Scheduling a sequence of tasks with general completion costs

Francis Sourd
CNRS-LIP6
4, place Jussieu 75252 Paris Cedex 05, France
Francis.Sourd@lip6.fr

Abstract

Scheduling a sequence of tasks — in the acceptation of finding the execution times
— is not a trivial problem when the optimization criterion is irregular as for instance in
earliness-tardiness problems. This paper presents an efficient Dynamic Programming
algorithm to solve the problem with general cost functions depending on the end time
of the tasks, idle time costs and variable durations also depending in the execution
time of the tasks. The algorithm is also valid when the precedence graph is a tree and
it can be adapted to determine the possible execution windows for each task not to
exceed a maximum fixed cost.

Subject : Production/Scheduling; Sequencing; Deterministic; Single machine; Irregular criterion.
Mathematics; Piecewise linear; dynamic programming with cost functions.

1 Introduction

Just-in-Time scheduling has interested both practitioners and researchers for over a decade.
A very common idea is to recognize that a job that completes either tardily or early in a
schedule incurs extra costs. Therefore, a usual model is to introduce earliness and tardiness
penalties per time unit for each task and the objective is to minimize the sum of all the
earliness and tardiness costs.

However, such a model may be insufficient. Very often, the earliness and tardiness
costs are not linear on the whole time horizon. For example, practitioners sometimes want
to model several good time periods during which a task would preferably be processed, but
with bad time periods in between the good periods. Moreover, they also have to deal with
idle periods: in schedules minimizing the earliness-tardiness costs, periods of inactivity
are generally inserted but in practice, these periods when no work is done have an extra
cost that cannot be ignored in the model and must be penalized.

In this paper, the single-machine problem with general completion costs and idle period
penalties is studied. More precisely, we will consider the key problem where the tasks are
already sequenced. This problem is very important because most scheduling algorithms
first rank the tasks by the mean of either a (meta)heuristic or an enumeration scheme and
next determine the optimal — if possible — timing for the sequenced tasks. For example,
both the branch-and-bound algorithm by Hoogeveen and van de Velde [6] and the tabu

http://www-poleia.lip6.fr/~sourd
http://www.cnrs.org
http://www.lip6.fr/index-eng.html
mailto:Francis.Sourd@lip6.fr?Subject="Scheduling a sequence of tasks with general completion costs"

search by Wan and Yen [II] are based upon this approach to solve the single machine
problem with earliness/tardiness penalties.

When the completion costs are nondecreasing — criteria such as the flow time and the
total tardiness — and when the cost of idle period is nondecreasing with the length of
the period, the problem is obvious: each task is scheduled as early as possible when its
predecessor in the sequence is completed.

The pure earliness-tardiness case (without idle time penalties) can be formulated as a
linear program [4] but this problem can be more efficiently solved in O(nlogn) time by a
direct algorithm based on the blocks of adjacent tasks [5, 3, [10]. Chrétienne and Sourd [2]
presented a generalization of this algorithm when the cost functions are convex and when
the order between the tasks is only partial, that is given by an arbitrary acyclic precedence
graph between the tasks. When the minimization criterion is the maximum cost instead
of the sum of all the costs, the problem of finding optimum start times for a sequence of
tasks can be efficiently solved with general cost functions [§].

Our problem is also related to the project scheduling problem with irregular starting
time costs [9]. However, the approach adopted by Morhing et al. [9] requires to explicitly
define the cost of each task at any time point so that the time horizon of the schedule
appears in the complexity of the algorithm.

The algorithm presented in this paper is based on dynamic programming. It is faster
than the general algorithm of Mdhring et al. especially when cost functions are piecewise
linear. In such a situation, the algorithm is polynomial in the number of segments of the
cost functions given in input of the algorithm. Moreover, our algorithm is able to deal
with durations depending on the execution time of the task, which can be very useful to
model breaks or transportation activities.

Section 2] presents with more mathematical details the problem studied in the paper. It
also considers modelization questions. Section |3|is devoted to the solution of the problem
by dynamic programming; the computational complexity is studied when the cost function
are piecewise linear. Finally, in Section [4] we adapt the dynamic programming approach
to compute the possible start times of all the activities such that a fixed maximum total
cost is not exceeded.

