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Abstract

We consider a set of n tasks, each of them is composed by a set of
sequential operations. A set of buffers B is given : each buffer b € B is
defined between two tasks 7; — T}, has a weight w; and is managed
as a FIFO structure. Some operations from T; write data in the buffer
b, other from 7; get data in b.

The writings and readings on buffers generate precedence con-
straints between the operations. The limitation of the size of the
buffers generates an other set of precedence constraints between them
and circuits in this precedence graph may appear. In this case, there
is no feasible schedule for the operations. The aim is to find the size of
each buffer A(b),b € B such that }_, _; wyA(b) is minimum and there
is no circuit in the precedence graph.

We prove that this problem is polynomial for 2 tasks using a flow
algorithm. We also prove that it is NP-hard in the strong sense for 3
tasks.

1 Introduction

An embedded system is the association of an hardware and a software system
to realize a given application : the synthesis of such a system is divided into
several phases. In this paper, we consider that the allocation of the tasks to
the processors is given. These tasks communicate using buffers. The model
of communication that we consider is knowned as Kahn Process Network [4],
and suppose that the capacity of the buffers is not bounded.



The problem is that to realize the system on a chip, the size of the buffers
has to be bounded : moreover, the cost of a buffer is proportionnal to the
size of the data that can be stored by it. So, the problem tackle in this paper
is to limit the size of the buffers such that the application can be realize and
the global surface of the buffers is minimum.

In the litterature, few studies are dedicated to this field. Authors usually
arbitrarily bound the capacities of the buffers and simulate to show if no
deadlocks appear [3]. In [5], the author has develop a greedy heuristic that
increase the capacity of a buffer everytime a deadlock appears.

This paper is organized as follows : in the section 2, we define the problem
and we show how the communications with buffers can be modelled using
a precedence graph. In section 3, we prove that the problem is polynomial
for 2 sequentiel tasks using a flow algorithm. In section 4, we show that
the associated decision problem is NP-complete in the strong sense for 3
sequential tasks. We give some ideas for further research in section 5.

2 Problem definition

Let us consider a set of n tasks denoted by 7 = {Ti,...,T,} and corre-
sponding to the load of n different processors. These tasks may exchange
data using a given set of buffers B managed as a FIFO (First In/First Out)
structures. Each buffer b € B is defined by a couple of tasks (7;,7;) : T;
(resp. Tj) is the task allowed to write (resp. read) data in b. Moreover, the
values stored by a buffer are all of the same type : Vb € B, wy is the size of
a value that may be stored by b.

The Kahn process network of an application is an oriented graph where
the vertices correspond to the tasks and the arcs to the buffers.

More precisely, each task T; may be decomposed into n; sequential opera-
tions o}, ..., 0" which write or read a value in a buffer. Let us suppose that
task 7} sends data to 7. B;; is the set of buflers from T; to T} dedicated to
these communications.

Fach operation o is associated with a buffer denoted by b(o?). If of write
a data in b(0), then b(0?) € UjerB,;, else, b(o?) € Ujer Bji.

The capacity of a buffer is the maximal number of values that can be
stored simultaneously. It is denoted by A(b),b € B and is a variable of the
problem. The problem is that writing in a full buffer is not possible : in
this case, the next writing operation has to wait until a reading operation



Table 1: N(of),i=1,2,p=1,...,7
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empties the buffer. Deadlocks may occur if the size of some buffers is too
small.

Now, the surface needed in a component for b is proportional to w,A(b).
The aim here is to minimize this global surface of the buffers noted by Cy =

2 pens WpA (D).

Definition of the precedence graph We prove here that the commu-
nication with buffers can be modeled by a precedence graph on operations.
Let us define, for every operation of, the value N(o?) as :

N(oi) = Hae{l,...,p—=1},0(0f) = b(07)}|

e If o” is a writing operation, then N(of) is the number of values written
in the buffer b(o?) before the execution of o.

e Else, 0! is a reading operation and N (o) is the number of values read
in the buffer b(o?) before the execution of o.

For example, let us consider two tasks 77,75, each of them composed by
7 operations and 3 buffers b, ' and b with By = {b} and By = {V',0"}.
Moreover, b = b(ol) = b(0?) = b(d}) = b(d5) = b(d§) = b(05), b = b(0?) =
b(o}) = b(03) = b(03) and b” = b(o3) = b(03) = b(a}) = b(o]). N is presented
by table 1.

