HJILMIN "R 4L 2ED6,7EY08L, 6
£-12506-75%-0 NSST
ojd Sotuoy)ea)y MUtngu] prRISUTY
u] yaressey [BET
S0y

Niop 0) pensuny nod Bumng

L l|e
suadxs pue sisuubaq 1sa181ul 0] AJus|d SUIBJUOD ‘00}
‘W 96pamouy snoiasid yum 8soy) JO) papuUsLWILIOdal
s1 yed puooss syl ybnoyly 1eindwos ayy Jo Bupjiom
ayy o ybisul s|genjea e buipiaoid ‘Buipeal Buiyssis)
-Ul SaY)BW Yoogpuey ayl ‘'snid W/d4D 01 Jeuuibsq e 104,

Amstrad Consumer Electronics plc.

Digital Research Inc.

Bupndwon jeonoeld

Jaosnw
Bunndwoooioiu pljos unm peyoed s oogpueH
SNid IN/dD 2ul "$00q 8indwod Auew noge ples
aq ouued jey) sbuiyl om] ‘sAnBIIOYINE pUR BAISUSY
-audwoo s1 y-issn-sswwelbord ayy o) jsnw anjcs
-ge ue pue ‘piepurls Aue AQ Mooq [Bluelsqns B sl |,

mmmm?um _uz.<

8¢13]d] OVHLSIWY

dHL H0d 301019
SHIWWVHIOHd ONV SHOLVHAO

"$oIydelsy
XS5 UO UOIJ08S M3U B SUIBILOI MOU }OOQPUEH Shid
N/dD NISSo0NSs 841 40 uoips yoeqiaded pasiasl siu]

HODAANVH SIYTd W/dD
ST LR

CP/M PLUS HANDBOOK

The Digital Research
CP/M Plus Manual

The Digital Research
CP/M Plus Manual

for Amstrad PCW8256
and Amstrad CPC6128

Heinemann: London

William Heinemann Ltd
10 Upper Grosvenor Street, London W1X 9PA

LONDON MELBOURNE
JOHANNESBURG AUCKLAND

First edition January 1983 {Digital Research Inc.)
Second edition March 1983 (Digital Research Inc.)
First published in this edition by Heinemann 1986,
Second edition published in paperback 1987

(© Digital Research Inc. 1983, 1986

Allrights reserved. No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any language or
computer language, in any form or by any means, electronic, without the prior
written permission of Digital Research Inc., 60 Garden Court, Box DRI,
Monterey, California 93942, USA

British Library Cataloguing in Publication Data

The Digital Research CP/M Pius Manual
1. CP/M Plus (Computer operating system)
I. Digital Research
005.4'46 QAT76.76.063

ISBN 0 434 90321 3

Typeset by Express Typesetters Ltd, Aldershot _
Printed in Great Britain by Redwood Burn Limited, Trowbridge, Wiltshire

CONTENTS

| 3 0= (v USRS 17

Part 1 USING CP/M PLUS

1

2

Introduction TO CP/M Plus -

How to Start CP/M PIus. ..o e 21
The Command LINE......ccoooiiiiiiiiiiiii e e ene 22
Why You Shoutd Back Up Your Files............oooiiin . 24
How to Make Copies of Your CB/M Plus Disks.......cooo i, 25

Files, Disks, and Drives

Whatis aFile? . 26
How Are Files Created? ... 27
How Are Files Named? ... 27
Do You Have the Correct Drive? oo 29
Do You Have the Correct User Number?oocooiiniiennt 30
Accessing More Than One File ..o iii i 31
How to Protect Your Files..........cooooooiii e, D PP TTTI SO 32

File Attributes. ... e reanaes 32

5

Contents

Date and Time StAmMpPingocoooiiiiiiiiii e 33
Passwords ..o e 34
How Are Files Stored ona Disk? ..o 34
Changing DISKSccvvviiiiirer e e 35
Protectinga Drive ... 35

3 Console and Printer

4

Controlling Console Outpulc.ocvvireeniiiiii e, 36
Controlling Printer Qutput..........ooooiiiiiiiiiiiiiiin i, 36
Console Line Editingcoooiiiiniiii . 37
Line Editingin CP/M PIus.............ooooiiiiiiiiiiie i 37
Redirecting Input and Output.....cccoooviiiiiiiiii . 38
Assigning Logical Devices....ocoooiiiiiiii e 42

CP/M Plus Command Concepts

Two Kinds of Command ... 43
Built-in Commandscoooviiiii 43
Transient Utility Commands.............ooooiiin e ds
How CP/M Plus Searches for Program and Data Files................... 47

Finding DataFiles...........ccooeiiiii i 47

Finding Program Fileso.. i, 48
Executing Multiple Commandsc..ooiiieiiiin i, 30

5

Contents

Terminating Programso......ocovviiiiiiiii it 51

Getting Help....oveeeeiiiiiii e 52

Command Summary

Let’s Get Past the Formalitiescoooooiiviiiiiiii e, 54
How Commands Are Described...........cooooiii 57
The DATE Command................ooii e 62
Display Current Date and Time.............oooin 62
Setthe Dateand Time..........cooiii i e 63
The DEVICE Commandccoooiiivniniii e 64
Display Device Characteristics and Assignments 65
Assigna Logical Device..........oooocviii i, 66
Set Attributes of a Physical Device ..o, 68
Display or Set the Current Console Screen Size..........o.ccooevvn 68
The DIR Commandooiiii, SO 69
Display DIr€ctory ...oo.oivven it 69
Display Directory with Options...........ccoovvvvveiceiiiii e 71
The DISCKIT Commandoccoiiviiniiieiaie e eaerans 78
The DUMP Command..............coooiiiiiiiiiiiie s 79
The ED Commandccoooitiiiiiiiiiiii e aintr e eiieaaenee e 79
The ERASE Commandc..ooovviiiiiiia s 87

Contents

The GENCOM Commandccovviiiiiiiiiiiiionniiinranane e 89
Attach RSX Filesto a COMFile ...ovovviine i, 90
Generate a COM File Using Only RSX Files ..c.oovveveiiiniiinnins 90
Restore a File with Attached RSXs to Original COMFile 91
Update (Add or Replace) RSX Files.....ooccovviiiiine 91
Attach a Header Record .ovvvveceiiiiiceenii e reeee 92

The GET Command..........ooooi i, 93
Get Console Input fromaFile.................ooo e, 93
Terminate Console Input fromaFilecooirrivii i 93

The HELP Command.............oooovriiiiiiii e 05
Display Informationcceevveiiiiiiiiii s 96
Add Your Own Descriptions to the HELP.HLP File.................... 97

The HEXCOM Command ..o 100

The INITDIR Commandc.ocoiirniiimniiiiieaneieensinienee 100

The LANGUAGE Command.cooiiiiii i 101

The LIB Command............o.oooiiiiiiiiiiiiiii s 102

The LINK Commiandcoccoeiiiiiiiiimiiiiiiccne i ienii e 105

The MACCommand.....................cooiiiiiii i 108

The PALETTE Commandcoociviiiiiniiiiiiin e 110

The PAPER Commandc.ooiiiiiiim e 111

The PATCH Commandcccooviiiiiionieneaiiininienrmnsiannn 114

Contents

The PIPCommandooooviiiiiii s e 115
Single File COpy ... 116
Multiple Fille Copyoocoiniiiii e 119
Combining FIlescccoiiiiieiiiii i e revrrenananes 120
Copy Files to and from Auxiliary Devicesooooooeeniiinin 121
Multiple Command Mode ..o 123
Using Optionswith PIP ... 124

The PUT Commandcooiiiiiiiniiiiiiiin e 129
Direct Console QutputicaFile.........ccooirieiiiiiiine e, 131
Put Printer QutputtoaFilecooooii 131
Terminate Console OutputtoaFileccooooeiiiiinininn, 132
Terminate Printer Qutput toaFile ..., 132

The RENAME Command................ccoooiiiviniiii e 133

The RMAC Commiand.oooveviiiiiiiiiiei oo 135

The SAVE Command..............cooiiiiiiniiiicci e cnann 136

The SET Commandoooiiiiiiiivii e 137
Set File Attributes .. 137
Set Drive Attribute ..o e 139
Assigna Labeltothe Disk......ccooociiiiii 140
Assign Password tothe Label...........ovvviiiiccin e 140

Enable/Disable Password Protection for Fileson aDisk 141

Contents

10

Assign Passwords to Files.......ovvveeiiiii i 141
Set Password Protection Mode for Files with Passwords 142
Assign a Default Password ... 143
Set Time Stamp Optionson Disk ..., 143
Additional SET Examples......ooovveeeiriiiiiniiinnieee s 145
The SET24X80 Commandccooiviiiiiiininr e 146
The SETDEF Commando..ccooiiiiiiiiiiiiie i 146
Display the Program Loading Search Definitions............c...ees 147
Assign the Drive for Temporary filescoooovvviieinn, 147
Define the Disk Drive Search Order.........o.occoiiiiiinnn, 147
Define the Filetype Search Orderccoovvviiinn e, 148
Turn On/Off System Display Modeoooovveiiiinin, 148
Turn On/Off System Page Mode..........oovvvvvenn 149
The SETKEYS Commandcccoooiiiiiiiieviireinaeeeiaeeeeane 150
Key Definitlon ... 150
Expansion Token Definitionscoooiiiiiinnn . 151

The SETLST Command..............cc..oooviiiimiiiiiinen i 152
The SETSIO Commandoooiiniiiiiiiiii e 153
The SHOW Command.............co.cooiiiiriviiiiiinnin e 155
Display Access Mode and Disk Space Available........................ 156
Display Disk Label.......ocoocooiiiiniiiiieeeeeen . 156

Contents

Display User Number Information................ooiiiininnn. 157
Display Number of Free Directory Entries............ooo 158
Display Drive Characteristics.......coccoooivviii i 158
The SID Commandccooooooiiiniiiiiice e 159
SID UBLLIES ...t av s s i s m e saans 164
The SUBMIT Commandooooeeiiiiiiiiiiiini i aeeeeeeens 165
Program Input LinesinaSUB File.............oinn 167
The SUBFIle.......ooiiiiiii e 167
Executing the SUBMIT Commandccovviiiviiiiiiiinnininni, 168
The PROFILE.SUB Start-up File.........c..ooviiiiiin, 169
The TYPE Commiandoooiiiiiiiiiiiinieiie e 169
The USER Commandoooiiiininii e 171
The XREF Command..............cooiiiiiiiiiiiiiiieniiie e 172

6 Ed: the CP/M Plus Context Editor

Introduction to ED...ovonciiiii e 173
Starting ED .o 173
ED Operation......coceuiiiiiiiiiiaia e rraiee e easaaiiie e s 175
Appending Text into the Buffer............coocoiiieei e 177
ED BRI .ottt e ee s e r et e e rreae et e e e tae e ennes 178
Basic Editing Commands.............coeviiiiiiiiii e 180

Contents

Moving the Character PoInter...........coceeeiiiiiniiii e, 182
Displaying Memory Buffer Contentscooiiinnne. 184
Deleting Characters.cooivtiiiiiiiirii e, 185
Inserting Characters into the Memory Buffer................. 186
Replacing Characters..........ccoooiiiiiiiine 188
Combining ED Commandsc.coovviiiimmmmeeiiin 189
Moving the Character Pointer.........cooviiiiiiiiniiiinnn, 190
Displaying Text ..o e 190
Editing 191
Advanced ED Commands...........ocoviivmmmeemoiiiii 192
Moving the CP and Displaying Textc....o.ccooiiiiiinninn. 192
Finding and Replacing Character Stringscooooveiiiiiinninnnnn 194
Moving Text Blocks.........ooiiviii e 198
Saving or Abandoning Changes: ED Exitc...coovviiiiinnnnnn. 200
ED Error Messagesccovuviriiinieeermneeeiemiiiiinisnsinrrrasaneaenrans 202

Part 2 PROGRAMMING WITH CP/M PLUS

7 Introduction

Memory Organization.......cueviiiiiein e 207
POW B256 ..o i e e 207
CPCOI28.. it e 208

12

Contenis

System COMPONENtS ... oottt rae e eenees 209
System Component Interaction and Communication.................. 211
The BDOSand BIOS ... 211
Applicationsand the BDOS ..., 212
Applicationsand RSXs ... 213
Memory Region Boundaries........coocooiviiiiiniinnnno, 215
Disk and Drive Organization and Requirementsoooveunns 215
Disk Organization on PCW8256 and CPC6128....................... 217
PCWB256 RAM DKooviiiiiii e 219
System Operationcooiiiiiiiii e 219
Cold Start Operation.................: 220
CCP OPerationooviuiniiii e 221
Transient Program Operation ..., 227
Resident System Extension Operation ... 229
SUBMIT Operationc....o.oieiriiiiiiii e 232
System Control Blockcoooviiiii 233

8 The BDOS System Interface

BDOS Calling Conventions............ccoovveveeiiiiiieriiniiieneienns 235
BDOS Serial Device IO . .o, 236
BDOS Console I/O ..o 237

Contents

OtherSerial /O e 240
BDOS File SYSIem ..o e e 241
File Naming Conventions...........c.ooiviveeinieiisiiniaenenns 243
Disk and File Organization...........co.oooveiiiiimmnniinneeen 245
File Control Block Definitionccociiivvaieniiiicnineenin, 246
File Attributes.ccovviiii 249
User Number Conventions.cceeeiiivnvnneeiiaieniineenirnns 251
Directory Labels and XFCBS........ccoooiiiiinieciinicnane, 252
File Passwords......ccoooviiiiriii e 254
File Date and Time Stampscoovviiieene s 256
Record Blocking and Deblockingccooiiiivvimniienn 258
Multi-sector O ... e ae 259
Disk Reset and Removable Mediaccooviiivininiin, 260
File Byte COUNtSoovveiii i et mee e 261
BDOSError Handlingcooveiiiiiiiiiiir e 261
Page Zero Initializationooovviieiiiniii i ians 267
9 BDOSFunctionCallsc....cccooiniiiiiiiiieenceeee, 272

10 Programming Examples
A Sample File to File Copy Program............oooeeiiiininni. 333

A Sample File Dump Utility ..o 336
14

Contents

A Sample Random Access Programoocoocieviiiiieeninennnnn, 340
Construction of an RSX Program................cviiiiivniiinn.. 348
The RSK Prefix .o 348
Example of REX Use oo 350

Part 3 APPENDICES

A CP/MPlus Messagesocooiiiiiiinii e 355
B ASCII and Hexadecimal Conversions...........c....cocoiiiiiviinnns 381
ORI 51 1= 4 o = U SN 386
D CP/M Plus Control Character SUummary........coovviviiniiiiinniionnns 388
E System Control Blockcooivrviiviiii 391
F PRLFile Generationccovvirrermvininniriininereniieicieiininanna 397
G SPR Generation.........coociviiiiiiiiiiiniiiii i 399
H BDOS Function Summary....c.coooveveiiiin e 400
I Extended Disk Parameter Blocksccoooooiiiiiiiiiiiiii 403
J BIOS Extended Jumpblock.........ccoovviiinininn i, 408
K CPC6128 Firmware Calls..........cooirvrirnirri i 446
L GSX - Virtual Device Interface (VDI) Specification 454
GROSSArY ..o 493
INMBEX .. 503

Disclaimer

DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF
AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE. Further, Digital Research Inc. reserves the right to revise this
publication and to make changes from time to time in the content hereof
without obligation of Digital Rescarch Inc. to notify any person of such
revision or changes.

Notice to User

From time to time changes are made in the filenames and in the files
actually included on the distribution disk. This manual should not be
construed as a representation or warranty that such files or facilities exist
on the distribution disk or as part of the materials and programs
distributed. Most distribution disks include a “README.DOC” file. This
file explains variations from the manual which do constitute modification
of the manual and the items included therewith. Be sure to read this file
before using the software.

Trademarks

CBASIC, CP/M, and Digital Research and its logo are registered
trademarks of Digital Research Inc.

CP/M Plus, LIB-80, LINK-80, MAC, MP/M, PascalMT+, PLA-80,
RMAC, SID, and TEX-80 are trademarks of Digital Research Inc.

Z80 is a registered trademark of Zilog, Inc.

Intel is a registered trademark of Intel Corporation.

MicroSoft is a registered trademark of MicroSoft Corporation.
PCW8256, PCW8512, CPC6128 are trademarks of AMSTRAD Consumer
Electronics Ple. AMSTRAD is a reglstered trademark of AMSTRAD
Consumer Electronics Ple.

Mallard BASIC, Locomotive and LocoScript are trademarks of
Locomotive Software Ltd.

16

PREFACE

This guide provides you with a full description of the CP/M Plus operating
system for your Amstrad PCW8256 or CPC6128. CP/M Plus is also known
as CP/M 3,

The PCW8512 is a variant of the PCW8256 (with 512K memory and
second disk drive): for the purposes of this manual the 8512 is treated as
for the 8256.

This guide is divided into two main parts, as follows;

Part 1 Using CP/M Plus. This is a full specification of the commands
and facilities of CP/M Plus and should be used in conjunction
with the User Guide supplied with your computer.

Part 2 Programming CP/M Plus. This describes the programming
environment of CP/M Plus. Note that this information is
designed for experienced programmers who are familiar with
the writing of application software.

What CP/M Plus Does For You

CP/M Plus manages and supervises your computer’s resources, including
memory and disk storage, the console (screen and keyboard), printer, and
communications devices. It also manages information stored magnetically
on disks by grouping this information into files of programs or data. CP/M
Plus can copy files from a disk to your computer’s memory, or to a
peripheral device such as a printer. To do this, CP/M Plus places various
programs in memory and executes them in response to commands you
enter at your console.

Once in memory, a program executes through a set of steps that instruct
your computer to perform a certain task. You can use CP/M Plus to create

17

Preface

your own programs, or you can choose from the wide variety of CP/M Plus
application programs that entertain you, educate you, and help you solve
commercial and scientific problems.

CP/M Plus on CPC6128 and PCW8256

This guide is specificaily designed for users of the Amstrad PCW8256 and
CPC6128 machines. Differences between the machines are highlighted in
the text. Note that the CPC6128 can support two disk drives while the
PCW8256 can support two drives plus 2 memory drive (M:). Details of
operating the equipment are given in your User Guide.

18

Part 1

USING CP/M PLUS

Section 1
Introduction to CP/M Plus

This section tells you how to start CP/M Plus, how to enter and edit the
command line, and how to make back-up copies of your CP/M Plus
distribution disks.,

How to Start CP/M Plus

Starting or loading CP/M Plus means reading a copy of the operating
system from your CP/M Plus system disk into your computer’s memory.

First, check that your computer’s power is on. Next, insert the CP/M Plus
system disk into your drive. On CPC6128 type |CPM and press RETURN.
On PCW 8256 simply press the space bar. This loads CP/M Plus into
memory. This process is called booting, cold starting, or loading the
system.

After CP/M Plus is loaded into memory, a message similar to the following
is displayed on your screen:

CP/M Plus Amstrad Consumer Electronics ple

vl.n, 61K TPA, n disk drive(s), [1 serial port [SIO/Centronics add-on],
[112]368K drive M:]

The version number tells you the version of CP/M Plus that you own.
After this display, the following two-character message appears on your
screen:

A>
This is the CP/M Plus system prompt. The system prompt tells you that
CP/M Plus is ready to read a command from your keyboard. In this

example, the prampt also tells you that drive A is your default drive. This

21

Using CPIM Plus

means that until you tell CP/M Plus to do otherwise, it looks for program
and data files on the disk in drive A. It also tells you that you are logged in
as user 0, by the absence of a user number other than 0.

The Command Line

CP/M Plus performs tasks according to specific commands that you type at
your keyboard. A CP/M Plus command line is composed of a command
keyword, an optional command tail, and a carriage return keystroke. The
command keyword identifies a command {program) to be executed. The
command tail can contain extra information for the command, such as a
filename or parameters, To end the command line, you must press the
carriage return, or ENTER key. The following example shows a command
line.

A>DIR MYFILE

The characters that the user types are slanted to distinguish them from
characters that the system displays. In this example, DIR is the command
keyword and MYFILE is the command tail, The carriage return keystroke
does not appear on the screen or in the example. You must remember to
press the carriage return key to send a command line to CP/M Plus for
processing. Note that the carriage return key is marked RETURN on your
keyboard. In this guide, RETURN signifies the carriage return key.

As you type characters at the keyboard, they appear on your screen. The
single-character position indicator, called the cursor, moves to the right as
you type characters. If you make a typing error, press either the DELETE
key or CTRL-H to move the cursor to the left and correct the error. CTRL
is the abbreviation for the control key. To type a control character, hold
down the Control key and press the required letter key. For example, to
move the cursor to the left, hold down CTRL and press the H Key.

You can type the keyword and command tail in any combination of
upper-case and lower-case letters. CP/M Plus treats all letters in the
command line as upper-case.

Generally, you type a command line directly after the system prompt.
However, CP/M Plus does allow spaces between the prompt and the
command keyword.

22

Introduction

CP/M Plus recognizes two different types of commands: built-in commands
and transient utility commands. Built-in commands execute programs that
reside in memory as a part of the CP/M Plus operating system. Built-in
commands can be executed immediately. Transient utility commands are
stored on disk as program files. They must be loaded from disk to perform
their task. You can recognize transient utility program files when a
directory is displayed on the screen because their filenames are followed by
COM. Section 4 presents lists of the CP/M Plus built-in and transient utility
commands.

For transient utilities, CP/M Plus checks only the command keyword. If
you include a command tail, CP/M Plus passes it to the utility without
checking it because many utilities require unique command tails. A
command tail cannot contain more than 128 characters. Of course, CP/M
Plus cannot read either the command keyword or the command tail until
you press the RETURN key.

Let’s use one command to demonstrate how CP/M Plus reads command
lines. The DIR command, which is an abbreviation for directory, telis
CP/M Plus to display a directory of disk files on your screen. Type the DIR
keyword after the system prompt, omit the command tail, and press
RETURN.

A>DIR

CP/M Plus responds to this command by writing the names of all the files
that are stored on the disk in drive A. For example, if you have your CP/M
Plus system disk in drive A, these filenames, among many others, appear
on your screen:

ERASE COM
PIP COM
SET COM

CP/M Plus recognizes only correctly spelled command keywords. If you
make a typing error and press RETURN before correcting your mistake,
CP/M Plus echoes the command line followed with a question mark. If you
mistype the DIR command, as in the following exampie, CP/M Plus
responds

A>DJR
DJR?

23

Using CPIM Plus

to tell you that it cannot find the command keyword. To correct simple
typing errors, use the DELETE key, or hold down the CTRL key and
press H to move the cursor to the left. CP/M Plus supports other control
characters that help you efficiently edit command lines. Section 3 tells how
to use control characters to edit command lines and other information you
enter at your console.

DIR accepts a filename as a command tail. You can use DIR with a
filename to see if a specific file is on the disk. For example, to check that
the transient utility program SETSIO.COM is on your system disk, type

A>DIR SETSIO.COM

CP/M Plus performs this task by displaying either the name of the file you
specified, or the message

No File.

Be sure you type at least one space after DIR to separate the command
keyword from the command tail. If you do not, CP/M Plus responds as
follows:

A>DIRSETSIO.COM
DIRSETSIO.COM?

Why You Should Back Up Your Files

Humans have faults, and so do computers. Human or computer errors
sometimes destroy valuable programs or data files. By mistyping a
command, for example, you could accidentally erase a program that you
just created or a data file that has been months in the making. A similar
disaster could result from an electronic component failure.

Data processing professionals avoid losing programs and data by making
copies of valuable files, Always make a working copy of any new program
that you purchase and save the original. If the program is accidentally
erased from the working copy, you can easily restore it from the original.

It is also wise to make frequent copies of new programs or data files as you
develop them. The frequency of making copies varies with each

24

Introduction

programmer, However, as a general rule, make a copy at the point where it
takes ten to twenty times longer to reenter the information than it takes to
make the copy.

So far, we have not discussed any commands that change information
recorded on vour CP/M Plus system disk. Before we do, make a few
working copies of your distribution disks.

How to Make Copies of Your CP/M Plus Disks

Before using your CP/M Plus system you should make yourself a second set
of system discs. Use the copies for day to day use and keep the originals in
a safe place. You will need two new disks. To make the copies use the
DISCKIT program (called DISCKIT3 on CPC6128) following the
instructions given in your User Guide.

25

Section 2

Files, Disks, and Drives

CP/M Plus’s most important task is to access and maintain files on your
disks. With CP/M Plus you can create, read, write, copy, and erase disk
files. This section tells you what a file is, how to create, name, and access a
file, and how files are stored on your disks. It also tells how to change disks
and change the default drive,

What is a File?

A CP/M Plus file is a collection of related information stored on a disk.
Every fite must have a unique name because CP/M Plus uses that name to
access that file. A directory is also stored on each disk. The directory
contains a list of the filenames stored on that disk and the locations of each
file on the disk.

In general, there are two kinds of files: program {command) files and data
files. A program file contains an executable program, a series of
instructions that the computer follows step-by-step. A data file is usually a
collection of information: a list of names and addresses, the inventory of a
store, the accounting records of a business, the text of a document, or
similar related information. For example, your computer cannot execute
names and addresses, but it can execute a program that prints names and
addresses on mailing labels.

A data file can also contain the source code for a program. Generally, a
program source file must be processed by an assembler or compiler before
it becomes a program file. In most cases, an executing program processes a
data file. However, there are times when an executing program processes a
program file. For example, the copy program PIP can copy one or more
program files.

26

Files, Disks, and Drives
How Are Files Created?

There arc many ways to create a file. One way is to usc a text editor. The
CP/M Plus text editor ED (described in Section 6) can create a file and
assign it the name you specify. You can aiso create a file by copying an
existing file to a new locatjon, perhaps renaming it in the process. Under
CP/M Plus, you can use the PIP command to copy and rename files.
Finally, some programs such as MAC™ create output files as they process
input files.

How Are Files Named?

CP/M Plus identifies every file by its unique file specification. A file
specification can be simply a one- to eight-character filename, such as:

MYFILE

A file specification can have four parts: a drive specifier, a filename, a
filetype, and a password.

The drive specifier is a single letter (A-P) followed by a colon. Each drive
in your system is assigned a letter. When you include a drive specifier as
part of the file specification, you are telling CP/M Plus that the file is stored
on the disk currently in that drive. For example, if you enter

B:MYFILE
CP/M Plus looks in drive B for the file MYFILE.

On single disk systems you have to swap the disk in the drive or turn the
disk over.

The filename can be from one to eight characters. When you make up a
filename, try to let the name tell you something about what the file
contains. For example, if you have a list of cnstomer names for your
bustness, you could name the file:

CUSTOMER
50 that the name gives you some idea of what is in the file.

27

Using CPIM Plus

As you begin to use your computer with CP/M Plus, you will find that files
fall naturally into categories. To help you identify files belonging to the
same category, CP/M Plus allows yvou to add an optional one- to
three-character extension, called a filetype, to the filename. When you add
a filetype to the filename, separate the filetype from the filename with a
period. Try to use three letters that tell something about the file’s category.
For example, you could add the following filetype to the file that contains a
list of customer names:

CUSTOMER.NAM

When CP/M Plus displays file specifications in response to a DIR
command, it adds blanks to short filenames so that you can compare
filetypes quickly. The program files that CP/M Plus loads into memory
from a disk have different filenames, but all have the filetype COM.

In CP/M Plus, you can add a password as an optional part of the file
specification. The password can be from one to eight characters. If you
include a password, separate it from the filetype (or filename, if no filetype
is included) with a semicolon, as follows:

CUSTOMER.NAM;ACCOUNT

If a file has been protected with a password, you must ENTER the
password as part of the file specification to access the file, Section 2.7.3
describes passwords in more detail,

We recommend that you create filenames, filetypes, and passwords from
letters and numbers. You must not use the following characters in
filenames, filetypes, or passwords because they have special meanings for
CP/M Plus:

<=, *2&/I$[]0() . 3N+ -
A complete file specification containing all possible elements consists of a
drive specification, a primary filename, a filetype, and a password, all

separated by their appropriate delimiters, as in the following example:

ADOCUMENT.LAW;SUSAN

28

Files, Disks, and Drives
Do You Have the Correct Drive?

On a two disk system when you type a file specification in a command
without a drive specifier the program looks for the file in the drive named
by the system prompt; this is called the default drive. For example, if you
type the command

A>DIR MYFILE.COM

DIR looks in the directory of the disk in drive A for MYFILE.COM. If
you have another drive, B for example, you need a way to tell CP/M Plus
to access the disk in drive B instead. For this reason, CP/M Plus lets you
precede a filename with a drive specifier. For example, in response to the
command

A>DIR B:MYFILE.LIB

CP/M Plus looks for the file MYFILE.LIB in the directory of the disk in
drive B. When you give a command to CP/M Plus, note which disk is in the
default drive. Many application programs require that the data files they
access be stored in the default drive,

You can also precede a program filename with a drive specifier, even if you
use the program filename as a command keyword. For example, if you
type the following command:

A>B:PIP

CP/M Plus looks in the directory of the disk in drive B for the file
PIP.COM. If CP/M Plus finds PIP on drive B, it loads PIP into memory
and executes it. If you need to access many files on the same drive, you
might find it convenient to change the default drive so that you do not need
to repeatedly enter a drive specifier. To change the default drive, enter the
drive specifier next to the system prompt and press RETURN. In
response, CP/M Plus changes the system prompt to display the new default
drive:

A>B:
B>

Unlike the ftlename and filetype, which are stored in the disk directory, the

29

Using CPIM Plus

drive specifier for a file changes as you move the disk from one drive to
another. Therefore, a file has a different fiie specification when you move a
disk from one drive to another. Section 4 presents more information on
how CP/M Pius locates program and data files.

Do You have the Correct User Number?

CP/M Plus further identifics all files by assigning each one a user number
which ranges from 0 to 15. CP/M Plus assigns the user number to a file
when the file is created. User numbers allow you to separate your files into
sixteen file groups. User numbers are particularly useful for organizing
files on a hard disk.

When you use a CP/M Plus utility to create a file, the file is assigned to the
current user numnber, unless you use PIP to copy the file to another user
number. You can determine the current user number by looking at the
system prompt,

4A>> User number 4, drive A
A= User number 0, drive A
2B> User number 2, drive B

The user number always precedes the drive identifier. User 0, however, is
the default user number and is not displayed in the prompt.

A>USER 3
3A>

You can change both the user number and the drive by entering the new
user number and drive specifier together at the system prompit:

A>=3B:
3B>

Most commands can access only files that have the current user number,
e.g. if the number is 7, a DIR command with no options diplays only files
created under user number 7. However, if a file resides in user O and is
marked with a special file attribute, the file can be accessed from any user
number. Note: Locoscript, on PCW8256, holds limbo files within user

30

Files, Disks, and Dvrives

numbers 8 to 15. Therefore, if you use a disk with CP/M Plus files in user
8-15, Locoscript will treat them as limbo files.

Accessing More Than One File

Certain CP/M Plus built-in and transient utilitics can select and process
several files when special wildcard characters are included in the filename
or filetype. A file specification containing wildcards is called an ambiguous
filespec and can refer to more than one file because it gives CP/M Plus a
pattern to match. CP/M Plus searches the disk directory and selects any file
whose filename or filetype matches the pattern.

The two wildcard characters are 7, which matches any single letter in the

same position, and *, which matches any character at that position, and

any other characters remaining in the filename or filetype. The following
list presents the rules for using wildcards:

® A 7 matches any character in a name, including a space character.

@ An * must be the last, or only, character in the filename or

filetype. CP/M Plus internally replaces an * with ? characters to

the end of the filename or filetype.

® When the filename to match is shorter than eight characters,
CP/M Plus treats the name as if it ends with spaces.

@® When the filetype to match is shorter than three characters, CP/M
Plus treats the filetype as if it ends with spaces.

Suppose, for example, you have a disk that contains the following six files:
ACOM AACOM AAACOM B.COM AASM and B.ASM

The following wildcard specifications match all, or a portion of, these files:

*F is treated as 77777772.777
277772712.27? matches all six names
* COM is treated as 77777777, COM

3]

Using CPIM Plus

77777777.COM maiches the first four names

?.COM matches A.COM and B.COM

?.* 18 treated as 7.7%7

2.7 matches A.COM, B.COM, A.ASM, and
B.ASM

Al1.COM matches A.COM and AA.COM

A*.COM is treated as A?7?7777.COM

A7 .COM matches A.COM, AA.COM, and AAA.COM

Remember that CP/M Plus uses wildcard patterns only while searching a
disk directory, and therefore wildcards are valid only in filenames and
filetypes. You cannot use a wildcard character in a drive specifier. You also
cannot use a wildcard character as part of a filename or filetype when you
create a file.

How to Protect Your Files

Under CP/M Plus you can organize your files into groups to protect them
from accidental change and from unauthorized access. You can specify
how your files are displayed in response to a DIR command, and monitor
when your files were last accessed or modified. CP/M Plus supports these
features by assigning the following to files:

@® user numbers

® attributes

@ timc and date stamps
@ passwords

All of this information for each file is recorded in the disk directory.

File Attributes
File attributes control how a file can be accessed. When you create a file,

32

Files, Disks, and Drives
CP/M Plus gives it two attributes, changeable with a SET command,

The first attribute can be set to either DIR (Directory) or SYS (System).
This attribute controls whether CP/M Plus displays the file’s name in
response to a DIR command or DIRSYS command. When you create a
file, CP/M Plus automatically sets this attribute to DIR. You can display
the name of a file marked with the DIR attribute with a DIR command. If
you give a file the SYS attribute, you must use a DIRSYS command to
display the filerame. Simple DIR and DIRSYS commands display only the
filenames created under the current user number,

A file with the SYS attribute has a special advantage when it is created
under user 0. When you give a file with user number ¢ the SYS attribute,
you can read and execute that file from any user number. This feature gives
you a convenient way to make your commonly used programs available
under any user number. Note, however, that a user 0 SYS$ file does not
appear in response to a DIRSYS command uniess ¢ is the current user
number,

The second file attribute can be set to either R/W (Read-Write) or R/O
{Read-Only). If a file is marked R/O, any attempt to write data to that file
produces a Read-Only error message. Therefore, you can use the R/O
attribute to protect important files. A file with the R/W attribute can be
read or written to, or erased at any time, unless the disk is physically
write-protected.

Date and Time Stamping

If you use date and time stamps, you can quickly locate the most recent
copy of a file, and check when it was last updated or changed. You can
choose to have the system tell you either when you created the file, or
when you last read from or wrote to the file. You use the SET command to
enable date and time stamping, and the DIR command with the DATE
option to display a file’s time and date stamp.

Note that Locoscript 1.20 does not update access times. Earlier versions of
Locoscript cannot read disks with extended directories.

A SET command enables the option you want to monitor. You can use the
following commands to enable time and date stamping on a disk, but you

33

Using CPIM Plus

must choose between ACCESS and CREATE. If vou choose ACCESS,
the stamp records the last time the file was accessed. If you choose
CREATE, the stamp records when the file was created.

A>SET [ACCESS=0N]
A>SET [CREATE=ON]
A>SET [UPDATE=ON

Files created on or copied to a disk that has time and date stamping are
automatically stamped. The DATE command allows you to display and
reset the time and date that CP/M Plus is using. For a complete discussion
of time and date stamping, see the descriptions of the SET and INITDIR
commands in Section 5.

Passwords

Passwords allow you to protect your files from access by other users. You
can use passwords to limit access to certain files for security purposes.

The SET utility allows you to enable password protection on a drive, assign
a password to SET itself (so that unauthorized users cannot disable
password protection on a drive), and assign passwords to specific files that
have already been created. You can assign passwords to all program and
data files. This means that a command line could require the entry of two
passwords in order to execute: one password to access the command
program, and a second password to access the file specified in the
command tail.

Some CP/M Plus commands and most word processing, accounting, and
other application programs running under CP/M Plus do not accept
passwords in the command tail. For example, passwords set under CP/M
Plus are ignored by Locoscript. If you want to protect your file and still use
those programs, you can sef a default password before executing the
application program. Sce the description of the SET command in Section 5
for an explantion of this process.

How Are Files Stored on a Disk?

CP/M Plus records the filename, filetype, password, user numbey, and
attributes of cach file in a special area of the disk called the directory. In
the directory, CP/M Plus also records which parts of the disk belong to
which file.

34

Files, Disks, and Drives

CP/M Plus allocates directory and storage space for a file as records are
added to the file. When you erase a file, CP/M Plus reclaims storage in two
ways: it makes the file’s directory space available to catalog a different file,
and frees the file's storage space for later use. It is this dynarmic allocation
feature that makes CP/M Plus powerful. You do not have to tell CP/M Plus
how big your file will become, because it automatically allocates more
storage for a file as needed, and rcleases the storage for reallocation when.
the file is erased. Use the SHOW command to determine how much space
remains on the disk.

Changing Disks

CP/M Plus cannot, of course, do anything to a file unless the disk that holds
the file is inserted into a drive and the drive is ready. When a disk is in a
drive, it is online and CP/M Plus can access its directory and files.

At some time, you will need to take a disk out of a drive and insert another
that contains different files. You can replace an online disk whenever you
see the system prompt at your console. This is a clear indication that no
program is reading or writing to the drive.

You can also remove a disk and insert a new one when an application
program prompts you to do so. This can occur, for example, when the data
that the program uses does not fit on one disk.

Note: you must never remove a disk if a program is reading or writing to
it.

You can change disks on the drive without sending any special signals to
CP/M Plus, This allows you to insert anocther disk at a program’s request
and read files from or create files on the new disk.

Protecting a Drive

Under CP/M Plus, drives can be marked R/0O just as files can be given the
R/O attribute. The default state of a drive is R/W. You can give a drive the
R/O attribute by using the SET command described in Section 5. To return
the drive to R/W, use the SET command or press a CTRL-C at the system
prompt.

35

Section 3

Console and Printer

. This section describes how CP/M Plus communicates with your console and
printer. It tells how to start and stop console and printer output, edit
commands you enter at your console, and redirect console and printer
input and output. It also explains the concept of logical devices under
CP/M Plus.

Controlling Console Qutput

Sometimes CP/M Plus displays information on your screen too quickly for
you to read it. Sometimes an especially long display scrofls off the top of
your screen before you have a chance to study it. To ask the system to wait
while you read the display, hold down the CONTROL (CTRL) key and
press S. Note that the ALT key on PCW8256 has thé same effect as CTRL.
A CTRL-S keystroke causes the display to pause. When you are ready,
press CTRL-Q to resume the display. Make sure you do not press any
other key or key combinations during a display pause.

DIR, TYPE, and other CP/M Plus utilities support automatic paging at the
console. This means that if the program’s output is longer than what the
screen can display at one time, the display automatically halts when the
screen is filled. When this occurs, CP/M Plus prompis you to press
RETURN to continue.

Controlling Printer Output

You can also use a control command to echo console output to the printer.
To start printer echo, press a CTRL-P. To stop, press CTRL-P again.
While printer echo is in effect, any characters that appear on your screen
are listed at your printer.

You can usc printer echo with a a DIR command to make a list of files

36

Console and Printer

stored on a floppy disk. You can also use CTRL-P with CTRL-S and
CTRL-Q to make a hard copy of part of a file. Usc a TYPE command to
start a display of the file at the console. When the display reaches the part
you need to print, press CTRL-S to stop the display, CTRL-P to enable
printer echo, and then CTRL-Q to resume the display and start printing.
You can use another CTRL-S, CTRL-P, CTRL-Q sequence to terminate
printer echo.

Console Line Editing

You can correct simple typing errors with the DEL key. CP/M Plus also
supports additionat line-editing functions that you perform with control
characters. You can use the control characters to edit command lines or
input lines to most programs.

Line Editing in CP/M Plus

CP/M Plus allows you to edit your command line without deleting ail
characters. Using the line-editing control characters listed in Table 3-1, you
can move the cursor left and right to insert and delete characters in the
middle of a command line. You do not have to retype everything to the
right of your correction. In CP/M Plus, you can press RETURN when the
cursor is in any position in the command line; CP/M Plus reads the entire
command line. You can also recall a command for reediting and reexecu-
tion.

In the following sample session, the user has mistyped PIP, and CP/M Plus
returned an error message. The user recalls the erroneous command line
by pressing CTRL-W and corrects the error, (the underbar represents the
cursor):

A>POP A:=B:""_ (PIP mistyped)

POP?

A>POP A:=B"_ (CTRL-W recalls the line)
A>POP A:=B:"" (CTRL-B to beginning of line)
A>POP A:=B:"" (CTRL-F to move cursor right)

37

Using CPIM Plus
A>PP A=B:"" (CTRL-G to delete error)
A>PIP_ A:=Br.* (type I to correct the command name})

To execute the corrccted command line, the user can press return even
though the cursor is in the middle of the line. A return keystroke, or one of
its equivalent controf characters, not only executes the command, but also
stores the command in a buffer so that you can recall it for editing or
reexecution by pressing CTRL-W,

When you insert a character in the middle of a line, characters to the right
of the cursor move to the right. If the line becomes longer than your screen
is wide, characters disappear off the right side of the screen. These
characters are not lost. They reappear if you delete characters from the line
or if you press CTRL-E when the cursor is in the middle of the line.
CTRL-E moves all characiers to the right of the cursor to the next line on
the screen.

Table 3-1 gives a complete fist of line-editing control characters. Note that
your keyboard’s special keys can, in many cases, emulaie the control
characters. Consult Appendix D and your user guide for further details.

You probably noticed that some control characters have the same mean-
ing. For example, the CTRL-J and CTRL-M keystrokes have the same
effect as pressing the RETURN key; all three send the command line to
CP/M Plus for processing. Also, CTRL-H has the same cffect as pressing
the DEL key. Notice that when a control character is displayed on your
screen, it is preceded by an up-arrew, 1. For example, a CTRL-C
keystroke appears as T C on your screen.

Redirecting Input and Output

CP/M Plus’s PUT command allows you to direct console or printer output
to a disk file. You can use a GET command to make CP/M Plus or a utility
program take consoie input from a disk file. The following examples
illustrate some of the conveniences GET and PUT offer.

You can use a PUT command to direct console output to a disk file as well
as the console. With PUT, you can create a disk file containing a directory

38

Table 3-1.

Console and Printer

CP/M Plus Line-editing Control Characters

Character

Meaning

CTRL-A

CTRL-B

CTRL-E-

CTRL-F

CTRL-G

CTRL-H

CTRL-I

CTRL-J

CTRL-K

CTRL-M

CTRL-R

Moves the cursor one character to the left.

Moves the cursor to the beginning of the command line
without having any effect on the contents of the line. If
the cursor is at the beginning, CTRL-B moves it to the
end of the line.

Forces a physical carriage return but does not send the
command line to CP/M Plus. Moves the cursor to the
beginning of the next line without erasing the previous
input.

Moves the cursor one character to the right.

Deletes the character indicated by the cursor. The
cursor does not move.

Deletes a character and moves the cursor left one
character position.

Moves the cursor to the next tab stop. Tab stops are
automatically set at each eighth column. Has the same
effect as pressing the TAB key.

Sends the command line to CP/M Plus and returns the
cursor to the beginning of a new line. Has the same
effect as a RETURN or a CTRL-M keystroke.

Deletes to the end of the line from the cursor.
Sends the command line to CP/M Plus and returns the
cursor to the beginning of a new line. Has the same
effect as a RETURN or a CTRL-J keystroke.
Retypes the command line. Places a # at the current

cursor location, moves the cursor to the next line, and
retypes any partial command you typed so far.

39

Using CPIM Plus

Table 3-1 (continued)

CTRL-U

CTRL-W

CTRL-X

Discards all the characters in the command line, places
a # at the current cursor position, and moves the cursor
to the next line. However, you can use a CTRL-W to
recall any characters that were to the left of the cursor
when you pressed CTRL-U.

Recalls and displays previously entered command line
both at the operating system level and within executing
programs, if the CTRL-W is the first character entered
after the prompt. CTRL-J, CTRL-M, CTRL-U, and
RETURN define the command line you can recall. If
the command line contains characters, CTRL-W moves
the cursor to the end of the command line. If you press
RETURN, CP/M Plus executes the recalied command.

Discards all the characters left of the cursor and moves
the cursor to the beginning of the current line. CTRL-X
saves any characters right of the cursor.

of all files on that disk, as follows:

A>PUT CONSOLE QUTPUT TO FILE DIR.PRN
Putting conscle output to file: DIR.PRN

A>=DIR

A: FILENAME TEX :
A: FOUR TEX :
A TWO TEX :

A>TYPE DIR.PRN

A: FILENAME TEX :
A: FOUR TEX :
A TWO TEX ;

FRONTTEX : FRONTBAK : ONE BAK : THREETEX
ONE TEX:LINEDITTEX: EXAMP1TXT: TWO BAK
THREE BAK : EXAMP2TXT
FRONTTEX : FRONTBAK: ONE BAK : THREETEX
ONE TEX:LINEDITTEX:EXAMP1TXT: TWO BAK
THREE BAK : EXAMP2TXT

You can use a similar PUT command to direct printer output to a disk file
as well as the printer.

A GET command can direct CP/M Plus or a program to read a disk file for

40

Console and Printer

console input instead of the keyboard. If the file is to be read by CP/M
Plus, it must contain standard CP/M Plus command lines. If the file is to be
read by a utility program, it must contain input appropriate for that
program. A file can contain both CP/M Plus command lines and program
input-if it also includes a command to start a program.

You add or omit the SYSTEM option in the GET command line to specify
whether CP/M Plus or a utility program is to start reading the file, as shown
in the following sample session. If you omit the SYSTEM option, the
system prompt returns so that you can initiate the program that is to take
input from the specified file. If you include the SYSTEM option, CP/M
Plus immediately takes input from the specified file.

3A>TYPE PIP.DAT
B:=FRONT.TEX
B:=ONE.TEX
B:=TWO.TEX

3A>GET CONSOLE INPUT FROM FILE PIP.DAT
GETTING CONSOLE INPUT FROM FILE: PIP.DAT
3A>PIP

CP/M PLUS PIP VERSION 3.0

*B:=FRONT.TEX

*B:=0ONE.TEX
B:=TWO.TEX

*"<CR>

3A>TYPE CCP.DAT

DIR

SHOW

DIRSYS

3A>GET CONSOLE INPUT FROM FILE CCP.DAT {SYSTEM]
GETTING CONSOLE INPUT FROM FILE: CCP.DAT

3A>DIR

A: FILENAME TEX : FRONTTEX : FRONTBAK : ONE BAK : THREE TEX
A: FOUR TEX: ONE TEX:LINEDITTEX: EXAMP1TXT: TWO BAK
A: TWQO TEX:EXAMP3 :EXAMP2TXT: PiP DAT : EXAMP4

A: THREE BAK:EXAMP5 :CCP DAT

41

Using CPIM Plus

3A>show
A: RW, Space:3,392k
B: BW, Space:452k

3A>NON-SYSTEM FILE(S) EXIST

See the descriptions of GET and PUT in Section 5 for more ways to use
redirected input and output.

Assigning Logical Devices

Most CP/M Plus computer systems have a traditional console with a
keyboard and screen display. Many also have letter-quality printers. If you
use your computer for unusual tasks, you might want to add a different
kind of character device to your system: a line printer, a teletype terminal,
a modem, or even a joystick for playing games. To keep track of these
physically different input and output devices, CP/M Plus associates diffe-
rent physical devices with logical devices, Table 3-2 gives the names of
CP/M Plus logical devices, It also shows the physical devices assigned to
these logical devices in the distributed CP/M Plus system.

Table 3-2. CP/M Plus Logical Devices

Logical Device type Physical device
device narme assignment
CONIN: Console input Keyboard
CONOUT: Console output Screen
AUXIN: Auxiliary input Nulil
AUXOUT: Auxiliary output Null

LST: List output Printer

On Amstrad systems you can change these assignments with a DEVICE
command. You can, for example, assigh AUXIN and AUXOUT to a
modem so that your computer can communicate with others over the
telephone.

42

Section 4
CP/M Plus Command Concepts

A CP/M Plus command line consists of a command keyword, an optional
command tail, and a carriage return keystroke. This section describes the
two kinds of programs the command keyword can identify, and tells how
CP/M Plus searches for a program file on a disk. This section also tells how
to execute multiple CP/M Plus commands, and how to reset the disk
system.

Two Kinds of Command

A command keyword identifies a prograrn that resides either in memory as
part of CP/M Plus, or on a disk as a program file. Commands that identify
programs in memory are called built-in commands. Commands that
identify program files on a disk are called transient utility commands.

CP/M Plus has 6 built-in commands and over 20 transient utility
commands. You can add utilities to your system by purchasing various
CP/M Plus-compatible application programs. If you are an experienced
programmer, you cai also write your own utilities that operate with CP/M
Plus.

Built-in Commands

Built-in commands are part of CP/M Plus and are always available for your
use regardless of which disk you have in which drive. Built-in commands
reside in memory as a part of CP/M Plus and therefore execute more
quickly than the transient utilities.

Some built-in commands have options that require support from a related
transient utility. The related transient has the same name as the built-in
and has a filetype of COM. This type of transient utility is loaded only

43

Using CPIM Plus

when a built-in command line contains options that cannot be performed
by the built-in command.

If you include certain options in the command tail for a built-in command,
CP/M Plus might return a .COM Required message. This means that the
command tail options require support from a related transient utility and
CP/M Plus could not find that program file. The following files must be
accessible to support all the functions these built-ins offer: ERASE.COM,
RENAME.COM, TYPE.COM, and DIR.COM, .

Section 5 explains in detail the built-in commands listed in Table 4-1.

Table 4-1. Bailt-in Commands

Command Function

DIR Displays filenames of all files in the directory except
those marked with the SYS attribute.

DIRSYS Displays filenames of files marked with the SYS

(system) attribute in the directory.

ERASE Erases a filename from the disk directory and releases
the storage space occupied by the file,

RENAME
Renames a disk file.

TYPE Displays contents of an ASCII (TEXT) file at your
screen,

USER Changes to a different user number.

CP/M Plus allows you to abbreviate the built-in commands as follows:

DIRSYS DIRS
ERASE ERA
RENAME REN
TYPE TYP
USER USE

44

Command Concepts

Transient Utility Commands

When vou enter a command keyword that identifies a transient utility,
CP/M Plus loads the program file from the disk and passes it any filenames,
data, or parameters you ¢ntered in the command tail. Section 5 provides
the operating details for the CP/M Plus transient utilities listed in Table

4-2.

Table 4-2, Transient Utility Commands

Name Function

DISCKIT Creates a new system. Note that this is called
DISCKIT3 on the CPC6128.

‘DATE Sets or displays the date and time.

DEVICE Assigns logical CP/M devices to one or mure physicat
devices, changes device driver protocol and baud rates,
or sets console screen size.

DUMP Displays a file in ASCII and hexadecimal format.

ED Creates and alters character files.

GET Temporarily gets console input from a disk fite rather
than the keyboard.

HELP Displays information on how to use CP/M Plus
commands.

HEXCOM Uses the output from MAC to produce a program file.

INITBIR Initializes a disk directory to allow time and date
stamping,

LANGUAGE Selects character set.

LINK Links REL (relocatable) program modules produced

by RMAC (relocatable macro assembler} and produces
program files,

45

Using CPIM Plus

Table 4-2 (continued)

MAC

PALETTE

PAPER

PIP

PUT

RMAC

SET

SETDEF

SETKEYS

SETLST

SET24X80

SHOW

SID

SUBMIT

XREF

Translates assembly language programs into machine
code form.

Sets ink colours.
Initializes FX-80 or PCW8256 printer (8256 only).
Copies files and combines files.

Temporarily directs printer or console output to a disk
file.

Translates assembly language programs into
relocatable program modules.

Sets file options including disk labels, file attributes,
type of time and date stamping, and password
protection.

Sets system options including the drive search chain.
Configures the keyboard.

Performs printer initialization.

Sets the screen inte 24x80 mode.

Displays disk and drive statistics.

Helps you check your programs and interactively
cotrect programming errors,

Automatically executes multiple commands,

Produces a cross-reference list of variables used in an
assembler program.

46

How CP/M Plus Searches for Program and Data Files

This section describes how CP/M Plus scarches for program and data files
on disk. If it appears that CP/M Plus cannot find a program file you
specified in a command line, the problem might be that CP/M Plus is not
looking on the drive where the file is stored. Therefore, you need to
understand the steps CP/M Plus follows in searching for program and data
files.

Finding Data Files

When you enter a command line, CP/M Plus passes the command tail to
the program identified by the command keyword. If the command tail
contains a file specification, the program calls CP/M Plus to search for the
data file. If CP/M Plus cannet find the data file, the program displays an
error message at the console. Typically, this message is “File not found” or
“No File,” but the message depends on the program identified by the
command keyword.

If you do not include a drive specifier with the filename in a command tail,
CP/M Plus searches the directory of the current user number on the default
drive. If the file is not there, CP/M Plus looks for the file with the SYS
attribute in the directory of user 0 on the default drive. If CP/M Plus finds
the file under user 0, it allows the program Read-Only access to the file.
For example, if you enter the following command line,

3A>TYPE MYFILE.TXT

CP/M Plus first searches the directory for user 3 on drive A, If it does not
find MYFILE. TXT there, it searches the directory of user 0 on drive A for
MYFILE. TXT marked with the SYS attributc. If the file is not in either
directory, CP/M Plus returns contro] to TYPE, which then displays “No
File.”

Some CP/M Plus utilities, such as PIP and DIR, restrict their file search to
the current user number. Because CP/M Plus does not allow Read-Write
access to SYS files, ERASE and RENAME also restrict their search to the
current user number.

The search procedure is basically the same if you do include a drive

47

Using CPIM Plus

specifier with the filename. CP/M Plus first looks in the directory of the
current user number on the specified drive. Then, if it does not find the
file, it looks in the directory for user ¢ on the specified drive for the file
with the SYS attribute. If CP/M Plus does not find the data file after these
two searches, it displays an error message.

Finding Program Files

The search procedure for a program file can be very different from a data
file search. This is because you can use the SETDEF command described
in Section 5 to define the search procedure you want CP/M Plus to follow
when it is looking for a program file. With SETDEF you can ask CP/M
Pius to make as many as sixteen searches when you do not include a drive
specifier before the command keyword, but that is a rare case! We will
begin by describing how CP/M Plus searches for program files when you
have not yet entered a SETDEF command.

If a command keyword identifies a transient utility, CP/M Plus looks for
that program file on the default or specified drive. It looks under the
current user number, and then under user 0 for the same file marked with
the SYS attribute. At any point in the search process, CP/M Plus stops the
search if it finds the program file. CP/M Plus then loads the program into
memory and exccutes it. When the program terminates, CP/M Plus
displays the system prompt and waits for your next command. However, if
CP/M Plus does not find the command file, it repeats the command line
followed by a question mark, and waits for your next command.

If you include a drive specifier before the command keyword, you are
telling CP/M Plus precisely where to look for the program file. Therefore,
CP/M Plus searches only two locations: the directory for the current user
on the specified drive, and then for user ¢ on the specified drive, before it
repeats the command line with a question mark. For example, if you enter

4B>>A:SHOW [SPACE]

CP/M Plus looks on drive A, user 4 and then user 0 for the file
SHOW.COM.

If you do not include a drive specifier before the command keyword, CP/M
Plus searches directories in a sequence called a drive chain. When you first

48

Command Concepts
receive CP/M Plus, there is only one drive in your chain, the default drive.
Unless you change the chain with a SETDEF command, CP/M Plus looks
in two places for the program file. For example, if you enter
7B>SHOW [SPACE]

CP/M Plus searches the following locations for the file SHOW.COM:

1 drive B, user 7

2 drive B, user 0
Remember that a SHOW.COM file under user 0 must be marked with the
SYS attribute or else CP/M Plus cannot find it. Use a SET command to
give program files under user 0 to the SYS attribute because they can then
be accessed automatically from all ather user areas. You do not have to
duplicate frequently used program files in all user areas on all drives.
When you use a SETDEF command to define your own drive chain,
include the default drive, and the drive that contains your most frequently
used utilities. For an example, assume you defined your drive chain as *
(the default drive) and drive A. When you euater the following command:
2B>>SHOW [SPACE]
CP/M Plus looks for SHOW.COM in the foliowing sequence:

1 drive B, user 2

2 drive B, user 0

3 drive A, user 2

4 drive A, user 0
You can include your default drive in your drive chain with an option in a
SETDEF command. Any drive chain you specify with SETDEF remains in

effect until you restart or reset the system.

You can also use a SETDEF command to enable automatic submit in your
drive chain.

49

Using CPIM Plus
Executing Multiple Commands

In the examples so far, CP/M Plus has executed only one command at a
time. CP/M Plus can also execute a sequence of commands. You can enter
a sequence of commands at the system prompt, or you can put a frequently
needed sequence of commands in a disk file. Once you have stored the
sequence in a disk file, you can execute the sequence whenever you need to
with a SUBMIT command.

To enter multiple commands at the system prompt, separate each
command keyword and associated command tail from the next keyword
with an exclamation point, !|. When you complete the sequence, press
RETURN. CP/M Plus executes your commands in order:

3A>DIRSYSIDIR EXAMP* *ISHOW [SPACE]

NON-SYSTEM FILE(S) EXIST

3A>DIR EXAMP™.”

A: EXAMP7 : EXAMP1 TXT :EXAMP3 :EXAMP2 TXT : EXAMP4
A EXAMPS : EXAMPS

3A>>SHOW [SPACE]

A: RW, SPACE: 44K

If you find you need to execute the same command sequence frequently,
store the sequence in a disk file. To create this file, use ED or another
character file editor. The file must have a filetype of SUB. Each command
in the file must start on a new line. For example, an UPDATE.SUB file
might look like this:

DIR A:*.COM
ERA B:*.COM
PIP B:=A:".COM

To execute this list, enter the following command:

A>SUBMIT UPDATE

The SUBMIT utility passes each command to CP/M Plus for sequential
execution, While SUBMIT executes, the commands are usually echoed at
the console, as well as any program’s screen display, such as the directory

or PIP’s “COPYING...”” message. When one command completes, the

30

Command Concepts

system prompt reappears either with the next command in the SUB file,
or, when the SUB file is exhausted, by itself to wait for your next command
from the keyboard.

. PROFILE.SUB is a special submit file that CP/M Plus automatically
executes at each cold start. This feature is especially convenient if you
regularly execute a standard set of commands, such as SETDEF and
DATE SET, before beginning a work session.

The description of the SUBMIT utility in Section 5 gives more details on
how to create a SUB file and use SUBMIT parameters to pass options to
the programs to be executed.

You can also use CTRL-C to reset the disk system. This is sometimes
called a warm start. When you press CTRL-C and the cursor is at the
system prompt, CP/M Plus logs out all the active drives, then logs in the
defaunlt drive. The active drives are any drives you have accessed since the
last cold or warm start. A SHOW [SPACE] command displays the
remaining space on all active drives. In the example in Terminating
Programs (below), SHOW [SPACE] indicates that three drives are active.
However, if you press CTRL-C immediately after this display and then
enter another SHOW [SPACE] command, only the space for the default
drive, A, is displayed.

Terminating Programs

You can use the two keystroke command CTRL-C' (ALT-C on PCW8256}
to terminate program execution or reset the disk system. To enter a
CTRL-C command, hold down the CTRL key and press C.

Not all application programs can be terminrated by a CTRL-C., However,
most of the transient utilities supplied with CP/M Plus can be terminated
immediately by a CTRL-C keystroke. If you try to terminate a program
white it is sending a display to the screen, you might neced to press a
CTRL-S to halt the display before entering CT'RL-C.

You can also use CTRL-C to reset the disk system. This is sometimes
called a warm start. When you press CTRL-C and the cursor is at the
system prompt, CP/M Plus logs out all the active drives, then logs in the
default drive. The active drives are any drives you have accessed since the

51

Using CPIM Plus

last cold or warm start. A SHOW [SPACE] command displays the
remaining space on all active drives. In the following example, SHOW
[SPACE] indicates that three drives are active. However, if you press
CTRL-C immediately after this display and then enter another SHOW
[SPACE] command, only the space for the default drive, A, is displayed.

A>=>SHOW [SPACE]

A. RW, Space: 88k
B: RQ, Space: 54k
M: RO, Space: 65k
A>"C

A>SHOW [SPACE]

A: RW, Space: 88k

Getting Help

CP/M Plus includes a transient utility command called HELP that can
display a summary of what you need to know to use each command
described in this manual. To get help, simply enter the command:

A>HELP

In response, the HELP utility displays a list of topics for which summaries
are available. After HELP lists the topics available, it displays its own
prompt:

HELP>

To this prompt, you can enter one of the topics presented in the list, for
example,

HELP>SHOW

After displaying a summary of the SHOW command, HELP lists subtopics
that detail different aspects of the SHOW command. To display the
information on a subtopic when you have just finished reading the main
topic, enter the name of the subtopic preceded by a period:

HELP>.OPTIONS

52

Command Concepts

In the preceding example, HELP then displays the options available for
the SHOW command. As you become familiar with HELP, you might
want to call a HELP subtopic directly from the system: prompt as follows:

A>HELP SHOW OPTIONS

HELP lets you learn the basic CP/M Plus commands quickly. You might
find that you reference the command summary in Section 5 only when you
need details not provided in the HELP summaries. When you add new
utilities, you can modify HELP to add or subtract topics, or even modify
the summaries HELP presents, See the description of HELP in Section 5
for complete details.

i3

Section 5

Command Summary

This section describes the commands and programs supplied with your
CP/M Plus operating system. The commands are in alphabetical order.
Each command is followed by a short explanation of its operation and
examples. More complicated commands are described later in detail. For
example, ED is described in Section 6.

CP/M Plus has replaced some commands from previous CP/M versions
such as CP/M 2.2. MAC replaces ASM; SHOW and DIR include the
previous STAT functions; and SID replaces DDT.

Let’s Get Past the Formalities

This section describes the parts of a file specification in a command line. .
There are four parts in a file specification; to avoid confusion, each part
has a formal name:

® drive specifier — the optional disk drive A, B, M that contains the
file or group of files to which you are referring. If a drive specifier
is included in your command line, a colon must follow it.

® filename — the one- to eight-character first name of a file or
group of files.

@ filetype — the optional one- to three-character category name of a
file or group of files. If the filetype is present, a period must
separate it from the filename.

@ password — the optional one- to eight-character password which
allows you to protect your files. It follows the filetype, or the
filename if no filetype is assigned, and is preceded by a semicolon,

On twin disk systems,if you do not include a drive specifier, CP/M Plus

54

Command Summuary

automatically uses the default drive. If you omit the period and the
filetype, CP/M Plus automatically includes a filetype of three blanks.

This general form is called a file specification. A file specification names a
particular file or group of files in the directory of the on-line disk given by
the drive specifier. For example,

B8:MYFILE.DAT

is a file specification that indicates drive B:, filename MYFILE, and
filetype DAT. File specification is abbreviated to

filespec
in the command syntax statements.

Some CP/M Plus commands accept wildcards in the filename and filetype
parts of the command tail. For example,

B:MY*A??
is a file specification with drive specifier B:, filename MY™*, and filetype
A??, This ambiguous file specification might match several files in the
directory.
Put together, the parts of a file specification are represented like this:

d:filename.typ;password
In the preceding form, d: represents the optional drive specifier, filename
represents the one- to ecight-character filename, and typ represents the
optional one- to three-character filetype. The syntax descriptions in this
section use the term filespec to indicate any valid combination of the
elements included in the file specification. The following list shows valid
combinations of the elements of a CP/M Plus file specification.

@® filename

@ filename.typ

@ filename;password

55

Using CP/M Plus

® filename.typ;password
d:filename
d:filename.typ

d:filename;password

d:filename.typ;password

Table 5-1. Reserved Characters

Characrer Meaning

tab space file specification delimiters
carriage refurn

drive delimiter in file specification

filetype delimiter in file specification

; password delimiter in file specification

*? wildcard characters in an ambiguous file
specification

<>&!|/+- option list delimiters

[] option list delimiters for global and local
options

() delimiters for multiple modifiers inside square

brackets for options that have modifiers
/'$ option delimiters in a command line

; comment delimiter at the beginning of a
command line

56

Command Summary

The characters in Table 5-1 have special meaning in CP/M Plus, so do not
use these characters in file specifications except as indicated.

CP/M Plus has already established several file groups. Table 5-2 lists some

of their filetypes with a short description of each family. Appendix C
provides the complete list.

Table 5-2. CP/M Plus Filetypes

Filetype Meaning

ASM Assembler source file

BAS BASIC source program

COM Machine language program

HLP HELP message file

SUB List of commands to be executed by SUBMIT
333 Temporary file

It some commands, descriptive qualifiers are used with filespecs to further
qualify the type of filespec accepted by the commands. For example,
wildcard-filespec denotes wildcard specifications, dest-filespec denotes a
destination filespec, and src-filespec denotes a source filespec,

You now understand command keywords, command tails, coatrol
characters, default drive, and wildcards. You also see how to use the
formal names filespec, drive specifier, filename, and filetype. These
concepts give you the background necessary to compose complete
command lines.

How Commands Are Described

CP/M Plus commands appear in alphabetical order. Each command
description is given in a specific form. This section also describes the

57

Using CPIM Plus

ntotation that indicates the optional parts of a command line and other
syntax notation:

® The description begins with the command keyword in upper-
case,

@ The syntax section gives you one or more general forms to follow
when you compose the command line.

@ The explanation section defines the general use of the command
keyword, and points out exceptions and special cases. The
explanation sometimes includes tables or lists of options that you
can use in the command line.

® The examples section lists a number of valid command lines that
use the command keyword. To clarify examples of interactions
between you and the operating system, the characters that you
enter are slanted. The responses that CP/M Plus shows on your
screen are in vertical type.

The notation in the syntax lines describes the general command form using
these rules:

® Words in capital letters must be spelled as shown, but you can use
any combination of upper- or lower-case letters.

@ The symbolic notation d:, filename, .typ, ;password, and filespec
have the general meanings described on pages 55-56.

® You must include one or more space characters where a space is
shown, unless otherwise specified. For example, the PIP options
do not need to be separated by spaces.

The following table defines the special symbols and abbreviations used in
syntax lines.

58

Command Summary

Table 5-3. Syntax Notation

Symbol Meaning

DIR Directory attribute.

n You can substitute a numbers for n.

o Indicates an option or an option list.

RO Read-Only.

RW Read-Write.

] You can substitute a string, which consists of a group of
characters, for s.

SYS System attribute.

{} Items within braces arc optional. You can enter a
comrand without the optional items. The optional items
add effects to your command line.

(1 Items in square brackets are options or an option fist. If
you use an option specified within the brackets, you must
type the brackets to enclose the option. If the right
bracket is the last character on the command line, it can
be omitted.

() Items in parentheses indicate a range of opticns. If you

use a range from an option list, you must enclose the
range in parentheses.

Ellipses tell you that the previous item can be repecated
any number of times.

The bar separates alternative items in a command line.
You can select any or all of the alternatives specified.
Mutually exclusive options are indicated in additional
syntax lines or are specifically noted in the text.

59

Using CP/M Plus
Table 5.3 (continued)

1 or CTRL Represent the CTRL key on your keyboard. (CTRL
characters are prefixed | on your screen.)

<<crs> Indicates a carriage return keystroke.

* Wildcard character — replaces all or part of a filename
' and/or filetype.

? . Wildcard character — replaces any single character in the
same position of a filename or filetype.

Let’s look at some examples of syntax notation. The CP/M Plus DIR
(DIRectory) command displays the names of files cataloged in the disk
directory and, optionally, displays other information about the files.

The syntax of the DIR command with options shows how to use the
command line syntax notation:

Syntax: DIR {d:} | {filespec}{[options]}
| 023
optional optional optional

This tells you that the command tail following the command keyword DIR
is optional. DIR alone is a valid command, but you can include a file
specification, or a drive specification, or just the options in the command
line. Therefore,

DIR

DIR filespec
DIR d:

DIR [RO]

are valid commands. Furthermore, the drive or file specification can be
followed by another optional value selected from the following list of DIR

60

Command Summary
options:

RO

RW
DIR
SYS

Therefore,
DIR dfilespec [RO])
is a valid command.

Recall that in Section 2 you learned about wildcards in filenames and
filetypes. The DIR command accepts wildcards in the file specification.

Using this syntax, you can construct several valid command lines:

DIR

DIR X.PAS

DIR X.PAS [RO]
DIR X.PAS [SYS]
DIR *PAS

DIR *.* [RW]}
DIR X.* [DIR]

The CP/M Plus command PIP {Peripheral Interchange Program) is the file
copy program. PIP can copy information from the disk to the screen or
printer. PIP can combine two or more files into one longer file. PIP can
also rename files after copying them. Look at one of the formats of the PIP
command line for another example of how to use command line notation.
PIP also copies files from one disk to another disk.

Syntax: PIP dest-filespec=src-filespec{ filespec...}

In the preceding example, dest-filespec is further defined as a destination
file specification or peripheral device (printer, for example) that receives
data. Similarly, src-filespec is a source file specification or peripheral
device (keyboard, for example) that transmits data. PIP accepts wildcards
in the filename and filetype. (See the PIP command for details regarding
other capabilities of PIP.) There are, of course, many valid command lines

61

Using CPIM Plus
that come from this syntax. Some examples foliow.

PIP NEWFILE.DAT=0LDFILE.DAT
PIP B:=A:THISFILE.DAT

PIP B:X.BAS=Y.BAS, Z.BAS

PIP X.BAS=A.BAS, B.BAS, C.BAS
PiP B:=A:*.BAK

PiP B:=A"~

The remainder of this section contains a complete élescription of each
CP/M Plus utility. The descriptions are arranged alphabetically for easy
reference.

The DATE Command

Syntax: DATE {CONTINUOUS}
DATE {time-specification}
DATE SET

Explanation: The DATE command is a transient utility that lets you
display and set the date and time of day. When you start
CP/M Plus, the date and time are set to the creation date of
your CP/M Plus system. Use DATE te change this initial
value to the current date and time.

Display Current Date and Time
Syntax: DATE {CONTINUQUS)

Explanation: The preceding form of the DATE command displays the
current date and time. The CONTINUGQUS option allows
continuous display of the date and time. The
CONTINUOQUS opticn can be abbreviated to C. You can
stop the continuous display by pressing any key.

Examples: A>DATE
A>DATE C

02

Command Summary

The first example displays the current date and time. A
sample display might

Fri 08/13/82 09:15:37

The second example displays the date and time continuously
until you press any key to stop the display.

Set the Date and Time

Syntax:

Explanation:

Examples:

DATE {time-specification}
DATE SET

The first form allows the user to enter both date and time in
the command, The time-specification format is

MM/DD/YY HH:MM:SS

where:

MM is a month value in the range 1 to 12,

DI is a day value in the range 1 to 31.

YY is the two-digit year value relative 1o 1900.
HH is the hour value in the range of 0 to 23.
MM is the minute value in the range of 0 to 59.

SS is the second value in the range of 0 to 59.

The system checks the validity of the date and time entry and
determines the day for the date entered.

The second form prompts you to enter the date and the time.
To keep the current system date or time, press the carriage
return,

A=DATE 08/14/82 10:30:00

The system responds with

Press any key to set time

63

Using CPIM Plus

When the time occurs, press any key. DATE initializes the
time at that instant, and displays the date and time:

Sat 08/14/82 10:30:00
A>DATE SET

The system prompts with

Enter today's date (MM/DD/YY):

Press the carriage return to skip or enter the date, Then the
system prompts with

Enter the time (HH:MM:SS):

Press the carriage return to skip or enter the time and the
system prompts with

Press any key to set time

to allow you to set the time exactly.

The DEVICE Command

Syntax:

Explanation:

64

DEVICE {NAMES | VALUES | physical-dev | logical-dev}
DEVICE logical-dev=physical-dev {option}

{,physical-dev { option},...}
DEVICE logical-dev = NULL
DEVICE physical-dev {option}
DEVICE CONSOLE [PAGE | COLUMNS=columns |
LINES=lines}

The DEVICE command is a transient utility that displays
current assignments of CP/M Plus logical devices and the
names of physical devices. DEVICE allows you to assign
logical CP/M Plus devices to peripheral devices attached to
the computer. The DEVICE command also sets the

Command Summary

communications protocol and speed of a peripheral device,
and displays or sets the current console screen size.

CP/M Plus supports the foliowing five logical devices:

CONIN:
CONOUT:
AUXIN:
AUXOUT:
LST:

These logical devices are also known by the following names:

CON: (for CONIN: and CONOUT?)
CONSOLE: (for CONIN: and CONOUT:)
KEYBOARD (for CONIN:)

AUX: (for AUXIN: and AUXOUT:)
AUXILIARY: (for AUXIN: and AUXOUT:)
PRINTER (for LST:)

The physical device names on a computer vary from system
to system. You can use the DEVICE command to display the
names and attributes of the physical devices that your system
accepts.

Display Device Characteristics and Assignments

Syntax:

DEVICE { NAMES | VALUES | physical-dev | logical-dev}

Explanation: The preceding form of the DEVICE command displays the

Examples:

names and atiributes of the physical devices and the current
assignments of the logical devices in the system.

A>=DEVICE

The preceding command displays the physical devices and
current assignments of the logical devices in the system. The
following is a sample response:

65

Using CPIM Plus

Physical Devices:
I1=Input,O=0utput, 5= Serial X=Xon-Xoff
CART NONE 1O LPT NONE O 108

Current Assignments:

CONIN: = CRT
CONOQUT: = CRT
ALIXIN: = WNuil Device
AUXOUT: = MNull Device
LST: = LPT

Enter new assignment or hit RETURN:

The system prompts for a new device assignment. You can
enter any valid device assignment (as described in the next
section). If you do not want to change any device
assignments, press the RETURN key.

A>DEVICE NAMES

The preceding command lists the physical devices with a
summary of the device characteristics.

A>DEVICE VALUES

The preceding command displays the current logical device
assignments.

A>DEVICE CRT

The preceding command displays the attributes of the
physical device CRT.

A>DEVICE CON

The preceding command displays the assignment of the
logical device CON:

Assign a Logical Device

Syntax:

66

DEVICE logical-dev = physical-dev {option}
{.physical-dev {option},...}
DEVICE logical-dev = NULL

Command Summary

Explanation: The first form assigns a Jogical device to one or more physical
devices. The second form disconnects the logical device from
any physical device.

Examples:

Table 5-4. DEVICE Options

Option

Meaning

XON

NOXON

baud-rate

refers to the XON/XOFF communications
protocol. This protocol uses two special
characters in the ASCII character set called
XON and XOFE. XON signals transntission
on, and XOFF signals transmission off, Before
cach character is output from the computer to
the peripheral device, the computer checks to
sce if there is any incoming data from the
peripheral. If the incoming character is XOFF,
the computer suspends all further output until
it receives an XON from the device, indicating
that the device is again ready to receive more
data.

indicates ao protocol and the computer sends
data to the device whether or not the device is
ready to receive it.

is the speed of the device. The system accepts
the following baud rates:

50 75 110 134

150 300 800 1200

1800 2400 3600 4800
7200 9600 19200

A>DEVICE CONOUT:=LPT,CRT
A>DEVICE AUXIN:=CRT?2 [XON 9600]
A>DEVICE LST:=NULL

The first examplc assigns the system console ocutput,

67

Using CPIM Plus

CONOQUT:, to the printer, LPT, and the screen, CRT. The
second example assigns the auxiliary logical input device,
AUXIN:, to the physical device CRT using protocol
XON/XOFF and sets the transmission rate for the device at
9600. The third example disconnects the list output logical
device, L8T:.

