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Abstract

We consider a set of tasks of unit execution times and a bipartite
precedence delays graph with a positive precedence delay d : an arc
(i,7) of this graph means that j can be executed at least d time units
after the completion time of ¢. The problem is to sequence the tasks
in order to minimize the makespan.

Firstly, we prove that the associated decision problem is NP-comp-
lete. Then, we provide a non trivial polynomial time algorithm if the
degree of every tasks from one of the two sets is 2. Lastly, we give an

approximation algorithm with ratio 7

1 Introduction

Single and multiprocessors scheduling problems have been extensively stud-
ied in the literature [16]. Scheduling problems with precedence delays arise
independently in several important applications and many theoretical stud-
ies were devoted to these problems : this class of problems was considered
for resource-constrained scheduling problem [3, 13]. It was also studied as a
relaxation for the job-shop problem [1, 8]. For computer systems, it corre-
sponds to the basic pipelines scheduling problems [15, 20].

An instance of a scheduling problem with precedence delays is usually
defined by a set of tasks T' = {1,...,n} with durations p;,7 € T, an oriented
precedence graph (¢ = (1, F/) and integer delays d;; > 0, (¢,j) € E. For



Table 1: Complexity results
NP-Hard Problem Reference

1|chains, d;; = d|Cpax Wikum et al.[23]

1|prec,d;; = d, p; = 1|Cpax | Leung et al.[18]

every arc (i,7) € I, task j can be executed at least d;; time units after the
completion time of ¢. The number of processors is limited. The problem is
to find a schedule minimizing the makespan, or other regular criteria. Using
standard notations [16], the minimization of the makespan is denoted by
Plprec, d;;|Chax-

In this paper, we suppose that the graph G is bipartite : T is split
into two sets X and Y and every arc (¢,j) € F verifies i € X and j € Y.
We also consider that there is only one processor, the duration of tasks is
one and that the delay is the same for every arc. This problem is noted
1|bipartite, d;; = d, p; = 1|Cl45. The decision problem associated is called
SEQUENCING WITH DELAYS and is defined as :

e Instance : A bipartite oriented graph G = (X UY, F), a positive delay
d and a deadline D.

e Question : is there a solution to the sequencing problem with a delay
d and a makespan smaller than or equal to D?

We prove in section 2 that 1|bipartite, d;; = d, p; = 1|Cipq5 is NP-Hard.
The complexity of this problem was a challenging question since several
authors proved the NP-Hardness of more general instances of this problem
as shown in the table 1. In section 3, we prove that if the degree of every
task in X is 2, then the problem is polynomial and we provide a greedy
algorithm to solve it.

Several authors have adapted the classical polynomial algorithms for m
processors and particular graphs structures to a sequencing problem with
a unique delay as shown in the table 2. Note that Bampis [2] proved that
P|bipartite, p; = 1|C\nqz is NP-Hard, but his transformation doesn’t seem
to be easily extended to our problem.

Wikum et al. [23] also proved several complexity results, polynomial
special cases and approximation algorithms for unusual particular classes
of graphs (in fact, subclasses of trees). Munier and Sourd proved that
1|chains, d;; = d,p; = p|Cmax is polynomial. Lastly, Engels et al.[9] have



Table 2: Polynomial special cases

Polynomial Problem Reference Comments
1ltree, d;; = d, p; = 1|Chgn Bruno et al.[6] Based on [14]
Ilprec,d;; = 1, p; = 1|Chap Leung et al. [18] | Based on [7]
1|interval orders, d;; = d, p; = 1|Cpqs | Leung et al.[18] | Based on [21]

developed a polynomial algorithm for Pltree, d;; < D, p; = 1|Chax if D is a
constant value.

