ISSUE 7

PRINT—0UT

Price T0p

BIRTHDAY NUMBER

l | L !

Written by Thomas Defcoe and Mark Gearing

Contributors are Bob Taylor and Alan Scully

INCLUDING: HifiEERE

-\ - ﬁ:r 2
RPOOL NIAD —rFhRE 3
INTE Y Dl A\ P Ty T T
po BUX LI P
6gL75 SCHWENOD! FIHCHINE CoDe ,

o ST

GERMAN

INDEX—Ne.Z
Wé’mm

Page 3 EDITORIAL — Owr birthday issue starts here !
Page 25 - SMALL ADS - Spot the genuine bargains
Page 40 - SPECIAL OFFERS — Mcre items for sale

Page 18 — PUBLIC DOMAIN — The cheapest software around

Page 25 - M/C ASSEMPLER — Details of Print-Out's assembler
Page 26 — NEWS AND VIEWS — Mcre news from the CPC world

Page 28 - COMPETITICN - Yowr chance to win a fabulous prize
Page 39 — PRIZE QUESTIONNAIRE — Help us to improve Print-Out

Fage 9 — HOMEBREW SOFTWARE ~ More games reviewed. ..

z‘zmammaw

Page 4 — BEGINNER'S BASIC - Using Locomotive BASIC

Fage ~ FIRMWARE GUIDE — 2 must for all Machine Code buffs
Page 12 — INTRO TO R5X's — Relocating vouwr programs

Page 20 —~ POKING ARCUND - Snippets of CPC information

Page 22 — MACHINE CODE — The tutorial continues. ...

Page 27 - DISC NAMEP - Get vouwr discs organised

Page 29 — ADVANCED BASIC - Looking at Tokens

Pags 36 - TWO'S COMPLEMENT — CPC Number Systems explailned

I

We would like to express our thanks to Mr. Gearing and Black Horse Agencies
Jarmnuarys for the contimued use of theilr photocopler in producing Print-Out.
Please note that we do not suppcort piracy, unless back—-ups are for the sole
use of the original owner.

Every issue of Print-Out 1s produced by Thomas Defoe (Editor). Mark Gearing
(Assistant Editor) and is protected in the UK by British copyright laws. No
part of this publication may be reproduced in any form, without owr express
written permission.The only exception to this are the programs. which may be
entered for the sole use of the owner of this fanzine.

Sponsored by

BLACK HORSE AGENCIES
dl Januarys

N

Coitorial

WELCOME TO ISSUE SEVEN OF PRINT-OUT !

As you may have noticed, there has been a major
change to Print-Cut as now, after six issues, a
reqular name no longer featuwres on the front of

the magazine. Unfortunately, we have had to say
goodbye to Jonathan Haddock, who has decided to
leave Print—COut. None of the authors work full-
time on the magazine but rather do it when they
have the time. And as Jon has been finding that
other occupations require more and more time 1in
recent months, he has decided that he 15 unable
to continue writing for Print-Out. Although, at
present, we have no actual replacement for him,

we hope that the magazine will run as smoothly!
We all wish Jon the best of luck in the futwure.

We hope that you enjoy this issue of Print-Out,
and remember that you can crder a copy of Issue
Eight of Print-Out in advance - see page 38 for
mcre details on this & other offers.Please take
this opportunity to fill in the prize question—
naire on page 42 as your opinicns and ldeas are

very highly valued.

If you've any gueries or problems with the CPC,
please write to us at the address below & we'll
do our best to solve your problem. We guarantee
that all letters will be answered personally by
one of the writers of Print-Out. The address is

the same for all orders. and i1s printed below:

FRINT-QUT, 8 Maze Green Road,
Bishop's Stortford, Herts CM23 2PJ.

COMPETITIOI—p4l

[n)
Balsi@

TUTORIAL

[\

[\

15 was menticned last issue, there have been scme major changes TO the way
in which the BRSIC programming sections are now arrvanged and there are a couple
of further alterations to come. Unfortunately not all of the BASIC articles were
ready in time for this issue & so we've had to include rather more Machine Code
items than we would normally. Well. next issue will see the start of several new

featires on PASIC. In the meantime, Beginner's BASIC will carry on investigating
i

varicus commands and 'Advanced BASIC' will continue 1ts exanination of the BASIC
Operating System and Farser.This month, we're golng to ook at the SOUND command
in its simplecst form and also what 1T does

does niot really help matters. All of the things in sguare mrackets. however, are
m

itted. Hence the SOUND ¢ 7mmanﬂ bzcomes far mcre manageable

Before going any I have to confess that I am no musician and Know
virtually nothing wt cocmoosing. melodies, etc!! However, I do know how T
the CPC to play SJmething fairly close to music. First, let me explain what the
el status' is and why we have it

Wheri you have a chord, it involves playing more than cne note at a time and
the CPC uses its channel facility to allow it to deo this. On the computer you've
three chamnels, labelled A, B and C for reference, and each of these can be told
to play a different note from each other - they can of course also play the same
note. It might help to think of the channels as being three separate instruments
although this is not strictly true (as they are all produced by cne sound chip) .
These charnels can be lirked or separated in different ways but for now, we will
just consider their straight forward use. Each channel has a number that 1s ass—
ociated with it, & this number tells the CPC which channel to play the note on.

This number is the channel status and the values we are locking at are:
. 1 Chanrel A only 2 Channel B only 4 Channel C only

Thus, to play a note on channel A only, the channel status would be 1. The next
thing to look at is the 'tone period’'.

The Tcone Period is basically a fancy name for the pitch of the note or, in
other words. which note it is that we wish to play. The various values, and the
notes they refer to. are all given in the back of the marmal. The reasons as to
how these particular values are derived are also given but I wouldn't worry too
much as all of the information needed is printed in cne of the appendices. Just
bear in mind t
If we lock up the data for 'Middle C' we find the following infcrmation:

the higher the number is, the lower the note produced.

NOTE FREQUENCY PERICD RELATIVE ERROR
c 261.626 478 +0 . 0467 Middle C

e

‘ou can igneore everything except the name of the note (C) and the period (478).

It's the period number which we have to put in the sound command to produce the
required note. So, to play Middle C on channel A, type: SOUND 1,478
The channel number for A is 1. ard the pericd value for Middle C 1s 478. To get
Irnternational A played, simply change the pericd valus: SOUND 1,284

That is all there is to the SOUND command in its simplest form. At present.

I

it is not very versatile & we would have a hard time trying to produce anything
vaquely musical. If you listen to any note you will realise that it has several
characteristics. One of these is its pitch (which we have already covered), the
others are its loudness (volume) and its length (duration) and these are two

the optional parameters of the SOUND command.

DURATION

The first optional item that we come to, is the ‘duraticon' ie the length of
the note. When this is added, the definition of the SOUND command becomes:

SOUND <channel statusy,<tore period>[,<duration>]
The duration of a note is measwred in units which are 1/100th of a second long.
This is all there is to the duration part of the command, and so to play Middle
C for one second on channel A. we would use: SOUND 1,478, 100

If we do not specify a 'duration’, the length of the note 1is automatically
assumed to be 20/100ths of a second (ie 0.2 seconds). However. when we are using
a volume envelope as well. there are complications. But as we haven't dealt with
this yet, we'll just forget about it for the time being.

There is just cne other thing to notice concerning the duration command. In
real music, you often see two of the same nctes following each other. The music—
ian would play these notes with a short gap in between, in order to distinguish

them from one ancther. Unfortunately, the computer does not. If you type in the
following line SOUND 1,478, 100:80UND 1,478,200 you might expect there
to be two notes of Middle C played one after another (the first lasting 1 second
and the second lasting two seconds). Instead you will get cne note lasting three
seconds!'!!. To make the distinction between the notes. you need to play a silent
note (ie a rest) and this leads us onto the next section, volume.

The next stage is the note's volume, and this is where things can get a bit
tricky — due mainly to a difference bhetween the 464 and the 6128. On the 464, we
can have volume in the range of @ to 7 (with 7 being the loudest and ¢. silent).
However, with the 6128 we get the same range of volume but with different values
- now @ is silent and 15 is the loudest. Thus volume 15 on the 6128, corresponds
to volume 7 on the 464.

Therefore to play middle C on channel A for 1 second at maximum volume, we
would use (for the 464): SOUND 1,478,100,7

o1 the £128): SOUND 1,478,109, 1%
This is further confused when we look at volume envelopes huf don't worry aboul

ct
D
=}
r*,
()
=
}
t
T
h
=
O
=
4}
.}
rt

Going bacik to the problem we had with two nctes running into each other, we
the solution. To play the twoe notes of Middle C with a hreak in between

we would use: SOUND 1,478,100,7:50UND 1,0,1,2:30UND 1,478,200,7

The pitch of the middle note does ncot matter as it 1s being plaved at volume 8,

and will never be heard. All it does is delay the second note by a short pericd

of time (in this case 1/180th of & second) and thus giving the effect of playing

)

two separate notes.
ssue. but next time 1'11 be locking at the various tone
1 special section which 1s dedicated tco BASIC sound pro—
gramming and Beginner's BASIC will also be locking at some more common kKeywords.

DATA PD LIBRARY
Datz PD provides gquality Fublic
Domsin Software with orders sent
out within 24 hours of receiving.
! Tow that's service:

Send 2 blank tape or disc, a SAE
and 50p for a DATA NEWSLETTER and
the DATA STARTER PACK which
features over 20 programs for you
to try out. So what are you Walt-
ing for? Please make cheque/PO
payable to T.Kingsmill.,

DATA PD LIBRARY,

202 PARK STREET LATE, PARK ST.,

| ST, ALBANS, HERTS AL2 2AQ. .

THE TAPE ADVENTURE COLLECTION

FOUR great adventures in .one
pack. The adventures, previously
not released on cassette are..
ISLAID OF CHAOS
ALITEN FPL AN ET
LORDS OF MAGIC |
RAVINGsS OF CHAOS

For the 464/6128 Tape only £4.50
Send cheque/FO to: T.Kingsmill,
202 Park Street Lane, Park St.,
St.Albans,Herts AL2 2 AQ.

-The Firmware
VITAL READING ON M/CODE

It has been quite a while since Amstrad decided to discontinue the Firmware
Manual for the CPC and few books have besen produced to take its place. For those
of you who have never heard of 'The Firmware Manual', here is a brief summary:

Quite simply. the Firmware Manual is the book about how and why the Amstrad
works: it's invaluable to any Machine Code programmer or CPC enthusiast. However
the marnual is definitely not for the faint-hearted as it is written in technical
jargon. Still. the amount of information that it contains is incredible. In its
many pages it covers topics ranging from ROM expansion to driving the sound chip.
One of the most important sections is its description of the Firmware Jumpblock,

which tells you how to correctly use the Machine Code calls.

Unless you intend to access the lower ROM directly (not a good idea!), any
program which you write in Machine Code will use these firmware calls and their
entry and exit conditions are essential. As there are over 200 of these 'calls’',
it is unlikely that vou will be able to remember all of the things that need to
be done before a certain routine is used; and this is where the Firmware Manual
comes 1in very useful.

Now that it has been discontinued, the best book available i1s the 'Amstrad
Advanced Users Guide' by Daniel Martin (publisher: Glentop ISEN 1-85181-122-2
However Print—-Out internds to provide ancther option. Over the next half a dozen
issues, we hope to be able to print all of the firmware calls together with the
entry and exit conditicns and a hrief description of what it does.

