“PCW
Machine
Code”

The best book on
programming
the PCW.

How to control the screen, the printer, discs and the whole of the
machine memory.

A full explanation of machine code with dozens of program
examples.

With a special section on calculations such as Sin, Cos, Sq roots,
Random Nos, 8-, 16-, and 32- bit arithmetic, etc., etc.

Full index and appendices.

"GOOD VALUE, VERY INFORMATIVE " 'Amstrad PCW Magazine', Mar '89

"WE STRONGLY RECOMMEND IT !* '8000 PLUS', Nov '89
"EXACTLY WHAT PCW OWNERS NEED !" 'Personal Computer World'
Feb '89

|
1
il
|

fn

tli
"I

N
I

£13.95 nett

iSBN 1 871892 G0 7

w"'
|
| i

|
|
-l

1
L

s
<
>
>
s
o
>
-

o %
W

T

Y

)

&

s

b
W

e] ?ﬂ
-

!—!?_F—-—-—i—;—a____
W & W

0

J

fg\ DAY Y/E\' By
R

n

veeee

{ i & i D
PP R ¥ BN F N N

)
S ¢
E4

-
Intm

7

&

11 11 -
TR TR AR \ I 2

ol

MACHINE
CODE

PCW

MACHINE CODE

page

99
110
121
128
135
37
150
152
165

ERRATA

position

“Deleting pixels”

near bottom
second line
middle

in first ?.omnwg
lo-xt 4

ninth ::m

“Incr & Decr”
second line

correct version

‘RUBOUT is ON vmmm 97
:mom page 115.
age 62
B
4" wmﬂw N m 1”
“ﬂar Pmu m e P4 gnvr
“Id de, (Addr) . .

“incde 19" A:oﬂ ‘1)
“out (240),a. ..

PCW

MACHINE CODE

M. Keys

B.Sc.

Spa Associates
Spa Croft, Clifford Rd, Boston Spa, LS23 6DB

Acknowledgements

This book is based on my experience of using information derived over
the years from books and periodicals, to the writers of which I would
like to express my thanks. The information belongs to others, the mis-
takes are all mine.

Notice

CP/M’, ‘CP/M Plus’, ‘Amstrad’, PCW 8256,
PCW 8512°, and ‘PCW 9512’ are trade-marks.

© M. Keys 1988

All rights reserved. No reproduction in any form may be made without
written permission.

No paragraph of this book may be made, reproduced, copied, trans-
lated, or transmitted without written permission in accordance with the
Copyright Act 1956 and its amendments.

The assessment of the suitability for use of the information in this book
in particular cases is the responsibility of the user. Neither the author
nor the publishers accept responsibility for any consequence of its use.

First published December 1988
Second edition May 1989
Third Edition February 1990

ISBN 1 871892 00 7

J @

l

=
=)

Al

L
¥ & o w

I

L
)

@

A |

!

WO NN TR N

CONTENTS

Computing should be sensible
The basis of computing
The Z80 processor .
The instruction set
Writing a sub-routine
Practical programming
Screen printing

Using the printer
Screen graphics 1
Screen graphics 2

The Memory Disc

Disc handling

Error handling
Arithmetical routines

Appendices
INDEX

20
26
42
52
61
73
81
88
101
108
125
131

149
170

Chapter 1

Computing should be
Sensible

If you believe that computing is fun, interesting, and useful then this
book is for you. If you think it is a very serious pursuit that should be
followed with great self-discipline according to laid down rules, then it
may not be so suitable. In writing it I have attempted to share with the
reader the pleasure I have derived from controlling my PCW from
machine code programs. Apart from understanding rudimentary BASIC
and having a healthy curiosity, you will need no other qualifications,
even though all aspects of the machine’s hardware are dealt with: as the
man said, “Everything is simple once you know about it.”

I'have made Chapters 2 to 5 an introduction to machine code (for which
I will often use the abreviation ‘m/c¢’) for those who have not met it
before, though I have purposely kept this section short to leave more
room for describing how to control discs, the screen, and the printer,
which is the real purpose of the book. In referring to the Amstrad
manuals I have given the page numbers in the books supplied with the
‘8256" and ‘8512’ first, followed by the equivalent for the ‘9512’ in square
brackets, if any.

But, why bother with machine code atall ? Well, there are three reasons:
itis fast, it uses very little memory, and it gives the programmer excellent
control of the computer. Indeed, of all the available ways of program-
ming the PCW, m/c runs the fastest, uses the least memory and gives
the maximum level of control. And even if it is a little tedious to write,

m PCW Machine Code

well, that’s no price when set mm&an the advantages.

Secondly, just a word about jargon. Jargon in private between consent-
ing participants is fine. Itis no more than a kind of verbal shorthand that
enables people to communicate more freely; and who could object to
that ? However, in computing it does get over-used and keeping that
in check is a duty we owe to each other.

Not that jargonism is the sole prerogative of the world of computers; it
seems to occur in every field of activity that has ever had a need for
special words to describe its own peculiar objects and actions, though
invariably that need has long been overlain by the tendency to wish to
be seen to be a guy who knows what all the initials mean.

If a magazine or a book, which has a professional duty to communicate
with its public, fogs you with pages of rubbish made up by ex-Pentagon
stores clerks, then you should complain. For as long as computerites are
allowed to self-stimulate in this way they will do so. It probably makes
them feel better. My name for it is w-language where 'w' stands for a
four-letter word ending in 'k. In all cases it can either be ignored or
replaced by a simple English word or phrase with the effect of improv-
ing the information content of the text. Maybe it is time for us all to
oblige communicators to ensure that simple English phrases get a wider
use.

I have honestly tried to exclude all w-language and jargon-berkery from
this volume. If it turns out that I've failed, well, I will be duly humbled.
Either way, I sincerely tells you what you wanted to know.

wﬁ

W W

R

£
i J
i

s}

LOLAL
e www

L S
o
@

i

W W

o 11 i@i ik 1

)

~!:j 0
& &

|
)

¢

t

WG

Chapter 2
The Basis of Computing

The Computer

As far as a programmer is concerned the computer consists of a mem-
ory and a processor. The PCW’s processor is the Z80, which is made by
the Zilog Corporation. It takes data from the memory, operates on it
(ie. processes it), and then puts it back into memory where it is avail-
able to do something useful when required. Alternatively the proces-
sor can take in new data (from the keyboard, say) or convert existing
data into the screen display, or into symbols for feeding to the printer.

Bits and Bytes

The absolutely smallest picce of data (ie. of information) that the com-
puter can deal with is called a bit. A bit can be either switched on or
switched off. A switched-on bit is said to be set, as opposed to a
switched-off bit which is said to be reset. A set (on) bit corresponds to
the number 1, and a reset (off) bit corresponds to zero. The arrange-
ment of set and reset is as follows

SET =on=1
wmm..m.ﬂomuo

1

10 PCW Machine Code

The PCW handles all its bits in groups of eight. A group of eight bits is
called a byte. The combination of its set and reset bits in a byte
determine the value of the byte. If all the bits have a value of zero, then
the value of the byte will be zero. If some of them have a value of 1,
then the value of the byte will be increased accordingly.

The bits have increasing rank from right to left. This corresponds to the
way we write the numerals in conventional arithmetic; the figure on
the right gives the number of units and figures to the left of it have in-
creasingly greater significance (tens, hundreds, thousands, ten-thou-
sands and so on). So it is with bits except that they can’t represent
numbers up to 9, they can represent only 0 or 1.

The bit on the extreme right is called the least significant bit, and the
one on the extreme left is called the most significant bit.

Conventional arithmetic has ten numerals (“0” to “9”) and we count in
parcels of ten. (This is called counting ‘to the base 10".) I can specify
increasing quantities up to 9 just by picking the next higher numeral.
But, beyond 9, because there aren’t any more numerals to pick from, I
revert back to zero again, but I indicate that ten has been reached by
writing a “1” to the left of the zero. After that I can keep increasing the
units (the rightmost column) by picking higher and higher numerals
until “9” has again been reached. I then have to revert the units to zero
again, but I increase the tens to “2” to show that twenty has been

reached, and this can be repeated ad inf to give numbers as large as we
like.

Our normal system of counting is usually called the ‘Decimal System’
(because ‘deci-’ means “a tenth”). Purists usually suck their teeth and
wag their heads at this, correctly pointing to the linguistic merits of
“denary” over “decimal”. (‘Denary’ means “of ten”.) They are right of
course, but we peasants now hold such sway that I don’t think that
‘denary’ stands much chance, but it is definitely in in some circles so it
is as well to be familiar with it. Itis a feature of decimal (sorry, denary)
arithmetic that a numeral acquires ten times its previous value if it is
moved one column to the left.

Binary Arithmetic

The arithmetic that applies to counting with bits is called Binary
arithmetic because only the two numerals “0” and “1” are available,

Chapter 2 1 .ﬂ

and ‘binary’ means “having two parts”. Counting in binary is the same
as counting in decimal except that we run out of numerals much
sooner; after the first increment in fact (‘increment’ means “add 1 to”).
Starting at zero, the process of counting goes like this:

Start at zero 00000000 =0)
>Qm._ﬁomm<mu 00000001 =1

monmp.uwm we have now exhausted our list of numerals, we must revert
the rightmost column to zero and increment the column to its lef

This gives 00000010 (=2)
Add another 1: 00000011 (=3)
Follow the rule: 00000100 (=4)
Etc 00000101 =5
Etc 00000110 (=6)
Etc 00000111 (=7)
Etc 00001000 (=8)
Etc 00001001 =9

You will notice that, analagously with decimal, a “1” acquires twice
its previous value if it is moved one column to the left. This gives rise

:m the following important sequence in which the values are all powers
of two.

00000001 =1 00010000 = 16
00000010 =2 00100000 = 32
00000100 =4 01000000 = 64
00001000 =8 10000000 =128

If you add all these numbers up you will find that 11111111 in binary
is equal to 255 in decimal, and hence 255 is the highest value that can
be put into an 8-bit byte. Notice that, because ‘1’ is the only odd
number here, all even binary numbers have the least significant bit
reset, whereas the odd ones have it set.

If we were unable to compute with numbers larger than 255 it's not
likely that we'd bother to compute at all, but, as with the decimal
system, there is no limit to the number of digits that may be used so a
number of any size can be represented in binary, though for technical
and economic reasons the Z80 never considers more than sixteen bits
m._.. a time (and even then it takes two bytes at the cherry). The addi-
tional eight bits make up what is called the high byte, and the original
eight are referred to as, not surprisingly, the low byte.

._ N PCW Machine Code

Binary Multiplication and Division

These two operations are carried out as in decimal. Suppose I want to
multiply 36 by 5. In binary these numbers are 0100100 and 00000101
and the multiplication goes :

36 00100100
5 101
00100100
+ 0010010000
result 10110100 = 180

And to divide 188 by 5, je. 10111100 by 00000101:

00100101 result = 37
101)10111100
101
101
1000
101
remainder 11 =3

Using 16 bits

Suppose that in our counting we have reached 255. What happens if
we-add another '1'? Well, if we have only one byte it will be reset to
zero and the whole of our count will be lost, but with two bytes the
count may proceed as if the two formed a single 16-bit number. All that
is necessary is that any overflow from the low byte should be fed into
the high byte and be preserved there. As follows:

H.Byte L.Byte

The count has reached 255: 00000000 11111111
Add another 1: 00000001 00000000

And another: 00000001 00000001

Etc 00000001 00000010

Ete 00000001 00000011

Notice that the high byte will not be incremented again until the low
byte has again reached 255 and then another 1 is added. That is the
same as saying that the high byte counts, not 1’s, but 256’s. Hence the

& @

;lf‘l
T |
ff

&

¢ i1k ‘sﬁimt':?:a
W

W

¥

/ _,fp

ki
!

W

)

L)
W

¥

& W

&)

G ¢ W oW

@

Chapter 2 ._ w

value of the high byte can be read as if it were an ordinary byte but
with the result multiplied by 256. This gives us an easy way to calcu-
late the maximum value that 16 bits can hold. The high byte can count
up to 255 x256 (ie. 65280), and the low byte may count a further 255,
The total is therefore 65535.

Numbering the bits

In computing the lowest number is considered to be 0, not 1. For this
reason the least significant bit is called “bit No 0”, the one on its left is
called “bit No1”, and so on, up to the most significant bit which is
called “bit No 7”. This is logical, but it gives rise to the apparent
anomaly that the eighth bit is called “bit No 7 !

This can be confusing, but I suppose computerites will blame the con-
fusion onto conversational speech for counting illogically not from the
lowest number, but from only the second lowest, ie. from1! The
naming sequence is continued through the high byte, its least signifi-
cant bit being called “bit No 8”, and its most significant bit being called
“bit No 15”. In defence of the computerites, it is interesting that the bit
numbers do correspond to the power of two that gives the value of
each bit, as shown in the following table:

Bit values

bit No 0 has a value of 1, which equals 2°

bit No 1 has a value of 2, which equals 2!

bit No 2 has a value of 4, which equals 22

bit No 3 has a value of 8, which equals 2?
etc,upto...

bit No 15 has a value 32768, which equals 2'%

Knowing that the values of all set bits are powers of 2, you may be
interested to compute their individual values up to bit No 15, and
obtain a check on the 16-bit total given earlier. Also notice that an indi-
vidual bit value is always 1 more than the sum of all the bits to its
right. For example bit No 7 has a value of 128, and the sum of bit Nos
Oto6 is 127. .

Neoative numbers

With only 16 bits to work with, and each able to be only 0 or 1, how can
we indicate that a number is less than zero ? Well to do so we have to

._ A PCW Machine Code

reserve one of the bits as a flag to indicate the number's sign. If the
flag is ‘raised’ (ie. if the sign-bit is set) then this indicates that the
numbser is negative, and if the flag is ‘down’ (je. if the sign-bit is reset)
then we will take it to be positive. The sign-bit is invariably the most
significant bit (bit No 7 for 1-byte numbers, or bit No 15 for 2-byte
numbers).

Obviously the sign bit can’t sometimes be used to indicate ‘a value of
128" and at other times to indicate ‘this number is negative’ because
then how could anyone distinguish between -128 and +128 ?

If we want it to be a sign flag we must make this clear at the start, and
we must accept the penalty that 1-byte numbers can then be no larger
than 127 (because bit No7 is reserved) and that 2-byte numbers can be
no larger than 32767 (because bit No 15 is reserved). Naturally in 2-
byte numbers you wouldn’t reserve both bit No 7 and bit No 15 ; only
one is necessary. Calculating with negative numbers is explained in
more detail in Appendix 3.

Large and Small Numbers

Precise calculation with very large numbers is perhaps the hallmark of
the computer. These are dealt with in a way that is quite unlike the one
I have described so far. First the numbers are converted to their ‘float-
ing point forms’ (which require 5 bytes each) and then the calculation
is made. Floating point forms are reminiscent of the logarithmic form
that was common before electronics took the drudgery out of calcula-
tion, but it might be as well for you not to wrestle with them yet; not
many people do. Conveniently, the very small numbers that are used
frequently in scientific and technical calculations can be handled in
their floating point forms too.

A second way of making accurate calculations with large numers is
called ‘Binary Coded Decimal’ (BCD). Itis used pricipally in account-
ancy where it is important not to lose an odd digit or two, and the Z80
has a special facility devoted to it. We will look at it later.

The Alphabet .

Because it finds numbers casy to handle, the computer adopts the
simple expedient of giving each letter a number and then moves these
about as if they were letters, and the more or less universally accepted

m B
!‘_.3.'.'_.'.;
W @ 4

&

L1)
& @

T
| R
&

4
)

M
ki
lg)

g

Chapter 2 ._ m

set of numbers which represent the letters, the numerals, the punctua-
tion signs, and other useful symbols suchas $, #, &, =, @, etc, are
called the ASCII Codes. ASCIIisan acronym for the American some-
thing or other connected with Information Interchange. The codes are
listed on pages 113 to 118 [547 to 554] of the Amstrad manual.

A sequence of letters, numerals or similar symbols (ie. non-numbers) .
is called a string. Hence a string could be a single letter, a word, a
sentence, a paragraph, a message, a set of numerals, or any other part
or whole of a text item. (Note that a string of numerals is not a
number; you can display it on the screen but you can't calculate with
it. A number is the binary content of one or more bytes.) A sequence
of ASCII codes may also be called a string. The end of a string is
signalled by a string-end marker (which is called a ‘delimiter’ in w-

language), which by convention is often the dollar sign (§$), orits
ASCII code.

The Hexadecimal System

If Thadn’t told you, I bet you wouln’t have guessed that there was any
connection between 255 in decimal and 11111111 in binary. Still less

does there appear to be a special significance to 65535; an arbitrary
looking numbser if ever I saw one.

From the early days it was realised that the ‘base-10’ (decimal) is not a
convenient base in which to express numerical values when dealing
with electronic calculations. This is because ten is not a power of 2,
but 2 is unavoidable because there are just two fundamental electrical
states: ‘on’ and ‘off’; ‘set’ and ‘reset’.

Counting to bases which are powers of two, ie to the ‘base-4’, and then
to the ‘base-8’, were proposed as superior alternatives, but it is now
universally agreed that the best one is the ‘base-16’ (though octal does
have some modern uses). This gets rid of the terrible inconvenience of
binary that it needs so many digits to express even quite small num-
bers, but at the same time is’is easy to translate from one to the other if
the need arises. The name given to counting in this base is Hexadeci-
mal (literally ‘six and ten’) counting.

Abig advantage of hex is that it expresses the valucs of bytes in a way
that is easy to comprehend. The disadvantage to people unfamiliar
with it is that it needs six extra symbols to supplement the usual “0” to
“9”, and their values take a while to sink in. Rather than make up six

._ m PCW Machine Code

completely new symbols the first six capital letters were chosen (I think
they should have made up new ones, and would have done it for them
if they'd asked me.) Hence the numerals used in hex are as shown
below.

decimal hex decimal hex decimal hex
00 6 6 12 C
11 7 7 13 D
2 2 8 8 14 E
33 9 9 15 F
4 4 10 A 16 10
55 11 B 17 11

The sequence then continues in groups of sixteen so that 20h is equal
to 32d, 30h is equal to 48d, etc.

Notice that to avoid misunderstandings over which base is being used,
hex numbers invariably have a letter ‘H’ appended. You can adda ‘d’
to decimal numbers if you wish, but that is optional. Numbers without
a following letter are assumed to be in decimal. Some writers use a
small ‘h’, which can be easier to read.

Hex numbers are usually written with not less than two digits. Hence
‘1' would be writtenas 01h; 13 as ODh; 39as 27h; etc. The highest
two-digit hex number is FFh, which is 255 in decimal. Thus the full
content of an 8-bit byte can be given in two hex digits, which is very
convenient, particularly as the right digit gives the value of the four
rightmost bits, and the left one gives the value of the others.

Convenient or not, there is absolutely no need to learn hex if you don’t
want to. You already understand decimal, the keyboard already under-
stands decimal, and provided that the two of you can handle the rudi-
ments of binary, then you will have no trouble at all with machine-code
programming on the PCW. However it is better to know it than not,
and computer literature usually takes hex for granted.

The Memory

The computer’'s memory is where it stores the information given to it.
The memory is arranged like a stack of boxes each of which contains
one byte. The boxes are indelibly numbered so that we always know
which is which, and the number of each is called its address. For the
time being, assume that there are 65536 such boxes, ie. that the com-

puter's memory consists of 65536 bytes and that these each consist of

Chapter 2 A ﬂ

8 bits. (In fact the ‘8256’ has four lots of 65536, and the ‘9512’ and
‘8512" have eight such lots, but we won’t be concerned-with these ad-
ditions until later.)

The address of the first ‘box’ is 0, which is written as 0000h in hex,
and that of the last one is 65535, which is FFFFh. Notice that it takes
exactly four hex digits or two bytes to represent the highest address. If
there had been even one more address then we would have needed six
digits and three bytes to specify addresses unambiguously.

Take care over the distinction that an address points to a single byte of
memory, but the value of address is made up of two bytes. Because
there is an address No 0 there are 65536 addresses even though the
highest one is only No 65535.

It is a peculiarity of the Z80 that when we are writing instructions for
it we have to write two-byte numbers with the Low Byte first. This is
just a convention adopted by the Zilog Corporation for their own
good reasons some ten or twelve years ago, and there are times when it
seems quite sensible. Sensible or not, we are stuck with it, and with a
bit of practice it is easily remembered.

However this convention applies only when writing for the Z80, so if
you were to write out a list of addresses to show what was stored at
each, then you would use normal arithmetical procedure and put the
high byte first (to the left).

The table below gives a few addresses in decimal notation, in hex
normal arithmetical notation, and in my own notation which shows the
two bytes written separately in decimal ready for use by the Z80 (low
byte to the left). Itis a convention of my own that I write these always
in brackets with a comma between using a red biro that I keep for the

purpose.

Decimal Hex Red-Biro
0 0000 ©,0)
1 0001 (1,0)

10 00CA (10,0

15 000F (15,0)

16 0010 (16,0)
255 O0FF (255,0)
256 0100 0,1

1000 03E8 (232,3)

2560 0A00 (0,10)
32000 7D00 0,125)
65535 FFFF (255,255)

._ m PCW Machine Code

Calculating the two bytes

Starting from an address in decimal, first divide by 256. The value of
the High Byte is equal to the result minus any fractional part, and the
value of the low byte is given by multiplying the fractional part by 256.
These two byte values (which are in decimal) can be converted to hex
by a similar treatment of dividing by 16 instead of by 256, and bearing
in mind that results over 9 are represented by capital letters not by nu-
merals. The following examples convert the arbitrary address 39452
into its red-biro and hex equivalents:

39452 +256 = 154.10938 : the High Byteis 154
0.10938 x 256 = 28 : the Low Byteis 28
154 + 16 = 9.625 : the 1st hex digitis 9
0625 x 16 = 10 : 2nd hex digitis A
28 + 16 = 175 : 3rd hex digitis 1
075 x 16 = 12 : last hexdigitis C

Hence the red-biro version is (28,154) and the hex version is 9A1Ch.
Alternatively, you could calculate the hex version direct from the deci-
mal address by successive divisions by 4096 ,256, and 16 on the same
lines as shown for the ‘red biro’. The significance of these numbers is:
4096 = 16 x 16 x 16 and 256 = 16 X 16. Occasionally you will get a low
byte value that is not quite a whole number (although it will always
be very nearly a whole number unless you have made a mistake). In
such cases round it up or down.

Unless you like calculating you may as well give the task to BASIC
when it is available. The following short program accepts an address in
decimal and prints out the red-biro version.

100 INPUT; “Address ? ” a :

110 b=INT(a/256): c=a- b % 256

120 PRINT TAB (24); “(*; ¢;“,”; b;)
130 GOTO 100

Chapter 2 1 @

Calculating a decimal address

You can obtain the decimal address from Red-biro by
Address = (256 x High Byte) + Low Byte.
To convert a hex address to decimal, first re-write any letter digits as

decimal numbers, and then multiply them by 4096, 256, 16,and 1, as
shown below:

9 =9 9 x 409 = 36864

A =10 10 x 256 = 2560

1 =1 1 x 16 = 16

C =12 12 x 1 = 12
Total = 39452

20

Chapter 3
The Z80 processor

Machine Code Instructions

Machine-code instructions are not like the instructions given in BASIC.
A machine-code program, which is usually called a ‘routine’ or a ‘sub-
routine’ (which latter I will abbreviate to “sub-r”) consists of a se-
quence of numbers at consecutive addresses in memory. The program
is run by telling the processor which address to start at. It runs through
the numbers in turn treating each one as an instruction to do something
specific. When BASIC is in place, the start instruction is call, z, where
‘2’ is a variable that has been given the value of the start address. (See
page 44 for a program example.)

Because an address can hold only a single byte, only the numbers 0 to
255 can be used as m/c instructions, but the total number of them is
not 256 but about 800 because some are two bytes long and hence
more combinations are possible; but don’t despair - you don’t need to
learn all 800 of them !

Ther e are several large groups in which the instructions are similar to
each other; over 100 relate to loading the registers (see’ below), and
about 200 relate to setting, resetting, and checking individual bits. All
you need to do is to become familiar with the names of these groups
and know what kind of effect they have. They are described in Chap-
ter 4.

Chapter 3 N._

The Registers

There are only a few ways in which the Z80 can process data that is
still in memory. For most purposes it has to take the data out of
memory, put it into one or more of its registers and there process it
according to the instructions it has been given. The registers are stores
inside the Z80 each of which can hold one 8-bit byte, though some
can act together as a register-pair for-storing 16-bit numbers. The
Z80 has 22 registers, though 12 are best left for the use of the PCW
for its own housekeeping duties; but don’t feel cheated, registers can
be used very flexibly, and the remaining 10 will be enough for our re-
quirements.

The registers, which are referred to by their letters, operate as if they
were arranged as follows:

L |
L _
_]
_)

ol (O] || >

_
~ E _
~

_ SP |
_ PC |

A schematic arrangement of the registers

The A register is the most versatile and probably the most used. Itis
also called the accumulator. It is the register in which many of the
computations and all of the comparisons are made.

The F register is a special one called flags. It gets its name because it
consists of a set of six indicators each of which is called a ‘flag’. The
flags indicate the effects of the last operation. Although the contents of
‘flags’ can be moved into and out of memory alongside the contents of
the accumulator, the two are not a register-pair because they have inde-
pendent roles. .

The next six registers can each act as an independent 8-bit register, or
with the register shown beside it as a 16-bit register-pair, in which
case the one on the left (B, D, or H) takes the High Byte, and the one
on the right (C, E, or L) takes the Low Byte. In the last pair the names
were chosen to indicate this: H for ‘high’, and L for Tow’.

N N PCW Machine Code

Although these six registers are interchangeable for many uses, they
also have some specialisations. The HL pair is particularly useful in
making additions and subtractions of 16-bit numbers, and also in
‘pointing” to addresses. Because of this it is used more than any other
pair. The DE pair has the specialised role of pointing to the addresses
of strings and to other features required by the CP/M operating sys-
tem. The HL and DE pairs can also exchange 16-bit numbers, which
is very useful.

The B and C registers are a bit of an odd pair out, though B comes
in for a special counting function, and C finds an application in specify-
ing which CP/M function is required, and of course BC can hold a
16-bit number as and when required.

The Flags

Without an arrangement of flags computing would be a much more
devious process than it is. The Z80 has six (leaving two bits in F
unused), but we will be concerned with only the two most used ones.
They operate as follows :

The Carry flag

This is abbreviated to C, or to Cy (to avoid confusion with the ‘¢’
register), and is set by any operation that causes an overflow. Thus if
the last operation was a subtraction that gave a negative result, or an
addition gave a result that was too large for the totalising register(s),
then this would set the Carry flag. Comparisons count as subtractions.
An arithmetic operation that did not lead to either of these conditions
would reset Cy. It can also be set and reset by ‘shift” and and ‘rotate’
operations (see page 38).

The Zero flag

Abbreviated to Z, this is set by an addition, a subtraction, or a com-
parison that gives a zero result. It is reset by an operation of this type
that does not give a zero result.

The two flags are not affected by loading operations, nor by many
others of a non-arithmetical kind. They are affected by additions, sub-
tractions, and by number- and bit-wise comparisons. They are affected
by incrementing or decrementing 8-bit registers, but not by increment-
ing or decrementing the 16-bit register-pairs. (Incrementing means

Chapter 3 Nw

‘adding 1 to’, and decrementing means ‘subtracting 1 from’. There are
special Z80 instructions for these actions.)

The Stack

The stack is a small area of memory given over to the Z80 as a
‘scratch-pad’ on which it records things that it needs to remember but
doesn’t want to devote valuable registers to. The latest address on the
stack is pointed to by a 16-bit register called (what else?), the stack
pointer, which is abbreviated to SP. When the machine is switched
on CP/M provides a stack that is freely available, and this is the one to
use until you are familiar with the ins and outs of stack operations.

Alternatively, you can decide on your own location for the stack if you
like. You do this by loading SP with your chosen address, but if your
program is not fully self-contained you must make provision to return
to the old stack when it has finished. You must also give it enough
room to ‘grow” as more information is added to it. In short programs
only a dozen or so bytes would be enough, in larger ones, to be on the

safe side, you might allocate it as many as three dozen, which would be
generous.

The stack grows downwards into successively lower addresses, so that
the ‘top of the stack’ is at a lower address than the ‘bottom of the stack’.
It grows by a pair of bytes each time a ‘call’ is encountered (the m/c
version of GOSUB), but retreats by the same two when the call has
been completed. However if you have a set of deeply nested calls
(several sub-routines called from within each other) then the stack can
grow quite large before being returned to its former size.

Because the stack is also used a sort of fast retrieval storeroom for the

contents of register pairs by means of the ‘push’ and ‘pop’ instructions,
it might be better not to make any changes to the content of SP until
you are have had plenty of m/c experience. A wrong address in SP is

a tried and trusted way of making programs crash, but left alone the
Z80 has the problem sussed. & progr

The Program Counter

The program counter (referred to as 'PC') is the 16-bit register in
which the Z80 keeps track of which address it should go to for its next
instruction. It automatically updates PC according to whether it is

24 PCW Machine Code

now dealing with a 1-, 2-, 3- or 4-byte instruction, and thus is always
able to move straight to the start of the next one when it has finished
the last. It also modifies the content of PC when it encounters ‘jump’
instructions (like GOTO). It isn’t possible for a' programmer to
change the content of PC; which is perhaps as well. The operation of
the Stack and the Program Counter are described further in Appen-
dix 6.

Assembly Lan guage

If the Z80 were a person then we could say to it, “Put the value 100 into
the A register, then transfer it to address No 12345, and stop”. Be-
cause it is a microprocessor we actually have to feed it with the stream
of bytes;

62 100 50 57 48 201

This gives rise to what we might call a communications gap. The
sentence means nothing at all to the Z80, and the row of numbers
means precious little to most of the rest of us, but fortunately there is an
intermediate language that looks sufficiently like English to be mean-
ingful once you are used to it, and is at the same time an economical
and precise way of specifying the actions that we require of the proces-
sor. It is called Assembly Language because it is the language in
which m/c programs are usually first assembled.

Assembly Language is written in abbreviations called mnemonics. A
mnemonic is a ‘reminder’, ie. in abbreviated form it reminds you of the
thing it represents; hence ‘1d’ is reminiscent of load’, ‘jr of ‘jump
relative’ and ‘jp nz’ of jump not zero’ etc. The set of all the Z80
mnemonics is called the Z80 Instruction Set.

They are the names of the groups of actions that I referred to two pages
ago. Once you are familiar with them, m/c is a piece of cake, though I
suggest that you don’t swot them; the easiest way is to write a few
programs, because then your need to find easier methods of doing
things will bring new ones to your attention.

m
i..__.!:___
bW

L
L
o

A

5@l

)T
¥

1
4

e
)

TAMME
&)

(DL_

S ¥
St i
Lo

&

m

-

i

]
~

)

LAt

¥

-
=
B

]

T4
r
[

Chapter 3 Nm

M]/c versus Assembly Language

Because it scems unclear to some people, it may be appropriate here to
emphasise the difference between ‘machine-code’, which is a series of
numbers in memory, and ‘assembly language’, which is a set of mne-
monics. If, like me, you remember all the numbers, then you can

-insert them yourself directly into memory. This is ‘machine-code pro-

gramming’ and is the lowest level of programming that is normally
available. Alternatively, and to some folk more conveniently, you can
feed a set of mnemonics into an assembler (which is a software
program), and get it to insert the numbers into memory for you. This
is one programming level up from m/c, ie. Assembly Language (of-
ten quite wrongly called "Assembler”) is a ‘higher' language than ma-
chine code is, but not much higher. The chapters that follow will help
you to use either approach.

26

Chapter 4

The instruction set

The Z80 Assembly Language instructions are listed with their decimal
codes in Appendix 1, but the following brief descriptions will help to
explain their effects. If you are unfamiliar with m/c I suggest you read
through this chapter to gain some impression of what kinds of instruc-
tion are available before moving on to look at the process of program-
ming. No doubt you will return here from time to time for clarifica-
tions.

The load instructions

For the sake of clarity I have written each 16-bit number as a single
decimal number rather than as two bytes. ‘Load’ is the instruction to
copy a number into a register, into a register pair, or into a memory
address. The mnemonic is 1d followed by an indication of what
should be loaded to where. The ‘where’ comes first and the ‘what’
second, eg.

