
Minimizing the makespan for a UET bipartite

graph on a single processor with an integer

precedence delay

Alix MUNIER KORDON

Laboratoire LIP6,

4 place Jussieu, 75 252 Paris cedex 05

Alix.Munier@lip6.fr

Abstract

We consider a set of tasks of unit execution times and a bipartite

precedence delays graph with a positive precedence delay d : an arc

(i; j) of this graph means that j can be executed at least d time units

after the completion time of i. The problem is to sequence the tasks

in order to minimize the makespan.

Firstly, we prove that the associated decision problem is NP-comp-

lete. Then, we provide a non trivial polynomial time algorithm if the

degree of every tasks from one of the two sets is 2. Lastly, we give an

approximation algorithm with ratio
3

2
.

1 Introduction

Single and multiprocessors scheduling problems have been extensively stud-

ied in the literature [16]. Scheduling problems with precedence delays arise

independently in several important applications and many theoretical stud-

ies were devoted to these problems : this class of problems was considered

for resource-constrained scheduling problem [3, 13]. It was also studied as a

relaxation for the job-shop problem [1, 8]. For computer systems, it corre-

sponds to the basic pipelines scheduling problems [15, 20].

An instance of a scheduling problem with precedence delays is usually

de�ned by a set of tasks T = f1; : : : ; ng with durations pi; i 2 T , an oriented

precedence graph G = (T;E) and integer delays dij � 0, (i; j) 2 E. For

1

Table 1: Complexity results

NP-Hard Problem Reference

1jchains; dij = djCmax Wikum et al.[23]

1jprec; dij = d; pi = 1jCmax Leung et al.[18]

every arc (i; j) 2 E, task j can be executed at least dij time units after the

completion time of i. The number of processors is limited. The problem is

to �nd a schedule minimizing the makespan, or other regular criteria. Using

standard notations [16], the minimization of the makespan is denoted by

Pjprec; dijjCmax.

In this paper, we suppose that the graph G is bipartite : T is split

into two sets X and Y and every arc (i; j) 2 E veri�es i 2 X and j 2 Y .

We also consider that there is only one processor, the duration of tasks is

one and that the delay is the same for every arc. This problem is noted

1jbipartite; dij = d; pi = 1jCmax. The decision problem associated is called

SEQUENCING WITH DELAYS and is de�ned as :

� Instance : A bipartite oriented graph G = (X [Y;E), a positive delay
d and a deadline D.

� Question : is there a solution to the sequencing problem with a delay

d and a makespan smaller than or equal to D?

We prove in section 2 that 1jbipartite; dij = d; pi = 1jCmax is NP-Hard.

The complexity of this problem was a challenging question since several

authors proved the NP-Hardness of more general instances of this problem

as shown in the table 1. In section 3, we prove that if the degree of every

task in X is 2, then the problem is polynomial and we provide a greedy

algorithm to solve it.

Several authors have adapted the classical polynomial algorithms for m

processors and particular graphs structures to a sequencing problem with

a unique delay as shown in the table 2. Note that Bampis [2] proved that

Pjbipartite; pi = 1jCmax is NP-Hard, but his transformation doesn't seem

to be easily extended to our problem.

Wikum et al. [23] also proved several complexity results, polynomial

special cases and approximation algorithms for unusual particular classes

of graphs (in fact, subclasses of trees). Munier and Sourd proved that

1jchains; dij = d; pi = pjCmax is polynomial. Lastly, Engels et al.[9] have

2

Table 2: Polynomial special cases

Polynomial Problem Reference Comments

1jtree; dij = d; pi = 1jCmax Bruno et al.[6] Based on [14]

1jprec; dij = 1; pi = 1jCmax Leung et al. [18] Based on [7]

1jinterval orders; dij = d; pi = 1jCmax Leung et al.[18] Based on [21]

developed a polynomial algorithm for Pjtree; dij � D; pi = 1jCmax if D is a

constant value.

At last, there are some approximation algorithms for problems with de-

lays : Graham's list scheduling algorithm [11] was extended to Pjprec. delays;
dij = k; pj = 1jCmax to give a worst-case performance ratio of 2� 1=(m(k+

1)) [15, 20]. This result was extended by Munier et al. [19] to Pjprec. delays;
dij jCmax. Bernstein and Gerner [5] study the performance ratio of the

Co�man-Graham algorithm for Pjprec. delays; dij = d; pi = 1jCmax and

slightly improve it in [4]. Schuurman [22] developed a polynomial approxi-

mation scheme for a particular class of precedence constraints. We prove in

section 4 that the bound 2 of Graham's list algorithm may be achieved in

the worst case for 1jbipartite; dij = d; pi = 1jCmax and we develop a simple

algorithm with worst case performance ratio equal to 3=2 for this problem.

