimiter.
 Only one file may be opened at any time. Thus the READ directive itself must be
in memory. If the entire program is contained in one file the program in memory can be
as simple as |ASSEMBLE:|’READ”file”.

Using READ with cassette
 The file will be read on each pass of the assembler, so it will be necessary to
position the tape correctly for each pass. (It may be easier to record the source code
file twice on the tape to avoid the need to rewind). If several files are being used
the PRINT command can be useful to display a message saying which file is required. If
the filename is omitted the first file found on the tape will be used.

A useful hint
 If the program is split between several text files it is helpful for the
assembler to print the name of each file it reads. This is easily accomplished by
making the first line of each file something like:

1 PRINT “<name of file> <date>”
 This is also useful when editing: without a name at the top of a file it is
easy to forget which file you are editing.
 The number 1 causes the assembler to reset its line counter to 1. This means
that error messages will give the correct physical line number within the file where
the error occurred. The editor has a command to move to a specified line, so using
these features together speeds up debugging.

Writing object code to a file

Syntax: WRITE <filename>
 The WRITE directive tells the assembler to create a binary file, and store all
subsequent object code in the file (unless disabled with NOCODE).
 Disc users only: if the filename has a ‘.COM’ suffix a CP/M object file will be
created, which is directly executable under CP/M. The code origin must be defined by
'ORG &100'. Such a file is not in binary format, so cannot be used under AMSDOS.

Syntax: CLOSE
 The CLOSE directive tells the assembler to close the currently open output file
and resume storage of code in memory. CLOSE may usually be omitted since the file is
automatically closed at the end of the assembly or by a new WRITE directive.

Example: to read source from one file and write to another
 WRITE “object” ; note WRITE before READ
 READ “source”

Assembler commands

 Commands control the listing and output produced by the assembler. They do not
appear on the assembly listing themselves unless a label is attached to the command or
there is an error in the command.

LIST
NOLIST

LIST turns on the assembler listing. This is the initial state. NOLIST turns off the
assembler listing.

PRINT <strinz>

 The string is displayed on the screen, even if the listing is turned off. The
first non blank character after the word 'PRINT' is taken as the string delimiter.

PAUSE

 The assembler will wait until a key is pressed. PAUSE only operates if listing
is enabled. It allows part of a long listing to be examined. PAUSE may be useful
immediately after a PRINT command.

DUMP

 If a DUMP command appears anywhere in the program when listing is enabled a
complete list of all defined symbols with their values in hexadecimal will be produced
when the assembly has finished. The order is not strictly alphabetical, but all
symbols beginning with the same letter are listed together. This is a consequence of
the way the assembler stores the symbols - a method chosen for speed and economy of
memory.

An example listing

ARNOR Z80 ASSEMBLER version 1.05

00001 0000 ; patch to prevent line feeds going to printer
00002 0160 (0160) org &160 ; in BASIC buffer
00003 0160 (FPFF) limit &FFFF
00004 0160 (BD2B) mcprintchar
 equ &BD2B
00005 0160 FE 0A .patch cp 10
00006 0162 37 scf
00007 0163 C8 ret z ; ignore line feeds
00008 0164 CF F2 87 rst 1,&87F2 ; print character
00009 ; 464 only - on 664 use ‘rst 1,&880B’
00010 BD2B (BD2B) org mcprintchar
00011 BD2B C3 60 01 JP patch ; change vector
00012 BD2E (BD2E) end

Errors: 00000 Warnings: 00000

SYMBOL TABLE:

BD2B MCPRINTCHAR 0160 PATCH

The 7 Parts Of the listing

1. Line number.
 If the source code is within a BASIC program the BASIC line number will be
printed. This allows easy location of errors because when an occurs the offending line
is listed together with the line number.
 If the source code is in ASCII format the assembler will look for a line
number at the start of the line (in decimal) and if it finds one use this. Otherwise
it will count the lines.
 Note: the line numbers refer to physical lines; colon separators do no change
the line number.

2. Code location.

3. Object code.
 Up to 4 bytes per line. Directives may cause more than 4 bytes to be assembled,
in which case the object code will be listed on more than on line. 4 bytes to a line.

4. Label field.

5. Instruction field.

6. Operand field.

7. Comment field.

 Note: this refers to the listing in 80 column mode. In 40 column mode the line
number is omitted and the other information is given in a condensed format using a
colour coding scheme.

 Several directives cause a number to be printed after the address in
parentheses (as in lines 2, 3, 4, 10 and 12 in the above example). The directives and
the meaning of the numbers are as follows:

END : the storage location.
EQU : the value assigned.
GET : the value of the last parameter read.
IF : the value of the conditional expression.
LET : the value assigned.
LIMIT : the limit set.
ORG : the storage location.
PUT : the value assigned.
RMEM : the number of bytes reserved.

Listing to the printer

LIST P

Turns on listing to the printer.
Examples:
(i) To list to the screen and printer

 LIST:LIST P
(iii) To list to the printer only

NOLIST:LIST P

PLEN <expression>

 Without a PLEN command the listing is continuous with no page breaks. PLEN
defines the number of lines per page. To use this make sure the printer is at the top
of the page (exactly where the first line is to be printed). Set PLEN to the exact
number of lines per page. This is not the number of lines to be printed - a few blank
lines are automatically left at the bottom of the page.
 The value of the expression may be either 0 or between 40 and 255. PLEN 0 tells
the assembler to revert to continuous listing.

Examples: PLEN 66 for 11” paper
 PLEN 72 for 12” paper

PAGE (<expression>)

 The command PAGE causes a page eject. The page length will be used to calculate
the number of blank lines to be printed so the new pace starts at the right place on
the paper.
 The expression is optional. If supplied this will be used as the new page
number. This may not exceed 255. If no number is given the page number will be one
more than the previous page number.

PAGE is ignored if listing is disabled.

TITLE <string>

 This defines a title to printed at the top of each page. For this to be printed
on the first page, the TITLE command must appear before the first directive or
mnemonic. The title will be printed starting in column 1, so to centre the title
include the necessary number of spaces in the string.
 TITLE with no string will cancel the titling option, whereas TITLE”” will give
a blank title line.
 The first non blank character after the word 'TITLE' is taken as the string
delimiter.

