
High Radix BKM algorithm with Selection by Rounding

Laurent-St�ephane Didier, Fabien Rico

Laboratoire d'Informatique de Paris 6

January 21, 2002

Abstract

We present in this paper a high radix implementation of BKM algorithm. This is a shift and add

CORDIC-Like algorithm that allows fast computations of complex exponential and logarithm. The

improvement lies in fewer iterations for a given precision and in the reduction of the size of lookup

tables for high radices.

Keywords: Elementary function, CORDIC algorithm, Computer Arithmetic, High Radix

1 Introduction

Several class of algorithm for computing complex exponential and logarithm have been proposed. A

�rst class is composed by algorithms using polynomial approximation of the function to be computed

[Tan89, Smi89, Mul97, DMF00]. Generally, few iterations have to be done by this kind of algorithm,

but multiplications are required. Next, multipartite tables methods which can be implemented for low

precision require very few arithmetic operators [SM95, HT95, dDT00]. On the opposite, quadratic

convergence algorithm allow better precision, but are complex and uneasy to implement [Bre76,

BB84]. Such algorithms have the best asymptotic complexity, but become really eÆcient only for

thousands bits. Finally, shift and add algorithms, which most famous is cordic [Vol59, Wal71, DM96],

allow fairly good precision (until hundreds bits) with low cost iterations [Mul97]. Similarly to cordic

algorithm, bkm algorithm allows the evaluation of many elementary functions [BKM94, BI99]. In

order to reduce the number of iterations for a given precision, it was proposed for cordic to use high

radix implementation [ALB00a, ALB00b, Lew99].

This paper presents a high radix implementation of the bkm algorithm for computing complex

logarithm and exponential without scaling factor. We show a method for choosing the digits and

a convergence domain for bkm algorithm for high radix. A �rst method using the radix � = 10 as

been presented in [IMR00] but this method spend a lot of memory. Indeed, such an algorithm need

a number of digits of the order of magnitude of �2. As each iteration will need to store a complex

number in a table by digits, it will use an O(N��2) entry table (where N is �nal number of iterations)

while CORDIC algorithm only use O(N) entry table (see [ALB00a] and [ALB00b]).

The paper is organized as follows, we �rst present brie
y the initial version of bkm algorithm.

Next, we propose a modi�cation of the itration used in this algorithm, designed to solve the principal

problem of high-radix bkm which is the memory cost. Thereafter, we examine the two mode o�

bkm E-mode (section 3) for computing Complex exponential and L-mode (section 4) for complex

logarithm. each section present the selection digits method, the domain of convergence and an

example of argument reduction to this domain. Finally, section 5 we compare our algorithm with the

other high radix cordic implementation and conclude.

1.1 Notations

Let consider a complex number z. We note its real part zx and its imaginary zy. Thus

z = z
x
+ iz

y

We call Gauss numbers the complex numbers whose real and imaginary part are integers:

d = d
x
+ id

y
with d

x
; d

y
2 Z

1

We note dzc
p
the value of the real and imaginary parts of z rounded to the nearest number with

p fractional digits. For instance, we note dzc
0
the gauss number closest to z.

We note hzi
p
the value of the real and imaginary parts z truncated down with p fractional digits.

1.2 The bkm algorithm

The BKM algorithm presented in [BKM94] computes the following iterations:�
En+1 = En(1 + dn�

�n)

Ln+1 = Ln � ln
�
1 + dn�

�n
�

where � is an integer and the values dn are chosen so that:

dn = dxn + idyn

dxn; d
y

n 2 f�a;�a+ 1; : : : ; 0; : : : ; a� 1; ag with a =
�

2
+ 1 (1)

In this paper, the dn values are called digits and the integer � is the radix of the algorithm.

In order to compute one iteration, the values ln
�
1 + dn�

�n
�
are stored in a lookup table and are

acceded by dn. The size of this table directly depends on the number of possible digits. Thus, each

iteration only needs shift, addition and multiplication by a digit dn.

It is shown in [Mul97] that these iterations preserve the following equalities:

En

E1

=
exp(L1)

exp(Ln)
and Ln � L1 = ln (E1)� ln (En)

As a consequence, it is possible to use this algorithm trough two di�erent modes:

� E-mode: if we choose dn so that Ln converges to 0, then En will converge to E1e
L1 making

possible the computation of the complex exponential

� L-mode: similarly, if we choose dn so that En converges to 1, then Ln will converge to L1 +

ln (E1) which permits the computation of the complex logarithm.

