NOTICE

The Arnor products for the Amstrad CPC and Amstrad PCW are © Copyright 1997-2002 Brian Watson. All rights reserved .

For support and printed manuals for these products please contact Brian at:

BrianWatson,
"Number Sx",
Windmill Walk,
Sutton,

ELY

Cambs

CB6 2NH
ENGLAND

or

brian@spheroid.demon.co.uk

Thismanual has been reproduced with his permission.

Manual scanned by Paul Coallins.
OCRed by Kevin Thacker.

18-August-2002

MAXAM

Z80 Development System

eAssembler
eddlonitor
edkext Editor

AMSTRAD CPC464/CPC664
(C) ARNOR LTD 1985

/// /' [/
Il"ﬁ"'l"l””ll’l

//7] 77
/777 /ﬂ'nuu" 7777177

//
Il"""l”l”'l’ll
NN A i DII’l’

MAXAM ASSEMBLER

Contents
1. VWhat is MAXAM? 4
2. First things first 5
3. Usi ng MAXAM 6
4. Meet the assenbl er 7
5. The assenbler - in detail 9
6. Two applications 26
7. Menu-driven utilities 30
8. The text editor 34
g. Reference section and index 41

Copyright (c) Arnor Ltd., 1985

Al rights reserved. It is illegal to reproduce or transmt either this manual
or the acconpanying conputer programin any famw thout the witten perm ssion of the
copyright holder. Software piracy is theft.

Contact Arnor for details of how to upgrade to the ROM or disc version of MAXAM
- You can return your current version in part exchange.

correspondence relating to Arnor products is wel coned. Specific coments shoul d
quote the version nunber. The assenbler and editor each have a version nunber which is
di spl ayed when they are used. The MAXAM ROM al so has an overall version nunber which
is displayed by typing | HELP.

Publ i shed by Arnor Ltd., P.O Box 619. LONDON SE25 6JL.

Al that is gold does not glitter.
Not all those who wander are |ost;
The old that is strong does not w ther.
Deep roots are not reached by the frost.

From the ashes a fire shall be woken.

A light fromthe shadows shall spring;
Renewed shall be bl ade that was broken,
The crownl ess again shall be king

J.R R Tolkein

1. WHAT IS MAXAWP

MAXAM i s a conprehensive machi ne code devel opnent system written specially for
the Anstrad CPC 464/664. The whole program was carefully designed to conplenment the
excellent Anstrad firmware, and is conpatible with Anstrad BASIC down to the finest
detail. In particular it supports the ability to create hybrid BASIC/ machi ne code
progranms. Z80 source code may for sinplicity be entered as part of a BASIC program

The assenbler itself is perhaps the npbst powerful and the npbst user friendly
currently available on any hone conputer. Although just about every conceivable
feature is included, it is easy for the beginner to get started - nost of the
facilities are optional and the assenmbler wll do something sensible if not
specifically directed.

Debuggi ng nachine code prograns is nmade nuch easier by using MAXAM A speci al
breakpoint instruction is added to the set of Z80 mmenpnics, which allows interactive
debugging fromBASIC with the mi ni num fuss.

MAXAM also includes a full feature screen editor, which can be used for
entering assenbler or BASIC prograns, or as a sinple word processor for witing
letters, reports, etc. The editor produces pure ASCI|I files which YOU can then use
with, for exanple, other editors, |anguages, and CP/Mutilities.

O her utilities provided by MAXAM include: disassenbler, nenory dunp, nmove
bl ock, relocate, find string, conpare blocks, and a powerful nenory editor. Self
expl anatory nenus guide you through using all these commands.

Al parts of MAXAM run in either 40 or 80 columm node. Wen in the 40 colum
node colours are used to make the display clearer: the 80 colum dispay is required
for the full professional assembler listing, and is nore useful for editing.

This manual does not attenpt to teach nmchine code progranm ng, and assunes
basic fanmiliarity with the Z80 assenbly |anguage. If you are a newconer to machine
code programming you will need to consult a book on the subject. Though it may seem
bewi | dering at first, persevere; machine code programming is both rewarding and
enj oyabl e. You have made the right decision to purchase MAXAM- it is the ideal system
for |earning machi ne code.

An essential reference for machine code progranm ng on the Anstrad CPC 464/ 664
is the “Conplete firmvare specification”. published by Anmsoft. This gives full details
of all operating systemroutines that are needed for communication w th the hardware.

About this manual

Section 2 expl ains how to get started.

Section 3 introduces MAXAM s conmands and nentions sone general points.

Section 4 provides a gentle introduction to using the assenbler with exanple
progranms which can be typed in and experinmented with.

Section 5 descri bes every feature of the assenbler in detail.

Section 6 descri bes two application prograns.

Section 7 descri bes MAXAM s utility conmands.

Section 8 describes the text editor.

Section 9 is a reference section with index and glossary. This includes a

conplete list of all the Z80 mmenoni cs.

2. FIRST THI NGS FI RST

ROM ver si on

The ROM version of MAXAM is supplied in a 16K EPROM i n an adaptor. The adaptor
is attached to the edge connector marked 'FLOPPY DISC on the back of the conputer,
and has an edge connector at the back for connecting a disc drive to. Consult the
separate fitting instructions before attenpting to fit the adaptor.

VWhen installed MAXAM is imedi ately available to the user, being automatically
initialised by BASIC. MAXAM uses just 256 bytes of RAM (background ROM wor kspace). You
may find that sone prograns will not run because they need to use this menory. |f so,
enter the command ‘| MAXOFF' . This will cause the machine to be reset as if MAXAM were
not installed.

Di sc version

Reset the nmachine first by typing CTRL-SH FT-ESC. This is inportant.
Insert the MAXAM di sc and type ‘ RUN “MAXAM ' .
You wi Il then be given the option of |oading

(1) the conplete program

(2) the editor only.

(3) everything except the editor.
VWhen | oaded the program will be relocated to the highest possible address in nmenory.
Only as much menory as required is used, so by loading only the editor nore nenory
wi Il be available for text.

Finally you will be asked:
“How many bytes do You want to reserve for code?”
You can just press ENTER in response, in which case no action will be taken. If

a nunber is entered, H MEM is reduced by this nunber to reserve nenory for storing
machi ne code (the use of this is explained in section 5).

The | oader program may be configured to initialise the machi ne however you w sh
(e.g. set colours, program function keys). To do this load the program 'MAXUSER
(which is unprotected BASIC). This contains instructions as to where to insert your
code.

Cassette version

Reset the nachine by typing CTRL-SHI FT-ESC. This is inportant.
Two copies are supplied, one on each side of the tape. To | oad type:

RUN “ MAXAM'

or just RUN “
You will then be asked: “Do you want to |oad the editor?”

If you do not want to use the editor at all answer ‘N . and you will |eave nore
menory free.
Finally you will be asked:
“How many bytes do you want to reserve for code?”

You can just press ENTER in response, in which case no action will be taken. If

a nunber is entered, H MEM is reduced by this nunber to reserve nmenory for storing
machi ne code (the use of this is explained in section 5).

3. USI NG MAXAM

VWen MAXAM is installed, a nunber of commands are added to the system These
are known as external commands and are called fromBASIC by prefixing the conmmand nane
with a vertical bar (SHHFT @. For conpleteness the commands are all listed here.
though they are dealt with in detail in the relevant section.

Conmmands avail able on all versions

MAXAM enter the main MAXAM nenu, from which the text editor and
utility commands are avail abl e.

MAXAM 2 enter the main nenu in node 2.

M same as MAXAM

ASSEMBLE assenbl e Z80 code wi thin BASIC program

ASSEM as ASSEMBLE, suppressing all nessages.

CAT catal ogue files in the sane way as the BASI C command CAT.

CLEAR delete the editor text.

FI ND search for a string in assenbler section of BASIC program

MODE swi tches between nbde 1 and node 2.

SPEED set cassette wite speed.

Commands avail abl e on ROM version only

HELP list all ROV with version nunbers.
HELP, n list conmands for ROM nunber n.
MAXOFF turn of f MAXAM

MSL nove screen nenory | ow.

MsH nove screen nenory high.

ROMOFF turn off sel ected ROVs.

Not e: CLEAR, FIND, and HELP may be prefixed with 'M (for MAXAM. This is in case any
future ROVs use these command names and intercept the command before MAXAM
However, we hope that writers of ROM software will avoid these nanes.

Sonme general points

1. Throughout MAXAM the ESC key works in the same way as in BASIC. This neans

that any operation can be halted by pressing ESC once. Pressing ESC again will abort,
any other key will resune. If MAXAMis trying to send a character to the printer when
the printer is not ready the cursor will be turned on. Either put the printer online.

or press ESC to give up (you nmay have to hold the ESC key for about half a second).

2. The DEL key works in the same way as in BASIC, i.e. it deletes the |ast
character typed.

3. The cursor is disabled when any operation is being carried out. Whenever the
cursor is visible the conputer is waiting for some input. |If no pronpt is given it is
sinply waiting for any key to continue or ESC to abort the current operation. This
again is consistent with BASIC

4. MAXAM uses col our displays when in 40 colum node. The default ink settings
are used. Since one of the default colours is red, which does not show clearly on a
green screen nonitor you may want to change it. For exanple, to change red to bright
green enter 'INK 3,8 from BASIC.

4. MEET THE ASSEMBLER

The aim of this section is to provide a gentle introduction to using the
assenbler. There are two conplete short progranms in this section, wth full
expl anations of what they are doing. Typing these programs in and running them is
reconmended, particularly if you have not used an assenbler before. One or two details
are gl ossed over here and are fully explained in section 5.

There are a couple of points to be noted when typing in these prograns.

(i) Anything may be typed in either upper or |lower case- it makes no
difference at all.
(ii) Take care to enter the single quote character where it appears after a line

nunber. This is the SH FT-7 character.

Program 1 displays the ASCI| character set. The equival ent BASIC programis given.

Program 1(a): Machi ne code Program 1(b): BASIC
10 MEMORY HI MEM 11 10 FOR 1 %32 TO 127
20 start=H MEM+1 20 PRINT CHR$(1%;
30 GOSUB 1000 30 NEXT
40 CALL start
50 END

1000 | ASSEMBLE

1010 'LD A 32 ; first ASCI|I code in accunul ator

1020 ' .l oop ; define a |abel 'l oop'

1030 ' CALL &BB5A ; CALL txt_output, the firmnvare output routine

1040 "INC A ; nove to next character

1050 ' CP 128 ; have we done themall?

1060 'JR C, | oop ; no - go back for another one

1070 ' RET ; yes - return

1080 ' END ; stop assenbl er

1090 RETURN

Line by line explanation of program 1(a)

10 : This reserves nmenory for the machine code routine. In this case 11
bytes are needed.
20 : The BASIC variable 'start' is nade to contain the start address of the
machi ne code routi ne.
30 : The subroutine assenbles the code. It is good practice to put the
assenbl er instructions in a separate subroutine.
40 Calls the (now assenbl ed) machi ne code program
1000 : An external command which calls the assenbler, and causes the assenbly
| anguage instructions In the subsequent |ines to be assenbl ed.
1010 : The machine code program The quote characters tell BASIC that these

lines are conmments, and therefore to ignore them The sem colons tell
the assenbler that what follows is a conment.