2 Problem description

2.1 Problem definition

The problem is to find the execution times of n sequenced tasks denoted by 11,75, -+, T,
that is T; can start only after T;_; is completed. In a feasible schedule, S; and C; re-
spectively denote the start time and the end time of T;. The relationship between S; and
C; is assumed to be known in advance, C; — S; being the duration of 7;. More precisely,
it is assumed that S; is a continuous nondecreasing function of C;, which is denoted by
S; = S;(C;). In other words, the later a task starts, the later it completes and there is
only one possible start time for a given end time. Note that the function is not required
to be strictly increasing, which is of great importance to deal with breaks. However, for
simplicity of the proof, it is required to be continuous but usual non-continuous functions
can be seen as the limit of a sequence of continuous functions. We will give an example

in §E3

For each task Tj, a cost function f; depending on the completion time C; is given. In
order to avoid situation where a task would have to be scheduled at +oo, f; is required to
be nonincreasing on some interval (—oo, a;] and nondecreasing on some interval [b;, 00).

If T;+1 does not start just at the completion time of T;, there is an idle period of length
Si+1 — C; between the two tasks. The cost of the idle period is measured by the value
w;(Si+1 — C;), where w; is a function defined on R*. w; need not be nondecreasing on
R™ but as for functions f;, it is required to be nondecreasing on some interval [¢;, +00) to
avoid to have some tasks scheduled at +co. So the total cost is

D fC)+ Y wi(Si1 (Cinr) = Ci) (1)

1<i<n 1<i<n

and the aim of the problem is to minimize this cost subject to the precedence constraint
C; < Siy1.
For example, in the pure earliness-tardiness case, the cost functions are defined as

fi(Ci) = max (a; (di — Ci) , B; (Ci — ;)

where o; and (; are respectively the earliness and tardiness penalties per unit time.

2.2 Discontinuities in cost functions

In §[2.7] we already gave some conditions so that no task will be scheduled at +oo. How-
ever, for any closed interval I in which a task 7T; must complete, we want to be sure there
exists an end time S; such that f;(S;) = minges fi(¢). A sufficient condition to ensure
this property is to assume that the cost functions are continuous. But as we can see
in §[2.3] discontinuities in cost functions are interesting — for example to model breaks.
So, the following definition introduces a weaker condition on functions to ensure that the
minimum is reached at one point.

Definition 1. A function f is continuous from the minimum if, for each point of its
definition domain, it is continuous from the left or from the right. Moreover, f must have
a finite number of non-continuous points on any bounded interval and, for each t at which
f is not continuous, f must satisfy :

e if f is mot continuous from the left, there is 6 > 0 such that for any t' such that
t—6 <t <tthen f(t') > f(t).

e if f is not continuous from the right, there is & > 0 such that for any t' such that
t<t <t+9 then f(t') > f(t).

For example, the ceiling function that returns [z] is continuous from the minimum
whereas the flooring functions (|x]) is not. The main interest of using such functions is
shown in the following lemma.

Lemma 1. Let f be a function that is continuous from the minimum. For any closed and
bounded interval I, there exists some t* € I such that f(t*) = minser f().

: | i -
pk bmin bmax bmax+pk C

Figure 1: Start function Si(C%) in presence of a break (bumin, bmax) and its transformation
into a continuous function

Proof. Let t1,---,t; be the noncontinuous points of f in the interval I. Since f is con-
tinuous from the minimum, for each ¢;, there is an open interval I; such that ¢; is an
end point of I; and for any ¢ € I, f(t') > f(t;). Let I = I — ", ;. We have

that minses f(t) = min,; f(¢). Moreover, I is a finite union of disjoint closed and
bounded intervals and f is continuous on each interval. So there is some t* so that
fir) = min, f@). O

If f and g are both continuous from the minimum, the function f+ g is also continuous
from the minimum. If A is continuous and is either nondecreasing or nonincreasing, foh is
continuous from the minimum. But, with g that is simply continuous from the minimum,
f o g may not be continuous from the minimum.