Let us suppose that, Vb € B, the capacity of the buffers is denoted by
A(b),b € B. Then, the constraints between the operations can be modeled
by a precedence graph G(A) = (V, E(A)) built as follows :

e The vertices of the graph are the operations of, i € {1,... ,n}, p €

{1, ,ni}.

e Precedence relations F(A) can be split into 3 classes £y, Fy and F3(A)
defined as follows :



1.

2.

The operations of any task T} are performed sequentially.

n

Ey :U{(of,0f+1),p: l,...,n;—1}

=1

Let us suppose that of is a writing operation, 0;1 is a reading
operation and that they used the same buffer (i.e b(o}) = b(0}) =
b). Then, of get the value written in b by of if and only if N(o}) =
N(o!). An arc (of,0?) € Ey iff N(of) = N(o}).

19 Vg )
Using the same notations as the previous case, of has to wait for

the execution of 0;1 if

(a) Before the execution of 0!, there is no enough room for of to
write an additional value in b, so N(o?)+ 1 — N(O?) > A(b).

(b) There is enough room in b after the execution of 03, so N(o?)+
1 — (N(o?) + 1) < A(b).

Then, an arc (o?,07) € E3(A) iff N(of) — N(o?) = A(b).

g7 J

We also denote by Gi(oo) the precedence graph with no limitations on the

capacity of the buffers : we get E(oco) = E; U Ey. In the following, we

suppose that (G(co0) has no circuit : in the opposite, there is a mistake in the

application. The graph G(oo) of our example is pictured by figure 1.

Figure 1: G(o0) of our example

If the size of some buffers is too small, some circuit may occur in G(A).

For example, if A()”) = 1, we obtain a circuit between the operations 0%, o3,

3 3
05 and oy.

The problem is to find A(b) for every b € B such that the sum Cy =
Y e weA(b) is minimum and that G(A) has no circuit.

4



b(03) = b(03) = b,

b(o;) =b(0,) =h,

Figure 2: Structure of a circuit

3 A polynomial algorithm for two tasks

Let us consider two tasks T} and T which communicate using a set of buffers
B. We study firtly the structure of the circuit in the precedence graph. Then,
we prove that the presence of circuits can be described as a set of clauses of
size less than or equal to 2. Lastly, we show that the problem is equivalent
with the decision problem associated with the minimum weighted vertex
cover of a bipartite graph, which is knwoned to be polynomial [1].

3.1 Structure of the circuits

We suppose here that the capacity A of the buffers is fixed. The following
theorem characterizes the structure of the circuits of G(A) (if it exists).

Theorem 1. Let ¢ be a circuit of G(A). Then, there are 4 operations of,
of, o and o5 with p < q and r < s such that (05, o}) and (0}, 0y) are in G(A)
(see figure 2).

Proof
Let o] (resp.o3) be the operation of Th N ¢ (resp.Ty N ¢) with a maximum ¢
(resp.s). Since of and o are in ¢, there exist in G(A) the arcs (of, oy) with
r < s and (0, 0]) with p <g.

We prove now by contradiction that r < s and p < ¢. Indeed, if r = s,
then o = o} and b = b(05) = b(0}) = b(o]).

1. If of is a writing operation, b is a buffer from T} to T5.

e The arc (o], 05) € Ey, so N(o]) = N(05).



e The arc (05,0)) € FE3(A), so N(o}) — N(05) = A(b).
Since N(o}) < N(o7), we get A(b) <0, which is impossible.
2. Now, if of is a reading operation, b is a buffer from T3 to Tj.
e The arc (of,05) € FE3(A) so N(05) — N(o]) = A(b).
e The arc (05,0]) € F3 so N(o]) = N(03).
We get N(of) — N(o]) = A(b). As N(d]) < N(o]) we obtain again
A(B) 0. [
3.2 Conditions on the capacities of the buffers

We consider here a couple of buffers (b1,by) € B. A basic circuit ¢ associated
with a couple of buffers (by,by) € B is composed by 4 operations of, of,

oy and 0§ with p < ¢ and r < s and by the paths vy = (of, /T, ... 0%),
vy = (04,05, ... 05) and the arcs (of,0}) and (05,0}). Moreover, we have

by = b(0]) = b(0}) and by = b(o]) = b(0}).