Fivst, here is a summary of what information each entry includes. They all

appear in the following form:-—

NUMBER ADDRESS to call NAME of the routine
BRIEF DESCRIPTION — what the routime will do when it is called
ENTRY CONDITIONS — what has to be dore before it can be called

EXIT CONDITIONS — Wwhat will have happered to the registers when
the routine has finished being executed
SPECIAL NOTES — this part is rnot always present

The exact number of issues that this will take up has not yet been decided. but
it should give anybody who wishes to progress further with Machine Code enough
information to do so. So here goes with this mammoth task.

00 &BBOO KM INITIALISE
ACTION: This routine will initialise the Key Manager and everything will
be set up as it is when the computer is first swtiched on.
ENTRY: No entry conditions
EXIT: AF,BC,DE,H. will be corrupted; all cthers preserved

01 &BBO3I KM RESET
ACTION: This resets the Key Manager (especially indirections and buffers)

ENTRY: No entry conditions
EXIT: AF,BC,DE,H. will be corrupted; all others preserved

022 &BBOSL KM WAIT CHAR
ACTION: Waits for the next character from the keyboard

ENTRY: No entry conditions
EXIT: Carry flag is set to true; A holds the character value; flags are

corrupt: all others preserved

003 &BBOY KM READ CHAR
ACTION: Tests to see if a character is avallable from the keyboard

ENTRY: No entry conditions
EXIT: I1f character was available — carry true; A contains character
OTHERWISE — carry false; A corrupt; ALWAYS - others preserved

Q04 &BBOC KM CHAR RETURN
ACTION: Save a character for the next use of KM WAIT CHAR or KM READ CHAR

ENTRY: A contains the ASCII code of the character to be put back
EXIT: All registers preserved

003 &BBOF KM SET EXPAND
ACTION: Assigns a string to a key—code ,
ENTRY: B holds the key—code; C holds the length of the string; HL contains
the address of the string
EXIT: IF OK — carry true; ELSE — carry false; ALWAYS A,BC,DE,H. corrupt

Q046 &BBL1Z KM GET EXPAND
ACTION: Reads a character from an expanded string of characters
ENTRY: A holds an expansion token (a key-code); L holds a character number
EXIT: IF OK — carry true; A holds character: ELSE — carry false; A corrupt
ALWAYS — DE corrupt; all others preserved

Qo7 &BB1S KM EXP BUFFER
ACTION: Set asside a buffer area for character expansion strings
ENTRY: DE holds the address of buffer; HL holds the length of the buffer
EXIT: IF OK - Carry true; ELSE - carry false; ALWAYS A,BC,DE,HL corrupt

008 &BBLB KM WAIT KEY
ACTION: Waits for a key to be pressed
ENTRY: No entry conditions
EXIT: Carry true; A holds character; all other registers preserved

009 &BB1B KM READ KEY
ACTION: Test whether a character is available from keyboard; does not wait

ENTRY: No entry conditions
EXIT: IF available - Carty true, A contains character; ELSE Carry false,
A corrupt; ALWAYS - other registers preserved

010 &BBIE KM TEST KEY
ACTION: Test if a particular key (or joystick) is pressed
ENTRY: A contains the key/joystick number
EXIT: IF pressed — Zero false; ELSE — Zero true; ALWAYS - Carry false; A
and HL corrupt; C holds SHIFT/CTRL status; all others preserved

011 &BB21 KM GET STATE
ACTION: See state of SHIFT LOCK and CAPS LOCK

ENTRY: nNo entry conditions

EXIT: 1f { holds &F then SHIFT LOCK is on; if off, L holds &0
I¥ H holds &FF then CAPS LOCK is on; if off, H holds &0

8

—~ Bomebrew Software —

MAC Il ~ -+ 2 st

Mac II was a very professional effort and one that I am sure is better than
some of the budget software which you can buy from the shelves. In fact the only
noticeable omissions were the lack of a title screen and music. These apart. the

game was virtually faultless.

The aim of the game is to travel through each level collecting treasuwre and
avoiding the ghosts. In every maze, there are five treasures to collect but they
are hidden behind locked doors and so it's necessary to get the keys first. Each
them on the disc, plus the ability to design

j

maze 1s quite large and with ten of
to keep vou entertained.

more of your own. there 1s plenty to

Although there is no background music, the multi—colour graphics certainly
make up for it. These are truly excellent and are the best I have ever seen in a
homebrew game. They're crisp and clear and make the game seem full of quality.

The game can be played with keys or joystick, & 1t presents the player with
quite a challenge but I found that it was not so difficult that I got frustrated
immediately. The mazes contain thirty screens. and each level 1s harder than the
ones before.

The actual layout was well thought out and this gave an uncluttered display.
The only problem with the actual game was that only a small part of the maze was
shown at a time and vou couldn't see where the exits onto the next screen were —
this made the map vital. Even though the scrolling was very good, the map tock a
while to draw at the beginning of each maze.Despite the lack of any music. there

were some sound effects which added to the atmosphere.

There were some 'extras' which are (’
seldom found in full-price software.One |70 ¢ ¢ ¥ © [
- - - . UV £ S A R S A R A 8
of these was a Level Designer: 1t ought [y~ v~ r—r 1 1
to have added to the game's appeal but, i reer
while 1t was a very good idea 1t wasn't
terribly well implemented although with

more thought it could have been so much | ~—— 1 r

better.The instructions are supplied on f:;f;ij;i:;lej;
the disc & could be printed out if reg- EFJT;
uired.You could also switch the map off.| ©
4 “rr
as well as altering the number of lives | —y—
to suit your ability. El.ri
The game was good fun and I'm sure rr

that many people will enjoy playing it.
This program is available from Scull FD

(see the article on page 18 for prices/ -
- -C‘. o 1 H - ™ . .

details) so Z.tt shouldn't Lrer%k the bark. Avoiding the Ghost

The address is 119 Lawrel Drive, Green—

hills, East Kilbride, Glasgow G75 SJG.

MAC I" A/ Ly Alan Scully .

Mac III, the second game from Alan for the moment, was again good although
not nearly as professional as Mac II. Having said this, the game had many points

of merit.
It is & bit like 'Pac-Man' in style and layout but this time you control a

small object, called Mac, who has to collect several items from the screen. What
makes it difficult is that the screens have to be completed in a certain time.

The game sounds simple in theory but in practice it is really quite tricky.
Mac has an unusual tendency to bounce off the wall and fly back in the direction
where he came from. While this made the game more interesting, the response was
not particularly good — thus making timing difficult.

Despite this, the actual screens are clear, simple and the graphics, whilst
not being particularly detailed, were varied and were good to lock at. There was
a total lack of music and the sound effects were only rudimentary.

The game could have been considerably improved if there were more things to
pick up and if the screens were different. It would also have been more exciting
and unpredictable if thers had heen a longer time available, and if a few ghosts
had been included for you to avoid.

Howewver, there was enough in the game to keep you busy for a while, and was
fairly addictive. After a time, the screens became a bit repetitive and the game
tended to get tedious. The plot, whilst not specially original. has some unusual
twists which make for a more interesting & enjoyable game than your average Pac—

Man clone.

In conclusion then, Mac 3 is
a very good game which could have
been much better by the addition
of one or two frills. It is still
a most enjoyable game for several
hours relaxation & when you cons—
ider that you can buy both Mac II
and Mac 3 (plus a few more games)
for just £1, they represent truly
excellent value-for-money and are
a wonderful introduction to Scull
Public Domain.For further details
of this & other bargains from his
FD library turn to the article on
page 18 for more information) and
his address is;

119 Laurel Drive, Greenhills,
Fast Kilbride, Glasgow G735 9JG.

Getting the Key

10

REVENGE
OF CHAOS by Tony Kingsmill

Revenge of Chaos is the follow up to the adventuwre game 'Island of Chaos’
which I reviewed favourably in Issue Four of Print-Out. The game keeps the sanme
basic format as its predecessor — all that changes is the story line.

In 'Island of Chaos' you had to bring about the death of the evil warlord,
Baktron, but now he's been reincarnated by powerful magic and he wants revenge.
As part of his plan, he destroyed the city of Brael Ti, killing its inhabitants
instantly. This was just the begimning as his next step was to be much worse. ..

In the adventure. vou play the part of the leader of a group of paladins &
must try to step Baktron from taking over the world. Unfortunately, as luck has
it, the other paladins have a 'pressing engagement' elsewhere & leave you alcne

on the i1sland.

The game itself is written using the Quill and the graphics were designed
with the Illustrator. I felt that, although it is the seguel to Island of Chaos,
it wag just too similer and so there is not much difference in standard between
the two programs. The adventure had a good loading screen and fairly descriptive
locations.

As before, the graphics weren't particularly brilliant but there was a not-—
ve' and 'load' functions, which

'

iceable improvement from last time. The usual 'sa

are vital with a game like this (it boasts over 76 locations). were incorporated
into the program, along with a 'help' option. Tony also offers a free hint sheet
for Revenge of Chaos if you get really stuck. and this is alsc the case with his
other games.

The presentation of the game was again good and this gave it a professional
appearance. As for addictivensss, it had some appeal but I felt that it was just
to similar to other games from the same stable — this should be a plus point for
Tony's previous customers! As the text was the only thing that had changed, this
might mean that some people would find the game a bit bering. but, 1if you are an
ardent adventure enthusiast. this should be just the thing (as you're guaranteed
hours of puzzlement at an excellent price.
nly and comes with a free game. Alien Planet.

The game costs £3
This is in the same mould to Revenge of Chaos, although smaller. and so provides
more entertainment and challenges for the adventure player.

If you don't own a disc drive and are sorry to be missing out on the games,
Tony plans to produce an 'Adventure Compilation' later in the year which will bhe
available on tape and disc at 'a very reasonable price'. This will include some
of Tony's previous releases, as well as the possibility of a new adventure game
or two. Of course, we'll keep you informed of any further developments.

In the meantime, here is Tony's address;

95 on disc

O

J

(.ﬂ

202 Park Street Lane, Park Street,
St. Alhans, Hertfordshire ALZ 220.

11

An introduction 10 RSXs
(part 3)

RE-LOCATING YOUR CODE

by Bob Taylor

Often there is a need to be able to load RSXs into any reascnable area of
RAM and not at one predetermined location (the area usually used 1s just above
HIMEM which will itself have been moved to make room for the RSX). In order to
do this some form of re—location routine will be needed to adjust any absclute
addresses which ocour in the routines. and move with them. We will not need to
alter any address not within the code that's being moved. (Relocaticn could be
achieved from BASIC but, since this is an article about Machine Code programm-—
ing, we will concentrate on self-relocation using this medium) In an RSX init-
ialisation routine two such address alterations are usually reguired: those of
the Command Table & of the Command Name Table. Two fiurther locations will need
to be ascertained although we can eliminate the reguirement for obtaining their

addresses.

We- are helped here by an undocumented facet of the Operating System which
results in the DE register holding the address of entry to a CALLed routine on
entry to the routine. (This only holds true if the CALL, from BASIC of course,
isn't accompanied by any parameters.) Any absclute addresses that are required
will have an offset to this entry point, and so 1f we add this offset for each
ocourrence to the base address, we can obtain the new address needed.There are
two main ways of doing this; which cne we choose depends on how many addresses

we have to alter.

1. If there are few alterations to make we can actually load the BC or DE reg-
isters with each offset and add these to the entry address held in HL. The
next routine given gives one method of achieving this:

Lintrsx PUSH DE i—» (1) Entry Point (I use these numbers alongside
; all PUSH and POP instructions to show the depth of
; entries on the Machine Stack.)
.datblk LD H,D rthe 3 instructions starting here will not be needed
; again so the fouwr bytes involved can be reassigned
; for use as the chaining block.
LD L,E sHL now has the entry address also.
LD (HL) ,&C9 ;load the entry point with a RET inmstruction so that
; the routine cannot be CAlLled a second time.
LD BC, namtbl—~intrsx
ADD HL,BC sHL=> . namtbl.

