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Abstract

We consider in this paper a scheduling problem given by n tasks of

same processing time d, an out-tree, communication delays all equal

to c � d and an integer t. The problem is to �nd the minimum vol-

ume of a feasible schedule with makespan t. Studying the dominance

properties of such schedules, we prove that this problem is polynomial

using a dynamic programming algorithm.

1 Introduction

With the recent development of parallel architectures arise a new class of

scheduling problems in which communication delays are considered. The

target machine is a set of parallel processors connected by a network. A

parallel program is modeled as usual by a directed acyclic graph, the nodes

of which are tasks. An arc from task i to task j means that i computes data

that is an input for j. If these two tasks are not performed by the same

processor, a delay must be considered between the completion of i and the

beginning of j to dispatch the data through the network. The aim is to �nd

a schedule that minimizes the makespan.
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Several studies are devoted to this kind of problems (c.f. the two sur-

veys [3][9]). Most of them are NP-hard even with very strong assumptions.

For example, if we assume unitary processing times and unitary communica-

tion delays (UET-UCT task systems), and if in�nitely many processors are

available, Picouleau proved in [7] that the makespan minimization problem

denoted by P jprec; cjk = 1; pj = 1jCmax is NP-hard.

Task duplication might be useful to reduce the in
uence of communication

delays. Indeed, if a task i has several successors j1; : : : ; jk, then performing

task i on k processors may allow the execution of j1; : : : ; jk on these processors

just after i, avoiding communication through the network.

This feature also reduces the problem complexity : if communication

delays are less than or equal to the processing times of the tasks, Colin and

Chr�etienne [4] proved that the makespan minimization problem on in�nitely

many processors is polynomial. Unfortunately, if no assumption is made on

the communication delays, the problem P jduplication; cjkjCmax is NP-hard

[6]. So the UET-UCT assumption seems to be a borderline between easy and

hard problems if duplication is allowed.

The main drawback concerning duplication on an unlimited number of

processors is that the number of duplicates may be important. One solution

to reduce it is to �x a limited number of processors. Veltman [8] proved

that the problem without duplication P jin � tree; cjk = 1; pj = 1jCmax is

NP-hard. But for this class of graph, duplication is useless since a task has

at most one successor. Notice that we proved in [5] that a greedy algorithm

with relative performance equal to 2�
1

m
may be developed for the problem

P jduplication; cjk = 1; pj = 1jCmax.

In this paper, we consider another way to reduce the number of dupli-

cations. We study the minimization of the overall number of duplicates (

called the volume of the schedule) for a class of feasible schedules with a

bounded makespan t. We develop a polynomial algorithm for tasks with

same duration d, an out-tree and communication delays all equal to c � d.

In the second section, we introduce the notations and we prove several

useful dominance properties. In the third section, we prove a recurrence

property on the de�nition of the volumes. In the section 4, we prove that

we can compute polynomially these values and an optimal schedule for any

makespan t. In section 5, we present some experimental results. The last

section is devoted to a discussion on the perspectives of this work.
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2 Problem Formulation

Let us consider a set T of tasks with duration d 2 IN� indexed from 1 to jT j
and an out-tree A rooted by task 1. 8i 2 T , A(i) denotes the sub-tree of

A rooted by i and, if i 6= 1, p(i) denotes the unique immediate predecessor

of i in A. 8i 2 T , �+(i) is the number of immediate successors of i in A.
We consider that the tasks are numbered such that, 8j 2 �+(i), i < j. We

suppose that the value of the communication delays is c 2 IN� with c � d.

The duplication is allowed and the number of processors is unlimited. For

any feasible schedule �, �i(�) denotes the set of processors performing i 2 T

and ni(�) the number of executions of i. v(�) is the total number of tasks

(i.e. , original and duplicates) of �. Clearly,

v(�) =
X

i2T

ni(�)

This value is called the volume of �. If there is no confusion, � may be

omitted in the notations.

8i 2 T and 8t 2 IN�, we will denote Si(t) the set of feasible schedule of

A(i) with completion time bounded by t and Vi(t) the minimum volume of a

schedule of Si(t). We will also consider that every element from Si(t) veri�es

the dominance property 1, 2 and 3 proved in the following. If Si(t) = ;, we
set Vi(t) =1. Clearly,

Vi(t) = min
�2Si(t)

v(�)

The aim of this paper is to compute V1(t) for any t 2 IN� and a corre-

sponding schedule.