In this section, we fix a couple of buffers (by,by) € B?, by # by, and we
express necessary and sufficient conditions on the capacities A(by) and A(bz)
to avoid basic circuits associated with this couple of buffers. We have 3 cases
to consider :

Case 1 If (by,b2) € Bay x Byz, then arcs (of,05) and (05,0}) are both in Fj.
The lemma 1 follows :

Lemma 1. [f (b1,by) € By x Bz and G(o0) has no circuit, then there
is no basic circuit in G(A) associated with these two buffers.

Case 2 If (by,by) € B3, U B3, then we consider two subcases :

L. If (b1, bs) € Bi,, then (of,03) € E; and (o], 05) € Es(A). So, the
only way to eliminate this circuit is to increase A(by).
Let x; be the minimum capacity of b; such that there is no basic
circuit associated with the couple (by,by) in the corresponding
precedence graph. We set y; = 1. Then, a precedence graph G(A)
has no basic circuit associated with (b, b2) iff A(by) > x4 AA(bg) >
Y-



Case 3

2. By symmetry, we get the same property for the case (b1, by) € B3,.

Lemma 2. [If (by,by) € B, U B3, there exists two integers x, and y;
such that G(A) has no circuit associated with (by,by) if and only if
A(bl) Z L1 A A(bz) Z Yr-

If (b1,b2) € Bia X Bay, then arcs (of, 04) and (03, 0}) are both in Es(A).
We define a set of points u; = (z;,y;),0 =1,...,[ as follows :

1. y; = 1 and x is the minimum value of the capacity of b; such that,
if a capacity A’ verifies A’(by) = x; and A’(by) = 1, then there
is no basic circuit associated with the couple of buffers (by,bs) in
G(A"). uy = (21, y1).

2. Let us assume that u;,7 > 1 has been defined.

— If ; = 1, we stop the recurrence and we set [ = 1.

— Else, we set y; 41 the smallest value strictly greater than y; such
that if A’(b2) = yi11, then minimum value needed for A’(b;) to
avoid basic circuits associated with (by;,) in G(A’) is denoted
by @41 and verifies x;41 < ;. We get then w;11 = (241, Yit1).

Notice that the value [ is bounded by the number n of operations.
Indeed, if A’(by) = n, there is no associated precedence constraint in

E3(A’) and we can set A'(by) = 1.

Lemma 3. [f (b1, by) € BiaxBay, there exists a sequence u; = (4,y;),1 =
L,... .l such that G(A) has no basic circuit associated with the couple
(b1,bs) if and only if Fo € {1,... I} with A(by) > x; and A(by) > y;.

Proof

1. A = B : let us suppose that, Vi € {1,... 0}, A(by) < z; or
A(bz) < Y;.
— If A(by) > yi, then Vi € {1,... I}, A(b) < 2. As 2 = 1,
this is impossible.
— So, there exists & € {1,...,l — 1} with y, < A(by) < Yp41-
By hypothesis, we get A(by) < x; fori € {1,...,k}.



Now, by definition of the sequences w;, if yp < A(b2) < Yr1,
then the minimum value for A(b;) to avoid basic circuits as-
sociated with (b1, bs) is @. So, G(A) has a basic circuit asso-

ciated with (by, by).
2. B=A: If Fe{l,... [} with A(by) > x; and A(bz) > y;, then,
by definition of w;, G(A) has no circuit. []
For any (by,b2) € B?, we set

C(br,by) = \/(A(br) > 2 A A(ba) > y;)

=1

For the case 1, we set [ = 1 and =y = y; = 1. We prove the following
theorem :

Theorem 2. The graph G(A) has no circuit if and only if, for every couple
of buffers (by,by) € B with by # by, C(by,by) is true.

