
Introduction of Mobility for Distributed Numerical
Simulation Frameworks : a Formal Study

Grégory Haı̈k∗

LIP6 Research Report 2003–008
Laboratoire d’Informatique de Paris 6

Université Pierre et Marie Curie
4, place Jussieu 75252 Paris Cedex 05, FRANCE

Abstract

This paper presents a formal study of automatic partitioning – or introduction of
mobility – in the domain of Distributed Numerical Simulation Frameworks. Applied
to this domain, mobility introduction consists in the following : in order to ease ef-
ficiency constraints on the design of numerical data interfaces, slices of programs
are remotely executed on the hosts were data is located, so that a number of remote
interactions are transformed into the same number of local interactions. This tech-
nique enables the designer of data interfaces to always provide the finest grain of
inter-component interaction – which means a high level of component reusability –
without sacrifying efficiency of the distributed application. This paper presents a
formal model of mobility introduction for distributed systems and demonstrates a
soundness thoerem of such a transformation.

Résumé

Ce papier présente une étude formelle du partitionnement automatique – ou
introduction de mobilité – dans le domaine des Canevas de Simulation Numérique
Répartie. Appliquée à ce domaine, l’introduction de mobilité repose sur le principe
suivant : pour alléger les contraintes d’efficacité qui pèsent sur la conception des in-
terfaces de données numériques, des tranches de programmes sont exécutées à dis-
tance sur les machines qui hébergent les données accédées, de sorte que les interac-
tions distantes soient transformées en interactions locales. Cette technique permet au
concepteur d’interfaces de toujours offrir la plus fine granularité d’interaction inter-
composant – et donc un degré élevé de réutilisabilité des composants – sans sacrifier
les performances de l’application répartie. Ce papier présente un modèle formel de
l’introduction de mobilité dans les systèmes répartis et démontre un théorème de
correction pour cette transformation.

Keywords : Numerical simulation, software engineering, integration frameworks,
distributed numerical simulation, interface design, locality, mobility, automatic par-
titioning, automatic distribution, program analysis, program transformation.

Mots-clés : Simulation numérique, génie logiciel, canevas d’intégration, simulation
numérique répartie, conception d’interface, localité, mobilité, partitionement automa-
tique, répartition automatique, analyse de programme, transformation de programme.

∗Gregory.Haik@lip6.fr

1

Contents

1 Introduction 3

2 Informal Overview 4
2.1 Principles of the experiment . 4
2.2 The Need for Toy Languages . 5
2.3 Mobility introduction and Location-Dependence 7

2.3.1 Location-independent statements 7
2.3.2 Mobility introduction . 7
2.3.3 CMI Soundness Theorem . 8
2.3.4 DMI Soundness Theorem . 9

3 Related Works 9

4 The Silfa and SilfaM Languages 11
4.1 Silfa and SilfaM Syntaxes . 11
4.2 Operational Semantics . 11

4.2.1 Domains . 11
4.2.2 Using Environments . 12
4.2.3 Using States . 13
4.2.4 Silfa Semantics . 15
4.2.5 SilfaM Semantics . 16

5 Equivalence of Semantics 17
5.1 Location-Independence . 17
5.2 Equivalence of Events . 18
5.3 Equivalence of Traces . 18
5.4 Equivalence of States . 18

6 Soundness of Mobility Introduction 22
6.1 Data Mobility Introduction Soundness Theorem 22
6.2 Code Mobility Introduction Soundness Theorem 22

6.2.1 Moving Expressions . 23
6.2.2 Moving Statements . 24
6.2.3 Introducing Code Mobility Primitive 28

7 Concluding Remarks 28

2

1 Introduction

Numerical simulation is an application domain where integration frameworks are
expected to solve many practical problems. Indeed, numerical simulation raises dif-
ficult software engineering challenges and, as a result, simulation programmers are,
still today, forced to adapt, modify and rewrite their programs even when inputs, us-
age scenario, or required outputs are very slightly changed. This practice is not only
costly in terms of human work, it is also error prone. Moreover, adaptation of numer-
ical simulation programs is hardened by the amount of manipulated data, the num-
ber of program lines involved, the required computation times, and the very long
lifetime of numerical simulation programs. These challenges advocate for numerical
simulation frameworks in which parts of the integration process is automatized.

Indeed, over the last decades, many research projects have addressed the issue of
assisting engineers in programming and maintaining numerical programs : starting
with linear algebra software libraries (such as LAPACK [15] and alike), researchers
in software engineering of numerical simulation have promoted a rationalization of
numerical programs development by using programming frameworks such as, for in-
stance, POOMA [18] and Overture [2]. More recently, a need has arisen for integration
frameworks of existing numerical programs : in such specialized integration frame-
works, reusable software components encapsulate numerical solvers, mesh gener-
ators, 3D CAD systems and databases, using internal glue code. Managing such
components in the consistent and uniform environment provided by the framework
increases productivity of numerical applications programmers.

Integration frameworks are also expected to address the issues linked to distribu-
tion of resources. Indeed, large scale numerical simulations tend to use supercom-
puters, workstations clusters, large data servers, and powerful 3D graphics consoles.
Thus, we envision Distributed Numerical Simulation Integration Frameworks (DNSIF) to
be responsible, in addition to the requirements above, for remote communications
between components and deployment of the componential application.

Today, very few numerical simulation frameworks efficiently support distribu-
tion, although reseachers from academics and industry has promoted several projects
in that field, such as Salome RNTL project [19], Simulog’s E-sim Factory [20], Paris
and Sinus projects at INRIA [7, 14]. Indeed, such DNSIF projects are facing a difficult
issue : while performances are critical in numerical simulation, conversely reusabil-
ity of components is critical for the integration framework to remain meaningful; and
unfortunately, these two constraints are often antagonistic. This paper explores a so-
lution for addressing this antagonism in the specific field of numerical data interfaces.

Efficiency constraints require data interfaces to be specialized for specific usage,
and conversely the best reusability is achieved when data is accessible at the finest
grain, so that clients can choose their own way how to use that data. Although this
problem also arises in a centralized setting, it is even more acute in a distributed envi-
ronment. Indeed, refining the grain of data interfaces means, when data is accessed
remotely, that the total amount of network messages increases. And because net-
works, operating systems, communication libraries, and the integration framework
itself have their own latencies, refining the grain of remote interactions leads to lower
global efficiency.

In this paper, we present an experimentation that consists in optimizing a pro-
gram accessing data through a fine-grained interface (providing a good level of reusa-
bility) by introducing mobility primitives into the program. Mobility is used as a
mean to increase locality between data holders and their client programs [5]. Im-
proved locality leads to smaller amounts of network messages, thus reducing the
latency overhead coming from the fine grain of the interfaces, as illustrated in fig-
ure 1. This way, we expect to reconcile reusable interfaces required by a meaningful

3

script

client side

object

server side server sideclient side

client
program client

program

object

Figure 1: Moving client code to server host

integration framework with the global efficiency needed in numerical simulation.
Let us consider a program, part of a DNSF1, that is client of remote data compo-

nents. The program also accesses local resources such as the user console, the local
file-system, OS-provided primitives (local timers, local host name, and alike)... The
proposed optimization consists in moving slices of the program onto the comput-
ers hosting the remote data accessed in the slice to be made mobile. When a slice is
moved, it has to bring with it associated data. Thus, we have to select wisely which
slices are going to be moved, and which ones are going to remain on the client’s side.
Moreover, because the program also accesses local resources, we have to ensure that
the transformation does not affect the global behavior of the program. In this paper,
we only address the latter issue.

Intuitively, (i) mobility introduction is sound if (ii) moved statements do not ac-
cess local resources. The next sections demonstrate this intuition. We first define
what is a location independent statement, we make explicit the meaning of “mobil-
ity introduction” and “soundness”, and finally demonstrates the link between the
propositions (i) and (ii).

This report is structured as follows : first, we informally introduce in section 2
the goal and the method of the approach, and we review related work in section 3.
Then, in section 4, we present the two languages for which our study is designed. In
section 5, we define the notion of equivalence between program behaviors, and we
link all the definitions of the formal model by a soundness theorem in section 6.

2 Informal Overview

In this section, we first show a short example that illustrates the principles of our ex-
periment. Then, we informally describe the two toy languages we use, and finally we
present the theorem of sound mobility introduction and the theoretical framework in
which it is demonstrated.

2.1 Principles of the experiment

Figure 2 shows a simple program that computes and prints the sums of each columns
of a remote matrix. It is made of two loops : the external one (variable i) is ranging

1Distributed Numerical Simulation Programming or Integration Framework

4

2

6

8

1 program foo {

3 declare int i;
4 declare int j;
5 declare Matrix remoteMatrix;

7 remoteMatrix = (Matrix)get("myMatrix");

9 i = 0;
10 while (j != remoteMatrix.length_x()) {

19 printlnInt(s);
20 };
21 };

11 declare int s;
12 s = 0;
13 j = 0;
14 while (j != remoteMatrix.length_y()) {
15 s = s + remoteMatrix.get(i,j);
16 j = j + 1;
17 }
18 i = i + 1;

Figure 2: A program printing sums of each column

over columns, whereas the internal one (variable j) over lines. For each i, the sum s

is computed and finally printed.
The boxed statements, on lines 14-17, only contain simple arithmetic and boolean

primitives (non-equality test, sums), and refer to a single remote object, namely re-
moteMatrix. Moreover, it is not linked to any local-dependent primitive such as
printInt. Thus, these statements are not specifically bound to the computer they
are executed on. They could be moved to another computer without modifying the
global behavior of the program. If the target computer is chosen wisely, the perfor-
mances of the program would be dramatically improved. Indeed, if these statements
are executed on the computer hosting remoteMatrix, then a number of remote in-
teractions are transformed in the same number of local interactions, which are - under
certain circumstances - an order of magnitude faster.