2 Complexity of the problem

Let us consider a non oriented graph G = (V;E) and an ordering L of the

vertices ofG (ie, a one-to-one function L : V ! f1; : : : ; jV jg). For all integer

i 2 f1; : : : ; jV jg, the set VL(i) � V is :

VL(i) = fv 2 V; L(v)� i and 9u 2 V; fv; ug 2 E and L(u) > ig

VERTEX SEPARATION is then de�ned as :

� Instance : A non oriented graph G = (V;E) and a positive integer K.

� Question : Is there an ordering L of the vertices of G such that, for

all i 2 f1; : : : ; jV jg, jVL(i)j � K?

This problem is proved to be NP-complete in [17]. For the following,

our proofs will be more elegant if we consider the converse ordering of the

3

tasks. Let n = jV j. If we set, 8v 2 V , L0(v) = n � L(v), j = n � i+ 1 and

BL0(j) = VL(i), we get for every value j 2 f1; : : : ; ng :

BL0(j) = fv 2 V; L0(v) > j and 9u 2 V; fv; ug 2 E and L0(u) � jg

So, the equivalent INVERSE VERTEX SEPARATION problem may be

de�ned as :

� Instance : A non oriented graph G = (V;E) and a positive integer K.

� Question : Is there an ordering L of the vertices of G such that, for

all i 2 f1; : : : ; jV jg, jBL(i)j � K ?

We prove the following theorem :

Theorem 2.1. There exists a polynomial transformation f from INVERSE

VERTEX SEPARATION to SEQUENCING WITH DELAYS.

Proof. Let I be an instance of INVERSE VERTEX SEPARATION. The

associated instance f(I) is given by a bipartite graph G0 = (X [Y;E 0), a

delay d and a deadline D de�ned as :

1. To any vertex v 2 V is associated two elements xv 2 X and yv 2 Y

and an arc (xv; yv) 2 E0.

2. To any edge fu; vg 2 E is associated the arcs (xu; yv) and (xv; yu) in

E 0.

3. The delay is d = n� 1�K and the deadline D = 2n.

f can be clearly computed in polynomial time (see an example �gure 1).

Let us suppose that L is a solution to the instance I . Then, we build a

solution to f(I) as follows :

1. Tasks from Y are executed between time n and 2n following L : they

are executed from yL�1(1) to yL�1(n).

2. Let us de�ne the partition Pi; i = 1 : : :n of X as :

Pi = fxL�1(i)g [fxu; u 2 BL(i)g �
i�1[

j=1

Pj

Tasks from X are executed between 0 and n following P1 : : :Pn.

4

a

b c

d e

G = (V, E)
K = 2

xa

xb

xc

xd

xe ye

yd

yc

yb

ya

d = 2
D = 10

f

Figure 1: Example of transformation f

xb xcxd xe yeydycybyaxa

P1 P2 P4

Figure 2: The schedule associated with L

For example, if we consider the order de�ned by L(a) = 1, L(b) = 2,

L(c) = 3, L(d) = 4 and L(e) = 5, the sets Pi, i = 1 : : :5, are de�ned by

P1 = fxa; xbg, P2 = fxc; xdg, P3 = ;, P4 = fxeg and P5 = ;. Figure 2 shows
the corresponding solution for f(I) for our example.

We have to prove now that this schedule ful�ll all the precedence delays

of G0. Let us consider the task yL�1(i); i = 1 : : :n. We must show that all

its predecessors in G0 are completed at time (n+ i� 1)� d = K + i.

1. We claim that all the predecessors of yL�1(i) in G0 are in
Si
j=1 Pj .

Indeed, xL�1(i) 2 Pj ; j � i by construction.

The other predecessors of yL�1(i) are vertices xv with v adjacent to

u = L�1(i) in G. Now, if L(v) < L(u), then xv 2 Pk with k � L(v).

Otherwise, v 2 BL(i) so xv 2 Pk with k � L(u).

