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Abstract

We describe here a representation of computable real numbers and a set of algorithms for the elementary functions

associated to this representation.

A real number is represented as a sequence of �nite B-adic numbers and for each classical function (rational,

algebraic or transcendental), we describe how to produce a sequence representing the result of the application of this

function to its arguments, according to the sequences representing these arguments. For each algorithm we prove that

the resulting sequence is a valid representation of the exact real result.

This arithmetic is the �rst abritrary precision real arithmetic with mathematically proved algorithms.

R�esum�e

Nous proposons une repr�esentation des nombres r�eels calculables ainsi que des algorithmes pour les fonctions

�el�ementaires usuelles pour cette repr�esentation.

Un nombre r�eel est repr�esent�e par une suite de nombres B-adiques �nis et pour chaque fonction classique (rationnelle,

alg�ebrique ou transcendante), nous montrons comment produire une suite repr�esentant le r�esultat �a partir de suites

repr�esentant les param�etres. Pour chacun de ces algorithmes nous d�emontrons que la suite qui en r�esulte repr�esente

bien le r�esultat r�eel exact.

Cette arithm�etique est la premi�ere arithm�etique r�eelle en pr�ecision arbitraire dot�ee d'un jeu complet d'algorithmes

math�ematiquement prouv�es.
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Chapter 1

Introduction

1.1 Motivation

We try to determine here what should be an arithmetic for a modern and reliable programming language.

The exactitude of the arithmetic is clearly an essential feature of a reliable programming language, but we show

here that even a 
oating point representation with variable length, as it exists in symbolic computation softwares,

is insuÆcient. Furthermore this arithmetic gives its users some wrong ideas, as disastrous as the round-o� errors

themselves. The 
oating point arithmetic [21] is obviously not an exact arithmetic: each partial result is systematically

rounded o�, and these successive round-o� errors may lead to completely erroneous answers for ill-conditioned problems

like the computation of 1=(y � x) where x is "much greater" than 1 (for example x = 1020) and y = x + 1. For this

particular computation, a single precision 
oating point computation induces an error due to a division by zero, but an

exact computation yields a result, 1, that is furthermore exactly represented in a 
oating point arithmetic. However, in

order to handle rational or real numbers, one represents them generally with the 
oating point arithmetic supplied by

the computer with a �xed number of signi�cant digits. The programmer is usually aware of these round-o� problems,

but nevertheless, he remains con�dent of the computed results because of "intuitive properties" of the 
oating point

arithmetic. Among these pseudo-properties, one can cite:

1.. even if the result is not rigorously exact, it is certainly close to the exact result, that is to say that the round-o�

errors will be minor and in particular the order of magnitude is supposed to be preserved;

2.. a few 
oating point operations can only induce a slight inaccuracy in the computed result;

3.. if a result is computed with more digits, its accuracy will be better. More precisely, we hope that the distance

between the computed value and the real value decreases according to the number of digits in the computation.

There are now numerous examples (see [38, 39, 14], etc.) where these common ideas are trampled on:

1. In [38], Jean-Michel Muller presents a rational sequence whose theoretical limit is 6, and after 10 (resp. 20)

iterations for IEEE single (resp. double precision) the value of computed terms is always 100. The convergence

to this wrong limit is fast and stable.

The 
oating point arithmetic does not even preserve the order of magnitude of the limit. The 
oating point

terms are rapidly irrelevant, even though the computation of these terms leads to very few operations. The

speed of the convergence and the stability of the limit ensure neither the accuracy nor the order of magnitude

of the computed limit.

Any round-o� error ejects the sequence out of the repulsive basin for 6 and project it in the attractive basin for

100.

2. In [39], Jean-Michel Muller presents a sequence for which the 25-th term is about 0:04, the result is about �1014
on a pocket computer and +4� 109 on a workstation.

3. In [14], Jean-Marie Chesneaux presents a second degree equation with a double root. According to the rounding

mode, we obtain the real double root or two real roots or two complex roots.

7
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1.1.1 Discussion

These examples might be considered as very particular problems, and thus we can consider that it is necessary for

these special cases only to analyze the computation and the evolution of the precision without any modi�cation of the

arithmetic of the language.

But this analysis is so tedious that in practice the programmer ignores it.

In fact we have no easy way to recognize such problems and, furthermore, some traditional areas of 
oating point

computations such as computer graphics and scienti�c computation show such problems in their usual practice. For

example, in this second domain, algorithms produce positive de�nite matrices so a algorithm adapted to such matrices

is used, but the 
oating point computation of the matrix may produce a not positive de�nite matrix so the result of

the second algorithm is doubtful: at best it fails, it may even loop, at worst a completely wrong result is returned with

almost no way to control its correctness. In other cases (for example the crash of the �rst try of Ariane 5), 
oating

point computation fails because of a 
oating point over
ow or under
ow that the programmer didn't foresee. These

areas are much concerned with money and safety (rockets, airplanes design structures).

Yet the programmer desires reliable arithmetic results, so the correction must be ensured by the programming

language that should perform automatically a round-o� error analysis to get back a real con�dence in results obtained

with 
oating point arithmetic.

1.1.2 Solutions

What solution can we envisage to use? The most usual solution to this question is interval analysis [41, 42, 1, 18].

The computation is performed using 
oating point arithmetic and propagates during all this computation an upper

bound of the round-o� error for rational operations, according to the IEEE-754 standard, so that one obtains at the

end of the computation a 
oating point result `and an upper bound for the round-o� error on this result. Interval

arithmetic can be only twice as expensive as ordinary 
oating point computations, at least in theory. This analysis

indicates when the result is wrong. For the preceding sequences, a computation with such an arithmetic will indicate

that the upper bound for the round-o� error on this result is very big. However if we want to compute the exact result

or a result as close as we want of the exact value and not only that the result of the 
oating point computation is

completely wrong, this solution is not satisfactory.

We give here an answer to the programmer who needs reliable arithmetic results for which the correction is ensured

by the programming language and not by an arithmetic that indicates an upper bound for the distance between the

exact value and the obtained result. The programmer indicates an upper bound for the �nal round-o� error and

this bound is respected all along the computation, even if it requires a very high precision in a particular step of the

computation. In some sense, this analysis is the reciprocal analysis of what would be a complete interval analysis

(that is to say that concerns any classical elementary function).

The ML language was designed for safe programming and so should ensure safety in numerical programming. So we

implement a small prototype of an arbitrary precision library in this language according to the work described here.

1.2 History of the problem

1.2.1 Two interesting attempts

In 1972, Bill Gosper [22] described in a small internal note how to perform rational operations on continued fractions

and computes 17,000,000 terms of the continued fraction for � to discover a possible pattern.

Brent in [10] described in 1976 algorithms to compute quickly multiple-precision evaluations of elementary functions,

but he did not consider real numbers as full members of a language. He compute the image of a 
oating-point number

x (thus a rational number) by an algebraic or transcendental function f to a precision O(2�n). This work is however

interesting from a practical point of view.

1.2.2 Sequences of redundant digits

Wiedmer proposed in 1977 a solution for real number computations in [55, 56, 57]. This solution can be considered as

unbounded on-line arithmetic. However, Wiedmer proposed only an algorithm to add real numbers. These ideas were

studied again and extended by Boehm in [8, 7]. Computable real numbers are represented by an in�nite sequence of

digits in a given base B. For such a representation the digits of the results are produced "from left to right", beginning

with the most signi�cant digits, in opposition to the usual algorithms for addition and multiplication for example,
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but this technique is common for on-line arithmetic. Particularly, Avizienis in [2] and Wiedmer in [57] proved that

an addition algorithm "from left to right" implies the redundancy of the representation: for example, digits are in

the integer interval [�B + 1; B � 1] rather than the classical interval [0; B � 1]. The idea is that it is necessary to

anticipate what will be the next digits of the arguments of the addition algorithm and for example to overestimate by

one the absolute value of the sum, even if one needs to correct this trend on the next produced digit by a negative sign.

We studied this representation, described and proved algorithms for rational operations, but we did not work out so

far algorithms for transcendental functions. Perhaps the Cordic algorithms described by Lin and Sips in [33] may be

used to compute these functions. The incrementality is a natural good point for this representation: if one need some

more digits, one starts from the list of already computed digits rather than from the beginning of the computation.

However, apart from the lack of well-integrated algorithms for transcendental functions, the algorithms for rational

operations are intricate and rather ineÆcient.

1.2.3 Computable Cauchy sequences

In [8, 7], Boehm studied a more natural representation. This representation is designed for almost automatic evaluation

of round-o� errors in programs written in Fortran. In his implementation, the classical operations on 
oating point

numbers are transparently replaced by exact operations on real numbers, then some numerical tests of small size

are performed with each arithmetic, so that if a 
oating point result does not correspond to the expected value,

one can attribute this computation error either to a round-o� error if the real result is correct or to an error in the

implementation of the algorithm by the program if the real result is wrong. Boehm describes algorithms for addition

and multiplication on this representation.

Boehm developed an implementation for each of these two representations. The comparison of the running times

indicates clearly that the second one is much faster than the �rst one.

We studied this second representation and now we propose a complete and entirely proved set of algorithms for all

elementary functions. This work leads to an implementation in the Caml implementation of the ML language.

1.2.4 Continued fractions

Finally, in [51, 52, 53], Vuillemin interprets Bill Gosper's work on the continued fractions arithmetic (essentially

rational operations) [22] and represents real numbers by continued fractions, with the underlying idea that continued

fractions are the "closest" rational numbers to the real numbers. However, apart from the fact that these algorithms

are principally not proved, this representation is rather inadequate to the architecture of current computers so it is

ineÆcient. We implement a complete prototype for this representation that exhibits poor running times despite the

natural incrementality of the method.

1.2.5 And now?

We present these three representations with all details in [37]. We describe completely in this report the second

representation mentioned above. Since this work take place in 1994, we present before only the state of the art in 1994

and the later state of the art is postponed after the description of this work.

1.2.6 Plan of the report

We �rst recall the main properties of computable real numbers. We deduce from one de�nition, among the three

de�nitions of this notion, a representation of these numbers as sequence of �nite B-adic numbers and then we describe

algorithms for rational operations and transcendental functions for this representation. Finally we describe brie
y the

prototype written in Caml.
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Chapter 2

Computable real numbers

Unlike Bishop [5], Martin-L�of [35] and Stolzenberg [47], we use here the classical real analysis as the framework to

state properties of computable real numbers�, as in Rice fundamental paper [45].

In this section we will use the G�odel-Kleene representation of recursive functions as �-recursive functions [54, 17,

29, 28, 15].

2.1 De�nitions

Let us note fQ!N a recursive bijection from Q to N . We de�ne �rst the notion of recursive Cauchy sequence for

rational numbers and for intervals with rational bounds.

De�nition 1 (Recursive Cauchy sequence)

1.. A sequence of rational numbers (qn)n2N is called recursively enumerable if the function n 7! fQ!N (qn) is

recursive.

2.. A sequence of intervals with rational bounds (In = [in; sn])n2N is called recursively enumerable if the sequences

(in)n2N and (sn)n2N are recursively enumerable sequences of rational numbers.

3.. A sequence of rational numbers (qn)n2N is called a recursive Cauchy sequence if it is recursively enumerable and

there exists a recursive function g, the convergence function of the sequence, such that for any strictly positive

integer N and all pair of integers n and m with n � m � g(N), we have:

jqn � qmj < 1

N
:

We can now give several de�nitions of the notion of computable real numbers.

De�nition 2 (Computable real numbers, �rst de�nition)

A real number r is a computable real number if and only if there exists a recursively enumerable sequence (In =

[in; sn])n2N of nested intervals with rational bounds, enclosing r and the sequence of the lengths of these intervals

(jsn � inj)n2N converges to 0.

De�nition 3 (Computable real numbers, second de�nition)

A real number is a computable real number if and only if it is the limit of a recursive Cauchy sequence of rational

numbers.

These two de�nitions lead naturally to the following property:

Property 1 These two de�nitions of the notion of computable real numbers are equivalent.

�We use here "computable real numbers as Turing did [48] rather than the expression "recursive real numbers" employed by Rice, but

these two terms are of course equivalent

11
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Proof.

Let r be a real number enclosed in any interval of a recursively enumerable sequence ([in; sn])n2N of nested intervals

with rational bounds and length decreasing to 0.

This number is the limit of a recursively enumerable sequence (in)n2N since for any n 2 N we have: 0 � r � in �
sn � in and limn!1(sn � in) = 0.

Furthermore let g be the function such that for any N 2 N we have the de�nition equality

g(N) = �n

�
(sn � in) <

1

N

�
;

this is a recursive function (unbound total � scheme total since the sequence (sn� in)n2N is decreasing to 0, according

to the classical denomination about computable functions).

Moreover g is a convergence function for the sequence (in)n2N since if n � m � g(N), we have

jin � imj � sm � im <
1

N
:

Consequently the sequence (in)n2N is a recursive Cauchy sequence and r is the limit of a recursively enumerable

sequence of rational numbers.

Reciprocally, let r be the limit of a recursive Cauchy sequence of rational numbers (rn)n2N with convergence function

g. Then we de�ne for any n 2 N , in and sn by the following equations

in = rg(n+1) �
1

n+ 1

sn = rg(n+1) +
1

n+ 1
:

The function g is recursive, hence the sequences (in)n2N and (sn)n2N are recursively enumerable.

Furthermore for any n 2 N , when taking the limit on the �rst index up to in�nity in the de�nition inequation of a

recursive Cauchy sequence, we have ��r � rg(n+1)
�� � 1

n+ 1
;

consequently r is inclosed in [in; sn] and sn � in is equal to 2=(n + 1) and �nally the length of the interval [in; sn]

converges to 0. �

We will now de�ne the related notion of �nite B-adic numbers for a given base B and deduce the notion of B-

approximable real number.

De�nition 4 (Finite B-adic number)

If B is an integer greater than or equal to 2, a rational number r is called a �nite B-adic number if there exists two

integers p and q such that r = p=Bq and q is a positive integer.

This de�nition generalizes the notion of dyadic number. We de�ne now the notion of B-approximable real number.

De�nition 5 (B-approximable real number)

A real number x is called B-approximable if there exists a recursive function g such that, for any integer N , g(N)

is a �nite B-adic number and

jx� g(N)j < 1

BN
:

This third de�nition leads naturally to the following property:

Property 2 The notions of computable real numbers and B-approximable real number are equivalent.
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Proof.

We will prove that the second de�nition of computable real numbers is equivalent to the de�nition of B-approximable

real numbers.

Let B be an integer greater than or equal to 2 and r a computable real number. Let (rn)n2N be a recursive Cauchy

sequence of rational numbers with limit equal to and h be the convergence function of this sequence. Let N be an

integer, we have for any n;m � h(2BN),

jrn � rmj < 1

2BN
:

Thus as n tends to in�nity, we have for any n � h(2BN ),

jrn � rj � 1

2BN
:

Let pn (resp. qn) be the numerator (resp. the denominator) of rn = pn=qn, we de�ne k = max(0; n� blog
B
qnc) and

we write the Euclidean division of pnB
k Bn by Bkqn: pnB

k Bn = Bkqnpdn + prn with 0 � prn < jBkqnj and then we

obtain ����pnqn �
pdn

Bn

���� =
����pnBk

qnBk
� pdn

Bn

���� =
����(pnBk)Bn � pdn(qnB

k)

Bn(Bkqn)

���� = 1

Bn

prn

jBkqnj
<

1

Bn

and if n � max(h(2BN ); N + 1), then ����pdnBn
� r

���� < 1

2BN
+

1

BN+1
� 1

BN
:

We construct the rational number xn = pdn=B
n as a �nite B-adic number. Furthermore the function n 7! pdk=B

k

with k = max(h(2Bn); n+ 1) is recursive thus r is a B-approximable real number.