Figure 3 illustrate the transformation from program foo to an equivalent program
foomob where mobility primitives have been introduced. The statements boxed on
figure 2 are sent (lines 18–23) to the host running the remoteMatrix object by a code
mobility primitive (remoteMatrix <- {...}). This way, the internal loop only
does local interactions with the matrix. In next sections, this is called Code Mobility In-
troduction (CMI). But since the associations between variables x, y, s remoteMatrix
and their values were located on the client host (assuming that they are located were
they have been declared), we also need to move the variables and their values so that
the moved slice accesses the variables locally. This is done by introducing statements
such as migrate(h, v) : the association between the variable v and its value is
migrated to the designated host h. In next sections, this is called Data Mobility In-
troduction (DMI). Free variables of a moved statement are migrated before its remote
execution (lines 14–17). They are migrated back to their original location after the
remote execution (lines 24–28).

The remaining sections of this paper addresses the conditions under which such
a transformation is valid.

2.2 The Need for Toy Languages

The formal model is not based on a well known programming language. We rather
use two toy languages, that both have a very small syntax and a well defined op-
erational semantics. We have chosen to study simple imperative languages instead
of λ-calculus based toy languages because we want the formal model to be blatantly

5

2
3 declare int i;
4 declare int j;
5 declare Matrix remoteMatrix;
6 declare Host clientHost;
7
8 remoteMatrix = (Matrix)get("myMatrix");

10 while (j != remoteMatrix.length_x()) {
11 declare int s;
12 s = 0;

9 i = 0;

13 j = 0;

15 migrate(remoteMatrix, j);
16 migrate(remoteMatrix, s);
17 migrate(remoteMatrix, remoteMatrix);
18 remoteMatrix <− {

19 while (j != remoteMatrix.length_y()) {
20 s = s + remoteMatrix.get(i,j);
21 j = j + 1;
22 }
23 };
24 clientHost = getLocalHost();
25 migrate(clientHost, i);
26 migrate(clientHost, j);
27 migrate(clientHost, s);
28 migrate(clientHost, remoteMatrix);

29 i = i + 1;
30 printlnInt(s);
31 };
32 };

1 program foomob {

14 migrate(remoteMartix, i);

Figure 3: Equivalent program with mobility primitives

usable for analyzing the kind of languages used in the domain of numerical simu-
lation (like Fortran, C/C++, python, Java), where fonctionnal programming is just
unpopular. Moreover there is no need – in our experiment – for autonomous, com-
municating mobile agents such as Emerald [12], Obliq [3], Javanaise [10], Nomadic
PICT [25], IBM Aglets [1], ObjectSpace Voyager [24] and alike : our model simply
relies on remote code execution. Therefore, regarding the formal study, we have de-
signed a specific model instead of extending existing mobility-based calculi such as
the Join-calculus [9] or mobile ambients [4], that are far too much expressive for our
needs. Thus, we defined Silfa (Simple Imperative Language For Analysis) and SilfaM
(standing for Silfa + Mobility)2. The syntax used in the example above is very close
to Silfa’s. The only difference is that in Silfa, all the composite expressions are noted
prim(e1, e2,...) or obj.meth(e1, e2, ...). Thus, i + 1 is noted in Silfa
plus(i,1), which reduces the number of reduction rules in Silfa’s grammar.

Silfa is designed for interaction with CORBA objects. Thus, it can be seen as a very
simple model of CorbaScript [13]. Silfa is limited to synchronous method calls. As
a minimalistic language, its values are restricted to booleans, integers, floats, strings,
and distributed object references. Silfa is typed, and does not provide type inference.
Silfa is imperative : computation is achieved by successive store transformations,
where a store maps variables to values. Silfa provides a set of predefined primitives
(procedures and functions), including boolean, arithmetic, I/O, and naming oper-
ations3, but does not support user-defined sub-programs. This is subject to future
work (cf. section 7). Finally, programmers can define blocks for restricting the lexical
scope of variables and parenthizing sequences of statements.

SilfaM adds to Silfa a code mobility primitive (obj)<-s and a data mobility prim-
itive Migrate(x, obj). The code mobility primitive sends a statement/slice s (pos-

2Silfa is also the phonetic reverse slang of facile, French word for easy.
3The Silfa library provides a simplified access to the COS Naming.

6

sibly including sub-statements) to a remote machine. The destination host is desig-
nated by a reference to a distributed object obj hosted by this machine. Similarly, the
data mobility primitive moves the association between a variable x and its value to
the host designated by the distributed object reference obj.

As stated before, the two toy languages have a well defined semantics. In this
model, programs are bound to hosts where they are executed, but they manage a
global store. Each host manages a local store, associating a local address to a value.
The global store gives, for each global address, a pair composed of a local address and
the host where the value is referenced. Moreover, a global addressing function maps
variable names to global address. This way, any program can access the value of a
variable through (i) the global addressing function and (ii) the global store. Then,
from a formal point of view, the program in figure 3 would be workable even without
the migrate operations, since values of i, j, s, and remoteMatrix are accessible
from anywhere4. Still, the goal of the transformation is to avoid as much remote in-
teractions as possible, and the migrate primitive illustrates a good implementation
of the language (cf. section 7), so we introduced the data mobility primitive into
SilfaM.

Silfa and SilfaM computation model is based, like in any sequential imperative
language, on successive transformations of the global store. Here, in addition, pro-
grams produce a global trace that captures the locations where operations (primitives
and remote object method calls) are actually performed. These traces have no func-
tional meaning : they are only a semantics based record for defining equivalence
between program behaviors and finally proving the soundness of the mobility intro-
duction theorem.

Formal definitions of the environments, states, access functions and operational
semantics are given in section 4.2.

2.3 Mobility introduction and Location-Dependence

Intuitively, mobility introduction is sound (i) if mobilized statements do not access
local resources (ii). The next sections demonstrate this intuition. We first define
what is a location independent statement, we make explicit the meanings of “mo-
bility introduction” and “soundness”, and finally demonstrates the link between the
propositions (i) and (ii).

2.3.1 Location-independent statements

Location-independent statements of a program are defined as follows : we suppose
that we statically know, in the set of all primitives, which ones actually accesses local
resources. From this, we recursively define the local-independent statements by look-
ing into each statement of the program and searching for location-dependent primi-
tives. Formal definitions of location-independent primitives (def. 5.1) and location-
independent statements (def. 8) are given in section 5.1.

2.3.2 Mobility introduction

Mobility introduction is divided into Code Mobility Introduction (CMI) and Data Mo-
bility Introduction (DMI).

CMI consists in transforming a Silfa statement into a SilfaM statement that re-
motely executes it. For instance, an image of (x := x + 1) by CMI is :

4Line 17 in figure 3 means that the association bewteen the variable remoteMatrix, and its value –
which is an object reference – is migrated to the host running remoteMatrix.

7

remoteObj <- {x := x + 1}

From the remote host running remoteObj, the inner expression is computed by
accessing the value of x in the global store, which is finally updated to the new value
of x. As long as (+) is an operation that has the same effect wherever it is executed,
this transformation is sound.

DMI consists in transforming a Silfa statement into a SilfaM statement that first
migrates a variable-value association to a remote host and then executes it. For in-
stance, an image of (x := 1) by DMI is :

migrate(remoteObj, x); x := 1

2.3.3 CMI Soundness Theorem

The CMI soundness theorem asserts that applying CMI to local-independent state-
ments of a program does not affect the global behavior of the program. This is shown
by comparing the global behaviors of the original program (in Silfa) and its image Sil-
faM program by CMI, and showing that these two global behaviors are equivalent. In
other words, we show that the CMI image of a Silfa program is a refinement of the
original program.

We actually do not directly define global behavior. Instead, we define an equiva-
lence on global traces (that capture among other things the inputs and outputs of the
program) and on global states (representing values of user-defined variables), and
the CMI soundness theorem links these equivalences with Silfa and SilfaM seman-
tics.

Two global traces are said to be equivalent if (i) the same inputs have been given
to both programs, (ii) the same outputs have been produced, and (iii) the location-
dependant primitives where called on the same host, regardless of where the location-
independent primitives have been called. This degree of liberty constitutes the only
difference between this equivalence and equality. See section 5.3 for the formal defi-
nition.

Two global states are said to be equivalent if every variable is associated with the
same value in both states. The difference with equality between states is that in two
equivalent states, variable-value associations can be located on different hosts. See
section 5.4 for the formal definition. The CMI soundness theorem (theorem 8) states
the following :

For any object variable obj, granted that a Silfa statement s is location-independent, the
SilfaM semantics of (obj)← s is equivalent to the Silfa semantics of s.

Therefore, it is semantically safe for a Silfa compiler to transform any statement of
the input program, granted that the statement is location-independent - which is a
syntactic check.

We do not prove directly the CMI soundness theorem. Instead, we prove a strong
lemma (cf. lemma 7 in section 6.2.2), that directly leads to the CMI soundness theo-
rem. This lemma states that if a statement is location-independent, then executing it
on one host or another maintains the equivalence between pairs of states and traces.
In other words, the host were a location independent statement is executed has no
impact on the behavior of the program. From this lemma, applying the definition of
code mobility primitive semantics leads to the CMI soundness theorem. The lemma
is proven by induction over the statement syntactic structure. Let us review interest-
ing cases of the induction :

• Primitive call
This is the most interesting case regarding our problem. The argument is that if

8

a primitive call is location-independent, then so is its sub-expression; moreover
the called primitive is a location-independent primitive. The first consequence
guarantees that the induction hypothesis is applicable, and the second leads to
equivalence between the two new events being entered in the traces.