Property 1 The set of schedules such that :

1. for any task i > 1 with � 2 �i(�) \�p(i)(�), if p(i) is performed by �

at time t, then i is performed by � at t+ d,

2. for any task i > 1 with � 2 �i(�)��p(i)(�), if the starting time of the

earliest execution of p(i) is t, then then i is performed by � at t+ c+p,

is dominant.

Proof

Let � be a feasible schedule.
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1. If there is no task assigned to � between the execution of p(i) and

i, then i can be obviously performed by � at time t + d. Otherwise,

this execution of i can be removed from � and, if needed, executed by

another processor earlier at time t+ c.

2. The proof is similar to the previous one.

Property 2 The set of schedules such that, for any task i 2 T , the execu-

tions of i are all performed at the same time denoted by ti(�), is dominant.

Proof

Let � be a schedule which veri�es the property 1. Let i be the earliest task

with two executions performed respectively at times t and t+ � with � > 0.

If i = 1, then we can obviously perform all the executions of the root at time

0. So, we consider i > 1.

All the executions of p(i) are performed at time t0 = t � d. Indeed,

if t0 < t � d, then by property 1, the two considered executions of i are

performed by other processors. So, they are performed simultaneously at

time t0 + c+ p.

So, the �rst execution of i is performed at the completion of p(i) and the

second one at time t+ c. Since the �rst instance of i is performed at time t,

any tasks from �+(i) is started at most at time t+d+ c, which is exactly the

completion time of the second instance of i. So, this instance can be removed

without any modi�cation on its immediate successors.

Notice that the property 2 is not true anymore if the communication

delays are not all equal to c. For example, let us consider the four tasks

T = f1; 2; 3; 4g and the out-tree pictured by �gure 1. For t = 20, the

optimum schedule has two executions of task 2 with distinct starting times.

The following property is a simple consequence of property 2 :

Property 3 The set of schedules such that,

1. for any task i, if J is the set of immediate successors of i with 8j 2 J ,

tj(�) = ti(�) + d, then ni(�) = 1J=; +
P

i2J nj(�),

2. the number of executions of any task i 2 T is bounded by the number

of leaves of A(i),
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Figure 1: A counter example for property 2

is dominant. In the following, this number of leaves will be denoted by li.

Proof

1. By property 2, all the executions of j 2 J are performed at tj(�), so

ni(�) � 1J=; +
P

i2J nj(�). Since the overall number of duplicates is

minimum, the equality holds.

2. We prove by recurrence on the structure of the tree that, 8i 2 T; ni(�) �
li.

� If task i 2 T is a leaf, then, by the previous equality, ni(�) = 1 =

li,

� otherwise, by recurrence, ni(�) � 1J=; +
P

j2J lj. Since

max(1J=;;
X

j2J

lj) �
X

j2�+(i)

lj

this property is true.

3 A recurrence relation on the minimum vol-

umes

The aim of this part is to show a recurrence relation on the minimumvolumes.

First, we present a small example to illustrate some simple remarks on the
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structure of optimal schedules. Then, we introduce some more notations and

we prove the recurrence relation.

Let us consider the small example pictured by �gure 2. The �rst schedule

has a minimumnumber of duplicates. This example leads to the two following

remarks :

� Even if the the completion time has a minimum value, there is no need

to duplicate any path from the root to a leaf to get a feasible schedule

as the algorithm in [4] does. It is clear that this algorithm produces an

important number of useless duplicates.

� If we decide to not duplicate task 7, we get a schedule of volume equal

to 12. So, we must here duplicate an internal node without duplicating

its predecessor. This means that the structure of solutions may be

much complicated than in the case where the number of duplicates is

not limited.

1 2 3

4 5 6

7

8

9

1 2 3 4 5 6

7

7

8

9

c = d = 1
t = 6

7 is duplicated,
but not its 
predecessor.
V1(6)=10

1 2 3 4 5 6

1 2 3 7 8

9

7 is not duplicated.
This schedule is not
optimal.

Figure 2: Two remarks concerning the structure of an optimal schedule
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In the following, we will denote by Si(n; t) the set of feasible schedule of

A(i) with completion time at most t and such that the root i has at most

n executions. We also suppose that Si(n; t) is reduced to schedules verifying

the 3 previous dominance properties.