Reciprocally, if r is a B-approximable real number, let us prove that r is a computable real number. let g be the

recursive function associated to r. We de�ne, for any integer N , h(N) = dlog
B
N + 1e. The function de�ned in this

way is a recursive one (unlimited total � scheme) and we have for any strictly positive integer N and any n;m � h(N),

jg(n)� g(m)j � jg(n)� rj+ jr � g(m)j � 1

Bn
+

1

Bm
<

2

B(N + 1)
� 1

N
:

The sequence (g(n))
n2N converges to r by de�nition thus r is a computable real number. �

And now a last de�nition that will be useful afterwards.

De�nition 6 (Recursively enumerable sequence of real numbers)

A sequence (xn)n2N of computable real numbers is called recursively enumerable if there exists two recursive functions

g and h such that (g(n; k))
k2N is a recursive Cauchy sequence of rational numbers that converges to xn as k tends to

in�nity, with k 7! h(n; k) as convergence function.

2.2 Properties of R

We denote up to the end of this section by R (resp. C) the set of computable real (resp. complex) numbers and as

usual by R (resp. C ) the set of real (resp. complex) numbers.

The set R has the following properties:

2.2.1 Algebraic properties

Theorem 3

1.. The set R with the addition and the multiplication of R is an Archimedean commutative �eld.

2.. The set C with the addition and the multiplication of C is an algebraically closed commutative �eld.
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Figure 2.1: The case of multiplication

Proof.

First of all, R and C are respectively a subset of R and C including Q by de�nition.

Let x and y be two elements of R de�ned, according to the �rst de�nition of computable real number, by the

sequence ([in(x); sn(x)])n2N and ([in(y); sn(y)])n2N .

We have, for any n 2 N , x + y 2 [in(x) + in(y); sn(x) + sn(y)]. Moreover, the sequence ([in(x) + in(y); sn(x) +

sn(y)])n2N is a recursively enumerable sequence of nested intervals with rational bounds and the length of the n-th

interval ([in(x) + in(y); sn(x) + sn(y)]) is

j(in(x) + in(y))� (sn(x) + sn(y))j � jsn(x)� in(x)j + jsn(y)� in(y)j

so tends to 0 and x+ y is a computable real number.

We have, for any n 2 N , �x 2 [�sn(x);�in(x)]. Furthermore, the sequence ([�sn(x);�in(x)])n2N is a recursively

enumerable sequence of nested intervals with rational bounds and the length of the n-th interval ([�sn(x);�in(x)]) is
sn(x) � in(x) so tends to 0 and �x is a computable real number.

Consequently, R is a subgroup of R. From the de�nition of addition on C using addition on R, it follows immediately

that C is a subgroup of C .

We will now consider the case of multiplication. We might present a complete proof for this case, but it will be

technical and boring. We chose here to present only the idea of this proof.

If we move the origin of the coordinates from (0; 0) to (i0(x); i0(y)), we can only consider the case of sequences of

positive rational numbers (it is precisely this shift that complicates the proof even if it is natural with a geometrical

point of view). Then ([in(x)� in(y); sn(x)� sn(y)])n2N is a recursively enumerable sequence of nested intervals with

rational bounds and we interpret graphically these intervals as the surface of the juxtaposition of tree rectangles joined

in a \L" form (hatched on �gure 2.1). These juxtapositions are nested and their surface is decreasing with a null limit.

Thus these intervals are nested, with length converging to zero and xy is a computable real number.

We deduce from this that R is a subring of R. Furthermore, multiplication on C is simply de�ned using addition

and multiplication on R, thus C is a subring of C .

We will now consider the case of inversion.

Let x be a computable real number di�erent of zero, then there exists k 2 N such that for any n � k the n-th
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interval [in(x); sn(x)] does not contain 0. Thus we have

1

sn(x)
� 1

x
� 1

in(x)

thus 1=x 2 [1=sn(x); 1=in(x)]. Furthermore, the sequence ([1=sn(x); 1=in(x)])n�k is a recursively enumerable sequence

of nested intervals with rational bounds and if " is a positive real number lesser than x, then theres exists k0 2 N

such that for any n � k0, we have min(jin(x)j; jsn(x)j) � jsk0 (x)j � " > 0 et jsn(x)� in(x)j � ", thus the length of the

interval [1=sn(x); 1=in(x)] is
1

in(x)
� 1

sn(x)
� "

(jsk0 (x)j � ")2
;

thus tends to zero and 1=x is a computable real number.

We deduce from this that R is a sub�eld of R. Furthermore, inversion in C is simply de�ned using addition,

multiplication and inversion in R, thus C is a sub�eld of C .

Moreover, just as commutativity is stable by subset, R is a totally ordered �eld thus R is a totally ordered �eld.

Finally if a and b are two computable real numbers with a greater than zero, respectively represented by the sequences

of intervals ([in(a); sn(a)])n2N and ([in(b); sn(b)])n2N , then there exists an integer k such that ik(a) > 0. Let

n =

� js0(b)j
ik(a)

�
+ 1;

we have

n a � n ik(a) > js0(b)j � s0(b) � b;

and R is Archimedean.

Finally, in [45], Rice proved that C is algebraically closed by adaptation of a classical proof on C to its subset C. �

2.2.2 Topological properties

We have for computable real (complex) numbers similar results of completeness by making constructive the notion

of Cauchy sequence, that is to say, using recursive Cauchy sequences of real numbers instead of classical Cauchy

sequences. Precisely we de�ne the notion of recursively enumerable sequence of computable real (resp. complex)

numbers as follows:

De�nition 7 (Recursively enumerable sequences of computable real or complex numbers)

1.. A sequence (xn)n2N of computable real numbers is said recursively enumerable if there exists two recursive

functions g and h such that (g(n; k))
k2N is a recursive Cauchy sequence of rational numbers that tends to xn

when k tends to in�nity, with k 7! h(n; k) as convergence function.

2.. A sequence (xn)n2N of computable complex numbers is said recursively enumerable if the sequences (<(xn))n2N
and (=(xn))n2N are recursively enumerable sequences of computable real numbers.

We de�ne the notion of recursive Cauchy sequences of computable real numbers as for rational numbers. For com-

putable complex numbers, we turn absolute values into modules.

Theorem 4 The limit of any recursive Cauchy sequence of computable real numbers is a computable real number.

Proof.

Let ` and x design respectively the convergence function and the limit of a sequence (xn)n2N of computable real

numbers, then let us prove that the sequence (yn)n2N with

yn = g(n; h(n; n))

is a recursive Cauchy sequence of rational numbers with convergence function

N 7! max(`(3N); 3N)
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and limit x: let n;m � max(`(3N); 3N), then we have

jg(n; h(n; n))� g(m;h(m;m))j � jg(n; h(n; n))� xnj+ jxn � xmj+ jxm � g(m;h(m;m))j:
But n;m � `(3N), thus

jxn � xmj < 1

3N

and by de�nition of h and because n;m � 3N , we have:

jg(n; h(n; n))� xnj < 1
n
< 1

3N

jg(m;h(m;m))� xmj < 1
m

< 1
3N

thus

jg(n; h(n; n))� g(m;h(m;m))j < 1

N
;

and x is a computable real number. �

Corollary 1 The limit of any recursive Cauchy sequence of computable complex number is a computable complex

number.

2.2.3 Functions class with computable real (or complex) values

Since R is a �eld, we already know that R is closed for addition, opposite, multiplication and inverse of a number

di�erent from zero. We will now prove that in fact R is closed for any elementary function. To prove this, we �rst

establish the following lemma:

Lemma 1 Let (an)n2N be a recursively enumerable sequence of positive rational numbers decreasing to zero, the sum

of the alternated series of general term (�1)nan is a computable real number.

Proof.

Let us name

s =
X
k2N

(�1)kak

sn =

k=nX
k=0

(�1)kak;

then the sequence ([s2n+1; s2n]) is a recursively enumerable sequence of nested intervals including s with rational

bounds. The length of these nested intervals is decreasing to 0 thus s is a computable real number.

We apply it now to elementary functions. We start with complex exponential.

If x is a rational negative number, then ex is the sum of n = bjxjc rational numbers (the n �rst terms of the Taylor

series of exp: xi=i!) and the limit of an alternated series (the sign of xi=i! alternates and this term decreases to zero

from rank k to in�nity, thus the series beginning to the n + 1-th term of this series is an alternated series) with an

in�nite convergence domain thus is a computable real number. If x is a rational positive number, we have ex = 1
e�x

and e�x is a computable real number di�erent from zero so its inverse ex is also a computable real number. Finally, if

x is a computable real number, for example the limit of the recursive Cauchy sequence of rational numbers (xn)n2N ,

then exp(x) is the limit of the recursive Cauchy sequence of computable real numbers (exp(xn))n2N since exp is a

continue function and exp(x) is a computable real number according to theorem 4.

Let x be a computable real number, sinx and cosx are de�ned by an alternated series (or the opposite of an

alternated series for the sine function if x is a negative number) thus are computable real numbers.

If a+ ib is a computable complex number, then

ea+ib = ea(cos(b) + i sin(b))

sin(a+ ib) =
e�b(cos(a) + i sin(a)) � eb(cos(a)� i sin(a))

2i

cos(a+ ib) =
e�b cos(a) + i sin(a)) + eb(cos(a)� i sin(a))

2
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are also computable complex numbers. We have proved that R and C are closed for exp.

Let us now prove that R is closed for log and arctan and we will then deduce that C is closed for log too.

If x is a computable real number between 1 and 2, logx is the sum of an alternated Taylor series (in x � 1)thus is

a computable real number. If x is a real number between 2n and 2n+1, with n 2 Z, then
logx = log

� x

2n

�
+ n log(2):

But log( x

2n
) and log(2) are computable real numbers according to the preceding case and then logx is a computable

real number.

If x is a computable real number between -1 and 1, then arctan(x) is de�ned by an alternated series with absolute

value decreasing to zero thus is a computable real number (consequently � = 4 � arctan(1) is a computable real

number). If x is a computable real number greater than 1 (resp. lesser than -1) then arctan(x) = �=2� arctan(1=x)

(resp. arctan(x) = ��=2� arctan(1=x)) and 1=x is a computable real number between -1 and 1, thus arctan(x) is a

computable real number.

We deduce from this that the and the principal argument of a computable complex number di�erent of zero a+ ib,

ja+ ibj =
p
a� a+ b� b = exp

�
log(a� a+ b� b)

2

�
and

Arg(a+ ib) = 2 arctan

�
b

a+ ja+ ibj

�
are computable real numbers.

Consequently, for any computable complex number with a non null imaginary part or with a strictly positive real

part z = �ei�, log(z) = log(�) + i� is a computable complex number and C is closed for the principal determination of

log on C .

Furthermore 2i� 2 C, thus other determinations of the argument and of the logarithm of a non null computable

complex number are computable complex numbers. �

And we conclude by the following general theorem:

Theorem 5 C is closed for elementary functions.

and its corollary on R:
Corollary 2 R is closed for exp, log, (x; y) 7! xy, sin, cos, tan, sinh, cosh, tanh, arcsin, arccos, arctan, arcsinh,

arccosh, arctanh.

Proof.

An elementary function is de�ned on an open subset of the complex plane from the rational operations, the expo-

nential and the logarithm functions. But C is closed for these operations and the composition of functions preserves

this property and we deduce the general result.

About its real corollary, the concerned functions map real numbers to real images thus the result is obtained by

projection on R. �

2.2.4 Cardinal of R and C

We will now prove that, even if R contains every \interesting" number, R is a strict subset of R by examination of its

cardinality.

Theorem 6 R is a denumerable subset of R and is dense in R.

Proof.

First of all, Q � R, thus R is at least denumerable and dense in R. Now let r be a computable real number

represented by the recursive Cauchy sequence (rn)n2N , we de�ne the recursive function g : N 7! N by the formula

g(n) = fQ!N (rn) and �nally the G�odel index of this function. We have build in this way an injective function from

R to N thus R is at the most a denumerable set and �nally R is a denumerable and dense subset of R. �

Corollary 3 C is a denumerable subset of C .
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Proof.

Let g be a bijection from R to N and h be a bijection from N 2 to N , then z 7! h(g(<(z)); g(=(z))) is a bijection

from C to N and C is denumerable. �

2.3 Indecidability theorems about R

Rice proved the following result:

Theorem 7 (Rice)

There exists no general algorithm to determine whether a computable real number is zero or not.

Proof (Principle of the proof ).

As a �rst point, if such an algorithm exists, then we can decide for all recursive function from N into f0; 1g if this
function is single-valued or not. As a second point, the question of the stopping of a Turing machine can be describe

by the question of the single-valuation of a recursive function from N into f0; 1g. Then since we know that the question

of the stopping of a Turing machine is undecidable, the result follows. �

We deduce from this the following results:

Corollary 4 1.. There exists no general algorithm to determine the image of a computable real number by a function

with a discontinuity at this point.

2.. There exists no general algorithm to determine if a computable real number is greater than another one.

3.. There exists no general algorithm to determine the integer part of a computable real number.

4.. There exists no general algorithm to determine if a computable real number is rational.

Proof.

If a method exists to determine the image of a computable real number by a function with a discontinuity at this

point, it will be possible to evaluate in every point the characteristic function of zero that is refuted by Rice's theorem

expressed before.

The three next properties are immediate by application of this property to boolean functions on real numbers, as

follows:

2.. gb maps any computable real number a to the boolean value a � b,

3.. g maps any computable real number r to its integer part brc,

4.. g maps any computable real number r to the boolean value r 2 Q .

�

A consequence of the third proposition of this corollary is that one cannot determine exactly the classical continued

fraction expansion or the development in a given base of any computable real number.

However, one should not attach an excessive importance to these impossibilities because according to the last

de�nition of computable real numbers, any computable real numbers may be known to a precision within B�n in a

given base B for any integer n. As far as the comparison is concerned, the following theorem establishes that if two

computable real numbers di�er, then there is an algorithm that indicate which one is the greater one and at which

rank their de�nition sequences di�er.

Property 8 Let A = (an)n2N and B = (bn)n2N be two recursive Cauchy sequences of rational numbers with distinct

respective limits a and b, then there exists an algorithm to compare a and b that terminates.
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Proof.

Since a and b are distinct, there exists k(A;B) such that ja� bj > 4=k(A;B). Let g and h be the convergence

functions respectively of the sequences (an)n2N and (bn)n2N . We have

4

k(A;B)
< ja� bj <

��a� ag(k(A;B))

��+ ��ag(k(A;B)) � bh(k(A;B))

��+ ��bh(k(A;B)) � b
�� :

But if n � g(k(A;B)) and m � h(k(A;B)), we have
��an � ag(k(A;B))

�� < 1
k(A;B)

and
��bh(k(A;B)) � bn

�� < 1
k(A;B)

. When

n tends to in�nity, we obtain
��a� ag(k(A;B))

�� � 1
k(A;B)

and
��bh(k(A;B)) � b

�� � 1
k(A;B)

, thus we deduce:

4

k(A;B)
< ja� bj � 2

k(A;B)
+
��ag(k(A;B)) � bh(k(A;B))

�� ;
and �nally

��ag(k(A;B)) � bh(k(A;B))

�� > 2
k(A;B)

.

Consequently there exists n indices such that
��ag(n) � bh(n)

�� > 2
n
, ja � ag(n)j � 1

n
and jb� bh(n)j � 1

n
. If n is such

an integer, we have a� b = a� ag(n) + ag(n) � bh(n) + bh(n) � b and

��a� ag(n)
��+ ��bh(n) � b

�� � 2

n
<
��ag(n) � bh(n)

��
thus a� b has same sign that ag(n) � bh(n). It is suÆcient to choose

n(A;B) = �m

���ag(m) � bh(m)

�� > 2

m

�

that de�nes a recursive function on the sequences A and B (total unbound � scheme). The fact that comparison

between rational numbers is recursive terminates the demonstration. �
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Chapter 3

Description of a representation of

computable real numbers with particular

sequences of B-adic numbers

According to the third de�nition, computable real numbers are considered here as B-approximable real numbers.