Set Attributes of a Physical Device

Syntax:

Explanation:

Example:

DEVICE physical-dev {option}

The preceding form of the DEVICE command sets the
attributes of the physical device specified in the command.

A>DEVICE LPT [XON,9600]
The preceding command sets the XON/XOFF protocol for

the physical device LPT and sets the transmission speed at
9600.

Display or Set the Current Console Screen Size

Syntax:

Explanation:

Examples:

68

DEVICE CONSOLE (PAGE | COLUMNS=columns |
LINES=lines}

The preceding form of the DEVICE command displays or
sets the current console size.

A>DEVICE CONSOLE [PAGE]
A>DEVICE CONSOLE [COLUMNS =40, LINES=16]

The first example displays the current console page width in
columns and length in lines. The second example sets the
screen size to 40 columns and 16 lines.

Command Summary

The DIR Command

Syntax:

Explanation:

DIR {d:}

DIR {filespec}
DIRSYS {d:}
DIRSYS {filespec}

DIR {d:} [options]
DIR {filespec} {filespec}...[options]

The DIR command displays the names of files and the
attributes associated with the files. DIR and DIRSYS are
built-in utilities; DIR with options is a transient utility.

Display Directory

Syntax:

Explanation:

DIR {d:)
DIR {filespec}

DIRSYS {d:}
DIRSYS {filespec}

The DIR and DIRSYS commands display the names of files
cataloged in the directory of an on-line disk. The DIR
command tists the names of files in the current user number
that have the Directory (DIR) attribute. DIR accepts
wildcards in the file specification. You can abbreviate the
DIRSYS command to DIRS.

The DIRSYS command displays the names of files in the
current user number that have the System (SYS) attribute,
Although you can read System (SYS) files that are stored in
user 0 from any other user number on the same drive,
DIRSYS only displays user 0 files if the current user number
is 0. DIRSYS accepts wildcards in the file specification.

If you omit the drive and file specifications, the DIR
command displays the names of all files with the DIR

69

Using CPIM Plus

Examples:

70

attribuie on the default drive for the current user number.
Similarly, DIRSYS displays all the SYS files.

If the drive specifier is included, but the filename and
filetype are omitted, the DIR command displays the names
of all DIR files in the current user on the disk in the specified
drive. DIRSYS displays the SYS files.

If the file specification contains wildcard characters, all
filenames that satisfy the match are displayed on the screen.

If no filenames match the file specification, or if no files are
cataloged in the directory of the disk in the named drive, the
DIR or DIRSYS command displays the message:

No File

If system (SYS) files match the file specification, DIR
displays the message:

SYSTEM FILE(S) EXIST

If nonsystem (DIR) files match the file specification,
DIRSYS displays the message:

NON-SYSTEM FILES(S) EXIST

The DIR command pauses after filling the screen. Press any
key to continue the display.

Note: You can use the PEVICE command to change the
number of columns displayed by DIR or DIRSYS,

A>DIR

Displays all DIR files cataloged in user 0 on the default drive
A.

A>DIR B:

Displays all DIR files for user 0 on drive B.

Command Summary
A>DIR B:X.BAS

Displays the name X.BAS if the file X.BAS is present on
drive B.

4A>DIR *.BAS

Displays all DIR files with filetype BAS for user 4 on drive
A,

B=>DIR A:X*.C7D

Displays all DIR files for user 0 on drive A whose filename
begins with the letter X, and whose three character filetype
contains the first character C and last character D,

A>DIRSYS

Displays all files for user 0 on drive A that have the system
(SYS) attribute.

3A>DIRS *.COM

This abbreviated form of the DIRSYS command displays all
SYS files with filetype COM on default drive A for user 3.

Display Directory with Options ,
Syntax: DIR {d:} [options] DIR {filespec} {filespec}...[options]

Explanation: The DIR command with options is an enhanced version of
the DIR command. The DIR command displays CP/M Plus
files in a variety of ways. DIR can search for files on any or
all drives, for any or all user numbers.

DIR allows the option list to occur anywhere in the
command tail. These options modify the entire command
line. Only one option list is allowed.

Options must be enclosed in square brackets, The options

71

Using CPIM Plus

can be used individually, or strung together separated by
commas or spaces. Options can be abbreviated to only one or
two letters if the abbreviation unambiguously identifies the
option.

If a directory listing exceeds the size of your screen, DIR

automatically halts the display when it fills the screen. Press
any key to continue the display.

Table 5-5. DIR Display Options

Option Function
ATT
displays the user-definable file aitributes F1,
F2, F3, and F4.
DATE
displays files with date and time stamps. If date
and time stamping is not active, DIR displays
the message:
Date and Time Stamping Inactive.
DIR
displays only files that have the DIR attribute.
DRIVE=ALL

displays files on all accessed drives. DISK is
also acceptable in place of DRIVE in all the
DRIVE options.

DRIVE={A,B,M)
displays files on the drives specified.

Command Summary

DRIVE=d

displays files on the drive specified by d.

EXCLUDE

displays the files on the default drive and user
area that do not match the files specified in the
command line.

FF

sends an initial form-feed to the printer device
if the printer has been activated by CTRL-P. If
the LENGTH=n option is also specified, DIR
issues a form-feed every n lines. Otherwise, the
FF option deactivates the default paged output
display.

FULL

shows the name of the file and the size of the
file, The size is shown as the amount of space
in kilobytes and the number of 128-byte
records allocated to the file. FULL also shows
the attributes the file, (See the SET command
for description of file attributes). If there is a
directory label on the drive, DIR shows the
password protection mode and the time
stamps. The display is alphabetically sorted.
FULL is the default output format for display
when using DIR with options.

LENGTH=n

displays n lines of output before inserting a
table heading. n must be in the range between
5 and 65536. The default length is one full
screen of information.

73

Using CPIM Plus

74

Table 5-5 (continued)

MESSAGE

displays the names of the specified drives and
user numbers it is currently searching. If there
are no files in the specified locations, DIR
displays the file not found message.

NOPAGE
continuously scrolls information by on the
screen. Does not wait for you to press a key to
restart the scrolling movement.

NOSORT
displays files in the order it finds them on the
disk. If this option is not included, DIR
displays the files alphabetically.

RO
displays only the files that have the Read-Only
attribute.

RW
displays only the files that are set to
Read-Write.

SIZE
displays the filename and file size in kilobytes.

SYS

displays only the files that have the SYS
attribute,

Examples:
Nama
DITS BAK
DITS TES
DITS ki
DITS ZZ
SETDEF COM
SUBMIT TX2
SUBMIT ™1
Total Bytes
Total 1k Blocks

Command Summary

USER=ALL
displays all files under all the user numbers for
the default drive.

USER=n
displays the files under the user number
specified by n.

USER=(0,1,...,15)
displays files under the user numbers specified.

A>DIR B: [FULL]
A>DIR B: [SIZE]

The following is sample output of the [FULL) option display
format shown in the first exampie of the DIR command:

Directory for Drive B: User 0

Bytes Recs Attributles Prot Update Access

1L 1 Dir RW Read 09/01/82 13:04 09/01/82 13.07
1k 1 Dir RO Nona 09/01/82 13:07 09/01/82 13:08
1k t Dir RW None 08/25/82 03:33 0B/265/82 03:33
1K { Dir AW Nene 08/25/82 03:36 08/25/82 03.36
4k 29 Dir RQ None 0B/25/82 0338
1k 1 Dir RO None
sk 43 Dir RO None

= 14k Total Records = 77 Files Found = 7

= 14 Used/Max Dir Entries for Drive B: 11/ &4

The following is sample output of the [SIZE] option display
format shown in the second example of the DIR command:

75

Using CPIM Plus

B: DITS
B, DITS
B: SUBMIT

76

Directory for Drive B: User 0

BAK 1tk DITS TES ik ;. DITS Y 1k
2z 1k . SETDEF COM 4k @ SUBMIT TX2 ik
TX1 5k

Total Bytes = 14k Total Records = 77 Files Found = 7
Taotal 1k Blocks = 14 Used/Max Dir Entries for Orive B: 11/ 64

Both the full format and the size format follow their display
with two lines of totals. The first line displays the total
number of kilobytes, the total number of records, and the
total number of files for that drive and user area. The second
line displays the total number of 1K blocks needed to store
the listed files. The number of 1K blocks shows the amount
of storage needed to store the files on a single density disk, or
on any drive that has a block size of one kilobyte. The second
line also shows the number of directory entries used per
number of directory entries available on the drive,

A>DIR [DRIVE=B,FF]

DIR sends a form-feed to the printer before displaying the
files on drive B.

A>DIR B: [RW,8YS]

The preceding example displays all the files on drive B with
Read-Write and SYS attributes,

A>DIR B: [USER=ALL]

Displays all the files under each user number (0-15) on drive
B.

A>DIR [USER=2]
Displays all the files under user 2 on the default drive.
A>DIR B: [USER=(3,4,10))

This example displays all the files under user numbers 3, 4,

Command Summary
and 10 on drive B.
A>DIR [DRIVE=ALL]

Displays all the files under user 0 on all the drives in the drive
search chain. (See the SETDEF command.)

4A>DIR [DRIVE=B]

Displays all the files under user 4 on drive B.

A>DIR [DRIVE=(B,M))

Displays all the files under user ¢ on drives B and M.
A>DIR [exclude] *.COM

The preceding example above lists all the files on the default
drive and user 0 that do not have a filetype of COM.

A>DIR [user=all,drive=all,sys} *.PLi *.COM * ASM

The preceding command line instructs DIR to list all the
system files of type PLI, COM, and ASM on the system in
the currently active drives for all the user numbers on the
drives.

A>DIR X.SUB [MESSAGE,USER=ALL,DRIVE=ALL]

The preceding command searches all drives under each user
number for X.SUB. During the search, DIR displays the
drives and user numbers,

A>DIR [drive=all user=all] TESTFILE.BOB
The preceding example instructs DIR to display the filename
TESTFILE.BOB if it is found on any logged-in drive for any

user number.

A>DIR [size,rw] B:

77

Using CPIM Plus

The preceding example instructs DIR to list each
Read-Write file that resides on drive B with its size in
kilobytes. Note that B: is equivalent to B:*.*,

The DISCKIT Command

Syntax: DISCKIT (PCW8256)
DISCKIT3 (CPC6128)

Explanation: DISCKIT enables you to format your disks and copy the
contents of your issued system disks by making selections
from a menu. Remember that formatting a disk erases any
information already held on that disk. You can make
working copies of your system disks and.use the ERASE
option to remove any files you do not require. See your User
Guide for full details.

Example: DISCKIT 1.0
CPC6128 & CP/M Plus
© 1985 Amstrad Consumer Electronics plc
and Locomotive Software Lid.

one drive found

Copy 7
Format 4
Verify 1

Exit from program |0

78

Command Summary

The DUMP Command

Syntax:

Explanation:

Example:

DUMP filespec

Dump displays the contents of a file in hexadecimal and
ASCII format.

A>DUMP ABC.TEX
Console output can look like the following:

DUMP - Version 3.0
0000: 41 42 43 0D 0A 44 45 46 0D 0A 47 48 49 0D 0A 1A ABC..DEF..GHI...
0010 1A 1A 1A TA 1A TATATATATATA A TATATATA L

The ED Command

Syntax:

Explanation:

ED {input-filespec {B: | output-filespec}}
The ED transient utility lets you create and edit a disk file,

The ED utility is a line-oriented context editor. This means
that you create and change character files line-by-line, or by
referencing individual characters within a line.

The ED utility lets you create or alter the file named in the
file specification. Refer to Section 6 for a description of the
ED utility.

The ED utility uses a portion of your user memory as the
active text buffer where you add, delete, or alter the
characters in the file. You use the A command to read all or
a portion of the file into the buffer. You use the W or E
command to write all or a portion of the characters from the
buffer back to the file.

An imaginary character pointer, called CP, is at the

79

Using CPIM Plus

80

beginning of the buffer, between two characiers in the
buffer, or at the end of the buffer.

You interact with the ED utility in either command or insert
mode. ED displays the * prompt on the screen when ED isin
command mode. When the * appears, you can enter the
single letter command that reads text from the buffer, moves
the CP, or changes the ED mode of operation. When in
command mode, you can use the line-editing characters
CTRL-C, CTRL-E, CTRL-H, CTRL-U, CTRL-X, and
DEL to edit your input. In insert mode, however, you use
only CTRL-H, CTRL-U, CTRL-X, and DEL.

Table 5-6. ED Command Summary

Command Action

nA

Append n lines from original file to
memory buffer.

0A
Append file until buffer is one half full.
#A
Append file untii buffer is full (or end of
file).
B, -B

Move CP to beginning (B) or bottom {-B}
of buffer.

Command Summary

nC, -nC
Move CP n characters forward (C) or
back (-C) through buffer.

nD, -nD
Delete n characters before (-D) or from
(D) the CP.

E

Save new file and return to CP/M Plus.

Fstring{|Z}

Find character string.

Save the new file, then reedit, using the
new file as the original file,

Enter insert mode; use T Z or ESCape to
exit insert mode.

Istring{|Z}
Insert string at CP.

Note: upper-case I forces all input to upper-case; while
lower-case i allows upper- and lower-case.

81

Using CPIM Plus

Table 5-6 (continued)

Isearch-str"Zins-str “Zdel-to-str{|Z}

Juxtapose strings.

nK, -nK

Delete (kill) n lines from the CP.
nl., -nlL, OL

Move CP n lines.
nMcommands

Execute commands n times.
I, -0

Move CP n lines and display that line.
n:

Move to line n.
:ncommand

Execute cominand through line n.
Nstring*{ b|Z}

Extended find string.

82

Command Summary

O
Return to original file.
nP, -nP
Move CP n lines forward and display n
lines at console.
Q
Abandon new file, return to CP/M Plus.
R{|Z}

Read X$$$$$$$.LIB file into buffer,

Rfilespec{|Z)

Read filespec into buffer.

Sdelete string " Zinsert string{|Z}

Substitute string.

nT, -nT, 0T

Type n lines.

Upper-case translation.

33

Using CPIM Plus

84

Table 5-6 (continued)

V, -V, 0V
Line numbering onfoff, display free
buffer space.

nw
Write n lines to updated file,

nX{|Z}

Write or append n lines to
X$$3$588.LIB.

nXfilespec{|Z}

Write n lines to filespec or append if
previous x command applied to the same
file.

0X{|Z}

Delete file X$$33$3$.L1B,

0Xfilespec{|Z}

Delete filespec.

nZ

Wait n seconds.

Command Summary

Section 6 gives a detailed description of the overall operation
of the ED utility and the use of each command.

If you do not include a command tail in the ED command, it
prompts you for the input filespec and the output filespec as
follows:

Enter Input File:

After you enter the input filespec, ED prompts again:
Enter Qutput File:

Enter a filename or drive if you want the output file or its
location to be different from that of the input file. Press
RETURN if you want the output file to replace the input
file. In this case, the input file is renamed to type BAK.

If the second file specification contains only the drive
specifier, the second filename and filetype become the same
as the first filename and filetype.

If the file given by the first file specification is not present,
ED creates the file and writes the message:

NEW FILE

If the file given by the first filespec is already present, you
must issue the A command to read portions of the file to the
buffer. If the size of the file does not exceed the size of the
buffer, the command

#a

reads the entire file to the buffer.

The i (Insert} command places ED in insert mode. In this
mode, any characters you type are stored in sequence in the

buffer starting at the current CP.

Any single letter commands typed in insert mode are not

85

Using CPIM Plus -

Examples:

86

interpreted as commands, but are simply stored in the buffer.
To return from insert mode to command mode, press
CTRL-Z or the ESC key. Note that you can always
substitute the ESC key for CTRL-Z in ED.

The single letter commands are usually typed in lower-case.
The commands that must be followed by a character
sequence end with CTRL-Z if they are to be followed by
another command letter.

Any single letter command typed in upper-case tells ED to
internally translate to upper-case all characters up to the
CTRL-Z that ends the command.

When enabled, line numbers that appear on the left of the
screen take the form:

nnnnn.

where annnn is a number in the range 1 through 65535, Line
numbers are displayed for your referemce and are not
contained in either the buffer or the character file. The
screen line starts with

oW

when the CP is at the beginning or end of the buffer.

A>ED MYPROG.PAS

If not already present, this command line creates the file
MYPROG.PAS on drive A. The command prompt

x

appears on the screen, This tells you that the CP is at the
beginning of the buffer. If the file is already present, issue
the command

*xk

Ca

Cormuymand Summary
to fill the buffer. Then type the command
*0p

to fill the screen with the first n lines of the buffer, where n is
the current default page size (See the DEVICE command to
set the page size).

Type the command

ve

to stop the ED utility when you are finished changing the
character file. The ED utility leaves the original file
unchanged as MYPROG.BAK and the altered file as
MYPROG.PAS.

A>ED MYPROG.PAS BINEWPROG.PAS

The original file is MYPROG.PAS on the default drive A.
The original file remains unchanged when the ED utility
finishes, with the altered file stored as NEWPROG.PAS on
drive B.

A>B:ED MYPROG.PAS B:

The ED.COM file must be on drive B. The original file is
MYPROG.PAS located on drive A. It remains unchanged,
with the altered program stored on drive B as
MYPROG.PAS.

The ERASE Command

ERASE {filespec} {{CONFIRM]}

Explanation: The ERASE command removes one or more files from a

disk’s directory in the current user number. Wildcard
characters are accepted in the filespec. Directory and data

87

Using CP/IM Plus

Examples:

88

space are automatically reclaimed for later use by another
file. The ERASE command can be abbreviated to ERA.

Use the ERASE command with care because all files in the
current user number that satisfy the file specification are
removed from the disk directory.

Command lines that take the form
ERASE {d:}wildcard-filespec

require your confirmation because they erase an entire group
of files, not just one file. The system prompts with the
following message: ’

ERASE {d:}wildcard-filespec {Y/N)?

Respond with y if you want to remove all matching files, and
n if you want to avoid erasing any files.

If no files match the file specification, you see the following'
message:

No File

The CONFIRM option informs the system to prompt for
verification before erasing each file that matches the filespec.
You can abbreviate CONFIRM to C.

If you use the CONFIRM option with wildcard-filespec, then
ERASE prompts for confirmation for each file. You can
selectively erase the files you want by responding Y to the
confirm message, or keep the files by responding N to the
confirm message.

A>ERASE X.PAS

This command removes the file X.PAS from the disk in drive
A.

A>ERA *.PRN

Command Summary
The system asks to confirm;
ERASE *.PRN (Y/N)?Y

All files with the filetype PRN are removed from the disk in
drive A,

B=ERA A:MY™.* [CONFIRM]
Each file on drive A with a filename that begins with MY is
displayed with a question mark for confirmation. Type Y to

erase the file displayed, N to keep the file.

A=ERA B:**
ERASE B:*.* (Y/N)?Y

All files on drive B are removed from the disk.

The GENCOM Command

Syntax: GENCOM {COM-filespec} {RSX-filespec} ...
{{LOADER|NULL|SCB=
(offset,value}}}

Explanation: The GENCOM command is a transient utility that creates a
special COM file with attached RSX files. RSX files are used
as Resident System Extensions and are discussed in detail in
part 2 of this manual. GENCOM places a special header at
the beginning of the output program file to indicate to the
system that RSX loading is required. It can also set a flag to
keep the program loader active.

The GENCOM command can also restore a file already
processed by GENCOM to the original COM file without the
header and RSXs. GENCOM has three options that help
you attach RSX files:

® The LOADER option sets a flag to keep the program

89

Using CPIM Plus

loader active, (For complete details on the LOADER
option, read about CP/M function 59 in Part 2 of this
manual. This option is used only if no RSX files are
attached to the COM file.

The NULL optien indicates that only RSX files are

specified. GENCOM creates a dummy COM file for the
RSX files. The output COM filename is taken from the
filename of the first RSX-filespec.

The SCB=(offset,value) option sets the System Control
Block from the program by using the hex values
specified by (offset,value). For complete details on the
SCB option read about CP/M function 49 in Part 2 of this
manual.

Attach RSX Files to a COM File

Syntax: GENCOM COM-filespec RSX-filespec ...

Explanation: The

{{[LOADER|SCB=(offset,value)]}

preceding form of the GENCOM command creates a

COM file with a header and attached R§8Xs. A maximum of
15 RS8Xs can be attached. GENCOM expects the first
filespec to be a COM file and the following filespecs to be
RSX files. Note that the original COM file is replaced by the
newly-created COM file.

Example: A>GENCOM MYPROG PROG1 PROG2

The preceding command generates a new COM file
MYPROG.COM with attached RSXs PROG1 and PROG2.

Generate a COM File Using Only RSX Files

Syntax: GENCOM RSX-filespec {RSX-filespec} ...
[NULL {SCB={offset,value)}]

90

Explanation:

Example:

Command Summary

The preceding form of the GENCOM command attaches the
RSX files to a dummy COM file. GENCOM creates a COM
file with the filename of the first RSX-filespec in the
command tail. This format allows the system to load RSXs
directly.

A>GENCOM PROG1 PROG2 [NULL]

The preceding command creates a COM file PROG1.COM
with Resident System Extensions PROGI1.RSX and
PROG2.RSX.

Restore a File with Attached RSXs to Original COM File

Syntax:

Explanation:

Example:

GENCOM filename

The preceding form of the GENCOM file takes a file that has
already been processed by GENCOM and restores it 10 its
original COM file format. This form of the command
assumes a filetype of COM,

A=>GENCOM MYPROG
In the preceding command, GENCOM takes

MYPROG.COM, strips off the header and deletes all
attached RSXs to restore it to its original COM format,

Update (Add or Replace) RSX Files

Syntax:

Explanation:

GENCOM COM-filespec RSX-filespec ... {{LOADER |
SCB=(offset,value)]}

The preceding form of the GENCOM command adds and/or
replaces RSX files to a file already processed by GENCOM.

GENCOM inspects the list of RSX files. If they are new,
they are added to the file already processed by GENCOM. If
they already exist, then GENCOM replaces the existing
RSXs with the new RSX files.

91

Using CPIM Plus

Example:

A>GENCOM MYPROG PROG1 PROG2

In the preceding example, GENCOM looks at
MYPROG.COM, which is already processed by GENCOM,
to see if PROGI.RSX and PROG2.RSX arc already
attached RSX files in the module. If cither on¢ is already
attached, GENCOM replaces it with the new RSX module.
Otherwise, GENCOM appends the specified RSX files to
the COM file.

Attach a Header Record

Syntax:

Explanation:

Examples:

92

GENCOM filename [SCB=(offset,value),... | LOADER]

The preceding syntax ling attaches a GENCOM header
record, with the SCB or loader flag set, to a file of type COM
that contains no RSXs. This form of the command does not
attach RSXs 1o a file.

A>GENCOM FILETWO [loader]

The preceding command attaches a 256-byte header record
to the file FILETWO.COM and sets the loader flag in the
header record.

A>GENCOM FILEFOUR [scb=(1,1)]

The preceding command causes the program loader to set
byte 1 of the System Conirol Block to 1 when it loads
FILEFOUR.COM,

For more information, see functions 49, Set/Get System
Control Block, and 59, Load Overlay or Resident System
Extensions, in Part 2 of this manual.

Command Summary

The GET Command

Syntax: GET {CONSOLE INPUT FROM]} FILE filespec
{[{ECHO|NO ECHO}|SYSTEM])
GET {CONSOLE INPUT FROM} CONSOLE

Explanation: The GET command is a transient utility that directs CP/M. 3
to take console input from a file. The file can contain CP/M 3
system commands and/or input for a user program. If you use
the SYSTEM option, GET immediately takes the next
system command from the file.

Console input is taken from a file until the program
terminates. If the fite is exhausted before program input is
terminated, the program looks for subsequent input from the
conscle. If the program terminates before exhausting all its
input, the system reverts back to the console for console
input.

When the SYSTEM option is used, the system immediately
goes to the file specified for console input. If you omit the
SYSTEM option, you can enter one system command to
initiate a user program whose console input is taken from the
file specified in the GET command. The system reverts to
the console for input when it reaches the end of the GET file
input. The system also reverts to the console for console
input if a GET CONSOLE INPUT FROM CONSOLE
command is included in the input file.

Get Console Input from a File

Syntax: GET (CONSOLE INPUT FROM)} FILE filespec
{[options}}

Explanation: The preceding form of the GET command tells the system to
get subsequent console input from a file, Table 5-7 lists the

93

Using CPIM Plus

Examples:

94

GET cptions that you use in the following format:

[{ECHO | NO ECHO} | SYSTEM]

Table 5-7. GET Options

Option Meaning

ECHO specifies that the input is echoed to the
console. This is the default option.

NO ECHO specifies that the file input is not to be
echoed to the console. The program
output and the system prompts are not
affected by this option and are still
cchoed to the console.

SYSTEM specifies that all system input is to be
taken from the disk file specified in the
command line. GET takes system and
program input from the file until the file
is exhausted or until GET reads a GET
console command from the file.

A=>GET FILE XINPUT
A=MYPROG

The preceding sequence of commands tells the system to
activate the GET utility. However, because SYSTEM is not
specified, the system reads the next input line from the
console and executes MYPROG. If MYPROG program
requircs console input, it is taken from the file XINPUT.
When MYPROG terminates, the system reverts to the
console for console input.

A>GET FILE XIN2 [SYSTEM]

The preceding command immediately directs the system to

Terminate
Syntax:

Explanation:

Example:

Conunand Surmumary

get subsequent console input from file XIN2 because it
includes the SYSTEM option. The system reverts to the
console for console input when it reaches the end of file in
XIN2. Or, XIN2 can redirect the system back to the console
if it contains a GET CONSOLE command.

Console Input from a File
GET {CONSOLE INPUT FROM} CONSOLE

The preceding form of the GET command telis the system {0
get console input from the console.

A>GET CONSOLE

The preceding GET command tells the system to get console
input from the consele. You can use this command in a file
(previously specified in a GET FILE command) which is
already being read by the system for console input. It is used
to redirect the console input to the console before the end of
the file is reached.

The HELP Command

Syntax:

Explanation:

HELP {topic}{subtopicl subtopic2...subtopic8}{[NO
PAGE|LIST]}

HELP [EXTRACT]

HELP [CREATE)

The HELP command is a transient utility that provides
summarized information for afl of the CP/M Plus commands
described in this manual. In the distributed CP/M Plus
system, HELP presents general information on a command
as a topic and detailed information on a command as a sub-
topic. HELP with no command tail displays a list of all the
available topics. HELP with a topic in the command tail

95

Using CPIM Plus

displays information about that topic, followed by any
available subtopics. HELP with a topic and a subtopic
displays information about the specific subtopic.

After HELP displays the information for vour specified
topic, it displays the special prompt HELP> on your screen,
Subtopics can be accessed by preceding the subtopic with a
period. The period causes the subtopic search to begin at the
last known level. You can continue to specify topics for
additional information, or simply press the RETURN key to
return to the CP/M Plus system prompt.

You can abbreviate the names of topics and subtopics.
Usually one or two letters is enough to specifically identify
the topics.

Display Information

Syntax:

Explanation:

Examples:

96

HELP topic {subtopicl...subtopic8} {{NOPAGE|LIST]}
HELP.Subtopic

The preceding forms of the HELP command display the
information for the specified topic and subtopics. Use the
following two options with this form of the HELP command:

@® The NOPAGE option disables the default paged display
of every n lines, where n is the number of lines per page
as set by the system or as set by the user. To stop the
display, press CTRL-S. To resume the display, press
CTRIL-Q. You can abbreviate NOPAGE to N. (See the
DEVICE command for more information about setting
the number of lines per page.)

@ The LIST option is the same as NOPAGE, except that it
eliminates extra lines between headings. Use this option
with CTRL-P to list the help information on the printer.

A>HELP

The preceding command displays a list of topics for which

Command Summary

help is available.
A>HELP DATE

This command displays general information about the
DATE command. Tt also displays any available subtopics.

A>HELP DIR OPTIONS [N]

The preceding command includes the subtopic options. In
response, HELP displays information about options
associated with the DIR command, The display is not in
paged mode.

A>HELP ED

The preceding command displays general information about
the ED utility.

A>HELP ED COMMANDS

This form of HELP disptays information about commands
internal to ED. The preceding example can also be entered
as

A>HELP ED
HELP> COMMANDS

Add Your Own Descriptions to the HELP.HLP File

Syntax:

Explanation:

HELP [EXTRACT]
HELP [CREATE]

CP/M Plus is distributed with two related HELP files:
HELP.COM and HELP . HLP. The HELP.COM file is the
command file that processes the text of the HELP.HLP file
and displays it on the screen. The HELP.HLP file is a text
file to which you can add customized information, but you
cannot directly edit the HELP.HLP file. You must use the
HELP.COM file to convert HELP.HLP to a file named

97

Using CPIM Plus

98

HELP.DAT before you can edit or add your own text.
This form of the HELP command has the following options:

@® The EXTRACT option accesses the file HELP.HLP on
the defauit drive and creates a file called HELP.DAT on
the defauit drive. You can now invoke a word processing
program to edit or add your own text to the HELP. DAT
file. EXTRACT can be abbreviated to E.

@® The CREATE option accesses your edited HELP.DAT
file on the default drive and builds a revised HELP.HLP
file on the defauit drive. CREATE can be abbreviated to
C.

You must add topics and subtopics to the HELP.DAT file in
a specific format. A topic heading in the HELP.DAT file
takes the form:

/iinTopicname<cr>

The threc backslashes are the topic delimiters and must
begin in column one. In the preceding format statement, n is
a number in the range from 1 through 9 that signifies the
level of the topic. A main topic always has a levej number of
1. The first subtopic has a level number of 2. The next level
of subtopic has a level number of 3, and so forth, up to a
maximum of nine levels. Topicname is the name of your
topic, and allows a maximum of twelve characters. The
entire line is terminated with a carriage return.

Use the following guidelines to edit and insert text into the
HELP.DAT file.

® Topics should be placed in alphabetical order.

® Subtopics should be placed alphabetically within their
respective supertopic.

® Levels must be indicated by a number 1-9.

Command Summary

Some examples of topic and subtopic lines in the HELP.HLP
file follow:

HINEW UTILITY <cr>
H2COMMANDS <cr>
#BPARAMETERS<cr>
HI2ZEXAMPLES <cr>

The first example illustrates the format of a main topic line.
The second example shows how to number the first subtopic
of that main topic. The third example shows how the next
level subtopic under level 2 should be numbered. The fourth
example shows how to return to the lower level subtopic.
Any topic name with a level number of 1is a main topic. Any
topic name with a level number of 2 is a subtopic within its
main topic.

When you are executing the HELP.COM file, you need only
enter enough letters of the topic to unambiguously identify
the topic name. When referencing a subtopic, you must type
the topic name AND the subtopic, otherwise the HELP
program cannot determine which main topic you are
referencing. You can also-enter a topic and subtopic
following the program’s internal prompi, HELP>, as
follows:

HELP>ED COMMANDS

This form of HELP displays information about commands
internal to the editing program, ED.

g9

Using CPIM Plus

The HEXCOM Command

Syntax:

Explanation:

Example:

HEXCOM filename

The HEXCOM command is a transient utility that generates
a command file (filetype COM) from a HEX input file. It
names the output file with the same filename as the input file
but with filetype COM. HEXCOM always looks for a file
with filetype HEX.

A>HEXCOM B:PROGRAM
In the preceding command, HEXCOM generates a

command file PROGRAM.COM from the input hex file
PROGRAM.HEX.

The INITDIR Command

Syntax:

Explanation:

100

INITDIR d:

The INITDIR command can initialize a disk directory to
allow date and time stamping of files on that disk or remove
date and time stamps.

You must use INITDIR to initialize the directory for any
disk on which you plan to record date and time stamps for
your files. If the disk is blank, INITDIR initializes the
directory to record date and time stamps. If files already exist
on the disk, INITDIR checks the space available for date and
time stamps in the directory. If there is not enough room for
date and time stamps, INITDIR does not initialize the
directory and returns an error message.

After you initialize the directory for date and time stamps,
you must use the SET command to specify time stamp
options on the disk.

Note that Locoscript 1.20 does not update access time.
Earlier versions cannot use disks with extended directories.

Examples:

Command Summary
A=INITDIR B:
The system prompts to confirm:

INITDIR WILL ACTIVATE TIME STAMPS FOR SPECIFIED
DRIVE.
Do you really want to re-format the directory: B (Y/N)?

If the directory has previcusly been initialized for date and
time stamps, INITDIR displays the message:

Directory already re-formatted
Do you wish to recover date/time directory space (Y/N)?

Enter Y to reinitialize the directory to eliminate date and
time stamps. If you enter N, date and time stamping remains
active on your disk and INITDIR displays the following
message:

Do you want the existing date/time stamps cleared (Y/N)?

Enter Y to clear the existing stamps. Enter N to keep the
cxisting date and time stamps.,

The LANGUAGE Command

Syntax:

Explanation:

LANGUAGE number

The LANGUAGE command enables you to select the
character set you require for working in a particular
language. There are 8 language variants available:

American English
French

German

English

Danish

Swedish

o b= D

107

Using CPIM Plus

Example:

6 Italian
7 Spanish

The default is 0 for Great Britain.

Note that the LANGUAGE command, in order to achieve
certain characters, may change the ASCII character to HEX
mappings.

Full details of the character sets, and their keyboard

positions are given in the User Guide that was supplied with
your PCWg256 or CPC6128.

A>LANGUAGE 6

This command sets the character set for Italian.

The LIB Command

Syntax:

Explanation:

102

LIB filespec{[I}M|P|D]}
LIB filespec{[I|M|P}} =filespec{modifier}
{ filespec{modifier} ... }

A library file contains a collection of object modules. tse the
LIB utility to create libraries, and to append, replace, select,
or delete modules from an existing library. You can also use
LIB to obtain information about the contents of library files.

LIB creates and maintains library files that contain object
modules in MicroSoft® REL format. These modules are
produced by Digital Research’s relocatable macro-assembler
program, RMAC, or any other language translator that
produces modules in MicroSoft REL format.

LINK-80™ links the object modules contained in a library to
other object files. LINK-80 automatically selects from the
library only those modules needed by the program being
linked, and then forms an executable file with a filetype of
COM.

Command Summary

The library file has the filetype REL or IRL depending on
the option you choose. Modules in a REL library file must
not contain backward references to modules that occur
earlier in the library, because LINK-80 currently makes only
one pass through a library.

Table 5-8. LIB Options

Option Meaning

I The INDEX option creates an indexed
library file of type IRL. LINK-80
searches faster on indexed libraries than
on nonindexed libraries.

M The MODULE option displays module
names.
P The PUBLICS option displays module

names and the public variables for the
new library file.

D The DUMP option displays the contents
of object modules in ASCII form.

Use modifiers in the command line to instruct LIB to delete,
replace, or select modules in a library file. Angle brackets
enclose the modules to be deleted or replaced. Parentheses
enclose the modules to be selected.

Unless otherwise specified, LIB assumes a filetype of REL
for all source filenames. When you follow a filename by a
group of module names enclosed in parentheses, these
modules are included in the new library file. If modules are
not specified, LIB includes all modules from the source file
in the new library file.

103

Using CPIM Plus

Table 5-9, LIB Modifiers

Modifier Meaning
Delete <module=>
Replace <module=filename . REL>

If module name and filename are the
same this shorthand can be used:

<filename>

Select {modFIRST-modLLAST,mod]l,mod2,...,
modN)

Examples: A>LIB TESTA4[P)
A>LIB TEST5[P]=FILE1,FILE2

The first example displays all modules and publics in
TEST4.REL. The second example creates TEST5.REL
from FILE1.REL and FILE2.REL, and displays all modules
and publics in TESTS5.REL.

A>LIB TEST=TEST1(MOD1,MOD4) TEST2(C1-C4,C8)

In the preceding example LIB creates a library file
TEST.REL from modules in two source files. TEST1.REL
contributes MOD1 and MOD4. LIB extracts modules Ci,
C4, all the modules located between them, and module C6
from TEST2.REL.

A>L1B FILE2=FILE3<MODA=>

In this example, LIB creates FILE2.REL from FILE3.REL,
omitting MODA which is a module in FILE3.REL.

A>LIB FILE6=FILES<MODA=FILEB.REL>
A>LIB FILE6=FILES<THISNAME>

104

Command Summary

In the first example, MODA is in the existing FILES.REL,
When LIB creates FILE6.REL from FILES.REL,
FILEB.REL replaces MODA,

In the second example, module THISNAME is in
FILES.REL. When LIB creates FILE6.REL from
FILES REL the file THISNAME . REL replaces the similarly
named module THISNAME.

A>LIB
FILE1=B:FILE2(PLOTS,FIND,SEARCH-DISPLAY)

In this example LIB creates FILE1.IRL on drive A from the
selected modules PLOTS, FIND, and modules SEARCH
through the module DISPLAY, in FILE2.REL on drive B.

The LINK Command

Syntax:

Explanation:

LINK d:{filespec,{[o]}=}filespec{[o]} {,...}"

The LINK command combines relocatable object modules
such as those produced by RMAC and PL/I-80™ into a
.COM file ready for execution. Relocatable files can contain
external references and publics. Relocatable files can
reference modules in library files. LINK se¢arches the library
files and inciudes the referenced modules in the output file.
The LINK command is the LINK-80 utility and are
synonymous in this discussion. See the Programmer’s
Utilities Guide for the CP/M Family of Operating Systems
for a complete description of LINK-80.

You can use LINK option switches to control the execution
parameters of LINK-80. Link options follow the file
specifications and are enclosed within square brackets.
Multiple switches are separated by commas.

105

Using CPIM Plus

106

Table 5-10. LINK Options

Option

Meaning

A

Dhhith

Lhhhh

Mhhhh

NL

NR

ocC

OP

OR

Phhhh

Additional memory; reduces buffer space
and writes temporary data to disk.

BIOS link in banked CP/M Plus system.
Aligns data segment on page boundary;
puts length of code segment in header;
defaults to SPR filetype.

Data origin, sets memory origin for
common and data area.

Go; set start address to label n,

Load; change default load address of
module to hhhh. Default 0100H.

Memory size; define free memory
requirements for MP/M™ modules,

No listing of symbol table at console.
No symbol table file.

Qutput COM command file. Default.
Output PRL page relocatable file for
execution under MP/M in relocatable

segment.

Output RSP Resident System Process file
for execution under MP/M.

Program origin; changes default program
origin address to hhhh. Default is 0100H.

Lists symbols with leading question
mark.

Examples:

Command Summary
S Search preceding file as a library.

$Cd Destination of console messages, d, can
be X for console, Y for printer, or Z for
zero output. Default is X.

$ld Source of intermediate files; d is disk
drive A-P. Default is current drive.

$Ld Source of library files; d is disk drive A-P.
Default is current drive.

$0d Destination of object file; d can be Z, or
disk drive A-P. Defauit is to same drive
as first file in the LINK-8(command,

$5d Destination of symbol file; dcan be Y, Z,
or disk drive A-P. Default is to same
drive as first file in LINK-80 command.

A>LINK b:MYFILE[NR]

LINK-80 on drive-A uses as input MYFILE.REL on drive B
and produces the executable machine <code file
MYFILE.COM on drive B. The [NR] option specifies no
symbol table file.

A=LINK m1,m2,m3

LINK-80 combines the separately compiled files m1, m2, and
m3, resolves their external references, and produces the
executable machine code file m1.COM.

A>LINK m=m1,m2,m3

LINK-80 combines the separately compiled files m1, m2, and
m3 and produces the executable machine code file m.COM.

107

Using CPIM Plus

A>LINK MYFILE,FILES[s]

The [s] option tells LINK-80 to search FILES as a library.
LINK-80 combines MYFILE.REL with the referenced
subroutines contained in FILES.REL on the default drive A
and produces MYFILE.COM on drive A,

The MAC Command

Syntax:

Explanation:

108

MAC filename {$options}

MAC, the CP/M Macro Assembler, is a transient utility that
reads assembly language statements from a disk file of
filetype ASM. MAC assembles the statements and produces
three output files with the input filename and output
filetypes of HEX, PRN, and SYM.

Filename. HEX contains Intel® hexadecimal format object
code. You can debug the HEX file with a debugger, or use
HEXCOM to create a COM file and execute it.

Filename.PRN contains an annotated source listing that can
be printed or examined at the console, The PRN file includes
a lé-column wide listing at the left side of the page that
shows the values of literals, machine code addresses, and
generated machine code. An equal sign denotes literal
addresses to eliminate confusion with machine code
addresses.

Filename . SYM contains a sorted list of symbols defined in
the program.

Before invoking MAC, you must prepare a source program
file with the filetype ASM containing assembly language
statements.

You can direct the input and output of MAC using the

Command Summary

options listed in the following table, Use a letter with the
option to indicate the source and destination drives, console,
printer, or zero output. Valid drive names are A through O.
X directs output to the console. P directs output to the
printer. Z specifies that output files will not be created.

Table 5-11. Input/Qutput Options

Option Meaning

A source drive for ASM file (A-Q)

H destination drive for HEX file (A-O, Z)

L source drive for macro library LIB files called

by the MACLIB statement.
P destination drive for PRN file (A-O, X, P, Z)

S destination drive for SYM file (A-O, X, P, Z)

Table 5-12. OQutput File Modifiers

Modifier Meaning

+L lists input lines read from macro library LIB.
files

-L suppresses listing (default)

+M tists all macro lines as they are processed
during assembly

-M suppresses all macro lines as they are read
during assembly

*M lists only hex generated by macro expansions

+Q lists all LOCAL symbols in the symbol list

-Q suppresses all LOCAL symbols in the symbol

list (default}

109

Using CPIM Plus

Examples:

Table 5-12 {continued)

+$S appends symbol file to print file

-8 suppresses creation of symbol file

+1 produces a pass 1 listing for macro debugging
in PRN file

-1 suppresses listing on pass 1 (default)

A>MAC SAMPLE

In the preceding example MAC is invoked from drive A and
operates on the file SAMPLE.ASM also on drive A.

A>MAC SAMPLE $PB AA HB SX

In this example, an assembly option parameter lisi follows
the MAC command and the source filename. The
parameters direct the PRN file to drive B, obtain the ASM
file from drive A, direct the HEX file to drive B, and send
the SYM file to the console. You can use blanks between
option parameters.

The PALETTE Command

Syntax:

PALETTE number number number

Explanation; The first number specifies the colour of ink 0, the second

110

number specifies ink 1 and so on until either all inks have
been specified or the list of colours is exausted.

Each colour is given as a number in the range 0..63. The
colour number represents three 2 bit numbers each
corresponding to the intensity of one of the primary colours,
bits 4, 5 for green, bits 2,3 for red and bits 0,1 for blue.

Examples:

Command Summary
CP(C6128

There are 15 inks and three levels of colour intensity; these
are mapped onto the required four levels of intensity as
follows:

colour 0123
CPC6128 0112

intensity 3 is interpreted as intensity 2,
PCW8236

The PCWE8256 has a monochromatic screen. There are two
inks 0 and 1. If the colour of ink 0 is greater than ink 1 then
the screen is displayed in inverse video, black characterson a
white background, otherwise white characters on a black
background.

Any colour number greater than 63 is masked with 63.

If more colours than inks are given the remainder are
ignored. Full details of the PALETTE Command are given
in the User Guide for your machine.

PCW8E256

PALETTE 1 0 sets reverse video (black characters on a light
background)

CPC6128

PALETTE 63 1 sets a bright white background with text in
blue

The PAPER Command

Syntax:

PAPER parameter parameter ...

i1

Using CPIM Plus

Explanation: Note that this command is used only with the PCW8256 and

112

sets printer parameters for the PCW8256 printer or an Epson
FX-80.

To use the printer effectively it is necessary to tell it the
length of paper in use, whether it is single sheet or
continuous, and so on. The PAPER utility allows the
operator to set these parameters.

PAPER is a program which takes a number of parameters
from the command line which invokes it. Once the
parameters have been checked for validity the program sends
suitable escape sequences to the printer (via the CP/M LST:
calls). Note that this means that firstly it may be used with
almost any Epson compatible printer and secondly it requires
the printer to be ready .to accept characters. After each
escape sequence is-sent to the printer PAPER reports on the
console what it has sent.

The parameters for PAPER are:
Form Length <number>

The <number> must be in the range 6..99, and sets the
form length in lines. If the Line Pitch is not set explicitly
in this use of PAPER, then it is set to “standard line
pitch” (six lines per inch). If a Gap Length is not set
explicitly in this use of PAPER then the gap length is set
to zero.

Gap Length <number>

The <number> must be in the range 0..99, and sets the
gap length in lines. If the gap length specified is not zero
and the Line Pitch is not set explicitly in this use of
PAPER, then it is set to “standard line pitch” (six lines
per inch).

Line Pitch <number>

The <number> may be 6 or 8, setting 6 or 8 lines per
inch.

Command Summary
Single Sheet

Sets single sheet stationery. If Paper Qut Defeat is not
set explicitly in this use of PAPER then it is set On.

Continuous Stationery

Sets continuous stationry. If Paper Qut Defeat is not set
explicitly in this use of PAPER then it is set Off.

Paper Out Defeat On or Paper Qut Defeat Off
Sets paper out defeat as required.
Defaults
Tells the printer to copy its current settings (including
those given in this use of PAPER) to its memory of
default settings.
The program in fact requires only the first letter of each of
the keywords given above, except for On and Off which must

be given in full. In all cases only the first keyword is required,
the others are optional,

Three further parameters are accepted:
Ad or AS

These set : 6 lines per inch Form length 70 lines (A4) or
50 lines (AS)
Gap length 3 lines
Single Sheet Paper out defeat On

<number>
This must be a number in the range 1..17 and is provided

to set up for continuous stationery, with a form length as
given measured in inches.

113

Using CPIM Plus

The following are set : 6 lines per inch
Form length <number> inches
Gap length 0
Continuous stationery Paper out
defeat Off

Details of using the PAPER command are given in your
PCW8256 User Guide.

'The PATCH Command

Syntax:

Explanation:

Examples:

114

PATCH filename {typ} {n}

The PATCH command displays or installs patch number n to
the CP/M Plus system or CP/M Plus command files.

Only CP/M Plus system files of filetype COM, PRL, or SPR
can be patched with the PATCH command. If the typ option
is not specified, the PATCH utility looks for a file with a
filetype of COM.

The patch number n must be between 1 and 32 inclusive.
A=>PATCH SHOW 2

The preceding command patches the system SHOW.COM
file with patch number 2. The system displays the following

question:

Do you want to indicate that Patch #2 has been installed for
SHOW.COM?Y

If the patch is successful, the system displays the message:
Patch Installed

If the patch is not successful, the system displays the

Command Summary
following message:
Patch not Installed
One of the following error messages might be displayed:
® ERROCR: Patch requires CP/M Plus.
® ERROR: Invalid filetype typ.
® ERROR: Serial Number mismatch.

@® ERROR: Invalid patch aumber n.

The PIP Command

Syntax:

Explanation:

PIP dest-filespec|d: {[Gn]} =sre-filespec{[0]}{,...} | d: {[o]}

PIP is a transient utility that copies one or more files from
one disk and, or user number to another. PIP can rename a
fite after copying it. PIP can combine two or morc files into
one file. PIP can also copy a character file from disk to the
printer or other auxiliary logical output device. PIP can
create a file on disk from input from the console or other
logical input device. PIP can transfer data from a logical
input device to a logical output device, thus the name
Peripheral Interchange Program.

PIP copies file attributes with the file. This includes
Read-Write or Read-Only and SYS or DIR file attributes
and the user-definable attributes F1 through F4. If a file is
password-protected, you must enter the password in the
command line following the filename and/or filetype to
which it belongs. If the password fails, the file is skipped and
the failure noted.

When you specify a destination file with a password, PIP
assigns that password to the destination file and
automatically sets the password protection mode to READ.

115

Using CPIM Plus

When you specify a destination file with no password, PIP
does not assign a password to the destination file. When you
specify only a destination drive, PIP assigns the same
password and password protection mode to the destination
file as specified in the source file. When you specify a
destination file with a password, PIP automatically sets the
password protection mode to READ. This means that you
need a password to read the file. (See the SET command.)

Single File Copy

Syhtax:

Explanation:

116

PIP d:{[Gn]} = src-filespec{[options]}
PIP dest-filespec{[Gn|} = d:{[options]}
PIP dest-filespec{[Gn]} = src-filespec{[o]}

The first form shows the simplest way to copy a file. PIP
looks for the file named by sre-filespec on the default or
optionally specified drive. PIP copies the file to the drive
specified by d: and gives it the name specified by src-filespec.
If you want, you can use the [Gn] option to place your
destination file (dest-filespec) in the user number specified
by n. The only option recognized for the destination file is
[Gn]. Several options can be combined together for the
source file specification (src filespec). See Table 5-13, PIP
options.

The second form is a variation of the first. PIP looks for the
file named by dest-filespec on the drive specified by d:,
copies it to the default or optionally specified drive, and gives
it the name specified by dest-filespec.

The third form shows how to rename the file after you copy
it. You can copy it to the same drive and user number, or to a
different drive and/or user number. Rules for options are the
same. PIP looks for the file specified by sre-filespec, copies it
to the location specified in dest-filespec, and gives it the
name indicated by dest-filespec.

Command Summary

Remember that PIP always goes to and gets from the current
default user number unless you specify otherwise with the
{Gn] option.

Before you start PIP, be sure that you have enough free
space in kilobytes on your destination disk to hold the entire
fite or files that you are copying. Even if you are replacing an
old copy on the destination disk with a new copy, PIP stiil
needs enough room for the new copy before it deletes the old
copy. Use the DIR command to determine filesize and the
SHOW command to determine disk space. If there is not
enough space, you can delete the old copy first by using the
ERASE command.

Data is first copied to a temporary file to ensure that the
entire data file can be constructed in the space available on -
the disk. PIP gives the temporary file the filename specified
for the destination, with the filetype $8$$. If the copy
operation is successful, PIP changes the temporary filetype
$$3 to the filetype specified in the destination.

1f the copy operation succeeds and a file with the same name
as the destination fite already exists, the old file with the
same name is erased before renaming the temporary file.
File atiributes (DIR, SYS, RO, RW) are transferred with the
files.

If the existing destination file is set to Read-Only (RO), PIP
asks you if you want to delete it. Answer Y or N. Use the [W]
option to write over Read-Only files.

You can include PIP options following each source name.
There is one valid option ([Gn] — go to user number n) for
the destination file specification. Options are enclosed in
square brackets. Several options can be included for the
source files. They can be packed together or separated by
spaces. Options can verify that a file was copied correctly,
allow PIP to read a file with the system (SYS) attribute,
cause PIP to writc over Read-Only files, cause PIP to put a
file into or copy it from a specified user number, transfer
from lower- to uppet-case, and much more.

117

Using CPIM Plus

Examples:

118

A>PIP B:=A:oldfile.dat
A=>PIP B:oldfile.dat = A:

Both forms of this command cause PIP to read the file
oldfile.dat from drive A and put an exact copy of it onto
drive B. This is called the short form of PIP, because the
source or destination names only a drive and does not
include a filename. When using this form you cannot copy a
file from one drive and user number to the same drive and
user number. You must put the destination file on a different
drive or in a different user number. (See the section on PIP
Options, and the USER Command.) The second short form
produces exatly the same result as the first one. PIP looks for
the file oldfile.dat on drive A, the drive specified as the
source.

A=>PIP B:newfile.dat=A:oldfile.dat

This command copies the file oldfile.dat from drive A to
drive B and renames it to newfile.dat. The file remains as
oldfile.dat on drive A. This is the long form of the PIP
command, because it names a file on both sides of the
command line,

A=>PIP newfile.dat = oldfile.dat

Using this long form of PIP, you can copy a file from one
drive and user number (usually user ¢ because CP/M Plus
automatically starts out in user 0 -— the default user number)
to the same drive and user number. This gives you two copies
of the same file on one drive and user number, each with a
different name.

A>PIP B:PROGRAM.BAK = A:PROGRAM.DAT{G1]
The preceding command copies the file PROGRAM.DAT
from user 1 on drive A to the current selected user number

on drive B and renames the filetype on drive B to BAK.

B>PIP program2.dat = A:program1.dat(E V G3 0]

Command Summary

In this command, PIP copies the file named program 1.dat
on drive A and echoes [E] the transfer to the console,
verifies {V] that the two copies are exactly the same, and
gets [G3] the file programl.dat from user 3 on drive A.
Because there is no drive specified for the destination, PIP
automatically copies the file to the default user number and
drive, in this case oser O and drive B.

Mutltipie File Copy

Syntax:

PIP d:{|Gn}} = {d:} wildcard-filespec {{options]}

Explanation: When you use a wildcard in the source specification, PIP

Examples:

copies matching files one-by-one to the destination drive,
retaining the original name of each file. PIP displays the
message COPYING followed by each filename as the copy
operation proceeds. PIP issues an error message and aborts
the copy operation if the destination drive and user number
are the same as those specified in the source.

A>PIP B:=A*.COM

This command causes PIP to copy all the files on drive A
with the filetype COM to drive B.

A>PIP B:=A""

This command causes PIP to copy all the files on drive A to
drive B. You can use this command to make a back-up copy
of your distribution disk. Note, however, that this command
does not copy the CP/M Plus system from the system tracks.
COPYSYS copies the system for you.

A>PiP B:=A:PROG?77?7.*

The preceding command copies all files whose filenames
begin with PROG from drive A to drive B.

A>PIP BG1]=A"BAS

119

Using CP/IM Plus

This command causes PIP to copy all the files with a filetype
of BAS on drive A in the default user number {(user 0} to
drive B in user number 1. Remember that the DIR, TYPE,
ERASE, and other commands only access files in the same
user number from which they were invoked. (See the USER
Command.)

Combining Files

Syntax:

Explanation:

120

PIP dest-filespec{[Gn]} = src-filespec{[o]}.
src-filespec{[o]}{,...}

This form of the PIP command lets you specify two or more
files in the source. PIP copies the files specified in the source
from left to right and combines them into one file with the
name indicated by the destination file specification. This
procedure is cailed file concatenation. You can use the [Gn]
option after the destination file to place it in the user number
specified by n. You can specify one or more options for each
source file.

Some of the options force PIP to copy files
character-by-character. In these cases, PIP looks for a
CTRL-Z character to determine where the end of the file is.
All of the PIP options force a character transfer except the
following:

A,C,Gn, K, O R, V,and W,

Copying data to or from logical devices also forces a
character transfer.

You can terminate PIP operations by typing CTRL-C.

When concatenating files, PIP only searches the last record
of a file for the CTRL-Z end-of-file character. However, if
PIP is doing a character transfer, it stops when it encounters

a CTRL-Z character,

Use the [O] option if you are concatenating machine code

Examples:

Copy Files

Syntax:

Explanation:

Command Summary

files. The [O] option causes PIP to ignore embedded
CTRL-Z (end-of-file) characters, which indicate the
end-of-file character in text files, but might be valid data in
object code files.

A>>PIP NEWFILE=FILE1,FILE2,FILE3

The three files named FILE1, FILE2, and FILE3 are joined
from left to right and copied to NEWFILE.$$$.
NEWFILE.$$$ is renamed to NEWFILE upon successful
completion of the copy operation. All source and destination
files are on the disk in the default drive A,

A>PIP B:X.BAS = Y.BAS, B:Z.BAS

The tile Y.BAS on drive A is joined with Z.BAS from drive
B and placed in the temporary file X.$$$ on drive B. The file
X.$3% is renamed to X.BAS on drive B when PIP runs to
successful completion.

to and from Auxiliary Devices

PIP dest-filespec {[Gn]} = src-filespec {[o]}

AUX: AUX: {[o}}
CON: CON: {[o]}
PRN: NUL:
LST: EOF:

This form is a special case of the PIP command line that lets
you copy a file from a disk to a device, from a device to a disk
or from one device to another. The files must contain
printable characters. Each peripheral device is assigned to a
logical device that identifies a squrce device that can transmit
data or a destination device that can receive data. (See the
DEVICE command.) A colon follows each logical device
name so it cannot be confused with a filename. Enter
CTRL-C to abort a copy operation that uses a logical device
in the source or destination.

The logical device names are listed as follows:

121

Using CPIM Plus

Examiples:

122

@® CON: Console input or output device. When used as a
source, usually the keyboard; when used as a
destination, usually the screen.

® AUX: Auxiliary Input or Qutput Device.

® LST: The destination device assigned to the list output
device, usually the printer.

The following three device names have special meaning:

@ NUL: A source device that produces 40 hexadecimal
Zeros.

® EOF: A source device that produces a single CTRL-Z,
the CP/M Plus end-of-file mark.

@® PRN: The printer device with tab expansion to every
~ eighth column, line numbers, and page ejects every
sixtieth fine.

B>PIP PRN:=CON: MYDATA.DAT

Characters are first read from the console input device,
generally the keyboard, and sent directly to your printer
device. You type a CTRL-Z character to tell PIP that
keyboard input is complete. At that time, PIP continues by
reading character data from the file MYDATA.DAT on
drive B. Because PRN: is the destination device, tabs are
expanded, line numbers are added, and page ejects occur
every sixty lines.

Note that when the CON: device is the source you must enter
both the carriage return (RETURN) and line-feed (LF) keys
for a new line,

A>PIP B:FUNFILE.SUE = CON:

Whatever you type at the console is written to the file
FUNFILE.SUE on drive B. End the keyboard input by
typing a CTRL-Z.

Command Summary
A>PIP LST:=CON:

Whatever you type at the console keyboard is written to the
list device, generally the printer. Terminate input with a
CTRL-Z.

A>PIP LST:=B:DRAFT.TXT[T8]

The file DRAFT.TXT on drive B is written to the printer
device. Any tab characters are expanded to the nearest
column that is a multiple of &.

A>PIP PRN:=B:DRAFT.TXT

The preceding command causes PIP to write the file
DRAFT.TXT to the list device. It automatically expands the
tabs, adds line numbers, and ejects pages after sixty lines.

Multiple Command Mode

Syntax:

Explanation:

Examples:

PIP

This form of the PIP command starts the PIP utility and lets
you type multiple comniand lines while PIP remains in user
memory.

PIP writes an asterisk on your screen when ready to accept
input command lines.

You can type any valid command line described under
previous PIP formats following the asterisk prompt.

Terminate PIP by pressing only the RETURN key following
the asterisk prompt. The empty command line tells PIP to
discontinue operation and return to the CP/M Plus system
prompt.

A>PIP
CP/M Plus PIP VERSION 3.0
*NEWFILE=FILE1,FILEZ,FILE3

123

Using CP/IM Plus

*APROG.COM=BPROG.COM
*A:=B:X.BAS

B:=‘*

*<RETURN>

*A

This command loads the PIP program. The PIP command
input prompt, *, tells you that PIP is ready to accept
commands. The effects of this sequence of commands are the
same as in the previous examples, where the command line is
included in the command tail. PIP is not loaded into memory
for each command. To exit this PIP cormmmand mode, press
RETURN or one of its equivalent control characters,
CTRL-J or CTRL-M as shown.

Using Options with PIP

Explanation: With options you can process your source file in special ways.

124

You can expand tab characters, translate from upper- to
lower-case, extract portions of your text, verify that the copy
is correct, and much more.

The PIP options are listed in Table 5-13 using n to represent
a number and s to represent a sequence of characters
terminated by a CTRL-Z. An option must immediately
follow the file or device it affects. The option must be
enclosed in square brackets []. For those options that require
a numeric value, no blanks can occur between the letter and
the value.

You can include the [Gn] option after a destination file
specification. You can include a list of options after a source
file or source device. An option list is a sequence of single
letters and numeric values that are optionally separated by
blanks and enclosed in square brackets [].

Command Summary

Table 5-13. PIP Options

Option

Function

Dn

Copy only the files that have been modified
since the last copy. To back up only the files
that have been modified since the last back-up,
use PIP with the archive option, [A].

Prompt for confirmation before performing
cach copy operation. Use the [C] option when
you want to copy only some files of a particular
filetype.

Delete any characters past column n. This
parameter follows a source file that contains
lines too long to be handled by the destination
device, for example, an 80-character printer or
narrow console. The number n should be the
maximum column width of the destination
device,

Echo transfer at console. When this parameter
follows a source name, PIP displays the source
data at the console as the copy is taking place.
The source must contain character data.

Filter form-feeds. When this parameter follows
a source name, PIP removes all form-feeds
embedded in the source data. To change
form-feeds set for ome page length in the
source file to another page length in the
destination file, use the F command to delete
the old form-feeds and a P command to
simultaneously add new form-feeds to the
destination file.

Get source from or go to user number n. When
this parameter follows a source name, PIP
searches the directory of user number n for the
source file. When it follows the destination
name, PIP places the destination file in the

125

Using CPIM Plus

126

Table 5-13 (continued)

H

Pn

user number specified by n. The number must
be in the range ¢ to 15.

Hex data transfer, PIP checks all data for
proper Intel hexadecimal file format. The
console displays error messages when errors
occur.

Ignore :00 records in the transfer of Intel
hexadecimal format file. The [option
automatically sets the H option.

Translate upper-case alphabetics in the source
file to lower-case in the destination file. This
parameter follows the source device or
filename.

Add line numbers to the destination file. When
this parameter follows the source filename,
PIP adds a line number to each line copied,
starting with 1 and incrementing by one. A
colon follows the line number. If N2 is
specified, PIP adds leading zeros to the line
number and inserts a tab after the number. If
the T parameter is also set, PIP expands the
tab.

Object file transfer for machine code
(noncharacter and thercfore nonprintable)
files. PIP ignores any CTRL-Z end-of-file
during concatenation and transfer. Use this
option if you are combining object code files.

Set page length. n specifics the number of lines
per page. When this parameter modifies a
source file, PIP includes a page eject at the
beginning of the destination file and at every n
lines. If n = 1 or is not specificd, PIP inserts
page ejects every sixty lines. When you also

Qs

Ss

Tn

Command Summary

specify the F option, PIP ignores form-feeds in
the source data and inserts new form-feeds in
the destination data at the page length
specified by n.

Quit copying from the source device after the
string s. When used with the S parameter, this
parameter can extract a portion of a source
file, The string argument must be terminated by
CTRL-Z.

Read system (SYS) files. Usually, PIP ignores
files marked with the system attribute in the
disk directory. But when this parameter
follows a source filename, PIP copies system
files, including their attributes, to the
destination.

Start copying from the source device at the
string s. The string argument must be
terminated by CTRL-Z. When used with the Q
parameter, this parameter can extract a
portion of a source file. Both start and quit
strings are included in the destination file.

Expand tabs. When this parameter follows a
source filename, PIP expands tab (CTRL-I)
characters in the destination file. PIP replaces
each CTRL-I with enough spaces to position
the next character in a column divisible by n.

Translate lower-case alphabetic characters in
the source file to upper-case in the destination
file. This parameter follows the source device
or filename.

Verify that data has been copied cosrectly. PIP
compares the destination to the source data to
ensure that the data has been written correctly,
The destiration must be a disk file,

127

Using CPIM Plus

Examples:

128

Table 5-13 (continned)

W Write over files with RO (Read-Only)
attribute. Usually, if a PIP command tail
includes an existing RO file as a destination,
PIF sends a query to the console to make sure
you want to write over the existing file. When
this parameter follows a source name, PIP
overwrites the RO file without a console
exchange. If the command tail contains
multiple source files, this parameter need
follow only the last file in the list.

Z Zero the parity bit. When this paraieter

follows a source name, PIP sets the parity bit of
each data byte in the destination file to zero.
The source must contain character data.

A>PIP NEWPROG.BAS=CODE.BAS[L], DATA.BAS[U]

This command constructs the file NEWPROG.BAS on drive
A by joining the two files CODE.BAS and DATA.BAS
from drive A. During the copy operation, CODE.BAS is
translated to lower-case, while DATA.BAS is translated to
upper-case,

A>PIP CON:=WIDEFILE.BAS[D80]

This command writes the character file WIDEFILE.BAS
from drive A to the console device, but deletes all characters
following the 80th column position.

A>PIP B:=LETTER.TXT[E]

The file LETTER.TXT from drive A is copied to
LETTER.TXT on drive B. The LETTER.TXT file is also
written to the screen as the copy operation proceeds.

A>PIP LST:=B:LONGPAGE.TXT[FP65]

Command Summary

This command writes the file LONGPAGE.TXT from drive
B to the printer device. As the file is written, form-feed
characters are removed and reinserted at the beginning and
every 65th line thereafter.

B>PIP LST:=PROGRAM.BAS[NTSU)]

This command writes the file PROGRAM.BAS from drive
B to the printer device. The N parameter tells PIP to number
each line. The T8 parameter expands tabs to every eighth
column. The U parameter translates lower-case letters to
upper-case as the file is printed.

A>PIP PORTION.TXT=LETTER.TXT[SDear Sir"Z
QSincerely " Z]

This command abstracts a portion of the LETTER. TXT file
from drive A by searching for the character sequence “Dear
Sir” before starting the copy operation. When found, the
characters are copied to PORTION.TXT on drive A until
the sequence “Sincerely” is found in the source file,

B>PIP Bi=A:*.COM[VWA]

This command copies all files with filetype COM from drive
A to drive .B. The V parameter tells PIP to read the
destination files to ensure that data was correctly transferred.
The W parameter lets PIP overwrite any destination files that
are marked as RO (Read-Only). The R parameter telis PIP
to read files from drive A that are marked with the SYS
(System) attribute.

The PUT Command

Syntax:

PUT CONSOLE {OUTPUT TO} FILE filespec {0} PUT
PRINTER {OUTPUT TO} FILE filespec {o} PUT
CONSOLE {OUTPUT TO} CONSOLE

PUT PRINTER {OUTPUT TO} PRINTER

129

Using CPIM Plus

Explanation: The PUT command is a transient utility that lets you direct

130

console output or printer output to a file. PUT allows you to
direct the system to put console output or printer output to a
file for the next system command or user program entered at
the console. Or, PUT directs all subsequent console or
printer output to a file when you include the SYSTEM
option.

Console output is directed to a file until the program
terminates. Then, console output reverts to the console.
Printer output is directed to a file until the program
terminates. Then printer output is directed back to the
printer.

When you use the SYSTEM option, all subsequent
console/printer output is directed to the specified file. This
option terminates when you enter the PUT CONSOLE or
PUT PRINTER command. '

The syntax for the option list is

[{ECHO | NO ECHO} (FILTER | NO FILTER} |
{SYSTEM}] '

Table 5-14 defines the preceding option list.

Table 5-14. PUT Options

Option Meaning

ECHO specifies that the output is echoed to the
console. ECHO is the default option
when you direct console output to a file.

NO ECHO specifies that the file output is not to be
echoed to the console,

FILTER specifies that filtering of control
characters is allowed, which means that
control characters are translated to

Command Summary

printable characters. For example, an
escape character is translated to [,

NO FILTER means that PUT does not translate
control characters. This is the default
option.

SYSTEM specifies that system output and program
output is written to the file specified by
filespec. Output is written to the file until
a subsequent PUT CONSOLE command
redirects conscle output back to the
console.

Direct Console OQutput to a File

Syntax:

PUT CONSOLE {OUTPUT} TO FILE filespec {[o]}

Explanation: The preceding form of the PUT command tells the system to

Example:

direct subsequent console output to a file.
A>PUT CONSOLE OUTPUT TO FILE XOUT [ECHO]

The preceding command directs console output to file
XOUT with the output echoed to the console.

Put Printer Output to a File

Syntax:

PUT PRINTER {OUTPUT TO} FILE filespec {{0]}

Explanation: The preceding form of the PUT command directs printer

output to a file.

The options are the same as in the PUT CONSOLE
command, except that option NO ECHO is the default for
the PUT PRINTER command. Note that if ECHO is
specified, printer output is echoed to the printer.

131

Using CPIM Plus

Examples:

A>PUT PRINTER QUTPUT TO FiLE XOUT
A>MYPROG

The preceding example directs the printer output of program
MYPROG to file XOUT. The output is not echoed to the
printer.

A>PUT PRINTER OUTPUT TO FILE XOUT2
[ECHO,SYSTEM]

The preceding command directs all printer output to file
XOWUTZ and to the printer, and the PUT is in cffect uati! you
enter a PUT PRINTER OUTPUT TO PRINTER
command.

The printer output can be directed to one or more files. The
output to these files is terminated when you revert printer
output to the printer using the following command:

PUT PRINTER OUTPUT TO PRINTER

Terminate Console Output to a File

Syntax:

Explanation:

Example:

PUT CONSOLE {OUTPUT TO} CONSOLE

The preceding form of the PUT command directs console
output to the console.

A=PUT CONSOLE OUTPUT TO CONSOLE

The preceding command directs console output to the
console.

Terminate Printer Output to a File

Syntax:

Explanation:

132

PUT PRINTER {OUTPUT TO} PRINTER

The preceding form of the PUT command directs the printer
output to the printer,

Example:

Command Summary
A>PUT PRINTER OUTPUT TO PRINTER

The preceding example directs printer output to the printer.

The RENAME Command

Syntax:

Explanation:

RENAME {new-filespec=old-filespec}

The RENAME command lets you change the name of a file
that is cataloged in the directory of a disk. It also lets you
change several filenames if you use wildcards in the filespecs.
You can abbreviate RENAME to REN.

The new-filespec must not be the name of any existing file on
the disk. The old-filespec identifies an existing file or files on
the disk.

The RENAME command changes the file named by
old-filespec to the name given as new-filespec.

RENAME does not make a copy of the file. RENAME
changes only the name of the file.

If you omit the drive specifier, RENAME assumes the file to
rename is on the default drive. You can include a drive
specifier as a part of the newname. If both file specifications
name a drive, it must be the same drive.

If the file given by oldname does not exist, RENAME
displays the following message on the screen:

No File
If the file given by newname is already present in the
directory, RENAME displays the following message on the
screen:

Not renamed: filename.typ file already exists, delete (Y/N)?

133

Using CPIM Plus

Examples:

134

If you want to delete the old file, type Y to delete.
Otherwise, type N to keep the old file and not rename the
new file,

1f you use wildcards in the filespecs, the wildcards in the new
filespec must correspond exactly to the wildcards in the old
filespec. For example, in the following two commands, the
wildcard filespecs correspond cxactly:

A>REN " TX1="TEX A>REN A*. T*=5"T"

In the following example, the wildeards do not match and
CP/M Plus returns an error message.

A>REN A* TEX=AT"

A>RENAME NEWASM.BAS=O0LDFILE.BAS

The file OLDFILE.BAS changes to NEWASM.BAS on
drive A,

A>RENAME
The system prompts for the filespecs:
Enter New Name:X.PRN Enter Old Name:Y.PRN

Y PRN=X .PRN
Ax

File Y.PRN is renamed X.PRN on drive A.

B>REN A:X.PAS = Y.PLI
The file Y.PLI changes to X.PAS on drive A.

A>RENAME S”.TEX=A*TEX
The preceding command renames all the files matching the
wildcard A*. TEX to files with filenames matching the
wildcard 8* . TEX, respectively.

A>REN B:NEWLIST=B:OLDLIST

Command Summary

The file OLDLIST changes to NEWLIST on drive B.
Because the second drive specifier, B: is implied by the first,
it is unnecessary in this example. The preceding command
line has the same effect as the following:

A>REN B:NEWLIST=0LODLIST
or

A>REN NEWLIST=B:OLDLIST

The RMAC Command

Syntax:

Explanation:

RMAC filespec {$Rd | $5d | $Pd}

RMAC is a relocatable macro assembler that assembles files
of type ASM into REL files that can be linked to create
COM files.,

The RMAC command options specify the destination of the
output files. The additional specifier d defines the
destination drive of the output files. A-O specifies drives A
through O. X means dutput to the console, P means output
to tne printer, and Z means zcro output. Table 5-15 lists the
RMAC command options.

Table 5-15. RMAC Command Options

Option d=output option
R drive for REL file (A-O, Z)

S drive for $YM file (A-Q, X, P, Z)
P drive for PRN file (A-O, X, P, Z)

In the MAC command, the asscmbly parameter of H

135

Using CPIM Plus

Examples:

controls the destination of the HEX file. In the RMAC
command this parameter is replaced by R, which controls the
destination of the REL file; however, you cannot direct the
REL file to the console or printer, RX or RP, because the
REL file is not an ASCII file.

A>RMAC TEST $PX SB RB

In the preceding example RMAC assembles the file
TEST.ASM from drive A, sends the listing file (TEST.PRN)
to the console, puts the symbol file (TEST.SYM) on drive B
and puts the relocatable object file (TEST.REL) on drive B.

The SAVE Command

Syntax:

Explanation:

Example:

136

SAVE

The SAVE command copies the contents of memory to a
file. To use the SAVE utility, first issue the SAVE
command, then run your program which reads a file into
memory. When your program exits, it exits to the SAVE
utility, The SAVE utility prompts you for the filespec to
which the memory is to be copied, and the beginning and
ending address of the memory to be saved.

A>SAVE

The preceding command activates the SAVE utility. Now
enter the name of the program that loads a file into memory.

A>SID dump.com
Next, execute the program.
g0

When the program exits, SAVE intercepts the return to the
system and prompts you for the filespec and the bounds of

Command Summary

memory to be saved.

SAVE Ver 3.0 File {or RETURN to exit)?dump2.com Delete
dump2.com?Y From?100 To?400

Az

The contents of memory from 100H, hexadecimal, to 400H is
copied to file DUMP2.COM.

The SET Command

Syntax:

Explanation:

SET [options] SET d: [options] SET filespec [options]

The SET command initiates password protection and time
stamping of files in the CP/M Plus system. It also sets file and
drive attributes, such as the Read-Only, SYS, and
user-definable attributes. It lets you label a disk and
password protect the label.

The SET command include options that affect the disk
directory, the drive, or a file or set of files. The discussion of
the SET command explicitly states which of the three
categories are affected.

To enable time stamping of files, you must first run INITDIR
to format the disk directory.

Set File Attributes

Syntax:

Explanation:

SET filespec [attribute-options]

The preceding SET command sets the specified attributes of
a file or a group of files.

137

Using CPIM Plus

138

Table 5-16, SET File Attributes

Option

Meaning

DIR

SYS

RO

RwW

Sets the file from the SYS directory to the
(DIR) attribute.

Gives the file the System SYS attribute.

Sets the file attribute to allow Read-Only
access.

Sets the file attribute to allow
Read-Write access.

ARCHIVE=0QFF Sets the archive attribute to off. This

ARCHIVE=0ON

F1=0ON|OFF

means that the file has not been backed
up (archived). PIP with the [A] option
can copy files with the archive atiribute
set to OFF. PIP with this option requires
an ambiguous filespec and copies only
files that have been created or changed
since the last time they were backed up
with the PIP[A]) option. PIP then sets the
archive attribute to ON for each file
successfully copied.

Sets the archive attribute to on. This
means that the file has been backed up
(archived). The archive attribute can be
turned on explicitly by the SET
command, or it can be turned on by PIP
when copying a group of files with the
PIP [A] option. The archive attribute is
displayed by DIR.

Turns on or off the user-definable file
attribute F1.