Id a, 99 load A with the number 99

Idc, 101 load C with the number 101
lda,h load A with the content of H
ldb, c load B with the content of C

T
UV

|

]
£

i
o

i

il
1]
~

4

[

LEEEE
)

Chapter 4 NN

When something is loaded into a location you don’t need to clear the
location first; anything in it is automatically obliterated. On the other
hand, the location loaded from is left unaffected. Thus the following
sequence would leave the registers A and D both containing 100 :

Ida, 100 load A with 100
ldd,a load D with content of A

You can also directly load a register-pair with a 16-bit number as in the
following three examples, but you can’t load from one pair into another
pair in one go (do it one register at a ime)

Id be, 65535 Id de ,1000 Idhl,0

Loading into Memory

It is not possible to load a number directly into a memory address, but
there are several ways of doing it indirectly. The most obvious is to put
the number into A and from there transfer it into the chosen address.

Thus the stream of bytes I mentioned above would be written in As-
sembly Language as :

lda, 100 load A with 100
Id (12345), a load addr 12345 with content of A

An alternative route would be to use HL as a pointer to the address
into which the number is to be loaded

Id nl, 12345 load HL with the number 12345
Id (hD), 100 load the HL addr with 100

There are other routes. If you use HL as a pointer then the address
pointed to can be loaded directly with a number (as above), or with the
content of any register (including either H or L), butifeither DE or

BC is acting as the pointer, then only the content of A can be loaded to
the address :

Idb, 100 Ida, 100 lda,100
Id hl, 12345 Id de ;12345 Id be, 12345
Id(hi), b id (de), a d (be), a

A very useful instruction is one that allows you to copy the two bytes
In a register-pair into two consecutive addresses in memory. The fol-

Nm PCW Machine Code

lowing instruction would put the byte in L into address No 1000 and
the byte in H into address No 1001:

1d (1000), hi

Notice that the high byte mmomm into the higher of the two addresses,
which makes more sense of Zilog's byte sequence. A similar instruc-
tion is available for both BC and DE. Notice that an address is
always indicated by brackets; the instruction Id 1000, hl would be
meaningless.

Loading from Memory

Bytes can also be copied from memory into registers in methods similar
to, but the reverse of, the methods descri above.' The contents of
memory are left unchanged by these operations. In general terms A
can be loaded directly from memory, or by using any register-pair as a
pointer, but the other registers can be loaded from memory only by
means of HL acting as a pointer. To load from Address No 1000 the
various instructions would be :

Id a (1000) load A from address No 1000

ld hl 1000 load HL with the number 1000

Id e (hi) load E from addr pointed to by HL
Id de 1000 load DE with the number 1000

Id a (de) load A from addr pointed to by DE

Two bytes at consecutive addresses can be copied into a pair from
memory, as by

1d hl (1000) load L from addr No 1000 and
H from addr No 1001

Id be (24000) load C from addr No 24000 and
B from addr No 24001

Notice that again the address is in brackets. This is shorthand for ‘the
16-bit value stored at this address and the address above’. Numbers
not in brackets are just numbers. Suppose that address 1000 contains
10, and address 1001 contains 1.

Chapter 4 N@

Id hl, (1000) will put 266 into HL,
but Id hl, 1000 will put 1000 into HL.

8-bit Additions and Subtractions

The Accumulator'is the only register in which 8-bit additions and sub-
tractions can be made. Whatever A contains you can add to it or
subtract from it either a number, the content of a register, or the content
of the memory address pointed to by HL. The result is always to be
found in the Accumulator. You can also add the contents of A to itself
thus doubling what was there.

If the result of an addition would be larger than 255 then A overflows
thus setting the Carry flag and giving the arithmetic result minus 256.
If the result of a subtraction would be negative then the Carry flag is set
and the arithmetic result plus 256 is given. Zero results set the Zero
flag. Consider the example

lda, 100 load A with 100

ldh, 250 load H with 250

suba,h % subtrcontent of H from A (sets Cy &
lde, 10 load C with 10 resets Z)
adda,c add content of Cto A (Cy & Z reset)

The subtraction sets the carry flag, resets the zero flag, and leaves 106
in A (at %). Then a further 10 is added to A, and, because this does
not cause a carry, a borrow, or a zero result, the carry and the zero flags
are both reset. At the end of the sequence A would contain 116, and
Cy and Z would be reset.

16-bit Additions and Subtractions

The content of BC, DE, or HL, can be added to the content of HL.
The content of BC, DE, or HL can be subtracted from the content of
HL, but Cy is always included in the subtraction. Instructions for
including Cy in the additions are also available, so if Cy happens to be
set then an extra 1 is added, but if it is reset then no extra 1 is added.
Including the carry flag is used to carry forward the ‘carry’ or ‘borrow’
of previous operations into the present one. The mnemonics for the
three cases where BC is involved are :

wO PCW Machine Code

add hl, be add the content of BC to HL
adc hl, be add BC plus Cy to HL
sbe hl, be subtract (BC + Cy) from HL

If you want to make a subtraction from HL without the Carry flag
being involved it is necessary to cancel Cy, ie. to make sure it is reset,
first. This can be done through a number of instructions, of which and
@ and ora have the advantage of leaving the content of A unchanged.

Cy is set if an addition into HL would exceed 65535, and the arithme-
tic result minus .65536 is given. If a subtraction from HL would give a
negative result then Cy is set and the arithmetic result plus 65536 is
given. Zero results set the zero flag.

You can’t make direct additions or subtractions of a single register to or
from a register-pair, but you could add the content of, say, C to HL,
as by:

ldb, 0 zeroise the high byte of BC

add hl, bc add BC (=C) to HL

Number Comparisons :

Without the ability to compare numbers, computing would hardly be
possible. All comparisons are made against the value in A. The mne-
monic is cp. For example cp 4,20 means “subtract 20 from the con-
tent of A, and then restore the content of A to its former value”.
Hence the valuein A is left unchanged but the comparison will have
had its effect on the flags. If A had contained 20 then the result of the
subtraction would have been 0 and the zero flag would have become
set. Had the valuein A been less than 20, then the Carry flag would
have become set. An absence of these conditions resets the flag con-
cerned; so if A contained any number other than 20 then Z would
become reset, and if it contained any number more than 19 then Cy
would become reset.

It is possible to compare the value in A with numbers from 0 to 255,
with the content of any of the 8-bit registers, or with the content of the
memory address pointed to by HL . Obviously no direct comparison
with register-pairs is possible. The mnemonic is followed by the sub-
ject of the comparison, for example:

cpa, 20 cpa,c cp a, (h)

& s

mnmw..w
& e

,‘.14\

Chapter 4 “w.ﬂ

Bit-wise Comparisons

Three of the logical operations are available for use on the content of A.
These are ‘AND’, ‘OR’, and ‘EXCLUSIVE OR’. The subject of the
comparison may be a number, the content of a register, or the content of
the memory address pointed to by HL. Suppose the comparison we
want is against the number 7, which in binary is 00000111 and that
the content of A happens to be 85, which in binary is 01010101.

1. The AND instruction leads to A containing only those bits set
that were set in BOTH of the 8-bit groups.

A contains 01010101
7 noamwmnm of 00000111
so and a,7 leaves 00000101 in A

AND is useful for ‘masking’, ie filtering-out particular bits in the accu-
mulator. If you use ‘and a,15’, for example, the 4 leftmost bits of A will
be reset leaving only the 4 rightmost in their ommmbﬁ state, but ‘and
a,240" resets the 4 on the right and preserves the others. Hence, the
accumulator could be used to receive two (or more) small numbers
from a single memory address, and these then be separated by mask-
ing.

2. The OR instruction leads to A containing any bit set that was set
in EITHER of the 8-bit groups:

A contains 01010101
7 consists of 00000111
so ora,7 leaves 01010111 in A

3. The EXCLUSIVE OR instruction leads to A containing any bit set

that was set in EITHER ONE, but NOT BOTH of the two 8-bit groups.
Hence in the example: ’

A contains 01010101
7 consists of 00000111
so xora,7 leaves 01010010 in A

These operations are also useful for their effects on the flags. They
always RESET THE CARRY FLAG and the Zero flag is set if the result is zero,
but reset otherwise. Obviously a number XORed with itself must
always give zero so the instruction xor a, 2 leaves the accumulator
empty, sets Z, and resets Cy. Alternatively, both ora,a and anda,a

wm PCW Machine Code

reset the Carry flag but leave the content of A unaffected. As indicated
carlier, they can precede the adc or sbc operations to cancel Cy.

NOTE ON NOTATION: In operations that must involve the A register,
it is not usual to refer to A. However, I have written it in so that the
structure of the mnemonic is as clear as possible. Thus I have used the

form cpa,20 and ora,a etc., whereas the more usual one is cp20
and ora.

[ump Relative

As BASIC requires the GOTO command, so m/c requires its jump’
instructions. The first of these is called jump relative’ because the
jump is made a specified number of bytes ahead or behind (ie. relative
to) the present address. The mnemonic is jr followed by the jump
distance (called the ‘displacement’), which is contained in a single byte.
Because both forward and backward jumps are required, it is necessary
to be able to specify either a positive or a negative number for the dis-
placement, and because a sign bit limits the capacity of a byte to 127,
relative jumps can be no larger. As well as the standard instruction,

there are four others that order a jump only if certain flag conditions are
met:

JrN “jump relative” jump N bytes

jre N “jump relative carry” if Cy set ditto
jrnc N “jp relative no carry” if Cy not set ditto
jrzN “jump relative zero” if Z set then ditto
jrnz N “jp relative not zero” if Z not set ditto

A value of N of 128 or more indicates that a backward jump is
required (the sign bit has an arithmetic.value of 128), the distance of
the jump being (256-N). A request for a jump back of 6 bytes on the
condition that Z was not set would be written as: jr nz 250

The count backwards or forwards is taken from immediately after the
address of N, so the first address counted in a jump back is the address
of N, and the first one counted in a jump forward is the address after
the one containing N. If you know the address jumped from (call it
‘f"), and the address jumped to (call it ‘t’), then the jump distance is

f-t+1 for backward jumps
t-f-1 for forward jumps (see diagram on next page)

Chapter 4 w“w

Addr Byte

The jr instructions have the advantage 24

of making the sub-routine ‘relocatable’,
ie. the whole of it could be moved to a
different place in memory and the
jump instructions would still be accu-
rate because they don't relate to spe-
cific addresses. They have the disad-
vantage of providing only fairly small
jumps, though this can be overcome by
leap-frogging, ie. arranging that one
jump should be to another, thus pro-

O oo [N U B |W [N
<

viding a chain of jumps. 10 | -
117 -
dinz : 12 '

This is a special version of jr. Its full o dof 9 brics
name is ‘displacement jump not zero'. JWEM% O _.cwb oA

It is used exclusively as an economical of 5 bytes 'to

way of ordering a repetitive loop. The

count for the number of repetitions .

is first put into the B register, the loop procedure is then defined and
the instruction djnz is added at the end together with the displacement
required, which is invariably negative (ie. giving a jump backwards).
It is vital of course to keep the Id b, N instruction outside the loop or
the count will be refreshed at every pass and the program will be stuck
in the loop for ever (or until you pull the plug out). That possibility
aside, the instruction automatically decrements B and ceases to loop
back when the content of B reaches zero. (Page 46 gives an example)

[ump Absolute

The third kind of jump is called ‘absolute’ because it is made to a
specified address. The mnemonic is jp followed by the address in
question. As in all such cases, the address is given low byte first. As
with jr, there are also four conditional versions, and ?94.., is also an
unconditional version that allows a jump to the address pointed to by
HL. This is useful when you require a jump to an address whose value
you don’t know when you are writing the program. You arrange for
some calculation to put the address into HL and then request the
jump to it. Its mnemonicis jp (hl). The six versions are shown on the
next page:

w# PCW Machine Code
jpNN “jump” jump to addr given by N N
jpc NN “jump carry” if Cy set ditto
jpne NN “jump nocarry” if Cy not set ditto
JPzNN “jump zero” if Z set ditto
jpnzNN “jump not zero” if Z not set ditto
Jjp (D) “jump to (hl)” Jjump to addr in HL

Increment and Decrement

The content of an 8-bit register or of the memory address pointed to by
HL can be increased or decreased by 1 by the instructions ‘inc’ and
‘dec’ respectively. Because the flags are affected mnnon&n% to the result,
these instructions are useful in counting operations. a register is
repeatedly decremented and finally reaches zero this sets the Z flag,
which will indicate that the count is complete. Additions to -and
subtractions from registers other than A are not available, so ‘inc” and
‘dec’ are the only ways of changing their contents directly.

The 16-bit register pairs can also be incremented and decremented, but
without any effect on the flags. This means that counts of more than
255 can’t be made without a bit of subterfuge, but consider:

start Id be, 10000 Count into BC
start+3 The loop
cee procedure,
dec be Decrement the count
lda,b and test
ora,c for zero.
jr nz ‘start+3’ Repeat if not zero

else continue

The count of 10,000 (or any other 16-bit number) is put into BC.
After each pass, BC is decremented and the value left in B is put into
A. The valueleft in C is then ORed with it. If either A or C is not
zero then the result will not be zero and the program will be told to
jump back and go through the loop again. When the count is complete
both B and C will contain zero and the jump back will not be made.
Loading A from B is necessary because B and C can’t be ORed
directly.

.

B
PRI

lL.
W

W

Chapter 4 wm

Call and Ret

The instruction-pair call and ret are the equivalent of GOSUB and
RETURN in BASIC. Call is followed by the 2-byte address at which
the called sub-routine starts. Ret is a 1-byte instruction needing no
address. Following a call, the Z80 works through the sub-r until it
finds a ‘ret’ and then returns to the main program where it executes
the next instruction. Before starting the ‘call’ , the processor puts its
return address onto the top of the stack, and at the ‘ret’ it collects the
address and returns to it. Obviously it must find the correct address if
the return is to be successful, so if the stack has been changed (as by a
push , for example) then it must be changed back before the sub-r
ends. (For more on stack operations see Appendix 6.)

If it doesn’t find a ‘ret’ in the sub-r then the Z80 will go marching on
to higher and higher addresses activating whatever it finds there with
usually terminal results. It is equally important that there should be no
accidental ‘ret’ in the program not associated with a ‘call’; any such
will cause an excursion to a false address and chaos. However, a sub-
r may contain any number of rets because the first one encountered
will be the only one to be activated. The processor never seesany of the
programming that follows the ‘ret’ it responds to.

There are conditional versions of both ‘call’ and ‘ret’ , and the condi-
tion for the one need not be the same as that for the other. You might
have the ‘call’ conditional on Z being set, and the ‘ret’ being uncon-
ditional, or any other combination.

Sub-routines may be ‘nested’, ie. a sub-r may be called from within
another, and ‘recursive’, ie. a sub-r may call itself, though in this case
the call must be conditional or a closed loop will be formed and the
stack will overflow. The mnemonics are :

callNN ret
allc NN ret ¢
callnec NN ret nc
callzNN ret z
cwallnzNN ret nz

Block Handling

A pair of instructions that have always impressed me with the beauty
of their conception and the convenience of their use are the so called
‘block handling instructions’. These allow a block of bytes to be copied

wm PCW Machine Code

to another location in memory. They are:

dir ie. load, increment, and repeat
lddr ie. load, decrement, and repeat

They require all three register-pairs. First you put the address of the
DEstination into DE, the address of the source into HL, and the count
of Bytes to be moved into BC, then you give the instruction.

In the case of lddr the byte pointed to by HL is copied to the address
pointed by DE, then all three register pairs are decremented. For ldir
everything is the same except HL and DE are both incremented. The
operation is repeated until the content of BC reaches zero. The original
data is left unaffected so you end up with two versions of it unless the
new one has partially over-written the old. When the operation is over,
HL and DE will both have been adjusted one extra time, ie. they will
be pointing to addresses which are just outside the data blocks.

Programming occasionally needs an area of memory to be zeroised or
filled with some other invariant byte. For areas of less than 128 bytes
a ‘djnz’ loop is the best solution, but for large ones ldir achieves the
same effect very neatly. Point HL to the first address and DE to that
address +1. Put the required number of bytes into BC, load the HL
address with zero (or whatever) and then use Idir . The DE address
is constantly loaded with what is found in the HL address and in the
next iteration HL will point to the previous DE address.

Be careful with Idir and lddr . If you call one accidentally, or if you put
the wrong address into DE, you will have discovered a super way to
corrupt your programs.

There are non-repeating versions called ldd and i respectively. A
byte is moved and the registers are changed as described above, but the
action is not repeated, though you can make them repeat by including
them in a loop. This permits other actions to be taken after each byte
transfer.

Block Comparisons

There are instructions similar to the above except they involve com-
parisons instead of copying. In cpdr , BC is loaded with the maxi-
mum number of comparisons required and HL with the first address.
The content of A is then compared with the content of the address

‘:‘
£
¢

ﬂ“q
s
L

)
=)

LU

*®
KU

Chapter 4 W.N

pointed to by HL. If these two are not the same then both BC and
HL are decremented, and the procedure repeated until either BC
contains zero or a matching comparison is found. In cpir the process
is the same except HL is incremented every time. The instructions
can be used to scan data tables for a particular byte; on return HL
points to itand Z is setifa match is found, otherwise Z is reset, HL
points to the end of the table and BC contains zero.

The repeating and the non-repeating versions are :

cpir ie. compare, increment and repeat
cpdr e, compare, decrement, and repeat
cpi ie. compare and increment
cpd e compare and decrement

Push and Po

Quite frequently there is a need to store the content of a register pair so
that the registers can be put to other uses. You can load their contents
into two available memory locations but then you will need to make a
note of the addresses. Frequently it is more convenient to use the push
instruction which puts the two bytes onto the top of the stack and
decrements SP twice. The bytes can be recovered later by a pop which
reverses the procedure. In both cases the name of the register pair has
to be specified, and a push must always be associated with a pop and
vice versa or the stack will become unbalanced with the usual results.

You can make any number of pushes before popping them if the stack
has room enough, but remember that the last pair to be pushed will be
the next pair to be popped, ie. they come off the stack in reverse order.
You don’t have to pop the same registers that you pushed so this gives

a convenient way of moving the bytes to a different register-pair. The
mnemonics are :

push af pop af
push bc pop be
push de pop de
push hl pop hl

It is not possible to push or pop a single register so A is always pushed
and popped in association with . (So bear in mind that popping AF
may restore an out-of-date set of flags.)

wm PCW Machine Code

A useful feature of push is that the register-pair is left undisturbed.
Thus if you push HL three times, you acquire four versions of it; three
on the stack and the original.

The Shift Instructions

The contents of any of the 8-bit registers or of the memory address
pointed to by HL can be shifted one place to the right or one place to
the left. The bit that is pushed out (either the most- or the least-
significant bit) is moved into the Carry flag. It is replaced by a zero
moving in from the opposite end. These operations are referred to as
srl and sla respectively.

A shift to the right halves the value of the 8 bits concerned (but loses
any fraction). A leftward shift would double the value except for the
loss of the most significant bit which must somehow be accounted for if
a true doubling is to be given. (See the second para. in “Rotations”
below.) If you start with bit No 7 reset then this point is already
covered because then no set bit is lost (in 8 bits you can double num-
bers smaller than 128, but not numbers equal to or larger than 128).

There is a second version of the right shift called sra . This leaves bit
No 7 unchanged but puts the zero into bit No 6. Hence a negative
number would not have its sign changed by this operation. The mne-
monics and full names of the three shifts are as follows ('R’ stands for
a permitted location - a register or the addr pointed to by HL) :

sla R shift left arithmetical of ‘R’
sra R shift right arithmetical of ‘R’
srl R shift right logical of ‘R’

The shift instructions play a major role in calculational procedures such
as fast multiplication and division, but they are also used whenever
bits need to be tested one at a time. The fact that the end bit is moved
into Cy at each shift makes it possible to take alternative actions ac-
cording to whether the bit is set or not. Appendix 1 gives diagrams of
these instructions.

The Rotation Instructions

The rotation instructions permit a right- or left-ward movement of the
same locations as the shifts and find use in the same applications, but

'

Chapter 4 39

instead of shedding the end bit it is fed back in at the opposite end.
There are four such instructions, the first two of which are rr and rl;
ie. “rotate right” and “rotate left”. In the rightward version, Cy is put
into bit No 7 and bit No 0 is put into Cy, thus making ita 9-bit
rotation in effect. The leftward version is similar except for the dircc-
tion of movement - Cy finishes in bit No 0 and bit No 7 in Cy.

In a pair of registers we can obtain a true doubling by treating the Low
Byte with sla followed immediately by rl on the High Byte. The first

instruction puts bit No 7 into Cy, and the second transfers it from Cy
into bit No 8.

The remaining two rotations are rrc and rlc which mean “rotate right
cyclical” and “rotate left cyclical” respectively. They are 8-bit rotations
with the displaced bit being reflected in Cy. They allow for sequential
bit checking without the loss of bits. Appendix 1 gives diagrams.

'Rotate Digit' & ‘DAA’

There are two rotate instructions for use only in BCD calculations.

They rotate bits 0to 3 of A with the bits of the address pointed to by
HL four bits at a ime. These are :

rld rotate left digit
rrd rotate right digit

‘rld” operates through the following sequence; bits 0 to 3 of the HL
address are moved to bits 4 to 7 of the HL address, bits 4 to 7 are
moved to bits 0to3 of A, and bits 0to3 of A are moved to bits 0
to 3 of the HL address. ‘rrd’ operates on the same bits but with a
rightward shift in the HL address. BCD stores its numbers in sets of
momn bits, and these operations allow each set of four bits in the address
pointed to by HL to be examined separately in A. ‘Decimal Adjust
Accumulator’ has the mnemonic ‘daa’ and is used solely in BCD calcu-
lations. See Chapter 14.

Exchanges

The contents of HL and DE can be exchanged by ex hl, de. This is
useful because HL is the only pair that can act as the totaliser in ‘add’,
‘sbc’, etc., so in a sequence of arithmetical actions you need to keep
preserving its contents whilst freeing it for the next one. It's a pity

40 PCW Machine Code

there is no version involving BC. The instruction ex sp, (hl) takes the
top two bytes from the stack into HL and replaces them with the two
that were in HL. There are other exchange instructions but on the
"PCW’ their use is fraught with complication.

Carry Flag Instructions

Reset There is no instruction to reset Cy but this can be
done by ora

Compl The instruction to complement Cy is ccf. This sets
it if it is reset and vice versa.

Set To set the flag use scf.

Neg, nop and complement

Neg a nop are not connected but they go well in a title. ‘Neg’ means
‘negate the contents of the accumulator. It complements the contents
of A and adds one, thus giving the so called ‘twos complement’
which is equivalent to subtracting from zero. If a subtraction has taken
the contents of A below zero, then ‘neg’ has the same effect as the
BASIC command ‘ABS’. (See Appendix 3.)

‘Nop’ doesn’t do anything, literally. It stands for ‘no operation’, and
its code is zero. Not the most fruitful command, you might think, but
bless the foresight that included it. If the Z80 encounters a sequence of
zeroes it happily marches through them without doing anything injuri-
ous. Thus a gap between two parts of your program is no problem if it
is zeroised. You can also put zeroes in place of bytes that you want to
eliminate; this ensures that no addresses will be changed, and that all
the ‘j¢ distances are preserved.

There is an instruction for complementing the contents of the Accumu-

lator: cpl. This resets all set bits, and sets all reset bits _(thus giving
the ‘ones complement’ of the valuein A). ‘

Lots of Bits .

There are three operations that can be applied to any bit of the registers,
or of the address pointed to by HL. They are:

Chapter 4 L..d

res N, R set N, R bit N, R

N is the bit No, and R is a register or the memory address. ‘Res’
means ‘reset this bit’, and ‘set’ means ‘set this bit’.

res 6,(hl) reset bit No 6 of the HL address
set 3,b set bit N 3 of register B

The ‘bit’ instruction allows you to test-any of the bits to see if it is set
or not. The answer is provided by the Zero flag. A zero bit gives Z
set. A ‘1’ bitgives Z notset. (Inlogical parlance the bit and Z are ‘in
complement’.) Suppose D contains the value 64 whichis 01000000
in binary. The following results would be obtained :

bit7,d Z set Z=1

bit6,d Z reset Z=0

bit 5,d Z set Z=1

bit4,d Z set Z=1
etc....

The ‘bit’ instructions can be used for testing flags that the programmer
has devised for himself. You may have decided, for example, to use the
8 bits of a memory address as a block of 8 flags in which sub-routines
will record the outcome of their operations. Later routines can then use
bit’ to discover what had occurred in earlier sections of the program,
so ‘bit’ has become a means of communication.

Addressing Modes

Authors more stately than me find use for the following terms:

immediate addressing
direct addressing
indirect addressing
implied addressing
and relative addressing

I include them only because they are part of computer mythology.
They are not exactly w-language because no simpler alternative
phrases exist, it is just that I have not so far ever found a use for them.
They suit people who like labels.

42

Chapter 5
Writing a sub-routine

Without doubt the most convenient way of writing an m/c program is
to use an Assembler, which is a professionally prepared piece of soft-
ware (ie. of programming) that may come in a variety of forms.

When using one sort you load the package into the computer before
starting to write your own program. When it is in operation, you type
in the mnemonics you require in their intended order. With the other
sort you type your mnemonics into a separate ASCII text file which
later you subject to the assembling action of the Assembler program.

Both sorts have a built-in dictionary that they use to translate the
mnemonics into machine code bytes, which can later be placed in
memory starting at the address that you selected as the™ origin for
your program, and they usually run through your program twice be-
cause that is the only way to establish the truc addresses for jumps. All
professional programmers employ assemblers of one kind or another.
If you intend to progress into commercial work then a knowledge of
Assembler programming will eventually become essential, though for
the hobbyist there are other possibilties.

Chapter 5 43

The main disadvantage of Assembler packages is that they cost money.
The very simplest are priced in the region of £50, the most advanced
professional versions are several hundred pounds. The more you pay
the more you get, but what you get is not necessarily pro rata to the
cost, so it is wise to be discriminating before you part with your money. .
The risk is that if you go for economy then you may soon find that your
purchase doesn’t cover your requirements (does it handle the whole
instruction set, doés it give you code that you can move if you need to,
and what about linking programs together 7). Alternatively, if you
‘go for the best’ then you may regret having spent good money on
features you don’t need and perhaps can’t even understand.

Computer folk have not always shown themselves to be brilliant at
communicating with actual people, and the worst features of assem-
blers can be the documentation, which often seems to be based on the
assumption that everyone already knows what they do and how to op-
erate them. The PCW Utilities actually include two free assemblers,
but they are tricky ones to use and are supplied with no instructions so
getting then into operation is not easy, but if you are interested it is
worth a try.

To get round some of these problems, before buying one I'suggest that
you work through the present chapter and get as much practice with
programming in the way outlined as you can because this will give you
an insight into what m/c is and how it operates and that may help you
with your final choice. (My own final choice was to write my own
‘Code-Insertion System’, which now does everything I want, includ-
ing printing out the mnemonics with their code bytes and addresses. It
gave me many happy hours at the keyboard sorting through the sub-
routines I needed and it didn’t cost me anything.) If you already have
an assembler then this chapter may still be helpful in broadening your

understanding of m/c in a way that using professional software might
not.

Throughout the chapter I have elected to write all bytes in decimal
because I can be sure that everyone will understand that, though not
everyone knows hex, and also because decimal is easier to input
through the keyboard. In case you think that decimal is somchow
‘wrong’ or ‘inappropriate’ for computer use, then bear in mind that the
computer has no truck with hexadecimal either. Its own language is
binary and it is binary that finally whispers through the printed cir-
cuits. What we use to produce the whispering is best decided by
convenience.

44 PCW Machine Code

A BASIC program to insert mjc

Load BASIC into the machine and then type in the following short
program. When you have checked it over, SAVE it under some short
name such as “mc” (short to avoid unnecessary key-jabbing).

100 CLEAR, 49999

110 FOR n = 50000 TO 50100: POKE(n),0: NEXT
120 RESTORE

130 FORn=0TO 500: READ k

140 IF k=99 THEN STOP

150 POKE(50000+n)k: NEXT

200 DATA0,00
490 DATA 201, 99

500 z =50000: CALL z: STOP

1000 FOR n = 50000 TO 65535

1010 PRINT n; TAB(12); PEEK(n)

1020 a$ = INKEYS$: IF a$ = “” THEN GOTO 1020
1030 NEXT

What does it do ?

Line 100 Restricts BASIC to address 49,999 and below,
thus freeing address 50,000 and above for our m/c use.
(Up to 62980. Above that is reserved for CP/M.)
Don't forget the comma.

Line 110 Zeroises the first 101 addresses, thus erasing all traces
of previous programs.

Line 120 restores the data pointer to the start of data.

Line 130 allows for the reading of up to 501 data bytes.

Line 140 stops the READ when the last byte ‘99" is found; the 99 is
a marker to indicate that the end of data has been
reached.

Line 150 pokes each byte into the next address in sequence
starting from 50,000.

Lines 200 to 430 are for DATA lines into which we will put the
bytes of our m/c programs ready for insertion into
memory.

Chapter 5 45

Line 500 runs the m/c program through the instruction “CALL=Z",
‘Z’ having been set to 50,000. This directs BASIC to
hand operations over to the m/c program that it will
find at address 50,000. After it has run, the m/c
program must arrange to make a return to BASIC
when its task is complete

Using the program

“Run 1000" allows inspection of the bytes that are in place from 50,000

upwards. Each is shown with its address. Press any key to display
additional bytes, and ‘STOP to exit the list.

If you now input “run”, you will get the report Break in 140. Ok’
indicating that the BASIC program has run through, found the 9%
byte and then the ‘STOP’ command.

If you input “Run 1000” followed by an extended key press then a list
of addresses starting at 50,000 will be given on the screen, each associ-
ated with a zero except for 50,003 which will have a ‘201" beside it.
This indicates that the three zeroes from Line 200 have been put into
memory followed by the ‘201" from Line 490. Press ‘STOP to exit
the list.

If you input “run 500” at this stage you will get ‘Break in 500. Ok’
showing that the m/c program at address 50,000 has been run and the
‘STOP’ in Line500 encountered. In factthe ‘m/c program’ consists
of only three ‘nop’s and the byte for ‘ret’, whichis 201. Hence the
machine simply went to the routine and returned from it without doing
anything while it was there. However this makes the point thata ‘ret’
is essential if you are to terminate the m/c program and successfully
regain control by a return to BASIC.

In this chapter I have written out the bytes that need to be put into the
DATA lines. When you use the insertion program for yourself you
will look up the bytes from Appendix 1 and write the DATA lines ac-
cordingly. : |

A mini proeram

Type the following line and add it to the listing, then SAVE the pro-

46 PCW Machine Code

gram under a slightly different name such as “mc1”. (This is a way
of saving a range of different programs without changing the funda-
mental one that you can LOAD whenever you need it, though with
important programs you will probably want to call them something
more distinctive.)

200 data 67, mwhc\ 33,100,195, 119, 35, 60, 16,251

After saving the modified program enter “run”. Then “run 1000”
followed by a keypress to reveal up to address 50028 or there abouts.
The list of addresses and bytes will now show the above sequence of
numbers followed by the ‘201’ from Line 490, with zeroes thereafter.
The numbers were inserted into memory by Lines 130 and 150.

If you now enter “STOP” , “run 500”, followed by “run 1000”, you
will find additional numbers in memory starting with ‘10" at 50020
rising to ‘16’ at 50026. These numbers were inserted by the machine
code program whose bytes were derived from the following mnemon-
ics :

db,7 6 7 Put the count 7 in B

lda, 10 62 10 Put 10 into A

Id h1 50020 33 100 195 Put 50020 into HL

Id(nl)a 119 Id the HL addr from A

inc hl 35 Increment HL

inca 60 Increment A

djnz -5 16 251 Jump back 5 bytes if count not zero
ret 201 Else return [to BASIC]

The mini-program illustrates the ‘djn2’ instruction and ‘djnz’ is the last
but one mnemonic. It starts by putting an arbitrary count of 7 into B
(which is always the count register for ‘djnz’), though any count up to
255 could have been chosen. The arbitrary number 10 is then loaded
into the Accumulator, and HL loaded with the start address (I chose
50020 because it is close to the program bytes and therefore convenient
to inspect).

The next five bytes now form a loop that is to be repeated B times.
This loop puts the value in A into the address pointed to by HL and
then increments both A and HL before looping again. , Hence the
sequence of numbers 10, 11, 12, up to 16 will be inserted into
consecutive addresses starting at 50020.

Now change the end of Line 140 from “..THEN STOP” to “..THEN

Chapter 5 47

GOTO 500”, and replace the ‘10" in Line 200 with “252". The first
change cuts, out some key pressing by running the m/c program
straight after loading the bytes into memory so you no longer need to
enter “run 500”. SAVE then enter “run”.

“Run 1000" should now give a sequence at 50020 that reads
252, 253,254, 255, 0, 1, 2

Notice that the increments to A increased it to the maximum value of
255 after which it zeroised and continued the count from there. This is
much like a mileometer which, after showing its maximum value of all
O's, starts again at zero. All the registers act like this, and you get the
reverse sequence if you decrement them.