2.3 Time windows and breaks

Time window and break constraints often appear in practical models. They can be inte-
grated in our model my setting the costs to oo (i.e. any upper bound on the solution) on
some time intervals when the execution of the task is forbidden. For example, if task T}, is
constrained to be entirely executed in the time window [Smin, €max], its minimum end time
€min 1S Min (S 5 1 ({smin})) so we set the cost function fj to oo on intervals (—o0, Spyin) and
(Smax, +00). If fx is continuous from the minimum, the modified function is still contin-
uous from the minimum. In the same way, the task can be constrained to have several
possible time windows (while being again constrained to be entirely executed in only one
time windows).

A break is a time interval (bmin, bmax) during which the execution of a task can be
suspended at the break start bni, and restarted at the break end by.x. For a task Tj

whose processing time is p, the start function Sy is (see Figure [1) :

C — pg if C' < byin
o bmin — Pk if bmin < C< bmax
Sk(C) N C — Pk — (bmax - bmin) if bmax S C < bmax +pk
C_pk ifbmax+pkgc

Moreover, since T}, cannot complete during the break, its cost function f; must be set to
oo on the interval (bmin,bmax). However, we note that the above-defined function Sy is
noncontinuous at C' = by ax+pi while our mathematical model requires it to be continuous.
But we can remark that if T} ends at byax + pr — € (for some small € > 0), the fraction
€/py of T}, is processed just before the break, which is not desirable in practise. We can
prevent such a situation by fixing the minimum fraction oy, of T}, that must be processed
before the task may be interrupted by the break. T} can be prevented from completing
in (bmax + (1 — ag)Pr, bmax + px] by setting fi infinite on this interval and Sj can be
transformed into a continuous function by modifying it only on this interval, as shown by

Figure

2.4 Constant idle time cost

When the idle time costs are linear and task-independent, that is there is some « such
that for any ¢ € {1,---,n}, w;(t) = at, and when the durations of the tasks are time-
independent, that is for any ¢ there is a constant p; such that S; = C; — p;, the problem
can be reduced to a problem without idle time cost. Indeed, the total cost given by
Equation is now

Y f(C)+a Y Cin—pin — G

1<i<n 1<i<n

that is

Z fi(Ci) + aCy, — aCh — « Z Di

1<i<n 1<i<n

Since the last term is a constant, the minimization problem is equivalent to the problem
with null idle time costs in which the costs functions are:

f1(C) —aC fori=1
fi(C) =1 fi(C) for 1 <i<n
fn(C)+aC fori=n

We are going to see in next section that when there is no idle time the recurrence equation
of the Dynamic Program is much simpler.
3 Solving the problem by dynamic programming

We are going to show that this problem can be solved by dynamic programming. For any
ke{l,---,n} and any t € R, P,(t) denotes the subproblem in which:

- the sequence of tasks is the subsequence 17, - -, T} and

- we add the additional constraint that T} completes at t, that is C = t.

Yk (t) is the minimum cost of the solutions of Pj(t). Clearly, the optimal cost of the whole
problem is mingeg ¥, ().

3.1 Recursive relationship

We obviously have that ¥1(¢) = f1(¢). For any k > 1, ¥;41(¢) can be expressed in function
of ¥i. Indeed, if Ty is assumed to complete at time ¢ then 7} must complete at some
time ¢’ that is less than or equal to the start time of Ty that is Sgi1(¢). The minimum
cost of the schedule such that Cy, =t/ and Cyyq1 =t is Bg (') + wg, (Sk+1(t) — ') + fre1(L).
Yk+1(t) is then given by minimizing upon all the possible values for ¢':

Spyr(t) = min (Zg(t) +wp, (S () = 1)) + fera(t) (2)
' <Sp41(t)
Theorem 2. For any integer k € {1,---,n}, the function ¥y, is well defined and is con-

tinuous from the minimum.