Initially this algorithm was developed in radix 2, simplifying the choice of digits dn. However,

this algorithm gives one digit of the result at each iteration. For instance, a radix 2 algorithm gives

only one bit of the result at each step. As a consequence, a high radix implementation of the BKM

algorithm would need less iterations for the same precision.

Unfortunately, three problems appear: the complexity of the digit selection, the numerical insta-

bility of the �rst iterations and the size of tables for high radix implementations.

It has been shown in [IMR00] that for radix 10 the bkm algorithm looks for digits in a set of

one hundred elements. This means that each iteration requires a lookup table having one hundred

entries, making this implementation ineÆcient for higher radices. Therefore, we will show a method

for reducing the tables size.

2 Reducing the size of lookup tables

In order to minimize the set of digits, we propose similarly to [Lew99] to split each iteration in two

half-iterations. The �rst half-iteration is designed to reduce the imaginary part. This iteration is

close to the cordic iteration, see [Mul97]:�
En = En(1 + idyn�

�n)

Ln = Ln � ln
�
1 + idyn�

�n
�

(2)

The second half-iteration has to reduce the real part. This computation is close to the bkm itera-

tion [Mul97]): �
En+1 = En(1 + dxn�

�n)

Ln+1 = Ln � ln
�
1 + dxn�

�n
�

(3)

Consequently, we can deduce from these iterations that for the E-mode (respectively the L-mode):

� the digits dyn are chosen in order to only minimize
��Lyn�� (respectively E

y

n),

2

� the digits dxn are chosen in order to only minimize jLxnj (respectively E
x

n).

In this way, the number of iteration is doubled compared to the initial algorithm, but the number of

digits is reduced by one order of magnitude because the digits are chosen from a smaller set:

f�a;�a+ 1; � � � ; 0; � � � ; a� 1; ag [f�ia;�i(a� 1); � � � ; 0; � � � ; i(a� 1); iag with a =
�

2
+ 1

In other words, there are only O(�) possible digits instead of O(�2).

Now, we will show that on a small convergence domain, it is possible to choose dxn or dyn only by

rounding the value En (see 4.1) or Ln (see 3.1) which is more eÆcient than choosing a table of value

as in [Lew99]. But in order to have a functional algorithm, it is necessary to extend the convergence

domain by examining closely the two �rst iterations of our algorithm. To this end, we will study

separately the E-mode and L-mode.

3 The computation of complex exponential : E-mode

In this mode, with regard to L1, we construct a sequence of d
x

n, d
y

n such that the sequence Ln converges

to 0. This section outlines a method for choosing the digits dxn and dyn. This choice is critical for

the convergence and the performance of our algorithm. Indeed, a complex choice will lead to a rapid

convergence on a wide domain but will be costly not only in term of computing time but also in term

of hardware resources.

Because the set of possible digits is �nite, we cannot always take the best value for dxn and dyn and

we have to select an approximation which is relatively close to the best value. Unfortunately, this

will not assure the convergence of the algorithm for the whole complex plane, but only for a small

domain.

First, we present a method for choosing the digits dxn and dyn. Next, we will prove that, for any

value taken from a de�ned domain, an iteration will keep the result in this domain. Thereafter, we

will show an argument reduction from any part of the complex plane to this domain, allowing our

algorithm to converge for any input.

3.1 Digit selection

Separating the real and imaginary part in equation 2 and 3 gives the two following iterations:

L
x

n = L
x

n �
1

2
ln
�
1 + d

y

n

2
�
�2n
�

L
y

n = L
y

n � arctan
�
d
y

n�
�n
� and L

x

n+1 = L
x

n � ln
�
1 + d

x

n�
�n
�

L
y

n+1 = L
y

n

(4)

The exact value for dxn and dyn that minimise Lxn+1 and L
y

n+1 are :

d
x

n =
�
exp

�
L
x

n

�
� 1
�
�
n

and d
y

n = tan (L
y

n)�
n

(5)

With these digits, Lxn+1 = L
y

n+1 = 0.But these are not integer values except if L
x

n = 0 or Lyn = 0.

