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Abstract

We introduce bi-capacities as a natural generalization of capacities (or fuzzy mea-

sures) through the identity of Choquet integral of binary alternatives with fuzzy mea-

sures. We examine the underlying structure and derive the M�obius transform of bi-

capacities. Next, the Choquet and Sugeno integrals w.r.t bi-capacities are introduced.

It is shown that symmetric and asymmetric integrals are recovered. Lastly, we intro-

duce the Shapley value and interaction indices. It is seen that besides a generalization

based on the classical de�nitions, a de�nition involving two arguments is natural.

Keywords| bi-capacity, Choquet integral, M�obius transform, Shapley value,

interaction index.

1 Introduction

Capacities [1] (or fuzzy measures [15], non-additive measures [3]), and integrals w.r.t capac-

ities such as the Choquet integral [1] and the Sugeno integral [15], have become a central

tool in decision making, extending e.g. expected utility models and linear models of multi-

attribute utility theory. While the so-called Choquet expected utility models are among the

most general models for preference representation when utility functions are positive, the in-

troduction of negative quantities for utility functions makes possible several extension of the

usual Choquet expected utility model. Up to now, the most general extension is called the

CPT model (Cumulative Prospect Theory [16]), and is a di�erence of two Choquet integrals.

More speci�cally, let us denote by �1; �2 two capacities on a �nite universe N of n elements.

For any real-valued function on N , the CPT model is expressed as:

CPT�1;�2
(f) := C�1(f

+) � C�2(f
�)
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where C�i is the Choquet integral with respect to the capacity �i, and f
+ := f _ 0, f� =

(�f)+. We denote by 1A the characteristic function of A, for any A � N . We call these

functions binary functions, as they take only values 0 and 1. It is known that for any A � N ,

any capacity �, we have C�(1A) = �(A). Hence the capacity is uniquely determined by giving

the integral (or expected utility) of all binary functions. Let us consider ternary functions,

i.e. functions valued on f�1; 0; 1g, which we express under the form (1A;�1B), for A;B � N ,

A \ B = ;. Observe that

CPT�1;�2
(1A;�1B) = �1(A)� �2(B);

which entails that, if �1; �2 are given, we have no freedom for determining the utility of a

ternary alternative (function), since this value is determined from the utility of two binary

alternatives.

In order to get rid of this limitation, we introduce bi-capacities as the value assigned to

a ternary function.

The report presents �rst results on bi-capacities, their structure and machinery. We

assume basic knowledge on capacities and Choquet integral (see e.g. [9] for background).

To avoid heavy notations, we will often omit braces and commas to denote sets. Also, the

cardinal of a set is denoted by the corresponding small letter, e.g. jN j = n.

2 Bi-capacities

The de�nition is given through the following: an act with scores equal to 1 on A � N , to -1

on B � N has an overall utility denoted v(A;B). By convention, v(;; ;) = 0, v(N; ;) = 1

and v(;; N) = �1. Due to basic assumptions in decision making (dominance), we have

v(A;B) � v(C;B) if A � C; v(A;B) � v(A;D) if B � D:

This leads to the following de�nition. We denote Q(N) := f(A;B) 2 P(N)�P(N)jA\B =

;g.

De�nition 1 A function v : Q(N) �! R is a bi-capacity if it satis�es:

(i) v(;; ;) = 0

(ii) A � B implies v(A; �) � v(B; �) and v(�; A) � v(�; B).

In addition, v is normalized if v(N; ;) = 1 = �v(;; N).

In the sequel, unless otherwise speci�ed, we will consider that bi-capacities are normalized.

Note that the de�nition implies that v(�; ;) � 0 and v(;; �) � 0.

An interesting particular case is when left and right part can be separated. We say that

a bi-capacity is of the CPT type (refering to Cumulative Prospect Theory [16]) if there exists

two (normalized) capacities �1; �2 such that

v(A;B) = �1(A)� �2(B); 8(A;B) 2 Q(N):
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When �1 = �2, we say that the bi-capacity is symmetric, and asymmetric when �2 = �1.

By analogy with the classical case, a bi-capacity is said to be additive if it satis�es for

all (A;B) 2 Q(N):

v(A;B) =
X
i2A

v(i; ;) +
X
i2B

v(;; i): (1)

They are de�ned by a \positive" distribution and a \negative" distribution, and are clearly

of the CPT type. More generally, decomposable bi-capacities can be de�ned as well, using

t-conorms. However, the problem arises of combining positive and negative quantities. For

a given t-conorm S, it is known that extensions of S on [�1; 1] so that the structure is a

group can be built only if S is a strict t-conorm [6] [......detail if necessary......].

De�nition 2 Let S be a strict t-conorm. A bi-capacity is said to be S-decomposable if it

satis�es:

v(A;B) = (Si2Av(i; ;))	S (Si2B(�v(;; i)))

where 	S is the S-di�erence (see [6]).

However the case of maximum remains interesting since despite its extension fails to build

a group only due to a lack of associativity, associativity holds when negative and positive

quantities are merged separately [4, 5].

De�nition 3 A bi-capacity is said to be max-decomposable or to be a bi-measure of possi-

bility if

v(A;B) =
�
6
i2A

v(i; ;)
�
6
�
6
i2B

v(;; i)
�
;

where 6 is the symmetric maximum [4] de�ned by

a6 b :=

8>><
>>:

�(jaj _ jbj) if b 6= �a and either jaj _ jbj = �a

or = �b

0 if b = �a

jaj _ jbj else.

To avoid heavy notations, we will often omit braces and commas to denote sets. For

example, fig; fi; jg; f1; 2; 3g are denoted respectively i; ij; 123.

3 The structure of Q(N)

We study in this section the structure of Q(N). From its de�nition, Q(N) is ismorphic to

the set of mappings from N to f�1; 0; 1g, hence jQ(N)j = 3n. Also, any element (A;B) in

Q(N) can be denoted (x1; : : : ; xn), with xi 2 f�1; 0; 1g, with xi = 1 if i 2 A, xi = �1 if

i 2 B, and 0 otherwise.

As a preliminary remark, Q(N) is a subset of P(N)2, and so can be represented in a

matrix form, using some total order on P(N). A natural order is the binary order, ob-

tained by ordering in an increasing sequence the integers coding the elements of P(N):
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;; f1g; f2g; f1; 2g; f3g; f1; 3g, etc. Using this order, the matrix has a fractal structure with

generating pattern
� �

�

We give below the matrix obtained with n = 3.

; 1 2 12 3 13 23 123

;

1

2

12

3

13

23

123

2
66666666664

� � � � � � � �

� � � �

� � � �

� �

� � � �

� �

� �

�

3
77777777775

As for P(N), it is convenient to de�ne a total order on Q(N), so as to reveal structures.