Proof. We here show that for any function f that is continuous from the minimum and
nonincreasing on some interval (—oo, ay), the function g(t) = miny <, f(¢') is well defined,
is continuous from the minimum and is nonincreasing on some interval (—oo,aq) — this
last point is obvious. With this result, since the sum of two functions continuous from
the minimum is continuous from the minimum and since the composition by a continuous
nondecreasing function preserves the continuity from the minimum, the theorem is easily
proved by induction.

So, let us consider the function g(t) = miny<; f(¢'). Since f is nonincreasing on the interval
(—o0,ay), for any t < ay, g(t) = f(t). For any t > ay, [af,t] is a closed and bounded
interval of R so that there is some ¢* < ¢ such that g(t) = f(t*) = ming, <p<; f({') =
ming<; f(¢'). That shows that g(t) is well defined for any ¢ € R. Let us now define
E={t|g(t) = f(t)}. Eis a closed set. Clearly, g is continuous from the minimum at any
point of the interior of E' and at any point in R — E. What is left to prove is that g is
continuous from the minimum at any point of the boundary between F and R — E. Let x
be such a point (z is in the closed set E). If f is not continuous from the right at z, this
means that f is strictly greater than f(x) on some interval (z,z + d1) and g is constant
and for any ¢t € (x,x + 61), g(t) = f(z) = g(x). If f is continuous from the right at z, for
any ¢ in some interval (x, z + d2), ¢(t) = min,<p<; f(¢'). So in both cases, g is continuous
from the right at . As g is nonincreasing, g is continuous from the minimum at zx. O

From the assumption on the cost functions f; and w;, the minimum of ¥, is in the
interval [min; a; — max; ¢;, max; b; + max; ¢;|. So, Theorem [2[and Lemma [1| prove the
existence of some time point C,, such that ¥, (C)) = mingeg ¥, (t). This time C), is the
completion time of T},. To compute C,,_1, we must add the constraint that C,,_1 < 5, =
Sn(Cp): Ch_1 is a value minimizing ¥,_1 on (—o00,S,]. Cp_g,---,Cy are computed by
iterating this process.

Finally, we can remark that this dynamic programming approach is also valid when the
order between the tasks in not given by a complete chain but by an “intree” precedence

graph. In this problem, each task must have at most one successor (a task without
successor is a root of the intree) and several tasks can eventually be processed at the same
time, that is there is no resource constraint (Project Scheduling Problem). The recurrence
equation is very similar. Here, Pj(t) denotes the subproblem in which the tasks are all
the predecessors of T}, that are all the tasks in the subtree of root T),. We still have the
additional constraint that T} completes at ¢, that is Cy, = t. Let I be the set of the direct
predecessors of Ty. The recurrence equation is then :

k Fe(t) + Yiem, ming<s, 1) (Si(t') + wik (Se(t) — 1)) otherwise

where w;; is the idle time cost between the end of T; and the start of 7. To run the dynamic
program associated with this equation, the tasks are to be numbered in a topological order
compatible with the precedence graph.

For an outtree precedence graph — each task has at most one predecessor — we can
use the above-described algorithm by reversing the time scale.

3.2 Piecewise linear functions

The computability and complexity of this algorithm strongly depend on the cost functions
given in input. Hereafter, we will study the — somewhat general — case where all the
functions are piecewise linear. Each piecewise linear function is supposed to be given as
an ordered segment list. For each segment in the list, five values are given corresponding
to its definition interval, its slope and the coordinates of one point in the segment. We of
course assume that the definition intervals of the segments do not overlap. So the number
of segments is a good indicator of the amount of information given in input to describe
a piecewise linear function. In this paper, the number of segments of a piecewise linear
function f is denoted by || f]|.

For the sake of simpler notations, if a piecewise linear function f is not defined on R,
we are going to say that for any real value t outside the definition domain, f(t) = oo.
In other words, we transform the initial function into a piecewise linear function defined
on R with constant segments equal to co. Clearly, if f has n segments, the transformed
function has O(n) segments. Moreover, the transformed function has the property that
the rightmost point of a segment — if not infinite — has the same abscissa than the
leftmost point of the next segment. Such a point will be hereafter called a breakpoint
of the function. As Theorem [2| ensures that the computed functions are still continuous
from the minimum, we can avoid to wonder if the endpoints of the segments are open or
closed : for any discontinuity, the discontinuity point belongs to the segment such that the
function is continuous from the minimum.