At last, there are some approximation algorithms for problems with de-
lays : Graham’slist scheduling algorithm [11] was extended to P|prec. delays,
di; = k,p; = 1|Chax to give a worst-case performance ratio of 2 —1/(m(k+
1)) [15, 20]. This result was extended by Munier et al. [19] to P|prec. delays,
di;|Cmax. Bernstein and Gerner [5] study the performance ratio of the
Coffman-Graham algorithm for P|prec. delays,d;; = d,p; = 1|Cnax and
slightly improve it in [4]. Schuurman [22] developed a polynomial approxi-
mation scheme for a particular class of precedence constraints. We prove in
section 4 that the bound 2 of Graham’s list algorithm may be achieved in
the worst case for 1|bipartite, d;; = d, p; = 1|C),q, and we develop a simple
algorithm with worst case performance ratio equal to 3/2 for this problem.

2 Complexity of the problem

Let us consider a non oriented graph G = (V, IV) and an ordering L of the
vertices of G (ie, a one-to-one function L : V — {1,...,|V]}). For all integer
i€{1,...,|V]|}, theset V(i) C Vis:

Vi(t)={veV,L(v)<iand Ju € V,{v,u} € F and L(u) > i}
VERTEX SEPARATION is then defined as :

e Instance : A non oriented graph GG = (V, F) and a positive integer K.

e Question : Is there an ordering L of the vertices of G such that, for

allie {1,...,|V]}, |Vp(i)| < K?

This problem is proved to be NP-complete in [17]. For the following,
our proofs will be more elegant if we consider the converse ordering of the



tasks. Let n = |V|. If we set, Vo € V, L'(v)=n—L(v),j=n—1+1 and
B (7) = Vi(i), we get for every value j € {1,...,n}:

Br(j)={veV,L'(v) >jand Ju € V,{v,u} € F and L'(u) < j}

So, the equivalent INVERSE VERTEX SEPARATION problem may be
defined as :

e Instance : A non oriented graph GG = (V, F) and a positive integer K.

e Question : Is there an ordering L of the vertices of G such that, for

alli e {1,...,|V]}, |BL()| < K ?
We prove the following theorem :

Theorem 2.1. There exists a polynomial transformation f from INVERSE
VERTEX SEPARATION to SEQUENCING WITH DELAYS.

Proof. Let I be an instance of INVERSE VERTEX SEPARATION. The
associated instance f([) is given by a bipartite graph G' = (X UY, E’), a
delay d and a deadline D defined as :

1. To any vertex v € V is associated two elements z, € X and y, € Y
and an arc (2,,y,) € E'.

2. To any edge {u,v} € F' is associated the arcs (z,,y,) and (2,,y,) in
£

3. The delay is d = n — 1 — K and the deadline D = 2n.

f can be clearly computed in polynomial time (see an example figure 1).

Let us suppose that L is a solution to the instance I. Then, we build a
solution to f(I) as follows :

1. Tasks from Y are executed between time n and 2n following L : they
are executed from yp-1(1) 10 yr—1(n)-

2. Let us define the partition P,e=1...n of X as:
1—1
P ={ap-1tU{aw, ue Bri)} - U P
=1

Tasks from X are executed between 0 and n following Py ... F,.



Xa Ya

b
S Xp Yb
J \.u X Ye
G=(V,E) f Xq Ya
K=2 R —
Xe Ye
d=2
D =10

Xp | Xa |Xd [Xc |Xe [Ya |Yb |Yc |Yd |Ye

Figure 2: The schedule associated with L

For example, if we consider the order defined by L(a) = 1, L(b) = 2,
L(c) =3, L(d) = 4 and L(e) = 5, the sets P, © = 1...5, are defined by
P =A{xg,2p}, Po = {ae, g}, Ps=0, Py ={z.} and Ps = (). Figure 2 shows
the corresponding solution for f(I) for our example.

We have to prove now that this schedule fulfill all the precedence delays
of G'. Let us consider the task Yr-1(;),t = 1...n. We must show that all
its predecessors in G’ are completed at time (n+¢—1) —d= K + 1.

1. We claim that all the predecessors of yr-1¢;y in G' are in U;‘:1 P;.
Indeed, xp-1(;y € Fj,j <@ by construction.

The other predecessors of yp-1(; are vertices z, with v adjacent to
w = L7!(d) in G. Now, if L(v) < L(u), then z, € P, with k& < L(v).
Otherwise, v € Br,(i) so z, € P, with k < L(u).