Example:

Command Summary

F2=0N|OFF Turns on or off the user-definable file
attribute F2.

F3=0N|OFF Turns on or off the user-definable file
attribute F3.

F4=0ON|OFF Turns on or off the user-definable file
attribute F4.

A>SET MYFILE.TEX [RO SYS]

The preceding command sets MYFILE.TEX to Read-Only
and System.

A>SET MYFILE.TEX [RW DIR]

The preceding command sets MYFILE.TEX to Read-Write
with the Directory (DIR) attribuie.

Set Drive Attribute

Syntax:

Explanation:

Example:

SET {d:} [RO]
SET {d:} [RW]

The preceding SET commands set the specified drive to
Read-Only or Read-Write. If a drive is set to Read-Only,
PIP cannot copy a file to it, ERASE cannot delete a file from
it, RENAME cannot rename a file on it. You cannot
perform any operation that requires writing to the disk.
When the specified drive is set to Read-Write, you can read
or write to the disk in that drive, If you enter a CTRL-C to
the system prompt, all drives are reset to Read-Write.

A>SET B: [RO]
The preceding command sets drive B to Read-Only.

139

Using CPIM Plus

Assign a Label to the Disk

Syntax:

Explanation:

Example:

SET {d:} [NAME=labelname.typ]
The preceding‘SET command assigns a label {name) to the
disk in the specified or default drive.

CP/M Plus provides a facility for creating a directory label for
each disk. The directory label can be assigned an
eight-character name and a three-character type similar to a
fitlename and filetype. Label names make it easier to catalog
disks and keep track of different disk directories. The default
label name is LABEL.

A>SET [NAME=DISK100]

The preceding example labels the disk on the default drive
DISK100.

Assign Password to the Label

Syntax:

Explanation:

Examples:

140

SET [PASSWORD=password]
SET [PASSWORD=<cr>

The first form of the preceding SET command assigns a
password to the disk label. The second form of the command
removes password protection from the label.

You can assign a password to the label. If the label has no
password, any user who has access to the SET program can
set other attributes to the disk which might make the disk
inaccessible to you, However, if you assign a password to the
label, then you must supply the password to set any of the
functions controlled by the label. SET always prompts for
the password if the label is password-protected.

A>SET [PASSWORD=SECRET] A>SET
[PASSWORD=<cr>

The first command assigns SECRET to the disk label. The
second command nullifies the existing password,

Command Summary

Note: If you use password protection on your disk, be sure
to record the password. If you forget the password, you lose
access to your disk or files,

Enable/Disable Password Protection for Files on a Disk

Syntax:

Explanation:

SET [PROTECT=0N] SET [PROTECT=0FF]

The first form of the SET command turns on password
protection for all the files on the disk. The password
protection must be turned on before you can assign
passwords to individual files or commands.

The second SET command disables password protection for
the files on your disk.

After a password is assigned to the label and the PROTECT
option is turned on, you are ready to assign passwords to
your files.

You can atways determine if a disk is password-protected by
using the SHOW command to display the label.

Assign Passwords to Files

Syntax:

Explanation:

SET filespec [PASSWORD =password]

The preceding SET command sets the password for filespec
to the password indicated in the command tail. Passwords
can be up to cight characters long. Lower-case leticrs are
transtated to upper-case. You can use wildcards in the
filespec. SET assigns the specified password to the files that
match the wildcard-filespec.

Note that Locoscript ignores the password protection on
files.

Note: always record the passwords that you assign to your
files. Without the password, you cannot access those files
unless password protection is turned off for the whole disk. If

141

Using CPIM Plus

Example:

you forget the password to the directory label, you cannot
turn off the password protection for the disk.

A>SET MYFILE. TEX [PASSWORD=MYFIL]

MYFIL is the password assigned to file MYFILE. TEX.

Set Password Protection Mode for Files with Passwords

Syntax:

Explanation:

142

SET filespec [PROTECT=READ]

SET filespec [PROTECT=WRITE]

SET filespec [PROTECT=DELETE] SET filespec
[PROTECT=NONE]

You can assign one of four modes of password protection to
your file. The protection modes are READ, WRITE,
DELETE, and NONE and are described in the following
table.

Table 5-17. Password Protection Modes

Mode Protection

READ The password is required for reading,
copying, writing, deleting, or renaming
the file,

WRITE The password is required for writing,

deleting, or renaming the file. You do not
need a password to read the file.

DELETE The password is only required for
deleting or renaming the file, You do not
need a password to read or modify the
file.

NONE No password exists for the file. If a
password exists, this modifier can be used
to delete the password.

Command Summary

Assign a Default Password

Syntax:

Explanation:

Example:

Example:

SET [DEFAULT=password]

The preceding set command assigns a default password for
the system to use during your computer session. The system
uses the default password to access password-protected files
if you do not specify a password, or if you enter an incorrect
password. The system lets you access the file if the default
password matches the password assigned to the file.

B>SET “TEX [PASSWORD=SECRET,
PROTECT=WRITE]

The preceding command assigns the password SECRET to
all the TEX files on drive B. Each TEX file is given a
WRITE protect mode to prevent unauthorized editing.

A>SET [DEFAULT=dd]
The preceding command instructs the system to use dd as a

password if you do not enter a password for a password-
protected file.

Set Time Stamp Options on Disk

Syntax:

Explanation:

SET [CREATE=0N]
SET [ACCESS=ON]
SET [UPDATE=0ON]

The preceding SET commands allow you to keep a record of
the time and date of file creation and update, or of the last
access and update of your files.

Note that Locoscript 1.20 does not update access times
and you cannot use the facility with earlier versions.

{CREATE=ON] turns on CREATE time stamps on the

disk in the default drive. To record the
creation time of a file, the CREATE

143

Using CPIM Plus

Example:

144

option must have been turned on before
the file is created.

[ACCESS=0ON] turns on ACCESS time stamps on the
disk in the default drive. ACCESS and
CREATE options are mutually
exclusive. This means that only one can
be in effect at a time. If you turn on the
ACCESS time stamp on a disk that has
the CREATE time stamp, the CREATE
time stamp is automatically turned off.

[UPDATE=O0ON] turns on UPDATE time stamps on the
disk in the default drive. UPDATE time
stamps record the time the file was last
modified.

To enable time stamping, you must first run INITDIR to
format the disk directory for time and date stamping,

Although there are three kinds of date/time stamps, only two
date/time stamps can be associated with a given file at one
time. You can choose to have either a CREATE date or an
ACCESS date for files on a particular disk.

When you set both UPDATE and CREATE time stamps,
notice that editing a file changes bath the UPDATE and
CREATE time stamps. This is because ED does not update
the original file but creates a new version with the name of
the original file.

A>SET [ACCESS=0N]

The DIR with [FULL] option displays the following date and
time stamps:

B>DIR [FULL)

Directory for Drive B:

Name Byltes Recs Aftributes Prot Update Access
ONE TJEX 9k 71 Dir RW None 10:56 08f03/81
THREE TEX 12k 95 Dir RW None 15:45 08/05/81

Command Summary
A>SET [CREATE=0N,UPDATE=0N]

The following DIR output below shows how files with create
and update time stamps are displayed.

B>DIR [FULL]

Directory for Drive B:

Name Bytes Recs Aftributes Prot Updata Create

GENLED .DAT 109k 873 Dir RW None 08/05/81 - 1401 080181 0936
RECEIPTS.DAT 59k 475 DirRwW None 08/08/81 12141 08/01/81 09:.40
INVQICES.DAT 76k 808 Dir RW None 08/08¢81 08:.46 08/01/81 10115

Additional SET Examples

Examples:

A>SET *.COM [SYS,RO,PASS=123,PROT=READ]

The preceding setting gives the most protection for all the
COM files on drive A. With the password protection mode
set to READ, you cannot even read one of the COM files
without entering the password 123, unless the default
password has been set to 123. Even if the correct password is
entered, you still cannot write to the file becaunse the file is
Read-Only.

A>SET *.COM [RW,PROTECT=NONE,DIR]

The preceding command reverses the protection and access
attributes of the COM files affected by the previous example.
After executing the preceding command, there is no
password protection, the files of type COM can be read from
or written to, and are set to DIR files.

145

Using CPIM Plus

The SET24X80 Command

Syntax:

Explanation:

SET24X80 ON
SET24X80 OFF

SET24X80 ON sets 24 x 80 mode. SET24X80 restores the
screen to its full size. The full size depends on the machine,
the country and whether or not the status line is enabled: see
your User Guide.

If the Parameter is omitted then ON is assumed.

The SETDEF Command

Syntax:

Explanation:

146

SETDEF {d:{,d:{,d:{,d:}}}} {[TEMPORARY=d:] |
[ORDER=(typ {,typ})}}

SETDEF [DISPLAY | NO DISPLAY)

SETDEF [PAGE | NOPAGE]

The SETDEF command lets you display or define the disk
search order, the temporary drive, and the filetype search
order. The SETDEF definitions affect only the loading of
programs and/or execution of SUBMIT (SUB) files. The
SETDEF command also lets you turn on/off the DISPLAY
and PAGE modes for the system. When DISPLAY mode is
on, the system displays the location and name of programs
loaded or SUB files executed. When PAGE mode is on,
CP/M Plus utilities stop after displaying one full screen of
information. Press any key to continue the display.

The system usually searches the specified drive or the defanlt
drive for files. The user can use the SETDEF command, to
extend the search for program files and submit files, for
execution purposes only,

Note: A CP/M Plus program file has a filetype of COM. A

Command Summary

file containing commands to be executed by SUBMIT has a
filetype of SUB.

Display the Program Loading Search Definitions

Syntax:

Explanation:

SETDEF

The preceding form of the SETDEF command displays the
disk search order, the temporary drive, and the filetype
search order.

Assign the Drive for Temporary Files

Syntax:

Explanation:

Example:

SETDEF [TEMPORARY=D:]

The preceding form of the SETDEF command defines the
disk drive to be used for temporary files. The default drive
used for temporary files is the system default drive.

A>SETDEF [TEMPORARY=B]

The preceding command sets disk drive B as the drive to be
used for temporary files.

Define the Disk Drive Search Order

Syntax:

Explanation;

Example:

SETDEF { d: {,d: {,d: {,d:}}}}

The preceding form of the SETDEF command defines the
disks to be searched by the system for programs andior
submit files to be executed. The CP/M Plus default is to
search only the default drive.

Note: * can be substituted for d: to indicate that the default
drive is to be included in the drive search order.

A>SETDEF B:,”

147

Using CPIM Plus

The preceding example tells the system to search for a
program on drive B, then, if not found, search for it on the
default drive.

Define the Filetype Search Order

Syntax:

Explanation:

Example:

SETDEF [ORDER = (typ {,typ}) |
where typ = COM or SUB

The preceding form of the SETDEF command defines the
filetype search order to be used by system for program
loading. The filetype, indicated as typ in the syntax line,
must be COM or SUB. The CP/M Plus default search is for
COM files oniy.

A>SETDEF [ORDER=(SUB,COM)]

The preceding command instructs the system to search for a
SUB file to execute. If no SUB file is found, search for a
COM file.

Turn On/Off System Display Mode

Syntax:

Explanation;

Example:

148

SETDEF [DISPLAY | NO DISPLAY]

The preceding command turns the system display mode on or
off. The default system display mode is off. When the display
mode is on, CP/M Plus displays the following information
about a program file before loading it for execution: drive,
filename, filetype (if any), and user number (if not the
default user number).

A>SETDEF [DISPLAY]

The preceding command turns on the system display mode.
The system now displays the name and location of programs
loaded or submit files executed. For example, if you enter
the PIP command after turning on the system display mode,
CP/M Plus displays the following:

Command Summuary

A=>PIP
APIP COM
CP/M Plus PIP VERSION 3.0

indicating that the file PIP.COM was loaded from drive A
under the current user number. If the current user number is
not 0, and if PIP.COM does not exist under the current user
number, then the system displays the location of PIP.COM
as follows:

4A>=>PIP

APIP COM (User 0)
CP/M Plus PIP VERSION 3.0

indicating that PIP.COM was loaded from drive A under
user number 0. This mode is in effect until you enter

SETDEF [NO DISPLAY]

to turn off the system DISPLAY mode.

Turn On/Off System Page Mode

Syntax:

SETDEF [PAGE| NO PAGE]

Explanation: The preceding command turns on/off the system page mode.

Example:

When the PAGE mode is set to on, CP/M Plus utilities stop
after displaying one full screen of information, called a
console page. The utilities resume after you press any key.
The default setting of the system page mode is ON.
A>SETDEF [NO PAGE]

The preceding command turns off the system page mode.
CP/M Plus utilities do not pause after displaying a full
console page, but continue to scroll.

149

Using CPIM Plus

The SETKEYS Command

Syntax: SETKEYS filename

The command file contains the keyboard configuration data
and has the following syntax.

Each line contains a key definition or an expansion token
definition. A key definition associates a key in a given shift
state, or states, with a character or token value. An
explanation token definition associated an expansion token
with a string.

Key Definition

A key definition consists of a key number optionally
followed by a shift state or states, followed by the
required character in quotes. Any other characters on
the same line are treated as comment.

71 “Z" lower case Z
718 “Z" upper case Z

The shift states are machine dependent:

CPC6128
S for shift
C for control
N for nothing to indicate no shift

PCW8256
S for shift
A for alt
E for extra
SA for shift and alt
N or nothing to indicate no shift

More than one shift state may be given in which case the
definition will apply to all the shift states,

150

Commuand Summary

The character associated with thekey is either the
character itself or an escape sequence. .

Characters in the range #20..#FF other than * or * stand
for themselves. ~ introduces an escape sequence.
Control codes must be represented by escape sequences.

" followed by a character in the range #40. #FF masks
the character with #1F thus "A gives Control A.

" gives the character *
“* gives the character “

* followed by a number enclosed by single quotes gives a
character of that value. “#D’ gives carriage return.

" followed by the name of a control code enclosed by
single quotes gives that control code, "ESC’ gives the
ESC code.

The names of the control codes are NUL, SOH, STX,
ETX, EOT, ENQ, ACK, BEL, BS, HT, LF, VT, FF,
CR, SQ, §SI, DLE, DCI, DC2, DC3, DC4, NAK, SYN,
ETB, CAN, EM, SURB, ESC, FS, GS, RS, US, SP,
DEL, XON, XOFF.

Examples 67 "q" lower case Q
67 S Q" upper case Q
67 C Q" control Q

66 N S C ""ESC’” escape is always escape

Expansion Token Definitions

An expansion token definition consists of E followed by the
token number followed by the expansion string enclosed by
", followed by a comment it required. The characters in the
string are represented by the same characters and escape
sequences as in key definitions.

51

Using CPIM Plus

Examples

Token numbers are machine dependent:

CPC6128: #80..#9F.
PCW8256: #80..#9E. (#9F is the ignore token)

Any key can be set to one of these values in which case it will
return the expansion string.

E #80 "DIR B: [SIZEM"
E #87 "MALLARD"M"

In an expansion token definition bit 7 of the token value is
ignored.

When parsing the command file any Jine which contains an
error is displayed on the console with an error message and
ignored, parsing continues withe the next line.

Details of using the SETKEYS command are given in your
User Guide.

The SETLST Command

Syntax:

152

SETLST filename

The command file contains the information to send to the
LST: device. All the information is represented by characters
in the range #20..#FF. Control codes must be used as
follows.

Characters in the range #20..#FF other than " stand for
themselves. " introduces an escape sequence.

* followed by a character in the range #40..#FF masks the
character with #1F thus "A gives Control A,

" gives the character *

Examples

Comumand Summary

" followed by a number enclosed by single quotes gives a
character of that value. " #D' gives carriage return,

" followed by the name of a control code enclosed by single
quotes gives that control code, “ESC’ gives the ESC code.

The names of the control characters are NUL, SOH, STX,
ETX, EQT, ENQ, ACK, BEL, BS, HT, LF, VT, FF, CR,
80, SI, DLE, DCIi, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FS, GS, RS, US§, SP, DEL, XON,
XOFF.

Any illegal escape sequence will produce an error message
and the sequence will be ignored.

“ESC'A5563
"Abcd
YSTX#F4

Details of using the SETLST command are given in your
User Guide.

The SETSIO Command

Syntax:

SETSIO option option option ...

Where an option is any, or all, of the following in any order:

Baud rate
TX 300 sets transmitter baud rate to 300 baud
RX 134.5 sets receiver baud rate to 134.5 baud
9600 sets both baud rates to 9600 baud

The baud rate must be one of 50, 75, 110, 134.5, 150,
300, 600, 1200, 1800, 2400, 3600, 4800, 7200, 9600,
16200,

153

Using CPIM Plus

Number of data bits
BITS 7 7 data bits

The number of data bits must be one of 5, 6, 7 or 8.

Number of stop bits
STOP 1 1 stop bit

The number of stop bits must be one of 1, 1.5 or 2.

Parity

PARITY EVEN sets even parity

PARITY ODD sets odd parity

PARITY NONE sets no parity

Interrupts

INTERRUPT ON Determines whether the SIO

INTERRUFT OFF device buffers characters on
interrupt or not (version 1.4

or greater)
XON Protocol

XON ON enables XON protocol
XON OFF disables XON protocol

Control signal handshake

HANDSHAKE ON enabled handshake
HANDSHAKE OFF disables handshake

For the words TX, RX, STOP, BITS, PARITY, XON and
HANDSHAKE only the initial letter is reguired, the
remainder of the word is ignored.

Explanation: The SIO is initialised as required. For baud rates and the
XON options the CP/M Plus character 1/0 table entry will
be changed. The SIO is device number.

The baud rate option without a preceding RX or TX sets
both baud rates.

154

Examples

Command Summary

If the baud rate is specified but the number of stop bits is not
specified then the number of stop bits is set to 1 if the baud
rate is greater than 110 otherwise it is set to 2, Any other
option not specified retains its original value.

If an option is given more than once, or if both baud rate and
TX baud rate etc are given then the later option in the list is
used. For example SETSIO 9600, 300 will set the baud rate
to 300.

Any illegal opticn will produce an error message and the
option will be ignored.

After the SIO has been initialised the current state of the
SIO settings is displayed in the same form as the command as
follows:

9600 Bits 8 Parity none Stop 1 Xon off Handshake on

Thus the command SETSIO may be used to examine the
current settings.

Further details of using SETSIO are given in your User
Guide.

SETSIO PARITY EVEN

SETSIO

SETSIO 9600, P NONE, HANDSHAKE=ON,STOP 2, BITS
5

The SHOW Command

Syntax:

SHOW {d:}{[SPACE |[LABEL |USERS |DIR |DRIVE]}

Explanation: The SHOW command displays the following disk drive

information:

@® access mode and amount of free disk space

155

Using CPIM Plus
@® disk label

current user number

number of files for each user number on the disk

number of free directory entries for the disk

drive characteristics

Display Access Mode and Disk Space Available

Syntax: SHOW {d:}{{SPACE]}

Explanation: The preceding form of the SHOW command displays the
drive, the access mode for that drive, and the remaining
space in kilobytes for the specified drive. SHOW by itself
displays the information for all logged-in drives in the
system.

Examples: A>SHOW B:

B: RW, Space: 88k
" A>8HOW

A: RW, Space: 4k

B: RW, Space: 88k

The first example shows that drive B has Read-Write access
and it has 88K bytes of space left. The second example shows
that drive A also is Read-Write and has only 4K bytes left
and drive B is Read-Write and has 88K bytes left.

Display Disk Label

Syntax: SHOW {d:}[LABEL]

Explanation: The preceding form of the SHOW command displays disk
label information.

Example: A>SHOW B:[LABEL]

156

Command Summary
The preceding command displays the following for drive B:

Label for drive B:
Diractory Passwds Stamp Stamp Label Created Label Updated
Label Reqd Create Update

TOMSDISK. on on on 07/04/85 10:30 07/08/85 (9:30

The first column, directory label, displays the name assigned
to that drive directory. The second column, Passwds Reqd,
shows that password protection has been turned on for that
drive.

As described in the SET command, each file can have up to
two time stamps. The first of these time stamps can be either
the creation date and time for the file or the date and time of
the last access to the file. Access is defined as reading from or
writing to the file. The third column of the SHOW [LABEL]
output displays both the type of stamps and whether or not it
is on. In the preceding example, creation time stamps are
given to new files as shown by the stamp create column
heading.

The fourth column displays the status of the second time
stamp field, the update time stamp. Update time stamps
display the date and time of the last update to a file, that is,
the last time someone wrote to the file. In the SHOW
[LABEL] display, update time stamps are turned on.

Besides showing the password protection and the active time
stamps on a drive, SHOW [LABEL] also displays the date
and time that the label was created and last updated.

Display User Number Information

Syntax: SHOW {d:}[USERS]
Explanation: The preceding command displays the current user number
and all the users on the drive and the corresponding number

of files assigned to them.

157

Using CPIM Plus

Example:

A>SHOW [USERS] Active User: 0
Active Files: 0

A: # of files: 28

A: Number of free directory entries: 34
Az

Display Number of Free Directory Entries

Syntax:

Explanation;

Example:

SHOW {d:}[DIR]

The preceding command displays the number of free
directory entries on the specified drive,

A>SHOW B:[DIR]
B: Number of free directory entries: 24
A>

The preceding command shows that there are 24 free
directory entries on drive B.

Display Drive Characteristics

Syntax:

Explanation:

Example:

158

SHOW {d:}[DRIVE]

The preceding form of the SHOW command displays the
drive characteristics of the specified drive.

A> SHOW [DRIVE]

The following is an example of the system display for the
preceding command:

A: Drive Characteristics
1,368: 128 Byte Record Capacity
171: Kitobyte Drive Capacity

64: 32 Byte Directory Entries

Comumand Summary

64: Checked Directory Entries
128: Records / Directory Entry
8: Records / Block
36: Sectors / Track
512: Byles / Physical Record

The SID Command

Syntax:

SID {pgm-filespec} {,sym-filespec}

Explanation: The SID (Symbolic Instruction Debugger) allows you to

moritor and test programs developed for the 8080
microprocessor. SID supports real-time breakpoints, fully
monitored exccution, symbolic disassembly, assembly, and
memory display and fill functions. Utility programs are
supplied with CP/M Plus that can be dynamically loaded with
SID 10 provide traceback and histogram facilities.

SID commands display memory and CPU registers and
direct the breakpoint operations during the debugging
session.

Without a file specification SID loads into memory without a
test program. Use this form to examine memory or to write
and test simple programs using the A command. You must
not use the SID commands G, T, or U, described later, until
you have first loaded a test program.

A SID command line with a pgm-filespec Joads both SID and
the test program into memory. If the filetype is omitted from
the filespec, COM is assumed. SID optionally loads in a
symbol table file specified by sym-filespec. The sym-filespec
needs no filetype because SID looks for a file with filetype
SYM. Use the C, G, T, or U command to begin execution of
the test program under supervision of SID.

Use CTRL-S to halt the screen display, CTRL-Q restarts the

159

Using CPIM Plus

160

display. Abort lengthy displays by typing any keyboard
character. Use CTRL-C to exit from SID,

SID can address absolute memory locations through
symbolic expressions. A symbolic expression evaluates to
either an address or a data item.

A symbolic expression can be a name from a SYM file
produced from your program by a CP/M Macro Assembler.
When you precede the symbolic expression with a period,
SID returns its address in hexadecimal. When you precede
the symbolic expression with the at sign, @, SID returns the
16-bit value stored at that location and the next contiguous
location. When you precede the symbolic expression with an
equal sign, SID returns the 8-bit value stored at that location.,
For two-byte expressions, this is the low byte because the
8080 microprocessor stores the low vatue of a two-byte ward
first,

‘A symbolic expression can be a literal value in hex, decimal,

or ASCII, as indicated in the following list:

@® SID uses literal hex values as given, but truncates any
digits in excess of four on the left. The leftmost digit is
the most significant digit. The rightmost digit is the least
significant digit.

® To indicate decimal values precede them with a hash
sign, #. Decimal values that evaluate to more than four
hex digits are evaluated as the module of hex value
FFFF. For example, #65534=FFFEH, while
#65536=0001H.

® SID translates literal ASCII character strings between
apostrophes to the hex value of the two rightmost ASCII
characters.

You can combine symbolic expressions with the symbolic
operators, + or -, to produce another symbolic expression.
Symbolic expressions combined in this way can be used to
calculate the offset of an indirectly addressed data item, for

Command Summary

example a subscripted variable. A special up-arrow operator,
*, can reference the top-of-stack item. A string of n °
operators can reference the nth stack item without changing
stack content or the stack pointer.

Table 5-18 lists the SID commands with their corresponding
parameters and options. The actual command letter is
printed in boldface. The parameters are in lower-case and
follow the command letter. Optional items are in braces.
Replace the arguments with the appropriate symbolic
expressions as listed. Where two symbolic expressions are
needed, SID can calculate the second one from the first using
the symbolic operators described previously.

Table 5-18. SID Commands

Name Syntax Meaning

Assemble As Enter assembly language statements. s is the start
address.

Call Cs {b{,d}} Call to memory location from SID. s is the called

. address, b is the value of the BC register pair, and
d is the value of the DE register pair.

Display D {W}{s}{,f} Display memory in hex and ASCII. W specifies a
16-bit word format, s is the start address, and f is
the finish address.

Load E pgm-filespec Load program and symbol table for execution.

{,sym-filespec}
Load E* sym-filespec Load a symbol table file.
Fiil Fs,f.d Fill memory with constant value. s is the start

address, f is the finish address, and d is an 8-bit
data item.

161

Using CPIM Plus

Table 5-18 (continued)

Go

Hex

Input

List

Move

Pass

Read
Set

Trace

Trace

162

G {p}{.a{.b}}

H
Ha
Ha,b

I command tail

L {s}{.f}

M s,h,d

P {p{.c}}

R filespec{,d}
S {Wis

T {n{,c}}

T {W}{n{,c}}

Begin execution. p is a start address, a is a
temporary breakpoint, and b is a second
temporary breakpoint. Go exits SID by
petforming a warm boot.

Displays all symbols with addresses in hex,
decimal, and ASCII values of a. The second
syntax performs number and character
conversion, where a is a symbolic expression, and
the third syntax computes hex sum and difference
of a and b, where a and b arec symbolic
EXpressions.

Input CCP command line.

List 8080 mnemonic instructions. s is the start
address, and [is the finish address,

Move memory block. s is the start address, h is
the high address of the block, and d is the
destination start address.

Pass point set, reset, and display. p is a
permanent breakpoint address, and ¢ is initial
value of pass counter.

Read code/symbols. d is an offset to each address.

Set memory values. s is an address where value is
sent, W is a 16-bit word.

Trace program execution. n is the number of
program steps, and ¢ is the utility entry address.

Trace without call. W instructs SID not to trace
subroutines, n is the number of program steps,
and c is the utility entry address.

Command Summary

Untrace U {W}{n{,c}} Monitor execution without trace. n is the number

Value vV

of program steps, ¢ is the utility entry addsess, W
instructs SID not to trace subroutines.

Display the value of the next available location in
memory (NEXT), the next location after the
largest file read in (MSZE), the current value of
the program counter (PC), and the address of the
end of available memory (END).

Write W filespec{,s,f} Write the contents of a contiguous block of

memory to filespec. s is the start address, fis the
finish address.

Examine X {f}{r) Examine/alter CPU state. f is flag bit C, E, I, M,

or Z; risregister A, B, D, H, P or §.

Examples:

A=SID

In the preceding example CP/M Plus loads SID from drive A
into memory. SID displays the # prompt when it is ready to
accept commands.

A>B:SID SAMPLE.HEX

In the preceding example, CP/M Plus loads SID and the
program file SAMPLE.HEX into memory from drive B, SID
displays:

NEXT MSZE PC END
nnpn mmmm pppp eeee

In the preceding example, nnnn is a hexadecimal address of
the next free location following the loaded program, and
mmmm is the next location after the largest program. This is
initially the same value as NEXT. pppp is the initial

163

Using CPIM Plus

hexadecimal value of the the program counter. eeee is the
hexadecimal address of the logical end of the TPA.

#DFEOO+#128+5

In the preceding example the first pound sign, #, is the SID
praompt. This SID command, D, displays the values stored in
memory starting at address FE80 (FE(QO + #128) and ending
at address FE85 (FE80 + 5).

SID Utilities

The SID utilities HIST.UTL and TRACE.UTL are special programs that
operate with SID to provide additional debugging facilities. The
mechanisms for system initialization, data collection, and data display are
described in the CP/M SID™ Symbolic Instruction Debugger User’s Guide.
The following discussion illustrates how a utility is activated. You load the
utility by naming it as a parameter when invoking SID:

SID filename. UTL

In the preceding example filename is the name of the utility. Following the
initial sign-on, the utility can prompt you for additional debugging
parameters.

The HIST utility creates a histogram (bar graph) showing the relative
frequency of exccution of code within selected program segments of the
test program. The HIST utility allows you to monitor those sections of
code that execute most frequently.

Upon start-up HIST prompts

TYPE HISTOGRAM BOUNDS

Enter the bounds in the following format:

aaaa,bbbb

for a histogram between locations aaaa and bbbb inclusive. Collect data in
U or T mode, then display resulits.

164

Corumand Summary

The TRACE utility obtains a traceback of the instructions that led to a
particular breakpoint address in a program under test. You can collect the
addresses of up to 256 instructions between pass points in U or T modes.

The SUBMIT Command

Syntax:

SUBMIT {filespec} {argument} ... {argument}

Explanation: The SUBMIT command lets you execute a group or batch of

commands from a SUB file, which is a file with filetype of
SUB. -

Usually, you enter commands one line at a time. If you must
enter the same sequence of commands several times, you
might find it easier to batch the commands together using the
SUBMIT command, To do this, create a file and enter your
commands in this file. The file is identified by the filename,
and must have a filetype of SUB. When you issue the
SUBMIT command, SUBMIT reads the file named by the
filespec and prepares it for interpretation by CP/M Plus.
When the preparation is complete, SUBMIT sends the file to
CP/M Plus line by line, as if you were typing each command.

The SUBMIT command executes the commands from a SUB
file as if you are entering the commands from the keyboard.

You create the SUB file with the ED utility. It can contain
CP/M Plus commands, nested SUBMIT commands, and
input data for a CP/M Plus command or a program.

You can pass argumenis to SUB files when you execute
them. Each argument you enter is assigned to a parameter in
the SUB file. The first argument replaces every cccurrence
of $1 in the file, the second argument replaces parameter $2,
etc., up to parameter $9. For example, if your file
START.SUB contains the following commands:

165

Using CPIM Plus

166

ERA §1.BAK
DIR $1
PIP $1=A:$2.COM

and you enter the following SUBMIT command:
A>SUBMIT START SAM TEX

the argument SAM is substituted for every $1 in the
START.SUB file, and TEX for every occurrence of $2 in the
START.SUB file. SUBMIT then creates a file with the
parameter substitutions and executes this file. This file now
contains the following commands:

ERA SAM.BAK
DIR SAM
PIP SAM=ATEX.COM

If you enter fewer arguments in the SUBMIT command than
parameters in the SUB file, the remaining parameters are
not included in the commands.

If you enter more arguments in the SUBMIT command than
parameters in the SUB file, the remaining arguments are
ignored.

To include an actual dollar sign, $ in your SUB file, type two
dollar signs, $3. SUBMIT replaces them with a single dollar
sign when it substitutes an argument for a parameter in the
SUB file. For example, if file AA.SUB contains line:
MAC 31 $3$2

and you enter the following SUBMIT command:
A>SUBMIT AA Z2Z 52

then the translated file contains the following:

MAC ZZ $5Z

Command Sunumary
Program Input Lines in a SUB File

A SUB file can contain program input lines. Any program
input is preceded by a less than sign, <, as in:

PIP
<B:=".ASM
<CON:=DUMP.ASM
<DIR

The three lines after PIP are input lines to the PIP command.
The third line consists only of the < sign, indicating a
carriage return. The carriage return causes PIP to return to
the system to execute the final DIR command.

If the program terminates before using all of the input,
SUBMIT ignores the excess input lines and displays the
following warning message:

Warning: Program input ignored

If the program requires more inppt than is in the SUB file, it
expects you to enter the remaining input from the keyboard.

You can enter control characters in a SUB file by using the
usual convention of preceding the control character by an
up-arrow character, T, followed by the letter to be
converted to a control character. To enter an actual
character, use the combination T t. This combination
translates to a single 7 in the same manner that $$ translates
to a single §.

The SUB File

S

The SUB file can contain the following types of lines;

® Any valid CP/M Plus command

® Any valid CP/M Plus command with SUBMIT
parameters

167

Using CPIM Plus

Example:

@ Any data input line
@ Any program input line with parameters ($0 to $9)
CP/M Plus command lines cannot exceed 128 characters.

The following lines illustrate the variety of lines that can be
entered in a SUB file:

DIR

IR *.BAK

MAC $1 $$%4

PIP LST:=$1.PRN[T$2 $3 $5]
DIR * ASM

PIP <B:=*.ASM
<CON:=DUMP.ASM

< DIR B:

Executing the SUBMIT Command

Syntax:

Example:

168

SUBMIT
SUBMIT filespec
SUBMIT filespec argument ... argument

If you enter only SUBMIT, the system prompts for the rest
of the command. You enter the filespec and arguments.

A>SUBMIT

The system displays the following prompt. Enter filespec and
arguments here, such as:

Enter File to Submit: START B8 TEX

Another example could be
A>SUBMIT SUBA

S$till another example using parameters is

Command Summary

A>SUBMIT AA 2Z SZ

where AA is the SUB file AA_SUB, ZZ is the argument to
replace any occurrences of $1 in the AA.SUB file and SZ is
the argument to replace all occurrences of $2 in the AA SUB
file,

The PROFILE.SUB Start-up File

Every time you turn on or reset your computer, CP/M Plus
automatically looks for a special SUB file named
PROFILE.SUB to execute. If it does not exist, then CP/M
Plus resumes normal operation. If the PROFILE.SUB file
exists, the system executes the commands in the fite, This file
is convenient to use if you regularly execute a set of
commands before you do your regular session on the
computer. For example, if you want to be sure that you
always enter the current date and time on your computer
before you enter any other commands, you can create the
PROFILE.SUB file, with ED, and enter the DATE
command as follows:

DATE SET

Then, whenever you bring up the system, the system
executes the DATE command and prompts you to enter the
date and time. By using this facility, you can be sure to
execute a regular sequence of commands before starting your
usual session.

The TYPE Command

Syntax: TYPE {filespec {{[PAGE]|[NO PAGE]}}

Explanation: The TYPE command displays the contents of an ASCII
character file on your screen. The PAGE option displays the
console listing in paged mode, which means that the console

169

Using CPIM Plus

70

listing stops automatically after listing n lines of text, where n
is usually the system default of 24 lines per page. (See the
DEVICE command to set n to a different value.) Press any
character to continue listing another n lines of text. Press
CTRL-C to exit back to the system. PAGE is the default
mode,

The NO PAGE option displays the console listing
continuously.

If you do not enter a file specification in the TYPE command
the system prompts for a filename with the message:

Enter filename:
Respond with the filespec of the file you want listed.

Tab characters occurring in the file named by the file
specification are expanded to every eighth column position
of your screen.

At any time during the display, you can interrupt the listing
by pressing CTRL-S. Press CTRL-Q to resume the listing.

Press CTRL-C to exit back to the system.

Make sure the file specification identifies a file containing
character data.

If the file named by the file specification is not present on the
specified drive, TYPE displays the following message on
your screen:

No Fite

To list the file at the printer and on the screen, type a
CTRL-P before entering the TYPE command line. To stop
echoing console output at the printer, type a second
CTRL-P. The type command displays the contents of the file
until the screen is filled. It then pauses until you press any
key to continue the display.

Examples:

Command Summuary

A>TYPE MYPROG.PLI
This command displays the contents of the file
MYPROG.PLI on your screen twenty-four lines at a time.

A>TYPE B:THISFILE [NO PAGE]
This command continuously displays the contents of the file
THISFILE from drive B on your screen.

The USER Command

Syntax:

Explanation:

Examples:

USER {number}

The USER command sets the current user number. When
you start CP/M Plus, 0 is the current user number. You can
use a USER command to change the current user number to
another in the range 0-15.

CP/M Plus identifies every file with a user number. In
general, you can access only files identificd with the current
user number. However, if you mark a file in user 0 with the
SYS attribute, the file can be accessed from all other user
numbers.

Note that Locoscript treats CP/M Plus files in user numbers
8 to 15 as limbo files. -

A=>USER

The system command prompts for the user number, as
follows:

Enter User#:5 5A>

The current user number is now 5 on drive A,
A>USER 3 3A>

This command changes the current user number to 3.

171

Using CPIM Plus

The XREF Command

Syntax:

Explanation:

Examples:

172

XREF {d:} filename {$P}

The XREF command provides a cross-reference summary of
variable usage in a program. XREF requires the PRN and
SYM files produced by MAC or RMAC for the program.

The SYM and PRN files must have the same filename as the
filename in the XREF command tail. XREF outputs a file of
type XRF.

A>XREF b:MYPROG

In this example, XREF is'on drive A. XREF operates on the
fite MYPROG.SYM and MYPROG.PRN which are on
drive B. XREF produces the file MYPROG.XRF on drive
B.

A>XREF b:MYPROG $P

In the preceding example, the $P option directs output to the
printer.

Section 6
ED: the CP/M Plus Context Editor

Introduction to ED

To do almost anything with a computer you need some way to enter data, a
way to give the computer the information you want it to process. The
programs most commonly used for this task are called editors. They
transfer your keystrokes at the keybeard to a disk file. CP/M Plus’s editor
is named ED. Using ED, you can easily create and alter CP/M Plus text
files.

The correct command format for invoking the CP/M Plus editor is given in
“Starting ED.” After starting ED, you issue commands that transfer text
from a disk file to memory for editing. “ED Operation,” details this
operation and describes the basic text transfer commands that allow you to
easily enter and exit the editor.

“Basic Editing Commands,” details the commands that edit a file.
“Combining ED Commands,” describes how to combine the basic
commands to edit more efficiently. Although you can edit any file with the
basic ED commands, ED provides several more commands that perform
more complicated editing functions, as described in “Advanced ED
Commands.”

During an editing session, ED can return two types of error messages.

“ED Error Messages,” lists these messages and provides examples that
indicate how to recover from common editing error conditions.

Starting ED
Syntax: ED input-filespec {d: | output-filespec}
To start ED, enter its name after the CP/M Plus prompt. The

173

Using CPIM Plus

174

command ED must be followed by a file specification, one
that contains no wildcard characters, such as:

A=ED MYFILE.TEX

The file specification, MYFILE. TEX in the preceding
example, specifies a file to be edited or created. The file
specification can be preceded by a drive specification, but a
drive specification is unnecessary if the file to be edited is on
your default drive. Optionally, the file specification can be
followed by a drive specification, as shown in the following
example:

A=>ED MYFILE.TEX B:

In response to this command, ED opens the file to be edited,
MYFILE.TEX, on drive A, but sends all the edited material
to a file on drive B.

Optionally, you can send the edited material to a file with a
different filcname, as in the following example:

A>ED MYFILE.TEX YOURFILE.TEX

The file with the different filename cannot already exist or
ED prints the following message and terminates.

Output File Exists, Erase i

The ED prompt, *, appears at the screen when ED is ready
to accept a command, as follows

A>ED MYFILE.TEX

If no previous version of the file exists on the current disk,
ED automatically creates a new file and displays the
following message:

NEW FILE

ED Context Editor

Note: before starting an ecditing session, use the SHOW
command to check the amount of free space on your disk.
Make sure that the unused portion of your disk is at least as
large as the file you are editing, or larger if you plan to add
characters to the file. When ED finds a disk or directory full,
ED has only limited recovery mechanisms. These are
explained in “ED Error Messages.”

ED Operation

With ED, you change portions of a file that pass through a memory buffer.
When you start ED with one of the preceding commands, this memory
buffer is empty. At your command, ED reads segments of the source file,
for example MYFILE.TEX, into the memory buffer for you to edit. If the
file is new, you must insert text into the file before you can edit. During the
edit, ED writes the edited text onto a temporary work file, MYFILE.$$$.

When you end the edit, ED writes the memory buffer contents to the
temporary file, followed by any remaining text in the source file. ED then
changes the name of the source file from MYFILE.TEX to
MYFILE.BAK, so you can reclaim this original material from the back-up
file if necessary. ED then renames the temporary file, MYFILE.$3§, to
MYFILE.TEX, the new edited file. The following figure illustrates the
relationship between the source file, the temporary work file, and the new
file.

Note: when you invoke ED with two filespecs, an input file and an output
file, ED does not rename the input file to type BAK; therefore, the input
file can be Read-Only or on a write-protected disk if the output file is
written to another disk.

175

Using CPIM Plus

SOURCE
FILE
MYFILE . TEX

AFTER |
EDIT e

BACKUP
FILE
MYFILE . BAK

Figure 6-1.

SOURCE
LIBRARIES

FILE
MYFILE . 8%

MEMORY
BUFFER

INSERT TYPE
{n (T}
NEW
SOURCE
FILE
MYFILE . TEX
!_ i -
[AEBREEERREIRS \

Overall ED Operation

In the preceding figure, the memory buffer is logically between the source
file and the temporary work file. ED supports several commands that
transfer lines of text between the source file, the memory buffer, and the
temporary, and eventually final, file. The following table lists the three
basic text transfer commands that allow you to easily enter the editor, write
text to the temporary file, and exit the editor.

176

ED Context Editor

Table 6-1. Text Transfer Commands

Command Result

na Append the next n unprocessed source lines from the
source file to the end of the memory buffer.

nW Write the first n lines of the memory buffer to the
temporary file free space.

E End the edit. Copy all buffered text to the temporary file,
and copy all unprocessed source lines to the temporary
file, Rename files. '

Appending Text into the Buffer

When you start ED and the memory buffer is empty, vou can use the A
(append) command to add text to the memory buffer.

Note: ED can number lines of text to help you keep track of data in the
memory buffer. The colon that appears when you start ED indicates that
line numbering is turned on. Type -V after the ED prompt to turn the line
number display off. Line numbers appear on the screen but never become
a part of the output file.

The V (Verify Line Numbers) Command

The V command turns the line number display in front of each line of text
on or off. The V command also displays the free bytes and total size of the
memory buffer. The V command takes the following forms:

Vv, -V, 0v

Initially, the line number display is on. Use -V to turn it off. If the memory
buffer is empty, or if the current line is at the end of the memory buffer,

177

Using CPIM Plus

ED represents the line number as five blanks. The OV command prints the
memory buffer statistics in the form:

freeftotal

where free is the number of free bytes in the memory buffer, and total is
the size of the memory buffer. For exampie, if you have a total of 48,253
bytes in the memory buffer and 46,652 of them are free, the 0V command
displays this information as follows

46652/48253

If the buffer is full, the first field, which indicates free space, is blank.

The A (Append) Command

The A command appends, copies, lines from an existing source file into the
memory buffer. The A command takes the following form:

nA

where n is the number of unprocessed source lines to append into the
memory buffer. If a hash sign, #, is given in place of n, then the integer
65,535 is assumed. Because the memory buffer can contain most
reasonably sized source files, it is often possible to issue the command #A
at the beginning of the edit to read the entire source file into memory.

When n is 0, ED appends the unprocessed source lines into the memory
buffer until the buffer is approximately half full. If you do not specify n,
ED appends one line from the source file into the memory buffer.

ED Exit

You can use the W (Write) command and the E (Exit) command to save
your editing changes. The W command writes lines from the memory
buffer to the new file without ending the ED session. An E command
saves the contents of the buffer and any unprocessed material from the
source file and ¢xits ED.

178

ED Context Editor
The W (Write) Command

The W command writes lines from the buffer to the new file. The W
command takes the form:

nw

where n is the number of lines to be written from the beginning of the
buffer to the end of the new file. If n is preater than 0, ED writes n lines
from the beginning of the buffer to the end of the new file. If nis 0, ED
writes lines uatil the buffer is half empty. The 0W command is a convenient
way of making room in the memory buffer for more lines from the source
file. If the buffer is full, you can use the OW command to write half the
contents of the memory buffer to the new file. You can use the #W
command to write the entire contents of the buffer to the new file. Then
you can use the 0A command to read in more lnes from the source file.

Note: after a W command is executed, you must enter the H command to
reedit the saved lines during the current editing session.

The E (Exit) Command

An E command performs a normal exit from ED. The E command takes
the form:

E
followed by a carriage return.

When you enter an E command, ED first writes all data lines from the
buffer and the original source file to the 33 file. If a BAK file exists, ED
deletes it, then renames the original file with the BAK filetype. Finally,
ED renames the $$$ file from filename.$$$ to the original filetype and
returns control to the operating system.

The operation of the E command makes it unwise to edit a back-up file.
When you edit a BAK file and exit with an E command, ED erases your
original file because it has a BAK filetype. To avoid this, always rename a
back-up file to some other filetype before editing it with ED.

179

Using CPIM Plus

Note: any command that terminates an ED session must be the only
command on the line,

Basic Editing Commands

The text transfer commands discussed previously allow you to easily enter
and exit the editor. This section discusses the basic commands that edit a
file.

ED treats a file as a long chain of characters grouped together in lines. ED
displays and edits characters and lines in relation to an imaginary device
called the character pointer (CP). During an edit session, you must
mentally picture the CP’s location in the memory buffer and. issue
commands to move the CP and edit the file.

The following commands move the character pointer or display text in the
vicinity of the CP. These ED commands consist of a numeric argument and
a single command letter and must be followed by a carriage return. The
numeric argument, n, determines the number of times ED executes a
command; however, there are four special cases to consider in regard to
the numeric argument:

@ If numeric argument is omitted, ED assumes an argument of 1.

@® Use a negative number if the command is to be executed
backwards through the memory buffer. The B command is an
exception.

@ If you enter a hash sign, #, in place of a number, ED uses the
value 65,535 as the argument. A pound sign argument can be
preceded by a minus sign to cause the command to execute
backwards through the memory buffer, -#.

@ ED accepts 0 as a numeric argnment only in certain commands. In
some cases, O causes the command to be executed approximately
half the possible number of times, while in other cases it prevents
the movement of the CP. '

The following table alphabetically summarizes the basic editing commands
and their valid arguments.

180

ED Context Editor

Table 6-2, Basic Editing Commands

Command Action

B,-B Move CP to the beginning (B) or end {-B} of the
memory buffer.

nC, -nC Move CP n characters forward (nC) or backward
(-nC) through the memory buffer.

nD, -nD Delete n characters before (-nD) or after (nD) the
CP.

I Enter insert mode,

Istring CTRL-Z

nK, -nK

nL, -nL

nT, -nT

Insert a string of characters.

Delete (kill) n lines before the CP (-nK) or after the
CP (nK).

Move the CP n lines forward (nL) or backward (-nL)
through the memory buffer.

Type n lines before the CP (-nT) or after the CP
(nT).

Move the CP n lines before the CP (-n) or after the
CP (n) and display the destination line.

The following sections discuss ED’s basic editing commands in more detail.
The examples in these sections illustrate how the commands affect the
position of the character pointer in the memory buffer. Later examples in
“Combining ED Commands,” illustrate how the commands appear at the
screen. For these sections, however, the symbol " in command examples
represents the character pointer, which you must imagine in the memory

buffer.

181

Using CPIM Plus

Moving the Character Pointer |

This section describes commands that move the character pointer in useful
increments but do not display the destination line. Although ED is used
primarily to create and edit program source files, the following sections
present a simple text as an example to make ED easier to learn and
understand.

The B (Beginning/Bottom) Command

The B command moves the CP to the beginning or bottom of the memory
buffer. The B command takes the following forms:

B, -B

-B moves the CP to the end or bottom of the memory buffer; B moves the
CP to the beginning of the buffer.

The C (Character) Command

The € command moves the CP forward or backward the specified number
of characters. The C command takes the following forms:

nC, -nC

when n is the number of characters the CP is to be moved. A positive
number moves the CP towards the end of the line and the bottom of the
buffer. A negative number moves the CP towards the beginning of the line
and the top of the buffer. You can enter an n large enough to move the CP
to a different line. However, each line is separated from the next by two
invisible characters: a carriage return and a line-feed, represented by
<cr><If>. You must compensate for their presence. For example, if the
CP is pointing to the beginning of the line, the command 30C moves the CP
to the next line:

Emily Dickinson said, <cr=><if>
“I fin"d ecstasy in living -<cr><If>

182

ED Context Editor
The L. (Line) Command

The L command moves the CP the specified number of lines. After an L
command, the CP always points to the beginning of a line. The L command
takes the following forms:

nL, -nL.

where n is the number of lines the CP is to be moved. A positive number
moves the CP towards the end of the buffer. A negative number moves the
CP back toward the beginning of the buffer. The command 2L moves the
CP two lines forward through the memory buffer and positions the
character pointer at the beginning of the line.

“I find ecstasy in living —<cr><1f>
the mere sense of living<cr><If>
“is joy enough.” <cr><If>

The command -L moves the CP to the beginning of the previous line, even
if the CP originally points to a character in the middle of the line. Use the
special character 0 to move the CP to the beginning of the current line.

The n (Number) Command

The n cormmand moves the CP and displays the destination line. The n
command takes the following forms:

n, -n

where n is the number of lines the CP is to be moved. In response to this
command, ED moves the CP forward or backward the number of lines
specified, then prints only the destination line. For example, the command
-2 moves the CP back two lines.

Emily Dickinson said,<cr><If>

““I find ecstasy in living —<cr><If>
the mere sense of living<cr><If>
is joy enough.”<cr><lf>

A further abbreviation of this command is to enter no number at all. In

183

Using CPIM Plus

response to a carriage return without a preceding command, ED assumes a
n command of 1 and moves the CP down to the next line and prints it, as
follows

Emily Dickinson said,<cr><If>
“I find ecstasy in living —<cr><if>
“the mere sense of living<ter><If>

Also, a minus sign, —, without a number moves the CP back one line.

Displaying Memory Buffer Contents

ED does not display the contents of the memory buffer until you specify
which part of the text you want to see. The T command displays text
without moving the CP.

The T (Type) Command

The T command types a specified number of lines from the CP at the
screen. The T command takes the forms

nT, -nT

where n specifies the number of lines to be displayed. If a negative number
is entered, ED displays n lines before the CP. A positive number displays n
lines after the CP. If no number is specified, ED types from the character
pointer to the end of the line. The CP remains in its original position no
matter how many lines are typed. For example, if the character pointer is
at the beginning of the memory buffer, and you instruct ED to type four
lines (4T), four lines are displayed at the screen, but the CP stays at the
beginning of line 1.

"Emily Dickinson said,<cr><If>

“I find ecstasy in living —<cr><If>
the mere sense of living<cr><if>
is joy enough.” <lcre><If>

If the CP is between two characters in the middle of the line, a T command
with no number specified types only the characters between the CP and the

184

ED Context Editor

end of the line, but the character pointer stays in the same position, as
shown in the following memory buffer example;

“l find ec”stasy in living —

Whenever ED is displaying text with the T command, you can enter a
CTRL-S to stop the display, then press any key when you are ready to
continue scrolling. Enter a CTRL-C to abort long type-outs.

Deleting Characters
The D (Delete) Command

The D command deletes a specified number of characters and takes the
forms:

nD, -nD

where n is the number of characters to be deleted. If no number is
specified, ED deletes the character to the right of the CP. A positive
number deletes multiple characters to the right of the CP, towards the
bottom of the file. A negative number deletes characters to the left of the
CP, towards the top of the file. If the character pointer is positioned in the
memory buffer as follows

Emily Dickinson said,<cr><If>

“I find ecstasy in living —<cr><lIf>
the mere sense of living<ter> <If>
is joy "enough.” <cr><lf>

the command 6D deletes the six characters after the CP, and the resulting
memory buffer looks like this:

Emily Dickinson said,<cr><If>

“I find ecstasy in living —<lcr><lIf>
the mere sense of living<ter> <If>
is joy ".”<cr><If>

You can also use a D command to delete the <cr><If>> between two lines
to join them together. Remember that the <er> and <If> are two

characters.

185

Using CPIM Plus

The K (Kill} Command

The K command kills or deletes whole lines from the memory buffer and
takes the forms:

nK, -nK

where n is the number of lines to be deleted. A positive number kills lines
after the CP. A negative number kills lines before the CP. When no
number is specified, ED kills the current line. If the character pointer is at
the beginning of the second line,

Emily Dickinson said,<cr><If>

~ find ecstasy in living —<cr><lIf>
the mere sense of living<cr><If>

is joy enough.”<¢cr><If>

then the command -K deletes the previous line and the memory buffer
changes:

“I find ecstasy in living —<cr><1f>
the mere sense of living<tcr><if>
is joy enough.” <cr><if>

If the CP is in the middle of a line, a K command kills only the characters
from the CP to the end of the line and concatenates the characters before
the CP with the next line. A -K command deletes all the characters
between the beginning of the previous line and the CP. A UK command
deletes the characters on the line up to the CP.

You can use the special # character to delete all the text from the CP to the
beginning or end of the buffer. Be careful when using #K because you
cannot reclaim lines after they are removed from the memory buffer. space
Inserting Characters into the Memory Buffer

The I (Insert) Command

To insert characters into the memory buffer from the screen, use the I
comunand.

186

ED Context Editor

If you enter the command in upper-case, ED automatically converts the
string to upper-case. The I command takes the forms:

I Istring™Z

When vou type the first command, ED enters insert mode, In this mode,
all keystrokes are added directly to the memory buffer. ED enters
characters in lines and does not start a new line untit you press the enter
key.

A>ED B:QUOTE.TEX

NEW FILE
. *i

Emily Dickinson said,

“| find ecstasy in living —

the mere sense of living

is joy enough.”

"z

L RN

Note: to exit from insert mode, you must press CTRL-Z or ESC. When
the ED prompt, *, appears on the screen, ED is not in insert mode,

In command mode, you can use CP/M Plus command line-editing control

characters. In insert mode, you can use the control characters listed in
Table 6-3.

Table 6-3. CP/M Plus Line-editing Controls

Command Result

CTRL-H Delete the last character typed on the current line.

CTRL-U Pelete the entire line currently being typed.

CTRL-X Delete the entire line currently being typed. Same as
CTRL-U.

Backspace Remove the last character.

187

Using CPIM Plus

When entering a combination of numbers and letters, you might find it
inconvenient to press a caps-lock key if your terminal translates the
upper-case of numbers to special characters. ED provides two ways to
translate your alphabetic input to upper-case without affecting numbers.
The first is to enter the insert command letter in upper-case: 1. All
alphabetics entered during the course of the capitalized command, either
in insert mode or as a string, are translated to upper-case, If you enter the
insert command letter in lower-case, all alphabetics are inserted as typed.
The second method is to enter a U command before inserting text.
Upper-case translation remains in effect until you enter a -U command.

The Istring"Z (Insert String) Command

The second form of the I command does not enter insert mode. It inserts
the character string into the memory buffer and returns immediately to the
ED prompt. You can use CP/M Plus’s line-editing contro! characters to
edit the command string.

To insert a string, first use one of the commands that position the CP. You
must move the CP to the place where you want to insert a string. For
example, if you want to insert a string at the beginning of the first line, use
a B command to move the CP to the beginning of the buffer. With the CP
positioned correctly, enter an insert string, as follows

iln 1870, °Z
This inserts the phrase “In 1870, at the beginning of the first line, and
returns immediately to the ED prompt. In the memory buffer, the CP

appears after the inserted string, as follows

in 1870, "Emily Dickinson said,<cr><it>

Replacing Characters
The S (Substitute) Command

The S command searches the memory buffer for the specified string, but
when it finds it, automatically substitutes a new string for the search string.
Whenever you enter a command in upper-case, ED automatically converts

188

ED Context Editor
the string to upper-case. The S command takes the form:
nSsearch string"Znew string

where n is the number of substitutions to make. If no number is specified,
ED searches for the next occurrence of the search string in the memory
buffer. For example, the command

sEmily Dickinson™ZThe poet

scarches for the first occurrence of “Emily Dickinson” and substitutes
“The poet.” In the memory buffer, the CP appears after the substituted
phrase, as follows

The poet” said,<cr><If>

If upper-case translation is enabled by a capital § command letter, ED
looks for a capitalized search string and inserts a capitalized insert string,
Note that if you combine this command with cther commands, you must
terminate the new string with a CTRL-Z.

Combining ED Commands

It saves keystrokes and editing time to combine the editing and display
commands. You can type any number of ED commands on the same line.
ED executes the command string only after you press the carriage return
key. Use CP/M Plus’s line-editing controls to manipulate ED command
strings.

When you combine several commands on a line, ED executes them in the
same order they are entered, from left 10 right on the command line. There
are four restrictions to combining ED commands:

@ The combined-command line must not exceed CP/M Plus’s 128
character maximum.

@ If the combined-command line contains a character string, the line
must not exceed 100 characters.

189

Using CPIM Plus

® Commands to terminate an cditing session must not appear in a
combined-command line.

® Commands, such as the I, J, R, S, and X commands, that require
character strings or filespecs must be either the last command on a
ling or must be terminated with a CTRL-Z or ESC character,
even if no character string or filespec is given.

While the examples in the previous section show the memory buffer and
the position of the character pointer, the examples in this section show how
the screen locks during an editing session. Remember that the character
pointer is imaginary, but you must picture its location because ED’s
commands display and edit text in relation to the character pointer.

Moving the Character Pointer

To move the CP to the end of a line without calculating the number of
characters, combine an L. command with a C command, L-2C. This
command string accounts for the <cr><f> sequence at the end of the
line.

Change the C command in this command string to move the CP more
characters to the left. You can use this command string if you must make a
change at the end of the line and you do not want to calculate the number
of characters before the change, as in the following example:

C T
1: Emily Dickinson said,
1; *L-7CT
said,
1.

Displaying Text

A T command types from the CP to the end of the line. To see the entire
line, you can combine an L command and a T command. Type 0lt to move
the CP from the middle to the beginning of the line and then display the
entire line. In the following example, the CP is in the middle of the line. OL
moves the CP to the beginning of the line. T types from the CP to the end

190

ED Context Editor

of the line, allowing you to see the entire line.

3T
sense of living
3: “OLT
3: the mere sense of living
3

The command OTT displays the entire line without moving the CP.

To verify that an ED command moves the CP correctly, combine the
command with the T command to display the line. The following example
combines a C command and a T command.

2: *8CT
ecstasy in living —
2:
4: BT
1: Emily Dickinson said,
2: " find ecstasy in living —
3: the mere sense of living
4: is joy enough.”
)

Editing

To edit text and verify corrections quickly, combine the edit commands
with other ED commands that move the CP and display text, Command
strings like the one that follows move the CP, delete specified characters,
and verify changes quickly.

1: "15C5DOLT
1: Emily Dickinson,
1 ™

Combine the edit command K with other ED commands to delete entire
lines and verify the correction quickly, as follows

1: *2L2KB#T

191

Using CPIM Plus

1: Emily Dickinson said,
2: “] find ecstasy in living —
1 F

The abbreviated form of the 1 (insert) command makes simple textual
changes. To make and verify these changes, combine the I command string
with the C command and the OLT command string as follows. Remember
that the insert string must be terminated by a CTRL-Z.

1: *20Ci to a friend"ZOLT
1: Emily Dickinson said to a friend,
1. *

Advanced ED Commands

The basic editing commands discussed previously allow you to use ED for
all your editing. The following ED commands, however, enhance ED’s
usefulness,

Moving the CP and Displaying Text
The P (Page) Command

Although you can display any amount of text at the screen with a T
command, it is sometimes more convenient to page through the buffer,
viewing whole screens of data and moving the CP to the top of each new
screen at the same iime. To do this, use ED’s P command. The P command
takes the following forms:

nP, -nP

where n is the number of pages to be displayed. If you do not specify n, ED
types the 23 lines following the CP and then moves the CP forward 23 lines.
This leaves the CP pointing to the first character on the screen.

To display the current page without moving the CP, enter OP. The special
character 0 prevents the movement of the CP. If you specify a negative
number for n, P pages backwards towards the top of the file.

192

ED Context Editor
The n: (Line Number) Command

When line numbers are being displayed, ED accepts a line number as a
command 1o specify a destination for the CP. The line number command
takes the following form:

N

where n is the number of the destination line. This command places the CP
at the beginning of the specified line. For example, the command 4: moves
the CP to the beginning of the fourth line.

Remember that ED dynamically renumbers text lines in the buffer each
time a line is added or deleted. Therefore, the number of the destination
line you have in mind can change during editing.

The :n (Through Line Number) Command

The inverse of the line number command specifies that a command should
be executed through a certain line number. You can use this command
with only three ED commands: the K (kill) command, the L (line)
command, and the T (type) command. The :n command takes the
foilowing form:

:ncommand

where n is the line number through which the command is to be executed.
The :n part of the command does not move the CP, but the command that
follows it might.

You can combine n: with :n to specify a range of lines through which a
command sheuld be executed. For example, the command 2::4T types the
second, third, and fourth [ines:

*2:47

"l find ecstasy in living —
the mere sense of living
is joy enough.”

pRwn

193

Using CPIM Plus
Finding and Replacing Character Strings

ED supports a find command, F, that searches through the memory buffer
and places the CP after the word or phrase you want. The N command
allows ED to search through the entire source file instcad of just the
buffer. The J command searches for and then juxtaposes character strings.

The F (Find) Command
The F command performs the simplest find function; it takes the form:
nFstring

where n is the occurrence of the string to be found. Any number you enter
must be positive because ED can only search from the CP to the bottom of
the buffer. If you enter no number, ED finds the next occurrence of the
string in the file. In the following example, the second occurrence of the
word living is found.

1: 2fliving
3 "

The character pointer moves to the beginning of the third line where the
second occurrence of the word “living” is located. To display the line,
combine the find command with a type command. Note that if you follow
an F command with another ED command on the same line, you must
terminate the string with a CTRL-Z, as follows

1 *2fliving"Z0lt
3: *the mere sense of living

It makes a difference whether you enter the F command in upper- or
lower-case. If you enter F, ED internally translates the argument string to
upper-case. If you specify f, ED looks for an exact match, For exampie,
Fep/m plus searches for CP/M Plus but fep/m plus searches for cp/m plus,
and cannot find CP/M Plus.

If ED does not find a match for the string in the memory buffer, it issues
the message,

194

ED Context Editor
BREAK “#" AT

where the symbol # indicates that the search failed during the execution of
an F command. space

The N Command

The N command extends the search function beyond the memory buffer to
include the source file. If the search is successful, it leaves the CP pointing
to the first character after the search string, The N command takes the
form:

aNstring

where n is the occurrence of the string to be found. If no number is
entered, ED looks for the next occurrence of the string in the file. The case
of the N command has the same effect on an N command as it doeson an F
command. Note that if you follow an N command with another ED
command, you must terminate the string with a CTRL-Z.

When an N command is executed, ED searches the memory buffer for the
specified string, but if ED does not find the string, it does not issu¢ an error
message. Instead, ED automatically writes the searched data from the
buffer into the new file. Then ED performs a 0A command 1o fill the buffer
with unsearched data from the source file. ED continues to scarch the
buffer, write out data, and append new data until it either finds the string
or reaches the end of the source file. If ED reaches the end of the source
file, ED issucs the following message:

BREAK *“#” AT

Because ED writes the searched data to the new file before looking for
more data in the source file, ED usually writes the contents of the buffer to
the new file before finding the end of the source file and issuing the error
message.

Note: you must use the H command to continue an edit session after the
source file is exhausted and the memory buffer is emptied.

195

Using CPIM Plus

The J (Juxtapose) Command

The J command inserts a string after the search string, then deletes any
characters between the end of the inserted string to the beginning of the a
third delete-to string. This juxtaposes the string between the search and
delete-to strings with the insert string., The J command takes the form:

nlsearch string"Zinsert string"Zdelete-to string

where n is the occurrence of the search string. If no number is specified,
ED secarches for the next occurrence of the search siring in the memory
buffer. In the following example, ED searches for the word “Dickinson”,
inserts the phrase “told a friend” after it, and then deletes everything up to
the comma.

1: *#T 1: Emily Dickinson said,
2: ‘I find ecstasy in living —
3: the mere of living
4: is joy enough.”
1: ~jDickinson™Z told a friend"Z,
1: *Olt

1. Emily Dickinson told a friend,
1 k4

If you combine this command with other commands, you must terminate
the delete-to string with a CTRL-Z or ESC, as in the following example. If
an upper-casc J command letter is specified, ED looks for upper-case
search and defete-to strings and inserts an upper-case insert string.

The T command is especially useful when revising comments in assembly
language source code, as follows

236: SORT LXI H, SW :ADDRESS TOGGLE SWITCH
236: *i;"ZADDRESS SWITCH TOGGLE Z'L"Z0LT)
236. SORT LXI H, Sw -ADDRESS SWITCH TOGGLE
236: -~

In this example, ED searches for the first semicolon and inserts
ADDRESS SWITCH TOGGLE after the mark and then deletes to the
<cr><If>> sequence, represented by CTRL-L. In any search string, you
can use CTRL-L to represent a <cr><If> when the phrase that you want

196

ED Context Editor

extends across a line break. You can also use a CTRL- in a search string to
represent a tab.

Note: if long strings make your command longer than your screen line
length, enter a CTRL-E to cause a physical carriage return at the screen. A
CTRL-E returns the cursor to the left edge of the screen, but does not send
the command line to ED. Remember that no ED command line contatning
strings can exceed 100 characters. When you finish your command, press
the carriage return key to send the command to ED,

The M (Macro) Command

An ED macro command, M, can increase the usefulness of a string of
commands, The M command allows you to group ED commands together
for repeated execution. The M command takes the following form:

nMcommand string

where n is the number of times the command string is to be executed. A
negative number is not a valid argument for an M command. If no number
is specified, the special character # is assumed, and ED executes the
command string until it rcaches the end of data in the buffer or the end of
the source file, depending on the commands specified in the string. In the
following example, ED executes the four commands repetitively until it
recaches the end of the memory buffer:

1: *mfliving"Z-6diLiving"Z0lt
2: "l find ecstasy in Living —
3: the mere sense of Living

BREAK “#" AT "2
3 07

The terminator for an M command is a carriage return; therefore, an M
command must be the last command on the line. Also, all character strings
that appear in a macro must be terminated by CTRL-Z or ESC. If a
character string ends the combined-command string, it must be terminated
by CTRL-Z, then followed by a <lcr>> to end the M command.

The execution of a macro command always ends in a BREAK “#”

197

Using CPIM Plus

message, even when you have limited the number of times the macro is to
be performed, and ED does not reach the end of the buffer or source file.
Usually the command letter displayed in the message is one of the
commands from the string and not M.

To abort a macro command, press a CTRL-C at the keyboard.

The Z {Sleep) Command

Use the Z command to make the editor pause between operations. The
pauses give you a chance to review what you have done, The Z command
takes the following form:

nZz

where n is the number of seconds to wait before proceeding to the next
instruction.

Usually, the Z command has no real effect unless you use it with a macro
command. The following example shows you how you can use the Z
command to cause a brief pause each time ED finds the word TEXT in a
file.

A>"mfliving"Z0tt10z

Moving Text Blocks
To move a group of lines from one area of your data to another, use an X
command to write the text block into a temporary LIB file, then a K

command to remove these lines from their original location, and finally an
R command to read the block into its new location. space

The X: (Transfer) Command
The X command takes the forms:
nX nXfilespec™Z

198

ED Context Editor

where n is the number of lines from the CP towards the bottom of the
buffer that are to be transferred to a file. Therefore, n must always be a
positive number. The nX command with no file specified creates a
‘temporary file named X$3$$$$$$.LIB. This file is erased when you
terminate the edit session. The nX command with a file specified creates a
file of the specified name. If no filetype is specified, LIB is assumed. This
file is saved when you terminate the cdit session. If the X command is not
the last command on the line, the command must be terminated by a
CTRL-Z or ESC. In the following example, just one line is transferred to
the temporary file:

*X

"

*Emily Dickinson said,

*ki

*1 find ecstasy in living —

*

— bk o ommh ok

If no library file is specified, ED looks for a file named X$$58$$$.LIB. If
the file does not exist, ED creates it. If a previous X command already
created the library file, ED appends the specified lines to the end of the
existing file.

Use the special character 0 as the n argument in an X command to delete
any file from within ED.

The R {Read) Command

The X command transfers the next n lines from the current line to a library
file, The R command can retrieve the transferred lines. The R command
takes the forms:

R Rfilespec

If no filename is specified, X$$$$8$$$ is assumed. If no filetype is specified,
LIB is assumed. R inserts the library file in front of the CP; therefore, after
the file is added to the memory buffer, the CP points to the same character
it did before the read, although the character is on a new line number, If
you combine an R command with other commands, you must separate the
filename from subsequent command letters with a CTRL-Z as in the

199

Using CPIM Plus

following example where ED types the entire file to verify the read.

1 41

: *RTZB#T
1: “l find ecstasy in living —
2: the mere sense of living
3: is joy enough.”
4: Emily Dickinson said,
1. 7

Saving or Abandoning Changes: ED Exit

You can save or abandon editing changes with the following three
commands.

The H (Head of File) Command

An H command saves the contents of the memory buffer without ending
the ED session, but it returns to the head of the file. It saves the current
changes and lets you reedit the file without exiting ED. The H command
takes the following form:

H
followed by a carriage return.

To execute an H command, ED first finalizes the new file, transferring all

" lines remaining in the buffer and the source file to the new file. Then ED
closes the new file, erases any BAK file that has the same file specification
as the original source file, and renames the original source file
filename BAK. ED then renames the new file, which has had the filetype
3, with the original file specification. Finally, ED opens the newly
renamed file as the new source file for a new edit, and opens a new $$$ file.
When ED returns the * prompt, the CP is at the beginning of an empty
memory buffer.

If you want to send the edited material to a file other than the original file,
use the following command:

200

ED Context Editor
A>ED filespec differentfilespec
If you then restart the edit with the H command, ED renames the file
differentfilename.3 to differentfilename.BAK and creates a new file of
different filespec when you finish editing.
The Q (Original) Command
An O command abandons changes made since the beginning of the edit
and-allows you to return to the original source file and begin reediting
without ending the ED session. The O command takes the form:

0

followed by a carriage return, When you enter an O command, ED
confirms that you want to abandon your changes by asking

O (YIN)?

You must respond with either a Y or an Nj if you press any other key, ED
repeats the question. When you enter Y, ED erases the temporary file and
the contents of the memory buffer. When the * prompt returns, the
character pointer is pointing to the beginning of an empty memory buffer,
just as it is when you start ED.

The Q (Quit) Command

A Q command abandons changes made since the beginning of the ED
session and exits ED. The Q command takes the form:

Q
followed by a carriage return.

When you enter a Q command, ED verifies that you want to abandon the
changes by asking .

Q (Y/N)?

201

Using CPIM Plus

You must respond with either a Y or an N; if you press any other key, ED
repeats the question. When you enter Y, ED erases the temporary file,
closes the source file, and returns control to CP/M Plus.

Note: you can enter a CTRL-Break or a CTRL-C to return control
immediately to CP/M Plus. This does not give ED a chance to close the
source or new files, but it prevents ED from deleting any temporary files.

ED Error Messages

ED returns one of two types of error messages: an ED error message if
ED cannot execute an edit command, or a CP/M Plus error message if ED
cannot read or write to the specified file. An ED error message takes the
form: ’

BREAK “x” AT ¢

where x is one of the symbols defined in the following table and c is the
command letter where the error occurred.

Table 6-4. ED Error Symbols

Symbol Meaning

Secarch failure. ED cannot find the string specified in a F, §,
or N command,

7c Unrecognized command letter ¢. ED does not recognize the
indicated command letter, or an E, H, O, or Q command is
not alone on its command line.

0 No .LIB file. ED did not find the LIB file specified in an R
command.

> Buffer full. ED cannot put anymore characters in the
memory buffer, or string specified in an F, N, or S command
is too long,.

202

ED Context Editor

E Command aborted. A keystroke at the keyboard aborted
command execution.

F File error. Followed by either disk FULL or DIRECTORY
FULL.

The following examples show how to recover from common editing error
conditions. For example

BREAK *'>" AT A

means that ED filted the memory buffer before completing the execution
of an A command. When this occurs, the character pointer is at the end of
the buffer and no editing is possible, Use the W command to write out
half the buffer or use an O or H command and reedit the file.

BREAK "#" AT F

means that ED reached the end of the memory buffer without matching
the string in an F command. At this point, the character pointer is at the
end of the buffer. Move the CP with a B or n: line number command to
resume editing.

BREAK “F" AT F DISK FULL
Use the 0X command to erase an unnecessary file on the disk or a
B#Xd:buffer.sav command to write the contents of the memory buffer

onto another disk,

BREAK “F" AT n DIRECTORY FULL

Use the same commands described in the previous message to recover
from this file error.

The following table defines the disk file error messages ED returns when it
cannot read or write a file.

203

Using CPIM Plus

Table 6-5. ED Diskette File Error Messages

Message Meaning

CP/M Error on d: Read/Only File
BDOS Function = NN File = FILENAME.TYP

Disk d: has Read-Only attribute. This occurs if a
different disk has been inserted in the drive since the
last cold or warm boot.

** FILE IS READ ONLY **

The file specified in the command to invoke ED has
the R/O attribute, ED can read the file so that the
user can c¢xamine it, but ED cannot change a
Read-Only file.

204

Part 2

PROGRAMMING WITH CP/M PLUS

Section 7

Introduction

This section introduces you to the general features of CP/M Plus with an
emphasis on how CP/M Plus organizes your computer's memory, The
section begins by describing the general memory organization of the
system and defines the programming environment. [t then shows how
CP/M Plus defines memory space into standard regions for operating
system modules and executing programs. Subsequent paragraphs describe
the components of the operating system, how they communicate with each
other and the application program, and in greater detail where each
component and program is located in memory. After a brief introduction
to disk organization, the final section gives examples of system operation.

Memory Organization

PCW§8256

The PCW8256’s memory is organised into three banks (see Figure 7.1
overleaf):

Bank O is the BDOS bank which contains the banked proportions of the
BIOS (Basic Input Output Systems) and BDOS (Basic Disk Operating
System) it also contains the screen memory, some disc buffers and the
extended BIOS jumpblock (see Appendix J).

Bank 1 is the TPA bank in which all application programs are run.

Bank 2 contains a copy of the CCP {Console Command Processor), disk
hash tables, data buffers and parts of the BIOS.

The top 16K of memory is common to all banks, it contains the resident
portions of the BIOS and BDOS and part of the TPA.

207

Programming with CPIM Plus

Bank 0 - BDOS Bank 1 - TPA Bank 2 - Exira

block 7 block 7 block 7
common common common
#C000
block 3 block 6
BIOS, BDOS
#8000
block 1 block 5 block 8
screen CCP, hash tables
data buffers
#4000
block 0 block 4
BIOS
extended jumpblock
#0000

Figure 7-1 PCW8256 Memory Organisation

The screen environment is not included in the above CP/M Plus bank
model.

The screen environment consists of blocks 7, 2, 1, 0, i.e. similar to bank 0
but with block 3 replaced by biock 2 which contains the matrix RAM,
roller RAM and some of the screen RAM. The screen environment can be
accessed via the “SCR RUN ROUTINE” entry in the extended BIOS
jumpblock (see Appendix J).