EX DE,HL ;DE-> .namtbl; HL-> point of entry.

(cont.)

12

cont))

LD BC, comtbl+l-intrsx

ADD HL,BC ;HL~> byte after .comtbl.
LD (H.),D H N
DEC HL H
LD (HL) ,E ;load .comtbl DEFW with .namtbl address. HL-> .comtbl.
LD B,H
LD C,L :BC—> .comtbl for KL LOG EXT Firmware routine.
POP HL :Entry Point (@) (now no entries left on the stack).
INC HL sHL-> .datblk for KL LOG EXT. We’re using a redundant
: part of this initialisation routine for .datblk.
JP &BCD1 ;to KL LOG EXT Firmware routine.
.comtbl DEFW namtbl ;address used by Firmware RSX handling routine.
L SX ;assuming one RSX only, it can start here.
etc

NOTE: We arrvanged things sc that we didn't have to calculate the address of the
Data Block, nor of the entry point for storing the RET byte. Of the two addr-
esses we did calculate, one was the address of where to stcre the other.

2. This last feature is also common to the second method of re—location and 1t
uses a table of the offsets instead of loading registers directly with them.
Semetimes the table contains both sets of address offsets; le where to store
and what to store. This is however unnecessary and only the 'where to store’
offsets need be there. the 'what to store' ones being at their destinations
already, waiting to be picked up. added to. and then re—stored again & thus

saving two bytes per re—locatable address.

The RSY routine later in this article has this method of re—location incorpora-—
ted into its initialisation routine & shows the 'where to store’ offsets being
picked up from a table to create addresses from which existing offsets are then

picked up, converted and re—inserted.

NOTE: By making '.comtbl' follow on from the last entry in the offset table. we
do not have to calculate its address to load into BC for KL LOG EXT - instead
we just pick up the value of HL which now points to .comtbl.

NOTE: The second offset table entry has a further offset added: the +1 makes the
two address bytes the cbject of the calculations and not the LD HL instruction
itself. This will apply to most addresses which need altering; however, with 4
byte instructions, like some for IX and IY & also some for BC. DE and SP, this
extra offset will need to be +2.0nly when an address is present as a DEFW will
no secondary offset be needed.

The entries in the offset table can be in any order. Usually there will be more
entries required than are shown in the example which has been pared for maximum
efficiency. The addresses to which these entries point have got to be stored as

13

'address—intrsx' in each case (eg as at .addl). It helps to have as few address
changes as possible, leading to a smaller offset table. We've seen in previous
articles that by using a JR instead of a JP in the Command Table we can reduce
the number requiring adjustment and we have already done so here.This can also
be applied to JPs within the RSX routine itself (although ours is too short to
have any) by replacing with two or more JRs conveniently placed throughout the
code to enable the Program Counter to skip from one to another until the wanted
destination is met. Since this increases the length of the code and also slows
it down slightly (a JR takes twe 'T' states longer than a JP, and we are using
at least two JRs instead of one JP), it should only be used where time constr-
aints allow and where a slight increase in room is tolerable.On the cother hand
it may be useful if the need for the extra bytes used by the longer re—location
routine can be eliminated by having no extra addresses to adjust.

In the case of subroutines whose CALL (from M/C) addresses need re-—location,
it is not possible to use JRs of course.

Sometimes it's possible to write the code in a different way & eliminating
the CALLs.If the subroutine is used only once, it should be possible to incorp—
orate it into the main routine at the point at which it was CALled and so elim—
irate the address that way.This has been done with the message printing routine
below which has then been fine tuned for optimum efficiency. Similarly, 1f 1t's
called only a few times and it is very short, it might be worth while inserting
copies of it where it was CALLed and so again get rid of the routine altogether.
211 of these things have to be weighed up at the time of writing the code and a
decision made then as to the best approach.

I AN T O T t" \/
I\l Ill D DU I AN D YA

The following routine provides two new RSXs comprising a WRITE for placing
strings in memcry with a corresponding READ for retrieving them. The initialis—
ation routine with which it starts incorporates the second method of relocation

as mentioned above:

.intrsx LD H_,addtbl—-intrsx ;note that .datblk is located at the second byte

; of this instruction.

ADD HL,DE sHL~> addtbl. (DE holds the entry address to .intrsx)

LD B,%02 12 offsets of addresses -> addresses to relocate.
.nxtadr LD A, (HD) ;get LB of first/mext offset of address.

INC Ho

PUSH HL ;—> (1) TBLPOS (Address Table position reached).

LD H, (H ;get HB of offset.

LD L,A iHL= offset.

ADD HL,DE ;HL= address of address; ie HL—>address to relocate.

LD A, (HL)Y ;oet LB of this address.

ADD A,E sadd in LB of routine entry point.

14

namtbl

.addtbl

.comtbl

write

.getstr

LD
INC
LD
ADC
LD
FOP
INC
DINZ
LD
LD
EX
LD
INC

JP
DEFB
DEFB
DEFB
DEFW
DEFW
DEFW
SCF
DEFW

OR
DEC
DEC

JR
DEC
IR
INC
INC
INC

LD
LD
LD

(HL) , A svre—~insert corrected LB of address.

HL

A, HL) ;get HB of address. .

A,D sradd in HB of entry point + any carry from LB addition.

HLY LA sre—insert corrected HB.

HL : TBLPOS (@)

HL ;step on to next offset.

nxtadr ;if more offsets — otherwise HL-> .comtbl

B,H

C,L s BC~> .comtbl for KL LOG EXT.

DE, HL sHL—> entry point.

(HL) ,&C7 j;store RET at entry point to stop re-running .intrsx.

HL sHL-> byte after entry point to be used as Data Block
;for KL LOG EXT.

&BCD1 sto log these RSXs on.

"WRITY, "E"+&BO

"REA', "DV +&EBD

&0

comtbl—-intrsx

addi+l-intrsx

namtbl—intrsx :(will become address of Namz Table after re—-location
isignal TWRITE?.

@100 ;dummy instruction: absorbs the OR A byte following so
; eliminating clearing the Carry flag, being treated as
; LD BC,&B700; next instruction is first DEC A. 2 7T’

states guicker than using JR *first_dec_a’.

A ;clear Carry: signal "READ™.
ja} ron entry, A held the number of parameters
A ;DEC A twice does the same as CF &@2 but maintains the

Carry Flag (with a penalty of three extra T’ states).
Z.getstr ;Zero set if two parameters (READ or WRITE)D.

C,parerr ;if WRITE and not 2 parameters.

A
NZ,pareryr ;if READ and > 3 (ar <2) parameters).
a8 iclear Zero Flag to signal Length parameter.
IX
Ix ;step on to string parameter. IX displacements are now
; identical whether 2 or 3 parameters were entered. No
; further alterations to the IX base address are needed.
H, (IX+1) ;get Znd parameter —
L, (IX+®) ; H =addr of string descriptor.
ALE jon entry to a routine or RSX with parameters, DE will

hold the last parameter. Assume READ with Length
; parameter so save Length in A; it is not necessary to
: use high byte (which would be @ anyway). I+ not Length

?

.
b4

then A’s contents will be unused.

15

LD
INC
LD
INC
LD
PUSH
DEC
DEC
LD
cP

-
i

INC
INC
LD
LD
EX
POP
JR
EX

<y
ps)

LGP

- Move

.parery

.strery

.addl

Nxtechr

. primes

“JR

LD
LD
OR
RET
LD
LDIR
RET
LD
DEFB

LD
LD
LD

JR
LD
INC
OR
JR
DINZ

C, (H)
HL
£, (HL)
H_
D, (HL)
AF
DE
DE
A, (DE)
C

sget string length from descriptor.

:DE=addr of start of string (from descriptor).
;—> (1) Carry/Zero Flags and possible Length.

;step back to “length’ byte before string proper.
rget this ”length’.
;Zero if " length’ byte and descriptor length match.

NZ,strerr ;if no match then definitely not a string.

DE

DE

H, (IX+3)
L, (IX+2)
DE,HL
AF
C,mave
DE,HL
Z,move
c

NC, move
C,A

A,C

A

p

B, &0

B,2
c,B

;step on again to start of string.

;jget lst parameter -

: HL=addr to READ from, or WRITE to.

;assume WRITE so DE->addr to WRITE to; HL->string start.
;Carvy/Zero Flags and possible Length parameter (0.

;if WRITE then DE, HL and string length set correctly -
;otherwise DE->string for result; HL—>addr to READ from.
;i READ and no Length parameter.

;compare Length parameter with length of string — use

: whichever is shortest.

;if Length is greater then use string length (in C) -
;otherwise move Length into C.

11F Length/string length is © then do nothing.
;BC=length to tramsfer (for LDIR).

stransfer to string if READ, or from string i+ WRITE.
;to BASIC.

;signal Ist error message.

;dummy line: combinmes with the next two bytes to appear
; as LD DE,&Q0206 if entering at .parerr so avoiding

; re—loading B with 2. Next instruction is LD C,B.
;jsignal 2nd error message.

;save the message number.

H_,errmes—intrsx j;after re-location, HL will -> error messages

prtmes
A, (HL
H
A

: starting with “Check Parameters’.
;into the message printing routine.
;get first/next character.
;step on to following char.
;a byte of &0 is used to end a message string.

NZ,nxtchr ;if not the end of the string.

nxtchy

;enter routine here; lst ervor message goes straight
;3 into .prtstr, 2nd goes via .nxtchr to find end of lst

; Message.

e

-prtstr A, (HL) ;get first/next char. of string to print.

OR A
CALL NZ,&BB5A ;print char if not the end marker; all registers and

; flags preserved.

ING HL ;step on to next char.

JR NZ,prtstr ;for next character if not end of message marker.

LD A,32

ADD A,C :ERR number: gives 33 for parerr & 34 for strerv.

Ltb GC,0 ;for ROM @ (BASIC).

LD HL,&EB3S ; (&CAP3 for 464); BASIC s Error Handling routine in ROM.
JP &o01B ;to FAR CALL to ROM; the Error Handling routine alters

7 4

the stack so doesn’t REturn.

.errmes DEFB "Check Parameters',&00
DEFB "Check String',&0Q

Although not obvious initially, the routines for WRITE and READ have much in
common and 50 have been amalgamated into one. using the Carry Flag to indicate
where the two routine paths differ from each other.

i
Hii

i TS o v
D ST AY

The full syntax of each RSX follows:

| I
J |

TWRITE ,<Address to store string at>,<{8tring to be stored/(@)String Variable>

The string must be previcusly assigned to a variable for the 464, which must
then be preceded by @ when used here.

(READ ,<Address to read string from>,<(@)String Variable or (@)Array element

for result>l,<length of string to be read>]

The String Variable must exist before use here; ie it must have been assigned &
string with length equal to or greater than the number of characters to be read
from memory. In the 464, 1t also must be preceded with @. It is not possible to
use the command form of MID$ as a parameter since this i1s always interpreted as
its function form.

If present,the 'Length of string to be read' parameter will be compared with
the length of the result string & the shorter of the two used.If the Length is
shorter than the string, only 'length' number of characters will be read from
memory; the rest of the string will remain as before. If the string is shorter
cor if this opticnal parameter 1s omitted. the whole of the string will be read

into.

In the final article in the series, we shall be looking at the way that RSXs
can be installed in ROMs.