To obtain the size of the jump back, the first byte to count is the ‘251"
Then count back to and including the first byte that you want to loop
from. I draw arrows for the jumps on the listings of my programs so
the logic of the routine is clear and so the impact of any changes can be
seen at a glance.

Had this been a forward jump then the first byte to count would have
been the ‘201" and the count would have been up to but NOT includ-
ing the byte you want to resume operating from. For backward jumps
you subtract the jump size from 256 as indicated in the description of
the instruction on page 32.

Testing the flags

EDIT line 200 by erasing the last two numbers, then add line 210
below. The program will then LIST as:

200 DATA 6,7, 62,252, 33,100,195, 119, 35, 60
210 DATA 200, 16,250

When you have SAVEd and RUN this, “run 1000 should reveal that
addresses 50025 and 50026 contain ‘0', not ‘1’and ‘2’ as they did
previously. This is because the mini program is now as indicated on
the next page. In this the instruction ret z checks the zero flag during
each pass of the loop. In the first four passes it finds Z not set so the
routine proceeds as before (except that the jump back is now 6 bytes
not 5 due to the presence of the '200").

48 PCW Machine Code
db, 7 67 Put the count 7 in B
Ida, 252 62 252 Put 252 into A
Id k1 50020 33 100 195 Put 50020 into HL
ld(hl)a 119 Id HL addr from A
inc hi 35 Increment HL
inca 60 Increment A
ret z 200 Return [to BASIC] if Z set
djnz -6 16 250 Else jump back 6 if count not zero
ret 201 Return [to BASIC].

The instruction ref z checks the Zero flag during each pass of the loop.
In the first four passes it finds Z not set so the routine proceeds as
before (except that the jump back is now 6 bytes not 5 due to the
presence of the ‘200"). However, during the 5th pass A is zeroised
from 255 and this sets the Zero flag. On finding Z set ret z orders
an immediate return to BASIC so that no further values of A get put
into memory.

Now EDIT line 210 to read:
210 DATA 214,100, 216, 16,248

The mnemonics for the program are now :

ldb, 7 67 Put count 7 into B

Ida,252 62252 Put 252 into A

Id h1 50020 33 100 195 Put 50020 into HL

ld(Mh)a 119 ld HL addr from A

inc hl 35 Increment HL

inca 60 Increment A

suba 100 214 100 Subtract 100 from A

ret ¢ 216 Return [to BASIC] if Cy set

djnz -8 16 248 Jump back 8 bytes-if count not zero
ret 201 Else ret [to BASIC]

When the program is now SAVEd and run, inspection shows that the
sequence at 50020 and aboveis 252, 153, 54, 0, 0, 0 etc.

During each loop, 100 is subtracted from the valuein A and the Carry
flag is checked by ‘ret ¢’. In the first three loops Cy is found not set
so the program continues. In the 4th loop the subtraction takes A
below zero thus setting Cy so ‘ret ¢’ orders an immediate return to
BASIC and no further numbers are inserted into memory. Notice that
the jump size is now -8 because of the extra bytes.

nw e

Uy

1

{
.i.‘

r~—

1

)
¥

B

’
)

M
-
f

<

&

L

W

Chapter 5 49

Multiple Choices

The following development of the mini program illustrates how differ-
ent actions can be taken in different circumstances. Iwant to add 100
to the valuein A ateach pass through the loop, starting with 7; if the
result is less than 100 or more than 199 then I want that value to
appear in memory, but if it is in the range 100 to 199 then I want ‘0
to appear in memory. The program is longer and overlaps 50020 so
the HL address has been moved up to 50029 so that the program
doesn’t overwrite itself (ie. it doesn’t insert inappropriate bytes inside
the program) and cause a crash.

Idb, 20 6 20 Put count 20 into B

lda,7. 627 Put 7 into A

Id k1 50029 33 09 195 Put 50029 into HL

inc hl 35 Increent HL

add a, 100 198 100 Add 100 to A

cpa, 100 254 100 Compare A with 100

jrec9 56 9 If A <100 jump on

cpa, 200 254200 Compare A with 200

jrncé 48 6 If A # 200 jump on

ldml)77 540 Put 0 into HL addr

dinz -15 16 241 Jump -15 bytes if count not zero
jr3 24 3 Else jump 3 bytes

ld (hl) a 119 Id HL addr from A

djnz -20 16 236 Jump -20 bytes if count not zero
ret 201 Else ret [to BASIC]

The DATA lines for the program should be changed to contain the
bytes shown in the ‘above listing. When it is run the numbers inserted
into 50030 and above are as follows : 0, 207, 51, 0, 251, 95, 0, 39, 0, 239,
etc. There are no values between 100 and 200, which was the intention.
If it were for actual use the program could be made much more elegant,
but this inelegant version is easier to follow (which is usually true).

Strategy of the sub-r

Call the content of A ; (a). The strategy of the routine is that during
each loop (a) is compared with 100 and if it is found to be less than
100 then Cy will become set and a jump made to the ‘Id (hl), a’ in-
struction. If (a) > 99 then a second comparison is made, this time
against 200. If this does NOT set Cy (because (a) >199) then again
ajump is made to ‘Id (hl), a". For all other values the program goes to

50 PCW Machine Code

Id (hl) 0’. Whichever route is follawed, when the count reaches zero
then the program ends.

Instructions and bytes

Itis as well to bear in mind that it is the bytes in memory that cause an
m/c program to have its effects. The processor reacts only to bytes
and produces only bytes. The mnemonics are not instructions, though
for convenience we speak of them as such. They are no more than what
their name suggests; a reminder and a summary of the instructions
that their associated bytes bring into action.

Most m/c instructions require 1or2 bytes. Some require 3, and a
few require 4. None requires more than 4. Inall 1-byte instructions
the byte is called an opcode (short for operation code) because it is
a code that leads to the Z80 performing the specified operation. In
many 2-byte instructions the two bytes make up the opcode (ie. it
takes two bytes to specify the operation concerned), though some con-
sist of an opcode and a defined byte.

A defined byte (abbreviated to DEFB) is one that you specify the
value of yourself to suit your own requirements. A defined word
(DEFW) is two associated bytes (ie.a High and a Low Byte) that are
defined by the programmer, such as an address. Most 3-byte instruc-
tions consist of an opcode and a DEFW ; IdhINN for example. All
the 4-byte instructions that we will be using have two bytes as opcode
and two as a DEFW. (For the sake of completeness: a DEFM is a
defined message, and a DEFS is a defined string. Both consist of a
string of ASCII codes.) .
A slightly cut down set of Z80 mnemonics is listed in Appendix 1
with their decimal opcodes and the number of DEFBs required. These
should be used when compiling for the BASIC insertion program.
DEFBs are shownasan ‘N’, and DEFWs by ‘N N.

You can of course use any of the instructions in the set but some that I
haven’t listed are tricky because of the way in which the CP/M oper-
ating system has a prior claim on them. It is not a good idea to use the
index registers nor the alternate registers, and the instruction ‘halt’ is
not to beused. CP/M has its own way of sorting out the interrupts.
I have restricted programming to the registers and mnemonics de-
scribed in the text and have been little inconvenienced by this. From
now on I suggest you make a point of using Appendix 1 to compile

M
I ’?

{
i

d/

)

i

Aot
a o

t
o

&€l

Chapter 5 51

and run as many test routines as you can. In the course of this,
problems will inevitably occur, but it is in finding the causes that you
will increase your skill as an m/c programmer, and having a m&.&&
that you really want to get to grips with is worth any number of ‘five-
finger-excercises’.

Using an Assembler

If you are intending to buy an Assembler then the following brief
description may be of help. They are not all alike so full details are not
possible, though the basis of their use is fairly standard.

The Assembler version of the mini-routine might look something like
the following (but with the addresses and a byte-count down the left

~side). First you specify where you want your program to be placed in

memory by an ‘org' (origin) instruction, and then define the value
constants you require, as by fred equ 99 or 99 = fred . All future uses
of fred will then imply this value. The words ‘start!, ‘loop’, and
‘end’ are labels that mark places within the listing, to which you spec-
ify your jumps without having to count the jump distances. You can
also insert notes down the right side (like REM statements) to explain
features of the program.

org equ C350h
count equ 7
first eq 10
addr equ C364h
start ldb count

lda first

ldhl addr
loop ld(nl)a

inc hl

inca

djinz loop
end * ret

92

Chapter 6

Practical Programming

The cardinal and most worthy rule of computing is that programming
always starts with an algorithm and the drawing of a flow diagram.
An algorithm is a ‘logical route’ by means of which the program is to
achieve its objectives, and the flow diagram shows the sequence of the
operations that it will follow. The better class of diagram employs the
standard symbols that have been agreed for this purpose; choices are
put into diamond-shaped boxes, operations into square ones, etc.

Short routines of the type we have been discussing hardly need such
thorough treatment, though it is obviously a good idea to start as you
intend to go on, and practice with a desirable technique is always itself
desirable, though in all conscience I feel I should say no more about
algorithms because I use them very rarely and tend to have more
trouble with getting them right than I do with assembling a program
in cold blood, but don’t be put off by me.

My approach is that if I can conceptualise a sub-routine quite clearly
then I get straight on with assembling it, and only if I am unable to
grasp its logical niceties with exactitude do I get down to planning it
out in this formal way. This leads me into the ultimate computing sin
of drawing-up a flow diagram only after I have made a bindles of the
programming - and they drum you out of the Worshipful Society of
Computer Studies for far smaller crimes than that; though not being a
member affords some protection of course.

.

nmoe

P R

1

®
i
LH)’

} H
; H
1

»m
i

m
b —— ———

I

m

v

7
@ W ww w

3

™
oo

Chapter 6 mw

A generally agreed approach that I do regard with enthusiasm is that
of splitting up a large program (and even a not so large one) into well
defined tasks and making each of these into sub-routine that is called
from a ‘central’ or ‘executive’ routine. This is in any case necessary
if any of the sub-r's need to be called from more than one location, per-
haps even from within each other. The ultimate development of this
would be that the executive routine consisted of nothing but a se-
quence of ‘call’ commands terminating with ‘jr start’, though Idon’t
recommend aiming for this unless there is a well thought out justifica-
tion for it.

If I have any regard for flow diagrams it is for their value for sorting
out the executive routine, though I think they neced some kind of perk-
ing up so that you can more easily follow the ‘jumps’ and the ‘calls’,
and discriminate between them.

Library Sub-routines

Each program gives rise to its own particular sub-routines, but there
are some that can be used more or less unchanged in program after
program. Good examples would be the arithmetical procedures such
as multiplication and division, which are likely to be necded in a wide
variety of applications. There is no point in working them out afresh
for each occasion so once this has been done they can be stored for
future use. In this way a programmer builds up a library of proce-
dures that suit his needs, and using ones devised by other people is
Moo: as sensible not plagiaristic provided you give credit when it is
ue.

I started my library on disc, each sub-r being stored separately under
its own name, but I soon found this to be cumbersome and I aban-
doned the idea. I now keep the most useful ones alongside my code-
insertion routine so they are all inserted into memory at the same time,
it being much easier to erase unwanted ones than to go scarching for
those that are needed.

I also find it essential to keep a written version of everything in a
loose-leaf binder so that the details can be looked up and the need for
modifications seen at a glance. However accessible information on

the screen may be, there is something a bit more readable about paper-
work.

54 PCW Machine Code

QOreoanising the Memory

My first job when I start a new venture is to allocate regions of mem-
ory to the various duties that will need it. These are usually:

Variables : data, especially the results of calculations

Major strings : long phrases and pages that will be printed
or screened

Minor strings : short phrases, words, and print instructions

Major routines : usually those user-selected from a menu

Minor routines : usually those called by major routines

You may also require storage areas for data of a non-variable kind,
and for temporary records that will eventually be filed.

It is better to assess the memory requirements of these various duties
fairly generously at the start because if they over-run their allotted
areas then you will have to move everything to make room. Without
doubt the room required by the strings will be far more than you
expected, so allocate them plenty of space. I tend to be mean and try
to shoe-horn everything into the least memory so none is wasted, but
don’t be tempted by this. If it turns out that you were over-generous
then you can move everything closer together when you have finished
if you want to, and that gives a much nicer feeling than leaving out
features that should be included just because you don’t want the la-
bour of shifting something so you can fit them in. Moving things
always means changing lots of addresses and that can be laborious
even if you have been shrewd enough to access everything through
jump-tables. (See Appendix 8.)

All working programs put information of some kind into memory
through the actions of their sub-routines, and as with everything in

computing there are two irreconcilable views on how this should be.

organised. One view is that data should be placed close to the sub-r
that produces it so that the relationship between them can be seen
more easily. The other is to keep all data in a single reserved data area
regardless of its source. Having tried both I tend to prefer the second
on the grounds that sub-routines frequently use each other's output
and having the data all in one place makes it easier to keep track of.
Though, just to be contrary, Isometimes do it the other way because
in that particular application it scems to meet needs better.

The so called variables make up this data. Even if there is no pro-
gram need for a sub-r to put information into memory (it could pass it

LEJ

T

(3

"
W W

]
v

(¥
—rrTrr

W

14

i
r—rr

m & | |
OV W w

[l

Chapter 6 mm

on in the registers'), there is still an advantage in using memory stor-
age, even if only temporarily, because bytes inserted into memory can
be inspected at leisure and the accuracy of the routine producing them
assessed, but data kept in the registers is immediately overwritten by
later activity so you can't interrupt operations to discover it.

Having apportioned memory, I then rule a sheet of A4 with columns
ready to receive the addresses and the names of the variables that I
will generate during the programming. I make a point of providing
them with a whole page, which is invariably more than enough. (A
computer ‘page’ is any block of 256 addresses that starts with a Low
Byte of zero.) Ialso give each variable the address(es) it needs solely
for its own use, ie. I rarely share an address between two variables
even if it seems that there could be no clash between them. You never
know how the program will develop later, and there will be confusions
enough without generating uncertainty about which number it is that
you are looking at.

I also try to allocate an easily remembered High Byte to the variables
addresses, and put the important ones in first. It is surprising how this
aids memory, and that, together with only a single record sheet to
inspect, cuts out much laborious thumbing through endless sheets of
program details to remind yourself of the address at which something
crucial is stored. Attention to seemingly trivial points like these can
quintuple the ease and pleasure of writing programs, and ignoring
them can have the same effect on the late-at-night-exasperation index.

Programs vary very widely in their need for strings. Calculational
routines may need little more than the ability to report the results, but
in interactive ones, where there is a lot of correspondence with the
user, strings may occupy more memory than any other feature, and
you can be sure that ALL your programs will need strings for error-
reporting. So certain is this need that your error-handling routine
and the strings associated with it are excellent candidates for your
library. (At least the user may have to be notified that a disc is full or
that he has pressed the wrong key; see Chapter 13.)

The PCW's memory plan

The PCW's operating system is CP/M which requires two sections
of memory for its own use. The first is page 0 (0000h to OOFFh, ie. 0
to 255 inclusive) so this is not available to the programmer.

The highest memory address plus 1 that is available is recorded at

56 PCW Machine Code

0006/7h, and inspection normally yields F606h or (6,246). This ad-
dress and those higher are used by CP/M and hence are never avail-
able. (The presence of an RSX program will be recorded by a change
in this stored address.) In addition, memory down to about (128,242)
is used during program loading so you cannot load a program that
would extend above this, but you can use this region once the pro-
gram is in. When Mallard BASIC is in place it occupies from 0100h
to 7A9h (256 to 31382), not including any BASIC lines that you
may have programmed in. The CP/M stack grows downwards
from F60Ch [ie from (0,246)]

The memory areas available for program use can therefore be summa-
rised as indicated below:
BASIC in place from 46080 B400h (0,180)
to 61440 FOOOh (0,240)

BASIC not in place from 256 0100h (0,1)
to 61440 FOOOh (0,240)

The lower limit with BASIC in place will naturally depend on the size
of the BASIC program. You can have it calculated for you by enter-
ing the BASIC command: print himem - fre(*”)

HIMEM is ecither the address at the top of the TPA (see the next
paragraph) or the address in the last CLEAR instruction if one has
been used. (The definition of HIMEM given in the manuals is
garbled.) fre(“”) gives the number of bytes of free space from the
top of the BASIC program up to HIMEM. Hence subtracting one
from the other gives the address at the top of BASIC. My upper
limits are cautious but they still make 15k available when BASIC is
in, and nearly 60k available when it is not. (Sec diagram opposite.)

The operation of CP/M

Page 0 (ic. 0000h to OOFFh) isused by CP/M for the Z80 restart
areas it contains and also for storage of its own system variables. The
area above this up to F605h is called the TPA, which stands for
‘Transient Program Area’. This is the area in which all user programs
are placed (including BASIC and the ones you write). The arca
above the TPA, ie from F606h up to FFFFh, is occupied by the main
CP/M systems which are referred to as BIOS and BDOS. These
stand for Basic Input/Output System, and Basic Disc Operating
System, (but are not related to the language BASIC .)

o

U

nn e

3

1

T

\

i
T

'
¥
H

m D DD MD
W www

Li}

roEy

TroTr

Chapter 6 m.N

FFFF (255.255) Using BDOS
CP/M Most of our m/c contact with CP/M
will be through BDOS, which con-
F606 6246) tains a Hmnmmmncu&mn of functions
Loading (sub-routines) that allow the PCW to
Progr work as it does, and which are avail-
F280 . able for our use once we’'ve sorted
(128,242) - them out. You seclect the one you
want by putting its BDOS function
number into the C register, and
then you call the address 0005h; ie
Basic (5,0). At the same time DE is usu-
Progr ally loaded with additional informa-
tion that BDOS may require such as
7A% (150,122) an address at which to find some-
thing. (Using BDOS is described in
Basic Chapter 7.)

0100 (VY]
P d
CP/M rogram spee

0000 0,0 Each of the Z80 instructions re-
quires a specific amount of time for
its completion. This time is meas-
ured in “T-states” or ‘clock cycles’.
The length of a T-state is deter-
mined by the speed at which the computer’s internal clock is set to run
(the ‘clock’ is an oscillating crystal), which in the case of the PCW is
4 million pulses per sccond, thus setting the length of a T-state to
0.25 micro-seconds. So short a time may scem too little in which to
achieve anything, but as micro-processors measure their internal
events in nano-seconds (thousandths of a micro-second), then evena
fraction of a micro-second seems like a lazy morning to it. Appen-
dix 2 tabulates the clock cycles for the major m/c instructions.

The Memory Plan

As with BASIC, alternative m/c programming routes are almost al-
ways available and it is usual for inspection of a completed program to
show that savings can be made in its run-time. This can be important
in routines that involve a large number of re-iterations ; if a single cal-
culation takes a thousandth of a second (a long time in m/c terms),
then saving half of this will not be noticeable to the operator, but if the
application is to repeat the sequence a million times then the saving
would cut the run-time from nearly 17 minutes to only 8.

58 PCW Machine Code

In addition to these practical considerations, programmers generally
take pride in producing the most elegant program. ‘Elegance’ is not
so easy to define, but it is something along the lines of ‘style’ in
design work, though its most noticeable parameters are those of com-
pactness (economy of the use of memory space) and speed. How-
ever, the pursuit of speed is best carried out after the program has
been shown to run properly. Effectiveness outranks elegance by sev-
eral battalions, and as | once heard it expressed; “However ashamed
you may be of the engine, you can take comfort from the fact that
drivers never look under the bonnet.”

It is often counter-productive to opt for methods simply because they
are fast. Push de works nearly twice as fast as Id (Addr), de but re-
cording the content of DE for future inspection may be worth any
number of saved micro-seconds. And if the sequence onto and off the
stack turns out to be inconvenient, then you may spend more time in
revamping it than has been saved.

Unless you are programming something very special indeed then you
have my personal guarantee that your original un-cleaned-up as-
written version will run quite fast enough. The search for speed is a
bit like insisting that a hi-fi should have linear responses in the ultra-
sonic range as well.

My apocryphal story about it concerns the five minutes I once spent
making sure that a sub-r was working at absolutely peak revs, only to
notice on completion that it was a procedure that arranged for the
program to stop to await a key-press ! .

Whilst your own m/c sequences will be fast enough in all normal
meanings of the word, CP/M is a highly complex set of interacting
sub-routines and calls to it may invoke thousands of unscen opera-
tions. Naturally these take time. The print instructions are particu-
larly involved and economies made with them will be noticeable. It is
much quicker, for example, to move to a print-position in a single
bound than to crab across the screen to it one column at a time.

Outputting text through the printer seems fast in typing terms but it
takes infinitely longer to print a character than it does to transfer one
to the printer buffer, so the processor is kicking its heels during most
of the printing operation. If instead of printing a long piece of text all
in one go you can feed it in chunks of say 256 bytes at a time, then
you may be able to process other batches of work while the physical
printing is taking place.

Chapter 6 mm

Care with program writing

If you are to use an assembler then its paperwork should give details
of where its own routines reside in memory and where you can order
your own to be written. It will also store the named variables to suit

itself so you won’t need to define a separate variables area in most
cases.

If you are to use BASIC in the way described earlier then you can
isolate your programming arca by the Clear, Addr command. Natu-
rally this address must be above the highest address that your BASIC
program has need of or the two will try to overwrite each other. Al-
though this is such a simple principle, you will suffer a lot of frustra-
tion from not attending to it properly. Even if the CLEAR command
is in the program it must be RUN to have any effect, and if you add to
the BASIC program then you may need to CLEAR to a higher ad-
dress. You can find out how much room is available above the BASIC
program by entering: print fre (“ *)

Whatever the means of writing it, you must ensure that in operation
the m/c program does not insert anything into the restricted areas;
those occupied either by CP/M, by the Assembler, or by the BASIC
insertion program. It should also not insert bytes into itself unless it is
of the so called ‘self-modifying’ type. If this happens (because a
sub-routine has miscalculated an address, say) then these programs
will no longer be reliable and at best the system will operate unpre-

dictably. It might even corrupt your discs, so release them when there
is any risk.

Friendly Advice
(based on lots of personal experience)

I have to admit to being not a little ashamed of some of my wn reac-
tions to inexplicable errors. It is the easiest thing in the world to curse
the machine, its makers, Zilog, the author, Caxton, the cat, and the
government for conspiring against you when some detail will just
NOT come right. In my case it was always me that had made a
booboo, and in your case it will be you. The number of BF errors that
you will make will astonish you, and I still haven’t found the answer
to the pitfall of reading into a listing or into a picce of text the thing
that [expect to see there.

@ O PCW Machine Code

If you give the Z80 a good set of input bytes then it will respond
unfailingly with a good set of output bytes, but if you make a mistake
it has no way of knowing that you intended something else and will
always assume that you are as infallible as itself. Checking over your
m/c programs before you use them is the only way of revealing errors
in good time. After all you are speaking directly to the heart of the
computer, and, having bypassed everyone else’s programming, there
are no friendly error messages available, and no-one else’s housekeep-
ing to take care of you. 100% accuracy with your input will therefore
be just about enough. '

A usual effect of a program error is ‘lock-up’; ie. the computer no
longer responds to the keyboard and your only option is to pull the
plug out and start again. Even if there is no lock-up, if something
totally unexpected occurs (the screen may become sprinkled with gib-
berish, say), then you should restart even if there seems no need be-
cause you will have no idea what other mischief has been done. It is
better to stop, clear the computer out and reload, rather than soldier
on with unreliable material that may have been corrupted in ways that
you can't easily detect.

For this reason it is essential to put every m/c program onto disc
before trying it, otherwise you could lose several hours of program-
ming cffort when the program crashes. Even in cases where you have
made only a slight modifications, record the program again before
using it. Otherwise you may lose your modifications and not be able
to remember what they were.

With larger programs I make a rule to have at least one unused ‘pure’
copy on disc - one that I know has not been run and therefore can't
have been corrupted by hidden errors, but there is obviously a limit to
the number of back-ups you can keep, and in this application “the
more the merrier” is NOT true. If you keep too many taken at differ-
ent stages in the development of a program then you’ll forget in what
ways they differ and be worse off than if you’d kept only one of whose
history you are certain. At the time, keeping written records secems
tiresome, but if a problem arises a week later you'll be glad you did.
The best policy is to devise a system of your own and stick to it.
Professionals frequently use a 3-generation “Grandfather, Father,
Son” system. ‘Son’ is the latest version, and a ‘grandfather is dis-
carded when each ‘son’ is born. ‘

_ﬁ.,.;z-
)V d

o

i i |

"
ﬁ—

m
,‘B

T

Ea'n'aat

~x
W

(2

)
KU

()

"

o

M

\

¢ ¢
i

|

{

W

61

Chapter 7

Screen printing

The character set

Hrm. complete set of screen printable characters and their ASCII codes
Is given in the PCW manual on pages 113 to 118 [547 to 554 1.
Those with codes larger than 31 can be printed directly by the meth-
ods described below. By convention ASCII codes smaller than 32 are
reserved for use as control-codes and so are not available for dircet
printing, but indirect methods are available (see Chapter 9). Also
by nom~<m:mo= the word “print” mecans ‘display characters on the
screen’, as opposed to “list” which means ‘print onto paper. When
printing or listing, CP/M will ignore a code that it can’t interpret.

The BDOS functions

F%Em nWmﬂomﬂio will start to use the BDOS functions, the most inter-
esting of which are summarised in Appendix 4. The first and simplest
is HWUOm No 0, smrmnr has the name “System Reset”. Its effect is to Momn
out any traces of previous operations, and reboot the system (sce page
126). It could be brought into action from m/c as mo:owé : P8

ldco 14 0 Load C with fnc No
call BDOS 20550 and call it,
continue

BDOS is always used by calling 000Sh after loading C with the re-

62 PCW Machine Code

quired function number. For many functions it is necessary also to
load DE, usually with an address. Frequently BDOS reports back
with information that you will find in A orin HL or in both, though
in the case of function No 0 no such report is made, and no DE
address is required.

Function No 12 has the name “Return Version Number”. (‘Return’
means “report back with”.) After calling this, H will be found to
contain zero with the CP/M version number in L. For version num-
ber 2.15, L will contain 2Fh, and for version 3.0 it will contain 30h,
etc. Neither of these two functions is of much practical interest, but
they illustrate the approach.

Keyboard Input

In contrast, BDOS function No 1, called “Console Input”, is very
interesting. It makes the program await a key-press (the ‘console’ is
the keyboard) and then puts the ASCII of the pressed key into A. If
it is a printable character it is also printed onto the screen at the cur-
rently established print position (see pages 70 & 71). Some of the
control codes such as TAB are also echoed on the screen, though
others are not. To test the function, insert the following byte sequence
and run it

ldel 14 1 Auwait a keypress
call BDOS 20550 then put its

Id (50020)a 50 100 195 ASClIl into 50020.
ret 201 And finish.

This little sub-r awaits a key-press and when one has been made it
loads the content of A into 50020. After each RUN, press a key and
then use PRINT PEEK (50020) to observe the ASCII code of the key
you pressed.

In some applications it may suit your purpose to ignore the value in A
and use the function merely to halt the program whilst the user reads a
message before pressing a key to continue.

Alternatively, by testing the value returned in A, the function can al-
low the user to pick alternative courses of action, or it can prevent
access to a program unless a correct key scquence is typed in. The
following sub-routine causes a jump to ‘Program 1’ if “y” (for
‘yes') is pressed or to ‘Program 2’ if “n” (for ‘no’) is pressed, and

i
e
@\u‘.-—
o

i

1]

"

A
i
1

.’

G

o
J

ju

4 'L.__.q\L._q‘.__q\}_.__@; .
a

Chapter 7 63

prevents further action if no key or any other key is pressed.

.

ldc1 14 1 Function No into C
call BDOS 20550 & bring into action.
cp “y” 254 121 If ASCII is 121 (y)
jp z Progl 202 P1 P1 then jp to Progl.
cp “‘n” 254 110 If ASCII is 110 (n)
jp z Prog2 202 P2 P2 then jp to Prog2.
jr-17 24 239 . Else repeat.

continue .

Using BDOS corrupts (changes) the contents of virtually all the regis-
ters so you can’t be sure what is left in C after such use and it is
necessary to jump back to ‘ld ¢ 1, not just to ‘call BDOS'. If you
need to preserve the contents of a register or of a register-pair whilst
BDOS is being used, then ‘push’ it before calling BDOS and ‘pop’ it
afterwards.

‘Numacc’

Function 1 can be used in interpreting numbers typed in at the key-
board. The first requirement is to reject all unacceptable keypresses .
The following sub-r does this so we will call it Numacc'.

Start:
ldc1l 14 1 Await a
call BDOS 205 5 0 key press.
cp 48 | 254 48 If the ASCII < 48 then
jrcé 56 6 jump to repeat.
cp 58 254 58 " If ASCII > 57 then
jrnc2 48 2 A jump to repeat.
ora 183 Elsc reset Cy,
ret 201 and leave the sub-r.
Repeat:
Ide8 308 Put ‘backspace’ in E
ldc2 142 and print it
call BDOS 20550 (see page 64).
Jjr-24 24 232 . Jump back to Start.

The sub-r can be extended to make it accept other useful keypresses
mﬁnr as decimal-point, Return, Exit, etc.and to sct and resct the flags
in a way that will make it clcar which of these, if any, has been used.

64 PCW Machine Code

For example, if it returns Cy set only when Return is pressed, and
Z set only when Exit is pressed, then testing the state of the flags will
indicate whether the user has happily completed his entry or whether
he abandoned it and the input should be disregarded.

Other key-press_functions

If you want the pause provided by function No 1 and the ASCII of
the pressed key, but you don’t want a character to be printed on the
screen, then follow function No 1 by a sub-r to print ‘backspace’
then ‘space’. If you merely want to record the pressing of any key
without recording the ASCII, then use function No 11 (“Get Con-
sole Status”). This puts zero into A if no key has been pressed, and 1
into A if any key has been pressed. If you follow use of the function
by ‘ora’ this will give Z setif A contains zero, so Z set means
‘no key pressed’.

More complex situations can be dealt with. Suppose you want no
pause in the program if no key has been pressed, but you want to
know which key it is if one has been. This can be dealt with as by :

ldc11 14 11 Ifno

call BDOS 205 5 0 keypress

ora . 183 then

jrzPROG 40 N continue.

ldc1 14 1 Else call

call BDOS 2055 0 function No 1.
continue .

If there is no keypress then the program continues through the ‘jr z/,
but if there is one then function No 1 will be called and it is very
likely that the same key will still be down when this happens. If it
isn’t then the user will invariably press again. Function No 1 pro-
vides the ASCII of the pressed key in A, so you can use it as appro-
priate.

There is another alternative. Function No 6 (“Direct Console Input/
Output”) requires E to be loaded prior to usc as well as C. If you
put FFh (255) into E and thencall No 6, A will contain zero if no
key has been pressed, orits ASCII if one has, but no character will be
echoed to the screen. If instead of FFh .you put an ASCII code into
E, then that character will be printed whatever key is pressed.

Chapter 7 mm

The books print bold italic warnings that you should not mix Direct
Console I/O .(such as No 6) and other console I/O functions
though it is not clear what they mean by mixing. I have used the
above routine and then later used other BDOS functions without any
deleterious effect that I was able to detect.

Printing sinele characters

When you want to print a single character use function No 2. It
prints the character whose ASCIlI code you have loaded in E ; hence

to print “?” you would load E with 63 and C with 2 and then call
BDOS.

Reading text from the keyboard

The functions considered so far have dealt with only single characters
though most occasions require whole phrases from the user, as in
completing stock or personnel records, updating files, etc. Function
No1 could be adapted to this, but I turn pale at the prospect of
writing a routine for it (including a provision to erase mistakes !).

Fortunately CP/M has our best interests at heart and has provided
BDOS function No 10 which takes care of just these requirements. It
is called “Read Console Buffer”. Iwould have expected it to be called
“Write Console Buffer”, but let’s not haggle over detail.

In computerese a ‘buffer is a small area of memory where bytes can
be stored prior to being processed. The printer is provided with a
‘printer buffer into which the processor hurls ASClIs fast enough to
make your head spin and which the printer subsequently plods
through at the rate of one every now and then. Buffers are used to
balance up the different speeds of opcration of different processes.

Once function 10 has been called, the program will await the input of
the text, which will be echoed onto the screen at whichever print-
position is established at the time. (Sec pages 70 & 71.) Whilst
typing it in, the two ‘DEL’ keys and the cursor arrows are available
for correcting mistakes. When the user has completed his text input he
presses ‘RETURN'. Itis usual then to transfer the text from the buffer
to its permanent home. If the user tries to over-fill the buffer (exceed

the size defined for it) then a beep will sound and no more characters
will be accepted.

