Infinitesimals and Real Closure

Renaud Rioboo
Laboratoire D’Informatique de Paris 6
Boite 168
Universtité Paris VI
4 Place Jussieu
F-75252 Paris CEDEX 05
rioboo@calfor.1lip6.fr

November 20, 2001

Abstract

The purpose of this paper is to offer an alternative to Thom’s coding ([2]) for real algebraic numbers
when working over fields that contain infinitesimals. For this main case of non-archimedean ordered
fields we modify Newton-Puiseux method ([4], [11]) to separate and work with the distinct real roots of
a polynomial. An Axiom implementation describing these methods is then presented.

Authors note

This paper is an unedited version of a submission at the ISSAC98 conference. Early versions of this paper
were presented but not published at the MEGA94 conference. This work has already been presented at

e séminaire de ’équipe de calcul formel du LIP6,
e séminaire de 'IRMAR,

e grupo de algebra computacional de la universidad de Santander.

Introduction

The real closure of an ordered field is uniquely determined and can be constructively computed using
different techniques (see [7], [6], [2] for instance). However the only generic technique that enables to
start with any computable ordered field is the one known as Thom’s coding ([2]). We want in this paper
offer another method based on approximation ideas. Current implementations seem to show that, for the
particular case of archimedean fields, approximation methods are somewhat faster than generic methods.

This paper is an effort to take advantage of this fact for the case of fields containing “infinitesimal
quantities” which often appear in practice and are the main example of non-archimedean fields. However
techniques described here are not interval-based but use Puiseux series.

Using the general scheme of [8] we can reduce the construction of the real closure of an ordered field
K to few basic operations. We only need to give a data structure to code one particular root a of a
polynomial P € K[X], and a method to compute the sign of Q(a) where @ € K[X] and thus Q(«) € K
where K is the real closure of K.

After some basic recalls, we will describe the data structure we need to compute with algebraic
infinitesimals. This is mainly the singular part of the Puiseux expansion of the algebraic viewed as an
algebraic function of the infinitesimal. Sign related operations will sometimes need to produce “finer”
approximations, we produce those computing the regular part of the serie using Newton method.

Knowing how to do basic arithmetics, we then adapt Newton-Puiseux method for our case where we
only need to compute some of all the possible expansions. We restrict ourselves to the case of computing
one edge of the Newton polygon of a polynomial. Knowing how to work in a real closed field containing
one infinitesimal, we then explain how the concept of towers can be used to compute with several ones.

1 Preliminaries

1.1 Fields with infinitesimals

Let K be an ordered field, we want to deal with quantities that depend on a new variable ¢. It is a
well known property of real fields that KK(e) (the rational fractions in € field) is orderable, and that if we

choose the rule:
Or €e>0
’ Vee K, z>0=>e<zx

then K(e) is ordered. Up to a K-linear change of variables any rule for € can be deduced from this one.
The rule Or also enables to order the Laurent and Puiseux series in €. The latter is real closed whenever
K is real closed as shown in [9].

Let K be an ordered field an K. a field containing K. We say that K. is an infinitesimal extension
of K if it is a transcendental extension of IK with a limit functionality. Let a. be in K¢, we interpret
limit(a.) as the usual limit of a(e) as a continous function of € when e goes to 07. We model the fact
K. contains only infinitesimals over K by saying that the target of the limit function is an element of
KU {co}. An element a. of K. is then said to be finite if the limit of a is in K a is said to be vanishing
if the limit of a is zero. We model this functionality in an Axiom category InfinitesimalExtension(K)
where K is an ordered field.

We now need to model the notion of an extension that contains a single infinitesimal, and following
[11] we use a notion of order of an element. To make a distinction between infinitesimal extensions where
non trivial algebraic relations hold we will consider two maintargets for the order function :

o the integers and the extension will be called rational,
e the set of rational numbers and the extension will be called algebraic.

As of Axiom implementation we have found usefull to abstract the target domain of the function and we
defined a category

SingleInfinitesimalExtension(K , R)
where K is the base ordered field K and the target R is a subring of the rational numbers. It then exports
the following operations :

generator : R —> Y

order : % -> R

expandOrders : (%,PositiveInteger) ->
mainCoefficient : % -> K

together with the operations of an infinitesimal extension of K. Here the expandOrders function
computes the result of the change of variables e — €". We remark that the expandOrders operation
leaves K stable.