17

el SCULL PD LIBRARY

bt 119 taurel Drive, East Rilbride
6. 03552 26794

Yo VTR Glasgow €75 9J

One of the major introductions to the library are the demos. To be blunt,
demos are totally useless, but they're wonderful to watch & a delight to listen
to. Unfortunately. there are very few (if any) demo writers in the U.K., but in
Denmark, the competition between demo writers is strong.

The best of the Danish demos come from New Way Cracking and United Amstrad
Crackers. From the demos in my library, N.W.C have the edge. Their demo called
FINAL CREATICON must be the best demo available for the CPC.

On loading FINAL CREATION, vyou're presented with the copy—chain.This allows
you to copy the demo (it uses a special version of DATA format) but best of all,
when you pass it on to vour friends, you can leave messages for them which can
never be removed!

After the copy—chain, you're presented with a spectacular display of graph—
ical genius. The screen is enlarged to use the whole monitor, with the top half
showing part of a face & the bottom half showing a massive multi—colour animated
scrolling message. A fantastic tune blasts out from the built-in speaker & this
adds atmosphere to the demo.

If I've not yet convinced you to get some of the demos. then remember that
it is extremely difficult to describe the quality of graphics & sound 1n words.
They really have to be seen to bhe believed.

Most pecple will agree, Stop Press is an excellent D.T.P. package. But. it
does have it's limitations. One of these the size of fonts that can be used.

is
As fonts can only be designed on a 16 by 16 ¢rid. enlarging them to even double

T
size causes a blocky effect.That got me thinking. what about meking a font from
cut—outs? Sounds sensible, doesn't 1t? So I sat in front of the computer & des—
igned a very large font to be used for headlines & such.The result was a smooth

felt-tip font that was a 100 times better than a normal enlarged one.Of course,
this would not fill up a disk, so I also designed 8 new normal fonts (including
two small fonts as an alternative to the Amstrad one) and a page of clip art -
containing some digitized pictures — to go along with it. The result is PD DISK
79, the ultimate 'add-on' for Stop Press. Disks soon to be released include Art
Disk 2 and Hack Attack which contains 50 pokes & a Multiface Poke DataBase com—
plete with details of over 160 multiface pokes. Adventures Five 1s also due for
release scon & so is Applications 3. Also look out for a game produced by Glenco
Software using Sprites Alive.This game will be reviewed by Amstrad Computer User
and Scull PD Library will be the first to have it. In fact it should be ready by
the time you read this.

On the next page is a very concise stock list and details on how to order,
as well as a mini—order form (you can photocopy it if you don't want to hack
vour valuable copy of this mag!). These should be read carefully, but if you
are unsure of anything. feel free to give me a call on (03532) 24795, Monday

18 to Frlday 7pm to 11pm only

PD DISKS LIST — SEPTEMBER 1990 -~ SCULL PD LIBRARY

01 Seriocus 1 22 Quiz 1
02 Games 1 23 CPM Applications 1
03 Games 2 24 CPM Applications 2

04 Animations 1 25 CPM Applications 3

05 DW 1 26 Games 7

06 DW 2 27 Mini Prep (CFM)

07 Applications 1 28-33 Demos 1-6

08 Games 3 34 Mag Indexs 85-87

09 Seriocus Z 35 Phone Codes

10 Games 4 36 Revision Aid

11 AI/FEducation/Gfx 37 CPM Assemblers
2 Games 5 38 CPM Adventure
13 Animations 2 39 Demos 7

14 Art Disk 1 40 Demos 8

15 Adventures 1 41 CPM Games

16 Geno Adventure 42 Demon PD Disk 1
17 hpplications 2 43 Adventures 3

18 Games € 44-61 Demos 9-26

62 Over 18's Demos
£3 Vidi Digi Pics
64 Adventures 4

19 Adventures 2
20 CFM Misc 1
21 Sericus 3

PD is available on both 3" and 5.25"
disks. The latter format is only comp—
atible with drives that use 80 tracks,
even though the CPC uses the first 40
tracks only. & either 1 or 2 sides can
be used — in normal 178K or 169K form—
ats.You can get any of the above disks
by sending £1.00 per disk. the correct
smount of disks and an 55AE or you can
receive full details by sending a disk
and SSAE.
require ONE side of a disk only. Also
enclose a blank disk for the stocklist
disk mag. All orders should be send on
the form opposite.

Name

Address

65 Serious 4

£6 Dazzlestar CFM

67 CPM Languages 1

€8 CPM Languages 2

69 CPM Languages 3

70 CPM Applications 4
71 Introduction

72-74 JRT Pascal (CFM)
75 M Basic (CFM)

76 CPM Applications S
77 Bdv Art Studic files
78 Games 8

79 Stop Fress Clip Art
80 Yet more demos Z8
81 Seriocus D

NB: Disks 72-74 must be crdered
together. 62 requires proof of
age. Disks 28-33 and 44-01 can
he ordered separately and are
listed together to save space

B11 of the above selections I would like to order the following selections -

Pd disks . s s s
Tick here for Rebound

3

d Bandit

Remember that Rebound and Bandit (2

NON-PD games reviewed in Issue 4) are Telephone number
%er of disks enclosed
Money enclosed

Gigdd Lthis in and send & Lo the addiess below

=till available. They cost £5.00 (for
both) if I supply the disk, or for a
copy—charge of only £1.00 each if you
supply the disk. Rebound is a break—

Num

out clone with a difference. there is
not bat! — "a most professional piece
of software' P-O Issue 4. Bandit is &
fruit machine game with 5 mini-—games!
— "If you are the gambling type then
this is surely the game for you" P-0O
Issue 4. Full details can be found on
the stock list disk mag.

SC0LL PO LK

719 taurel Dr ve, East RIIBrid
} Elasom 675 9J&. 03552 2679

The (k'S B166CC & BLaC!

Artwork & Text copyright Alan Scully.
19

"1 pOKING AROUND "7

A4 Setection of Usehut Tips

The two main languages on the CPC, BASIC and Machine Code, both have their
advantages and disadvantages. While Machine Code provides many features that are
unavailable in BASIC, it's difficult to learn & complicated to program. It would
be very useful if we could access these bits of 'Machine Code Magic' from within
our own BASIC programs but unfortunately this is almost impossible in nearly all
cases.However, in the CPC's memory, there are certailn addresses that contain the
various bits of information that are necessary for the computer to run correctly.
It's a very simple matter to change the data stored in these addresses from with—
in BASIC, via the POKE command. The only drawback is that you're very limited as
to what vou can achieve and that the results are by no means certain. Therefore,

printed below, are various snippets of information (& almost all are in the form
of 'pokes’) that I have come across over the years. Whilst none of them are par—
ticularly esxciting, they all do things which would either be much harder or even

impossible using BASIC alone.

Un-erasing_files

I'm sure that we all know the terrible feeling when we accidentally erase a
dizc file that we had intended to keep. Well, help is at hand. When you erase a
file, it iz not immediately removed from the disc but instead is stored in user
area &E5. The computer then records that the disc space where this file used to

e is now free.
User Area 85 is illegal arnd is not normally accessible but 1t 1s possible

to trick the CPC into letting vou use all 256 areas by poking the address &A701
with the desired user number. This allows you much greater flexibility over disc
crganisation. The side effect is that if you poke &A701 with &ES (229). you can
load any files which have been erased.

Unfortunately, because the space that was filled with the 'erased' file has
been recorded as being free, any program which you save may occupy this space on
the disc. This will also not retrieve files on a disc that has besen reformatted.

Removing Spaces

Here's a quick little poke of varied use. If you're one of those people who
like to insert extra spaces in lines (eg. 10 PRINT "Hello") and then wish that
vou hadn't included them, possibly to produce the right code in Amstrad Action's
Typewriter program, then the answer is to poke &ACO0 with &F. This then removes

any extra spaces.

Resetting ‘TIME’

The CPC includes a BASIC function 'TIME'. It records the time that has gone
since you switched the computer on and can be printed using PRINT TIME. However,
there is no way of resetting this clock from within BASIC. But if you enter the
following lines, then you will find that i1t is reset to 0.

10 REM Reset TIME for the 464 10 REM Reset TIME for the 6128
20 POKE &B187,0:POKE &B188,0 20 POKE &B8B4,0:FPOKE &BBBS,0
30 POKE &B189,0:POKE &B18A,0 30 POKE &B8B&,0:POKE &BBB7,0

By changing the numbers that are poked in lines 20 and 30, vou can set time to
whatever value that vou want. If vou're interested, the total time that can be
recorded using the TIME function is about 166 days !! That's enough for me !!

CAPS/SHIFT Lock

If you've ever wanted to be able tc twmn the CAFS
BASIC program (for example whilst getting a name for th
have to do is poke the addresses below with &FF to switch 1t on and &00 for off.

)

v SHIFT LOCK on/off in &

hi-score table) all vou
/ 7

[N

464 CAPS LOCK &B4ES 6128 CAPS LOCK &BL3Z
464 SHIFT LOCK &B4ET 6128 SHIFT LOCK &B&31

Disabling ESC

A guery that seems to come up time and time again 1s, how to stop the E8C
key from working. The simplest and best method is to poke &BDEE with &C9. This
stops all types of break including the CTRL-SHIFT-ESC. If you want to restore it
to normal, poke &BDEE with &C3.

Useful Calis

There's one last category of meddling that vou can do and that is to access
firmware routines direct from BASIC. These are done using the CALL command. The
problem is that you are unable to pass parameters to the Machire Code routine &
so you are restricted as to what you can achieve. Still, here are some addresses

that you may find useful to CALL.

Ccalt &BCOZ2 — resets the colours to theose used when first switched on

CALL &0000 — completely resets the computer (eguivalent to CIRL-SHIFT-ESC)
CALL &BBO3 — clear key board buffer (has some side effects)
CALL &BBO& — waits for a key to be pressed

Next issue we'll see if we can drag up scme more useful pokes and things to
do with your CPC. Remember, if you've any of your own then please send them in.

21

Programming the Z80

Machine
S‘; d::.... The STACK

coce

We have now looked at some Machine Code programs which are becoming fairly
lengthy and complicated, but there are still one or two common commands that we
have omitted. In this issue. therefore, we are going to look at these commands,
some of which we have already used but not explained.

In the very first part of this series, we were intrcduced to the registers
(4,B,C,D,E,H, L) and these were 1ikened to BASIC variables except being far maore
ited. The cbvicus prcblem was that they could only stcre numbers with values
from @ to 255 (pretty small in computing terms). This could be then overcome by
forming register pairs (BC,DE,HL) from them — these could then hold values from
@ to 65535 (ie a 16-bit number).

lst this is fine in theory, it does have some limitations. Suppose your
program needed to store and work on fowr 16-bit numbers (something which 1s not
unreascrable). we would find curselves with a problem — we've got only 4 regi-
sters that are capable of holding such a number!

Cne way arcund this would be to poke the mumbers into a safe place in mem—
cry when we weren't using them. and then retrieve them when they were required.
This would be a very space consuming exercise, and also very frequent, so we're
thoughtfully provided with a couple of commands to do this - PUSH and POF.

j 5

}IDTUSH AND POD

PUSH and POP are used to preserve and retrieve register pairs for use later
on. The first thing to notice about them is that they can work only on register
pairs, and not on individual vregisters — however, this is not a problem for all

we do is PUSH or POP the coarresponding register pair instead. For example, 1f B
was to be ule)%r\wﬂ we would simply use FUSH BC and then to retrieve. it POF BC.
In the previous pu1~' -aph, I mentioned a safe place where numbers could be
stored. When using FUSH and POP. cne area is allocated for this express purpose
— the Stack. I have heard the Stack being explained in many ways but one of the
best ways of thinking of it is as a pile of boxes. Imagine that each box really
represents a memory location, and so has an address. Unfortunately, these bowxes
have lids on. ard so the cnly one that you can lock inside 1s the very tep one.
When you give a PUSH command (eg. PUSH HL) the computer takes the number in HL,
and puts it in the top box. If you then do another PUSH (eg. PUSH BC), the CPC
adds ancther box on top of the pile and puts BC into it. Now, when you come to
POP scomething off, the only number you can get at is BC.