A natural one is to use a ternary coding. Several are possible, but it seems that the most

suitable one is to code (considering elements of Q(N) as mappings valued on f�1; 0; 1g) -1

by 0, 0 by 1, and 1 by 2. The increasing sequence of integers in ternary code is 0, 1, 2, 10,

11, 12, 20 etc., which leads to the following order of elements of Q(N):

� � � (2; 3) (12; 3) (;; 12) (;; 2) (1; 2) (;; 1) (;; ;) (1; ;) (2; 1) (2; ;) (12; ;) (3; 12) (3; 2) � � �

Again, we remark a fractal structure, which is enhanced by boxes: the (k+ 1)th box is built

form the kth box by adding to its elements (of Q(N)) element k of N , either to their left

part, or to their right part.

It is easy to see that Q(N) is a lattice, when equipped with the following order: (A;B) �

(C;D) if A � C and B � D. Supremum and in�mum are respectively

(A;B) _ (C;D) = (A [ C;B \D)

(A;B) ^ (C;D) = (A \ C;B [D):

These are elements of Q(N) since (A[C)\ (B\D) = ; and (A\C)\ (B[D) = ;. Top and

bottom are respectively (N; ;) and (;; N). Notice that a bi-capacity is an order-preserving

mapping fromQ(N) to R. We call vertices of Q(N) any element (A;B) such that A[B = N ,

since they coincide with the vertices of [0; 1]n. We give in �gures 1 and 2 the Hasse diagram

of (Q(N);�) for n = 2 and n = 3.

Q(N) is in fact the lattice 3n. It is formed by 2n Boolean sub-lattices 2n: each sub-lattice

corresponds to a given partition of N into two parts, one for positive scores, the other for

negative ones, which contain all subsets of non-zero scores, including the empty set. Hence,

all these sub-lattices have as a common point (;; ;).

For any ordered pair ((A;B); (A [D;B n C)) of Q(N) with C � B and D � (N n (A [

B))[C the interval [(A;B); (A[D;B nC)] is a sub-lattice of type 2k�3l, with k = jC�Dj,
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12; ;

1; ; 2; ;

;; ;

;; 1;; 2

;; 12

1; 2 2; 1r r

r r

Figure 1: The lattice Q(N) for n = 2

and l = jC \Dj. As a particular case, a sub-lattice of type 2k is obtained if C \D = ;, and

of type 3l if C = D.

We use the notation

" (A;B) := f(C;D) 2 Q(N) j (C;D) � (A;B)g

to denote the up-set of (A;B).

Let us remark that the nodes of Q(N) appear in a rather unnatural way. It is possible

to have a more natural structure if we replace each node (A;B) by (A;Bc). Let us call

(Q�(N);��) this new lattice. A node (A;B) in Q�(N) is such that A � B, and A is the set

of scores equal to 1, while B is the set of scores being equal to 0 or 1. We have

(A;B) �� (C;D) if and only if A � C and B � D

(A;B) _� (C;D) = (A [ C;B [D)

(A;B) ^� (C;D) = (A \ C;B \D):

Hence, �� is simply the product order on P(N)2. Figures 3 and 4 show the Hasse diagram

of (Q�(N);�) for n = 2 and n = 3.

Let us give some properties of Q(N) (they are the same for Q�(N)). Since 3n is a product

of distributive lattices, it is itself distributive (see e.g. [2]). However it is not complemented,

since for example (;; ;) has no complement (b is the complement of a if a ^ b = ? and

a_ b = >). Hence, (Q(N);�) is not a Boolean lattice, and so is not isomorphic to the power

set of some set.

Nevertheless, it is possible to give a simpler representation of Q(N). We recall some

de�nitions and a fundamental result of lattice theory [2].

De�nition 4 Let (L;�) be a lattice. An element x 2 L is _-irreducible if x 6= ? and

x = a _ b implies x = a or x = b, 8a; b 2 L.

In a �nite lattice, x is _-irreducible if it has only one predecessor.
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1; 23

12; ;
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123; ;

13; ;

13; 2

2; 3

;; 3

;; 23

2; ;

;; ;

;; 2

23; ;

3; ;

3; 2

2; 13

;; 13

;; 123

2; 1

;; 1

;; 12

23; 1

3; 1

3; 12s

s s

s

s

s

Figure 2: The lattice Q(N) for n = 3

De�nition 5 Let (P;�) be a partially ordered set. Q � P is a downset of P if x 2 Q and

y � x imply y 2 Q.

Proposition 1 Every �nite distributive lattice (L;�) is isomorphic to O(J), where J is the

set of the _-irreducible elements of L, and O(J) is the set of all down-sets of J .

It is easy to see that the _-irreducible elements of Q(N) are (;; ic) and (i; ic), for all i 2 N .

We have for any (A;B) 2 Q(N),

(A;B) =
_
i2A

(i; ic) _
_

j2NnB

(;; jc):

In (Q�(N);��), the irreducible elements are (;; i) and (i; i), 8i 2 N . On �gures 1 to 4,

_-irreducible elements are indicated by black circles.

This permits to de�ne layers in Q(N) as follows: (;; N) is the bottom layer (layer 0),

the set of all _-irreducible elements form layer 1, and layer k, for k = 2; : : : ; n, contains all

elements which can be written as the supremum over exactly k _-irreducible elements. Layer

k is denoted Q[k](N), and contains all elements (A;B) such that jBj = n� k. The top layer

(layer n) is reduced to (N; ;).
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1; 12 2; 12

;; 12

;; 2;; 1
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1; 1 2; 2r r

r r

Figure 3: The lattice Q�(N) for n = 2

4 M�obius transform of bi-capacities

Let us recall some basic facts about the M�obius transform (see [13]). Let us consider f; g

two real-valued functions on a locally �nite poset (X;�) such that

g(x) =
X
y�x

f(y): (2)

The solution of this equation in term of g is given through the M�obius function by

f(x) =
X
y�x

�(y; x)g(y) (3)

where � is de�ned inductively by

�(x; y) =

8<
:

1; if x = y

�
P

x�t<y
�(x; t); if x < y

0; otherwise:

Note that � depends only on the structure of (X;�). When (X;�) is a Boolean lattice, e.g.

(P(N);�), it is well known that the M�obius function becomes, for any A;B 2 P(N)

�(A;B) =

�
(�1)jBnAj if A � B

0; otherwise:
(4)

Observe that this M�obius function has the following propertyX
A�C�B

�(A;C) = 0; 8A;B � N;A 6= B: (5)
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Figure 4: The lattice Q�(N) for n = 3

Indeed, when A ( B X
A�C�B

�(A;C) =
X

A�C�B

(�1)jCnAj

=

jBnAjX
k=0

�
jB n Aj

k

�
(�1)k

= (1� 1)jBnAj = 0:

If g is a capacity, which we denote by v, then f in Eq. (2) is called the M�obius transform

of v, usually denoted by m or mv if necessary. Equations (2) and (3) write

v(A) =
X
B�A

m(B) (6)

m(A) =
X
B�A

(�1)jBnAjv(B): (7)

The M�obius transform is an important concept for capacities, as it can be viewed as the

coordinates of v in the basis of unanimity games, de�ned by

uB(A) =

�
1; if A � B

0; otherwise.