• Variable read
The two input states are equivalent, which means by definition that all variables
are associated with the same value. Thus, both variable read operations lead to
this value. Moreover traces are unchanged by a variable read expression.

• Variable update
Here, we use a lemma that guarantees stability of equivalence between states
when updating a variable with the same value from two different hosts.

• Loop
Compared to all other cases, this one is a little bit more difficult, because we do
not know how many times the inner statement is going to be executed. Thus,
we build a sequence of states and a sequence of traces corresponding to the
result of each execution of the inner statement. Then, we prove that stability of
equivalences between states and traces are guaranteed from one execution of
the inner loop to the next one (with an evaluation of the loop test in between).
This recursively leads to the stability between the initial pair of states and traces
to the last pair.

2.3.4 DMI Soundness Theorem

Informally, the DMI soundness theorem states that introducing a data mobility prim-
itive anywhere in the program does not change the global behavior of the program.
According to our model, this theorem is very easy to prove, it is a almost direct con-
sequence of the model’s definitions : we only rely on a simple lemma (lemma 3)
asserting that performing a migrate operation on the state leads to an equivalent
state.

Besides the next section, which reviews related works, the remaining of this paper
provides formal definitions of the notions above and prove our two theorems.

3 Related Works

In a similar manner than automatic parallelization transparently analyzes and trans-
forms sequential programs in order to discover opportunities for introducing paral-
lelism [8], automatic partitioning (or automatic distribution) tends to analyze and trans-
form centralized programs in order to discover opportunities for introducing distri-
bution. During the last few years, some research has been conducted in this domain,
as reviewed below.

JavaParty [16] is an extension of Java that automatically transforms regular Java
classes into remotely accessible ones. It also provides migration of these classes’ in-
stances. Users specify which objects are to be made remote/mobile by tagging their
classes with a new modifier (keyword remote). When an object is migrated, it ac-
cesses Java API on the host where it is executed : outputs and – more generally –
location-dependent primitives are not examined and, regarding to our definition of
soundness, JavaParty’s object migration is unsound.

Doorastha [6] is quite similar to JavaParty, but differs from it on several issues : Java

9

syntax is not modified, and users insert pragmas in Java comments. Thus, compat-
ibility with genuine Java compilers is preserved. In Doorastha’s object migration
model, calls to System.out are forwarded to the original JVM’s console, which de-
notes consideration for the problem we are addressing. Still, in Doorastha, there is
no tracking of every location-dependent primitives of the Java API, which leads to
inconsistencies.

Pangaea [21] is a distribution system for Java applications that works with both
JavaParty and Doorastha as back-ends. It is based on a static analysis of Java pro-
grams that computes an approximation of the runtime object graph. The Pangaea
user specifies, through a graphical user interface, which objects are tied to which
hosts. From this specification, the system computes a good placement of every other
objects among the anticipated runtime population, by minimizing the number of re-
peating remote calls. Regarding to the soundness of mobility introduction, we do not
consider that Pangaea is correct, because it relies on JavaPary or Doorastha.

J-Orchestra [23] and Addistant [22] are two similar automatic partitioning systems
for Java bytecode. J-Orchestra distributes Java classes among the network (with the
help of the user, like in Pangaea), using a runtime profiler for making placement deci-
sions. In J-Orchestra, classes that contain platform-specific code in native format are
considered anchored to their host : they can not be made mobile. A semi-automatic
process ensures that no such class will eventually be ran on the wrong machine. Re-
garding to our notion of soundness, J-Orchestra is the only partitioning system that
provides a sound mechanism for distributing code.

Coign [11] is a partitioning system for applications made of COM components. It
combines typical usage scenarios, application and network profilers in order to make
placement decisions, by scrutinizing inter-component communications. As Coign is
designed for client-server distribution, it constrains GUI calls to remain on client side,
while data storage calls are stuck to server side. This denotes consideration for the
problem we are addressing. Still, this check is not (according to our model) general
enough to be considered sound : for instance, we believe that Coign should also
prevent to distribute components issuing calls the local DNS system (localhost, geth-
ostbyname, etc).

In addition to the differences reviewed above between our work and related research,
one should notice the three main contributions of our approach :

• First, our grain of mobility introduction is atomic : SilfaM primitives can make
mobile every single statement of the original program, while systems reviewed
above can only distribute COM components or Java objects. Our fine-grain
mobility introduction enables to take advantage of automatic distribution for
slices of code for which previous techniques would have been constrained by
the including component/object.

• Second, we provide a formal framework (partially based on Queinnec’s and De
Roure’s work on first-class environments [17]) that asserts the conditions of a
sound automatic distribution. Other approaches focussed on real-world lan-
guages such as Java sources, Java bytecode or binaries. Thus, the validity of the
program transformations reviewed could not easily be formally proven5, and
we even consider that the majority of them are unsound. We believe these two
approaches – formal model of a proven transformation and unproven proto-
types for real-world languages – are mutually profitable.

5Because of the technicalities involved in managing real-world languages in a formal manner.

10

• Finally, there is an important difference in the goal of related research and ours :
previous works have focussed on the distribution of a stand-alone, centralized
program that is to be executed on a network of computers. Distribution is seen
as a motivation in itself, coming from the suboptimal usage of computer re-
sources of laboratories and companies or from the fact that a particular applica-
tion should be divided between a client side and a server side. On the contrary,
we do not consider stand-alone programs to be candidates for transformation :
we study programs that interact with other computers by RPC-like techniques.
Here, distribution is not seen as a goal in itself, but rather as a mean to min-
imize the physical distance between a set of distributed resources and their
client code. This is why Silfa and SilfaM are provided with a remote method
call syntactic construct.

4 The Silfa and SilfaM Languages

This section describes our two toy languages. We first present the syntaxes, then we
formally define their operational semantics.

4.1 Silfa and SilfaM Syntaxes

Silfa and SilfaM syntaxes are shown in figure 4.
The syntax used in the example of section 2 is very close to Silfa’s. The only differ-

ence is that in Silfa, all the composite expressions are noted prim(e1, e2, ...)
or obj.meth(e1, e2, ...). Thus, i + 1 is noted in Silfa plus(i,1), which
reduces the number of reduction rules in Silfa’s grammar.

Silfa is designed for interaction with CORBA objects. Thus, it can be seen as a very
simple model of CorbaScript [13]. Silfa is limited to synchronous method calls. As
a minimalistic language, its values are restricted to booleans, integers, floats, strings,
and distributed object references. Silfa is typed, and does not provide type inference.
Silfa is imperative : computation is achieved by successive store transformations,
where a store maps variables to values. Silfa provides a set of predefined primi-
tives (procedures and functions), including boolean, arithmetic, I/O, and naming
operations6, but does not support user-defined sub-programs. This is subject to fu-
ture work. Finally, programmers can define blocks for restricting the lexical scope of
variables and parenthesizing sequences of statements.

SilfaM adds to Silfa a code mobility primitive (obj)<-s and a data mobility prim-
itive Migrate(x, obj). The code mobility primitive sends a statement/slice s (pos-
sibly including sub-statements) to a remote machine. The destination host is desig-
nated by a reference to a distributed object obj hosted by this machine. Similarly, the
data mobility primitive moves the association between a variable x and its value to
the host designated by the distributed object reference obj.

4.2 Operational Semantics

The operational semantics gives the meanings of Silfa and SilfaM programs. It is
expressed as a set of functions, whose signatures are given in figure 5.

4.2.1 Domains

Formally, a state Σ ∈ State associates a global address α ∈ Addr to a value : from
α, one can retrieve, via a function f ∈ Localization embedded in Σ, the machine

6The Silfa library provides a simplified access to the COS Naming.

11

Program→ program ProgId Block

Block →{ Declarations Statement }
Declarations→ ε | Declaration ; Declarations

Declaration→ declare Type V arId

Statements→ ε | Statement ; Statements

Statement→ skip | RemoteCall | PrimitiveCall

| V arId:= Expression | Block

| if Expression then Statement else Statement

| while (Expression) do Statement

Expression→ V arId | Literal | PrimitiveCall

| RemoteCall | (Type)Expression

PrimitiveCall→ PrimId (Expressions)
RemoteCall→ ObjId.MethId(Expressions)
Expressions→ ε | Expression

| Expressions, Expression

Type→ Boolean | Int | Float
| String | InterfaceId

∗Id→ Identifier

SilfaM grammar is augmented with the following rules :
Statement→ (ObjId) <- Statement

Statement→ Migrate(V arId , ObjId)

Figure 4: Silfa and SilfaM Syntax

h ∈ Host where the value is hosted and the local address l ∈ Loc under which the
value can be found. The second member of Σ (g ∈ DistributedStore) associates a
local store σ ∈ Store to each host. Thus, by combining the two members of Σ, one
can retrieve the value associated in Σ with any address.

Silfa and SilfaM computation model is based, like in any sequential imperative
language, on successive transformations of the global state (Σ ∈ State). Although
this is sufficient for properly defining the behavior of program, we make programs
to produce a global trace (Ω ∈ Trace). This trace has no functional meaning : it is
only a semantics based record for defining equivalence between program behaviors
and finally proving the soundness of the mobility introduction theorem. A trace a
sequence of external events (ω ∈ Event). These events are either remote method
calls (Rcall) or primitive calls (Pcall). Primitive calls are used to track (i) the loca-
tions where operations are actually performed and (ii) input/output values given
to/produced by the program. See sections 4.2.4 and 4.2.5 for the meaning of the
remaining functions.