The Stack is often called a 'last—in, first-out' (LIFO) stack because that
is exactly what it is. You can put things on top of it but ONLY at the top. and
you can take things ONLY from the top.

22

To illustrate this, follow the below example through:

LD BC,&578%9 ; BC = &&789

LD DE,&3453 ; DE = &3453

LD HL, %0012 ; Ho = &0012

PUSH BC : stack holds &&6789

PUSH DE ; stack holds &3453,&5678%

PUSH HL ; stack holds &0@12,834353,%6789 X

LD HL, 2000 ; HL = &0

LD BC, 0000 ; BC = &0000

LD DE, Q000 : DE = Q000

FOP HL s Ho = Lol stack holds &3453,8678%

POF DE : DE = &3454 stack holds &&789

FOF BC ; BC = &&78%9 stack is empty
In this, the left hand number on the stack (*) is the number at the top, & the
right most number is the number at the bottom. If you now think you understand
the Stack, try and puzzle over this — the Stack is in fact upside—down (ie the

!

—

bottom of the stack is at a higher memory location than the top
The Stack streitches downwards from &BFFF and could go on for as long as needed
(although it would wipe out the jumpblocks and cther important bits if 1t went
on for too long).

Fortunately, we don't have to make life complicated for curselves and, as long
as we remember that it is a LIFO stack, we do not need fo know which way up 1t
ig and where it is located. We can, of cowrse, meddle with the stack by use of
the Stack Pointer (SP) -~ more of that later.

So far, we've just been preserving registers for use at a later date, but
we can also use the PUSH and POP commands to do one or two other things. Using
a 780, we cannct do load one register pair with ancther register palr (such as

1D BC.HL). instead we have to go about 1t In a very long—winded way:

LD HL,%7056 ; HL = 87036
LD A,L A= L= 856
LD C.A ;: C=f =285
LD A,H ;A= H = &70
LD B,H : B=A =870

Using PUSH and POP it is much simpler:

LD H_,&7036 ; Ho = &7056
FUSH HL : put the number in HL (&7956) on the top of the stack
FOP BC ; take the rnumber from the top of the stack (&7056) and

; put it into BC, ie BC = HL = &7056

23

There's just one other thing to bear in mind when you are dealing with the
Stack and that is that it is not only PUSH and POP which make use of the Stack.
The CALL and RET commands also use it extensively. When a subroutine is CALLed,
from a Machine Code program, this is what happens: firstly the address that the
program should return to, when it has done the subroutine, is put on the Stack.
The program then jumps to the subroutine and continues executing the code from
this point. When it encounters a RET instruction, the computer takes the numper
from the top of the Stack (the retwrn address) and goes to that place.

A1l of this works very well until you start using PUSHes and POPs inside &

subroutine. It is then imperative that everything that has been PUSHed onto the

Stack is then removed by use of POP. Below is an example of how NOT to do it:

ORG &80
CALL hello ; CALL the subroutine labelled ’.hello’ The address of
the LD BC,L0 instruction is now placed on the Stack

LD BC,&Co 7 any instruction would have done here
RET ; RETurn to BASIC
hello PUSH HO : put HL on the stack

- PUsH BC ; put BC on the stack

LD A,72 : A = 72 (ASCII for H)

CALL &BBSA ;o print H

- POP BC ; take BC off the stack
LD A, 108 1 A = 105 (ASCII for i)

CALL BBSA s print i
RET : RETurn from the subroutine

Unless you are extremely lucky, this program will cause a crash and you'll have
to reset the computer. The reason for this is that, in the subroutine. we put Z
things on the stack and only tock 1 off. This left cne extra item on the Stack,
and the computer toock this as the retwn address, jumped to i1t, and....Crashed!

There is just one further feature concerning the stack, the Stack Pointer. This
keeps track of where the top of the Stack is. Every time we PUSH scmething onto
the Stack, the Stack Pointer is decremented (remember the Stack 1s upside down)
by two (we are PUSHiIng a two byte register pair) & when something is POPped the
Stack Pointer is increased by two. Of course, we can alter the Stack Pointer as
if it were a normal register (eg LD SP,&189¢ DEC SP etc) and this can pro—

duce some rather interesting effects — some of which we will be looking at in a

futuwre issue.

As you can see, the Stack., PUSH and POP are very useful items, without which it
would be even harder to program in Machine Code. They can also be pretty lethal
if not used correctly — so when using the stack. make a note of what you've put
on it and then removed. That way you cannot go wrong!

24

PRINTI~OUT S ASSEMIBISR

As promised last issue, we now have our very own assembler which will allow
vou to enter all of the Machine Code programs that are printed in this magazine
without having to resort to using an expensive alternative.

As we have now got an assembler, we do not intend to print the BASIC Poker
numbers in future issues. However, because of the rather extensive documentation
which needs to accompany the program and also i1ts length, we have been unable to
include it in the macazine (it would have taken up about ten pages). Instead, we
have put 1t, and full instructicns for its use, on this issue's program tape and

disc.
Our assembler has been designed to be, as near as possible, compatible with
Maxam (widely regarded as the standard for assemblers on the CPC) and yvou should
be able fo use 1t with anv other magazines' Machine Code programs. The assembler
uses a common method of entering assembly language lines - namely to put them in
BASIC program, preceded by a short REM (') and then assembling them through an

SX. This avoids the need to include a memcry hungry 'Te: ditor' and makes the
ded benefit that we

s

\T‘

?’Z’QJ

rogram both powerful and flexible. This also provides the
can supply any Machine

"3

ode listings on the program tape/disc as a BASIC program

which can then be assembled (thus saving you Lyping)
This system is as friendly as i1s possible for a Machine Code Assembler, and
it tells vou of any errors in the way that the code he
nature of the system it needs an 'END' directive o bhe included so it knows when

C
mh

s heen written. Due to the

O

to stop ass gbllnq Full details of this are contained on the tape or disc.

I

Small dbs

R SALE OR SWAP — One SOFT 968 FIRMWARE MANURL Ons SOFT 115 DISC HiScoft FPascal,
One DMP 2160 Printer. .One Z56K Memory hpansion with Scoftware. Ideally
- ‘
)

[

woiuld like to swap for an RS23Z and Modem but I'm also willing
to =zell. Alsc wanted a good C.A, Terry Gipps. 501 Long Riding.
Basildon, Essex, 5514 1JW

WANTED — Issue One of Amstrad Computer User and issues Zpril 1989 cnwards. Will
pay good price (especially for Issue One) or will swap for as much PD as

eemed reasonable. A

lan Scully, 119 Lawrel Drive, East Kilbride, Glasgow
G75 9JG. Telephone (@3

33552) 247585,

FOR S 2 Homebrew programs, Casino Blackiack (a realistic simulation of the
gambllng game) & Wordsearch (a utility for solving wordsearch puzzles)
2s reviewed in Print-Out Issue Six. DBoth programs cost £4.50 together &
this includes the cost of a disc. Contact Barrie Snell, 19 Rochester Rd,
Scuthsea, Portsmouth PO4 9BA.

25

Amstrad has released its new Plus computers and console, thus ending menths
of speculation by the computer press. Whilst it would appear that & large amount
of thought has gone into the design of these new machines, Amstrad seems to have
overlooked some rather important factors in their specifications. Firstly. there
is no tape interface on the 6128 Plus, thus cutting out almost all of the budget
market and removing the option of truly low—cost software. It may be possible to
add an extermal interface at some later date, but it does not seem very sensible
for Amstrad not to have done it themselves. Another major problem, the different
style of expansion connectors from the old CPC, seems to have been solved by the

[N

use of a small plug—-in adaptor available from W.A.V.E.

n

I must sav that the custom hardware chip certainly makes the computers lock

tari ST, although why the sound could not have been more rad—

ically improved at the same time, is beyond me. When it comes to existing owners
upgrading, I thirk the most sericus problem that Amstrad will face is the worry-—
ticn about compatibility between machines. We have been told
% zre will work on both the old CPCs and the new Pluses. but what

about all of the hardware? I am not prepared to buy a Plus until I know that all
my add—ons, ROMS, etc will operate corvectly. There's no doubt, in my mind, that
could have a very successful computer in the Pluses. but the question 1s

%3
~
0
h
et
=
ey
O
hot
Ej,
ol

Amstrad
will they be able to capitalize on it. Only time will tell.

The new conscle also locks as if it may have a rough time, unless the price

of cartridge software drops from the guite staggering £30 that 1s being asked at
rresent. After all, cheap it may be, but it's up against some fairly stiff comp—
etition from the likes of Nintendo.

Spectrum +3 dropped

Also in the last couple of weeks, Amstrad have made what 1s. 1n my opinicn,

2

a very sensible move — they've dropped one of the Spectrums. The Spectrum Plus 3
is no more, thus making way for the far supericr 6128 Flus — its main rival. The
news came as a bit of a shock to Spectrum owners but it certainly shows us where
Amstrad's priorities lie (at present) .However, all of this has been overshadowed
by the new 'Generation 3 PCs' which are due for a launch in the near futuwre, and
Amstrad are pinnming their hopes on the success of these computers to raise their
flagging fortunes. After ancther disastrous year with i1ts audic and video range,
Amstrad desperately needs some good news as they have recently announced another
downturn in pre—tax profits. Let's hope that Amstrad have finally got everything
sorted out !!

26

DISC

& | NAMER

\ ==

The purpose of this utility is to provide an identity for each side cf a
disc whenever it is CATalogued. The idea comes from MS-DOS and DR-DOS (as used
on the IBM PC and other computers) where each disc i1s allowed a 'Volume' name to
identify it (both sides of each disc are treated as the one disc).

Of cowrse we have to twrn ouwr discs over to access another side, and so 1t
becomes doubly useful to be able to tell which side of which disc we are using.
The ‘name’ written to the disc by this utility 1s inserted in the disc's Direct-
ory area so that i1t appears on the screen each time we use CAT. In doing so it
takes up one of the possible Directory entries leaving 63 avallalxle, but never
having run out of directcyy space. I don't see this as a problem for most users.

It is possgible to have up to ten characters in the name. However, when 1t
printed by CAT a full stop will appear between the 7th and 8th characters so
is best to arrange youwr name to fit in with this.

A space is automatically placed before the name when written, with the end
result that the title will be the first name printed by the CAT. A fLwther aid
to clarity is to use lower case for any letters, to make 1t cbvicus that it is

-
ct

[

not the name of a file.

This utility works cnly on discs which have been previcusly formatied w
SYSTEM or DATA. The routine will trap such errors as disc missing, No name, name
too long, etc. and also allow renaming of sides. First, type in the loader‘prc—
gram below (and save 1t before running 1t).

When RUN it will prompt you to press 'S' to save the code as 'NAMEDISC.BIN'
The routine is now ready to use (NB &90D bytes of space are needed). For future

use Just use: MEMORY &7FFF:LOAD"NAMEDISC. BIN"

o BINENHENGT, TS ey “u‘ iz

U TR DI D O D AN A T
The syntax to use for naming a side of a disc is: CALL &BO0O, "name"
However, unfortunate 464 users will have to use : a$="name":CALL &BOCO,Ga%

Remember that you will need to name both sides of a disc separately as a CPC
treats them as if they were two completely different discs. So simply twn the
disc over and then name the other side.