We now present a series of lemmas about operations involving piecewise linear functions
and their computation. In these lemmas, f; and fo denote two arbitrary piecewise linear
functions with respectively n; = ||fi|| and ny = || f2|| segments. To avoid any possible
confusion, note that in the text of the following lemmas, f; and fs are not the cost
functions of tasks 17 and 75 defined in Section

Lemma 3. The function f(t) = fi(t)+ f2(t) is a piecewise linear function with O(ny+na)
segments. It can be computed in O(ny + ng) time. O

Lemma 4. The function f(t) = min(f1(t), f2(t)) is a piecewise linear function with O(n1+
ng) segments. It can be computed in O(ny + ngy) time.

Proof. Clearly, t is a breakpoint for f only if ¢ is a breakpoint for fi or fy or if fi(t) = fa(t)
(and fi(t) # f5(t)). f1 and fo have respectively O(ni) and O(ngy) breakpoints. So there
are O(ny + ng) breakpoints for f that are due to breakpoints for f; and fy. Between two
such breakpoints, both f; and f, are linear so either these two functions are identical (and
there is no breakpoint) or there is zero or one intersection point so that f has at most
one breakpoint on this open interval. In conclusion, f has O(n; + ng) breakpoints. It can
obviously be computed in O(n; + ng). O

Lemma 5. If fy is continuous and nondecreasing, the function f(t) = fi(f2(t)) is a
piecewise linear function with O(ni + n2) segments. It can be computed in O(ny + n2)
time.

Proof. Since f is continuous and nondecreasing, for each breakpoint ¢ of f1, the set of real
values Sy = {t’ € R| fa(t') = t} is either a single point or a closed interval depending on
the slope of f5 at t’. Let us consider the sorted list L that contains the breakpoints of fs
and for each breakpoint ¢ of f; the endpoints of S; (that are one or two points). This list
contains O(ny + ng) points. In the open interval between two consecutive points of L, the
function f is clearly linear as the composition of two linear functions. So f is piecewise
linear with O(n1 + ng) segments. The following algorithm, very similar to the algorithm
to merge sorted arrays, compute the sorted list in O(n; + ng2) time:

let t; be the first breakpoint of f;
let ta be the first breakpoint of fo
let L0
while ¢; or ¢9 exists do
if fz(tg) S tl then
add t9 to L
let to be the next breakpoint of fo
if fQ(tQ) = tl then
let t; be the next breakpoint of f;
else
let ¢ such that fa(t) =ty
add ¢ to L
let t1 be the next breakpoint of f;

So the function f can be computed in O(n; + ng) time. O

The following operation between f; and fs can be viewed as the composition between
f1 and f; !, Tt will be used in Section

Lemma 6. If f5 is continuous and nondecreasing, the function f(t) = min,_g,) f1(t') is
a piecewise linear function with O(ny + ng) segments. It can be computed in O(ny + n2)
time.

Figure 2: f(t) = min,_s<p<; f1(t')

Proof. The definition domain of f5, that is a priori R, can be divided into a partition
I'm¢ U [5%P such that fo is strictly increasing on I'™¢ and is stepwise on I5*°P. With finc
(resp. f3'P) being the function fy with the definition domain restricted to 1™ (resp.
I5*P) | we have that

f(t) = min (min fi(t'), min() fi (t')) (3)

t:f%nc (t’) t:f2stcp

The first term is equal to min(fi(énc_l(t)). From Lemma [5 it has O(n; + na) seg-

ments and can be computed in O(n; + ng) time. We can compute in O(n;) time, all the

min, _ step) f1(t') corresponding to each interval of the definition domain of f5'°P. These
—J2

values eventually modify the value of the piecewise linear function given by the first term
of at some of its irregular points. There is at most ns such modifications. O

Lemma 7. Let 0 be a non-negative real value. The function f(t) = min,_s<p<; f1(t') is
a piecewise linear function with at most ny segments. It can be computed in O(ny) time.