4.2.2 Using Environments

Environments ρ ∈ Env are sequences of maps between identifiers id ∈ Identifier

and global addresses α ∈ Addr. Each element of an environment stores the declara-
tions of a block. The function Lookup(id, ρ), defined below, recursively inspects the
environment ρ from the last one (deepest block) to the first one (program’s block) in
order to find the address α associated with id.

Definition 1 Let Lookup be the function that maps id ∈ Identifier to the relevant global
address α ∈ Addr in the global environment ρ :

12

v ∈ V al : Bool ∪ Int ∪ Float ∪ String ∪ObjRef
α ∈ Addr : 0, 1, 2, ...
l ∈ Loc : 0, 1, 2, ...
h ∈ Host : 0, 1, 2, ...
ρ ∈ Env : (Id→ (Addr ∪ {⊥}))?

σ ∈ Store : Loc→ V al

f ∈ Localization : Addr → (Loc×Host) ∪ {⊥}
g ∈ DistributedStore : Host→ Store

Σ ∈ State : Localization×DistributedStore

ω ∈ Event : Pcall ⊕Rcall

P call : Prim×Host× V al

Rcall : V al ×Meth× V al

Ω ∈ Trace : (Event)?

P : Program×Host→ (State× Trace)
D : Declaration×Env → Env

S : Statement×Host×Env × State× Trace→ State× Trace

E : Expression×Host×Env × State× Trace→ V al × Trace

Figure 5: Domains of Silfa and SilfaM Semantics

Lookup : Identifier×Env → Addr

Lookup(id, []) , ⊥

Lookup(id, ρ′ : head) ,

{

Lookup(id, ρ′) if head(id) = ⊥

head(id) otherwise

Notation : Lookup(id, ρ) is noted ρ(id).

4.2.3 Using States

A state Σ ∈ State is a structure that stores variable-value associations. Every as-
sociation is actually stored in one of the local stores (g ∈ DistributedStore) of each
host, and a localization function f ∈ Localization) is provided to retrieve the host
and the local address of each global address. States Σ are manipulated by three func-
tions : V alue, Update, and Migrate. Well-formed states must have the property that
from every address α is associated with its own couple (l, h) : the localization func-
tion is called ⊥-injective. In this section, we define ⊥-injectivity and the well-formed
character of states. Then, we will define the tree access functions V alue, Update and
Migrate, showing that the last two access functions conserve the well-formed prop-
erty of states.

Definition 2 A state Σ = (f, g) ∈ State is well-formed iff its localization function f is
⊥-injective, which is defined as follows :

f(α) = f(β) 6= ⊥ =⇒ α = β

Function V alue(α, Σ) combines the two members of the state Σ in order to get the
value associated to the global address α. It is used in the semantics of expressions in
order to evaluate variables - cf. rule (var) in figure 6.

Definition 3 Let Value be the function that returns the value associated with address α in
state Σ :

13

V alue : Addr × State→ V al

V alue(α, Σ) , let (f, g) = Σ in
let (l, h) = f(α) in
g(h)(l)

Let us define now a function fresh that returns a new location l ∈ Loc that is unused
in Σ for the host h :

Definition 4 Let (fresh : State × Host → Loc) be any function such that, for Σ =
(f, g) ∈ State and h ∈ Host :

∀(α ∈ Addr) f(α) 6= (fresh(Σ, h), h)

We suppose the existence of such a fresh function.

Function Update(α, v, Σ, h) is used by an assignment statement running on host h –
cf. rule (assign) in figure 6 – for updating the address α to the value v in Σ. Function
Update produces a new state with the appropriate bindings. The new state contains a
new distributed store updated with a new local store function that binds α to v. If α

has not been assigned yet, then a new local address l′ is created on the host h where
the assignment is executed. Note that the actual behavior is slightly different from
the informal description given in section 2 : associations are stored on the host were
the first assignment was performed, not where the variable has been declared.

Definition 5 Let Update be the function that writes, from host h a value v into the state Σ,
under address α, and returns the updated state :

Update : Addr × V al × State×Host→ State

Update(α, v, Σ, h) ,



















let l′ = fresh(Σ, h) in if f(α) = ⊥

(f [α 7→ (l′, h)], g[h 7→ g(h)[l′ 7→ v]])

let (loc, host) = f(α) in otherwise
(f, g[host 7→ g(host)[loc 7→ v]])

where (f, g) = Σ

Property 1 Access function Update conserves the well-formed character of states : if Σ is
well-formed, then so is Σ′ = Update(α, v, Σ, h).

Proof : Let (f, g) = Σ and (f ′, g′) = Σ′. According to the definition of Update, if
f(α) 6= ⊥, then f ′ = f , so f ′ is ⊥-injective. Now let us focus on the case where
f(α) = ⊥.

From the definition of Update, f ′ = f [α 7→ (l′, h)] where l′ = fresh(Σ, h). Let
β, γ ∈ Addr such that f ′(β) = f ′(γ) 6= ⊥. We show that β = γ :

• If β = α and γ 6= β, then f ′(β) = (l′, h) and f ′(γ) = f(γ). Thus, f(γ) = (l′, h) =
(fresh(Σ, h), h), which is not consitent with the definition of fresh (def. 4).

• Similarly, if γ = α and β 6= γ, then f(β) = (fresh(Σ, h), h), which is not consi-
tent with the definition of fresh as well.

• If β 6= α and γ 6= α, then f(β) = f(γ). Moreover, f ′(β) 6= ⊥ by hypothesis, so
f(β) 6= ⊥. Consequently, ⊥-injectivity of f gives β = γ.

Finally, f ′ is ⊥-injective regardless of f(α). As a consequence, Σ′ is well-formed. �

Function Migrate(α, h, Σ) is used by SilfaM programs when they execute a data mo-
bility primitive. It moves the binding between α and its value in Σ to the host h, and
returns the modified state. It creates :

14

• a new local address l′ on destination host h;

• a new localization function f ′ similar to f besides the association between α

and (l′, h);

• a new local store σ′, similar to the one associated to h in Σ besides σ′ now binds
the newly created local address l′ to the value of α in Σ;

• a new distributed store g′, similar to the one of Σ besides it now uses σ′.

Function Migrate finally returns the new state (f ′, g′).

Definition 6 Let Migrate be the function that moves the binding between α and its value
in Σ to the host h, and returns the modified state.

Migrate : Addr ×Host× State→ State

Migrate(α, h, Σ) , let (f, g) = Σ in
let l′ = fresh(Σ, h) in
let f ′ = f [α 7→ (l′, h)] in
let σ′ = g(h)[l′ 7→ V alue(α, Σ)] in
let g′ = g[h 7→ σ′] in
(f ′, g′)

Property 2 Function Mirgate conserves the well-formed character of states : if Σ is well-
formed, then so is Σ′ = Migrate(α, h, Σ).

Proof : Let (f, g) = Σ and (f ′, g′) = Σ′. According to the definition of Migrate, f ′ =
f [α 7→ (l′, h)] where l′ = fresh(Σ, h). Let β, γ ∈ Addr such that f ′(β) = f ′(γ) 6= ⊥.
We show that β = γ :

• If β = α and γ 6= β, then f ′(β) = (l′, h) and f ′(γ) = f(γ). Thus, f(γ) = (l′, h) =
(fresh(Σ, h), h), which is not consitent with the definition of fresh (def. 4).

• Similarly, if γ = α and β 6= γ, then f(β) = (fresh(Σ, h), h), which is not consi-
tent with the definition of fresh as well.

• If β 6= α and γ 6= α, then f(β) = f(γ). Moreover, f ′(β) 6= ⊥ by hypothesis, so
f(β) 6= ⊥. Consequently, ⊥-injectivity of f gives β = γ.

Finally, f ′ is ⊥-injective, and as a result, Σ′ is well-formed. �

4.2.4 Silfa Semantics

Silfa semantics is detailed in figure 6. Semantics of programs, declarations, state-
ments and expressions are respectively given by function P , D, S, E . Let us explain
the rule (prog) :

PJ program progId block K h , SJblock K h ρ Σ Ω

The host where the execution of the Silfa program takes place is designated by h.
This rule means that the semantics of the whole program is equal to the seman-
tics of its internal block in a null global environment ρ = ε, an empty global state
Σ = (λα.⊥), λh.λl.⊥) and a null trace of events Ω = ε. Note that the empty global
state is well-formed. Indeed, λα.⊥ is ⊥-injective. Moreover, as long as the two func-
tions that are used to modify states conserve the well-formed character of states, ev-
ery intermediate states computed by any program are also well-formed. Thus, in the
remaining of this paper, we do not refere explicitly to the well-formed character of
states : every state is supposed to be well-formed.