Proof

e A = B: If there is a couple of buffer for which C(by,by) is false, then,
by lemmas 2 and 3, GG(A) has a circuit.

e B= A:if G(A) has a circuit ¢, then, using theorem 1, we can build a
basic circuit associated with a couple of buffers (b1, b2). Using lemmas

2 and 3, we know that C'(by,by) is false. []

3.3 Description of the polynomial algorithm for 2 tasks
The following lemma is a rewriting of C'(by, bs),

Lemma 4. V(by,b,) € B,

C(b1,b2) = (A(br) = 1) A (A(b2) = 1) A /_\(A(bl) > x; V Abz) 2 yita)

=1

Proof

We prove it by recurrence on [ :



e The lemma is trivially true for logical expressions with [ = 1.

e Let us suppose now that the lemma is true for [ and that the sequences
associated with C'(by, by) have [ 4+ 1 terms. Then

C(b1,b2) = (A(b) = i1 A A(b2) 2 yig1)
V(A(by) = a2 AA(b2) = y1 A K(A(bl) = 2V A(by) 2 yig1))

=1

Using the distributivity of the logical operators, we get for C'(by, b2) the
following clauses :

1. A(bl) Z Ty vV A(bl) Z Ti41 = (A(bl) Z l’H_l);

2. A(by) > 2111V A(by) > yy is always true because of the first clause
and can be suppressed;

3.Vee {1, =1}, A(by) = 241 V (A(by) > 2V A(ba) = yiqr) is
always true since the first clause is included in these terms;

4. A(b2) > yip1 V A(by) > ay;

5. Ab2) 2 g1 V A(b2) =2 y1 = A(b2) = yi;

6. Voe {1,...,0 =1}, Al(by) = yig1 V (A(b1) = 2 V A(by) > yiy1) =
(A(b1) = i V A(b2) 2 yig1);

If we consider all these clauses except the second and the third ones,
we get the lemma. []

Lemma 5. Let I be an instance of the problem with two tasks. ¥(by, by) € B?,
C'(by,by) may be computed in O(n?).

Proof
Let n be the number of operations of each task. In the case 3, 1 < |n| and at
each step, the presence of circuits must be tested. [J

MINIMUM WEIGHTED VERTEX COVER OF A BIPARTITE
GRAPH

e Instance: an undirected bipartite graph X = (AUB, E), and a function
v:AUB — IN.



e Question: is there a cover D of the vertices of X (i.e, a subset D C AUB
such that, for every edge e = {u,w} € F, at leat v € D or w € D)
such that >, v(u) is minimum ?

Let us consider an instance I of our problem with two tasks. For every
couple (by,by) € B?, we can associate a logical expression C(by,by). Us-
ing notations of lemma 4, we define the following sequences to describe the
extremum values of the capacity of the buffers :

Tmin(C(b1,02)) = 2 and @4,4,(C(b1, b2)) = 24
ymm(c(bhb?)) =W and ymax(c(blvbQ)) = U

Then, we get for every b € B the minimum and maximum feasible val-
ues for the capacity are A, (b) = maxyen,, Tmin(C(b,V)) and A,,..(b) =
max{maxy eg Tmar(C(b,V)), maxyes Ymaz(C(V,0))}.

For example, let us consider 2 tasks 77 and T, and the buffers By = {b,0'}
and By = {b"}. We suppose that wy, = 1, wy = 4 and wyr = 2. We also
consider the following logical expressions : C'(b,b") = A(b) > 3 AN A(Y) > 1,
Cb,b) =A0) > 1ANADL) > 1, CbY) = Ab) >2NAN) > 1A (AD) >
5V ALY > T)AN(AD) >TVAQD") >4), C(b",b) =A(b") > 1ANAD) > 1,
C,0") = A) > 2NA0) > 1A (AD) >3ANAD") >3), and C(0",V) =
A") > TANA(Y) > 1. The extremum values are A,,;,(b) = 3, A, (V) = 2,
Apin(0") =1, and Apez(b) = 7, Apae(b') = 3 and A,,,,.(0") = 7.

e For every buffer b € B, we define the sequence A'(b),1 =0,... ,k(b) of
feasible values of A(b) as follows :

L. A%b) = Auin(b);

2. For 7 > 0, if there exists a minimum value z > A*~!(b) such that
there is a logical expression C'(b,b") or C'(V',b) with the inequality
A(b) > z, then set Ai(b) = z and continue with 7 + 1. Else, we get
A(b) = A,,42(b) then we set k(b) = 7 and we stop the recurrence.

We build an instance f([) of the minimum weighted cover problem of a
bipartite graph as follows :

e For every buffer b € B, we associate k(b) vertices (b,1),...,(b, k(b))
with the weight v(b,1) = w,(AY(b) — ATHb)), 1 =1,...,k(b).