Two sample and straightforward implementations have been provided for rational infinitesimal ex-
tensions. These are the two Axiom domain constructors :

e ZeroPlusFractions(K) which represents elements as rational fractions in one variable and
o ZeroPlusSeries(KK) which represents elements as Laurent series in one variable.

These serve as a base for real infinitesimal algebraic manipulation that we now describe.

1.2 Towers of extensions

The generic real closure construction of [8] is a tower manipulating program with external data structure
operations. The real closure K of an ordered field K is the union of all the possible real finite degree
extensions of K. However each member x of K belongs to some (or several) finite degree extension of
K, and the representation of x will include the necessary informations to describe and manipulate this
finite extension, also called tower.

Basically = will have three parts in its representation :

e a member of some external data structure representing some real algebraic variable x. This data
structure is also responsible of :

— creating the representations for all the roots x1,...x» of any univariate polynomial P,
— computing the sign of any univariate polynomial expression () at an algebraic variable x.

e A univariate polynomial value expressing in terms of .
o A integral age identifying x, used to manipulate the towers of real algebraic variables.

The only requirements needed for the coefficients of the univariate polynomials involved in this scheme
is that their coefficients should be real algebraic with lower ages (ie already defined, or “older”). The
program then works manipulating towers, comparing ages, and calling either polynomial operations (for
arithmetics), either external (for sign related operations) functions; see [8] for details.

This contruction has the advantage to reduce the degrees of the polynomials involved, as an example,
if one wants to work with one root of X2 ++/2X —+/3, the heighth of the tower would be 3, each defining
polynomial being of degree two, while the degree of the necessary simple extension would be 8 (2 for /2,
4 for an extension containing both v/2 and v/3, and 8 for the resulting root). Moreover, it is much easier
to produce new real algebraic algorithms, since the implementation task is reduced to a minimal one.

An Axiom implementation is available for these towers, we will use this simple scheme here, thus
only decsribing the data structure, algorithms for sign related operations, and a method to create roots
of a polynomial using this data structure. We thus need to describe real infinitesimal algebraic variables
manipulation and we found usefull to model these through an Axiom category :

SingleInfinistesimalRootCodingCategory(K, K¢, K. [X])
where K is the base real closed field, K. is a single infinitesimal extension of K and K.[X] a domain of
univariate polynomials over K. This category inherits RootCodingCategory(K., K[X]) of [8] together
with the operations :

expand : (%, PositiveInteger) -> ¥
allRootsNear : (K [X],K) -> List ¥

The purpose of the expand operation is to reflect the change of variables ¢ — €* at a real infinitesimal
variable. The purpose of the allRootsNear operation is to provide a functionality to describe all the
infinitesimal real algebraic variables whose limit is a given point of K. Other operations are like in [8].

2 Coding infinitesimal real algebraic variables

Let K be a real closed field, we will in this section be concerned with the problem of manipulating
algebraic infinitesimal variables using their Puiseux serie expansion.

If we view a infinitesimal real algebraic variable as a number z. of the real closure of K¢, it has a
Puiseux expansion over K. (K is real closed) :

Te = inei/c (1)

where I is a subset of the integers with min(7) finite, and ¢ is a positive integer. Note in this definition
that €'/¢ is perfectly defined and unique in terms of real closed fields. It is another infinitesimal 7 bigger
than e verifying the relation: n° = e. Working in K, is done the same way than working over K. since
the canonical injection of K. in K, is order preserving. We use the expandOrders operation to explicit
this morphism while remaining in the same domain of computations. A sufficient approximation for
our purposes consists in the singular part of a Puiseux expansion around some point of the curve of K?
defined by P(e, X) = 0.

2.1 Representation

We will use “lazy approximation” techniques to represent an algebraic infinitesimal, roughly speaking
an algebraic infinitesimal will be the begining of its Puiseux serie together with a way to compute more
terms. More precisely we will call Z the state of a real algebraic infinitesimal x and we will encode it as :

e a contraction factor cz € N*,
e an offset mz € Z,
e an approzimation Az € K[nz], where nz is interpreted as et/er,

e To compute more terms we will use a polynomial Pz of K;,[X] with only one root (real or complex)
“nearby” its leading coefficient az, more precisely :

@ : | Proz=olaz) = 0
Pé("ll‘=0) (aI) # 0 or PI =0

Thus, again viewing Pz as a curve of K2, the point (nz =0, X = az) should verify the conditions
of implicit functions theorem.