Then Eq. (6) can be rewritten as

v(A) =
X
B�N

m(B)uB(A):
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Our aim is to compute similar formulas for bi-capacities. The �rst step is to obtain the

M�obius function on Q(N).

Theorem 1 The M�obius function on Q(N) is given by, for any (A;A0); (B;B0) 2 Q(N)

�((A;A0); (B;B0)) =

�
(�1)jBnAj+jA

0
nB

0
j
; if (A;A0) � (B;B0) and A

0 \ B = ;

0; otherwise.

Proof: We use the fact that if P;Q are posets, then the M�obius function on P � Q with

the product order is the product of the M�obius functions on P and Q [13]. In our case, this

gives

�3n((x1; y1); : : : ; (xn; yn)) =

nY
i=1

�3(xi; yi)

where �3n is the M�obius function on Q(N) = 3n, �3 the M�obius function on 3 := f�1; 0; 1g,

and (x1; : : : ; xn); (y1; : : : ; yn) 2 f�1; 0; 1gn correspond to (A;A0); (B;B0) respectively. It is

easy to see that

�3(xi; yi) =

8><
>:

1; if xi = yi

�1; if xi = yi � 1

0; otherwise.

Then �3n((x1; y1); : : : ; (xn; yn)) = 0 i� there is some i 2 N such that �3(xi; yi) = 0. This

conditions reads xi > yi or xi = �1; yi = 1. In term of subsets, this means (A;A0) 6� (B;B0)

or B \ A
0 6= ;.

We have �3n((x1; y1); : : : ; (xn; yn)) = 1 i� there is no i 2 N such that �3(xi; yi) = 0, and

the number of i 2 N such that �3(xi; yi) = �1 is even. We examine the second condition.

We have:

�3(xi; yi) = �1 ,

8><
>:
xi = 0 and yi = 1

or

xi = �1 and yi = 0

which in terms of subsets, reads (jB n Aj = 1 and jA0 n B0j = 0) or (jB n Aj = 0 and

jA0 n B0j = 1). Then clearly the second condition is equivalent to jB n Aj + jA0 n B0j = 2k.

The case �3n((x1; y1); : : : ; (xn; yn)) = �1 works similarly. �

Consequently, the M�obius transform of v is expressed by

m(A;A0) =
X

(B;B0)�(A;A0)

B
0
\A=;

(�1)jAnBj+jB
0
nA

0
j
v(B;B0) =

X
B�A

A
0
�B

0
�A

c

(�1)jAnBj+jB
0
nA

0
j
v(B;B0): (8)

By de�nition of the M�obius transform, we have

v(A;A0) =
X

(B;B0)�(A;A0)

m(B;B0): (9)
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As immediate properties of m, let us remark that m(;; N) = v(;; N) = �1, andP
(A;B)2Q(N)m(A;B) = v(N; ;) = 1.

Proceeding as in [8], we may write the M�obius transform into a matrix form, using the

total order we have de�ned on Q(N). Denoting v;m put in vector form as v(n); m(n), Eq.

(8) can be rewritten as

m(n) = T(n) Æ v(n)

where Æ is the usual matrix product, and T(n) is the matrix coding the M�obius transform.

As with the case of classical capacities, T(n) has an interesting fractal structure, as it can be

seen from the case n = 2 illustrated below.

T(2) =

;; 12 ;; 2 1; 2 ;; 1 ;; ; 1; ; 2; 1 2; ; 12; ;

;; 12

;; 2

1; 2

;; 1

;; ;

1; ;

2; 1

2; ;

12; ;

2
6666666666664

1

�1 1

�1 1

�1 1

1 �1 �1 1

1 �1 �1 1

�1 1

1 �1 �1 1

1 �1 �1 1

3
7777777777775

The generating element has the form 2
4 1

�1 1

�1 1

3
5

and is the concatenation of two generating elements [ 1
�1 1 ] of the M�obius transform for

classical capacities [8].

Let us examine several particular cases of bi-capacities.

Proposition 2 Let v be a bi-capacity of the CPT type, with v(A;B) = �1(A)��2(B). Then

its M�obius transform is given by:

m(A;Ac) = m
�1(A); 8A � N;A 6= ;

m(;; B) = m
�2(Bc); 8B ( N

m(;; N) = �1

m(A;B) = 0; 8(A;B) 2 Q(N) such that A 6= ; and B 6= A
c
:

Proof: Let us consider A 6= ;. We have

m(A;A0) =
X

A0�B0
�Ac

(�1)jB
0
nA

0
j

"X
B�A

(�1)jAnBjv(B;B0)

#
:
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X
B�A

(�1)jAnBjv(B;B0) =
X
B�A

(�1)jAnBj(�1(B)� �2(B
0))

=
X
B�A

(�1)jAnBj�1(B)� �2(B
0)
X
B�A

(�1)jAnBj

=
X
B�A

(�1)jAnBj�1(B) = m
�1(A);

where we have used (5). Putting in m(A;A0) leads to

m(A;A0) = m
�1(A)

X
A0�B0

�Ac

(�1)jB
0
nA

0
j
:

Using again (5), the sum is zero unless A0 = A
c (only one term in the sum). Hence we get

m(A;A0) =

(
m

�1(A); if A0 = A
c

0; otherwise:

Let us now take A = ;. We have:

m(;; A0) =
X

A0�B0
�N

(�1)jB
0
nA

0
j
v(;; B0)

= �
X
B0
�A0

(�1)jB
0
nA

0
j
�2(B

0):

Let us consider A0 6= N , since in this case we know already that m(;; N) = �1. We recall

that the co-M�obius transform [....] of a capacity � is de�ned by

�m�(A) =
X
B�Ac

(�1)jNnBj�(B):

We remark that m(;; A0) = (�1)jNnAj+1 �m�2(Ac). Using the fact that �m�(A) = (�1)jAj+1
m

�(A)

for any A 6= ; [...], we get �nally m(;; A) = m
�2(Ac). �

We get as immediate corollaries the expression of the M�obius transform of symmetric and

asymmetric bi-capacities. Observe in particular that for asymmetric bi-capacities v(A;B) =

�(A) � �(B), we have for any A 6= N

m(;; A) = m
�(Ac):

Applying the above result leads easily to the following one.