The character matrix RAM is at #B800 in the screen environment.

The screen roller RAM is at #B600 in the screen environment.

The RAM disk is in blocks 9..15 plus any additional contiguous memory.

CPC6128

The CPC6128’s memory is organised into three banks (Figure 7.2):

Bank 0 is the BDOS bank which coniains the banked portions of the BIOS
(Basic Input Qutput System)} and BDOS (Basic Disk Operating System) it

208

Introduction

also contains the screen memory, some disk buffers and the extended
BIOS jumpblock (see Appendix J).

Bank 1 is the TPA bank in which all application programs are run,

Bank 2 contains a copy of the CCP (Console Command Processor), disk
hash tables and data buffers.

The top 16K of memory is common to all banks, it contains the resident
portions of the BIOS and BDOS and part of the TPA.

Bank 0 - BDOS Bank 1 - TPA Bank 2 - Extra
block 7 block 7 block 7
common common common
#C000
: block 2 block 6
BIOS, BDOS
firmware jumpblock
#8000
block 1 block 5 block 3
screen CCP, hash tables
data buffers
#4000
block 0 / lower ROM ||block 4
more BIOS
low kernel jumpblock
#0000

Figure 7.2 CPC6128 Memory Organisation

System Components

Functionally, the CP/M Plus operating system is composed of distinct
modules. Transient programs can communicate with these modules to
request system services. Figure 7.3 shows the regions where these modules
reside in logical memory.

209

Programming with CPIM Plus

HIGH MEMORY:
BIOS : BASIC INPUT/QUTPUT SYSTEM
BIOS-BASE:
BDOS : BASIC DISK QPERATING SYSTEM
BDOS-BASE:

LOADER : PROGRAM LOADER MODULE
LOADER-BASE:

RSX(s) : RESIDENT SYSTEM EXTENSIONS

RSX-BASE: |
/ //////////

TPA TRANSIENT PROGRAM AREA
PO

CCP : CONSOLE COMMAND PROCESSOR ’;
0100H:

PAGE ZERO

000QH:

Figure 7.3. System Components and Regions in Logical
Memory

The Basic Input/Output System, BIOS, is a hardware-dependent module
that defines the low-level interface to a particular computer system. It
contains the device-driving routines necessary for peripheral device 1/O.

The Basic Disk Operating System, BDOS, is the hardware-independent
module that is the logical nucleus of CP/M Plus. It provides a standard
operating environment for transient programs by making services available
through numbered system function calls.

The LOADER module handles program loading for the Console
Command Processor and transient programs. Usually, this module is not
resident when transient programs execute. However, when it is resident,
transient programs can access this module by making BDOS Function 59
calls.

210

Introduction

Resident System Extensions, RSXs, are temporary additional operating
system modules that can selectively extend or modify normal operating
system functions. The LOADER module is always resident when RSXs
are active.

The Transient Program Area, TPA, is the region of memory where
transient programs execute, The CCP also executes in this region,

The Console Comunand Processor, CCP, is not an operating system
module, but is a system program that presents a human-oriented interface
to CP/M Plus for the user.

The Page Zero region is not an operating system module either, but
functions primarily as an interface to the BDOS module from the CCP and
transient programs. It also contains critical system parameters.

System Component Interaction and Communication

This section describes interaction and communication between the
modules and regions defined in “System Components”. The most
significant channcls of communication are between the BDOS and the
BIOS, transient programs and the BDOS, and transient programs and
RSXs.

The division of responsibility between the different modules and the way
they communicate with one another, provide three important benefits.
First, because the operating system is divided into two modules — one that
is confipured for different hardware environments, and one that remains
constant on every computer — CP/M Plus software is hardware
independeunt; you can port your programs unchanged to different hardware
configurations. Second, because all communication between transient
programs and the BDOS is channeled through Page Zero, CP/M Plus
transient programs execute, if sufficient memory is available, independent
of configured memory size. Third, the CP/M Plus RS8X facility can
customize the services of CP/M Plus on a selective basis.

The BDOS and BIOS

CP/M Plus achieves hardware independence through the interface between

211

Programming with CPIM Plus

the BDOS and the BIOS modules of the operating system. This interface
consists of a series of entry points in the BIOS that the BDOS calis to
perform hardware-dependent primitive functions such as peripheral device
I70. For example, the BDOS calls the CONIN entry point of the BIOS to
read the next console input character.

A system implementor can customize the BIOS to match a specific
hardware environment. However, even when the BIOS primitives are
customized to match the host computer’s hardware environment, the BIOS
entry points and the BDOS remain constant. Therefore, the BDOS and
the BIOS modules work together to give the CCP and other transient
programs hardware-independent access to CP/M Plus’s facilities.

Applications and the BDOS

Transient programs and the CCP access CP/M Plus facilities by making
BDOS function calls. BDOS functions can create, delete, open, and close
disk files, read or write to opened files, retrieve input from the console,
send output to the console or list device, and perform a wide range of other
services described in Section 3, “BDOS Functions.”

To make a BDOS function call, a transient program loads CPU registers
with specific entry parameters and calls location 0005H in Page Zero. If
RSXs are not active in memory, location Q005H contains a jump
nstruction to location BDOS-base + 6. If RSXs are active, location 0005H
contains a jump instruction to an address below BDOS-base. Thus, the
Page Zero interface allows programs to run without regard to where the
operating system modules are located in memory. In addition, transient
programs can use the address at location 0006H as a memory ceiling,

Some BDOS functions are similar to BIOS entry points, particularly in the
case of simple device I/O. For example, when a transient program makes a
console output BDOS function call, the BDOS makes a BIOS console
output call. In the case of disk I/O, however, this relationship is more
complex. The BDOS might call many BIOS entry points to perform a
single BDOS file I/O function.

Transient programs can terminate execution by jumping to location 0000H
in the Page Zero region. This location contains a jump instruction to
BIOS-base+3, which contains a jump instruction to the BIOS warm start

212

Introduction

routine. The BIOS warm start routine loads the CCP into memory at
location 100H and then passes control to it.

The Console Command Processor is a special system program that
executes in the TPA and makes BDOS calls just like an application
program. However, the CCP has a unique role: it gives the user access to
operating system facilities while transient programs are not executing. It
includes several built-in commands, such as TYPE and DIR, that can be
executed directly without having to be loaded from disk. When the CCP
receives control, it reads the user’s command lines, distinguishes between
built-in and transient commands, and when necessary, calls upon the
LOADER module to load transient programs from disk into the TPA for
execution. CCP operation is described in detail later.

Applications and RSXs

A Resident Systemn Extension is a temporary additional operating system
module. An RSX can extend or modify one or more operating system
functions selectively. As with a standard BDOS function, a transient
program accesses an RSX fuaction through a numbered function call.

At any one time there might be zero, one, or multiple R8Xs active in
memory. When a transient program makes a BDQOS function call, and
RSXs are active, cach R§X examines the function number of the call. If
the function number matches the function the RSX is designed to extend or
modify, the RSX performs the requested function. Otherwise, the RSX
passes the function request to the next RSX. Nonintercepted functions are
eventually passed to the BDOS for standard execution.

The LOADER module is a special type of RSX that supports BDOS
function 59, Load Overlay. It is always resident when RSXs are active. To
indicate RSX support is required, a program that calls function 59 must
have an R8X header attached by GENCOM, even if the program does not
require other RSXs. When the CCP encounters this type of header in a
program file when no RSXs are active, it sets the address at location 0006H
in Page Zero to LOADER-base-6 instead of BDOS-base+6.

213

Programming with CPIM Plus

HIGH MEMORY:
BIOS : BASIC I/O SYSTEM
BIOS-BASE:
BDOS : BASIC DISK OPERATING SYSTEM
BDOS-BASE: :

LOADER : PROGRAM LOADER MODULE
LOADER-BASE:

RSX(1) : RESIDENT SYSTEM EXTENSION

RSX(N) : RESIDENT SYSTEM EXTENSION

S LSS S

TPA : TRANSIENT PROGRAM AREA
VA A £z Fi L s £

RSX(N})-BASE:

AL

/ CCP - CONSOLE COMMAND PROCESSOR /
0100H:

PAGE ZERO

0000H:

Figure 7-4. System Modules and Regions in Logical Memory

214

Introduction
Memory Region Boundaries

This section reviews memory regions under CP/M Plus, and then describes
some details of region boundaries. It then relates the sizes of various
modules to the space available for the execution of transient programs.
Figure 7-4 reviews the location of regions in logical memory.

First note that all memory regions in CP/M Plus are page-aligned. This
means that regions and operating system modules must begin on a page
boundary. A page is defined as 256 bytes, so a page boundary always
begins at an address where the low-order byte is zero.

The term High Memory in Figure 7-4 denotes the high address of a CP/M
Plus system. This address may fall below the actual top of memory address
if space above the operating system has been allocated for directory
hashing or data buffering. The maximum top of address is 64K-1
(OFFFFH).

The labels BIOS-base, BDOS-base, and LOADER-base represent the
base addresses of the operating system regions. These addresses always fall
on page boundaries. The size of the BIOS region is not fixed, but is
determined by the requirements of the host computer system.

R8Xs are page aligned modules that are stacked in memory below
LOADER-base in memory. In the configuration shown in Figure 7-4,
location 0005H of Page Zero contains a jump to location RSX(N)-base +
6. Thus, the memory ceiling of the TPA region is reduced when RSXs are
active.

Under CP/M Plus, the CCP is a transient program that the BIOS loads into
the TPA region of memory at system cold and warm start. The BIOS also
loads the LOADER module at this time, because the LOADER module is
attached to the CCP. When the CCP gains control, it relocates the
LOADER module just below BDOS-base. The LOADER module
handles program loading for the CCP. It is three pages long.

Disk and Drive Organization and Requirements

CP/M Plus can support up to sixteen logical drives, identified by the letters
A through P, with up to 512 megabytes of storage each. A logical drive

215

Programming with CPIM Plus

TRACK M
DATA CP/M Plus DATA REGION
TRACKS
CP/M Plus DIRECTORY REGION
TRACK N
SYSTEM CCP (OPTIONAL)
TRACKS
CPMLDR
COLD BOOT LOADER
TRACK 0

Figure 7-5. Disk Organization

usually corresponds to a physical drive on the system, particularly for
physical drives that support removable media such as floppy disks.

In Figure 7-5, the first N tracks are the system tracks. System tracks are
required only the disk used by CP/M Plus during system start. All normal
CP/M Plus disk access is directed to the data tracks which CP/M Plus uses
for file storage.

The data tracks are divided into two regions: a directory area and a data
area. The directory area defines the files that exist on the drive and
identifies the data space that belongs to each file. The data area contains
the file data defined by the directory.

The directory area is subdivided into sixteen logically independent
directories. These directories are identified by user numbers 0 through 15.
During system operation, CP/M Plus runs with the user number set to a
single value. The user number can be changed at the console with the
USER command. A transient program can change the user number by
calling a BDOS function.

216

Introduction

The user number specifies the currently active directories for ail the drives
on the system. For example, a PIP command to copy a file from one disk to
another gives the destination file the same user number as the source file
uniess the PIP command is modified by the [G] option.

The directory identifies each file with an eight-character filename and a
three-character filetype. Together, these fields must be unique for each
file. Files with the same filename and filetype can reside in different user
directories on the same drive without conflict. A file can be assigned an
eight-character password to protect the file from unauthorized access.

All BDOS functions that involve file operations specify the requested file
by filename and filetype, Multiple files can be specified by a technique
called ambiguous reference, which uses question marks and asterisks as
wildcard characters to give CP/M Plus a pattern to match as it searches the
directory. A guestion mark in an ambiguous reference matches any value
in the same position in the directory filename or filetype field. An asterisk
fills the remainder of the filename or filetype field of the ambiguous
reference with question marks. Thus, a filename and filetype field of all
asterisks, *.*, and matches all files in the directory that belong to the
current user number,

The CP/M Plus file system automatically allocates directory space and data
area space when a file is created or extended, and returns previously
allocated space to free space when a file is deleted or truncated. If no
directory or data space is available for a requested operation, the BDOS
refurns an error to the calling program. In general, the allocation and
deallocation of disk space is transparent to the cailing program. As a result,
you need not be concerned with directory and drive organization when
using the file system facilities of CP/M Plus.

Disk Organization on PCW8256 and CPC6128

The disc driver supports one or two floppy disc drives. Two disc formats
are supported: “system format” and “data format” as per CP/M 2.2 on
other AMSTRAD machines.

217

Programming with CPIM Plus

Only the boot sector is used from the system tracks on a system format
disc. The remainder of these tracks are not used.

Many of the disc driver routines are available to an application program via
the extended BIOS jumpblock; for example the DISCKIT utility program
has to use these routines since there is no standard CP/M Plus facility for
formatting discs.

On single drive systems two *“‘logical” drives {A: and B:} are both mapped
onto the one physical drive. The number of physical drives fitted is
detected during cold boot.

The BIOS routine SEIL.DSK deals with the logical to physical drive
mapping. Whenever it is called it checks that the logical drive being
selected is currently mapped onto the physical drive. If not a BIOS
message is displayed to prompt the user to change the disc.

This enables disc to disc copying using a single drive with standard utilities
such as PIP.

The current assignment of logical to physical is displayed on the status line
as “Drive is A:” or “Drive is B:".

The disc driver routine interfaces refer to the drives as “unit 0” and “unit
1”. This terminology is introduced for reasons of upwards compatability
with other produets which may have to make a clear distinction between
physical drives (units) and logical drives (drives A: B: C: ... P:}.

The disc driver routines require “iogical” tracks and sectors. These are
used to hide information concerning the number of sides and the actual
sector numbers from CP/M Plus, which knows nothing about them.

Logical track numbers on a single sided disc are the same as physical track
numbers.

For double sided discs two options are available:

Flip sides
side 0 track 0 = logical track 0
side 1 track 0 1

218

Introduction

side O track 1 2

side 1 track 1 3
Up and over

side 0 track 0 = logical track 0

side 0 track 1 1

side 0 last track
side 1 last track
side 1 last track — 1

side 1 track 0

Logical sectors hide the actual physical sector numbers. Logical sector
numbers always start from 0.

Logical sector = physical sector — first sector

BIGS disc error messages are in terms of logical track and sector numbers.
All this information is held in an eXtended Disk Parameter Block (see
Appendix I).

PCW8256 RAM Disk

Drive M: is a RAM disk. That is, an area of RAM which behaves just like a
disk with the exception that all data is lost when the machine is reset or
turned off. The size of RAM disk is determined during cold boot. On the
standard 256K PCW8256 the RAM disk is 112K. Any contiguous add-on
memory is used for the RAM disk.

System Operation

This section introduces the general operation of CP/M Plus. This overview
covers topics concerning the CP/M Plus system components, how they
function and how they interact when CP/M Plus is running. This section

219

Programming with CPIM Plus

does not describe the total functionality of CP/M Plus, but simply
introduces basic CP/M Plus operations,

For the purpose of this overview, CP/M Plus system operation is divided
into five categories. First is system cold start, the process that begins
execution of the operating system. This procedure ends when the Console
Command Processor, CCP, is loaded into memory and the system prompt
is displayed on the screen. Second is the operation of the CCP, which
provides the user interface to CP/M Plus, Third is transient program
initiation, execution and termination. Fourth is the way Resident System
Extensions run under CP/M Plus. The fifth and final category describes the
operation of the CP/M Plus SUBMIT utility.

Cold Start Operation

The cold start procedure is typically executed immediately after the
computer is turned on. The cold start brings CP/M Plus into memory and
gives it control of the computer’s resources.

On the CPC6128 the first sector on the system disk (track 0, sector 41} is
loaded and given control. This function is performed by bootstrap ROM
on PCW8256.

In either case the bootstrap loads the directory and searches for the first
file with the extension .EMS. If this file is found then the program file is
loaded and given control. The .EMS file contains CPM3.5YS, CCP.COM
together with the loader and BIOS.

If the .EMS file is not found then:

@® on CPC6128 the message “Cannot find EMS file” is
displayed. Press any key to restart.

@® on PCW8256 the machine beeps. Press any key to
re-execute the bootstrap.

220

Introduction

CCP Operation

The Console Command Processor provides the user access to CP/M Plus
facilities when transient programs are not running. It also reads the user’s
command lines, differentiates between built-in commands and transicnt
commands, and exccutes the commands accordingly.

This section describes the responsibilities and capabilities of the CCP in
some detail. The section begins with a description of the CCP’s activities
when it first receives control from the Cold Start procedure. The section
continues with a general discussion of built-in commands, and concludes
with a step-by-step description of the procedure the CCP follows to
execute the user’s commands.

When the CCP gains control following a cold start procedure, it displays
the system prompt at the console.

A>

After displaying the system prompt, the CCP scans the directory of the
default drive for the file PROFILE.SUB. K the file exists, the CCP creates
the command line SUBMIT PROFILE; otherwise the CCP reads the
user’s first command line by making a BDOS Read Console Buffer
function call (BDOS Function 10).

The CCP accepts two different command forms. The simplest CCP
command form changes the default drive. The following example
illustrates a user changing the default drive from A to B.

A>B: B>

This command is one of the CCP’s built-in commands. Built-in commands
are part of the CCP. They reside in memory while the CCP is active, and
therefore can be executed without referencing a disk.

The second command form the CCP accepts is the standard CP/M
command line. A standard CP/M Plus command line consists of a
command keyword followed by an optional command tail. The command
keyword and the command tail can be typed in any combinaton of upper-
case and lower-case letters; the CCP converts all letters in the command

221

Programming with CPIM Plus

line to upper-case. The following syntax defines the standard CP/M Plus
command line:

<command>> <command tail>
where

<command>> => <filespec> or
<built-in>

<command tail> => (no command tail) or
<filespec> or <filespec>><delimiter><filespec>

<filespec> | =2 {d:}filename{.typ}{;password}

<built-in> => one of the CCP built-in commands

<delimiter= => one or more tlanks or a tab or one of the
following: = []<>|"

d: => CP/M Plus drive specification, A’ through “P”

filename => 1 to 8 character filename

typ => 1to 3 character filetype

password => 1 to 8 character password value

Fields enclosed in curty brackets are optional. If there is no drive {d:}
present in & file specification <filespec>, the default drive is assumed. If
the type field {.typ} is omitted, a type field of all blanks is implied.
Onmitting the password field {;password} implies a password of all blanks.
When a command line is entered at the console, it is terminated by a return
or line-feed keystroke.

Transient programs that run under CP/M Plus are not restricted to the
above command tail definition. However, the CCP cnly parses command
tails in this format for transient programs. Transient programs that define
their command tails differently must perform their own command tail
parsing.

222

Introduction

The command field must identify either a built-in command, a transient
program, or a submit file. For example, USER is the keyword that
identifies the built-in command that changes the current user number, The
CP/M Plus CCP displays the user number in the system prompt when the
user number is non-zero. The following example illustrates changing the
user number from zero to 15.

B>USER 15 16B>

The following table summarizes the built-in commands.

Table 7-1. CP/M Plus Built-in Commands

Command _ Meaning

DIR displays a list of all filenames from a disk dircctory except
those marked with the SYS attribute.

DIRSYS displays a filename list of those files marked with the SYS
attribute in the directory.

ERASE crases a filename from a disk directory and releases the
storage occupied by the file.

RENAME renames a file.

TYPE displays the contents of an ASCI character file at your
console output device.

USER changes from one user number to another.

Some built-in commands have associated command files which expand
upon the options provided by the built-in command. If the CCP reads a
command line and discovers the built-in command does not support the
options requested in the command line, the CCP loads the built-in
function’s corresponding command file to perform the command. The DIR

223

Programming with CPIM Plus

command is an example of this type of command. Simple DIR commands
are supported by the DIR built-in directly. More complex requests are
handled by the DIR.COM utility.

All command keywords that do not identify built-in commands identify
either a transient program file or a submit file. If the CCP identifies a
command keyword as a transient program, the transient program file is
loaded into the TPA from disk and executed. If it recognizes a submit file,
the CCP reconstructs the command line into the following form:

SUBMIT <command> <command tail>

and attempts to load and execute the SUBMIT utifity. Thus, the original
command field becomes the first command tail field of the SUBMIT
command. The procedure the CCP follows to parse a standard command
line and execute built-in and transient commands is described as follows:

1 The CCP parses the command line to pick up the command field.

2 If the command field is not preceded by a drive specification, or
followed by a filetype or password field, the CCP checks to see if the
command is a CCP built-in function. If the command is a built-in
command, and the CCP can support the options specified in the
command tail, the CCP executes the command. Otherwise, the CCP
goes on to step 3.

3 At this point the CCP assumes the command field references a
command file or submit file on disk. If the optional filetype field is
omitted from the command, the CCP usually assumes the command
field references a file of type COM. For example, if the command field
is PIP, the CCP attempts to open the file PIP.COM.

Optionally, the CP/M Plus utility SETDEF can specify that a filetype of
SUB also be considercd when the command filetype field is omitted.
When this automatic submit option is in effect, the CCP attempts to
open the cormmimand with a filetype of COM. If the COM file cannot be

224

Introduction

found, the CCP repeats the open operation with a filetype of SUB. As
an alternative, the order of open operations can be reversed so that the
CCP attempts to open with a filetype of SUB first. In either case, the
file that is found on disk first determines the filetype field that is
ultimately associated with the command.

If the filetype ficld is present in the command, it must equal COM,
SUB or PRL. A PRL file is a Page Relocatabie file used in Digital
Research’s multi-user operating system, MP/M™. Under CP/M Plus,
the CCP handles PRL files exactly like COM files.

If the command field is preceded by a drive specification {d:}, the CCP
attempts to open the command or submit file on the specified drive,
Otherwise, the CCP attempts to open the file on the drives specified in
the drive chain.

The drive chain specifies up to four drives that are to be referenced in
sequence for CCP open operations of command and submit files. If an
open operation is unsuccessful on a drive in the drive chain because the
file cannot be found, the CCP repeats the open operation on the next
drive in the chain. This sequence of open operations is repeated until
the file is found, or the drive chain is exhausted. The drive chain
contains the current default drive as its only drive unless the user
modifies the drive chain with the CP/M Plus SETDEF utility.

When the current user number is non-zero, all open requests that fail
because the file cannot be found, attempt to locate the command file
under user zero. If the file exists under user zero with the system
attribute set, the file is opened from user zero. This search for a file
under user zero is made by the BDOS Open File function. Thus, the
user zerc open attempt is made before advancing to the next drive in
the search chain.

The CCP attempts to open with the first filetype, SUB or COM, on all
drives in the scarch chain before trying the second filetype.

In the banked system, if a password specified in the command field

does not match the password of a file on a disk protected in Read
mode, the CCP file open operation is terminated with a password error.

225

Programming with CPIM Plus

If the CCP does not find the command or submit file, it echoes the
command line followed by a question mark to the console, If it finds a
command file with a filetype of COM or PRL, the CCP proceeds to
step 4. If it finds a submit file, it reconstructs the command line as
described above, and repeats step 3 for the command, SUBMIT.COM.

4 When the CCP successfully opens the command file, it initializes the
following Page Zero fields for access by the loaded transient program:

0050H : Drive that the command file was loaded from 0051H :
Password address of first file in command tail 0053H : Password length
of first file in command tail 0054H : Password address of second fiie in
command tail 0056H : Password length of second file in command tail
005CH : Parsed FCB for first file in command tail 006CH : Parsed FCB
for ‘second file in command tail 0080H : Command tail preceded by
command tail length

Page Zero initialization is covered in more detail in Section 8.

5 At this point, the CCP calls the LOADER module to load the
command file into the TPA. The LOADER module terminates the
load operation if a read error occurs, or if the available TPA space is
not large enough to contain the file. If no RSXs are resident in
memory, the available TPA space is determined by the address
LOADER-base because the LOADER cannot ioad over itself,
Otherwise, the maximum TPA address is determined by the base
address of the lowest RSX in memory,

6 Once the program is loaded, thc LOADER module checks for a RSX
header on the program. Programs with RSX headers are identified by a
return instruction at location 100H.

If an RSX header is present, the LOADER relocates all RSXs attached
to the end of the program, to the top of the TPA region of memory
under the LOADER module, or any other R8Xs that are already
resident. It also updates the address in location 0006H of Page Zero to
address the lowest RSX in memory. Finally, the LOADER discards the

226

Introduction

RSX header and relocates the program file down one page in memory
50 that the first exccutable instruction resides at 100H.

7 After initializing Page Zero, the LOADER module sets up a 32-
byte stack with the return address set to location 0000H of Page Zero
and jumps to location 100H. At this peint, the loaded transient
program begins execution.

When a transient program terminates execution, the BIOS warm start
routine reloads the CCP into memory. When the CCP receives control, it
tests to see if RSXs are resident in memory. If not, it relocates the
LOADER module below the BDOS module at the top of the TPA region
of memory. Otherwise, it skips this step because the LOADER module is
already resident. The CCP execution cycie then repeats,

Unlike earlier versions of CP/M, the CCP does not reset the disk system at
warm start. However, the CCP does reset the disk system if a CTRL-C is

typed at the prompt.

Transient Program Operation

A transient program is one that the CCP loads into the TPA region of
memory and executes. As the name transient implies, transient programs
are not system resident. The CCP must load a transient program into
memory every time the program is to be executed. For example, the
utilities PIP and RMAC™ that are shipped with CP/M Plus exccute as
transient programs; programs such as word processing and accounting
packages distributed by applications veadors also execute as transient
programs under CP/M Plus.

“CCP Operation” describes how the CCP prepared the CP/M Plus
environment for the execution of a transient program. To summarize, the
CCP initializes Page Zero to contain parsed command-line fields and sets
up a 32-byte stack before jumping to location 0100H to pass control to the
transient program. In addition, the CCP might also load RSXs attached to
the command file into memory for access by the transient program.

227

Programming with CPIM Plus

Generally, an exccuting transient program communicates with the
operating system only through BDOS function calls. Transient programs
make BDOS function calls by loading the CPU registers with the
appropriate entry parameters and calling location 0005H in Page Zero.

Transient programs can use BDOS Function 50, Call BIOS, to access
BIOS entry poiats. This is the preferred method for accessing the BIOS;
however, for compatibility with carlier rcleases of CP/M, transient
programs can also make direct BIOS calls for console and list I/O by using
the jump instruction at location 0000H in Page Zero. But, to simplify
portability, use direct BIOS calls only where the primitive level of
functionality provided by the BIOS functions is absolutely required. For
example, a disk formatting program must bypass CP/M’s disk organization
to do its job, and therefore is justified in making direct BIOS calls. Note
however, that disk formatting progtams are rarely portable.

A transient program can terminate execution in one of three ways: by
jumping to location 0000H, by making a BDOS System Reset call, or by
making a BDOS Chain To Program call. The first two methods are
cquivalent; they pass control to the BIOS warm start entry point, which
then loads the CCP into the TPA, and the CCP prompts for the next
command,

The Chain to Program call allows a transient program to specify the next
command to be executed before it terminates its own execution. A
Program Chain call executes a standard warm boot sequence, but passes
the command specified by the terminating program to the CCP in such a
way that the CCP executes the specified command instead of prompting
the console for the next command.

Transicnt programs can also set a Program Return Code before
terminating by making a BDOS Function 108 call, Get/Set Program
Return Code. The CCP initializes the Program Return Code to zero,
successful, when it toads a transient program, unless the program is loaded
as the result of a program chain. Therefore, a transient program that
terminates successfully can use the Program Return Code to pass a value to
achained program. If the program terminates as the result of a BDOS fatal
error, or a CTRL-C entered at the console, the BDOS sets the return code
to an unsuccessful value. All other types of program termination leave the
return cade at its current value.

228

Introduction

The CCP has a conditional command facility that uses the Program Return
Code. If a command line submitted to thc CCP by the SUBMIT utility
begins with a colon, the CCP skips execution of the command if the
previous command set an unsuccessful Program Return Code. In the
following examplc, the SUBMIT utility sends a command sequence to the
CCP:

A>SUBMIT SUBFILE A>COMPUTE RESULTS.DAT A>REPORT
RESULTS.DAT

The CCP does not execute thé REPORT command if the COMPUTE
comimand sets an unsuccessful Program Return Code.

Resident System Extension Operation

This section gives a general overview of RSX use, thea describes how
RSXs are loaded, defines the RSX file structure, and tells how the
LOADER module uses the RSX prefix and flags to manage RSX activity.

A Resident System Extension (RSX) is a special type of program that can
be attached to the operating system to modify or extend the functionality
of the BDOS. RS§X modules intercept BDOS functions and either perform
them, translate them into other BDOS functions, or pass them through
untouched. The BDOS exccutes non-intercepted functions in the standard
manner,

A transient program can also use BDOS Function 60, Call Resident
System Exicnsion, to call an RS8X for special functions. Function 60 is a
general purpose function that allows customized interfaces between
programs and RSXs.

Two examples of RSX applications arc the GET utility and the LOADER
module. The GET.COM command file has an attached RSX, GET.RSX,
which intercepts all console input calls and returns characters from the file
specified in the GET command line. The LOADER module is another
exampie of an RSX, but it is special because it supports Function 59, Load
Overlay. It is always resident in memory when other RSXs are active.

229

Programming with CPIM Plus

RSXs are loaded into memory at program load time. After the CCP locates
a command file, it calls the LOADERA module to load the program into
the TPA. The LOADER loads the transient program into memory along
with any attached RS§Xs. Subsequently, the loader relocates each attached
RSX to the top of the TPA and adjusts the TPA size by changing the jump
at location 0005H in Page Zero to point to the RSX. When RSX modules
reside in memory, the LOADER module resides directly below the
BDOS, and the RSX modules stack downward from it.

The order in which the RSX modules are stacked affects the order in which
they intercept BDOS calls. A more recently stacked RSX has precedence
over an older RSX. Thus, if two RSXs in memory intercept the same
BDOS function, the more recently loaded RS8X handles the function.

RSX modules are Page Relocatable, PRL, files with the file type RSX.
RSX files must be page refocatable because their execution address is
determined dynamically by the LOADER module at load time. RSX files
have the format shown in Figure 7.6.

END OF FILE:
PRL BIT MAP
RSX CODE
RSX PREFIX
0100H:
256 BYTE PRL HEADER
O000H:

Figure 7-6. RSX File Format

RSX files begin with a one page PRL header that specifies the total size of
the RSX prefix and code sections. The PRL bit map is a string of bits
identifying those bytes in the RSX prefix and code sections that require
relocation. The PRL format is described in detail in Appendix F. Note that

230

Introduction

the PRL header and bit map are removed when an RSX is loaded into
memory. They are only used by the LOADER module to load the RSX,

The RSX prefix is a standard data structure that the LOADER
module uses to manage RSXs. Included in this data structure are jump
instructions to the previous and next RSX in memory, and two flags.
The LOADER module initializes and updates these jump instructions to
maintain the link from location 6 of Page Zero to the BDOS entry point.
The RSX flags are the Remove flag and the Nonbanked flag. The Remove
flag controls RSX removal from memory. The CCP tests this flag to
determine whether or not it should remove the RSX from memory at
system warm start. The nonbanked flag identifies RSXs that are loaded
only in nonbanked CP/M Plus systems. For example, the CP/M Plus RSX,
DIRLBL.RSX, is a nonbanked RSX. It provides BDOS Function 100, Set
Directory Label, support for nonbanked systems only. Banked systems
support this fuaction in the BDOS.

The RSX code section contains the main body of the RSX. This section
always begins with code to intercept the BDOS function that is supported
by the RSX. Nonintercepted functions are passed to the next RSX in
memory. This section can also include initialization and termination code
that transient programs can cali with BDOS Function 60.

When the CCP gains control after a system warm start, it removes any
RSXs in memory that have the Remove flag set to OFFH. All other RS8Xs
remain active in memory. Setting an RSX’s Remove flag to OFFH indicates
that the RSX is not active and it can be removed. Note that if an RSX
marked for removal is not the lowest active RSX in memory, it still
occupies memory after removal. Although the removed RSX cannot be
executed, its space is returned to the TPA only when all the lower RSXs
are removed.,

There is one special case where the CCP does not remove an RSX with the
Remove flag set to OFFH foliowing warm start, This case occurs on warm
starts following the load of an empty file with attached RSXs. This
exception allows an RSX with the Remove flag set to be loaded into
memory before a transient program. The transient program can then
access the R5X during cxecution. After the transient program terminates,
however, the CCP removes the RSX from the system environment.

231

Programming with CPIM Plus

As an example of RSX operation, here is a description of the operation of
the GET utility. The GET.COM command file has an attached RSX. The
LOADER moves this RSX to the top of the TPA when it loads the
GET.COM command file. The GET utility performs necessary
initializations which include opening the ASCII file specified in the GET
command line. kt also makes a BDOS Function 60 call to initialize the
GET.RSX. At this point, the GET utility terminates. Subsequently, the
GET.RSX intercepts all console input calls and returns characters from the
file specified in the GET command line. It continues this action until it
reads end-of-file. At this point, it sets its Remove flag in the RSX prefix,
and stops intercepting console input, On the following warm boot, the
CCP removes the RSX from memory.

SUBMIT Operation
A SUBMIT command line has the following syntax:
SUBMIT <filespec> <parameters>

If the CCP identifies a command as a submit file, it automatically iaserts
the SUBMIT keyword into the command line.

When the SUBMIT utility begins execution, it opens and reads the file
specified by <filespec>> and creates a temporary submit file of type $33 on
the system’s temporary file drive. GENCPM initializes the temporary file
drive to the CCP’s current default drive. The SETDEF utility can set the
temporary file drive 10 a specific drive. As it creates the temporary file,
SUBMIT performs the parameter substitutions requested by the
<parameters> subfield of the SUBMIT command line.

After SUBMIT creates the temporary submit file, its operation is similar to
that of the GET utility. The SUBMIT command file also has an attached
RSX that performs console input redirection from a file. However, the
SUBMIT RSX expands upon the simpler facilities provided by the GET
RSX. Command lines in a submit file can be marked to indicate whether
they are program or CCP input. Furthermore, if a program exhausts all its
program input, the next SUBMIT command is a CCP command, the
SUBMIT RSX temporarily reverts to console input. Redirected input from

232

Introduction

the submit file resumes when the program terminates.

Because CP/M Plus’s submit facility is implemented with RSXs, submit
files can be nested. That is, a submit file can contain additional SUBMIT
or GET commands. Similarly, a GET command can specify a file that
contains GET or SUBMIT commands. For example, when a SUBMIT
command is encountered in a submit file, a new SUBMIT RSX is created
betow the current RSX. The new RSX handles console input until it reads
end-of-file on its temporary submit file. At this point, control reverts to the
previous SUBMIT RSX.

System Control Block

The System Control Block, SCB, is a 100 byte CP/M Plus data structure
that resides in the BDOS system component. The SCB contains internal
BDOS flags and data, CCP flags and data, and other system information
such as console characteristics and the current date and time. The BDOS,
BIOS, CCP system components as well as CP/M Plus utilities and RSXs
reference SCB fields. BDCOS Function 49, Get/Set System Control Block,
provides access to the SCB fields for transient programs, RSXs, and the
CCP.

However, use caution when you access the SCB and use Function 49 for
two reasons. First, the SCB is a CP/M Plus data structure. Digital
Research’s multi-user operating system, MP/M, does not support BDOS
Function 49. Programs that access the SCB can run only on CP/M Plus.
Secondly, the SCB contains critical system parameters that reflect the
current state of the operating system. If a program modifies these
parameters illegally, the operating system might crash. However, for
application writers who are writing system-oriented applications, access to
the SCB variables might prove valuable.

For example, the CCP default drive and current user number are
maintained in the System Control Block. This information is displayed in
the system prompt. If a transient program changes the current disk or user
number by making an ¢xplicit BDOS call, the System Control Block values
are not changed. They continue to reflect the state of the system when the
transient program was loaded. For compatibility with CP/M Version 2, the

233

Programming with CP/IM Plus

current disk and user number are also maintained in location 0004H of
Page Zero. The high-order nibble contains the user number, and the
low-order nibble contains the drive.

Refer to the description of BDOS Function 49 in Section 8 for more

information on the System Control Block. The SCB fields are also
discussed in Appendix E.

234

Section 8
The BDOS System Interface

This section describes the operating system services available to a transient
program through the BDOS module of CP/M Plus. The section begins by
defining how a transient program calls BDOS functions, then discusses
serial I/0 for console, list and auxiliary devices, the file system, and Page
Zero intitialization.

BDOS Calling Conventions

CP/M Plus uses a standard convention for BDOS function calls. On entry
to the BDOS, register C contains the BDOS function number, and register
pair DE contains a byte or word value or an information address. BDOS
functions return single-byte values in register A, and double-byte values in
register pair HL. In addition, they return with register A equal to L, and
register H equal to B. If a transient program makes a BDOS cail to a
nonsupported function number in the range of 0 to 127, the BDOS returns
with register pair HL set to OFFFFH. For compatibility with MP/M, the
BDOS returns with register pair HL set to 0000H on nonsupported
function numbers in the range of 128 to 255. Note that CP/M 2 returns with
HL set to zero on all invalid function calls. CP/M Plus’s register passing
conventions for BDOS function calls are consistent with the conventions
used by the Intel PL/M systems programming language.

When a transient program makes a BDOS function call, the BDOS does
not restore registers to their entry values before returning to the calling
program. The responsibility for saving and restoring any critical register
values rests with the calling program.

When the CCP loads a transient program, the LOADER module sets the
stack pointer to a 16 level stack, and then pushes the address 0000H onto
the stack. Thus, an immediate return to the system is equivaleat to a jump
to 0000H. However, most transient programs set up their own stack, and
terminate execution by making a BDOS System Reset call (Function Q) or
by jumping to location 0000H.

235

Programming with CPIM Plus

The following example illustrates how a transient program calls a BDOS
function. This program reads characters continuously until it encounters an
asterisk. Then it terminates execution by returning to the system.

bdos equ 0005h ;BDOS entry point in Page Zero
conin equ 1 ;BDOS console input function

org 100h ;Base of Transient Program Area
nextc: myi ¢,conin

call bdos ;Return character in A

opi = ;End of processing?

jnz nextc ;Loop it not

ret ;Terminate program

end

BDOS Serial Device 1/O

Under CP/M Plus, serial device I/O is simply input to and output from
simple devices such as consoles, linc printers, and communications devices.
These physical devices can be assigned the Jogical device names defined
below:

CONIN: logical console input device
CONOUT: logical console output device
AUXIN: logical auxiliary input device
AUXOUT: ogical auxiliary output device
LST: logical list output device

If your system supports the BIOS DEVTBL function, the CP/M Plus
DEVICE utility can dispiay and change the assignment of logicat devices to
physical devices. DEVICE can also display the names and attributes of
physical devices supported on your system. If your system does not support
the DEVTBL entry point, then the logical to physical device assignments
are fixed by the BIOS.

In general, BDOS serial I7/0 functions read and write an individual ASCII
character, or character string to and from these devices, or test the device’s
ready status. For these BDOS functions, a string of characters is defined as
zero to N characters terminated by a delimiter. A block of characters is
defined as zero to N characters where N is specified by a word count field.

236

BDOS System Interface

The maximum value of N in both cases is limited only by available
memory. The following list summarizes BI>OS serial device 1/0 functions.

Read a character from CONIN:

Read a character buffer from CONIN:

Write a character to CONOQUT:

Write a string of characters to CONOUT:

Write a block of characters to CONOUT:

Read a character from AUXIN:

Write a character to AUXOUT:

Write a character to LST:)

Write a block of characters to LST:

Interrogate CONIN:, AUXIN:, AUXOUT: ready

CP/M Plus cannot run unless CONIN: and CONOUT: are assigned to a
physical console. The remaining logical devices can remain unassigned. If a
togical output device is not assigned to a physical device, an output BDOS
call to the logical device performs no action, If a logical input device is not
assigned to a physical device, an irput BI2OS call to the logical device
typically returns a CTRL-Z (1AH), which indicates end-of-file. Note that
these actions depend on your system’s BIOS implementation,

BDOS Console O

Because a transient program’s main interaction with its user is through the
console, the BDOS supports many console /O fuactions. Console /O
functions can be divided into four categories: basic console I/O, dircct
console 170, buffered console input, and special console functions. Using
the basic console I/O functions, programs can access the console device for
simple input and output. The basic console O functions are:

1. Console Input - Inputs a single character

2. Console Qutput - Qutputs a single character

9. Print String - Qutputs a string of characters

11. Consote Status - Signals if a character is ready for input
111. Print Block - Qutputs a block of characters

The input function echoes the character to the console so that the user can
identify the typed character. The output functions expand tabs in columns
of eight characters.

237

Programming with CPIM Plus

The basic I/Q functions also monitor the console to stop and start console
output scroll at the user’s request. To provide this support, the console
output functions make internal status checks for an input character before
writing a character to the output device. The console input and console
status functions also check the input character. If the user types a CTRL-S,
these functions make an additional BIOS conseole input call. This input call
suspends execution until a character is typed, If the typed character is not a
CTRL-Q, an additional BIOS console input call is made. Execution and
console scrolling resume when the user types a CTRL-Q.

When the BDOS is suspended because of a typed CTRL-S, it scans input
for three special characters: CTRL-Q, CTRL-C, and CTRL-P. If the user
types any other character, the BDOS echoes a bell character, CTRL-G, to
the console, discards the input character, and continues the scan. If the
user types a CTRL-C, the BDOS executes a warm start which terminates
the calling program. If the user types a CTRL-P, the BDOS toggles the
printer echo switch. The printer echo switch controls whether console
output is automatically echoed to the list device, LST:. The BDOS signals
when it turns on printer echo by sending a bell character to the console.

All basic console I/O functions discard any CTRL-Q or CTRL-P character
that is not preceded by a CTRL-S character. Thus, BDOS function 1
cannot read a CTRL-S, CTRL-Q, or CTRL-P character. Furthermore,
these characters are invisible to the console status function.

The second category of console I/O is direct console I/O. BDOS function 6
can provide direct console I/Q in situations where unadorned console I/Q is
required. Function 6 actuaily consists of several sub-functions that support
direct console input, output, and status checks. The BDOS does not filter
out special characters during direct console IYO. The direct output
sub-function does not ¢xpand tabs, and the direct input sub-function does
not echo typed characters to the console.

The third category of console I/O accepts edited input from the console.
The only function in this category, Function 10, Read Buffer Input, reads
an input line from a buffer and recognizes certain control characters that
edit the input. As an option, the line to be edited can be initialized by the
calling program.

In the nonbanked version of CP/M Plus, editing within the buffer is
restricted to the last character on the line. That is, to edit a character.

238

BDOS System Interface

embedded in the ling, the user must delete all characters that follow the
erroneous character, correct the error, and then retype the remainder of
the line. The banked version of CP/M Plus supports complete line editing
in which characters can be deleted and inserted anywhere in the line. In
addition, the banked version can aiso recall the previously entered line.

Function 10 also filters input for certain control characters. If the user
types a CTRL-C as the first character in the line, Function 10 terminates
the calling program by branching to the BIOS warm start entry point. A
CTRL-C in any other position is simply echoed at the console. Function 10
also watches for a CTRL-P keystroke, and if it finds one at any position in
the command line, it toggles the printer echo switch. Function 10 does not
filter CTRL-S and CTRL-Q characters, but accepts them as normal input.
In general, all control characters that Function 10 does not recogaize as
editing control characters, it accepts as input characters. Function 10
identifies a control character with a leading caret,”, when i echoes the
control character to the console. Thus, CTRL-C appears as"C in a Function
10 command line on the screen.

The final category of console 1/O functions includes special functions that
modify the behavior of other console functions. These functions are:

109, Get/Set Console Mode 110. Get/Set Output Delimiter

Function 110 can get or set the current delimiter for Function 9, Print
String. The delimiter is $, when a transient program begins execution.
Function 109 gets or sets a 16-bit system variable called the Console Mode.
The following [ist describes the bits of the Console Mode variable and their
functions:

bit 0: If this bit is set, Function 11 returns true only if a CTRL-C is typed
at the conscle. Programs that make repeated console status calls to
test if execution should be interrupted, can set this bit to interrupt
on CTRL-C oaly, The CCP DIR and TYPE built-in commands
run in this mode.

bit 1 : Setting this bit disables stop and start scroll support for the basic
console KO functions, which comprise the first category of
functions described in this section, When this bit is set, Function 1
reads CTRL-S, CTRL-Q, and CTRL-P, and Function 11 returns
true if the user types these characters. Use this mode in situations

239

Programming with CPIM Plus

bit 2 :

bit 3 ;

where raw console input and edited output is needed. While in this
mode, you can use Function 6 for input and input status, and
Functions 1, 9, and 111 for output without the possibility of the
output functions intercepting input CTRL-S, CTRL-Q, or
CTRL-P characters.

Setting this bit disables tab expansion and printer echo support for
Functions 2, 9, and 111. Use this mode when non-edited output is
required.

This bit disables all CTRL-C intercept action in the BDOS. This
mode is useful for programs that must control their own
termination.

bits 8 and 9 : The BDOS does not use these bits, but reserves them for

the CP/M Plus GET RSX that performs console input
redirection from a file. With one exception, these bits
determine how the GET RSX responds to a program
console status request (Function 6, Function 11, or direct
BIOS).

bit 8 = 0, bit ¢ = 0 - conditional status

bit 8 = 0, bit 9 = 1 - false status

bit 8 = 1, bit 9 = 0 - true status

bit § = 1, bit 9 = 1 - do not perform redirection

In conditiona! status mode, GET responds false to all
status requests except for a status call preceded
immediately by another status call. On the second call,
GET responds with a true result. Thus, a program that
spins on status to wait for a character is signaled that a
character is ready on the second call. In addition, a
program that makes status calls periodically to see if the
user wants to stop is not signaled.

Other Serigl I/O

The BDOS supports single character output functions for the logical
devices LST: and AUXOUT:, an input function for AUXIN:, and status
functions for AUXIN: and AUXQOUT:. A block output function is also

240

BDOS System Interface

supported for the LST: device. Unlike the console I/O functions, the
BDOS does not intercept control characters or expand tabs for these
functions. Note that AUXIN: and AUXOUT: replace the READER and
PUNCH devices supported by earlier versions of CP/M.

BDOS File System

Transient programs depend on the BDOS file system to create, update,
and maintain disk files. This section describes the capabilities of the BDOS
file system in detail. You must understand the general features of CP/M
Plus described in Section 7 before you can use the detail presented in this
section.

The remaining introductory paragraphs define the four categories of
BDOS file functions. This is followed by a review of file naming
conventions and disk and file organization. The section then describes the
data structure used by the BDOS file, and directory oriented functions: the
File Control Block (FCB). Subsequent discussions cover file attributes,
user numbers, directory labels and extended File Control Blocks (XFCBs),
passwords, date and time stamping, blocking and deblocking, multi-sector
I/0, disk reset and removable media, byte counts, and error handling.
These topics are closely related to the BDOS file system. You must be
familiar with the contents of Section 8 before attempting to use the BDOS
functions described individually in Sectidn 9.

The BDOS file system supports four categories of functions: file access
functions, directory functions, drive related functions, and miscellaneous
functions. The file access category includes functions to create a file, open
an existing file, and close a file. Both the make and open functions activate
the file for subsequent access by BDOS file access functions. The BDOS
read and write functions are file access functions that operate either
sequentially or randomly by record position. They transfer data in units of
128 bytes, which is the basic record size of the file system. The close
function makes any necessary updates to the directory to permanently
record the status of an activated file,

BDOS directory functions operate on existing file entries in a drive’s
directory. This category includes functions to search for one or more files,
delete one or more files, truncate a file, rename a file, set file attributes,
assign a password to a file, and compute the size of a file. The search and

241

Programming with CPIM Plus

delete functions are the only BDOS functions that support ambiguous file
references. All other directory and file related functions require a specific
file reference.

The BDOS drive-related category includes functions that select the default
drive, compute a drive’s free space, interrogate drive status, and assign a
directory label to a drive. A drive’s directory label controls whether or not
CP/M Plus enforces file password protection, or stamps files with the date
and time.

The miscellaneous category includes functions to set the current DMA
address, access and update the current user number, chain to a new
program, and flush internal blocking/deblocking buffers. Also included are
functions that set the BDOS multi-sector count, and the BDOS error
mode. The BDOS multi-sector count determines the number of 128-byte
records to be processed by BDOS read and write functions. It can range
from 1 to 128. The BDOS error mode determines how the BDOS file
system handles certain classes of errors.

Also included in the miscellaneous category are functions that call the
BIOS directly, set a program return code, and parse filenames. If the
LOADER RSX is resident in memory, programs can also make a BDOS
function call to load an overiay. Another miscellaneous function accesses
system variables in the System Control Block.

The following list summarizes the operations performed by the BDOS file
system:

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Selected Disks
Set DMA Address
Set/Reset File Attributes

242

BDQS System Interface

Reset Drive Set BDOS Multi-Sector Count
Set BDOS Error Mode

Get Disk Free Space

Chain to Program

Flush Buffers

Get/Set System Control Block

Call BIOS

Load Overlay

Call RSX

Truncate File

Set Directory Label

Get File’s Date Stamps and Password Mode
Write File XFCB

Set/Get Date and Time

Set Default Password

Return CP/M Plus Scrial Number

Get/Set Program Return Code

Parse Filename

File Naming Conventions

Under CP/M Plus, a file specification consists of four parts: the drive
specifier, the filename field, the filetype field, and the file password ficld.
The general format for a command line file specification is shown below:

{d:}fitename {.typ} {;password}

The drive specifier field specifies the drive whero the file is located. The
fitename and type fields identify th. file. The passwotd field specifies the
password if a file is password protected,

The drive, type, and password ficlds are optional, and the delimtiters :.; are
required only when specifying their associated field. The drive specifier can
be assigned a letter from A to P where the actual drive letters supported on
a given system are determined by the BIOS implementation. When the
drive letter is not specified, the current defauit drive is assumed.

The filename and password ficlds can contain one to eight non-delimiter
characters. The filetype field can contain one to three non-delimiter
characters. All three fields are padded with blanks, if necessary. Omitting
the optional type or password fields implies a field specification of all
blanks.

243

Programming with CPIM Plus

The CCP calls BDOS Function 152, Parse Filename, to parse file
specifications from ‘a command line, Function 152 recognizes certain
ASCII characters as valid delimiters when it parses a file from a command
line. The valid delimiters are shown in Table 8-1. Note that these
delimiters are for language 0 only. The LANGUAGE command may alter
the character; see your User Guide.

Table 8-1. Valid Filename Delimiters

ASCH HEX EQUIVALENT
null g
space 20
return oD
tab 09
: 3A
2E
5 3B
= 3D
s 2C
[5B
} 5D
< 3iC
> 3E
| 7C

Function 152 also excludes all controf characters from the file fields, and
translates all lower-case letiers to upper case.

Avoid using parcntheses and the backslash character, , in the filename
and filetype fields because they are commonly used delimiters. Use
asterisk and question mark characters, * and 7, only to make an ambiguous
file reference. When Function 152 encounters an * in a filename or filetype
field, it pads the remainder of the field with question marks. For example,

delete functions treat a ? in the filename and type fields as follows: A 7-in

244

BDOS System Interface

any position matches the corresponding ficld of any directory entry
belonging to the current user number. Thus, a search operation for

X. Most other file related BDOS functions treat the presence of a ? in the
filename or type field as an error.

It is not mandatory to follow the file naming conventions of CP/M Plus
when you create or rename a file with BDOS functions, However, the
contventions must be used if the file is to be accessed from a command line.
For example, the CCP caanot locate a command file in the directory if its
filename or type field contains a lower-case letter.

As a gencral rule, the filetype field names the generic category of a
particular file, while the filename distinguishes individual files in each
category. Although they are generally arbitrary, the following list of
filetypes names some of the generic categories that have been established.

ASM Assembler Source PLI PL/I Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate File SYM SID Symbol File

COM Command File 558 Temporary File

PRL Page Relocatable DAT Data File

SPR Sys. Page Reloc. SYS System File

Disk and File Organization
The BDOS file system can support from one to sixteen logical drives.

Logical drives are divided into two regions: a directory area and a data
area. The directory area contains from onge to sixteen blocks located at the
beginning of the drive. The actual number is set in the BIOS. This area
contains entries that define which files exist on the drive. The directory
entries corresponding to a particular file define those data blocks in the
drive’s data arca that belong to the file. These data blocks contain the file’s
records. The directory area is logically subdivided into sixteen independent
directories identified as user 0 through 15. Each independent directory
shares the actual directory area on the drive. However, a file’s directory
entries cannot exist under more than one user number. In general, only

245

Programming with CPIM Plus
files belonging to the current user number are visible in the directory.

Each disk fite consists of a set of 128-byte records. Each record in a file is
identified by its position in the file. This position is called the record’s
random record number. If a file is created sequentially, the first record has
a position of zero, while the last record has a position one less than the
number of records in the file. Such a file can be read sequentially in record
position order beginning at record zero, or randomly by record position.
Conversely, if a file is created randomly, records are added to the file by
specified position. A file created in this way is called sparse if positions
exist within the file where a record has not been written.

The BDOS automatically allocates data blocks to a file to contain its
records on the basis of the record positions consumed. Thus, a sparse file
that contains two records, consumes only twa data blocks in the data area.
Sparse files can only be created and accessed randomly, not sequentialiy.
Note that any data block allocated to a file is permanently allocated to the
file until the file is deleted or truncated. These are the only mechanisms
supported by the BDOS for releasing data blocks belonging to a file.

Source files under CP/M Plus are treated as a sequence of ASCII
characters, where each line of the source file is followed by a carriage
return line-

feed sequence, ODH followed by 0AH. Thus a single 128-byte record could
contain several lines of source text. The end of an ASCII file is denoted by
a CTRL-Z character, 1AH, or a real end of file, returned by the BDOS
read operation. CTRL-Z characters embedded within machine code files
such as COM files are ignored. The actual end-of-file condition returned
by the BDOS is used to terminate read operations.

File Control Block Definition

The File Control Block, FCB, is a data structure that is set up and
initialized by a transient program, and then used by any BDOS file access
and directory functions called by the transient program. Thus the FCB is
an important channel for information exchange between the BDOS and a
transient program. For example, when a program opens a file, and
subsequently accesses it with BDOS read and write record functions, the
BDOS file system maintains the current file state and position within the
program’s FCB. Some BDOS functions use certain fields in the FCB for

246

BDOS System Interface

invoking special options. Other BDOS functions use the FCB to return
data to the calling program. In addition, all BDOS random I/O functions
specify the random record number with a 3-byte field at the end of the

FCB.

When a transient program makes a file access or directory BDOS function
call, register pair DE must address an FCB. The length of the FCB data
area depends on the BDOS function. For most functions, the required
length is 33 bytes, For random IO functions, the Truncate File function,
and the Compute File Size function, the FCB length must be 36 bytes. The
FCB format is shown below.

dr |[fL)f2]. (8)tljt2)t3)ex|sl}s2)rc|d0]...|dnjerjr0|rijr2
00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35
where
dr drive code (0 - 16)
0 =2 use default drive for file
1 == auto disk select drive A,
2 => auto disk select drive B,
16=>> auto disk select drive P,
fl1...18 contain the filename in ASCII
upper case, with high bit = 0.
f1°, ..., f8 denote the high-
order bit of these positions,
and are file attribute bits.
t1,62,13 contain the filetype in ASCII

upper case, with high bit = 0.
t1’, t2°, and t3’ denote the
high bit of these positions,
and are file attribute bits.

t1’ = 1 => Read/Only file
t2° = 1 => System file

t3’

1 => File has been archived

247

Programming with CPIM Plus

ex contains the current extent number,
usually set to O by the calling program,
but can range 0 - 31 during file I/‘O

sl reserved for internal system use
s2 reserved for internal system use
Ic record count for extent “ex”

takes on values from 0 - 255
(values greater than 128 imply
record count equals 128)

do...dn filled-in by CP/M Plus, reserved for
system use
cr current record to read or write in

a sequential file operation, normally
set to zero by the calling program
when a file is opened or created

r0,r1,r2 optional random record number in the
range 0-262,143 (0 - 3FFFFH).
ro,rl,r2 constitute a 18 bit value
with low byte 10, middle byte r1, and
high byte 12.

For BDOS directory functions, the calling program must initialize bytes 0
through 11 of the FCB before issuing the function call. The Set Directory
Label and Write File XFCB functions also require the calling program to
initialize byte 12. The Rename File function requires the calling program
to place the new filename and type in bytes 17 through 27.

BDOS open or make function calls require the calling program to intialize
bytes 0 through 12 of the FCB before making the call. Usually, byte 12 is
set to zero. In addition, if the file is to be processed from the beginning
using sequential read or write functions, byte 32, cr, must be zeroed.

After an FCB is activated by an open or make operation, a program does
not have to modify the FCB to perform sequential read or write

248

BDOS System Interface

operations, In fact, bytes 0 through 31 of an activated FCB should not be
modified. However, random /0 functions require that a program set bytes
33 through 35 to the requested random record number prior to making the
function call.

File directory entries maintained in the directory area of each disk have the
same format as FCBs, excluding bytes 32 through 35, except for byte 0
which contains the file’s user number. Both the Open File and Make File
functions bring these entries, excluding byte 0, into memory in the FCB
specified by the calling program. All read and write operations on a file
must specify an FCB activated in this manner.

The BDOS updates the memory copy of the FCB during file processing to
maintain the current position within the file. During file write operations,
the BDOS updates the memory copy of the FCB to record the allocation of
data to the file, and at the termination of file processing, the Close File
function permanently records this information on disk. Note that data
allocated to a file during file write operations is not completely recorded in
the directory until the calling program issues a Close File call. Therefore, a
program that creates or modifies files must close the files at the end of any
write processing. Otherwise, data might be lost.

The BDOS Search and Delete functions support multiple or ambiguous file
references. In general, a question mark in the filename, filetype, or extent
field matches any value in the corresponding positions of directory FCBs
during a directory search operation. The BDOS search functions also
recognize a question mark in the drive code field, and if specified, they
return all directory entries on the disk regardless of user number, including
empty entries. A directory FCB that begins with ESH is an empty directory
entry.

File Attributes

The high-order bits of the FCB filename, f1°,...,f8", and filetype, t1’,12°,t3’,
fields are called attribute bits, Attributes bits are 1 bit Boolean fields where
1 indicates on or true, and 0 indicates off or false. Attribute bits indicate
two kinds of attributes within the file system: file attributes and interface
attributes.

The file attribute bits, f1°,...,f4" and t1°,t2°,t3’, can indicate that a file has a

249

Programming with CPIM Plus

defined file attribute. These bits are recorded in a file’s directory FCBs.
File attributes can be set or reset only by the BDOS Set File Attributes
function. When the BDOS Make File function creates a file, it initializes all
file attributes to zero. A program can interrogate file attributes in an FCB
activated by the BDOS Open File function, or in directory FCBs returned
by the BDOS Search For First and Search For Next functions.

Note: the BDOS file system ignores file attribute bits when it attempts to
locate a file in the directory.

The file system defines the file atiribute bits, t1°,t2°,t3°, as follows:

t1": Read-Only attribute - The file system prevents write operations to a
file with the read-only attribute set.

t2: System attribute - This attribute, if set, identifies the file as a CP/M
Plus system file. System files are not usually displayed by the CP/M
Plus DIR command. In addition, user-zero system files can be
accessed on a read-only basis from other user numbers.

t3": Archive attribute - This attribute is designed for user written archive
programs. When an archive program copies a file to backup storage,
it sets the archive attribute of the copied files. The file system
automatically resets the archive attribute of a directory FCB that has
been issued a write command. The archive program can.test this
attribute in each of the file’s directory FCBs via the BDOS Search
and Search next functions. If all directory FCBs have the archive
attribute set, it indicates that the file has not been modified since the
previous archive. Note that the CP/M Plus PIP utility supports file
archival.)

Attributes f1' through f4’ are available for definition by the user.

The interface attributes are indicated by bits {5’ through {8’ and cannot be
used as file attributes. Interface attributes £5° and 6’ can request options
for BDOS Make File, Close File, Delete File, and Set File Attributes
fuactions. Table 8-2 defines options indicated by the 5’ and 6’ interface
attribute bits for these functions.

250

BDOS System Interface

Table 8-2. BDOS Interface Attributes

BDOS Function Interface Attribute Definition

16. Close File £5" = 1 : Partial Close

19. Delete File 8’ = 1 : Delete file XFCBs
only

22. Make File f6’ = 1 : Assign password to
file

30. Set File Attributes f6’ = 1 : Set file byte count

Section 9 discusses each interface attribute in detail in the definitions of the
above functions. Attributes 5’ and f&' are always reset when control is
returned to the calling program. Interface attributes f7' and {8 are
reserved for internal use by the BDOS file system.

User Number Conventions

The CP/M Plus User facility divides each drive directory into sixteen
logically independent directories, designated as user 0 through user 15.
Physically, all user directories share the directory area of a drive. In most
other aspects, however, they are independent. For example, files with the
same name can exist on different user numbers of the same drive with no
conflict. However, a single file cannot reside under more than one user
number.

Only one user number is active for a program at one time, and the current
user number applics to all drives on the system. Furthermore, the FCB
format does not contain any field that can be used to override the current
user number. As a result, all file and directory operations reference
directorics associated with the current user number. However, it is possible
for a program to access files on different user numbers; this can be
accomplished by setting the user number to the file’s user number with the
BDOS Set User function before making the desired BDOS function call
for the file. Note that this technique must be used carefully. An error

251

Programming with CPIM Plus

occurs if a program attempts to read or write to a file under a user number
different from the user number that was active when the file was opened.

When the CCP loads and executes a transient program, it initializes the
user number to the value displayed in the system prompt. If the system
prompt does not display a user number, user zero is implied. A transient
program can change its user number by making a BDOS Set User function
call. Changing the user number in this way does not affect the CCP’s user
number displayed in the system prompt. When the transient program
terminates, the CCP’s user number is restored. However, an option of the
BDOS Program Chain command allows a program to pass its current user
number and default drive 1o the chained program.

User 0 has special properties under CP/M Plus. When the current user
number is not equal to zero, and if a requested file is not present under the
current user number, the file system automatically attempts to open the file
under user zero. If the file exists under user zerc, and if it has the system
attribute, t2°, set, the file is opened from user zero. Note, however, that
files opened in this way cannot be written to; they are available only for
read access. This procedure allows utitities that may include overlays and
any other commonly accessed files to be placed on user zero, but also be
available for access from other user numbers. As a result, commonly
neceded utilities need not be copied to all user numbers on a directory, and
you can contral which user zero files are directly accessible from other user
numbers.

Directory Labels and XFCBs

The BDOS file system includes two special types of FCBs: the XFCB and
the Directory Label. The XFCB is an extended FCB that optionally can be
associated with a file in the directory, If present, it contains the file's
password.

DR | FILE [TYPE]|PM|S1]S2]RC | PASSWORD | RESERVED
00 O01.. 09. 12 13 14 15 16...... 24......

Figure 8-1. XFCB FORMAT

252

BDOS System Interface

dr - drive code (0 - 16)
file - filename field
type - filetype field

pm - password mode

bit 7 - Read mode

bit 6 - Write mode

bit 5 - Delete mode

** - bit references are right to left,

relative to 0
sl,s2,rc - reserved for system use
password- 8-byte password field {encrypted)
reserved- 8-byte reserved area

An XFCB can be created only on a drive that has a directory label, and
only if the directory label has activated password protection. For drives in
this state, an XFCB can be created for a file in two ways: by the BDOS
Make function or by the BDOS Write File XFCB function. The BDOS
Make function creates an XFCB if the calling program requests that a
password be assigned to the created file. The BDOS Write File XFCB
function can be used to assign a password to an existing file. Note that in
the directory, an XFCB is identified by a drive byte value, byte 0 in the
FCB, equal to 16 + N, where N equals the user number.

For its drive, the directory label specifies if file password support is to be
activated, and if date and time stamping for files is to be performed. The
format of the Directory Label follows.

DR [NAME | TYPE | D1]S1]52|RC] PASSWORD | TS1] TS2
00 01. 09. 12 13 14 15 16..... 24. 28

Figure 8-2. Directory Label Format

dr - drive code {0 - 16)

name - Directory Label name
type - Directory Label type

di - Directory Label data byte

bit 7 - require passwords for password
protected files

253

Programming with CPIM Plus

bit 6 - perform access time stamping

bit 5 - perform update time stamping

bit 4 - perform create time stamping

bit § - Directory Label exists

¥ . bit references are right to left,
relative to 0

s1,82,1¢ - n/a

password- 8-byte password field (encrypted)
ts1 - 4-byte creation time stamp field
ts2 - 4-byte update time stamp field

Only one Directory Label can exist in a drive’s directory. The Directory
Label name and type fields are not used to search for a Directory Label;
they can be used to identify a disk. A Directory Label can be created, or its
fields can be updated by BDOS function 100, Set Directory Label. This
function can also assign a Directory Label a password. The Directory
Label password, if assigned, cannot be circumvented, whereas file
password protection is an option controlied by the Directory Label. Thus,
access to the Directory Label password provides a kind of super-user status
on that drive.

The BDOS file system has no function to read the Directory Label FCB
directly. However, the Directory Label data byte can be read directly with
the BDOS Function 101, Return Directory Label. In addition, the BDOS
Search functions, with a ? in the FCB drive byte, can be used to find the
Directory Label on the default drive. In the directory, the Directory Label
is identified by a drive bytc value, byte 0 in the FCB, equal to 32, 20H.

File Passwords

Files can be assigned passwords in two ways: by the Make File function or
by the Write File XFCB function. A file’s password can also be changed by
the Write File XFCB function if the original password is supplied.

Password protection is provided in one of three modes. Table 8-3 shows
the difference in access level allowed to BDOS functions when the
password is not supplied.

If a file is password protected in Read mode, the password must be
supplied to open the file. A file protected in Write mode cannot be written

254

BDQOS System Interface

Table 8-3. Password Protection Modes

Password Access level allowed when the password

Mode is not supplied

1. Read The file cannot be read.

2. Write The file can be read, but not modified.

3. Delete The file can be modified, but not deleted.

to without the password. A file protected in Delete mode allows read and
write access, but the user must specify the password to delete the file,
rename the file, or to modify the file’s attributes. Thus, password
protection in mode 1 implies mode 2 and 3 protection, and mode 2
protection implies mode 3 protection. All three modes require the user to
specify the password to delete the file, rename the file, or to modify the
file’s attributes.

If the correct password is supplied, or if password protection is disabled by
the Directory Label, then access to the BDOS functions is the same as for a
file that is not password protected. In addition, the Search For First and
Search For Next functions are not affected by file passwords.

Table 8-4 lists the BDOS functions that test for password.

File passwords arc eight bytes in length, They are maintained in the XFCB
Directory Label in encrypted form. To make a BDOS function call for a
file that requires a password, a program must place the password in the
first eight bytes of the current DMA, or specify it with the BDOS function,
Set Default Password, prior to making the function call.

Note: The BDOS keeps an assigned default password value until it is
replaced with a new assigned value.

Table 8-4. BDOS Functions That Test for Password

15. Open File 99. Truncate File

19. Delete File 100. Set Directory Label
23. Rename File 103. Write File XFCB
30. Set File Attributes

255

Programming with CPIM Plus

File Date and Time Stamps

The CP/M 3 File System uses a special type of directory entry called an
The CP/M Plus File System uses a special type of directory entry called an
SFCB to record date and time stamps for files. When a directory has been
initialized for date and time stamping, SFCBs reside in every fourth

position of the directory. Each SFCB maintains the date and time stamps
for the previous three directory entries as shown in Figure 8-3.

FCB 1 —I

FCB 2

FCB3

STAMPS FOR | STAMPS FOR | STAMPS FOR
FCB 1 FCB 2 FCB 3

Figure 8-3. Directory Record with SFCB

21

This figure shows a directory record that contains an SFCB. Directory
records consist of four directory entries, each 32 bytes long. SFCBs always
occupy the last position of a directory record.

The SFCB directory item contains five fields. The first field is one byte
long and contains the value 21H. This value identifics the SFCB in the
directory. The next three fields, the SFCB subfields, contain the date and
time stamps for their corresponding FCB entries in the directory record.
These fields are 10 bytes long. The last byte of the SFCB is reserved for
system use. The format of the SFCB subfields is shown in Table §-5.

An SFCB subficld contains valid information only if its corresponding FCB
in the directory record is an extent zero FCB. This FCB is a file’s first
directory entry. For password protected files, the SFCB subfield also
contains the password mode of the file. This field is zero for files that are
not password protected. The BDOS Search and Search Next functions can
be used to access SFCBs directly. In addition, BDOS Function 102 can

256

BDOS System Interface

Table 8-5. SFCB Subfields Format

Offset of Bytes SFCB Subfield Contents

0-3 : Create or Access Date and Time Stamp field
4-7 : Update Date and Time Stamp field

8 : Password mode field

9 : Reserved

return the file date and time stamps and password mode for a specified file.
Refer to Section 9 function 102, for a description of the format of a date
and time stamp field.

CP/M Plus supports three types of file stamping: create, access, and
update. Create stamps record when the file was created, access stamps
record when the file was last opened, and update stamps recerd the last
time the file was modified. Create and access stamps share the same field.
As a result, file access stamps overwrite any create stamps.

The CP/M Plus utility, INITDIR, initializes a directory for date and time
stamping by placing SFCBs in every fourth directory entry. Date and time
stamping is not supported on disks that have not been initialized in this
manner. Note that this facility cannot be used if the disk is to be accessed
by Locoscript. Locoscript 1.20 does not update access times and earlier
versions cannot handle the extended directory. For initialized disks the
disks” Directory Label determines the type of date and time stamping
supported for files on the drive. If a disk does not have a Directory Label,
or if it is Read-Only, or if the disk’s Directory Label does not specify date
and time stamping, then date and time stamping for files is not performed.
Note that the Directory Label is also time stamped, but these stamps are
not made in an SFCB. Time stamp fields in the last eight bytes of the
Directory Label record when it was created and last updated. Access
stamping for Directory Labels is not supported.

The BDOS file system uses the CP/M Plus system date and time when it
records a date and time stamp. This value is maintained in a field in the
System Control Biock (SCB). On CP/M Plus systems that support a
hardware clock, the BIOS module directly updates the SCB system date
and time field. Otherwise, date and time stamps record the last initialized
value for the system date and time. The CP/M Plus DATE utility can be
used to set the system date and time.

257

Programming with CPIM Plus
Record Blocking and Deblocking

Under CP/M Plus, the logical record size for disk I/O is 128 bytes. This is
the basic unit of data transfer between the operating system and transient
programs. However, on disk, the record size is not restricted to 128 bytes.
These records, called physical records, can range from 128 bytes to 4K
bytes in size. Record blocking and deblocking is required on systems that
support drives with physical record sizes larger than 128 bytes.

The process of building up physical records from 128 byte logical records is
called record blocking. This process is required in write operations. The
reverse process of breaking up physical records into their component 128
byte logical records is called record deblocking. This process is required in
read operations. Under CP/M Plus, record blocking and deblocking is
normally performed by the BDOS.

Record deblocking implies a read-ahead operation. For example, if a
transient program makes a BDOS function call to read a logical record that
resides at the beginning of a physical record, the entire physical record is
read into an internal buffer. Subsequent BDOS read calls for the
remaining logical records access the buffer instead of the disk. Conversely,
record blocking results in the postponement of physical write operations
but only for data write operations. For example, if a transient program
makes a BDOS write call, the logical record is placed in a buffer equal in
size to the physical record size. The write operation on the physical record
buffer is postponed until-the buffer is needed in another I/O operation.
Note that under CP/M Plus, directory write operations are never
postponed.

Postponing physical record write operations has implications for some
applications programs. For those programs that involve file updating, it is
often critical to guarantee that the state of the file on disk parallels the state
of the file in memory after the update operation. This is only an issue on
systems where physical write operations are postponed because of record
blocking and deblocking. If the system should crash while a physical buffer
is pending, data would be lost. To prevent this loss of data, the BDOS
Flush Buffers function, function 48, can be called to force the write of any
pending physical buffers.

Note: the CCP automatically discards all pending physical data buffers
when it receives control following a system warm start. However, the

258

BDOS System Interface

BDOS file system automatically makes a Flush Buffers call in the Close
File function. Thus, it is sufficient to close a file to ensure that all pending
physical buffers for that file are written to the disk.

Multi-sector 1/O

CP/M Plus can read or write multiple 128-byte records in a single BDOS
function call. This process, called multi-sector I/O, is useful primarily in
sequential read and write operations, particularly on drives with physical
record sizes larger than 128 bytes. In a multi-sector 1/0 operation, the
BDOS file system bypasses, when possible, all intermediate record
buffering. Data is transferred directly between the TPA and the drive. In
addition, the BDOS informs the BIOS when it is reading or writing
multiple physical records in sequence on a drive. The BIOS can use this
information to further optimize the I/Q operation resulting in even better
performance. Thus, the primary objective of multi-sector VO is to improve
sequential I/O performance. The actual improvement obtained, however,
depends on the hardware environment of the host system, and the
implementation of the BIOS.

The number of records that can be supported with multi-sector I/0 ranges
from 1 to 128. This value can be set by BDOS function 44, Set multi-sector
Count. The multi-sector count is set to one when a transient program
begins execution, However, the CP/M Pius LOADER module executes
with the multi-

sector Count sct to 128 unless the available TPA space is less than 16K, In
addition, the CP/M Plus PIP ufility also sets the multi-sector count to 128
when sufficient buffer space is available. Note that the greatest potential
performance increases are obtained when the multi-sector count is set to
128. Of course, this requires a 16K buffer.

The multi-sector count determines the number of operations to be
performed by the following BDOS functions:

@ Scqueatial Read and Write functions

® Random Read and Write functions including Write Random with Zero
Fill

If the multi-sector count is N, calling one of the above functions is

259

Programming with CPIM Plus

equivalent to making N function calls. If a multi-sector 1/O operation is
interrupted with an error such as reading unwritten data, the file system
returns in register H the number of 128-byte records successfully
processed.

Disk Reset and Removable Media

The BDOS functions, Disk Reset (function 13) and Reset Drive (fuaction
37) allow a program to control when a disk’s directory is to be reinitialized
for file operations. This process of initializing a disk’s directory is called
logging-in the drive. When CP/M Plus is cold started, all drives are in the
reset state, Subsequently, as drives are referenced, they are automaticalty
togged-in by the file system. Once logged-in, a drive remains in the
logged-in state until it is reset by BDOS function 13 or 37. Following the
reset operation, the drive is again automatically logged-in by the file
system when it is next used. Note that BDOS functions 13 and 37 have
similar effects except that function 13 is directed to all drives on the system.
Any combination of drives can be reset with Function 37.

Logging-in a drive consists of several steps. The most important step is the
initialization of the drive’s allocation vector. The allocation vector records
the allocation and deallocation of data blocks to files, as files are created,
extended, deleted, and truncated. Another function performed during
drive log-in is the initialization of the directory check-sum vector. The file
system uses the check-sum vector to detect media changes on a drive,

The primary use of the drive reset functions is to prepare for a media
change on a drive. Subsequently, when the drive is accessed by a BDOS
function call, the drive is automatically logged-in. Resetting a drive has two
important side effects. First of all, any pending blocking/deblocking buffers
on the reset drive are discarded. Secondly, any data blocks that have been
allocated to files that have not been closed are lost. An application
program should close files, particularly files that have been written to,
prior to resetting a drive.