2. We show that j
Si
j=1 Pj j � K+i. Indeed, this set is composed by : [1] i

tasks xL�1(j), j = 1 : : : i, and [2] tasks xu with L(u) > i, so u 2 BL(i).

So, we built a solution to the instance f(I).

5

Now, let us consider that we have a solution to f(I). Since the graph

G0 is bipartite, we can exchange the tasks such that tasks from X are all

completed before the �rst task from Y . We build an order L from tasks in Y

such that, 8i 2 f1; : : : ; ng, L�1(i) is the task u 2 V such that yu is executed

at time n + i� 1. Then, we must prove that, 8i 2 f1; : : :ng, jBL(i)j � K.

Let consider i 2 f1; : : : ; ng. Tasks executed during the interval [0; K+ i)

can be decomposed into [1] xL�1(1) : : :xL�1(i) and [2] A set Qi of K other

tasks from X [Y .

Let be v 2 BL(i). We claim that xv 2 Qi. Indeed, we get that L(v) > i

and there exists u 2 V with L(u) � i and fu; vg 2 E. By de�nition of G0,

we have then (xv ; yu) 2 E, so xv 2 Qi.

We deduce that jBL(i)j � jQij = K.

Corollary 2.2. 1jbipartite; dij = d; pi = 1jCmax is NP-Hard.

3 A polynomial special case

Let us consider a non oriented connected graph G = (V;E) without loops

(i.e. without edges fu; ug, u 2 V) and an ordering L of the vertices. We set

jV j = n. 8i 2 f1; : : : ; ng, we de�ne the sequences EL(i) by :

EL(i) = ffu; vg 2 E; L(u) � ig

EL(i) is the set of edges adjacent to at least one vertices in fL�1(1); : : : ;
L�1(i)g.

We de�ne the problem MIN ADJACENT SET LINEAR ORDERING

by :

� Instance : A non oriented graph G = (V;E) without loops and a

positive integer K.

� Question : Is there an ordering L of the vertices of G such that, for

all i 2 f1; : : : ; jV jg, jEL(i)j � K + i ?

Notice that the formulation of this problem is quite similar to MIN-CUT

LINEAR ARRANGEMENT [10], which is NP-complete. In the following,

we consider the subproblem � of SEQUENCING WITH DELAYS with the

restriction that the degree of every vertex from X is exactly 2.

Theorem 3.1. There exists a polynomial transformation from � to MIN

ADJACENT SET LINEAR ORDERING

6

Proof. Let us consider an instance I of � given by a bipartite graph G =

(X [Y;E), a delay d and a deadline D. We build an instance f(I) of MIN

ADJACENT SET LINEAR ORDERING as follows :

� G0 = (Y;E 0). For every x 2 X with (x; y1) and (x; y2) 2 E is associated

an edge ex = fy1; y2g in E0.

� the value K = D � d� jY j � 1.

f can be computed in polynomial time. We prove now that f is a polynomial

transformation (see �gure 3 for an example)

f

1

2

3

4

a

b

c

d

d = 2
D = 8

a b

c d

K = 1

Figure 3: Example of transformation f

Let us suppose that a solution to I is given. Then, without loosing

generality, we can suppose that the tasks from X are performed during

[0; : : : ; jX j) and tasks from Y during [D � jY j; : : : ; D). We build a linear

ordering L following the sequencing order of tasks Y : 8i 2 f1; : : : ; jY jg,
L(i) is the ith task of Y in the schedule.

8i 2 f1; : : : ; jY jg, let be t = D � jY j+ (i� 1) = K + i+ d the starting

time of the task L�1(i) from Y . At time t� d = K + i, all the predecessors

of L�1(1); : : : ; L�1(i) must be completed. Now, for every edge ex 2 EL(i)

is associated exactly one of those predecessors. So, jEL(i)j � K + i.

Conversely, let us suppose that a solution to f(�) is given. Then, we

perform tasks from Y following L during the interval [D� jY j; : : : ; D). We

de�ne then the following sequence Xi � X :

1. X1 = fx 2 X; ex 2 EL(1)g,

2. 8i = 2; : : : ; n, Xi = fx 2 X; ex 2 EL(i)g �
Si
j=1Xj.

7

Notice that, by construction that, 8i 2 f1; : : : ; ng,
Si
j=1Xi = fex 2 EL(i)g.