1090 : The assenbler returns control to BASIC which returns from the
subrouti ne.

VWhen you run the programyou will notice 2 things. First, when the assenbler is
called it announces itself by displaying a title line which includes the assenbler
version nunmber. Second, on conpletion of the assenbly the nunber of errors and
warnings that occurred is reported. A warning is not necessarily an error, just a
message from the assenbler suggesting that you might have nmeant sonething else. Any
errors that occur are explained in plain English - you never have to |ook up error
codes.

Program 2 reads a character from the current cursor position on the screen,
returning its ASCII code in a BASIC integer variable. The coordinates required are the
same as those used by the BASIC LOCATE statemmt. If no recogni sable character is
found zero is returned.

Program 2

10 MEMORY HI MEM 50

20 GOSUB 1000

30 rdchar =H MEM+1

40 char %0 ‘ BASIC variable to return character in
50 | NPUT “Enter screen position:”, X,y

60 ol dx=POS(#0) : ol dy=VPQOS(#0)

70 LOCATE x,y

80 CALL rdchar, @har%

90 LOCATE ol dx, ol dy

100 PRI NT

110 PRINT “The character code found was “;char%” which is “; CHR$(char %
120 END

1000 | ASSEMBLE

1010 "dec a:ret nz ; return if no paraneter supplied

1020 "Id 1, (ix) get |low byte of @har%

1030 "Id h, (ix+1) get high byte of @har%

1040 "call &bb60 firmvare routine TXT RDCHAR

1050 "I'd (hl),a put character in char%
1060 "inc hl:1d (hl),0 zero in high byte of char%
1070 "ret

1080 "end

1090 RETURN

5. THE ASSEMBLER - | N DETAI L

Program f or mat

The program to be assenbled consists of a sequence of statenents. Each
statenment has the format:
<l abel _field> <instruction_field> <comment _fi el d>

One line may contain several statenents, separated by colons, just as in BASIC.
A statement is made up of the three parts shown above, each of which may be enpty. The
comment field, if present, nust start with a semcolon- the effect of a semicolon is
that the assenbler will ignore all characters until the next colon or end of line. ©
all ow colons in comments use two sem colons together. All characters to the end of the
line are then ignored.

Instructions and nanes used in the source code may be typed in upper or |ower

case. Thus 'START', 'start' and 'Start' all refer to the same |alel.

The |abel may be preceded by a full stop. This tells the assenbler tnat what
follows is a label. If there is no full stop the assenbler will attenpt to recognize a
Z80 instruction or assenbler directive, and if it fails will take the first itemas a

| abel . Labels nmust begin with a letter and can be any | ength.

Thus to use a Z80 instruction as a label it nust be prefixed with a full stop.
e.g. '.halt'.

A warning nmessage is given if a label that is not preceded by a full stop
starts with the nane of a menpnic or directive. So if you accidentally |eave out a
space (e.g. by typing ‘inca' instead of ‘inc a') the assenbler will warn you. Putting
inthe full stop will prevent the warning nmessage if you neant to declare a | abel.

Using the assenbler fromBASIC

MAXAM can be used in two ways; either by entering Z80 source code as part of a
BASI C program or by using the full screen editor. The editor is left to section 8.

The assenbler is called fromw thin a BASIC program by the comrand ' | ASSEMBLE' .
It will then read Z80 assenbly |anguage instructions fromthe subsequent |ines of the
BASIC program The lines cannot be entered directly, because BASIC would attenpt to
tokenise the line. So every line of Z80 code nust begin with a single quote.

e.g. 100 'LD A 10
Source code nay be entered on the sanme |ine as | ASSEMBLE:
e.g | ASSEMBLE: ' I d a,”?":jp &bb5a
This can be executed in direct node.
The quote character tells BASIC to treat the line as a comment, and so

conpletely ignore it. At the end of a section of macine code - which is automatically
detected by the assenmbler when it finds a line without a quote BASIC resunes execution
at the line follow ng | ASSEMBLE. The assenbl er source code will then be skipped over,
and BASIC lines after the assenbler lines will ke executed.

Any nunmber of sections of assenbly |anguage nay be contained within a program
each preceded by |ASSEMBLE. It is good practice to put each assenbler section in a
separate subroutine as in the exanple progranms in this manual.

Correcting errors

The program can be edited in exactly the sane way as any BASIC program If a

quote is accidentally missed out in an assenbler section the assenbler will termnate
and BASIC will attenpt to execute the line. This will alnpbst certainly give a syntax
error, and BASIC will enter the line editor - allowing the correction to be nade very
easily.

The | FIND conmand

FI ND is autility included to speed up programediting. Type '|FIND and you
will be asked for a string to find. Al occurrences of the string inlines beginning
with a quote character will be found and the |line nunber displayed in each case. This
is designed for finding occurrences of a particular synbol in a assenbly |anguage
program and does not work with BASIC variabl es because of the unusual wy that BASIC
tokenises its lines.

The maxi mum string length is 17 characters.

Debuggi ng and breakpoints

Debuggi ng machi ne code programs is made nuch easier by using MAXAM and can be
done fromBASIC - there is no need to learn to use a |ot of conplicated conmands.

This is achieved by allow ng breakpoints to be placed anywhere in the program
A breakpoint is a special instruction which, when executed, causes a subroutine junp
to a routine which displays the values of the Z80 registers and di sassenbl es te next
instruction to be executed. By examining the values held in the registers you can see
whet her the programis working correctly. |If not, press ESC to return to BASIC, check
the program nmake the necessary correction, reassenble and try again. If the
registers are correct press a key and execution will continue to the next breakpoint
or the final RET instruction.

The menonic for a breakpoint is 'BRK .

In fact, BRK is the same as RST 6, which nmeans that if you intercept RST 6 for
your own purposes a BRK instruction will cause your routine to be executed instead of
the MAXAM br eakpoi nt routine. Reset the machine to restore MAXAM s routi ne.

Look at program 1(a) again and add the follow ng |ine:

1025 * BRK

Now when the programis run the registers will be displayed every tinme the |oop

i s executed.

Runni ng hybri d BASI C/ nachi ne code prograns

If ESC is pressed while assenbling, then whether assenmbly is aborted (by
pressing ESC again) or not, BASIC will wait afte conpletion of the assenbly as if ESC
had been pressed once. Thus to abort the assenbly and stop the BASIC program ESC
shoul d be pressed 3 tines.

I nvisible assenbly, the | ASSEM conmand

VWhen a program has been fully debugged it may be desirable to assenbl e the code
wi t hout the assenbl er displaying any nessages. This can be done by replacing | ASSEMBLE
with |ASSEM The effect is to suppress all output from the assenbler except error
nessages.

Assenbl er error nessages

Whenever an error occurs during an assenbly the offending line is listed, a leep
is sounded, and a self explanatory nessage is displayed.

There are 3 degrees of severity of error that can be produced by the assenbler.
The npbst serious is 'fatal error' which causes the assenbler to give up inmmediately.
There are 10 different fatal errors, and they are listed in the reference section.

Wth one exception ('Code limt exceeded') fatal errors are reported on the first
pass. All other errors are reported on the second pass, and do not cause the assenbler
to give up. Instead the nunmbers of each type are counted and the total nunbers are
printed when the assenbly is finished.

The | east serious is '"warning'. A warning nessage is given for sonething which can
be assembled but it is likely that the programmer neant sonmething different. This
occurs in the foll ow ng cases:

1. A label not preceded by a full stop starts with the name of a Z80 mmenonic or

assenbl er directive or conmand. e. g. | NPUT.

2. An expression evaluates to nore than 8 bits, when an 8 bit value is required.

e.g. LD A 300. Note: a warning is not given if the high order 8 bits are all
1, so e.g. LDC-3 is allowed.

3. Spurious text is found after the statenment has been correctly assenbled. This

may be the result of mssing out a colon or semicol on.

Al other errors are labelled "error'. |f any occur the program will have to be
re-assenbled before calling the nmachine code. If any errors or warnings occur the
BASI C program wi || be stopped. This avoids any possibility of calling a routine which
was assenbl ed incorrectly.

VWere to store the object code

VWhen writing machine code progranms great care nust be taken to store the code in a
section of menory not used by anything else. MAXAM provides a convenient and useful
way to do this.

Consi der the nenory map of the conputer's RAM

Addr ess
0 Fi r mvar e wor kspace
40 Background ROM wor kspace
(40) BASI C i nput buffer
(170) BASI C program area
BASI C vari abl es
*oxx free nenory (shrinks as program grows) ***
BASI C strings
HI MEM+1 *oxx free nenory (reserved by altering H MEM ***
(A578) User defined characters
MAXAM code and wor kspace (disc and cassette versions)
(A5F8) Background ROM wor kspace, includi ng MAXAM and AMSDOS
AC00 BASI C wor kspace
B100 Fi r mvar e wor kspace
Co00 Screen nenory

Addresses given in brackets are for a machine with AMSDOS and the MAXAM ROM
but no other ROMs. They should not be used in prograns.
The nost useful address on this map is HHMEM BASIC will only use nenory bel ow
HI MEM for program and variable storage. So the best place to put nachine code progranms
is above HMEM To do this sinply reduce H MEM
e.g. MEMORY HI MEM 100
This will reserve 100 bytes. which will not be touched by BASIC.

Notes: (i) It is often convenient to reserve the required amount of nmenory fromwthin
a program The MEMORY statenent can of course be included in a program
but this has the disadvantage that each time the programis run H MEM
wi Il be reduced further. A possible solution Is as follows:

10 GOTO 30
20 MEMORY HI MEM - 100
30 REM rest of program
Use RUN 20 the first time the programisrun, and RUN thereafter.
(ii) If you need the SYMBOL AFTER statement it must be used before setting
H MEM Apart fromthis restriction H MEM can be changed at any tine.

This method of reserving nenory for object code is strongly recomended. Two
features are built into the assenbler which nake the above procedure both safe and
easy to use. These are:

1. In the absence of a directive telling the assenmbler where to put the code it
will automatically store it inmediately above H MEM

2. The assenbler will check that the object code does not overwite the user
defined synmbols area, the background ROM workspace or (in the case of the disc or
cassette version) the MAXAM code. If there is insufficient space to store the conplete
machi ne code program the error nessage 'Code limt exceeded' will be given. If this
occurs reduce H MEM and try again.

The ORG directive

The above nechanismis ideal for testing virtually all prograns, but sonetines
a program is required to execute in a different part of nenmory. The ®G directive
tells the assenbl er what address to use. There are 2 forns:

Synt ax: 1. ORG <expressi on>
2. ORG <expressionl> , <expression2>
Wth the first formthe assenbler will evaluate the expression, and use this as

the 'Code origin' (i.e. the address where the code is to run). The assenbl ed code will
be stored starting at this address.