WIDTH <expression>

 This sets the number of characters per line in the listing. The default setting
is the current screen width (40 or 80), but it may be set to any value between 40 and
255. WIDTH 0 causes the default setting to be
restored.
 Example: WIDTH 132

6. TWO APPLICATIONS

Program 4

 10 REM a machine code routine to move a block of memory
 20 REM allowing for overlapping areas of memory
 30 REM RUN 50 the first time to reserve memory
 40 GOTO 60
 50 MEMORY HIMEM - 100
 60 mov=HIMEM+1
 70 GOSUB 1000
 80 REM a silly example call. moving the screen memory along a bit
 90 first=&C000 ‘start of block to move
 100 length=&3FF0 'length of block
 110 dest=&C010 ‘address to move block to
 120 CALL mov,first,length,dest
 130 END
1000 |ASSEMBLE,mov
1010 ' get move ; get start address
1020 ' txt_output equ &bb5a ; firmware entry point
1030 '
1040 ' org move
1050 ' cp 3 ; check number of parameters
1o6o ' jr nz,error ; wrong number
1070 ' ld e,(ix) ; dest, low byte
1080 ' ld d,(ix+l) ; dest, high byte
logo ' ld c,(ix+2) ; length, low byte
1100 ' ld b,(ix+3) ; length, high byte
1110 ' ld 1,(ix+4) ; first, low byte
1120 ' ld h,(ix+5) ; first, high byte
1130 ' push hl ; save it
1140 '
1150 ' or a ; clear carry ready to subtract
1160 ' sbc hl,de ; compare first with dest
1170 ' pop hl ; restore first
1180 ' jr c,moveb ; jump If dest >= first
1190 '
1200 ' ldir ; move block
1210 ' ret
1220 '
1230 'moveb ; here if need to move backwards
12&0 ' ex de,hl ; dest in hl
1250 ' add hl,bc ; add length
1260 ' ex de,hl
1270 ' dec de ; de now = end address
1280 ' add hl,bc
1290 ' dec hl ; hl to end of first block
1300 ' lddr ; move block
1310 ' ret
1320 '
1330 'error
1340 ' call txtout ; print error message
1350 ' text “Wrong number of parameters”,13,10,0
1360 ' ret
1370 '

1380 'txtout
1390 ' pop hl ; get address of message
1400 ‘txt1
1410 ‘ ld a,(hl) ; get character
1420 ‘ call txt_output ; output it
1430 ‘ inc hl ; move to next
1440 ‘ or a ; test accumulator
1450 ‘ jr nz,txt1 ; continue until zero
1460 ‘ jp (hl) ; return
1470 ‘
1480 ‘ end
1490 RETURN

Program 5(a)

 This is a BASIC program to fill a triangle on the screen. A direct translation
to machine code is given below. Try them both. and compare the speeds!

 10 REM triangle fill - BASIC
 20 INPUT “Enter triangle coordinates:”,xl,yl,x2,y2,x3,y3
 30 CLS
 40 IF yl>y2 THEN t=y1:yl=y2:y2=t:t=xl:xl=x2:x2=t
 50 IF y1>y3 THEN t=y1:y1=y3:y3=t:t=xl:xl=x3:x3=t
 60 IF y2>y3 THEN t=y2:y2=y3:y3=t:t=x2:x2=x3:x3=t
 70 FOR h=0 TO y2-y1
 80 MOVE xl,h*(x2-xl)/(y2-yl),yl+h
 90 DRAW xl,h*(x3-xl)/(y3-yl).yl+h
100 NEXT
110 FOR h=0 TO y3-y1
120 MOVE x2,h*(x3-x2)/(y3-y2),y2+h
130 DRAW xl,(h+y2-yl)*(x3-xl)/(y3-yl),y2+h
140 NEXT

Program 5(b)

 10 REM triangle fill - machine code
 20 REM RUN 40 the first time
 30 GOTO 50
 40 MEMORY HIMEM-600
 50 GOSUB 1000
 60 INPUT “Enter triangle coordinates: “,xl,yl,x2,y2,x3,y3
 65 y1=y1/2:y2=y2/2:y3=y3/2 ‘ convert coordinates
 70 CLS:CALL tfill,xl,yl,x2,y2,x3,Y3
 80 END
1000 tfill=HIMEM+1
1010 |ASSEMBLE
1020 'scr_horizontal equ &bc5f ; firmware line drawing routine
1030 'txt_get_pen equ &bb93 ; firmware get pen colour routine
1035 'scr_ink_encode equ &bc2c
1040 'cp 6:ret nz ; return if wrong number of parameters
1050 'push ix:pop hl ; get address of parameters into hl
1060 'ld de,y3:1d bc,12:ldir ; copy into workspace
1070 '
1080 ' ; first sort vertices by v coordinate

1090 'ld hl.(y2):ld de,(y1)
1100 'call cphlde:jr nc,noswapl
1110 'push hl:ld hl,(Xl):ld bc,(X2)
1120 'ld (xl),bc:ld (x2),hl:pop hl:ex de,hl
1130 ‘.noswap1
1140 ‘ld (y1),de:ld (Y2),hl
1150 ’
1160 ‘ld hl,(Y3):ld de,(yl)
1170 'call cphlde:jr nc,noswap2
1180 ‘push hl:ld hl,(xl):ld bc,(x3)
1190 'ld (xl),bc:ld (x3),hl:pop hl:ex de,hl
1200 ‘.noswap2
1210 'ld (y1),de:ld (y3),hl
1220 ‘
1230 ‘ld hl,(y3):ld de,(y2)
1240 ‘call cpblde:jr nc,noswap3
1250 ‘push hl:ld hl,(x2):ld bc,(x3)
1260 ‘ld (x2),bc:ld (x3),hl:pop hl:ex de,bl
1270 ‘.noswap3
1280 ‘ld (y2),de:ld (y3),hl
1290 ‘ ;vertices now sorted
1300 ‘
1310 'ld hl,0:ld (count),hl
1320 ‘.loopl
1330 'ld hl,(x2):ld de,(x1)
1340 'or a:sbc hl,de:call testnea
1350 'ld de,(count):call multhlde
1360 'push hl:ld hl,(y2):ld de,(yl)
1370 'or a:sbc hl,de
1380 ‘ex de,hl:pop hl
1390 'call divhlde
1400 ‘ld a,(flag):or a:call nz,neghl
1410 'ld de,(xl):add hl,de:push hl ; start x coordinate
1420 '
1430 'ld hl,(x3):ld de,(xl)
1440 ‘or a:abc hl,de:call testneg
1450 ‘ld de,(count):call multhlde
1460 'push hl:ld hl,(y3):ld de,(yl)
1470 ‘or a:sbc hl,de
1480 ‘ex de,hl:pop hl
1490 'call divhlde
1500 ‘ld a,(flac):or a:call nz,neghl
1510 ‘ld de,(xl):add hl,de:push hl ;end x coordinate
1520 '
1530 ‘ld hl,(y1):ld de,(count)
1540 'add hl,de ; y coordinate
1550 'pop bc:pop de
1570 'call drawline
1580 ‘
1590 ‘ld de,(count):inc de:ld (count),de
1600 ‘ld bc,(y1):ld hl,(y2)
1610 'or a:sbc hl,bc
1620 'call cphlde:jp nc,loopl
1630 ‘
1635 'ld hl,0:ld (count),hl
1640 ‘.loop2