2. We show that | U;‘:1 P;| < K+1i. Indeed, this set is composed by : [1] ¢
tasks 71y, j = ..., and [2] tasks @, with L(u) > i, so u € Br(i).

So, we built a solution to the instance f(I).



Now, let us consider that we have a solution to f([). Since the graph
(' is bipartite, we can exchange the tasks such that tasks from X are all
completed before the first task from Y. We build an order L from tasks in Y
such that, Vi € {1,...,n}, L7(4) is the task « € V such that y, is executed
at time n 4+ ¢ — 1. Then, we must prove that, Vi € {1,...n}, |Br(¢)] < K.

Let consider ¢ € {1,...,n}. Tasks executed during the interval [0, K +1)
can be decomposed into [1] xp-1(1)...27-1(; and [2] A set @; of K other
tasks from X UY.

Let be v € Br(i). We claim that z, € ;. Indeed, we get that L(v) > i
and there exists v € V with L(u) < ¢ and {u,v} € E. By definition of G,
we have then (x,,y,) € F, so 2, € Q;.

We deduce that |B(¢)] < Q] = K. O

Corollary 2.2. 1|bipartite, d;; = d,p; = 1|Cqp is NP-Hard.

3 A polynomial special case

Let us consider a non oriented connected graph G = (V, F) without loops
(i.e. without edges {u, u}, u € V) and an ordering L of the vertices. We set
|V|=mn. Vie{l,...,n}, we define the sequences Ep,(i) by :

Er(t) = {u,v} € B, L(u) <4}

Er(i) is the set of edges adjacent to at least one vertices in {L7(1),...,
L)}

We define the problem MIN ADJACENT SET LINEAR ORDERING
by :

e Instance : A non oriented graph G = (V| F) without loops and a
positive integer K.

e Question : Is there an ordering L of the vertices of G such that, for

allie {1,...,|V|}, |[EL()| < K +i?

Notice that the formulation of this problem is quite similar to MIN-CUT
LINEAR ARRANGEMENT [10], which is NP-complete. In the following,
we consider the subproblem II of SEQUENCING WITH DELAYS with the

restriction that the degree of every vertex from X is exactly 2.

Theorem 3.1. There exists a polynomial transformation from I1 to MIN

ADJACENT SET LINKFAR ORDERING



Proof. Let us consider an instance I of II given by a bipartite graph G =
(X UY, L), adelay d and a deadline D. We build an instance f(I) of MIN
ADJACENT SET LINEAR ORDERING as follows :

o (/= (Y, L'). Forevery x € X with (z,y1) and (2, y2) € I is associated
an edge e, = {y1,y2} in .

e the value K =D —d— |Y|- 1.

f can be computed in polynomial time. We prove now that f is a polynomial
transformation (see figure 3 for an example)

1 a

a b
<r , X

f ¢ d

3 C -

K=1
4 d
d=2
D=8

Figure 3: Example of transformation f

Let us suppose that a solution to [ is given. Then, without loosing
generality, we can suppose that the tasks from X are performed during
[0,...,]X]) and tasks from Y during [D — |Y|,..., D). We build a linear
ordering L following the sequencing order of tasks Y : Vi € {1,...,|Y]},
L(7) is the ith task of Y in the schedule.

Vie{l,...,|Y|},letbet =D —|Y|+ (: — 1) = K + ¢+ d the starting
time of the task L7(¢) from Y. At time ¢ — d = K + 4, all the predecessors
of L7Y(1),...,L7(¢) must be completed. Now, for every edge e, € F,(i)
is associated exactly one of those predecessors. So, |Fp(i)] < K + 1.

Conversely, let us suppose that a solution to f(Il) is given. Then, we
perform tasks from Y following L during the interval [D — |Y|,..., D). We
define then the following sequence X; C X :

1. Xy ={z € X,e, € EL(l)}7

2.¥i=2,...,n, X;={v€X,e, € Br(i)} - Ui, X



Notice that, by construction that, Vi € {1,...,n}, U;‘:1 X; =A{ey € Er(0)}.
Tasks of X are performed during [0, ..., |X) following X1, X5...X,. Every
task from U;‘:1 X; is then completed at time K + i (see figure 4 for the
corresponding schedule).