We denote by A = {(b,1),...,(b,k(b)),b € Bis} and by B = {(b,1),...,
(b, k(b)), b € By}

10



(b,1) (b",1)
(b,2) (b",2)
(b',1 (b",3)

Figure 3: Graph X = (AU B, F) and a cover D

e For every couple (by,bs) € Biz X Bsy, we build an edge between the
vertices (by, k1) and (bz, k) if there exists a term (A(by) > a; V A(by) >
Yir1) in C(by,by) with AR (b)) < x; and A*2(by) < yiys.

Let F be the set of edges. The graph X = (AU B, E) is bipartite.

For our former example, we get :

o k(b) = 2, A°%0b) = 3, AY(b) = 5 and A?*b) = 7. wv(b,1) = 2 and
v(b,2) = 2.

o k(0')=1and v(V,1)=4.
o k(1) = 3, A°") = 1, AYb") = 3, A*(b') = 4 and A'(") = T.
v(0”,1) =4, v(b",2) = 2 and v(b",3) = 6.
The corresponding graph is pictured by figure 3.

Lemma 6. f is a polynomial transformation.

Proof

Let us denote by m the total number of buffers and by L the maximum
number of inequalities of a logical expression C'(b,b’). Then, |A|+|B| < mL.
So, f is polynomial. []

Lemma 7. Let A* be a solution of an intance I. We can build a cover D
for the corresponding instance f(I). Moreover,

Yo o wATh) = Y wA'b)+ Y u(i)

beB12UB beB12UB €D

11



Proof
For every buffer b € B1s U By, we defined a*(b) as Aa*(b)(b) = A*(b). We set
D ={(b,i),b € B12UBy,1 <i < a*(b)}.

We prove that D is a cover of X : for every edge {(b1, k1), (b2, k2)} in the
graph X, there exists a term (A(by) > x; V A(by) > yiq1) of C(by,by) with
AR (b)) < z; and AR (by) < yiq.

Since A* is a solution of I, we get (A*(by) > x; V A*(bs) > yi1). If
A*(by) > z;, then we get AF1 (b)) < A*(by), so ky < a*(by) and (b1, k) € D.
On the same way, if A*(b2) > yit1, (by, k2) € D. So, D is a feasible solution
of f(I).

Now, > iep v(1) = 2yen,,u8,, wy (A (b) = A%(b)) = D beBipuB, We(AT(b)—
A°(b)), so the equality holds. []

Four our example, A*(b) = 7, A*(d') = 2 and A*(}") = 4 is a solution
to I. For f(I), we obtain D = {(b,1),(b,2),(b",1)}. The equality trivially
holds.

Lemma 8. Let D be a solution for f(I). Then, we can build a solution A
of I. Moreover, the previous equality between the two criteria holds.

Proof

Let D be a solution for f(I). We prove that, ¥b € B15 U By, there exists
a maximum value o(b) € {1,...,k(b)} such that all the vertices (b,1),...,
(b, (b)) are in D.

By contradiction, let us suppose that there exists a vertex (b, o) € D with
(b, — 1) ¢ D. By construction of X, if I'(b, o) denotes the set of adjacent
vertices of (b, ), we get I'(b,ar) C I'(b,a0 — 1). Since (b,a — 1) € D, then
['(b,a —1) C D. So, (b,a) can be removed from D; D is not optimal, the
contradiction.

For every b € B12UBa1, we set A*(b) = Aa(b)(b). For any couple (by,b3) €
Bis x Bay and for any term (A(by) > x; V A(by) > yiq1) from C(by, by), we
define k; and ky such that A" (b) = z; and A*(b) = y;;;. Then, since there
is an edge {(b1, k1), (b2, k2)} € E, (b1, k1) € D or (by, ko) € D. So a(by) > ky
or a(by) > k. We get A*(by) > a; or A*(bz) > yig1. [

Theorem 3. The minimization of the buffers for two tasks is a polynomial
problem.

12



The construction of an instance f(7) is polynomial. Moreover, the mini-
mum weighted cover problem of a bipartite graph is solved polynomially by
a flow algorithm. So, the theorem holds. []

4 Complexity for 3 tasks

In this section, we prove that the decision problem associated with the min-
imzation of the buffers is NP-complete in the strong sense for 3 tasks using
a transformation from 3-SAT [2].