Oten it is not possible to store the code at the address where it is to run,
because it is being used by sonething else (e.g. MAXAM or BASIC). In this case use the
second form The assenbler will evaluate both expressions, set the code origin to the
first, but store the code at the second address (the 'storage location'). This is
usually only necessary when a programis fully debugged, and is to be saved and run
fromdisc or tape.

Not es: (i) Any nunber of ORG directives may be used.
(ii) The expressions may not contain undefined synbols.

The LIMT directive

If an ORG directive is used the assenbler still cheeks for the code overwiting
the user defined characters. The way it does this is by keeping an internal variable
called 'LIMT , which is set to the highest byte of menory available for storage of
object code. Initially this is set to the address of the byte just below BASIC s user
defined character buffer. However it can be set to any val ue:

Synt ax: LIMT <expression>

Three uses of the LIMT directive:

1. To prevent menory used by sonething el se being overwitten.

2. Wen witing a programwith a fixed maxi mum size (e.g. the size of an EPROM .

3. Many programs will intercept firmvare routines (see the Ansoft dicunmentation for
details of how to do this). The firmmvare junp blocks are higher in nmenmory than the
default LIMT, so the LIMT directive nust be used before it is possible to assenble
directly into the firmvare junp block. 'LIMT &FFF will allow assenbling in any area

of menory.
Not es:
(i) LIMT only affects storage of code In nenory, not the code location (if
this is different).
(ii) The checking is only done on pass 2, since code is only stored on pass

2.

NOCODE and CODE

Synt ax: NOCODE
Synt ax: CODE

Occasionally it is useful to assenmble a program without storing any code -
perhaps just to check that it assenbles correctly, or to assenble a snall routine
which is to be input in hexadecimal (maybe on anothe conputer). The directive NOCODE
achi eves this. The directive CODE cancels the effect of NOCODE, and causes storage of
obj ect code to be resuned.

The END directive
Synt ax: END

The END directive sinply tells the assenbler to stop. It nmay be omtted. Mt
has two uses:

1. To avoid assenbling the whole program- tenporarily put in an END directive.

2. END causes the storage location to be output in the listing. A useful ploy
is to put 'LIST:END as the last line of source code so you can see where the ad of
the programis.

Expr essi ons

Arithnetic expressions may be used throughout the assenbl er - wherever a nunber
is required. This includes operands of Z80 instructions and assenbler directives. The
expression evaluator works fromleft to right and allows the foll ow ng:

NUVBERS:
1. decimal constants. e.g. 132.
2. hexadeci mal constants. e.g. &BB5A or #2A. Either & or # nmy be used for
conpatibilty with BASIC and the firmvare docunentati on.
3. binary constants. e.g. %011101
4. character constants. e.g "A,"3",'"'. Either single or double quotes
may be used - to specify a quote character enclose it in the other type of quote. The
value of a character constant is the ASCII code of the character, so “3” is the sane
as #33. A null character constant,”” has the value 0.
5. an identifier.
6. one of the two special synbols:
$ represents the current code | ocation (program counter).
@represents the current storage |ocation.

OPERATORS:
1. Arithnetic operators +,-, *, /, MOD.
2. Bitwi se |logical operators AND, OR, XOR.

Al'l expressions are evaluated to 16 bit unsigned integers. Overflow is ignored,
and the least significant 16 bits of the result is used.

Synbol s

The assenbl er keeps a table of synbols, each with an assigned 16 bit value. A
Synmbol is simlar to a BASIC variable. The assenbler makes two passes; on the first
pass it sets up the synbol table and on the second pass it creates the object code
using the synbol table to calculate junp addresses etc. On the first pass, whhen a
symbol that has not yet been defined is referred to it is put into the symbol table.
The value is filled in when the synbol is defined. These forward references nust all
be resolved on the first pass; error nessages wll indicate any synmbols that renained
undefined. No synbol nay be assigned different values on the two passes - if this
occurs the assenbler nmay generate nmany errors.

There are some assenbler directives which do not allow any forward references
because the expression value nust be known on pass 1. These include O& - the code
origin nust be well-defined for it would otherw se be inpossible for the assenbler to
generate the correct symbol table. The full list of these directives is given in the
reference section.

An identifier is the name of a synbol. Valid identifiers nust satisfy the
follow ng rules:

1. the first character nust be a letter.

2. The other characters may any of: letter, digit, question mark (?), full stop
(.), underline (_).

There is no length restriction, nor are there any reserved words.

4 ways to define a synbol

1. As a label. This is an identifier at the start of a statement, possibly
preceded by a full stop. The synmbol is assigned the value of the current code
| ocati on.

2. By the EQU (equate) directive.
<identifier> EQ <expressi on>
The synbol is defined and assigned the value of the expression, which nust be
wel |l -defined (i.e. contain no forward references). |If the synbol is already defined an
error nessage will be given (unless the old value and the new are the same). In other
words, EQU may not be used to redefine a synbol.

3. By the LET directive.
LET <identifier> = <expressi on>
This has the sane effect as EQU except that LET allows redefinition of synbols.
Note: for conpatibility with other assenblers this may be witten
<identifier> DEFL <expression>.
4. By the GET directive. See section on GET and PUT.

Putting data into the object code

The 3 directives explained in this section cause data to be assenbled at the
current code location. In all cases both the code l|location and storagelocation are
i ncrement ed.

BYTE <list of expressions and strings>
TEXT <list of expressions and strings>

BYTE and TEXT are different nanes for the sanme thing. They take a list of
paraneters, each of which can be an arithnetic expression or a text string Each
expression is evaluated and the result put in the objecr code. Each string is sent
directly to the object code, character by character. Strings nay be enclosed in either
single or double quotes; if the closing quote is omtted the string is assunedto be
the rest of the line.

Note: a single character string is considered a nuneric constant. expressions
such as “A"+&80 are al |l owed.

Exanpl es: BYTE 1,3,count*3+1,"q” or 128

TEXT “A string ending with cr-1f",13,10

WORD <list of expressions>

Each expression is evaluated and the 2 byte result put in the object code,
| ow byte first.
Exanpl e: WORD &C000, addr ess

RMVEM <expr essi on>

RVMEM causes the assenmbler to reserve the specified nunber of bytes of nenory.
Both the object code and the storage locatim are increnented by the value of the
expression. The reserved space is filled with zeros. The expression may not contain
forward references.

Exanpl es: . buf fer256 RMVEM 256

.word RMVEM 2

Occasionally the reserved space needs to be filled with a value other than
zero. This can be done by giving a second expression paranmeter. The space is filled
with the least significant byte of the expression's val ue.

Exanpl e: RVEM &200, &FF

Conpatibilty with other assenblers:

The followi ng alternarive directive nanes are all owed:
DEFB, DB, DEFM... same as BYTE, TEXT.
DEFW DW C sane as WORD.
DEFS, DS C sane as RVEM

GET and PUT

GET and PUT are the two directives used to pass paranmeters between a BASIC
program and the assenbler at the tinme of assenbly. Usesfor this include:

1. passing the address where code is to be stored.

2. passing variables to control conditional assenbly.

3. returning entry point addresses to BASIC.

To use these directives, a list of parameters is appended to the | ASSEMBLE
conmand, separated by conmas.

e.g. | ASSEMBLE, start, x, @Gtartl

Each paraneter nust be either a BASIC nuneric variable or constant, or the
address of a BASIC nuneric (integer or real) variable (e.g. @tartl).

The GET directive is used within the assenbler program toread the val ues of
these paraneters.

Synt ax: GET <list of identifiers>
So a GET directive corresponding to the paraneters |ist exanple above could be:
GET start, x, start_adr

The effect of this is just to assign the 2 byte values to the synbols listedin
the GET Instruction. The nanes chosen have no connection with the names of the BASIC
variables, but it is a good idea to use the sanme nane to avoid confusion. There is no
need to read all the values with a single CET. so the following is equally good:

GET start
GET X, start-adr

An error nmessage will be given if an attenpt is nmade to GET a paraneter when

there are none left.

Exanpl es of use of GET

1. To pass an address to the assenbler.

10 GOSUB 1000
20 CALL start
30 END
1000 start=H MEMHI
1010 | ASSEMBLE, st art
1020 ' CET start
1030 'ORG start
1040 ‘; source code follows here

1999 RETURN

The value of H MEM+l is assigned to the BASIC variable 'start' and passed to
the assenbler which GETs it into the assenblytinme variable 'start' and sets the code
origin to that value. Later, BASIC executes the statement 'CALL start' to call the
machi ne code routi ne.

Note: in this exanple CGET is not necessary, but adds to the clarity of the
program Since the assenbler sets the code origin by default to H MEMtl the above
programis equival ent to:

10 | ASSEMBLE
20 ‘; source code follows here
900 CALL HI MEM+1

2. To pass variables for conditiorial assenbly.
See the section on conditional assenbly.
3. To return entry point addresses to BASIC.

Oten a machine code program has nore than one entry point. The sinple use of

GET only allows calling the start of the code, but by using PUT as well, any nunber of
addresses can be returned to BASIC.
Synt ax: PUT <expressi on> . <expression>

The action of PUT is to assign a value to a BASIC variable (integer or real).
However the nanes of BASIC variables nean nothing to the assenbler so a nore
conplicated method is needed to achieve this. This is the procedure that nust be
f ol | owed:

1. Create the BASIC variable by, for exanple:

entry=0

2. Pass the address of the variable to the assenbler:

| ASSEMBLE, @ntry

3. CET the address into an assenbl er vari abl e:

GET entry_adr
4. (Optional but reconmmended for clarity). At the entry point of the code
define a | abel:
.entry
5. PUT the entry address into the BASIC vari abl e:
PUT entry-adr, $
or PUT entry_adr,entry

PUT is simlar to the BASIC command POKE. In that it takes a value and stores
it in a specified nenory address. The difference is that POKE takes a single byte
val ue, whereas PUT takes a two byte value and converts to floating point if necessary.

Warning: PUT may only be used with a variable reference as the first paraneter.

Note: GET is an assenbly-tinme facility. Paranmeters that change each tine the
routine is called should be passed with the BASIC ' CALL' statement, as illustrated by
program 3.

Program 3 : illustrating the use of PUT

10 GOTO 30 ‘ RUN 20 the first time to reserve nmenory
20 MEMORY HI MEM 100

30 GOsSUB 1000

40 CALL hexout2,7

50 PRI NT
60 CALL hexout 4, &le2b
999 END
1000 REM machi ne code routines to output hex nunber
1010 hexout 2=0: hexout 4=0 ‘ variables to hold entry addresses

1020 | ASSEMBLE, @exout 2, @exout 4
1030 ' GET hexout2_ref, hexout4_ref
1040 ' LET t xt out put =&BB5A

1060 '. hexout4 PUT hexout4_ref,$

1070 ' LD A (I X+1) ; get high byte of paraneter
1080 ' CALL hexout 2 ; output in hex

1090 ' LD A (1X) ; get |ow byte

1100 ' CALL hexout 2 output it

1110 ' RET

1120 '

1130 ' PUT hexout2_ref, $

1140 ' LD A (IX) ; get (low) byte
1150 ' . hexout 2

1160 ' PUSH AF ; save A

1170 ' RRCA: RRCA: RRCA: RRCA
1180 ' CALL hexout1l

1190 ' POP AF

1200 '. hexout 1

shift right 4 bits
out put high order hex digit
restore A and output 2nd digit

1210 ' CALL binasc ; convert binary to ASCl
1220 ' CALL txtout put ; output ASCII| character
1230 ' RET

1240 '

1250 ' . bi nasc

1260 ' AND &F ; mask out top 4 bits

1270 ' ADD A, &30
1280 ' CP &3A
1290 ' RET C
1300 ' ADD A 7

convert decimal digits to ASCl
is it deciml?

yes, so we've finished

no, so it's hex between A and F

1310 ' RET
1320
1330 ' END

1340 RETURN

Not e: the CALL statenent sets up the registers as follows:
A = the nunber of paraneters
I X = the address of the paraneters.
Al'l other registers undefined

The paraneters are listed in reverse order, |low byte first.