1650 'ld hl,(x3):ld de,(x2)
1660 'or a:sbc hl,de:call testneg
1670 'ld de,(count):call multhlde
1680 'push hl:ld hl,(y3):ld de,(y2)
1690 'or a:sbc hl,de
1700 'ex de,hl:pop hl
1710 'call divhlde
1720 'ld a,(flag):or a:call nz,nechl
1730 'ld de,(x2):add hl,de:push hl ; start x coordinate
1740 '
1750 'ld hl,(x3):ld de,(xl)
1760 'or a:sbc hl,de:call testnez
1770 'push hl:ld hl,(count)
1780 'ld de,(y2):ld bc,(yl)
1790 'add hl,de:or a:sbc hl,be
1800 'ex de,hl:pop hl
1810 'call multhlde
1820 'push hl:ld hl,(y3):ld de,(yl)
1830 'or a:sbc hl,de
1840 'ex de,hl:pop hl
1850 'call divhlde
1860 'ld a,(flag):or a:call nz,nechl
1870 'ld de,(xl):add hl,de:push hl ; end x coordinate
1880 '
1890 'ld hl,(y2):ld de,(count)
1900 'add hl,de ; y coordinate
1910 'pop be:pop de
1930 ’call drawline
1940 '
1950 'ld de,(count):inc de:ld (count),de
1960 'ld bc,(y2):ld hl,(y3)
1970 'or a:sbc hl,bc
1980 'call cpblde:jp nc,loop2
1990 'ret
2000'
2005'.drawline call txt_get_pen:call scr_ink_encode ; ink in A
2006' push bc:ex hl,(sp):call cphlde:jr nc,dlinel:ex de,hl
2007'.dlinel ex hl,(sp):pop bc:call scr_horizontal:ret
2008'
2010'.multhlde ;; subroutine to do hl:=hl*de
2020' push bc:ld e,h:ld a,l:ld b,16:ld hl,0
2030'.multl srl c:rra:jr nc,mult2:add hl,de
2040'.mult2 ex de,hl:add hl,hl:ex de,hl:djnz multl:pop bc:ret
2060'.divhlde ;; subroutine to do hl:=hl/de
2070' push bc:ld c,l:ld a,h:ld hl,0:ld b,16
2080'.divl rl c:rla:adc hl,hl:sbc hl,de:jr nc,div2:add hl,de
2090'.div2 ccf:djnz divl:rl c:rla:ld h,a:ld l,e:pop bc:ret
2110 '.cphlde ; subroutine to set carry if hl < de
2120 ' push hl:or a:sbc hl,de:pop hl:ret
2130 '.testneg ld a,0:call c,neghl:ld (flag),a:ret
2140 '.neghl push de:ld de,0:ex de,hl:or a:sbc hl,de:pop de:ld a,&ff:ret
2150 '
2160 'y3 word 0:x3 word 0 ; workspace
2170 'y2 word 0:x2 word 0:y1 word 0:xl word 0
2190 'count word 0:flag byte 0
2210 RETURN

7. MENU-DRIVEN UTILITIES

 The command '|MAXAM’ takes you into the MAXAM main menu. The menu lists all the
available commands - each is selected by a one or two letter code. To use a command
type the code and press ENTER. On-screen prompts advise you what input is required for
each command. You will see that the value of HIMEM is displayed on the top line,
together with the ROM selections (which are explained below). ESC always returns you
to the menu.

Note: all addresses are entered in hexadecimal.
This section explains each command in turn.

T enters the text editor, which is dealt with in the next section
B returns you to BASIC preserving editor text and BASIC program.

D Disassemble
DP Disassemble to printer

 Start and end addresses are requested. which must be entered in hexadecimal.
If omitted they default to 0 and &FFFF respectively. The memory contents are
disassembled into Z80 mnemonics; the hex and ASCII representations are also listed.
Standard Zilog mnemonics are shown (see the reference section for a complete list).
RST instructions are disassembled with the appropriate parameters (see reference
section).

L List memory
LP List memory to printer

 This works in the same way as D, but lists hex and ASCII only. 8 or 16 bytes to
a line. The ASCII display ignores bit 7 and shows a full stop for control codes. This
allows text to be easily recognised, including strings with the top bit of the last
character set. The memory editor (described below) displays the complete character
set.

S Select upper ROM

 The ROM selected is used by all commands in the main menu that access addresses
between &COOO and &FFFF. (The ROM numbers are listed by the HELP command - see below).
So to disassemble ROM 7:

S <ENTER> 7 <ENTER>
D <ENTER> COOO <ENTER> <ENTER>

The currently selected ROM is displayed above the menu. Initially ROM 0 is
selected, which is the BASIC ROM.