So we have to choose an integer close to these values. As Lxn and Lyn tend to 0, we can use an

approximation of the exact functions in (5). Indeed :�
exp

�
L
x

n

�
� 1
�
�
n
' L

x

n�
n

and tan (L
y

n)�
n
' L

y

n�
n (6)

Let note

Tn = Ln�
n and Tn = Ln�

n (7)

Thus, dxn and dyn respectively should be close to T
x

n and T y

n . In order to obtain the integers dxn and dyn,

we should round T
x

n and T y

n to the nearest integer. This exact rounding implies exact comparisons

which may be ineÆcient, if for instance, T
x

n and T y

n are coded in a redundant number representation.

Therefore, we will round the truncation of T
x

n and T y

n keeping only 2 fractional digits:

d
y

n =
�
hT

y

n i2

�
0

d
x

n =
�

T
x

n

�
2

�
0

(8)

Such a choice is the result of several approximation and we must study the convergence of the

algorithm. For this purpose, we study the evolution of the sequence Tn. Clearly, if it's possible to

prove that Tn is bounded, then, Ln will tend to 0 and each iteration will reduce the error by a factor

of �.

3

3.2 Correctness of the approximation

Suppose that the sequence jT x

n j is bounded by a value A. Then jLxnj, jL
y

nj � A��n. This means that

each iteration should reduce the value of the sequences Lxn and Lyn by a factor �. We will show that

if we use our digit selection method, this property is true except for the two �rst iterations.

First, we have to bound the value of Tn+1 by a value depending of Tn. Let a = dT x

n e, b = dT y

ne.

We have :

jT
x

n j � a

jT
y

n j � b

With the choice of dxn and dyn we obtain:��
Txn�2 � T x

n

�� � ��2��hT y

n i2 � T y

n

�� � ��2

and ��dxn � �Txn�0�� �
1

2��dyn � dT y

nc0

�� �
1

2
then ��dxn � T

x

n

�� �
1

2
+ �

�2

jd
y

n � T
y

n j �
1

2
+ �

�2

It is well known that the function ln and arctan have the following properties:

� if x 2 [0; 1
2
] then 8>><

>>:
x�

x2

2
� ln (1 + x) � x

x�
x3

3
� arctan(x) � x;

� if x 2 [� 1

2
; 0] then 8<

:
x� x

2
� ln (1 + x) � x

x � arctan(x) � x�
x3

3
:

By de�nition of dyn and b, jdynj � b. The �rst half-iteration can be written"
T
x

n = T
x

n �
1

2
ln
�
1 + d

y

n

2
�
�2n
�
�
n

T
y

n = T
y

n � d
y

n + d
y

n � arctan
�
d
y

n�
�n
�
�
n
;

which gives the following inequalities:

�a�
b2

2
�
�n

� T
x

n � a

�
1

2
� �

�2
�
b3

3
�
�2n

� T
y

n �
1

2
+ �

�2
+
b3

3
�
�2n

By de�nition of dxn and a (which is an integer), we have : �a� b
2

2
��n � 1

2
� dxn � a. The second

half iteration is : 2
664

T x

n+1

�
= T

x

n � d
x

n + d
x

n � ln
�
1 + d

x

n�
�n
�
�
n

T
y

n+1

�
= T

y

n;

and gives the following bound:

�
�

2
� �

�1
� T

x

n+1 �
�

2
+ �

�1
+

�
a+

b2

2
�
�n

+
1

2

�2
�
�n+1

and �
�

2
� �

�1
�
b3

3
�
�2n+1

� T
y

n+1 �
�

2
+ �

�1 +
b3

3
�
�2n+1

(9)

Now, let simplify the bounds of Tn. If � � 10 and:

4

� if n = 2, a = 2 and b = � then jT x

3 j and jT
y

3 j �
�

2
+ 1,

� if n � 3, a = b = �

2
+ 1 then jT x

n+1j and
��T y

n+1

�� � �

2
+ 1.