Proposition 3 Let v be an additive bi-capacity on Q(N). Then its M�obius transform is

non null only for the _-irreducible elements and the bottom of Q(N). Speci�cally,

m(;; ic) = �v(;; i); 8i 2 N

m(i; ic) = v(i; ;); 8i 2 N

m(;; N) = �1:

11



The de�nition of the M�obius transform permits us to introduce k-additive bi-capacities.

De�nition 6 A bi-capacity is said to be k-additive if its M�obius transform vanishes for all

elements (A;B) in Q[l](N), for l = k + 1; : : : ; n.

Equivalently, v is k-additive i� m(A;B) = 0 whenever jBj < n � k. Clearly, 1-additive

bi-capacities coincide with additive bi-capacities.

5 The Choquet and Sugeno integrals with respect to

bi-capacities

The expression of the Choquet integral w.r.t a bi-capacity has been introduced axiomatically

in [12], see also a presentation based on symmetry considerations in [7]. For any function f

on N , we denote by fi the value f(i), i 2 N .

De�nition 7 Let v be a bi-capacity and f be a real-valued function on N . The Choquet

integral of f w.r.t v is given by

Cv(f) := C�
N+

(jf j)

where �N+ is a real-valued set function on N de�ned by

�N+(C) := v(C \N
+
; C \N

�);

and N
+ := fi 2 N jfi � 0g, N� = N nN+.

Observe that we have Cv(1A;�1B) = v(A;B) for any (A;B) 2 Q(N).

Cv(f) can be rewritten as:

Cv(f) =

nX
i=1

jf�(i)j
h
v(A�(i) \N

+
; A�(i) \N

�)� v(A�(i+1) \N
+
; A�(i+1) \N

�

i
(10)

where A�(i) := f�(i); : : : ; �(n)g, and � is a permutation on N so that jf�(1)j � � � � � jf�(n)j.

The above formula is very similar to the one proposed by Greco et al. [11].

The following result shows that our de�nition encompasses the CPT model, and conse-

quently the symmetric and asymmetric Choquet integrals.

Proposition 4 If v is of the CPT type, with v(A;B) = �1(A)� �2(B), the Choquet integral

reduces to

Cv(f) =

nX
i=1

f
+
�(i)

h
�1(A�(i) \N

+)� �1(A�(i+1) \N
+)]

�

nX
i=1

f
�

�(i)

h
�2(A�(i) \N

�)� �2(A�(i+1) \N
�)]

= C�1(f
+)� C�2(f

�):

12



Proof: Using the de�nition of v, and splitting N in N
+
; N

�, (10) becomes:

Cv(f) =
X

�(i)2N+

f�(i)

h
�1(A�(i)\N

+)��2(A�(i)\N
�)��1(A�(i+1)\N

+)+�2(A�(i+1)\N
�)
i

�
X

�(i)2N�

f
�

�(i)

h
�1(A�(i) \N

+)� �2(A�(i) \N
�)� �1(A�(i+1) \N

+) + �2(A�(i+1) \N
�)
i
:

If �(i) 2 N
+, then A�(i) \ N

� = A�(i+1) \ N
�, and if �(i) 2 N

�, we have A�(i) \ N
+ =

A�(i+1) \N
+. Substituting in the above expression leads to the �rst relation. Let us denote

by �
+
; �

� the permutations on N such that f+
; f

� become non decreasing. Observe that

A�+(i) = A�(i) \N
+ and A��(i) = A�(i) \N

�, which proves the second relation. �

A similar construction can be done with the Sugeno integral. Let S�(f) denotes the

Sugeno integral of f : N �! [0; 1] w.r.t. a capacity �.

De�nition 8 Let v be a bi-capacity and f : N �! [�1; 1]. The Sugeno integral of f w.r.t v

is de�ned by

Sv(f) := S�
N+

(jf j)

with the same notations as above.

However, since �N+ can assume negative values, the usual de�nition of Sugeno integral has

to be replaced by the following one [5]

S�(f) := h
n

6
i=1

[f�(i)7 �(A�(i))]i

where f is assumed to be non negative, � is any real-valued set function such that �(;) = 0,

and � is a permutation on N such that f becomes non decreasing. Also, 6 is the symmetric

maximum, 7 the symmetric minimum de�ned by

a7 b :=

�
�(jaj ^ jbj) if sign a 6= sign b

jaj ^ jbj else,

and for any sequence a1; : : : ; an in [�1; 1], the expression h
n

6
i=1

aii is a shorthand for

(
n

6
i=1

a
+
i

)6(�
n

6
i=1

a
�

i
).

Then, the Sugeno integral for bi-capacities becomes

Sv(f) =h
n

6
i=1

h
jf�(i)j7 v(A�(i) \N

+
; A�(i) \N

�)
i
i: (11)

Proposition 5 Let v be a bi-capacity satisfying v(A;B) = �1(A)6(��2(B)) for all (A;B) 2

Q(N), with �1; �2 being two normalized capacities on N (v is called a _-CPT bi-capacity).

Then the Sugeno integral reduces to

Sv(f) := S�1(f
+)6(�S�2(f

�)):
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Note that if �1 = �2 (v could then be called a _-symmetric bi-capacity), then Sv is the

symmetric Sugeno integral [5].

Proof: Denote by � a permutation on N such that jf j is non-decreasing. Since f+
; f

�
; �1; �2

are non negative, we have as in the proof of Prop. 4

S�1(f
+) =

n_
i=1

h
f
+
�(i)

^ �1(A�(i) \N
+)
i

S�2(f
�) =

n_
i=1

h
f
�

�(i)
^ �2(A�(i) \N

�)
i
:

Using the de�nition of v, we get

Sv(f) = h
n

6
i=1

h
jf�(i)j7[�1(A�(i) \N

+)6(��2(A�(i) \N
�))]

i
i:

Due to the de�nition of h�i, we have to show that if S�1(f
+) is larger (resp. smaller) than

S�2(f
�), then the maximum of positive terms is equal to S�1(f

+) and is larger in absolute

value than the maximum of negative terms (resp. the maximum of absolute value of negative

terms is equal to S�2(f
�) and is larger in absolute value than the maximum of positive terms).

Let us consider �(i) 2 N
+. Two cases can happen.

� if �1(A�(i)\N
+) > �2(A�(i)\N

�), then the corresponding term reduces to f+
�(i)
7 �1(A�(i)\

N
+). This term is identical to the ith term in S�1(f

+).