Tasks of X are performed during [0; : : : ; jX) following X1; X2 : : :Xn. Every

task from
Si
j=1Xi is then completed at time K + i (see �gure 4 for the

corresponding schedule).

X1

3 1 2 4 c a d b

X2 X3

Figure 4: A corresponding schedule

We must prove that the delays constraints are ful�lled : let us consider

the task y = (L�1(i)). For every task x 2 ��1(y) is associated ex 2 EL(i).

So, x 2
Si
j=1Xi and is completed at time K + i. Since y is performed at

time t = D � jY j+ i� 1, we get :

t� (K + i) = D � jY j+ i� 1� (K + i) = d

So, the delays are ful�lled.

Theorem 3.2. Let us consider an instance I of MIN ADJACENT SET

LINEAR ORDERING given by a graph G = (V;E) and an integer K > 0.

A necessary and suÆcient condition for the existence of a solution is that

jEj � K + jV j � 1

Proof. The condition is necessary : since the graph G is connected without

loops, every linear ordering L veri�es EL(n � 1) = E. So, if L veri�es the

condition, we get the condition of the theorem.

The condition is suÆcient : let us consider a linear ordering L and a

family of graph Gi, i = 0; : : : ; n de�ned such that,

� G0 = G,

� 8i = 1; : : : ; n, we choose a vertex u in the subgraph Gi�1 = (V �

fL�1(1); : : : ; L�1(i� 1)g; E) with a minimum degree in Gi�1 and we

set L(u) = i.

� Gn = ;.

We note Ei the edges of Gi. Notice that, 8i = 1; : : : ; n, the two sets EL(i)

and Ei are a partition of E.

We prove by contradiction that the linear ordering L is a solution to

MIN ADJACENT SET LINEAR ORDERING.

8

� Let us suppose that jEL(1)j � K + 2, then the degree of any vertex

in G is greater than or equal to K + 2. So, 2jEj � jV j(K + 2). By

hypothesis, we get 2K + 2jV j � 2 � KjV j+ 2jV j, so K(2� jV j) � 2.

Since K > 0, we get that jV j < 2, so jV j = 1. In this case, we get

jEL(1)j = jEj = 0, which contradicts jEj � K + 2.

� Now, let us suppose that, for i < n�2, 8j 2 f1; : : : ; ig, jEL(j)j � K+j

and that jEL(i+ 1)j � (i + 1) + K + 1. For every vertex u 2 Gi, we

set dGi
(u) the degree of u in Gi.

The total number of edges veri�es jEj = jEL(i+ 1)j+ jEi+1j.

1. By hypothesis, jEL(i+ 1)j � (i+ 1) +K + 1.

2. By de�nition of the sequences Gi, jEi+1j = jEij�dGi
(L�1(i+1)).

Since u = L�1(i+ 1) is the vertex of Gi with a minimum degree,

the number of arcs of Gi veri�es

2jEij � (n� i)dGi
(L�1(i+ 1))

So,

jEi+1j �
1

2
(n� i)dGi

(L�1(i+ 1))� dGi
(L�1(i+ 1))

We show that dGi
(L�1(i + 1)) � 2. Indeed, let us denote by

e(k) = fL�1(i+ 1); L�1(k)g an edge of G adjacent to L�1(i+ 1).

Then, we get easily that EL(i+ 1)�EL(i) = fe(k) 2 Gig, so

dGi
(L�1(i+1)) = jEL(i+1)j�jEL(i)j � (i+1)+K+1�(K+i) = 2

We deduce that

jEi+1j �
n� i� 2

2
dGi

(L�1(i+ 1)) � n � i� 2

So, the total number of edges of G veri�es :

jEj = jEL(i+ 1)j+ jEi+1j � (i+ 1) +K + 1 + n � i� 2 = jV j+K

which contradicts the hypothesis of the theorem.

Notice that this proof is constructive : if the condition of the theorem is

ful�lled, one can easily implements a greedy polynomial algorithm to build

a linear ordering.

Corollary 3.3. � is polynomial.

If we heavily sort the the vertices at each step of the algorithm, the

complexity of the algorithm will be bounded by O(n2log n+m).

9

4 An Approximation algorithm

In this section, we consider the analysis of the performances of two approx-

imation algorithms.