Clearly, Si(n; t) � Si(n+ 1; t). Moreover, by property 3, we get

Si(t) =
[

n2IN�

Si(n; t) = Si(li; t)

where li denotes the number of leaves of A(i).
8n 2 f1; : : : ; lig, Vi(n; t) is the minimum volume of a schedule from

Si(n; t). Here also, Vi(n; t) � Vi(n+ 1; t), so we get

Vi(t) = min
n2f1;:::;lig

Vi(n; t) = Vi(li; t)

By convention, if Si(n; t) = ;, we set Vi(n; t) = +1. This leads to the

following lemma :

Lemma 1 If j is a leaf then 8t � d, Vj(1; t) = 1 and 8t < d, Vj(1; t) = +1

Now, we can prove the following inequality :

Lemma 2 Let � 2 Si(n; t) and J be the set of immediate successors of i

beginning their executions at the completion time of i. Then,

v(�) � 1J=; +
X

j2J

(nj(�) + Vj(nj(�); t� d)) +
X

j2�+(i)�J

Vj(lj; t� d� c)

Proof

Tasks (original and duplicates) from � can be partitioned into 3 sets :

� ni(�) executions of i,

� tasks from A(j), 8j 2 J . The volume of the sub-schedule of � for A(j)
is then greater than Vj(nj(�); t� d).

� Tasks from A(j), 8j 2 �+(i)� J . The volume of the sub-schedule of �

for A(j) is greater than Vj(nj(�); t� d� c). By property 3, nj(�) � li,

so Vj(nj(�); t� d� c) � Vj(lj; t� d� c).
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The following theorem will be obtained by proving the converse inequal-

ity :

Theorem 1 8t 2 IN�, 8i 2 T such that �+(i) 6= ;, 8n 2 f1; : : : ; lig,

Vi(n; t) = min
J��+(i)

(1J=; +
X

j2�+(i)�J

Vj(lj; t� d � c)

+ min
nj>0;
P

j2J
nj�n

X

j2J

(nj + Vj(nj; t� d))

Proof

Let � 2 Si(n; t) be a schedule with a minimum volume v(�) = Vi(n; t). By

lemma 2, Vi(n; t) is greater than the right term of the equality. If this term

is in�nite, also is Vi(n; t).

Conversely, suppose now that this minimum is �nite. Then, we can build

an optimal schedule of Si(n; t) by induction by setting :

(B) If i is a leaf, then n = 1. Since this minimum is �nite, t � 1 and perform

one execution of i at time t.

(I) Now �+(i) 6= ;. Let J� � �+(i) verifying the equality and the corre-

sponding number of executions n�j > 0; j 2 J�.

1. perform 1J�=; +
P

j2J� n
�

j executions of i at time 0,

2. 8j 2 J�, start one optimal schedule from S(n�j ; t� d) at time d on

the same processors than n�j executions of i.

3. 8j 2 �+(i)� J�, start one optimal schedule from S(lj; t� d � c)

at time d+ c on new processors.

4 Computation of the volumes

In this section, we prove that the volumes Vi(n; t) may be polynomially com-

puted using the relation expressed by theorem 1. Firstly, we show that only

a polynomial number of times t 2 IN have to be considered. Then, we will

introduce some middle steps for the computation of Vi(n; t). Lastly, we will

evaluate the complexity of this algorithm.
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Times domain The makespan of any schedule verifying property 1 may

be equal to t�;� = �d + �c, with (�; �) 2 IN+ � IN . Now, let us consider

t� = ��d + ��c the minimal length of a schedule of A without duplication

(this value may polynomially computed by the algorithm of P.Chr�etienne

[2]). We get t� � jT jd+ (jT j � 1)c.

1. 8t � t�, A may be scheduled with makespan t� without any duplicate,

so V1(t) = V1(t
�).

2. 8t such that d � t < t�, let the greatest value t�;� with t�;� � t. Then

Vi(t) = Vi(t�;�).

3. If t < d, there is no feasible schedule, so Vi(t) =1.

So, we will limit the times domain � to the values t�;� with � � ��,

� � jT j � 1 and ��d+ ��c � t�. The size of this domain is roughly bounded

by jT j2.

Computation of Vi(n; t) Let us consider a task i 2 T such that �+(i) 6= ;.
We suppose that, for every j 2 �+(i);8n0 � lj and 8t

0 2 � we have computed

Vj(n
0; t0). The aim is here to compute Vi(n; t), 8n � li and 8t 2 � .

Let us consider �+(i) = fj1; : : : ; jj�+(i)jg the set of immediate successors

of i. 8k 2 f1; : : : ; j�+(i)jg, we will denote by Fi(n; t; k) the minimum volume

of a schedule � of the subgraph A(i)�A(jk+1) : : : ;�A(j�+(i)) such that :

1. the makespan of � is at most t,

2. the number of executions of i in � is bounded by n,

3. there is at least one j 2 fj1; : : : ; jkg which executions are performed

immediately at the end of i in �.