Condi ti onal assenbly

Conditional assenmbly is used when two or nore versions of a program are needed
(e.g. cassette version and disc version). This feature enables any nunber of differat
versions to be assenbled fromthe same source code

This is done by defining blocks of source code that are to be assenbled only if
sone condition holds. The formats of |F blocks are

1. I F <expressi on>
<code to be assenbled if expression is true>
ENDI F

2. I F <expressi on>
<code to be assenbled if expression is true>
ELSE
<code to be assenbled if expression is fal se>
ENDI F

The expression nmay be any arithmetic expression. In this context the value of
the expression is considered to be a signed 16 bit nunber, with 'true' represented by
any positive nunber (i.e. between 1 and 32767) and 'false' by zero or any negative
nunber .

The recomended use is to define a variable which holds the value 1 for true
and 0 for false

Exanpl e: suppose a program comes in two versions, for cassette and disc, and
there are a few differences between the two. Define a variable at the start of the
source code

LET cassette=l ; to assenble the cassette version
LET cassette=0 ; to assenble the disc version

Then encl ose each section where the code differs in an IF block, as follows:

| F cassette

<code for cassette version>
ELSE

<code for disc version>
ENDI F

Testing inequalities

Oten a program is required to fit into a fixed number of bytes. The IF
directive allows the assenmbler to test the current code |ocation against the highest
avail able location and act accordingly. (Note: the LIMT directive only tests the
storage | ocation).

Exanpl e: labels ‘start’, and 'end' are declared. The length of the program nust
not exceed 'maxlength'. which is passed as a paraneter
1000 | ASSEMBLE, max| engt h

1010 * GET maxl ength
1020 ‘.start
<code here>
1900 '.end
1910 "I F end-start-maxl ength ; true if end-start > nmaxlength
1920 ‘ PRI NT” Code too |ong!”
1930 ‘ ENDI F

1940 RETURN

Logi cal operators

AND, OR and XOR may be used with care in |IF directives. These are bitw se
| ogical operators, and will work as expected if true is only represented by 1 and
false only by 0. So if variables which only ever hold the values 0 or 1 are used the
usual results hold (1 ORO is true, 1 ANDO is false, 1 XOR 1 is false, etc.)

Exanpl e: | F cassette_version AND English_version

Warni ng: although 1 and 2 both represent true, the expression 1 AND 2 eval uates
to 0 (i.e. false).

| FNOT

For conveni ence | FNOT nmay be used instead of IF. It sinply reverses the logic
of the IF directive
| FNOT <expr essi on>
<code to be assenbled if expression is fal se>
ELSE
<code to be assenbled if expression is true>
ENDI F

Nesting | F bl ocks

I F blocks may be nested up to a depth of 10. It is, however, unusual to need
nesting deeper than 2 |evels.
Exanpl e:
I F romverclon
<ROM code>
ELSE : |F disc_version
<di sc code>
ELSE
<cassette code>
ENDI F
ENDI F

I F1, 1F2

These special forms of the |F directive return the value '"true' on @mss 1 and 2
of the assenbly, respectively. They may be of sone use for printing different nmessages
on each pass, but Z80 instructions and directives should not be placed within an IF1l
or | F2 bl ock.

Readi ng source code froma file

Synt ax: READ <fil ename>

When the assenbler finds a READ directive it will open the specified file (on
the currently selected input filing system, assenble the contents of the file, and
then return to the line in menory follow ng the READ directive.

The file may be a BASIC file (tokenised or ASCII format) or a text file
(produced by the MAXAM editor, or a word processor). The first nonblank character
after the word ' READ is taken as the filenanme delimter.

Only one file may be opened at any time. Thus the READ directive it®lf nmust be
in menory. |If the entire programis contained in one file the programin nmenory can be
as sinmple as | ASSEMBLE: | READ'fil e”.

Using READ with cassette

The file will be read on each pass of the assenbler, so it will be necessary to
position the tape correctly for each pass. (It may be easier to record the source code
file twice on the tape to avoid the need to rewind). If several files are being used
the PRINT comand can be useful to display a nmessage saying which file is required. If
the filename is omtted the first file found on the tape will be used.

A useful hint

If the program is split between several text files it is helpful for the
assenbler to print the name of each file it reads. This is easily acconplished by
making the first line of each file sonething |ike:

1 PRINT “<nane of file> <dat e>"

This is also useful when editing: without a nane at the top of a file it is
easy to forget which file you are editing.

The nunmber 1 causes the assenbler to reset its line counter to 1. This neas
that error nmessages will give the correct physical line nunmber within the file where
the error occurred. The editor has a conmmand to nobve to a specified line, so using
these features together speeds up debuggi ng.

Witing object code to a file

Synt ax: WRI TE <fil ename>

The WRITE directive tells the assenbler to create a binary file, and store all
subsequent object code in the file (unless disabled with NOCODE).

Disc users only: if the filenane has a ‘.COM suffix a CP/Mobject file will be
created, which is directly executable under CP/M The code origin nust be defined by
"ORG &100'. Such a file is not in binary format, so cannot be used under AMSDOCS.

Synt ax: CLOSE

The CLOSE directive tells the assenbler to close the currently open output file
and resume storage of code in nenory. CLOSE may usually be omtted since the file is
automatically closed at the end of the assenbly or by a new WRI TE directive.

Exanple: to read source fromone file and wite to another
WRI TE “object” ; note WRI TE before READ
READ “source”

Assenbl er conmands

Commands control the listing and output produced by the assenbler. They do not
appear on the assenbly listing thenselves unless a |label is attached to the command or
there is an error in the command.

LI ST
NOLI ST

LI ST turns on the assenbler listing. This is the initial state. NOLIST turns off the
assenbler listing.

PRI NT <strinz>

The string is displayed on the screen, even if the listing is turned off. The
first non blank character after the word 'PRINT' is takenas the string delimter.

PAUSE

The assenbler will wait until a key is pressed. PAUSE only operates if listing
is enabled. It allows part of a long listing to be exam ned. PAUSE may be useful
imedi ately after a PRI NT conmand.

DUWP

If a DUMP command appears anywhere in the program when listing is enabled a
conplete list of all defined synbols with their values in hexadecimal w |l be produced
when the assenbly has finished. The order is not strictly alphabetical, but all
synbol s beginning with the sane letter are listed together. This is a consequence of
the way the assenbler stores the synbols - a nmethod chosen for speed and econony of
nenory.

An exanple listing

ARNOR Z80 ASSEMBLER version 1.05

00001 0000 ; patch to prevent line feeds going to printer
00002 0160 (0160) org &160 ; in BASIC buffer
00003 0160 (FPFF) limt &FFFF
00004 0160 (BD2B) nmcprint char

equ &BD2B
00005 0160 FE OA .patch cp 10
00006 0162 37 scf
00007 0163 Cc8 ret z ; ignore line feeds
00008 0164 CF F2 87 rst 1, &7F2; print character
00009 ; 464 only - on 664 use ‘rst 1, &80B
00010 BD2B (BD2B) org ncprint char
00011 BD2B C3 60 01 JP patch ; change vector
00012 BD2E (BD2E) end

Errors: 00000 Warnings: 00000
SYMBOL TABLE:

BD2B MCPRI NTCHAR 0160 PATCH

The 7 Parts OF the listing

1. Line nunber.

If the source code is within a BASIC program the BASIC |line nunmber wll be
printed. This allows easy location of errors because when an occurs the offending |line
is listed together with the |ine nunber.

If the source code is in ASCII format the assenbler will look for a [Iline
nunber at the start of the line (in decinal) and if it finds one use this. Oherw se
it will count the lines.

Note: the line nunbers refer to physical lines; colon separators do no change
the line nunber.

2. Code | ocation.
3. Obj ect code.

Up to 4 bytes per line. Directives nmay cause nore than 4 bytes to be assenbl ed,
in which case the object code will be listed on nore than on line. 4 bytes to a line.
4. Label field.

5. Instruction field.
6. Operand field.
7. Comment field.

Note: this refers to the listing in 80 colum node. In 40 colum node the line
nunber is omtted and the other information is given in a condensed format using a
col our coding schene.

Several directives cause a nunber to be printed after the address in

parentheses (as in lines 2, 3, 4, 10 and 12 in the above exanple). The directives and
the meaning of the nunbers are as follows:

END . the storage location.

EQU : the val ue assigned.

GET . the value of the | ast paraneter read.

I F : the value of the conditional expression.
LET . the val ue assi gned.

LIMT : the limt set.

ORG . the storage location.

PUT : the val ue assigned.

RVEM . the nunber of bytes reserved.

Listing to the printer

LIST P
Turns on listing to the printer.
Exanpl es:
(i) To list to the screen and printer
LI ST:LIST P

(iii) To list to the printer only
NCLI ST: LI ST P

PLEN <expressi on>

Wthout a PLEN command the listing is continuous with no page breaks. PLEN
defines the nunber of lines per page. To use this mke sure the printer is at the top
of the page (exactly where the first line is to be printed). Set PLEN to the exact
nunber of lines per page. This is not the nunber of lines to be printed- a few bl ank
lines are automatically left at the bottom of the pac.

The val ue of the expression may be either 0 or between 40 and 255. PLEN O tells
the assenmbler to revert to continuous |isting.

Exanpl es: PLEN 66 for 11" paper
PLEN 72 for 12" paper

PAGE (<expression>)

The command PACGE causes a page eject. The page length will be used to calcul ate
the nunber of blank lines to be printed so the new pace starts at the right place on
the paper.

The expression is optional. If supplied this will be used as the new page
nunber. This may not exceed 255. |f no nunber is given the page nunber will be one
nore than the previous page nunber.

PAGE is ignored if listing is disabled.

TITLE <string>

This defines a title to printed at the top of each page. For this to be printed
on the first page, the TITLE command nust appear before the first directive or
menonic. The title will be printed starting in colum 1, so to centre the title
include the necessary nunber of spaces in the string.

TITLE with no string will cancel the titling option, whereas TITLE'" wll give
a blank title line.

The first non blank character after the word 'TITLE is taken as the string
delimter.