Now let us examine rule (assign) :

15

PJ program progId block K h , SJblock K h ρ Σ Ω (prog)
where ρ = ε; Σ = (λα.⊥), λh.λl.⊥); Ω = ε

DJdeclare type xKρ , ρ[x 7→ α], α fresh (declare)
DJd1;d2Kρ , DJd1K ◦ DJd2Kρ (decls)
SJ{d s}K h ρ Σ Ω , SJsK h (ρ : DJdKρ) Σ Ω (block)
SJskipK h ρ Σ Ω , (Σ, Ω) (skip)
SJx:=eK h ρ Σ Ω , (Update(ρ(x), v, Σ, h), Ω′) (assign)

where EJeK h ρ Σ Ω = (v, Ω′)

SJp(e)K h ρ Σ Ω , (Σ, Ω′ : Pcall(p, h, v)) (s-pcall)
where EJeK h ρ Σ Ω = (v, Ω′)

SJe1.m(e2)K h ρ Σ Ω , (Σ, Ω2 : Rcall(v1, m, v2)) (s-rcall)
where EJe1K h ρ Σ Ω = (v1, Ω1)
and EJe2K h ρ Σ Ω1 = (v2, Ω2)

SJs1;s2K h ρ Σ Ω , SJs2K h ρ Σ′ Ω′ (seq)
where SJs1K h ρ Σ Ω = (Σ′, Ω′)

SJif e then s1 else s2K h ρ Σ Ω , if test then SJs1K h ρ Σ Ω′ else SJs2K h ρ Σ Ω′ (if)
where EJeK h ρ Σ Ω = (test, Ω′)

SJwhile e do sK h ρ Σ Ω , if test then SJs; while e do sK h ρ Σ Ω′ else (Σ, Ω′) (while)
where EJeK h ρ Σ Ω = (test, Ω′)

EJp(e)K h ρ Σ Ω , (p(v), Ω′ : Pcall(p, h, v)) (e-pcall)
where EJeK h ρ Σ Ω = (v, Ω′)

EJe1.m(e2)K h ρ Σ Ω , (o.m(v), Ω2 : Rcall(o, m, v)) (e-rcall)
where EJe1K h ρ Σ Ω = (o, Ω1)
and EJe2K h ρ Σ Ω1 = (v, Ω2)

EJxK h ρ Σ Ω , (V alue(ρ(x), Σ), Ω) (var)
EJvK h ρ Σ Ω , (v, Ω) (lit)
SilfaM semantics is augmented with the following rules :
SJ(obj)← sK h ρ Σ Ω , SJsK host(V alue(ρ(obj), Σ)) ρ Σ Ω (code-mob)
SJmigrate(x,obj)K h ρ Σ Ω , (Migrate(ρ(x), host(V alue(ρ(obj), Σ)), Σ), Ω) (data-mob)

Figure 6: Silfa and SilfaM Semantics

SJx:=eK h ρ Σ Ω , (Update(ρ(x), v, Σ, h), Ω′)
where EJeK h ρ Σ Ω = (v, Ω′)

It means that before executing the assignment, one should first evaluate the inner
expression e. We assume that evaluation of e gives, in the conditions (h, ρ, Σ, Ω)
in which the assignment is executed, a value v and a new trace Ω′ containing the
eventual new events performed by e. Then, the assignment updates the global state
by associating x to the computed value v, and gives the new trace Ω′.

4.2.5 SilfaM Semantics

SilfaM semantics is defined on figure 6. For a code mobility primitive – rule (code-
mob) –, the inner statement is executed on the host computed from the obj. Environ-
ment rho,, state Σ and trace Ω are kept unchanged. The host where obj is running is
computed as follows : ρ(obj) is the global adress of the object reference. The concrete
object reference value is obtained by access function V alue. From this object refer-
ence, we get its host by an auxiliary function, namely host : ObjRef → Host. The
inner satement s is executed on host(V alue(ρ(obj), Σ)) :

16

SJ(obj)← sK h ρ Σ Ω , SJsK host(V alue(ρ(obj), Σ)) ρ Σ Ω

For a data mobility primitive – rule (data-mob)–, the state is updated with the Migrate
function described in section 4.2.3. No further statement is to be computed (data
mobility primitive is a leaf statement, unlike code mobility primitive). Global trace
Ω is kept unchanged, and the new global state is the result of migrating the global
address of x, which is ρ(x), to the destination host, which is host(V alue(ρ(obj), Σ))
like in (code-mob) :

SJmigrate(x,obj)K h ρ Σ Ω , (Migrate(ρ(x), host(V alue(ρ(obj), Σ)), Σ), Ω)

5 Equivalence of Semantics

Intuitively, mobility introduction is sound (i) if mobilized statements do not access
local resources (ii). The next sections demonstrate this intuition. We first define what
is a location independent statement, we make explicit the meanings of “mobility in-
troduction”, “soundness”, and finally demonstrate the link between the propositions
(i) and (ii).

The CMI soundness theorem, presented in section 6, asserts that applying CMI
to local-independent statements of a program does not affect the global behavior
of the program. This is shown by comparing the global behaviors of the original
program (in Silfa) and its image SilfaM program by CMI, and showing that these two
global behaviors are equivalent. In other words, we show that the CMI image of a Silfa
program is a refinement of the original program.

We actually do not directly define global behavior. Instead, we define an equiva-
lence on global traces (that capture among other things the inputs and outputs of the
program) and on global states (representing values of user-defined variables), and
the CMI soundness theorem links these equivalences with Silfa and SilfaM seman-
tics.

5.1 Location-Independence

Location-independent statements of a program are defined as follows : we suppose
that we statically know, in the set of all primitives, which ones actually access lo-
cal resources. This set is called LIP , for Location-Independent Primitives (such as
boolean and arithmetic operations), separating them from location-dependant prim-
itives such as I/O operations, system calls like reading the system clock, reading the
local host name, etc...

Definition 7 Let LIP ⊂ Prim be the location-independent primitives.

Example : (+) ∈ LIP (=) ∈ LIP printInt 6∈ LIP .

From this set LIP , we recursively define the location-independent statements and ex-
pressions by looking into each statement of the program and searching for location-
dependent primitives. If a statement or an expression a is location-independent, then
we say that the predicate LI(a) is true.

Definition 8 A syntactic construct a ∈ Statement ∪ Expression is location-indepen-
dent, noted LI(a), if and only if one of the following holds :

17

a ∈ V arId a ∈ Literal

a = prim(e1, ..., en) with prim ∈ LIP ∧ LI(e1) ∧ ... ∧ LI(en)
a = obj.meth(e1, ..., en) with LI(e1) ∧ ... ∧ LI(en)
a = if e then s1 else s2 with LI(e) ∧ LI(s1) ∧ LI(s2)
... and so on for other statements...

5.2 Equivalence of Events

Two global traces are said to be equivalent if (i) the same inputs have been given
to both programs, (ii) the same outputs have been produced, and (iii) the location-
dependant primitives where called on the same host, regardless of where the location-
independent primitives have been called. This degree of liberty constitutes the only
difference between this equivalence and equality.
We first define an equivalence relation between events, then we propagate this defi-
nition on traces, that are sequences of events.

Definition 9 ω1, ω2 ∈ Event are equivalent (noted ω1 ≡ ω2) if, and only if :

(ω1 = ω2) ∨ ∃(p, v, h, h′)











ω1 = Pcall(p, h, v)

ω2 = Pcall(p, h′, v)

p ∈ LIP

Remark : We suppose, in the definition above, that we are provided with an equality
relation between values, including distributed object references. Here, we consider
equality over the referenced objects : two distributed object references are equal if
they point to the same object.

5.3 Equivalence of Traces

The definition below propagates the equivalence of events to an equivalence of traces.

Definition 10 Ω1, Ω2 ∈ Trace are equivalent (noted Ω1 ≡ Ω2) if, and only if one of the
following holds :

(i) Ω1 = Ω2 = ε

(ii) ∃(ω1, ω2, Ω
′
1, Ω

′
2)

{

ω1 ≡ ω2

Ω′
1 ≡ Ω′

2 with Ω1 = Ω′
1 : ω1 and Ω2 = Ω′

2 : ω2

Notation : (v, Ω) ≡ (v′, Ω′) iff (v = v′) ∧ (Ω ≡ Ω′).

5.4 Equivalence of States

Two global states are said to be equivalent if every variable is associated with the
same value in both states. The difference with equality between states is that in two
equivalent states, variable-value associations can be located on different hosts.

Definition 11 Σ1, Σ2 ∈ State are equivalent (noted Σ1 ≡ Σ2) if, and only if :

∀(α)V alue(α, Σ1) = V alue(α, Σ2)

Notation : (Σ, Ω) ≡ (Σ′, Ω′) iff (Σ ≡ Σ′) ∧ (Ω ≡ Ω′)

We will now show two technical lemmas asserting that migrating a variable-value
association lead to an equivalent state, and that updating an address with the same
value from two different hosts conserves the state equivalence.

18

The following lemma guarantees that when a Migrate function is applied to a state,
then the value bound to the address subject to migration – as well as all other ad-
dresses – is kept unchanged in the returned state. This lemma just checks that def-
initions above are consistent one with each-other. Its proof consists in unrolling the
definitions 3 and 6 above. This lemma is used in the proof if DMI soundness theorem
(cf. section 6.1).