O Lower ROM on/off
 This command selects either the lower RAM or ROM to be used by commands that
access addresses between 0 and &3FFF. The current setting is shown on the top line.
The initial setting is lower ROM = off. To list the lower ROM:

0 <ENTER>
L <ENTER> <ENTER> <ENTER>

E Edit memory

 The memory editor allows you to change directly the contents of memory simply
by overtypint what is displayed on the screen. You are asked for an address to edit,
then a screenful of memory is displayed in a similar format to that used by the L
command. The address you choose will be in the middle of the screen and the cursor
will be on the byte that is at that address.
 To change the contents of any byte just type the new value. There is no need to
press ENTER after the number, just enter the two hex digits. A single digit number can
be terminated by ENTER or any cursor key. DEL will cancel a single digit.
 The cursor keys can be used to move around the screen. Your other functions are
Provided:

SHIFT-<up> or CTRL-<up> : move back one screenful.
SHIFT-<down> or CTRL-<down> : move forward one screenful.
SHIFT-<left> or CTRL-<left> : move to top left.
SHIFT-<right> or CTRL-<right> : move to bottom right.

 The editor can also be used to enter ASCII characters directly into memory.
Press TAB and the cursor will move to the right part of the display, positioned on the
ASCII representation of the current byte. Now, the editor works in the same way except
that ASCII characters are typed instead of hex numbers. Press TAB again to return to
hex editing.

Press ESC to exit from the editor and return to the menu.

F Find string
FP Find string and print

 These commands search a block of memory for a string. You are asked to choose
between ASCII and hex. In the first case the string can be up to 20 characters, in the
second case up to 8 bytes. ENTER is used to terminate string entry, and ESC will abort
the command at any time. Each time the string is found a single line memory listing
starting at the first byte of the string is printed. FP sends the output to the
printer.
 Wildeards may be used in a string. A wildcard is a character that will be
matched by any byte. To signify a wildcard type '?'.
 Example of use of wildcard: enter the hex string CD,?,B9. This will find all
unconditional subroutine calls to addresses between &B900 and &B9FF.

M Move block

 You are asked for 3 inputs; start and end address to define a block of memory,
and the address to copy the block to. The lower and upper ROM selections are taken
into account so blocks can be copied from any ROM. Overlapping blocks are allowed.

C Compare blocks
CP Compare and print

 The two blocks specified are compared byte by byte. Any differences are listed,
showing the two different values. The ROM selections are taken into account, so RAM
may be compared with ROM. CP sends the output to the orinter.

R Relocate block

 There are two ways to use the relocator, a simple way and a complicated way.
To use the simple command reply ‘Y’ to the prompt ‘Simple (Y/N)?'. You will then be
asked for start address, end address, and address to move to. This works in the same
way as move block except that at the same time the code is relocated to run at the new
address.
 This is fine in many cases but will not always work. Although you will probably
never need to use the general relocate command (as described below) it is as well to
be aware that relocation can fail. The basic reason is that the relocator cannot tell
the difference between code and data, and so will attempt to relocate data as if it
were program. So the block of memory being relocated should contain pure program.
 The second form of the command asks you for 5 inputs. The meaning of each is as
follows:
 Start and end address - define a block of memory containing the code to be
relocated.
 First and last - define the range of addresses, references to which are to be
altered. On a simple relocation these are the same as start and end.

Offset - the number to add to all addresses in the range (first,last).
 With this form of the command the code is relocated in place and moved. This
allows many variations: you can relocate code that is to go in ROM, you can move code
first and then relocate to run at any address you like.
 Warning: one thing to look out for when relocating is an instruction like 'LD
HL,&3090', where the operand is meant as a literal. The relocator will assume it is an
address and possibly alter it. The instruction should be replaced by 'LD H, &30:LD L,
&90' if the code is to be relocated.

I Initialise block

 A block of memory can be filled with any byte value. This is most useful for
filling a block of memory with zeros.

X External commands

 When 'X' is selected a prompt ‘|’ will be displayed. Any external command can
now be entered with its Parameters typed straightforwardly. This avoids the awkward
syntax needed to use external commands from BASIC.
 Both string and numeric parameters can be entered. The details of each command
must be checked in the appropriate documentation to see what parameters are required.
Strings may be enclosed in quotes (single or double) but the quotes are optional.
 However, if the string begins with a decimal digit the quotes are essential
because otherwise it will be assumed to be a numeric parameter. Parameters may be
separated by spaces, commas, or equals signs. Hex numbers in external commands must
be prefixed by ‘&’, just as in BASIC.
 For example, to rename a file called JUNK.BAS to PROG.BAS, enter any of:

REN PROG.BAS=JUNK.BAS
 REN “PROG.BAS”,”JUNK.BAS”
 REN ‘PROG.BAS’ Junk.bas
 After each command has been executed the ‘|’ prompt will return. Either enter
another command or press ESC to return to the menu.

Miscellaneous external commands

MODE

 Toggles the display between mode 1 (40 columns) and mode 2 (80 columns).

HELP

 Typing 'HELP' when in external command mode. or ‘|HELP' from BASIC will produce
a list of all ROMs with their version numbers.

HELP,n

 Here n is a ROM number as listed by HELP. The external commands provided by ROM
n will be listed.

ROMOFF

 This will turn off all background ROMs. The machine will be completely reset.
BASIC will be entered but no other ROMs will be initialised. This may be useful to
gain extra memory but do not forget that any programs in memory are destroyed by this
command.

ROMOFF <list of ROM numbers>

 The machine is reset, destroying memory contents, and the specified ROMs are
not initialized.

MSL

 Move screen low. This command makes the screen memory start at &4000 instead of
&C000. HIMEM must be set below &4000 before using MSL. The screen is cleared.

MSH

 Move screen high. The screen memory is restored to &C000. The screen is
cleared.

Why should anyone want to move the screen memory?

 Moving the screen memory to &4000 reduces the available RAM by up to 27K, so it
is rarely a good idea! The use of MSL is to enable editing of sideways RAM. Sideways
RAM is located at &C000 which is the usual position of the screen memory. The sideways
RAM can be edited but the screen display would be simultaneously corrupted. So to edit
sideways RAM enter MSL before and MSH after

8. THE TEXT EDITOR

To enter the text editor type: |MAXAM
 T
 The editor menu will then be displayed. Select option 'E' to enter editing
mode. You can return to the menu at any time by pressing ESC. Having entered edit mode
you will be presented with a mostly empty screen, but with some information on the
top line. This is the status line and always contains up to date status Information.
From left to right:

1. Cursor line and column number. This is useful among other things for
tabulating data or moving a number of lines.

2. Bytes free. The amount of memory remaining for text. This is initially
about 40K with the ROM version, less with the other versions.