27

[F11 1@ ’Disc Namer Loader by R Taylor for PRINT-0OUT (Public Domain 1990)
MEMORY &7FFF:RESTORE 11@:PRINT:PRINT"Please wait a few seconds"
FOR 1in=@ TO &10D/B-1:total=0@:FOR rn=0 TO 7:READ a$.
byte=VAL ("&''+a%) : POKE &B000+1ink8+n, byte

total=total+byte:NEXT n
READ a%: IF VAL ("&"+a$)<>total THEN PRINT:PRINT"Error in line"linkl@+110

1l
{193
Az

L4B1]
{213

[C43

[BB]

[egl

L&63

O g~ oo
m o0 W O o
{ W [VU GO S S O I

Fann S s B o SR e T i T e B e |

03 = 0

(-

,_1

1 W

N o
'

[EF3
[CH1]

[BB] 3

(D33
[C?1
[4E]
{251
[CDJ
[6A]
[C2]
L7C3
[7B3
{311

30
40
50
1=l]

7Q
80

50

:END

NEXT 1lin

PRINT:PRINT"A1l M/C loaded":PRINT:PRINT"Press ’S’

to save M/C as

NEMEDISC.BIN" :WHILE INKEY$=""'";WEND:IF INKEY(60)<>-1 THEN SAVE
"NAMEDISC. BIN', B, 8000, 10D
PRINT:PRINT"To Load and Initielise Disc Namer with a program present
just Enter:":PRINT'MEMORY &7FFF:LOAD"CHRS (34) "'NAMEDISC.BIN"CHR$ (34) '
CALL &B00@'":PRINT"in Direct Command Mode"

10@ END

@ DATA
> DATA
@ DAT/
2 DATA
) DATA
@ DATA

DATA
DATA
DATA
DAaTA
DATA
DATA
DATA
DATA
DATA
DATA

3D,Co,21,0h,80,CD,D4,BC,4C5
Do, DF,C1,80,06,04,38,51,385
BE,E6,F0, B0, 4F ,FE, 44, 16, 4EB
02,28,02, 16,00, 1E,00,21,081
BO,A9,E5,DS,0S,DF,C4,80,5FB
30,25,06,10,11,EF,01,19, 165
7E,B7,28, IF,FE,ES,28,3B,3C2
11,E0,FF,10,F2,C1,D1,E1,565
eD, 10,DF,21,CB,80,C3,B8,3E3
80,21,FC,8¢,CD,BS,80,F1,513
F1,F1,C9,E5,21,DC,80,CD,5DA
B8,80,E1,E5,11,F2,FF, 19,519
CD,B8,89,21,F1,80,CD,B8,51C
8¢,E1,CD,®6,BB,E6,5F,FE, 532
59,20,0C,11,F1,FF, 19,356,385
00, 23,36,20,23,E8, DD, b6, 2CA
01,0D, &E, 00, 7E,FE, 08, 30,303
0O, 4F, 23, 75,23, 66, 6F , 06, 20E
v0,ED,B®,EB, 7D,E6, 1F, Db, 4E0
1D,30,00,2F,B7,28,06,47, 1B2
36,20,23,10,FB, 06, 14,36, 1D4
o»,23,10,FB,C1,D1,E1,DF, 480
c7,80,11,0C,81,C3,98,BC,3FF
7E,B7,C8,CD,5A, BB, 23, 18,41A
F7,60,05,07,66,C6,07,4E,3B0
C6,07,02,44,69,72,65,63,376
T4,6F,72,79,20,66,75,6C,335
6C,00,0D,00,44,69,73,63, 206
20,61,6C,72,55,61,64,79,302
20,6E,61,6D,85,64,20,22,267
20,22,00,0D,52,65,6E,61, 1BF
6D, 65,3F, 00,00, 0D, 4E,61, 1D7
6D, 65,20, 74, 6F , 6F , 20, 60, 2D0
OF ,6E,67,00,00,00,00,00, 144

g

Linechecker

A PROGRAM TYPING AID

All programs in Print-Out have
Linecheck codes which are enc—
losed in brackets at the start
of a line. Don't enter them in
as they're designed to be used
with Linechecker to eliminate
errers when typing in programs
which appear in this magazine.
Please note, all programs will
run whether Linechecker is be-—
ing used or not. For informat-—
ion on how to use Linechecker,
please see Issue Three.

28

ADVANCED BASIC -

BASIC tokens

BY Bob Taylor

The Operating System stores BASIC Commands and Functions in memory (and on
Disc) not as a string of letters as we see them when printed on the screen, but
by using a system of substitute values, which are called Tokens, & I thought it
would be useful to provide you with an extended list of these Tokens and other
codes used in the PROGRAM AREA of memory.

I suggest that you confirm for yourselves the information given in this article
by using the BASIC program in listing 1.Type in extra lines containing examples
of Tokens (using Line Numbers from 10 to 90 only) and then use RUN 1000, RUN or
GOTO 1000 as the case warrants. You will notice that the value of every byte is
given in Hexadecimal format which gives a clearer display than using decimal.

Listing 1:

{4473 1000 line.start=&170

[BE] 1010 line.length=PEEK(lire.start)+236XPEEK(line.start +1)

[D6] 1020 line.number=PEEK(line.start+2) +256¥PEEK (line.start+3): IF lirme. number
>9% GOTO 1070

[CEJ 1030 PRINT:PRINT lime.number" ("STR$(line.length)")'";

[P6] 1040 FOR m=line.start TO line.start+line.length-1

(7471 1050 PRINT" "HEX®(PEEK(N),2); tNEXT

[06] 1060 line.start=line.start+line.length:G0OTO 1010

[2A] 1070 PRINT:END

When run, the program will print cut data for any lines present, which are
numbered less than 100. Each line's data will start on a new line and will give
the LINE NUMBER in decimal followed by a figure in brackets. This is the LENGTH
(also in decimal) of the line. Finally, there will be a sequence of Hexadecimal
representations (without the '&' prefix for clarity) of the contents of all the
bytes in that line, starting with the length bytes.

The LINE NUVMBER is obtained from the third and fourth bytes of the line &
the LENGTH from the first and second bytes by using the method explained below
for calculating numbers from two byte values. Incidentally, while you can only
type in 255 characters for each program line, it i1s possible to have some line
lengths much longer than this (304 bytes is the maximum since this 1s the size
of the LINE INPUT area for tokenised lines) and the reason is given below. The
last byte in each program line is the END OF LINE MARKER, byte &0O0.

29

Tokens are used to store such things as COMMANDS & FUNCTIONS in a program
in a much more compact form; compact because a Token usually only occupies one
byte of space compared to 9 characters required to write some COMMANDS. Tokens
are also used to indicate the different types of VARIABLES and even to express
various ranges of Numbers but often in these cases mcre space ig required than
in the coriginal text (this is the reason for the longer line lengths) .Here, as
in the case of Commands and Functions, the real gain is in the speed of handl-
ing of BASIC, when RUN, since the line 1s in & more 'digestible’ form for the
Operating Systen.

I have split the Tckens into two tables. Those in the second list are all
Functions and must be preceded by a byte of 6FF. The first table is by far the
nost eswtensive and contains the Tokens for all the COMMANDS, for VARIABLES, for
NUMBERS and for SEPARATORS and DELIMITERS. Also included here are three Funct-—
icns: ‘MIDs' and 'FN' which also double as Commands but use an identical Token
for both forms: and 'ERL’ which is only a Function. None of these three have &
preceding &FF byte in their Function usage.

& few Command Tokens are preceded by a byte of &01 and another’s followed
by &00; these bytes are inserted automatically by the BASIC Editing routine as
the lirme concerned is ENTERed into the program, but thelr presence will not be
seen when the line is LI1STed or EDITed.

Note the coincidence in the use of &C9 to represent BASIC's RETURN command
as well as being the code for the Assembly Language 'RET' mnemonic.

Lo

Siw Tokens are used to indicate the different types of Variables and these
have values of &02,%03,&04,%0B,%0C,&0D to show whether the Variable is Integer,
String,Real,DEFINT,DEFSTR or DEFREAL/undefined respectively. There then follow,
not tokens.but two distance bytes to facilitate speedy location of the required
variable in the 'VARIABLES AREA' in memory. Upon ENTERing a line these are left
blark and contain &00 and &00.However. after this section of the program's been
RUN, they usually contain the distance from three bytes before the start of the
Variables area (which is the END OF LINE MARKER at the end of the last line of
the Program) to the first character of the name of the Variable where it's sto-
red in the Variables Area.Having the distance already calculated will save time
whenever this part of the program is encountered again. The distance is stored
with the low byte first, high byte second in the standard way.

The BASIC Parser (that part of the Operating System which scans along each
program line at run time and puts the Instructions there into action) takes any
‘distance' value other than &0000 and uses it without checking its validity (do
not try poking Variable distance bytes). If &0000 is present, because that part
of the program has not yet been used, then the Variables Area 1s searched from
the beginning for the required Variable and when found, the correct distance is
stored in these distance bytes. There are some exceptions to this, however: eg.
the distance bytes of a non—existent variable cannot be calculated of course so
if an Instruction just refers to a previously unused Variable without reguiring

30

it to be established (in the case of PRINT) then the distance bytes will remain
empty. .

Like the handling of Line Numbers (see later) Variable distances are reset
(to the original &00 and &00 in their case) on amending any line of a progran.
Following the distance bytes come the actual characters of the Variable's name
exactly as typed in, lower or upper case, letter or digit, except that the last
character of the name has its bit 7 set, ie. it has &80 or 128 decimal added to
it. There can be up to 40 characters in a name (letters, digits, "." and "#"
although the latter can only be the first or last char and is ignored anyway) .
All the above also applies to Control Variables (those used with the FOR
command) which will appear indistinguishable from normal Variables.
Similarly with the Variables which are used as Function Names with DEF IN's and
FN's, although it should be pointed out that in the Variables Area, Function
Name Variables exist separately from any normal Variables with the same names.

ARRAYS

At first sight it's easy to mistake a tokenised Array for a Variable; there
is a type byte (using the same Tokens as for Variables) followed by two distance
bytes, then the Name characters, again as for Variables). Already, however we've
missed cone difference — the distance bytes now give the distance from five bytes
before the Arrays Area (cf. with that for Variables area) to the first character
in the name of the required Array where it 1s stored in the Array area.Quite why
the distance reference points chosen for Variables & Mrays should be where they
are, is beyond me.The other big difference is that the name of the Array (in the
program area) is followed by one or more subscript numbers separated by commas &
enclosed by brackets: the forms of these numbers are as given below.

RSXS

The special symbol '1', used for User Commands like RSXs, has a byte of &00
inserted following its ASCII when used in this way, giving the sequence &7C &00.
Following this, come the actual characters (converted to upper case) & digits of
the RSX name, with the last one having bit 7 set.Any parameters which follow are
separated by commas (ASCII &2C), the parameters themselves being Variables (Num-—
ber or String)., Strings (6128 only) and Numbers.

NUMBERS

The method of representing Numbers with tokens varies considerably, as some
Numbers are wholly represented by a discrete Token while others have one of sev—
eral common Tokens followed by the value reguired in 1,2 or 5 byte farm. But one
thing to notice about all Number representations,in the Program Area at least,is
that they are all positive — if a negative Number is required then a byte of &F5
will precede the Token of the Number concerned which will itself be positive.