Lemma 3 Let α ∈ Addr, h ∈ Host, Σ ∈ State and Σ′ = Migrate(α, h, Σ). Then Σ′ ≡ Σ.
In other words :

∀(β) V alue(β, Σ′) = V alue(β, Σ)

Proof :

V alue(β, Σ′) = let (f, g) = Σ′ in (def. 3)
let (l1, h1) = f(α) in
g(h1)(l1)

= let (f, g) = Migrate(α, h, Σ) in (hyp.)
let (l1, h1) = f(β) in
g(h1)(l1)

= let (f ′, g′) = Σ in (def. 6)
let l′ = fresh(Σ, h) in
let f ′′ = f ′[α 7→ (l′, h)] in
let σ′ = g′(h)[l′ 7→ V alue(α, Σ)] in
let g′′ = g′[h 7→ σ′] in
let (f, g) = (f ′′, g′′) in
let (l1, h1) = f(β) in
g(h1)(l1)

= let (f ′, g′) = Σ in (subst. f, g)
let l′ = fresh(Σ, h) in
let f ′′ = f ′[α 7→ (l′, h)] in
let σ′ = g′(h)[l′ 7→ V alue(α, Σ)] in
let g′′ = g′[h 7→ σ′] in
let (l1, h1) = f ′′(β) in
g′′(h1)(l1)

= let (f ′, g′) = Σ in (subst. f ′′, g′′)
let l′ = fresh(Σ, h) in
let σ′ = g′(h)[l′ 7→ V alue(α, Σ)] in
let (l1, h1) = f ′[α 7→ (l′, h)](β) in
g′[h 7→ σ′](h1)(l1)

Case α 6= β

V alue(β, Σ′) = let (f ′, g′) = Σ in (extension [])
let l′ = fresh(Σ, h) in
let σ′ = g′(h)[l′ 7→ V alue(α, Σ)] in
let (l1, h1) = f ′(β) in
g′[h 7→ σ′](h1)(l1)

19

Sub-case α 6= β, h 6= h1

V alue(β, Σ′) = let (f ′, g′) = Σ in (extension [])
let l′ = fresh(Σ, h) in
let σ′ = g′(h)[l′ 7→ V alue(α, Σ)] in
let (l1, h1) = f ′(β) in
g′(h1)(l1)

= let (f ′, g′) = Σ in (unused l′, σ′)
let (l1, h1) = f ′(β) in
g′(h1)(l1)

= V alue(β, Σ) (def. 3)

Sub-case α 6= β, h = h1

V alue(β, Σ′) = let (f ′, g′) = Σ in (β-red.)
let l′ = fresh(Σ, h) in
let σ′ = g′(h)[l′ 7→ V alue(α, Σ)] in
let (l1, h1) = f ′(β) in
σ′(l1)

= let (f ′, g′) = Σ in (subst. σ′)
let l′ = fresh(Σ, h) in
let (l1, h1) = f ′(β) in
g′(h)[l′ 7→ V alue(α, Σ)](l1)

l′ = l1 is not possible because it would mean f ′(β) = (fresh(Σ, h), h), which is a
contradiction with the definition of fresh (def. 4). So l′ 6= l1. Therefore,

V alue(β, Σ′) = let (f ′, g′) = Σ in (extension [])
let l′ = fresh(Σ, h) in
let (l1, h1) = f ′(β) in
g′(h)(l1)

= let (f ′, g′) = Σ in (unused l′)
let (l1, h1) = f ′(β) in
g′(h)(l1)

= V alue(β, Σ) (def. 3)
Case α = β

V alue(β, Σ′) = let (f ′, g′) = Σ in (β-red.)
let l′ = fresh(Σ, h) in
let σ′ = g′(h)[l′ 7→ V alue(α, Σ)] in
let (l1, h1) = (l′, h) in
g′[h 7→ σ′](h1)(l1)

= let (f ′, g′) = Σ in (subst. l1, h1)
let l′ = fresh(Σ, h) in
let σ′ = g′(h)[l′ 7→ V alue(α, Σ)] in
g′[h 7→ σ′](h)(l′)

= let (f ′, g′) = Σ in (β-red.)
let l′ = fresh(Σ, h) in
let σ′ = g′(h)[l′ 7→ V alue(α, Σ)] in
σ′(l′)

= let (f ′, g′) = Σ in (subst. σ′)
let l′ = fresh(Σ, h) in
g′(h)[l′ 7→ V alue(α, Σ)](l′)

= V alue(α, Σ) (β-red.)
= V alue(β, Σ) � (case hypothesis)

20

Lemma 4 Updating an address from two different hosts with the same value conserves the
state equivalence :

Σ ≡ Σ′ =⇒ Update(α, v, Σ, h) ≡ Update(α, v, Σ′, h′)

Proof : Let Σ1 = Update(α, v, Σ, h) and Σ2 = Update(α, v, Σ′, h′). Let (f, g) = Σ
and (f ′, g′) = Σ′. Let β ∈ Addr. We will show that in any case V alue(β, Σ1) =
V alue(β, Σ2). The outline of the proof is that if β is the updated address α, then its
value is the updated value (in Σ1 as well as in Σ2), and otherwise V alue(β, Σ1) =
V alue(β, Σ) and V alue(β, Σ2) = V alue(β, Σ′) – which are equal because Σ ≡ Σ′.

Case β = α, f(α) = ⊥

According to definitions of V alue (def. 3) and Update (def. 5), V alue(β, Σ1) =
V alue(α, Σ1) = g[h 7→ g(h)[l′ 7→ v]](hn)(ln), where l′ = fresh(Σ, h) and (ln, hn) =
f [α 7→ (l′, h)](α) = (l′, h). Thus, V alue(β, Σ1) = g(h)[h 7→ g(h)[l′ 7→ v]](h)(l′) =
g(h)[l′ 7→ v](l′) = v.

Case β = α, f(α) = (loc, host)

V alue(β, Σ1) = V alue(α, Σ1) = g[host 7→ g(host)[loc 7→ v]](host)(loc) = g(host)[loc 7→
v](loc) = v.

The two previous cases lead to the conclusion that if β = α, then V alue(β, Σ1) = v.
Now let us check that the same holds for Σ2 :

Case β = α, f ′(α) = ⊥

V alue(β, Σ2) = V alue(α, Σ2) = g′[h′ 7→ g′(h′)[l′′ 7→ v]](h′
n)(l′n), where l′′ = fresh(Σ′, h′)

and (l′n, h′
n) = f ′[α 7→ (l′′, h′)](α) = (l′′, h′). Thus, V alue(β, Σ2) = g′(h′)[h′ 7→

g′(h′)[l′′ 7→ v]](h′)(l′′) = g′(h′)[l′′ 7→ v](l′′) = v.

Case β = α, f ′(α) = (loc′, host′)

V alue(β, Σ2) = V alue(α, Σ2) = g′[host′ 7→ g′(host′)[loc′ 7→ v]](host′)(loc′) = g(host′)[loc′ 7→
v](loc′) = v.

The two previous cases lead to the conclusion that if β = α, then V alue(β, Σ2) = v.
Thus, if β = α, then V alue(β, Σ1) = V alue(β, Σ2). Now let us check that equality
also holds if β 6= α.

Case β 6= α, f(α) = ⊥

V alue(β, Σ1) = g[h 7→ g(h)[l′ 7→ v]](hβ)(lβ), where l′ = fresh(Σ, h) and (lβ , hβ) =
f [α 7→ (l′, h)](β) = f(β). If hβ = h, then V alue(β, Σ1) = g(hβ)[l′ 7→ v](lβ). But l′ can
not be equal to lβ because otherwise we would have f(β) = (fresh(Σ, h), h), which
is in contradiction with definition of fresh (def. 4). Thus, lβ 6= l′. As a consequence,
if hβ = h, then V alue(β, Σ1) = g(hβ)(lβ) = V alue(β, Σ) according to the definition of
V alue (def. 3). Otherwise (if hβ 6= h), V alue(β, Σ1) = g(hβ)(lβ) = V alue(β, Σ).

To sum up, if β 6= α and f(α) = ⊥, then V alue(β, Σ1) = V alue(β, Σ).

Case β 6= α, f(α) = (lα, hα)

V alue(β, Σ1) = g[hα 7→ g(hα)[lα 7→ v]](hβ)(lβ), where (lβ , hβ) = f(β). If hβ = hα,
then V alue(β, Σ1) = g(hβ)[lα 7→ v](lβ). But as long as Σ is well-formed, then f

is ⊥-injective and as a result lβ 6= lα. Consequently, V alue(β, Σ1) = g(hβ)(lβ) =
V alue(β, Σ). Otherwise (if hβ 6= hα), then V alue(β, Σ1) = g(hβ)(lβ) = V alue(β, Σ).

21

The two previous cases lead to the conclusion that if β 6= α, then V alue(β, Σ1) =
V alue(β, Σ). Similarly, we show that – under the same condition – V alue(β, Σ2) =
V alue(β, Σ′). Moreover, Σ ≡ Σ′, so V alue(β, Σ) = V alue(β, Σ′). Consequently, if
β 6= α, then V alue(β, Σ1) = V alue(β, Σ2).

Finally, for every β, V alue(β, Σ1) = V alue(β, Σ2), which means by definition that
Σ1 ≡ Σ2. �

6 Soundness of Mobility Introduction

Mobility introduction is divided into code mobility introduction (CMI) and data mobility
introduction (DMI).
CMI consists in transforming a Silfa statement into a SilfaM statement that remotely
executes it. For instance, an image of (x := 1) by CMI is (remoteObj <- {x := 1}).
DMI consists in transforming a Silfa statement into a SilfaM statement that first mi-
grates a variable-value association to a remote host and then executes it. For instance,
an image of (x := 1) by DMI is (migrate(remoteObj, x); x := 1).

6.1 Data Mobility Introduction Soundness Theorem

The following theorem states that for any statement s, for any variable x, for any
variable obj bound to an object reference, the semantics of migrate(obj, x);s is
equivalent to the semantics of s.