3. Insert/overwrite. The editor operates in these two modes. To switch between
them press CTRL-TAB. You will see the status line display change.

4. Caps lock/shift lock status. Press CAPS LOCK and CTRL-CAPS LOCK to see this
information change.

The status line is also used at other times for messages, including error
messages.

 Entering text with the editor is very simple - just type it in whatever way you
want it set out. The cursor keys are used to move the cursor left, right, up and down
in the obvious way. When used in combination with SHIFT or CTRL various useful cursor
movements are possible (see table, below, for full details). SHIFT-<up> and SHIFT-
<down> are useful when you want to continue editing the same line but see the
following few lines.
 Removal of characters is done by moving the cursor to the appropriate place and
using DEL and CLR for backwards and forwards delete. These work as in BASIC, so in
particular DEL will cancel the last character typed.
 If you are typing an assembler program into the editor, there is no need for
line numbers, quotes, or |ASSEMBLE.

Insert mode

 When characters are entered the rest of the line to the right of current
position is moved along. Pressing ENTER inserts a <cr-lf> (carriage return and line
feed) in the text (i.e. a new line is inserted). <cr-lf> characters can be deleted
with DEL and CLR - this makes joining lines very easy.

Overwrite mode

 Characters overwrite what is there already. Pressing ENTER doees not insert a
line but moves to the start of the next line. <cr-lf> cannot be deleted with DEL and
CLR. To insert and delete lines when in overwrite mode use SHIFT-TAB and SHIFT-DEL.

Horizontal scrolling

Text line lengths are not limited to the width of the screen. When the
cursor needs to move past the right hand edge of the screen the text is scrolled
sideways by half the screen width. The editor does not impose a maximum line length
(but the assembler cannot cope with lines longer than 255 characters).

Moving to a specified line number

 Type CTRL-G while in edit mode. A message will be displayed on the status line
asking you to enter a line number. The cursor will then be moved to the line. This has
nothing to do with any line numbers in the text but is the position of the line within
the text as displayed on the status line.

Markers and blocks

 Many useful facilities are provided by blocks. A block is a section of the
text, defined by two markers. Pressing SHIFT-COPY puts a marker at the current
position, or removes one if there is one there already. A short beep is sounded when
SHIFT-COPY is pressed, unless both markers are in use. In that case a higher beep
warns you of the error and an error message is printed on the status line. ESC must be
pressed to continue after an error. To delete markers press SHIFT-CLR.
 Markers are shown by inverting the display at the marker position. The block
includes the first marker position, but not the second. This means that if the block
consists of complete lines both markers should be set in column 1.
 An error message will be given if an attempt is made to use a block command if
you have not defined a block by setting both markers.

Editing mode block commands

CTRL-CLR move block
 The block is moved to the current cursor position, which must not be within the
block. The markers are deleted.
 Note: this command will fail If there Is insufficient free memory for a copy of
the block.

CTRL-COPY copy block
 The block is copied to the cursor position leaving the original block in place.
The cursor must not be within the block. The markers remain in place on the new copy.

CTRL-DEL. delete block
 The block is deleted. To delete the entire text from within edit mode use the
key sequence: CTRL-<left>, SHIFT-COPY, CTRL-<right>, SHIFT-COPY, CTRL-DEL.

Summary of edit mode commands

Key Normal With SHIFT key With CONTROL key

left arrow cursor left cursor to start cursor to start

of line of text

right arrow cursor right cursor to end cursor to end

of line of text

up arrow cursor up scroll back scroll back

1 line 1 page

down arrow cursor down scroll forward scroll forward
1 line 1 page

COPY next find toggle marker copy block

at cursor

CLR delete at clear markers move block
cursor

DEL delete before delete line delete block

cursor

TAB cursor to next insert line toggle insert

tab position mode

ESC return to menu return to menu return to menu

Note to aid memory of the above:
 (i) block, page or text based functions use the CTRL key.
 (ii) line based functions and marker functions use the SHIFT key.
 (iii) character based functions just take a single key.

Editor menu commands

L Load file.
 You are asked for a filename. The file is loaded into memory replacing any
previous text. Tape users only: you can just press ENTER and the first file found will
be loaded.

LB Load block.

The file is loaded and inserted at the current cursor position.

S Save file.
 The whole of the current text is saved with the specified filename. Tape users
only: just pressing ENTER will save an unnamed file.

SB Save block.
 The text between the markers is saved. Use SB and LB to transfer part of one
file into another file. Markers remain in place after SB so more than one copy can be
saved.

p Print text.
The current text is output to the printer.

PB Print block.

The current block is printed.

Creating BASIC compatible files

M Modify text
MB Modify block

 Modify is a special command which enables BASIC compatible files to be
produced, and the editor facilities to be used on BASIC programs. The options
available are:

1. Add line numbers with any starting value and increment.
2. Add quotes between line numbers (if any) and text.
3. Remove line numbers.
4. Remove quotes.

Modify is best explained by examples:

(a) To create a mixed BASIC/machine code program with the editor.

1. Type in the program, omitting line numbers and quotes.
2. Define a block containing the assembler section.
3. Use modify block to add quotes only. Note: the markers are deleted.
4. Repeat 2 and 3 for each assembler section.
5. Use modify to number the whole program.
6. Save the file.

(b) To print a file with the lines numbered sequentially.

 Use the default starting value and increment by just pressing ENTER when asked
for these parameters. The default is 1 in each case. These numbers will correspond to
those printed by the assembler.
 Note: the assembler will work with BASIC files or text files (with or without
line numbers).

F Find string.
 This will search the text for the specified string, starting from the current
cursor position. If found the cursor will be placed immediately after the string. To
find the next occurrence of the string press COPY. If the string is not found a
message is displayed on status line and ESC must be pressed to continue. COPY will
always move the cursor to the next occurrence of the string entered the last time ‘F’
or 'R' was used. If neither has been used at all COPY will do nothing.