The �rst one is the classical Graham list scheduling algorithm [12]. At

each time t, a schedulable task is chosen to be performed without any priority

rule. For the bipartite graph G = (X [Y;E), it consists on performing

tasks from X in any order and tasks from Y as soon as possible. Several

authors show that the performance ratio of this algorithm is upper bounded

asymptotically by 2 [15, 20, 19]. We prove here that this bound is reached

for bipartite graphs :

Theorem 4.1. The performance ratio of a list scheduling for a bipartite

graph tends asymptotically to 2.

Proof. Let us consider a value d > 0 and a bipartite graph G = (X [Y;E)

with X = fa1; : : : ; adg [fbg, Y = fcg and E = f(b; c)g. In the worst case

for the Graham list scheduling algorithm, tasks fa1; : : : ; adg are performed

�rst. We get then a schedule of length l1 = 2d+ 2.

Now, we can get a schedule without idle slots if we perform b �rst. The

length of this second schedule is then l2 = d+ 2.

The performance ratio is then bounded by : r = 2d+2
d+2

= 2� 2

d+2
!d!1

2.

We present now a slightly better approximation algorithm : let us sup-

pose that G = (X [Y;E) with jX j = n, jY j = m and n � m. In the

opposite, we modify the orientation of the edges and we consider the graph

G0 = (Y [X;E0). We can get a feasible schedule for G by considering the

inverse order of a schedule for G0.

Let us consider the set X1 of tasks from X with a strictly positive out-

degree (i.e., X1 is the set of X with at least one successor in Y). The idea

is to apply a list scheduling algorithm which performs tasks from X1 before

those from X2 = X �X1.

We denote by Copt (resp. CH) the makespan of an optimal schedule

(resp. a schedule obtained using this algorithm). We set jXij = ni; i = 1; 2

and p = max(0; d+ 1 � n2 �m). We prove the following upper bound on

Copt :

Lemma 4.2. Copt � n +m+ p.

Proof. The last task of X1 is performed at time t � n1 and has at least

one successor in Y , so Copt � n1 + d + 1. Now, if p = d + 1 � n2 � m,

10

n+m+ p = n+m+ d+ 1� n2�m = n1+ d+1 and the inequality is true.

Otherwise, p = 0 and we get obviously Copt � n+m.

Theorem 4.3. The performance ratio of this algorithm is bounded by 3

2
.

Proof. We denote by I the idle slots of the schedule obtained by our algo-

rithm. We get, using the previous lemma :

CH = n +m+ jIj � Copt + (jIj � p)

1. If jIj � p, we get the theorem.

2. Let us assume now that jIj > p. We build a subset Ip � I by removing

from I the pth �rst idle slots in our schedule. Let be an element k 2 Ip
and t(k) the time of this idle slot.

Clearly, by de�nition of Ip, t(k) � p + n. Moreover, there is at least

one task from y 2 Y performed after t(k) such that y is not ready at

time t(k), so t(k) � n1 + d. We get

jIj � p = jIpj � n1 + d� (p+ n)

Then,

jIj � p = jIpj � d� n2 �max(0; d+ 1� n2 �m)

We deduce that

jIpj � min(d� n2; m� 1)

So, jIpj � jY j.

Now, the inequality between CH and Copt becomes :

CH � Copt + jIpj � Copt + jY j

Since jY j � jX j, we get that jY j � 1

2
(jX j+ jY j) � 1

2
Copt and we get

the theorem.

We can prove that the bound 3

2
is asymptotically tight : indeed, let us

consider an integer n > 0 and the bipartite graph G = (X [Y;E) with X =

fx1; : : : ; xng, Y = fy1; : : : ; yng and the arcs E = f(xi; yj); 1 � j � i � ng.
We set d = n� 1. Note that jX j = n = jY j.

If we perform task from X such that t(xi) = i � 1; i = 1; : : : ; n, then

tasks from Y can't be performed before n + d� 1. So, we get a makespan

L1 = 3n � 2.

Now, if we perform task from fromX such that t(xi) = n�i; i = 1; : : : ; n,

then we get a schedule without idle slots with makespan L2 = 2n.

So, we get L1

L2

!n!+1
3

2
.

11

5 Conclusions

Several new questions arise from the results presented here :

� In order to study the borderline between NP-complete and polyno-

mial problems, the complexity of the problem with a bipartite graph

where the degree of vertices from X does not exceed 3 is an interesting

problem.

� The existence of better approximation algorithms is also an interesting

question.