Theorem 5 Let s be a Silfa statement. Let h ∈ Host. Let obj, x ∈ V ar. Let ρ, Σ be such
that V alue(ρ(obj), Σ) ∈ Obj. Let Ω ∈ Trace. Then :

SJmigrate(obj, x);sK h ρ Σ Ω ≡ SJsK h ρ Σ Ω

Proof : Let α = ρ(x) and h′ = host(V alue(ρ(obj), Σ)). According to the definition of
the SilfaM semantics of data mobility (data-mob), we have :

SJmigrate(obj, x)K h ρ Σ Ω = (Migrate(α, h′, Σ), Ω)

Thus, from SilfaM semantics of sequence (seq) :

SJmigrate(obj, x);sK h ρ Σ Ω = SJsK h ρ (Migrate(α, h′, Σ) Ω

From lemma 3, for every β ∈ Addr, V alue(β, Migrate(α, h′, Σ)) = V alue(β, Σ),
which means (by definition 11) that Migrate(α, h′, Σ) ≡ Σ. Thus :

SJmigrate(obj, x);sK h ρ Σ Ω ≡ SJsK h ρ Σ Ω �

6.2 Code Mobility Introduction Soundness Theorem

The CMI soundness theorem (theorem 8) states the following : for any object variable
obj, granted that a Silfa statement s, is location-independent, the SilfaM semantics of
(obj) ← s is equivalent to the Silfa semantics of s. Therefore, it is semantically safe
for a Silfa compiler to transform any statement of the input program, granted that
the statement is location-independent - which is a syntactic check.

We do not prove directly the CMI soundness theorem. Instead, we prove a strong
lemma, that directly leads to the CMI soundness theorem. This lemma (lemma 7)
states that if a statement is location-independent, then executing it on one host or
another maintains the equivalence between pairs of states and traces. In other words,

22

the host were a location independent statement is executed has no impact on the
behavior of the program. From this lemma, applying the definition of code mobility
primitive semantics leads to the CMI soundness theorem.

In this section, we first present a lemma guaranteeing that evaluating a location-
independent expression on one host or another is equivalent (section 6.2.1), then we
use it for proving the same result applied to statements (section 6.2.2), and finally we
demonstrate the CMI soundness theorem (section 6.2.3).

6.2.1 Moving Expressions

The following lemma asserts that evaluating the same expression on two different
hosts, but in the context of equivalent states and equivalent traces, yields to the same
value and equivalent traces.

Lemma 6 If LI(e), then ∀(h, h′, ρ, Σ, Σ′, Ω, Ω′) with (Σ, Ω) ≡ (Σ′, Ω′), ∃(v1, v2, Ω1, Ω2)
such that the three following propositions hold :

EJeK h ρ Σ Ω = (v1, Ω1)
EJeK h′ ρ Σ′ Ω′ = (v2, Ω2)
(v1, Ω1) ≡ (v2, Ω2)

Proof : The lemma is proven by induction over the syntactic structure of e.

Case e = p(e′)

This is the most interesting case regarding our problem (a similar case is present
in the proof of lemma 7). The argument is that if e is location-independent, then the
called primitive p is a location-independent primitive : p ∈ LIP , which leads to the
equivalence between Ω1 and Ω2.

(i) EJp(e′)K h ρ Σ Ω′ = (p(v), Ω′ : Pcall(p, h, v))
(ii) EJe′K h ρ Σ Ω = (v, Ω′)

(iii) EJp(e′)K h′ ρ Σ Ω′′ = (p(v′), Ω′′ : Pcall(p, h′, v′))
(iv) EJe′K h′ ρ Σ Ω′ = (v′, Ω′′)

As long as LI(e), we have also LI(e1). Furthermore, Ω ≡ Ω′. Thus, we can apply
the induction hypothesis to (ii) and (iv), leading to (v, Ω′) ≡ (v′, Ω′′). Consequently,
v1 = p(v) = p(v′) = v2.
Moreover, since LI(e), p ∈ LIP by definition 7 of LIP . Therefore, Ω1 = Ω′ :
Pcall(p, h, v) ≡ Ω′′ : Pcall(p, h′, v′) = Ω2 by definition 10 of equivalence between
traces.

Case e = x

The two input states Σ1 and Σ2 are equivalent, which means by definition that x

has the same value in both states.

(i) EJxK h ρ Σ Ω = (V alue(ρ(x), Σ), Ω)
(ii) EJxK h′ ρ Σ Ω′ = (V alue(ρ(x), Σ), Ω′)

Thus v1 = v2 = V alue(ρ(x), Σ) and Ω1 = Ω ≡ Ω′ = Ω2.

23

Case e = e1.m(e2)

(i) EJe1.m(e2)K h ρ Σ Ω = (vb, Ωb : Rcall(va, m, vb))
(ii) EJe1K h ρ Σ Ω = (va, Ωa)
(iii) EJe2K h ρ Σ Ωa = (vb, Ωb)

(iv) EJe1.m(e2)K h′ ρ Σ′ Ω′ = (v′b, Ω
′
b : Rcall(v′

a, m, v′b))
(v) EJe1K h′ ρ Σ′ Ω′ = (v′a, Ω′

a)
(vi) EJe2K h′ ρ Σ′ Ω′

a = (v′b, Ω
′
b)

As long as e is location-independent, by definition 8 of predicate LI , its subexpres-
sion e1 is also location-independent (and so is e2). Moreover, Ω ≡ Ω′, so we can apply
the induction hypothesis to (ii) and (v) :
(vii) va = v′a
(viii) Ωa ≡ Ω′

a

Moreover, (viii) and LI(e2) implies that we can apply the induction hypothesis to
(iii) and (vi), leading to :
(ix) vb = v′b
(x) Ωb ≡ Ω′

b

Consequently, as long as v1 = vb and v2 = v′b, we have v1 = v2. Meanwhile,
(vii) ∧ (viii) ∧ (ix) ∧ (x) gives :
Ω1 = Ωb : Rcall(va, m, vb) ≡ Ω′

b : Rcall(v′
a, m, v′b) = Ω2.

Case e = v

(i) EJvK h ρ Σ Ω = (v, Ω)
(ii) EJvK h′ ρ Σ′ Ω′ = (v, Ω′)

Thus v1 = v2 = v and Ω1 = Ω ≡ Ω′ = Ω2 �

6.2.2 Moving Statements

The following lemma asserts that executing the same Silfa statement on two different
hosts, but in the context of equivalent states and equivalent traces, yields to equiva-
lent states and equivalent traces.

Lemma 7 Let s be a location-independent Silfa statement.

If (Σ, Ω) ≡ (Σ′, Ω′) then SJsK h ρ Σ Ω ≡ SJsK h′ ρ Σ′ Ω′

This proposition can be represented by the following schema :

(Σ, Ω)
SJsK h ρ
−−−−−→ (Σ′

1, Ω
′
1)

||| |||?

(Σ′, Ω′)
SJsK h′ ρ
−−−−−−→ (Σ′

2, Ω
′
2)

Proof : The lemma is proven by induction over s.

Case s = s1;s2

24

By the definition of Silfa semantics - rule (seq) :
(i) SJs1; s2K h ρ Σ Ω = SJs2K h ρ Σ′

1 Ω′
1

(ii) SJs1K h ρ Σ Ω = (Σ′
1, Ω

′
1)

(iii) SJs1; s2K h′ ρ Σ′ Ω′ = SJs2K h′ ρ Σ′
2 Ω′

2

(iv) SJs1K h′ ρ Σ′ Ω′ = (Σ′
2, Ω

′
2)

By definition 8, LI(s1;s2) =⇒ LI(s1) ∧ LI(s2). Thus, we can apply the induc-
tion hypothesis to (ii) and (iv) : (Σ′

1, Ω
′
1) ≡ (Σ′

2, Ω
′
2). Consequently, by induction

hypothesis applied to the right-side members of (i) and (iii), we have :

SJs1; s2K h ρ Σ Ω ≡ SJs1; s2K h′ ρ Σ′ Ω′

Case s = while e do s′

Computation of the loop while e do s′ is split into the sequence of atomic com-
putations of s′. We build the sequences of states (Σn

1)n≥0 (resp. (Σn
2)n≥0) and traces

(Ωn
1)n≥0 (resp. (Ωn

2)n≥0) that link the successive computations of s′ on host h (resp.
h′). Afterwards, we will show that executing a single step conserves the equivalences
between Σi

1 and Σi
2 on the first hand, and between Ωi

1 and Ωi
2 on the second hand :

(Σ, Ω)
···

−−−−→ (Σi
1, Ω

i
1)

SJs′K h ρ
−−−−−−→ (Σi+1

1
, Ωi+1

1
)

···
−−−−→ SJ while e do s′K h ρ Σ Ω

||| ||| ||| |||

(Σ′, Ω′)
···

−−−−→ (Σi
2, Ω

i
2)

SJs′K h′ ρ
−−−−−−→ (Σi+1

2 , Ωi+1

2)
···

−−−−→ SJ while e do s′K h′ ρ Σ′ Ω′

Definition of intermediate states and traces

First, let (Σ0
1, Ω

0
1) , (Σ, Ω) and (Σ0

2, Ω
0
2) , (Σ′, Ω′). We define (Σi+1

1 , Ωi+1

1) as a func-
tion of (Σi

1, Ω
i
1) : by the rule (while) defining the semantics of loops, we have, for any

arbitrary (Σi
1, Ω

i
1) :

SJwhile e do s′K h ρ Σi
1 Ωi

1 =

{

SJs′;while e do s′K h ρ Σi
1 Ωi

ie if test

(Σi
1, Ω

i
1e) otherwise

where EJeK h ρ Σi
1 Ωi

1 = (test, Ωi
1e)

Furthermore, by applying rule (seq), we have :

SJwhile e do s′K h ρ Σi
1 Ωi

1 =











SJwhile e do s′K h ρ Σi+1

1 Ωi+1

1 if test

where SJs′K h ρ Σi
1 Ωi

1e = (Σi+1

1 , Ωi+1

1)

(Σi
1, Ω

i
1e) otherwise

The previous proposition defines Σi+1

1 and Ωi+1

1 as functions of Σi
1 and Ωi

1. Similarly,
we define Σi+1

2 and Ωi+1

2 :

SJwhile e do s′K h′ ρ Σi
2 Ωi

2 =











SJwhile e do s′K h′ ρ Σi+1

2 Ωi+1

2 if test′

where SJs′K h′ ρ Σi
2 Ωi

2e = (Σi+1

2 , Ωi+1

2)

(Σi
2, Ω

i
2e) otherwise

where EJeKh′ ρ Σi
2 Ωi

2 = (test′, Ωi
2e)

Finally, we define as constant the sequence (Σn
1)n≥k and (Ωn

1)n≥k (resp. for h′) where
k is smallest index such as the test is false.