� if not, the ith term in Sv(f) reduces to �f+
�(i)
7 �2(A�(i) \ N

�). Due to monotonicity

of �1, this will be also the case for all subsequent indices �(i+ 1); : : : �(i+ k), provided

they belong to N
+. Moreover, assuming �(i + k + 1) 2 N

�, we have

jf�(i+k+1)j7
h
�1(A�(i+k+1) \N

+)6(��2(A�(i+k+1) \N
�))
i

= �jf�(i+k+1)j7 �2(A�(i+k+1) \N
�)

� jf�(j)j7 �2(A�(j) \N
�| {z }

A�(i+k+1)\N
�

); 8j = i; : : : ; i + k:

Hence, in the negative part of Sv(f), the term in �(i+ k + 1) remains, while all terms

in �(i); : : : ; �(i + k) are cancelled, and it coincides with the term in S�2(f
�). On the

other hand, in S�1(f
+)6(�S�2(f

�)), the term in �(i) in S�1(f
+) is smaller than the

term in �(i + k + 1) of S�2(f
�), so that the term in �(i) cannot be the result of the

computation, and thus it can be discarded from S�1(f
+).

A similar reasoning can be done with �(i) 2 N
�. �

The following result expresses the Choquet integral in terms of the M�obius transform.
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Proposition 6 For any bi-capacity v, any real valued function f on N ,

Cv(f) =
X
B�N

m(;; B)
� ^
i2Bc

\N�

fi

�
+

X
(A;B)2Q(N)

A6=;

m(A;B)
h� ^

i2(A[B)c\N�

fi +
^
i2A

fi

�
_ 0
i

with the convention ^;fi := 0.

The proof is based on the following result.

Lemma 1 For any real valued function f on N , the Choquet integral of f w.r.t. a bi-

unanimity game u(A;B) (see (14)) is given by:

Cu(A;B)
(f) =

8>>>><
>>>>:

0; if (A;B) = (;; N)

(
V

i2Bc fi) ^ 0; if (A;B) = (;; B)

(
V

i2A
fi) _ 0; if (A;B) = (A;Ac); A 6= ;

(
V

i2(A[B)c\N� fi +
V

i2A
fi) _ 0 ; otherwise:

(12)

Proof: Using (10), we get:

Cu(A;B)
(f) =

nX
i=1

jf�(i)j
h
u(A;B)(A�(i) \N

+
; A�(i) \N

�)� u(A;B)(A�(i+1) \N
+
; A�(i+1) \N

�)
i

with the above de�ned notations. For a given i 2 N , the di�erence into brackets is non zero

only in the following cases: the left term is 0 and the second one is equal to 1 (case 1i), or the

converse (case 2i). Case 1i happens if and only if A�(i+1) \N
+ � A and A�(i+1) \N

� � B,

and either A�(i)\N
+ 6� A or A�(i) \N

� 6� B. Observing that the 3d condition cannot occur

if the 1st holds, this amounts to:

Case 1i ,

8><
>:

(�i) �(i) 2 B
c \N

�

(�i) A�(i) \N
+ � A

(
i) A�(i+1) \N
� � B:

Proceeding similarly with case 2i, we get:

Case 2i ,

8><
>:

(�0
i
) �(i) 2 A \N

+

(�i) A�(i) \N
+ � A

(
i) A�(i+1) \N
� � B:

We remark that only the �rst conditions di�er.

Let us suppose that (A;B) = (;; N). Then, for any i 2 N , neither case 1i nor case 2i
can happen, since conditions (�i), (�0

i
) cannot hold. Hence Cu(;;N)

(f) = 0. This proves the

�rst line in (12).

Let us suppose (A;B) = (;; B), B 6= N . Then for any i 2 N , case 2i can never occur

since condition (�0
i
) is not ful�lled, and condition (�i) is always ful�lled. If Bc \ N

� 6= ;,
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there is at least one i such that both (�i) and (
i) are ful�lled, namely �(i) 2 B
c \ N

�

such that jf�(i)j is maximum (this forces �(i+ 1) to be either in N
+ or in B). Hence we get

Cu(;;B)
(f) = ^i2Bcfi under B

c \ N
� 6= ;, and 0 otherwise. This proves the second line of

(12).

Let us suppose (A;B) = (A;Ac). If condition �i holds for some i, then we have A � N
+.

For any i 2 N , case 1i cannot occur since �(i) 2 A\N� by condition �i, so that by condition

�i, �(i) 2 N
+, which contradicts condition �i. Any �(i) 2 A ful�lls conditions �0

i
and 
i,

while ful�lling also condition �i imposes to choose �(i) 2 A such that f�(i) is minimum.

Hence, under these conditions we get Cu(A;Ac)(f) = ^i2Afi. This proves the third line of (12).

Let us consider the general case, with A 6= ;; Bc. Let us suppose that case 1i occurs

for some i 2 N . Then necessarily, A � N
+ by condition �i, �(i) 2 (A [ B)c \ N

� 6= ;

(conditions �i, �i), and moreover �(i) is such that jf�(i)j is maximum on (A[B)c \N� and

jf�(i)j < ^j2Af�(j) (13)

(conditions �i, 
i). Under the assumption that case 1i holds, let us show that case 2j must

occur for some j. Since ; 6= A � N
+, condition �

0

j
holds for some j. For any such j, j > i

by (13). Now, condition �j imposes to choose j such that f�(j) is minimum in A \ N
+. j

being such de�ned, let us show that 
j holds. Suppose it is not the case. This means that

there exists j 0 such that �(j 0) 2 A�(j+1)\N
� and �(j 0) 62 B. Since A � N

+, this means that

�(j 0) 2 (A [ B)c \ N
�. However, i < j < j

0, so that jf�(j0)j > jf�(i)j, which contradicts the

de�nition of �(i). The reverse result can be shown as well, so that either both cases hold or

both fail to hold. If both hold, Cu(A;B)
(f) = ^i2(A[B)c\N�fi + ^i2Afi, which is � 0 by (13).

This proves the last line of (12). �

Using the above lemma, the proof of Prop. 6 is immediate considering Eq. (15) and

convention ^; = 0.

6 The Shapley value and interaction indices

We consider now bi-capacities as bi-cooperative games, as introduced by Bilbao et al. [...].

Their de�nition coincide with our de�nition of bi-capacities. An example of bi-cooperative

game is the one of ternary voting games as proposed by Felsenthal and Machover [...], where

the value of v is limited to f�1; 1g. In ternary games, v(S; T ) for any (S; T ) 2 Q(N) is

interpreted as the result of voting (+1: accepted, -1: rejected) when S is the set of voters

voting in favor and T the set of voters voting against. N n S [ T is the set of abstainers.

For (general) bi-cooperative games, one can keep the same kind of interpretation: v(S; T ) is

the worth of the coalition S when T is the opposite coalition, and N n S [ T is the set of

indi�erent (indecise) players. [....to be modi�ed....]