Proof. The construction of f is illustrated by Figure For each breakpoint ¢; (1 < i < ny)
of the function fi, let h; be the constant function defined on the interval [t;,¢; + 0) equal
to the value lim, ,- f1(6). For any real value ¢, the global minimum of the function f; on
the interval [t — 0, 72] is reached either at t or at ¢t — § or at a local minimum of f; in the
interval. Such a local minimum can only be a breakpoint of f; so that we have

f() = min (f1(2), f(t = 0), ha(t), ha(t), - -, hny -1 (1))

Let h(t) be the stepwise function defined by minj<;<y, hi(t). Since the breakpoints of f;
are given ordered in input and since the definition intervals of all h; functions have the
same length (0), h can be computed in O(n) time and has O(n;) steps. Therefore, from
Lemma (4] the piecewise linear function defined by f(t) = min (fi(¢), f1(t — 9), h(t)) can
be computed in O(n;) time and has O(n;) segments. O

Y

Figure 3: f(t) = miny<; f1(t')

When ¢ is greater than ¢,, — ¢, we clearly have that f(¢) = miny<; fi(¢') which gives
the following corollary illustrated by Figure [3]:

Corollary 8. The function f(t) = ming<; f1(t') is a piecewise linear function with at
most O(n1) segments. It can be computed in O(ny) time. O

We can even show that the function f has at most n; segments. The following lemma
is similar to Corollaty [§] but with two functions.

Lemma 9. The function f(t) = ming, y1,>¢ f1(t1) + fa(t2) is a piecewise linear function
with O(ning) segments. It can be computed in O(ning) time.

Proof. We are going to prove that f(t) = ming, ys,—¢ f1(t1) + f2(t2) is a piecewise linear
function with O(nyns) segments that can be computed in O(nyns) time. Indeed, we clearly
have that f(t) = miny>, f (t') and so f can be derived from f thanks to Corollary [§] by
reversing the abscyssa axis.

Let Iy, I5, - - -, I, be the definition intervals of each segment of the piecewise linear function
fi. On each interval I, fi is linear so there are «a; and [y such that for all ¢t € I,
fi1(t) = agt + Br. We can then write f(t) = minj<g<n, gi(t) with gi(t) = ming, ez, agts +
B+ fa(t —t1). So gr(t) = axt + B +miny, ¢y, fo(t —t1) — ag(t —t1). From Lemmas |5{and
E the last term of function g has O(nz2) segments and can be computed in O(nz) time.
So each function g has O(n2) segments and can be computed in O(ng) time, which shows
that f has O(ninz) segments and can be computed in O(niny) time. O

We can give a simple example in which the function f(¢) defined in Lemma |§| has
©(ning) segments. fi is defined on the interval [0,n1n2) and fi(t) = (n1 + 1) [t/n1].
f2 is defined on the interval [0,n1) and fo(t) = [t]. fi1 and fo are continuous from the
minimum. Since they are both nondecreasing, we have f(t) = miny, 1s,—¢ f1(t1) + fa(t2).
As ty € [0,n1), we have that t; € (t — ny,t]. Let o = [t/n1] and f = t — any that is
a real value in [0,n1). fi(ani) + fo(8) = a(n1 + 1) + [B]. If t1 > ang then fi(t1) >
(a+1)(n1+1) > filany) + f2(B8). It —ny < t; < ang, fi(t1) = a(ny + 1) and, since fo
is non decreasing, fa(t —t1) > f2(8). So the minimum is reached for t; = an; and to = 8

10

which means that f(t) = fi(|t/n1]) + f2(t — [t/n1]) and this function has nins steps of
length 1 in [0, nin2).

3.3 Complexity analysis

Now, f; is again the cost function of task T;. Using the lemmas of the previous subsection,
a simple induction on shows that the time and space complexities of the dynamic
program when all the function given in input are piecewise linear are:

O (n (t[j HWII) <Z; I1fill + ZZ; HM)) (4)

That shows that the algorithm may not be efficient when the idle time cost are not linear.