Although CP/M Plus automatically relogs in removable media when media

changes are detected, you should still explicitly reset a drive before
prompting the user to change disks.

260

BDOS System Interface
File Byte Counts

Although the logical record size of CP/M Plus is restricted {0 128 bytes,
CP/M Plus does provide a mechanism to store and retrieve a byte count for
a file. This facility can identify the last byte of the last record of a file. The
BDOS Compute File Size function returns the random record number,
plus 1, of the last record of a file.

The BDOS Set File Attributes function can set a file’s byte count.
Conversely, the Open function can return a file’s byte count to the er field
of the FCB. The BDOS Search and Search Next functions also return a
file’s byte count. These functions return the byte count in the 51 field of the
FCB returned in the current DMA buffer (see BDOS Functions Returned
17 and 26).

Note that the file system does nat access or update the byte count value in
file read or write operations. However, the BDOS Make File function does
set the byte count of a file to zero when it creates a file in the directory.

BDOS Error Handling

The BDOS file system responds to error situations in one of three ways:

Method 1. [t returns to the calling program with return codes in
register A, H, and L identifying the ercor,

Method 2. It displays an error message on the console, and branches
to the BIOS warin start entry point, thereby terminating
execution of the calling program.

Method 3. It displays an error message on the console, and returns
to the calling program as in method 1.

The file system handles the majority of errors it detects by method 1. Two
examples of this kind of error are the file not found error for the open
function and the reading unwritten data error for a read function. More
serious errors, such as disk /O errors, are usually handled by method 2.
Errors in this category, called physical and extended errors, can also be
reported by methods 1 and 3 under program control,

261

Programming with CPIM Plus

The BDOS Error Mode, which can exist in three states, determines how
the file system handles physical and extended errors. In the default state,
the BDOS displays the error message, and terminates the calling program,
method 2. In return error mode, the BDOS returns control to the calling
program with the error identified in registers A, H, and L, method 1. In
return and display mode, the BDOS returns control to the calling program
with the error identified in registers A, H, and L, and also displays the
error message at the console, method 3. While both return modes protect a
program from termination because of a physical or extended error, the
return and display mode also allows the calling program to take advantage
of the built-in ¢rror reporting of the BDOS file systiem. Physical and
extended errors are displayed on the console in the following format:

CP/M Error on d: error message
BDOS function = nn File = filename.typ

where d identifies the drive selected when the error condition is detected;
error message identifies the error; nn is the BDOS function number, and
fitename.typ identifies the file specified by the BDOS function. If the
BDOS function did not involve an FCB, the file information is omitted.

The BDOS physical errors are identified by the following error messages:
@® Disk IO

® Invalid Drive

® Recad-Only File

® Recad-Only Disk

The Disk I/O error results from an error condition returned to the BDOS
from the BIOS module. The file system makes BIOS read and write calls to
execute file-related BDOS calls. If the BIOS read or write routine detects
an error, it returns an error code to the BDOS resulting in this error.

The Invalid Drive error also results from an error condition returned to the
BDOS from the BIOS module. The BDOS makes a BIOS Select Disk cail
prior to accessing a drive to perform a requested BDOS function. If the
BIOS does not support the selected disk, the BDOS returns an error code
resulting in this error message.

262

BDOS System Interface

The Read-Only File error is returned when a program attempts to write to
a file that is marked with the Read-Only attribute. It is also returned to a
program that attempts to write to a system file opened under user zero
from a nonzero user number. In addition, this error is returned when a
program attempts to write to a file password protected in Write mode if the
program does not supply the correct password.

The Read-Only Disk error is returned when a program writes to a disk that
is in read-only status. A drive can be placed in read-only status explicitly
with the BDOS Write Protect Disk function.

The BDOS extended errors are identified by the following error messages:
@® Password Ervor

@ File Exists

@® ?in Filename

The File Password error is returned when the file password is not supplied,
or when it is incorrect.

The File Exists error is returned by the BDOS Make File and Rename File
functions when the BDOS detects a conflict such as a duplicate filename
and type.

The ? in Filename error is returned when the BDOS detects a ? in the
filename or type neld of the passed FCB for the BDOS Rename File, Set
File Attributes, Open File, Make File, and Truncate File functions.

The following paragraphs describe the error return code conventions of the
BDOS file system functions. Most BDOS file system functions fall into
three categories in regard to return codes: they return an Error Code, a
Directory Code, or an Error Flag. The error conventions of CP/M Plus are
designed to allow programs written for earlier versions of CP/M to run
without modification.

The following BDOS functions return an Error Code in register A.

20. Read Sequential
21, Write Sequential

263

Programming with CPIM Plus
33. Read Random
34, Write Random
40. Write Random w/Zero Fill

The Error Code definitions for register A are shown in Table 8-6.

Table 8-6. Register A BDOS Error Codes

Code Meaning

00: Function successful
255 Physical error : refer to register H

01: Reading unwritten data or no available directory space (Write
Sequential)

02 . No available data block

03 : Cannot close current extent

04 . Seek to unwritten extent

a5 : No available directory space

06 : Random record number out of range

09 : Invalid FCB (previous BDOS close call returned an error code
and invalidated the FCB)

10 : Media Changed (A media change was detected on the FCB’s

drive after the FCB was opened)

For BDOS read or write functions, the file system also sets register H when
the returned Error Code is a value other than zero or 255. In this case,
register H contains the number of 128-byte records successfully read or
written before the error was encountered. Note that register H can contain
only a nonzero value if the calling program has set the BDOS Multi-Sector
Count to a value other than one; otherwise register H is set to zero. On
successful functions, Error Code = (, register H is also set to zero. If the
Error Code equals 255, register H contains a physical error code.

The following BDOS functions return a Directory Code in register A:
15. Open File
16. Close File
17. Search For First

264

BDOS System Interface

18, Search For Next

19. Delete File

22. Make File

23. Rename File

30. Set File Attributes

35. Compute File Size

99. Truncate File
100. Set Directory Label
102. Read File Date Stamps and Password Mode
103. Write File XFCB

The Directory Code definitions for register A are shown in Table 8-7.

Table 8-7. BDOS Directory Codes

Code Meaning
a0 -03.: successful function
255 : unsuceessful function

With the exception of the BDOS search functions, alt functions in this
category return with the directory code set to zero on successful returns.
However, for the search functions, a successful Directory Code also
identifies the relative starting position of the directory entry in the calling
program’s current DMA buffer.

If the Set BDOS Error Mode function is used to place the BDOS in return
error mode, the following functions return an Error Flag on physical
€Irors:

14. Select Disk

46. Get Disk Free Space

48. Flush Buffers

98. Free Blocks

101. Return Directory Label Data

The Error Flag definition for register A is shown in Table 8-8.

265

Programming with CPIM Plus
Table 8-8. BDOS Error Flags

Code Meaning
00 : successful function
255 : physical error : refer to register H

The BDOS returns nonzero values in register H to identify a physical or
extended error if the BDOS Error Mode is in one of the return modes.
Except for functions that return a Directory Code, register A equal to 255
indicates that register H identifies the physical or extended error. For
functions that return a Directory Code, if register A equals 255, and
register H is not equal to zero, register H identifies the physical or
extended error. The physical and extended error codes are shown in Table
89.

Table 8-9. BDOS Physical and Extended Errors

Code Meaning

o0 - no error, or not a register H error
01 - Disk I/0O error

0z - Read-Only Disk

03 - Read-Only File or File Opened

under user zero from another user
number or file password protected
in write mode and correct pass-
word not specified.

04 - Invalid Drive : drive select error
07 - Password Error

08 - File Exists

09 - 7 in Filename

The following two functions represent a special case because they return an
address in registers H and L.

27. Get Addr(Alloc)
31, Get Addr(Disk Parms)

266

BDOS System Interfuce

When the BDOS is in return error mode, and it detects a physical error for
these functions, it returns to the calling program with registers A, H, and LL
all set to 255, Otherwise, they return no error code.

Page Zero Initialization

Page Zero is the region of memory located from O000H to 00FFH. This
region contains several segments of code and data that are used by
transient programs while running under CP/M Plus. The code and data
areas are shown in Table 8-10 for reference.

Table 8-10, Page Zero Areas

Location Contents
From To
0000H - 0002H Contains a jump instruction to the BIOS warm start

entry point at BIOS-base + 3. The address at
location 0001H can also be used to make direct
BIOS calls to the BIOS console status, console
input, console output, and list output primitive

functions.
0003H - 0004H (Reserved)
000SH - 0007H Contains a jump instruction to the BDOS, the

LOADER, or to the most recently added RSX, and
serves two purposes: JMP 0005H provides the
primary entry point to the BDOS, and LHLD (006H
places the address field of the jump instruction in the
HL register pair. This value, minus one, is the
highest address of memory available to the transient
program.

0008H - 003AH Reserved interrupt locations for Restarts 1 - 7
003BH - 004FH (Not currently used - reserved)
0050H Identifies the drive from which the transient

267

Programming with CPIM Plus

Table 8-10 (continued)

0051H - D052H

0053H

0054H - 0055H

0056H

0057H - 005BH

005CH - 007BH

006CH - 007BH

268

program was loaded. A value of one to sixteen
identifies drives A through P.

Contains the address of the password field of the
first command-tail operand in the default DMA
buffer beginning at (080H. The CCP sets this field to
zero if no password for the first command-tail
operand is specified.

Contains the length of the password field for the first
command-tail operand. The CCP also sets this field
to zero if no password for the first command-tail is
specified.

Contains the address of the password field of the
second command-tail operand in the default DMA
buffer beginning at 0080H. The CCP sets this field to
zero if no password for the second command-tail
operand is specified.

Contains the length of the password field for the
second command-tail operand. The CCP also sets
this field .to zero if no password for the second
command-tail is specified.

(Not currently used - reserved)

Default File Control Block, FCB, area 1 initialized
by the CCP from the first command-tail operand of
the command line, if it exists.

Default File Control Block, FCB, area 2 initialized
by the CCP from the second command-tail operand
of the command line, if it exists.

Note: this area overlays the last 16 bytes of default
FCB area 1. To use the information in this area, a
transient program must copy it to another location
before using FCB area 1.

BDOS System Interface

007CH Current record position of default FCB area 1. This
field is used with default FCB area 1 in sequential
record processing.

007DH - 007FH Optional default random record position. This ficld
is an extension of default FCB area 1 used in random
record processing.

0080H - O0FFH Default 128-byte disk buffer. This buffer is also filled
with the command tail when the CCP loads a
transient program.

The CCP initializes Page Zero prior to initiating a transient program. The
fields at 0050H and above are initialized from the command line invoking
the transient program. The command line format was described in detail in
“CCP operation”. To summarize, a command line usually takes the form:

<command> <command tail>

where
<command> => <file spec>
<command tail> => (no command tail)
= <file spec>
=> <file spec><delimiter> <file spec>
<file spec> => {d:}ilename{.type]} {;password}

The CCP initializes the command drive field at 0050H to the drive index, A
=1, ..., P = 16, of the drive from which the transient program was loaded.

The default FCB at 005CH is defined if a command tail is entered.
Otherwise, the fields at 005CH, 0068H to 006BH are set to binary zeros,
the fields from 003DH to 0067H are set to blanks. The fields at 0051H
through 0053H are set if a password is specified for the first <file spec> of
the command tail. If not, these fields are set to zero.

The defauit FCB at 006CH is defined if a second <file spec> exists in the
command tail. Otherwise, the fields at 006CH, 0078H to 007Bh are set to

269

Programming with CPIM Plus

binary zeros, the fields from 005DH to 0067H are set to blanks. The fields
at 0054H through 0056H are set if a password is specified for the second
<file spec> of the command tail. If not, these fields are set to zero.

Transient programs often use the default FCB at 005CH for file
operations. This FCB may even be used for random file access because the
three bytes starting at 007DH are available for this purpose. However, a
transient program must copy the contents of the default FCB at 006CH to
another area before using the default FCB at 005CH, because an open
operation for the default FCB at 005CH overwrites the FCB data at
006CH.

The default DMA address for transient programs is 0080H. The CCP also
inttializes this area to contain the command tail of the command line. The
first position contains the number of characters in the command line,
followed by the command line characters. The character following the last
command tail character is set to binary zero. The command line characters
are preceded by a leading blank and are translated to ASCII upper-case.
Because the 128-byte region beginning at 0080H is the default DMA, the
BDOS file system moves 128-byte records to this area with read operations
and accesses 128-byte records from this area with write operations. The
transient program must extract the command tail information from this
buffer before performing file operations unless it explicitly changes the
DMA address with the BDOS Set DMA Address function.

The Page Zero fields of 0051H through 0056H locate the password fields of
the first two file specifications in the command tail if they exist. These
fields are provided so that transient programs are not required to parse the
command tail for password fields. However, the transient program must
save the password, or change the DMA address before performing file
operations.

The following example illustrates the initialization of the command line
fields of Page Zero. Assuming the following command line is typed at the
console:

D > A:PROGRAM B:FILE.TYP;PASS C;FILE. TYP;PASSWORD

A hexadecimal dump of 0050H to 00ASH would show the Page Zero
initialization performed by the CCP.

270

BDOS System Interface

0050H: 018D 00 049D 0008 00 0000 00 00 02 46 49 4C FIL
0060H: 45 20 20 20 20 54 59 50 00 00 00 00 03 46 49 4C E...TYP..._FIL
0070H: 452020 20205459 500000 G0 QOGO 00 00 00 E....TYP........
0080H: 24 20 42 3A 45 49 4C 45 2E 54 59 50 3B 50 41 53 . 8:FILETYP,PAS
D090H: 53 20 43 3A 46 49 4C 45 2E 54 59 50 3B 50 41 53 § C:FILE.TYP,PAS
00ADH: 53 57 4F 52 44 00 SWORD.

271

Section 9
BDOS Function Calls

This section describes each CP/M Plus system function, including the
parameters a program must pass when caliing the function, and the values
the function returns to the program. The functions are arranged
numericaily for casy reference. You should be familiar with the BDOS
calling conventions and other concepts presented in Section 8 before
referencing this section.

BDOS FUNCTION 0: SYSTEM RESET

Entry Parameters:
Register C: 00H

The System Reset function terminates the calling program and returns
control to the CCP via a warm start sequence (see Section 7). Calling this
function has the same effect as a jump to location 0000H of Page Zero.

Note that the disk subsystem is not reset by System Reset under CP/M
Plus. The calling program can pass a return code to the CCP by calling
Function 108, Get/Set Program Return Code, prior to making a System
Reset call or jumping to location 0000H.

BDOS FUNCTION 1: CONSOLE INPUT

Entry Parameters:
Register C: 01H

Returned Value:
Register A: ASCII Character

The Console Input function reads the next character from the logical
consote, CONIN:, {o register A. Graphic characters, along with carriage

272

BDOS Function Calls

return, line feed, and backspace, CTRL-H, are echoed to the console. Tab
characters, CTRL-I, are expanded in columns of 8 characters. CTRL-S,
CTRL-Q, and CTRL-P are norinally intercepted as described below. All
other non-graphic characters are returned in register A but are not echoed
to the console.

When the Console Mode is in the default state Function 1 intercepts the
stop scroll, CTRL-S, start scroll, CTRIL-Q, and start/stop printer echo,
CTRL-P, characters. Any characters that are typed following a CTRL-S
and preceding a CTRL-Q are also intercepted. However, if start/stop scroll
has been disabled by the Console Mode, the CTRL-S, CTRL-Q, and
CTRL-P characters are not intercepted. Instead, they are returned in
register A, but are not echoed to the console.

If printer echo has been invoked, all characters that are echoed to the
conscle are also sent to the list device, LST:,

Function 1 does not return control to the calling program until a
non-intercepted character is typed, thus suspending execution if a
character is not ready. :

BDOS FUNCTION 2: CONSOLE OUTPUT

Entry Parameters:
Register C: 02H
E: ASCII Character

The Console Output function sends the ASCII character from register E to
the logical console device, CONQUT:. When the Console Mode is in the
default state Function 2 expands tab characters, CTRL-I, in columns of 8
characters, checks for stop scroll, CTRL-S, start scroll, CTRL-Q, and
echoes characters to the logical list device, LST:, if printer echo, CTRL-P,
has been invoked.

" BDOS FUNCTION 3: AUXILIARY INPUT

Entry Parameters:
Register C: 03H

273

Programming with CP/IM Plus

Returned Value:
Register A: ASCII Character

The Auxiliary Input function reads the next character from the logical
auxiliary input device, AUXIN:, into register A. Control does not return
to the calling program until the character is read,

BDOS FUNCTION 4: AUXILIARY OUTPUT

Entry Parameters:
Register C: 04H
E: ASCII Character

The Auxiliary Qutput function sends the ASCII character from register E
to the logical auxiliary output device, AUXOUT:.

BDOS FUNCTION 5: LIST OUTPUT

Entry Parameters:
Registers C: 05SH
E: ASCII Character

The List Output function sends the ASCII character in register E to the
logical list device, LST:.

BDOS FUNCTION 6: DIRECT CONSOLE I/O

Entry Parameters:
Register C: 06H
E: OFFH (input/status) or
OFEH (status) or
OFDH (input) or
char {output)

Returned Value:
Register A: char or status (no value)

274

BDOS Function Calls

CP/M Plus supports direct /O to the logical console, CONIN:, for those
spectalized applications where unadorned console input and output is
required, Use Direct Console 1/O carefully because it bypasses all the
normal control character functions. Programs that perform direct 11O
through the BIOS under previous releases of CP/M should be changed to
use direct I/O so that they can be fully supported under future releases of
MP/M and CP/M.

A program calls Functior 6 by passing one of four different values in .
register E. The values and their meanings are summarized in Table 9-1.

Table 9-1. Function 6 Entry Parameters

Register Meaning

E value

OFFH Console input/status command returns an input character; if
no character is ready, a value of zero is returned.

(OFEH Console status command (On return, register A contains (0
if no character is ready; otherwise it contains EFH.)

OFDH Console input command, returns an input character; this
function will suspend the calling process until a character is
ready.

ASCH Function 6 assumes register E contains a valid ASCII

character character and sends it to the console,

BDOS FUNCTION 7: AUXILIARY INPUT STATUS

Entry Parameters:
Register C: 07H

Returned Value:
Register A: Auxiliary Input Status

The Auxiliary Input Status function returns the value OFFH in register A if

275

Programming with CPIM Plus

a character is ready for input from the logical auxiliary input device,
AUXIN:. If no character is ready for input, the value 00H is returned.

BDOS FUNCTION 8: AUXILIARY QUTPUT STATUS

Entry Parameters:
Register C: 08H

Returned Value:
Register A: Auxiliary Output Status

The Auxiliary Output Status function returns the value OFFH in register A
if the logical auxiliary output device, AUXOUT:, is ready to accept a
character for output. If the device is not ready for output, the value 00H is
returned.

BDOS FUNCTION 9: PRINT STRING

Entry Parameters:
Register C: 09H
DE: String Address

The Print String function sends the character string addressed by register
pair DE to the logical console, CONOUT?:, until it encounters a delimiter
i the string. Usually the delimiter is a dollar sign, $, but it can be changed
to any other value by Function 110, Get/Set Qutput Delimiter. If the
Console Mode is in the default state, Function 9 expands tab characters,
CTRL-L, in columns of 8 characters. It also checks for stop scroll, CTRL-S,
start scroll, CTRL-Q, and echoes to the logical list device, LST:, if printer
echo, CTRL-P, has been invoked.

BDOS FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters:
Register C: 0AH
DE: Buffer Address

276

BDOS Function Calls

Returned Value:
Console Characters in Buffer

The Read Console Buffer function reads a line of edited console input
from the logical console, CONIN:, to a buffer that register pair DE
addresses. It terminates input and returns to the calling program when it
encounters a return, CTRL-M, or a line feed, CTRL-J, character.
Function 10 also discards all input characters after the input buffer is filled.
In addition, it outputs a bell character, CTRL-G, to the console when it
discards a character to signal the user that the buffer is full. The input
buffer addressed by DE has the following format:

DE: +0+1 +2 43 +4 +5 +6 +7 +8 ... +n

mx |nc fel |c2 [¢3 [ed [¢5 c6 [¢7 T . . . |77

where mx is the maximum number of characters which the buffer holds,
and nc is the number of characters placed in the buffer. The characters
entered by the operator follow the nc value. The value mx must be set prior
to making a Function 10 call and may range in value from 1 to 255. Setting
mx to Zere is equivalent to setting mx to one. The value nc is returned to
the calling program and may range from zero to mx. If nc < mx, then
uninitialized positions follow the last character, denoted by 77 in the
figure. Note that a terminating return or line feed character is not placed in
the buffer and not included in the count nc.

If register pair DE is set to zero, Function 10 assumes that an initialized
input buffer is located at the current DMA address (see Function 26, Set
DMA Address). This allows a program to put a string on the screen for the
user to edit. To initialize the input buffer, set characters ¢1 through ¢n to
the initial value followed by a binary zero terminator.

When a program calls Function 10 with an initialized buffer, Function 10
operates as if the user had typed in the string. When Function 10
encounters the binary zero terminator, it accepts input from the console.
At this point, the user can edit the initialized string or accept it as it is by
pressing the RETURN key. However, if the initialized string contains a
return, CTRL-M, or a linefeed, CTRL-J, character, Function 10 returns to
the calling program without giving the nser the opportunity to edit the
string.

277

Programming with CPIM Plus

Table 9-2. Edit Control Characters

Character

Edit Control Function

rub/del

Removes and echoes the last character if at the end of the
line; otherwise deletes the character to the left of the current
cursor position.

Note: CTRL is given by the ALT key on the PCW8256.

CTRL-A

CTRL-B

CTRL-C

CTRL-E

CTRL-F

CTRL-G

CTRL-H

CTRL-J

CTRL-K

CTRL-M

278

Moves cursor one character to the left.

Moves cursor to the beginning of the line when not at the
beginning; otherwise moves cursor to the end of the line.

Reboots when at the beginning of line; the Console Mode
can disable this function.

Causes physical end of line; if the cursor is positioned in the
middle of a line, the characters at and to the right of the
cursor are displayed on the next line.

Moves cursor one character to the right.

Deletes the character at the current cursor position when in
the middle of the ling; has no effect when the cursor is at the
end of the line.

Backspaces one character position when at end of ling;
otherwise deletes character to left of cursor.

(Line-feed) terminates input; the cursor can be positioned
anywhere in the line; the entire input line is accepted; sets
the previous line buffer to the input line.

Deletes all characters to the right of the cursor along with the
character at the cursor.

(RETURN or ENTER have the same effect) terminates
input; the cursor can be positioned anywhere in the line; the
entire input line is accepted; sets the previous line buffer to
the input line.

CTRL-P

CTRL-R

CTRL-U

CTRL-W

CTRL-X

BDOS Function Calls
Echoes console output to the list device.

Retypes the characters to the left of the cursor on the new
line.

Updaies the previous line buffer to contain the characters to
the left of the cursor; deletes current line, and advances to

new line.

Recalls previous line if current line is empty; otherwise
moves cursor to end of line.

Deletes all characters to the left of the cursor.

For banked systems, Function 10 uses the console width field defined in the
System Control Block. If the console width is exceeded when the cursor is
positioned at the end of the line, Function 10 automatically advances to the
next line. The beginning of the line can be edited by entering a CTRL-R.

When a character is typed while the cursor is positioned in the middle of
the line, the typed character is inserted into the line. Characters at and to
the right of the cursor are shifted to the right. If the console width is
exceeded, the characters disappear off the right of the screen. However,
these characters are not lost. They reappear if characters are deleted out of
the line, or if a CTRL-E is typed.

BDOS FUNCTION 11: GET CONSOLE STATUS

Entry Parameters:
Register C: OBH

Returned Value:
Register A: Console Status

The Get Console Status function checks to see if a character has been
typed at the logical console, CONIN:. If the Console Mode is in the default
state, Function 11 returns the value 01H in register A when a character is
ready. If a character is not ready, it returns a value of 00H.

279

Programming with CPIM Plus

If the Console Mode is in CTRL-C Only Status mode, Function 11 returns
the value O1H in register A only if a CTRL-C has been typed at the
console.

BDOS FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:
Register C: 0CH

Returned Value:
Register HL: Version Number

The Return Version Number function provides information that allows
version independent programming. It returns a two-byte value in register
pair HL: H contains 00H for CP/M and L contains 31H, the BDOS file
system version number. Function 12 is useful for writing applications
programs that must run on multiple versions of CP/M and MP/M.

BDOS FUNCTION 13: RESET DISK SYSTEM

Entry Parameters:
Register C: 0DH

The Reset Disk System function restores the file system to a reset state
where all the disk drives are set to read-write (see Functions 28 and 29), the
default disk is set to drive A, and the default DMA address is reset to
0080H. This function can be used, for example, by an application program
that requires disk changes during operation. Function 37, Reset Drive, can
also be used for this purpose.

BDOS FUNCTION 14: SELECT DISK

Entry Parameters:
Register C: OEH
E: Selected Disk

280

BDOS Function Calls

Returned Value:
Registers A: Error Fiag
H: Physical Error

The Select Disk function designates the disk drive named in register E as
the default disk for subsequent BDOS file operations. Register E is set to 0
for drive A, 1 for drive B, and so on through 15 for drive P in a full 16-drive
system. In addition, Function 14 logs in the designated drive if it is
curreatly in the reset state. Logging-in a drive activates the drive’s
directory until the next disk system reset or drive reset operation.

FCBs that specify drive code zero (dr = 00H) automatically reference the
currently selected default drive. FCBs with drive code values between 1
and 16, however, ignore the selected default drive and directly reference
drives A through P.

Upon return, repister A contains a zero if the select operation was
successful. If a physical error was encountered, the select function
performs different actions depending on the BDOS error mode (see
Function 45). If the BDOS error mode is in the default mode, a message
identifying the error is displayed at the console, and the calling program is
terminated. Otherwise, the select function returns to the calling program
with register A set 1o OFFH and register H set to one of the following
physical error codes:

01 : Disk YO Error
04 : Invalid drive

BDOS FUNCTION 15: OPEN FILE

Entry Parameters:
Registers C: OFH
DE: FCB Address

Returned Value:
Registers A: Directory Code
H: Physical or Extended Error

The Open File function activates the FCB for a file that exists in the disk
directory under the currently active user number or user zero. The calling

281

Programming with CPIM Plus

program passes the address of the FCB in register pair DE, with byte 0 of
the FCB specifying the drive, bytes 1 through 11 specifying the filename
and filetype, and byte 12 specifying the extent. Usually, byte 12 of the FCB
is initialized to zero.

If the file is password protected in Read mode, the correct password must
be placed in the first eight bytes of the current DMA, or have been
previously established as the default password (see Function 106). If the
current record field of the FCB, cr, is set to OFFH, Function 15 returns the
byte count of the last record of the file in the cr field. You can set the last
record byte count for a file with Function 30, Set File Attributes. Note that
the current record field of the FCB, cr, must be zeroed by the calling
program before beginning rcad or write operations if the file is to be
accessed sequentially from the first record.

If the current user is non-zero, and the file to be opened does not exist
under the current user number, the open function searches user zero for
the file. If the file exists under user zero, and has the system attribute, t2°,
set, the file is opened under user zero. Write operations are not supported
for a file that is opened under user zero in this manner.

If the open operation is successful, the user’s FCB is activated for read and
write operations. The relevant directory information is copied from the
matching directory FCB into bytes d0 through dn of the FCB. If the file is
opened under user zero when the current user number is not zero,
interface attribute f8* is set to one in the user’s FCB. In addition, if the
referenced file is password protected in Write mode, and the correct
password was not passed in the DMA, or did not match the default
password, interface attribute £7° is set to one. Write operations are not
supported for an activated FCB if interface attribute f7° or {8’ is true.

When the open operation is successful, the open function also makes an
Access date and time stamp for the opened file when the following
conditions are satisfied: the referenced drive has a directory label that
requests Access date and time stamping, and the FCB extent number field
is zero.

Upon return, the Open File function returns a directory code in register A
with the value 00H if the open was successful, or FFH, 255 decimal, if the
file was not found. Register H is set to zero in both of these cases. If a
physical or extended error was encountered, the Open File function

282

BDOS Function Calls

performs differeat actions depending on the BDOS error mode (see
Function 45). If the BDOS error mode is in the default mode, a message
identifying the error is displayed at the console and the program is
terminated. Otherwise, the Open File function returns to the cailing
program with register A sct to OFFH, and register H set to one of the
following physical or extended error codes:

01 : Disk IO Error

04 : Invalid drive error

- 07 : File password error

09 : ? in the FCB filename or filetype ficld

BDOS FUNCTION 16: CLOSE FILE

Entry Parameters:
Register C: 10H
DE: FCB Address

Returned Value:
Register A: Directory Code
H: Physical or Extended Error

The Close File function performs the inverse of the Open File function.
The calling program passes the address of an FCB in register pair DE. The
referenced FCB must have been previously activated by a successful Open
or Make function call (see Functions 15 and 22). Interface attribute £5°
specifics how the file is to be closed as shown below:

3" = 0 - Permanent close (default mode)
f5' = 1 - Partial close

A permanent close operation indicates that the program has completed file
operations on the file. A partial close operation updates the directory, but
indicates that the file is to be maintained in the open state.

If the referenced FCB contains new information becawse of write
operations to the FCB, the close function permanently records the new
information in the referenced disk directory. Note that the FCB does not
contain new information, and the directory update step is bypassed if only
read or update operations have been made to the referenced FCB.

283

Programming with CPIM Plus

Upon return, the close function returns a directory code in register A with
the value O0H if the close was successful, or FFH, 255 Decimal, if the file
was not found. Register H is set to zero in both of these cases, If a physical
or extended error is encountered, the close function performs different
actions depending on the BDOS error mode (see Function 45). If the
BDQS error mode is in the default mode, a message identifying the error is
displayed at the console, and the calling program is terminated. Otherwise,
the close function returns to the calling program with register A set to
OFFH and register H set to one of the following physical error codes:

01 : Disk YO error
02 : Readfonly disk
04 : Invalid drive error

BDOS FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:
Register C:11H
DE: FCB Address

Returned Value:
Register A: Directory Code
H: Physical Error

The Search For First function scans the directory for a match with the FCB
addressed by register pair DE. Two types of searches can be performed.
For standard searches, the calling program initializes bytes 0 through 12 of
the referenced FCB, with byte 0 specifying the drive directory to be
searched, bytes 1 through 11 specifying the file or files to be searched for,
and byte 12 specifying the extent. Usually byte 12 is set to zero, An ASCII
question mark, 63 decimal, 3F hex, in any of the bytes 1 through 12
matches all entries on the dircctory in the corresponding position. This
facility, called ambiguous reference, can be used to search for multiple files
on the directory. When called in the standard mode, the Search function
scans for the figst file entry in the specified directory that matches the FCB,
and belongs to the current user number.

The Search For First function also initializes the Search For Next function.
After the Search function has located the first directory entry matching the
referenced FCB, the Search For Next function can be called repeatedly to

284

BDOS Function Calls

locate all remaining matching entries. In terms of cxecution sequence,
however, the Search For Next call must either follow a Search For First or
Search For Next call with no other intervening BDOS disk-related function
calls.

If byte 0 of the referenced FCB is set to a question mark, the Search
function ignores the remainder of the referenced FCB, and locates the first
directory entry residing on the current default drive. All remaining
directory entries can be located by making multiple Search For Next calls.
This type of search operation is not usually made by application programs,
but it does provide complete flexibility to scan all current directory values.
Note that this type of search operation must be performed to access a
drive’s directory label.

Upon return, the Search function returns a Directory Code in register A
with the value 0 to 3 if the search is successful, or OFFH, 255 Decimal, if a
matching directory entry is not found. Register H is set to zero in both of
these cases. For successful searches, the current DMA is also filied with the
directory record containing the matching entry, and the relative starting
position is A * 32 (that is, rotate the A register left § bits, or ADD A five
times). Although it is not usually required for application programs, the
directory information can be extracted from the buffer at this position.

If the directory has been initialized for date and time stamping by
INITDIR, then an SFCB resides in every fourth directory entry, and
successful Directory Codes are restricted to the values (0 to 2. For
successful searches, if the matching directory record is an extent zero
entry, and if an SFCB resides at offset 96 within the current DMA,
contents of (DMA Address + 96) = 21H, the SFCB contains the date and
time stamp information, and password mode for the file. This information
is located at the relative starting position of 97 + (A * 10} within the
current DMA in the following format:

0 - 3. Create or Access Date and Time Stamp Field
4 - 7 : Update Date and Time Stamp Field
8: Password Mode Field

If a physical error is encountered, the Search function performs different
actions depending on the BDOS error mode (see Function 45). If the
BDOS error mode is in the default mode, a message identifying the error is
displayed at the console, and the calling program is terminated. Otherwise,

285

Programming with CPIM Plus

the Search function returns to the calling program with register A set to
OFFH, and register H set to onc of the following physical error codes:

01 : Disk YO error
04 : Invalid drive error

BDOS FUNCTION 18: SEARCH FOR NEXT

Entry Parameters:
Register C: 12H

Returned Value:
Register A: Directory Code
H: Physical Error

.

The Search For Next function is identical to the Search For First function,
except that the directory scan continues from the last entry that was
matched. Function 18 returns a Directory code in register A, analogous to
Function 17.

Note: in execution sequence, a Function 18 call must follow either a
Function 17 or another Function 18 call with no other intervening BDOS
disk-related function calls.

BDOS FUNCTION 19: DELETE FILE

Entry Parameters:
Register C: 13H
DE: FCB Address

Returned Value:
Register A: Directory Code
H: Extended or Physical Error

The Delete File function removes files or XFCBs that match the FCB
addressed in register pair DE. The filename and filetype can contain
ambiguous references, that is, question marks in bytes {1 through 13, but
the dr byte cannot be ambiguous, as it can in the Search and Scarch Next

286

BDOS Function Calls

functions. Interface attribute 5’ specifies the type of delete operation that
is performed,

5’ = 0 - Standard Delete (default mode)
5" = 1 - Delete only XFCBs

If any of the files that the referenced FCB specify are password protected,
the correct password must be pilaced in the first eight bytes of the current
DMA buffer, or have been previously established as the default password
(see Function 106).

For standard delete operations, the Delete function removes all directory
entries belonging to files that match the referenced FCB. All disk directory
and data space owned by the deleted files is returned to free space, and
becomes available for allocation to other files. Directory XFCBs that were
owned by the deleted files arc also removed from the directory. If interface
attribute f5° of the FCB is set to 1, Function 19 deletes only the directory
XFCBs that match the referenced FCB.

Note: if any of the files that match the input FCB specification fail the
password check, or are Read-Only, then the Delete function does not
delete any files or XFCBs. This applies to both types of delete operations.

Upon return, the Delete function returns a Directory Code in register A
with the value 0 if the delete is successful, or OFFH, 255 Decimal, if no file
that matches the referenced FCB is found. Register H is set to zero in both
of these cases. If a physical, or extended error is encountered, the Delete
function performs different actions depending on the BDOS error mode
(see Function 45). If the BDOS error mode is the default mode, a message
identifying the error is displayed at the console and the calling program is
terminated. Otherwise, the Delete function returns to the calling program
with register A set to OFFH and register H set to one of the following
physical or extended error codes:

01 : Disk IfO error
02 : Read-Only disk
03 : Read-Only file
04 : Invalid drive error
07 : File password error

287

Programming with CP/M Plus

BDOS FUNCTION 20: READ SEQUENTIAL

Entry Parameters:
Register C: 14H
DE: FCB Address

Returned Value:
Register A: Error Code
H: Physical Error

The Read Sequential function reads the next 1 to 128 128-byte records
from a file into memory beginning at the current DMA address. The
BDOS Multi-

Sector Count (see Function 44) determines the number of records to be
read. The default is one record. The FCB addressed by register pair DE
must have been previously activated by an Open or Make function call.

Function 20 reads each record from byte cr of the extent, then
automatically increments the cr field to the next record position. If the cr
field overfiows, then the function automatically opens the next logical
extent and resets the cr field to 0 in preparation for the next read
operation. The calling program must set the cr field to 0 following the
Open call if the intent is to read sequentially from the beginning of the file.

Upon return, the Read Sequential function sets register A to zero if the
read operation is successful. Otherwise, register A contains an error code
identifying the error as shown below:

01 : Reading unwritten data (end of file)
09 : Invalid FCB
10 : Media change occurred

255 : Physical Error; refer to register H

Error Code 01 is returned if no data exists at the next record position of the
file. Usually, the no data situation is encountered at the end of a file.
However, it can also occur if an attempt is made to read a data block that
has not been previously written, or an extent which has not been created.
These situations are usually restricted to files created or appended with the
BDOS random write functions (see Functions 34 and 40).

288

BDOS Funciion Calls

Error Code 09 is returned if the FCB is invalidated by a previous BDOS
close call that returns an error.

Error Code 10 is returned if a media change occurs on the drive after the
referenced FCB is activated by a BDOS Open, or Make call.

Error Code 255 is returned if a physical error is encountered and the
BDOS error mode is Return Error mode, or Return and Display Error
mode (see Function 45). If the error mode is the default mode, a message
identifying the physical error is displayed at the console, and the calling
program is terminated. When a physical error is returned to the calling
program, register H contains one of the following error codes:

01 : Disk I/O error
04 : Invalid drive error

On all error returns except for physical error returns, A = 255, Function 20
sets register H to the number of records successfully read before the error
is encountered. This value can range from 0 to 127 depending on the
current BDOS Multi-Sector Count. It is always set to zero when the
Multi-Sector Count is equal to one.

BDOS FUNCTION 21: WRITE SEQUENTIAL

Entry Parameters:
Register C:. 15H
DE: FCB Address

Returned Value:
Register A: Error Code
H: Physical Error

The Write Sequential function writes 1 to 128 128-byte data records,
beginning at the current DMA address into the file named by the FCB
addressed in register pair DE. The BDOS Multi-Sector Count (see
Function 44) determines the number of 128 byte records that are written.
The default is one record, The referenced FCB must have been prewously
activated by a BDOS Open or Make function call.

Function 21 places the record into the file at the position indicated by the cr

289

Programming with CPIM Plus

byte of the FCB, and then automatically increments the cr byte te the next
record position. If the cr field overflows, the function automatically opens,
or creates the next logical extent, and resets the cr field to 0 in preparation
for the next write operation. If Function 21 is used to write to an existing
file, then the newly written records overlay those already existing in the
file. The calling program must set the cr field to 0 following an Open or
Make call if the intent is to write sequentially from the beginning of the
file.

Function 21 makes an Update date and time for the file if the following
conditions are satisfied: the referenced drive has a directory label that
requests date and time stamping, and the file has not already been stamped
for update by a previous Make or Write function call.

Upon return, the Write Sequential function sets register A to zero if the
write operation is successful. Otherwise, register A contains an error code
identifying the error as shown below:

01 : No available directory space
02 : No available data block
0% : Invalid FCB
10 : Media change occurred
253 : Physical Error : refer to register H

Error Code 01 is returned when the write function attempts to create a new
extent that requires a new directory entry, and no available directory
entrigs exist on the selected disk drive.

Error Code 02 is returned when the write command attempts to allocate a
new data block to the file, and no unallocated data blocks exist on the
selected disk drive.

Error Code 09 is returned if the FCB is invalidated by a previous BDOS
close cal! that returns an error.

Error Code 10 is returned if a media change occurs on the drive after the
referenced FCB is activated by a BDOS Open or Make call.

Error Code 255 is returned if a physical error is encountered and the
BDOS error mode is Return Error mode, or Return and Display Error
mode (see Function 45). If the error mode is the default mode, a message

290

BDOS Function Calls

identifying the physical error is displayed at the console, and the catling
program is terminated, When a physical error is returned to the calling
program, register H contains one of the following error codes:

01 : Disk I/O error

02 : Read-Onty disk

03 : Read-Only filc or File open from user 0 when the current user number
is non-zero or File password protected in Write mode

04 : Invalid drive error

On all error returns, except for physical error returns, A = 255, Function
21 sets register H to the number of records successfully written before the
error was encountered. This value can range from 0 to 127 depending on
the current BDOS Multi-Sector Count. 1t is always set to zero when the
Multi-Sector Count is set to one.

BDOS FUNCTION 22: MAKE FILE

Entry Parameters:
Register C: 16H
DE: FCB Address

Returned Value:
Register A: Directory Code
H: Physical or Extended Esror

The Make File function creates a new dircctory entry for a file under the
current user number. It also creates an XFCB for the file if the referenced
drive has a directory label that enables password protection on the drive,
and the calling program assigns a password to the file.

The calling program passes the address of the FCB in register pair DE,
with byte 0 of the FCB specifying the drive, bytes 1 through 11 specifying
the filename and filetype, and byte 12 set to the extent number. Usually,
byte 12 is set to zero. Byte 32 of the FCB, the cr field, must be initialized to
zero, before or after the Make cali, if the intent is to write sequentially
from the beginning of the file.

Interface attribute f6° specifies whether a password is to be assigned to the
created file.

291

Programming with CP/IM Plus

o’
o’

0 - Do not assign password (default)
1 - Assign password to created file

When attribute {6 is sct to 1, the calling program must place the password
in the first 8 bytes of the current DMA buffer, and set byte 9 of the DMA
buffer to the password mode (see Function 102). Note that the Make
function only interrogates interface attribute 6’ if passwords are activated
on the referenced drive. In nonbanked systems, file passwords are not
supported, and attribute 6’ is never interrogated.

The Make function returns with an error if the referenced FCB names a file
that currently exists in the directory under the current user number.

If the Make function is successful, it activates the referenced FCB for file
operations by opening the FCB, and initializes both the directory entry and
the referenced FCB to an empty file. It also initializes all file attributes to
zero. In addition, Function 22 makes a Creation date and time stamp for
the file if the following conditions are satisfied: the referenced drive has a
directory label that requests Creation date and time stamping and the FCB
extent number field is equal to zero. Function 22 also makes an Update
stamp if the directory label requests update stamping and the FCB extent
ficld is equal to zero.

If the referenced drive contains a directory label that enables password
protection, and if interface attribute f6' has been set to 1, the Make
function creates an XFCRB for the file. In addition, Function 22 also assigns
the password, and password mode placed in the first nine bytes of the
DMA, to the XFCB,

Upon return, the Make function returns a directory code in register A with
the value 0 if the make operation is successful, or OFFH, 255 decimal, if no
directory space is available. Register H is set to zero in both of these cases.
If a physical or extended error is encountered, the Make function performs
different actions depending on the BDOS error mode (see Function 45). If
the BDOS error mode is the default mode, a message identifying the error
is displayed at the console, and the calling program is terminated.
Otherwise, the Make function returns to the calling program with register
A'set to OFFH, and register H set to one of the following physical or
extended error codes:

01 : Disk YO error

292

BDOS Function Calls

02 : Read-Only disk

04 : Invalid drive error

08 : File already exists

09 : ? in filename or fitetype field

BDOS FUNCTION 23: RENAME FILE

Entry Parameters:
Register C: 17H
DE: FCB Address

Returned Value:
Register A: Directory Code
H: Physical or Extended Error

The Rename function uses the FCB, addressed by register pair DE, to
change all directory entries of the file specified by the filename in the first
16 bytes of the FCB to the filename in the second 16 bytes. If the file
specified by the first filename is password protected, the correct password
must be placed in the first ¢ight bytes of the current DMA buffer, or have
been previously established as the default password (see Function 106).
The calling program must afso ensure that the filenames specified in the
FCB are valid and unambiguous, and that the new filename does not
already exist on the drive. Function 23 uses the dr code at byte 0 of the
FCB to setect the drive. The drive code at byte 16 of the FCB is ignored.

Upon return, the Rename function returns a Directory Code in register A
with the value O if the rename is successful, or OFFH, 255 Decimal, if the
file named by the first filename in the FCB is not found. Register H is set to
zero in both of these cases. If a physical or extended error is encountered,
the Rename function performs different actions depending on the BDOS
error mode (see Function 45). If the BDOS error mode is the default
mode, a message identifying the error is displayed at the console and the
program is terminated. Otherwise, the Rename function returns to the
calling program with register A set to OFFH and register H set to one of the
following physical or extended error codes:

01 : Disk I/O error
02 : Read-Only disk
03 : Read-Only file

293

Programming with CPIM Plus

04 : Invalid drive error

(07 : File password error

08 : File already exists

09 : ? in filename or filetype field

BDOS FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters:
Register C: 18H

Returned Value:
Registers HL: Login Vector

Function 24 returns the login vector in register pair HL. The login vector is
a 16-bit value with the least significant bit of L corresponding to drive A,
and the high-order bit of H corresponding to the 16th drive, labelled P. A0
bit indicates that the drive is not on-line, while a 1 bit indicates the drive is
active. A drive is made active by either an explicit BDOS Select Disk call,
number 14, or an implicit selection when a BDOS file operation specifies a
non-zero dr byte in the FCB. Function 24 maintains compatibilty with
earlier releases since registers A and L contain the same values upon
refurn.

BDOS FUNCTION 25: RETURN CURRENT DISK

Entry Paramcters:
Register C: 19H

Returned Value:
Register A: Current Disk

Function 25 returns the currently selected default disk number in register
A. The disk numbers range from 0 through 15 corresponding to drives A
through P.

294

BDOS Funciion Calls

BDOS FUNCTION 26: SET DMA ADDRESS

Entry Parameters:
Register C: 1AH
DE: DMA Address

DMA is an acronym for Direct Memory Address, which is often used in
connection with disk controllers that directly access the memory of the
computer to transfer data to and from the disk subsystem, Under CP/M
Plus, the current DMA is usually defined as the buffer in memory where a
record resides before a disk write, and after a disk read operation. If the
BDOS Multi-Sector Count is equal to one (see Function 44), the size of the
buffer is 128 bytes. However, if the BDOS Multi-Sector Couat is greater
than one, the size of the buffer must equal N * 128, where N equals the
Muiti-Sector Count.

Some BDOS functions also use the current DMA to pass pararmeters, and
to return values. For example, BDOS functions that check and assign file
passwords require that the password be placed in the current DMA. As
another example, Function 46, Get Disk Free Space, returns its results in
the first 3 bytes of the current DMA. When the current DMA is used in
this context, the size of the buffer in memory is determined by the specific
requirements of the called function.

When a transient program is initiated by the CCP, its DMA address is set
to 0080H. The BDOS Reset Disk System function, Function 13, also sets
the DMA address to 0080H. The Set DMA function can change this
default value to another memory address. The DMA address is set to the
value passed in the register pair DE. The DMA address remains at this
value until it is changed by another Set DMA Address, or Reset Disk
System cali.

BDOS FUNCTION 27: GET ADDR(ALLOC)

Entry Parameters:
Register C: 1BH

Returned Value:
Registers HL: ALLOC Address

295

Programming with CPIM Plus

CP/M Plus maintains an allocation vector in main memory for each active
disk drive. Some programs use the information provided by the allocation
vector to determine the amount of free data space on a drive. Note,
however, that the allocation information might be inaccurate if the drive
has been marked Read-Only.

Function 27 returns in register pair HL, the base address of the allocation
vector for the currently selected drive. If a physical error is encountered
when the BDOS error mode is one of the return modes (see Function 45),
Function 27 returns the value OFFFFH in the register pair HL.

In banked CP/M Plus systems, the allocation vector can be placed in bank
zero. In this case, a transient program cannot access the allocation vector.
However, the BDOS function, Get Disk Free Space (Function 46), can be
used to directly return the number of free 128 byte records on a drive, The
CP/M Ptus utilities that display a drive’s free space, DIR and SHOW, use
Function 46 for that purpose.

BDOS FUNCTION 28: WRITE PROTECT DISK

Entry Parameters:
Register C: ICH

The Write Protect Disk function provides temporary write protection for
the currently selected disk by marking the drive as Read-Only. No
program can write to a disk that is in the Read-Only state. A drive reset
operation must be performed for a Read-Only drive to restore it to the
Read-Write state (see Functions 13 and 37).

BDOS FUNCTION 29: GET READ-ONLY VECTOR

Entry Parameters:
Register C: 1DH

Returned Value:
Registers HL: R/O Vector Value

Function 29 returns a bit vector in register pair HL that indicates which
drives have the temporary Read-Only bit set. The Read-Only bit can be set

296

BDOS Fuaction Calls
only by a BDOS Write Protect Disk call.
The format of the bit vector is analagous to that of the login vector

returned by Function 24. The least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P,

BDOS FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters:
Register C: 1EH
DE: FCB Address

Returned Value:
Register A: Directory Code
' H: Physical or Extended error

By calling the Set File Attributes function, a program can modify a file’s
attributes and set its last record byte count. Other BDOS functions can be
called to interrogate these file parameters, but only Function 30 can change
them. The f{ile attributes that can be set or reset by Function 30 are f1°
through f4’, Read-Only, t1’, System, t2°, and Archive, t3'. The register
pair DE addresses an FCB containing a filename with the appropriate
attributes set or reset. The calling program must ensure that it does not
specify an ambiguous filename. In addition, if the specified file is password
protected, the correct password must be placed in the first eight bytes of
the current DMA buffer or have been previously established as the default
password (see Function 106).

Interface attribute f6’ specifies whether the last record byte count of the
specified file is to be set:

f&’ = 0 - Do not set byte count {default mode)
f6’ = 1 - Set byte count

If interface attribute {6’ is set, the calling program must set the cr field of
the referenced FCB to the byte count value. A program can access a file's
byte count value with the BDOS Open, Search, or Search Next functions.

Function 30 searches the referenced directory for entries belonging to the
current user number that matches the FCB specified name and type fields.

297

Programming with CPIM Plus

The function then updates the directory to contain the selected indicators,
and if interface attribute f6' is set, the specified byte count value. Note that
the last record byte count is maintained in byte 13 of a file’s directory
FCBs.

File attributes t1°, t2°, and t3' are defined by CP/M Plus. (They are
described in Section 8.3.4.) Attributes f1° through f4' are not presently
used, but can be useful for application programs, because they are not
involved in the matching program used by the BDOS during Open File and
Close File operations. Indicators £5° through {8 are reserved for use as
interface attributes.

Upon return, Function 30 returns a Directory Code in register A with the
value O if the function is successful, or OFFH, 255 Decimal, if the file
specified by the referenced FCB is not found. Register H is set to zero in
both of these cases. If a physical or extended error is encountered, the Set
File Attributes function performs different actions depending on the
BDOS error mode (see Function 45). If the BDOS error mode is the
default mode, a message identifying the error is displayed at the console,
and the program is terminated. Otherwise, Function 30 returns to the
calling program with register A set to OFFH, and register H set to one of
the following physical or extended error codes:

01 : Disk IYO error

02 : Read-Only disk

04 : Select error

07 . File password etror

09 : ? in filename or filetype field

BDOS FUNCTION 31: GET ADDR(DPB PARMS)

Entry Parameters:
Register C: 1FH

Returned Value:
Registers HL: DPB Address

Function 31 returns in register pair HL the address of the BIOS-resident
Disk Parameter Block, DPB, for the currently selected drive. The calling
programi can use this address to extract the disk parameter values,

298

BDOS Function Calls

If a physical error is encountered when the BDOS error mode is one of the
return modes (see Function 45), Function 31 returns the value OFFFFH in
the register pair HL. See Appendix I for futher details.

BDOS FUNCTION 32: SET/GET USER CODE

Entry Parameters:
Register C: 20H
E: OFFH (get) or User Code (set)

Returned Value:
Register A: Current Code or
(no value)

A program can change, or interrogate the currently active user number by
calling Function 32. If register E = OFFH, then the value of the current
user number is returned in register A, where the value is in the range of 0
to 15. If register E is not O0FFH, then the current user number is changed to
the value of E, modulo 16.

BDOS FUNCTION 33: READ RANDOM

Entry Parameters:
Register C: 21H
DE: FCB Address

Returned Value:
Register A: Error Code
H: Physical Error

The Read Random function is similar to the Read Sequential function
except that the read operation takes place at a particuiar random record
number, selected by the 24-bit value constructed from the three byte, r0,
r1, 12, field beginning at position 33 of the FCB. Note that the sequence of
24 bits is stored with the least significant byte first, r0, the middie byte
next, rl, and the high byte last, r2. The random record number can range
from 0 to 262,143, This corresponds to a maximum value of 3 in byte 12,

To read a file with Function 33, the calling program must first open the

299

Programming with CPIM Plus

base extent, extent . This ensures that the FCB is properly initialized for
subsequent random access operations. The base extent may or may not
contain any allocated data. Function 33 reads the record specified by the
random record field into the current DMA address. The function
automatically sets the logical extent and current record values, but unlike
the Read Sequential function, it does not advance the current record
number. Thus, a subsequent Read Random call rereads the same record.
After a random read operation, a file can be accessed sequentially, starting
from the current randomly accessed position. However, the last randomly
accessed record is reread or rewritten when switching from random to
sequential mode.

If the BDOS Multi-Sector count is greater than one {see Function 44), the
Read Random function reads multiple consecutive records into memory
beginning at the current DMA. The 10, rl, and 12 field of the FCB is
automatically incremented to read each record. However, the FCBs
random record number is restored to the first record’s value upon return to
the calling program.

Upon return, the Read Random function sets register A to zero if the read
operation was successful, Otherwise, register A contains one of the
following error codes:

01 : Reading unwritten data (end-of-file)
03 : Cannot close current extent
04 : Seek to unwritten extent
06 : Random record number out of range
10 : Media change occurred

255 : Physical Error : refer to register H

Error Code 01 is returned if no data exists at the next record position of the
file. Usually, the no data situation is encountered at the end of a file.
However, it can also occur if an attempt is made to read a data block that
has not been previously written.

Error Code 03 js returned when the Read Random function cannot close
the current extent prior to moving to a new extent,

Error Code 04 is returned when a read random operation accesscs an
extent that has not been created.

300

BDOS Function Calls

Error Code 06 is returned when byte 35, r2, of the referenced FCB is
greater than 3.

Error Code 10 is returned if a media change occurs on the drive after the
referenced FCB is activated by a BDOS Open or Make call.

Error Code 255 is returned if a physical error is encountered, and the
BDOS error mode is one of the return modes (see Function 45). If the
error mode is the default mode, a message identifying the physical error is
displayed at the console, and the calling program is terminated. When a
physicai error is returned to the calling program, register H contains one of
the following error codes:

01 : Disk IfO error
04 : Invalid drive error

On all error returns except for physical errors, A = 255, the Read Random
function sets register H to the number of records successfully read before
the error is encountered. This value can range from 0 to 127 depending on
the current BDOS Multi-Sector Count. It is always set to zero when the
Multi-Sector count is equal to one.

BDOS FUNCTION 34: WRITE RANDOM

Entry Parameters:
Register C: 22H
DE: FCB Address

Returned Value:
Register A: Error Code
H: Physical error

The Write Random function is analogous to the Read Random Function,
except that data is written to the disk from the current DMA address. If the
disk extent or data block where the data is to be written is not already
allocated, the BDOS automatically performs the allocation before the
write operation continues.

To write to a file using the Write Random function, the calling program
must first open the base extent, extent 0. This ensures that the FCRB is

301

Programming with CPIM Plus

propetty initialized for subsequent random access operations. If the file is
empty, the calling program must create the base extent with the Make File
function before calling Function 34. The base extent might or might not
contain any allocated data, but it does record the file in the directory, so
that the file can be displayed by the DIR utility.

The Write Random function sets the logical extent and current record
positions to correspond with the random record being written, but does not
change the random record number. Thus, sequential read or write
operations can follow a random write, with the current record being reread
or rewritten as the calling program switches from random to sequential
mode.

Function 34 makes an Update date and time stamp for the file if the
following conditions arc satisfied: the referenced drive has a directory label
that requests Update date and time stamping if the file has not already
been stamped for update by a previous BDOS Make or Write call.

If the BDOS Multi-Sector count is greater than one (see Function 44), the
Write Random function reads multiple consecutive records into memory
beginning at the current DMA. The 10, rl, and 12 field of the FCB is
automatically incremented to write each record. However, the FCB’s
random record number is restored to the first record’s value when it
returns to the cailing progtam. Upon return, the Write Random function
sets register A to zero if the write operation is successful. Otherwise,
register A contains one of the following error codes:

02 : No available data block
03 : Cannot Close current extent
05 : No available directory space
06 : Random record number out of range
10 : Media change occurred
255 : Physical Error : refer to register H

Error Code 02 is returned when the write command attempts to allocate a
new data block to the file and no unallocated data blocks exist on the
selected disk drive,

Error Code 03 is returned when the Write Random function cannot close
the current extent prior to moving to a new extent.

302

BDOS Function Calls

- Error Code 05 is returned when the write function attempts to create a new
extent that requires a new directory entry and no available directory
entries exist on the selected disk drive.

Error Code 06 is returned when byte 35, 12, of the referenced FCB is
greater than 3.

Error Code 10 is returned if a media change occurs on the drive after the
referenced FCB is activated by a BDOS Open or Make call.

Error Code 255 is returned if a physical error is encountered and the
BDOS error mode is one of the return modes (see Function 45). If the
error mode is the default mode, a message identifying the physical error is
displayed at the console, and the calling program is terminated. When a
physical error is returned to the calling program, it is identified by register
H as shown below:

01 : Disk I/O error

02 : Read-Only disk

03 : Read-Only file or File open from user 0 when the current user number
is nonzero or File password protected in Write mode

04 : Invalid drive error

On all error returns, except for physical errors, A = 255, the Write
Random function sets register H to the number of records successfully
written before the error is encountered. This value can range from 0 to 127
depending on the current BDOS Multi-Sector Count. It is always set to
zero when the Multi-Sector count is equal to one.

BDOS FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:
Register C:. 23H
DE: FCB Address

Returned Value:
Register A: Error Flag
H: Physical or Extended Error

Random Record Field Set

303

Programming with CP/M Plus

The Compute File Size function determines the virtual file size, which is, in
effect, the address of the record immediately following the end of the file.
The virtual size of a file corresponds to the physical size if the file is written
sequentially, If the file is written in random mode, gaps might exist in the
allocation, and the file might contain fewer records than the indicated size.

To compute file size, the calling program passes in register pair DE the
address of an FCB in random mode format, bytes r(}, rl and r2 present.
Note that the FCB must contain an unambiguous filename and filetype.
Function 35 sets the random record field of the FCB to the random record
number + 1 of the last record in the file. If the r2 byte is set to 04, then the
file contains the maximum record count 262,144,

A program can append data to the end of an existing file by calling
Function 35 to set the random record position to the end of file, and then
performing a sequence of random writes starting at the preset record
address.

Note: the BDOS does not require that the file be open to use Function
35. However, if the fite has been written to, it must be closed before calling
Function 35. Otherwise, an incorrect file size might be returned.

Upon return, Function 35 returns a zero in register A if the file specified by
the referenced FCB is found, or an OFFH in register A if the file is not
found. Register H is set to zero in both of these cases. If a physical error is
encountered, Function 35 performs different actions depending on the
BDOS error mode (see Function 45). If the BDOS error mode is the
default mode, a message identifying the error is displayed at the console
and the program is terminated. Otherwise, Function 35 returns to the
calling program with register A set to 0FFH, and register H set to one of
the following physical errors:

01 : Disk 1/O error
04 : Invalid drive error

BDOS FUNCTION 36: SET RANDOM RECORD

Entry Rg_ifameters:
Register C: 24H
DE: FCB Address

304

BDOS Function Calls

Returned Value: Random Record Field Set

The Set Random Record function returns the random record number of
the next record to be accessed from a file that has been read or written
sequentially to a particular point. This value is returned in the random
record field, bytes r0, rl, and 12, of the FCB addressed by the register pair
DE. Function 36 can be useful in two ways.

First, it is often necessary to initially read and scan a sequential file to
extract the positions of various key fields. As each key is encountered,
Function 36 is called to compute the random record position for the data
corresponding to this key. If the data unit size is 128 bytes, the resulting
record number minus one is placed into a table with the key for later
retrieval. After scanning the entire file and tabularizing the keys and their
record numbers, you can move directly to a particular record by
performing a random read using the corresponding random record number
that you saved earlier. The scheme is easily generalized when variable
record lengths are involved, because the program need only store the
buffer-relative byte position along with the key and record number to find
the exact starting position of the keved data at a later time.

A second use of Function 36 occurs when switching from a sequential read
or write over to random read or write, A file is sequentially accessed to a
particular point in the file, then Function 36 is called to set the record
number, and subsequent random read and write operations continue from
the next record in the file,

BDOS FUNCTION 37: RESET DRIVE

Entry Parameters:
Register C: 25H
DE: Drive Vector

Returned Value:
Register A: 00H

The Reset Drive function programmatically restores specified drives to the
reset state. A reset drive is not logged-in and is in Read-Write status. The
passed parameter in register pair DE is a 16-bit vector of drives to be reset,
where the least significant bit corresponds to the first drive A, and the

305

Programming with CP/M Plus

high-order bit corresponds to the sixteenth drive, labelled P. Bit values of 1
indicate that the specified drive is to be reset.

BDOS FUNCTION 38: ACCESS DRIVE

Entry Parameters:
Register C: 26H

This is an MP/M function that is not supported under CP/M Plus. If called,
the file system returns a zero in register A indicating that the access request
is successful.

BDOS FUNCTION 39: FREE DRIVE

Entry Parameters:
Register C: 27H

This is an MP/M function that is not supported under CP/M Plus. If called,
the file system returns a zero in register A indicating that the free request is
successful.

BDOS FUNCTION 40: WRITE RANDOM WITH
ZERO FILL

Entry Parameters:
Register C: 28H
DE: FCB address

Returned Value:
Register A: Error Code
H: Physical Error

The Write Random With Zero Fill function is identical to the Write
Random function (Function 34) with the exception that a previously
unallocated data block is filled with zeros before the record is written, If
this function has been used to create a file, records accessed by a read
random operation that contain all zeros identify unwritten random record
numbers. Unwritten random records in allocated data blocks of files

306

BDOS Function Calls

created using the Write Random function (Function 34) contain
uninitialized data,

BDOS FUNCTION 41: TEST AND WRITE RECORD

Entry Parameters:
Register C: 29H
DE: FCB Address

Returned Value:
Register A: Error Code
H: Physical Error

The Test and Write function is an MP/M II..function that is not supported
under CP/M Plus. If called, Function 41 returns with register A set to
OFFH and register H set to zero.

BDOS FUNCTION 42: LOCK RECORD

Entry Parameters:
Register C: 2AH
DE: FCB Address

Returned Value:
Register A: 00H

The Lock Record function is an MP/M II function that is supported under
CP/M Plus only to provide compatibility between CP/M Plus and MP/M. It
is intended for use in situations where more than one running program has
Read-Write access to a common file. Because CP/M Plus is a single-user
operating system in which only one program can run at a time, this
situation cannot occur. Thus, under CP/M Plus, Function 42 performs no
action except to return the value 00H in register A indicating that the
record lock operation is successful,

367

Programming with CPIM Plus

BDOS FUNCTION 43: UNLOCK RECORD

Entry Parameters:
Register C: 2BH
DE: FCB Address

Returned Value:
Register A: 00H

The Unlock Record function is an MP/M Il function that is supported
under CP/M Plus only to provide compatibility between CP/M Plus and
MP/M. It is intended for use in situations where more than one running
program has Read-Write access to a common file. Because CP/M Plus is a
single-user operating system in which only one program can run at a time,
this situation cannot occur. Thus, under CP/M Plus, Function 43 performs
no action except to return the value O0H in register A indicating that the
record unlock operation is successful.

BDOS FUNCTION 44: SET MULTI-SECTOR COUNT

Entry Parameters:
Register C: 2CH
E: Number of Sectors

Returned Value:
Register A: Return Code

The Set Multi-Sector Count function provides logical record blocking
under CP/M Plus. It enables a program to read and write from 1 to 128
records of 128 bytes at a time during subsequent BDOS Read and Write
functions.

Function 44 sets the Multi-Sector Count value for the calling program to
the value passed in register E. Once set, the specified Multi-Sector Count
remains in effect until the calling program makes another Set Multi-Sector
Count function call and changes the value., Note that the CCP sets the
Multi-Sector Count to one when it initiates a transient program.

The Multi-Sector count affects BDOS error reporting for the BDOS Read

308

BDOS Function Calls

and Write functions. If an error interrupts these functions when the
Multi-Sector is greater than one, they return the number of records
successfully read or written in register H for all errors except for physical
errors (A = 255).

Upon return, register A is set to zero if the specified value is in the range of
1 to 128. Otherwise, register A is set to OFFH.

BDOS FUNCTION 45: SET BDOS ERROR MODE

Entry Parameters:
Register C: 2DH
E: BDOS Error Mode

Returned Value: None

Function 45 sets the BDOS error mode for the calling program to the mode
specified in register E. If register E is set to OFFH, 255 decimal, the error
mode is set to Return Error mode. If register E is set to OFEH, 254
decimal, the error mode is set to Return and Display mode. If register E is
set to any other value, the error mode is set to the default mode.

The SET BDOS Error Mode function determines how physical and
extended errors are handled for a program. The Error Mode can exist in
three modes: the default mode, Return Error mode, and Return and
Display Error mode. In the default mode, the BDOS displays a system
message at the console that identifies the error and terminates the calling
program. In the return modes, the BDOS sets register A to OFFH, 255
decimal, places an error code that identifics the physical or extended error
in register H and returns to the calling program. In Return and Display
mode, the BDOS displays the system message before returning to the
calling program. No systemn messages are displayed, however, when the
BDQOS is in Return Error mode.

BDOS FUNCTION 46: GET DISK FREE SPACE

Entry Parameters:
Register C: 2EH
E: Drive

309

Programming with CPIM Plus

Returned Value: First 3 bytes
of current DMA
buffer
Register A: Error Flag
H: Physical error

The Get Disk Free Space function determines the number of free sectors,
128 byte records, on the specified drive. The calling program passes the
drive number in register E, with 0 for drive A, 1 for B, and so on, through
15 for drive P in a full 16-drive system. Function 46 returns a binary
number in the first 3 bytes of the current DMA buffer. This number is’
returned in the following format:

fs0 fsl fs2

Disk Frec Space Field Format

fs0 = low byte
fs1 = middle byte
fs2 = high byte

Note that the returned free space value might be inaccurate if the drive has
been marked Read-Only.

Upon return, register A is set to zero if the function is successful.
However, if the BDOS Error Mode is one of the return modes (see
Function 45), and a physical error is encountered, register A is set to
OFFH, 255 decimal, and register H is set to one of the following values:

01 - Disk I/O error
04 - Invalid drive error

BDOS FUNCTION 47: CHAIN TO PROGRAM

Entry Parameters:
Register C: 2FH
E: Chain Flag

The Chain To Program function provides a means of chaining from one
program teo the next without operator intervention. The calling program

310

BDOS Function Calls

must place a command line terminated by a null byte, 00H, in the default
DMA buffer. If register E is set to 0FFH, the CCP initializes the default
drive and user number to the current program values when it passes control
to the specified transient program. Otherwise, these parameters are set to
the default CCP values. Note that Function 108, Get/Set Program Return
Code, can be used to pass a two byte value to the chained program.

Function 47 does not return any values to the calling program and any
errors encountered are handied by the CCP.

BDOS FUNCTION 48: FLUSH BUFFERS

Entry Parameters:
Register C: 30H
E: Purge Flag

Returned Value:
Register A: Error Flag
H: Physical Error

The Flush Buiffers function forces the write of any write-pending records
contained in internal blocking/deblocking buffers. If register E is set to
OFFH, this function also purges all active data buffers. Programs that
provide write with read verify support need to purge internal buffers to
ensure that verifying reads actually access the disk instead of returning data
that is resident in internal data buffers. The CP/M Plus PIP utility is an
example of such a program.

Upon return, register A is set to zero if the flush operation is successful. If
a physical error is encountered, the Flush Buffers function performs
different actions depending on the BDOS error mode (see Function 45). If
the BDOS error mode is in the default mode, a message identifying the
error is displayed at the console and the calling program is terminated.
Otherwise, the Flush Buffers function returns to the calling program with
register A set to OFFH and register H set to the following physical error
code:

01 : Disk I/O error
02 : Read/only disk
04 : Invalid drive error

311

Programming with CPIM Plus

BDOS FUNCTION 49: GET/SET SYSTEM
CONTROL BLOCK

Entry Parameters:
Register C: 31H
DE: SCB PB Address

Returned Value:
Register A: Returned Byte
HL: Returned Word

Function 49 allows access to parameters located in the CP/M Plus System
Contro! Block (SCB). The SCB is a 100-byte data structure residing within
the BDOS that contains ftags and data used by the BDOS, CCP and other
system components. Note that Function 49 is a CP/M Plus specific
function. Programs intended for both MP/M Il and CP/M Plus shouid
either avoid the use of this function or isolate calls to this function in CP/M
Plus version-dependent sections.

To use Function 49, the calling program passes the address of a data
structure called the SCB parameter block in register pair DE. This data
structure identifies the byte or word of the SCB to be updated or returned.
The SCB parameter block is defined as:

SCBPB: DB OFFSET ; Offset within SCB
DB SET ; OFFH if setting a byte
; OFEH if setting a word
; 001H - OFDH are reserved
; OOOH if a get operation
DW VALUE ; Byte or word value to be set

The OFFSET parameter identifies the offset of the field within the SCB to
be updated or accessed. The SET parameter determines whether Function
49 is to set a byte or word value in the SCB or if it is to return a byte from
the SCB. The VALUE parameter is used only in set calls. In addition, only
the first byte of VALUE is referenced in set byte calls.

Use caution when you set SCB fields. Some of these parameters reflect the

current state of the operating system. If they are set to invalid values,
software errors can result. In gencral, do not use Function 49 to set a

3i2

BDOS Function Calls

system parameter if another BDOS function can achieve the same result,
For example, Function 49 can be called to update the Current DMA
Address field within the SCB. This is not equivalent to making a Function
26, Set DMA Address call, and updating the SCB Current DMA field in
this way would result in system errors. However, you can use Function 49
to return the Current DMA address. The System Control Block is
summarized in the following table. Each of these fields is documented in
detait in Appendix E.

Table 9-3. System Control Block

Offset Description
00 - 04 Reserved For System Use
05 BDOS version number
a6 - 09 User Flags
0A - OF Reserved For System Use
10 - 11 Program Error return code
12 - 19 Reserved For System Use
1A Console Width (columns)
1B Console Column Position
1C Console Page Length
iD - 21 Reserved For System Use
22-23 CONIN Redirection flag
24 - 25 CONOUT Redirection flag
26 - 27 AUXIN Redirection flag
28-29 -AUXOUT Redirection flag
2A - 2B LSTOUT Redirection flag
2C Page Mode
z2D Reserved For System Use
2E CTRL-H Active
2F Rubout Active
30 -32 Reserved For System Use
33-34 Console Mode
35-36 Reserved For System Use
37 Output Delimiter
38 List Output Flag
39 -3B Reserved For System Use
3C-3D Current DMA Address
JE Current Disk

313

Programming with CPIM Plus

Table 9-3 (continued)

3F - 43 Reserved For System Use

44 Current User Number

45 - 49 Reserved For System Use

4A BDOS Multi-Sector Count

4B BDOS Error Made

4C - 4F Drive Search Chain (DISKS A: E:,F:)
50 Temporary File Drive

51 Error Disk

52-56 Reserved For System Use

57 BDOS flags

58 - 5C Date Stamp

5D - 5E Common Memory Base Address
SE - 63 Reserved For System Use

If Function 49 is called with the OFFSET parameter of the SCB parameter
block greater than 63H, the function performs no action but returns with
registers A and HL set to zero.

BDOS FUNCTION 50: DIRECT BIOS CALLS

Entry Parameters:
Register C: 32H
DE: BIOS PB Address

Returned Value: BIOS RETURN

Function 50 provides a direct BIOS call through the BDOS to the BIOS.
The calling program passes the address of a data structure called the BIOS
Parameter Block (BIOSPB) in register pair DE. The BIOSPB contains the
BIOS function number and register contents as shown below:

BIOSPB: db FUNC ; BIOS function no.
db AREG : A register contents
dw BCREG ; BC register contents
dw DEREG ; DE register contents
dw HLREG ; HL register contents

314

BDOS Function Calls

System Reset (Function 0) is equivalent to Function 30 with a BIOS
function number of 1.

Note that the register pair BIOSPB fields (BCREG, DEREG, HLREG)
are defined in low byte, high byte order. For example, in the BCREG
field, the first byte contains the C register value, the second byte contains
the B register value.

Under CP/M Plus, direct BIOS calls via the BIOS jump vector are only
supported for the BIOS Console 1/0, List and USERF functions. You
must use Function 50 to call any other BIOS functions. In addition,
Function 50 intercepts BIOS Function 27 (Select Memory) cails and
returns with register A set to zero.

BDOS FUNCTION 59: LOAD OVERLAY

Entry Parameters:
Register C: 3BH
DE: FCB Address

Returned Value:
Register A: Error Code
H: Physical Error

Only transient programs with an RSX header can use the Load Overlay
function because BDOS Function 59 is supported by the LOADER
module. The calling program must have a header to force the LOADER to
remain resident after the program is loaded.

Function 39 loads either an absolute or relocatable module, Relocatable
modules are identified by a filetype of PRL. Function 59 does not call the
loaded module.

The referenced FCB must be successfully opened before Function 59 is
called. The load address is specified in the first two random record bytes of
the FCB, 10 and r1. The LOADER returns an error if the load address is
less than 100H, or if performing the requested load operation would
overlay the LOADER, or any other Resident System Extensions that have
been previously loaded.

315

Programming with CPIM Plus

When loading relocatable files, the LOADER requires enough room at the
Joad address for the complete PRL file including the header and bit map
(see Appendix B). Otherwise an error is returned. Function 59 also retusns
an error on PRL file load requests if the specified load address is not on a
page boundary.

Upon return, Function 59 sets register A to zero if the load operation is
successful. If the LOADER RSX is not resident in memory because the
calling program did not have a RSX header, the BDOS returns with
register A set to OFFH and register H set to zero. If the LOADER detects
an invalid load address, or if insufficient memory is available to load the
overlay, Function 59 returns with register A set to OFEH. All other error
returns are consistent with the error codes returned by BDOS Function 20,
Read Sequential.

BDOS FUNCTION 6(}: CALL RESIDENT SYSTEM EXTENSION

Entry Parameters:
Register C: 3CH
DE: RSX PB Address

Returned Value:
Register A: Error Code
H: Physical Error

Function 60 is a special BDOS function that you use when you call
Resident System Extensions. The RSX subfunction is specified in a
structure called the RSX Parameter Block, defined as follows:

RSXPB: db FUNC ; R8X Function number
db NUMPARMS ; Number of word parameters
dw PARMETER1 ; Parameter 1
dw PARMETER2 : Parameter 2

dw PARMETERN ; Parameter n
RSX modules filter all BDOS calls and capture RSX function calls that
they can handie. If there is no RSX module present in memory that can
handle a specific RSX function call, the call is not trapped, and the BDOS

returns OFFh in registers A and L. RSX function numbers from 0 to 127 are

316

BDOS Function Calls

available for CP/M Plus compatible software use. RSX function numbers
128 10 255 are reserved for system use.