An important concept in game theory is the Shapley value [14] and other related indices

(e.g. Banzhaf index, probabilistic values), as well as their generalizations as interaction

indices.
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6.1 Bi-unanimity games

A direct transposition of the notion of unanimity game leads to the following. Let (S; S 0) in

Q(N). The bi-unanimity game centered on (S; S 0) is de�ned by:

u(S;S0)(T; T
0) =

(
1; if T � S and T

0 � S
0

0; otherwise:
(14)

It is easy to see by (9) that the M�obius transform of u(S;S0) is

m
u(S;S0)(T; T 0) =

(
1; if (T; T 0) = (S; S 0)

0; otherwise:

Hence, as in the classical case, the set of all bi-unanimity games is a basis for bi-capacities:

v(T; T 0) =
X

(S;S0)2Q(N)

m(S; S 0)u(S;S0)(T; T
0): (15)

Remark that u(S;S0) is not a normalized bi-capacity since u(S;S0)(;; N) 6= �1.

6.2 Derivatives of bi-capacities

We extend the notion of derivative of a set function to bi-cooperative games (in fact to any

function on Q(N)). As bi-cooperative games are de�ned on Q(N), so should be the variables

used in derivation. For any i 2 N , the left-derivative with respect to i of v at point (S; T )

is given by:

�i;;v(S; T ) := v(S [ i; T )� v(S; T ); 8(S; T ) 2 Q(N n i): (16)

Similarly, the right-derivative is given by:

�;;iv(S; T ) := v(S; T )� v(S; T [ i); 8(S; T ) 2 Q(N n i): (17)

The monotonicity of v entails that the left derivative is non negative, while the right deriva-

tive is non positive. One can also introduce the derivative w.r.t. i by

�iv(S; T ) := �i;;v(S; T ) + �;;iv(S; T ) = v(S [ i; T )� v(S; T [ i): (18)

Left and right derivatives permit to de�ne in general the derivative with respect to any

element (;; ;) 6= (S; T ) in Q(N) by the recursive relation:

�S;Tv(K;L) := �i;;(�Sni;Tv(K;L)) = �;;i(�S;Tniv(K;L)); 8(K;L) 2 Q(N n (S [ T )): (19)

We have for example

�i;jv(K;L) = v(K [ i; L)� v(K [ i; L [ j)� v(K;L) + v(K;L [ j)

�ij;;v(K;L) = v(K [ ij; L)� v(K [ i; L)� v(K [ j; L) + v(K;L):
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The general expression for the (S; T )-derivative is given by:

�S;Tv(K;L) =
X
S
0
�S

T
0
�T

(�1)(s�s
0)�t0

v(K [ S
0
; L [ T

0); 8(K;L) 2 Q(N n (S [ T )): (20)

As before, we introduce the derivative w.r.t. S for any S � N

�Sv(K;L) := �S;;v(K;L) + �;;Sv(K;L):

We express the derivative in terms of the M�obius transform. The starting point is the

following.

Lemma 2 For any i 2 N and any (S; T ) 2 Q(N n i),

�i;;v(S; T ) =
X

(S0;T 0)2[(i;ic);(S[i;T )]

m(S 0; T 0) (21)

�;;iv(S; T ) =
X

(S0;T 0)2[(;;ic);(S;T )]

m(S 0; T 0) (22)

�iv(S; T ) =
X

(S0;T 0)2[(;;ic);(S[i;T )]

m(S 0; T 0): (23)

Proof: Let us show (21). For any (S; T ) 2 Q(N n i),

�i;;v(S; T ) =v(S [ i; T )� v(S; T )

=
X

(S0;T 0)�(S[i;T )

m(S 0; T 0)�
X

(S0;T 0)�(S;T )

m(S 0; T 0)

=
X

(S0;T 0)�(S;T )

m(S 0 [ i; T
0):

On the other hand,

[(i; ic); (S [ i; T )] =f(S 0; T 0) 2 Q(N)ji 2 S
0 � S [ i; T � T

0 � i
cg

=f(S 0 [ i; T
0) 2 Q(N)jS 0 � S; T

0 � Tg

hence the result. Similarly, we have

�;;iv(S; T ) =v(S; T )� v(S; T [ i)

=
X

(S0;T 0)�(S;T )

m(S 0; T 0)�
X

(S0;T 0)�(S;T[i)

m(S 0; T 0)

=
X

S0�S;T 0�T;i62T 0

m(S 0; T 0) =
X

(S0;T 0)2[(;;ic);(S;T )]

m(S 0; T 0):

Eq. (23) follows immediately since [(i; ic); (S [ i; T )] \ [(;; ic); (S; T )] = ;. �

By induction, one can show the following general result.
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Proposition 7 For any (;; ;) 6= (S; T ) in Q(N),

�S;Tv(K;L) =
X

(S0;T 0)2[
W

i2S
(i;ic)_

W

j2T
(;;jc);(S[K;L)]

m(S 0; T 0); 8(K;L) 2 Q(N n (S [ T )) (24)

�Sv(K;L) =
X

(S0;T 0)2[
W

i2S
(i;ic);(S[K;L)]

m(S 0; T 0) +
X

(S0;T 0)2[
W

j2S
(;;jc);(K;L)]

m(S 0; T 0)

=
X
C�K

D�Nn(S[L)

h
m(S [ C;L [D) + m(C;L [D)

i
; 8(K;L) 2 Q(N n S): (25)

Proof: We prove (24) by induction over (S; T ). The result holds for (i; ;) and (;; i) due to

Lemma 2. We suppose that the above formula holds up to a given cardinality of S and T .

Let us compute �S[k;Tv(K;L), for some k 2 N n(S[T ), and any (K;L) 2 Q(N n(S[T [k)).

As a preliminary remark, note that_
i2S

(i; ic) _
_
j2T

(;; jc) = (S;N n (S [ T )):

We have

�S[k;Tv(K;L) = �(k;;)(�S;Tv(K;L)) = �S;Tv(K [ k; L)� �S;Tv(K;L)

=
h X
(S0;T 0)2[(S;Nn(S[T ));(S[K[k;L)]

m(S 0; T 0)�
X

(S0;T 0)2[(S;Nn(S[T ));(S[K;L)]

m(S 0; T 0)
i

=
h X

S�S
0
�S[K[k

L�T
0
�Nn(S[T )

m(S 0; T 0)�
X

S�S
0
�S[K

L�T
0
�Nn(S[T )

m(S 0; T 0)
i

=
X

S[k�S
0
�S[K[k

L�T
0
�Nn(S[T[k)

m(S 0; T 0)

=
X

(S0;T 0)2[(S[k;Nn(S[T[k);(S[K[k;L)]

m(S 0; T 0)

=
X

(S0;T 0)2[
W

i2S[k
(i;ic)_

W

j2T
(;;jc);(S[K[k;L)]

m(S 0; T 0)

which is the desired result. The case of �S;T[kv(K;L) works similarly. Lastly, Eq. (25)

comes directly from (24). �

Remark that for any (S; T ) 2 Q(N),

�S;Tv(;; N n (S [ T )) = m(S;N n (S [ T ))

m(S; T ) = �S;Nn(T[S)v(;; T ):
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6.3 The Shapley value of bi-cooperative games

The Shapley value for bi-cooperative games can be de�ned axiomatically by introducing

axioms which are straightforward extensions of the original axioms, plus an additional sym-

metry axiom [......detail if necessary.......]. For any player i 2 N , it is shown in [...] that the

Shapley value of i for v is:

�
v(i) =

X
S�Nni

(n� s� 1)!s!

n!

h
v(S [ i; N n (S [ i))� v(S;N n S)

i
: (26)

Note that the term into brackets is simply �iv(S;N n (S[ i)), so that the Shapley value uses

the value of v only at vertices.