We add a defining polynomial P, for x to the representation of an infinitesimal real algebraic variable.
This information is redundant but usefull in practice.

Let x be an infinitesimal real algebraic variable and Z be a state of x. The level of Z will be the
integer | Pr | +mz and the level of x will be the level of its current state divided by cz (a rational
number)

2.2 Approximations

As in any approximation technique, it is sometimes needed to produce a “finer” approximations, let us
call refine this operation. We will produce a new state of chi since the defining polynomial does not
change We will classically use Newton’s approximations to compute it :

e a new contraction factor czs,
e a new offset mys
e a new approximation Az of higher level than Az,
e anew Pr € K, [X] verifying (I) as above.
We write the Taylor expansion in X around az:

or;

Pr(nz, X +az) = Pr(nz,az) + X X

(nz,az) + XF(nz,X) (2)

with F(nz,0) = 0. We assume Pz is not null (otherwise the approximation is exact and we can return a
dummy result), we have:

Pr(nz,az) =nz(a+ fo(nz)) (3)

with f4(0) = 0 and where ¢ = n/d is the order (in K,,[X]) of Pz(nz,az) and a # 0. We now write the

expansion :

OPr

a—X(nI’aI) =b+gq(nz)

with b # 0 (in K) and with the order of g,(nz) strictly positive. We will report the latter together with
(3) in (2) where X becomes 72" X and 7z becomes 7z?% obtaining:

Pr(nz®,m"X +az) = Pr(0,az)

+ 7" a+Xb

+ " G(nz, X).

with G(0,0) = 0. We can now state:
o mp =mzd

— |AZ|+1
o Ay = % + A% where A% is obtained by multiplying all the degrees of the terms of Az

by a factor d and
_ Pr(nz?, X +az)

In

e Pri(nz,X)

viewed as a polynomial in X.

this involves again expandOrders on the coefficients of Pz(nz,X)

We clearly have the conditions (I).

The
sl expand operation is performed in a similar way multiplying the degrees in the approximation recalling
the expandOrders function on the terms of Pz.

2.3 Sign computations

Now that we can approximate an infinitesimal algebraic up to any precision we need, we can go on with
sign computations. These operations mainly consist of a zero check and a sign computation. As in [10],
computations remain ordered and the zero check depends on the particular root of a polynomial. We
will have two basic approaches when computing the nullity or the sign of Q.(x) where X is a infinitesimal
real algebraic variable that encodes some root of P.(X) coded as above:

e use the defining polynomial P. first, and use the state Z of x after; or
e use the state Z first, and use Pr after.

The first approach is faster when using as base field rational fractions in € and the latter seems faster
when using Laurent series as base field.

2.3.1 Zero check
The zero check is computed using a polynomial first approach :
e compute the gcd R = gedx (Pe, Q.), this is a polynomial of K.[X];
e if Ris 1 we return false;
e otherwise, evaluate R over (e = nz°%), giving R: a polynomial of K, [X];

e evaluate R; over (X = Ag), this is done interpreting Az in K[X]. This gives a result v which is a
number of K, ;
e if the order (in K,) of v is greater than the level of the state Z of x or if v is null, we return true,

and false otherwise.

The method gives the right result since to be null a term must have a non trivial gcd with the defining
polynomial, and when evaluated over an approximation of the root, it must have an order bigger than
that of the approximation.