66 PCW Machine Code

To use the function it is necessary to state where you want the buffer
to be located in memory and how many bytes you want to allocate to
it, (ie. how many characters are permitted to be typed into it) the
maximum being 128. The following sub-r illustrates the case of de-
claring a buffer at "ADDR’ which will have room for 99 characters.

Idhl ADDR 33 A A

Buffer addr into HL
Id (hl) 99 54 99

Put length at start

ex hl de 235 of buffer, & move ADDR to DE,
ldc10 14 10 then call the
call BDOS 205 5 0 function

continue . .

99|11 F R{E|D| [B|IL|O|G|G|S

r ADDR +2 (Start of text)
ADDR +1 (Count of characters)
ADDR (Specified max length of text)

A Typical Console Buffer

The total room required by the buffer is 2 more bytés than the num-
ber of characters that may be put into it, and the start of the text (its
first letter) is at ADDR+2. The address ADDR is occupied by the
authorised length of the buffer (99 in the above case). In addition,
CP/M counts the number of characters that have actually been typed

in and enters this value at ADDR+1. A handy way of transferring the
text is therefore

ld bc (ADDR+1) 237 75 Al Al Put number of typed
db, 0 60 chars into BC.

Id hl ADDR+2 33 A2 A2 Point HL to source.
ld de HOME 17 HH and DE to home.

Idir 237 176 Transfer.
continue . . . !

Note that function No 10 does not add a string-end marker, so you
must add your own if one is needed.” (See below.)

Chapter 7 67 .

String printing

BDOS function No 9 (called ‘Print String’) is available for printing
the strings of prepared phrases such as menu-pages, program fitles,
user instructions and the like. Thesc are made up of the ASCII codes
of the relevant characters. First DE is loaded with the address of the
start of the string and then the function is called. The string may be of
any length but its end must be marked by a string-end marker (‘de-
limiter in w-lang) which by default is the “$” sign whose ASCII
code is 36. If your string has not been provided with an end-marker
then when it is printed the gibberish that occupies the addresses be-
yond it will be added to its end until the function comes across w.zwmz
that happens to be lying about in memory, but no other harm will be
done.

Conveniently, as well as all the letters, numerals, and punctuation
signs, the string may contain a variety of very useful printing instruc-
tions called the CP/M escape-sequences (for accidental and there-
fore not very good reasons that don’t involve escaping), plus control-
codes such as

7: bel : the ‘beep” sound.

8: backspace move back one character.

9: tab move the print position right to next column
whose number is a multiple of 8.

10: line-feed : print at this column on the next line down,
scrolling up if necessry

13: carriage return : move to left margin.

The print control-codes and escape-sequences are described on pages
139-141 [581-584] of the manual, the latter being listed as “ESC X',
For m/c use this translates to ‘27" followed by the ASCII code of
‘X’. So ‘ESC E/, “Clear the viewport [screen]” translates to ‘27
69" In the few cases where this is followed by a number shown in
italics, the number is retained per se inm/c.

The following routine is intended for insertion at address 50,000 to
display a string located at 50010 (90,195) so it can be run under the
BASIC insertion program described in Chapter 5.

Id de 50010 17 90 195 Point to string.
ldc9 149 Select ‘Print string’
call BDOS 205 5 0 and call BDOS

ret 201

mm PCW Machine Code

The m/c bytes for this and for the string are given in the following
DATA lines. A

200 DATA 17,90,195, 149, 205,5,0, 201
210 DATA 0,0

220 DATA 27,69, 27 ,89,46,64

230 DATA 42,32, 84,104,105,115, 32
240 DATA 105, 115, 32,97, 32

250 DATA 115,116,114,105,110,103,32 42
260 DATA 7,10,10,10,10, 13, 36

Write these into the program and run it. 27, 69" clears the screen. ‘27,
89, L, C' defines the print position according to the values of ‘L’ and
‘C’. L equals the line number plus 32, and C equals the column
number plus 32. If both are given the value 32 then printing will
start at the top left corner of the screen (experiment with other values
larger than 32 to see the effect).

Changing the String-end marker

The PCW screen contains 32 printlines (No0OtoNo31), and 90
print columns (No 0 to No 89). Hence the value of L can be varied
from 0+32 to 31432, ie. from 32 to 63. However, if you try 36
(=line No 4) you will find that your string is ignored. This is be-
cause an error in the system programming mistakenly interprets a line
value of 36 as the ASCII code of ‘§’, ie. as the usual string-end
marker. CP/M therefore prematurely thinks it has found- the end of
the string and as a result nothing can be printed on line No 4 by this
method. This may explain why text on the PCW is so frequently seen
scrolling up from the bottom ; scrolling and bottom-line printing are
immune to the error.

A rather more wholesome solution is to change the string-end marker
to one whose ASCII code does not lie in the range 32 to 63. For this I
use 255 because it is easy to spot and easy to miss if I haven’t in-
cluded it. It is also the ASCII code of a symbol I am not likely to
want to use much in strings (it corresponds to “Equivalent to”). You
might like to select your own from the character set given between
pages 113 and 118 [547 and 554] of the manual. Zero is sometimes
advocated, and it is a good choice, but I prefer to use zero for blanking
characters that may be wanted on some occasions but not on others.

The marker is changed by putting the required ASCII code into DE

Chapter 7 O@

and calling function No 110. To set it to 255 the sequence is as
follows: . .

Id de 255 17 255 0 Put ASCII into DE.
ld c 110 14 110 And call the
call BDOS 205 50 function.

continue . . .

If DE isset to FFFFh (255,255) and function No 110 is called, then
this is a request to CP/M to report which marker is currently in use
but not to make any change to it. The code is givenin A.

If you change the marker then all your strings for use with function
No 9 must end with 255’ (or whatever marker you specified), and
when you leave your routine and return to either CP/M or to BASIC
then your last instruction must be to change the marker back to ‘3¢’
because all the strings used by these two systems end with ‘36"

Block printing

When function No 9 is used the whole string will be printed. Func-
tion No 111 allows ‘slicing’, ie. the printing of any part of a piece of
text. Control is provided through a 4-byte long ‘character control
block’ called the ‘CCB’ to which DE points when the function is
called. The first two bytes of the CCB specify the address of the first
character to be printed, and the last two specify how many characters
to print (up to 65535 !). Obviously in these circumstances no string-
end marker is required. The calling sequence would be to put the
required data into the CCB and then :

ld de CCB 17 C C DE points to CCB.

ldc 111 14 111 Call the
call BDOS 205 50 function.
continue . . .

Message Printing

The functions so far described require the address of the text to be
known beforehand. For handling a few large-sized strings this is no
problem, but many programs require a surprising number of minor
strings (possibly several dozen) that vary from only one character
(such as ‘bel’) up to forty or fifty. The problem with these is that if

70 PCW Machine Code

you pack them together to save space then any alteration to an early
one means that all the later ones will have their addresses changed,
and if you have already written lots of routines that call them at their
old addresses you will not be over the moon to have to plod through
making revisions.

I have found the best solution to be the one that requires only the order
of the messages to be recorded, not their addresses. To print such a
message its list No is putinto A and the list is then scanned until the
correct one is found. The only address required is that of the start of
the list, which is obviously also the address of the first message; ie. of
message No 0. The printing of a message then requires only 5 bytes

lda MESNUM 62 N
call SUBR 205 S S
continue . ..

Messg number into A
& call print routine

The SUBR referred to is the one that locates and prints the message.
It lists as:

Id hl LIST 3L Point to list

or 183 If (A)=0 then

jr 11 40 11 no search is required
push af 245 Store the message No.

ld a (hl) 126 Check each byte

inc hl 35 until a

cp 255 254 255 string-end marker
jrnz-6 32 250 is found.

pop af 241 Then recover the

dec a 61 message No & decrement it
jrnz-11 32 245 If No not zero repeat

ex hl de 235 Else put message address
ldc9 14 9 into DE and

call BDOS 205 50 call ‘Print String’.

ret 201

The print-position

The screen print-position always stays where the last print operation
left it, ie. at the end of the last string printed. In using BDOS

(7 ,
f—d—

11

1

K
\

| AT

n o
s

W

&

€3

Chapter 7 .Nl_

functions No9 and No 111 and in message printing, it is possible to
include in the string an instruction defining where the text is to be
displayed so the print position in these cases can be guaranteed.

Naturally this is not possible for single character printing, nor for
placing keyboard input, and some pre-composed strings require dif-
ferent print positions at different times. A solution is to have in the
variables area a short ‘position string’ made up as follows (for
example) : .

51217 (17,200) 27 DEFB

51218 (18,200) 89 DEFB

51219 (19,2000 Ln Required Line Na+32
51220 .(20,200) Col Required Colm Na+32
51221 (21,200) 255 DEFB (end-marker)

If the required figures are put into 51219/20 and this sequence is then
‘printed’ as if it were a string then the print-position will be trans-
ferred to the location specified by it. This would be achieved by :

ld l PRPOSN 33 N N Put print posn

Id (PRSTR)hl 34 19 200 into the string.

ld de 51217 17 17 200 Point DE to string.

ldc9 149 Call

call BDOS 20550 ‘Print string’
continue . . .

More about the Print Position

To keep itsclf orientated CP/M counts the number of characters that
have been printed since the print position was last at the left margin
and automatically puts the next one in the next column to the right as
it works through the string, and when the print-line is full it moves to
the left end of the line below.

This is fine except that no-one thought to explain to it that not all

_characters are printable (some are control-codes or escape-se-

quences), and hence it will get its sums wrong and prematurely put
your string on the next line down if you do a lot of printing without
telling it to mind its own business.

To tell it thus, precede each print-position instruction with a ‘13’
(= carriage return) ; in long strings you may insert several such 13s,

72 _ PCW Machine Code

all in front of position instructions. Each of them zeroes CP/M's
column-count and ensures that printing will be where it is intended.
The following section of a long string illustrates the idea:

. 66,101, 114, 116, 13, 27, 89,52, 62, 70,114,101,100. ..

Note that, on its own, a ‘13’ will also transfer printing to the left mar-
gin, but the immediately following print position instruction counter-
mands this effect when it is not desirable.

Finding the Cursor Position

If your program should need to be informed of the current cursor
position, use the sub-r listed on page 107.

Chapter 8
Using the Printer

This chapter relates principally to m/c control of the very flexible
dot-matrix printer of the ‘8256" and ‘8512’. The somewhat limited pos-
sibilities of the daisy-wheel printer of the ‘9512’ are explained from
page 555 of the manual onwards, though the general v::QEom of
what follows applies to both machines.

It is possible to switch the printer on from CP/M (so that it echoes
all that goes to the screen) by the key sequence S AP AQ. (When
followed by a letter the symbol “A” indicates the ‘control’ key which
for the PCW is given by ‘ALT". Not to be confused with 342 which
means 9 !).

This sequence turns off the screen, turns on the printer, and then
turns on the screen again, which complexity is needed. Later the
same sequence turns the printer off again. The method is not a satis-
factory way of printing because in addition to the required text, all
else that comes to the screen (such as error reports) gets printed too.
Unwanted control codes are sometimes also shown, together with
messages that I have never yet established the source nor purpose of,
and to cap all, the echoing sometimes stops at times decided not by
me.

.NA. PCW Machine Code

.

You can also produce a ‘screen dump’ , ie. have the current screen
content printed-out (bit-mapped), by simultaneously pressing
‘PTR" + 'EXTRA’. This is useful for recording otherwise non-printable
material, though the print size is rather small.

BDQOS printing

Happily there is a printer version of the block-print function. It is
No 112, and has the w-language name of “List block to logical device
LST”, but fortunately it performs very well in spite of that. The word
‘list” is used to refer to printing via the printer, as distinct from ‘print’,
which means ‘display characters on the screen’.

As with function No 111, the printing is controlled from a 4-byte
CCB to which DE points when the function is called. The first two
bytes of it give the address of the first character to be printed, and the
other two give the number of characters to print. If the string does not
end with a line-feed’ (10) or a ‘carriage-return’ (13), then the
characters designated will be transferred to the printer buffer but they
will not be printed.

One or other of these two control codes is required as a prompt to
empty the buffer onto paper. The 2-byte character-count decides how
many characters will.be transferred to the buffer, and the position of
the prompt decides how many of these will be printed. Those before
the prompt will be printed, those after it won't, at least not immedi-
ately. A

This makes it possible to join strings from different sources together
before they are printed, but it also means that you have to put the
prompt where you intend or you will leave debris in the buffer that
will become tacked onto your next print. To print all of them, the
count in the last two bytes of the CCB should just include the prompt
as one of its count of characters.

Text control

The printer won't react to codes it can’t interpret, -and orie of these is
‘bel’ (7), but the ones opposite are recognised. In fact there is little
use for ‘carriage return’ except as a means of overprinting because
line-feed’ automatically causes the first character of the new line to be
printed at the left margin, as does each new use of Function 110. On

«
T—&’"

o
VU

r

| ¢

1
I

m
:

HH

W

'

Chapter 8 .Nm

the screen ‘backspace’ causes the next character to obliterate the last ;
on paper the two are superimposed. :

8: backspace - move one column left,

9: tab - go to next colm which is multiple of 8
10: line feed - scroll the paper up one line.
12: form feed - scroll page out of printer
13: carriage return - move to the left margin.

The ‘line/column’ mmnmv?mmacmsnm (27, 89, L, C) is ignored by the
printer which obviously can print on only the current line. Movement

" across the paper is effected by using ‘TAB’ or by inserting spaces into

the string.

There is supposed to be a means of halting printing if the bottom of a
short page is detected but it doesn’t work for me. ‘27 8' is supposed to
setit and ‘27 9' to unset it. The sequence to give an exact amount of
paper-feed does work. Thisis ‘27 74 N’ where N isin the range 0to
216. If N =216 then one inch of paper (25mm) is scrolled up; if
N =108 then half an inch is scrolled, etc.

Underlining .

Text can be underlined by incorporating the escape-sequence ‘27 451’
into the string. The underline is switched off by '27450'.

Print style

The full range of printer control codes and escape-sequences is given
in pages 126 to 135 [561] of the manual, but not all of them work
(or perhaps I am incompetent). The most flexible one is ‘Select
Mode’, through which a combination of different effects can be cho-
sen. These are :

bit No value effect
5 32 Double width
4 16 Double strike
3 8 Bold
2 4 Condensed
1 2 Elite (=normal)
0 1 Pica (=smallish)
0 0 normal

Nm PCW Machine Code

Thus to start printing in double strike the escape-sequence ‘27 33 16'
would be incorporated into a string. Any futher use of 27 33 X’ in
which bit No 4 of ‘X’ was not set would cancel the double strike
mode. The bits retain their set/reset condition until you change
them, so the following escape-sequences in a string would have the
effects: :

273332 Start printing double width.
27 33 40 Add Bold to the above.
27332 Cancel the above, print Elite only

Draft [High Quality

High quality printing is given by ‘27 109 49', and reversion to draft
quality by 27 120 48"

Italics

The italic versions of the numerals, the alphabet, and the punctuation
signs are printed if bit No 7 of the ASCII code is set (ie.if 128 is
added to the usual ASCII code). This works for all the symbols with
codes from 33 (21h) to 126 (7Eh). Not surprisingly the normal
‘SPACE’ (32) looks much like its italic version, but for some reason
neither 127 nor 255 give the “zero without slash” as promised by
the manual, nor its italic form. You get an ‘i’ for the first and a ‘£’
for the second. '

Printer _graphics

For printing to the screen there is a useful set of graphics with ASCII
codes in the range 128 to 159. These allow you to print borders and
lines and columns that tidy up the presentation of data quite nicely but
sadly they can not be printed directly onto paper and the completely
useless symbols tabled on page 135 are offered as an alternative (see
the note at the foot of page 134). However, it is possible to print
special characters of your own devising through the printer, so you
can reproduce the missing ones and others to your own specification.
You can even cover a whole page with designs. And if you are up to
the task of converting a picture into binary digits then that too can be
reproduced on paper.

m ¢
=

m !

n
]

BRI LA

m M
1
W

Chapter 8 NN

When producing printer graphics, the 8 dots of each vertical line in
the graphic can be represented by an 8-bit number. Zero corresponds
to the instruction ‘print no dots’, and 255 to the instruction ‘print all
8 dots’. The number 1 means ‘print only the lowest dot’, and 128

means ‘print only the top dot’ . All the other numbers imply other
dots or dot combinations.

For draft quality letters six such instructions are enough to print a
whole character, and as the dots are scparated by a dot-width the
characters are 12 dot-widths wide. For the standard range of charac-
ters the numbers required to reproduce the dot patterns are stored in
the printer's memory, and the variations required to give the various
printing styles are taken care of by the firmware (built-in and un-
changeable programming).

To printa UDG (user-designed graphic) BDOS function No 112 is
used as described above but the printed string should include the
escape-sequence ‘27 75 6 0' immediately followed by the six 8-bit
numbers that represent the graphic. You can increase or decrease the
width of the UDG by changing the value ‘6’ in the escape sequence,

Mrmcmr this number must be matched by the number of data bytes that
ollow.

The count in the CCB must include the four bytes of the escape se-
quence plus the number of data bytes, plus the number of any other
characters that are to be printed simultaneously. As always the string
must end with ‘10" if it is to be printed immediately, and this counts
as a character. The above escape-sequence does not work with BDOS
function No 111, ie. it will not print to the screen, and the print

control instructions that change the style of normal characters have no
effect on UDGs.

To .m:,m:m an 8 x 8 black square, an 8 x8 hollow square, and a right-
pointing triangle, the print string would contain the following se-
quences respectively: .

....27 7580 255255 255 255 255255255255 . ..

-...277580 255255195195 195195 255 255 . ..
.. ..277580 255255126126 60602424 ...

Double density UDGs

The dots of a UDG can be packed together at double the usual density
if the escape-sequence reads ‘27 76 N 0, followed by twice as many

78 PCW Machine Code

data bytes. This greatly increases the blackness of the print by halving
the width of the UDG without affecting its height. It enhances the ap-
pearance of the triangle referred to above for use as a pointer. To

obtain black squares that are really black and really square or black.

circles that are really black and circular use 16 data bytes and print
them at double density.

Full page graphics

Because a UDG can can be made to any width it can be made wide
enough to fill a print line, and several such lines could be used to fill a

ge, though when printing UDGs there is no ‘wrap’ onto the next
ine; any part of the UDG that does not fit between the margins is lost
(though if it is followed by normal characters these will be printed on
the line below).

Hence a separate print instruction is required for each picture line. To
fill the 90 print columns requires 540 data bytes at normal density,
or 1080 at double density. These counts are achieveable because the
last byte in the escape-sequence (usually zero) is the high byte of the
count. The byte sequence for a full lineewidth UDG (90 columns)
will therefore be :

Single density 2775282.....
Double density 2776564.....

Library symbols

It is a simple and enjoyable matter to construct print symbols for prac-
tically any purpose. If these are kept in their own area of memory, a
programming project that is likely to use them can be equipped with
sub-r rather like ‘Print Message’ as described in the last chapter,
though in this case the string-end marker would be superceded by a
convenient character such as ‘SPACE’ (32, 20h).

An example program

The following program illustrates the points made in this chapter by
printing a string of characters and then several UDGs. The routine is
for insertion from address 50,000 onwards.

Lt

il

¥
1

&

L)
M
|52
W

—

F

!
i

L

W

Chapter 8 .N@
Sub-r:
ldde 50010 17 90 195 Point to the CCB.
ldc112 14 112 Call the
call BDOS 20550 print function.
ret 201 Return to BASIC
DEFB 0 Nop
CCB:
DEFW 95 195 . Address of string.
DEFW 65 0 String length.
DEFB 0
String:
DEFS 6566 67 968693709
DEFS - 273332 7475763227334077 7879 32
DEFS 27 7510 0 25525524 24 24 255 126 60 24 24 32
DEFS 2776200 99 1331977511515
1525531151515517197 13399
DEFS 2733010

The compiled assembly language version is given so that the bytes can
be transferred into data lines No 200 et seq of the BASIC insertion
program suggested earlier.

- ’List Output’

There is a second BDOS function that can be used in conjunction with
the printer. Thisis function No5, ‘List Output’, which is somewhat
similar to No 2 ‘Console Output’. It transfers the ASCII code that is
in the E register into the printer buffer. Obviously printing text by
this means would be laborious, but, the function can be used to add
extra letters or control codes to a string already in the buffer, from
where they will be printed as part of the main string.

If you want to prove that ‘List Output’ does work, put the printer on-
line and run the sequence on the next page:

80

Ide83
de5

call BDOS
de, 79
de, b

call BDOS
ide, 33
de, 5

call BDOS
Ide, 10
de 5

call BDOS
ret

30 83

205 50
30 79
14 5
205 50
30 33

205 50
30 10
14 5
205 50
201

PCW Machine Code

81

Chapter 9
Screen Graphics 1

Special characters

For normal printing to the screen the character set is limited to those
listed on pages 113 to 118 [547 to 554] of the manual, but excluding
the ones with ASCII codes less than 32. By convention these low
numbers are reserved for control-codes and therefore don’t print, even
though few are actually in use as controls.

The remaining 224 give a wide range of choice that covers most stan-
dard requirements, though inevitably many of the characters with for-
eign accents are of only occasional if any interest. At the same time a
user may require a number of non-listed special symbols to suit his
own purposes; ‘Locoscript’, for example, uses custom-made signs to

indicate inset-paragraphs and the location of paragraph-ends, to name
only two.

. mN PCW Machine Code

Ore of the advantages of controlling print operations from m/c is
that symbols to suit virtually any requirement can be incorporated into
the character set and then printed in the normal way by using BDOS
function Nos 1, 9 or 111. This is done by altering the pixel pattern
associated with a particular ASCII code (the pixel pattern is the set of
light-dots that make up the shape of the character when it is displayed
on the screen), and to make the alteration it is necessary to gain access
to the area of memory where the patterns are stored.

Memory Banks and Blocks

As indicated in chapter 2, the Z80 can address only 65536 (64k)
memory addresses, though in fact the PCW is provided with either
256k or 512k of memory depending on the model. So large a storage
capacity greatly enhances the machines’ ability to manipulate the data
required by complex programs, but because the processor can’t have
access to all of it at once it has to be split into segments.

A convenient subdivision is into blocks of 16k, so that four of these
constitute the amount of memory that the Z80 can deal with at one
time. More than four 16k blocks are installed in the machine but they
are ‘switched into circuit’ only when the processor has need of the in-
formation they contain. Each set of four in service together is called a
bank. Hence each ‘bank’ consists of 64k.

The blocks are numbered from 0 to 15 for the ‘8256’, and 0 to 31
for the ‘8512° an d ‘9512, though the blocks in a bank are not usually
in a numerical sequence. Block No 7 is given the name ‘common’
memory because it is in service in all banks. It provides an area in
which co-ordinating instructions can be placed. These remain in force
regardless of which bank is in use; if this were not so it would be
impossible for different banks to apply themselves to the same task.
The contents of the various blocks is as indicated on the next page.
The banks are also numbered from 0 upwards, and within each bank
the addresses always follow the standard range of 0 to 65535 (0000h
to FFFFh).

What is stored in a memory bank is not changed by the action of it
being switched into and out of circuit. Its contents are continually
refreshed by the normal interrupt sequence that the machine uses to
ensure that no information is allowed to leak away from its memory.

a <

nm e
] \E){'—v&] H

f

ey

oW W

LI
,,_LE)’,__.’E’,.# --

B
(.i-)if

® B
R

®
Gj-

n
ki)f_“—

e

W

1=
RN
]

y B
W W

m
W

(h A
& W

|
i

7 C

(®

B

Chapter 9 mw
The Memory Blocks
Block 0 A BIOS jumpblock.
Block 1 Most of the screen pixel data (the record of
which pixels are ‘on” and which are ‘off).
Block 2 The screen-character shape data, Roller RAM,
and some of the screen pixel data.
Block 3 BIOS and BDOS routines.
Blocks 4-6 Most of the TPA.
Block 7 The upper part of the TPA plus the resident
part of BDOS & BIOS (at F606h and up;
see Chapter 6).
. All of which is ‘common’ memory.
Block 8 CCP, disc hash table, data buffersparts of BIOS.

Blocks 9up The ‘Memory Disc’ (see Chapter 11)

(For details of memory switching see Chapter 11 and Appendix 7)

The 'Screen Environment’

There is also a special bank that is not given a number but is called
The Screen .m=<m~o=9n=n. The blocks that are in service in the vari-
ous banks, including the Screen Environment, are as follows:

Start-address Screen
Hex R.Biro Bank 2 Bank1 Bank O Envr
C000 (0,192) 7 7 7 7
8000 (0,128) - 6 3 2
4000 (0,64) 8 5 1 1
0000 0,0 - 4 0 0

Bank 1 we have met before ; it contains the TPA, ie. those sections of
memory that are occupied by user programs (it is the bank that is
made available when the machine is ready for use), but switching the
Screen Environment into service is of particular interest to us now
because it is the only one that gives access to block 2 in which the
data for the shape of the screen characters is kept.

mh PCW Machine Code

Accessing the Screen Environment

The Screen Environment is switched-in by the ‘Screen Run Routine’,
which itself is accessed through the Extended BIOS Jumpblock in
block 0. Because this block is not in service at the same time as the
TPA, user programs must access it through another jumpblock in
Page0O from which the address of the Jmp-Userf entry can be de-
rived. This is easier to do than it is to explain.

An example program

Compile the following program, insertitat 50000, and thenrunit. It
changes the the pixel pattern relating to ASCII code 97 - the one that

normally displays the pattern for “a”. When you have run it, try
typing in a line containing the letter “a”.

START:
ld be SUB-R 197195 Point BC to SUB_R
call userf 205 89 195

DEFW 2330 Addr of Scrn Run Rin

ret * - 201 Return [to BASIC]
USERF:

ldhl(0001) 4210 Addr W.boot into HL

Id de 87 17 870 Add 87 to

add hl de 25 get ‘jp.userf addr,

jp (hD) 233 and then jump to it.
SUB-R:

Id hl 47880 338187 HL = Addr of ‘@

ldb 8 6 8 Count of 8 bytes.
ld (nl) 255 54 255 Change all

inc hl 35 the bytes

djnz -5 16 251 to 255,

ret 201 and return.

The listing is in three parts. The first part is a kind of ‘executive
program’, the second sorts out the ‘jump userf address, and the
third contains the instruction for making the changes to the pixel pat-
tern.

Part1 first loads BC with the address of the third part; it is necessary
to use BC for this purpose when the Screen Run Routine is being
called. It then calls the second part, but within this call sequence is
the DEFW (two bytes) which is being used as an ‘in-line parame-

Chapter 9 85

ter. An in-line parameter is data that is in the next one or more bytes
that are ‘in line with’ (ie. immediately following) the instruction in
question. Consequently the address of the Screen Run Routine is al-
ready known to the ‘userf function as the address it must use when it
begins its operations.

In part 2 the address contained in 0001/2h is loaded into HL and
87 is added to give the jump-userf address. A jump is then made to
this address, but, because of the unusual structure of the sub-r to be
found there, when this sub-r has done its work a ‘ret’ is made to the
place after the ‘call’ that initiated the sequence (which was ‘call
USERF’); ie. to the place marked by ‘¥’ in the listing. Because in
this case a ‘ret’ is found there, a return to BASIC is then made.

In the third part, the address of the start of the pixel-pattern for ‘a’ is
putinto HL and then this address and the seven addresses following
it are all loaded with 255.

Note that this program works only because being at address 50,000
and above puts it into common memory, ie. at or above (0,192),
49152, or C000h. Had it been below CO00Ch then its third part would
not be accessible while the Screen Run Routine was operating, the
pixel pattern changes could not take place, and the most probable
result would be a crash.

Pixel patterns

The patterns of all the 256 characters listed in the manual are stored
in Block 2 starting at address (0,184 , ie B80Oh. The section of
memory containing them is called ‘The Character Matrix RAM'.
(RAM just means ‘memory’.) Each pattern requires 8 bytes within
wro Matrix RAM, so the pattern for the character whose ASCII code
is 0 takes up the first 8 bytes, the pattern for ASCIINo 1 occupies
the next 8, and so on up to ASCII No 255 whose pattern is stored
from (248,191) to (255,191) ie. from BFF8h to BFFFh.

The Matrix RAM contains 8 bytes per character because each one is
displayed on the screen as a set of 8 horizontal lines of dots. The first
byte represents the top line of the character, and the eighth byte repre-
sents its bottom line. Each dot of light is called a ‘pixel’.

The 8 bits of each byte signal the state of the 8 pixels on its line.
Each set bit signals an ‘on’ pixel (a bright dot), and each reset bit

. mm PCW Machine Code

signals an ‘off pixel (no bright dot). A byte content of 1 gives an
‘on’ pixel at the right-hand end of the line, 128 gives an ‘on’ pixel at
the left-hand end. If all the bits are set (byte =255, FFh) then a con-
tinuous line of ‘on’ pixels is signalled, and if all 8 bytes contain 255
then a bright rectangle is displayed for that ASCII code. It is a rec-
tangle rather than a square because the pixels are packed closer to-
gether in the horizontal direction than they are in the vertical direction.
The vertical pixel separation is twice the horizontal separation.

After running the above program attempts to print “a” will display a
solid rectangle, though this new pattern will be overwritten by the
normal “a” pattern whenever CP/M is again loaded into the com-
puter.

Using the Character Matrix RAM

To make up and use a new pixel pattern first select an existing charac-
ter that is superfluous to your requirements and make a note of its
ASCII code. You then find its address within the Character Matrix
RAM by multiplying the code by 8 and adding the result to the start
address of the Matrix RAM. A simple way of doing this is :

ldhlASCII 33 N O ASCII code into HL
add hl hl 41 then

add hl hl 41 multiply

add hl hl 41 by 8.

ld de MATRX 17 0 184 Point DE to Matrix-RAM
add hl de 25 and add so HL points to Char.
continue . . .

Once the start address of the character has been found, then that and
the next 7 addresses should be loaded with the bytes that establish its
new pattern. The pattern can be most easily worked out by using a
block of 16 x8 5cm squares on a sheet of graph paper onto which the
outline of the character is drawn. Pairs of squares one above the other
represent each pixel. Any square-pair covered by the outline is
counted as a set bit, all others counting as reset. Don't spend too long
on the artwork as the result on the screen is often surprisingly like or
unlike what you are hoping for so screentests are even more appropri-
ate than in Hollywood. Also bear in mind that if it may need to be
underlined or otherwise be matched up with the standard letters then
the bottom byte should be left as uncluttered as possible.

=

Chapter 9 mﬂ

Printing z_.m first 32 ASCIIs

If you fancy having available the Greek letters or any of the other first
32 characters given on page 113 [547] of the manual, then transfer
the required ones en bloc by means of an ‘ldir' operation into a higher
m.Hmnm in the Character Matrix RAM, thus obliterating the uninterest-
ing stuff that is already there and taking over the ASCII codes relating
to it. Take care that the first addresses POKEd from and into are
really the starts of characters or your text will end up looking like

something from the original “The Fly” (hecads and bodies contributed
by different characters !).

The printer uses a different set of character patterns so the changes

Wmvmnlvmm above make no difference to paper-printed text. (see Chap

88

Chapter 10
Screen Graphics 2

Drawing on the Screen

Blocks 1 & 2 also contain the data that indicates which of the screen
pixels are on and which are off, so the screen environment is also the
path that gives us direct control of what the screen will display.

The screen is 256 pixels high by 720 wide. As each print character
requires a square of 8 x 8 pixels there are 90 print columns and 32
print lines, though the lowest line cannot normally be printed on be-
cause it is reserved for system reports. (See ‘Status line’ below)

The first byte of screen data is (48,89) ie. 5930h in block 1, and the
last one is (47,179) ie. B32Fh in block 2. However these addresses
are arranged in the way which best suits the printing of 8 x8 charac-
ters so they are not sequential across the screen. Each screen byte rep-
resents a horizontal row of pixel-dots and each sequence of 8 of these
arranged one below the other gives the data for a print position (a
line and column intersection). The next 8 bytes cover the next print
position to the right along the same print line. Thus the 90 columns
of a whole print line are defined by 720 bytes in a zig-zag pattern, and
the next print line down is defined by the next 720 bytes, etc. (See
the diagram on the next page.) :

]

W w w

..p.._.
|
o
|
L
_

ot

W W

-t

0

&

i
Lo

m

sr

|

M

~

n.urmwnmn 10 89

There is a further complication in that a particular set of 8 bytes do
not apply to.a fixed screen position; to aid the process of text scrolling
the set always points to the same position within the text wherever it is
scrolled to. This procedure is illustrated by the following program
which is intended for insertion at address 50000 by the BASIC inser-
tion program. It is very similar to the one used for making modifica-
tions to characters.

| | v
0 8 16
1 @ H.N etc
2 10 18
3 11 19
4 12 20
S 13 21
6 4 22
7 15 23
| - i {

The sequence of addresses in a print line

START: .
Id bc SUB-R 1102195
call USERF 205 94 195

DEFW 2330

ldc1 141 Auwait keypress

call BDOS 20550 (see Chap 7) before

ret 201 returning to BASIC.
USERF:

Idhl(0001) 4210

Id de 87 17870

add hl de 25

Jp (R 233
SUB-R:

ld hl SC-ST 3348 89 Screen addr to start

Id be 720 12082 Count of 720 bytes.