Precisely reals numbers will be represented by B-adic numbers and as in Boehm's work, we represent the B-adic

numbers by longer and longer integer corresponding to the numerator of B-adic approximations more and more

precise.

It is well-known that the limit of a sequence of B-adic numbers (an=B
kn)

n2N is also the limit of this other sequence

of B-adic numbers (bn=B
n)

n2N with bn =
�
anB

n�kn
�
. This second sequence is interesting because the denominator

of each B-adic is exactly B raised to its rank in the sequence so we need only the sequence of integers (bn)n2N to

represent the limit of this sequence.

Thus we approximate a computable real number r with a sequence of integers (cn)n2N such that jr�cnB�nj < B�n

for any integer n.

We present now precisely the de�nitions and general properties of this representation to prepare the algorithms for

elementary functions for this representation.

Let B be a given base, i.e. an integer greater than or equal to 2. A computable real number is represented by a

sequence of integers that satisfy the following property:

De�nition 8 (Bounds property)

Let x be a computable real number, for any integer p, the bounds property of x by p for order n is characterized by

the following inequality jx� pB�nj < B�n i.e. (p� 1)B�n < x < (p+ 1)B�n.

We authorize negative indices for practical reasons because sometimes we need only to know the order of magnitude

of a real number rather than its integer part. The bounds property apply easily to negative indices and it saves some

time during the computation. We will now express some properties of the integers that satisfy the bounds property

for a given real number and a given order.

Property 9 Let x be a computable real number, n an integer and p be an integer. Suppose that the bounds property

of x by p for order n is satis�ed. Then p = bBnxc or p = �bBn(�x)c. Furthermore if Bnx is an integer then

p = bBnxc.

Proof.

First of all, we will prove that bBnxc and �bBn(�x)c satisfy the bounds property of x for order n.

We have bBnxc � Bnx < bBnxc + 1, thus bBnxcB�n � x < (bBnxc + 1)B�n and bBnxc satis�es a fortiori the

bounds property of x for order n.

Just as for bBnxc, we have bBn(�x)c � Bn(�x) < bBn(�x)c + 1, so we deduce that bBn(�x)cB�n � (�x) <
(bBn(�x)c+1)B�n and (�bBn(�x)c� 1)B�n < x � (�bBn(�x)c)B�n and, consequently �bBn(�x)c satis�es also
the bounds property of x for order n.

Now, let p be an integer that satis�es the bounds property of x for order n, we will prove that p = bBnxc or
p = bBnxc+ 1.

21
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From bBnxcB�n � x and x < (p + 1)B�n, we deduce that bBnxc < p + 1 and by combining the inequalities

x < (bBnxc + 1)B�n and (p � 1)B�n < x, we obtain p � 1 < bBnxc + 1. Consequently p satis�es the inequality

bBnxc � p � bBnxc+ 1 that is to say that p = bBnxc or p = bBnxc+ 1. Furthermore if Bnx is not an integer, then

bBnxc + 1 = �bBn(�x)c and if Bnx is an integer bBnxc = �bBn(�x)c. But in this case bBnxc + 1 doesn't verify

the bounds property of x for order n, since the left inequality is not a strict inequality. �

The real numbers that we will consider in this section are computable real numbers x represented by sequences of

integers (xn)n2N such that the bounds property for x by xn for order n is satis�ed.

We will now de�ne the sign function before we express the following property that describes the relations between

the integers that satisfy the bounds property for x and jxj for the same order.

De�nition 9 (sign)

The function sign is de�ned from R to f�1; 0; 1g with the usual following equality:

sign(x) =

(�1 if x < 0

0 if x = 0

1 otherwise

Practically, for each non-zero real number x and for each integer n, the sign of x is the sign of each non-zero value xn
since if xn > 0, then x > (xn � 1)B�n � (1� 1)B�n = 0 and if xn < 0, then x < (xn + 1)B�n � (�1 + 1)B�n = 0.

Furthermore its computation terminates for any not null number.

Property 10 Let x be a real number represented by the sequence (xn)n2Z and n be an integer, jxnj satis�es the

bounds property of jxj for order n and if p is a positive integer that satis�es the bounds property of jxj for order n,

then the integer q de�ned by q = sign(x) � p satis�es the bounds property of x for order n.

Proof.

Let us prove that (jxnj � 1)B�n < jxj < (jxnj+ 1)B�n.

If xn � 1, then jxnj = xn and x > 0, thus jxj = x and this inequality is exactly the de�nition formula of the bounds

property of x for order n satis�ed by xn.

If xn � �1, then jxnj = �xn and x < 0, thus jxj = �x and (jxnj � 1)B�n < jxj < (jxnj + 1)B�n and �nally

(�xn � 1)B�n < �x < (�xn + 1)B�n, that is to say the de�nition formula of the bounds property of x for order n

satis�ed by xn multiplied by (�1).
Finally if xn = 0, then (jxnj � 1)B�n < jxj < (jxnj + 1)B�n that may be rewritten in �B�n < jxj < B�n that is

to say the de�nition formula of the bounds property of x for order n satis�ed by xn multiplied by the sign of x.

Let us now prove the second part of this property. According to the hypothesis, we have (p � 1)B�n < jxj <
(p+ 1)B�n.

If p is null, then we have 0 � jxj < B�n that is to say (0�1)B�n < x < (0+1)B�n and consequently q = 0 satis�es

the bounds property of x for order n.

If p is not null, then 0 � (p� 1)B�n < jxj < (p + 1)B�n and as x = sign(x) � jxj 6= 0, we have (p � 1)B�n < x <

(p+1)B�n if sign(x) = 1 and �(p+1)B�n < x < �(p� 1)B�n otherwise, that is to say (sign(x)� p� 1)B�n < x <

(sign(x)� p+ 1)B�n and q satis�es the bounds property of x for order n. �

We have also the following technical properties:

Property 11 Let x, � be two real numbers and n be an integer. If �B�n < x < (� + 1)B�n, then b�c + 1 and d�e
satisfy the bounds property of x for order n.

Proof.

If �B�n < x � �+ 1B�n, then we have

(b�c+ 1)� 1 = b�c � � < Bn x � �+ 1 � �+ 1 < b�c+ 2 = (b�c+ 1) + 1

and b�c+ 1 satis�es the bounds property of x for order n. Just as before, if �B�n � x < (� + 1)B�n, then we have

d�e � 1 < � � Bn x < �+ 1 � d�e+ 1

and d�e satis�es the bounds property of x for order n. �
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Property 12 Let x be a real number represented by the sequence (xn)n2Z, n and m be integers such that n � m,

then the integer
j xm

Bm�n

k
satis�es the bounds property of x for order n.

Proof.

We will prove this property by demonstration of each inequality of the de�nition formula of the bounds property.

According to the de�nition of x 7! bxc, we have
xm

Bm�n
� 1 <

j xm

Bm�n

k
� xm

Bm�n

thus we have �j xm

Bm�n

k
� 1
�
B�n �

� xm

Bm�n
� 1
�
B�n:

We supposed that n � m consequently �B�n � �B�m and we obtain�j xm

Bm�n

k
� 1
�
B�n � (xm � 1)B�m < x:

We will now prove the other inequality. Let ` be de�ne by x = (xm + `)B�m with �1 < ` < 1 and k is the remainder

of the Euclidean division of xm by Bm�n: xm =
�

xm

Bm�n

�
Bm�n + k and 0 � k � Bm�n � 1. Consequently we have

x =
�j xm

Bm�n

k
Bm�n + k + `

�
B�m;

that is to say

x =
j xm

Bm�n

k
B�n + (k + `)B�m:

But k + ` < Bm�n, thus

x <
�j xm

Bm�n

k
+ 1
�
B�n:

�

For eÆciency reasons, the implemented representation includes for each real number x represented by a sequence

(xn)n2Z the most precise approximation ever computed for x, xmpa(x) for order mpa(x). In this way, any approxi-

mation less precise for x may be computed by a simple shift operation on xmpa(x) rather than by a possibly complex

computation that we have in some sense already performed before:

if n � mpa(x), then we take xn =
j xmpa(x)

Bmpa(x)�n

k
:

The value of xn may slightly vary according to the mpa(x) value.

We will now de�ne the msd function that indicates the order of magnitude of a real number.

De�nition 10 (msd)

The function msd ("most signi�cant digit") is de�ned from R to Z for any real number x represented by the sequence

(xn)n2Z, by the equality msd(x) = min
n2Z

(jxnj > 1).

Practically, the function msd is recursively computed and does not terminate for zero. This function satis�es the

following properties:

Properties 13

1.. For any non-zero real number x, msd(x) exists and is unique (at the exact time of its computation, see the

remark below), with 2 �
��xmsd(x)

�� � 2B and msd(x) = �blog
B
jxjc or msd(x) = �blog

B
jxjc+ 1.

2.. For any non-zero real number x and any integer n < msd(x), we have jxnj � 1.

3.. For any non-zero real number x and any integer n � msd(x), then

Bn�msd(x) � jxnj � Bn�msd(x)(2B + 1)

and

1 �
���j xn

Bn�msd(x)

k��� � 2B + 1:
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Proof.

Let x be a not null real number, we will prove there exists an integer n such that jxnj > 1.

By de�nition of x 7! bxc, we have
Bblog

B
jxjc � jxj < Bblog

B
jxjc+1 (3.1)

but according to property (10), jx�blog
B
jxjcj satis�es the bounds property for order �blog

B
jxjc of jxj:

jx�blog
B
jxjcj � 1

B�blog
B
jxjc

< jxj < jx�blogB jxjcj+ 1

B�blog
B
jxjc

:

We combine these two inequalities and we obtain

jx�blog
B
jxjcj � 1

B�blog
B
jxjc

< Bblog
B
jxjc+1

and

Bblog
B
jxjc <

jx�blog
B
jxjcj+ 1

B�blog
B
jxjc

:

We reduce to lowest terms and obtain the following inequalities between the concerned numerators: jx�blog
B
jxjcj�1 < B

et 1 < jx�blog
B
jxjcj+ 1.

These inequalities concern integers thus we deduce that jx�blog
B
jxjcj � B and 1 � jx�blog

B
jxjcj that is to say 1 �

jx�blog
B
jxjcj � B.

Let us suppose that
��x�blog

B
jxjc

�� = 1 and prove that 1 <
��x�blog

B
jxjc+1

��.
According to the bounds property of jxj for order �blog

B
jxjc+ 1 satis�ed by jx�blog

B
jxjc+1j , we have

jx�blog
B
jxjc+1j � 1

B�blog
B
jxjc+1

< jxj < jx�blogB jxjc+1j+ 1

B�blog
B
jxjc+1

:

We combine this inequality with (3.1), we obtain

jx�blog
B
jxjc+1j � 1

B�blog
B
jxjc+1

< Bblog
B
jxjc+1

and

Bblog
B
jxjc <

jx�blog
B
jxjc+1j+ 1

B�blog
B
jxjc+1

:

We reduce to lowest term and obtain the following inequalities between the concerned numerators: jx�blog
B
jxjc+1j�1 <

B2 et B < jx�blog
B
jxjc+1j+ 1, that is to say B � jx�blog

B
jxjc+1j � B2 and a fortiori 1 < jx�blog

B
jxjc+1j since B � 2.

Since we consider the smallest n such that jxnj > 1, the result is completely determined when the computation is

performed even if it may vary according to the computed approximation of x.

We will now prove that for any n < �blog
B
jxjc, we have jxnj � 1. According to the bounds property of jxj satis�ed

by jxnj for order n, we have
jxnj � 1

Bn
< jxj

and according to (3.1), we have jxj < Bblog
B
jxjc+1. We deduce from these two inequalities that jxnj � 1 <

Bn+blog
B
jxjc+1. But, according to an hypothesis, we have n + blog

B
jxjc + 1 � 0, thus jxnj � 1 < 1 and since

this inequality concerns integers, we have jxnj � 1.

We will now prove the inequalities for
��xmsd(x)

��.
If msd(x) = �blog

B
jxjc, then we have 1 <

��xmsd(x)

�� � B.

If msd(x) = �blog
B
jxjc + 1, we have

��x�blog
B
jxjc

�� = 1, thus
��x�blog

B
jxjc

�� + 1 = 2 and according to the bounds

property of jxj for order �blog
B
jxjc satis�ed by

��x�blog
B
jxjc

��, jxj < 2Bblog
B
jxjc and

��xmsd(x)

�� � 1 < 2B, thus 2 ���xmsd(x)

�� � 2B.

The lower bound could be reach in an obvious way. The upper bound jxsmsd(x)j � 2B, may also be reach as

illustrated on the following example: let us choose x = 2� 1=(2B), x0 = 1, x1 = 2B with msd(x) = 1.

Let n be an integer such that n � msd(x).
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According to the de�nition of xmsd(x), we have���xmsd(x)

��� 1
�
Bn�msd(x)B�n < jxj < ���xmsd(x)

��+ 1
�
Bn�msd(x)B�n;

thus ���xmsd(x)

��� 1
�
Bn�msd(x) � Bnx � ���xmsd(x)

��+ 1
�
Bn�msd(x)

and ���xmsd(x)

��� 1
�
Bn�msd(x) � jxnj �

���xmsd(x)

��+ 1
�
Bn�msd(x):

But 2 �
��xmsd(x)

�� � 2B, thus Bn�msd(x) � jxnj � Bn�msd(x)(2B + 1).

We suppose that jxnj � 2BBn�msd(x)+1. We already know that this is impossible if n = msd(x) so we can consider

directly that n �msd(x) � 1. Thus we have Bmsd(x)�1 jxj > (jxnj � 1)B�(n�msd(x)+1) � 2 thus jxmsd(x)�1j � 2 that

is refuted by the minimality of msd(x). Consequently

jxnj
Bn�msd(x)

� 2B

and � jxnj
Bn�msd(x)

�
� 2B:

But we may have Bn�msd(x) � jxnj < Bn�msd(x) + 1 for n � msd(x) + 1 as illustrated in the following example: let

us choose x = 1 + 1=2B, x0 = 2, x1 = B, msd(x) = 0 and n = 1. �

Let us notice that the value of xn and of msd(x) may vary of one unit according to the value to mpa(x). However the

rather strict de�nition that we give of this function ensures, independently of the value of mpa(x), the fundamental

property we wanted to ensure, i.e. 1 <
��xmsd(x)

�� � B whatever the value of mpa(x) is when msd(x) is computed.

We present now a complete set of algorithms to compute elementary functions for this representation, using the

corresponding algorithms for rational numbers.
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Chapter 4

Algorithms for the usual elementary

functions

4.1 Introduction to algorithms for the computation of elementary func-

tions on R

We will now describe algorithms for computing elementary functions on R.
We associate to each elementary function f : Rp ! R its representation f : Rp ! R and for any computable real

x, we note x its representation.

For each elementary function f with p arguments (x1; : : : ; xp), for any integer n and for any 1 � i � p, we have

to describe to what precision ki each argument xi is supposed to be computed in a xiki approximation and give a

formula to apply to these approximations to produce f(x1; : : : ; xp)n.

After this description of the algorithm we have to establish a theorem of correction as follows:

Theorem (Correction of the algorithm for computing a function f on computable real

arguments (x1; : : : ; xp)): The sequence f(x1; : : : ; xp) is a representation of f(x1; : : : ; xp).

In other words, for any order n, f(x1; : : : ; xp)n satis�es the bounds property of f(x1; : : : ; xp). This can be also

interpreted as the fact that it is right to de�ne f(x1; : : : ; xp) as f(x1; : : : ; xp).

These algorithms are designed for any integer B � 2. In almost all algorithms we distinguish the case where B � 4

and B = 2 or 3. In fact, for B � 4 we can generally give more precise constants and to distinguish this case rather than

to adopt the constants determined by the formulas for B � 2. This should improve the eÆciency of the algorithms.