2.3.2 Proper sign computation

For sign computation we must refine the approximation until it has a correct order. Current implemen-
tation uses the state first approach and lazy evaluation for the order of an element:

e evaluate @ over (e = nz°x), giving @1 a polynomial of K, ,[X];
e Q1 « Qi(X =n™X)
n | Ay [;

o let [be the list of non null terms of A,. This list is of the form aqnz® with a4 # 0 (in K) sorted by
increasing order of degrees, let ¢ be 0;

e foreach term of [do:
— 1+« d—1,
- Q1+ QX =n"X +aq)

— if the order of (@Q1(0)) is less than the level od the state Z of x and if Q1(0) is not null we
return its sign.

e Now Q(Z) is “negligible” up to the level of x, we compute R = gcdy (Pr,Q1) a polynomial of
Koz [X]5

e if R non trivial then we return 0; now we must refine the approximation untill the order of Q1(0)
is smaller than the level of the state:

e while the order of (Q1(0)) is bigger than the level of (x) repeat
— let Z be the state of x ;
— refine x; let 7' be the new state of x
— n « | Az | and a, < leadingCoefficient(Az)
- Q1 + Qi(nm =~ /CI, X =nzX + ay,); here ¢z /cz remains a positive integer.

e return sign(Q1(0))

The first loop lazily computes the same transformation that is done in P. to obtain Pz with an exit
when the sign is “clear”, that is when the term is significant. The method terminates since when we reach
the second loop the polynomials are relatively prime thus the roots of each polynomial have different
Puiseux expansions.

We can now compute sign related operations over our data structure, and leave to the generic manipu-
lation program the other arithmetic operations. We are left with the problem of finding an approximation
verifying the conditions (I).

3 Producing infinitesimal real algebraic variables

Let P be a polynomial of K.[X], we consider the problem of finding a an encoding for each root of P.

3.1 Presentation

For a polynomial P of K.[X] we call its non-vanishing part of P the polynomial of IK.[X] obtained by
selecting in P those terms with a non negative order coefficient. The main part of P will then be obtained
by taking the limit (in K) of the coefficient in the terms in its non-vanishing part. This is a polynomial
of K[X].

We will describe our functionalities allRootsNear and allRootsOf by means of two other functions
which work only with a given state Z. These internal operations will forget the offset factor and will thus
need to be called properly. These are :

e a findFiniteRoots operation. It takes as input a square free polynomial P of K.[X]. The main
part of P should have a non null (in K) constant term and another term of order 0. It returns the
necessary information to describe the state Z of an infinitesimal real algebraic variable but without
its offset part.

¢ a findRootsNear operation. It takes as input a square free polynomial P of IK.[X] and a number z
of KK which is a root of the main polynomial P of K[X]. P should have a non constant term whose
coefficient is of order 0. In this way the main polynomial of P is non constant, it return the same
kind of information than findFiniteRoots.

This information can be viewed as a state with a 0 offset part, we will call it a non-vanishing state.
Let P be a polynomial verifying the conditions for the input of findFiniteRoots and let Py be its main
part.. If Py has no roots in K then P has no non-vanishing roots in the real closure of K. (since an
element of the real closure has a Puiseux expansion). Otherwise let x be a root of Py and let m be its
multiplicity. We can write :

i=m

P€X+$ Zzeql az+fz)Xi+XmQ(€7X)
=0

with Q(e,0) = 0 (in K.). The a; and ¢; are the main coefficient and order of the terms of P(e, X +).
Since P is non-vanishing we have ¢; > 0. Since m is the multiplicity of x in P_qy we know that g, =0
and am # 0. Since P(—oy has non null constant term we know that go > 0 and ao # 0. We write
go/m = % where n and d are relatively prime positive integers.

Again following [11] we will make a change of variables as in 2.2 stating ¢ = ¢ and X = "X. We

now have :
P, "X +z)=€™ (Z (@=a0) (g, 4 Fi(eN X'+ X™Q(e%, € X))

It is now clear that if m is 1 we have finished since our conditions for unique encoding of the state
are met. Otherwise, P(e?,e"X +) is square free and its main part meets the requirements for the
findFiniteRoots operation. We can view that after a finite number of steps the multiplicity m reaches 1.
Otherwise there would exist a sequence g ... T, ... of K and a sequence qq . . .qy, ... of rational numbers
such that, if we let s be the serie Zn Tne™™ is a root of P. This is impossible since at each step the
findFiniteRoots multiplies the contraction factor cz, of the state Z, by a factor bigger than one. We
thus conclude that s is not a Puiseux serie (denominators are not stationary) which is impossible since
these form a real closed field. Uniqueness of the result is ensured by the fact that if two Puiseux series
differ their regular part differ. Finally we find all the possible finite roots since the singular part of a
Puiseux serie with coeffients in IK is made of only positive order terms with coefficient in K.