BDOS FUNCTION 98: FREE BLOCKS

Entry Parameters:
Register C: 62H

Returned Value:
Register A: Error Flag
H: Physical Error

The Free Blocks function scans all the currently logged-in drives, and for
each drive returns to free space all temporarily-allocated data blocks. A
temporarily-allocated data block is a block that has been allocated to a file
by a BDOS write operation but has not been permanently recorded in the
directory by a BDOS close operation. The CCP calls Function 98 when it
receives control following a system warm start. Be sure to close your file,
particularly any file you have written to, prior to calling Function 98.

Upon return, register A is set to zero if Function 98 is successful. If a
physical error is encountered, the Free Blocks function performs different
actions depending on the BDOS error mode (see Function 45). If the
BDOS error mode is in the default mode, a message identifying the error is
displayed at the console and the calling program is terminated. Otherwise,
the Free Blocks function returns to the calling program with register A set
to OFFH and register H set to the following physical error code:

04 : Invalid drive error

BDOS FUNCTION 99: TRUNCATE FILE

Entry Parameters:
Register C: 63H
DE: FCB Address

317

Programming with CPIM Plus

Returned Value:
Register A: Directory Code
H: Extended or Physical Error

The Truncate File function sets the last record of a file to the random
record number contained in the referenced FCB. The calling program
passes the address of the FCB in register pair DE, with byte 0 of the FCB
specifying the drive, bytes 1 through 11 specifying the filename and
filetype, and bytes 33 through 35, 10, r1, and r2, specifying the last record
number of the file. The last record number is a 24 bit value, stored with the
least significant byte first, r0, the middle byte next, r1, and the high byte
last, r2. This value can range from 0 to 262,143, which corresponds to a
maximum value of 3 in byte 2.

If the file specified by the referenced FCB is password protected, the
correct password must be placed in the first eight bytes of the current
DMA buffer, or have been previously established as the default password
(see Function 106).

Function 99 requires that the file specified by the FCB not be open,
particularly if the file has been written to. In addition, any activated FCBs
naming the file are not valid after Function 99 is called. Close your file
before calling Function 99, and then reopen it after the call to continue
processing on the file.

Function 99 also requires that the random record number field of the
referenced FCB specify a value less than the current file size. In addition, if
the file is sparse, the random record field must specify a record in a region
of the file where data exists.

Upon returs, the Truncate function returns a Directory Code in register A
with the value 0 if the Truncate function is successful, or OFFH, 255
decimal, if the file is not found or the record number is invalid. Register H
is set to zero in both of these cases. If a physical or extended error is
encountered, the Truncate function performs different actions depending
on the BDOS error mode (see Function 45), If the BDOS error mode is in
the default mode, a message identifying the error is displayed at the
console and the program is terminated. Otherwise, the Truncate function
returns to the calling program with register A set to 0FFH and register H
set to one of the following physical or extended error codes:

318

BDOS Function Calis

01 : Disk I/O error

02 : Read-Only disk 03 : Read-Only file
04 : Invalid drive error

07 : File password error

09 : ? in filename or filetype field

BDOS FUNCTION 100: SET DIRECTORY LABEL

Entry Parameters:
Register C: 64H
DE: FCB Address

Returned Value:
Register A: Directory Code
H: Physical or Extended Error

The Set Directory Label function creates a directory label, or updates the
existing directory label for the specified drive. The calling program passes
in register pair DE, the address of an FCB containing the name, type, and
extent fields to be assigned to the directory labei. The name and type fields
of the referenced FCB are not used to locate the directory label in the
directory; they are simply copied into the updated or created directory
label. The extent field of the FCB, byte 12, contains the user’s specification
of the directory label data byte. The definition of the directory label data
byte is:

bit Require passwords for password-protected files
6 - Perform access date and time stamping
5 - Perform update date and time stamping
4 - Perform create date and time stamping
0 - Assign a new password to the directory label

If the current directory label is password protected, the correct password
must be placed in the first eight bytes of the current DMA,, or have been
previously established as the default password (sec Function 106). If bit 0,
the low-order bit, of byte 12 of the FCB is set to 1, it indicates that a new
password for the directory fabel has been placed in the second eight bytes
of the current DMA.

Function 100 also requires that the referenced directory contain SFCBs to

319

Programming with CPIM Plus

activate date and time stamping on the drive. If an attempt is made to
activate date and time stamping when no SFCBs exist, Function 100
returns an error code of OFFH in register A and performs no action. The
CP/M Plus INITDIR utility initializes a directory for date and time
stamping by placing an SFCB record in every fourth entry of the directory.

Function 100 returns a Directory Code in register A with the value O if the
directory label create or update is successful, or OFFH, 255 decimal, if no
space exists in the referenced directory to create a directory label, or if date
and time stamping was requested and the referenced directory did not
contain SFCBs. Register H is set to zero in both of these cases. If a physical
error or extended error is encountered, Function 100 performs different
actions depending on the BDOS error mode (see Function 45). If the
BDOS error mode is the default mode, a message identifying the érror is
displayed at the console and the calling program is terminated. Otherwise,
Function 100 returns to the calling program with register A set to OFFH
and register H set to one of the following physical or exiended error codes:

01 : Disk I/O error

02 : Read-Only disk

04 : Invalid drive error
07 : File password error

BDOS FUNCTION 101: RETURN DIRECTORY LABEL DATA

Entry Parameters:
Register C: 65H
E: Drive

Returned Value:
Registers A: Directory label
Data Byte
H: Physical Error

The Return Directory Label Data function returns the data byte of the
directory label for the specified drive. Theé calling program passes the drive
number in register E with 0 for drive A, 1 for drive B, and so on through 15
for drive P in a full sixteen drive system. The format of the directory label
data byte is shown below:

320

BDOS Function Calls

bit 7 - Require passwords for password protected files
6 - Perform access date and time stamping
5 - Perform update date and time stamping
4 - Perform create date and time stamping
0 - Directory label exists onr drive

Function 101 returns the directory label data byte to the calling program in
register A. Register A equal to zero indicates that no directory label exists
on the specified drive. If a physical error is encountered by Function 101
when the BDOS Errer mode is in one of the return modes (see Function
45), this function returns with register A set to OFFH, 255 decimal, and
register H set to one of the following:

01 : Disk I/O error
04 : Invalid drive error

BDOS FUNCTION 102: READ FILE DATE STAMPS
AND PASSWORD MODE

Entry Parameters:
Register C: 66H
DE: FCB Address

Returned Value:
Register A: Directory Code
H: Physical Error

Function 102 returns the date and time stamp information and password
mode for the specified file in byte 12 and bytes 24 through 32 of the
specified FCB. The calling program passes in register pair DE, the address
of an FCB in which the drive, filename, and filetype fields have been
defined.

If Function 102 is successful, it sets the following fields in the referenced
FCB:

321

Programming with CPIM Plus

byte 12 : Password mode field
bit 7 - Read mode
bit 6 - Write mode
bit 4 - Delete mode

Byte 12 equal to zero indicates the file has not been assigned a password.
In nonbanked systems, byte 12 is always set to zero.

byte 24 - 27 : Create or Access time stamp field
byte 28 - 31 : Update time stamp field

The date stamp fields are set to binary zeros if a stamp has not been made.
The format of the time stamp ficlds is the same as the format of the date
and time structure described in Function 104,

Upon return, Function 162 returns a Directory Code in register A with the
value zero if the function is successful, or OFFH, 253 decimal, if the
specified file is not found. Register H is set to zero in both of these cases. If
a physical or extended error is encountered, Function 102 performs
different actions depending on the BDOS error mode (see Function 45). If
the BDOS error mode is in the default mode, a message identifying the
error is displayed at the console and the calling program is terminated.
Otherwise, Function 102 returns to the calling program with register A set
to OFFH and register H set to one of the following physical or extended
error codes:

01 : Disk I/O error
04 : Invalid drive error
09 : ? in filename or filetype field

BDOS FUNCTION 103: WRITE FILE XFCB

Entry Parameters:
Register C: 67H
DE: FCB Address

Returned Value:
Register A: Directory Code
H: Physical Error

322

BDOS Function Calls

The Write File XFCB function creates a new XFCB or updates the existing
XFCB for the specified file. The calling program passes in register pair DE
the address of an FCB in which the drive, name, type, and extent ficids
have been defined. The extent field specifies the password mode and
whether a new password is to be assigned to the file. The format of the
extent byte is shown below:

FCB byte 12 (ex) : XFCB password mode
bit 7 - Read mode bit 6 - Write mode

bit 5 - Delete mode

bit O - Assign new password to the file

If the specified file is currently password protected, the correct password
must reside in the first eight bytes of the current DMA, or have been
previousty established as the default password (see Function 106). 1f bit (1
set to 1, the new password must reside in the second eight bytes of the
current DMA,

Upen return, Function 103 returns a Directory Code in register A with the
value zero if the XFCB create or update is successful, or OFFH, 255
decimal, if no directory fabel exists on the specified drive, or the file named
in the FCB is not found, or no space exists in the directory to create an
XFCB. Function 103 also returns with OFFH in register A if passwords are
not enabled by the referenced directory’s label. On nonbanked systems,
this function always returns with register A = OFFH because passwords are
not supported, Register H is set to zero in all of these cases. If a physical or
cxtended error is encountered, Function 103 performs different acticns
depending on the BDOS error mode (see Function 45). If the BDOS crror
made is the default mode, a message identifying the error is displayed at
the console and the calling program is terminated. Otherwise, Function
103 returns to the calling program with register A set to OFFH and register
H set to one of the following physical or extended error codes:

01 : Disk I/O error

02 : Read-Only disk

04 : Invalid drive error

07 : File password error

09 : ? in filename or filetype field

323

Programming with CPIM Plus

BDOS FUNCTION 104: SET DATE AND TIME

Entry Parameters:
Register C: 68H
DE: DAT Address

Returned Value: none

The Set Date and Time function sets the system internal date and time.
The calling program passes the address of a 4-byte structure containing the
date and time specification in the register pair DE. The format of the date
and time (DAT) data structure is:

byte 0 - 1 : Date field
byte 2 : Hour field
byte 3 : Minute field

The date is represented as a 16-bit integer with day 1 corresponding to
January 1, 1978. The time is represented as two bytes: hours and minutes
are stored as two BCD digits.

This function also sets the seconds field of the system date and time to
Zer0.

BDOS FUNCTION 105: GET DATE AND TIME

Entry Parameters:
Register C: 69H
DE: DAT Address

Return Value:
Register A: seconds
DAT set

The Get Date and Time function obtains the system internal date and time.
The calling program passes in register pair DE, the address of a 4-byte data

324

BDQOS Function Calls

structure which receives the date and time values. The format of the date
and time, DAT, data structure is the same as the format described in
Function 104, Function 105 also returns the seconds field of the system
date and time in register A as a two digit BCD value.

BDOS FUNCTION 106: SET DEFAULT PASSWORD

Entry Parameters:
Register C: 6AH
DE: Password Address

Returned Value: none

The Set Default Password function allows a program to specify a password
value before a file protected by the password is accessed. When the file
system accesses a password-protected file, it checks the current DMA, and
the default password for the correct value. If either value matches the file’s
password, full access to the file is allowed.

To make a Function 106 call, the calling program sets register pair DE to
the address of an 8-byte ficld containing the password.

BDOS FUNCTION 107: RETURN SERIAL NUMBER

Entry Parameters:
Register C: 6BH
DE: Serial Number Field

Returned Value: Serial number field set

Function 107 returns the CP/M Plus serial number to the 6-byte field
addressed by register pair DE.

325

Programming with CPIM Plus

BDOS FUNCTION 108: GET/SET PROGRAM RETURN
CODE

Entry Parameters:
Registerr C: 6CH
DE: OFFFFH (Get) or
Program Return Code (Set)

Returned Value:
Register HL: Program Return Code or (no value)

CP/M Plus allows programs to set a return code before terminating. This
provides a mechanism for programs to pass an error code or value to a
following job step in batch environments, For example, Program Return
Codes are used by the CCP in CP/M Plus’s conditional command line batch
facility. Conditional command lines are command lines that begin with a
colon, :. The execution of a conditional command depends on the
successful execution of the preceding command. The CCP tests the return
code of a terminating program to determine whether it successfully
completed or terminated in error. Program return codes can also be used
by programs to pass an error code or value to a chained program (see
Function 47, Chain To Program).

A program can set or interrogate the Program Return Code by calling
Function 108. If register pair DE = OFFFFH, then the current Program
Return Code is returned in register pair HL.. Otherwise, Function 108 sets
the Program Return Code to the value contained in register pair DE.
Program Return Codes are defined in Table 9-4.

Table 9-4. Program Return Codes

Code Meaning
0000 - FEFF Successful return
FF00 - FFFE Unsuccessful return

326

BDOS Function Calls
0000 The CCP initializes the Program Return Code to zero
unless the program is loaded as the result of program
chain,
FF80 - FFFC Reserved

FFFD The program is terminated because of a fatal BDOS error.

FFFE The program is terminated by the BDOS because the user
typed a CTRL-C,

BDOS FUNCTION 109: GET/SET CONSOLE MODE

Entry Parameters:
Register C: 6DH
DE: OFFFFH (Get) or Console Mode (Set)

Returned Value:
Register HL: Console Mode or (no value)

A program can set or interrogate the Console Mode by calling Function
109. If register pair DE = OFFFFH, then the current Console Mode is
returned in register HL. Otherwise, Function 109 sets the Consele Mode to
the value contained in register pair DE.

The Console Mode is a 16-bit system parameter that determings the action
of certain BDOS Console I/Q functions. The definition of the Console
Mode is:

bit 0 = 1 - CTRL-C only status for Function 11.
= () - Normal status for Function 11.

bit 1 = 1 - Disable stop seroll, CTRL-S, start scroll, CTRL-Q, support.
= 0 - Enable stop scroll, start scroll support.

bit 2 = 1 - Raw console output mode. Disables tab expansion for Functions
2, 9 and 111. Also disables printer echo, CTRL-P, support.
= 0 - Normal console output mode.

327

Programming with CPIM Plus

bit 3

il

1 - Disable CTRL-C program termination
0 - Enable CTRL-C program termination

bits 8,9 - Console status mode for RSXs that perform console input
redirection from a file. These bits determine how the RSX
responds to console status requests.

bit 8 = 0, bit 9 = 0 - conditional status
bit 8 =0, bit 9 = 1 - false status
bit 8 = 1, bit 9 = 0 - true status
bit 8 = 1, bit 9 = 1 - bypass redirection

Note that the Console Mode bits are numbered from right to left.

The CCP initializes the Console Mode to zero when it loads a program
unless the program has an RSX that overrides the default value.

BDOS FUNCTION 110: GET/SET QUTPUT DELIMITER

Entry Parameters:
Register C: 6EH
DE: OFFFFH (Get) or
E: Output Delimiter {Set)

Returned Value:
Register A: OQutput Delimiter or (no value)

A program can set or interrogate the current Qutput Delimiter by calling
Function 110. If register pair DE = OFFFFH, then the curreat Output
Delimiter is returned in register A. Otherwise, Function 110 sets the
Output Delimiter to the value contained in register E.

Function 110 sets the string delimiter for Function 9, Print String. The
default delimiter value is a dollar sign, $. The CCP restores the Qutput
Delimiter to the default value when a transient program is loaded.

328

BDOS Function Calls

BDOS FUNCTION 111: PRINT BLOCK

Entry Parameters:
Register C: 6FH
DE: CCB Address

Returned Value: none

The Print Block function sends the character string located by the
Character Control Block, CCB, addressed in register pair DE, to the
logical console, CONQUT:. If the Console Mode is in the default state,
Function 111 expands tab characters, CTRL-I, in columns of eight
characters. It also checks for stop scroll, CTRL-S, start scroil, CTRL-Q,
and echoes to the logical list device, LST:, if printer echo, CTRL-P, has
been invoked.

The CCB format is:

byte 0 - 1 : Address of character string (word value)
byte 2 - 3 : Length of character string {word value)

BDOS FUNCTION 112: LIST BLOCK

Entry Parameters:
Register C: 70H
DE: CCB Address

Returned Value: none

The List Block function sends the character string located by the Character
Control Block, CCB, addressed in register pair DE, to the logical list
device, LST:,

The CCB format is:

byte 0 - 1 : Address of character string (word value)
byte 2 - 3 : Length of character string (word valtue)

329

Programming with CPIM Plus

BDOS FUNCTION 152: PARSE FILENAME

Entry Parameters:
Register C: 98H
DE: PFCB Address

Returned Value:
Registers HL: Return code
Parsed file control block

The Parse Filename function parses an ASCII file specification and
prepares a File Control Block, FCB. The calling program passes the
address of a data structure calied the Parse Filename Control Block,
PFCR, in register pair DE. The PFCB contains the address of the input
ASCII filename string followed by the addrass of the target FCB as shown
below:

PFCB: DW INPUT ;Address of input ASCI string
DW FCB ; Address of target FCB

The maximum length of the input ASCII string to be parsed is 128 bytes.
The target FCB must be 36 bytes in length.

Function 152 assumes the input string contains file specifications in the
following form:

{d: }Milename {.typ} {;password}

where items enclosed in curly brackets are optional. Function 152 also
accepts isolated drive specifications d: in the input string. When it
encounters one, it sets the filename, filetype, and password fields in the
FCB to blank.

The Parse Filename function parses the first file specification it finds in the
input string. The function first eliminates leading blanks and tabs, The
function then assumes that the file specification ends on the first delimiter
it encounters that is out of context with the specific field it is parsing. For
instance, if it finds a colon, and it is not the second character of the file
specification, the colon delimits the entire file specification.

330

Function 152

space
tab
return
null

BDOS Funciion Calls

recognizes the following characters as delimiters:

; (semicolon) - except before password field

= {equal)
<< (less than)

> (greater than)
. (period) - except after filename and before filetype
: {colon) - except before filename and after drive

, (comma)

| (vertical bar)

[(left square

bracket)

] (right square bracket)

If Function 152 encounters a non-graphic character in the range 1 through
31 not listed above, it treats the character as an error. The Parse Filename
function initializes the specified FCB shown in Table 9-5.

Table 9-5. FCB Format

Location

Conitents

byte 0

byte 1-8

byte 9-11

The drive field is set to the specified drive. If the drive is not
specified, the defanlt drive code is used. O=default, 1=A,
2=B.

The name is set to the specified filename. All letters are
converted to upper-case. If the name is not eight characters
long, the remaining bytes in the filename field are padded
with blanks. If the filename has an asterisk, *, all remaining
bytes in the filename field are filled in with question marks,
?. An error occurs if the filename is more than eight bytes
long.

The type is set to the specified filetype. If no filetype is
specified, the type field is initialized to blanks. Al letters are
converted to upper-case. If the type is not three characters

331

Programming with CPIM Plus

Table 9-5 (continued)

long, the remaining bytes in the filetype ficld are padded
with blanks. If an asterisk, *, occurs, all remaining bytes are
filled in with question marks, ?. An error occurs if the type
field is more than three bytes long.

byte 12-15 Filled in with zeros.

byte 16-23 The password ficld is set to the specified password. If no
password is specified, it is initialized to blanks. If the
password is less than eight characters long, remaining bytes
are padded with blanks. All letters are converted to
upper-case. If the password field is more than eight bytes
long, an error occurs. Note that a blank in the first position
of the password field implies no password was specified.

byte 24-31 Reserved for system use.

If an error occurs, Function 152 returns an OFFFFH in register pair HL.

On a successful parse, the Parse Filename function checks the next item in
the input string. It skips over trailing blanks and tabs and locks at the next
character. If the character is a null or carriage return, it returns a 0
indicating the end of the input string. If the character is a delimiter, it
returns the address of the delimiter. If the character is not a delimiter, it
returns the address of the first trailing blank or tab.

If the first non-blank or non-tab character in the input string is a null, 0, or
carriage return, the Parse Filename function returns a zero indicating the
end of string.

If the Parse Fifename function is to be used to parse a subsequent file

specification in the input string, the returned address must be advanced
over the delimiter before placing it in the PFCB.

332

Section 10

Programming Examples

The programs presented in this section illustrate how to use the BDOS
functions described in the previous section. The examples show how to
copy a file, how to dump a file, how to create or access a random access
file, and how to write an RSX program.

A Sample File-to-file Copy Program

The following program illustrates simple file operations. You can create
the program source file, COPY.ASM, using ED or another editor, and
then assemble COPY.ASM using MAC.. MAC produces the file
COPY.HEX. Use the utility HEXCOM to produce a COPY.COM file,
that can execute under CP/M Plus.

The COPY program first sets the stack pointer to a local arca, then moves
the second name from the default area at 006CH to a 33-byte file control
block named DFCB. The DFCB is then prepared for file operations by
clearing the current record field. Because the CCP sets up the source FCB
at 005CH upon entry to the COPY program, the source and destination
FCBs are now ready for processing. To prepare the source FCB, the CCP
places the first name into the default FCB, with the proper fields zeroed,
including the current record field at 007CH.

COPY continues by opening the source file, deleting any existing
destination file, and then creating the destination file. If each of these
operations is successful, the COPY program loops at the label COPY until
each record is read from the source file and placed into the destination file.
Upon completion of the data transfer, the destination file is closed, and the
program returns to the CCP command level by jumping to BOOT.

333

Programming with CPIM Plus

1
'
r

sample file-lo-file copy program
at the cep level, the command
copy a:xy by

copies ihe lile named x.y from drive
a to a lile named u.v on drive b,

0000 = bool equ onnch , system reboot
000§ = biclos equ 0005h ; bdos eniry point
005¢c = fcb1 equ Qosch ; first file name
005¢ = sfeh equ fch1 ; sturee fch
Q06e = feb2 equ (06ch : sacond fitg name
Q080 = dbuff [=11] 0080h . default buffer
o100 = pa equ D100h ; beginning of ipa
a00% = printf equ 9 ; print buffer func#
000f = openf egu 15 ; open ile func#
0010 = closef eqi 16 ; close file func#
o003 = delelef equ 19 : delete fila func#
0014 = readt equ 20 , sequential read
0018 = writef efqu 21 . sequential write
00186 = makef equ 22 : make file func#
100 org 1pa ; beginning of tpa
0100 311bG2 Ixi sp,stack; local stack

H move second file name to dfch
0103 CalQ mvi €0 e 18 ; half an fcb
0105 116c00 L0408)y dfcb2 :source of move
0108 29da0l ¢ 2 40, Dk 16 h,dfch ; destination tcb
010b 1a ¢ .4 £ mich: fdax d ; sourge fob
0106 13 A A g i d , ready next
010d 77 OV) A mov ma : dest fob
O10e 23 2 aya inx] ; ready next
010f Od e C dir [;count 16..0
0110 20601 ¢ FA¥, inz mich :loop 16 times

H name has bean moved, zare or
o113 af Xra a a2 = 00h
Q114 32fa0i sta dfcher s eurrent rec = 0

Q17 11500
011a cdgg01
011d 118701
0120 3¢

0121 ge101

0124 11dadi
0327 ¢g7301

012a 11daC
012d cdgdzM
130 118601
0133 3¢

0124 ceB1g

334

source and destinalion fcbs ready

Ixi d.sich , saurce file

call open ; efror if 255

Ixi d,nofils ; ready message
inr a ; 255 becomes 0
€z finis ; dane it no file

source file open, prep destination

xi d,dfch ; destination

call delete ; remove if prasent
Ixi d,dfct : destination

call maks ; creata the file

Ixi d,nodir ; ready maessage

inr a ; 255 becomes 0

cz finis ; done if no dir space

0137 115c00
013a cd7801
013d b7

013e c25101

0141 11da0
0144 cd7do1
0147 112901
014a b7

014b c46101
D1de c337M1

0151 11dad1
0154 cge1
Q157 210b03
015a 3¢

015b cc6101

015¢ 11ccO1

0161 QeQ8
0163 ©d0500
0166 c30000

0169
016b ¢30500

G16e 0e10
0170 ¢30500

0173 0el3
0175 30500

0178 Oe14
0172 ¢30500

017d 0e15
017f ¢30500

0182 Qet8
0184 ¢30500

Q0187 Ge6i20f
0196 6aBf200
01a9 6f7574f
0lbb 7772685
Olce 8351700

Otda

Programming Fxamples

V source file open, dest file opan
; copy until end of lile on source

Copy: Ixi d.sfck | Bource
call rgad ; read next record
ora a vend of file?
jnz eofite ; skip write if s0
i not and of file, write the record
i d.dicb ; destination
call write 1 write record
ixi d,space ; ready message
ora a 3 00 if write ok
cnz finis ;end if 50
jmp copy ; loop until eot
ecfile: ; end of file, close destination
Ixi d,dich ; destination
call close ; 255 if error
Ixi hweprat ; ready massage
inr a ; 255 hecemeas 00
¢z finis ; should not happen
: copy opsration complets, end
Ixi d,normal ; ready message
finis: , write message given by de, reboot
mvi c,printf
call bdos ; write message
imp boot ; raboot system

system interface subroutines
{all return dirgctly from bdos)

Qelf apen: mvi c,openf

imp bdos
E:Iose: mwi c,closef
imp bdos
delete: mvi ¢.deletef
imp bdos
read; i ¢ readf
jmp hdos
write: myt ¢, writef
jmp heos
‘rnake: v c,makef
imp hdos
; console messages
nofile: db 'no source file$’
nodir: db ‘no directory space$’
space: db ‘out of data spaced’
wrorot. db ‘write protected?$’
normai; db ‘copy complete$’
; data areas
dfcty: ds 33 ; destination feb

335

Programming with CPIM Plus

01fa = dfcher equ dfeh+32 ; current regord

otfb ' ds 32 : 16 level stack
stack:

g21b and

Note that this program makes several simplifications and could be
enhanced. First, it does not check for invalid filenames that could, for
example, contain ambiguous references. This situation could be detected
by scanning the 32-byte default arca starting at location 00SCH for ASCII
question marks. To check that the filenames have, in fact, been included,
COPY could check locations 00SDH and 006DH for nonblank ASCII
characters. Finally, a check should be made to ensure that the source and
destination filenames are different. Speed could be improved by butfering
more data on each read operation. For example, you could determine the
size of memory by fetching FBASE from location 0006H, and use the
entire remaining portion of memory for a data buffer. You could also use
CP/M Plus’s Multi-Sector IO facility to read and write data in up to 16K
units.

A Sample File Dump Utility

The following dump program reads an input file specified in the CCP
command line, and then displays the content of each record in hexadecimal
format at the console. '

DUMP program reads inpul file and displays hex data

0100 org 100h
0005 = boos aqu a00sh dos antry point
0o = cons equ 1 yread console
onnz = typef aqu 2 type function
0009 = printf equ g Juffer print entry
000k = brkf U 11 ‘break key function (true if char
Q00f = cpenf equ 15 Jfila cpen
0014 = readi equ 20 read function
005¢ = fch equ 5ch file control block address
Q080 = bkt equ 80h dinput disk buffer address
P non graphic characters
000d = o equ Odh carriage return
o0ga = I equ Oah Jine fecd
; file control block detinitions
O0ee = fcbdn e feby+ 0 ;disk name
005d = fehin aqu fcb+1 file name
0065 = febft equ fcb+9 disk file type (3 characters)

336

0068 =
006b =
007¢ =
007d =

0100 210000
0103 39

0104 221502
0107 315702

010a cdei01
010d feff
010f c21b01

0112 111301
0115 cdgoco
0118 ¢35101

0t1b 380
011d 321302

0120 210000

0123 5
0124 cda201
0127 &1
0128 dab101
012b 47

012c 7d
012d o60f
Q12f 24401

0132 od7201

0135 cd5901

0138 of
0139 da5104
1 013c 7o
013d cdBi01
0140 7d
Q41 cdefo1

0144 23
0145 3020
0147 cd8501
014n 78

14b cdBfot
014de c32301

Programming Examples

fcbrl equ feh+12 fila's cureent reel number
fcbre equ fcb+15 Sfile's record count {0 to 128)
feher equ feb+32 ;eurrent {next) record number (O
febin equ fob+33 ifcb length
: set up stack
Ixi h,0
dad Ep
i antry stack painter in bl from the ccp
shid oldsp
; sat sp fo loca) stack area (restored at finis)
Ixi sp,stkiop
H read and print successive buffers
call setup ;zet up input file
cpi 255 ;255 if lite not present
inz opanok iskip if open is ok
4 file not there, give error message and return
I d.opnmsg
call &fr
jmp finis o return
openck: ;open operation ok, set buffer index to end
mwi a,80h
sta ibp iset buffer pointer to 80h
H hl containg next address to print
Ixi h,0 ;start with 0000
gleop:
push h ;save lina position
cali gnb
pop h recall line position
ic finis ;carry setby gnb if end file
mov ba
H print hex values
; check for line fold
el al
ani ofh check low 4 bits
jnz NENUMm
: print ling nurmbsr
call crif
; check for break key
cali break
' accum [sb = 1 if character ready
e o carry
ic finis ido not print any more
moy a,h
call phex
mov a,l
call phex
nonumy:
inx h o naxt ling number
myi a,' "
call pechar
mov ab
call phex
imp gloop
finis:
; end of dump

337

Programming with CPIM Plus

0151 cd7201 call crlf
0154 2a1502 Ihig aldsp
0157 10 sphl
: stack poinier contains ccp’s stack acation
0158 c9 ret o the cep
; subroutines
braak: icheck break key (actually any key will do)
0159 o5d5¢5 push h) push d! push b; envirpnmant saved
15¢ Qe0b mvi ¢, brict
015¢ ¢d0S00 call bdos
0161 ¢c1diel pop bl pep dl pop h; environment resiored
0164 c9 ret
pchar: :print a character
0185 e5d5c5 push ht pushd! pushlb; saved
01689 Qal2 myi c.typet
016a 5f moy | @A
Q160 cd0500 call bdos
Q16e cidial pop b pop d! pop h; restored
0179 ¢9 ret ; cHf.
0172 3eld mvi a.cr
0174 cd6501 call pchar
M77 3e0a mvi alf
0179 cdes01 call pchar
M7 ch ret
pnib: ;print nibble in reg a
0174 e60f ani Oft dow 4 bits
017f feda cpi 10
0181 d28901 jne pl10
: less than or equal to 9
B84 630 adi o
0186 c38b0t jmp prn
H greater or equal fo 10
0189 c637 pi0: adi ‘o =10
018h cdB501 prn call pchar
deco rat
phex: sprint hex char in reg a
oaffs push paw
0190 of e
0191 of ne
0152 of (4
Q193 of me
0194 cd7do1 call pnib sptint nibble
0197 f1 pop psw
0198 cd7di1 call pnib
MH9b co rat
e ;print error messaga
; d.e addresses message ending with "'$"
018¢ 0809 mvi C,printf print buffer function
019 cd0500 call bdos
01al o ret
; gnb: ;get next byte

338

a2 3a1302
01a5 fe80
01a7 ¢2b3a

01aa cdcell
Otlad b7
01ae cab301

G1h1 37
01b2 ¢9

01b3 5f

01b4 1600

01hs 3c inr
01b7 321302

01ba 218000
01bd 19

01be 78

01bf b7
Mchd c9

setup:

01c1 af
01e2 32700

01c5 11500
0168 Qedf
01ca ¢d0500

Qted ¢9

digks:
01ce o5d5¢5
0141 115¢00
01d4 el4
0146 cd0500
0149 ¢1diel
0idc cd

01dd 46494c0signon: db

0113 0d0adeCopnmsg: db

Programming Examples

lda ibp
cpi 80h
inz Jala]

read ancther bufler

call digkr
ora a 2ero value if read ok
iz gl for ancther byta

end of data, return with carry set for eof
slc
ret

sread the byte at buil+reg a

mov g,a iIs byte of buffer index

myi 4.0 double precision index to de
a index=index+1

sta ibp ;back to memory

pointgr is incremented
save the current file address

Ixi b, b

dad d

absclute character address is in hi
mov am

byte is in the accumulator

org a
ret

;reset carry bit

et up tile

apan tha file for input

wra a ;Zero 1o accum

sta feher Clear current record
Ixi d.fch

myi c,openf

cail bdos

255 in accum if open error

ret

read disk fite record
push h! pushd! pushb

Ixi d,fcb

v ¢, rgadf

call bdos

pop bl pop d! pop h
ret

fixed message area
fite dump version 2.0%'
crlf,'ne inpul file present on disk$'

wariable area

0213 ibp:
0215 cidsp:
0217 '

stkiop:
0257 '

ds 2 sinput Huffer pointer

ds 2 entry sp value from cop
stack area

ds &4 resarve 32 level stack
end

339

Programming with CPIM Plus
A Sample Random Access Program

This example is an extensive but complete example of random access
operation, The following program reads or writes random records upon
command from the terminal. When the program has been created,
assembled, and placed into a file labeled RANDOM.COM, the CCP level
command

A>RANDOM X.DAT

can start the test program. In this case, the RANDOM program looks for a
file X.DAT and, if it finds it, prompts the console for input. If X.DAT is
not found, RANDOM creates the file before displaying the prompt. Each
prompt takes the form:

next command?

and is followed by operator input, terminated by a carriage return, The
input commands take the form:

nWw nR nF Q

where n is an integer value in the range 0 to 262143, and W, R, F, and Q
are simple command characters corresponding to random write, W,
random read, R, random write with zero fill, F, and quit processing, Q. If
you enter a W or F command, the RANDOM program issues the prompt:

type data:

You then respond by typing up to 127 characters, followed by a carriage
return. RANDOM then writes the character string into the X.DAT file at
record n. If you enter an F command, the RANDOM program fills
previously unallocated data blocks with zeros before writing record n. If
you enter the R command, RANDOM reads record number n and displays
the string value at the console. If you enter the Q command, the X.DAT
file is ciosed, and the program returns to the console command processor.
In the interest of brevity, the only error message is:

error, try again
The program begins with an initialization section where the input file is

340

Programming Examples

opened or created, followed by a continuous loop at the label ready where
the individual commands are interpreted. The program uses the default file
control block at 005CH and the default buffer at 0080H in all disk
operations. The utility subroutines that follow contain the principal input
line processor, called readc. This particular program shows the elements of
random access processing and can be used as the basis for further program

i* sample random access program for cpim 3

org 100h base of tpa

2qu C000h ;system refoot

aqu 0005h hdas entry point

squ 1 ;eonsole input function
agu 2 censole output function
equ] ;print string until '$'
equ 10 read consale buffer
equ 12 return version number
equ i5 fite open function

equ 16 sclose function

equ 22 ymake file function

equ a3 ;read random

equ a4 write random

equ 40 write random zero fill
equ 152 ;parse function

equ 005¢ch detault file control black
equ fch+33 srandem record position
equ fch+35 high order {overflow) byte
equ 03800 ‘butter address

equ Qdh cardage return

equ Oah Jling feed

:' load SP, set-up fila for random access

development,

0100

0000 = reboot
0005 = bdos
0001 = coninp
o002 = CONGLIL
Q008 = pstring
000A = rstring
000C = varsion
Q00F = openf
Q010 = closef
0016 = makef
Q021 = readr
o022 = writer
0oz = wrtrzf
0088 = parsef
005C = feb
oovh = ranrec
Q07F = ranovf
0080 = buff
000D = E:r
000A = If
0100 313703 '

0103 OFOC '

0105 CDO500 call
0108 FE20

0104 D21801

010D 118102
0110 S03102

I%i sp,stack

version e

mvi ¢ version

bdos

cpi 31h warsion 3.3 or better?
jnc versok

bad version, message and go back

Ixi d,badver

call print

341

Programming with CPIM Plus

0113 C30000 imp reboot
versok:
H corract versicn for random access
0116 OEQF myi copenf ;open default fci
0118 3A5D00 rgname: lda feb+1
0118 FE20 cpi v
0110 C22C inz opfile
0120 11E002 Ixi g,entmsg
0123 CD3102 call print
0126 CD2002 call parse
0129 G31801 jmp rdname
012G 115C00 opfile: Ixi d feb
012F CDO500 call hdos
0132 3G inr a ;arr 255 becomeas zero
0132 C24B01 inz ready
H cannot open file, so create it
0138 OE1§ mvi ¢, makef
0138 115C00 b d,fch
0138 CDO500 call bdos
013E 3C inr a atr 255 becomes zero
013F C24801 inz raady
; cannct create file, directory full
G142 11A002 I d,nospace
0145 CD3102 cail print
0148 C30000 jmp reboot thack to cop

1
+

loop back to “ready” after each command

1

ready:

; file is ready for processing
014B CD3aC02 call readeom read next command
014E 227000 shid ranrec ;store input record#
0151 217F00 Ixi h,ranovf
o154 71 mov mc ;set ranrec high byte
0155 FES1 cpi Q quit?
0157 C26901 jnz notq

: quit processing, close file
015A E10 mvi ¢closef
015C 115C00 Ixi d.fch
Q15F CDOS00 call bdos
0162 3C inr a satr 255 becomes 0
0163 CAFFOA iz arror grror massage, retry
0166 C30000 jmp reboot back 1o cop

v
'
e
'

;* end of quit command, process write

|"|otq:
; not the quit command, random write?

342

0169 FES7
0168 C26CMM

C16E 11B202
0171 CD3102
0174 0E7F

0176 218000

07205
017A E5
0178 CD0802
M7EE1
O17F C1
0180 FEOD
0182 CASBOM

iz
atloop

0185 77
0186 23
0187 0D
0188 C27901

0188 3600

018D 0E22
018F 115C00
0162 CDOS00
0185 B7
0156 C2FFO1
0152 C34B01

019C FE46
019E C2CFOH

01A1 11B302
0144 CDa102
O1A7 OETF

0142 218000

01AC C5
01AD E5
01AE CDO0g02
0181 E1
0182 Ci

Programming Examples

cpi W
inz notw

; this is 2 random write, filf buffer until cr
I d,datmsg
call arint ;data prompt
mvi G127 up to 127 characters
i h,buff destination

roop: iread next character to buff
push b save counter
push h next destination
call getchr charactar to a
pop h srestore counter
pop b srestore next to fill
cpi cr end of line?

V not end, store character

mov m,a
inx h ;naxt to fill
der c counter goes down
inz rloop end of butfer?
erloop:
; ond of read loop, store 00
mvi m,0
; write the record to selected record number
mvi ¢, writer
b d.fcb
call bdos
ora a werror code zero?
jnz arror ;message if not
imp ready Jfor another recaord
i+ and of write command, process write random zero fill *
notw;
i not the quit command, random write zero fill?
cpi 'F
inz notf
; this is & random write, fill bufter until cr
Ixi d.datmsg
call print data prompt
mvi ¢,127 wp to 127 characters
Ixi b, buff ;destination
rloop1: sread next character to buff
push b \save counter
push h next destination
call getehr character 10 a
pop h restora counter
pop [+ yrestore next to fill

343

Programming with CP/M Plus

01B3 FEQD cpi cr .end of lina?
01B5 CABEO1 iz erioop1

' not end, store character
Q1iB8 77 mov m,a
01B9 23 inx h et to till
01BA DD der [+ scounter goes down
01BB C2ACO1 jnz rlocp ;and of buffer?

: atloop1:

; end of read ioop, store 00
D1BE 3600 mvi m, 0

h write the record to selecied record number
01C0O 0E28 mivi ¢,wrirzf
01C2 115C00 Ixi d.feb
01C5 CDOS00 call hdos
01C8 B7 ora a error code zero?
0109 C2FFO1 inz error message if not
MCC CI4BOT jmp ready Jfor anather record

1
1
-
1
1

i+ end of write commands, process read

1
1

notf:

3 not a write command, read record?
01CF FES2 cpi ‘R
0101 G2FFO1 inz grror iskip if not

; read random record
0104 cE21 i c,readr
0106 115500 Ixi d,feb
0109 CO0500 call hdos
o1pC B? ora a retum code 007?
¢1DD C2FFO1 inz error

: read was successful, write to conscle
01E0 CD1502 call el new line
01E3 0EBO mvi ¢, 128 imax 128 characters
01E5 218000 Ixi h,buff next 1o get

wioop:
01E8 7E mowv a,m ;next character
01E9 23 inx h next to get
01EA E67F ani 7th imesk parity
01EC CA4BOY jz ready Jfor another command if QO
D1EF CS push b isave counter
0FO ES pusgh h save next to get
01F1 FE20 cpi v ;graphic?
01F3 D40ED2 one puichr ;skip output if net
01F6 EA pop h
01F7 C1 pop b
01F8 0D der [+ count=count-1
01F9 CZE801 jnz wloop
G1FC G34B01 jmp ready

i

1

-

'
3

* end of read command, all errors end-up here

GIror.

344

O1FF 11BF02
0202 CD3102
0205 C34B01

0208 GEM1
020A CODS00
0200 C9

020E 0E02
0210 5F

0211 CDOS00
0214 C9

0215 3E0D
0217 CDOEO2
021A 3E0A
021C CDOEOZ
021F C8

0220 11F102
0223 QEDA
0225 CDOS0C
0228 111303
0228 QE98
0220 CDO500
0230 C9

0231 D5
0232 CD1502
0235 ™1
0236 0EQ9
0238 CDOS00
0238 C9

023C 11D102
023F CD2at02
0242 0EDA

0244 115102
0247 CDOSO0

024A QEQO
024C 210000
024F 11F302
0252 1A

Ixi d,errmsg
call print
imp reagy

i* utility subroulines for console ifo

a AndmdshvhaRE R

Programming Examples

setchr:

ieéad next conscle character to a
myi ¢,coning .
call bdos
rat
putchy:
swrite character from a to console
mvi c,conout
mov .8 icharacter to send
calt bdos ;send character
ret
crif:
send carriage return line feed
v acr ;carriage return
call putchr
myi a,lf line feed
call putchr
ret
parse:
read and parse filespec
Ixi d,conbuf
v c,rstring
cali hdos
Ixi dpinch
v c,parsef
call bdos
ret
print:
;print the buffer addressed by de until §
push d
call crf
pop d new line
i c,pstring
call tdos \print the string
ret
readcom:
;read the next command line 1o the conbuf
b d,prompt
call print ;command?
mvi G.rstring
1%i d,conbuf
call bdos read command ling
: command ling is prasent, scan it
mvi c,0 istart with 00
i h,0 3 0000
Ixi dconling - command ling
reade: lbax d next command character

345

Programming with CPIM Plus

G253 13
0254 B7
0255 C8

(0266 DEI0
0258 FEOA
Q264 D27902

0250 F5
Q25E 79
025F 29
0260 8F
0261 F5
0262 ES
0263 29
(264 8F
0265 29
0266 8F
0267 C1
0268 09
0269 C1
026A 88
0268 C1
026C 48
026D 0600
G26F 09
027G CECG
0272 4F
0273 D25202
0276 C33Co2

0274 CE30
0278 FE61
0270 C&

027E EBSF
0280 C9

0281 736F727279
02A0 6EBF206469
02B3 7475706520
028F 6572726F72
02D1 6E65787420
02EQ 656E746572

346

inx d o next command position
ara a ;cannot be end of command
rz
H not zerg, numeric?
sui R
cpi 10 scarry if numsric
ing endrd
add-in next digit
push psw
moy as walug in ahi
dad h
ade a 2
aush a save value * 2
push h
dad h 4
ade a
dad h '8
ade a
pop b 2+ '8 ="10
dad b
pop b
adc b
pop b s +digit
moy cb
mvi b0
dad b
aci 0
Moy ca
in reads
imp reagoom
endrd:
H ond of read, restore value in a
adi it ;command
opi a' translate case?
Ic
H lower case, mask lowsr casa bits
ani 101$1111b
ret wreturn with value in chl

1
'
-
'

. slring data area for console messages

iJadver:

db 'sorry, you need cp/m version 3%
nospace:

db no dirsctory space$’
datmsg:

db ‘type data: §'
BIrMSy:

db ‘errgr, try again.$'
prompt

db ‘next command? §
entmsg:

ab ‘enter filsname: $'

]
'
-
H

;* fixad and variable data area

Programming Examples

02F1 21 conbui. db conlen Jlength of consale buffer
02F2 consiz: ds 1 wesulting size after read
02F3 conlin: ds 32 Jlength 32 buffer
0021 = conlen &qu $-consiz
pfnet:
0313 Fanz dw conlin
0315 5C00 dw feb
0317 ds 32 116 level stack
stack:
0337 end

You could make the following major improvements to this program to
enhance its operation. With some work, this program could evolve into a
simple data base management system. You could, for example, assume a
standard record size of 128 bytes, consisting of arbitrary fields within the
record. You could develop a program called GETKEY that first reads a
sequential file and extracts a specific field defined by the operator. For
example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and
extract the “LASTNAME” field from each record, starting at position 10
and ending at character 20. GETKEY builds a table in memory consisting
of cach particular LASTNAME field, along with its 16-bit record number
location within the file. The GETKEY program then sorts this list and
writes a new file, called LASTNAME.KEY. This list, sometimes called an
inverted index, is an alphabetical list of LASTNAME ficlds with their
corresponding record numbers,

You couid rename the program shown above to QUERY, and medify it so
that it reads a sorted key file into memory. The command line might
appear as

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DAT data base.
Because the LASTNAME.KEY list is sorted, you can find a particular
eniry quickly by performing a binary search, similar to looking up a name
in the telephone directory. Start at both ends of the list and examine the
entry halfway in between and, if not matched, split either the upper half or

347

Programming with CPIM Plus

the lower half for the next search. You will quickly reach the item you are
looking for, in log2(n) steps, where you will find the corresponding record
number. Fetch and display this record at the console as the program
illustrates.

At this point, you are just getting started. With a little more work, you can
allow a fixed grouping size, which differs from the 128-byte recerd shown
above. You can accomplish this by keeping track of the record number as
well as the byte offset within the record. Knowing the group size, you can
randomly access the record containing the proper group, offset to the
beginning of the group within the record, and read sequentialty until the
group size has been exhausted.

Finally, you can improve QUERY considerably by allowing Boolean
expressions that compute the set of records that satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL
and an AGE less than 45, Display all the records that fit this description.
Finally, if your lists are getting too big to fit into memory, randomly access
your key files from the disk as well.

Construction of an RSX Program

This section describes the standard prefix of a Resident System Extension
(RSX) and illustrates the construction of an RSX with an example. (See
Section 7 for a discussion of how RSXs operate under CP/M Plus.)
RSX programs are usually written in assembler, but you can use other
languages if the interface between the language and the calling conventions
of the BDOS are set up properly.

The RSX Prefix

The first 27 bytes of an RSX program contain a standard data structure
called the RSX prefix. The RSX prefix has the following format:

serial;
db 0,0,0,0,0,0
start:
jmp ftest ; start of program

348

Programming Examples

next:

db 0c3h ; jump instruction to

dw 0 ; next module in line
prev:

dw 0 ; previous module
remove:

db Ofth ; remove flag
nenbank:

db 0 ; nonbank flag
name:

db ‘12345678 ; any 8-character name
loader:

db 0 ; loader flag

db 0,0 ; reserved area

The only fields of the RSX prefix that you must initialize are the remove:
flag, the nonbank: flag, and the name: of the RSX.

For compatibility with previous releases of CP/M, the serial: field of the
prefix is set to the serial number of the operating system by the LOADER
module when the RSX is [caded into memory. Thus, the address in
location 6 locates the byte following the serial number of the operating
system with or without RSXs in memory.

The start: field contains a jump instruction to the beginning of the RSX
code where the RSX tests to see if this BDOS function call is to be
intercepted or passed on to the next module in line.

The next: field contains a jump instruction to the next module in the chain
or the LOADER module if the RSX is the oldest one in memory. The RSX
program must make its own BDOS function calls by calling the next: entry
point.

The prev: field contains the address of the preceding RSX in memory or
location 5 if the RSX is the first RSX in the chain.

The remove: field controls whether the RSX is removed from memory by
the next call to the LOADER module via BDOS function 59. If the
remove: flag is OFFH, the LOADER removes the RSX from memory.
Note that the CCP always calls the LOADER module during a warm start
operation. An RSX that remains in memory past warm start because its

349

Programming with CPIM Plus

remove: flag is zero, must set the flag at its termination to ensure its
removal from memory at the following warm siart.

The nonbank: field controls when the RSX is loaded. If the field 1s OFFH,
the LOADER only loads the module into memory on nonbanked CP/M
Plus systems. Otherwise, the RSX is loaded into memory under both
banked and nonbanked versions of CP/M Plus.

The loader: flag identifies the LOADER RSX. When the LOADER
module loads an RSX into memory, it sets this prefix flag of the loaded
RSX to zero. However, the toader: flag in the LOADER’s prefix contains
OFFH. Thus, this flag identifies the last RSX in the chain, which is always
the LOADER.

Example of RSX Usé

These two sample programs illustrate the use of an RSX program. The first
program, CALLVERS, prints a message to the console and then makes a
BDOS Function 12 call to obtain the CP/M Plus version number.
CALLVERS repeats this sequence five times before terminating. The
second program, ECHOVERS, is an RSX that intercepts the BDOS
Function 12 call made by CALLVERS, prints a second message, and
returas the version 0031H to CALLVERS. Although this example is
simple, it illustrates BDOS function interception, stack swapping, and
BDOS function calls within an RSX.

 GALLVERS program

0005 = bdaos qu 5; gntry point for BDOS

Goo9 = pristr equ 9; print string function

0o0C = yers equ 12 , g&t version function

0000 = o Bqu 0dh ; carriage return

Q00A = i equ Qah ; line feed

0100 org 100h

0100 1605 mvi d5 : Perform 5 timas

0102 DS laap: push d 1 save counter

0103 QEOS mvi ¢, pristr

2105 1H11EM ki d,callbmsg , print call massage

0108 CDO500 call bdos

0108 OEQC mvi ¢ vers

010D CDOBOO call bdos ; try 1o get version #
s CALLVERS will imercept

0110 70 moy ai

0111 323401 sla CUrvers

o114 D1 pop d

0115 15 der d 1 dacrement counter

0116 C20201 jnz loop

0119 OEQD v :0

350

0118 C30500

011E ODOA2A2ZAZA
0134 00
0135

0008 =
0000 =
000A =

0000 DD00CGG000
0006 C31B00
0002 C3

000A 0000

000C 0000

Q0DE FF

000F 00

0010 45434B4F56
0018 000000

oo1B 79
001C FEQC
001E CA2400
0021 C20900

0024 210000
0027 38

0028 225400
0028 317600

QO2E 0E02
0030 113E00
0033 CD0900

0036 2AS5400

0039 F¢

003A 213100

003D Co

003E 0DOAZA2A2A

0054 GO0
0056

0076

imp
call$msg:
db
curvers db
end
; ECHOVERS RSX
pstring aqu
cr equ
If equ
db
imp
next: db
dw
prey. dw
ramoy. db
nonbnk: db
db
db
ftast:
mov
opi
iz
imp
hegin:
b
dad
shid
Ixi
mvi
Ixi
call
Ihid
sphi
4]
rat
test$msg:
db
ret$stack:
dw
ds
lochstack:
end

Programming Examples

bdos

crlf,**** CALLVERS *** &
o]

9 ; sitring print funclion
0Odh

Ozh

RSX PREFIX STRUCTURE

0,0,0,0,00 . room for gerial numbear
fiast ; begin of program
Oc3H ; jump
o : naxt module in fing
[; previous module
0Ofth ; ramove fiag sel
0
'ECHOVERS'
0,0,0

;18 this function 127
ac
12
begin ; yos — intercepl
et . some other function
h,0
sp ; save stack
ret$stack
sp,lochstack
¢, psiring
dtestdmsg ; print message
next ; call BDOS
rathstack ; rastore user stack
h,0031h ; relurn version number

cri,"**"* ECHOVERS ***'§'

32 ;16 lavel stack

You can prepare the above programs for execution as follows:

1. Assemble the CALLVERS program using MAC as follows:

MAC CALLVERS

351

Programming with CPIM Plus
2. Generate a COM file for CALLVERS with HEXCOM:
HEXCOM CALLVERS

3. Asscmble the RSX program ECHOVERS using RMAC:

RMAC ECHOVERS

4. Generate a PRL file using the LINK command:
LINK ECHOVERS [CP]

5. Rename the PRL file to an RSX file:
RENAME ECHOVERS.RSX=ECHOVERS.PRL

6. Generate a COM file with an attached RSX using the GENCOM
command;

GENCOM CALLVERS ECHOVERS
7. Run the CALLVERS.COM module:

CALLVERS
The message

wkik CALLVERS LE
followed by the message

“*** ECHOVERS ****

appears on the screen five times if the RSX program works.

352

Part 3

APPENDICES

Appendix A
CP/M Plus Messages

Messages come from several different sources. CP/M Plus can display error
messages when the Basic Disk Operating System (BDOS) returns an error
code. CP/M Plus can also display messages when there are errors in
command lines, Each utility supplied with CP/M Plus has its own set of
messages. The following table lists CP/M Plus messages and utility
messages. If you are running an application program you might see
messages other than those listed here. Check the application program’s
documentation for explanations of those messages.

The messages in Table A-1 might be preceded by ERROR:, Some of them
might also be preceded or followed by the filespec of the file causing the
error condition. Sometimes the input line is flagged with an up arrow T to
indicate the character that caused the error. In this case the message Error
at the " precedes the appropriate erroy message. Some of the messages are
followed by an additional line preceded by INPUT: OPTION: or DRIVE:
followed by the applicable error message.

Table A-1. CP/M Plus Messages

Message Meaning

Assign a password o this file.

SET. A password mode has been selectled for this file but
no password has been assigned.

Auxiliary device redirection not implemented.

GET and PUT. AUXIN and AUXOUT cannot be re-
directed to a filc.

Bad character re-enter
GENCPM. The character entered was not a number.

355

Appendices
Table A-1 (continued)

Bad close.

SAVE. An error occurred during the attempt to close the
file probably because the file is write-protected.

Bad Logical Device Assignment;

DEVICE. Only the following logical devices are valid:
CONIN: CONOUT: AUXIN: AUXQUT: LST:.

BAD PARAMETER

PIP. You entered an illegal parameter in a PIP command.
Retype the eatry correctly.

Bad password.
RENAME. The password supplied by the user is incorrect.
Baud rate cannot be set for this device.
DEVICE. Oaly physical devices that have the SOFT-
BAUD attribute can have their baud rates changed. To
check the attributes of the physical device type DEVICE
physical-dev.
Break “x" at ¢
ED. “x” is one of the symbols described below and ¢ is the
command letter being executed when the error occurred.
Search failure. ED cannot find the string specified in an
F N or S command.
? Unrecognized command letter ¢. ED does not recog-

nize the indicated command letter or an E H O or Q
command is not alone on its command line,

356

Messages
O The file specified in an R command cannot be found.

> Buffer full. ED cannot put any more characters in the
memory buffer or the string specified in an F N or §
command is too long.

E Command aborted. A keystroke at the console aborted
command execution.

F Disk or directory full. This error is followed by either
the disk or directory full message. Refer to the recovery
procedures listed under these messages.

CANNOT CLOSE: Cannot close file. CANNOT CLOSE FILE. CANNOT
CLOSE DESTINATION FILE - filespec

GENCOM HEXCOM LIB-80™, LINK-80, MAC, PIP,
RMAC, SUBMIT. An output file cannot be closed. This can
occur if the disk is removed before the program terminates.

Cannot delete file.

GENCOM, CP/M cannot delete a file. Check to see if the
COM file is Read-Only or password-protected.

Cannot have both create and access time stamps.

"SET. CP/M Plus supports either createc or access time
stamps but not both.

Cannot label a drive with a file referenced.

SET.SET does not allow mixing of files and drives.
CANNOT OPEN SOURCE FILE

HEXCOM. The HEX file is not on the specified drive(s).
Cannot redirect from BIOS. '

GET PUT. This message is displayed as a warning only if

the system has an invalid BIOS.
357

Appendices
Table A-1 (continued)
Cannot set both RO and RW.

SET. A file cannot be set to both Read-Only and Read-
Write.

Cannot set both SYS and DIR.
SET. A file cannot be set to both SYS and DIR.

CAN'T DELETE TEMP FILE
PIP. A temporary $$$ file already exists which is Read-
Only. Use the SET command to change the attribute to

Read-Write then erase it.

CHECKSUM ERROR.
Checksum error

HEXCOM PIP. A hex record checksum error was encoun-
tered. The hex record that produced the error must be
corrected probably by recreating the hex file.

Close error.
XREF. This message is preceded by the filename . XRF.
The disk might have been removed before the program
terminated.

Close operation failed.

DISCKIT. There was a problem in closing the file at the
end of the file copy operation.

Closing fite HELP.DAT
Closing file HELP.HLP

HELP. HELP encountered error while processing the
HELP.DAT or the HELP.HLP file,

358

Messages

COM file found and NULL option.

GENCOM. The NULL option implies that no COM file is
to be loaded just the RSXs.

.COM file required

DIR, ERA, REN, TYPE. Options in the built-in command
line require support from a transient COM file that CP/M
Plus cannot find on disk.

COMMON ERROR:

LINK-8). An undefined common block has been selected.

CORRECT ERROR TYPE RETURN OR CTRL-Z

PIP. A hex record checksum was encountered during the
transfer of a hex file. The hex file with the checksum error
should be corrected probably by recreating the hex file.

CP/M Error on d: Disk 1/Q
BDOS Function = xx File = filespec

CP/M Plus displays the preceding message if the disk is
defective or improperly formatted (wrong density).

CP/M Error on d: Invalid Drive
BDOS Function = xx File = filespec

CP/M Plus displays the preceding message when there is no
disk in the drive the drive latch is open or the power is off. It
also displays the message when the specified drive is not in
the system.

CP/M Error on d; Read/Cnly Disk
BDOS Function = xx File = filespec

CP/M Plus does not allow you to erase rename update or set
attributes of a file residing in a Read-Only drive. Use the
SET command to set the drive attribute to Read-Write.

359

Appendices

Table A-1 {(continued)

CP/M Error on d: Read/Only Fiie

BDOS Function = xx File = filespec
CP/M Plus does not allow you to erase rename update or set
attributes of a file that is Read-Only. Use the SET command
to set the file attribute to Read-Write.

Date and Time Stamping Inactive.

DIR. The DATE option was specified but the disk direc-
tory has not been initialized with date/time stamping.

DESTINATION IS R/O DELETE (Y/N)?
PIP. The destination file specified in a PIP command
already exists and it is Read-Only. If you type Y the
destination file is deleted before the file copy is done. If you

type N PIP displays the message **NOT DELETED** and
aborts the copy operation.

Device Reassignment Not Supported.
Enter new assignment or hit RETURN.

DEVICE. A device assignment is invalid.
Directory already re-formatted.

INITDIR. The directory already has date/time stamping.

Directory full
DIRECTORY FULL

ED. There is not enough directory space for the file being
written to the destination disk. You can use the 0Xfilespec
command to erase any unnecessary files on the disk without
leaving the editor.

360

Messages

SUBMIT. There is not enough directory space on the
temporary file drive to write the temporary file used for
processing SUBMIT files. Use the SETDEF command to
determine which drive is the temporary file drive, Use the
ERASE command to erase umanecessary files or set the
temporary file drive to a different drive and retry.

LIB-80 LINK-80. There is no directory space for the
output or intermediate files. Use the ERASE command to
remove unnecessary files.

HEXCOM. There is no directory space for the output
COM file.

Directory needs 1o be reformatted for date/time stamps.

DISK FULL

DISK READ

SET. A date/time option was specified but the directory
has not been initialized for date/time stamping. Use the
INITDIR command to initialize the directory for date/time
stamping.

ED. There is not enough disk space for the output file. This
error can occur ont the E H W or X commands. If it occurs
with X command you can repeat the command prefixing the
filename with a different drive.

DISK READ ERROR:
Disk read error: filespec
DISK READ ERROR - filespec

HEXCOM LIB-80 LINK-8) PIP. The disk file specified
cannot be read.

361

Appendices

Table A-1 {continued)

DISK WRITE.

Disk Write Error

DISK WRITE ERROR:

DISK WRITE ERRQOR - filespec
HEXCOM LIB-80 LINK-80 PIP SUBMIT. A disk write
operation cannot be successfully performed probably be-
cause the disk is full. Use the ERASE command to remove
unnecessary files.

Do you want another file? (Y/N)

PUT. Enter Y to redirect output to an additional file.
Otherwise enter N.

Drive defined twice in search path

SETDEF. A drive can be specified only once in the search
path order.

Drive Read Only

ERASE RENAME. The specified file is on a Read-Only
drive and cannot be erased or renamed.

Duplicate RSX in header, Replacing old by new.
This file was not used.

GENCOM. The specified RS8X is already attached to the
COM file. The old one is discarded.

Duplicate input RSX.

GENCOM. Two or more RSXs of the same name are
specified. GENCOM uses only one of the RSXs.

END OF FILE Z ?
PIP encountered an unexpected end-of-file during a HEX

file transfer.
362

Messages
End of line expected.

DEVICE GET PUT SETDEE. The command typed does
not have any further parameters. An end-of-line was ex-
pected. Any further characters on the line were ignored.

Error at end of line:

DEVICE GET PUT SETDEF. The error detected occur-
red at the end of the input line.

Error on line nnnnn;

SUBMIT. The SUBMIT program displays its messages in
the preceding format where nnnnn represents the line num-
ber of the SUBMIT file. Refer to the message following the
line number for explanation of the error.

FILE ERROR

ED. Disk or directory is full and EID cannot write anything
more on the disk. This is a fatal error so make sure there is
enough space on the disk to hold a second copy of the file
before invoking ED.

File already exists; Delete it? (Y/N)
file already exists delete (Y/N)?

PUT. Enter Y to delete the file. Otherwise the program
terminates.

RENAME. The above message is preceded by filespec. You
have asked CP/M Plus to create or rename a file using a file
specification that is already assigned to another file. Either
delete the existing file or use another file specification.

File exists erase it

ED. The destination filename already exists when you are
placing the destination file on a different disk than the
source. It should be erased or another disk selected to
receive the output file.

363

Appendices

Table A-1 (continued)

FILE 1S READ/ONLY
File is Read Only

ED. The file specified in the command to invoke ED has
the Read-Only attribute. ED can read the file so that you can
examine it but ED cannot change a Read-Only file.
PUT. The file specified to receive the output is a Read-
Only file.

FILE NAME ERROR:
LIB-B). The form of a source filename is invalid.

File not found.
FILE NOT FOUND - filespec

DUMP ED GENCOM GET PIP SET. An input file that
you have specified does not exist. Check that you have
entered the correct drive specification or that you have the
correct disk in the drive.

First submitted file must be a COM file,

GENCOM. A COM file is expected as the first file in the
command tail. The only time GENCOM does not expect to
see a COM file in the first position of the command tail is
when the NULL option is specified.

FIRST COMMON NOT LARGEST:
LINK-80. A subsequent COMMON declaration is larger
than the first COMMON declaration for the indicated block.
Check that the files being linked are in the proper order or
that the modules in a library are in the proper order.

HELP.DAT not on current drive,

HELP. HELP cannot find HELP.DAT file to process.

364

Messages
lllegal command tail.
DIR. The command line has an invalid format or option.
lllegat Format Value.

DIR. Only SIZE and FULL options can be used for display
formats.

llegal Global/Loca! Drive Spec Mixing.

DIR. Both a filespec with a drive specifier and the DRIVE
option appears in the command.

lllegal filename.

SAVE. There is an error in the filespec on the command
line.

llegal Option or Maodifier.

DIR. An invalid option or abbreviation was used.
lllegal date/time specification.

DATE. Date/time format is invalid.
Incorrect file specification.

RENAME. The format of the filespec is invalid.
INDEX ERROR:

LINK-80. The index of an IRL contains invalid informa-
tion.

Insufficient Memory
INSUFFICIENT MEMORY:

GET LINK-80 PUT SUBMIT. There is not enough mem-
ory to allocate buffers or there are too many levels of
SUBMIT nesting.

65

Appendices
Table A-1 (continued)
Invalid ASCII character

SUBMIT. The SUBMIT file contains an invalid character
{OFFH).

Invalid command.

GET and PUT. The string or substring typed in the com-
mand line was not recognized as a valid command in the
context used.

Invalid delimiter.

DEVICE GET PUT SETDEF. The delimiter [] = or
space — was not valid at the location used. For example a [
was used where an = should have been used.

INVALID DESTINATION:
PIP. An invalid drive or device was specified.
INVALID DIGIT - filespec

PIP. An invalid hex digit has been encountered while
reading a hex file. The hex file with the invalid hex digit
should be corrected probably by recreating the hex file.

Invalid drive.

SETDEF, TYPE. The specified drive was not a valid drive.
Drives recognized by SETDEF and TYPE are A, B and M.

Invalid File,

INVALID FILENAME
Invalid file name.
Invalid Filename.
Invalid file specification.

ED, ERASE, GENCOM, GET, PIP, PUT, SET, SUBMIT,

366

Messages

TYPE. The filename typed does not conform to the normal
CP/M PLUS file naming conventions.

INVALID FORMAT

PIP. The format of your PIP command is illegal, See the
description of the PIP command.

INVALID HEX DIGIT.

HEXCOM. An invalid hex digit has been encountered
while reading a hex file. The hex file with the invalid hex
digit should be corrected by recreating the hex file,

Invalid number,

DEVICE. A number was expected but not found or the
number was out of range; numbers must be from 0 to 255.

Invalid option.

DEVICE and GET. An option was expected and the string
found was not a device option or was not valid in the context
used.

SETDEF. The option typed in the command line is not a
valid option. Valid options are DISPLAY NO DISPLAY
NO PAGE ORDER PAGE TEMPORARY.

Invalid option or modifier.

DIR, GET, PUT. The option typed is not a valid option.
INVALID PARAMETER:
MAC, RMAC. An invalid assembly parameter was found

in the input Jine. The assembly parameters are printed at the
console up to the point of the error.

367

Appendices

Table A-1 (continued)

INVALID PASSWORD
Invalid password or passwords not allowed.

ED PIP. The specified password is incorrect or a password
was specified bat the file is not password-protected.

Invalid physical device.
DEVICE. A physical device name was expected. The
name found in the command string does not correspond to
any physical device name in the system.

INVALID REL FILE:

LINK-80. The file indicated contains an invalid bit pattern.
Make sure that a REL or IRL file has been specified.

Invalid RSX type.
GENCOM. Filetype must be RSX.
Invalid SCB offset.

GENCOM. The specified SCB is out of range. The SCB
offset range is 00H-64H.

INVALID SEPARATOR

PIP. You have placed an invalid character for a separator
between two input filenames.

INVALID SOURCE

PIP. An invalid drive or device was specified. AUX and
CON are the only valid devices.

Invalid type for ORDER option.

SETDEF. The type specified in the command line was not
COM or SUB.

368

Messages

Invalid SYM file format

XREF. The filename.SYM file input to XREF is invalid.

INVALID USER NUMBER

PIP. You have specified a user number greater than 15.
User numbers are in the range 0 to 15,

Invalid wildcard.

RENAME. The filespec contained an invalid wildcard
specification.

Invalid wild card in the FCB name or type field.

GENCOM. GENCOM does not allow wildcards in
filespecs.

LOAD ADDRESS LESS THAN 100.

HEXCOM. The program corigin is less than 100H.
MAIN MODULE ERROR:

LINK-80. A second main module was encountered.
Make error

XREFE. There is not more directory space on the specified
drive.

MEMORY OVERFLOW:

LINK-80. There is not enough memory tc complete the
link operation.

Missing Delimiter or Unrecognized Option.

ERASE. The ERASE command line format is invalid.

369

Appendices

Table A-1 (continued)

Missing left parenthesis.

GENCOM. The SCB option must be enclosed by a left
parenthesis.

Missing right parenthesis.

GENCOM. The SCB option is not enclosed with a right
parenthesis.

Missing SCB value.
GENCOM. The SCB option requires a value.
More than four drives specified.

SETDEF. More than four drives were specified for the
drive search chain.

MULTIPLE DEFINITION:

LINK-80. The specified symbol is defined in more than one
of the modules being linked.

n?
USER. You specified a number greater than fifteen for a
user area number. For example if you type USER 18 the
screen displays 187,

No directory label exists.

SHOW. The LABEL option was requested but the disk
has no label.

No directory space
NO DIRECTORY SPACE - filespec

GENCOM MAC PIP RMAC AND SAVE. There is not

370

Messages
enough directory space for the output file. Use the ERASE
command to remove unnecessary files on the disk and try
again.

No disk space.
SAVE. There is not enough space on the disk for the
output file. Use the SHOW command to dispiay the amount
of disk space left and use the ERASE command to remove
unnecessary files from the disk or use another disk with more
file space.

No file

NO FILE:

NO FILE - filespec
DIR ERASE LIB-80 LINK-80 PATCH PIP RENAME
TYPE. The specified file cannot be found in the specified
drive(s).

No HELP.HLP file on the default drive.
HELP. The file HELP.HLP must be on the default drive.

NO INPUT FILE PRESENT ON DISK
DUMP. The file you requested dovs not exist.

MNo memory

There is not enough memory avilable for loading the
specified program.

No modifier for this option.
GENCOM. A modifier was specificd but none is required.
NQO MODULE:

LIB-80. The indicated module cannot be found.

371

Appendices

Table A-1 (continued)

No more space in the header for RSXs or SCB
initialization.

GENCOM. The header has room for only 15 entries or the
combination of RSXs and SCBs exceeds the maximum.

Mo options specified.
SET. Specify an option.
Ne¢ PRN fiie.

XREF. The file filename.PRN is not present on the
specified drive.

No Records Exist
DUMP. Only a directory entry exists for the file.
NO SOURCE FILE PRESENT:

MAC RMAC. The source file cannot be found on the
specified drive.

NO SPACE

SAVE. There is no space in the directory for the file being
written.

No ‘SUB’ file found.

SUBMIT. The SUB file typed in the command line cannot
be found in the drive search process.

No such file to rename.
RENAME. The file to be renamed does not exist on the

specified drive(s).

372

Messages

No SYM file

XREF. The file filename.SYM is not present on the
specified drive.

NON-SYSTEM FILE(S) EXIST

DIRS. [If nonsystem (DIR) files reside on the specified
drive DIRS displays this message.

Not enough avaitable memory. Not Enough Memaory Not Enough Memory
for Sort.

DIR INITDIR. There is not enough memory for data or
sort buffers.

Not enough room in directory.

INITDIR. There is not enough remaining directory space
to allow for the date and time extension.

NOT FOUND
PIP. PIP cannot find the specified file.
Not renamed filespec read oniy.

RENAME. The specified file carinot be renamed because
it is Read-Only.

OPEN FILE NONRECOVERABLE

PIP. A disk has the wrong format or a bad sector.
Option only for drives.

SET. The specified option is not valid for files.
Option requires a file reference.

SET. The specified option requires a filespec.

373

Appendices

Table A-1 (continued)

Options not grouped together.

DIR. Options can only be specified within one set of
brackets.

Output File Exists Erase it.
The output file specified must not already exist.

OUTPUT FILE READ ERROR:
MAC RMAC. An output file cannot be written properly
probably because the disk is full. Use the ERASE command
to delete unnecessary files from the disk.

OVERLAPPING SEGMENTS:

LINK-80. LINK-80 attempted to write a segment into
memory already used by another segment.

Page and nopage option selected. No page in effect.
SET. The preceding options are mutually exclusive.
Parameter Error

SUBMIT. Within the SUBMIT file of type SUB valid
parameters are $0 through $9.

Password Error.

DUMP ERASE GENCOM TYPE. The password is
incorrect.

Physical Device Does Not Exist.

DEVICE. The specified physical device is not defined in
the system.

374

Messages
PROGRAM INPUT IGNORED.
SUBMIT. This message is preceded by “WARNING”,
The SUBMIT file contains a line with < and the program
does not require additional input.

PUT=

PUT. This prompt occurs when a program requests input
while running a PUT FILE [NO ECHO] command.

PUT ERROR: FILE ERASED.

PUT. The PUT output file was erased and could not be
closed.

QUIT NOT FOUND

PIP. The string argument to a Q parameter was not found
in your input file.

Random Read

SUBMIT. An error occurred when reading the temporary
file used by the SUBMIT command.

Read only.

GENCOM SET. The drive or file specified is
write-protected.

Read error

TYPE. An error occurred when reading the file specified in
the TYPE command. Check the disk and try again.

Reading file HELP.HLP
Reading HELP.HLP index

HELP. An error occurred while reading HELP.HLP.
Copy the HELP.HLP file from the system disk.

375

Appendices
Table A-I (continued)
RECORD TOOQ LONG

PIP. A HEX record exceeds 80 characters in a file being
copied with the [H] option.

Requires CP/M PLUS.0 or higher,
DATE DEVICE DIR ERASE GENCOM HELP INITDIR

PIP SET SETDEF SHOW RENAME TYPE. This version
of the utility must only be run under CP/M PLUS.0 or

higher.

R/O DISK
PIP. Tht=j destilnation drive is set to Read-Only and PIP
cannot write to it.

R/O FILE

PIP. The destination file is set to Read-Only and PIP
cannot write to it.

Sort Stack Overflow

DIR. There is not enough memory available for the sort
stack.

SOURCE FILE READ ERROR:

MAC RMAC. The source file cannot be read properly by
MAC.,

SOURCE FILENAME ERROR:

MAC RMAC. The form of the source filename is invalid.

376

Messages

START NOT FOUND

PIP. The string argument to an S parameter cannot be
found in the source file.

Symbol Table overflow

XREF. No space is available for an attempted symbol
allocation.

Symbol Table reference overflow

XREF. No space is available for an attempted symbol
reference allocation.

SYNTAX ERROR:
LIB. The LIB-80 command is not properly formed.
Teo many entries in Index Table. Not enough memory

HELP, There is not enough memory available to hold the
topic table while creating HELP.HLP.

Topic:
b4 4444
Not found,

HELP. The topic requested does not exist in the
HELP.HLP file. HELP displays the topics available.

Total file size exceeds B4K.
GENCOM. The output file exceeds the maximum allowed.
Try ‘PAGE' or ‘NO PAGE’

TYPE. The only valid option is PAGE or NO PAGE.

377

Appendices

Table A-1 {(continued)

Unabte to close HELP.DAT.
Unabie to close HELP.HLP.

HELP. An error occurred while closing file HELP.HLP or
HELP.DAT. There might not be enough disk or directory
space on the drive.

Unable to find file HELP.HLP.

HELP. HELP requires HELP.HLP file to operate. Copy it
to your default drive from your CP/M PLUS system disk.

Unable to Make HELP.DAT.
Unable to Make HELP.HLP.

HELP. There is not enough space on the disk for
HELP.HLP or HELP.DAT or the files are Read-Only.

UNBALANCED MACRO LIBRARY.
MAC RMAC. A MACRO definition was started within a
macro library but the end of the file was found in the library
before the balancing ENDM was encountered.

UNDEFINED START SYMBOL.:

LINK-80. The symbol specified with the G switch is not
defined in any of the modules being linked.

UNDEFINED SYMBOLS:
LINK-80. The symbols following this message are
referenced but not defined in any of the modules being
linked.

UNEXPECTED END OF HEX FILE - filespec

PIP. An end-of-file was encountered before a terminatidn

378

Messages

hex record. The hex file without a termination record should
be corrected probably by recreating the hex file.

Unrecognized drive.

SHOW. The specified drive is not valid. Valid drives are A
to P.

UNRECOGNIZED ITEM:

LINK-80. An unfamiliar bit pattern has been scanned and
ignored by LINK-80.

Unrecognized input.
SHOW. The SHOW command line has an invalid format.
Unrecognized option.