R Find and replace string.

 Two strings are asked for. Each time the first string is found the cursor is
placed immediately after the string and the message 'Replace (Y/N)?' appears on the
status line. Press Y to replace the string by the second string. N or ESC to leave
it as it Is. The next occurrence will automatically be found, unless ESC is pressed.
 This command also allows a global replace. If selected then occurrences of the
first string after the current cursor position will be replaced without asking for
confirmation. This should be used with great care.

Note: to delete a string enter an empty replace string.

T Set or clear tabs

 Up to 8 tabs may be set. When TAB is pressed in edit mode the cursor is moved
to the next column at which a tab is set. If you are in insert mode spaces are
inserted up to the tab position. Tab control codes are not used in order that the text
contains only printable characters and is easily transportable.
 Initially, 3 default tab settings are set (9, 17, and 27). These have
beenchosen to be convenient for assembler source code – start the 1abel field in
column 1. Press tab, enter the instruction field press tab, enter the operand
field,press tab, enter the comment field.

The 'T' command performs 3 functions:
1. Lists the current tab settings.
2. Allows you to set tabs.
3. Allows you to delete tabs.

 You are asked to choose 'set' or 'clear'. Whichever you select you can input
several column numbers (press ENTER after each one). Press ESC to finish and return to
the menu.

Assembling and testing code from the editor

A Assemble
 The current text will be assembled. When the assembly has finished will need to
press a key to return to the menu.

J Jump to code
 An execution address is asked for, and the code at that address is executed. A
RET instruction will return control to the menu. If no address is specified it will
default to HIMEM+1 (the default origin used by assembler), unless no memory has been
reserved there (when it will do nothing). The Z80 register values are undefined on
entry.

So most code can be executed simply by typing J <ENTER> <ENTER>

Important note: memory must be reserved by the MEMORY command in BASIC.

Debugging procedure

 The BRK Instruction can be used from the editor in exactly the same way as from
BASIC.

1. Edit text, put BRKs in strategic places.
2. Assemble.
3. Jump to code.
4. Examine the registers when displayed. If incorrect press ESC and go to step 1.
5. Press any key to continue each time the registers are displayed and are

correct.
6. Control returns to the menu. Hopefully the code is now perfect!

Miscellaneous options

G Go to line.
 This is the same as using CTRL-G In edit mode. This is useful when correcting
assembly errors since the assembler gives the line number where each error occurs.

X External commands
 The X command allows external commands to be entered exactly as described in
the previous section.

Two commands provided by MAXAM are particularly useful in the editor:
 CAT : the same as the BASIC command 'CAT', this lists the files on cassette
or disc. For disc users it is more useful than DIR since it sorts the filenames and
gives the approximate size of each file.
 SPEED : the same as the BASIC command 'SPEED WRITE’. Enter 'SPEED 0’ or
'SPEED 1' to set the cassette write speed.

 AMDOS commands which are often needed in the editor:

ERA : delete a file
REN : rename a file.

Q Quit editor

The Q command returns you to the main menu.

User defined characters

 The characters with ASCII codes 32 to 127 may be redefined (from BASIC) by the
user to give, for example, accented letters. These definitions will only be used in
the editor If a 'SYMBOL AFTER 0' command has been issued. 'SYMBOL AFTER 32' allows
definition of the characters in BASIC but the editor would still display the original
characters.

The text editor and BASIC

 The text editor is compatible with BASIC - editor text and a BASIC program can
be in the memory at the same time. Editing one does not affect the other.
 BASIC variables are preserved when the MAXAM main menu is used, but destroyed
when the editor menu is entered.
 There is one unavoidable side effect of allowing BASIC and editor text together
which it is as well to be aware of. If a BASIC program Is saved when editor text is
present the editor text will be saved with the BASIC program. When reloaded, however,
the editor text will not be useable.
There are two possible solutions to this problem:
 1. Delete the editor text before saving the BASIC program. This can done from
BASIC by typing '|CLEAR'.
 2. Save the BASIC program in ASCII format. The editor text is not then saved.
Saving in ASCII has the considerable advantage that the program can then be edited
directly with the editor. The disadvantages are that saving in the ASCII
representation makes the file slightly larger and, for disc users, takes much longer.

Deleting programs and text

1. To delete both the BASIC program and the editor text:
NEW

2. To delete just the BASIC program:
DELETE

3. To delete just the editor text:
|CLEAR

Loading BASIC programs

 Loading a BASIC program will cause the editor text to be wiped out. one
exception to this is if the program was saved as ASCII, then it can be loaded using
the MERGE command, without destroying the editor text.

To edit a BASIC program using the text editor

1. Save from BASIC in ASCII format: SAVE “PROG”,A
2. Go into the editor.
3. Load the file into the editor. L <ENTER> PROG
4. Edit the file.
5. Save the file. S <ENTER> PROG
6. Return to BASIC.
7. Load the file. LOAD “PROG”

9. MAXAM REFERENCE SECTION AND INDEX

(a) Bibliography

1. "The concise firmware specification", (Amsoft)
2. "The concise BASIC specification", (Amsoft)
2. "Disc drive firmware specification", (Amsoft)
4. "Programming the Z80", Rodnay Zaks (Sybex)
5. "Z80 Assembly Language Programming", Lance A. Leventhal
 (Osborne/MCGraw Hill)
6. "The Lord of the Rings", J.R.R. Tolkein

(George Allen and Unwin)

(b) Assembler Directives page

BYTE put byte string in object code 16
CLOSE close object file 22
CODE cancel NOCODE 14
DB same as BYTE 16
DEFB same as BYTE 16
DEFM same as BYTE 16
DEFS same as RMEM 16
DEFW same as WORD 16
DS same as RMEM 16
DW same as WORD 16
ELSE assemble otherwise 20
END end assembly 14
ENDIF end IF block 20
EQU equate 15
GET get parameters 17
IF assemble if 20
IFNOT assemble unless 21
IF1 assemble if pass 1 21
IF2 assemble If pass 2 21
LET define symbol 15
LIMIT set code limit 13
NOCODE suppress storage of code 14
ORG define code orgin 13
PUT pass value back to BASIC 18
READ define source file 22
RMEM reserve block of memory 16
TEXT same as BYTE 16
WORD put 2-byte numbers in object code 16
WRITE define object file 22