We will remark that our presentation slightly differs from [11] in some important points :

e we return a result that is lazier since we don’t necessarily require to compute the whole regular
part of the serie.

e Our presentation clearly shows the dependence in terms of the multiplicity of a given root of the
main part of a polynomial.

3.2 Methods used

We can now describe our operations. The purpose of the findRootsNear operation is to detect the case
m = 1 and to recall findFiniteRoots. To compute findFiniteRoots(P, x) we do :

e compute the multiplicity m of x in the main part of P by changing variables X — X + z and taking
the least degree non null term that has order 0. We are sure that m exists since P is assumed to
have one order zero non null coefficient in its terms. We now have a polynomial Q(e, X)

e if m is 1 we are done ; return a state (see 2.2) Z such that :

—cz=1
—m1=0
— Az ==z
- Pr=Q

e otherwise compute n and d as in 3.1 and compute Q(e, X) = Q(e?,e" X +)
e let [be the list of roots of Py ; and I, be the empty list
e foreach z in [, let I, be the list of states returned by findRootsNear(P,x)
e for each state Z of I, we produce a new state Z' such that

— ¢ =deg,

- Mg =mz,

- Ap = n;HA’Il + A, where A7 is as above

— Pp =Pz

and append Z' to L.

e return [,.
And we simply compute findFiniteRoots(P) by :
e let Py be the main part of P
e append the results of findFiniteRoots(P, r)

We can now describe our allRootsOf and allRootsNear functionalities. These two operations begin
by taking the square free part (in K[X]) of their polynomial argument.

To compute allRootsOf(P) we first make P monic and then compute the minimum of the orders of
5= = n/d. Here n is an integer relatively prime to p which is a positive integer and where N is the
degree of P. The numbers a;(¢) (€ K,) are the non null coefficients of degree ¢ in the reductum of P.
We then call findRootsNear(Q,0) where @ is %. We simply have to adapt the state Z returned
as above.

To compute allRootsNear(P,) we use the same method described in the findRootsNear function,
thus recalling findFiniteRoots when the multiplicty is bigger than one.

3.3 Implementation

We have put these functionalities together in an Axiom domain contructor
PuiseuxRealRootCoding(K, K, IKc[X]) where K is any implementation of a real closed field, K. is a single
infinitesimal algebraic extension of KK and K.[X] is any instance of a univariate polynomial constructor.
We also implemented a functionality mainPart(P,x) that computes both the order and the main
coefficient of the expression P(x). Here P is a polynomial of IK.[X] and is an infinitesimal real algebraic
variable. The technique we used is analogous than that described for sign computations (2.3.2).
As of other implementations, the techniques described in [4] or [5] compute (in K) roots of smaller
degree polynomials by grouping together all the Puiseux developments that have the same arithmetic

part by grouping them together. In ([3]) the situation is adapted to the real case that is expressing both
nz and X in terms of real algebraic numbers on the ground field. These have the drawback of requiring
dynamic evaluation thus hiding properties to the users of the algorithms. On the contrary we acheive
ordered field computations. We offer the same kind of functionalities by having sparsers series (we do not
compute the full regular part) and we rely on the tower mechanism to efficiently manage the algebraics.
Furthermore [4] or [5] have not been implemented in a recent computer algebra we could not do any
comparison. This might be feasible using dynamic evaluation support for axiomxl. The techniques of [3]
have never been implemented.

4 Real closures with infinitesimals

4.1 Adding one infinitesimal

Now that we can perform our basic manipulations we have to give an implementation of the real closure
using these operations. To describe it we use a category
SinglelnfinitesimalRealClosedField(K)

which inherits from the two categories RealClosedField and

SingleAlgebraicInfinitesimal Extension(K)
and that adds an operation allRootsNear(P,) where P is a polynomial with coefficients over the closure
itself and z is an element of K. It returns a list of algebraic numbers and can be usefull for applications
such as curve analysis.