Id (hl) 255 54255 % Each byte to be 255

inc hl 35 Next addr.

dec bc 11 Reduce count,

lda, b 120 and

ore 177 check;

Jrnz-8 32 248 repeat if not zero.

ret 201 Return when finished.

a0 . PCW Machine Code

When this is loaded and run it will produce a bar of white across the
screen, though I can’t predict where this bar will be because I don’t
know the state of your ‘Roller-RAM’. If the bar is near the top of the
screen then press RETURN'’ a few times until it scrolls out of sight
and then RUN 500 to produce another one nearer the bottom. Now
change the ‘255’ indicated by ‘¥’ to ‘85", then RUN again.

These changes and the ensuing reports will have scrolled the bar up-
wards, but in spite of this the new (dimmer) bar will fall on top of
the old one and completely blot it out. Note that the two bars ap-
peared at different screen positions though the addresses given for
their creation were the same. (Because of the ‘await-key’ you need a
key-press to achieve a return to BASIC.)

If by this means or otherwise the lowest line (the ‘status-line’) is
written into, it will not normally scroll up as the other lines do but it
can be made to do so by PRINT CHRS$ (27)+CHRS$ (48) or the equiva-
lent m/c printinstruction (27 48" in a print string). The effect is re-
versed by changing the ‘48" to ‘49'.

Roller-RAM

‘Roller-RAM’ is 512 bytes of memory starting at (0,182) ie B600h in
block 2. It is rumoured to contain the 256 addresses of the starts of
the 8 pixel lines within each of the 32 print lines, and to update
these every time they change due to a scroll action.

What it actually contains is the first address for the print-line divided
by 2, with the other seven as sequential increments of this value.
Hence to derive the address of a pixel-line you have to add its entry to
the entry for the print-line (see the diagram on the next page). No
doubt this eccentricity serves some secret CP/M purpose, but I can’t
imagine what.

The real point to Roller-RAM is that, oddly written as it is, it does
contain unambiguous data that allows us to pin down the memory ad-
dresses of a chosen screen location. In particular, doubling the entry at
B600 / B601h, ie. (0/1,182), gives the address of the start of print-
line No 0 (ie. of the byte at the top left corner of the screen), dou-
bling the entry to be found at (16/17,182) gives the address of the
start of print-line No 1, and so on, each useful entry being 16 bytes
on from the last. The diagram opposite shows the connection between
the contents of Roller-RAM and the addresses of screen-bytes.

—

(

{I') 4.’|
)

'H {

3 3]

P
] v ¥
W

1lﬂ! n

1)

1
i

14

—

Chapter 10
.m3
S o
-4
-
£
E
S o
v Z
g
[
unl E-
@9 —
%Co
) £ <
Al =~
=
g
Z| § ©
O o
EtN
o E
K =
=
A
Wn
o
o
=Y
a2
G I =
O 3
el

| (=] —
i © 3 °
<|m Z + Z
3 < = Fom
|&]
zZ Lal
- -
= =~
2Ll Z ool &
+| T I~ TE &
EIEI—. Al
+| ¥
<|{<|< Sy
Ol oo | 00| 0! o 0o o0
+ F|F| | F o P
<|&|O|ala|& e
A A AR ARAR +| Fi+
< < < <] < < A A
< |V A m|m|OT o O |en
| #|]]]]+ |+ +] +
<} <| €| <) €| €| << Alaing|ny
<||lml|lO]|lR A e
N NN oo o
RIS DD R =R
Sold g £ Ble RIS

91

The contents of Roller-RAM mapped onto the screen

@N PCW Machine Code

To demonstrate the efficacy of Roller-RAM’s record keeping, change
the last part of the earlier program to read as indicated below.

SUB-R:
ld k1 (RLLR) 420182 Tuke 1st entry from Roller-RAM
add hl, ki 41 and double it.
ld (k) 255 54 255 Set all the pixels
ret 201 and finish.

This version will display a short line of pixels at the top left corner of
the screen. However, as soon as you leave the m/c routine, BASIC
will report “Break at 500. / Ok” and these two text lines will cause
the screen contents to be scrolled up thus carrying our pixel-line to
oblivion. This explains my inclusion of the ‘await a key-press’ in the
first section of the program. Without it you wouldn’t see the pixel-line
due to immediate scrolling by BASIC. Unlike the earlier version of
the program, however many times it is called this one always puts the
line in the same place on the screen.

Screen Co-ordinates

Because printing always starts at the top left of a page it is natural for
the Roller-RAM to start from that point of the screen. However most
of us have been educated to a co-ordinate system that counts positive
as up and to the right so it is natural for us to want the bottom left
corner as the ‘origin’ or zero point of our screen map. That is what I
will use in calculations relating to screen positions which will therefore
range from [0,0] at bottom left to [719,255] at top right. [0,255] cor-
responds to top left, and [719,0] to bottom right. To avoid ambiguity,
square brackets will indicate that these are positions in a rectangular
co-ordinate system and not Red-biro addresses. Pixels are packed to-
gether about twice as densely in the horizontal as in the vertical direc-
fion, so the value in the "X’ direction should be doubled if a ‘square’
display is required. This allows two side by side pixels to be illumi-
nated for each point which greatly enhances the brightness - single
pixels are not easy to sce.

The following explanation is probably not needed, but I will give it
anyway. A particular place on the screen is represented by a pair of co-
ordinates, the first indicating the ‘X' distance rightwards from the left
edge and the second indicating the "Y' distance up from the bottom.
Each such place corresponds to a pixel, and a pixel is a bit within a
screen address. Hence a place on the screen as far as the computer is

4 U &

M _®
U

—

Chapter 10 @@

concerned is-a bit number within an address. So a program to calcu-

late screen locations needs to return two
elements of ;
and the bit number. of data; the address

Calculating screen addresses

The procedure for calculating the address of the screen byte for a cho-
sen co-ordinate pair is a matter of common (and probably garden)
algebra, but it occupies several stages of deduction and explanation so

WWWMM&MQWWW”& it to Appendix 5, though the calculations can be sum-

_Calculate which print-line we are in.

Is a fraction of a print-line involved ?
Calculate the effect of the X’ co-ordinate.
Derive addr of print-line from Roller-RAM.
Add adjustments to get screen byte address.
Find the bit number within the byte.

SN

This gives both the address and the bit number so the latt

without disturbing the other bits at that address, rm:nmwmumwm nWMmMM
imposed on a back-ground without corrupting it. For moving images
it is a simple matter to record the address and the bit that was last set
and then reset it without going through the lengthy search procedure a
second time, though such resetting will ‘unpick’ a background if it is
not constantly refreshed. The table on the next page gives the vari-
ables of a sub-r to obtain screen addresses.

Insert the following program at 50,000 and i

I 1 , put the co-ordinates that
Hwno_.mwn you into (0/2,200). When the program is run it will provide
the relevant screen address in (10,200), and the bit reference in

(12,200)

51200 (0,200) Lobyteof X’. * PUT CO-ORDS
51201 (1200) Hi byte of X* * IN HERE BEFORE

51202 (2,200) Y. * CALLN
51203 (3,200) LINE. ¢ ROUTINE

51204 (4,200) 31 - LINE.

51205 (5,200) Fraction of line.

51206 (6,200) Lo byte of 8 x COLM.
51207 (7,200) Hi byte of 8 x COLM.
51208 (8,200) Lo byte of Line-address.
51209 (9,200) Hi byte of Line-address.

. @ A. PCW Machine Code

51211 (11,200) Hi byte of BYTE-ADDRESS ADDRESS.
51212 (12,200) SET BIT (1-128 not 0-7) & BIT No
51213 (13,200) Qld

51214 (14,2000 address

51215 (15200) and bit.

51210 - (10,200) Lo byte of BYTE-ADDRESS. = SCREEN

When given an appropriate feed (not listed here) it can fill the screen
pixel by pixel in about 41 seconds. This may not sound fast, butas
there are 184,320 pixels it amounts to one every 0.22 milli-seconds.
In cases of moving a relatively small number of pixels against a sta-
tionary background, the operation is quite fast, and some increase
could be gained by not storing some of the parameters.

Prepare to use Screen Environment

START:
Id bc SUB-R 197 195
call USERF 205 89 195
DEFW 2330
ret 201

USERF
1d k1 (0001) 4210
1d de 87 17 870
addhlde 25
jp (D 233

SUB-R:
Calc 'LINE’ & ‘31-LINE’

ld a (51202) 582200 Put Y’ into A,

lde,a 79 " and into C.

srla 203 63 Divide

srla 203 63 by

srla 203 63 eight

Id (51204)a 504 200 Store (31-LINE),
Idb,a 71 Put into C,

lda 31 62 31 and subtract

sub b 144 from 31. ,
Id (51203)a 503 200 Store LINE.

Chapter 10 mm :

Calculate part lines
Ida(51204) 584200 31-LINE into A,

mW a 203 39 and
slaa 203 39 multipl
slaa 203 39 nwr».ﬁ vy
add 7 198 7 Add seven,
suba,c 145 and subtract 'Y’,
Id (51205)a 505 200 then store.
8 x Column No
ld hi(51200) 420200 ‘X’ into HL.
res 0,1 203 133 Obtain the
res W w 203 141 value of
res 2, 203 149 ‘8 x INT(X/8)’: col No
Id (51206)h1 346200 and store.
Get Line-Address
Id hi(51203) 423200 ‘LINE’ into
dho 380 HL.
add hl, hl 41 Multiply
add hl, hl 41 by
‘add hl, hl 41 sixt
add hI,hl 41 e

ldde RLLR 170182 R-RAM addr into DE
add hl, de 25 HL pts to Line-entry.

ld e (hl) 94 T

inc hl 35 wm:&ww

ld N ~Q_c 86 into DE,

ex hl de 235 then into HL

add hl, hl 41 double for Line-addr

Id (51208) 348200 Store.

Get byte-address
Id de(51206) 237 91 6 200 ‘8 x Colm’ into DE
add hl, de 25 add to Line-addr.
Id a(51205) 585 200 Put
lde, a 95 ‘part-lines’

ldd, 0 22 0 into DE,
add hl, de 25 and add to result.
Id (51210)n1 3410 200 Store.

continued on next page

Id a(51200)
and 7
ldb,a
da,7
suba, b
db, 1

ora

jrzb

slab

deca
jrnz-6
lda,b

Id (51212)a
or a, (hD)
Id (hl)a
ret

580200
2307

71

62 7
144

61

183

40 5
203 32
61

32 251
120

50 12 200
182

119

201

PCW Machine Code

Low byte of ‘X" to A
get 8 x(X/8-INT (X/8))

Then
subtract from
7 to give bit No

Set bit Na 0 of B

End if A...
contains zero.

Else move the set bit
leftwards using (A)
as a count.

Then store set bit
in 51212.

Set this bit
of the HL address.

Return to USERF.

Checking the program

To make sure the above routine was working properly I added the
following code at the start of SUB-R: -

FEED: Id hi(51200) 420200 Increment
inc hl 35 the value
Id (51200)h1 340200 of ‘X
ldde 171 17 207 2 If it
ora 183 has not
sub hl, de 237 82 exceeded 171
Jrcl3 56 13 then jump on.
ldhio 3300 Else reset ‘X’
Id (51200)nl 34 0 200 to zero,
1d hl 51202 332200 and
dec (hl) 53 reduce 'Y’
Id a (1) 126 by 1.
ora 183 If Y is now
ret z 200 zero then END. ’

together with the following to replace the last ‘ret’ :

n
.r_‘L‘l)

iR

€=5

Chapter 10 97
RUBOUT:
ld hi(51213) 42 13 200 Reset
Id a(51215) 58 15200 the last
cpl 47 pixel
and (hl) 166 that was
Id (hD) a 119 set before this.
Id hi(51210) 42 10200 Record present addr
Id (51213)s1 3413 200 as the last address,
Id a(51212) 58 12 200 and present set-bit
Id (51215)a 5015 200 as last set-bit.
Id b 255 6 255 Slow
nop 0 the
nop 0 process
djnz 4 16 252 down by looping.
jp SUB-R 19597195 Then repeat.
END

These additions cause the routine to set each screen bit in turn and
then reset the one that was previously set. It gives the effect of a dot of
light moving from left to right across the screen and dropping to the
next line down at each line-end like the raster dot of a TV screen. If the
process is not slowed down by the ‘djnz’, the dot seems to flicker and
move irregularly because of interference from the interrupts and the
monitor scan. To initiate it, use this BASIC sequence which starts the
dot at Y’ =50, and resets the 1st screen-bit to get things going:

poke (51200), 0 : poke (51201), 0 : poke (51202), 50 :
poke (51213), 0 : poke (51214), 4 8: poke (51215), 89 :
print chr$ (27) +chr$ (69) :

z2="50000: call z: stop

Screen Clegring

If for some reason the escape-sequence ‘27 69' cannot be used, you
can still clear the screen by including the following code in ‘SUB-R". It
makes no use of Roller-RAM but puts zeros into every screen-address
regardless of their sequence on the screen. It takes 0.09 seconds.

ld hl SCR-ST 33 48 89 First scrn-byte addr

Id(hl) 0 540 Zeroise.

ldde HL+1 174989 2nd scrn-byte addr into DE
Idbc 23039 125589 Num of scrn bytes-1.

Idir 237176 Zero to all bytes
continue . . .

mm PCW Machine Code

A similar approach can be used for partial screen clearing after obtain-
ing the start address from Roller-RAM, but you can’t use a single
1dir because simple increments to such an address may give values
that are beyond the end of screen memory. After each print-line has
been cleared you must check that the address pointed to does not
exceed (47,179) or B32Fh. If it does then all further clearing must be
from the start of screen memory at (48,89) ie. 5930h. Alternatively
the start address of each ‘to-be-cleared’ print-line can be taken from
Roller-RAM. (Remember to double the address from Roller-RAM.)

Double setting

The following sub-r sets the pixel to the right of the one set by the
main program. If the existing pixel is bit No 0 then it sets bit No 7 of
the present address + 8, ie the one lying to the right on the screen. If
the present byte is at the right edge of the screen (X2 712) and its
bit No 0 is set, then the sub-r will not attempt to set a bit still further
to the right. With minor modification, the approach can be used for
setting the bit on the other side, or for setting several bits to produce
thicker lines. :

Id hl(51210) 42 10 200 This screen-byte addr into HL

ld a (51212) 5812200 and set-bit into A
bit0a 20371 If set-bit is No 0
jrnz7 327 then jump on.

Idb,a 120 Else copy bit to B

srl b 203 56 and move 1 place right
orb 176 Combine this with 1st
or (hl) 182 and with screen-byte
Id(hl)a 119 load all to screen-bt
ret 201 Finish. ,

push hl 229 Save screen-byte address
1d hl(51200) 420 200 Put ‘X’ into HL,

ld de 712 17 200 2 and

ora 183 subtract 712

sbc hlde 237 82 from it.

pop hl 225 Recover addr. .
ret nc 208 Finish if 'X' 2712.
ldde 8 1780 Else

add hl de 25 add 8 to byte addr

set 7 (h) 203 254 & set its leftmst bit

ret 201 Finish.

¢

70

1
&

1

i

W W

|
|
|

Li)

Chapter 10 @@

Line drawing

Because the CP/M screen map is laid out for printing and not for
plotting, the most convenient approach to drawing lines is first to
develop a suite of programs similar to the one above with the others
capable of setting the pixel above, below, to the left, and at each
corner of the primary pixel. An executive routine then sorts out in
uz?.nr direction the line is to grow from its start point and how many
up’ or ‘down’ pixels are required per ‘across’ pixel, or vice versa.
Thus if .
ABS (X1-X2)=4xABS (Y1-Y2),

then the line will consist of segments 4 pixels long in the X’ direction,
each segment touching the last segment corner to corner.

For ABS (Y1-Y2)=6xABS (X1-X2)

the segments would be 6 pixels long in the ‘Y’ direction. It is a good
idea to record the details of the last pixel set so that the figure can be
easily extended thereafter.

Deleting Pixels

The method of deleting set pixels is shown under '/RUBOUT’ on page
95. The set bit is put into A and then complemented. If A is then
ANDed with the contents of the screen byte then you can guarantee
that this bit will be reset and the others preserved. Note that the
alternative of XORing with the original un-complemented bit may
not give the desired effect. If the bit in the screen byte has already

become reset by some other means, then XORing it with a set bit will
set 1t again.

Vertical Scrolling

The screen contents can rapidly be scrolled up or down by scrolling
the contents of Roller-RAM. For upward scrolling DE is loaded with
the first address of the RAM and HL with an address greater than
this. Call the difference between them ‘Diff. The amount of screen
movement will be Diff x 2 pixels, so ‘Diff mustbe an even number
or the screen will become hopelessly scrambled. BC is loaded with
the number of bytes in the Roller-RAM minus Diff. If the status line
is to be included this is given by 512 - Diff, otherwise by 496 - Diff .
The scrolling is then achieved by ‘Idir.

100 PCW Machine Code

For scrolling down DE is loaded with the last address of Roller-RAM
which is (255,183) or (239,183), HL with an odd address smaller
than this, and BC as above. The scroll action is produced by ‘1ddr’.

Scrolling-up duplicates the bottom screen pixels, scrolling-down du-
plicates the top ones, so a feed of new screen data at these places is
required if a consistent display is intended. If vertical scrolling takes
place in multiples of 8 pixel-lines then printing can follow without
problems, but otherwise newly printed characters will be scrambled.

Horizontal Scrolling

There must be some way of using Roller-RAM to scroll horizontally,
but being ignorant why it is written the way it is and how it is used
except for column No 0, I haven’t been able to work one out, though
it is easy to scroll the screen data left or right column by column (ie.
in 8 pixel jumps). To scroll left DE is loaded with the first screen
address (48,89), HL with (56,89), and BC with the number of screen
bytes minus 8, ie. with (248,89). The bytes are then moved left by
Idir’.

To scroll right DE is loaded with the last screen address (47,179), HL
with (39,179), and BC with (248,89). The right scroll is produced by
‘1ddr.

Scrolling the screen data never produces problems with later printing,
but it does produce ‘wrap’ - the column scrolled off the screen at one
side reappears on the other side on the print-line above or below and
this has to be overwritten by the incoming new data. It is visually
more satisfactory to blank the ejected column prior to scrolling, or to
scroll only 89 columns, so that the flicker effect is reduced.

Scrolling horizontally pixel by pixel is achieved by rotating every
screen-byte so that the end bit is moved into Cy, but it is complicated
by then having to rotate Cy into the byte 8 addresses away. Itis only
theory so far, but some day I intend to do a pixel-scroll in 8 passes of
each print-line, each pass starting one address later ; in the pattern of
an 8-threaded screw. Whichever way, each print-line has to be treated
as a separate entity.

.

E

"

- @r .

i

T

¢

101

Chapter 11
The Memory Disc

The PCW models have 64k of memory immediately in contact with
the Z80 processor, but a slice of this is occupied by the resident
BDOS and BIOS leaving about 60k of TPA for users. The amount
of data to which the user can have access is more or less unlimited if
disc storage is used, but taking information from discs, working on it,
and then redisking the updated version is a distinctly pedestrian pro-

cedure; as anyone who has sat through a monthly accounts package
will confirm.

Fortunately for those jobs that require rapid handling of a lot of data
there is additional memory providing virtually instantaneous access to
a total of 256k in the case of the ‘8256’, or 512k in the casc of the
‘8512° and ‘9512’. When the memory allocated to CP/M has been
subtracted, the availability stands at 128k and 384k resp., and it
would be a highly unusual enterprise that felt cramped by figures of
this size. This is known as the Memory Disk though of course it is
not a disc at all - this is the name given to the set of memory blocks,
with numbers of 9 and above, which can be treated by CP/M as if
they were a disc, at least in the sense that it can write to, or read from,
‘files’ in this particular memory area.

If you are interested in the technicalities of how the different memory
banks are ‘switched into circuit!, please refer to Appendix 7. For our
present purposes suffice it to say that CP/M contains a sub-r called
The Memory Manager which can be called at FD21h (33,253) on the

._ ON PCW Machine Code

‘8256’ and ‘8512° or at FD2Dh (45,253) on the ‘9512. Itis used by
loading A with the number of the memory bank required and then
calling the function. In what follows I will always use the lower ad-
dress, ‘9512° owners should use the higher. Thus the following se-
quence would switch Bank No 0 into circuit (see page 83 for bank
details)

lda, 0 62 0

cal MEM_M 20533 253 [or 205 45 253]

continue . ..

Bank switching

The following sub-r uses bank switching as an alternative to the
Screen Run Routine to.POKE bytes directly into the screen data, thus
setting and resetting pixels within a print line.

xor a 175 Zeroise A and switch-
call MEM_M 205 33 253 in Bank No 0.
Id hl, SCRN 33 48 89 Point to screen data.

ldb, 240 6 240 Count 240 bytes.

ld (hl), 85 54 8 Fill byte with ‘85'.

inc hl 35 Point to next.

djnz -5 16 251 Repeat until count reaches zero
lda,1 62 1 Restore

call MEM_M 20533253 the TPA.

lde,1 14 1 Await a

call BDOS 20550 keypress.

ret 201 And finish.

As before, the screen location of the inserted bytes will depend on
Roller RAM, but the effects of the technique are limited to only a part
of the screen data and it has no access the Character Matrix RAM, nor
to Roller RAM, etc. These are all located in block No 2 which is not
accessible through a numbered bank but only through the Screen Envi-
ronment (see page 83).

Switching blocks .

As an alternative to bank switching, experiment has yielded an empiri-
cal method of addressing, not the banks of the Memory Disc, but its
individual blocks. The method is to load A with a value of 35 or

‘Chapter 11 4 Ow

more and then call the Memory Manager. The required block is then
switched into circuit and is available as if it covered the address range

(0,64) to (255,127) (the block must always be addressed in this range)
the number of the switched-in block being given by [(a) - 26].

Do not attempt to use this approach to access CP/M features such as
Screen Data, Roller RAM, Character Matrix RAM, etc. To address
them use the Screen Run Routine as described in Chapters 9 & 10.

The highest block in use by CP/M is No 8, so you should not write
into a block that has be called by an A value of less than 35 An A
value of 35 and above will provide contact with the blocks of the
Memory Disc, and you can insert data into, or obtain it from, such
blocks by addressing them in the range (0,64) to (255,127). This
means that the address of the first byte in the block is always (0,64),
regardless of the block number, and the address of its last byte is
always (255,127).

As each block contains 16k of memory there are 16 blocks in the
‘8256" (Nos0to15),and 32 in the ‘8512" and ‘9512’ (Nos0to 31).
The highest value placed in A before employing this method should
therefore be 41 in the case of the ‘8256, and 57 in the case of the
other machines. To switch-in a chosen block, put the appropriate
value into A and then call FD21h, (33,253). When you have finished
with the block, load A with 1 and call the address again to re-cstab-
lish the TPA. The calling sub-routines should be in block 7. As indi-
cated on page 82, block 7 is always in service and your sub-routines
that call up new blocks and then switch back to the TPA must be
located in it so they are not switched out of circuit. The most likely use
of the Memory Disc is as a storage arca from which to withdraw data
so that your routines in the TPA can work on it, as by:

a) switch-in the new Block
b) ‘Idir requ data into a ‘holding area’ in block 7
<) switch back to the TPA

d) employ the relevent TPA sub-rs to process data in
the holding arca

A convenient ‘holding area’ is the region from (128,242) to (0,246)
[F280h to F600h l. As indicated on page 56, this region is available
after program loading has been completed but it cannot be a constitu-
ent of a program because such a program would be too long to load.

104 PCW Machine Code

Whatever else has happened, block 7 always starts at (0,192), though
you can duplicate it at (0,64) as well if you wish. If the processing
sub-routines can all be accommodated in” block 7 and are fully self-
contained then it will not be necessary to move the data because they
can process it where it lies during the time that the new block is in-
circuit and then pass on the result of such processing as a few vari-
ables. Having the main variables areain block 7 would be convenient
in this regard. Whereas you can always move data back and forth
between any block and block 7, there is no means of moving it
directly between other pairs of blocks, though it can be done indi-
rectly by using block 7 as the intermediary.

It is also possible to locate some sub-routines within the blocks of the
Memory Disc and obtain data-processing through them if this is desir-
able, but this is risky because such routines must unfailingly return
control to block 7 ‘regardless of excursions such as errors or un-
planned-for results from calculations, and they must be able to oper-
ate in the absence of the facilities that may have been switched out of
circuit, including the stack. Itis therefore better to regard the ‘Mem-
ory Disc’ as just that; a welcome extra piece of storage.

For your reassurance I have been using the ‘Empirical Method” of
block switching for three years in the commercial manipulation of ac-
countancy documents. If there had been any glitches in the approach
they would have shown themselves with a vengeance by now. Com-
mercial work has the advantage of sharpening the attention wonder-
fully.

Restoring the TPA

Because it is essential always to return to it, I will risk boring you by
restating that the TPA (Bank No 1) is the ‘standard’ bank that will
contain your main operational routines and their variables areas.
Switching back to it is achieved by loading A with ‘T’ and then
calling FD21h ie (33,253). This instruction will be required immedi-
ately after every use of the Memory Disc, and it needs to be located in
COITUNON MEemory.

An example program

The following program illustrates a possible application of the block-
switching technique. Imagine that an unspecified number of 128-byte

Chapter 11 4 Om

data records have been stored in blocks 9 upwards, and that each has
a two-byte serial number in its first two bytes. This routine is given
the job of searching through the records to find the one whose number
is the same as the number at (0/1,196). If the correct serial number
cannot be found, a return is made with Cy set, otherwise Cy is reset

and the required document is returned in the 128 bytes f:
5820 in the ytes from

The procedure consists of two sub-rs. The first one, called ‘Next Doc’,
Srmm.nrm document address detail from (2/4,196) and incrememts it
to point to the next document. This has been separated off as an inde-

memmbn sub-r because it is likely that other routines would find a use
or it.

The second, called Test Doc’, is the test routine. It uses ‘Next Doc’
to _0.88 each document in turn, and tests each to see if it matches the
required one. The variables have been allocated as follows:

50176 (0,196) Required

50177 (1,196) serial number

50178 (2,196) Last tested document

50179 (3,196) address.

50180 (4,196) Last tested doc block No; (35 to 57).

Next Doc .
Id hi(50178) 42 2 196 Add 128 to last addr
ldde128 17 128 0 and test to see if
add hl de 25 result > highest
Id (50178)nl 34 2 196 permitted doc addr
lddeHH 17 129 127 of(128,127).
ora 183
sbc hlde 237 82 If it does not then
ccf 63 finish with
ret nc 208 Cy reset.
Idhl 064 33 0 64 Else put (0,64) as

Id (50178)nl 34 2 196 1st addr in next block
Id hl 50180 33 4 196 and increment the

inc (hl) 52 block number.

Id a (hl) 126 But if block number
cp 58 254 58 % now exceeds max
ccf 63 then finish with Cy
ret 201 set, else reset,

._ Om PCW Machine Code

‘Next Doc’ works by adding 128 to the last document 2ddres, X the
result exceeds (128,127), which is the highest addrecs at which a
document could start, then (0,64) is putin as the next doc address
because that is the first address of the next block, and the block num-
ber is incremented. If the block number now exceeds the maximum
for the machine [: 57 for the ‘512’ models, or 41 for the ‘8256'], then
all the documents must have been examined and so Cy is returned
set. Otherwise Cy is returned reset. The proper adjustment of Cy is
achieved in both parts of the sub-r by complementing it with “ccf.

"Test Doc’

Because the first action of the testing sub-r will be to increment the doc
address, the program is initialised by putting the [first address - 128
into the variables. Each doc is then tested in turn until

cither 1. ‘Next Doc’ returns Cy set, in which case “Test Doc’
terminates, also with Cy set.

or 2. The two serial numbers correspond, in which case
the document is copied, the TPA is restored, and Cy
is reset.

As with all example programs, this is by no means the fastest way of
dealing with the task, but examples are there to illustrate principles,
not to show how clever the author is. Ina real life situation, “Test Doc’
would be able to test for correspondence with a much wider range of
parameters than just the serial number by testing for compliance with
2 ‘mask’ that had been composed through the use of a screen ques-
tionaire.

*Test Doc’
1d 128 63 33 128 63 Initialise ‘last’ doc
1d (50178) hl 34 2 196 addr = '(0,64) - 128’
ida,35 62 35 and block as
1d (50180)a 50 4 196 No 35.

Next:
call NEXT_D 206 N N Point to next doc and
jrnc OK 48 7 jump on if no carry.
ldal 62 1 Otherwise restore
call MEM_M 205 33 253 theTPA,
scf 55 set Cy,
ret 201 and finish

continued on next page. ...

\
\

maem O 0@ ¢
R R R RR

o

"

Chapter 11

OK: Id a(50180)
call MEM_M
Id hi(50178)
ld a(50176)
cp (hl)
jr nz Next
inc hl
Id a (50177)
cp (hl)
jr nz Next

dec hl

Id de 62080
Id bc 128

Udir

ldal

call MEM_M
ora

ret

58 4 196
205 33 253
42 2 196
58 0 196
190

32 229

35

58 1 196
190

32 222

43

17 128 242
11280
237 176
62 1

205 33 253
183

201

Finding the Cursor Position

107

Switch-in
this block.
Doc start-addr in HL
LB of Nointo A
If requ LB and doc LB
not same try next
Point HL & Ao
HBs and if these not
the same then
then try next.

Else transfer
the document
to the
holding area.

Restore the

TPA.

Reset Cy
and finish.

mmbw o contains a sub-routine at (191,0) called TE_ASK' (TE' =
“terminal emulation”). A call to it will put the current cursor position
into HL, so if your progran needs to know this you can use:

xora

call MEM_M
call TE_ASK
1d (addr) hl
ldal

call MEMMGR
ret

175

205 33 253
205191 0
M4 AA

62 1

205 33 253
201

Zerointo A
Switch to bank 0
Call routine
Save cursor posn
Restore

TPA

Finish

108

Chapter 12
Disc Handling

There are three stages in bringing a disc file into existence ; the file is
first Created, something is written in to it, and then it is Closed.
Once these three operations have been completed the file is ready for
use. To use it you Open it, useit, then Close it again.

"Create’

The BDOS function to create a file is No 22. To use it you first need
to load DE with the address of your chosen ‘File Control Block’; the
‘FCB’. The FCB isa 36-byte arca of memory into which you put the
description of a file that you wish to manipulate. The data needed in
the FCB for creating a file is as follows:

Bytes No Data

0 Drive Number (A:=1,B:=2).
1to8 The file name (8 chars).
9to 11 The file type (3 chars).
12 to 35 All set to zero. ,

The first byte receives the drive number in which the disc is waiting.
1=drive A:, 2=driveB:, etc... throughto 16 which refers to drive
P:, though I doubt if many of us will have one of those. A zero in

n T
'r—w—

R

R R

3

IR IR

‘
1

45

7

i),.,

"

&

i
KRR

m m

)

i
B

Ay nmmm
R RRIR

®

——

e

Chapter 12 ._ O@

byte No O specifies the ‘default drive, whichever that may be at the
time. (A ‘default’ value is one that the computer ascribes to some-
thing in the absence of a specific instruction from the user.)

On the ‘8256’ and ‘9512 there is only one disc drive so only ‘1’ (ie.
drive A:) really applies, though you can use ‘0’ if you like because
A: is automatically the default drive as well, and I am told thata ‘2’
also works because it gets translated to a ‘1’. Onthe ‘8512' you can
use 0, ‘1, or ‘2, to select between the drives available. However,
for any machine if you use a non-recognised drive number you will
get a CP/M error message and be returned to the “A>" prompt,
thus losing contact with your program (but see Chapter 13).

The next 8 bytes are for the ASCII codes of the filename in UPPER
CASE (capital letters). If you don’t use upper case then CP/M will
not be able to find your file again when it looks through the directory
for it. The name may not be more than 8 characters long, and if it is
less than 8 characters then the remaining bytes must be filled with
‘spaces’ the ASCII code of whichis 32. If you want CP/M to co-
operate with your filenames, don’t use the characters listed on page 2
[364] of the manual (CP/M section).