(c) Assembler Commands page

DUMP dump symbol table 23
LIST (P) enable listing to screen (printer) 23 (25)
NOLIST disable listing 23
PAGE start new page 25
PAUSE wait for key press 23
PLEN set printer page length 25
PRINT display string on screen 23
TITLE define title 25
WIDTH set printer page width 25

(d) Assembler Fatal Errors

1. An ORG directive with an undefined expression.
2. An EQU directive with an undefined expression.
3. An RMEM directive with an undefined expression.
4. An IF or IFNOT directive with an undefined expression.
5. A PUT directive with an undefined variable address.
6. A badly nested IF block.
7. A line longer than 255 characters.
8. The assembler runs out of memory for the symbol table or file buffer.
9. The file specified by a READ directive is of an invalid type (e.g. binary).
10. An attempt to nest READ directives.
11. A disc I/0 error occurs, e.g. 'disc full', 'file not found'.
12. An attempt to store code at an address greater than that set by LIMIT.

(e) External commands page

ASSEM assemblen suppressing messages 10
ASSEMBLE assemble from BASIC program 9
CAT catalogue files 39
CLEAR clear editor text 40
FIN find string in embedded source code 10
HELP list ROMS 33
MAXAM or M enter main menu 30, 6
MAXOFF turn off MAXAM 5
MCLEAR same as CLEAR 6
MFIND same as FIND 6
MHELP same as HELP 6
MODE switch screen display. 33
MSH move screen memory high 33
MSL move screen memory low 33
ROMOFF turn off selected ROMs 33
SPEED set cassette write speed 39

(f) BASIC Commands important to machine code page

CALL call a machine code routine 19
MEMORY change the value of HIMEM 12

(g) Main Menu Commands page

T text editor 34
D disassemble to screen 30
DP disassemble to printer 30
L list memory to screen 30
LP list memory to printer 30
S select upper ROM 30
0 toggle lower RAM on/off 30
E memory editor 31
F find string 31
FP find string and print 31
M move memory block 31
R relocate memory block 32
I initialise memory block 32
C compare memory blocks 31
CP compare memory blocks and print 31
X external commands 32
B warm start BASIC 30

(h) Editor Commands page

E enter edit mode 34
L load file 36
LB load file at cursor position 36
S save text 36
SB save block 36
P print text 37
PB print block 37
M modify text 37
MB modify block 37
G go to line 39
F find string 38
R find string and replace 38
T set and clear tabs 38
A assemble text 38
J dump to code 38
X external commands 39
Q quit editor 39

(i) Z80 instructions

mnemonic name operand formats

ADC add with carry A,n A,r HL,rh
ADD add A,n A,r HL,rh
 IX,rx IY,ry
AND and with A A,n A,r
BIT test bit b,r
BRK MAXAM breakpoint -
CALL call subroutine nn cc,nn
CCF complement carry flag -
CP compare to A A,r
CPD compare & decrement -
CPDR block compare & decrement -
CPI compare & increment -
CPIR block compare & increment -
CPL complement A -
DAA decimal addust A -
DEC decrement r rr
DI disable interrupts -
DJNZ decrement B & jump if not zero e
EI enable interrupts -
EX exchange registers AF,AF' DE,HL (SP),r
EXX exchange alternate registers -
HALT halt CPU -
IM set Interrupt mode (do not use) 0 1 2
IN inp u t (do not use A.(n) form) r,(C) A,(n)
INC Increment r rr
IND input & decrement (do not use) -
INDR block input & decrement (do not use) -
INI input & increment (do not use) -
INIR block Input & increment (do not use) -
JP jump nn cc.nn (ra)
JR jump relative c c,e
LD load r,n r,s s,r

A,(nn) A,(BC) A,(DE)
(nn),A (BC),A (DE),A
rr,nn r,(nn) (nn),r

 A,I A,R
 I,A R,A

LDD load & decrement -
LDDR block load & decrement -
LDI load & Increment -
LDIR block load & increment -
NEG negate A -
NOP no operation -
OR or with A A,r
OTDR block output & decrement (do not use) -
OTIR block output & Increment (do not use) -
OUT output (do not use (n),A form) (c),r (n),A
OUTD output & decrement (do not use) -
OUTI output & increment (do not use) -
POP pop register pair rp
PUSH push register pair rp
RES reset bit b,r

RET return from subroutine - cc
RETI return from interrupt -
RETN return from NMI (do not use) -
RL rotate left r
RLA rotate A left -
RLC rotate left with branch carry r
RLCA rotate A left with branch carry -
RLD rotate left decimal -
RR rotate right r
RRA rotate A right -
RRC rotate right with branch carry r
RRCA rotate A right with branch carry -
RRD rotate right decimal -
RST restart (see below)
SBC subtract with carry A,r HL,rh
SCF set carry flag -
SET set bit b,r
SLA shift left arithmetic r
SRA shift right arithmetic r
SRL shift right logical r
SUB subtract from A A,r
XOR exclusive or with A A,r

Key: r means one of A, B, C, D, E, H, L, (HL), (IX+d), (IY-d)
 S means one of A, B, C, D, E, H, L
 d means an integer in the range (-128,127)
 rr means one of BC, DE, HL, SP, IX, IY
 rh means one of BC, DE, HL, SP
 rx means one of BC, DE, IX, SP
 ry means one of BC, DE, 1Y, SP
 rp means one of BC, DE, HL, AF
 ra means one of HL, IX, IY
 n means a single byte constant
 nn means an address or two byte constant
 b means a bit number between 0 and 7

e means an address within the range ($-126.$+129) where $ is the address
of the current instruction

 cc means one of C, NC, Z, NZ, M, P, PE, PO
 C means one of C, NC, Z, NZ
 - means no operands (implicit addressing mode)

Note: with the following instructions the first parameter may be
 omitted if it is A: ADC ADD AND CP OR SBC SUB XOR
 e.g. 'OR B' is equivalent to 'OR A,B’

The RST instructions

The AMSTRAD CPC 464/664 uses the RST instructions to extend the instruction set.
Some of these take parameters which may be entered on the same line. The assembler
also allows the standard form of the RST instruction, without parameters, and in this
case assembles only 1 byte of code. For full details see the Complete Firmware
Specification published by Amsoft).