We have an Axiom domain constructor

SingleInfinitesimalRealClosure(K, K.)
where K a real closed field and K. is a single rational infinitesimal extension K. of K (see 1.1). We provide
the real closure described in [10] as sample implementation for IK, and the implementations mentioned
in 1.1 as single rational infinitesimal extensions of K.
Our implementation for K. uses an infinitesimal real algebraigv vafr\iijle domain which is :
PuiseuxRootCoding(K, K, K [X])

Here K.[X] is the domain of sparse univariate polynomials with coefficients over Kc. Elements of K. are
then represented as either an element of K. either as structures as in 1.2 and most operations proceed
like in [8].

The implementation of the allRootsOf and allRootsNear operations are straightforward interfaces
with the corresponding operations in the infinitesimal real algebraic variable domain. The two functions
mainCoefficient and order are easilly implemented using the mainPart functionality :

The order of an expression is computed either in K.. Otherwise the expression is of the form Q(x)
at an infinitesimal real algebraic variable and its order is computed in the coding domain. The limit and
mainCoeflicient functions also use this functionality.

To perform the expandOrders operation we again proceed recursively, by either calling the ex-
pandOrders function in K., either calling the expand operation in the coding domain.

4.2 Using various infinitesimals

These techniques enable us so far to add one infinitesimal to a real closed field producing another real
closed field. We are now able to work in the real closure K. of K. if K. is a rational infinitesimal
extension of K which is a real closed field. This possibility enables to go further and we can sequentially
add infinitesimals one above the other. We can first add an €;, and t/}_l\(?ll an €3 << €; meaning that e is

smaller than all the rational powers of 1. We would thus work in (K¢,)e,. More generally, we could use
use a tower structure similar than that of 1.2 and work in K, that is a real closed field containing the real
closed field K and all the necessary infinitesimals we need. We could chose a particular implementation
for K. (ZeroPlusFractions as in 1.2) and represent elements of the infinitesimal real algebraic closure Ko
of K as :

e cither trivial, that is an element of the base real closed field K.
e either a structure containing two parts :

— a value giving the expression in terms of an infinitesimal real closed variable. This is a element
of ZeroPlusFractions(K).

— tower manipulating informations similar than that of 1.2.

The tower manipulating information being dynamically managed as it is done in [8].

This possibility could however not be tested, and future work should include this feature as well
as netter mangement of algebraics than that outlined here. One important cost is the cost of the ged
operation involved in zero check and sign computations. We hope that in a very near future we will be
able to have an implementation including these enhancements which are still being debugged.

References

[1] J. Bochnak, M. Coste, M.F. Roy: Géométrie algébrique réelle
Springer-Verlag, New-York 1988.

[2] M. Coste, M. F. Roy, Thom’s Lemma, the coding of Real Algebraic Numbers and the Computation

of the Topology of Semi-Algebraic Sets
In Journal Of Symbolic Computation, 1988 vol 5, pp. 121-129.

[3] F. Cucker, L. M. Pardo, M. Raimondo, T. Recio, M. F. Roy: Computation of the local and global
analytic structure of a real algebraic curve
In proceedings of the AAECC-5 Conference Berlin 1988, pp 161-181.

[4] D. Duval: Diverses questions relatives aw calcul formel avec des nombres algébrigques
These d’Etat a 'Université de Grenoble, Grenoble 1987.

[6] D. Duval: Rational Puiseuz expansions
Compositio Mathematica 70, 1989 pp 119-154.

[6] A. Frohlich, J. C. Shepherdson: Effective Procedures In Field Theory
In Phil. Trans. Roy. Soc. London 1956, pp. 407-432.

[7] A. Hollkott: Finite Konstruktion geordneter algebraischer Erweterungen von geordneten Grundko-
rpern
Dissertation, Hamburg 1941.

[8] Z. Ligatsikas, R. Rioboo, M. F. Roy: Generic computation of the real closure of an ordered field.
In Mathematics and Computers in Simulation Volume 42, Issue 4-6 November 1996

[9] Z. Ligatsikas, M. F. Roy: Séries de puiseuz sur un corps réel clos.
C.R Acad. Sci. Paris 1990 Tome 311 Série I pp. 625-628.

[10] R. Rioboo: Real Algebraic Closure of an ordered Field: Implementation in Axiom
In proceedings of the ISSAC’92 Conference, Berkeley 1991 pp. 206-215.

[11] R. J. Walker: Algebraic curves
Dover publications, 1950.