By induction, this proves that the algorithm converges if n � 2 on the following domain:

PE =

�
1�

2

�2
; 1 +

2

�2

�
+ i

�
�
1

�
;
1

�

�
(10)

3.3 Argument reduction

Because of the method for constructing dxn and dyn this domain remain very small. Indeed, the best

choice for these numbers (see section 3.1) are numbers minimizing the values:��T x

n�
�n

� ln
�
1 + d

x

n�
�n
��� and

��T y

n�
�n

� arctan
�
1 + d

y

n�
�n
��� (11)

The proposed choice (eq. 8) is eÆcient only if (see 6):�
exp

�
L
x

n

�
� 1
�
�
n
' L

x

n�
n

and tan (L
y

n)�
n
' L

y

n�
n

Unfortunately, this is not true for the two �rst iterations. In other words, if n = 1 or n = 2 then T x

n+1

and T
y

n+1 may be greater than �

2
+ 1. So, these iterations have to be replaced. Several methods can

be used for the �rst iterations:

� It is possible to choose the values dxn and dyn from a lookup table indexed by the most signi�cant

bits of T
x

n and T y

n . This allows a better choice for the digits and will improve the reduction.

� It is possible to double an iteration that will also improve the reduction but will need more

computations.

� It is possible to change the radix of the algorithm, computing an iteration with radix 4� for

instance. This is equivalent to code the fractional part of dxn and dyn with 2 bits. The number

of possible digits increases, but the choice and the reduction are better.

� It is possible to enlarge the set of possible digits for the next iteration.

� It is also possible to simulate the two �rst iteration by several iterations of radix 2 bkm algorithm.

Example: Suppose that � � 10. The �rst iterations can be computed as follow:

Fist, note we will start from the following domain:

D = [ln (2) ; 2 ln (2)] + i
h
�
�

4
;
�

4

i
Reducing to this domain is well known as shown in [Mul97]. We have to improve the reduction from

D to the domain PE (see 10). This second reduction will only use two iteration of bkm, but those

iterations are performed di�erently. The two �rst iterations are computed as follow:

� For the �rst iteration, dyn and dxn are chosen from two lookup tables indexed by T y

n and respec-

tively T
y

n rounded with 1 bit for the fractional part.

� The set of digits for the second iteration is extended to f��; : : : ; �g. Furthermore, this iteration

is performed twice.

More precisely, we de�ne �x(n) and �y(n) being two lookup tables such that:

� �x(n) is the integer d minimizing the value
��� n
2�

� ln
�
1 + d��1

���� for 0 � n � d4� ln (2)e.

� �y(n) is the integer d minimizing the value
��� n
2�

� arctan
�
d��1

���� for �2� � n � 2�.

These tables verify: ���� n2� � ln
�
1 + �

x
(n)�

�1
����� �

1

2�
(12a)���� n2� � arctan

�
�
y
(n)�

�1
����� �

1

2�
(12b)

We can do the iterations given in table 1.

5

Step 1

�
d
y

1
= �y(

�
2hT y

1
i
2

�
0
)

L1 = L1 � ln
�
1 + id

y

1
��1

�
Step 1 + 1

2

(
dx
1

= �x(
l
2
D
T
x

1

E
2

k
0

)

L2 = L1 � ln
�
1 + dx

1
��1

�
Step 2

�
d
y

2
=

�
hT y

2
i
2

�
0

L2 = L2 � ln
�
1 + id

y

2
��2

�
Step 2 + 1

2

(
dx
2

=
lD
T
y

2

E
2

k
0

L = L2 � ln
�
1 + dx

2
��2

�

Table 1: The 4 half-iteration used by the E-mode

Considering L1 2 D, we have:

0 � L
x

1 � ln (2)

�
�

4
� L

y

1 �
�

4

By de�nition of T
y

1 (see 7), jT
y

1 j < � then
���2hT y

1 i2

�
0

�� � 2� and the value d
y

1 = �y(
�
2hT

y

1 i2

�
0
) exists

in the table.

We do the following iteration:

L
x

1 = L
x

1 �
1

2
ln
�
1 + (d

y

1�
�1
)
2
�

(13a)

L
y

1 = L
y

1 � arctan
�
d
y

1�
�1
�

(13b)

By de�nition of dy1 , we have jd
y

1 j � � and with equation (13a), it easily gives a bound for L
x

1 :

ln (2)�
1

2
ln (2) � L

x

1 � 2 ln (2)

0 � L
x

1 � 2 ln (2) (14)

Let us note :

C = L
y

1 �

�
2hT y

1 i2

�
0

2�

and D =

�
2hT y

1 i2

�
0

2�
� arctan

�
d
y

1�
�1
�

The equation (13b) become

L
y

1 = C +D (15)