W DTH <expressi on>

This sets the nunber of characters per line in the listing. The default setting
is the current screen width (40 or 80), but it may be set to any val ue between 40 and
255. WDTH 0 causes the default setting to be
restored.

Exanpl e: W DTH 132

6. TWO APPLI CATI ONS

Program 4
10 REM a nmachi ne code routine to nove a block of nmenory
20 REM al l owi ng for overl appi ng areas of nenory
30 REM RUN 50 the first time to reserve nenory
40 GOTO 60
50 MEMORY HI MEM - 100
60 mov=H MEMt1
70 GOSUB 1000
80 REM a silly exanple call. nmoving the screen nenory along a bit
90 first=&C000 ‘start of block to nove
100 | engt h=&3FF0 'l ength of bl ock
110 dest=&C010 ‘address to nmove block to
120 CALL nov, first, | ength, dest
130 END
1000 | ASSEMBLE, nov
1010 ' get nove ; get start address
1020 ' txt_output equ &bbb5a ; firmvare entry point
1030 '
1040 ' org nove
1050 ' cp 3 ; check nunmber of paraneters
1060 ' jr nz,error ; wrong nunber
1070 ' 1d e, (ix) ; dest, |low byte
1080 ' Id d, (ix+l) ; dest, high byte
logo ' 1d c, (ix+2) ; length, |ow byte
1100 ' Id b, (ix+3) ; length, high byte
1110 ' Id 1, (ix+4) ; first, low byte
1120 ' 1d h, (ix+5) ; first, high byte
1130 ' push hl ; save it
1140 '
1150 ' or a ; clear carry ready to subtract
1160 ' sbc hl,de ; conpare first with dest
1170 ' pop hl ; restore first
1180 ' jr c, noveb ; junp If dest >= first
1190
1200 ' Idir ; move bl ock
1210 ' ret
1220 '
1230 ' noveb ; here if need to nove backwards
12&0 ' ex de, hl ; dest in hl
1250 ' add hl, bc ; add length
1260 ' ex de, hl
1270 ' dec de ; de now = end address
1280 ' add hl, bc
1290 ' dec hl ; hl to end of first block
1300 ' |lddr ; move bl ock
1310 ' ret
1320 '
1330 'error
1340 ' call txtout ; print error nessage
1350 ' text “Wong nunber of paraneters”, 13,10,0

1360 '

ret

1370 '

1380 't xtout

1390 ' pop hl ; get address of message
1400 ‘txt1l
1410 * 1d a, (hl) ; get character
1420 * call txt_output ; output it
1430 * inc hl ; move to next
1440 * or a ; test accunul ator
1450 * jr nz,txtl ; continue until zero
1460 * jp (hl) ; return
1470 °
1480 * end
1490 RETURN
Program 5(a)
This is a BASIC programto fill a triangle on the screen. A direct translation

to machine code is given below. Try them both. and conpare the speeds!

10 REMtriangle fill - BASIC
20 INPUT “Enter triangle coordinates:”, x|,y ,x2,y2,x3,y3
30 CLS

40 I F yl>y2 THEN t=yl:yl=y2:y2=t:t=xl:xl=x2: x2=t
50 I F y1>y3 THEN t=y1:yl=y3:y3=t:t=xl: x| =x3:x3=t
60 I F y2>y3 THEN t=y2:y2=y3:y3=t:t=x2: x2=x3: x3=t
70 FOR h=0 TO y2-y1
80 MOVE x|, h*(x2-xl)/(y2-yl),yl+h
90 DRAW xI, h*(x3-x1)/(y3-yl).yl +h

100 NEXT

110 FOR h=0 TO y3-y1

120 MOVE x2, h*(x3-x2)/(y3-y2),y2+h

130 DRAW xI, (h+y2-yl)*(x3-xl)/(y3-yl),y2+h

140 NEXT

Program 5(b)

10 REM triangle fill - machine code
20 REM RUN 40 the first tine
30 GOTO 50

40 MEMORY HI MEM 600
50 GOSUB 1000
60 I NPUT “Enter triangle coordinates: “,xl,yl,x2,y2,x3,y3
65 yl=y1/2:y2=y2/2:y3=y3/2 ‘' convert coordinates
70 CLS: CALL tfill,xl,yl,x2,y2,x3,Y3
80 END
1000 tfill=H MEM+1
1010 | ASSEMBLE

1020 'scr_horizontal equ &bc5f ; firmvare line drawi ng routine

1030 'txt_get_pen equ &bb93 ; firmvare get pen col our routine
1035 'scr_ink_encode equ &bc2c

1040 'cp 6:ret nz ; return if wong nunber of paraneters
1050 ' push ix: pop hl ; get address of paraneters into hl
1060 'Id de,y3:1d bc,12:1dir ; copy into workspace

1070 '

1080 ' ; first sort vertices by v coordinate

1090 'Id hl.(y2):1d de, (yl1)

1100 'call cphlde:jr nc, noswapl

1110 'push hl:Id hl,(X):1d bc, (X2)

1120 'Id (xl),bc:1d (x2),hl:pop hl:ex de,hl
1130 ‘. noswapl

1140 ‘1d (yl),de:1d (Y2),h

1150 °

1160 ‘1d hl,(Y3):1d de, (yl)

1170 'call cphlde:jr nc, noswap2

1180 ‘push hl:Id hl,(xl):1d bc, (x3)

1190 'Id (xl),bc:1d (x3),hl:pop hl:ex de,hl
1200 ‘. noswap2

1210 'Id (yl),de:1d (y3),h

1220

1230 ‘Id hl,(y3):1d de, (y2)

1240 ‘call cpblde:jr nc, noswap3

1250 ‘push hl:1d hl,(x2):1d bc, (x3)

1260 ‘1d (x2),bc:1d (x3),hl:pop hl:ex de, b
1270 ‘. noswap3

1280 ‘1d (y2),de:1d (y3),h

1290 * ;vertices now sorted
1300 °

1310 'Id hl,0:1d (count), hl
1320 ‘.l oop

1330 'Id hl,(x2):1d de, (x1)

1340 'or a:sbc hl,de:call testnea
1350 'Id de, (count):call nulthlde
1360 'push hl:Id hl,(y2):1d de, (yl)
1370 'or a:sbc hl,de

1380 ‘ex de, hl:pop h

1390 'call divhlde

1400 ‘1d a,(flag):or a:call nz,negh
1410 'Id de, (xl):add hl, de: push hl ; start x coordinate
1420 '

1430 'Id hl,(x3):1d de, (xI)

1440 ‘or a:abc hl,de:call testneg
1450 ‘1 d de,(count):call multhlde
1460 'push hl:Id hl,(y3):1d de, (yl)
1470 ‘or a:sbc hl,de

1480 ‘ex de, hl:pop h

1490 'cal |l divhl de

1500 ‘Id a,(flac):or a:call nz,negh

1510 ‘1d de, (xl):add hl, de: push hl ;end x coordinate
1520 '

1530 ‘Id hl,(yl):1d de, (count)

1540 'add hl, de ; 'y coordinate

1550 ' pop bc: pop de

1570 'call drawine

1580 °

1590 ‘I d de,(count):inc de:ld (count), de
1600 ‘Id bc,(yl):1d hl,(y2)

1610 'or a:sbc hl, bc

1620 'call cphlde:jp nc,|oop

1630 °

1635 'Id hl,0:1d (count), hl

1640 ‘.| oop2

1650 'Id hl,(x3):1d de, (x2)

1660 'or a:sbc hl,de:call testneg
1670 'Id de, (count):call multhlde
1680 'push hl:Id hl,(y3):1d de, (y2)
1690 'or a:sbc hl,de

1700 'ex de, hl:pop h

1710 'call divhl de

1720 'lId a,(flag):or a:call nz, nech
1730 'Id de, (x2):add hl, de: push hl ; start x coordinate
1740 '

1750 'Id hl,(x3):1d de, (xI)

1760 'or a:sbc hl,de:call testnez
1770 'push hl:1d hl, (count)

1780 'Id de, (y2):1d bc, (yl)

1790 'add hl,de:or a:sbc hl, be
1800 'ex de, hl:pop h

1810 'call multhlde

1820 'push hl:Id hl,(y3):1d de, (yl)
1830 'or a:sbc hl,de

1840 'ex de, hl:pop h

1850 'cal |l divhl de

1860 'Id a,(flag):or a:call nz,nech

1870 'Id de, (xl):add hl, de: push hl ; end x coordinate
1880

1890 'Id hl,(y2):1d de, (count)

1900 'add hl, de ; 'y coordinate

1910 ' pop be: pop de

1930 'call drawine

1940 '

1950 'Id de,(count):inc de:ld (count), de

1960 'Id bc, (y2):1d hl, (y3)

1970 'or a:sbc hl, bc

1980 'call cpblde:jp nc,|oop2

1990 'ret

2000

2005' .drawine call txt_get_pen:call scr_ink_encode ; ink in A
2006' push bc:ex hl,(sp):call cphlde:jr nc,dlinel:ex de,hl
2007' . dlinel ex hl,(sp):pop bc:call scr_horizontal:ret
2008

2010' .mul thl de ;; subroutine to do hl:=hl*de

2020' push bc:ld e, h:1d a,l:1d b,16:1d hl,0

2030' . mul tl srl c:rra:jr nc, mul t 2: add hl, de

2040' .mult2 ex de, hl: add hl, hl:ex de,hl:djnz nmultl:pop bc:ret
2060' . di vhide ;; subroutine to do hl:=hl/de

2070' push bc:ld c,1:1d a,h:1d hl,0:1d b, 16

2080 . divl rl c:rla:adc hl,hl:sbc hl,de:jr nc,div2:add hl,de
2090' . div2 ccf:djnz divl:rl c:rla:ld h,ald I|,e:pop bc:ret
2110 '.cphlde ; subroutine to set carry if hl < de

2120 ' push hl:or a:sbc hl,de:pop hl:ret

2130 '.testneg Id a,0:call c,neghl:Id (flag),a:ret

2140 ' .neghl push de:ld de, 0: ex de, hl:or a:sbc hl,de:pop de:ld a, & f:ret
2150 '
2160 'y3 word 0:x3 word O ;. wor kspace

2170 'y2 word 0:x2 word O:yl word 0:xl word O
2190 'count word O:flag byte 0
2210 RETURN

7. MENU- DRI VEN UTI LI TIES

The command ' | MAXAM takes you into the MAXAM nai n nenu. The nmenu lists all the
avai |l abl e commands - each is selected by a one or two letter code. To use a conmand
type the code and press ENTER. Ot screen pronpts advise you what input is required for
each command. You will see that the value of H MEM is displayed on the top line,
together with the ROM selections (which are explained below). ESC always returns you
to the nenu.

Note: all addresses are entered in hexadeci mal .

This section explains each conmmand in turn.

T enters the text editor, which is dealt with in the next section
B returns you to BASIC preserving editor text and BASI C program
D Di sassenbl e

DP Di sassenble to printer

Start and end addresses are requested. which nust be entered in hexadecinmal.
If omtted they default to O and &FFFF respectively. The nenory contents are

di sassenbl ed into Z80 mmenonics; the hex and ASCI| representations are also |Iisted.
Standard Zilog menonics are shown (see the reference section for a conplete list).
RST instructions are disassenbled with the appropriate paranmeters (see reference
section).