When the idle time costs are linear, the complexity is O (n (3_7 || fill + Dory [1Si]]))-
In the pure earliness-tardiness problem, each cost function f; has two segments so that the
complexity of the algorithm is O(n?). We recall this problem can be solved in O(nlogn).

When the idle time between two consecutive tasks is constrained to be in a given
interval, and the cost is linear inside the interval, we can show with Lemma [7] that the
complexity is again O (n (31 || fill + > i [1Sil])). This tractable case seems large enough
to model a great deal of practicle problems.

4 Optimal filtering algorithm

Filtering algorithms are of key importance in Constraint Programming because their role
is to remove from the domain of the variables, the values that cannot lead to a feasible
solution. Sometimes, the removal of values than cannot lead to an optimal solution can
be implemented. In constraint-based scheduling [1], a pair of variables is usually devoted
to the start and end times of each activity. In this section, we give an algorithm that
determines the possible end times for each activity so that the total cost of the schedule
is not greater than a given maximum cost. The possible start time can then be directly
determined by the functions Sj. This filtering algorithm is said to be optimal because any
possible end time rendered by the algorithm corresponds to at least one feasible schedule
with a cost not greater than the given maximum cost. In other words, an optimal filtering
algorithm keeps all the possible values but only the possible values.

4.1 Problem description

We keep the notations introduced in Section 2] and we add the notation F' that represents
the maximum possible cost. Therefore, the objective criterion given by is replaced by
the following hard constraint :

Yo filC)+ Y wiSi (Cin) = Ci) < F (5)

1<i<n 1<i<n

The problem is to compute, for each task T (1 < k < n), the set Ci(F) of all the
possible completion times ¢ such that there exists at least one feasible schedule satisfying

11

the precedence constraints given in Section |2 the cost constraint and the constraint
CL =t

4.2 Algorithm and properties

The function Xj(t) defined by relationship gives the minimal cost to schedule the
initial subsequence T4, --,T}, such that Cj, = t. Symmetrically, we define Y (¢) as the
minimal cost to schedule the terminal subsequence Ty, - - -, T}, such that T}, ends at ¢, that
is C, =t. We set ¥,,(t) = fn(t) for any t. If T}, (with k < n) ends at ¢t and T}, ends at
t" with Sk11(t') > t, the minimum cost to schedule Ty, ---, T}, is fx(t) + wrr1(Sks1(t') —
)+ D1 (). S0 S(t) = fiu(t) + ming ,, ryoe (Wi (Skaa(#) —) + Sepa ().

For each task T}, we can then define the function 37 (¢) that is equal to the minimum
cost to schedule all the tasks 711, - -, T, such that Cy = t. Clearly, we have:

Si(t) = Ze(t) + Se(t) — fr(t) (6)

So, Ck(F) = {t|Z%(t) < F} = St~ ((—o0, F]). As for %y, the function ¥y is continu-
ous from the minimum. X7 is also continuous from the minimum since Xy (t) — fi(t) is
continuous from the minimum.

Theorem 10. Ci(F') is a closed set.

Proof. 1f Ci,(F') is not empty, let us consider an infinite sequence (¢;) such that for each
i €N, t; € Cp(F) and lim;_.o t; = t. Since X7 is either continuous from the right or from
the left, we can extract from this sequence an infine sequence (#;) such that ($5(%;)) has
a limit /. Since for each i, ¥} (¢ t;) < F, we have that £ < F. Since Y% is continuous from
the minimum, ¥} (¢) < ¢. Therefore, ¥ () < F and t € C,(F). O

The following theorem is useful to speed up the computation of Ci(F) in the earliness-
tardiness case without idle time costs — or with a constant idle time cost, which is

equivalent (see §[2.4).

Theorem 11. When all the cost functions are convex and when there is no idle time
costs, Ci.(F') is an interval.