Any schedule from Si(t; n) has either no successors of i performed at the

completion time of i, either at least one. So, we get :

Vi(n; t) = min(Fi(n; t; j�
+(i)j); 1 +

X

j2�+(i)

Vj(lj; t� d � c))

The second term of this minimum can be easily computed. We will

present now how to compute the value Fi(n; t; k) by recurrence on k 2
f1; : : : ; j�+(i)jg.
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� If k = 1, then j1 is performed at the end of i, so

Fi(n; t; 1) = min
1�m�min(n;lj1)

(m+ Vj1(m; t� d))

� Now, let us consider k > 1. By theorem 1 and since J 6= ;, we get :

Fi(n; t; k + 1) = min
J�fj1 ;:::jk+1g;J 6=;

(
X

j2fj1;:::jk+1g�J

Vj(lj; t� d � c)+

min
0<nj�lj ;

P
j2J

nj�n

X

j2J

(nj + Vj(nj; t� d))

Let J� be an optimal subset. Three cases may occur :

1. If jk+1 62 J�, then there is a communication delay between i and

jk+1 and :

Fi(n; t; k + 1) = Vjk+1(ljk+1 ; t� d� c) + Fi(n; t; k)

2. If J� = fjk+1g, then

Fi(n; t; k + 1) =
X

j2fj1;:::;jkg

Vj(lj; t� d� c)

+ min
1�m�min(n;ljk+1)

(m+ Vjk+1 (m; t� d))

3. Otherwise, fjk+1g � J� and

Fi(n; t; k+1) = min
1�m<min(n;ljk+1)

(m+Vjk+1(m; t�d)+Fi(n�m; t; k))

Fi(n; t; k+ 1) will be obtained by getting the minimum of these 3 values.

Complexity of the algorithm Let us consider i 2 T , n 2 f1; : : : ; lig and
t 2 � . The complexity of the computation of Vi(n; t) isO(j�

+(i)j(j�+(i)j+n)).
We deduce that the complexity of Vi(n; t); n 2 f1; : : : ; lig is O(j�

+(i)j)l2i . So,
the complexity of the computation of every value Vi(n; t) is O(jT j

3:j� j) =
O(jT j5).

For a �xed value t, an optimal schedule associated with V1(t) can be built

using a recursive algorithm of complexity also bounded by O(jT j5).
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5 Experimental results

For these experiments, we generate random trees using [1]. We observed

that experimentally, duplication doesn't seem to reduce the makespan of the

optimal schedule signi�cantly and the results presented here are quite poor.

Our explanation is that the structure of the trees randomly generated is very

irregular and such that every node has a few number of immediate successors.

For this class of trees, the duplication doesn't allow to reduce the makespan

of the schedules.

The following table summarizes our experimental results for random trees

with 100 tasks.

� 1 0:75 0:5 0:25 0:1

Percentage of duplication 30% 24% 20% 26% 26%

Average value of improvement 4:5% 3:5% 1:4% 1:1% 0:4%

Average maximum volume 138 140 135 144 140

For every value of the ratio � =
c

d
, we generate 500 instances of the

scheduling problem and we compute the following values:

1. Percentage of duplication, ie. the percentage of instances belonging

to the set T for which the duplication reduces the minimummakespan

of a schedule.

2. Average value of improvement, ie. if Cmax(A) (Resp. Cd
max(A))

for A 2 T denotes the minimal value of a schedule of A without

(Resp. with) duplication, we computed the average value of the ra-

tio
Cmax(A)�Cd

max(A)

Cmax(A)
.

3. Average maximumvolume, ie. the average of the volume V (Cd
max(A))

for every A 2 T .

Notice that the results are slightly better for � = 1. Now, we can compare

this results with full binary trees : it is a case for which the duplication is very
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eÆcient to reduce the makespan of schedules. The following table presents

the result for a complete binary tree of height 6 (ie., with 127 nodes).

� 1 0:75 0:5 0:25 0:1

Average value of improvement 46% 40% 30% 17:6% 7:8%

Average maximum volume 448 448 448 448 448

6 Perspectives

In this paper, we introduced a new objective function for scheduling with

communication delays in order to reduce both the number of duplicates and

the makespan. We proved that the minimization of the volume for an out-

tree with equal processing times d and equal communication delays c � d is

polynomial. Many questions arose from this result, as :

� Is it possible to extend these results to other special classes of prece-

dence graphs ?

� Is it possible to use this result for minimizing the makespan for a

scheduling problem with communication delays and a limited number

of resources ?
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