By de�nition of C and T
y

1 (see 7):

jCj �

����L
y

1� � hL
y

1�i2
�

����+
�����2hL

y

1�i2 �
�
2hLy1�i2

�
0

2�

�����
�

1

�3
+

1

4�

jCj �
1

2�
(16)

Furthermore, by de�nition of D and (12b):

jDj �
1

2�
(17)

6

Then, from (15), (16) and (17) we have :��Ly1 �� � jCj+ jDj��Ly1 �� �
1

�

The second step is similar. The equation (14) proves that the value dx1 exists in the table. Let

note:

C
0

= L
x

1 �
�
2

T
x

1

�
2

�
0

and D
0 =

�
2

T
x

1

�
2

�
0

2�
� ln

�
1 + d

x

1�
�1
�

By de�nition of T
x

1 (see 7), jC0

j �
1

2�
. Moreover, by (12a), jD0

j �
1

2�
. So :

jL
x

2 j �
��C0

��+ ��D0

��
jL

x

2 j �
1

�

and L
y

2 = L
x

1

jL
y

2 j �
1

�
:

(18)

The two next half-iterations (step 2 and 2 + 1

2
) are normal iteration using an extended set of

digits. In fact,

jT
x

2 j; jT
y

2 j � �:

using the equations (9) on page 4, if � � 10 :

jL
x
j �

2

�2

and jLyj �
2

�2
:

So

L 2 PE :

and exp(L1) = (1 + id
y

1)(1 + d
x

1)(1 + id
y

2)(1 + d
x

2) exp(L)

these iterations reduce the argument from D to the convergence domain of the algorithm.

4 The computation of complex logarithm : L-mode

The second mode of bkm can be done through a similar way. In this mode, regarding the value Ex

1

and E
y

1 , we have to construct dxn and dyn such that the sequence Ex

n converge to 1 and Ey

n converges

to 0.

We use the following iteration:

En = En

�
1 + id

y

n�
�n
�

En+1 = En

�
1 + d

x

n�
�n
�

(19)

this means that, we �rst multiply En by a number of the form
�
1 + idyn�

�n
�
in order to minimize

the imaginary part of the product and next, we multiply En in order to minimize the real part of the

product.

4.1 Digits selection

Our digits should be close to the exact values:

d
x

n =

�
1

E
x

n

� 1

�
�
n

and d
y

n = �
Ey

n

Ex
n

�
n

(20)

7

Our goal is that Ex

n has to converge to 1 and Ey

n has to converge to 0. Near those values, we can do

the following approximations:�
1

E
x

n

� 1

�
�
n
' �

�
E
x

n � 1
�
�
n

and
Ey

n

Ex
n

�
n
' E

y

n�
n

(21)

In order to use these approximations, we do the following de�nitions:

Sn = (En � 1)�
n

Sn = (En � 1)�
n

Then, a good choice for dxn and dyn, can be :

d
y

n = �dS
y

nc0 and d
x

n = �
�
S
x

n

�
0

Like the E-mode in section 3.1, it is better to use :

d
y

n = �
�
hS

y

ni2

�
0

d
x

n = �
�

S
x

n

�
2

�
0

(22)

As in section 3, we will �rst prove that Sn is bounded using this digit selection if we start from a

small domain and then propose a method to do the argument reduction.

4.2 Correctness of the approximation

Let note

a = djS
x

nje and b = djS
y

nje (23)

We will studies the behaviour of one step of our algorithm. We have :

jd
x

n + S
x

nj �
1

2
+ �

�2

jd
y

n + S
y

nj �
1

2
+ �

�2

By de�nition, jdynj � b and dynS
y

n � 0, so :

a � S
x

n � a+ b
2
�
�n

�
1

2
� �

�2
� ab�

�n
� S

y

n �
1

2
+ �

�2 + ab�
�n (24)

By de�nition, a is an integer and �a� b2��n � 1

2
� dxn � a, then :

jS
x

n+1j �
�

2
+ �

�1
+ (a+ b

2
�
�n

+
1

2
)
2
�
�n+1

(25a)��Sy
n+1

�� � S
y

n(1 + a�
�n

)

�
�

2
+ �

�1 + ab�
�n+1 +

a

2
�
�n+1 + a�

�n�1 + a
2
b�

�2n+1 (25b)

If � � 6 and :

� if n = 2, a = 2 and b = 2 then jSx3 j; jS
y

3 j �
�

2
+ 1,

� if n � 3, a = b = �

2
+ 1, then jSxn+1j;

��Sy
n+1

�� � �

2
+ 1.