L Li st nenory

LP List nenory to printer

This works in the sane way as D, but lists hex and ASCII only. 8 or 16 bytes to
a line. The ASCI| display ignores bit 7 and shows a full stop for control codes. This
allows text to be easily recognised, including strings with the top bit of the I|ast
character set. The nmenory editor (described below) displays the conplete character
set.

S Sel ect upper ROM

The ROM selected is used by all commands in the main nenu that access addresses
bet ween &COOO and &FFFF. (The ROM nunbers are listed ty the HELP command - see bel ow).
So to disassenble ROM 7:

S <ENTER> 7 <ENTER>
D <ENTER> COOO <ENTER> <ENTER>

The currently selected ROM is displayed above the menu. Initially ROM 0 is

sel ected, which is the BASIC ROM

o Lower ROM on/ of f
This command selects either the lower RAM or ROM to be used by commands that
access addresses between 0 and &3FFF. The current setting is shown on the top line.
The initial setting is lower ROM = off. To list the | ower ROM
0 <ENTER>
L <ENTER> <ENTER> <ENTER>

E Edit nenory

The nmenory editor allows you to change directly the contents of nemory sinply
by overtypint what is displayed on the screen. You are asked for an address to edit,
then a screenful of nmenory is displayed in a simlar format to that used by the L
conmand. The address you choose will be in the mddle of the screen and the cursor
will be on the byte that is at that address.

To change the contents of any byte just type the new value. There is no need to
press ENTER after the number, just enter the two hex dgits. A single digit nunber can
be term nated by ENTER or any cursor key. DEL will cancel a single digit.

The cursor keys can be used to nove around the screen. Your other functions are
Provi ded:

SHI FT- <up> or CTRL- <up> : nove back one screenful.
SHI FT- <down> or CTRL- <down> : move forward one screenful.
SHI FT-<left> or CTRL-<left> : nmove to top left.

SHI FT-<ri ght > or CTRL-<ri ght> : move to bottomright.

The editor can also be used to enter ASCI| characters directly into nenory.
Press TAB and the cursor will nove to the right part of the display, positioned on the
ASCI| representation of the current byte. Now, the editor works in the same way except
that ASCII characters are typed instead of hex nunbers. Press TAB again to return to
hex editing.

Press ESC to exit fromthe editor and return to the nenu.

F Find string
FP Find string and print

These commands search a block of nemory for a string. You are asked to choose
between ASCI| and hex. In the first case the string can be up to 20 characters, inthe
second case up to 8 bytes. ENTER is used to terminate string entry, and ESC will abort
the command at any tine. Each time the string is found a single line nenory listing
starting at the first byte of the string is printed. FP sends the output to the
printer.

Wl deards may be used in a string. A wildcard is a character that wll be
mat ched by any byte. To signify a wildcard type '?".

Exanpl e of use of wldcard: enter the hex string CD ?,B9. This will find all
uncondi tional subroutine calls to addresses between &B900 and &B9FF.

M Move bl ock

You are asked for 3 inputs; start and end address to define a block of nenory,
and the address to copy the block to. The lower and upper ROM selections are taken
into account so bl ocks can be copied fromany ROM Overl appi ng bl ocks are all owed.

C Conpar e bl ocks
cP Conpare and print

The two bl ocks specified are conpared byte by byte. Any differences are |listed,
showing the two different values. The ROM selections are taken into account, so RAM
may be conpared with ROM CP sends the output to the orinter.

R Rel ocat e bl ock

There are two ways to use the relocator, a sinple way and a conplicated way.
To use the sinple command reply ‘Y to the pronpt ‘Sinple (YN)? . You will then be
asked for start address, end address, and address to nove to. This works in the sane
way as nove bl ock except that at the sanme tinme the code is relocated to run at the new
addr ess.

This is fine in many cases but will not always work. Although you will probably
never need to use the general relocate command (as described below) it is as well to
be aware that relocation can fail. The basic reason is that the relocator cannot tell
the difference between code and data, and so will attenpt to relocate data as if it

were program So the block of nenmory being relocated should contain pure program
The second form of the command asks you for 5 inputs. The neaning of each is as
foll ows:

Start and end address - define a block of nenory containing the code to be
rel ocat ed.

First and last - define the range of addresses, references to which are to be
altered. On a sinple relocation these are the sane as start and end.

O fset - the number to add to all addresses in the range (first,last).

Wth this form of the conmand the code is relocated in place and nmoved. This
all ows many variations: you can relocate code that is to go in ROM you can nobve code
first and then relocate to run at any address you like.

Warning: one thing to look out for when relocating is an instruction like 'LD
HL, &3090', where the operand is neant as a literal. The relocator will assunme it is an
address and possibly alter it. The instruction should be replaced by 'LD H, &30:LD L,
&90' if the code is to be relocated.

| Initialise block

A block of memory can be filled with any byte value. This is nost useful for
filling a block of nenory with zeros.

X Ext ernal commands

VWhen 'X is selected a pronpt ‘|’ will be displayed. Any external conmmand can
now be entered with its Paraneters typed straightforwardly. This avoids the akward
syntax needed to use external conmands from BASIC.

Both string and nuneric paraneters can be entered. The details of each command
must be checkedin the appropriate docunentation to see what paraneters are required.
Strings may be enclosed in quotes (single or double) but thequotes are optional.

However, if the string begins with a decimal digit the quotes are essential
because otherwise it will be assumed to be anunmeric paraneter. Paraneters my be
separated by spaces, conmmas, or equals signs. Hex nunbers in external commands nust
be prefixed by ‘&, just as in BASIC

For exanple, to renane a file called JUNK BAS to PROG BAS, enter any of:

REN PROG. BAS=JUNK. BAS
REN “ PROG. BAS", " JUNK. BAS”
REN ‘ PROG. BAS' Junk. bas

After each conmand has been executed the ‘|’ pronpt will return. Either enter

anot her command or press ESC to return to the nmenu.

M scel | aneous external conmands

MODE
Toggl es the display between nmode 1 (40 columms) and node 2 (80 col ums).
HELP

Typing ' HELP' when in external conmand node. or ‘|HELP' from BASIC will produce
a list of all ROV with their version nunbers.

HELP, n

Here n is a ROM nunber as listed by HELP. The external commands provided by ROM
nwll be listed.

ROMOFF

This will turn off all background ROVs. The machine will be conpletely reset.
BASIC will be entered but no other ROVs will be initialised. This may be useful to
gain extra nenory but do not forget that any prograns in nenory are destroyed by this
comrand.
ROMOFF <list of ROM nunbers>

The machine is reset, destroying nmenory contents, and the specified ROVs are
not initialized.

MSL

Move screen |low. This command mekes the screen nenory start at &4000 instead of
&C000. HI MEM nust be set bel ow & 000 before using MSL. The screen is cleared.

MSH

Move screen high. The screen nenmory is restored to &C000. The screen is
cl eared.

Wiy shoul d anyone want to nove the screen nenory?

Movi ng the screen nenory to & 4000 reduces the available RAM by up to 27K, so it
is rarely a good idea! The use of MSL is to enable editing of sideways RAM Sideways
RAM is | ocated at &C000 which is the usual position of the screen menory. The sideways
RAM can be edited but the screen display would be sinmultaneously corrupted. So to edit
si deways RAM enter MSL before and MsSH after

8. THE TEXT EDI TOR

To enter the text editor type: | MAXAM
T
The editor menu will then be displayed. Select option 'E to enter editing
mode. You can return to the menu at any time by pressing ESC. Having entered edit node
you will be presented wth a nostly enpty screen, but with sonme information on the

top line. This is the status line and always contains up to date status Information.
Fromleft to right:
1. Cursor line and colum nunber. This is useful anong other things for
tabul ati ng data or noving a nunber of Iines.
2. Bytes free. The ampbunt of nenory remaining for text. This is initially
about 40K with the ROM version, less with the other versions.
3. Insert/overwrite. The editor operates in these two npdes. To switch between
them press CTRL-TAB. You will see the status |line display change.
4. Caps lock/shift lock status. Press CAPS LOCK and CTRI- CAPS LOCK to see this
i nformation change.

The status line is also used at other times for nessages, including error
nmessages.
Entering text with the editor is very sinple - just type it in whatever way you

want it set out. The cursor keys are used to nove the cursor left, right, up and down
in the obvious way. Wen used in conbination with SH FT or CTRL various useful cursor
novenents are possible (see table, below, for full details). SH FT-<up> and SH FT-
<down> are useful when you want to continue editing the sane line but see the
followi ng few |ines.

Renoval of characters is done by noving the cursor to the appropriate place and
using DEL and CLR for backwards and forwards delete. These work as in BASIC, so in
particular DEL will cancel the |ast character typed.

If you are typing an assenbler program into the editor, there is no need for
line nunbers, quotes, or | ASSEMBLE.

I nsert node

When characters are entered the rest of the line to the right of current
position is noved along. Pressing ENTER inserts a <cr-1f> (carriage return and line
feed) in the text (i.e. a new line is inserted). <cr-If> characters can be deleted
with DEL and CLR - this nakes joining lines very easy.
Overwrite node

Characters overwite what is there already. Pressing ENTER doees not insert a
line but noves to the start of the next line. <cr-1f> cannot be deleted with DEL and
CLR To insert and delete lines when in overwite nodeuse SHI FT- TAB and SHI FT- DEL.

Hori zontal scrolling

Text line lengths are not linmted to the width of t he screen. When t he
cursor needs to npve past the right hand edge of the screen the text is scrolled
si deways by half the screen width. The editor does mt inpose a naxinmum line |ength
(but the assenbler cannot cope with lines |onger than 255 characters).

Moving to a specified |ine nunber

Type CTRL-G while in edit npode. A nessage will be displayed on the status |ine
asking you to enter a line number. The cursor will then be noved to the line. This has
nothing to do with any line nunbers in the text but is the position of the line within
the text as displayed on the status line.

Mar kers and bl ocks

Many useful facilities are provided by blocks. A block is a section of the
text, defined by two markers. Pressing SH FFCOPY puts a nmarker at the current
position, or renoves one if there is one there already. A short beep is sounded when
SHI FT-COPY is pressed, unless both narkers are in use. In that case a higher beep
warns you of the error and an error nmessage is printed on the status line. ESC nust be
pressed to continue after an error. To delete markers press SH FFCLR

Markers are shown by inverting the display at the marker position. The block
includes the first marker position, but not the second. This nmeans that if the block
consists of conplete lines both markers should be set in colum 1.

An error nmessage will be given if an attenpt is nade to use a block command if
you have not defined a block by setting both markers.

Edi ti ng node bl ock conmands

CTRL- CLR move bl ock
The block is nmoved to the current cursor position, which nmust not be within the
bl ock. The markers are del et ed.