We could of course distinguish other cases for which the constant may be still smaller but we have to stop this sequence

of improvements and in fact the distinction of B � 4 is relevant according to the implementation (see section 5 below).

4.2 Algorithms for rational operations

We will now describe the representation of the image of any computable real number by an elementary function and

we begin with the heart of these algorithms: the representation of rational numbers.

4.2.1 Representation of rational numbers

Each rational number q is represented by the sequence of integers (qn)n2N such that qn is de�ned, for any integer n

by the equality:

qn = bBnqc.

Proof.

Immediate. �

27
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4.2.2 Addition of real numbers

Let x and y be two real numbers represented by the sequences (xn)n2Z and (yn)n2Z respectively, we represent the

sum of these two numbers x+ y by the sequence (x+y
n
)
n2Z such that:

x+y
n
=

�
xn+w + yn+w

Bw

�
with w =

n
1 if B � 4

2 if B = 2 or 3.

Theorem 14 (Correction of the addition algorithm)

For any integer n, x+y
n
satis�es the bounds property of x for order n.

Proof.

We will �rst consider the case B � 4. Let n be an integer. According to the de�nition of x 7! bxe, we have:

xn+w + yn+w

Bw
� 1

2
< x+y

n
� xn+w + yn+w

Bw
+

1

2

thus

x+y
n
� 1

Bn
� xn+w + yn+w � B

2

Bn+w

and

x+y
n
+ w

Bn
>

xn+w + yn+w + B

2

Bn+w

But according to the de�nition of w, we have Bw=2 � 2 and then

x+y
n
� 1

Bn
� xn+w + yn+w � 2

Bn+w
=

xn+w � 1

Bn+w
+

yn+w � 1

Bn+w

and
x+y

n
+ w

Bn
>

xn+w + yn+w + 2

Bn+w
=

xn+w + 1

Bn+w
+

yn+w + 1

Bn+w
:

According to the bounds properties of x and y for order n+ w satis�ed respectively by xn+w and yn+w respectively,

we have
xn+w � 1

Bn+w
< x <

xn+w + 1

Bn+w

and
yn+w � 1

Bn+w
< y <

yn+w + 1

Bn+w
;

and we deduce:

(x+y
n
� 1)B�n < x+ y < (x+y

n
+ 1)B�n:

�

Opposite of a real number

Let x be a real number represented by the sequence (xn)n2Z, we represent the opposite of this number �x by the

sequence (�xn)n2Z such that:

�xn = �xn:

Proof (Correction of the opposite algorithm).

The correction is obvious by symmetry of the bounds property around 0. �
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4.2.3 Multiplication of two real numbers

Let x et y be two real numbers represented by the sequences (xn)n2Z and (yn)n2Z respectively, we represent the

product of these two numbers x+ y by the sequence (x�y
n
)
n2Z such that:

x�y
n
= sign(xpx)� sign(ypy )�

�
1 + jxpx � ypy j
Bpx+py�n

�
with px = max(n�msd(y) + v; b(n+ w)=2c)
and py = max(n�msd(x) + v; b(n+ w)=2c)

and (v; w) =

8<
:
(3; 2) if B � 4

(3; 3) if B = 3

(4; 3) if B = 2
Remark.

The computation of msd(x) is restricted here by the evaluation of the maximum in expression py, that is to say that

for any integer k from 0 (beginning of the recursion in the computation of msd(x)) to n+ v�b(n+ w)=2c (maximum

value of msd(x) for which py is determined by the �rst term in the maximum expression) xk = 0, then py is determined

by the second term and we stop the computation of msd(x) and in this way multiplication by 0 terminates. This

analysis is of course identical for the evaluation of msd(y) inside the computation of px. �

Theorem 15

1.. For any integer n, we have

(x�y
n
� 1)B�n < x� y < (x�y

n
+ 1)B�n:

2.. If the computation of x and y terminates, then the computation of x� y terminates too.

Proof (Correction of the multiplication algorithm).

First of all, we remark that px + py � n � 2� (b(n+ w)=2c)� n � w � 1.

If jxpx j = 0 and jypy j = 0, then we have

Bn jx� yj < (jxpx j+ 1) (jypy j+ 1)

Bpx+py�n
� 1

Bpx+py�n
� 1

Bw�1

since px+ py �n � w� 1. According to the de�nition of w, we have 1
Bw�1 � 1 and � 1

Bn < x� y < 1
Bn . Consequently

x�y
n
= 0 satis�es the bounds property of x� y for order n.

We will now consider the last case, that is to say, if at least one of the absolute values jxpx j and jypy j is greater or
equal to 1. Because of the symmetry of the problem, we can decide, to reduce the combinatorics of this case by case

analysis, that x is concerned.

We have:
1 + jxpx ypy j � (jxpx j+ jypy j)

Bpx+py�n
< Bn jx� yj < 1 + jxpx ypy j+ (jxpx j+ jypy j)

Bpx+py�n
:

We will prove that from
jxpx j+ jypy j
Bpx+py�n

� 1

2
;

we can deduce the correction of the algorithm. Let us suppose that this property is satis�ed, then we have

1 + jxpx ypy j
Bpx+py�n

� 1

2
< Bn jx� yj < 1 + jxpx ypy j

Bpx+py�n
+

1

2
:

According to the de�nition of x 7! bxe, we have:

1 + jxpx ypy j
Bpx+py�n

� 1

2
<

�
1 + jxpx ypy j
Bpx+py�n

�
� 1 + jxpx ypy j

Bpx+py�n
+

1

2
;

thus �
1 + jxpx ypy j
Bpx+py�n

�
� 1 � 1 + jxpx ypy j

Bpx+py�n
� 1

2
< Bn jx� yj < 1 + jxpx ypy j

Bpx+py�n
+

1

2
<

�
1 + jxpx ypy j
Bpx+py�n

�
+ 1
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that is to say that �
1 + jxpx ypy j
Bpx+py�n

�
satis�es the bounds property of jx� yj for order n.
According to proposition 10,

sign(x� y)�
�
1 + jxpx ypy j
Bpx+py�n

�
satis�es the bounds property of x� y for order n.

We have to prove that

sign(x� y)�
�
1 + jxpx ypy j
Bpx+py�n

�
= sign(xpx)� sign(ypy )�

�
1 + jxpx ypy j
Bpx+py�n

�

to be able to deduce that x�y
n
satis�es the bounds property of x� y for order n.

First of all, it is clear that sign(x� y) = sign(x)� sign(y). Since jxpx j � 1, sign(x) = sign(xpx). Thus we have

sign(x� y)�
�
1 + jxpx ypy j
Bpx+py�n

�
= sign(xpx)� sign(y)�

�
1 + jxpx ypy j
Bpx+py�n

�
:

If ypy = 0, then �
1 + jxpx ypy j
Bpx+py�n

�
=

�
1

Bpx+py�n

�
= 0 = x�y

n

if jypy j > 0, sign(y) = sign(ypy ) and

sign(x� y)�
�
1 + jxpx ypy j
Bpx+py�n

�
= sign(xpx)� sign(ypy )�

�
1 + jxpx ypy j
Bpx+py�n

�
= x�y

n
:

We have now to prove that
jxpx j+ jypy j
Bpx+py�n

� 1

2
:

Since jxpx j � 2, then px � msd(x) and jxpx j � 2BBpx�msd(x).

If py � msd(y), we have in the same way jypy j � 2BBpy�msd(y) and we have the following inequality:

jxpx j+ jypy j
Bpx+py�n

� 2B

�
Bpx�msd(x) +Bpy�msd(y)

Bpx+py�n

�
= 2B

�
Bn

Bpy+msd(x)
+

Bn

Bpx+msd(y)

�
:

But py +msd(x) � n+ v and px +msd(y) � n+ v according to the de�nition of px and py, thus

jxpx j+ jypy j
Bpx+py�n

� 4B

Bv
=

4

Bv�1

According to the de�nition of v, we have
4

Bv�1
� 1

2

and the case py � msd(y) is terminated.

Finally we consider the case if py < msd(y), then we have jypy j � 1 and

jxpx j+ jypy j
Bpx+py�n

� 2BBpx�msd(x) + 1

Bpx+py�n
=

2BBn

Bpy+msd(x)
+

1

Bpx+py�n

and we obtain the inequality

2BBn

Bpy+msd(x)
+

1

Bpx+py�n
� 2B

Bv
+

1

Bw�1
=

2

Bv�1
+

1

Bw�1

As before, according to the de�nition of v and w, we have

2

Bv�1
+

1

Bw�1
� 1

2

and the proof is complete. �
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4.2.4 Inverse of a real number

Let x be a real number respectively represented by the sequence (xn)n2Z, we represent the inverse of this number 1=x

by the sequence (1=x
n
)
n2Z such that:

If n � �msd(x) then 1=x
n
= 0

else 1=x
n
=

�
Bk+n

xk + 1

�
+ 1

with k = n+ 2msd(x) + w and w =
n
1 if B � 3

2 if B = 2.

Theorem 16

1.. For any integer n, we have

(1=x
n
� 1)B�n <

1

x
< (1=x

n
+ 1)B�n:

2.. If the computation of x terminates and x is not null, then the computation of 1=x terminates.

Proof (Correction of the inverse algorithm).

Let x be a not null real number. According to the bounds property of jxj for order msd(x) satis�ed by jxmsd(x)j, we
have:

0 <
jxmsd(x)j � 1

Bmsd(x)
< jxj < jxmsd(x)j+ 1

Bmsd(x)

thus

0 <

����1x
���� < 1

jxmsd(x)j � 1
Bmsd(x) � 1�Bmsd(x);

and 0 satis�es the bounds property of 1=x for order n for any n � �msd(x).

We will now suppose that n > �msd(x), then k > msd(x) + 1 and jxkj � 1 > 0. We write the bounds property of jxj
for order k satis�ed by jxk j:

0 <
jxk j � 1

Bk
< jxj < jxkj+ 1

Bk

then we deduce that
Bk+n

jxkj+ 1
B�n <

1

jxj <
Bk+n

jxk j � 1
B�n

and �
Bk+n

jxk j+ 1

�
B�n <

1

jxj <
�

Bk+n

jxk j � 1

�
B�n:

Let us de�ne � and � as follows:

� =

�
Bk+n

jxkj+ 1

�

� =

�
Bk+n

jxkj � 1

�
:

Then the preceding inequality is �B�n < 1=jxj < �B�n.

We will now prove that 1 � � � � � 2.

We have:

0 <
Bk+n

jxkj � 1
� Bk+n

jxk j+ 1
=

2Bk+n

jxk j2 � 1
<

2Bk+n

jxkj2
�
1 +

2

jxkj2
�
:

But k > msd(x), thus jxkj � Bk�msd(x) � B and

0 <
Bk+n

jxkj � 1
� Bk+n

jxkj+ 1
< 2Bn+2msd(x)�k

�
1 +

2

B2

�
=

2

Bw

�
1 +

2

B2

�
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and according to the de�nition of w, we have �nally

0 <
Bk+n

jxk j � 1
� Bk+n

jxk j+ 1
< 1: (4.1)

Furthermore, according to the de�nition of x 7! bxc and x 7! dxe, we have:

� >
Bk+n

jxkj+ 1
� 1

and

� <
Bk+n

jxk j � 1
+ 1:

Consequently, we combine these two inequalities with the inequality 4.1 and we obtain

0 < � � � < 1 +
Bk+n

jxkj � 1
� Bk+n

jxkj+ 1
+ 1 < 3:

This inequality concerns integers so we deduce that 1 � � � � � 2.

Consequently �B�n < 1=jxj < (�+2)B�n and (� � 2)B�n < 1=jxj < �B�n, thus �+1 and � � 1 satisfy the bounds

property of 1=jxj for order n. We deduce from property 10 that sign(x) � (� + 1) and sign(x) � (� � 1) satisfy the

bounds property of 1=x for order n. If x > 0, then sign(x) = 1 and

�+ 1 =

�
Bk+n

xk + 1

�
+ 1;

thus sign(x)� (� + 1) = 1=x
n
. On the other hand, if x < 0, then sign(x) = �1 and

� � 1 =

�
Bk+n

�xk � 1

�
� 1;

thus sign(x)� (� � 1) = 1=x
n
also. Finally 1=x

n
in both cases satis�es the bounds property of 1=x for order n. �

4.3 Algorithms for algebraic or transcendental functions

4.3.1 General idea of these algorithms

For the computation of any algebraic or transcendental function f , we will use an intermediate function f : Q ! R
such that for any rational number q for which f(q) is de�ned, f(q)n satis�es the bounds property of f(q) for any order

n. We will then use these f functions to de�ne the f functions but since the computation of f is more well known,

even if this computation may lead to many tricks to be eÆcient, we will only quickly mention guidelines to compute

them after this subsection to prove the completeness of our approach.

We present now such algorithms for algebraic and transcendental usual functions.

4.3.2 k-th root

Let x be a real number represented by the sequence (xn)n2Z and k be an integer greater than or equal to 2. We

represent the k-th root of this number k
p
x by the sequence ( k

p
x
n
)
n2Z such that:

If xkn � 0

then

j
k

p
xkn

k
else fails.
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Remark.

We choose here to always give a value to k
p
x when it make sense, even if it means that it does not fail for some

slightly negatives values of x. We can of course choose to fail for all negative values by replacing the condition xkn � 0

by xkn � 1, but in this case for some slightly positive values it will fail also. �

Theorem 17 For any positive real number x and any integer n, we have

( k
p
x
n
� 1)B�n < k

p
x < ( k

p
x
n
+ 1)B�n:

Proof.

Let us suppose that xkn = 0, then we have �B�kn < x < B�kn and if k
p
x is de�ned then we have also k

p
x < B�n,

thus
�
k

p
xkn
�
= 0 satis�es the bounds property of k

p
x for order n.

Will suppose now that xkn � 1. We have

(xkn � 1)

Bkn
< x <

(xkn + 1)

Bkn

and consequently �
k
p
xkn � 1

�
Bn

< k
p
x <

�
k
p
xkn + 1

�
Bn

:

If there exists an integer p such that xkn = pk, then
�
k
p
xkn � 1

�
= p � 1 and

�
k
p
xkn + 1

�
= p + 1, thus k

p
x
n
= p

satis�es bounds property of k
p
x for order n.

If there exists an integer p such that xkn = pk + 1, then
�
k
p
xkn � 1

�
= p and

�
k
p
xkn + 1

�
= p+ 1, thus k

p
x
n
= p

satis�es the bounds property of k
p
x for order n.

If there exists an integer p such that xkn = pk�1, then � k
p
xkn � 1

�
= p�1 and � k

p
xkn + 1

�
= p, thus k

p
x
n
= p�1

satis�es the bounds property of k
p
x for order n.

Otherwise xkn � 1, xkn and xkn + 1 are each one between pk and (p + 1)k with pk + 2 � xkn � (p + 1)k � 2 and

we have
�
k
p
xkn � 1

�
=
�
k

p
xkn
�
= p and

�
k
p
xkn + 1

�
= p+ 1, thus k

p
x
n
= p satis�es the bounds property of k

p
x for

order n. �

4.3.3 Exponential function

Let x be a real number represented by the sequence (xn)n2Z, we represent exp(x) by the sequence (exp(x)n)n2Z such

that:

If exp(xm=B
m)p � 0, then exp(x)

n
= 0 else

If n > 0 and log
e
(1� 1=Bn)` + 2 < x` < log

e
(1 + 1=Bn)` � 2 or n � 0 and x0 � bloge(1 + 1=Bn)c � 1

then exp(x)
n
= Bn

else exp(x)
n
=
��
exp(xk=B

k)p=B � 1
�
(1� 1=Bk)

�
with m = max (0; dlog

B
(e=(B � 1))e), ` = n+ w, d = max(�p; c log

B
(e)=Bmsd(x))

p = max(0; `), c =
n
2B if xmsd(x) � 1

�1 otherwise
, w =

�
2 if B = 2 or B = 3

1 if B � 4

k =

�
(0;msd(x); p + 1 + dd+ log

B
(e+ 1)e) if B = 2

(0;msd(x); p + 1 + dd+ log
B
((e+ 1)=(B � 2))e) otherwise

w =

�
2 if B = 2 or B = 3

1 if B � 4

Remarks.