3/1/2|4|c|a|d|b

N~

XN X K

Figure 4: A corresponding schedule

We must prove that the delays constraints are fulfilled : let us consider
the task y = (L71(4)). For every task @ € I'"!(y) is associated e, € FEp(i).
So, & € U;‘:1 X; and is completed at time K 4 7. Since y is performed at
timet =D — |Y|4+1i— 1, we get :

t—(K4+9)=D—-Y|4+i-1-(K+1i)=d
So, the delays are fulfilled. O
Theorem 3.2. Let us consider an instance I of MIN ADJACENT SET
LINFAR ORDFERING given by a graph G = (V, F) and an integer K > 0.

A necessary and sufficient condition for the existence of a solution is that
|E|<K+1V]-1

Proof. The condition is necessary : since the graph G is connected without
loops, every linear ordering L verifies Er(n — 1) = F. So, if L verifies the
condition, we get the condition of the theorem.

The condition is sufficient : let us consider a linear ordering L and a
family of graph G;, + = 0,...,n defined such that,

o Gg= G7

e Vi = 1,...,n, we choose a vertex u in the subgraph G,y = (V —
{L7Y1),...,L7(i = 1)}, F) with a minimum degree in Z;_; and we
set L(u) = .

o (G, =10.

We note E; the edges of G;. Notice that, Vi = 1,...,n, the two sets Fp,(¢)
and F; are a partition of F.
We prove by contradiction that the linear ordering L is a solution to

MIN ADJACENT SET LINEAR ORDERING.



e Let us suppose that |EL(1)] > K + 2, then the degree of any vertex
in (G is greater than or equal to K 4+ 2. So, 2|F| > |V|(K + 2). By
hypothesis, we get 2K +2|V| =2 > K|V|+2|V]|,s0 K(2—|V]) > 2.
Since K > 0, we get that |V| < 2, so |V| = 1. In this case, we get
|EL(1)| = |E| = 0, which contradicts |F| > K + 2.

e Now, let us suppose that, fori < n—2,Vj € {1,... 4}, |EL(j)| < K+J
and that |Ep(t+1)| > (i 4+ 1) + K + 1. For every vertex u € G;, we
set dg, (u) the degree of w in Gj.

The total number of edges verifies |F| = |Fr(i 4+ 1)| + |Fit1]-

1. By hypothesis, |Fr(i+1)| > (i+1) + K + 1.

2. By definition of the sequences Gy, |Fit1| = |Ei| —dg, (L' (i+1)).
Since uw = L™ (i+ 1) is the vertex of G; with a minimum degree,
the number of arcs of GG; verifies

2|Ei > (n = i)dg, (L7 (i+ 1))
So,

il 2 (= g, (174 1)) — da, (B4 1)

We show that dg,(L7'(i + 1)) > 2. Indeed, let us denote by
e(k) ={L7Y(i+ 1), L71(k)} an edge of G adjacent to L™ (i+ 1).
Then, we get easily that Ep(i + 1) — E(i) = {e(k) € G}, so

da. (L7H6+1) = |[ELG+D) = EL(i)| > (i+1)+K+1—(K+i) = 2
We deduce that
|Eipy| > 7”‘_7"_2616;1.(L—1(wr ) >n—i-2
So, the total number of edges of G verifies :
|El=|ELi+ )|+ Bl >+ )+ K+1+n—i—-2=|V|+ K
which contradicts the hypothesis of the theorem. O

Notice that this proof is constructive : if the condition of the theorem is
fulfilled, one can easily implements a greedy polynomial algorithm to build
a linear ordering.

Corollary 3.3. Il is polynomial.

If we heavily sort the the vertices at each step of the algorithm, the
complexity of the algorithm will be bounded by O(n?log n + m).



4 An Approximation algorithm

In this section, we consider the analysis of the performances of two approx-
imation algorithms.