The next 3 bytes reccive the ASCII codes of the file-type, again in
UPPER CASE. When file names are written out in full, as in the
CP/M ‘pip’ command, for example, the file-name and the file-type

_are separated by a full-stop (.), but this should not be included in the

FCB. You can make the file-type anything you wish, but certain letter
combinations have special significance and it is better to avoid them
except when the significance is intended. The special types include
COM, SUB, ENG, BAS, REL, ASM, EMS, SYM and WP. In par-
ticular use COM only when you mean it.

The remaining 24 bytes of the FCB are reserved for use by CP/M
for storing information during the creation of the file. They should all
be zeroised before calling the ‘Create’ or ‘Open’ functions and not
changed subsequently. (For a quick method of making FCBs sce
page 123 and Appendix 10.)

Suppose I want to create a file called ‘MC.COM’ on a disc in drive A:,
and that I already have in memory starting at address 50100 (180,195)
a string made out with these letters and spaces, which would be;

77 67 32 32 32 32 32 32 67 79 77

._ ._ O PCW Machine Code

and that I wish the FCB to be at address 50176 (0,196). A mini
routine for creating such a file could be as listed below.

After the create function has been called, it is possible to check on its
success by inspecting A. If A contains 0to3 then the create was
successful. If it contains 255 then the create was unsuccessful, proba-
bly because the Disc Directory was full and no more entries could be
written into it. The simple test is to increment A. If this sets the Z
flag then A must originally have contained 255 and an error han-
dling procedure should be called. (See Chapter 13.)

Prepare FCB:
lda,l 62 1 Insert the
ld (FCB),a 500196 drive No into byte 0
ldde FCB+1 171196 Copy the
Id hl STRG 33180195 string
Id be, 11 1110 into
Idir 237 176 bytes 1 to 11.
1d Wl FCB+12 3312196 -
ldb, 24 624 Zeroise
ldHhbho 540 the
inc hl 35 remaining.
djnz 16 251 bytes.
Create the file:
ldc FNUM 14 22 Fnc No into C
Id de FCB 17 0196 Point DE to FCB,
call BDOS 205 5 0 and actuate.

continue . .

You should not attempt to Create a file if one of that name already
exists on the disc. If you do you will corrupt the disc and may not
then be able to read anything useful from it. If there is any doubt, use
the ‘Delete’ function to crase any such that may exist before creating a
new one. Attempting to crase a non-existent file puts 255 into A but
causes no problems. Sce page 114 for a program example.

Quick fix for FCBs

I am indebted to Mr Johs Lind of Denmark for &miwsw my attention
to fnc No 152, called ‘Parse File Name’, which is a quick and easy
way to set up a zeroised FCB. Sce Appendix 10 for details.

—

r

" BN nHET
nnas’

W

)

Sl Y i

;_1 ™M

SN

me
A/ I

Chapter 12 ._ ._ ‘_

‘Open’

BDOS function No 15, ‘Open File’ is performed exactly as is the
Create function, but it is applied to existing files to make them acces-
sible for reading or for having more data written into them. You
should not attempt to manipulate a file that has not been recently
either Created or Opened, nor change the FCB until the file has been
closed again. If the file is found and successfully openced then A is
returned containing 0 to 3. If it cannot be found then A will contain
255 which can be tested for by ‘inca’ as indicated above.

‘'Wild Cards’

The use of ‘wild-card’ characters in file names is described in the
CP/M manual on page 8 [370] and later, and a similar procedure
can be used from m/c. The asterisk ‘¥’ cannot be used, butifa ‘?
(ASCII 63) is inserted at any place in the file-name or file-type then
any character will be regarded as a match for it. The following table
shows which functions can be used with wildcards :

YES NO

15. Open 22. Create
16. Close 23. Rename
19. Delete

"Write’ and ‘Read’ use the existing FCB which will already contain the
wildcards if any.

Memory address

To write bytes from memory into any sort of file, or to read bytes out
m& one into memory, we have to use yet another set of initials (sorry).
H.u?r?. stands for ‘Direct Memory Access’, which harks back to an-
cient computer times and therefore means nothing nowadays but no-
body wants to change it. The term ‘Set DMA address’ means Tell
CP/M the address of the picce of memory we are interested in’. In

this context a piece is always 128 bytes, and such a picce is called a
record.

‘Setting the DMA address is achieved by calling BDOS function No 26

with DE pointing at the address concerned.

._ ._ N PCW Machine Code

When a file is being read from, 128 bytes will be transferred from the
disc into the piece of memory that starts at the DMA address. When
a file is being written into, 128 bytes will be copied onto the disc from
the piece of memory that starts at the DMA address. This applies to
all varieties of files.

"Close’

After any sort of file has been accessed it must be ‘Closed’ before the
FCB is used for other purposes and before the computer is turned off.
‘Close’ is achieved by using BDOS function No 16 with DE
pointing to the FCB that was used to create (or open) and process
to the file. A successful Close isindicated by A containing Oto3. A
value of 255 indicates no success, probably because BDOS couldn’t
find the named file.

The purpose of the Close operation is to update the disc directory
with the new details of the file. If you don’t get a successful Close
then the file contents will not match the disc directory and it will
probably be impossible to access it properly in future.

File types and Kinds of files

There is a distinction to be made between ‘file type’, and ‘kind of
file”.

The file type is indicated by the three letters that follow its name.
Files that contain text (which are sometimes given the type letters
“TXT") will contain solely ASCII- and print control codes. Data files
(sometimes given the type ‘DAT’) such as personnel, accountancy,
or stores records, will probably hold a mixture of numerical and string
data. Whatever may be conventional, you can give these two sorts of
file any file-type you like.

COM files form a special group; ‘COM’ stands for ‘command’ be-
cause the filename can be used as a command to the computer. Be-
cause they are to self-run they must contain at least one m/c routine
and the strings and data they nced for their operations, ‘and they must
have the file-type ‘COM’ or they won’t do what is expected of them.

There is more than one way of writing into or reading from files, and it
is this that determines what kind it is. (See the manual page 55

m
F— TR

M
W w

¥

R

—

t

r

_&}« ,

™
W

m

(K]

H

=

7
i

RRRRR

H
H

i

-

I

W

t

—\
—r

&'r

v

=

I

W

o
-r

1!

)
]

R

4]
u";—

Chapter 12 v ._ ._m

vol2 [502] for a description of the different kinds of file.) As far as
we are concerned there are two kinds : the sequential access and the
random access.

Whatever kind or type it is, once the file has been created or opened
data can be written into it. What is written in will be a sequence of
bytes. The bytes can represent anything you like. The file-making
process is indifferent to the contents, and all of the ‘write’ instruc-
tions will copy into the file whatever set of bytes you have pointed to.

The first kind we 'will consider will be sequential files, then random
access files. Next we will look at the process of making back-up files,
which applies to all types and kinds of file, and at the end of the
chapter we will examine the special uscfulness of .COM files.

SEQUENTIAL FILES

When writing into sequential files, CP/M takes each batch of bytes
and puts them into the file in sequence. Once the sequence has been
established it can’t be changed. If you want to modify it you

1. copy the data into memory and change it there.
N.&o_mnmnrmolmma::m.
u.

make a new one of the same name and put the new data
into it.

Write sequential

Once the DMA address has been set it is possible to write the first
128 bytes into file from the DMA address by loading DE with the
address of the FCB that was used to create or open the file, and then
calling ‘Write Sequential’ ; BDOS function No 21. If the Write opera-
tion is successful then on completion A will contain zero.

If A contains a non-zero value then the write was unsuccessful,
probably because the disc or the directory is full, or the FCB is inva-
lid. The simplest way of checking this is to use ‘or a’. A zero value in
A (indicating success) will set the Zero flag.

114 PCW Machine Code

Read Sequential

Reading from a sequential file is similar to writing to one. The func-
tion number is 20. Reading should be attempted only with files that
have been Opened, and the FCB used in the Open should be used
in the Read. One Read operation copies 128 bytes from the disc into
memory starting at the current DMA address.

A successful Read returns zero in A. A non-zero value indicates that
it was unsuccessful, probably because an attempt to read beyond the
end of the file has been made (A=1), or the FCB is invalid (A=9).
Reading into memory a number of 128-byte records can be done in
the way described for Write Sequential (see below), or continuing to
read until A is found to hold the value 1.

Summary

These procedures may seem long-winded but in fact they flow quite
naturally once you have seen the reason for each step. The sequence
for writing to a file can be summarised as below (function Nos in
brackets), and an exactly similar procedure is required for reading
from one:

1. Prepare the FCB with the Drive No, the file name,
the file type, and zeroes in the remaining bytes

2. Either Create (22) a new file or Open (15) an existing
one by pointing to the FCB with DE and calling the
appropriate BDOS function.

3. Point to the section of memory that contains the bytes
you want to write to the file by setting the
DMA address (26).

4. Write the bytes into the file by pointing DE at the FCB
and calling the BDOS. function “Write Sequential’ (21).

m.O_Omoﬂvoaovwvom:z:mUmm:rowﬁwm:mnm:w:m
the BDOS function { 16). ‘

It may help if you remember that every time you want to tell CP/M
which file you are referring to, you point DE to the FCB that de-
scribes it. Remember also that BDOS corrupts the registers so it is

Chapter 12 115

anommwn% to re-load them with their required contents after each use of

Makineg larger files

The above sequence describes the creation of a file containing only one

128-byte record. In fact it is usual to want to write much more than
this so it is necessary to repeat the ‘Set DMA address’ and ‘Write
Sequential” functions several times. .

Suppose we find that we have 2197 bytes that neced to be written into
a new file. This corresponds to 17 records plus 21 bytes left over.
The smallest, block that can be copied is 128 so the 21 bytes get a
whole 128-byte record to themsclves, making 18 records in total.

(The 107 bytes beyond the end of the data will be copied onto the
disc as well.)

To achieve the copying we go through the initialisation of the FCB
and Create the new file. Then we point DMA to the start of our bytes

wum order the ‘Write sequential’. This takes care of the first lot of 128
ytes.

We then add 128 to the first DMA address so that it now points to the
second lot of 128 bytes. We then set the new DMA address, and order
‘Write Sequential’ again (which automatically selects the next part of
the disc to write to). This is repeated 16 more times until all 18 records
have been pointed to and copied. Then we Close the file.

The tally of 128-byte records and the DMA address cannot be kept in
registers because they would be corrupted cach time BDOS was
called, but the listing below illustrates a routine that might be used for
this purpose. It ‘pushes’ the count and the address onto the stack and
reclaims them later by ‘pop’. It assumes that the FCB has been pre-
pared as indicated at the start of the chapter, and that the first address
to copy data from is ‘ADDR’.

Id de FCB 17 F F Cancel any

ldc DELETE 14 19 file of

call BDOS 205 50 the same name.
Id de FCB 17 F F Create

ld c CREATE 14 22 a new

call BDOS 205 5 0 file.

continued on next page....

116

PCW Machine Code

inca 60 If A = 255 then signal
jp z ERR1 202 E1 E1 ‘Directory Full’.
ldde ADDR 17 A A First addr of DMA.
ldb, 18 6 18 Count of records.
Loop: push bc 197 Store count,

push de 213 and DMA address.
ld ¢, SET 14 26 Set the DMA to

call BDOS 205 50 the addr in DE.

Id de FCB 17 F F Point to FCB

Id ¢ WRT 14 21 and writea

call BDOS 205 50 128-byte record.

ora 183 If A # 0 then report

% jpnzERR2 194E2E2 ‘Disc Full’.

pop de 209 Recover last DMA
Idhl128 33 128 0 and

add hl de 25 add 128.

ex hl de 235 New addr into DE.
pop bc 193 Recover record count
djnz Loop 16 228 and loop if not zero.
Id de FCB 17 F F Point to

Idc CLOSE 14 16 the FCB

call BDOS 20550 and Close file

inca 60 If A= 255 then rep
jpz ERR3 202 E3 E3 ‘File not found’.

continue . . .

If an error occurs you will at least wish to signal ‘Disc Full’, or what-
ever, so that the operator can deal with the situation, but after the
error-handling you don’t want to return to the address after the place
where the error occurred so CALLing an error routine is not appro-
priate: you need to jump to it, and from there go back to the main
‘Menu Routine’ (see page 120). Also note that in the above listing
there are two ‘push’ instructions outstanding (ie. two not cancelled
by a ‘pops’) if the jump to ‘ERRY’ is made (%), and the crror-
handling routine must account for this. (Sce Chapter 13 and Ap-
pendix 6.)

~ Chapter 12 ._ ._N

RANDOM ACCESS FILES

So far we have considered only sequential files in which you couldn’t
make changes except by deleting a file and replacing it by an up-dated
version. However BDOS function Nos 34 and 40 allow us to write
directly into a file to replace any of its records, and function 33 allows
us to extract any record from it for inspection.

Function No 34 is called ‘Write Random’. - (In fact these files have
nothing whatsoever to do with randomness but I suppose I'll have to
swallow my pedantry and stick to established nomenclature.) The
name attempts inadequately to imply that you can write a new 128-
byte record into the file at whatever point you select (which is obvi-
ously therefore not random).

Having Created or Opened the file and set the DMA address, you
put the required 16-bit record number (0 to 65536) into bytes 33
and 34 of the FCB, and zero into byte 35. You then call function No
34. If the file already contained a 128-byte record corresponding to
the number you chose, then the data in it will be overwritten by the
new insertion. If it did not contain one then the function automati-
cally extends the file to provide one, and then fills it. If originally, say,
records Nos 0 to 10 existed and you request Write Random into,

say, No 16, the file will be extended to include No 16, records
Nos 11-15 being full of garbage.

Function No 40 is called ‘Write Random with Zero Fill’. It does what
fnc No 34 does but first fills the record with zeroes. This is really

good if you are faced with ‘sparse files’ (whatever they are), butisa
waste of time otherwise.

Function No 33 is called ‘Read Random’, and acts in reverse to
‘Write Random’, ie. it takes a selected record out of the file and puts it
into memory starting at the DMA address. As before, you specify
the record number in bytes 33 and 34 of the FCB, and set byte 35

to zcro.

Using Random Access is particularly convenient if you are dealing
with large files that might require an appreciable time to rcad from
and write into because of the amount of data to be shifted. Random
access involves only 128 bytes at a time which can be transferred in a
second or two, and also greatly assists with the structuring of files

because the location of data is not changed by subsequent additions or
cancellations.

._ A_ m PCW Machine Code

BACK-UP FILES

"Rename’

BDOS function No 23 allows the names of files to be changed. To
achieve this an FCB is set up to contain the description of the old file
with zeroes in its first 16 bytes, plus the new name and zeroes in the
second 16 bytes.

The drive code No in byte No 16 should be zero; the drive code
No in byte 0 is set to the drive of the disc in question. Hence the
contents of the FCB bytes are as indicated below.

Byte Nos Content

0 Drive code No
1to8 Existing file name
9to 11 Existing file type
12 to 16 All zeroes
17 to 24 New file name
25t0 27 New file type
28 to 35 All zeroes

As usual DE points to the FCB, C is loaded with the fnc No, and
BDOS is called at 0005h. A successful Rename is indicated by A
containing O to 3, an unsuccessful one by A containing 255. The
new file name must not be already in use, and this function will not
accept ‘wild-card” letters.

Back-up files

A useful application of Rename is in making back-up files. In the
normal way of things if you take the content of a file into memory so
that additions can be made to it, it will be necessary to Delete the old
file before Creating the new one under the same name. If a problem
arises after the erase has occurred but before the new one has been
recorded (a power failure, say, or someone trips over the wires), or if
the recording is unsuccessful and you switch off without realising it,
then you will have lost all your data.

t

| '—E_

nmmmmm
R

m M

4

Amatd i matd
W

H

® @

® (E!
aRnna

(E

*|
i

v
¥
1

7l
=N
W

5
i

® @
i

r

=\

L
i

m

Chapter 12 ._ ._O

This can be avoided if instead of erasing the old file it is given a
different name. The new file can then be Created under the required
name. The change in name is usually slight so that the connection
between the two files can be seen at a glance; ‘MC.COM’ might be
become ‘MC2.COM’, for example. And if you are handling very im-
portant files you might choose to introduce another layer of backup;
‘MC2.COM’ being renamed as ‘MC3.COM’, before renaming
‘MC.COM’ as MC2.COM".

I use one layer of back-up in developing programs. When I press the
SAVE key this is programmed to delete the existing backup, rename

- the present main file as the new backup, and then record the new

main file. With care over the detection and reporting of errors this
sequence is as safe as I expect to need. To achieve it I have in memory
a ‘File-name String’ that is separate from the FCB and is thercfore
not altered by the file-handling operations. It is made up as if for
Rename as indicated on the previous page. It is used in the the
‘SAVE’ process as follows

1. To delete the old back-up file, ‘Idir the second half of the
string into the FCB, set the Drive No, zeroise the rest of
the FCB, and call Delete.

2. Torename the old file as backup, ‘Idir the whole string into
the FCB, and call ‘Rename’. :

3. To create the new file, ‘ldir the first half of the string into
the FCB, zeroise the rest of the FCB, and call ‘Create’.

Temporary backups are often given the distinctive file-type “.$$$’, and
some renaming is done by changing the file-type to BAK’, though I
find this less convenient for backing-upa COM file because a ‘BAK’
file won’t self-load until you’ve changed itto a ‘COM’ again.

The advantage given by the backups is that although you can still lose
one version of the file, it is hardly credible that they will all bite the
dust together unless you mutilate the disc, for which mishap few
would hold the programming to be culpable. :

MAKING AND USING .COM FILES

The beauty of a .COM file is that you have only to type its name and
it will load itself into memory and then proceed to run untouched by

120 PCW Machine Code

human hand ; a bit like a genie being summoned from its bottle by a
magic word. (Though so far I have had no luck with genies.)

The usual method of using CP/M is to wait for the ‘A>’ prompt and
then enter the name of the .COM file that you want to use. One such
name could be ‘basic’, because Locomotive Software wrote their
BASIC into a file to which they gave the name BASIC.COM’. When
the first part of such a name is typed in, CP/M scans the disc direc-
tory fora .COM file that matches it. If one is found it is copied into
memory starting at address 0100h ie. (0,1) by the Console Com-
mand Processor (CCP), which will automatically have been inserted
into memory for that purpose.

If you try to load a file that is so long that it would encroach into the
upper area needed by CP/M then you will get the report “Cannot
load” without any elaboration. (The maximum acceptable file length
is just over 60k, ie. approx 480 records.) When loading is complete,
the CCP transfers operation to the new program by making a jump to
0100h. Whatever instruction is found at 0100h initiates the new pro-
gram's sequence of operations.

This gives the basis for writing files by m/c and operating them. Pro-
vided the first m/c instruction ina .COM file gives us control then
we can do anything we like from there. Hence it is typical for the first
section of the file to be devoted to some kind of ‘MENU’ program
which halts operations whilst the user selects from alternatives, or
inputs some data. Even if this layout has not been adhered to for some
reason, its effect can still be obtained by putting the three bytes of a
‘ump to MENU’ instruction as the first three bytes of the program,
and because I always like to leave options open even when the pro-
gram’s needs seem cut and dried, 1 like to leave the first ten or so
bytes unused (zeroised) so that such an instruction can be inserted
later if that is found to be necessary.

The Menu program

A typical Menu program to be found at the beginning of a .COM file
would start with a Print String’ instruction. This would load DE
with the address of a menu-page string, put 9 into C, and then call
BDOS. A typical page-string would start with ‘clear screen’ (27 69),
then display a title (probably underlined), followed by a list of the
options available to the user against cach of which would be shown
the key that is to be pressed to select it. The subsequent selection of

[l

q
r—‘-'L-—

B0

(%
{

& =3
&

il

™
e
Fr 1
&

VU

™

H
1

"

(g‘l

1

.

ALY

RV R U T

L.

T

Chapter 12 .‘ N._

options would be based on BDOS function No 1 as outlined on page
61. The Menu Program would either start at (0,1) or be preceded by a
few zeroes (not less than three), and look something like:

ldde STRG 17 S S Print the

de 9 14 9 Menu

call BDOS 205 5 0 String

Loop:

de 1 141 . And await

call BDOS 205 5 0 a keypress

cp K1 254 K1 Compare

jpz OPT_1 202 L1 HI (A)with

cp K2 254 K2 each of the

jpz OPT_2 202 L2 H2 allowed

cp K3 254 K3 ASCII codes

jpz OPT_ 3 202 L3 H3 andjump

NN ... to the appropriate
N .. program when

cp Kn 254 Kn a match

jpz OPT_n 202 Ln Hn is found.

ld e BEL 30 7 If no match is

ldc, 2 14 2 found then sound
call BDOS 205 50 the ‘beep” and
jr Loop 24 L loop back to repeat

In the listing, K1, K2 ... Kn, are the ASCII codes of keys that are
authorised for the user to press to select a menu option. If he doesn’t
press any key then nothing will happen, and if he presses an un-
authorised one then a ‘beep’ will sound and the program will loop
back to await another choice, though there is no need to include the
‘beep’ feature if it is not wanted. (Most of us don’t care for being
beeped at, however justified it may seem to the programmer.)

Testing .COM files

Note thata .COM file is always loaded into memory at 0100k (0,1)
regardless of the address of its own manufacture, and this has to be
.Srms into account while it is being written ; the addresses of all its
internal calls must apply to this low arca of memory not to the ad-
dresses that apply during its assembly. The snag here is that you
cannot try out a program until it is in the final ‘COM’ version and in
position at low memory, and this will complicate the testing process if

122 PCW Machine Code

you have no testing aids available there (but see Appendix 9).

To overcome this you might write the sub-routines as if they are to
operate at the addresses at which they are assembled, but make sure
that the Low Bytes of addresses are all the same as they will be when
the program is transferred to 0100h. This applies to addresses of the
Variables etc., as well as to all ‘jump’ and ‘call’ addresses.

Then, immediately prior to making the COM file, and after all testing
has been carried out, institute a ‘Search and Change’ procedure that
runs through the program subtracting the necessary fixed amount
from the High Bytes of all addresses. The ‘Search and Change’ is
particularly easy to organise if you are assembling with BASIC in
place. On one occasion of assembling at high memory because BASIC
was in place, I made a point of starting everything from address
51456 (C900h) because this has a red-biro equivalent of (0,201),
whereas in the COM file version everything would start from (0,1).
Hence all addresses would undergo the simple transformation of hav-
ing 200 subtracted from their High Byte.

On the subject of testing; you should never pass on from writing a
sub-routine, particularly one to calculate numerical results or data ad-
dresses, until you have certain evidence that it is doing its job prop-
erly. (Yes I know “There is no way in which this one can fail”, but
don’t you believe it.)

The first COM file I ever wrote was called “bel”. When you typed its
name it loaded itself and sounded two beeps in quick succession. The
fact that it worked stunned me into a silence of wonderment, and in
the next five minutes I almost wore out the disc with action replays. If
it had successfully launched a new Mars Probe I doubt if I would
have been any more impressed. [hope all yours are as successful, and
that at lcast some of them achieve a bit more !

HE-

M
o
Y TRY VI

«

n o DM
VIR

LI
W

&

Chapter 12 ._ Nw

MISCELLANEOUS FILE OOZmHUmHCP.HHOZW

A bit more about the DMA address

It is possible to write into or read from a file without having set the
DMA address, but then the default location will be 0080h Gmmbv\ S0
the data arca must be the 128 addresses starting from there. When
the computer is switched on, the DMA will have this default address,
but once you change it it retains the new value until you change it
again or you reboot the system (see page 126). Because it is rare to
copy only 128 bytes, it is better to think of setting the DMA address
as a normal part of file handling.

Assessing Disc Free Space

The amount of free space on a disc in a particular drive can be assessed
by using function No 46, though it is necessary first to ensure that
that drive is ‘logged-in’. The following sub-routine has two alterna-
tive starts. Starting at ‘Start 1" gives the free space of the disc in drive
A:, starting at ‘Start 2’ gives the same for drive B: If your machine
TWm no drive B:, then you can leave out the 2nd and 3rd operations
(ie. omit “24 2 30 1”) and always use ‘Start1’.

The first part of the sub-r loads E with the number of the drive we are
interested in and stores this by pushing DE, but notice that in this
case 0 =A: and 1=B: which is different from the numbering used
when constructing an FCB. It then uses function No 13 to reset all

the drives, which has the simultanco ffect of tH
address to (128,0) ie, 0080h. us cffect of resctting the DMA

START_1:
.ENS 0 30 0 Start for drive A:
jr 24 2 and jp to ’
START_2: Jptopush DE
lde 1 30 1 Start for drive B:
push de 213 . Save the value in E.
ldc13 14 13 Reset the drives
call BDOS 205 50 and the DMA address.
% popde 209 Recover drive No to E
ldc, 46 14 46 and call
call BDOS 20550 the function.

ldhl (DMA) 42 128 0 Collect space in HL
ret 201 and finish.

.ﬂ NA. PCW Machine Code

125

At % the drive number is put back into E by popping DE, and
function No 46 is called. The disc free space is given as a 24-bit
numbser in the first three bytes of the DMA, which we know is now at
(128,0). As the result represents the number of unused 128-byte rec-
ords, it is unlikely that you will have a disc that contains more than
65535 of them (1), so you can ignore the high-byte, and take the
result from the low- and middle-bytes. In the listing this is loaded into
HL before returning to the main routine

Chapter 13
Error Handling

I
=)

HH

LA

F

A computer ‘error can be defined as any unexpected or unwelcome

event, and in computing if it is unexpected you can be pretty sure it
will be un-welcome.

Errors come in three broad kinds:

r—

1. Those that direct operations to an undesirable place
within your program.

2. Those that lead operations outside it by returning to
CP/M or to BASIC.

3. Those that prevent, or cause screwed-up, input from
the keyboard.

i
0

i

4
I

F

In all three cases you will have lost control of what happens next.

TYPE 1 ERRORS

M

M ®
-ﬂdJ'"“ﬂﬁj‘

Typical of a type 1 error would be if a disc were filled during a Write-
sequential operation but the sub-routine continued to try to write
bytes onto it, thus corrupting it and possibly making all its data inac-
cessible. Obviously such a situation should not be allowed to occur,
and in this case it can be prevented by testing the content of A ; the
discovery of a “255' should lead the program out of the operation into

ALY
(i'J———“ r

-

i

._ NO . PCW Machine Code

an ‘Error Handling Routine’ that would be available to all sub-rou-
tines. This should perform at least the following duties:

1. Warn the user that something untoward has happened,
and tell him what it is,

2 Await a key-press,

3 Direct operations back to a safe ‘restart’ location.

It could be designed also to indicate the program address at which the
error occurred and this could be helpful to a programmer if there
would otherwise be some doubt about it.

To establish the error-handling sequence, the first action of the main
program should be to load the content of SP into some chosen ad-
dress; call this ‘"ADDR’. This records the stack situation in the pre-
start ‘all clear condition. Then, when the error has occurred, just
before jumping to the error-handling routine, A is loaded with the
number of the error. This tells the routine which error-message to
display on the screen. A typical list of error messages might contain:

Memory full
" Disc full
Directory full
List X’ full
Failed to Erase
End of File
File not found
Code X’ not found etc...

NN WO

Naturally the contents of the list will depend on the sort of program
being run. The general method of message selection and display is
described on page 69, so a simple error handling routine might list as
follows: ,

Id bl LIST 33 LL Point HL to list of

cal PRTM 205 P P messages, print the one
ldc, 1 141 pointed to by A and
call BDOS 20550 await keypress.

Id sp (ADDR) 237 123 A A Restore stack pointer
jp MENU 195 M M Return to main menu.

The reason for reloading SP with the stored value is that this auto-
matically cancels any unfinished business with ‘calls’ or ‘pushes’
that may have been short circuited by the jump to the error handling
routine. (See Appendix 6.)

Chapter 13 127

TYPE 2 ERRORS

When the m/c routine has been called from BASIC, and an crror
causes a premature return to it, there is not much that can be done to
retrieve the situation. BASIC has its own error handling arrange-
ments (sce ‘On Error Goto’), but these will be of little use because
BASIC will be awaiting.a command or running the next bit of pro-
gram, and be unaware of the m/c error. It is therefore as well to put
ina BASIC line that tests to sce if the m/c routine has run to comple-
tion, rather than just assume that it has. You could, for example, ar-
range for the last part of the m/c routine to change the value of a
variable that has no other use, or to change the value in a reserved
memory address, and on return check that this has been done. (Sce
pages 172 and 360 of Vol 2 [509] of the Manual.)

A premature return to BASIC will probably be due to the presence in
the m/c routine of an unwanted ‘ret, or to an incorrect change in SP
causing a valid ‘ret’ to return the address at the bottom of the stack
instead of to the one it was supposed to return to.

The same possibilities exist if the m/c program has been derived from
a .COM file (ie. BASIC is absent), except that a premature return
will give rise to the ‘A>’ prompt because operations will have been
rw:mwm over to CP/M. In this case, in addition to spurious ‘rets’,
any circumstance that gives rise to a ‘Warmboot’ will provoke the
‘A>’ prompt. Whatever the cause, once the prompt has appeared you
will be unable to get back to your m/c program without switching off
the machine and starting again. That guarantees loss of any data that
might have been accumulated whilst the program was running.

CP/M Warmboot

When the machine is switched on it performs the so called ‘Coldboot’;
ie. it loads the necessary system-programming and sets its system
variables ready for operations to begin. ‘Warmboot’ is the name
given to a subsequent restart that doesn’t involve switching off.
‘Warmboot” doesn’t reload the CP/M program but it does reset all
system variables to the ‘coldboot’ condition, and then expects you to
inputa CP/M command. If a type 2 error has occurred this will
have lead to a ‘warmboot’, but your program will still be in memory
though you won't be able to get back to it because there is no CP/M

128 , PCW Machine Code

though you won’t be able to get back to it because there is no CP/M
command that provides for this.

All ‘boots’, fur-lined or otherwise, involve a jump to 0000h, at
which is to be found;

jp 3 252.
At (3,252) is to be found;
jp 111 252,

and at (111,252) is to be found a complex set of instructions that do all
sorts of abstruse and wonderful things.

It is therefore possible to prevent CP/M warmboots by changing the
jump instruction at 000Ch. If, once your program is installed and
running, it changes the address at 0001/2h, you will be able to redi-
rect all warmboot attempts to your own warmboot procedure, and
thus maintain control. This isn’t something to be done once the pro-
gram has been given over for civilian use because the address is used
for other purposes also (see page 83), but it is a handy tool for a pro-
grammer desparately trying to work out the reason for his program’s
kami-kazi tendencies.

CP/M disc error_procedures

Some disc errors may also cause warmboot and loss of control. An
example might be that the user inadvertently makes some inappropri-
ate disc request, to which CP/M might respond:

“Drive not ready: Cancel, Ignore, Retry 77

If a proper disc could be inserted followed by ‘Retry’, then everything
would be fine. If no such disc were available then a return to CP/M
would be inevitable because ‘Ignore’ has no effect and ‘Cancel’ acts
like that. Just to be helpful, CP/M will give you the additional infor-
mation: '
“CP/M Error on A: Disk I/O
BDOS Function = 15 File = FRED.DAT
>V\\

though you may feel that that is little consolation.

LS

"

H

®

'

&r‘"&r“‘

(B

0

{
—m

r
i

(®
R

. Chapter 13 ._Nm

Fortunately this arrangement can be modified by BDOS function N
45, which is called 'Set BDOS disc error mode’. vm.rm function am@ﬂwnmm

wrhn an error-mode be put into E before calling it. The error-modes

0t0253: Error message displayed followed by
warm boot (the normal arrangement; the
default setting is OOh).,

Error message displayed but no warmboot.
No message and no warmboot.

254
255:
Error-modes of 254 and 255 can therefore be helpful in maintaining

control in case of errors of this type, though naturally you have to put
in some alternative procedure of your own.

TYPE 3 ERRORS

Type 3 errors aré caused by ‘bugs’. (And

; . . you know what le
who insert ‘bugs’ are called !) The machine and the system wow%w_.m
can be assumed to be faultless, so if you get lock-up or something

equally uncooperative then it is almost certainly because your pro-
gram has an error in it.

Normally bugs aught to be revealed by the tests applied to each of the
sub-routines before they are linked up to form the program, but it can
happen that a bug appears only after the program has been run. A
sub-r may be putting a byte into an address that is harmless, and
ndm._.mmoa unnoticed, during the tests, but one which has critical sig-
nificance later when the program is in use. This highlights the need to
keep a pure, un-run, copy of programs, particularly if they are com-
plex and not easy to follow through. Once unintended bytes get into a
listing they can cause ever increasing corruption of what is supposed
to be there until it is quite impossible to trace the original source of the

HMME@ If you have a good version you can keep copying it to make

Once a bug has entered a program, it can be detected only by ‘hom-
ing-in’ on it, ie. by testing the program up to more and more ad-
vanced stop-points. This should show the earliest place in the se-
quence that the bug operates at, and make discovering it relatively
straight forward. If you think you know what is causing the trouble
but have not yet made an ordered search, don’t persist with your
notion too long. I have occasionally dug myself into ever deepening
holes by making changes ‘that are bound to solve the problem’ when

130 PCW Machine Code

what I aught to have been doing was working through a patient and
orderly enquiry.