1. The �rst test aims to determine if x is a suÆciently negative number such that exp(x) may be approximated by

0 within B�n rather than bother the multiplication of inequalities.

2. The second test, corresponding to the double hypothesis, aims to determine if x is close enough to 0 such that

exp(x) may be approximated by 1 rather than not to terminate in 0 because of the computation of msd(0).
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3. The Neperian logarithms log
e
(z), where z = 1� 1=Bn, are greater than log

e
(z)0� 1 and lesser than �1=Bn. We

compute in the same way log
B
(e=(B� 1)). Function log

e
refers to the logarithm function for rational arguments

that we will suppose it exists in the next algorithm.

4. Practically, we substitute the values of log
B
e and log

B
((e+1)=(B� 2)) by a simple upper or lower bound in the

formula above (for example if B = 4, we use the fact that 0:72134 < log
B
(e) < 0:72135 and log

B
((e+1)=(B�2)) <

0:44732).

5. Practically, we can improve this algorithm by using the best known approximation of x after the determination of

msd(x) and replace d=Bmsd(x) by (xmpa(x) + 1)=Bmpa(x), so we obtain a �ner upper bound and may appreciably

reduce the value of k.

Proof (Correction of the exponential algorithm).

First of all we will consider the case exp(xm=B
m)p � 0. According to the de�nition of exp(xm=B

m)p, we have

exp
� xm
Bm

�
<

exp
�
xm

Bm

�
p
+ 1

Bp
:

Furthermore from the hypothesis exp(xm=B
m)p � 0 we deduce that

exp
� xm
Bm

�
<

1

Bp
:

But x < (xm + 1)=Bm and exp is a strictly increasing function thus

exp(x) < exp

�
xm + 1

Bm

�
= exp

� xm
Bm

�
� exp

�
1

Bm

�
:

Furthermore the function exp has only positive values and we have

exp(x) <

exp

�
1

Bm

�
Bp

:

But m � 0 according to the hypothesis, thus 0 < 1=Bm � 1 and

exp

�
1

Bm

�
� 1 +

e

Bm
:

Consequently we have

exp(x) <
1 +

e

Bm

Bp
:

But m � log
B
(e=(B � 1)), thus

e

Bm
� B � 1

and

exp(x) <
B

Bp
=

1

Bp�1
:

We have also p � n+ 1, thus

exp(x) <
1

Bn

and 0 satis�es the bounds property of exp(x) for order n.

We will now consider the �rst case of the double hypothesis. First of all we notice that since n is strictly positive

each part of the inequality for x` presented in the description of the algorithm are meaningful.

According to the de�nition of log
e
(1� 1=Bn) and of log

e
(1 + 1=Bn), we have

B` log
e

�
1� 1

Bn

�
< log

e

�
1� 1

Bn

�
`

+ 1
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and

log
e

�
1 +

1

Bn

�
`

� 1 < B` log
e

�
1 +

1

Bn

�
:

Thus, if

log
e

�
1� 1

Bn

�
`

+ 2 < x` < log
e

�
1 +

1

Bn

�
`

� 2

then

B` log
e

�
1� 1

Bn

�
+ 1 < x` < B` log

e

�
1 +

1

Bn

�
� 1:

Furthermore, we have
x` � 1

B`
< x <

x` + 1

B`

thus we have

log
e

�
1� 1

Bn

�
< x < log

e

�
1 +

1

Bn

�

and

1� 1

Bn
< exp(x) < 1 +

1

Bn

that is to say Bn � 1 < Bn exp(x) < Bn + 1 and Bn satis�es the bounds property of exp(x) for order n.

Since the distinction of this case should precisely avoid the computation (and the non-termination) of msd(0), the

interval including x` is not authorized to be empty and the choice of ` will ensure this fact.

We will indeed prove that the choice of ` ensures that the distance between the two ends of this interval is greater

or equal to 1 and consequently there is at least one integer in this interval. So let us evaluate this distance. We have

L =

�
log

e

�
1 +

1

Bn

�
`

� 2

�
�
�
log

e

�
1� 1

Bn

�
`

+ 2

�

that is to say

L = log
e

�
1 +

1

Bn

�
`

� log
e

�
1� 1

Bn

�
`

� 4

and

L =

�
log

e

�
1 +

1

Bn

�
`

+ 1

�
�
�
log

e

�
1� 1

Bn

�
`

� 1

�
� 6

so

L � B` log
e

�
1 +

1

Bn

�
�B` log

e

�
1� 1

Bn

�
� 6

that is to say that

L � B` log
e

�
Bn + 1

Bn � 1

�
� 6

or

L � B` log
e

�
1 +

2

Bn � 1

�
� 6:

But since B � 2 and n � 1 we have

log
e

�
1 +

2

Bn � 1

�
� 2

Bn

thus

L � B`
2

Bn
� 6 = 2Bw � 6

and according to the de�nition of w, we have Bw � 4, consequently L � 1 and the interval is not empty.

We will now consider the second case of the double hypothesis. We will again have to examine what happens around

0, but when n is negative or null. We have x < x0 + 1 thus if

x0 �
�
log

e

�
1 +

1

Bn

��
� 1;
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then

x <

�
log

e

�
1 +

1

Bn

��

and

x < log
e

�
1 +

1

Bn

�
;

so

exp(x) < 1 +
1

Bn
:

Furthermore exp(x) > 0 and 1� 1=Bn < 0 so we have the following inequality

1� 1

Bn
< exp(x) < 1 +

1

Bn

and Bn satis�es the bounds property of exp(x) for order n.

We will now consider the general case. We have

xk � 1

Bk
< x <

xk + 1

Bk

and x 7! exp(x) is an increasing function

exp

�
xk � 1

Bk

�
< exp(x) < exp

�
xk + 1

Bk

�
: (4.2)

But k � 0, thus 0 < 1=Bk � 1, and for z 2]0; 1], we have exp(�z) � 1� z and exp(z) � 1 + e z, thus

exp

�
� 1

Bk

�
�
�
1� 1

Bk

�
(4.3)

and

exp

�
1

Bk

�
�
�
1 +

e

Bk

�
: (4.4)

Furthermore exp
�
xk

Bk

� � 0, so

exp

�
xk � 1

Bk

�
= exp

� xk
Bk

�
� exp

�
� 1

Bk

�
� exp

� xk
Bk

�
�
�
1� 1

Bk

�
(4.5)

and

exp

�
xk + 1

Bk

�
= exp

� xk
Bk

�
� exp

�
1

Bk

�
� exp

� xk
Bk

�
�
�
1 +

e

Bk

�
: (4.6)

Moreover, according to the de�nition of the exp function, we have

exp
� xk
Bk

�
p

� 1

Bp
< exp

� xk
Bk

�
<

exp
� xk
Bk

�
p

+ 1

Bp
: (4.7)

But according to the hypothesis of the general case

exp
� xk
Bk

�
p

> 0 (4.8)

and any term of the two preceding inequalities are positive. So we can combine the inequalities (4.2, 4.3, 4.4, 4.5, 4.6,

4.7, 4.8) by multiplication and we obtain

Bn�p

�
exp

� xk
Bk

�
p

� 1

��
1� 1

Bk

�
< Bn exp(x) < Bn�p

�
exp

� xk
Bk

�
p

+ 1

��
1 +

e

Bk

�
:
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Let us name v = exp(xk=B
k)p, we have

Bn�p(v � 1)

�
1� 1

Bk

�
< Bn exp(x) < Bn�p(v + 1)

�
1 +

e

Bk

�

We de�ne �, �0, �, �0 as follows:

� = (v � 1)

�
1� 1

Bk

�
�0 = Bn�p�

� = (v + 1)
�
1 +

e

Bk

�
�0 = Bn�p�:

We will now prove that �0 � �0 � 1 to prepare application of property 11. We have

� � � = 2 +
e+ 1

Bk
v +

e� 1

Bk
� 2 +

e+ 1

Bk
(v + 1)

But according to the de�nition of k we have for B > 2

k � p+ 1 +

�
d+ log

B

�
e+ 1

B � 2

��
;

thus
e+ 1

Bk
� B � 2

Bd+p+1
(4.9)

and for B = 2

k � p+ 1 + dd+ log
B
(e+ 1)e ;

thus
e+ 1

Bk
� 1

Bd+p+1
: (4.10)

Furthermore, according to the de�nition of exp,

v = exp
� xk
Bk

�
p

< Bp exp
� xk
Bk

�
+ 1:

But k � msd(x) so according to the property 13, we have

Bk�msd(x) � jxkj � 2BBk�msd(x):

If xmsd(x) � 1, then

xk

Bk
� 2B

Bmsd(x)

and if xmsd(x) � �1, then
xk

Bk
� � 1

Bmsd(x)
:

In both case and according to the de�nition of d, we have

exp
� xk
Bk

�
� Bd:

Consequently, we have

v < Bp+d + 1: (4.11)

We combine 4.11 and 4.10 for B = 2 and we obtain

� � � � 2 +
1

Bp+d+1

�
Bp+d + 2

� � 2 +
1

B

�
1 +

2

Bp+d

�
:
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But p+ d � 0, thus
2

Bp+d
� 2

and

� � � � 2 +
1

B
(1 + 2) = 2 +

3

B
=

5

2
� 4 = B2

and �0 � �0 � B2 �Bn�p. But p � n+ 2 thus �0 � �0 � 1 for B = 2.

If B > 2, we combine 4.11 and 4.9 to obtain

� � � � 2 +
B � 2

Bp+d+1

�
Bp+d + 2

� � 2 +
B � 2

B

�
1 +

2

Bp+d

�

But p+ d � 0, thus
2

Bp+d
� 2

and

� � � � 2 + 3� B � 2

B
=

5B � 6

B
= 5� 6

B
� B

because any integer B � 2 is outside (or equal to the ends) of the interval between the roots of the second degree

equation B2 � 5B + 6 = 0. So we deduce that

� � � � B

and �0 � �0 � B �Bn�p. But p � n+ 1 thus �0 � �0 � 1.

Consequently �0 < Bn exp(x) < �0 and �0 � �0 � 1 independently of the value of B. We obtain the �nal result by

application of property 11, then d�0e satis�es the bounds property of exp(x) for order n. �

4.3.4 Logarithm to base B0

Let B0 be a real number greater or equal to 2 and x be a strictly positive real number represented by the sequence

(xn)n2Z, logB0(x) is represented by the sequence (log
B0

x
n
)
n2Z such that:

log
B0

x
n
=
j
(log

B0
(xk=B

k)n+w + 1)=Bw + log
B0
(e)Bn=xk

k
with k = n+msd(x) + w, w = c�min(0; n) and c =

n
2 if B � 3

3 if B = 2.
Remarks.

1. The computation terminates if x is a �nite strictly positive real number.

2. Practically, we implement logB0 only for the case B0 = e and if we want to compute the logarithm in another

base B0 of a real number, we deduce logB0 from loge and then the corresponding function log
B0

or we deduce log
e

and then the function log
B0
.

Theorem 18 For any integer n, we have

(log
B0

x
n
� 1)B�n < log

B0
(x) < (log

B0
x
n
+ 1)B�n:

Proof.

We have
xk � 1

Bk
< x <

xk + 1

Bk
:

The function x 7! log
B0
(x) is an increasing one on R�+, thus

log
B0

�
xk � 1

Bk

�
< log

B0
(x) < log

B0

�
xk + 1

Bk

�
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so

log
B0

� xk
Bk

�
+ log

B0

�
1� 1

xk

�
< log

B0
(x) < log

B0

� xk
Bk

�
+ log

B0

�
1 +

1

xk

�
and

log
B0

� xk
Bk

�
+ log

B0

�
1� 1

xk

�
� log

B0

� xk
Bk

�
+

log
B0
(e)

xk

since for any positive real number z we have log
B0
(z) � log

B0
(e)� z.

Furthermore, according to the de�nition of log
B0
, we have

log
B0

�
xk

Bk

�
n+w
� 1

Bn+w
< log

B0

� xk
Bk

�
<

log
B0

�
xk

Bk

�
n+w

+ 1

Bn+w
:

We combine these two inequalities and multiply each term by Bn, we obtain

log
B0

�
xk

Bk

�
n+w
� 1

Bw
+Bn log

B0
(1� 1

xk
) < Bn log

B0
(x) <

log
B0

�
xk

Bk

�
n+w

+ 1

Bw
+

log
B0
(e)Bn

xk
:

Let us name

v =
log

B0

�
xk

Bk

�
n+w

Bw
;

then the preceding inequality can be rewritten as

v � 1

Bw
+Bn log

B0

�
1� 1

xk

�
< Bn log

B0
(x) < v +

1

Bw
+

log
B0
(e)Bn

xk
:

We de�ne � and � as follows:

� = v � 1

Bw
+ Bn log

B0

�
1� 1

xk

�

� = v +
1

Bw
+

log
B0
(e)Bn

xk
:

We will prove that � � � < 1. We have

� � � =
2

Bw
+Bn

�
log

B0
(e)

xk
� log

B0

�
1� 1

xk

��
<

2

Bw
+Bn log

B0
(e)

�
1

xk
+

1

xk � 1

�
;

so

� � � <
2

Bw
+

2Bn log
B0
(e)

xk � 1
:

But w = c�min(0; n) thus n+w � c and k � msd(x). Consequently, according to property 13, we have xk � Bk�msd(x)

and

� � � <
2

Bw
+

2Bn log
B0
(e)

Bk�msd(x) � 1
=

2

Bw
+

2 log
B0
(e)

Bk�n�msd(x) �B�n

and, according to the de�nition of k

� � � <
2

Bw
+

2 log
B0
(e)

Bw �B�n
=

2

Bw

�
1 +

log
B0
(e)

1� 1
Bn+w

�
:

But n+ w � c and w � c thus

� � � <
2

Bc

�
1 +

log
B0
(e)

1� 1
Bc

�
:

We have also 1
Bc � 1

8
(minimum reached for B = 2) and thus

� � � <
2

8

�
1 +

8

7
log

B0
(e)

�
=

1

4
+

log
B0
(e)

7
<

1

4
+

log2(e)

7
< 1:

Consequently 0 < � � � < 1 and we obtain the �nal result by application of property 11. �
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4.3.5 Inverse trigonometric functions: the arctangent function

Let x be a real number represented by the sequence (xn)n2Z, arctan(x) is represented by the sequence (arctan(x)n)n2Z
such that:

If xk = 0

then arctan(x)
n
= 0

else arctan(x)
n
=

�
arctan(xk=B

k)n+w + 1)

Bw
+

Bn+k

B2n+2 + x2
k
+ xk

�
with k = max(0; n+ w) and w =

n
1 if B � 4

2 if B = 2 or B = 3.

Theorem 19 For any integer n, we have

(arctan(x)
n
� 1)B�n < arctan(x) < (arctan(x)

n
+ 1)B�n:

We will have to use the following lemma in our proof:

Lemma 2 For any real numbers a and b, we have:

{ If 1 + a(a+ b) > 0, then

arctan(a+ b) = arctan(a) + arctan

�
b

1 + a(a+ b)

�
:

{ If 1 + a(a+ b) < 0, else

arctan(a+ b) = arctan(a) + arctan

�
b

1 + a(a+ b)

�
� sign(a)� �:

Proof (Lemma).