Note: this command will fail If there Is insufficient free nenory for acopy of
the bl ock.
CTRL- COPY copy bl ock

The block is copied to the cursor position |leaving the original block in place.
The cursor nust not be within the block. The markers remamin in place on the new copy.

CTRL- DEL. del ete bl ock
The block is deleted. To delete the entire text fromwthin edit node use the
key sequence: CTRL-<left>, SHI FT-COPY, CTRL-<right>, SHI FT-COPY, CTRL-DEL.

Key

Summary of edit node conmands

Nor mal

left arrow cursor left

right arrow cursor right

up arrow cursor up

down arrow cursor down

CoPY next find

CLR del ete at
cursor

DEL del ete before
cursor

TAB cursor to next
tab position

ESC return to nenu

Note to aid nmenory of the above

Edi t or

Wth SH FT key

cursor to start
of line

cursor to end
of line

scrol |l back
1 line

scroll forward
1 line

toggl e marker
at cursor
clear markers
delete line

insert line

return to nenu

Wth CONTROL key

cursor to start
of text

cursor to end
of text

scrol |l back
1 page

scroll forward
1 page

copy bl ock
nove bl ock
del ete bl ock
toggle insert

node

return to nenu

(i) bl ock, page or text based functions use the CTRL key.
(ii) line based functions and marker functions use the SH FT key.

(iii) character based functions just take a single key.

nenu conmmands

L

previ ous text.

be | oaded
LB Load bl ock
S Save file.
The whol e of the current text
only: just pressing ENTER will
SB Save bl ock.

saved

Load file.

You are asked for a filename. The file is |oaded
Tape users only: you can just press ENTER and the first file found wll

The file is |l oaded and inserted at the current arsor

The text between the markers
file into another file. Markers remain in place after

is saved with the specified filenanme. Tape users
save an unnaned file.

into nmenory

posi tion.

is saved. Use SB and LB to transfer part of

SB so nore than one copy can be

repl aci ng any

p Print text.
The current text is output to the printer.

PB Print bl ock.
The current block is printed.

Creating BASIC conpatible files

M Modi fy text
MB Modi fy bl ock

Modify is a special command which enables BASIC conpatible files to be
produced, and the editor facilities to be used on BASIC prograns. The options
avai |l abl e are:

1. Add line nunmbers with any starting value and increnent.
2. Add quotes between line nunbers (if any) and text.

3. Renove |ine nunbers.

4. Renpve quot es.

Modi fy is best explained by exanples:
(a) To create a m xed BASI C/ machi ne code programwith the editor.
1. Type in the program onmitting |ine nunbers and quotes.
2. Define a block containing the asserbl er section.
3. Use nodify block to add quotes only. Note: the markers are del eted.
4. Repeat 2 and 3 for each assenbl er section.
5. Use nodify to nunber the whol e program
6. Save the file.
(b) To print a file with the lines nunbered sequentially.

Use the default starting value and increment by just pressing ENTER when asked

for these paraneters. The default is 1 in each case. These nunbers will correspond to
those printed by the assenbler.
Note: the assenbler will work with BASIC files or text files (with or without

l'i ne nunbers).

F Find string.

This will search the text for the specified string, starting from the current
cursor position. If found the cursor will be placed imediately after the string. To
find the next occurrence of the string press COPY. I|f the string is not found a
message is displayed on status line and ESC nust be pressed to continue. COPY will
al ways nmove the cursor to the next occurrence of the string entered the last tinme ‘F
or 'R was used. If neither has been used at all COPY will donothing.

R Find and repl ace string.

Two strings are asked for. Each time the first string is found the cursor is
placed inmmediately after the string and the nmessage 'Replace (Y/N)?' appears on the

status line. Press Y to replace the string by the secomd string. N or ESC to |eave

it as it |Is. The next occurrence will automatically be found, unless ESC is pressed.
This command al so allows a global replace. If selected then occurrences of the

first string after the current cursor position will be replaced without asking for

confirmation. This should be used with great care.
Note: to delete a string enter an enpty replace string.

T Set or clear tabs

Up to 8 tabs may be set. When TAB is pressed in edit node the cursor is noved
to the next colum at which a tab is set. If you are in insert nopde spaces are
inserted up to the tab position. Tab control codes are not used in order that the text
contains only printable characters and is easily transportable.

Initially, 3 default tab settings are set (9, 17, and 27). These have
beenchosen to be convenient for assenbler source code — start the label field in
colum 1. Press tab, enter the instruction field press tab, enter the operand
field, press tab, enter the comment field.

The ' T command performs 3 functions:

1. Lists the current tab settings.
2. Al ows you to set tabs.
3 Al'l ows you to del ete tabs.

You are asked to choose 'set' or 'clear'. Wichever you select you can input
several columm nunbers (press ENTER after each one). Press ESC to finish and return to
the nenu.

Assenbling and testing code fromthe editor

A Assenbl e
The current text will be assenbl ed. When the assenbly has finished will need to
press a key to return to the menu.

J Junp to code

An execution address is asked for, and the code at that addressis executed. A
RET instruction will return control to the menu. If no address is specified it wll
default to H MEM+1 (the default origin used by assenbler), unless no nenory has been
reserved there (when it wll do nothing). The Z80 register values are udefined on
entry.

So nost code can be executed sinply by typing J <ENTER> <ENTER>

I nportant note: menory nust be reserved by the MEMORY command in BASIC.

Debuggi ng procedure

The BRK Instruction can be used fromthe editor in exactly the sane way as fom

BASI C.
1. Edit text, put BRKs in strategic places.
2. Assenbl e.
3. Junp to code.
4. Examine the registers when displayed. If incorrect press ESC and go to step 1.
5. Press any key to continue each time the registers are displayed and are

correct.
6. Control returns to the nenu. Hopefully the code is now perfect!

M scel | aneous options

G Go to line.
This is the sane as using CTR.-G In edit node. This is useful when correcting
assenbly errors since the assenbler gives the |line nunber where each error occurs.

X Ext ernal commands

The X command al |l ows external commands to be entered exactly as described in
the previous section.

Two commands provi ded by MAXAM are particularly useful in the editor:

CAT : the same as the BASIC command 'CAT', this lists the files on cassette
or disc. For disc users it is nmore useful than DIR since it sorts the filenanmes and
gives the approxi mate size of each file.

SPEED : the sane as the BASIC command 'SPEED WRITE'. Enter 'SPEED 0' or
"SPEED 1' to set the cassette wite speed.

AMDCS conmands which are often needed in the editor:

ERA : delete a file
REN : renane a file.

Q Quit editor

The Q command returns you to the main nenu.

User defined characters

The characters with ASCI| codes 32 to 127 may be redefined (from BASIC) by the

user to give, for exanple, accented letters. These definitions will only be used in
the editor If a 'SYMBOL AFTER 0' command has been issued. 'SYMBOL AFTER 32' allows
definition of the characters in BASIC but the editor would still display the original

characters.

The text editor and BASIC

The text editor is conpatible with BASIC- editor text and a BASIC program can
be in the nmenory at the sane tine. Editing one does not affect the other.

BASI C variables are preserved when the MAXAM main menu is used, but destoyed
when the editor nmenu is entered.

There is one unavoi dabl e side effect of allow ng BASIC and editor text together
which it is as well to be aware of. If a BASIC program |Is saved when editor text is
present the editor text will be saved with the BASICprogram When rel oaded, however,
the editor text will not be useable.

There are two possible solutions to this problem

1. Delete the editor text before saving the BASIC program This can done from
BASI C by typing '|CLEAR .

2. Save the BASIC programin ASCI| format. The editor text is not then saved.
Saving in ASCII has the considerable advantage that the program can then be edited
directly with the weditor. The disadvantages are that saving in the ASCI
representati on makes the file slightly larger and, for disc users, takes nuch |onger.

Del eting prograns and text

1. To delete both the BASIC program and the editor text:

NEW

2. To delete just the BASIC program
DELETE

3. To delete just the editor text:
| CLEAR

Loadi ng BASI C prograns

Loading a BASIC program wll cause the editor text to be w ped out. one
exception to this is if the program was saved as ASCII, then it can be |oaded using
the MERGE conmand, without destroying the editor text.

To edit a BASIC programusing the text editor

Return to BASIC.
Load the file. LOAD “ PROG

1. Save fromBASIC in ASCII format: SAVE “PROG', A
2. Gointo the editor.

3. Load the file into the editor. L <ENTER> PROG
4, Edit the file.

5. Save the file. S <ENTER> PROG
6.

7.

9. MAXAM REFERENCE SECTI ON AND | NDEX

(a) Bibliography

arbdNE

"The concise firmvare specification", (Ansoft)

"The conci se BASIC specification", (Amsoft)

"Disc drive firmvare specification", (Amsoft)
"Progranm ng the Z80", Rodnay Zaks (Sybex)

"Z80 Assenbly Language Progranming", Lance A. Leventha

(Csborne/ MCG aw Hil)

o

"The Lord of the Rings", J.R R Tolkein

(George Allen and Unwi n)

(b) Assenbl er

BYTE
CLCSE
CODE
DB
DEFB
DEFM
DEFS
DEFW
DS
Dw
ELSE
END
ENDI F
EQU
GET
IF

I FNOT
I F1

I F2
LET
LIMT
NOCODE
ORG
PUT
READ
RVEM
TEXT
WORD
WRI TE

put

canc
sane
sane
sane
sane
sane
sane
sane

Directives

byte string in object code
close object file

e
as
as
as
as
as
as
as

NOCODE

BYTE
BYTE
BYTE
RVEM
WORD
RVEM
WORD

assenbl e ot herwi se
end assenbly
end | F bl ock

equa
get

te

par anmet ers

assenble if

assenbl e unl ess

assenble if pass 1
assenble If pass 2
define synbo

set code limt

suppress storage of code
define code orgin

pass val ue back to BASIC
define source file
reserve bl ock of nenory
sanme as BYTE

put 2-byte nunbers in object code
define object file

(c) Assenbl er Commands

DUMP
LI ST (P)

NOLI ST disable listing

PAGE
PAUSE
PLEN
PRI NT
TI TLE
W DTH

dunp synbol table
enable listing to screen (printer)

start new page

wait for

set

set

key press

printer page length
di splay string on screen
define title

printer page wi dth

(d) Assenbler Fatal Errors

1. An ORG directive with an undefined expression.
2. An EQU directive with an undefined expression.
3. An RMEM directive with an undefined expression.
4. An |F or IFNOT directive with an undefined expression.
5. A PUT directive with an undefined variabl e address.
6. A badly nested | F bl ock.
7. A line longer than 255 characters.
8. The assenbl er runs out of nenory for the synbol table or file buffer.
9. The file specified by a READ directive is of an invalid type (e.g. binary).
10. An attenpt to nest READ directives.
11. A disc 1/0 error occurs, e.g. 'disc full', "file not found'.
12. An attenpt to store code at an address greater than that set by LIMT.
(e) External conmands page
ASSEM assenbl en suppressi ng nessages 10
ASSEMBLE assenbl e from BASI C program 9
CAT cat al ogue files 39
CLEAR clear editor text 40
FI'N find string in enbedded source code 10
HELP list ROVS 33
MAXAM or M enter main nmenu 30, 6
MAXOFF turn off MAXAM 5
MCLEAR same as CLEAR 6
M-I ND same as FlI ND 6
VHELP same as HELP 6
MODE swi tch screen display. 33
MsH move screen nenory high 33
VSL nmove screen nenory | ow 33
ROMOFF turn off selected ROV 33
SPEED set cassette wite speed 39
(f) BASI C Commands i nportant to machi ne cale page
CALL call a machine code routine 19