This means that if n � 2 the algorithm converges on the following domain:

PL =
�
1� 2��2; 1 + 2��2

�
+ i
�
�2��2; 2��2

�

8

4.3 Argument reduction

This domain is small because of the choice of dxn and dyn. This is based on the approximation (21):�
1

E
x

n

� 1

�
�
n
' �

�
E
x

n � 1
�
�
n

and
Ey

n

Ex
n

�
n
' E

y

n�
n

This approximation is only valid if Ex

n is close to 1, but it is not true for the �rst iteration. As

in [ALB00b], we have to reduce the argument to a domain where this approximation is valid using an

\improved" iteration (like in section3.3). For this, we will use a lookup table for choosing the digits

dx1 and an extended base 4�. We use a lookup table T indexed by Sx1 rounded 2 bits after the point.

More precisely, T is de�ned as follow:

8n 2 f�2;�1; 0; � � � ; 4�g

If n � 0 T (n) =

 &
4�

1 + n

4�

%
0

� 4�

!
�

1

4
;

else T (n) = 0:

This table veri�es:

if x 2 [� 1

2�
; 1]

then
��(1 + x)(1 + T (

�
h4x�i

2

�
0
))
�� �

1

2�
and

��(1 + T (
�
h4x�i

2

�
0
))
�� � 1 (26)

We start from a value

z = 1 + x+ iy

with x 2 [0; 1]

and y 2 [�
1

2
;
1

2
]:

Reduction to this domain is fairly straightforward. We do the second argument reduction with

iterations presented in table 2:

Step 1

2

8<
:

dx
0

= T (dh4x�i
2
c
0
)

Ex

1
= (1 + x) � (1 + dx

0
��1)

E
y

1
= y � (1 + dx

0
��1)

Step 1

�
d
y

1
=

�
hSy

1
i
2

�
0

E1 = E1 � (1 + id
y

1
��1)

Step 1 + 1

2

(
dx
1

= T (
lD

4(E
y

1
� 1)�

E
2

k
0

)

E2 = E1 � (1 + dx
1
��1)

Step 2

�
d
y

2
=

�
hSy

2
i
2

�
0

E2 = E2 � (1 + id
y

2
��2)

Step 2 + 1

2

(
dx
2

=
lD

S
y

2

E
2

k
0

E = E2 � (1 + dx
2
��2)

Table 2: The �ve step of L-mode argument reduction

Consequently:

� If
0 � x � 1

�
1

2
� y �

1

2
:

9

� After step 1

2
, by (26)

jS
x

1 j �
1

2

jS
y

1 j �
�

2
:

� After step 1 by (24),

�
1

2
� S

x

1 �
�

4
+ 1

�1 � S
y

1 � 1:

� By (26), after step 1 + 1

2
:

jS
x

2 j �
�

2

jS
y

2 j � �:

� The to next half-iterations are regular bkm iterations using an extended set of digits. With

equations (25a) and (25b), it is easy to show that:

E 2 PL:

We reduced the argument to the convergence domain of our algorithm and

ln(z) = � ln(1 + d
x

0�
�1
)� ln(1 + id

y

1�
�1
)� ln(1 + d

x

1�
�1
)

� ln(1 + id
y

2�
�2
)� ln(1 + d

x

2�
�2
) + ln(E):

Then it computes the complex logarithm on the domain

[1; 2] + i[�
1

2
;
1

2
]:

5 Conclusion

We proposed in this paper an extension of the bkm algorithm to high radix which reduces the number

of iterations. Compared to the Antello et all. cordic implementation, we use smaller set of digits

and smaller lookup tables. By de�nition, bkm iterations are more complex than cordic's ones. But

bkm provides the complex exponential and logarithm while cordic computes real valued functions.

Furthermore cordicusing high radix have the problem of the scaling factor which has to be computed

and compensated. The extra operations are very close to our bkm iteration but are done in such a

way that cordic only provide real value functions.

Compared to the Lewis's implementation, our algorithm uses similar split iterations, but the used

numbers are larger and the digit choice involves larger lookup tables. Thus, the cost of each iteration

is larger as well as in term of hardware resources and computing time.