The first one is the classical Graham list scheduling algorithm [12]. At
each time t, a schedulable task is chosen to be performed without any priority
rule. For the bipartite graph G = (X UY, F), it consists on performing
tasks from X in any order and tasks from Y as soon as possible. Several
authors show that the performance ratio of this algorithm is upper bounded
asymptotically by 2 [15, 20, 19]. We prove here that this bound is reached
for bipartite graphs :

Theorem 4.1. The performance ratio of a list scheduling for a bipartite
graph tends asymptotically to 2.

Proof. Let us consider a value d > 0 and a bipartite graph G = (X UY, F)
with X = {a1,...,a53 U{b},Y = {c} and E = {(b,¢)}. In the worst case
for the Graham list scheduling algorithm, tasks {ay,...,a;} are performed
first. We get then a schedule of length [y = 2d 4 2.

Now, we can get a schedule without idle slots if we perform b first. The
length of this second schedule is then [ = d + 2.

The performance ratio is then bounded by : r = ZdT"'; =2- d-I-L? —d—oo
2. O

We present now a slightly better approximation algorithm : let us sup-
pose that G = (X U Y, F) with |X| = n, |[Y| = m and n > m. In the
opposite, we modify the orientation of the edges and we consider the graph
G'= (Y UX,E'). We can get a feasible schedule for GG by considering the
inverse order of a schedule for G’.

Let us consider the set Xy of tasks from X with a strictly positive out-
degree (i.e., X; is the set of X with at least one successor in Y'). The idea
is to apply a list scheduling algorithm which performs tasks from X; before
those from Xy = X — X.

We denote by Cype (resp. Cpr) the makespan of an optimal schedule
(resp. a schedule obtained using this algorithm). We set | X;| = n;,i = 1,2
and p = max(0,d 4+ 1 — ny — m). We prove the following upper bound on
Copt

Lemma 4.2. Copy > n+m + p.

Proof. The last task of Xy is performed at time ¢ > ny and has at least
one successor in Y, so Copy > ny +d+ 1. Now, if p=d+1—ny —m,

10



n+m+p=n+m+d+1—ny—m=n;+d+ 1 and the inequality is true.
Otherwise, p = 0 and we get obviously Cope > n 4 m. O

Theorem 4.3. The performance ratio of this algorithm is bounded by %

Proof. We denote by Z the idle slots of the schedule obtained by our algo-
rithm. We get, using the previous lemma :

Cr=n+m+|Z] < Copt + (IZ| - p)
1. If |Z| < p, we get the theorem.

2. Let us assume now that |Z| > p. We build a subset Z,, C 7 by removing
from Z the pth first idle slots in our schedule. Let be an element £ € Z,
and t(k) the time of this idle slot.

Clearly, by definition of Z,, t(k) > p+ n. Moreover, there is at least
one task from y € Y performed after ¢(k) such that y is not ready at
time t(k), so t(k) < nq + d. We get

Z| = p =1L < ni+d— (p+n)

Then,
IZ| —p=|Z,| <d—ny — max(0,d+ 1 — ng — m)
We deduce that
|Z,| < min(d — ng,m — 1)

So, |Z,| < Y.
Now, the inequality between C'y and Clp¢ becomes :

Ch < Copt +1Z,| < Cope + Y|

Since |Y| < | X[, we get that Y] < (|X|+ |Y]) < $C,p and we get
the theorem. O

We can prove that the bound % is asymptotically tight : indeed, let us
consider an integer n > 0 and the bipartite graph G = (X UY, F) with X =
{z1,...,2.}, Y ={y1,...,yn} and the arcs I = {(24,y;),1 < j <i< n}.
We set d = n — 1. Note that | X|=n =|Y].

If we perform task from X such that ¢(z;) =7 — 1,0 = 1,...,n, then
tasks from Y can’t be performed before n + d — 1. So, we get a makespan
Ll =3n - 2.

Now, if we perform task from from X such that ¢(z;) = n—i,i=1,...,n,
then we get a schedule without idle slots with makespan Ly = 2n.

So, we get % —n—stoo %

11



5 Conclusions
Several new questions arise from the results presented here :

e In order to study the borderline between NP-complete and polyno-
mial problems, the complexity of the problem with a bipartite graph
where the degree of vertices from X does not exceed 3 is an interesting
problem.

e The existence of better approximation algorithms is also an interesting
question.
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