References

[1] E. Balas, J. K. Lenstra, and A. Vazacopoulos. The one machine problem

with delayed precedence constraints and its use in job-shop scheduling.

Management Science, 41:94 { 109, 1995.

[2] E. Bampis. The complexity of short schedules for uet bipartite graphs.

RAIRO Operations Research, 33:367 { 370, 1999.

[3] M. Bartusch, R. H. M�ohring, and F. J. Radermacher. Scheduling

project networks with resource constraints and time windows. Annals

of Operations Research, 16:201 { 240, 1988.

[4] D. Bernstein. An improved approximation algorithm for scheduling

pipelined machines. In Int. Conf. on Parallel Processing, volume 1,

pages 430 { 433, 1988.

[5] D. Bernstein and I. Gertner. Scheduling expressions on a pipelined

processor with a maximum delay of one cycle. ACM Transactions on

Programming Languages and Systems, 11:57 { 66, 1989.

[6] J. Bruno, J. W. Jones, and K. So. Deterministic scheduling with

pipelined processors. IEEE Transactions on Computers, C-29:308 {

316, 1980.

[7] E.G. Co�man and R.L. Graham. Optimal scheduling for two processor

systems. Acta Informatica, 1:200 { 213, 1972.

[8] S. Dauz�ere-Peres and J.-B. Lasserre. A modi�ed shifting bottleneck

procedure for job{shop scheduling. Int. J. Production Research, 31:923

{ 932, 1993.

12

[9] D.W Engels, J. Feldman, D.R Karger, and M. Ruhl. Parallel processor

scheduling with delay constraints. Rapport Interne MIT.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP{Completeness. Freeman, San Francisco, 1979.

[11] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell

System Tech. J., 45:1563 { 1581, 1966.

[12] R. L. Graham. Bounds on the performance of scheduling algorithms.

In E. G. Co�man, editor, Computer and Job-shop Scheduling Theory.

John Wiley Ltd., 1976.

[13] W. Herroelen and E. Demeulemeester. Recent advances in branch-and-

bound procedures for resource-constrained project scheduling problems.

In P. Chr�etienne, E. G. Co�man Jr. , J. K. Lenstra, and Z. Liu, editors,

Scheduling Theory and its Applications, chapter 12, pages 259 { 276.

John Wiley & Sons, 1995.

[14] T.C. Hu. Parallel sequencing and assembly lines problems. Operations

Research, 9:841 { 848, 1961.

[15] E. Lawler, J. K. Lenstra, C. Martel, B. Simons, and L. Stockmeyer.

Pipeline scheduling: A survey. Technical Report RJ 5738 (57717), IBM

Research Division, San Jose, California, 1987.

[16] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys.

Sequencing and scheduling: Algorithms and complexity. In S. C.

Graves, A. H. G. Rinnooy Kan, and P. H. Zipkin, editors, Logistics

of Production and Inventory, volume 4 of Handbooks in Operations Re-

search and Management Science, chapter 9, pages 445 { 522. North{

Holland, Amsterdam, The Netherlands, 1993.

[17] T. Lengauer. Black-white pebbles and graph separation. Acta Infor-

matica, 16:465 { 475, 1981.

[18] J. Y.{T. Leung, 0. Vornberger, and J. Wittho�. On some variants of

the bandwidth minimization problem. SIAM J. Computing, 13:650 {

667, 1984.

[19] A. Munier, M. Queyranne, and A. S. Schulz. Approximation bounds for

a general class of precedence constrained parallel machine scheduling

problems. Number 1412 in Lecture Notes in Computer Science, pages

13

367 { 382. Springer, 1998. Proceedings of the 6th International IPCO

Conference.

[20] K. W. Palem and B. Simons. Scheduling time critical instructions on

risc machines. In Proceedings of the 17th Annual Symposium on Prin-

ciples of Programming Languages, pages 270 { 280, 1990.

[21] C.H Papadimitriou and M. Yannakakis. Schedulin interval-ordered

tasks. SIAM Journal on Computing, 8(3), 1979.

[22] P. Schuurman. A fully polynomial approximation scheme for a schedul-

ing problem with intree-type precedence delays. Operations Research

Letters, 23:9 { 11, 1998.

[23] E. D. Wikum, D. C. Llewellyn, and G. L. Nemhauser. One{machine

generalized precedence constrained scheduling problems. Operations

Research Letters, 16:87 { 89, 1994.

14