We will apply the tan function to each part of these equalities. We have

tan(arctan(a+ b)) = a+ b

and let T be the tangent of the second expression:

T = tan

�
arctan(a) + arctan

�
b

1 + a(a+ b)

��
;

we have

T =

tan(arctan(a)) + tan

�
arctan

�
b

1 + a(a+ b)

��

1� tan(arctan(a))� tan

�
arctan

�
b

1 + a(a+ b)

�� =

a+
b

1 + a(a+ b)

1� a� b

1 + a(a+ b)

and we multiply the numerator and the denominator by 1 + a(a+ b), so we obtain

T =
a(1 + a(a+ b)) + b

(1 + a(a+ b))� ab
=

a+ a2(a+ b) + b

1 + a2 + ab� ab
=

(a+ b)(1 + a2)

1 + a2
= a+ b:

Furthermore, the tan function is periodic with period �, thus the tangent of each expression is always equal to a+ b.

It remains to be proved that in both cases the right part of the equality is in the interval ] � �=2; �=2[ to conclude

that this expression is equal to the principal determination of arctan(a + b) and to ends the proof of this lemma.

Consequently we will study for a �xed value of a, the fa function of variable b de�ned as follows:

fa(b) = arctan(a) + arctan

�
b

1 + a(a+ b)

�
� arctan(a+ b)
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for b 6= � 1+a2

a
. The derivative f 0

a
of this function is

f 0
a
(b) =

1

1 + a(a+ b)
� ab

(1 + a(a+ b))2

1 +

�
b

1 + a(a+ b)

�2
� 1

1 + (a+ b)2

and we multiply the numerator and the denominator by (1 + a(a+ b))2 and we obtain

f 0
a
(b) =

(1 + a(a+ b)� ab

(1 + a(a+ b))2 + b2
� 1

1 + (a+ b)2

and we develop the numerator and denominator of the �rst fraction

f 0
a
(b) =

1 + a2

1 + 2a(a+ b) + a2(a+ b)2 + b2
� 1

1 + (a+ b)2

then

f 0
a
(b) =

1 + a2

1 + 2a2 + 2ab+ a4 + 2a3b+ a2b2 + b2
� 1

1 + (a+ b)2

and we regroup the terms of the denominator

f 0
a
(b) =

1 + a2

(1 + 2ab+ a2 + b2)� (1 + a2)
� 1

1 + (a+ b)2

then we simplify the numerator and the denominator of the �rst fraction

f 0
a
(b) =

1

1 + 2ab+ a2 + b2
� 1

1 + (a+ b)2

and we regroup the terms of the denominator of the �rst fraction

f 0
a
(b) =

1

1 + (a+ b)2
� 1

1 + (a+ b)2
= 0:

Thus the f 0
a
function is null in any point of the de�nition domain of fa. Furthermore we have

lim
b!�1

fa(b) = arctan(a) + lim
b!�1

arctan

0
@ 1

1 + a2

b
+ a

1
A� lim

b!�1
arctan(a+ b)

so

lim
b!�1

fa(b) = arctan(a) + arctan

�
1

a

�
� �

2
= sign(a)� �

2
� �

2
= (sign(a)� 1)� �

2

and

lim
b!+1

fa(b) = arctan(a) + lim
b!+1

arctan

0
@ 1

1 + a2

b
+ a

1
A+ lim

b!+1
arctan(a+ b)

thus

lim
b!+1

fa(b) = arctan(a) + arctan

�
1

a

�
+

�

2
= sign(a)� �

2
+

�

2
= (sign(a) + 1)� �

2
:

Consequently fa varies as follows:

b

f 0
a
(b)

fa(b)

-1 1� 1+a2

a

0 0

(sign(a) + 1)� �

2
(sign(a)� 1)� �

2



42 CHAPTER 4. ALGORITHMS FOR THE USUAL ELEMENTARY FUNCTIONS

Thus we have

{ If a > 0, then arctan(a) + arctan( 1
a
) = �

2
and fa(b) = 0 if b > � 1+a2

a
and � otherwise.

{ If a < 0, then arctan(a) + arctan( 1
a
) = ��

2
and fa(b) = 0 if b < � 1+a2

a
and �� otherwise.

{ If a = 0, then arctan(a) = 0, arctan( b

1+a(a+b)
) = arctan(b) and arctan(a+ b)=arctan(b), thus fa(b) = 0.

That is to say that fa(b) = 0 if a > 0 and b > � 1+a2

a
, if a < 0 and b < � 1+a2

a
or if a = 0, and in the other cases,

if b 6= � 1+a2

a
, then fa(b) = sign(a) � �. All the conditions to ensure fa(b) = 0 are equivalent to the inequality

1 + a(a+ b) > 0 and the proof of this lemma ends. �

Proof (Correction of the arctan algorithm).

We have
xk � 1

Bk
< x <

xk + 1

Bk

and arctan is a strictly increasing function thus

arctan

�
xk � 1

Bk

�
< arctan(x) < arctan

�
xk + 1

Bk

�
:

If xk = 0, then we have:

�Bn arctan

�
1

Bk

�
< Bn arctan(x) < Bn arctan

�
1

Bk

�

and, since k � 0, thus 0 < 1=Bk � 1, and arctan(z) < z is true on this interval so

Bn arctan

�
1

Bk

�
< Bn�k � 1

B
< 1

since k � n+ 1. Consequently 0 satis�es the bounds property of arctan(x) for order n.

We consider now the case xk 6= 0. We will apply the preceding lemma to the computation of arctan
�
xk�1
Bk

�
and

arctan
�
xk+1
Bk

�
with a = xk=B

k, b = "=Bk and " 2 f1;�1g. We will �rst determine in what case of this lemma we are

before to apply it:

1 + a (a+ b) = 1 +
xk

Bk

xk + "

Bk
=

B2k + x2
k
+ "xk

Bk
:

But the discriminant of the equation X2 + "X +B2k = 0 is equal to � = 1� 4B2k < 1� 4B0 = �3 < 0 since k � 0.

Consequently the polynom X2 + "X + B2k is strictly positive for any real value of X and particularly in xk thus we

apply the �rst part of the lemma and obtain

arctan

�
xk � 1

Bk

�
= arctan

� xk
Bk

�
+ arctan

0
B@ � 1

Bk

1 +
xk

Bk

xk � 1

Bk

1
CA

that is to say

arctan

�
xk � 1

Bk

�
= arctan

� xk
Bk

�
� arctan

�
Bk

B2k + x2
k
� xk

�

and

arctan

�
xk + 1

Bk

�
= arctan

� xk
Bk

�
+ arctan

0
B@

1

Bk

1 +
xk

Bk

xk + 1

Bk

1
CA

so

arctan

�
xk + 1

Bk

�
= arctan

� xk
Bk

�
+ arctan

�
Bk

B2k + x2
k
+ xk

�
:
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Consequently, we have

arctan
� xk
Bk

�
� arctan

�
Bk

B2k + x2
k
� xk

�
< arctan(x)

and

arctan(x) < arctan
� xk
Bk

�
+ arctan

�
Bk

B2k + x2
k
+ xk

�
:

Furthermore, according to the de�nition of arctan, we have

arctan
� xk
Bk

�
n+w
� 1

Bn+w
< arctan

� xk
Bk

�
<

arctan
� xk
Bk

�
n+w

+ 1

Bn+w
:

We combine these two inequalities and multiply each part by Bn, we obtain

Bn

0
@arctan

� xk
Bk

�
n+w
� 1

Bn+w

� arctan

�
Bk

B2k + x2
k
� xk

�1A < Bn arctan(x)

and

Bn arctan(x) < Bn

0
@arctan

� xk
Bk

�
n+w

+ 1

Bn+w

+ arctan

�
Bk

B2k + x2
k
+ xk

�1A :

But for any positive real number z we have arctan(z) < z, and we obtain the following inequality:

Bn

0
@arctan

� xk
Bk

�
n+w
� 1

Bn+w

� Bk

B2k + x2
k
� xk

1
A < Bn arctan(x)

and

Bn arctan(x) < Bn

0
@arctan

� xk
Bk

�
n+w

+ 1

Bn+w

+
Bk

B2k + x2
k
+ xk

1
A :

We de�ne � and � as follows:

� = Bn

0
@arctan

� xk
Bk

�
n+w
� 1

Bn+w

� Bk

B2k + x2
k
� xk

1
A

� = Bn

0
@arctan

� xk
Bk

�
n+w

+ 1

Bn+w

+
Bk

B2k + x2
k
+ xk

1
A :

We will prove that � � � < 1 to apply property 11 and conclude. We have

� � � =
2

Bw
+Bn+k

�
1

B2k + x2
k
+ xk

+
1

B2k + x2
k
� xk

�
=

2

Bw
+

2Bn+k (B2k + x2
k
)

(B2k + x2
k
)2 � x2

k

:

The function x 7! b+x
(b+x)2�x

is strictly increasing on R+ with maximum value 1
b
. Consequently, if b = B2k we have

� � � <
2

Bw
+

2Bn+k

B2k
=

2

Bw
+ 2Bn�k:

But k � n+ w, thus

� � � � 4

Bw
� 1

and we conclude by application of property11. �

Remarks.
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1. We can deduce � for example by the following formula due to Gauss:

�

4
= 12 arctan

�
1

18

�
+ 8 arctan

�
1

57

�
� 5 arctan

�
1

239

�
:

2. Jean-Christophe Filliâtre suggests an improvement for arguments of absolute value greater than or equal to 1

in [20].

4.3.6 Direct trigonometric functions: the sine function

Choice

We can compute the direct trigonometric functions in two di�erent ways:

� The �rst one consist in computing the sine function for real numbers between 0 and �=2, deduce it elsewhere

and deduce the cosine and tangent functions ultimately.

The initial interval guarantee the monotony of the sine function and a reasonable combination of inequalities.

The sin function is easy to compute using sin Taylor expansion. The computation of sin for arguments out of

the interval [0; �=2] is a little complicated.

� The second one consist in computing the tangent between 0 and �=2, deduce its value elsewhere and deduce the

sine and cosine functions ultimately.

The initial interval guarantee not only the monotony of the tangent function but also the de�nition of the

function. The sine and cosine functions are rational functions of the half-arc tangent.

The computation of sin(�) or cos(�), implies the computation of tan(�=2) so it is diÆcult to forecast the

behavior of the algorithm for values near to �: maybe the computation will not terminate or its duration will

be prohibitive.

Moreover, tan is uneasy to compute, we have to deduce it by division of a limited Taylor expansion of the sine

and cosine functions.

Finally, if you compute sin(x), you will have to deduce it from tan(x=2) that you deduce from tan(x=2) that is

�nally deduced from sin(x=2) and cos(x=2), this seems less eÆcient that the �rst approach.

The second approach seems to have several major defaults and we have chosen the �rst approach to describe the

sine function.

Description

Let x be a real number represented by the sequence (xn)n2Z. We note p =
�x
�

�
0
� 1, � = x � p� and z = �

2
. We

represent sin(x) by the sequence (sin(x)
n
)
n2Z such that:

If 0 � �k � 1, 4zk � 4 � �k � 4zk + 4 or 2zk � 2 � �k � 2zk + 2,

then sin(x)
n
= 0

else if 2 � �k � zk � 2 or zk + 2 � �k � 2zk � 3,

then sin(x)
n
= (�1)p

66664 sin
�
�k

Bk

�
n+w

+ 1

Bw
+Bn�k

77775
else if zk � 1 � �k � zk + 1,

then sin(x)
n
= (�1)pBn

else if 2zk + 3 � �k � 3zk � 4 or 3zk + 4 � �k � 4zk � 5,

then sin(x)
n
= (�1)p

2
6666
sin

�
�k

Bk

�
n+w

� 1

Bw
�Bn�k

3
7777

else if 3zk � 3 � �k � 3zk + 3,

then sin(x)
n
= (�1)p+1Bn

with k = max(c; n+ w) and (c; w) =

�
(2; 2) if B � 3

(3; 4) if B = 2.
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15

3

7

2

8

4

6

θ

Legend for the zones:

zone 1 : 0 � �k � 1 or 4zk � 4 � � � 4zk + 4, sin(�) is \closed" to 0

zone 2 : 2 � �k � zk � 2, the sine function is increasing and positive \around" �

zone 3 : zk � 1 � �k � zk + 1, sin(�) is \closed" to 1

zone 4 : zk + 2 � �k � 2zk � 3, the sine function is decreasing and positive \around" �

zone 5 : 2zk � 2 � �k � 2zk + 2, sin(�) is \closed" to 0

zone 6 : 2zk + 3 � �k � 3zk � 4, the sine function is decreasing and negative \around" �

zone 7 : 3zk � 3 � �k � 3zk + 3, sin(�) is \closed" to �1
zone 8 : 3zk + 4 � �k � 4zk � 5, the sine function is increasing and negative \around" �.

Figure 4.1: The eight intervals of the trigonometric circle for the computation of the sine function.

Remark.

To manage the diÆculty of the non uniform monotonicity of the sine function, we reduce the number to the equivalent

between 0 and 2�, and then we carve the trigonometric circle in eight pieces numbered 1 to 8 on �gure 4.1. �

Theorem 20 For any integer n, we have

(sin(x)
n
� 1)B�n < sin(x) < (sin(x)

n
+ 1)B�n:

Proof.

First of all, we will prove that 0 < � < 2�. We have

p =
�x
�

�
0
� 1 <

x

�
<
�x
�

�
0
+ 1 = p+ 2

thus p� < x < p� + 2� and 0 < � = x � p� < 2�. More precisely, 0 < � < 4z so 0 < �k + 1 and �k � 1 < 4(zk + 1)

and �nally the inequality 0 � �k � 4zk + 4.

Furthermore, if p is an even integer we have sin(x) = sin(�) and sin(x) = sin(�+ �) = � sin(�) if p is an odd integer

thus sin(x) = (�1)p sin(�) and according to the property 10 we can transpose this equality with the ad hoc sign for

the sequences that represent x and �.

We will use throughout this demonstration the following facts:
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1.. The inequalities 0 < sin(1=Bk) � 1=Bk and 1� 1=(2B2k) � cos(1=Bk) � 1.

2.. The formulas

sin

�
�k + "

Bk

�
= sin

�
�k

Bk

�
cos

�
1

Bk

�
+ " cos

�
�k

Bk

�
sin

�
1

Bk

�

where " 2 f1;�1g.

3.. The choice for k, w and c implies that d=Bk � 1=Bn and d=Bk < �=2 for any number d � 9, d=2Bn�2k < 1 for

d � 49 and 2=Bw + 2Bn�k +Bn�2k=2 < 1.

Let us consider each of these properties:

(a) If d � 9, then d=Bk � 9=Bk thus it is suÆcient to prove that 9=Bk < 1=Bn et d=Bk < �=2. According

to the de�nition of k, we have k � n + w and k � c thus it is suÆcient to prove that 9=Bw < 1 and

9=Bc < �=2. We will now distinguish according to whether B is equal to 2 or not. If B = 2, then c = 3 and

w = 4, thus 9=Bw = 9=16 < 1 and 9=Bc = 9=8 < �=2. If B � 3, then c = 2 et w = 2, thus 9=Bw � =32 � 1

and 9=Bc = 1 < �=2.

(b) In the same way, if d � 49, then d=2Bn�2k � 49=2Bn�2k thus it is suÆcient to prove that 49=2Bn�2k < 1.

According to the de�nition of k, we have k � n+w and k � c, thus it is suÆcient to prove that 49=2 < Bw+c.

Let us distinguish according to whether B is equal to 2 or not. If B = 2, then c = 3 and w = 4, and then

Bw+c = 27 = 128 > 49=2. If B � 3, then c = 2 and w = 2, then Bw+c � 34 = 81 > 49=2.