3-TASKS MIN WEIGHTED BUFFERS

o Instance: 3 tasks 71,75, 15, a set of buffers B, an execution graphs GG
and a value K.

o Question: 1is there a feasible size function A : B — N such that
Y e wsA(b) < K7

For ¢ € IN* and the buffers (by,bs,b3) € B2y X Bz x B3z we consider 16

operations defined as follows :

4G-1)4+1  4(G-1)42  4(G-1)43  4(i—1)+4 4(i—1)+1

o The operations are noted o; , 0y , 04 , 04 , 0y ,
46—1)42  A(i—1)43  4G—1)+4  4(G—1)+1  4G—1)42  4(i—1)+3 4(i—1)+4
0y ) 09 ) Og » O3 ) O3 ) O3 ) O3

e Their associated buffer are :

L b(of ) = b0y U = (0TI = plog T = by
2. b0y ) = b0y T = (0TI = b(of TV = by
3. b(os ) = b(03" TR = b0y I = b0y T = by

9i(b1, b2, b3)(00) (resp.gi(by, be, b3)(A)) is the associated precedence graph for
an unlimited values on the size of the buffers (resp.. for a capacity function

A).

Lemma 9. Let us consider a capacity function A : B — N* and the prece-
dence graph G(A) = UL_ 1gz(oz1,oz2,oz3)(A) with (o/i,ozé,ozé) € By X Big X Bag.
G(A) has no circuit if and only if A(a}) > 1V Alay) > 1V A(ay) > 1.

Proof

13



4(0-1+1 4(i-1)+2 4(-1)+3 4(i-1)+4
0, 0y 0, 0y

—_—

4(-1)+1 4(i-1)+2 4(i-1)+3 4(i-1)+4
00D 040D 00D 04D
—_— — -

A»i-1)+1 i- i- i-
o (i-1) oA 1?+2i Og(l 1)+3 og(' 1)+4
—_— —————-

Figure 4: Graph ¢;(b1, b2, b3)(c0) and the Kahn subgraph for buffers by, b,
and bs
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o A = B: if there exists ¢ € {1,...,p} such that A(Q‘i) = A(qé) =
A(a4) = 1 then there is the circuit ¢ = (011(2_1)+2, 011(2_1”3, 03(2_1”2,

0421(2'—1)4-37 Og(i—1)+27 og(i_l)ﬁ, 0411(2'—1)4-2) in G(A), so A is not feasible.

o B = A: Let us suppose now that A is not a feasible solution. Then,
there is a circuit in G(A). A circuit in G(A) can’t involve several sub-
graphs g;, even if all the size of the buffers is set to 1. So, there exists
i € {1,...,p} such that g;(a},al,as)(A) has a circuit. The only way
to get this circuit is to set A(at) = A(al) = A(ah) = 1. ]

3-SAT

o Instance: set U of variables, collection ' of clauses over U such that
each clause ¢ € C has |¢| = 3.

o Question: Is there a satisfying truth assignment of C' 7

Let us consider an instance [ of 3-SAT given by a set of of variables
U = {uy,...,ux} and a set of clauses C' = {Cy,...,C,}. We build and
instance f(I) of 3-TASKS MIN WEIGHTED BUFFERS as follows :

The set of buffers B is composed by 3 sets By, B3y and B3 defined as
follows :

o 3 buffers by € By, by € Bag and by € Bz with wy, = wy, = wy, = 3k+1.
The sizes of these buffers is important to oblige their capacity to be 1.

e For every variable u; € U, we associate 6 buffers (b}, b)) € By, (b2,07) €

[ [

Bag and (b2,b7) € By3 with wyr = wpp =1 for p=1,2.3.

[

The precedence graph G/(oo) is defined as the union of a sequences of

6k + ¢ graphs ¢f,1 =1,... ,6k 4+ q as follows :

e For every variable w; € Ui = 1,... , k, we would like to express that
every feasible capacity A verifies A(b}) = A(b7) = A(b) € {1,2}
A} = A(b?) = A(b?) € {1,2} and that these two values are different.
For that, we build the following sequences of graphs :

L GGy = go(i—1)+1(b}, b7, b3)(o0)

2. ge*s(z’—1)+2 - 96(i—1)+2(b}vb27[;?)(00)
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3. o(i—1yea = Isti-1)+3(bi, b7, b3)(00)
4. gé(i—1)+4 - 96(2'—1)4_4(7?21, by, b7)(0)
5, 9§(¢_1)+5 = 96(i—1)+5(5175?75?)(00)
6. gg(i—1)+6 = 96(i—1)+6(bl, bzzv b?)(oo)
o Lor every clause (; = c} \Y% c? \Y% c?, g =1,...,q, we associate a sub-

graph g5 . = gerrj(aj, aF, o) with the buffers ozé,l = 1,2,3 defined
I

as follows : if cé = u;, we set ozé = bl. Otherwise, ¢; = u; and we set

L _
a; = b;.