GENCOM and SHOW. An option typed in the command
line is not valid for the command.

USER ABORTED

PIP. You stopped a PIP operation by pressing CTRL-C.

VERIFY ERROR: - filespec

PIP. When copying with the V option PIP found a
difference when rereading the data just written and
comparing it to the data in its memory buffer.

Write error
XREF. This message is preceded by filename. XRF and

indicates that no disk space is available or no directory space
exists on the specified drive.

Wiriting file: filespec

HELP. An error occurred while attempting to write the file
specified by filespec.

379

Appendices
Table A-1 (continued)

Wrong Password.

SET. The specified password is incorrect or invalid.

SID. SID has encountered an error.

380

Appendix B

ASCII and Hexadecimal Conversions

ASCII stands for American Standard Code for Information Interchange.
The code contains 96 printing and 32 non-printing characters used to store
data on a disk. Table B-1 defines ASCII symbols then Table B-2 lists the
ASCII and hexadecimal conversions. The table includes binary decimal
hexadecimal and ASCII conversions,

Table B-1. ASCII Symbols

Symbol Meaning Symbol Meaning
ACK acknowledge ES file separator
BEL bell GS group separator
BS backspace HT horizontal tabulation
CAN cancel] LF line-feed
CR carriage return NAK negative acknowledge
DC device control NUL null
DEL delete RS record separator
DLE data link escape SI shift in
EM end of medium S0 shift out
ENQ enquiry SOH start of heading
EOT end of transmission Sp space
ESC escape STX start of text
ETB end of transmission SUB substitute
ETX end of text SYN synchronous idle
FF form-feed Us unit separator
VT vertical tabulation

381

Appendices

Table B-2. ASCII Conversion Table

Binary Decimal Hexadecimal ASCH
0000000 0 0 NUL

0000001 1 1 SOH (CTRL-A)
0000010 2 2 STX (CTRL-B)
0000011 3 3 ETX (CTRL-C)
0000100 4 4 EOT (CTRL-D)
0000101 5 5 ENQ (CTRL-E}
0000110 6 6 ACK (CTRL-F)
0000111 7 7 BEL (CTRL-G)
(001000 8 8 BS (CTRL-H)
(001001 9 9 HT {CTRL-I)
0001010 10 A LF (CTRL-J))
0001011 11 B VT (CTRL-K)
0001100 12 C FF (CTRL-L}
0001101 13 D CR (CTRL-M)
0001110 14 E SO (CTRL-N)
0001111 15 F SI (CTRL-O)
0010000 16 10 DLE (CTRL-P)
0010001 17 11 DC1 (CTRL-Q)
0010010 18 12 DC2 {(CTRL-R)
0010011 19 13 DC3 (CTRL-8)
0010100 20 14 DC4 (CTRL-T)
0010101 21 15 NAK (CTRL-U)
0010110 22 16 SYN (CTRL-V)
0010111 23 17 ETB (CTRL-W)
0011000 24 18 CAN (CTRL-X)
0011001 25 19 EM (CTRL-Y)
0011010 26 1A SUB (CTRL-Z)
0011011 27 1B ESC (CTRL-[)
0011100 28 iC FS (CTRL-)
0011101 29 iD GS (CTRL-})
0011110 30 1E RS (CTRLY)
0011111 3 IF US (CTRL--)
0100000 32 20 (SPACE)

0100001 33 21 !

0100010 34 22 ”

0100011 35 23 #

0100100 36 24 §

382

ASCIH and Hexadecimal Conversion

Binary Decimal Hexadecimal ASCiI
0100101 37 25 %
0100110 38 26 &
0100111 39 27 i
0101000 40 28 (
0101001 41 29)
0101010 42 2A *
0101011 43 2B +
0101100 44 2C

0101101 45 2D -
0101110 46 2B)
0101111 47 2F /
0110000 48 30 0
0110001 49 31 1
0110010 50 32 2
0110011 51 33 3
0110100 52 34 4
0110101 53 35 5
0110110 54 36 6
0110111 55 37 7
0111000 56 38 8
0111001 57 39 9
0111010 58 3A :
0111011 59 3B ;
0111100 60 3C <
0111101 61 iD =
0111110 62 3E >
0111111 63 3F ?
1000000 64 40 @
1000001 65 41 A
1000010 66 42 B
1000011 67 43 C
1000100 68 44 D
1000101 69 45 E
1000110 70 46 F
1000111 71 47 G
1001000 72 48 H
1001001 73 49 I

383

Appendices

Table B-2 (continued)

Binary Decimal Hexadecimal AScCH
1001010 74 4A J
1001011 75 4B K
1001100 76 4C L
1001101 77 4D M
1001110 78 4E N
1001111 79 4F O
1010000 80 50 P
1010001 81 51 Q
1010010 82 52 R
1010011 83 53 S
1010100 84 54 T
1010101 &5 55 U
1010110 86 56 A%
1010111 87 57 W
1011000 88 58 X
1011001 89 59 Y
1011010 a0 SA Z
1011011 | 5B [
1011100 92 5C N
1011101 93 5D]
1011110 94 SE :
1011111 95 5F <
1100000 96 60 ’
1106001 97 61 a
1100010 98 62 b
1100011 99 63 c
1100100 160 64 d
1100101 101 65 e
1100110 102 66 f
1100111 103 67 g
1101000 104 68 h
1101001 105 69 i
1101010 106 6A j
1101011 107 6B k
1101100 108 6C 1
1101101 109 6D m
1101110 110 i) =) n

384

ASCH and Hexadecimal Conversion

Binary Decimal Hexadecimal ASCH
1101111 111 6F 0
1110000 112 70 D
1110001 113 71 q
1110010 114 72 r
1110011 115 73 E
1110100 116 74 t
1110101 117 75 u
1110110 118 76 v
1110111 119 77 W
111000 120 78 X
1111001 121 79 y
1111010 122 7A z
1111011 123 7B {
1111100 124 7C |
1111101 125 D }
1111110 126 7E)
1111111 127 7F DEL

385

Appendix C
Filetypes

CP/M Plus identifies every file by a unique file specification which consists
of a drive specification a filename a filetype and an optional password. The
filetype is an optional three-character ending separated from the filename
by a period. The filetype generally indicates a special kind of file. The
following table lists common filetypes and their meanings.

Table C-1. Common Filetypes

Type Meaning

ASM Assembly language source file; the CP/M Plus assemblers
assemble or translate a type ASM file into machine langnage.

BAK Back-up file created by text editor; the editor renames the
source file with this filetype to indicate that the original file
has been processed. The original file stays on disk as the
back-up file so you can refer to it.

BAS MALLARD BASIC or CBASIC program source file.
COM 8080 executabie file,

ERL Pascal/MT+™ relocatable file.

HEX Program file in hexadecimal format.

INT BASIC program intermediate language file.

IRL Indexed REL file produced by LIB.

LIB Used by MAC and RMAC for macro libraries. The ED R

command reads files of type LIB. The ED X command
386

OVL

PAS
PLI

PRL

PRN

REL

SPR

SUB

SYM

5YS

TEX

TOK
XRF

$5%

Filetypes

writes files of type LIB. Printable file displayable on console
or printer.

Program overlay file. PL/I-80 compiler overlays files; you
can create overlay files with LINK-80.

Pascal/MT+ source program filetype.

PL/I-80 source program filetype.

Page Relocatable file; a file that does not require an absolute
segment. It can be relocated in any Page Boundary (256
Bytes).

Printable file displayable on console or printer.

Relocatable file produced by RMAC and PL/I-8(0 that can be
linked by LINK-80.

System Page Relocatable file; system files required to
generate CP/M Plus such as BNKBDOS.SPR BDOS.SPR
BIOS.SPR and RESBDOS.SPR.

Filetype required for submit file containing one or more
CP/M Plus commands. The SUBMIT program executes
commands in files of type SUB providing a batch execution
mode for CP/M Plus.

Symbol table file. MAC RMAC and LINK-80 output files of
type SYM. SID and ZSID read files of type SYM.

System file for CP/M Plus.

Source file for TEX-80™, the Digital Research text
formatter,

Pascal/MT+ intermediate language file.
Cross-reference file produced by XREF.

Temporary file.

387

Appendix D
CP/M Plus Control Character Summary

This appendix describes the use of CTRL characters. Note that CTRL is
given by the ALT key on the PCWR256.

CTRL-A

CTRL-B

CTRL-C

CTRL-E

CTRL-F

CTRL-G

CTRL-H

CTRL-I

388

Moves the cursor one character to the left.

Moves the cursor to the beginning of the command line
without having any effect on the contents of the line. If the
cursor is at the beginning CTRL-B moves it to the end of the
line.

Terminates the executing program and redisplays the system
prompt provided the cursor is ai the beginning of the
command line. Also if you halt scrolling with CTRL-S you
can terminate the program with a CTRL-C.

Forces a physical carriage return but does not send the
command line to CP/M Plus. Moves the cursor to the
beginning of the next line without erasing the previous input.

Moves the cursor one character to the right.

Deletes the character indicated by the cursor. The cursor
does not move.

Deletes a character and moves the cursor left one character
position.

Moves the cursor to the next tab stop. Tab stops are
automatically set at each eighth column. Has the same effect
as pressing the TAB key.

CTRL-J

CTRL-K

CTRL-M

CTRL-P

CTRL-R

CTRL-S

CTRL-U

CTRL-W

CTRL-X

Control Character Summary

Sends the command line to CP/M Plus and returns the cursor
to the beginning of a new line. Has the same cffect as a
RETURN or ENTER or a CTRL-M keystroke.

Deletes to the end of the line from the cursor,

Sends the command line to CP/M Plus and returns the cursor
to the beginning of a new line. Has the same effect as a
RETURN or ENTER or a CTRL-J keystroke.

Echoes all console activity to the printer. The first time you
type CTRL-P CP/M Plus rings a bell at your console. You
can use CTRL-P after you halt scrolling with CTRL-S. A
second CTRL-P ends printer echo; no bell rings. CTRL-P
has no effect if your system does not include a printer.

Retypes the command line. Places a # at.the current cursor

location moves the cursor to the next line and retypes any
partial command you typed so far.

Stops screen scrolling. If a display scrolls by too fast for you
to read it type CTRL-S. CTRL-Q restarts screen scrolling.

Diiscards all the characters in the command line places a # at
the current cursor position and moves the cursor to the next
line. However you can use a CTRL-W to recall any
characters that were to the left of the cursor when you
pressed CTRL-U.

Recalls and displays previously entered command line both
at the operating syster level and in executing programs if the
CTRL-W is the first character entered after the prompt.
CTRL-J CTRL-M CTRL-U and RETURN define the
command line you can recall. If the command line contains
characters CTRL-W moves the cursor to the end of the
command line. If you press RETURN CP/M Plus executes
the recalled command.

Drscards all the characters left of the cursor and moves the
cursor to the beginning of the current line. CTRL-X saves
any characters right of the cursor. banked

389

Appendices

The PCWR8256 has the following default expansion string assignments
which are of use within both CP/M Plus commands and Mallard BASIC.

Expansion token Expansion siring Key combination
#80 Control-C STOP

#81 Control-Z fl

#82 Control-Z f2 (SHIFT + f1)
#83 Control-Q 3

#84 Control-Q f4 (SHIFT + F3)
#85 Control-S 4

#86 Control-S 5 (SHIFT + 4)
#87 Control-P 7

#88 Control-P {8 (SHIFT + £7)
#89 Control-G DEL»

#8B Control-H CAN

#38C Control-U CuT

#8D Control-W PASTE

#8E Control-] FIND

#8F Control-F Control-B Control B EOL

#90 Control-F Control-B LINE

#91 Control-._ T

#92 Control-V +

#93 Control-A o

#94 Control-F — or CHAR
#95 Control-R RELAY

#96 Control-" J

#97 Control-K ALT + DEL»
#98 Control-\ —

#99 Control-E ALT + |

#9A Control-X ALT + <€ DEL

Consult your User Guide for further details.

390

Appendix E
System Control Block

The System Control Block (SCB) is a CP/M Plus data structure located in
the BDOS. CP/M Plus uses this region primarily for communication
between the BDOS and the BIOS. However, it is also available for
communication between application programs, R$Xs, and the BDOS.
Note that programs that access the System Control Block are not version
independent. They can run only on CP/M Plus.

The following list describes the ficlds of the SCB that are available for
access by application programs and RSXs. The location of each field is
described as the offset from the start address of the SCB (see BDOS
Function 49). The RW/RO column indicates if the SCB field is Read-Write
or Read-Only.

Table E-1. SCB Fields and Definitions

Offset RW/RQ Definition

00 - 04 RO Reserved for system use.

05 RO BDOS Version Number.

06 - 09 RW Reserved for user use. Use these four bytes for

your own flags or data.

0A - OF RO Reserved for system use.

10-11 RW Program Error Return Code. This 2-byte field
can be used by a program to pass an error code
or value to a chained program. CP/M Plus’s
conditional command facility also uses this field
to determine if a program executes successfully.
The BDOS Function 108 (Get/Set Program
Return Code) is used to get/set this value.

391

Appendices

Table E-1 (continued)

Offset RWIRO Definition
12-19 RO Reserved for system use
1A RW Console Width. This byte contains the number

of columns, characters per line, on your console
relative to zero. Most systems defauit this value
to 79. You can set this default value by using the
DEVICE utility. The console width value is
used by the banked version of CP/M Plus in
BDOS function 10, CP/M Plus’s console editing
input function. Note that typing a character into
the last position of the screen, as specified by the
Console Width field, must not cause the
terminal to advance to the next line.

1B RO Console Column Position. This byte contains
the current conscle column position.

1C RW Console Page Length. This byte contains the
page length, lines per page, of your console.
Most systems default this value to 24 lines per
page. This default value may be changed by
using the DEVICE utility.

ID - 21 RO Reserved for system use.

22-2B RW Redirection flags for each of the five logical
character devices. If your system’s BIOS
supports assignment of logical devices to
physical devices, you can direct each of the five
logical character devices to any combination of
up to 12 physical devices. The 16-bit word for
each device represents the following:

Each bit represents a physical device where bit
15 corresponds to device zero and bit 4
corresponds to device 11. Bits zero through 3 are
reserved for system use.

392

System Control Block

Offset

RW/RO

22-23

24 - 25

26 - 27

28-29

2A -2B

2C

2D

2E

2F

RW

RW

RW

RW

RwW

RW

RO

RW

RW

You can redirect the input and output logical
devices with the DEVICE command.

CONIN Redirection Flag.
CONOUT Redirection Flag.
AUXIN Redirection Flag.
AUXOUT Redirection Flag.
LSTOUT Redirection Flag.

Page Mode. If this byte is set to zero, some
CP/M Plus utilities and CCP built-in commands
display one page of data at a time; you display
the next page by pressing any key. If this byte is
not set to zero, the system displays data on the
screen without stopping. To stop and start the
display, you can press CTRL-S and CTRL-Q,
respectively.

Reserved for system use.

Determines f CTRL-H is interpreted as a
rub/del character. If this byte is set to 0, then
CTRL-H is a backspace character (moves back
and deletes). If this byte is set to OFFH, then
CTRL-H is a rub/del character, echoes the
deleted character.

Determines if rub/del is interpreted as CTRL-H
character. If this byte is set to 0, then rub/del
echoes the deleted character. If this byte is set to
OFF, then rub/del is interpreted as a CTRL-H
character (moves back and deletes).

393

Table E-1 (continued)

Offset

RWIRO

Definition

30-32
33-34

35-36

37

38

39-3B

3C-3D

3E

3F - 43

394

RO
RW

RO

RW

RW

RO

RO

RO

RO

Reserved for system use.

Console Mode. This is a 16-bit system parameter
that determines the action of certain BDOS
Console /O functions. (See Section 8 and
BDOS Function 109, Get/Set Console Mode,
for a thorough explanation of Console Mode.)

Reserved for system use.

Qutput delimiter character. The default output
delimiter character is §, but you can change this
value by using the BDOS Function 110, Get/Set
Output Delimiter.

List Output Flag. If this byte is set to 0, console
output is not echoed to the list device. If this
byte is set to 1 console output is echoed to the
list device.

Reserved for system use.

Current DMA Address. This address can be set
by BDOS Function 26 (Set DMA Address). The
CCP initializes this value to 0080H. BDOS
Function 13, Reset Disk System, also sets the
DMA address to 0080H.

Current Disk. This byte contains the currently
selected default disk number. This value ranges
from 0 - 15 corresponding to drives A - P,
respectively. BDOS Function 25, Return
Current Disk, can be used to determine the
current disk value.

Reserved for system use.

Offser

RWIRO

Definition

44

45 - 49

4A

4B

4C - 4F

50

RO

RO

RW

RW

RW

RW

Current User Number. This byte contains the
current user number. This value ranges from () -
15. BDOS Function 32, Set/Get User Code, can
change or interrogate the currently active user
number.

Reserved for system use.

BDOS Multi-Sector Count. This field is set by
BDOS Function 44, Set Multi-sector Count.

BDOS Error Mode. This field is set by BDOS
Function 45, Set BDOS Error Mode. If this byte
is set to OFFH, the system returns to the current
program without displaying any error messages.
If it is set to OFEH, the system displays error
messages before returning to the current
program. Otherwise, the system terminates the
program and displays error messages. See
description of BDOS Function 45, Set BDOS
Error Mode, for discussion of the different error
modes.

Drive Search Chain. The first byte contains the
drive number of the first drive in the chain, the
second byte contains the drive number of the
second drive in the chain, and so on, for up to
four bytes, If less than four drives are to be
searched, the next byte is set to OFFH to signal
the end of the search chain. The drive values
range from 0 - 16, where { corresponds to the
default drive, while 1 - 16 corresponds to drives
A - P, respectively. The drive search chain can
be displayed or set by using the SETDEF utility,

Temporary File Drive. This byte contains the
drive number of the temporary file drive. The

395

Appendices

Table E-1 (continued)

Offset RWIRO Definition

drive number ranges from 0 - 16, where 0
corresponds to the default drive, while 1 - 16
corresponds to drives A - P, respectively,

51 RO Error drive. This byte contains the drive number
of the selected drive when the last physical or
extended error occurred.

52-56 RO Reserved for system use.

57 RO BDOS Flags. Bit 7 applies to banked systems
only. If bit 7 is set, then the system displays
expanded error messages. The second error line
displays the function number and FCB
information.

Bit 6 applies only to nonbanked systems. If bit 6
is set, it indicates that GENCPM has specified
single allocation vectors for the system.
Otherwise, double allocation vectors have been
defined for the system. Function 98, Free
Blocks, returns temporarily allocated blocks to
free space only if bit 6 is reset.

58 -59 RW Date in days in binary since 1 Jan 78.

SA RW Hour in BCD (2-digit Binary Coded Decimal).
5B RW Minutes in BCD.

5C RW Seconds in BCD.

5D - 5E RO Common Memory Base Address. This value is

zero for nonbanked systems and nonzero for
banked systems.

5F - 63 RO Reserved for system use.

396

Appendix F
PRL File Generation

PRL Format

A Page Relocatable Program has an origin offset of 100H bytes that is
stored on disk as a file of type PRL. The format is shown in Table F-1.

Table F-1. PRL File Format

Address Contents

0001-0002H Program size
0004-0005H Minimum buffer requirements (additional mermory)
0006-00FFH Currently unused, reserved for future allocation

0100H + Program size = Start of bit map

The bit map is a string of bits identifying those bytes in the source code that
require relocation. There is one byte in the bit map for every 8 bytes of
source code. The most significant bit, bit 7, of the first byte of the bit map
indicates whether or not the first byte of the source code requires
relocation. If the bit is on, it indicates that relocation is required. The next
bit, bit 6, of the first byte corresponds to the second byte of the source
code, and so forth.

Generating a PRL
The preferred technique for generating a PRL file is to use the CP/M

397

Appendices

LINK-80., which can generate a PRL file from a REL relocatable object
file. A ‘;dmple link command is shown.

A>link dump[op]

398

Appendix G
SPR Generation

System Page Relocatable, SPR, files are similar in format to PRL files
except that SPR files have an origin offset of 0000H (see Appendix F). SPR
Files are provided as part of the standard CP/M Plus System: the resident
and banked portions of the banked BDOS, named RESBDOS3.SPR and
BNKBDOS3.SPR. The BIOS SPR file is named BNKBIOS3.SPR for
banked systems.

The method of generating an SPR is analogous to that of generating a Page
Relocatable Program (described in Appendix F) with the following

exceptions:

® If LINK-80 is used, the output file of type SPR is specified with the [os]
or option. The option is used when linking BNKBIOS3.8PR.

@® The code in the SPR is ORGed at 000H rather than 100H.

399

Appendix H
BDOS Function Summary

Note:

. indicates the address of

Function NumberiName

Input Parameters

Returned Values

ShLh B W = D

10
11
12
13
14

15
16
17
18
19
20
21

400

System Reset
Consocle Input
Console Qutput
Auxiliary Input
Auxiliary Output

List Output

Direct Console VO

Auxiliary Input

Status

Auxiliary Output

Status
Print String

Read Console Buffer
Get Console Status

Return Version Numbernone

Reset Disk System

Select Disk

Open File
Close File

Search for First
Search for Next

Delete File

Read Sequential
Write Sequential

none

none

E = char

none

E = char

E = char

E = OFFH/
OFEH/
0FDH/
char

none

none

DE = .String

DE = .BufferD

none

none

E = Disk

Number

DE = .FCB

DE = .FCB

DE = .FCB

none

DE = .FCB

DE = .FCB

DE = .FCB

none

A = char

A = 00H

A = char

A = 00H

A = 00H

A = char/status/
none

A = 00/0FFH

A = 00/0FFH

A = 00H

Characters in buffer

A = 00/01

HL = Version (0031H)
A = 00H

A = Err Flag
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Err Code
A = Err Code

BDOS Function Summary

Function Number/Name

Input Parameters

Returned Values

22 Make File

23 Rename File

24 Return Login Vector
25 Return Current Disk
26 Set DMA Address

27
28
29
30
3
32

33
34
35

36
37

38
39
40

41
2
43
44
45

46

47
48
49

S0
59
60

Get Addr{Alloc)
Write Protect Disk
Get R/O Vector
Set File Attributes
Get Adde(DPB)
Set/Get User Code

Read Random
Write Random
Compute File Size

Set Random Record.
Reset Drive

Access Drive

Free Drive

Write Random with
Zero Fill

Test and Write Record
Lock Record

Unlock Record

Set Multi-sector Count
Set BDOS Error Mode

Get Disk Free Space
number

Chain to Program
Flush Buffers
Get/Set System
Control Block

Direct BIOS Calls
Load Overlay

Call Resident System
Extension

DE = .FCB

DE = .FCB

none

none

DE = .DMA

none

noie

none

DE = .FCB

none

E = OFFH/
user number

DE = .FCB

DE = .FCB

DE = .FCB

DE = .FCB

DE = Drive

Vector

none

none

DE = .FCB

DE = .FCB

DE = .FCB

DE = FCB

E = # Sectors
E = BDOS Err
Mode

E = Drive

A = Err Flag
E = Chain Flag
E = Purge Flag
DE = .SCB PB

DE = .BIOS PB
DE = .FCB
DE = RSX PB

A = Dir Code

A = Dir Code

HL = Login Vector

A = Cur Disk#

A = 00H

HL = .Alloc

A = 00H

HL = R/O Vector

A = Dir Code

HL = .DPB

A = Curr User/
00H

A = Err Code

A = Err Code

r0, r1, 12

A = Err Flag

1, r1, 12

A = 00H

A = 00H

A = 00H

A = Err Code

A = 0FFH

A =00H

A = 00H

A = Return Code

A = 00H

Number of Free Sectors

A = 00H

A = Err Flag

A = Returned Byte
HL = Returned Word
BIOS Return

A = Err Code

A = Err Code

401

Appendices

Function Number{Name

Input Parameters

Returned Values

98 Free Blocks
99 Truncate File
100 Set Directory Label
101 Return Directory
Label Data

102 Read File Date Stamps

and Password Mode
103 Write File XFCB
104 Set Date and Time
105 Get Date and Time

106 Set Default Password

107 Return Serial Number

108 Get/Set Program

109 Return Code

Get/Set Console Mode

110
Get/Set Output
111 Delimiter
112 Print Block
152 List Block
Parse Filename

none

DE = .FCB
DE = .FCB

E = Drive

DE = .FCB
DE = .FCB
DE = .DAT
DE = .DAT
DE =.Password
DE = .Serial #
field

DE = OFFFFH/
Code

Code

DE = OFFFFH/
Mode

DE = O0FFFFH/
E = Delimiter
DE = .CCB
DE = .CCB
DE = .PFCB

A = Err Flag

A = Dir Code

A = Dir Code

A =Dir label data byte
A = Dir Code

A = Dir Code

A = 00H

Date and Time
A = seconds
A = 00H
Serial Number

HL = Program Ret
Code

none

HL = Console Mode
none

A = Output Delimiter

none
A = 00H
A = 00H

See definition

402

Appendix I
Extended Disk Parameter Blocks

Associated with each (logical) drive is an extended disk parameter block
(XDPB). This contains a standard DPB as required by CP/M Plus and
information required by the BIOS to support the different formats. It may
be patched in order to use different format disks provided that the
restrictions detailed below are obeyed.

XDPB structure
bytes 0 . . 16: standard CP/M Plus DPB

byte

byte
byte
byte
byte
byte
byte
byte

byte 26

17

18
19
20
21,22
23
24
25

: sidedness

0 => single sided
1 == double sided flip sides
2 = double sided up and over

: number of tracks per side
: number of sectors per track
: first sector number

sector size

: gap length (read/write)
: gap length (format)
: bit 7 multi-track operation

1 == multi-track operation
0 => single track
bit 6 modulation mode
1 => MFM mode
0 => FM mode
bit 5 skip deleted data address mark
1 == skip deleted data address mark
0 => don’t skip deleted address mark
bits4 ., . 0=10

: freeze flag
#00 == auto-detect disk format
#FF => don’t auto-detect disk format

403

Appendices
Byte 25 is normally set to #60. Multi-track operation is not recommended.

Setting the freeze flag (byte 26} prevents the BIOS from trying to
determine the format of a disk. This should be used when patching an
XDPB for a non-standard format.

To find the XDPB for a particular drive use BDOS function 31.

The restriction on patching an XDPB is that the resulting disk structure
must lie within the following maximum sizes:

Maximum 2 bit allocation vector= 91 bytes
Maximum checksum vector = 32 bytes
Maximum hash table size = 512 bytes
Maximum sector size 512 bytes

This corresponds to a disk of 160 tracks, 9 sectors per track, 512 bytes per
sector, 1 reserved track, 128 directory entries, 2K block size. This is the
recommended structure for a double sided, double track, double density
disk. ’

The XDPBs for the standard formats are as follows,

PCW8256 Format (type 0)

36 SPT, records per track

3 BSH, block shift

7 BLM, block mask

0 EXM, extent mask

174 DSM, number of blocks - 1
63 DRM, number of directory entries — |
#CO0 ALQ, 2 directory blocks

#00 ALl

16 CKS, size of checksum vector
1 OFF, reserved tracks

2 PSH, physical sector shift

3 PHM, physical sector mask

0 single sided

40 tracks per side

404

Extended Disk Parameter Blocks

9 sectors per track

1 first sector number

512 sector size

42 gap length (read/write)

82 gap length {format)

#60 MFM mode, skip deleted data address mark
0 do auto select format

System Format (PCW8256 and CPC6128)

36 SPT, records per track

3 BSH, block shift

7 BLM, block mask

0 EXM, extent mask

170 DSM, number of blocks — 1
63 DRM, number of directory entries — 1
#C0 ALD, 2 directory blocks

#00 ALl

16 CKS, size of checksum vector
2 OFF, reserved track

2 PSH, physical sector shift

3 PHM, physical sector mask

0 single sided

40 tracks per side

9 sectors per track

#41 first sector number

512 sector size

42 gap length (read/write)

82 gap length (format)

#60 MFM mode, skip deleted data address mark
0 do auto select format

Data Only Format (PCW8256 and CPC6128)

6 SPT, records per track
BSH, block shift
BLM, block mask
EXM, extent mask

S~ W

405

Appendices

179 DSM, number of blocks — 1

63 DRM, number of directory entries — 1
#C0 ALD, 2 directory blocks

#00 ALl

16 CKS, size of checksum vector

0 OFF, reserved tracks

2 PSH, physical sector shift

3 PHM, physical sector mask

0 single sided

40 tracks per side

9 sectors per track

#C1 first sector number

512 sector size

42 gap length (read/write)

82 gap length (format)

#60 MFM mode, skip deleted data address mark
0 do auto select format

Swapping Disks Between CP/M Plus and CP/M 2.2

CP/M 2.2 and AMSDOS system format and data only format disks can be
used under CP/M Plus with no further ado.

CP/M Plus disks can be freely used under CP/M 2.2 or AMSDOS provided
that:

There is no disk label.
There is no time and date stamping.
There are no passwords.

This is the normal state of a CP/M Plus disk, and will remain as such unless
the user explicitly enables any of the above features using INITDIR.COM
and/for SET.COM.

If any of the above exist then both CP/M 2.2 and AMSDOS will become
confused as to the amount of free space on the disk. Files may still be read
but it is recommended that such disks are not written to under CP/M 2.2 or
AMSDOS.

406

Extended Disk Parameter Blocks
INITDIR.COM is used to reformat the dircctory for time and date

stamping. SET.COM is used to create disk labels and enable and create
passwords.

407

Appendix J
BIOS Extended Jumpblock

USERF

In the standard CP/M Plus BIOS jumpblock function 30 “USERF” is
reserved for the system implementor. On the CPC6128 and PCW8256 this
function is used for calling the firmware and extended BIOS routines in
bank 0.

On CPC6128 you can use USERF to access the firmware (see Appendix
K).

To find USERF fetch the contents of location 1, this contains the address
of function 1 “WBOOQT” in the BIOS jumpblock. Add 87 to give the
address of the JMP USERF entry. It is a good idea to copy the USERF
jumpblock entry into a fixed location and then call this fixed location.

USEREF takes the address of the required routine in bank 0 as an inline
parameter. The registers AF BC DE HL IX 1Y are all passed to the routine
and returned back to the caller as set by the routine. The alternate register
set is preserved throughout the call, it can neither be used to pass
parameters nor to return results.

BIOS Jumpblocks

The BIOS has two jumpblocks: the standard CP/M Plus jumpblock and an
extended jumpblock. The word at location #0001 contains the address of
the WBOOT entry in the standard BIOS jumpblock, function 1. The
extended jumpblock starts at #0080 in bank 0 and contains jumps for
additional facilities such as physical sector reading and writing,

Since the extended BIOS jumpblock is in bank 0 whereas the user program
is in bank 1 it is not possible for an application program to call routines in
the extended jumpblock directly, instead the BIOS function USERF must
be used.

408

Disk Driver

#0080
#0083
#0086
#0089
#008C
#008F
#0092
#0095
#0098
#009B
#009E
#00A1
#00A4
#00A7
#00AA
#00AD
#00B0
#00B3

JIMP
JMP
IMP
JMP
JMP
IMP
JMP
IMP
JMP
JMP
JMP
IMP
IMP
IMP
IMP
IMP
IMP
JMP

DD INIT

DD SETUP

DD READ SECTOR
DD WRITE SECTOR
DD CHECK SECTOR
DD FORMAT

DD LOGIN

DD SEL. FORMAT
DD DRIVE STATUS
DD READ ID

DD L DPB

DD L XDPB

DD L ON MOTOR
DD L. T OFF MOTOR
DD L OFF MOTOR
DD L READ

DD L WRITE

DD L SEEK

SIO Driver

#00B6 JMP
#00B9 JMP
#00BC IMP

CD SA INIT
CD SA BAUD
CD SA PARAMS

Terminal Emulator

#00BF JMP TE ASK
#00C2
#00C5
#00C8
#00CB
#00CE

#00D1

IMP
JMP
IMP
JMP
JMP
IMP

TE RESET

TE STL ASK

TE STL ON OFF
TE SET INK

TE SET BORDER
TE SET SPEED

Extended BIOS Jumpblock

:initialize disk driver

;set disk parameters

;:read a sector

;write a sector

:check a sector

:format a track

;login a disk

:select a standard format

;fetch drive status

;read a sector 1D

sinitialize a DPB

;dinitialize an XDPB

sturn motor on, wait for timeout
;set motor off timeout

sturn motor off

;read type uPD765A command
;write type uPD765A command
;seek command

dinitialize SIO channel A
;:set SIO channel A baud rates
;fetch SIO channel A parameters

;where is the cursor, what screen
size

;re-initialize the screen

;is the status line epabled?

,enable/disable the status line

;set the colour(s) for an ink

;set the colour{s) for the border

;set the ink flash speed

409

Appendices

Keyboard

#00D4 JMP KM SET EXPAND ;sef the text for an expansion
token

#00D7 JMP KM SET KEY ;set entry(s) for key translation

#0WDA Jmp KM KT GET ;get a key token

#00DD JMP KM KT PUT ;put a key token

#00E¢ JMP KM SET SPEED ;set key repeat speed

Misc

#00E3 JMP CD VERSION ;get version numbers

#0WE6 IMP CD INFO ;get BIOS system information

The PCW8256 additionally has the entry

#00E9 JMP SCR RUN ROUTINE ;run a routine in screen
environment

All other entries in the jumpblock are reserved and must not be used.

The action performed by each entry in the extended jumpblock is detailed
below, along with the entry and exist conditions of each.

0 DDINIT #0080

Initialize the disk driver.

Action: Initializes the disc driver, resets all disc parameters to their default
values. Turns the motor off.

Entry conditions: None.

Exit conditions: AF BC DE HL corrupt. All other registers
preserved

410

Extended BIOS Jumpblock

Notes: The default disk parameters are:

Motor on timeout 1 sec
Motor off timeout 5 sec
Write current off time 1.75 msec
Head settle time 30 msec
Step rate 12 msec
Head load time 4 msec
Head unload time 480 msec

Non-DMA mode

Related Entries: DD SETUP

1 DDSETUP #0083

Reset various disk parameters.

Action: Sets the values for the motor on, motor off, write current off and
head settle times. Sends a SPECIFY command to the floppy disk
controller.

Entry conditions:

HL = address of parameter block in common memory. Format of the
parameter block: '

bytes 0: motor on timeout in 100 msec units.
" bytes I: motor off timeout in 100 msec units.
byte 2: write current off time in 10 psec units.
byte 3: head settle time in 1 msec units.
byte 4: step rate time in 1 msec units.
byte 5: head unload delay 32 . . 480 msec in 32 msec units.
byte : bits 7. . 1: head load delay, bit 0: ron-DMA mode (as per
uPD765A SPECIFY command).

Exit conditions: AF BC DE HL corrupt. All other registers preserved
Notes: The values given are used for both drives. When using two differing
drives use the slower of the two times. A motor off time of zero will never

turn the motor off. The default values are:

411

Appendices

Motor on timeout 10
Motor off timeout 50
Write current off time 178
Head settle time 30
Step rate 12
Head load time #0F

Head unload time + non-DMA #03

2 DD READ SECTOR #0086

Read a sector from disk.
Action: Reads a sector from disk into any bank.
Entry conditions:

B = CP/M bank
C = unit

D = logical track

E = logical sector

HL = address of destination buffer in the bank in register B

IX = address of XDPB in common memory (#C000 . . #FFFF)

Exit conditions: If OK:
Carry true
A corrupt

If failed:

Carry false

A = reason
0 == drive not ready
2 => seek fail
3 => data error
4 => no data
5 => missing address mark
8 => media changed

Always:
Other flags BC DE HL corrupt. All other registers preserved

412

Extended BIOS Jumpblock

Notes: In the event of errors this routine trys and retrys a total of 15 times
as follows:

TTTRTTTTITTTTRTTTT

where T means try, R realign, I move to innermost track.

The “media changed” error means that the sector numbers on the disk are
different from those specified in the XDPB.

Related eniries: DD WRITE SECTOR and DD CHECK SECTOR.

3 DD WHITE SECTOR #0089

Write a sector to disk.
Action: Writes a sector to disk from any bank.
Entry conditions:

B = CP/M bank

C = unit

D = logical track

E logical sector

HL = address of source buffer in bank in register B

IX = address of XDPB in common memory (#C000 . . #FFFF)

i

i

Exit conditions: 1f OK:
Carry true
A corrupt

If failed:

Carry false

A = recason
0 => drive not ready
1 => write protected
2 => seek fail
3 => data error
4 == no data
5 => missing address mark
8 => media changed

413

Appendices

Always:
Other flags BC DE HL corrupt. All other registers preserved.

Notes: In the event of errors this routine trys and retrys a total of 15 times
as follows:

TTTRTTTTITTTTRTTTT
where T means try, R realign, I move to innermost track.

The “media changed” error means that the sector nuombers on the disk are
different from those specified in the XDPB.

Related entries: DD READ SECTOR and DD CHECK SECTOR.

4 DD CHECK SECTOR #008C

Check that a sector on disk is the same as one in memory.

Action: Compares a sector on the disk with a store copy.
Entry conditions:

B = CP/M bank

C = unit

D = logical track

E logical sector

HL = address of source buffer in bank in register B

IX = address of XDPB in common memory (#C000 . . #FFFF)

I

il

Exit conditions: If OK and the sector on disk = sector in store:
Carry true zero false
A corrupt

If OK and the sector on disk <> sector in store:
Carry true zero false
A corrupt

414

Extended BIOS Jumpblock

If failed:
Carry false
A = reason
0 == drive not ready
2 => seek fail
3 => data error
4 => no data
5 =>> missing address mark
8 => media changed
Always:

Other flags BC DE HL corrupt, All other registers preserved.

Notes: In the event of errors this routine trys and retrys a total of 15 times
as follows:

TTTRTTTTITTTTRTTTT
where T means try, R realign, I move to innermost track,

The “media changed” error means that the sector numbers on the disk are
different from those specified in the XDPB.

Related entries: DD READ SECTION and DD WRITE SECTION.

5 DD FORMAT £008F

Format a track.
Action: Formats a track using a header information buffer in any bank.

Entry conditions:

B = CP/M bank

C = unit

D = jogical track

E = filler byte, usually #E5

HL = address of header information buffer in bank in register B

IX = address of XDPB in common memory (#C000. . #FFFF)

415

Appendices
Format of header information:

sector entry for first sector
sector entry for second sector

sector entry for last sector
Sector entry format:

byte 0: track number

byte 1: head number

byte 2: sector number

byte 3: log 2 (sector size) — 7

Exit conditions: If OK:
Carry true
A corrupt

If failed:

Carry false

A = reason
0 => drive not ready
1 == write protected
2 => seek fail
3 => data error
4 => no data
5 => missing address mark
8 => media changed

Always:
Other flags BC DE HL corrupt. All other regisiers preserved

Notes: In the event of errors this routine trys and retrys a total of 15 times
as follows:

TTTRTTTTITTTTRTTTT
where T means try, R realign, I move to innermost track.

The “media changed” error means that the sector numbers on the disk are
different from those specified in the XDPB,

416

Extended BIOS Jumpblock

6 DDLOGIN #0092

Login a disk.

Action: Attempts to determine the format of a disk. If successful, initializes
an XDPB. Does not affect or consider the freeze flag.

Enitry conditions:

C =unit
IX = address of XDPB in common memory (#C000 . . #FFFF)

Exit conditions: If OK:
Carry true
A = disk type
0 => PCW8256 format (type 0)
1 => system format
2 => data only format
other values as read from disk specification
DE = size of 2 bit allocation vector
HL = size of hash table
XDPB initialized

If failed:

Carry false

A = reason
0 => drive not ready
2 =>> seek fail
3 = data error
4 => no data
5 => missing address mark
6 => bad format

DE HL corrupt

XDPB corrupt

Always:
Other flags BC corrupt. All other registers preserved

Notes: In the event of errors this routine trys and retrys a total of 15 times
as follows:

417

Appendices
TTTRTTTTITTTTRTTTT
where T means try, R realign, I move to innermost track.

Related entries: DD SEL FORMAT.

7 DDSEL FORMAT #0095

Select a standard disk format.

Action: Initializes an XDPB for the required format regardless of the
actual disk format. Normally the BIOS automatically determines the
format of a disk when it is logged in, but for programs such as disk
formatters it is necessary to pre-set the format, Does not affect or consider
the freeze flag.

Entry conditions:

A = format required
0 => PCW8256 format, type 0
1 => system format
2 => data only format
IX = address of XDPB in common memory (#C000 . . #FFFF)

Exit conditions: If OK:

Carry true

A = disk type
0 => PCW8256 format, type 0
1 = system format
2 =>» data only format

DE = size of 2 bit allocation vector

HI. = size of hash table

XDPB initialized

418

Extended BI1OS Jumpblock
If failed:
Carry false
A = reason
6 => bad format
DE HL corrupt
XDPB corrupt

Always:
Other flags BC corrupt. All other registers preserved

Notes: This routine will only fail if an illegal disk type is given.

Related entries; DD LOGIN,

8 DD DRIVE STATUS #0098

Fetch the drive status.
Action: Fetch the drive status: ready, write protected, ete.
Entry conditions: C = bits 0,1: unit, bit 2: head
Exit conditions:
A = status

bit 7 : undefined
bit 6 : write protected

bit § : ready

bit 4: track 0
bit 3 : undefined
bit 2 : head

bit 1,0; unit
F HL corrupt. All other registers preserved

Notes: For unit 1 if bit 6 = 0, and bit 5 = 0 then the drive is not fitted.

419

Appendices

9 DDREADID

#0098

Read a sector ID.
Action: Reads the 1D from the first sector found.
Entry conditions:

C

D
IX

unit
logical track
address of XDPB in common memory (#C000

i

i

4

Exit conditions: If OK:
Carry true
A = sector number from ID

If failed:
Carry false
A = reason
0 => drive not ready
2 = seek fail
3 => data error
4 => no data
5 =>> missing address mark
Always:

HL = address of results buffer in common memory
Format of results buffers

byte 0: number of bytes received
bytes 1 . . : results

F BC DE corrupt. All other registers preserved

. . #FFFF)

Notes: In the event of errors this routine trys and retrys a total of 15 times

as follows:
TTTRTTTTITTTTRTTTT
where T means try, R realign, [move to innermost track.

420

Extended BIOS Jumpblock

10 DDLDPB #009E

Initialize a standard DPB,

Action: This routine initializes a standard CP/M Plus Disk Parameter
Block for a given disk format. The routine is for PCW8256/8512 only: on
CP(C6128 it returns the fail condition (se¢ below).

Entry conditions:

HL = address of source disk specification in common memory
(#C000 . . #FFFF)
IX = address of destination DPB in common memory (#C000 . .
#FFFF)
Exit conditions: If OK:
Carry true
A = disk type

If failed:
Carry false
A = reason
6 => bad format

Always:
Other flags BC DE HL corrupt. All other registers preserved

Notes: The disk format is specified as follows:

Byte 0: disk type
Byte 1: sidedness
0 => singie sided
1 => double sided, flip sides
2 => double sided, up and over
Byte 2: number of tracks per side
Byte 3: number of sectors per track
Byte 4: Log?2 (sector size) — 7
Byte 5: number of reserved tracks
Byte €: Log2 (block size) - 7
Byte 7: number of directory blocks
Byte 8: gap length (read/write)
Byte 9: gap length (format)

Related entries: DD L XDPB.

421

Appendices

11 DDLXDPB #00A1

Initiatize an XDPB.

Action: This routine initializes an eXtended Disk Parameter Block for a
given disk format. The routine is for PCW8256/8512 only: on CPC6128 it
returns the fail conditon (see below).

Entry conditions:

HE = address of source disk specification in common memory
(#C000 . . #FFFF)

IX = address of destination XDPB in common memory
(#C000 . . #FFFF)

Exit conditions: 1f OK:
Casry true
A = disk type

If failed:
Carry false
A = reason
6 =2 bad format

Always:
Other flags BC DE HL corrupt
All other registers preserved

Notes: The disk format is specified as follows:

Byte : disk type
Byte 1: sidedness
0 == single sided
1 => double sided, flip sides
2 => double sided, up and over
Byte 2: number of tracks per side
Byte 3: number of sectors per track
Byte 4: Log?2 (sector size) — 7
Byte 5: number of reserved tracks
Byte 6: Log2 (block size) —- 7
Byte 7: number of directory blocks
Byte 8: gap length (read/write)
Byte 9: gap length {format)

422

Extended BIOS Jumpblock

Related Entries: DD L DPB,

12 DD LONMOTOR #00A4

Turn the motor on.

Action: If the motor is off then turn it on, wait for the motor on timeout,
Entry conditions: None.,

Exit conditions: All registers and flags preserved.

Related entries: DD L T OFF MOTOR and DD L OFF MOTOR.

13 DDL T OFF MOTOR #00A7

Start the motor off timeout.

Action: Starts the motor off timeout, after which the motor will be turned
off. Does not wait for the timeout.

Entry conditions: None.
Exit conditions: All registers and flags preserved.

Related entries: DD L. ON MQTOR and DD L OFF MOTOR.

14 DD L OFF MOTOR #00AA

Turns the motor off.

Action: Turns the motor off, kills the motor ticker if any.

Entry conditions: None.

Exit conditions: AF BC DE HL corrupt. All other registers preserved.
Related entries: DD L ON MOTOR and DD L T OFF MOTOR.

423

Appendices

15 DDL READ #00AD

uPD765A read type command driver.

Action: Low level interface for the uPD¥765A floppy disk driver. Use for
“READ DATA”, “READ DELETED DATA”, “READ A TRACK”.
Sends required commands to the uPD765A, deals with bank switching,
fetches results. Motor must be running.

Entry conditions:
HL = address of parameter block in common memory (#C000 . . #FFFF)
Format of parameter block:
byte 0 : CP/M bank
byte 1,2 : address of buffer
byte 3,4 : number of bytes to transfer
byte 5 : number of uPD765A command bytes
byte 6 . . : command bytes
Exit conditions:
HL = address of results buffer in common memory

Format of results buffers

byte 0 : number of results bytes received
bytes 1 . . : results

AF BC DE corrupt. All other registers preserved.

Notes: Detailed knowledge of the uPD765A is required in order to use this
routine.

Related entries: DD L WRITE.,

424

Extended BIOS Jumpblock

16 DDL WRITE #00B0

uPD765A write type command driver.
Action: Low-level interface for the uPD765A floppy disk driver. Use for
“WRITE DATA"”, “WRITE DELETED DATA”, “FORMAT A
TRACK”, “SCAN EQUAL”, “SCAN LOW OR EQUAL”, “SCAN
HIGH OR EQUAL". Sends required commands to the uPD765A, deals
with bank switching, fetches results. Motor must be running.
Entry conditions:
HL = address of parameter block in common memory
Format of parameter block:
byte 0 : CP/M bank
byte 1,2 : address of buffer
byte 3,4 : number of bytes to transfer
byte 5 : number of uPD765A command bytes
byte 6 . . : command bytes
Exit conditions:
HIL. = address of results buffer in common memory

Format of results buffers

byte 0 : number of results bytes received
bytes 1 . . : results

AF BC DE corrupt. All other registers preserved

Notes: Detailed knowledge of the uPD765A is required in order to use this
routine.

Related entries : DD L READ.

425

Appendices

17 DDLSEEK #00B3

Seek to required track.
Action: Realigns if required, seeks to given track. Motor must be running.
Entry conditions:

C bits 0,1: unit, bit 2: head

D physical track
IX = address of XDPB in common memory.

Exit conditions: If QK:
Carry true
A corrupt

If failed:
Carry false
A = reason
0 => not ready
2 => seek fail

Abways:
Zero true. Other flags B I'Y corrupt. All registers preserved.

Notes: Will try 10 times to seek or realign before returning an error. This
routine is not normally required since “DD READ SECTOR”, “DD
WRITE SECTOR”, “DE CHECK SECTOR” and “DD FORMAT” all
perform their own seeks.

18 CD SAINIT #00B6

Initialize SIO for CP/M Plus with version Number less than 1.4,

Action: Initialize SIO channel A.
Entry conditions:
A = mode
#00 => no handshake
#FF => handshake

426

Extended BIOS Jumpblock

D = number of stop bits
0=>1
I=>15
2=>2
E = parity
(0 == none
1 => odd
2 => even
H = number of receive data bits 5, 6, 7 or 8
L. = number of transmitter data bits 5, 6, 7 or 8

Exit conditions: AF BC DE HL corrupt. All other registers preserved,
Notes: The parameters are not validated; silly values will give silly results,

This is supported by a new (upwards compatible) interface to the extended
BIOS jumpblock routine __SA__INITY:

18 CD_SA__INIT #00B6

Initialise SIQ & set control signals. Only for use with CP/M version 1.4 or
greater.

Action: Initialise mode of SIQ channel. Raise or lower RTS or DTR on
channel A.

Entry conditions:

A = selector
Mode selection & complete 510 reset:
#00 (= -0 -0): no handshake, no interrupt mode
#FF (= -1-0): handshake, interrupt mode
#FE (= -0 -2): no handshake, no interrupt mode
#FD (= -1-2): handshake, interrupt mode
Command (does not alter mode or reset SIO)

#80 : drop DTR
#7TF : raise DTR
#7E : drop RTS
#7D : raise RTS

427

Appendices

D = number of stop bits (not required for commands).

0=>1
1=>15
2==2
E = parity (not required for commands).
0 => none
1 => odd
2 => even
H = number of receive data bits (not required for commands)
5. . bits :
L = number of transmit data bits {not required for commands)
5 .. 8 bits

Exit conditions: AF BC DE HL corrupt. All other registers preserved.

Notes: The parameters are not validated, silly values will give silly results,
The commands may be issued at any time, but remember that the SIO
driver (and interrupt service) routine may themselves raise or drop DTR.

The 8IO can now be run with receive interrupts enabled and explicit
raising or lowering of the control signals is now supported. The SIO can
now be run in four modes:

a) No interrupt, No handshake
DTR & RTS true

Input: polls “data available”
Output: polls “Tx buffer empty”
b) No interrupt, handshake

RTS true

Input status: raises DTR if no character available

Input: raises DTR if no character available
polls “data™ available
drops DTR when character is read

Output: polls “Tx all sent” and CTS

428

Extended BIOS Jumpblock

¢} Interrupt, no handshake
DTR and RTS true
interrupts on character reception (including errors})
reads character into buffer if there is room
otherwise disarms interrupts

Input status: checks for characters in interrupt buffer

Input; polls for character in interrupt buffer
raises DTR when character is read & re-arms
interrupt

Qutput: potls “Tx buffer empty”

d) Interrupt, handshake
RTS true
raises DTR initially
interrupts on character reception (including errors)
reads character SI1O if room in buffer
otherwise disarms interrupts and drops DTR

Input status: checks for characters in interrupt buffer
Input: polls for character in interrupt buffer
raises DTR when character is read & re-arms
interrupt
Outputi: polls “Tx all sent” and CTS
19 CDSABAUD #00B9

Set the baud rates for channel A of the SIO.
Action: Sets the receiver and transmitter baud rates for SIQ channel A.

Eniry conditions:

H
L

encoded receiver baud rate
encoded transmitter baud rate

Exit conditions: AF BC DE HL corrupt. All other registers presesved.

Notes: The parameters are not validated; silly values will give silly results.
Does not affect the CP/M Plus character I/O table.

429

Appendices

20 CD SA PARAMS #00BC

Get the current parameters for channel A of the S1O.

Action: Fetches the current mode, parity, baud rates, eic, for SIO channel
A.

Entry conditions: None.
Exit conditions:

A = mode
#00 => no handshake
#FF => handshake
B = receiver encoded baud rate
C = transmitter encoded baud rate
D = stop bits
0=>1
1=>1.5
2==2
E = parity
0 => none
1 => odd
2 => even
H = receiver data bits 5,6, 7or 8
L = transmitter data bits 5,6, 7 or §

All other registers preserved.

21 TEASK #00BF

Get the current viewport position and size and cursor position.
Action: Fetches the current viewport position and size and cursor position.

Entry conditions: None,

430

Extended BIOS Jumpblock
Exit conditions:

For PCW8256/8512

B = top row of the viewport in physical screen coordinates
C = left column of the viewport in physical screen coordinates
D height of viewport — |
E = width of viewport — 1
H
L

= cursor row in viewport coordinates
= cursor column in viewport coordinates

All other registers preserved.

For CPC6128

D = bottom row of screen
E = right column of screen
H = cursor row

L = cursor column

All other registers preserved.

Notes: The top row is row 0, the left column is column 0. Screen size is
terminal emulators screen, not physical size. Size depends on whether
24 x 80 mode and status line are enabled.

22 TERESET #00C2

Re-initialize the terminal emulator.

Action: Re-initializes the terminal emulator: clears the screen, homes and
enables the cursor. For use by programs which have written to the screen
by means other than using the CRT device. :

Entry conditions; None.

Exit conditions: AF BC DE HL corrupt. All other registers preserved.

431

Appendices

23 TESTL ASK #00C5

Is the status line enabled?

Action: Asks if the statug line is enabled.
Entry conditions: None.

Exit conditions: If enabled:
Zero false

If disabled:
Zero true

Always:
Carry false
A corrupt
All other registers preserved

Related entries: TE STL ON OFF.

24 TESTL ON OFF #00C8

Enable/disable the status line.
Action: Enables or disables the status line. Disabling the status line gives
an extra line to the terminal emulator. When disabled status line messages
are sent to the CONOUT: device.
Entry conditions:
A = enable/disable
#00 => disable
#FF => enable
Exit conditions: F BC DE HL corrupt. All other registers preserved.
Related Entries: TE STL ASK.

432

Extended BIOS Jumpblock

25 TESETINK #00CB

Set the colours in which to display an ink.

Action: Set which two colours will be used to display an ink. If the two
colours are the same then the ink will remain a steady colour. If the two
colours are different then the ink will alternate between these colours.

Entry conditions:

A contains an ink number
B contains the first colour
C contains the second colour

Exit conditions: AF BC DE HL corrupt. All other registers preserved.

Notes: The ink number is masked with #0F to make sure it is legal. The
colours are masked with #3F and the resulting value is treated as three 2
bit numbers each specifying the intensity of one of the three primary
colours. Bits 0,1 for blue, bits 2,3 for red and bits 4,5 for green, On the
CPC 6128 the three levels of intensity is mapped as follows:

Colour parameter: 0123 CPC 6128 intensity: 0112
If ink O is specified then the border is also changed to the same colours.
On the PCW8256 there are only two inks, 0 and 1, and two colours, black
and “white”. If colour of ink 0 is greater than the colour of ink 1 then the

whole screen is displayed with black characters on “white” background,
otherwise “white” characters on a black background.

26 TESET BORDER #00CE

Set the colours in which to display the border.

Action: Set which two colours will be used to display the border. If the two
colours are the same then the border will remain a steady colour. If the two
colours are different then the border will alternate between these colours.

Entry conditions: B contains the first colour, C contains the second colour

433

Appendices
Exit conditions: AF BC DE HL corrupt. All other registers preserved.

Notes: For the PCW8256 the colours for this routine are bit-significant
values:

bit 7 => inverse video, black characters “white” background

bit 6 == border covers whole screen

bits 5 . . 0 ignored

The colours are masked with #3F and the resulting value is treated as three
2 bit numbers each specifying the intensity of one of the three primary
colours. Bits 0,1 for blue, bits 2,3 for red and bits 4,5 for green.

On the CPC6128 the three levels of intensity are mapped as follows:
Colour parameter: 0123
CPC6128: 0112

The border can also be changed by TE SET INK.

27 TESET SPEED _ #00D1

Set the flash period.

Action: Set for how long each of the two colowrs for the inks and the border
are to be displayed on the screen. These settings apply to ail inks and the
border.

Entry conditions.

H contains the period for the first colour
L contains the period for the second colour

Exit conditions: AF HL corrupt. All other registers preserved.

Notes: The flash periods are given in frame flybacks (1/50 or 1/60 of a
second). A period of 0 is taken to mean a period of 256.

The default setting for the flash periods is 10 frame flybacks (1/5 or 1/6 of a
second).

The new flash periods are not used immediately but when the inks next
flash.

434

Extended BIOS Fumpblock

On the PCW8256 the whole screen flashes, not individual characters,

28 KMSET EXPAND #00D4

Set an expansion string.
Action: Set the expansion string associated with an expansion token,
Entry conditions:

B contains the expansion token for the expansion to set

C contains the length of the string

HL contains the address of the string in common memory
(#C000 . . #FFFF)

Exit conditions: If the expansion is OK:
Carry true

If the string was too long or the token was invalid:
Carry false

Always:
Other flags A BC DE HL corrupt
All other registers preserved

Notes: The characters in the string are not expanded {or otherwise dealt
with). It is therefore possible to put any character into an expansion string,

If there is insufficient room in the expansion buffer for the new string then
no change is made to the expansions.

If the string is currently being used to generate characters then the unread

portion of the string is discarded. The next character will be read from the
key buffer.

435

Appendices

29 KMSETKEY #00D7

Set entry(s) in key translation table(s).

Action: Set what character or token a key will be translated to when shift,
alt, CTRL on CPC6128 shift and alt, extra, or none of these is pressed.

Entry conditions:

B contains the new translation
C contains a key number
D contains bit mask indicating which table, or tables, are to be
changed
bit 0 == pormal translation, neither shift, alt nor extra pressed
bit 1 =>> shift translation
bit 2 => alt translation
bit 3 == shift and alt translation
bit 4 =>> extra translation
other bits ignored

Exit conditions: AF DE, BC and HL corrupt. All other registers
preserved.

Notes: If the key number is invalid then no action is taken.

Most values in the table are treated as characters and are passed back to
the user. However, there are certain special values:

#80 . . #9E are the expansion tokens and are expanded to character
strings

#OF is the ignore token and means the key should be thrown
away.

For the CPC6128 these are:
#80 . . #9F are the expansion tokens and are expanded to character

strings.
#FED is the caps lock token and causes the caps lock to turn on
if it is off and vice versa.
#FE is the shift lock token and changes the shift state on/off.
#FF is the ignore token.

436

Extended BIOS Jumpblock

30 KMKTGET

#00DA

Get a key token.

Action: Try to fetch a key token from the keyboard.

Entry conditions: None,

For PCW8256/8512,

Exit conditions: If got a token:
Carry true
C = key number

If not got a token:
Carry false
C corrupt

Always:
B = shift state
bit 0 == not defined
bit 1 =2 exira
bit 2 =2 caps lock
bit 3 => repeat
bit 4 => num lock

bit 5 => shift
bit 6 == shift lock
bit 7 => alt

Other flags A corrupt. All other registers preserved.

For CPC6128

Exit conditions: 1f got a token:

Carry true
C = character
B=20

437

Appendices

If not got token:
Carry false
BC corrupt

Always:
Other flags and A corrupt. All other registration preserved. -

Notes: The shift state (for PCW8256/8512) only defines which locks and/or
shift keys were pressed. The repeat bit indicates that the key was generated
by a repeat.

31 KMKTPUT | #00DD

Put a key token. No effect on CPC6128.

Action: Insert a key token into the keyboard buffer so that the next “KM
KT GET” will fetch it.

Entry conditions:

B = shift state
bit 0 == not defined
bit 1 => extra
bit 2 => caps lock
bit 3 =2 repeat
bit 4 => num lock
bit 5 => shift
bit 6 => shift lock
bit 7 => alt

C = key number

Exit conditions: All registers and flags preserved

Notes: More than one key token may be put, however, buffer overflow is
not reported and will result in key tokens being lost. The buffer is at least
10 tokens long. If a great deal of text is to be generated by KM KT PUT the
use of expansion tokens is recommended.

To change either the caps lock or num lock states, call “KM KT PUT” with
the required state with an innocuous key number, then call “KM KT GET”
to remove it. The shift lock state cannot be changed in this way as it is
hardware-controiled.

438

Extended BIOS Jumpblock

32 KMSET SPEED #00EQ

Set key start up delay and repeat speed.

Action: Set the time before keys first repeat (start up delay) and the time
between repeats (repeat speed).

Entry conditions:

H contains the new start up delay
L contains the new repeat speed

Exit conditions:

AF corrupt. All other registers preserved.

Notes: Both delays are given in scans of the keyboard. The keyboard is
scanned every fiftieth of a second.

A start up delay or repeat speed of 0 is taken to mean 256.

The default start up delay is 30 scans (0.6 sec) and the default repeat speed
is 2 scans (0.04 sec or 25 characters a second).

Note that a key is prevented from repeating (by the key scanner) if the key
buffer is not empty. Thus the actual repeat speed is the slower of the
supplied repeat speed and the rate at which characters are removed from
the buffer. This is intended to prevent the user from getting too far ahead
of a program that is running sluggishly.

The start up delay and repeat speed apply to all keys on the keyboard that
are set to repeat.

33 CD VERSION #00E3

Get version numbers.

Action: Fetches matchine type, BIOS version numbers and machine
specific version numbers.

439

Appendices
Entry conditions: None.
Exit conditions:

A = machine

0 => CPC6128

1 => PCWR8256
B = BIOS major version number
C = BIOS minor version number

DE reserved
HL = machine specific version number
CPC6128 =>

PCWR256 == not defined

H = ROM version number
L = ROM mark number

All other registers preserved

34 CDINFO ' #00E6

Get BIOS system information.

Action: Fetches BIOS system information, number of disk drives, address
of buffer table, number of memory blocks, etc.

Entry conditions: None,

Exit conditions

A = number of disk drives
#00 == 1 disk drive
#FF => 2 disk drives
B = number of memory blocks (8 on CPC6128)
C = serial interface status
#00 =2 not fitted
#FF == fitted
HL = address of buffer table in common memory
(#C000 . . #FFFF)

440

Extended BIOS Jumpblock
Formant of buffer table

entry for buffer area 0
entry for buffer area 1

#EF

Entry format:
byte 0 : CP/M bank
byte 1,2: start address
byte 3,4: size in bytes

DE corrupt. All other registers preserved.

Notes: The buffer table gives details of where the data and directory buffer
areas are.

35 SCRRUNROUTINE #00E9

Runs a routine in the screen environment. (8256/8512 only)

Action: Switches memory blocks 7, 2, 1, 0 into context, these blocks
contain the character matrix RAM, the roller RAM and the screen RAM.
Then calls the supplied routine. On ¢xit the memory is restored to ifs
original state. '

Entry conditions:

BC = address of routine to call, in common memory
(#C000 . . #FFFF)
AF DEHL IX XY as required by routine

Exit conditions: AF DE HL IX 1Y as returned by called routine. BC
corrupt. All other registers preserved.

Notes: The screen is 720 pixels wide and 256 pixels high. Let (0,0) be the
top left corner; (0,719) the top right corner; {253,0) bottom left corner; and
(255,719) the bottom right corner.

441

Appendices
The character matrix RAM is at #B800 and has the following format:

byte O: character 0
byte 8: character 1

byte 2040: character 255
Each character entry has the following format:

byte O: pixel row 0
byte 1: pixel row 1

byte 7: pixel row 7

Each pixel row has the following format:

bit {: pixel column 7
bit 1: pixel column 6
bit 7: pixel column 0

The roller RAM is at #B600 and has the following format:

bytes 0, 1: packed address of pixel row 0
bytes 2, 3: packed address of pixel row 1

bytes 510, 511: packed address of pixel row 255

Each pixel row has the following format;

byte 0 pixel columns @ . . 7
byte 8: pixel columns § . . 15
byte 712: pixel columns 712 . . 719

Each pixel column byte has the following format:

bit O: pixel column 7
bit 1: pixel column 6
bit 7: pixel column 0

442

Extended BIOS Jumpblock

Roller RAM on PCW8256: The PCW8256 screen addressing is set up by
CP/M Plus so that each row of characters occupies 720 bytes of memory
organised as follows:

Col 0 Col 1 ... Col 89
Top row of char. Byte 0 Byte 8 Byte 712

Byte 1 Byte 9 Byte 713

Byte 6 Byte 14 Byte 718
Bottom row of char. Byte 7 Byte 15 Byte 719

The entire screen requires around 23K of RAM, which is drawn from two
16K banks of RAM.

The Roller RAM contains one 16-bit entry for each line of pixels. This
entry is actually a 17 bit address compressed into 16 bits by missing out bit 3
which must always be zero. The 17 bit address comprises 3 bits which
specify which 16K block - from the first 128K of memory — and 14 bits
which is the address within the 16K block of the byte specifying the first 8
pixels of the line of pixels. The next 8 pixels come from the byte 8 bytes
further through the block. It is therefore possible, as shown above, to
arrange pixel lines in groups of 8 so that a character is stored in 8
consecutive bytes, allowing text to be placed on the screen with single
block-move instructions, This arrangement of memory effectively makes
seven of every eight Roller RAM entries irrelevant for our purposes of
writing to the screen memory, as we can always predict their contents. The
entries have to exist and be legal, however, because they are read by the
VDU hardware. (It is possible to roll the screen, or produce other effects,
by re-writing the roller RAM, but this is not recommended as any
messages output by CP/M. Including for example the error and status
displays on line 31 — will be disturbed). The simplest algorithm for
unpacking the 17-bit address makes the valid assumption that the block
numbers are very simply related to Z80 addresses, because the CP/M Plus
environment arranges for the 16K block of memory called Block 1 to reside
in the address range 4000H-7FFFH and for the 16K block of memory
called Block 2 to reside in the address range 8000H-BFFFH when the bank
switching is set to the “Screen Environment”.

Hence it is possible to take the first in a group of 8 of these word addresses
and simply shift it one position to the left (i.e. double it). This will give the
absolute address in memory of the start of that pixel line.

443

Appendices

If it cannot be assumed that the screen is in its default state (i.e. first entry
of a group of eight is on an eight byte boundary and the eight entries are
consecufive addresses), then, to find the true address: Take the contents of
the roller RAM entry, Mask out the bottom 3 bits and move the resultant
word one bit to the left. Then replace the bottom three bits. The following
is a routine that will achieve this. On entry HL points to a buffer in
common memory that contains the data for a number of characters {or
groups of 8 character wide pixel masks if it is easier to look at it that way).
The H register holds the (character) line number on the screen to which the
information should be moved.

The following is a routine which should be moved inte common memory
(#C000 — #FFFF) and later executed by SCR RUN ROUTINE.

Entry conditions:

hI = address of data for one line of characters (in common memory)
¢ = line number

roller equ OB%Oh ;address of roller RAM

linelen equ 720 ;number of bytes for a line of characters
docommon:
push h{

mvi h,0 &)

mov leln ¢, hl=e¢e
dad h Ay v hl = 2#e
dad h s/ pshl = 44e

dad. v +h ;hl = B#e
dad h. .7 zohl = 16#e
Ixi dyroller 20 A4, v verps

dad dA45% 7 aghl = roller + 16#e
mov em/ P)

inx h

mov d,m (5 ide = encoded address
ErE. L

mov ae (/50

ani 7 A7 also clears carry

mov lLa {&¢ <1 =31Isb

mov a,e {4
ral Xi < ;Ip8 to carry

444

mov
mov
ral
mov
mov
ani
ora
mov

pop
Ixi
1dir
ret

e,a (oo, 4lp7T-4/p2-Ip0icarry
a,d \"‘l’.’: (:-‘.!a”--'

I

4

ilsb = Ip8
d’a jf'f.l"_. & ,-_'-"’

a,e N

Of0H
1 G%7¢

h o
b,linelen

goeir

v

Extended BIOS Tumpblock

Ap7-lpd A0 i ¢
;remask with original bottom 3 bits
e, a {/i/,4de now holds screen address

445

Appendix K
CPC6128 Firmware Calls

Rules and Restrictions

Using USEREF stops an application program from being portable.
Only a subset of firmware routines may be called, they are listed below.
A firmware routine can only be called by using USERF,

Some of the firmware routines require the address of a parameter block.
This parameter block must be in common memory, i.¢. #C000 and above,

If a firmware routine returns an address this will be an address in bank 0. It
is, therefore, likely to be only useful to an application program as a
parameter to a further firmware routine.

The upper ROM must not be enabled.
The screenis at #4000 in bank 0, it must not be moved.

The terminal emulator (CRT device) uses the TXT and SCR routines. If an
application program also wishes to use these or the GRA routines certain
steps must be taken:

Before using any of the TXT, GRA or SCR routines the terminal
emulator’s cursor must be disabled by sending ESC f. This is because
the cursor is turned on by a ticker which could go off whilst the
application program was already in the firmware giving upredictabic
results,

If the status line is enabled all status linc messages wilt be displayed on
the status line regardless of the current CONOUT: device. If the status
line is disabled status line messages are sent to the CONOUT: device.
Thus to avoid status line messges appearing on the screen disable the

446

CPC6128 Firmware Calls

status line and redirect the CONOUT: device away from the CRT
device. Alternatively avoid any action which could cause a status line
message such as disk errors or selecting logical drive B: on a single drive
systent.

Device redirection can be performed using the DEVICE.COM utility or
by writing to the indirection vectors in the System Control Block (SCB)
using BDOS function 49.

If it is required to use the CRT device as well as the TXT, SCR or GRA
routines then any mode changing should be done by sending Esc 3 mode
to the CRT device, this informs the terminal emulator of the size of the
screen etc. Before calling any BIOS or BDOS routine which could cause
characters to be sent to the CRT device ensure that:

The cursor position is where the CRT device last had it.
The window covers the whole screen.
Inverse video is as the CRT device last had it.

The status line may still be used if required,
When finished restore the screen to its original state using TE RESET (or

by other means) and, if necessary, redirect the CONOUT: device to the
CRT.

Summary of Firmware Calls and Restrictions

In this summary “OK” means that the entry can be called using USERF
without any more ado. However, an application should take care to restore
the machine back to the state in which it found it, otherwise the BIOS
screen and keyboard drivers may become confused.

Where addresses are required to be in common memory this is indicated by
“Eniry HL >= #C000".

Where an address is returned in bank 0 this is indicated by “address in bank
0”.

“BANNED” means the entry cannot be used, this restriction is not
enforced — break it at your peril!

447

Appendices

Main Firmware Jumpblock

L, LR R]

16
17

18
19
20
21

22
23
24
25

26
27
28
29
30
31

448

KM INITIALISE

KM RESET

KM WAIT CHAR
KM READ CHAR
KM CHAR RETURN
KM SET EXPAND

KM GET EXPAND
KM EXP BUFFER
KM WAIT KEY
KM READ KEY

KM TEST KEY

KM GET STATE

KM GET JOYSTICK
KM SET TRANSLATE

KM GET TRANSLATE
KM SET SHIFT

KM GET SHIFT
KM SET CONTROL

KM GET CONTROL
KM SET REPEAT
KM GET REPEAT
KM SET DELAY

KM GET DELAY

KM ARM BREAKS
KM DISARM BREAK
KM BREAK EVENT

TXT INITIALIZE
TXT RESET

- TXT VDU ENABLE

TXT vDU PISABLE
TXT OUTPUT
TXT WR CHAR

OK

OK

OK

OK

OK

Entry HL >= #C000

(but see extended jumpblock)
OK

Entry DE >= #C000

OK

OK

(but see extended jumpblock)
OK

OK

OK

OK

(but see extended jumpblock)
OK

OK

(but see extended jumpblock)
OK

OK

(but see extended jumpblock)
OK

OK

OK

OK

{but see extended jumpblock)
OK

BANNED

OK

OK

OK
OK
OK
OK
OK
oK

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61

62
63

65
66
67
68
69
70

TXT RD CHAR

TXT SET GRAPHIC
TXT WIN ENABLE
TXT GET WINDOW
TXT CLEAR WINDOW
TXT SET COLUMN
TXT SET ROW

TXT SET CURSOR
TXT GET CURSOR
TXT CUR ENABLE
TXT CUR DISABLE
TXT CUR ON

TXT CUR OFF

TXT VALIDATE

TXT PLACE CURSOR
TXT REMOVE CURSOR
TXT SET PEN

TXT GET PEN

TXT SET PAPER

TXT GET PAPER
TXT INVERSE

TXT SET BACK

TXT GET BACK

TXT GET MATRIX
TXT SET MATRIX
TXT SET M TABLE

TXT GET M TABLE
TXT GET CONTROLS
TXT STR SELECT
TXT SWAP STREAMS

GRA INITIALISE

GRA RESET

GRA MOVE ABSOLUTE
GRA MOVE RELATIVE
GRA ASK CURSOR
GRA SET ORIGIN

GRA GET ORIGIN

GRA WIN WIDTH

GRA WIN HEIGHT

CPC6128 Firmware Calls

oK

OK

OK

OK

OK

QK

OK

OK

OK

OK

QK

OK

OK

0K

OK

OK

0K

OK

OK

OK

0K

OK

OK

Exit HL address in bank 0
Entry HL >= #C000
Entry HL >= #C000,

Exit HL. address in bank 0

Exit HL address in bank 0
Exit HL address in bank 0
OK

OK

OK
OK
OK
OK
OK
OK
OK
OK
QK

449

Appendices

71
72
73
74
75
76
77
78
79
80
81
82
83
84

85
86
87
88
89
90

91
92
93
94
95
96
97

08

99

100
101

102 -

103
104
105
106

450

GRA GET W WIDTH
GRA GET W HEIGHT

GRA CLEAR WINDOW

GRA SET PEN
GRA GET PEN
GRA SET PAPER
GRA GET PAPER

GRA PLOT ABSOLUTE

GRA PLOT RELATIVE
GRA TEST ABSOLUTE
GRA TEST RELATIVE
GRA LINE ABSOLUTE
GRA LINE RELATIVE
GRA WR CHAR

SCR INITIALISE

SCR RESET

SCR SET OFFSET
SCR SET BASE

SCR GET LOCATION
SRC SET MODE

SCR GET MODE

SCR CLEAR

SCR CHAR LIMITS
SCR CHAR POSITION
SCR DOT POSITION
SCR NEXT BYTE
SCR PREV BYTE

SCR NEXT LINE
SCR PREV LINE

SCR INK ENCODE
SCR INK DECODE
SCR SET INK

SCR GET INK

SCR SET BORDER
SCR GET BORDER
SCR SET FLASHING

OK
OK
OK
OK
QK
OK
OK
OK
OK
OK
OK
OK
OK
OK

BANNED
OK
OK
BANNED
OK
QK

(or send Esc 3 mode to the CRT)

OK

OK

OK

Exit HL address in bank 0

Exit HL address in bank 0

Exit HL address in bank 0

Entry and Exit HL address in
bank 0

Entry and Exit HL address in
bank 0

Entry and Exit HL. address in
bank 0

OK

OK

OK (but see extended jumpbilock)

OK

OK (but see extended jumpblock)

OK

OK (but see extended jumpblock)

107
108
109
110
111
112
113

114
115
116
117
118

119
120
121
122
123
124
125

126
127
128
129
130
131
132

133
134
135
136
137
138
139
140

141
142

SCR GET FLASHING
SCR FILL BOX

SCR FLOOD BOX
SCR CHAR INVERT
SCR HW ROLL

SCR SW ROLL

SCR UNPACK

SCR REPACK

SCR ACCESS

SCR PIXELS

SCR HORIZONTAL
SCR VERTICAL

CAS INITIALISE

CAS SET SPEED

CAS NOISY

CAS START MOTOR
CAS STOP MOTOR
CAS RESTORE MOTOR
CAS IN OPEN

CAS IN CLOSE
CAS IN ABANDON
CAS IN CHAR
CAS IN DIRECT
CAS RETURN

CAS TEST EOF
CAS OUT OPEN

CAS OUT CLOSE
CAS OUT ABANDON
CAS OUT CHAR
CAS OUT DIRECT
CAS CATALOG

CAS WRITE

CAS READ

CAS CHECK

SOUND RESET
SOUND QUEUE

CPC6128 Firmware Calls

OK
OK
Entry HL address in bank 0
CK
OK
OK
Entry Hl address in bank 0,
DE == #C000
Entry DE address in bank 0
OK
Entry HL address in bank 0
OK
OK

OK

OK

OK

OK

OK

OK

Entry DE, HL >= #C000,

Exit HL address in bank -0

OK

OK

OK

Entry HL >= #C000

OK

0K

Entry DE, HL == #C000,

Exit HL address in bank 0

OK

OK

OK

Entry HL == #C000
Entry DE >= #C000
Entry HL >= #C000
Entry HL >= #C000
Entry HL >= #C000

OK
Entry HL >= #C000

451

Appendices

143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
17
172
173
174
175
176

177
178
179
180
181

452

SOUND CHECK

SOUND ARM EVENT
SOUND RELEASE
SOUND HOLD

SOUND CONTINUE
SOUND AMPL ENVELOPE
SOUND TONE ENVELOPE
SOUND A ADDRESS
SOUND T ADDRESS

KL CHOKE OFF

KL ROM WALK

KL INIT BACK

KL LOG EXT

KL FIND COMMAND
KL NEW FRAME FLY
KL ADD FRAME FLY
KL DEL FRAME FLY
KL NEW FAST TICKER
KL ADD FAST TICKER
KL DEL FAST TICKER
KL ADD TICKER

KL DEL TICKER

KL INIT EVENT

KL EVENT

KL SYNC RESET

KL DEL SYNCHRONOUS
KL NEXT SYNC

KL BO SYNC

KL DONE SYNC

KL EVENT DISABLE
KL EVENT ENABLE
KL DISARM EVENT
KL TIME PLEASE

KL TIME SET

MC BOOT PROGRAM
MC START PROGRAM
MC WAIT FLYBACK
MC SET MODE

MC SCREEN OFFSET

OK

BANNED

OK

OK

OK

Entry HL >= #C000
Entry HL >= #C000
Exit HL address in bank 0
Exit HL address in bank 0

BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
BANNED
OK

OK

BANNED
BANNED
OK

BANNED
BANNED

182
183
184
185
186
187
188

189

190
191
192
193
194
195
196
197
198

199

200
201

MC CLEAR INKS

MC SET INKS

MC RESET PRINTER
MC PRINT CHAR

MC BUSY PRINTER
MC SEND PRINTER
MC SOUND REGISTER

JUMP RESTORE

KM SET LOCKS

KM FLUSH

TXT ASK STATE
GRA DEFAULT

GRA SET BACK

GRA SET FIRST

GRA SET LINE MASK
GRA FROM USER
GRA FILL

SCR SET POSITION

MC PRINT TRANSLATION

MC BANK SELECT

Indirection Jumpblock

BANNED

High Kernel Jumpblock

BANNED

Low Kernel Jumpblock

BANNED

CP(C6128 Firmware Calls

Entry DE >= #C000
Entry DE >= #C000

OK
OK
OK
OK
OK

BANNED

OK
OK
OK
OK
OK
OK
OK
OK

Entry HL >= #C000

BANNED

Entry HL >= #C000
BANNED

453

Appendix L

GSX — Virtual Device Interface (VDI)
Specification

INTRODUCTION
This appendix contains the specification of the Virtual Device
Interface (VDI). The VDI defines how device drivers in-
terface to GDOS, the device-independent portion of GSX.
The context for this document is from the DEVICE DRIVER
point of view. All coordinate information is assumed to be
in device coordinate space.