(c) We will now consider the �nal inequality. According to the de�nition of k, we have k � n + w and k � c,

thus 2=Bw+2Bn�k+Bn�2k=2 � 2=Bw+2=Bw+1=(2Bw+c) = (4+2=Bc)=Bw. Let us distinguish according

to whether B is equal to 2 or not. If B = 2, then c = 3 and w = 4 thus (4 + 2=Bc)=Bw = 17=64 < 1. If

B � 3, then c = 2 and w = 2, so (4 + 2=Bc)=Bw � (4 + 2=3c)=3w = 38=81 < 1.�

We will now distinguish according to the position of � on the trigonometric circle.

Case 0 � �k � 1: We have

��
2
< � 1

Bk
� �k � 1

Bk
< � <

�k + 1

Bk
� 2

Bk
<

�

2

according to the preceding remark, thus � is in the right part of the trigonometric circle and the sine function is

strictly increasing on the interval ](�k � 1)B�k; (�k + 1)B�k[. We have

sin

�
�k � 1

Bk

�
< sin(�) < sin

�
�k + 1

Bk

�
:

But, we have

sin

�
�k + 1

Bk

�
� �k + 1

Bk
� 2

Bk
� 1

Bn

and

sin

�
�k � 1

Bk

�
� sin

�
� 1

Bk

�
= � sin

�
1

Bk

�
� � 1

Bk
� � 1

Bn
;

thus

� 1

Bn
< sin(�) <

1

Bn

and 0 satis�es the bounds property of sin(�) for order n.

Case 2 � �k � zk � 2: We have
1

Bk
� �k � 1

Bk
< � <

�k + 1

Bk
� zk � 1

Bk
<

�

2
;

thus � is in the upper right quarter of the trigonometric circle and the sine function is strictly increasing on the

interval ](�k � 1)B�k; (�k + 1)B�k[. We have

sin

�
�k � 1

Bk

�
< sin(�) < sin

�
�k + 1

Bk

�
:
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According to the fact that 0 < �k=B
k < �=2 and that k � 0, we have sin

�
�k=B

k
�
> 0 and 0 < cos

�
�k=B

k
�
< 1

thus

sin

�
�k � 1

Bk

�
= sin

�
�k

Bk

�
cos

�
1

Bk

�
� cos

�
�k

Bk

�
sin

�
1

Bk

�
and

sin

�
�k + 1

Bk

�
= sin

�
�k

Bk

�
cos

�
1

Bk

�
+ cos

�
�k

Bk

�
sin

�
1

Bk

�
verify respectively

sin

�
�k � 1

Bk

�
> sin

�
�k

Bk

��
1� 1

2B2k

�
� 1

Bk

and

sin

�
�k + 1

Bk

�
< sin

�
�k

Bk

�
+

1

Bk
:

Consequently

sin

�
�k

Bk

��
1� 1

2B2k

�
� 1

Bk
< sin(�) < sin

�
�k

Bk

�
+

1

Bk
:

Furthermore, according to the de�nition of sin, we have

sin

�
�k

Bk

�
n+w

� 1

Bn+w
< sin

�
�k

Bk

�
<

sin

�
�k

Bk

�
n+w

+ 1

Bn+w

and we combine these inequalities and multiply each term by Bn, we obtain

sin

�
�k

Bk

�
n+w

� 1

Bw
)

�
1� 1

2B2k

�
�Bn�k < Bn sin(�) <

sin

�
�k

Bk

�
n+w

+ 1

Bw
+Bn�k:

We de�ne � and � as follows:

� =

sin

�
�k

Bk

�
n+w

� 1

Bw

�
1� 1

2B2k

�
�Bn�k

� =

sin

�
�k

Bk

�
n+w

+ 1

Bw
+Bn�k:

We will prove that � � � < 1 in order to apply the property 11. We have

� � � =
2

Bw
+ 2Bn�k +

1

2B2k

sin

�
�k

Bk

�
n+w

� 1

Bw
:

Consequently

� � � <
2

Bw
+ 2Bn�k +

Bn

2B2k
sin

�
�k

Bk

�
� 2

Bw
+ 2Bn�k +

Bn�2k

2
< 1

according to the facts established at the beginning of this proof. We conclude this case by application of

property 11.

Case zk � 1 � �k � zk + 1: We have

1 � sin(�) = cos
�
� � �

2

�
> 1�

�
1

2

�
� � �

2

�2�
:

But � � �

2
= � � z and

j� � zj < j�k � zkj+ 2

Bk
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and j�k � zkj � 1, consequently ���� � �

2

��� < 3

Bk

thus

1 � sin(�) > 1�
 
1

2

�
3

Bk

�2
!
= 1� 9

2B2k
:

Thus we have

Bn � 9

2
Bn�2k < Bn sin(�) � Bn:

But 9=2Bn�2k < 1 according to the facts established at the beginning of this proof and then

Bn � 1 < Bn sin(�) � Bn

and �nally Bn satis�es the bounds property of sin(�) for order n.

Case zk + 2 � �k � 2zk � 3: We have

�

2
< (zk + 1)B�k � (�k � 1)B�k < � < (�k + 1)B�k < 2(zk � 1)B�k < �;

thus � is in the upper left quarter of the trigonometric circle and the sine function is strictly decreasing on the

interval ](�k � 1)B�k; (�k + 1)B�k[. We have

sin

�
�k + 1

Bk

�
< sin(�) < sin

�
�k � 1

Bk

�
:

Since �=2 < �k=B
k < � and k � 0, we have sin

�
�k=B

k
�
> 0 and �1 < cos

�
�k=B

k
�
< 0 thus

sin

�
�k + 1

Bk

�
= sin

�
�k

Bk

�
cos

�
1

Bk

�
+ cos

�
�k

Bk

�
sin

�
1

Bk

�

and

sin

�
�k � 1

Bk

�
= sin

�
�k

Bk

�
cos

�
1

Bk

�
� cos

�
�k

Bk

�
sin

�
1

Bk

�

veri�es respectively

sin

�
�k + 1

Bk

�
> sin

�
�k

Bk

��
1� 1

2B2k

�
� 1

Bk

and

sin

�
�k � 1

Bk

�
< sin

�
�k

Bk

�
+

1

Bk
:

Consequently

sin

�
�k

Bk

��
1� 1

2B2k

�
� 1

Bk
< sin(�) < sin

�
�k

Bk

�
+

1

Bk
:

Furthermore, according to the de�nition of sin, we have

sin

�
�k

Bk

�
n+w

� 1

Bn+w
< sin

�
�k

Bk

�
<

sin

�
�k

Bk

�
n+w

+ 1

Bn+w

and we combine these two inequalities and multiply each term by Bn, we obtain

sin

�
�k

Bk

�
n+w

� 1

Bw

�
1� 1

2B2k

�
�Bn�k < Bn sin(�) <

sin

�
�k

Bk

�
n+w

+ 1

Bw
+Bn�k:
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We de�ne � and � as follows:

� =

sin

�
�k

Bk

�
n+w

� 1

Bw

�
1� 1

2B2k

�
�Bn�k

� =

sin

�
�k

Bk

�
n+w

+ 1

Bw
+Bn�k:

We will now prove that � � � < 1 in order to apply property 11. We have

� � � =
2

Bw
+ 2Bn�k +

1

2B2k

sin

�
�k

Bk

�
n+w

� 1

Bw
:

Consequently

� � � <
2

Bw
+ 2Bn�k +

Bn

2B2k
sin

�
�k

Bk

�
� 2

Bw
+ 2Bn�k +

Bn�2k

2
< 1

according to the facts established at the beginning of this proof and we conclude for this case by application of

the property 11.

Case 2zk � 2 � �k � 2zk + 2: We have

�

2
< � � 5

Bk
<

2zk � 3

Bk
� �k � 1

Bk
< � <

�k + 1

Bk
� 2zk + 3

Bk
< � +

5

Bk
<

3�

2

according to the facts established at the beginning of the proof. Consequently �, � � 5=Bk and � + 5=Bk are

each one in the left part of the trigonometric circle and the sine function is strictly decreasing on the interval

]� � 5=Bk; � + 5=Bk[, thus

sin

�
� +

5

Bk

�
< sin(�) < sin

�
� � 5

Bk

�
:

But

sin

�
� + "

5

Bk

�
= �" sin

�
5

Bk

�

for " 2 f�1; 1g. Thus we have
� sin

�
5

Bk

�
< sin(�) < sin

�
5

Bk

�
:

But

sin

�
5

Bk

�
<

5

Bk
� 1

Bn

according to the facts established at the beginning of this proof and consequently

� 1

Bn
< sin(�) <

1

Bn

so 0 satis�es the bounds property of sin(�) for order n.

Case 2zk + 3 � �k � 3zk � 4: We have

� < 2(zk + 1)B�k � (�k � 1)B�k < � < (�k + 1)B�k < 3(zk � 1)B�k <
3�

2
;

thus � is in the left part of the trigonometric circle and the sine function is strictly decreasing on the interval

](�k � 1)B�k; (�k + 1)B�k[. We have

sin

�
�k + 1

Bk

�
< sin(�) < sin

�
�k � 1

Bk

�
:
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Since � < �k=B
k < 3�=2 et k � 0, we have sin

�
�k=B

k
�
< 0 and �1 < cos

�
�k=B

k
�
< 0, thus

sin

�
�k

Bk

�
� 1

Bk
< sin(�) < sin

�
�k

Bk

��
1� 1

2B2k

�
+

1

Bk
:

Furthermore, according to the de�nition of sin, we have

sin

�
�k

Bk

�
n+w

� 1

Bn+w
< sin

�
�k

Bk

�
<

sin

�
�k

Bk

�
n+w

+ 1

Bn+w

and we combine these two inequalities and multiply each term by Bn, and we obtain

sin

�
�k

Bk

�
n+w

� 1

Bw
�Bn�k < Bn sin(�) <

sin

�
�k

Bk

�
n+w

+ 1

Bw

�
1� 1

2B2k

�
+Bn�k:

We de�ne � and � as follows:

� =

sin

�
�k

Bk

�
n+w

� 1

Bw
�Bn�k

� =

sin

�
�k

Bk

�
n+w

+ 1

Bw

�
1� 1

2B2k

�
+Bn�k:

We will now prove that � � � < 1 in order to apply property 11. We have

� � � =
2

Bw
+ 2Bn�k � 1

2B2k

sin

�
�k

Bk

�
n+w

+ 1

Bw
:

But

sin

�
�k

Bk

�
n+w

+ 1

Bw
> Bn sin

�
�k

Bk

�
� �Bn

thus

� � � <
2

Bw
+ 2Bn�k +

Bn�2k

2
< 1

according to the facts established at the beginning of this proof and we conclude by application of property 11.

Case 3zk � 3 � �k � 3zk + 3: we have

�1 � sin(�) = � cos

�
3�

2
� �

�
< �1 +

 
1

2

�
3�

2
� �

�2
!

But 3�
2
� � = 3z � � and

j3z � �j < j3zk � �kj+ 4

Bk

and j3zk � �kj � 3, consequently ����3�2 � �

���� < 7

Bk

thus

�1 � sin(�) < �1 +
 
1

2

�
7

Bk

�2
!
= �1 + 49

2B2k

and

�Bn � Bn sin(�) < �Bn +
49

2
Bn�2k < �Bn + 1

according to the facts established at the beginning of this proof and �Bn satis�es the bounds property of sin(�)

for order n.
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Case 3zk + 4 � �k � 4zk � 5: We have

3�

2
< 3

zk + 1

Bk
� �k � 1

Bk
< � <

�k + 1

Bk
� 4

zk � 1

Bk
< 2�

thus � is in the lower right quarter of the trigonometric circle and the sine function is strictly increasing on the

interval ](�k � 1)B�k; (�k + 1)B�k[. We have

sin

�
�k � 1

Bk

�
< sin(�) < sin

�
�k + 1

Bk

�
:

Since 3�=2 < �k=B
k < 2� and k � 0, we have sin

�
�k=B

k
�
< 0 and 0 < cos

�
�k=B

k
�
< 1 thus

sin

�
�k + 1

Bk

�
= sin

�
�k

Bk

�
cos

�
1

Bk

�
+ cos

�
�k

Bk

�
sin

�
1

Bk

�

and

sin

�
�k � 1

Bk

�
= sin

�
�k

Bk

�
cos

�
1

Bk

�
� cos

�
�k

Bk

�
sin

�
1

Bk

�
verify respectively

sin

�
�k + 1

Bk

�
< sin

�
�k

Bk

��
1� 1

2B2k

�
+

1

Bk

and

sin

�
�k � 1

Bk

�
> sin

�
�k

Bk

�
� 1

Bk
:

Consequently

sin

�
�k

Bk

�
� 1

Bk
< sin(�) < sin

�
�k

Bk

��
1� 1

2B2k

�
+

1

Bk
:

Furthermore, according to the de�nition of sin, we have

sin

�
�k

Bk

�
n+w

� 1

Bn+w
< sin

�
�k

Bk

�
<

sin

�
�k

Bk

�
n+w

+ 1

Bn+w

and we combine these two inequalities and multiply each term by Bn, we obtain

sin

�
�k

Bk

�
n+w

� 1

Bw
�Bn�k < Bn sin(�) <

sin

�
�k

Bk

�
n+w

+ 1

Bw

�
1� 1

2B2k

�
+Bn�k:

We de�ne � and � as follows

� =

sin

�
�k

Bk

�
n+w

� 1

Bw
�Bn�k

� =

sin

�
�k

Bk

�
n+w

+ 1

Bw

�
1� 1

2B2k

�
+Bn�k:

We will now prove that � � � < 1 in order to apply the property 11. We have

� � � =
2

Bw
+ 2Bn�k � 1

2B2k

sin

�
�k

Bk

�
n+w

+ 1

Bw
:

But

sin

�
�k

Bk

�
n+w

+ 1

Bw
> Bn sin

�
�k

Bk

�
� �Bn
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thus

� � � <
2

Bw
+ 2Bn�k +Bn�2k < 1

according to the facts established at the beginning of this proof and we conclude by application of property 11.

Case 4zk � 4 � �k � 4zk + 4: We have

3�

2
� 2� � 9

Bk
<

4zk � 5

Bk
� �k � 1

Bk
< � <

�k + 1

Bk
� 4zk + 5

Bk
< 2� +

9

Bk
� 5�

2

according to the facts established at the beginning of this proof. Consequently, �, 2�� 9=Bk and 2�+9=Bk are

each one in the right part of the trigonometric circle and the sine function is strictly increasing on the interval

]2� � 9=Bk; 2� + 9=Bk[, so

sin

�
2� � 9

Bk

�
< sin(�) < sin

�
2� +

9

Bk

�
:

But

sin

�
2� + "

9

Bk

�
= " sin

�
9

Bk

�

for " 2 f�1; 1g. Thus we have
� sin

�
9

Bk

�
< sin(�) < sin

�
9

Bk

�
:

But

sin

�
9

Bk

�
<

9

Bk
� 1

Bn

according to the facts established at the beginning of this proof and consequently

� 1

Bn
< sin(�) <

1

Bn

and �nally 0 satis�es the bounds property of sin(�) for order n.

�

4.3.7 Other elementary functions

We deduce the other usual elementary functions from the preceding algorithms using the following formulas:

sinh(x) =
exp(x) � exp(�x)

2
; cosh(x) =

exp(x) + exp(�x)
2

; tanh(x) =
sinh(x)

cosh(x)
;

xy = exp

�
y log

B
(x)

log
B
(exp(1))

�
; log

x
y =

log
B
y

log
B
x
;

arcsinh(x) = log(x +
p
x2 + 1); arccosh(x) = log(x+

p
x2 � 1);

arctanh(x) = 1
2
log
�
1+x
1�x

�
;

arcsin(x) = arctan

�
xp

1� x2

�
; arccos(x) = arctan

 p
1� x2

x

!
;

cos(x) = sin(
�

2
� x); tan(x) =

sin(x)

cos(x)
:

4.4 Comparison algorithms for real numbers

We use the expression absolute comparison for comparison that may loop for equal numbers but returns always exact

results and relative comparison for comparison that never loops but returns only results within a given precision.
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4.4.1 Absolute comparison between two real numbers

Let x and y be two real numbers represented respectively by the sequences (xn)n2Z and (yn)n2Z, then the result

cmp(x; y) of the comparison between x and y is determined as follows:

n = 0

While xn + 1 > yn � 1 and yn + 1 > xn � 1 do n n+ 1

If xn + 1 � yn � 1 then cmp(x; y) = �1 else cmp(x; y) = 1

Theorem 21

1.. The algorithm terminates if and only if x 6= y

2.. x < y if and only if cmp(x; y) = �1

3.. x > y if and only if cmp(x; y) = 1

Remark.