This algorithm can be good substitute of the multipartite table methods for improved precision

computation. Indeed, very large lookup tables are used for computing elementary functions compared

to the wanted precision. bkm algorithm o�ers a framework with simple operations and relatively small

tables to achieve the same work.

References

[ALB00a] E. Antelo, T. Lang, and J.D. Bruguera. Very-high cordic rotation based on selection

by rounding. Journal of VLSI Signal Processing Systems for Signal, Image, and Video

Technology, 25(2):141{154, June 2000.

[ALB00b] E. Antelo, T. Lang, and J.D. Bruguera. Very-high radix circular cordic vectoring and

uni�ed rotation/vectoring. IEEE Transactions on Computers, 49(7):727{738, July 2000.

[BB84] J.M. Borwein and P.B. Borwein. The arithmetic-geometric mean and fast computation of

elementary functions. SIAM Review, 26(3):351{366, July 1984.

10

[BI99] J.C. Bajard and L. Imbert. Evaluation of complex elementary functions : a new version of

BKM. In F.T. Luk, editor, Proceedings of SPIE, Advanced Signal Processing Algorithms,

Architectures and Implementations IX, volume 3807, pages 2 { 9, july 1999. Denver { USA.

[BKM94] J.C. Bajard, S. Kla, and J.M. Muller. BKM : A new complex algorithm for complex

elementary functions. IEEE Transactions on Computers, 43(8):955{963, august 1994.

[Bre76] R.P. Brent. Fast multiple-precision evaluation of elementary functions. Journal of the

ACM, 23(2):242{251, April 1976.

[dDT00] Florent de Dinechin and Arnaud Tisserand. Some improvement on multipartie table meth-

ods. Technical report, LIP, 2000.

[DM96] H. Dawid and H. Meyr. The di�erential cordic algorithm : Constant scale factor redun-

dant implementation without correcting iterations. IEEE Transactions on Computers,

45(3):307{318, March 1996.

[DMF00] M. Daumas and C. Moreau-Finot. Exponential : implementation trade-o�s for hundred

bit precision. In J.C. Bajard, C. Frougny, P. Kornerup, and J.M. Muller, editors, RNC4,

Fourth "real Numbers and Computers", pages 61{74, April 2000.

[HT95] Hannes Hassler and Naofumi Takagi. Function evaluation by table look-up and addition.

In S. Knowles and W.H. McAllister, editors, Proccedings of the 12th IEEE Symposium on

Computer Arithmetic, pages 10{16. IEEE Computer Society Press, 1995.

[IMR00] L. Imbert, J.-M. Muller, and F. Rico. Radix-10 bkm algorithm for computing transcen-

dentals on pocket computers. Journal of VLSI SIGNAL PROCESSING SYSTEMS for

Signal, Image and Video Thechnology, 25(2):179{186, June 2000.

[Lew99] David Lewis. High-radix redundant cordic algorithms for complexe logarithmic number

system arithmetic. In Proceedings of the 14th symposium on Computer Arithmetic, pages

194{203, 1999.

[Mul97] Jean-Michel Muller. Elementary Functions, Algorithms and Implementation. Birkhauser,

Boston, 1997.

[SM95] Debjit Das Sarma and David W. Matula. Faithful bipartite rom reciprocal tables. In

S. Knowles and W.H. McAllister, editors, Proccedings of the 12th IEEE Symposium on

Computer Arithmetic, pages 10{16. IEEE Computer Society Press, 1995.

[Smi89] D.M. Smith. EÆcient multiple-precision evaluation of elementary functions. Mathematics

of Computation, 52(185):131{134, January 1989.

[Tan89] P. T. P. Tang. Table-driven implementation of the exponential function in ieee
oating-

point arithmetic. ACM Transactions on Mathematical Software, 15(2):144{157, June 1989.

[Vol59] J. Volder. The CORDIC computing technique. IEEE Transactions on Computers, 1959.

Reprinted in E. E. Swartzlander, Computer Arithmetic, Vol. 1, IEEE Computer Society

Press Tutorial, Los Alamitos, CA, 1990.

[Wal71] J.S. Walther. A uni�ed algorithm for elementary functions. Joint Computer Conference

Proceedings, 1971. Reprinted in E. E. Swartzlander, Computer Arithmetic, Vol. 1, IEEE

Computer Society Press Tutorial, Los Alamitos, CA, 1990.

11