RST 0 complete system reset
RST 1,nn low jump
RST 2,nn side call
RST 3,nn far call
RST 4 LD A,(HL) with all ROMs disabled
RST 5,nn firm jump
RST 6 BRK - MAXAM breakpoint (calls register display routine)
RST 7 Interrupt

(j) Disassembling to an ASCII file

RUN the following BASIC/assembler program:

10 MEMORY HIMEM-9
20 |ASSEMBLE
30 'patch push ix:call &bc95 ; CAS OUT CHAR
40 ' pop ix:scf:ret
50 'limit &ffff:org &bd2b:jp patch ; redirect MC PRINT CHAR
60 OPENOUT “file”
70 END

All output to the printer now be redirected to “file” until the output stream
is closed (for example, with the BASIC command CLOSEOUT). Executing DP from the
MAXAM menu followed by CLOSEOUT from BASIC will thus produce a suitable file to edit.

 The following code will strip off all characters before the mnemonic field of
the disassembled listing:

100 OPENIN “file”
110 OPENOUT “neweile”
120 WHILE NOT EOF
130 LINE INPUT #9,a$:PRINT #9,MID(a$,26)
140 WEND
150 CLOSEIN:CLOSEOUT

(k) Glossary of terms

ADDRESS

A number representing the position of a byte in memory.

ARNOR
 “The land of the King”. In the Third Age of Middle Earth Arnor was known as the
“lost realm of the North”. The kingdom was re-established by Elessar after the War of
the Ring.

ASCII (American Standard Code for Information Interchange)
 1. The codes which the computer uses to represents letters, digits, punctuation
symbols, etc.
 2. The form of representation of a program using no special tokens, only ASCII
codes.

ASSEMBLER

1. A program which converts assembly language mnemonics into binary machine
code.
 2. Another name for assembly language.

ASSEMBLY LANGUAGE
 The set of mnemonics which correspond to the operations the Z80 processor is
capable of performing.

BINARY

The base 2 number system, in which all numbers are represented using just 2
digits, 0 and 1.

BIT
 A binary digit, 0 or 1.

BREAKPOINT
 A debugging aid. A program stops at a breakpoint allowing you to see whether it
is working correctly.

BYTE

8 bits. The unit of memory usually used for data transfer.

CODE ORIGIN

The address of the start of the object code.

CODE LOCATION
 While assembling, the address where the next byte of code is to be assembled.

COMMAND
 1. An instruction to the assembler which affects the listing in some way.

2. An instruction to BASIC or MAXAM to do something.

CONDITIONAL ASSEMBLY
 A feature of the assembler which allows code to be assembled differently
depending on the setting of variables.

DELIMITER
 A special character which tells the computer where a string starts and ends.

DIRECTIVE
 A instruction to the assembler which affects the object code in some way.

DISASSEMBLE

Convert binary machine code to assembly language mnemonics.

ENTRY POINT

The address to begin execution of a machine code program.

EPROM (Erasable Programmable Read Only Memory)

ROM which can be erased by ultra-violet light and used again.

EXTERNAL COMMAND
 A command provided by one program (e.g. MAXAM) that can be used in another
(e.g. BASIC).

FIRMWARE

1. The operating system.
2. Any program contained in ROM.

HEXADECIMAL (HEX.)

The base 16 number system, where the letters A to F represent 10 to 15.

IDENTIFIER

A string of characters which is the name of a symbol.

INSTRUCTION

In the assembler, a Z80 mnemonic or a directive or a command.

LABEL

A symbol which represents a position within a program.

LISTING
 The output produced by the assembler on the screen or printer, showing the
source code, object code, and addresses at which the code has been assembled.

LOWER ROM

The operating system ROM which resides between addresses 0 and &3FFF.

MACHINE CODE
 A sequence of binary, numbers which the Z80 Processor interprets as simple
operations.

MARKER

In the editor, a pointer to a particular location in the text.

MNEMONIC

A string of characters which represents a Z80 operation.

OBJECT CODE

The machine code program produced by the assembler.

OPCODE

The binary number representing a Z80 operation.

OPERAND

The data which an operation acts on, often a memory address.

OPERATING SYSTEM
 The machine code program which accesses the hardware directly and is called by
user programs using the jumpblocks.

RAM (Random Access Memory)
 The main memory of the computer which can be written to and read from, of which
the Amstrad CPC 464/664 has 64K.

REGISTER

A 1 or 2 bvte memory location within the Z80 processor which is accessed
very, quickly, and is used by Z80 operations.

RELOCATE
 Take a machine code program and change the address references throughout it so
it will run at a different memory address.

ROM (Read Only, Memory)
 Memory which can only be read from. The Amstrad CPC 464/664 has 32K on-board
ROM containing BASIC and the firmware, the ROM version of MAXAM is supplied in a 16K
EPROM.

SIDEWAYS RAM
 Externally fitted RAM residing between address &COOO and &FFFF. It is very
useful for developing software for ROM because it behaves exactly like a ROM.

SIDEWAYS ROM

An upper ROM fitted externally, e.g. AMSDOS, MAXAM.

SOURCE CODE
 The assembly language program, consisting of mnemonics, directives, and
commands.

STORAGE LOCATION
 While assembling, the address where the next byte of code is to be stored. This
is usually, but not always, the same as the code 1ocation.

STRING

A sequence of characters.

SYMBOL

A variable used when assembling.

SYMBOL TABLE

The list of symbols maintained by the assembler.

TOKENISATION
 An operation performed by the BASIC interpreter, converting keywords in the
from of textual strings into single byte numbers, called tokens. This saves memory and
decreases execution time.

UPPER ROM
 A ROM that resides between addresses &COOO and &FFFF. Examples include BASIC,
AMSDOS, MAXAM.

Z80

The central processor (CPU) of the Amstrad CPC 464/664.

Acknowledgement

 We thank George Allen and Unwi,. for permission to quote from "The Lord of the
Rings".