This theorem supposes that the computation of xn and yn terminates. �

Proof.

If xn+1 � yn�1, then cmp(x; y) = �1 and x < (xn+1)B�n � (yn�1)B�n < y and by symmetry if yn+1 � xn�1,
then cmp(x; y) = 1 et y < x. In both cases the algorithm terminates.

We suppose now that x and y are distinct real numbers, we can by symmetry of the algorithm suppose that x < y.

Then these exists an integer n such that y � 2=Bn � x+ 2=Bn and consequently

yn � 1

Bn
> y � 2

Bn
� x+

2

Bn
>

xn + 1

Bn
;

thus yn � 1 > xn + 1, the algorithm terminates and cmp(x; y) = �1. �

4.4.2 Relative comparison between two real numbers

Let x and y be two real numbers represented respectively by the sequences (xn)n2Z and (yn)n2Z, let k be an integer,

then the result cmp"(x; y; k) of the comparison between x and y within a precision of B�k is determined as follows

n = 0

While xn + 1 > yn � 1 and yn + 1 > xn � 1 and n � k + 2 do n n+ 1

If xn + 1 � yn � 1 then cmp"(x; y; k) = �1
If xn � 1 � yn + 1 then cmp"(x; y; k) = 1

else cmp"(x; y; k) = 0

Theorem 22

1.. The algorithm always terminates.

2.. We have cmp"(x; y; k) = �1 only if x < y.

3.. We have cmp"(x; y; k) = 1 only if x > y.

4.. We have cmp"(x; y; k) = 0 if and only if jx� yj < 1
Bn .

Remark.

This theorem supposes, as the previous one, that the computation of xn and yn terminates. �
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Proof.

This algorithm terminates necessarily since we stop after at most k iterations and k is a �nite number.

If cmp"(x; y; k) = �1, then xn + 1 � yn � 1 and x < (xn + 1)B�n � (yn � 1)B�n < y and by symmetry if

cmp"(x; y; k) = 1 then yn + 1 � xn � 1 and y < x.

If cmp"(x; y; k) = 0, then xk+2 + 1 > yk+2 � 1 and yk+2 + 1 > xk+2 � 1, thus

x <
xk+2 + 1

Bk+2
<

yk+2 + 3

Bk+2
< y +

4

Bk+2

and

x >
xk+2 � 1

Bk+2
>

yk+2 � 3

Bk+2
> y � 4

Bk+2
:

Consequently

y � 4

Bk+2
< x < y +

4

Bk+2

and

jx� yj < 4

Bk+2
:

But B � 2, thus 4
B2 � 1 and jx� yj < 1

Bn . �

4.5 Existence of the f functions for all the f functions mentioned above

We assume at the beginning of the previous section that for any \basic" transcendental function f there exists a

function f : Q ! R, that maps any rational number r to a sequence f(r; n)=Bn (f(r; n) 2 Z) such that

f(r; n)� 1

Bn
< f(r) <

f(r; n) + 1

Bn
:

k-root is a special case since the function x 7! k
p
x is de�ned directly on N and maps any integer x to b kpxc. Such

a function is computed by Newton's method applied to the function z 7! zn � x (see [37] for more details).

4.5.1 Basic case for transcendental functions

The main argument of our proof for the existence of such a function f is that this function is de�ned by an alternate

series converging on a non empty interval

f(r) = s =
X
i2N

(�1)iai

where (ai)i2N (If the general term of the Taylor expansion of f is bn, an = bnr
n) is a sequence of rational numbers

with same common sign.

This approach has two advantages: �rst of all, we have a very simple stop condition for the series converging

according to the alternate series criterion since it is suÆcient that jan+1j is lesser than the required error " to ensure

that the sum of this series up to rank n

sk =

i=kX
i=0

(�1)iai

is an approximation of the limit s within ". Furthermore, two consecutive terms of such a series supply an interval

with rational bounds containing the limit: if all terms of the sequence (ai)i2N are positive, then s2i+1 < s < s2i for

any i 2 N and s2i < s < s2i�1 for any i 2 N�, if all terms of the sequence (ai)i2N are negative.

So we have a recursively enumerable sequence of nested intervals with rational bounds including the real number

to compute and with length vanishing to 0, that is to say that this real number is computable according to the �rst

de�nition of the notion of computable real number and the equivalence of this notion with the notion of B-approximable

real number supply us an algorithm to compute an integer � (and a value for k to compute �) such that � satis�es

the bound property of s for order n. Essentially we use the fact that sk = pk=qk and qk � Bn so � = bskBnc.

Consequently, we will come to this simple case for each basic function and prove that this transformation preserves

the bounds property.
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4.5.2 Exponential function

Let r be a rational number, we represent exp(r) by the product of ebrc+1 by exp(r � (brc + 1)) if r is not null and 1

otherwise. The �rst term of this product is computed as a power of e, that is to say by successive multiplications (and

inversion if r is negative). The computation of the second term uses the Taylor expansion of exp(x) for �1 � x < 0.

The basic case can be directly applied to this term. The computation of e may be performed either by using directly

the series of general term 1=n! and the inequalityX
k�n+1

1=k! < 1=(nn!)

for the stop condition and an interval with rational bounds including e: sn < e < sn + 1=(nn!) with the same

usage as above, or by inversion of exp(�1), computed according to the second case. Whatever the choice, we use the

multiplication of two real numbers and possibly the inversion of a real number, and we obtain function exp.

4.5.3 Logarithm function

Let r be a rational number, we compute ln(r) as follows: if r � 0, then the computation fails; if r < 1, then we take

ln(r) = � ln(1=r); if r = 1, then the result is the null sequence; if r > 1, then we use the formula

ln(r) = 2 arctanh

�
r � 1

r + 1

�

with y = (r � 1)=(r + 1), we have

arctanh(y) =
X
k�0

y2k+1

2k + 1

and X
k�n+1

y2k+1

2k + 1
� y2n+3

(2n+ 3) (1� y2)
:

Thus we have an interval with rational bounds sn < ln(r) < sn+ y2n+3=((2n+3) (1� y2)) and we use it as for above.

4.5.4 Arctangent function

The Taylor expansion of arctan(r) is an alternate series for any rational r.

4.5.5 Sine function

The Taylor expansion of cos(x) is an alternate series for any rational x. The Taylor expansion of sin(x) is an alternate

series for any positive rational x and the sine function is odd so we can always use come to the alternate series.

4.5.6 Remark

This is a proof of the existence of at least one set of functions f but it is only one possible way to compute one such

set. For example, we can also use ideas similar to those described by Brent in [10] to compute these functions.
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Chapter 5

Implementation

5.1 The choice of the Caml language

The use of this language was of course a natural choice insofar as we began the study on the subject of arithmetic for

a modern and reliable programming language about this language. Furthermore the �rst step of this study leads us

to implement a very eÆcient exact rational arithmetic for this language, that relies on the Bignum package [30, 46].

It is obvious that (almost) in�nite integers are absolutely necessary, but an exact rational arithmetic (see [36]) is also

necessary to compute the transcendental functions on rational parameters underlying the transcendental functions on

real arguments.

Moreover functions in this language are easy to use as arguments or results of functions and since real numbers (and

more generally in�nite objects) are naturally represented by functions, it is easier to deal with real numbers in this

language.

5.2 Choices of implementation

We choose as Boehm to represent real numbers as �nite B-adic numbers and furthermore these particular �nite B-

adic numbers, instead as general rational numbers. This choice leads us to a rougher granularity and a slightly lesser


exibility for our representation. For instance, if an accuracy under 1=Bn is required, this choice of implementation

leads to a computation with an accuracy of 1=Bn+1 and induce a greater running time than a computation to the real

precision of 1=Bn � " where " is a rational number as small as possible.

Boehm's implementation used rational numbers at the beginning and it turned out that with the library of rational

arithmetic used by Boehm, the computations with rational numbers were much slower than those performed with

�nite B-adic numbers, so he �nally choose B-adic numbers to represent real numbers. But this choice deprive us of

the natural incrementality of the representation and of a slightly simpler expression of our algorithms. Indeed this

representation, if we don't use the mpa functionality, is not incremental, that is to say that if we have computed a

result to n digits, if we want to compute its value to n+ 1 digits we need to compute it again from scratch. But we

adapt the representation to lessen this drawback by the following choices.

The implementation includes the storage of the most precise approximation already computed for each real number

and we choose to work with the base B = 4. We will now justify our choice.

For eÆciency, the representation includes for each real number x represented by the sequence (xn)n2Z, not only

the functional closure but also the most precise approximation already computed xmpa(x) to the order mpa(x) as

mentioned above in page 23. This choice leads us to redo only partly the computation: for example with a function

that consider the size of its argument(s) with the msd function, these arguments have been computed to a precision

suÆcient to compute their msd and the computation of msd is reduced after this �rst computation to some shifts

operations and maybe the already computed approximations for part of the arguments will be suÆcient.

Practically a good sharing of the expressions will increase the e�ect of this information storage and reduce the time

of computation.

Concerning the choice of the base, it is preferable to choose 2 to some power, sincej xmpa(x)

Bmpa(x)�n

k

57
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can be computed by a simple computer shift of xmpa(x) of mpa(x)� n digits to the right in this case, that is to say a

basic operation of rational arithmetic and then for the underlying hardware arithmetic. It may seems worthwhile that

a digit for the base B corresponds exactly to a computer word. However we have also to consider that the smaller

the base is and the less we pay to compute an additional digit. Hans Boehm choose to work with B = 4 and me too.

This is a good compromise between on the one hand the trend to perform computations on computer words and on

the other hand the fact that if we need to compute one digit more for a number the cost should not be very di�erent.

5.3 Realisations

Boehm implemented a similar arithmetic, so one can read his commentaries in [8, 7]. Moreover we have currently a

complete prototype for this representation. Tests are in progress. The chosen representation has the advantage of

using algorithms on integers that are well understood and very eÆcient.

Furthermore in 2001, Jean-Christophe Filliâtre released an independant implementation from my PhD thesis [37]

available at http://www.lri.fr/~filliatr/software.en.html.

Finally, XR by Keith Briggs and Yannis Smaragdakis [11, 12] in python and C++ seems to be inspired of this work

with B = 16 to extend Victor Shoup's arbitrary-precision arithmetic package NTL.
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Conclusion

We have a description of a representation of R and proved algorithms for this representation for all elementary

functions.

We have implemented a complete prototype of this description so we have a complete chain for reliable arithmetic

in the Caml language.

In the future, it may be also interesting to study the in
uence of the radix B on the eÆciency of real computations.

Furthermore we hope to improve the eÆciency of this prototype by an optimized computation of the f functions with

optimizations like those developed in [3] and by a balancement of the abstract syntax tree during the compilation of

expressions such as x1 + : : :+ xn to compute each xi with a well-balanced precision.

It seems to be interesting to combine our arithmetic with 
oating point analysis method such as interval analysis [41,

42, 1, 18] or the CESTAC method [50, 13, 49] in the spirit of the lazy rational arithmetic by Michelucci [4]: it consists

in computing the functional closure of the result and at the same time to compute the interval result according to

interval analysis. If a result (maybe an intermediary result) is not precise enough we compute it with exact real

arithmetic at the needed precision. This method has the advantage that it is eÆcient and precise: generally speaking,

big 
oating point applications accept to pay in time only when necessary so this solution is well adapted to this need.

However this approach is limited by the fact that IEEE 
oating point standard arithmetic concerns only rational

operations currently.

Our goal is not to substitute our arithmetic to 
oating-point arithmetic, that is often suÆcient and very eÆcient,

but to make available an alternative arithmetic for speci�c needs. We want to be able to compute a reliable result

even if it takes a while rather than to obtain a wrong result immediately.

An idea consists to consider this arithmetic as a static analysis of the needed precision for a 
oating point compu-

tation according to the required precision on the result.

Finally, it would be interesting to build real analysis on top of this real arithmetic.
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Chapter 7

Current state of the art

We present here brie
y the later works with or without proofs.

7.1 Continued fractions, M�obius transformations, LFT

David Lester in [31] describes a type of continued fractions for which Gosper'algorithms are correct.

Peter Potts and Abbas Edalat in [19, 43, 44] represent real numbers as Linear Fractional Transformations (LFT) and

show how to encode continued fractions using LFT and deduce algorithms to compute with LFT. Reinhold Heckmann

in [27, 26, 25] shows how to manage computations with LFT according to the expected precision.

7.2 Computable Cauchy sequences

David Lester and Paul Gowland in [23] presents an arithmetic using e�ective Cauchy sequences (sequences of �nite

2-adic numbers) with algorithms similar to ours for rational operations (including iterators), square root and simplistic

transcendental functions using power series.

7.3 Adaptive computations

This approach consists in an iterative bottom-up analysis. The computation starts with a prede�ned precision on all

inputs and at each step of the computation, if the required precision is not obtained, the computation is performed

with increased precision.

MPFR (Polka team at INRIA Loria, directed by Paul Zimmermann [58]) computes with 
oating-point representa-

tions.

The iRRAM work of Norbert M�uller [40] relies on the REAL RAM by Vasco Brattka and Peter Bretling [9].

7.4 Implementations

Jean Vuillemin have carried out a small implementation of continued fractions in Lisp, but it never was available in

no way at all.

Hans Boehm have implemented a pocket calculator and a version in Java is currently available at http://www.hpl.

hp.com/personal/Hans_Boehm/crcalc/CRCalc.html.

We mentioned in subsection 5.3 three implementations of our work.

Peter Potts have made a small prototype for LFT in Caml named Calathea, available at http://www.purplefinder.

com/~potts/calathea.zip. A complete prototype named IC-reals in C is available at http://www.doc.ic.ac.uk/

~ae/ic-reals-6.2-beta.tar.gz.

David Lester in [31] mentions an Haskell very slow implementation using continued fractions and a more classical

computable Cauchy sequences representation used in the implementation MAP presented in [23, 6], available at http:

//www.cs.man.ac.uk/arch/dlester/exact.html (Haskell version, C version announced).
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Norbert M�uller has written the C++ very eÆcient package iRRAM available at http://www.informatik.

uni-trier.de/iRRAM/.

Paul Zimmermann and al. make MPFR [34] available at http://www.loria.fr/projets/mpfr/.

Paul Gowland and David Lester have surveyed exact real arithmetic implementations in [24] and Jens Blanck have

compared them in [6].

7.5 Mechanically checked proofs

In [32], David Lester and Paul Gowland have proved in PVS the correctness of their algorithms on computable

Cauchy sequences described in [23], relying on the NASA Langley PVS real library for axiomatic de�nitions of the

transcendental functions. The complete proof is available at http://www.cs.man.ac.uk/arch/dlester/exact.html.

David Lester in [31] mentions machine-assisted proofs for the central algorithms for rational operations on continued

fractions.

J�erôme Cr�eci in [16] has de�ned our representation and proved our addition, subtraction and multiplication algo-

rithms in Coq, relying on the Reals library axiomatized in the Coq system. When all our algorithms will be proved in

Coq, we will be able to combine this work with the real analysis available in the axiomatization of real numbers.

Paul Zimmermann proved some algorithms of MPFR in Coq with the help of Lemme team of Inria Sophia-Antipolis.
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