It is immediate to see that if v is of the CPT type, i.e. v(S; T ) = �1(S)� �2(T ), then

�
v(i) = �

�1(i) + �
�2(i); 8i 2 N;

where ��1; ��2 are the (classical) Shapley values of �1 and �2. Recalling that for any game �,

�
�(i) = �

�(i) for any i 2 N , we get �v(i) = 2��(i) for any symmetric or asymmetric game

v. If v is an additive bi-capacity, we have �v(i) = v(i; ;)� v(;; i).

The following expression gives the Shapley value in terms of the M�obius transform.

Proposition 8 Let v be a bi-cooperative game on N . For any i 2 N ,

�
v(i) =

X
(S;S0)�(;;ic)

1

n� s0
m(S; S 0):

We need the following lemma.

Lemma 3
kX
i=0

(n� i� 1)!k!

n!(k � i)!
=

1

n� k
:

Proof:

kX
i=0

(n� i� 1)!k!

n!(k � i)!
=

1

n
+

k

n(n� 1)
+ � � �+

k!

n(n� 1) � � � (n� k)

=
(n� 1) � � � (n� k) + k(n� 2) � � � (n� k) + k(k � 1)(n� 3) � � � (n� k) + � � �+ k!

n(n� 1) � � � (n� k)
:

It suÆces to show that the numerator is n(n�1) � � � (n�k+1). Summing the last two terms
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of the numerator, then the last three terms and so on, we get successively:

k(k � 1) � � �2(n� k) + k! = k � � � 2(n� k + 1)

k � � � 3(n� k + 1)(n� k) + k � � � 2(n� k + 1) = k � � � 3(n� k + 1)(n� k + 2)

...

k � � � i(n� k + i� 2) � � � (n� k)+

k � � � (i� 1)(n� k + i� 2) � � � (n� k + 1) = k � � � i(n� k + i� 2) � � �

� � � (n� k + 1)(n� k + i� 1)

...

k(n� 2) � � � (n� k) + k(k � 1)(n� 2) � � � (n� k + 1) = k(n� 2) � � � (n� k + 1)(n� 1)

(n� 1) � � � (n� k) + k(n� 1) � � � (n� k + 1) = (n� 1) � � � (n� k + 1)n:

�

We can show now Prop. 8.

Proof: We have by Lemma 2

�iv(S;N n (S [ i)) =
X

(S0;T 0)2[(;;ic);(S[i;Nn(S[i))]

m(S 0; T 0):

Observe that for S = N n i, the interval becomes " (;; ic), which contains each interval

[(;; ic); (S [ i; N n (S [ i))] when S � N n i. Hence,

�
v(i) =

X
(S0;T 0)2"(;;ic)

m(S 0; T 0)
X
S�Nni

S[i�S
0

Nn(S[i)�T 0

(n� s� 1)!s!

n!
:

In the second summation, condition S [ i � S
0 is redundant. Also, due to the symmetry of

the combinatorial factor, it is equivalent to use S or N n (S [ i) as variable. So the second

summation can be rewritten as

X
S�T 0

(n� s� 1)!s!

n!
=

t
0X

s=0

(n� s� 1)!s!

n!

�
t
0

s

�

=

t
0X

s=0

(n� s� 1)!t0!

n!(t0 � s)!
:

Using Lemma 3, the result is proven. �

6.4 The interaction index

As in [10], the interaction index can be obtained from the Shapley value by a recursion

formula. We �rst introduce necessary notions. Let v be a bi-cooperative game on N , and let
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; 6= K � N . The restricted game v
NnK is the game v restricted to players in N nK, hence

v
NnK(S; T ) = v(S; T ) for any (S; T ) 2 Q(N n K), and is not de�ned outside. The reduced

game v
[K] is the game where all players in K are considered as a single player denoted [K],

i.e. the set of players is then N[K] := (N nK) [ f[K]g. The reduced game is de�ned by

v
[K](S; T ) := v(�[K](S); �[K](T ))

for any (S; T ) 2 Q(N[K]), and �[K] : N[K] �! N is de�ned by

�[K](S) :=

(
S; if [K] 62 S

(S n [K]) [K; otherwise.

Let us denote by I
v(S) the interaction index for coalition S 6= ; in game v. The recursion

formula is [10]

I
v(S) = I

v
[S]

([S])�
X

K�S;K 6=;;S

I
v
NnK

(S nK):

It can be shown that the interaction index writes

I
v(S) =

X
T�NnS

(n� s� t)!t!

(n� s + 1)!

"X
L�S

(�1)s�lv(L [ T;N n (T [ S))

�
X
L�S

(�1)s�lv(T;N n (L [ T ))

#
:

Observe that this may be written also

I
v(S) =

X
T�NnS

(n� s� t)!t!

(n� s + 1)!
�Sv(T;N n (S [ T )):

Proposition 9 Let v be a bi-cooperative game on N . For any S � N ,

I
v(S) =

X
(S0;T 0)�

W

i2S
(i;ic)

1

n� t0 � s + 1
m(S 0; T 0) +

X
(S0;T 0)2Q(NnS)

1

n� t0 � s + 1
m(S 0; T 0):

Proof: We have by Prop. 7 for any T � N n S

�Sv(T;Nn(S[T )) =
X

(S0;T 0)2[(S;NnS);(S[T;Nn(S[T ))]

m(S 0; T 0)+
X

(S0;T 0)2[(;;NnS);(T;Nn(S[T ))]

m(S 0; T 0):

Let us study the �rst term. Observe that for T = N n S, the interval becomes " (S;N n S),

which contains all intervals [(S;N n S); (S [ T;N n (S [ T )]. Hence

X
T�NnS

(n� s� t)!t!

(n� s + 1)!

X
(S0;T 0)2[(S;NnS);(S[T;Nn(S[T ))]

m(S 0; T 0)

=
X

(S0;T 0)2"(S;NnS)

m(S 0; T 0)
X

T�NnS

S[T�S
0

Nn(S[T )�T 0

(n� s� t)!t!