1) INTEGERS from O to 9: these are wholly represented by Tcokens &0E to &17 resp—

ectively with no following value bytes; ile to calculate the Number just subtract
S0E (14 decimal) from the Token (eg &13 — &O0E = 3)

31

2) INTEGERS from 10 to 255 decimal:these have the common Token &19 followed by a
single byte containing the value; eg &19 &0A would be 10 decimal. This is one of
the few times where it would be easier to use decimal format for the contents of
the value byte to get a clear understanding of the exact correlation between the

value of the byte and the number represented.)

3) INTEGERS from 256 to 32767 decimal: the common Token here is &1A followed by
two bytes containing the Number; eg 256 decimal would be present as &lA &00 &01,
and 257 as &1A &01 &01. When two byte values are used by microprocesscors such as
the ZILOG Z80A used in the Amstrad the least significant byte (LSB) comes before
the most significant byte (MSB). The value is calculated from LSB + 256 x MSB.

4) INTEGERS which are less than —32767, greater than 32767, or any non—integers
(ie. those which have anything other than 0 to the right of the decimal point):
The common Token is &1F, followed by fowr bytes which hold a part of the Number
lled the Mantissa and these bytes are followed by 1 byte holding another part
of the Number called the exponent.An explanation of this five byte value format
is very involved and really beyond the scope of this article, but I am swe the
or will oblige with space in a later Issue if socme of you would like one.In
the meantime here are a few actual examples you could meet:
T &%IF %00 %00 %00 800 &7F = 0.25

L1F 200 &00 &0O0 &0O0 &BO 0.3

L1F 200 OO0 &FF &7F &0 = 63335

&1F &0 &00 200 &00 &F1 = 65536
1F 800 &BO &0 &00 &F1 = 6353
Negative flcating point Numbers are never found in the Program Area but could be
present in the Variables Area as a value of a REAL variable. Such REAL variables

[

I

can only contain Numbers expressed in S byte form, so even integers from —32767
to 22767 will also be stored in this way & not in the various formats applicable
to the Program Area).

NON DECIMAL, NUMEERS
1) BINARY NUMBERS, which we type intc our programs preceded by &X have the Tcken
£1B followed by 2 bytes containing the Number (converted to Heradecimal):
eg £X1100100110001111 gives &1B &8F &C9

2) HEXADECIMAL NUMPERS have the next Token &1C followed by the 2 byte Number;
eq. &FFO0 would be &1C &00 &FF.

LINE NUMBERS
By this I mean not those at the beginning of each line but those associated
with Commands such as GOTO or GOSUB etc. Line Numbers used in this way have one
of two Tokens allocated depending upon whether the program has been run or nct.
1) When a Program Line is typed, the Token used is &l1E. which is followed by the
Line Number itself in two byte form. This is what the BASIC Parser encounters

the first time such a Command is met —

32

2) At this point, the whole program is searched for the required line & on find-
ing it, the address of the byte before this wanted line is stored in place of
the Line Number we originally typed in. Also, the Token before these address
bytes is changed from &1E to &1D. On encountering this Command a second time,
the address is used straight away for the purpose intended without having to
search the program all over again, thus making Locomotive BASIC even faster.
There is no danger of a false address being left when the program is amended
because all the Line Numbers are reinserted in place of addresses before any
alterations can be implemented; ie before a line is DELETEd or ENTERed.

However, the BASIC Operating System seems to be somewhat inconsistent in its
treatment of all the Instructions which take Line Number parameters. It changes
some Line Numbers to addresses but not others.For example, ELSE, GOSUB, RESUME,
RUN and THEN are always changed; but AUTO,DELETE,EDIT and LIST aren't.

The rest vary from one ancther; GOTO i1s usually changed, but not after an ON
ERROR or ON <expression>; RENUM only changes Numbers that occur as actual Lines
in the Program before renumbering — even the STEP parameter is treated in this

way .

NUMEERS IN DATA STATEMENTS

Parameters after a DATA statement can be strings or numbers. An all digit entry
without enclosing quctation marks could be a number or a string, even though 1t
looks like a number. Evidently, it would be awkward for the ENTERing routine to
treat all entries that look like numbers as numbers, convert them to one of the
forms detailed above and then for the BASIC Parser to find that it was a string
after all. So each digit in a DATA parameter is present in its ASCII code form.

MISCELLANEOUS
1) Whenever a program line i1s ENTERed, a byte of &00 is added to the end of the

lire we have just typed, before it is inserted into the program; this then acts
as an End of Line marker.

2) Between statements in a line we type a colon as a separator. This is altered
to a byte of %01, when the lire is ENTERed. When LISTing a line, this &01 Token
is printed as a '

3) The comma and the semi-—colon are both used as separators between PRINT ltems
and in INPUT statements and the comma is also used between parameters with many
Instructions; in all such cases these will appear as their ASCII codes (6&2C and
&3B respectively)

4y The SPACE character (eg after Commands with following numbers) appears as 1ts
ASCII (&20), although some spaces are deleted as superfluous on ENTERIng a line;
eg that after the Line Number at the start of a line. The LISTing routine prints
a space after the Line Number automatically. If we type in two spaces after the
Line Number then the first one is deleted but the second is still present & will
be printed as a second space.

5) Quotation Marks (') are used to delimit Strings & appear as their ASCII (&22).

33

6) Opening and closing Brackets & the Hash - (.),# - are used in connection

with numbers and the brackets also with Functions and these three also appear as
their ASCII codes (&28, &29 and &23 respectively)..

7) The Amstrad has 256 printable characters and in theory any of them may occur

after a 'REM' or ''' (short REM), and any, except for the Quotation Mark itself

(which would end a String anyway) may occur inside Quotation Marks, each as its

ASCII code. However, the NUL character (ASCII &00), as well as being impossible

to copy, would throw a spanner in the works of the LISTing routine if it occur-—

red under these circumstances, and thus resulting in apparently shortened lines

and sometimes strange Line Numbers. Any line, containing such a NUL, brought to

the screen with EDIT and then re—ENTERed will be permanently shortened. Any line
with three consecutive NUL's will cause the Program to END at ths NUL's. This is
because the Parser takes the first 'NUL' to be the end of a line, and checks the
following two bytes to see if they are a valid line length for the next line; a
‘length' of &0000 signals the end of the Program (no matter how much longer the
Program actually is) and the Parser then retwns control to Direct Command Mode
with the usual 'Ready’ message. However bytes of &00 can occur in a line (eg as
a Variable distance or as Number value hytes) without having these effects.

Any formatting characters used with DEC$ or with the USING qualifier for PRINT,
will also appear as their normal ASCII's since they too are enclosed by gquotes.
In a DATA statement, in the case of delimited strings the above applies.
However if quotation marks are not used, then, with the exception of the quotes
character again, only those characters between [SPACE] and the shaded character
with ASCII code &7F or 127 decimal may be used.Any Control Code characters with
ASCII's below 820 that are typed in will be replaced with spaces, and any char—
acters with codes above &7F will be deleted.

As any bytes found in a Program line could be a Token or part of a distance,
address, value or name they need to be interpreted in the context of the line &
nct taken at their immediate face value.

I hope that these gleanings will e of help and Interest to you and give you
clearer insight into the workings of ocur excellent computers.I only wish that
someone else had published them at the introduction of the CPCs & saved me some
f the time I have spent: it's not as though there's something Top Secret about
them but the makers of Arncold have plaved theilr hands very close to their chests
and such infcrmation is not easy to come by. On the other hand, I must admit to
having enjoved the effort of finding out some of the foibles and secrets of the
Amstrad.In the next issue of FRINT-CUT, I'll be presenting an RSX (based on the
information presented here) that can be used to find occurrences of any part of

v

O

BASIC in & program.

34

09
0
02
03
04

TOKENS TABLES

Ind of Line marker

. (Statewent separator)
% variable (Integer)

$ variable (String)

! variable {Real)

05 to 08 XOT USED

0B
0
Ul
(0E
0F
10
1
12
13
14
15

1F
i

DEFINT variable

DEFSTR variable

DEFREAL or undefined variable
{0 (number)

1 (integer numbers)

Cm =) o N e) O

N 9] #

]
19

1A

o
(=21

i

20

2
22

PA]
24
il
29
2
2

il
2E
3B

HOT USED

10 to 255 integer numbers (the
value contained in the next byte)
256 to 32767 integer numbers (the
value contained in the next two
bytes)

& (binary numbers; value is held
in the next two byles)

& (hexadecinal numbers; value
contained in the next two bytes)
Progran Line Humber (converted to
the 'address' before the start of
the line & contained in the next
t¥o bytes;found vhen this part of
the progran has already been run)
Progran Line Yo. (still as a Line
Ho since this part of the prograe
has not yet been rup; value cont-
ained in the next two bytes)
integers less than -32767 or
greater than 32767, and floating
point nuxbers {the value is held
1 the next 5 bytes)

Space - used as separator between
parts of a statement

K0T USED

(Quotation mark '*' is used to de-
linit & string

Hash '#' for Windows and Streams
to 27 NOT USED

opening bracket '{'

closing bracket ')’

to 2B ¥OT USED

conma ', " used as & separator in
PRINT items & between parameters
Hyphen '-' used with DEFINT etc
to 3k NOT USED
Semi-colon ';' is used as a sep-
arator for Print ifems etc

3C to 7B NOT USED
70,00 | (symbol that precedes an RSX

cornand, The &00 byte is inserted
when the program is stored & will

L
80
81
82
83
64
8
86
87
88
89
Bk
8B
8
il
gk
3
9
9
)
9
94
9%
9%

not appear on listing the program)
to 7F HOT USED
AFTER
RTO
BORDER
CALL
CAT
CHAIN
CLEAR
CLs.
CLOSETH
CLOSET
(15

CONT
DATA

DEF
DEFINT
DEFREAL
DEFSTR
DEG
DELETE
OTH
DRAY
[RAIR
EDIT

01,97 EISE {the &01 byte is inserted

in the prograk when stored & will
not appear when listed)

END

ENT

BNV

ERASE

ERROR

EVERY

FOR

GOSUR or GO SUB
GOTO or 60 TO
¥

N

IRPUT

KEY

LET

LINE

LIST

LOKD

LOCRTE

HEHORY

KERGE

¥ID$ (Command, and Function but
yithout preceding &FF Dbyte)
HODE

HOVE

HOVER

WEXT

NE¥

U]

ON BREAK

ON ERROR GOTO /0N ERROR GO TG 0
OF 50

OPENIN

OPEHOUT

QRIGIN

B9
BA
BB
5
il
BE
BF

T
PAPER
PEN
PLOT
PLOTR
FOKE
PRINT

01,00 * {abbreviated version of REM

a
(2
a3
{4
&)
(6
)
(8
09
Ck
B
(c
D
E
CF
Ik
)
b2
03
M4
13
D6
o
08
08
DA
[B
X
oD
DE

r
|

E0
bl
E2
B3

=

ITIISHEEEEEEOed

see note yith ELSE Re &01 Dbyte)
RAD

RANDOHIZE

RERD

RELEASE

REM {(sritten in full)

RENUH

RESTORE

RESUME

RETURN

RUN

SRVE

SOUXD

SPEED

STop

SYHBOL

ThG

TRGOFF

TROFF

TRON

FAIT

¥END

HILE

F1DTH

FINDOR

HRITE

ZOKE

DI

I

FILL ¢

GRAPHICS *

MWK Y

F’RAHB ¥

CURSOR ¢

NOT USED

ERL (Function only; no preceding
&FF byte)

PN (Conmand when used with DEF
Token and SPACE,and Function but
without preceding &FF byte)
SPC

STEP

S¥ap

to E9 ¥OT USED

TiB

THER

10

USING

)

(
O

Fi RKD
HoD
0R
JOR
Yot
Function prefix (see Table 2)