MEMORY change the val ue of H MEM 12

(g) Main Menu Conmands

T
D
DP
L

text editor

di sassenble to screen
di sassenble to printer
list menory to screen
list menory to printer
sel ect upper ROM
toggl e | ower RAM on/ of f
menory editor

find string

find string and print
move menory bl ock

rel ocate nmenory bl ock
initialise menory block
conpare nenory bl ocks
conpare menory bl ocks and print
external commands

warm start BASI C

(h) Editor Conmands

(S S|
OX«>HuTTE 5 < g T

enter edit node

load file

load file at cursor position
save text

save bl ock

print text

print bl ock

modi fy text

modi fy bl ock

go to line

find string

find string and repl ace
set and clear tabs
assenbl e text

dunp to code

ext ernal commands

quit editor

(i) Z80 instructions

menoni ¢

ADC
ADD

HALT

I NC
I ND
I NDR
I'NI
I'NIR
JP
JR

LDD

LDI R

name

add with carry

add
and with A
test bit

MAXAM br eakpoi nt

call subroutine

conmpl enent carry flag
conpare to A

conpare & decrenent

bl ock conpare & decrenent
conpare & increnent

bl ock conpare & increnent
conpl enent A

deci mal addust A

decr enment

di sable interrupts
decrement B & junp if not
enable interrupts
exchange registers

zero

exchange alternate registers

halt CPU
set Interrupt node (do not
inp ut (do not use A (n)
I ncrenent
i nput & decrenent (do not

bl ock input & decrement (do not use)

input & increnent (do not

bl ock I nput & increment (do not use)

junp
jump relative
| oad

| oad & decrenent

bl ock | oad & decrenent
l oad & I ncrenent

bl ock | oad & increnent
negate A

no operation

or with A

bl ock out put & decrement (do not
bl ock output & Increment (do not

use)

form

use)

use)

out put (do not use (n),A form

out put & decrenment (do not

use)

out put & increment (do not use)

pop register pair
push register pair
reset bit

operand formats

A n
An
I X, rx
An
b, r

nn

Ar

(c),r

rp

rp
b, r

Ar HL,rh
Ar HL,rh
1Y, ry

Ar

cc, nn

rr
DE,HL (SP),r

A (n)
rr

cc.nn (ra)
c,e

r,s S, r

A (BC) A (DE)
(BO),A (DE),A
r,(nn) (nn),r
A R

R, A

(n), A

RET return from subroutine - cc

RETI return frominterrupt
RETN return fromNM (do not use) -
RL rotate |eft r
RLA rotate A left -
RLC rotate left with branch carry r
RLCA rotate A left with branch carry -
RLD rotate left decimal -
RR rotate right r
RRA rotate A right -
RRC rotate right with branch carry r
RRCA rotate A right with branch carry -
RRD rotate right decinal -
RST restart (see bel ow)
SBC subtract with carry Ar HL, rh
SCF set carry flag -
SET set bit b, r
SLA shift left arithnetic r
SRA shift right arithmetic r
SRL shift right |ogical r
SuB subtract fromA Ar
XOR exclusive or with A Ar
Key: r means one of A, B, C, D, E, H L, (HL), (IX+d), (I1¥d)
S means one of A, B, C, D, E H L
d neans an integer in the range (-128,127)
rr means one of BC, DE, HL, SP, IX I|Y
rh means one of BC, DE, HL, SP
rx means one of BC, DE, |X, SP
ry nmeans one of BC, DE, 1Y, SP
rp means one of BC, DE, HL, AF
ra means one of HL, IX, |Y
n means a single byte constant
nn means an address or two byte constant
b means a bit nunmber between 0 and 7
e nmeans an address within the range ($ 126.$+129) where $ is the address
of the current instruction
cc means one of C, NC, Z, N2, M P, PE, PO
C means one of C, NC, Z, NZ

- means no operands (inplicit addressing node)

Note: with the followi ng instructions the first paraneter may be
omtted if it is A ADC ADD AND CP OR SBC SUB XOR
e.g. 'ORB is equivalent to '"OR A B

The RST instructions

The AMSTRAD CPC 464/ 664 uses the RST instructions to extend the instruction set.

Sonme of these take paraneters which may be entered on the same line. The assenbler
also allows the standard form of the RST instruction, wthout paranmeters, and in this
case assenbles only 1 byte of code. For full details see the Conplete Firmmare
Speci fication published by Ansoft).

RST 0 conpl ete systemreset

RST 1, nn | ow junp

RST 2,nn side call

RST 3, nn far call

RST 4 LD A (HL) with all ROVs disabled

RST 5, nn firmjunp

RST 6 BRK - MAXAM br eakpoint (calls register display routine)
RST 7 I nterrupt

(j) Disassenbling to an ASCII file

RUN t he follow ng BASI C/ assenbl er program

10 MEMORY HI MEM 9

20 | ASSEMBLE

30 'patch push ix:call &bc95 ; CAS OUT CHAR

40 ' pop ix:scf:ret

50 'limt & fff:org &d2b:jp patch ; redirect MC PRI NT CHAR
60 OPENOUT “file”

70 END

Al output to the printer now be redirected to “file” until the output stream
is closed (for exanple, with the BASIC command CLOSEOUT). Executing DP from the
MAXAM menu fol | owed by CLOSEOUT from BASIC will thus produce a suitable file to edit.

The following code will strip off all characters before the menonic field of
the disassenbled listing:

100 OPENIN “file”

110 OPENQUT “newei | e”

120 VWHI LE NOT EOF

130 LI NE | NPUT #9, a$: PRI NT #9, M D(a$, 26)
140 VEND

150 CLOSEI N: CLOSEQUT

(k) G ossary of terns

ADDRESS
A nunber representing the position o a byte in nenory.

ARNOR

“The land of the King”. In the Third Age of Mddle Earth Arnor was known as the
“lost realm of the North”. The kingdom was re established by Elessar after the War of
the Ring.

ASCI | (American Standard Code for |Information Interchange)

1. The codes which the conputer uses to represents letters, digits, punctuation
synbol s, etc.

2. The form of representation of a program using no special tokens, only ASCII

codes.
ASSEMBLER

1. A program which converts assenbly |anguage mmenonics into binary nachine
code.

2. Anot her nanme for assenbly | anguage.

ASSEMBLY LANGUAGE
The set of menonics which correspond to the operations the Z80 processor is
capabl e of perform ng.

Bl NARY
The base 2 nunmber system in which all nunmbers are represented using just 2
digits, 0 and 1.

BI T
A binary digit, 0 or 1.

BREAKPO NT
A debugging aid. A program stops at a breakpoint allowi ng you to see whether it
is working correctly.

BYTE
8 bits. The unit of nmenory usually used for data transfer.

CODE ORI G N
The address of the start of the object code.

CCDE LOCATI ON
While assenbling, the address where the next byte of code is to be assenbl ed.

COMVAND
1. An instruction to the assenbler which affects the listing in some way.
2. An instruction to BASIC or MAXAM to do sonet hi ng.

CONDI TI ONAL ASSEMBLY
A feature of the assenbler which allows code to be assenbled differently
depending on the setting of variables.

DELI M TER
A special character which tells the conputer where a string starts and ends.

DI RECTI VE
A instruction to the assenbl er which affects the object code in sone way.

DI SASSEMBLE
Convert binary machine code to assenbly | anguage mmenoni cs.

ENTRY PO NT
The address to begin execution of a machine code program

EPROM (Erasabl e Progranmmabl e Read Only Menory)
ROM whi ch can be erased by ultraviolet light and used again.

EXTERNAL COMVAND
A command provided by one program (e.g. MAXAM that can be used in another
(e.g. BASICQ).

FI RMMARE
1. The operating system
2. Any program contai ned i n ROM

HEXADECI MAL (HEX.)
The base 16 nunber system where the letters Ato F represent 10 to 15.

| DENTI FI ER
A string of characters which is the nanme of a synbol.

| NSTRUCTI ON

In the assenbler, a Z80 mmenonic or a directive or a command.
LABEL

A synmbol which represents a position within a program
LI STI NG

The output produced by the assenbler on the screen or printer, showing the
source code, object code, and addresses at which the code has been assenbl ed.

LONER ROM
The operating system ROM whi ch resides between addreses 0 and &3FFF.

MACHI NE CODE
A sequence of binary, nunbers which the Z80 Processor interprets as sinple
operations.

MARKER
In the editor, a pointer to a particular location in the text.

MNEMONI C
A string of characters which represents a Z80 operation

OBJECT CODE
The machi ne code program produced by the assenbl er.

OPCODE
The binary nunmber representing a Z80 operation.

OPERAND
The data which an operation acts on, often a menory address.

OPERATI NG SYSTEM
The machi ne code program whi ch accesses the hardware directly and is called by
user progranms using the junpbl ocks.

RAM (Random Access Menory)
The main menory of the conputer which can be witten to and read from of which
the Anstrad CPC 464/ 664 has 64K.

REGQ STER
A 1l or 2 bvte nmenory locationwi thin the Z80 processor which is accessed
very, quickly, and is used by Z80 operations.

RELOCATE
Take a nmchi ne code program and change the address references throughout it so
it will run at a different nenory address.

ROM (Read Only, Menory)

Menory which can only be read from The Anstrad CPC 464/664 has 32K onboard
ROM containing BASIC and the firmvare, the ROM version of MAXAM is supplied in a 16K
EPROM

SI DEWAYS RAM
Externally fitted RAM residing between address &COOO and &FFFF. It is very
useful for devel oping software for ROM because it behaves exactly |like a ROM

SI DEWAYS ROM
An upper ROMfitted externally, e.g. AMSDOS, MAXAM

SOURCE CODE
The assenbly |anguage program consisting of menonics, directives, and
conmrands.

STORAGE LOCATI ON
VWi |l e assenbling, the address where the next byte of code is to be stored. This
is usually, but not always, the same as the code location.

STRI NG
A sequence of characters.

SYMBOL
A vari abl e used when assenbling.

SYMBOL TABLE
The list of symbols mmintained by the assenbler.

TOKENI SATI ON

An operation perforned by the BASIC interpreter, converting keywords in the
fromof textual strings into single byte nunbers, called tokens. This saves nmenory and
decreases execution tine.

UPPER ROM
A ROM that resides betwen addresses & CO0O and &FFFF. Exanpl es include BASIC,
AMSDOS, MAXAM

Z80
The central processor (CPU) of the Amstrad CPC 464/ 664.

Acknowl edgenent

We thank George Allen and Unwi,. for permission to quote from "The Lord of the
Ri ngs".