(n� s + 1)!
:
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Observe that in the second summation, condition S [ T � S
0 on T is redundant. Also, due

to the symmetry of the combinatorial factor, we can interchange T with N n (S [T ). So the

second summation can be rewritten as

X
T�T 0

(n� s� t)!t!

(n� s + 1)!
=

t
0X

t=0

�
t
0

t

�
(n� s� t)!t!

(n� s + 1)!

=

t
0X

t=0

(n� s� t)!t0!

(t0 � t)!(n� s + 1)!

=
1

n� s� t0 + 1

by using Lemma 3.

In the second term, for T = N nS, the interval becomes [(;; N nS); (N nS; ;)] = Q(N nS).

The rest works similarly. �

Note: the above proof will be subsumed by the proof for bi-interaction indices,

more clearly written.

This expression shows that if v is k-additive, then I
v(S) = 0 for any S of more than k

elements, and for any S of exactly k elements, Iv(S) = m(S;N n S) + m(;; N n S).

Proposition 10 If v is of the CPT type, with v(S; T ) = �1(S)� �2(T ), then

I
v(S) = I

�1(S) + I
�2(S);

where I
�i is the (classical) interaction index of �i. Since I

�i(S) = (�1)s+1
I
�i(S), we have

I
v(S) = 0 when s is even and v is asymmetric.

Proof: Using Prop. 2 and expression of classical interaction w.r.t. the M�obius transforms

of �1 and �2, we have

I
v(S) =

X
S0�S

1

s0 � s + 1
m(S 0; N n S 0) +

X
T 0�NnS

1

n� t0 � s + 1
m(;; T 0)

=
X
S0�S

1

s0 � s + 1
m

�1(S 0) +
X

T 0�NnS

1

n� t0 � s + 1
m

�2(N n T 0)

= I
�1(S) +

X
T 00�NnS

1

t00 � s + 1
m

�2(T 00)

= I
�1(S) + I

�2(S):

�
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6.5 The bi-interaction index

Since bi-cooperative games are de�ned on Q(N), the interaction index should be de�ned for

all coalitions in Q(N). The most natural de�nition seems to use the derivative, as for the

classical case. We propose the following

De�nition 9 Let (S; T ) 2 Q(N). The bi-interaction index w.r.t (S; T ) is de�ned by:

I
v(S; T ) :=

X
K�Nn(S[T )

(n� s� t� k)!k!

(n� s� t + 1)!
�S;Tv(K;N n (K [ S [ T )):

A �rst observation is that for any S � N

I
v(S) = I

v(S; ;) + I
v(;; S):

Indeed,

I
v(S; ;) =

X
K�NnS

(n� s� k)!k!

(n� s + 1)!
�S;;v(K;N n (K [ S))

I
v(;; S) =

X
K�NnS

(n� s� k)!k!

(n� s + 1)!
�;;Sv(K;N n (K [ S))

and since �Sv = �S;;v + �;;Sv, the result holds.

This gives immediately X
i2N

I
v(i; ;)�

X
i2N

I
v(;; i) = 2 (27)

since
P

i2N
�
v(i) = v(N; ;)� v(;; N).

Proposition 11 Let v be a bi-cooperative game on N . For any (S; T ) � Q(N),

I
v(S; T ) =

X
(S0;T 0)2"(

W

i2S
(i;ic)_

W

j2T
(;;jc))\Q(NnT )

1

n� s� t� t0 + 1
m(S 0; T 0)

=
X

(S0;T 0)2[(S;Nn(S[T ));(NnT;;)]

1

n� s� t� t0 + 1
m(S 0; T 0):

Proof: By Prop. 7, we have

�S;Tv(K;N n (K [ S [ T )) =
X

(S0T 0)2[(S;N n (S [ T )); (S [K;N n (K [ S [ T ))]| {z }
S�S

0
�S[K

Nn(K[S[T )�T 0�Nn(S[T )

S
0
\T

0=;

m(S 0; T 0):

24



When K = N n (S [ T ), the interval becomes [(S;N n (S [ T )); (N n T; ;)], or equivalently

" (
W
i2S

(i; ic)_
W
j2T

(;; jc))\Q(N nT ). This interval contains all intervals [(S;N n (S [T )); (S [

K;N n (K [ S [ T ))] since S [K � N n T . Hence,

X
K�Nn(S[T )

(n� s� t� k)!k!

(n� s� t + 1)!
�S;Tv(K;N n (K [ S [ T ))

=
X

(S0;T 0)2[(S;Nn(S[T ));(NnT;;)]

m(S 0; T 0)
X

K�Nn(S[T )
S[K�S

0

Nn(K[S[T )�T 0

(n� s� t� k)!k!

(n� s� t + 1)!
:

Observe that in the second summation, condition S [K � S
0 is redundant. Indeed, we have

N n (K [ S [ T ) � T
0 , K [ S [ T � N n T 0. Since N n T 0 � S

0 and T \ S
0 = ;, we deduce

S [K � S
0.

Using this fact and letting K
0 := N n (K [ S [ T ), the second summation becomes:

X
Nn(K[S[T )�T 0

(n� s� t� k)!k!

(n� s� t + 1)!
=
X
K0
�T 0

k
0!(n� k

0 � s� t)!

(n� s� t + 1)!

=

t
0X

k0=0

�
t
0

k0

�
k
0!(n� k

0 � s� t)!

(n� s� t + 1)!

=

t
0X

k0=0

t
0!(n� k

0 � s� t)!

(n� s� t + 1)!(t0 � k0)!

=
1

n� s� t� t0 + 1

using Lemma 3. �

The above proposition contains Prop. 9 and Prop. 8, as it can be checked.

We examine the case of k-additive bi-capacities and CPT-type bi-capacities.

Proposition 12 (i) If v is a k-additive bi-capacity, then

I
v(S; T ) =0; 8(S; T ) 2 Q(N) such that jS [ T j > k (28)

I
v(S; T ) =m(S;N n (S [ T )); 8(S; T ) 2 Q(N) such that jS [ T j = k: (29)

(ii) If v is of CPT type, then I
v

S;T
= 0 unless S = ; or T = ;.

Proof: (i) v is k-additive i� m(S 0; T 0) = 0 for all T 0 such that t0 < n� k. Using Prop. 11,

we see that in the summation, T 0 � N n (S [T ). Consequently, if jS [T j > k, m(S 0; T 0) will

be always 0, and so I
v(S; T ) = 0.

Now, if jS [ T j = k, only T
0 = N n (S [ T ) gives a non zero term. For any T

0, we have

S
0 � N n T 0. Since we have also the condition S � S

0 � N n T , the only solution is S 0 = S,

hence the result.
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(ii) By Prop. 2, we know that m(S 0; T 0) 6= 0 i� S
0 = ; or S 0 = N n T 0. In the expression

of Iv(S; T ) of Prop. 11, the �rst condition implies S = ;, while the second implies T = ;.

�
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