Proof. We first remark that if a function g is convex, the function f(t) = miny<; g(t')
is also a convex function because f and g are equal before the minimum of g and f is
constant after the minimum of g (see Figure . Therefore, > is convex as a sum of
convex function. So the functions ¥j — f and ¥} are also convex. The convexity of 37
proves that Ci(F') is an interval. O

The study of the computation of C(F") is very similar to what was done in the previous
section. However, we must rewrite the definition of ¥ as

Sr(t) = fir(t) + mln <wk+1(t —t)+ min Ek+1(t’))
t'=Sk+1(t')

12

Y

Figure 4: f(t) = miny<; g(t') is convex if g is convex.

to show with Lemma [f] that the function can be computed with the same time and space
complexity than Yy, in § Therefore, X7 can also be computed with the same com-
plexity. Since the time to compute C(F') is proportional of the number of segments of
Yk, the total time to compute the sets Cy(F) for all the tasks T1,---, T}, is

0 (n (i:[ll sz'|!> (E:; I1fill + 2:; ||51'H>>

which is the same complexity as the one given by to compute the only optimal value of
the optimization problem. We of course have the same simplification in the formula when
the idle time costs are linear.

5 Conclusion

We presented a Dynamic Programming algorithm to schedule — e to time — a sequence
of tasks in order to minimize the total cost, including idle time costs. The algorithm is still
valid for the project scheduling problem without resource constraint and with an intree
or outtree precedence graph. An interesting point of this algorithm is that it can be very
easily implemented. For example, the problem with piecewise linear cost functions was
implemented in a few lines of code using the piecewise linear function facilities of ILOG
Scheduler 5.2 [7]. Moreover, it seems to be very efficient for large classes of practical
instances.

This algorithm can be adapted — with no extra computational cost — to get informa-
tion on the possible execution time window for each task so that a maximum fixed cost is
not exceeded.

Both information on the minimum cost of a sequence and on the possible time windows
should be very useful to determine an optimal sequence by a branch-and-bound algorithm.
Further research will focus on such an algorithm and its use in solving shop problems.

13

Acknowledgements

Part of the work was done while the author was working for ILOGL

References

1]

[9]

[10]

[11]

Ph. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based scheduling: Applying
constraint programming to scheduling problems, International Series in Operations
Research and Management Science, vol. 39, Kluwer Academic Publishers, Boston,
2001.

Ph. Chrétienne and F. Sourd, Scheduling with convex cost functions, Theoretical
Computer Science (2002), to appear.

J.S. Davis and J.J. Kanet, Single machine scheduling with early and tardy completion
costs, Naval Research Logistics 40 (1993), 85-101.

T.D. Fry, R.D. Armstrong, and J.H. Blackstone, Minimize weighted absolute deviation
in single machine scheduling, ITE Transactions 19 (1987), 445-450.

M.R. Garey, R.E. Tarjan, and G.T. Wilfong, One-processor scheduling with symmetric
earliness and tardiness penalties, Mathematics of Operations Research 13 (1988),
330-348.

J.A. Hoogeveen and S.L. van de Velde, A branch-and-bound algorithm for single-
machine earliness-tardiness scheduling with idle time, INFORMS Journal on Com-
puting 8 (1996), 402-412.

ILOG, S.A., llog Scheduler 5.2 user’s manual and reference manual, December 2001.

S. Lakshminarayan, R. Lakshmanan, R.L. Papineau, and R. Rochete, Optimal single-
machine scheduling with earliness and tardiness penalties, Operations Research 26
(1978), no. 6, 1079-82.

R.H. Méhring, A.S. Schulz, F. Stork, and M. Uetz, On project scheduling with irreqular
starting time costs, Operations Research Letters 28 (2001), 149-154.

W. Szwarc and S.K. Mukhopadhyay, Optimal timing schedules in earliness-tardiness
single machine sequencing, Naval Research Logistics 42 (1995), 1109-1114.

G. Wan and B.P.C. Yen, Tabu search for single machine scheduling with distinct due
windows and weighted earliness/tardiness penalties, European Journal of Operational
Research (2002), to appear.

14

http://www.ilog.com

	Introduction
	Problem description
	Problem definition
	Discontinuities in cost functions
	Time windows and breaks
	Constant idle time cost

	Solving the problem by dynamic programming
	Recursive relationship
	Piecewise linear functions
	Complexity analysis

	Optimal filtering algorithm
	Problem description
	Algorithm and properties

	Conclusion