Recording results in memory so they can be inspected later (as indi-
cated in chapters 5 and 6, and elsewhere) can make bug hunting
very much easier. If a result isn’t coming out right that won’t be due to
bad luck, it will be because something is wrong with the program-
ming that produces it, or with the programming that feeds data to
help in its calculation.

Programs frequently have a need to to store newly produced data onto
disc at the end of each keyboard session. In these cases it is vital to
separate the operating program from the data so that only the latter is
involved in the recording. If a bug should get into a program during a
period of use, the last thing you want to do is to record it for posterity.
Information Theory makes use of a notion very similar to Entropy -
“Orderliness never gets any more orderly ; downhill is the only way it
knows.” We accept the first idea without a murmur, but we need our
wits about us to forestall the second.

KEYING ERRORS

There is a particularly exasperating source of all three types of errors;
that of the unintended keypress. The most irritating ones are the func-
tion keys (f1 to f8) that occupy dangerous ground between SHIFT,
RETURN, DEL etc, and the numeral pad. One of them in particular
(Ithink itis f5) occasionally causes mayhem out of all proportion to
its work-a-day worth.

The simple answer is to redefine the keyboard so that keys you have
no use for have no effect when pressed. This is achieved by creating a
file to use with the CP/M ‘setkeys’ function. The procedure is de-
scribed on page 108 [541] et seq of the manual. Through ‘setkeys’
you can instruct any key to produce any ‘ASCII code’ you wish. The
code for ‘Don’t do anything’ is 159.

Your file can then be operated automatically at start-up by referring to
itinalineina ‘profilesub’ file. ‘

And if you are not familiar with ‘profile.sub’, Irecommend that you
take as long as necessary to swot it up. It allows programs to self-load
without any keypressing. I wouldn’t be without it.

-

®m M H M nm a9
IR

AN
Viov

SR A
¢ W

Chapter 14 131

Chapter 14
Arithmetical routines

Displaying numbers

Almost every program needs to display numbers on the screen or
through the printer. In developing a routine for this we will limit our
consideration to numbers up to 65535, though the priciples described
can be extended to numbers of any size.

When a number is in the computer it will be in 1- or 2-byte form and
this must first be converted to decimal digits. This could be accom-
plished by dividing it first by 10,000 and using the resulting integer
as the first digit, then multiplying the fraction by 10, ectc., etc.

However my choice is to use repeated subtraction first of 10,000, then
of 1000, then of 100, then of 10, thus leaving the units as the remain-
der. This avoids the errors that would inevitably be introduced by the
rounding of the inexact results of divisions. It is also faster for small
digits than multiplication, though maybe slower for large ones.

When the decimal digits have been calculated they need to be con-
verted to the ASCII codes of their numerals so that the numerals can
be printed. Inspection shows that the ASCIIcode for “0” is 48, for
“1” is 49, for “2” is 50, etc. Hence the ASCII code is obtained by
adding 48 to the digit, and this can be done as part of the calcula-

A wN . . PCW Machine Code

+

tional procedure. The program is in two parts, one as a sub-routine
called by the other. Ihave called the sub-routine “Calcdig” ; separat-
ing it off avoids unnecessary repetition of the same code sequences for
each digit.

The resulting ASCII codes will be stored in the Variables area,
which I will assign to page 200 [ie., it starts at 51200; (0,200);
C800h]. Naturally you will put yours where it is most convenient.

51200 (0,200) 27 DEFB

51201 (1,200 89 DEFB

51202 (2,200) In print-line No
51203 (3,200) col print-colm No

51204 (4,200) . - ASCII of Ten Thousands
51205 (5,200) - ASCII of Thousands
51206 (6,200) - ASCII of Hundreds
51207 (7,200) - ASCII of Tens

51208 (8,200) - ASCII of Units

51209 (9,200) 255 DEFB (delimiter)
51210 (10,200) Lo Number to
51211 (11,200) Hi be processed

In addition to the required ASCII codes, I have also inserted the bytes
necessary to producea ‘print-position’ string so that the results can be
printed at any screen location. (See pages 70 and 71.)

The last two bytes are the Lo- and the Hi-byte of the number whose
digits we want. It is not necessary to have this in memory for our
present purposes, but you may have other reasons for wanting to
store it. The main routine proceeds as follows :

Startl:

Id hl(51210) 42 10 200 Collect number from vars
Start2:

Id de 10,000 17 16 39 (Start if num already in HL)

call ‘Calcdg’ 2056 NN Calc the Ten-thous

Id (51204), a 50 4 200 Store the digit

Id de 1000 17 2323

call “‘Caledg’ 205 N N Calc the thousands

Id (51205), a 50 5 200 Store the digit *

ld de 100 171000

call ‘Calcdg’ 205 N N Calc the hundreds

Id (51206), a 50 6 200 Store the digit

continued on next page.....

e

Ef
W

{I

F
i

Y

H
|

|
i
i

N

R

¥

" ®
:
W

P

e

i

™

1

? m 1
U

5

"
w—w

i

-

Chapter 14 ._ ww

ldde19 17100 :
call ‘Calcdg’ 205 NN Calculate the tens
Id (51207), a 507200 Store the digit

lda,l 125 Put units into A
add a, 48 198 48 Convert to ASCII
Id (51208), a 50 8 200 Store the digit

ret 201

In each case DE is loaded with the rank of the digit to be calculated
(10,000; 1000; 100; or 10) prior to calling ‘Calcdig’. ‘Calcdig’ re-
turns the ASCII value in A which is then stored by the main pro-
gram in the proper place in memory. At the end, the previous sub-

. tractions will have left the units in HL, ie. in L, so this is moved into

A and there converted to the ASCII code before being stored. The
sub-routine ‘Caledig’ is as follows :

xor a 175 Zeroise A & reset Cy

inca 60 Increase the count

sbe hl de 237 82 Subtr digit rank in DE
jrnc-5 48 251 Repeat if no carry

add hl de 25 Else restore last subtraction
dec a 61 and last count increment.
add a, 48 198 48 Convert to ASCII

ret 201 and ret to main.

The accumulator is to be used to count the number of ‘hundreds’,
‘tens’, etc., so it is first zeroised and the Carry flag reset by “xora’. A
small loop now repeatedly subtracts the value in DE from what is left
in HL, and A counts the number of subtractions. If the subtraction
takes the result below zero then Cy will become set thus telling us we
have gone too far. We therefore add D E back to HL once and take
one off the count. The count in A is converted to the appropriate
ASCII code and this is taken back to the main routine for storage by it.
The ASCII codes. are now all in their proper sequence in memory
ready for printing. (See chaps7 & 8.)

Pseudo-random numbers

The term ‘generating random numbers’ means something like “out-
putting a sequence of numbers one at a time in such a way that:

a) the values all fall within specified size limits
b) a large set would contain a roughly equal frequency

134 PCW Machine Code

of all the allowed members
<) there is no way of predicting a future value”.

In practice the inconvenience of meeting all these conditions is too
great and the last one is usually waived ; a set of ‘pseudo-random’
numbers being used instead.

These are not random at all ; on the contrary their sequence is entirely
predictable though to a user they seem adequately ‘mixed up’, and, if
there are enough of them, and if operations start at different places in
the sequence at different times, then they appear to be random.

A set of pseudo-random numbers in the range 0 to 65535 will be
generated if the following sequence of operations is performed each
time a new one is required. Any member of the set may be used as the
starting point or ‘seed’, and each new product acts as the seed for the
next. The calculation is often performed on the floating-point forms
(because the third operation cannot be performed in 16 bits), but 24-
or 32-bit arithmetic can achieve the same effect more conveniently
(see below).

Add 1

Multiply by 75

Extract MOD 65537 (divide by 65537 and use the remainder)
Subtract 1

Random numbers

There is no way in which a calculational procedure can output a se-
quence of truly random numbers from the PCW, though randomness,
or rather ‘unpredictability’, can be extracted from human activity and
coupled with calculation in such a way that the conditions stated
above can be satisfied. In the following two examples the value
stored at ‘ADDR’ has a constant added repeatedly to it, but the addi-
tions cease when a key is pressed. As both the current value and the
time lag are unknown, the new value cannot be predicted. This is as
adequate for all chance- or risk- simulations as die-rolling or coin-
tossing would be.

Adding 13 rather than 1 reduces the risk of ‘'clumping' that is
faintly conceivable if extremely short time lags should occur. Adding
13 or 1 gives an excellent spread to the results, but adding most
other numbers does not. If the sub-r were to treat a_high-byte and a

)
—

!

nan
R

m
r

™
Fr—

r‘@r—y—y—x im

VU

&

3
t

bt
,;r”'—'. »lr

i
T
&

{

et
“'*\&lr*v 3]

1!

‘,

y ?r‘"*@r"'wr

454
-re
&

®

f

s

¢

F
U

- @s,__,

Chapter 14 ._ wm

low-byte simultaneously by adding 13 to one and 1 to the other,
then random values in the range 0 to 65535 would be generated.
As listed, the sub-r gives values in the range 0 to 255. The cycle
time is about 0.5 milli-seconds.

ld a (ADDR) 58 A A Take current ‘seed’.

add a, 13 198 13 Add 13

ld (ADDR)a 50 A A and replace in memory
ldc11 1411 Test for a

call BDOS 20550 key-press

ora 183 (see page 61).

jrz-16 40 240 If none then repeat addition

ret 201 Else finish.

Die throwing

To simulate die-throws in the range 1 to 6, the following sub-r limits
the values that may occur in A and hence in the result. The simulta-
neous throwing of say three dice is best simulated by three independ-
ent calls of the sub-routine. Attempts to obtain three simultaneous die
values invariably means that the values for the individual dice cannot
independent of each other, though if the value for the first is derived
as below and those of the other two from subsequent use of pseudo-
random numbers then the dependence need not be noticeable.

Id a,(ADDR) 58 A A Take current ‘seed’

inca 60 and add 1.

cp7 2547 If in range (not>6)
jre 2 56 2 then jump on,

Ida, 1 621 else restore to 1

Id (ADDR)a 50 A A and replace in memory
lde, 11 14 11 Test

call BDOS 20550 fora

ora 183 key-press.

jrz-21 40 235 If none repeat

ret 201 else finish.

Multiplication and Division

I obtained the next four sub-routines from magazines and books. They
are fast and economical of memory and have shown themselves to be
useful in a wide range of programs. They are offered as candidates

136 , PCW Machine Code

for a library. In all cases the abbreviation ‘(a)’ means “the content of
the A register”, and ‘(hl)’ means “the content of the HL register
pair”, etc.

It is not possible to standardise on which registers shall contain the
original numbers because of the unique role that HL plays in addi-
tions and subtractions, though you could add extra instructions to
achieve standardisation if it seemed desirable. There is no need to
have both the 8- and the 16-bit versions in memory at the same time
because the latter will perform the same function as the former if the
High Bytes are first set to zero, though the calculation time will be a
little longer.

8-bit multiplication

This multiplies (h) by (e) and gives the result in HL.

ldd, 0 22 0
d1,0 46 0 e) = (hl
idb, 8 6 8
add hl, hl 41
jrncl 48 1
add hl de 25
djnz -6 16 250
ret 201
8-bit division

.H.Em&immmA&v%@mbmm?mmnrmanmc:ms_uECmm:v.nmeman.
in A. . .

db, 8 6 8

xora 175

slad 203 34 d)/(e) =(d) +{a)
rla 203 23

cpe 187

jrc2 56 2

suba, e 147 .
incd 20

djnz -11 16 245

ret 201

m
b

1

-

!

®

¥

'.
1

®

Vv

®

%

Y

U

IR

|
o

® ®

B

I

-

Chapter 14 . 137

16 to 32-bit multiplication

This multiplies (bc) by (de) and gives the result in HLDE. If the
product is certain not to exceed 65535 then HL can be ignored and
the result taken from DE. For larger results, the total is 65536 x (hl) +
(de).

ldhnlo 3300
lda, 16 62 16 -
bitOe 203 67 (be) x (de) = (hide)
jrzl 40 1
add hl bc 9

srlh 203 60
rrl 203 29
rrd 203 26
rre 203 27
dec a 61
jrnz-16 32 240
ret 201

16-bit division

This divides (bc) by (de) and gives the result in BC with any re-
mainder in HL.

dhl 0 33 00
lda,16 62 16
scf 55 (be)/(de) = (be) + (hD
rlc 203 17
rlb 203 16
adc hl de 237 106
sbc hl de 237 82
jrne?2 48 2
add hl de 25

dec c 13
deca 61
jrnz-16 32 240
ret 201

32-bit Calculations

8- and 16-bit calculations are suitable for most purposes, but occasion-
ally they do not offer adequate precision. Fortunately it is not difficult
to provide sub-rs that operate on 24- or 32-bit numbers, though they

138 PCW Machine Code

are noticeably slower when many iterations have to be invoked. My
preference is that, rather than have both 24- and 32-bit available
together, I provide for only 32-bit because these can do the work of
both. 32-bit division is used in, among other things, calculating
pscudo-random numbers as described above.

From the discussions in chapter 2, it will be obvious that 32-bit
numbers occupy four bytes. In all cases of referring to ‘pointing to’
such a number by HL, say, I will mean that the number is in memory
and HL contains the address of the least significant byte of the num-
ber. This will also be the lowest of the four addresses that the number
occupies.

32-bit_Addition

The following sub-r allows addition of two 32-bit, numbers that are
currently in memory. Before calling the sub-r, their low bytes are
pointed to by HL and by DE respectively. The result is given in
DEHL (D contains the most significant byte of the result and L the
least significant).

Id a (de) 26 Lowest byte into A.
add a (hl) 134 % Add other lowest byte
dec,a 79 and store in C

inc hl 35 Point to next

inc de 19 two bytes

1d a (de) 26 and

adc a (hl) 142 * repeat

idb,a 71 storing in B.

push bc 197 Save the 2 bytes on stack
inc hl 35 Point to the next

inc de 19 two higher bytes,

Id a (de) 26 and

adc a (h) 142 * repeat.

ldc,a 79

inc hl 35 Point to the two

inc de 19 , highest bytes

ld a (de) 26 etc.

adc a (hl) 142 * '
ldd,a 87 Put the two highest
lde, c 89 bytes of result in DE.
pop ki 225 And 2 lowest into HL
ret 201

T
Wd

Mm@
.
o W

M
i
® W

Samndat e

.

r

nr

B

"

I

[
S W

i

(F

(1A

L h A

JLLE}

Chapter 14 ._ wm

32-bit Subtraction

This follows the same pattern as the addition, but the addition opera-
tions marked with ‘¥’ are changed to subtractions, ie.

‘add a,(hl) 134" becomes ‘suba,(hl) 150’,
‘adc a, (hl) 142’ becomes ‘sbca,(hl) 158°.

Wrm ngvmn pointed to by HL 'is subtracted from the one pointed to
y DE.

32-bit Multiplications

The following suite of programs allows threc kinds of multiplication of
the 32-bit number pointed to by HL

START 1. multiplication by the content of A
or START 2. by the 16-bit content of DE

or START 3. by a second 32-bit number pointed to by DE

A 14-byte scratch pad is required the lowest address of which I will
call (PP), and the sub-r for 32-bit addition is needed. If the result
would be too large to fit into 32 bits then the calculation is terminated
and Cy is returned set. Otherwise the result is returned in HLDE

(and in the highest four bytes of the scratch pad), and Cy is re-
turned reset.

START1:

ld de PAD+4 17 P+4 P Transfer the HL No
Idbc4 140 into the
ldir 237 176 Pad.
ld (PAD), a 50PP Put (a) into PAD.
ldb, 8 68 Count of 8 bits in B
jr ZERO 2415 Go to ‘Calculation’.

- START2: :
push de 213 Save (de)
Id de PAD+4 17 P+4 P Transfer the HL No
Id be 4 140 into the
ldir 237 176 Pad.
pop hl 225 Recover (de) into HL
ld (PAD), bl 34PP and put into Pad.
ldb, 16 616 Count 16 bits in B
Jjr ZERO 24 20 Go to ‘Calculation’.

continued on next page.. . . .

140

START3:

ZERO:

CALC:

push de

ld de PAD+4
ldbc 4

idir

pop bl

Id de PAD
Idbc 4

idir

ldb, 32

Idhl 0
Id(PAD+8)hl
ld(PAD+10)hl
Id(PAD+12)hl

1d hl PAD+3
srl (hl)
dec hl
rr (hl)
dec hl
rr (hl)
dec hl
rr (hl)
jrnc 19

push bc

ld hl PD+10
ld de PD+4
call 32-Add
ld(PD+10)hl
ld(PD+12)de

pop be
ret ¢

Id hl PD+4
sla (hl)

inc hl

rl (hl)

inc hl

rl (hl)

inc

rl (k)

213

17 P+4 P
140
237176
225
17PP
140
237 176
632

3300

34 P+8 P
34 P+10 P
34 P+12 P

33P+3P
203 62

34 P+10 P
237 83 P+12 P
193

216

33 PH4P
203 38
35

203 22

PCW Machine Code

Save (de).
Transfer the HL number -
into the
Pad.
Recover (de) into HL
and copy the
32-bit DE number
into the Pad.
Count 32 bits in B

Zeroise
the rest
of the
Pad.

Point top byte of
the multiplier

and

rotate

each least significant
bit

in turn

into Cy.

_ If bit reset jump on.

Else save bit count.
And add multiplicand
into
the result

Recover bit count but if
addition overflow, then exit

Rotate the
multiplicand
to the

left
in
five

bytes
(5th is to test

continued on next page

® 9
vd

nmm

4

))
rw*

" 1
Vi

(F N

i

't

i
.

R

| (?

CH AR P
et T

(F

£
i

Chapter 14

END:

inc hl |

rl (hl)

Id hi(PAD)

Id de(PAD+2)
lda,l

orh

ore

ord

jrz END

Id a(PAD+8)
ora '
jrz2

of

et

djnz CALC

Id hi(PD+10)
Id de(PD+12)
ora

ret

32-Bit Divisions

141
35 for overflow)
203 22
42PP Test
23791 P+2 P the
125 multiplier.
180 Ifall
179 bytes
178 v now zero
40 10 then finish.
58 P+8 P Test ‘fifth byte’
183 of the multiplicand
402 if not 0 (overflow)
55 then set Cy
201 and finish
16 181 Else repeat if count not 0

42 P+10 P Transfer result
237 91 P+12 P into DEHL
183 Reset Cy

201 And finish.

The following three programs allow divisions of the 32-bit number
pointed to by HL similar to the multiplications described above:

or
or

START 1. Division by the content of A
START 2. By the 16-bit content of DE
START 3. By 32-bit number pointed to by DE

The 32-bit subtraction routine is needed, as is an 18-bit scratch-pad
whose lowest address is (PP). If the divisor is the larger of the two
(ie. the result would be less than 1) then the division is terminated

and Cy

returned set. Otherwise Cy is reset and the result is

returned in DEHL (and at the top of the scratch-pad).

START1:

Id de PAD+4
ldbc4

ldir

ld (PAD) a

17 P+4 P ‘HL number’
140 into

237 176 Pad.

50pP (a) into Pad.

142

~

ldhl 0

Id (PAD+1)hl
ld (PAD+2)hl
jr TEST

push de

ld de PAD+4
Idbc 4

ldir

pop hi

ld (PAD)h1
ldhl o

ld (PAD+2)hl

jr TEST
STARTS:

TEST:

ZERO:

CALC:

push de

Id de PAD+4
Id bc 4

Idir

pop hl

Id de PAD

Id bc 4

ldir

Id hl PAD

Id de PAD+4
call 32 SUB
ret ¢

lda 10

Id hl PAD+8
Id (hl) O

inc hl

deca

jrnz -6

ldb, 32

push be

Ida 13

1d hl PAD+4
sla (hl)

inc hl

rl (hl)

3300

34 P+1P
34P+2P
24 19
213

17 P+4 P
140
237 176
225
34PP
3300
34P+2 P
2418

213

17 P+4 P
140
237176
225
17PP
140
237 176

33PP
17 PH4 P
2058 S
216

62 10
33 P+8 P

PCW Machine Code

Zeroise
rest of
divisor
Go to Calculation
Save (de).
‘HL number’
into
Pad.
Recover (de) in HL
and put into Pad.
Zeroise
rest of divisor.
Go to Calculation.

Save (de).
‘HL number’
into
Pad.
Recover (de).
‘DE number’
into
Pad.

If divisor is the
smaller of the two
then exit
with Cy set.

Zeroise
rest

of
Pad

32 bits until divisor is empty

Save count.
13 bytes to rotate.

- Rotate

13 bytes
leftwards

continued on next page. . ..

® m
i o t ! :
! 1t Amml

1 IS

i

BE I

)
|

Hatimiat

:‘ i
I

2
el s
W

t+

?

W

(

1 4]

U

Chapter 14 ._ A.w
deca 61
jrnz-6 32 250
Id ki PAD 3PP Subtract divisor
ld de PAD+8 17 P+8 P from rotated
call 32 SUB 2058 S bytes
jrei2 56 12 If divisor smaller then jump on
l1d (PAD+8)hl 34 P+8 P Else put

ld (PAD+10)de 237 83 P+10 P remainder into

ld hl PAD+14 33 P+14 P rotated bytes and

set 0 (hl) 203 198 count 1 into the result
pop bc 193 Recover the bit count
djnz CALC 16 216 and repeat if not 0

END: ld h(PAD+14) 42 L+14H Put result
ld de(PAD+16) 237 91 L+16 H into ‘dehl’,

ora 183 reset Cy
ret 201 and finish.
SIN and COS

Calculating the precise values of Sin and Cos for any angle is a com-
plex business involving evaluating series in which the values are in the
form of floating-point numbers. Not only is this operationally difficult
but programs making use of it are slowed down quite noticeably, and
the technique is not suitable in, for example, tactical and strategic

games where lots of positions, courses, and distances apart have to be
evaluated as quickly as possible.

Fortunately there is a fast alternative if you are willing to accept a
modest amount of approximation. In this case the approximation still
provides an angular discrimination of a degree (or better if you in-
sist), and results to an accuracy of tighter than 0.5%. The solution is
to use a table of pre-calculated values and use the value of the angle as
a pointer to the table ; and fortunately it isn’t necessary to provide Sin
and Cos with a table each as their values are the same except for
being 90 deg out of phase.

As both Sin and Cos always have values of 1 or less they can’t be
stored as such in single bytes, but you can use the device of multiply-
ing by 255. This puts 255 into the table when Sin has a value of
1.000, and zero into the table when Sin is zero. The table values are
therefore accurate to plus or minus 1in 255, or about 0.4%, which is
conveniently similar to the angular discrimination of plus or minus

A_ 44 PCW Machine Code

1 in 360, or about 0.3%. The fact of having multiplied by 255 is
taken into account in the calculations that follow the use of the table.
You can increase the angular discrimination to any required level by
increasing the length of the table in proportion, but the accuracy of the
table content can’t be improved without using two bytes per entry,
which would allow an accuracy of plus or minus 1 in 65535. A real
doubling of accuracy would thercfore require a table four times as
long.

The table nced be only 451 bytes long and gives a result for each
whole degree from 0-360 deg for both Sin and Cos. Given that the
table starts at ADDR, it is filled by using the following BASIC com-

mand :
defint z°
forn=0 to 450:
z = cint (255 *sin (n[57.296)) :
poke (ADDR +n), z:
next

The routine that accesses the table simultaneously obtains a value for
both Sin and Cos, and also provides the sign of each result. It reads
the angle from where it is stored in the Variables and puts its results
back in there. An angle larger than 360 deg has 360 repeatedly sub-
tracted from it until the result is less than 361. This value is used in
the calculation. The next set of addresses from those used earlier are:

51212 (12,200) Lo Value of the

51213 (13,200) Hi angle (0to 360)
51214 (14,200) Cos x 255

51215 (15,200) Sin x 255

51216 (16,200) Sign flags

For two positive results the sign flags are reset (flag value = 0). A
negative Cos gives bit No 0 set (flag value = 1), and a negative
Sin gives bit No 1 set (flag value =2). Both flags are set if both Sin
and Cos are negative (flag value =3). The routine is:

Initialise :-
Id bc 0 100 BC will take the flags
1d hi(51212) 42 12 200 Put angle into HL
ld de 360 171041
ora 183 Reset Cy and
sbc hlde 237 82 subtract 360
jrnc-4 48 252 until the result is negative

(!
¥
b

| |
pom

¢E»|

RURR R

15}

nnn

N

W

£ (-‘"1

A
R RS

4

(

l
J

3
i
L

r

-

.

Chapter 14 4 b.m
add hl de 25 then add back 360
1d (51212)nl 34 12 200 and store result.
ex hl de 235 Transfer angle to DE.

Evaluate the signs :-

Id hl 270 33141 If the angle is

ora 183 > 270 deg

sbe hl de 237 82 or

jrc8 56 8 Iess

Id hl 90 33900 than 90 deg

sbc hl de 237 82 then jump on,

jrncl 48 1 else set the flag

incc 12 (for a negative COS)
Id k1 180 331800

ora 183 Ifitis <181 then

sbe hl de 237 82 jump on,

jrnc2 48 2 else set the flag

ldb2 6 2 (for a negative SIN')
da,c 121 Put COS flag into A
add a, b 128 add the SIN flag

ld (51216)a 50 16 200 and store.

Calculate SIN -

Id hl ADDR 3S8S SIN-table start in HL
add hl de 25 and add the angle.
lda (hl) 126 Extract the SIN byte
1d (51215)a 50 15 200 and store.

Calculate COS :- .
ld hl ADDR+90 33 C C COGS-table start in HL -
add hl de 25 and add the angle.

Id a (hl) 126 Extract the COS byte
Id (51214)a 50 14 200 and store.
ret 201

A common use of Sin and Cos is to assess changes in co-ordinate
values, and testing the sign bits will indicate whether the changes
should be positive or negative, 0 degrees being taken as ‘duc North'.

There are a number of ways in which the routine could be modified for
better speed or to operate with a shorter table, but this presentation
gives the best view of the principle. Different values loaded into HL

in “Evaluate the signs” would allow for other orientations, such as
O deg is ‘due East'.

146 PCW Machine Code

Square Roots

Square roots can be dealt with as for Sin and Cos except that the
table holds squares and contains 2-bytes per entry. Itist e location
of the square that indicates the size of the square root. To obtain
integer square roots up to 255 the table should contain (n +0.5)* for
'n' in therange 0 to 255, [not the squares of the integers]. You step
through the table two bytes at a time until you find the first entry that
is larger than the number whose root you wish to know. The count of
the steps is the required square root. The table is most easily filled
from BASIC.

Page 194 of the June ‘88 issue of “Personal Computer World” de-
scribes a method of finding any power of a number and the second to
seventh root of a number by direct computation, but the calculation of
the roots is slow. Square roots are of interest in calculating the dis-
tance apart of two co-ordinate pairs for use in games etc, though often
you can compare the two squares of two distances and avoid square
roots entirely.

Binary Coded Decimal

BCD allows precise calculation with large numbers. Whilst calcula-
tion in the floating point form may be accurate to one in a million or
two, this may not be enough in some applications such as account-
ancy which needs to take care of the pence even in sums amounting to
hundreds of millions of pounds.

For us decimal thinkers the complication of binary originates from the
fact that bytes count in 256s. BCD starts with the idea of storing only
decimal digits in them so that each one of a sequence of addresses
could be treated exactly like the columns in conventional arithmetic.
You can then record numbers of any size (and therefore obtain any
level of accuracy) just by devoting extra addresses to them. It then
refines this concept by taking note of the fact that the numbers up to 9
require only four bits so that two of them can be stored in an 8-bit
byte. This halves the amount of memory required to store numbers,
but the principle of calculating in tens is adhered to because manipula-
tions are always carried out on half-bytes. And guess what half a byte
is called. Any ideas? That’sit: a nibble. That's official, honest !

Because it is nibble-based, BCD requires three extra instructions;
'daa’, ‘rrd’ and ‘rld’, and it also has its own flag called ‘half-carry’

?..—

momoM

"op®
v dw

*
r—ro
\)

—

{

' ‘3 !
WOV

=

[THPRL

Chapter 14 A AN

which is set if additions or subtractions in the four rightmost bits of A
give rise to overflow into bit No 4. The instruction ’‘daa’ causes a
nibble overflow if appropriate by adding 6 to both nibbles of A and
then subtracting it again. Suppose A contains 9 and 1 or more is
added toit. In BCD this should give overflow into the nibble on the
left though the accumulator won’t automatically give this because its
four rightmost bits can hold 15 before overflowing. However adding
6 as well pushes overflow into the left nibble thus incrementing its
content and setting the half-carry flag. If the left nibble also overflows
following ‘daa’ then this will be reflected in Cy.

A ?: description of BCD wouldn’t be appropriate here, but if you
are interested you might like to build up your own set of BCD rou-
tines based on the examples of addition and subtraction given below.
The convention I have adopted makes it possible to handle numbers
up to 127 bytes long (254 digits!) preceded by a sign byte which is
zero for ‘positive’ and 255 for ‘negative’. First you need to allocate
a memory block for storage of the numbers and it is best to draw this
out so that you have clear picture of what each address is for. In
multiplication and division extra blocks are needed for the product or
quotient, plus a scratch pad for making a note of which stage has been
reached. The registers are used as follows :

On entry: (b) =0. () = number of bytes not including the sign byte
used for each number, ie. half the maximum HEBW% of &%8 ﬁwﬁ
each number may have. HL and DE point to where each number is
stored in memory (they point to the sign byte).

On exit: The result is pointed to by HL and the carry flag is set if
there is any overflow. Negative results will be in ‘tens complement’,
ie. ready to give correct results by simple addition.

BCD Addition

add hl be 9 Make DE point to right-most
exhlde 235 byte of 1st num and HL
add hl bc 9 to right-most byte of 2nd
ldb, c 65 Put byte count into B
Id a (de) 26 Add two bytes incl any
adc a(hl) * 142 carry and apply
daa 39 decimal adjustment.
WQMN a 18 Store resulting byte

c 27 and poin
dec de z point to the two

next bytes to the left.

continued on next page .

148 PCW Machine Code

djnz -8 16 248 Repeat until the count is 0,
ex hlde 235 and point HL to the result.
ret 201

BCD Subtraction

Ay

The sub-r for BCD subtraction is identical to the one above mxnov". that
the 6th instruction (%) should be changed to:

sbca,c 158

Usefulness of BCD

You will see from the complexity of such simple operations that BCD
is nothing like as fast as conventional Z80 arithmetic. This is the price
paid for its ability to handle many digits. Although I have spent many
happy hours developing routines to manipulate BCD numbers, I
have never used them and don’t ever expect to. My accounts pro-
grams, which count pennies, are based on 32-bit arithmetic and can
deal with values up to about £43 million.

BCD attempts to suggest that it is really OK to manipulate decimal
numbers electronically , but, like most pretenses, it involves too many
complications to be worth the trouble.

1.