FORMAT

Function: GSX graphics operation

Input Parameters

confrl(i) -
contrl(2} -

contrl(4) -
contrl(6-n} -
intin —

ptsin —

Output Parameters

454

contrl(3) —

contrl(5} -
contri(6-n) -
intout —
ptsout —

Opcode for driver function.

Number of vertices in array ptsin. Each vertex
consists of an x and a y coordinate pair so the
length of this array is twice as long as the
number of vertices specified.

Length of integer array intin.

Opcode dependent information.

Array of integer input parameters.
Array of input point coordinate
data.

Number of vertices in array ptsout. Each vertex
consists of an x and a y coordinate pair so the
length of this array is twice as long as the
number of vertices specified. Other data may
be passed back here depending on the opcode.
Length of integer array intout.

Opcade dependent information.

Array of integer output point parameters,
Array of output point coordinate data.

Notes

GSX

All data passed to the device driver is assumed to be 2-byte
INTEGERS, including individual characters in character
strings.

All coordinates passed to GSX are in Normalized Device
Coordinates {0-32767 along each axis). These units are then
mapped to the actual device units (for example, rasters for
CRTs or steps for plotters and printers) by GSX so that all
.coordinates passed to the device driver are in device units.

Because both input and output coordinates are converted by
GS8X, both the calling routine and the device driver must
make sure that the input vertex count (contrl(2}) and output
vertex count {contrl(3}) are set. The calling routine must set
contrl(2) to 0 if no x,y coordinates are are being passed to
GSX. Similarly, the device driver must set contri(3) to 0 if
no x,y coordinates are being returned through GSX.
Coordinates returned by G8X are assumed to be the bottom
left edge of the pixel. As a consequence, points at the top and
right edges of the device coordinate system will not be at the
edge of the Normalized Device Coordinates (NDC) systens.
Exactly how far away they will be is device dependent.

Because 0-32767 maps to the full extent on each axis,
cocrdinate values are scaled differently on the x and y axes
of devices that do not have a square display.

All references to arrays are l-based; that is, subscripted
element 1 is the first element in the array.

455

Appendices

On calls to the GDOS the number of arguments passed in the
intin array (contrl(4)), and the maximum size of the intout
array (contrl(5)) should be set by the application. On return
to the GDOS by the GIOS the number of arguments in the
intout array should be set by the GIOS. Refer to Appendixes
A and B for GDDOS calling conventions for specific operating
systems.

Allopcodes must be recognized, whether or not they produce
any actioni. If an opcode is out of range then no action is
performed. A list of required opcodes for CRT devices,
plotters, and printers follows the specification. These opcodes
must be present and perform as specified. All opcodes sheuld
be implemented whenever possible since full implementation
gives better quality graphics.

Device driver 1/O (that is, communication between the device
driver and the device via the system hardware ports) is done
through operating system calls.

OPEN WORKSTATION
Initialize a graphic workstation.

Input

456

contrl(1) - Opcode = 1
contrl(2y— 0
contrl(4) — Length of intin = 10

intin ~ Initial defaults (for example, linestyle colour
and character size)
intin{1) - Workstation identifier (device driver id). This

value is used to determine which device driver
to dynamically load into memory.
intin(2) - Linetype

intin(3) - Polyline color index
intin(4) - Marker type

intin{5) - Polymarker color index
intin{6) — Text font

intin{7) — Text color index
intin(8) — Fill interior style

Output

intin(9) -
intin(10) -

contrl(3) -
contrl(5) -

intout(1) -

intout(2) ~

intout{3) -

intout(4) -
intout(5) -

intont(6) -

intout(7) -
intout(8) -
intout(9) -
intout(10) -
intout(11} -

intout(13) -

GSX

Fill style index
Fill color index

Number of output vertices = 6
Length of intout = 43

Maximum addressable width of screen/plotter
in rasters/ steps assuming a O start point (for
example, a resolution of 640 implies an ad-
dressable area of 0-639, so intout{1)=639)
Maximum addressable height of screen/plotter
in rasters/ steps assuming a 0 start point (for
example, a resolution of 480 implies an
addressable area of 0-479, so intout(2)=479)
Device Coordinate units flag

(0 = Device capable of producing precisely
scaled image (typically plotters and printers)
1 = Device not capable of precisely scaled
image (CRTs)

Width of one pixel (plotter step, or aspect ratio
for CRT) in micrometers

Height of one pixel (plotter step, or aspect ratio
for CRT) in micrometers

Number of character heights

0 = continuous scaling

Number of linetypes

Number of line widths

Number of marker types

Number of marker sizes

Number of fonts intout(12) — Number of
patterns

Number of hatch styles

457

Appendices

intout(14) -

intout(15) -
intout(16)-

intout(25) —

intout(26)-
intout({35) -

intout(36) -

intout(37) -

458

Number of predefined colors {must be at least
2 even for monochrome device}. This is the
number of colors that can be displayed on the
device simultaneously.

Number of Generalized Drawing Primitives
(GDPs)

Linear list of GDP numbers supported -1 no
more GDPs in list. Application should search
list until finding a -1 for the desired GDP,

1 - bar

2 —arc

3 — pie slice
4 ~ circle

5 — ruling chars

Linear list of attribute set
associated with each GDP

-1 = no more GDPs

0 - polyline

1 - polymarker
2 — text

3 —fill area

4 — none

Color capability flag

0-no

1 - yes

Text rotation capability
flag

0-no

I-vyes

GSX

intout(38) — Fill area capability flag

0-no
1-yes
intout(39) - Read cell array operation capability
flag
0-no
1-vyes

intout{40) — Number of available colors (totai number of
colors in color palette)

0 - continuous device
{morethan32767colors)

2 — monochrome (black and white)

>2 — number of colors availabie

intout{(41) — Number of locator devices
available
intout(42) — Number of valuator devices
_ available
intout{43) — Number of choice devices available
intout(44) ~ Number of string devices available
intout{45) — Workstation type

0 — Cutput only

1 — Input only

2 — Input/Output

3 - Device independent segment
storage

4 — GKS Metafile output

ptsout(1) - 0

ptsout(2) — Minimum character height in device units (not
cell size)

pisout(3y - 0O

ptsout(4) — Maximum character height in device units (not
cell size)

459

Appendices

ptsout($) — Minimum line width in device units

ptsout(6) — 0

ptsout(7) - Maximum line width in device units

ptsout(8) - 0

ptsout(9) - 0O

ptsout(10) —~ Minimum marker height in device units (not
cell size)

ptsout(11) -~ 0

ptsout{12) - Maximum marker height in device units (not
cell size)

The default color table should be set up differently for a
monochrome and a color device.

Monochrome CRT type devices
Index Color
0 Black
i White
Monochrome Printer/Plotter devices
Index Color
0 White
1 Black

Color

Index Color

0 Black
1 Red
2 Green
3 Blue
4 Cyan
5 Yellow 6 Magenta
7 White
8n White

460

GSX

Other default values that should be set by the driver during
initialization are as follows:

Character height = Minimum character height
Character up vector = 90 degrees counterclockwise from
the right horizontal (0 degrees rota-

tion)
Line width = 1 device unit (raster, plotter step)
Marker height = Minimum marker height
Writing mode = Replace
Input mode = Request for all input classes

(locator, valuator, choice, string)

Description The Open Workstation operation causes a graphics device to

become the current device for the application program. The
device is initialized with the parameters in the input array and
information about the device is returned to GDOS. The
graphic device is selected, and, if it is a CRT, the screen is
cleared and the alpha device is deselected and blanked.

CLOSE WORKSTATION
Stop all graphics output to this workstation.

Input

Output

Description

contrl(1) - Opcode = 2
contri(2) - 0

contri(3)- 0

The Close Workstation operation terminates the graphics
device properly and prevents any further output to the device.
If the device is a CRT, the alpha device is selected, the screen
is cleared, and the graphics device is deselected and blanked.
If the device is a printer, then an update is executed.

CLEAR WORKSTATION .
Clear CRT screen or prompt for new paper on plotter.

a6l

Appendices

Input

Output

Description

462

contrl(l) - Opcode = 3
contrl{(2) - O

contrl(3)—- 0

The Clear Workstation operation causes CRT screens to be
erased. If the device is a plotter without paper advance, the
operator is prompted to load a new page. If the device is a
printer a form feed is issued and then an update is executed.

GSX

UPDATE WORKSTATION
Display all pending graphics on workstation.

Input

Output

Description

ESCAPE

contrl(1) - Opcode = 4
contrl(} - @

contrdl(3) - O

The Update Workstation operation causes all pending
graphics commands that are queued to be executed im-
mediately. The operation is analogous to flushing buffers. For
printer drivers this call must be used to start output to the
printer.

Perform device specific operation.

Input

contrl(1) - Opcode = 5

contrl(2) - Number of input vertices
contrl{(4) -~ Number of input parameters
contrl(6) — Function identifier

1= INQUIRE ADDRESSABLE
CHARACTER CELLS
= ENTER GRAPHICS MODE
= EXIT GRAPHICS MODE
= CURSOR UP
5= CURSOR DOWN
6= CURSOR RIGHT
7= CURSOR LEFT
8= HOME CURSOR
9= ERASE TO END OF SCREEN
10= ERASE TO END OF LINE
11= DIRECT CURSOR ADDRESS
12= OUTPUT CURSOR ADDRESSABLE
TEXT
13= REVERSE VIDEO ON

463

Appendices

Qutput

Description

20-50=

= REVERSE VIDEO OFF
= INQUIRE CURRENT CURSOR

ADDRESS

= INQUIRE TABLET STATUS

HARDCOPY

= PLACE GRAPHIC CURSCR AT

LOCATION

REMOVE LAST GRAPHIC CURSOR
UNUSED BUT RESERVED FOR
FUTURE EXPANSION

51-100= UNUSED AND AVAILABLE FOR

intin -
ptsin -

contrl(3) -
contrl{5) -

intout —
ptsout —

USE

Function dependent information (described on
following pages}
Array of input coordinates for escape function

Number of output vertices
Number of output parameters

Array of output parameters
Array of output coordinates

The Escape operation aliows the special capabilities of a
graphics device to be accessed from the application program.
Some escape functions above are predefined, but others can
be defined for your particular devices. The parameters passed
are dependent on the function being performed.

ESCAPE: INQUIRE ADDRESSABLE CHARACTER CELLS
Return the number of alpha cursor addressable columns and alpha cursor
addressable rows.

Input

464

contrl(2) -
contrl(6) -

0

Function ID = 1

Output

Description

GSX
contrl(3)- 0

intout(1) - Number of addressable rows on the screen,
typically 24 (-1 indicates cursor addressing not
possible)

intout(2) — Number of addressable columns on the screen,
typically 80 (-1 indicates cursor addressing not
possible)

This operation returns information to the calling program
about the number of vertical (rows) and horizontal (columns)
positions where the alpha cursor can be positioned on the
screen.

ESCAPE: ENTER GRAPHICS MODE
Enter graphics mode if different from alpha mode,

Input

Output

Description

contrl(2) - 0
contri(6) — Function id = 2

contrf(3) - 0

This operation causes the graphics device to enter the
graphics mode if different than the alpha mode. Used to
explicitly exit alpha cursor addressing mode and to transition
from alpha to graphic mode properly. The graphics device is
selected and cleared. The alpha device is deselected and
blanked.

ESCAPE: EXIT GRAPHICS MODE
Exit graphics mode if different from alpha mode.

Input

contrl(2y— 0O
contri(6) — Function id = 3

465

Appendices

Qutput

Description

contrl(3) - O

The Exit Graphics operation causes the graphics device to exit
the graphics mode if different than the alpha mode. Used to
explicitly enter the alpha cursor addressing mode and to
transition from graphics to alpha mode properly. The alpha
device is selected and cleared. The graphics device is
deselected and blanked.

ESCAPE: CURSOR UP
Move alpha cursor up one row without altering horizontal position.

Input

Qutput

Description

contrl(2) - 0
contrl(6) — Function id = 4

contrl(3) - O
This operation moves the alpha cursor up one row without

altering the horizontal position. If the cursor is already at the
top margin, no action results.

ESCAPE: CURSOR DOWN
Move alpha cursor down one row without altering horizontal position.

Input

Output

Description

466

contrl(2) - 0
contrl(6) — Function id = 5

contrl(3}) - 0O
This operation moves the alpha cursor down one row without

altering the horizontal position. If the cursor is already at the
bottom margin, no action results.

GSX

ESCAPE: CURSOR RIGHT
Move alpha cursor right one column without altering vertical position.

Input contrl(2) - 0
contrl(6) — Function id = 6

Qutput contrl(3)— O
Description The Cursor Right operation moves the alpha cursor right one

column without altering the vertical position. If the cursor is
already at the right margin, no action results

ESCAPE: CURSOR LEFT
Move alpha cursor left one column without altering vertical position.

Input contrl(2y- 0O
contrl(6) ~ Function id = 7

Output contrl(3) - 0O
Deseription The Cursor Left operation causes the alpha cursor to move

one column to the left without altering the vertical position.
If the cursor is already at the left margin, no action results.

ESCAPE: HOME CURSOR
Send cursor to home position.

Input contri(2y- 0
contrl(6) — Function id = 8

Output contrl(3)— 0

Description This operation causes the alpha cursor to move to the home
position, usually the upper left corner of a CRT display.

467

Appendices

ESCAPE: ERASE TO END OF SCREEN
Erase from current alpha cursor position to the end of the screen.

Input contrl(2) - @
contrl(6) - Function id = 9

Output contrl(3)—- 0
Description This operation erases the display surface from the current

alpha cursor position to the end of the screen. The current
alpha cursor location does not change.

ESCAPE: ERASE TO END OF LINE
Erase from the current alpha cursor position to the end of the line.

Input contrl(2)y - O
contrl(6) - Function id = 10

Output contrl(3)— 0
Description This operation erases the display surface from the current

alpha cursor position to the end of the current line. The
current alpha cursor location does not change.

ESCAPE: DIRECT CURSOR ADDRESS
Move alpha cursor to specified row and column.

Input contrl(2y - 0
contrl{(6) - Function id = 11
intin(1)~ Row number (1 - number of rows)
intin{2) ~ Column number (1 - number of columns)

468

GSX
Output contrl(3)- 0

Description The Direct Cursor Address operation moves the alpha cursor
directly to the specified row and column address anywhere
on the display surface. Addresses that are beyond the range
that can be displayed on the screen are set to the maximum
row and/or column accordingly.

ESCAPE: OUTPUT CURSOR ADDRESSABLE TEXT
Output text at the current alpha cursor position.

Input contrl(2) - 0
contrl(4) — Number of characters in character string
contrl(6) - Function id = 12
intin — Text string in ASCII

Output contri(3) -~ 0
Description This operation displays a string of text starting at the current

cursor position. Alpha text characteristics are determined by
the attributes currently in effect (for example, reverse video).

ESCAPE: REVERSE VIDEO ON
Display subsequent cursor addressable text in reverse video.

Input contrl(2) -~ 0
contrl(6) — Function id = 13

Output contrl(3) - 0
Description This operation causes all subsequent text to be displayed in

reverse video format; that is, characters are dark on a light
background.

469

Appendices

ESCAPE: REVERSE VIDEO OFF
Display subsequent cursor addressable text in standard video,

Input contri(2) - 0
contrl{¢) — Function id = 14

Output contrl(3) - 0
Description This operation causes all subsequent text to be displayed in

normal video format; that is, characters are light on a dark
background.

470

GSX

ESCAPE: INQUIRE CURRENT CURSOR ADDRESS
Return the current cursor position.

Input contel(2) -~ O
contrl(6) - Function id = 15

Qutput contrl(3) - 0

intout{1) - Row number (1 - number of rows)
intout(2) — Column number (1 - number of columns

Description This operation returns the current position of the alpha cursor
in row, column coordinates.
ESCAPE: INQUIRE TABLET STATUS

Return tablet status.

Input contrl(2) — 0O
contrl(6) — Function id = 16

Qutput contrl(3) - 0
intout(1) — tablet status

() = tablet not available
1 = tablet available

Description This operation returns tablet status whether a graphics tablet,

mouse, joystick, or other simitar devices are connected to the
workstation.

ESCAPE: HARD COPY
Generate hardcopy.

Input contrl(2) - 0
conttl(6) - Function id = 17

Output contrl(3) - 0

471

Appendices

Description This operation causes the device to generate a hardcopy. This
function is very device specific and can entail copying the
screen to a printer or other attached hardcopy device.

ESCAPE: PLACE GRAPHIC CURSOR
AT LOCATION
Place a graphic cursor at specified location

Input contrl(2) - 2
contrl(6) — Function id = 18
ptsin(1) - x-coordinate of location to place cursor
ptsin(2) — y-coordinate of location to place cursor
QOutput contrl{3) - O

Description Place Graphic Cursor at the specified location. This is device
dependent and can be an underbar, block, or similar
character. This cursor should be the same type as used for
request mode locator input. In this way, if sample mode input
is supported, the application may use this call to generate the
cursor for rubber band type drawing. In memory mapped
devices, it is drawn in XOR mode so that it can be removed.
The cursor has no attributes; for example, style or colour
index.

ESCAPE: REMOVE LAST GRAPHIC CURSOR
Remove last graphic cursor/marker.

Input contrl(2) - 0
contrl(6) — Function id = 19

Output contri(3) - 0

Description This operation removes the last graphic cursor placed on the
sCcreen.

472

POLYLINE

GSX

Output a polyine to device.

Input contrl{1) - Opcode = 6
contrl(2) - Number of vertices (x,y pairs) in polyline (n)
ptsin - Array of coordinates of polyline in device units

(for example, rasters and plotter steps)

ptsin(l) - x-coordinate of first point
ptsin(2) — y-coordinate of first point
ptsin(3) - x-coordinate of second point
ptsin{(4) — y-coordinate of second point
ptsin(2n-1) ~ x-coordinate of last point
ptsin(2n) ~ y-coordinate of last point

Output contrl(3y -~ 0

Description This operation causes a polyline to be displayed on the
graphics device. The starting point for the polyline is the first
point in the input array. Lines are drawn between subsequent
points in the array. Make sure that the lines exhibit the current
line attributes: colour, linetype, line width. 0 length lines
should be displayed. A single coordinate pair should not be
displayed.

POLYMARKER

Output markers to the device.

Input

contrl(1) - Opcode = 7
contri(2) = Number of markers

ptsin — Array of coordinates in device units (n) (for
example, rasters and plotter steps)

ptsin{1) - x-coordinate of first marker

ptsin(2) — y-coordinate of first marker

473

Appendices

Qutput

Description

TEXT

ptsin(3) - x-coordinate of second marker
ptsin{4) — y-coordinate of second marker

ptsin(2n-1) — x-coordinate of last marker
ptsin(2n) ~ y-coordinate of last marker

contrl(3) - 0
This operation causes markers to be drawn at the points

specified in the input array. Make sure the markers display
the current attributes: colour, scale, and type.

Write text at specified position.

Input

Output

Description

contrl(1) = Opcode = 8

contrl(2) = Number of vertices = 1

contrl(4) - Number of characters in text string

intin — Word character string in ASCII units

ptsin(2) — y-coordinate of start point of text in device units

contrl(3y~ 0

This operation writes text to the display surface starting at the
position specified by the input parameters. Note that the X, Y
position specified is the lower left corner of the character
itself, not the character cell. Also, make sure the text exhibits
current text attributes: colour, height, character up vector,
font. Each word of the intin array contains only one character.
Any character code out of range for the selected font should
be mapped to a blank.

FILLED AREA
Fill a polygon.

Input

47

contrl(1) - Opcode = 9
contrl(Z) ~ Number of vertices in polygon (n)

QOutput

Description

GSX

ptsin — Array of coordinates of polygon in device units

ptsin(1) — x-coordinate of first point
ptsin{2) — y-coordinate of first point
ptsin(3) - x-coordinate of second point

ptsin(4) - y-coordinate of second point

ptsin{2n-1) — x-coordinate of last point
ptsin(2Zn) — y-coordinate of last point

contrl{3) — 0

This operation fills a polygon specified by the input array with
the current fill colour. Ensure the correct colour, fill interior
style {hollow, solid, pattern or hatch) and fill style index are
in effect before doing the fill.

If the device cannot do area fill, it must at least outline the
polygon in the current fill colour. The device driver must
ensure that the fill area is closed by connecting the first point
to the last point.

A polygon with zero area should be displayed as a dot. A
polygon with only one endpoint should not be displayed.

CELL ARRAY
Display cell array.

Input

contrl(1) - Opcode = 10

contrl(2) - 2

contri{4) — Length of colour index array

contrl(6) - Length of each row in colour index array (size
as declared in a high level language)

contrl(7) - Number of elements used in each row of colour
index array

contrl(8) - Number of rows in colour index array

475

Appendices

contrl(9) -

Output

Description

Pixel operation to be performed

1 — replace
2 - overstrike
3 - complement (xor)

4 ~ erase

intin(1) = Colour index array {stored one row at
time)

ptsin{1) - x-coordinate of lower left corner in
device units

ptsin(2) - y-coordinate of lower left corner in
device units

ptsin(3) - x-coordinate of upper right corner in
device units

ptsin(4} — y-coordinate of upper right corner in

device units
contrl(3)— 0

The Cell Array operation causes the device to draw a
rectangular array which is defined by the input parameter
X,Y coordinates and the colour index array.

The extents of the cell are defined by the lower left-hand and
the upper right-hand X,Y coordinates. Within the rectangle
defined by those points, the colour index array specifies
colours for individual components of the cell.

Each row of the colour index array should be expanded to fill
the entire width of the rectangle specified if necessary, via
pixel replication. Each row of the colour index array should
also be replicated the appropriate number of times to fill the
entire height of the rectangular area.

If the device cannot do cell arrays it must at least outhine the
area in the current line colour.

GENERALIZED DRAWING PRIMITIVE (GDP)
Output a primitive display element.

476

Input

BAR

contrl(1) -
contrl(2) —
contrl(4) -
contrl{6) -

ptsin —

ptsin{1) -
ptsin{2) -
ptsin(3) -
ptsin(4) —-

i}tsin(Zn-l) -
ptsin(2n) —

intin —

contrl{2) -
contrl(6) -

ptsin(1} -
ptsin(2) -
ptsin(3) -
ptsin(4) -

GSX

Opcode = 11

Number of vertices in ptsin
Length of input array intin
Primitive id

1 - BAR - uses fill area attributes (interior
style, {ill style, fill colour)

2 — ARC - uses line attributes (colour,
linetype, width)

3 — PIE SLICE - uses fill area attributes
(interior style, fill style, fill colour)

4 — CIRCLE - uses fill area attributes (interior
style, fill style, fill colour)

5~ PRINT GRAPHIC CHARAC-TERS

(RULING CHARACT-ERS)

6-7 are unused but reserved for future
expansion

8-10 are unused and available for use

Array of coordinates for GDP
x-coordinate of first point
y-coordinate of first point
x-coordinate of second point
y-coordinate of second point

x-coordinate of last point

y-coordinate of last point

Data record

2 (aumber of vertices)

1 (primitive 1D)

x-coordinate of lower left-hand corner of bar
y-coordinate of lower left-hand corner of bar

x-coordinate of upper right-hand corner of bar
y-coordinate of upper right-hand corner of bar

477

Appendices

ARC AND PIE SLICE

CIRCLE

contrl(2) -
contrl(6) -

intin(1) -
intin(2) -

ptsin{1) -
ptsin(2) -
ptsin(3) -

ptsin(4) —
ptsin(5) —
ptsin(6) —

ptsin(7) —
ptsin(8) —

contrl{2) —
contrl(6) -

ptsin(1) -
ptsin(2) —
ptsin(3) -
ptsin(4) —
ptsin(3) -
ptsin{6) -

4 (number of vertices)
2 (ARC) or 3 (PIE SLICE)

Start angle in tenths of degrees (0-3600)
End angle in tenths of degrees (0-3600)

x-coordinate of center point of arc
y-coordinate of center point of arc
x-coordinate of start point of arc on
circumference

y-coordinate of start point of arc on
circumference

x-coardinate of end point of arc on

- circumference

y-coordinate of end point of arc on
circumference

Radius

0

3 (number of points)
4 (primitive id)

x-coordinate of center point of circle
y-coordinate of center point of circle
x-coordinate of point on circumference
y-coordinate of point on circumference
Radius

0

PRINT GRAPHIC CHARACTER
For graphics on printer (such as Diablo and Epson)

478

contrl(2) -
contrl(4) -
contrl(6) -

intin —

ptsin(1) -
ptsin(2) -

1 {number of poinis)
Number of characters to output
5

Graphic characters to ocutput

x-coordinate of start point of characters
y-coordinate of start point of characters

Output

Description

GSX

contri(3y- 0

The Generalized Drawing Primitive (GDP) operation allows
you to take advantage of the intrinsic drawing capabilities of
your graphics device. Special elements such as arcs and circles
can be accessed through this mechanism, Several primitive
identifiers are predefined and others are available for ex-
pansion.

The control and data arrays are dependent on the nature of
the primitive.

In some GDPs (Arc, Circle, Pie slice) redundant but
consistent information is provided. Only the necessary in-
formation for a particular device need be used. Also, all angle
specifications assume that 0 degrees is 90 degrees to the right
of vertical, with values increasing in the counterclockwise
direction.

479

Appendices

SET CHARACTER HEIGHT
Set character height.

Input contrl(1) - Opcode = 12
contrl(2) - Number of vertices = 1
ptsin(1)- 0
ptsin(2) - Requested character height in device units

(rasters, plotter steps)

Qutput contrl(3) - Number of vertices = 2
ptsout(1) — Actual character width selected in device units
ptsout(2) ~ Actual character height selected in device units
ptsout(3) — Character cell width in device units
ptsout{4) — Character cell height in device units

Description This operation sets the current text character height in Device
Units. The specified height is the height of the character itself
rather than the character cell. The driver returns the size of
both the character and the character cell. The character size
is defined as the size of an uppercase W. If the requested size
does not exist, a smaller size should be used.

10000010
10000010
10000010
10010010 CHARACTER CELL
10101010 HEIGHT HEIGHT
11000110

ORIGIN OF 10000010 BASE LINE

ROTATION 00000000

10000010
10000010
10000010
10010010 CHARACTER CELL
10101010 HEIGHT HEIGHT
11000110

ORIGIN OF 10000010 BASE LINE

ROTATION 00000000

480

GSX

SET CHARACTER UP VECTOR
Set text direction.

Input

Output

Description

contrl{1) - Opcode = 13
contrl{Z) - 0

intin(1) — Requested angle of rotation of character
baseline (in tenths of degrees 0 - 3600)

intin(2) ~ Run of angle = cos (angle} * 100 (0-100)

intin(3) - Rise of angle = sin (angle) * 100 (0-100)

contrl(3) —
contrl{5) —

bt O

intout(1) — Angle of rotation of character baseline
selected (in tenths of degrees 0-3600)

This operation requests an angle of rotation specified in tenths
of degrees for the CHARACTER UP VECTOR, which
specifies the baseline for subsequent text. The driver returns
the actual up direction that is a best fit match to the requested
value.

For convenience, redundant but consistent information is
provided on input. Only information pertinent to a given
device need be used. The angle specification assumes that 0
degrees is 90 degrees to the right of vertical (east on a
compass), with angles increasing in the counterclockwise
direction.

90

180 0

270

481

Appendices

SET COLOUR REPRESENTATION
Specify colour index value.

Input

Output

Description

contrll(l) — Opcode = 14
contrl(2)— 0

intin(1) - Colour index

intin(2) - Red colour intensity (in tenths of percent
0-1000)

intin{3) - Green colour intensity

intin{4) — Blue colour intensity

contrl(3)- O

This operation associates a colour index with the colour
specified in RGB units. At least two colour indexes are
required (black and white for monochrome). On a
monochrome device, any percentage of colour should be
mapped to white. On colour devices without palettes, a simple
remapping of the colour indexes is sufficient. On colour
devices with palettes, loading the palette map is the proper
operation. If the colour index requested is out of range, no
operation is performed.

SET POLYLINE LINETYPE
Set polyline linetype.

Input

Output

Description

482

contrf(1) - Opcode = 15
contrl(2y- 0
intin(1) - Requested linestyle

contrl(3)- O
intout(1} — Linestyle selected

This operation sets the linetype for subsequent polyline
operations. The total number of linestyles available is device
dependent; however, 5 linestyles are required: one solid plus
four dash styles.

GSX

If the requested linestyle is out of range, use lincstyle 1

(solid).

STYLE- 1SOLID 1111111111111111
STYLE- 2DASH 1111111000000000
STYLE- 3DOT 1110000011100000

STYLE- 4 DASH,DOT 1111111000111000
STYLE- 5 LONG DASH 1111111111110000

SET POLYLINE LINE WIDTH
Set polyline line width.

Input contrl(1) — Opcode = 16
contrl(2) - Number of input vertices = 1
pisin(1) - Requested line width in device units
ptsin(2) - 0

Output contrl(3) — Number of output vertices = 1

ptsout{1) — Selected line width in device units
ptsout(2) - @

Description This operation sets the width of lines for subsequent polyline
operations. Any attempt to set the width beyond the specified
maximum will set it to the maximum line width.

SET POLYLINE Colour INDEX
Set polyline colour index.

Input contrl(1} ~ Opcode = 17

contrl(2) - 0

intin(1) - Requested colour index
Output contri(3)- 0

intout(l) — Colour index selected

483

Appendices

Description This operation sets the colour index for subsequent polyline
operations. The colour signified by the index is determined
by the SET-Colour REPRES-ENTATION operation. At
least two colour indexes are required. Colour indexes range
from O to a device-dependent maximum. If the selected index
is out of range, use the MAXIMUM colour index.

SET POLYMARKER TYPE
Set polymarker type.

Input contrl(1) - Opcode = 18

contrl{(2y - O

intin(1) - Requested polymarker type
Qutput contrl(3) - 0O

intout(1) — Polymarker type selected

Description This operation sets the marker type for subsequent
polymarker operations. The total number of markers
available is device-dependent; however, five marker types are
required, as follows:

i- . Dot

2- + Plus

3- ¢ Asterisk

4- 0O Circle

5- X Diagonal Cross

If the recfuested marker type is out of range, use type 3.
Marker 1 should always be implemented as the smallest dot
that can be displayed.

SET POLYMARKER SCALE
Set polymarker scale (height}.

Input contrl(1) - Opcode = 19
contrl(2} - Number of input vertices = 1

484

Output

Description

GSX

ptsin{ll)- 0
ptsin(Z) — Requested polymarker height in device
units

contrl(3) - Number of output vertices = 1

ptsout(1) -~ 0
ptsout(2) — Polymarker height selected in device
units

This operation requests a polymarker height for subsequent
polymarker operations. The driver returns the actual height
selected. If the selected height does not exist, use a smaller
height.

SET POLYMARKER Colour INDEX
Set polymarker colour index.

Input

QOutput

Description

contrl(1) — Opcode = 20
contri(2y- 0
intin(1) - Requested polymarker colour index

contri(3) - O
intout(1) — Polymarker colour index selected

This operation sets the colour index for subsequent
polymarker operations. The value of the index is specified by
the Colour operation. At least two colour indexes are
required, If the index is out of range, use the MAXIMUM
colour index.

SET TEXT FONT
Set the hardware text font.

Input

contr](1) - Opcode = 21
contil(2y - 0

intin(1}) - Requested hardware text font number

485

Appendices

Output

Description

SET TEXT Colour INDEX

contrl{3) -

intout(1) -

0

Hardware text font selected

This operation selects a character font for subsequent text
operations. Fonts are device-dependent and are specified
from 1 to a device-dependent maximum.

Set colour index.

Input

Output

Description

contrl{1) -
contri(2) -
intin(1) -

contrl(3) -
intout(1) -

Opcode = 22
0
Requested text colour index

0
Text colour index selected

This operation sets the colour index for subsequent text
operations. At least two colour indexes are required. Colour
indexes range from 0 to a device-dependent maximum. If the
selected index is out of range, use the MAXIMUM index.

SET FILL INTERIOR STYLE
Set interior fill style.

Input

Output

486

contrl(1) —
contrl(2) -

intin{1) -

contrl{3) —

intout(1) —

Opcode = 23
0

Requested fill interior style

0 - Hollow (outline no fill)

1- Solid

2 - Haliftone pattern
3 - Hatch

0

Fill interior style selected

GSX

Description This operation sets the fill interior style to be used in
subsequent polygon fill operations. If the requested style is
not available, use Hollow. The style actually used is returned
to the calling program.

SET FILL STYLE INDEX
Set fill style index.

Input contrl(1) — Opcode = 24
contrl(2)— 0
intin{1) - Requested fifl style index for Pattern or
Hatch fill
Output contrl(3) - 0

intout(1) — fill style index selected for Pattern or
Hatch fili

Description Select a fill style based on the fill interior style. This index has
no effect if the interior style is either Hollow or Solid. Indexes
go from 1 to a device-dependent maximum. If the requested
index is not available, use index 1. The index references a
hatch style if the fill interior style is hatch, or it references a
halftone pattern if the interior fill style is halftone pattern. For
consistency, the hatch styles should be implemented in the
following order:;

1 — vertical lines
2 — horizontal lines
3 - +450 lines

4 — -430 lines
5 — cross
6-X

>6 — device-dependent
You can implement halftone patterns for gray scale shading

with values 1 through 6. Value 1 is the lightest, and 6 is the
darkest.

487

Appendices

SET FILL Colour INDEX
Set fill colour index.

Input contrl(1} - Opcode = 25

contri2y- 0

intin(1) - Requested fill colour index
QOutput contrl(3y- 0

intout(1) — Fill colour index sciected

Description This operation sets the colour index for subsequent polygon
fill operations. The actual RGB value of the colour index is
determined by the SET-Colour-REPRESENTATION op-
eration. At least two colour indexes are required. Colour
indexes range from O to a device-dependent maximum. If the
sclected index is out of range, use the MAXIMUM,

INQUIRE Colour REPRESENTATION
Return colour representation.

Input contrl(1) - Opcode = 26
contri(2y—~ 0
intin(1) - Requested colour index
intin(2) — Set or realized flag

0 = set {return colour values requested)
1 = realized (return colour values realized
on device)

Output contrl(3) ~ 0
intout{1) ~ Colour index
intout(2) ~ Red intensity (in tenths of percent 0-1000)
intout(3) ~ Green intensity T
intout(4) ~ Blue intensity

488

GSX

Description This operation returns the requested or the actual value of
the specified colour index in RGB units.

INQUIRE CELL ARRAY

Note: The device driver must maintain tables of the colour
values that were set (requested) and the colour values that
were realized. On devices that have a continuous colour
range, one of these tables may not be necessary. If the
selected index is out of range, use the values for the
MAXIMUM colour index.

Return cell array definition,

Input

Output

contrl(1) —
contri(2) —
contri(4) -
conirl(6) ~
contrl(7) -
ptsin(1) —
ptsin(2) —
ptsin(3) -
ptsin(4) —
contrl(3) -
contrl(8) -

contrl(9) -
contrl(10) -

Opcode = 27

2

Length of colour index array

Length of each row in colour index array
Number of rows in colour index array

x-coordinate of lower left corner in device
uiits

y-coordinate of lower left corner in device
unijts

x-coordinate of upper right corner in
device units

y-coordinate of upper right corner in
device units

0

Number of elements used in each row of
colour index array

Number of rows used in colour index array
Invalid value flag

0 - If no errors

1 - If a colour vatue could not be
determined for some pixel

459

Appendices

intout — Colour index array (stored one row at
time)

-1 Indicates that a colour index could not
be determined for that particular
pixel

Description This operation returns the cell array definition of the specified

cell. Colour indexes are returned one row at a time, starting
from the top of the rectangular area, proceeding downward.

Example program to demonstrate use of GSX

100 REM 4% REN siatemenis are for clarily, THEY ARE NOT YSED by the
110 REM 434 program so can be iefi oub when entering listings

130

130 OPT1ON BASE 1

140 GOSYE 450 . REM Sel up machine tode to pass paramebers
50 G0SLR 320 1 REKM Reset Workstation, Enter graphics aode
160

1) conbrisiiistl ; REM Genaralised Drawing Primitive

Y80 conbrik(2)=2 . REN Number of veviices in plsind

150 contrikifi=] ¢ REM Length of input array intin§

30 ptsindll, 13=16388 REM { coordinmate of first pair (cenira}

210 plsinf(2,1)=16384 | REM Y coordinaie " ° L)
20

230 FOR §=1 TD 32767 STEP 406 ¢ REM 32767=Size of scresn in G8% units
240 pysing(i,2)=i . RE¥ f cnordinate of second paie

250 pbsindf2,)=t ! REM Y coprdipate * ° “

26l GOSUR 560 1 REM Call &SK

270 NEXT

80

230 PRINT CHR$(2T)"e" | REM Bring back cursor

00 END

39

320 contrliin)=l . REH Dpen Worksiabion

330 contrifi2i=0 . REM Always zero

O condelBld)=10 : REW Length of intin¥ {always 1D paramaters required)
350 inding(i)s) : REM Device driver loadad to use §5U

360 ¢ REM Qevice l=streen

490

GSX
370 FOR i=2 Ta 10

380 intink{i)=! ¢ REM Only pead to be sel fo } hecause the 8K driver

399 ¢ REM supplied with Amsirad’s isn't a full implementation
409 t REM the full version is supplied with OR Draw and Graph
410 NEXT 1

430 GOSUB 360 ¢ REM Lall GSY

430 RETURN

440 ;

450 MEMORY HIMEM-7 ¢ REM Only 7 bytes required, bub need io %2 pretected

460 ;

1?0 GATA EhSD 03 Ehle &h73, &hcd, 4h0S 3h00 : REM Cade o pass values o 65X
i;g ;GR =] T3 7,READ a:POKE HIMEMHi & NEXT i REW Siore Machine code

:?g éiﬁ eonbelf{s), inbink(20), intoutRU45}, plain®(2, 74} plooutlii2, 74)

gég ésxi=ﬁNT(HEMEH+?) ; RE® Point to 63X calling program

40 RETURN

550 ¢
560 CALL gsa¥icontri®{l) conteif{l), contrld{1), intink{i), pbaink{i, 1), inkout${l},
§76 RETURN olsuté(l,ih)

49

Appendices

Output produced from program

D

— P

492

Glossary

ambiguous filename: Filename that contains either of the CP/M Plus
-wildcard characters ? or * in the primary filename or the filetype or both.
When you use wildcard characters you create an ambiguous filespec and
can easily reference more than one CP/M Plus file. See Section 2 of this
manual,

applications program: Program that solves a specific problem. Typical
applications programs are business accounting packages word processing
(editing) programs and mailing list programs.

argument: Symbol indicating a place into which you can substitute a
number letter or name to give an appropriate meaning to a command line.

ASCII: The American Standard Code for Information Interchange is a
standard code for representation of numbers letters and symbols, An
ASCII text file is a file that can be intelligibly displayed on the video screen
or printed on paper. See Appendix B.

attribute: File characteristic that can be set to on or off.

back-up: Copy of a disk or file made for safe keeping or the creation of

the back-up disk or file.

bit: Switch in memory that can be set to on (1) or off (0). Bits are
grouped into bytes.

block: Area of disk.

493

Glossary

bootstrap: Process of loading an operating system into memory.
Bootstrap procedures vary from system to system. The boot for an
operating system must be customized for the memory size and hardware
environment that the operating system manages. Typically the boot is
loaded automatically and executed at power up or when the computer is
reset. Sometimes called a *““cold start.”

buffer: Area of memory that temporarily stores data during the transfer
of information.

built-in commands: Commands that permanently reside in memory.
They respond quickly because they are not accessed from a disk.

byte: Unit of memory or disk storage containing eight bits,

character string: Any combination of letters numbers or special
characters on your keyboard. space

command: Elements of a CP/M Plus command line. In general a CP/M
Plus command has three parts: the command keyword the command tail
and a carriage return keystroke.

command file: Series of coded machine executable instructions stored on
disk as a program file invoked in CP/M Plus by typing the command
keyword next to the system prompt on the console. CP/M Plus command
files generally have a filetype of COM. Files are either command files or
data files. Same as a command program.

command keyword: Name that identifies a CP/M Plus command usually
the primary filename of a file of type COM or a built-in command. The
command keyword precedes the command tail and the carriage return in
the command line.

494

Glossary

command syntax: Statement that defines the correct way to enter a
command. The correct structure generally includes the command keyword
the command tail and a carriage return. A syntax line usually contains
symbols that you should replace with actual values when you enter the
command.

command tail: Part of a command that follows the command keyword in
the command line. The command tail can include a drive specification a
filename and/or filetype and options or parameters but cannot exceed 128
characters. Some commands do not require a command tail.

concatenate: Term that describes one of PIP’s operations that combines
two or more separate files into one new file In the specified sequence.

console: Primary input/output device, The console consists of a listing
device such as a screem and a keyboard through which the user
communicates with the operating system or applications program.

control character: Nonprinting character combination that sends a simple
command to CP/M Plus. Some control characters perform line editing
functions. To enter a control character hold down the CTRL key on your
terminal and strike the character key specified. See Appendix D.

cursor: One-character symbol that can appear anywhere on the console
screen. The cursor indicates the position where the next keystroke at the
console will have an effect.

data file: Nonexecutable collection of similar information that generaily
requires a command file to manipulate it.

default: Currently selected disk drive and/or user number. Any command
that does not specify a disk drive or a user number references the default
disk drive and user number. When CP/M Plus is first invoked the default

495

Glossary

disk drive is drive A and the default user number is 0 until changed with the
USER command.

delimiter: Special characters that separate different items in a command

line. For example in CP/M Plus a colon separates the drive spec from the

filename. A period separates the filename from the filetype. Brackets

separate any options from their command or filespec. Commas separate

one item in an option list from another. All of the preceding special
* characters are delimiters.

directory: Portion of a disk that contains descriptions of each file on the
disk. In response to the DIR command CP/M Plus displays the filenames
stored in the directory.

DIR attribute: File attribute. A file with the DIR attribute can be
disptayed by a DIR command. The file can be accessed from the default
user number only.

disk diskette: Magnetic media used to store information. Programs and
data are recorded on the disk in the same way that music is recorded on a
cassette tape. The term diskette refers to smaller capacity removable
floppy diskettes. Disk can refer to a diskette a removable cartridge disk or
a fixed hard disk.

disk drive: Peripheral device that reads and writes on hard or floppy
disks. CP/M Plus assigns a letter to each drive under its control. For
example CP/M Plus can refer to the drives in a four-drive systemas A B C
and D,

editor: Utility program that creates and modifies text files. An editor can
be used for creation of documents or creation of code for computer
programs. The CP/M Plus editor is invoked by typing the command ED
next to the system prompt on the console, (See ED in Section 6 of this
manual}.

496

Glossary

executable: Ready te be run by the computer. Executable code is a series
of instructions that can be carried out by the computer. For example the
computer cannot execute names and addresses but it can execute a
program that prints all those names and addresses on mailing labels.

execute a program: Start a program executing. When a program is
running the computer is executing a sequence of instructions.

FCB: See File Control Block.

file: Collection of characters instructions or data stored on a disk. The
user can create files on a disk.

Fite Control Block: Structure used for accessing files on disk. Contains
the drive filename filetype and other information describing a file to be
accessed or created on the disk.

filename: Name assigned to a file. A filename can include a primary
filtename of 1-8 characters and a filetype of 0-3 characters. A period
separates the primary filename from the filetype.

file specification: Unique file identifier. A complete CP/M Plus file
specification includes a disk drive specification followed by a colon (d:) a
primary filename of 1 to 8 characters a period and a filetype of 0 to 3
characters. For example b:example.tex is a complete CP/M Plus file
specification.

filetype: Extension to a filename. A filetype can be from 0 to 3 characters
and must be separated from the primary filename by a perlod A filetype
can tell something about the f11e ‘Certain programs require that files to be
processed have certain filetypes (see Appendix C).

497

Glossary
floppy disk: Flexible magnetic disk used to store information. Floppy

disks come in 5 1/4- and 8-inch diameters.

hard disk: Rigid platter-like magnetic disk sealed in a container. A hard
disk stores more information than a floppy disk.

hardware: Physical components of a computer.

hex file: ASCII-printable representation of a command (machine
language) file.

hexadecimal notation: Notation for the base 16 number system using the
symbols 0123456789 AB CD E and F to represent the sixteen digits.
Machine code is often converted to hexadecimal notation because it can be
easily represented by ASCII characters and therefore printed on the
console screen or on paper (see Appendix B).

input: Data poing into the system usually from an operator typing at the
terminal or by a program reading from the disk.

interface: Object that allows two independent systems to communicate
with each other as an interface between hardware and software in a
microcomputer.

I/O: Abbreviation for input/output.

keyword: See command keyword.

kilobyte: 1024 bytes denoted as 1K. 32 kilobytes equal 32K. 1024
kilobytes equal one megabyte or over one million bytes.

498

Glossary

list device: Device such as a printer onto which data can be listed or
printed.

logical: Representation of something that might or might not be the same
in its actual physical form. For example a hard disk can occupy one
physical drive and yet you can divide the available storage on it to appear
to the user as if it were in several different drives. These apparent drives
are the logical drives.

megabyte: Over one million bytes; 1024 kilobytes. See byte and Kilobyte.

microprocessor: Silicon chip that is the Central Processing Unit (CPU) of
the microcomputer.

operating system: Collection of programs that supervises the running of
other programs and the management of computer resources. An operating
system provides an orderly input/output environment between the
computer and its peripheral devices.

option: One of many parameters that can be part of a command tail. Use
options to specifiy additional conditions for a command’s execution,

output;: Data that the system sends to the console or disk.

parameter: Value in the command tail that provides additional
information for the command. Technically a parameter is a required
element of a command.

peripherat devices: Devices external to the CPU. For example terminals
printers and disk drives are common peripheral devices that are not part of
the processor but are used in conjunction with it.

499

Glossary

physical environment: Actual hardware of a computer. The physical
environment varies from computer to computer.

primary filename: First 8 characters of a filename. The primary filename
is a unique name that helps the user identify the file contents. A primary
filename contains 1 to 8 characters and can include any letter or number
and some special characters. The primary filename follows the optional
drive specification and precedes the optional filetype.

program: Scries of specially coded instructions that performs specific
tasks when executed by a computer.

prompt: Characters displayed on the screen to help the user decide what
the next appropriate action is. A system prompt is a special prompt
displayed by the operating system. The system prompt indicates to the user
that the operating system is ready to accept input. The CP/M Plus system
prompt is an alphabetic character followed by an angle bracket. The
alphabetic character indicates the default drive. Some applications
programs have their own special system prompts.

Read-Only: Attribute that can be assigned to a disk file or a disk drive.
When assigned to a file the Read-Oaly attribute allows you to read from
that file but not change it. When assigned to a drive the Read-Only
attribute allows you to read any file on the disk but prevents you from
adding a new file erasing or changing a file renaming a file or writing on the
disk. The SET command can set a file or a drive to Read-Only. Every file
and drive is either Read-Only or Read-Write. The default setting for drives
and files is Read-Write but an error in resetting the disk or changing media
automatically sets the drive to Read-Only until the error is corrected. Files
and disk drives can be set to either Read-Only or Read-Write.

Read-Write: Attribute that can be assigned to a disk file or a disk drive.
The Read-Write attribute ailows you to read from and write to a specific
Read-Write file or to any file on a disk that is in a drive set to Read-Write.
A file or drive can be set to either Read-Only or Read-Write.

500

Glossary

record: Collection of data. A file consists of one or more records stored
on disk. A CP/M Plus record is 128 bytes long.

RO: See Read-Only.
RW: See Read-Write.

sector: Portion of a disk track. There are a specified number of sectors on
each track.

software: Specially coded programs that transmit machine-readable
iastructions to the computer as opposed to hardware which is the actual
physical components of a computer.

source file: ASCII text file that is an input file for a processing program
such as an editor text formatter or assembler.

-

string: See character string
syntax: Format for entering a given command.

system attribute; File attribute. You can give a file the system attribute
by using the SYS option in the SET command. A file with the SYS
attribate is not displayed in response to a DIR command; you must use
DIRS (see Section 5). If you give a file with user number O the SYS
attribute you can read and execute that file from any user number on the
same drive. Use this feature to make your commonly used programs
available under any user number.

system prompt: Symbol displayed by the operating system indicating that
the system is ready to receive input. See prompt.

501

Glossary

terminal: See console.
track: Concentric rings dividing a disk.

turn-key application: Application designed for the noncomputer-
oriented user. For example a typical turn-key application is designed so
that the operator needs only to turn on the computer insert the proper
program disk and select the desired procedure from a selection of functions
(menu) displayed on the screen.

upward-compatible: Term meaning that a program created for the
previously released operating system (or compiler etc.) runs under the
newly released version of the same operating system.

user number: Number from 0 to 15 assigned to a file when it is created.
User numbers can organize files into sixteen file groups.

utility: Tool. Progra;m that enables the user to perform certain operations
such as copying files erasing files and editing files. Utilities are created for
the convenience of programimers and users.

wildcard characters: Special characters that give CP/M Plus a pattern to
match when it searches the directory for a file. CP/M Plus recognizes two
wildcard characters ? and *. The ? can be substituted for any single
character in a filespec and the * can be substituted for the primary filename
or the filetype or both. By placing wildcard characters in a filespec you
create an ambiguous filespec and can quickly reference one or more files.

502

Index

B L 245
ACCeSS ATIVE ..o 306
Accessmode ... 156
Advanced ED commandscooooviiniiiiiinn 192
AMSDOS (e 406
Appending teXt ..vovviiiiiii i 177
Applications and BDOS ... 212
Applicationsand RSX ... 213
ASCIILCONVETSION ..vvv.iveeeieeeeiiiinnveiiiaeanens Appendix B
ASM e 245
Assign alogical deviceoooceiviiniiiiniiin e 66
Assigning logical devicesocooooiiiii e, 42
Attach headerrecordoooooiiiii 92
Attach RSX files ... 90
Auxiliary deviceooveeiiiiiii e 121
Auxiliary device redirection not

implementedooiiiini 355
Auxiliary input ..o 273
Auxiliary input Statusoooii 275
Auxiliary output ... 274
Auxiliary output Statuscooeeiiiinnnnin 276
AUXIN L e e 42
AUXOUT (v 42
Backingupfilesccoooiiiiiiiini 24
Backupfileooooviini 176
Bad character re-enterooooivviv i 355
Bad close ..ovviieiii e 356
Bad logical device assignmentcocoeviiinnninn. 356
Bad parameterooiiciiii i 356

504

Index

Bad passwordcoooiivriiniiiii i e 356
BAK o e e 245
Banks ... e Section 7
BAS 245
BDOS L e 211
BDOS calling conventionsc.ccovvvvrnecviiininenn 235
BDOS console I/O ..o 237
BDOS errorhandlingcoooooiiiiieiiii 261
BDOS file systemooooviiieiiiiniiie e 241
BDOS functioncallsooiiiiiii Section 9
BDOS function SUMmaryccceeeeeuneee. Appendix H
BDOS serial device /O ...oovviiiii 236
BDOS system interfaceccceeeiiiiiineennnnnn Section 8
BIOS o e 211
BIOS extended jumpblock Appendix]
BOOUNG ..vovnvoiiinii it 21
Break “x7at c .o i 356
Bufferoooiiiiir e 176
Built in commands ..o 44
BYte COURES . .ovvvvvinrireiniinie s icvneicnrreesieeneeeennnes 261
Call resident system extensioncovveevvriiinnnnn.n 316
Can’tdeletetempfile ... 358
Cannot cloSeo 357
Cannotdeletefileooovviiiin 357
Cannot have both create and access time

SLANMIPS .oivecieaonnie e tieanrnae e ta s et st ranan e s ranas 357
Cannot label a drive with file

referenced ... 357
Cannot open source fileooiiiiiiiiin 357
Cannot redirect from BIOS ... 357
Cannot setboth ROand RW e 358
Cannotset bothSYSand DIRcoooovivicviiiinninn, 358
CCP Operationoovvviiieeiininninis e 221
Chain to PIOZIAMcovvvviniiiiiiirre e i 310
Changing diskscocoociiiiiii 35
Character POINTET ..ot e 182
Character StHNES . i.vvreeiiiiirree s v ieieananns 194
ChecksUm ITOr ..vovooiiiiiiii i 358
ClOSE @ITOT 1oiie it et 358

Closefile ..o 283
Close operation failcooceviviiiiiiiinii, 358
Closingfileoooeiiiiiiin 358
Coldstart ..., 220
COM e 245
COM file found and NULL optioncccoveiinieann.e, 359
COM file requiredcooooiiniiiiiiiiiiiccnn 359
Combining ED commandsccooevnveiinnn 189
Combining filesooiiniivini 120
Command descriptionscovvviiriervvninn 57
Command neccoiiiiiiiiir s 22
Command SUMMArYccovviiiiiinvenniiieeeennn Section 5
Command tail ... e 43
Command typPes ..co.oooiiiiiriii e 43
COMMON BITOT ..oeiiiiiiii i e e i eenenens 359
Compute file SIZe ..o 303
CONIN L s v e e e 42
CONOUT ...t e v e e 42
Console and printercoovieiiiniiinenn Section 3
Console /O ... 237
Console INPut ..., 272
Console input terminationcccooivvnvinienennn. 95
Console outputooviiiiiiiiiic 36,273
Console output (direct)ooiiiiniie 131
Context editorocoviiiiiiiiiii e Section 6
Control character summaryoooovieenee. Appendix D
Control charactersooviiviiiiiiic e, 39
Control Keyovviiiiriiiiii e 36
Copy files to auxiliary deviceooviiei i 121
Copyingdisks ... 25
Correcterror typereturnor CtriZ ...l 359
CPCé128 firmware callsccooeeeviiiieeneann. Appendix K
CPCOI28 MEMOLY ..ooviiivnirniiririiiieseeiieiraeeaeeeaaenas 208
CPMerrorond:coiiviieminiiiee e, 359
CPIM 22 e 217
CP/M Plus commandsccovvvvvvacinnniiiiennenns Section 4
CP/M Plus messagesovvvviiriaiearnnnnnanss Appendix A
Current date and time displayoovvnn 62
Customizing HELPcc v 97

505

506

Index

DAT oo 245

Datafilesoooiiiiiiiiii 47
Date and tIMe STAMP o.ivieni i 33
Date and time stamping inactiveooeieeeiiiinnn, 360
DATE commandcccoviiirrmveeeiiiaiicannnnncanaens 02
Default passwordcooiiiiiiiiiiiiii 143
Delete file ..o e 286
Deleting characterscocoivvee i 185
Destinationis R/Ocoeiiiiiiiiicccn e, 360
Device characteristicsccoeeeeiiiiiiiiicrncinin, 64
DEVICE commandcc....oovriiviinieiiniiee, 64
Device reassignment not supportedccovvennee. 360
DIRcommandocoeviiiiiiiiiccnnr e, 69
Direct BIOS callso.oiiiiiiiiinricnsiinaanns 314
Direct console /Oooiiiiiiiiiiii i 274
Direct console outputccoovviiiiiiinini 131
Directory already formattedcc.occoiiiiinvnnn. 360
Directory displaycooovveenviiiiiiiien i 69
Directory free entriesococviiiviiiiiiieniiiiiiiiannn-. 158
Directoxy full ... 360
Directory hashingcccccoiiii i, 215
Directory labels and XFCBSscoveeeiiiniiiniiinennnnn 252
Directory needs to be reformattedc..ooieni, 361
DISCKITcommandocuvecnremiiicinrccinnnnns 78
DISCKIT3 .o i 25
Disk and file organisationc.cociiiiiiinninninn, 245
Disk drive organisationcccooeveiiiiiiinni e, 215
Disk full Lo 361
Disklabelcccooiiiiiirriirce e 140, 156
Disk read €I10rovvviieeieiiiieeei e 361
Disk reset and removable media ..., 260
DHSK SPACE +ovvie ittt e a e 156
Disk WEIte @ITOT ..ivernvmreeiiiiiarn vt r e iaaaens 362
Display current date and timeooovviiininn, 62
Display device characteristicsccoceeeiiiiiiiinennnnn. 64
Display directoryooviiiieeivinie e 69
Display informationcoociviiiiiierriii . 96
Display or set the screen sizeocooveviiiiiiiininiinennn. 68
Displaying textcoooiiveiiiiiiinn 190
Drive attribute ..o 139
Drive characteristicsccovvvvinirenioniviiniirnannec. 158

Drive defined twicecoooiiiiiiiii 362
Drive protectioncoooeeiiiiiicccin 35
Driveread onlycoovviniiiiiii 362
DIVES oo 29
DUMP commandccovevvriirimnviicnirnnicacaneans 79
Duplicate input RSX ... 362
Duplicate RSX inheadercc.cooimvmnviiiiinnnnnn, 362
Dynamicallocationcc.coooiiiiiiinini 35
ED commandocoieiiriiiiiiiiii e e 79
ED error Messagesovvveeiniiriiriaieeneuinmnneinsiniees 202
ED eXit vriiiineiiniiiee e e 178
EDintroductionocovviiiiiniiiiiiiiiiinivnieceieenns 173
ED operationcooviiiieiiiiiiiiiin e 175
Editing commandsccoooiiiiiiiiiiin 180
BAitor ..ot Section 6
Endoffileoooiiniii 362
End of line expectedoooooiiiiiiiiiiinniiinnn 363
ERASE commandccoivmmiiiiiiinininniininnns 87
Erroratendoflinecccoooiiiiiiiiiiiin e, 363
Error handlingon BDOSccooiiiviiiiiennn, 261
Error messages from ED ... 202
Erroronlinennnncccoo it 363
Executing submitcooooiviiiiiii s 168
Exit from ED ..o i 178
Expansion token definitionsccoeoeee, 151
Extended disk parameter blocks Appendix I
FCBformatooevvvmiiniiiiiciiini i iinae e 331
File already existscooveiiimmmicciiiice e, 363
File attributescovvvviivinvnniiiiiininenes 32,137,249
File byte counts ...o.ovvvniiiiiiiri e s caeans 261
File combinationcovvviviin i, 120
File control block definitionooviiiiiiin, 246
File Copy oo 116
File creationcccooiiirviviniicci e 27
File date and time Stampscccoonriiiniiiiinnn., 256
Filedump utilityccoinini 336
File €I10T 1o s 363

508

Index

File exists, €rase itccciviiviivriiiiiieiiiinirrrneiriaes 363
Fileisreadonlycooovviiiiinnviniiiiinii e 364
File naMe €ITOTcvvviviiniceicninei it e vinins 364
Filenamescoooiiiiiiii i 27
File naming conventionscoovveviiieccnnciiiannn, 243
File not found et 364
File passwordscooiiiiinimnic e 254
File protectioncoooiiiiiniiin e 32
File StOragecoovviviiviii it 34
File-to-file copy examplec.cccoiiiviniiini 333
Files oo 26
Files, disks, drivesooovvvvvviiiiiiiiiinceeans Section 2
FIleSPec ..cvviiiiiiiinie e 57
Filetypescoocovvvimiiiiiiiniiiinnns 57, Appendix C
Find andreplacecooiiiiiiiiiiiinnnncii e 194
Firmware callsccccovvvviiiiiiiin i Appendix K
First common not largest0...cocoooiioiiiniiiiiiiinn 364
First submitted file must be COMfileooceeeeee 364
Flush buffersc...cooiiiiiiieii e n
Free blocksooovvinenin i 317
Free directory entriescooormviiiiniiniiinnnn, 158
Free drive OO U U UTUTOt 306
Functioncallscoociiiiicimncee, Section 9
GENCOMcommandcoveviiiiiiemnin e 89
Generate COM file with RSX ..o, 90
Getaddr(alloc)coooovviiiivrin e 295
Getaddr(dpb parms)cooovvmiiiiiiiiiininiei 298
GETcommandcoooviviiniiiiiiii i 93
Getconsoleinputco.ooooiiiiini 93
Get console Statusovvveeeviiiiii 279
Getdate and timeoovvvvviiiiieiii e 324
Get disk free spaceoviviiiiiniiniiice e 309
Get read-0nly VECHOri.viiiiineiniecne e, 296
Get/setconsole modeoccvviniceinvin i 327
Get/set output delimitercoooviiriiiiiiiiiinn.. 328
Get/set program return code ..ovveeeniininn 326
Getfset system control block ... 312
L€), GO S U Appendix L

Hardware independencecc.cccooiivieeiiiiniinn, 211
Headerrecord attachoooevviiiiiiiniiiniiiinieennan, 92
HELP oo e e 52
HELP commandccccooiiiiiiiiiiniiin i 95
HELP displayccovvvriiiiiiviiiiiiciic it 96
HELP. DAT not on current drivecocoeeiiines 364
HEX oo et 245
Hexadecimal conversionc..coooeeenn, Appendix B
HEXCOM commandcoeeeemiiiivniiieeen e 100
HIST .o e 164
Hlegal command fail ..o, 365
Illegal filenameooooiiiiiiiiiicc e 365
Incorrect file specificationccoivivniiininnnn, 365
INITDIR commandscooovvemiiiiinecninieennin. 100
Input and output redirectioncooovvnirveiiiiie 38
Inserting characterscccceiviiicurecnieriviiniireennn, 186
Insufficient MEemMOTY ...coooieiiriiiii e aeee e 365
INT ot v s et e 245
Introduction to CP/M plus ..o Section 1
Invalid ASCII characterccccovviiiieenicninnnn, 366
Invalid commandooiiiiiiii 366
Jumpblock ... 408
Key definitionsoocoviiiiiinini e, 150
Keywordooovvviiii i, 58
Labelling thediskcoooii i 140
LANGUAGE commandcccoooiirieniniiinninn 101
LIB commandcc.ocoiivviiiiiiinnnaans 102
Line editingooveviiiiiii e 37
Line editing controlscovivieiciiiiininniennennn, 187
LINK commandoociiiiniiiiii i, 105
LINK OPHORNS ..ceivivrniiitiearrniiniiiieeransaeniesseenerres 106
LINK-80 oot e v e ee e 105
List Blockoooviiiiiiii e 329

510

Index

List OUtPUE ..oovvviniiiirne e 274
Loadoverlaycooooo i RPPPS 315
Lock recordoocovviiiiiiii et 307
LOocoSCript .oovnieiiin 33
Logical device assignmentscooeceeinniinieennss 42, 66
Logical record Sizeooovveriiiiiiiriciiin i, 258
LST i i 42
MAC command Pt ee st e 108
Main module error ..o 369
Make errorooooiiiiiii 369
Makefile ..o 281
Mallard BASIC SRR 390
Memory banksooovivimireiiniin e Section 7
Memory buffer ..o 176
Memory buffer contentscoooooiiiinn, 184
Memory introduction OO 207
Memory overflowocciiiiiniiiiii e, 369
Memory region boundariesccoeoiieniinn e, 215
Messages from CP/M Plus ..., Appendix A
Missing parenthesesc.ccovvevviiiiinvenniinienneanen, 370
Multi-sector FO ...ooovvvniiiiiiicc i 259.
Multiple command modecoviii . 123
Multiple commandsoocoviiiiiiii i, 50
Multiple definitionooccvmiiien i e 370
Multiple file 800885 ...viiieeniiiiiiic 31
Multiple file Copyoiiiirmeiii 119
¥ ST RSP 370
NIbble .o 234
NOfile (i 371
Notfoundcoovviiiiiiin 373
Openfile ...oooooiiiii e, 281
Outpat file read e110r ...\oeciiiiii e 374

Pagerelocatable ..o 225
Page zero initialization ..., 267
PALETTE commandcccooiiiiiiinniniiinann. 110
PAPER commandcccooiviiiiiniiinininne. 111
Parameter errorcooovvvviiiivin e 374
Parity ..o 154
Parse filenameoooviiiici e, 330
Password assignmentcooovviiiiiiiniinn e 140
Password protectionovvvvmnviiiciiien i, 141
Password defaultccoivniiii 143
Password error ... eeeae 374
Password protection modeccooviiiiiivn . 142
PassWOrdS ..c.ooiiueeniniiiiiiei e eaean 34
Passwords on filesccooviiiiiiieiiii e 141
PATCH commandooiivininiiiini e, 114
PCWE256 MEMOTY ..c.ovviiiiiiniinin e 207
PCWE256 RAMdiskovvvveeneiiiiii i 219
Physical device attributeso.ooviiiiiiiie 68
Physical device does not exist eereeenrr 374
PIP commandcco.ovvvrvvimninsicimerrnseiiieenennnnia 115
PIP optionsccooviirniniiiiiiii i 124,125
PLI Lo e 245
Printblock ..coooooiiiii 329
Prnt SFINE .ovvvvircin i si v 276
Printer outputco..oivvvviiiiinniicei i 131,36
PRL it e 245
PRL file generationcooveiiiinniinnn, Appendix F
PRN ...t e e 245
PROFILE. SUB ...cocicviiiviiniiniiieccissnnnias e 169
Program and data file searchc.coooveeniiiiinnn, 47
Programfilescoooirnmmviiiiiiiii e 48
Program input ignoredcoovviiiiininniin 375
Programinput inescooeeviiiiiiiiniciiinnnnn, 167
Program return codesoovvviiiicieiiiin 326
Program terminationcooceviniiniinniiiieeeiiiinnenn, 51
Programming examplescoocevviniiiin Section 10
Programming introductionccce Section 7
Protectingadrivecocoioivvvnniii 35
Protecting yourfilesccovviiiiiiiiiiiinn 32
Protocol ... 154
PUT commandc..cooiiviiiieiniimnninceenns 129

512

Index

RAMISK oooviiine i et e eee e a e 219
Random access PrOZIAMuviivevrnereeiiiciirreennns 340
Readconsole buffercccooovvnir i 276
Read BITOT .ovivrt i it s et 375
Read file date stamps/password modeocooeens 321
Readonlyocooviiiiinvii e 33,375
Read randoml ...oooovvirr i it eenae e e 299
Read sequentialooiiiiiii i 288
Read WIIte ..oviitiiiiir et ciiirar et raanrra e e eraarents 33
Record blockingcooceeiiiiiiiic e 258
Record 8128 .. ovviiiiii i e 258
Redirecting input and output ..o 38
REL .o 245
Removable mediacoooovivvi it e aeaes 260
RENAME commandcooiiiivmvieiiiiiannnnneeeans 133
Rename file oo et e 203
Replacing characters ..o 188
Reserved charactersccoviiiiivin i eeeas 56
Reset disk SYStemcocveiiiiniiiiiiiiinnrie i, 280
Reset dIive ..ot reeis s v reeeaeinraes 305
Resident system extensionc..covvivvinveneeiiinnn 229
Restore afile ..oooivriniiei et e e 91
Returncurrent diskccooninviiiiiii e 294
Return directory label data ..o 320
Return login vector ...oooovvri i e 294
Return serial number ovvven i e 325
Return version NUMDBETooivvvvivirivceeriiienrrnneeneenins 280
RMAC commandoveiiiiiinnineieneiiinrirnnceieneans 135
Roller RAM ..o e 208, 443
RSX files attachmentooovvveciiiiierenie e, 90
REX prefiX ..o 348
RSX program constructionccocovvveneiviiiiiinn.. 348
RS8X usage exampleoovvveemiiiiininn i 350
SAVE 200
SAVEcommandoovoeeeeiiiiiiieeeiiiiiananeneininns 136
Screenroller RAM oo it e 208
b (15 s B A - TP O 68
Search for first ..o e e 284
Search for NeXt ...vvir i v e 286

Select disk ooviniini i 280
Serialdevice /O .o 236
Sertal /O o e e 240
Set attributes on physical device ... 68
Set BDOS errormodeooovviiiinin e 309
SET commandccoiiiiiiireariie it vnvsvieneniiienn. 137
Setdate andtime ..o 63, 324
Set default passwordoccooiiniiii 325
Setdirectorylabel ..o 319
Set DMA address ... e 295
SET eXxamplesoooooiiiiiiniinimiiiiiii e 145
Setfile atiribUES L.ivieii i e e a e e 297
Set Multi-SectOr COUNLovriviirivicriei e eerneritians 308
Setrandomrecord ... e 304
Set/get userCode oo 299
SETZ4X80 commandccoooeiviveiirrioiriiiiiienanenrnrenes 146
SETDEF command ..ioocoieeeriiiriniiiieciecernnnns 146
SETKEYS commandc.oooivrviiiiiniiiieenrnsien 150
SETLST commandocoovvviiieovivenriineeeiiiieaiainens 152
SETSIO commandovivviieaee i iieeeeavranes 153
SHOW command ...o.ooovvvioieiieirieeiiiiaeeanerenens 155
SID commandooovviiieiiiinie v e 159
SID UEILItIES ... orrriiiiiracirrin e rtrra it renerrnrnrrees 164
SIgN-ON MESSAZE 1ovivveeeeneiiiiiie it 21
Single file COPY -ovivrerriii e 116
Source flle ..o s 176
Source file read €rror ..o 376
S0UFCE LBTAELES ... veviririrertitie e erriarsseiaaaanns L. 176
PR i e e 245
SPR generationocoovviiiceiceniniiinnnes Appendix G
Starting CP/M Plus ..o, 21
Starting ED ..ovoni i e 173
SUB IS oottt 167
SUBMIT commandcooiviiiieiiien i reeiiivieeees 165
SUBMIT 0perationccoovviiieiiiniiionnniiannn... 232
Swapping disks between CP/M Plus

and V2.2 406
Y M i e s 245
SYntax €ITOr ...ooiiiiiiiii e 377
Syntax notationo.oooiiiiiii e 59
Y S e 245

514

Index

System component interactioneecooiiininnne. 211
System COMPORENTSoocivvvirniniiiiirine i 209
System control block ... 233, Appendix E
System display mode ..., 148
System operationco.ceviiiiiiiiii i e 219
System page mode ..o 149
Systemreset ...oovoii 272
System tracks ... 216
Temporary fileoocoiiniiiiii 176
Terminate console input ..o 95
Terminating PrOZraMScvvevrrrenrersrmeiiienreneeennnis 51
Test and write recordoooo i 307
TEX oot e 245
Textblockmaveccccovviiiiiiiia 198
Text display «..coovviiiiiiiii e 190
Text €diting ...oooveiiiiiiiiiiii e 191
Time stamp OPEoNsovvviiiiiinnrn e, 143
Topicnotfound ... 377
TPA o 207
TIACE <ot e 164
Transient commandsccoevriiiiiinceannniiiinnens 45
Transient program areaccceeeeviiiieovennnn. Section 7
Transient program operationc.covcevevrevenninieanes 227
Transient utility commandscooeeeninnnne. 45
Truncate file ..o 317
TYPE commandcoveeevmiiiiimiiicennaiinenes 169
Typesof commandoo.viiiiiin 43
Unlock recordoooiviiiiviiiiir 308
Update RSXilescoiviiiiininiiiiecen, 91
Userabortedcooeeeii i 379
USER commandcccoveniiiiiiieanieeanes 171
Usernumberooiivvimniie i, 157
User number conventionscocoeeeviiniiininennn 251
USer UMDETScvviiien e 30

VErify €ITOT ..ovviviiiie i r s eae ey 379
Version number ..o e 21
Wl Card oot e s 3
VVLIEE BITOL o iroeireeeirt e ivre et etticrreaeaarenesetreaannens 379
Write file XECB ..o e v e e 322
Write-protect diskocooeeriiniiiiin 296
WEILE randOm ..ooovvniiiie v caeia s enees 30
Write random with zero fillcooo v, 306
Write sequentialoooiiiiii 289
XOFF it et v 154
KON e ety e 154
KREFcommandcoeoeiiiiienmniiienereriairnnenrienias 172

515