The CPC 464 does not have certain of
the above Commands.They are indicai-
ed by & *',nor does it have certain
conbined commands, eg:- CLEAR INPUT,
GRAPHICS PEW, GREPHICS PAPER.It does
hovever have HID§ as an undocumented
comeand. The 464 also does not have

the tvo functions DERR and COPYCHRS.
It also does not perform DECS, even

though 1t recognises the function

Functions (preceded by &FF)
00 RS | 45 RO

0L RS | 46 TIHE

02 AT | 47 1p0s

03 CHR$ | 48 YPOS

04 CINT | 49 DERR *
05 C05 | 4k to70 HOT USED
06 CREAL | 71 BINS

07 EP |72 0BG 4
08 FIX 7 HENS

09 FRE | 74 INSTR

Ok IMEEY | 75 LEFTS

B INp 76 MR

o0 I 77 KK

0 JoY |78 RS

0 LEH 79 RIGHTS
0F 106 Th ROUND

10 10610 | 7B STRINGS
11 LOVERS | 7C TEST

12 PEEX | 7D TESTR

13 REMRIN | 7E COPYCHRS *
14 6K T VPO

15 SIH 80 to FF HOT USED
16 SPACES

17 %

18 SR

19 STRS

1 TR

18 T

1C UPPER$

1 VAL

IE to 3F HOT USED

40 EOF

4 IR

42 HIHEM

43 INKEYS

4 P

§ EEEEan |

INUIMISTEIR
SVSTE-MS

~ 2'S COMPLEMENT

for this is that binary involves only ones and zeros which in twn are recorded
by the computer as being either 'on' or 'off'. Each digit in binary is called a
BIT and eight digits form a BYTE. Thus an 8-bit number has eight digits (each of
which can be either 1 or @) and a 16-bit number has 16 digits.

The lowest value that a standard 8-bit number can hold is zerc (when all of
the bits are set to zero — ie G0000002) and the highest value is 255 (when they
are all set to one — ie 11111111). Likewise a 16-bit number can have a value of
between @ and 65535. The reasons for this were explained in the very first issue
of Print-Cut.

However there's one very seriocus problem with this system; how can the CPC
store negative numbers? A lot of the time this problem can be avoided but there
are certain occasions when it 1s essential to to represent negative numbers and
so 'Two's Complement’' or the 'signed number system' was devised.

Two's Complement still uses the binary counting system in exactly the same
way as before — it is just the way in which the digits are interpreted that has
changed. When using 2's Complement it's only possible to represent numbers from
-128 to 127 in an 8-bit binary muber. To work out what the negative number is,
the following rules must be followed:

First, write out the positive number in binary form:—

eq. 195 = 21101001

Then change all of the zeros to ones and all the ones to zeros:—
eg. 10010110

And finally, add 1 to this. This gives the negative form:—

1
eg. -—1035 = 10010111

An important point to remember, when using this method. 1s that the binary
number must always contain eight digits. As proof that the system actually dces
work, we will add -185 to +105 and see 1f the answer 1s carrect (ie. zero)

-105 = 10010111
PLUS 105 = ®1101001
EQUALS @ = 100000000

There's something not quite right about this answer until you remember that
an 8-bit, signed number must contain only eight digits. Therefore, the left-most
digit can be discarded thus giving 00000000 which is the correct result. Numbers
which have been produced using 2's complement are known as 'signed' numbers, and
those that have not are called 'unsigned' numbers.

36

When dealing with signed numbers, a quick way of telling if it is positive
or negative is to look at the left-most digit. If it is a 1, the number is neg-
ative, otherwise it is positive. .

Here is a brief summary of the differences between signed and unsigned numbers:
8-BIT SIGNED NUMBERS can represent both positive and negative numbers and
range from —128 (equals 10000000 in binary) to 127 (equals ©1111111).
8-BIT UNSIGNED NUMBERS can represent only positive rnumbers and range from
0 (equals Q0OOQYYQ in binary) to 255 (eguals 11111111).
The same rules, methods of conversion and differences apply to 16-bit numbers;
the only change is that there must be 16 digits in the binary number and that
mubers from between —32769 and 32767 can be represented when it is in signed
form, and between © and 65535 in its unsigned form.

There's only cne problem remaining; how does the computer know when a number
is signed or unsigned. The answer is that it depends on what type of number it
is expecting.For example, in last issue's Machine Code, there was a program to
draw lines using relative coordinates. Negative numbers had to be given to the
CPC and these were represented as 16-bit signed numbers. As the screen is only
640 pixels wide by 400 pixels high, the computer knows that we are unlikely to
want to draw to a place about 65000 pixels along, and so treats it as a signed
mumber, thus meaning about —400@ pixels — far more sensible when using relative
coordinates. This might not seem much help, but do not worry — the CPC 1s very
good at getting it right !!!

A= a conclusion to this article, here's a short program which asks for an
8-bit number (in either decimal,binary or hexadecimal form) and then works out
what the negative version of this number is. If you enter numbers greater than
255, it's likely to give results which you may not expect. Binary numbers must

be preceded by &X and hexadecimal numbers by the '&' sign. The program expects

/
1@

0
palY

4o

REM Two’s Complement Converter
MODE 2: INPUT "Enter the number: ", num$
a$=BINS (VAL (num$),8)

\\ you to enter a positive

number & will then give
vou the negative equiv—

alent. However, rather

5S¢ PRINT "The binary rnumber is '";a$ interesting and unusual
& FOR i=1 70 8 results can be obtalned
70 t$=MID&(a%s,1,1) by entering a negative
{8@ IF t$="1" THEN dig$="0" ELSE digs="1" number to begin with.
90 ré=r$+digs —_—
190 NEXT 1 Whilst signed numbers &
110 r$="&X"+r$ 2's complement may seem
120 c=(VAL (r$)+1) complicated, all of the
130 com$=BIN$(c,8) difficulties can easily
149 PRINT "The complement is: '"j;com$ be overcome by use of a
L Y, good assembler, such as

the one on this issue's
program tape or disc!!!

pﬂz'@e@ to be Won

As this is our birthday issue, we have decided to run a competition to celebrate
and have managed to get hold of some wonderful prizes. You may remember that in
our last issue we reviewed a copy of Tearaway from CFC Network and it was highly

recommended . Tearaway is the ultimate hacking program — it installs itself in a
Multiface Two and at a touch of the red button you have a fully fledged monitor,

~r

disassembler and a host of other features all at your fingertips. Don't worry 1f
vou have rict got the necessary set-up to use Tearaway. we have got a set of dust
covers (please tell us which computer you have) and a copy of 'Rick Dangerous 2
to give away. In crder to have more chances to win, you choose to go for as many
of these prizes as you like. First. you have fo decide c¢n the correct answer for

each of these questions, then just complete the hox at the bottom of the pags:

1. Ametrad's newly released console ig called the. . ..
) GX469 by GX4000 cy XG40

2. The new Pluses and Conscle both use the same central processor. Is 1t
aj) 6582 o) 6B) 280

€

The piece of cartridge software supplied with the new machines 1s....
a) Fire and Forget II b} Batman — The Movie ¢) Burnin' Rubber

-y

4, In which major Buropean city were Amstrad's three new computers launched. ...
a) Faris D) London c) Berlin

is Amstrad's Technical Manager — he a
a) Alan Sugar b) Keith Patterscn o) Roland Perry

(g
o
O

1so helped design the original CPC. ..
.
[

Just ring the correct answers, and then tick which prizes vou could receive (the

more you tick the more your chances <of winning!). Finally, fill in yowr name and
address. Then send vour competition entry to us at, Print-Out. 8 Maze Green Road.
Bishop's Stortford, Hertfordshire CM23 ZFJ.

Name e I'd like to win (tick as many as you want):
Address .. . e

TEARAWAY (6128 and Multiface only)
.................................. DUST COVERS for the 464/6128/Colowur/Mono
Postcode ..o RICK DANGEROUS II (on tape)

TO INCREASE YOUR CHANCES OF YOU WINNING A PRIZE WHY DON'T YOU SEND US
THE COMPLETED QUESTIONNAIRE OVERLEAF AT THE SAME TIME ?

38

PRIZE QUESTIONNAIRE

In Issue One, we included a prize questionnaire so that we could find out
what sort of things people wanted from the magazine. Times change and a year in
computing is a long time, so we thought that it would be an idea to run another
questicnnaire to discover what our readers want in the next year. To provide an
incentive for sending in yowr questionnaire, we're geoing to give away a copy of

PROT]IBXC]T tapel

to the first person whose questionnaire is drawn from the hat. So. remember to
write yvour own name and address clearly on the back of this sheet. The address
for all questionnaires is FRINT-OUT,8 Maze Green Road,Bishop's Stortford,Herts.

1. Which pieces of hardware (including computer) do you own ?

[AS]

What program/game do vou use the most frequently 7

2. Which area(sz) of Print-0ut interest you most ?

?

t[‘.‘.

Which area(s) of Print-Out interest you least

Do yvou want more, less or the same of the following article

i

BASIC Programming MORE SAME LESS
M/Code Programming MCRE SAME 55
Homebrew Reviews MORE SAME LESS
Public Domain MORE SEME LESS
Using CFM MORE SAME LESS
Solutions to problems MORE SAME LESS
News and General MORE SAME LESS
Type 1n programs MORE SAME LESS

6. Do you find the articles too technical/tco simple/about right 7

ol

What article(s) would you like to see in future issues of Print—Qut 7

~J

8. What do vou feel about Amstrad's new computers and why ?

If you have any further comments please feel free to write them on another piece
of paper. Remember, what you think -and want is very important.

39

| A

Offffers

Please make all cheques payable
to Print-Out but any postal crders
should be made out to T J Defoe as
this saves the Post Office a great
deal of time and effort. Unless it

carmot be avoided, it is advisable \
not to send cash through the post.
All orders should be sent to :— PRINT-OUT, Special Offers, 8 Maze Green Road,

Bishop's Stortford, Hertfordshire CM23 ZPJ.

f vou wish to order a copy of Issue Eight in advance you may do so by sending
a cheque / postal order for £1.10 (cr 70p + an A4 SAE with a 28p stamp) to the
usual address. We hope to have it published by about the 30th November, and 1t
will he forwarded to vou as soon as it is available. You may also order a copy
of the program cassette or disc in advance by sending the correct amount.

PROGRAM TAPES AND DISCs

We supply both program tapes and discs for all the issues and the prices given
below also include a booklet to explain how the programs work plus postage and
packing. Tapes and discs are availlable for Issues One, Two, Three, Four, Five,
Six and Seven. The cost for the program tapes are:—
a) A blark tape (at least 15 minutes) and S0p (p+p)
ar bh) £1.00 (which also includes the price of a tape)
And the cost for a program disc is :—
a) A blank formatted disc and 50p (p+p)
or Db) £3.00 (which also includes the cost of a MAXELL/AMSOFT disc) *

BACK COPIES

We still have a supply of Issues One, Two. Three, Fowr, Five and Jix availlable
and the price is £1.10 which includes postage and packing. Altevnatively. you
can order both a back issue and its corvesponding tape o disc by sending:—
a) £1.75 - includes the tape., the regquired i1ssue and postage and packing
by £3.75 — includes the disc (genuine MAXELL/AMZOFT disc) * and also the
required issue and postage

—

* When ordering using this particular method please allow about 21 days for
delivery as we must rely on outside suppliers for the discs.

* Please also note that one side of one CF-2 disc will hold all the programs
from uptc six issues. Therefore, the cost is £3.00 for a disc plus one set
of programs and then 50p for each additional issue thereafter.

40