Mo
gyl

®

il
LI

nmAHmm
R

rwm o
(Rt inURE

momm

1

m®mE
U U

7"
limi

B i
K 1 B ¥

I:

fl g p
i !

i

APPENDICES

152 APPENDIX 1
Arithmetical Instructions
add hl,bc 9 addaa 135 adcaa 143
add hlde 25 addab 128 adc a,b 136
add hihl 41 addac 129 adc ac 137
add hlsp 57 addad 130 adcad 138
) addae 131 adc ae 139
adc hl,bc 237 74 addah 132 adcah 140
adc hl,de 237 90 add a,l 133 adc al 141
adc hl,Lhl 237 106 add a,(hl) 134 adc a,(hl) 142
adc hl,sp 237 122 addaN 198N adcaN 206N
sbe hl,bc 237 66 subaa 151 sbc a,a 159
sbc hl,de 237 82 subab 144 sbc ab 152
sbc hl,hl 237 98 subac 145 sbc a,c 153
sbc hl,sp 237 114 subad 146 sbc a,d 154
. subae 147 sbc ae 155
subah 148 sbe a,h 156
sub a,l 149 sbe a 157
sub a,(hl) 150 sbc a,(hl) 158
subaN 214N sbcaN 222N
Comparisons
cpa 191 anda 167 ora 183 xora 175
cpb 184 andb 160 orb 176 xorb 168
cpc 185 andc 161 orc 177 xorc 169
cpd 186 andd 162 ord 178 xord 170
cpe 187 ande 163 ore 179 xore 171
cph 188 andh 164 orh 180 xor h 172
cpl 189 andl 165 or] 181 xorl 173
cp (hl) 190 and (hl) 166 or (hl) 182 xor (hl) 174
cpN 254N andN 230N orN 246N xorN 238N
Increment and Decrement
incbe 3 inca 60 deca 61
incde 1 incb 4 decb 5
inchl 35 incc 12 decc 13
incsp 51 incd 20 decd ‘21
ince 28 dece 29
decbc 11 inch 36 dech 37
decde 27 incl 44 decl 45
dechl 43 inc (hl) 52 dec (hl) 53
decsp 59

DECIMAL OPCODES

Call and Ret

callN N 205NN ret 201
callc NN 220NN ret ¢ 216
calncNN 212NN ret nc 208
callzNN 204NN retz 200
calnzNN 192NN ret nz 192
Push_and Pop
push af 245 af 241
push be 197 WW be 193
push de 213 pop de 208
push hl 229 pop hi 225
umps
iPNN 195NN irN 24N
JPcNN 218NN FcN 56 N
PoeNN 210NN FncN 48 N
PzNN 202NN rzN 40N
PnzNN 194NN rFnzN 32N
Jp (D) 233 djnz N 16 N
“Block operations
1dd 237 168 lddr 237 184
Idi 237 160 1dir 237 176
cpd 237 169 cpdr 237 185
cpi 237 161 cpir 237 177
Miscellaneous instructions
ccf 63 exhl, de 235
scf 55 ex (sp) I 253
neg 237 68
no 0
cp 47
ina,(P) 219N out (P,a 211N
rld 237 111 rrd 237 103
daa 39

153

154 APPENDIX 1
Bit, Set, & Reset

bit 0,a 203 71 bitl,a 20379 bit2,a 203 87 bit 3,a 203 95
bit0,b 203 64 bit1b 20372 bit2b 203 80 bit3b 203 88
bit 0,¢ 203 65 bitl,c 20373 bit 2,¢ 203 81 bit 3,¢ 203 89
bit0,d 203 66 bit1,d 20374 bit2,d 20382 bit3,d 20390
bit 0,e 203 67 bit 1,e 203 75 bit 2,e 203 83 bit 3,e 203 91
bit 0,h 203 68 bit 1,h 20376 bit 2,h 203 84 bit 3,h 203 92
bit 01 203 69 bit 1,1 203 77 bit 2,1 203 85 bit 3,1 203 93
bit 0,(hl) 203 70 bit 1,(hl) 203 78 bit 2,(hl) 203 86 bit 3,(hl) 203 94
bit 4,a 203 103 bit 5,2 203 111 bit 6,a 203 119 bit7,a 203 127
bit4b 20396 bit5b 203104 bitgb 203112 bit7b 203 120
bit 4,c 203 97 bit 5,¢ 203 105 bit 6,¢ 203 113 bit 7,¢ 203 121
bit 4,d 203 98 bit 5,d 203 106 bit 6,d 203 114 bit 7,d 203 122
bit 4,e 203 99 bit 5, 203 107 bit 6,e . 203 115 bit 7,e 203 123
bit4,h 203 100 bit 5,h 203 108 bit 6,h 203116 bit7h 203 124
bit 4,1 203101 bit 51 203109 bit 6l 203 117 bit 7,1 203 125
bit 4,(hl) 203102 bit5,(hl) 203110 bit 6,(hl) 203 118 bit 7,(hl) 203 126
set 0,a 203 199 set 1,a 203 207 - set2,a 203 215 set 3,a 203 223
setOb 203192 setl,b 203200 set2b 203208 set 3b 203216
set 0,c 203 193 set 1,¢ 203 201 set 2,¢ 203 209 set 3,¢ 203 217
set 0,d 203 194 set1,d 203 202 set2,d 203 210 set 3,d 203 218
set 0,e 203 195 set 1,e 203 203 set 2,e 203 211 set 3,e 203 219
setOh 203196 set1h 203204 set2h 203212 set 3h 203220
set0l 203197 setll 203205 set2l 203213 set31l 203 221
set 0,(hl) 203 198 set 1,(h) 203206 set2,(hl) 203214 set 3,(hl) 203 222
set4a 203231 set5a 203239 set6a 203247 set7,a 203 255
set4b - 203224 set5b 203232 set6b 203240 set7b 203 248
set 4,¢ 203 225 set 5,¢ 203 233 set 6,¢ 203 241 set7,c 203 249
set 4,d 203 226 set 5,d 203 234 set 6,d 203242 « set7d 203 250
set4,e 203227 set5e 203235 set6e 203243 set 7,e 203 251
set 4,h 203 228 set 5,h 203 236 set 6,h 203 244 set Z,h 203 252
set 4,1 203229 set 5,1 203237 set6,1 203245 set7,1l 203 253
set 4,(hl) 203230 set5,(hl) 203238 set6,(hl) 203246 set 7,(hl) 203 254
res0a 203135 resla 203143 res2,a 203 151 res 3,a 203159
res 0,b 203 128 res1,b 203136 res2b 203144 " res3)b 203152
res 0,c 203 129 res1¢c 203 137 res 2, 203 145 res 3,¢c 203 153
res0d 203130 resld 203138 res2,d 203146 res3,d 203154
res 0,e 203 131 resle 203139 res2,e. 203147 res3,e 203 155
resO0h 203 132 resTh 203 140 res2,h 203 148 res3,h 203156
res 0,1 203133 resil 203 141 res 2,1 203149 res3]l 203 157
resO,hl) 203134 res1,(hl) 203142 res2,(hl) 203150 res 3,(hl) 203 158
res 4, 203 167 res5a 203 175 res 6,2 203 183 res7,a 203 191
res4b 203160 resS5b 203168 res6b 203176 res 7b 203184
res4,c 203 161 res5¢ 203 169 res6c 203177 res7c 203185
res4d 203162 res5d . 203170 res6d 203178 res7d 203186
res4e 203163 resSe 203171 resée 203179 res7.e 203187
res4h 203164 res5h 203172 res6h 203180 res 7h 203188
res 4,1 203165 res51 203173 res6l 203 181 res 7,1 203 189
res4,(hl) 203166 res5(hl) 203174 res6,(hl) 203182 res7,(hl) 203 190

DECIMAL OPCODES

155

156 APPENDIX 2

OPERATION TIMINGS

The following list indicates the times of the common operations, the
numbers being in ‘T-states’, each of which corresponds to 0.25
micro-seconds.

adca, Nor (hl) 7 1d rr (Addr) 20
adca, r 4 1d (Addr) rr 20
adc hl, rr 15 idr, N 7

dr,r 4
add: as above except id (rr) a 7
add hl, rr 11 dGDr 7

iId r (hl) 7
and a, Nor (hl) 7 id a (Addr) 13
and a, r 4 1d (Addr) a 13

4 GAddonl 16
bit n (hl) 12 1d (Addr
vw” w r 8 Idrr, NN 10
call Addr 17 1dd 1d ‘ 16

1ddr Idir 16
ccf 4

neg 8
cpa,Nor(hD) 7 nop 4
cpa,r 4 .,
cpd cpi 16 , or: see ‘and
cpdr cpir 16

pop 10
cpl 4 push 11
d 4 resb,r 8

e res b, (hl) 15

decr 4 .
dec (hl) 11 ’ ret : 10
decrr 6)

rotate registers 8
djnz 13 rotate Arwﬂ 15
ex hl de 4 rld rrd 18
inc: see ‘dec’ sbe: see ‘adc’

sub: see ‘add’ .
P Addr 10
p (hD) 4 scf 4
x 12

set: see ‘res’

shift: see ‘rotate’

END xor: see ‘and’

HHHr

i

v

(/i

a

A

APPENDIX' 3 157

NEGATIVE NUMBERS

A satisfactory system for handling negative numbers should make it
possible to obtain the correct result by additions of either negatives to
each other or of negatives to positives without needing to know
whether some negatives are involved, and it should be possible to es-
tablish the sign of a number by inspection of the sign bit. This is
provided by the so called twos complement system in which a binary
number is converted to its negative value by complementing all its bits
and then adding .1, which is the equivalent of subtracting it from zero.

Consider the example of subtracting 5 from 13. First convert the 5

to its twos-complement and then add the result to 13 (and ignore
the overflow).

5 in binary is: 00000101
Complement it, 11111010
and add 1 11111011
13 in binary is: 00001101
Add the negative, 11111011
to give 00001000 which=38

8 bits can represent numbers from +127 to -128. 16 bits can represent
+32767 to -32768 . A positive 8-bit number in A is converted to its
negative version by the instruction ‘neg’, which stands for “negate
the accumulator”. A negative number would be converted by this to
its positive value. Both are numerically the same as subtracting from
256. Thus to obtain the same effect as the BASIC command ‘ABS’
first test the eighth bit; if it is set then use ‘neg’, otherwise not. The
following procedure negates (bc) and gives the result in HL:

ora 183 Cancel Cy.

sbc hlhl 237 98 Zeroise HL.
sbchlbc 237 66 Subtract (bc) from 0
ret 201

And the following transfers an 8-bit number from A into HL whilst
preserving its sign bit:

ldil,a 111 Number into L.
rla 23 Sign bit into Cy.
sbca, a 159 Propagate sign thru A &
ldh,a 103 load it into H.
END

158 APPENDIX 4

BDOS FUNCTIONS

The following table lists the BDOS functions referred to in the text
together with the input required in DE or E and the output given in
A (or HL in the case of No 12). See text for No 6. The function No
is always put into C.

Fn Input Output
No Name (de)or(e) (a) Page
0 System reset - - 61
1 Console Input - ASCH 62
2 Console Output ASCII - 65
5 List OQutput ASCIHI - 79
6 Direct Console I/O - 0 =no key/ASCII 64
9 Print String String addr - 67
10 Read Consl Buffer Buff addr (Txt in Buff) 65
11 Get Console Status - 0O=nokey;1=key 63
12 Version Number - (Vers Nosin L) 62
13 ° Reset Disc System - (Drives & DMA reset) 123
15 Open file FCB addr 255 = failure 111
16 Close file FCB addr 255 = failure 112
19 Delete file FCB addr 255 = failure, 115
20 Read sequential FCB addr 0 = success 114
21 Write sequential FCB addr 0 = success 113
22 Create file FCB addr 255 = failure 108
23 Rename file -FCB addr 255 = failure 118
26 Set DMA address DMA addr - 111
33 Read Random FCB addr 0 = success 117
34 Write Random FCB addr 0 = success 117
40 Wrt Randm + Zero Fill FCB addr 0 = success 117
45 Set Disc Error Mode mode No - 129
46 Get Disc Free Space - (Frein DMA) 123
110 Set/Get delimiter ASCII/FFFFh (Markerin A) 68
111 Print text block CCB addr - 69
112 List text block CCB addr - 74
152 Parse Filename PFCB addr see text 168

END

nam
il

H-

L Anm

-

HR R

[]
b

RIRRRRR R R RR R R

ta® M

i

T nAaAnm e ®

i

1

APPENDIX 5 199

SCREEN ADDRESSES

The first requirement is to calculate ‘LINE’ which is the printline No
counting the top line as No 0. In BASIC the equivalent calculation
would be

LINE = 31-INT(Y/8)

though the value INT (Y/8) is also required and is stored in C for
later use [call this (¢)]. If Y=0 then LINE=31, if Y=255 then
LINE=0. The value of LINE allows the start address of the print-line
to be obtained from Roller-RAM. The Roller-RAM address for
LINE=0 is (0,182), for LINE=1 itis (16,182), etc. Hence the Roller-
RAM address is given by

RAM_ADDR = (0,182) + 16 x LINE

- The address of the start of the print-line can be extracted from

RAM_ADDR.

Consider the case where ‘X’ = 0. If the value of Y’ is 7,15,23,31..
or 255 (ie. 7+8n for 'n' between 0and 31), ie. if the required byte
is at the top of a print-line, then the line-address will the same as the
screen-address. If the byte is not at the top of the line then the screen-
address will be increased accordingly, the increase being given by :

Correction = 7-(Y-(31-LINE) x8)
7-Y+ (c)

The final correction is for the value of ‘X’. Starting at "X'=0, seven
increments in X’ point in turn to the bits of the leftmost screen byte,
but when “X'=8 bit No 0 of the next-right screen byte is pointed to.
Athough this is only one byte to the right on the screen, it is 8 bytes
further on in memory. Hence an increment of 8 to ‘X’ causes an in-
crement of 8 in the address, but smaller increments in ‘X’ make no
difference to it. This correction is the equivalent of :

8 x INT(X/8)
which could be calculated by three right shifts of X’
[giving INT (X/8)] followed by three left shifts [multiplying by 8],
but the same effect is given more simply by resetting the three right-
most bit of X'

END

160 APPENDIX 6

THE STACK & THE PROGRAM COUNTER

The stack is a small area of memory used for temporary storage of
information. It grows down-wards from higher to lower addresses as
each new entry is made, and retreats upwards as entries are removed.
The start (highest address) is still called the ‘bottom of the stack’,
and the end (lowest address) is called the ‘top of the stack’.

The return address for each ‘call’ is stored at the top of the stack, as
are the, ‘pushed’ contents of register-pairs. Following ‘push hl’ the
sequence is:

1. SP is decremented.

2. contents of H are copied into the address pointed to by SF.
- 3. SP is decremented again.

4. contents of L are copied into the address pointed to by SP.

"Pop hl’ follows the reverse procedure but the bytes that HL fed onto
the stack stay in place : ‘pop’ does not remove them it only causes SP
to point to the previous entry, though they will be over-written by any
future ‘push’ or ‘call’. v

The location of the stack can be changed by putting its new location
into- SP. When choosing a location it is necessary to prevent other
operations from over-writing it, and vice versa. The area allocated
should be large enough to allow two bytes to be added to it for each
case of use, though this is difficult to calculate and it is prudent to be
generous. Changing the content of SP can also be used to access
earlicr entries in the present stack, it being necessary to increment SP

twice to point to each earlier entry. This is the equivalent of writing an’

extra ‘pop’ into the program but without transferring anything into a
pair of registers. :

Restoring the Stack

Occasions arise when you need to re-balance the stack, ie. to ignore
unwanted data and restore it to an earlier condition, but you don’t
want to go through a possibly lengthy procedure of individual ‘pops’,
the required number of which may in any case be uncertain. If you
have defined your own stack location then re-defining as before will
cancel all intervening stack operations and take you back to the stack
you had at the start of the program. ' If you are using the existing

&}"@‘

f

HHHAAHHRAAA

nm
un

'APPENDIX 6 v 161

CP/M stack, or if you don’t want to go all

, go all the way to the start of
own stack, then record the required stack-address W: memory and %MM
re-load SP with it at the appropriate moment.

If you can’t get a satisfactory return either to BASIC or to CP/M’
when your m/c program has been run then you can be sure you have
an :9.3&58& ‘push’, ‘pop’, ‘call’ or ‘ret somewhere. You can tem-
porarily morwo the problem by making your first m/c instruction
1d (N N)sp’ (to record the last address at which BASIC or CP/M
was omxw_.mcwm), and make the last instruction before the final ‘ret :
Id sp,(N NY', though temporary solutions are only temporary. \

THE PROGRAM -COUNTER

The program counter, PC, isa 16-bit regi

c ; ; gister that keeps track of th
mm&nomm at which the next operation is to be found. «Sﬁm the anZ:M
is msﬂnrmn.m on or reset, PC is loaded with 0000h so operations
always begin with the instruction at that location, which is ‘jp FCO3h'.

Each time the Z80 encounters an opcode it interrogates it to establish

the number of bytes in the instruction. For most instructions this

scgvmn is mmm& to PC, the instruction is executed, and the new ad-

dress in PC is then jumped to. If the instruction is a P’ the address

Wﬂ“mﬁmﬁw mﬂwoim:mm the opcode is copied into PC and operations
rom there. Fora ‘j the byte followi i

to PC and operations Huaonwmm ?09%903. wing the opcode is added

For a ‘call’, the content of PC+3 is put onto the stack, SP is adjusted
and PC is loaded with the call mﬂmnmmm. The ‘ret puts nw..o nom
address from the stack back into PC and adjusts SP. This is why it is
essential to have balanced every ‘push’ with a ‘pop’ (or to have
pointed SP to the right entry) betweena ‘call’ and its ‘ret. If you
forget to do this before a conditional ‘ret you may get-a crash on
some occasions but not on others and not be able to see why.

162 | APPENDIX 7

SWITCHING MEMORY BANKS

The vrocessor Ports

The Z80 makes contact with the outside world through ‘ports’, which
can pass bytes inwards to the processor, or outwards from the proces-
sor to some device connected to it.

There are two ways of operating the ports. In the first the ‘address’ of
the port is loaded into BC and then either the ‘in’ instruction takes a
byte from the external device (a section of the keyboard, say) and
puts it into a register ; or alternatively the ‘out’ instruction feeds the
byte that is in the register out into the external device. The mnemonics
would be as follows for the register R’;

in R,(c) or out R(c)

However, access to the Memory Disc is gained through the other
method of using ports, and we will be concerned only with the ‘out’
version. In this the required byte is put into A and the port number is
specified as part of the instruction code. To output the content of A
through any one of the ports the generalised mnemonic and the gener-
alised decimal instruction bytes are ;

out(P), a 211 P where ‘P’ is port N.

‘A’ is the only register available for use with this instruction

The Memory Manager

The ‘Memory Manager is located at address FD21h (33,253)
[FD2Dh (45,253) for the ‘9512’] in common memory. This is the
sub-r that lines up the set of memory blocks that are required to be
available to the Z80 at any particular moment. Usually this is Bank 1
(the TPA), but it may be any of the others. The Manager is entered
with A containing the Bank No required and this it stores at address
FEAOh. It then loads A with each of three values prior to making
three ‘out instructions to port Nos FOh, Fih, and F2h (ie. ports
240, 241 and 242). The values put into A and then sent to these
ports determine which memory blocks are switched into circuit. The
basis of the Memory Manager (for ‘8256/8512") is as follows:

APPENDIX 7 163

The Memory Manager:

FD21 push hl 229 Save HL

Id (FEAOh),a 50 10 254 Store A

dec a 61 If(A)=1
D26 jrz30 40 30 jump to FD46.
Banks 0,2 and N
FD28 inca 60 Else restore (a),

Id h1 8381k 33 129 131 load HL,

jrz9 409 If(A)=0jpto FD37

Id188h 46 136

cp2? 2542 If Bank = 2 then

jrz3 403 jump to FD37.

add 86h 198 134 If Bank > 2 then
FD36 ldla 111 (L)=134+(A).
FD37 Ida 80h 62 128 Set

out (FOh),a 211 240 the

Id (0061n)nl 34970 values in A

dal 125 and

out (F1h)a 211 241 give

ldah 124 the ‘out’

out (F2h)a 211 242 instructions.

pop hl 225 Recover original (HL)
FD45 ret 201 ard finish.
Bank 1 (TPA)
FD46 Id hl 8685k 33133 134

Id (0061h) K1 34970 As

dal 125 above,

out (F1), a 211 241

ldah 124

out (F2), a 211 242

Id a 84h 62 132

out (F0), a 211 240

pop hl 225 Recover original (HL)
ED57 ret 201 and finish.

The ‘push’ and ‘pop’ instructions are fairly common features of the
sub-routines within CP/M and are included so that data held in HL
is preserved for later use if required, but they are not essential to the
bank-switching operation. If you follow through the pattern of the

164 APPENDIX 7

sub-r you will see that the values in A used for the ‘out’ instructions
are unequivocal in the cases of calling for Banks 0, 1 and 2. The bytes
fed to the ports in order to switch-in these banks are as follows. The
block No is equal to the byte minus 128, as shown to the right of the
table. Block 7 gets no ‘out’ instructions.

24 F1 F2 blocks
Bank 0 128 129 131 01 3 7
Bank 1 132 133 134 4 5 6 7
Bank 2 128 136 131 0 8 3 7

For banks of higher number the value sent to F1 is equal to
[134 + (A)] so the sequence continues as; ,

Bank 3 128 137 131 0 9 3 7
Bank 4 128 138 131 0 103 7
Bank 5 128 139 131 0 11 3 7 etc.

Note that only one block is changed for Bank Nos larger than 2.

General rules for block switching

The above switching sequences are those employed by the PCW for
its own good reasons, but if you want to swop the blocks about in
your own way then the following rules apply. I developed my ‘Em-
pirical Technique’ before I had fully cottoned on to them.

To refer to a block add 128 to its number, so No 0 becomes ‘128, No
1 becomes ‘129", etc. There are four memory ranges in the machine
as listed on page 82; give them the following numbers:

hex " red-biro No
0000 to 3FFF (0,00 to (255,63) 240
4000 to 7FFF (0,64) to (255,127) 241

8000 to BFFF (0,128) to (255,191) 242
C000 to FFFF 0,192) to (255255) 243

Forget about the highest range because it should always contain Block
7, but any other range can have any block switched into it by
out.(r),a where ‘Y is the range number, and A has been loaded with
the block number. Hence to put Block 10 into the bottom range the
instructions would be:

HHH

F

‘ fi
WUy wk

Ammm
/W

APPENDIX 7 165

lda, '20° 62 138
out (a), 240 211240

The PCW _tends to keep switching back to the TPA when it has com-
pleted an interrupt sequence, so if you have trouble with this (it
never surfaced when I was using the “Empirical Method’) use :

di 243 Disable interrupts

Id a, BLOCK 62 N2 Select block No

out (a), RANGE 211 R Switch it in

cen cee Your

e ces procedure

Id a, BLOCK 62 N1 Restore

out (a), RANGE 211 R orig block

el) 251 Enable interrupts
continue . . . :

Don'’t forget to operate from block 7, and keep your procedure moder-
ately short or the machine will get upset.

Accessing the Memory Disc

.H.rm.am isa BIOS (notaBDOS) function No 27, called ‘SELMEM’,
which accesses the Memory Manager by adding 78 to ‘w.boot’ to
mu~om=.nw the address FC51h ie (81,252), at which is found the in-
struction ‘jp FD21k’, ie. ‘jump to the Memory Manager. Before
using it A is loaded with the required Bank No. SELMEM is the
normal system-entry to the Memory Disc, but it is more convenient
for an m/c user to call the Memory Manager direct.

The reason for my development of the Empirical Block-Switching
approach was that difficulties naturally arose with the above technique
when I attempted to cross a block boundary with a high Bank No in
use, as may happen with an ‘ldir operation. I was under the false
impression that three new blocks came into force, so each time I
crossed the boundary I was overwriting either block 0 or block 7. I
am grateful to Johs Lind for clarifying this, though it should have

“ been obvious.

END

168 APPENDIX 10

PARSE FILE NAME

It is possible to cut out a lot of programming when setting up an FCB
by using fnc No 152. First point DE ata 4-byte control block - the
“PFCB” (don’t blame me !). The first two bytes of the PFCB contain
the address of a string that names the file.

This string has four optional parts, but (need Iadd) at least one op-
tion must be used (that's what the instructions say!). The first
option is the drive name which can be A: B:, etc. If you don't
specify the drive, the default drive is used. The second option is the
file name (up to 8 ASCIIs). The third option is the file-type, which
must consist of “.” followed by up to 3 ASCIIs. The fourth option
may be a password consisting of “;” followed by up to 8 ASClIIs.
The whole string must end with one of 16 possible terminators viz:
Space (32) Tab (9) Return (13) Null(0) ; = <> .:,[1/ 8%
and Verticalbar. This allows you to have several strings end to end in
memory and use each one as appropriate.

The third and fourth byte of the PFCB are the address at which you
want the FCB to be constructed. When fnc 152 has worked its magic
the FCB will be drawn up at that address and zeroised ready for use
in ‘Open’ etc. The password, incidentally, will be inserted in bytes
16 to 23, and its length at byte 26.

If your string had the terminator 0 or 13, zero will be returned in
HL. For the other terminators, - the terminator address will be re-
turned in HL (which therefore tells you where to find the next
string). FFFFh will be returned in HL if you use a duff filespec.

END

169

- BOOKS

'

An Introduction to Z80 Machine Code

Authors: R. A. & J. W. Penfold

Published: Bernard Berbani Ltd, Shepherds Bush Road,
London.

As a dictionary of the mnemonics, this book is extremely good
value. It is low priced and gives a description of the full Z80
instruction set, together with the T-states required by each and
their effects on the flags. All opcodes are in Hex. :

CP/M 80 Programmer’s Guide

Authors: B. Morrell & P. White
Published: Macmillan Education Ltd, Basingstoke,
Hants, RG21 2XS.

An excellent description of the more commonly used BDOS func-
tions with emphasis on those applying to file-handling. Clear and
informative. It briefly describes the use of Assemblers.

The Amstrad CP/M Plus

Authors: D. Powys-Lybbe & A. Clarke
Published: M.M.L. Systems Ltd., 11, Sun Street,
London, EC2M 2PS

This is a large, comprehensive, Amstrad-specific book giving a
description of the implementation of CP/M on the ‘CPC’ and
PCW’ models and written by the experts. If you want to know
anything about Amstrad CP/M then it will almost certainly be in
here. There is a tutorial section that is readable enough and says
something about programming with Assemblers, but it is closer to’
being a text-book than a user-guide, so dipping in for snippets of
information is not easy. Most of the book is data tables that are
c.mm?_, in m/c programming but the presentation style is ‘profes-
sional’, so unless you know most of it already and merely want
guidance on detail you will be struggling.

END

170

INDEX

A

Accumulator
adc
add
Addition
BCD_
_mnemonics
Address
_calc of bytes
Addressing modes
Adyvice
Algorithm
Alphabet
Alternate registers
and 31, 152
and a
Arithmetic
binary_
_routines
_opcodes
ASCII codes
Assembler
using
Assembly language
Await Wmvw 5%

B

Back-up files
Base-4, 8, 10, 16
Bank
BASIC insertn prog
BCD

_addn & subn
BDOS .

_list of functs
Binary

_mult & divn
BIOS
bit

. 21
29, 152
29, 152

PCW Machine Code

Bit 9, 40
_comparisons- 31
_numbers 13
sign_ 14
_values 13

Block
character control_ 74
_comparisons 36
jump_ 52, 166
memory_ 82
_printing 74
_zeroising 36

Books 168

Byte 9

C

Calcdig 133

Calculate addrs 18

call 35, 153

Carry flag 22,29
_instructions 40

CCB 69, 74

ccf 40, 15

Character
_matrix RAM . 86
_set. 61

. special _ 76, 81+

Clear screen 67, 68,97

Code

-ASCI. 14, 61
control _ 67
op_ 50, 160+

Coin tossing 134

Comparisons
bitwise 31
block_ 36
number_ 30

Compiling " 43,50

Complement 40, 157

Conditions 32,35

Console 62
_buffer 65
_input 62

Index ¥

-~ Control codes 67
.. Corrupt-. ' 36, 63
- Cos 143
Counting 10
- Counts 8 & 16 bit 10, 34
. cp . 30, 152
cpd, cpi’ 37,152
cpdr, cpir 37,152
cpl 40, 152
cr/M 56,55
Cursor position 71,107
D
daa 39,152
" DATA lines 45
~ dec 23, 34,152
Decimal
.= _adj accumtr 39
_codes 43
.+ _opcodes 150+
Decrement 23,34
Decimal/Denary 10
Default 109
DEFB DEFM 50
DEFS DEFW 50
Defined byte etc 50
Delete file 110, 113, 115
Delimiter 67,68
Denary 10
Dice 135
Disc _editing 166
" _error mode 128
_free space 123
_handling 108+
Memory_ 101+
Division
binary_ 12
8- 16- 32-bit_ 136+
djnz 33, 46, 153
DMA address 111, 115
Double density UDG 77
Doubling 29, 38, 39

171
Draft quality 76
Drawing on screen -9
Drive number 108, 123
E
Editing discs 167
Error 59
_handling 125+
_messages 126
_mode 129
Escape sequences 67
ex pe s 40, 153
Exchanges 40
Exclusive or 31
Executive routine 54
F
FCB 106, 124, 167
File
backup_ 118
COM_ 120
_kinds/types 112
large_ 115
_hame 109
random_ 117
sequential _ 113
_type 109, 112
Flags 21,47
carry_ 29, 40
half carry_ 148
zero_ 21, 40
Floating point 14,134
Flow diagram 52
fre 57, 60
Free
_disc space 123
_memory 57,59
Function number
BDOS_ 57, 61
list of_ 158

172

G
Games 130, 143
GOSUB . 35
GOTO 30
Graphics
printer_ 76
screen_ 81+
H
Half-carry flag 147
Halving 38
Hexadecimal 15
Hex 15
High byte 12
High quality print 76
HIMEM 56
I
inc 23, 34, 152
Increment 23,34 °
In-line parameter 84
Insertion program 44
Instruction set 24
Interrupts 50,97
Italics 76
J
Jargon 8
)% 33,153
r 32,153
Jump_absolute 34
_block 54, 166
_distances 32
_opcodes 153
_relative 232

PCW Machine Code

K

Keyboard
Changing_ ,
_input

Keying errors

L

Id

1dd 1di

1ddr Idir

least signif bit

Letters

Library sub-rs
_symbols

Lines screen

List
BDOS fncts_
_output
opcodes_

Logical operations

Loop

Low byte

M

Machine code
Masking

* Matrix RAM

Memory
available_
_bank/block
common_
_disc
_manager

organisation .

PCW_
screen _
MENU program
Message _printing
error_

62
130
62, 64
130

Index

Mini program

Miscellaneous opcodes

Mnemonic

Most signif bit

Multiple choice

Multiplication
binary_
8/16/32 bit_

N

neg :
Negative nos
Nested
Nibble
No operation
nop
Notation
Numacc
Number
bit_
_comparisons
_printing
random _

o

Ones complement
Opcode
_decimal lists
© misc_
or
ora
Overflow

Overwrite

P

Page
Paper feed
Parse File Name

45
153
24,50
10

49

12
136+

63, 131
133,134

40
150+

31,152
30, 31
12,157
49, 60

173
pe 23,161
PCW memory 55, 57
Pixel 85
_delete 99
pop, push 37,153, 160
Port 162
Print
_instructions 61+, 73+
_numbers 63,131
_position 67+,71,72
_single chars 62, 65,79
_string 67, 68
_style 75
Printer 73+
_buffer 74
_graphics 76,78
Processor 9
Program
_counter 23, 160
_speed 58, 156
Programming 42+, 52+
Prompt
printing_ 74
A>_ 127
push 37,153, 160
R
RAM 86
char matrix_ 86
roller_ 91
Random
_access files 117
_numbers 133, 134
Read sequential 114
Record 128-byte 111
Recursive 35
Red biro 17
Registers 21
alternate_ 58
Relocatable 33
Rename 118
Reset 9, 40, 154
_carry flag 30, 31

174

res
ret
Return
Roller RAM
Rotate
_digit
_opcodes
Routine
executive_
rl rlc T rrc

S

sbc

Scrolling

Set

set

Shift

Sign
_bit
_flags

SIN

sp

Speed

Square roots

srl

Stack

Stack pointer

Status line

String
_delimiter
_printing
_end marker

sub

Subtractions
BCD_

Sub-routine

Switching banks

29,152
91, 100
9

40, 154
38

14, 157

143

143

23, 160
57,156

146

38,151

23, 35,37, 160
23,160

90, 100

15, 54, 56, 67
15, 67, 68

67

67 ,68
29,152
29, 139

148

20, 53

162

PCW Machine Code

“PCW Machine Code”

by Mike Keys

T
T-states 57, 156
Text
_control 75
_files 112
_from keyboard 66
Testing 59,60, 122, 128
Timings 158
TPA 56, 81, 103+
u/v
UDG 76
Underline 75
Userf 84
Variables 54, 55, 121
Version number 62
w
W-language 8
Warmboot 127
Wild cards 111
Write
_random 117
_sequential 113
X/Z
xor 31, 151
Z 80 9,23,59
Zero flag 22,41
Zeroes , 36, 41
36

Zeroise block

Sm—ﬁ 9» Hmmmmam EEHA

murf%u&ﬁ_uoo ‘easyitoread and to mocoi. It

&Q&WBQ SE. series of :examples rou--

‘was ~8§m mon. a wdom but fairly comprehen-
sive explanation of machine code and your
voow meets my requirements very well.

o " Thank you for sending me your wonderful book. 1
" couldn’t stop reading it. If you write a sequel, take
this letter as my order for it.

mx.mnmw what I was hoping for - a very good
book.

I.S. Bucks

i R.C. Oxm.: .

- DE. Clwyd

?H.m mcmmunmmm

"~ AW. Sale

J.W. Belfast

R.W. Melrose
T.P. W Germany

K.S. Manchester

We received these unsolicited comments from readers, plus many more
in the same vein. The originals are available for inspection.