The question is : is there a capacity function A : B — IN* such that
Y oben WA(b) <18k 437

Lemma 10. For every instance I of 3-SAT, the determination of f(I) is
polynomial.

For every instance [ with & variables and ¢ clauses, the execution graph
of the instance f(I) has 3 tasks and 4(6k + ¢) operations. []

Lemma 11. [ is a polynomial tranformation from 3-SAT to 3-TASKS MIN
WEIGHTED BUFFERS .

Proof
Let us assume that the answer of an intance [ of 3-SAT is "yes”, then we
build a solution to the corresponding instance f(/) as follows :

o A(by) = A(by) = A(bs) = 1.

e Let us define a function v : U — {0,1} as v(w;) = 1 if w; is true,
0 o}herwise; Then,iwe set A(b}) = A(b?) = A(D}) = 1 + v(w;) and
A = A) = AE) = 2 — ().

Clearly, Y, g wpA(b) = 3(3k + 1) + 9%k = 18k + 3. For every variable

u; € U, the 6 corresponding sub-graphs gg( have all at least

i—1)4+17 " ‘gg(i—l)—l—G
one buffer which size is strictly greater than 1. Lastly, since each clause C}
is true, the associated graph gz, . has also at least one buffer with a size
strictly greater than 1. By lemma 9, A is a solution of f([I) and the answer

to f(I)is "yes”.
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Conversely, let us assume that A is a solution to f(I). Then, we first

prove that A(by) = A(by) = A(bs) = 1. Indeed, if A(by) > 2, then
> wA(b) > 4(3k + 1) + 6k = 18k + 4

beB
So, from the same reasonning with by and b3, we deduce that A(by) = A(by) =

For every variable u;, the graphs gg( a =1,...6 have all at least

i—1)4a’
one buffer whose capacity is strictly superior than 2. So, by lemma 9 we

get necessarily : A(b}) + A(b7) > 3, A(b}) + A(bY) > 3, A(b}) + A(b) > 3,
ALY + A(B) > 3, A(b?) + A(b?) > 3, and A(b?) + A(b?) > 3. By summing
these inequalities, we get :
A(BD) + A + A®]) + A6 + A®)) + AB) 2 9
Now, 18k + 3 — wb14(51) — wb2A(bz)7— wp, A(b3) = 9k. So, we have A(b}) +
ALY + A(LZ) + A(D?) + A(B}) + A(b?) = 9 for every variable w;.
Now, by contradiction, let us suppose that there is a variable u; € U with
A(b}) = A(b7) = 2. Then, since there is no circuit in Jo(i—1)43° Yo(i—1)44 and

gg(i_l)% we get :
A(b}) > 2V A(b;) > 2
A(b}) > 2V A(b) > 2
A) > 2V A) > 2

A minimum solution is A(b}) = A(b?) = 2 and A(b3) = A(b?) = 1. So,

A(by) + A(D) + AD]) + A(B]) + A(b]) + A(B]) > 10

which is impossible. So, A(b}) = A(b?) = A(b?) and A(b}) = A(b?) = A(B).

We can set u; = (A(b}) > 2). Notice that the equality u; = (A(ZBZI) > 2)
is true. We prove now that every clause C; € (' is true. Indeed, by lemma
9, the buffers ozf,p = 1,2, 3 verify

Alaj) + A(a?) + Ala?) > 4
So, dp € {1,2,3} such that A(a?) > 2. Now, if ¢] = u;, then o =b7. So, u;

is true and Cj is true. Else, ¢ = u; and then of = bf. So, u; is true, and C;
is true.

So, the answer for the instance I of 3-SAT is "yes”. []
Theorem 4. 3-TASKS MIN WEIGHTED BUFFERS is NP-complete in the

strong sense for 3 tasks.

17



5 Conclusion

We proved in this paper that the communication with buffers can be modeled
using a precedence graph and two complexity results on the problem. Further
research will consists on develop exact and approximate methods to solve the
efficiently the general problem.
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