25

If EJeK h ρ Σi
1 Ωi

1 = (false, Ωi
1e)

then ∀(k ≥ i) (Σk+1

1 , Ωk+1

1) , (Σi
1, Ω

i
1e) = SJwhile e do s′K h ρ Σ Ω

If EJeK h′ ρ Σi
2 Ωi

2 = (false, Ωi
2e)

then ∀(k ≥ i) (Σk+1

1 , Ωk+1

1) , (Σi
1, Ω

i
1e) = SJwhile e do s′K h′ ρ Σ′ Ω′

Proving stability of equivalence

We show by a recurrence over n that :

∀(n ≥ 0) (Σn
1 , Ωn

1) ≡ (Σn
2 , Ωn

2)

First, let us show that (Σi
1, Ω

i
1) ≡ (Σi

2, Ω
i
2) =⇒ (Σi+1

1 , Ωi+1

1) ≡ (Σi+1

2 , Ωi+1

2). Let us
assume that Ωi

1 ≡ Ωi
2. As stated before, :

EJeK h ρ Σi
1 Ωi

1 = (test, Ωi
1e)

EJeK h′ ρ Σi
2 Ωi

2 = (test′, Ωi
2e)

Moreover, by definition 8, LI(e). Thus, by lemma 6, test = test′ and Ωi
1e ≡ Ω2

2e.
Consequently, if test and test′ are false, then (Σi+1

1 , Ωi+1

1) = (Σi
1, Ω

i
1e) ≡ (Σi

2, Ω
i
2e) =

(Σi+1

2 , Ωi+1

2). Otherwise (if test = true), then :

SJs′K h ρ Σi
1 Ωi

1e = (Σi+1

1 , Ωi+1

1)

SJs′K h′ ρ Σi
2 Ωi

2e = (Σi+1

2 , Ωi+1

2)

By induction hypothesis, as long as LI(s) =⇒ LI(s′), we have (Σi+1

1 , Ωi+1

1) ≡
(Σi+1

2
, Ωi+1

2
). Finally :

(Σi
1, Ω

i
1) ≡ (Σi

2, Ω
i
2) =⇒ (Σi+1

1 , Ωi+1

1) ≡ (Σi+1

2 , Ωi+1

2)
(Σ0

1, Ω
0
1) ≡ (Σ0

2, Ω
0
2)

=⇒ ∀(n ≥ 0) (Σn
1 , Ωn

1) ≡ (Σn
2 , Ωn

2)

Thus, for n = k :

SJwhile e do s′K h ρ Σ Ω = (Σk
1 , Ωk

1) ≡ (Σk
2 , Ωk

2) = SJwhile e do s′K h′ ρ Σ′ Ω′

Case s = x := e

SJx := eK h ρ Σ Ω = (Update(x, v, Σ, h), Ωe)
EJeK h ρ Σ Ω = (v, Ωe)
SJx := eK h′ ρ Σ′ Ω′ = (Update(x, v′, Σ′, h′), Ω′

e)
EJeK h′ ρ Σ′ Ω′ = (v′, Ω′

e)

LI(s) =⇒ LI(e). Consequently, by lemma 6, (v, Ωe) ≡ (v′, Ω′
e). Thus, application of

lemma 4 leads to the conclusion.

Case s = e1.m(e2)

(i) SJe1.m(e2)K h ρ Σ Ω = (Σ, Ω2 : Rcall(v1, m, v2))
(ii) EJe1K h ρ Σ Ω = (v1, Ω1)
(iii) EJe2K h ρ Σ Ω1 = (v2, Ω2)

(iv) SJe1.m(e2)K h′ ρ Σ′ Ω′ = (Σ′, Ω′
2 : Rcall(v′

1, m, v′2))
(v) EJe1K h′ ρ Σ′ Ω′ = (v′1, Ω

′
1)

(vi) EJe2K h′ ρ Σ′ Ω′
1 = (v′2, Ω

′
2)

26

LI(s) =⇒ LI(e1) ∧ LI(e2). Thus, lemma 6 on (ii) and (v) gives (v1, Ω1) ≡ (v1, Ω1),
and consequently lemma 6 gives for (iii) and (vi) : (v2, Ω2) ≡ (v2, Ω2), which leads
to the conclusion.

Case s = if e then s1 else s2

SJif e then s1 else s2K h ρ Σ Ω =

{

SJs1K h ρ Σ Ωe
1 if test

SJs2K h ρ Σ Ωe
1 otherwise

SJif e then s1 else s2K h′ ρ Σ′ Ω′ =

{

SJs1K h′ ρ Σ′ Ωe
2 if test′

SJs2K h′ ρ Σ′ Ωe
2 otherwise

EJeK h ρ Σ Ω = (test, Ωe
1)

EJeK h′ ρ Σ′ Ω′ = (test′, Ωe
2)

Moreover, LI(s) =⇒ LI(e). Thus, by application of lemma 6 to the two expressions,
Ωe

1 ≡ Ωe
2 and test = test′. Let us consider that test = test′ = true. Consequently :

SJif e then s1 else s2K h ρ Σ Ω = SJs1K h ρ Σ Ωe
1

SJif e then s1 else s2K h′ ρ Σ′ Ω′ = SJs1K h′ ρ Σ′ Ωe
2

However, (Σ, Ωe
1) ≡ (Σ, Ωe

2). Thus, by ind. hyp. (LI(s) =⇒ LI(s1)),

SJif e then s1 else s2K h ρ Σ Ω ≡ SJif e then s1 else s2K h′ ρ Σ′ Ω′

Idem for s2 if test = test′ = false

Case s = p(e)

SJp(e)K h ρ Σ Ω = (Σ, Ωe : Pcall(p, h, v))
EJeK h ρ Σ Ω = (v, Ωe)
SJp(e)K h′ ρ Σ′ Ω′ = (Σ′, Ω′

e : Pcall(p, h′, v))
EJeK h′ ρ Σ′ Ω′ = (v′, Ω′

e)

By lemma 6, since LI(s) =⇒ LI(e), we have (v, Ωe) ≡ (v′, Ω′
e), which leads to the

conclusion.

Case s = skip

SJskipK h ρ Σ Ω = (Σ, Ω) ≡ (Σ′, Ω′) = SJskipK h′ ρ Σ′ Ω′

Case s = {d s′}

SJ{d s}K h ρ Σ Ω = SJsK h (ρ : DJdKρ) Σ Ω
SJ{d s}K h′ ρ Σ′ Ω′ = SJsK h′ (ρ : DJdKρ) Σ′ Ω′

Thus by ind. hyp. : SJ{d s}K h ρ Σ Ω ≡ SJ{d s}K h′ ρ Σ′ Ω′ �

27

6.2.3 Introducing Code Mobility Primitive

The CMI soundness theorem, presented below, asserts that applying CMI to local-
independent statements of a program does not affect the global behavior of the pro-
gram. This is the main result of this paper. The theorem is a direct consequence of
lemma 7.

Theorem 8 Let s be a location-independent Silfa statement. Let h ∈ Host. Let obj ∈ V ar.
Let ρ, Σ be such that V alue(ρ(obj), Σ) ∈ Obj. Let Ω ∈ Trace. Then :

SJ(obj)← sK h ρ Σ Ω ≡ SJsK h ρ Σ Ω

Proof : The theorem is a direct consequence of lemma 7. Indeed,
SJ(obj)← sK h ρ Σ Ω = SJsK host(V alue(ρ(obj), Σ)) ρ Σ Ω (def. S, code-mob)

≡ SJsK h ρ Σ Ω (lemma 7) �

7 Concluding Remarks

In this paper, we have presented a new approach – mobility introduction –, close to
automatic partitioning, for optimizing systems based on Distributed Object Comput-
ing or, more generally, any kind of Remote Procedure Call techniques. In our model,
one can make mobile every single statement of the original program, while previous
research only considered mobility of more coarse-grained slices of code like COM
components or Java objects. We have shown that such an approach can ease con-
straints on the design of Distributed Numerical Simulation Frameworks, and par-
ticularly on design of numerical data interfaces. Moreover, we have issued a sim-
ple syntactic criteria for mobility introduction to be applied without corrupting the
global behavior of programs : knowing what primitives access to local resources is
sufficient and necessary for an optimizing compiler to apply such a transformation
consistently.

We have implemented a simple prototype that applies mobility introduction on
programs written in the toy language Silfa. Programs are augmented with data and
code mobility primitives, then the compiler generates executable Java code based on
a simple remote execution library. The compiler statically analyzes input programs
and determines what portions of code are location-independent. Then, an empirical
criteria is applied to decide which ones are worth to be actually executed remotely :
we mobilize the deepest loops that access a single remote object. Once this choice
is made, we add data mobility primitives to the free variables of the loop and to its
written variables, as it is described in section 2. Although this criteria is very simple,
it already provides interesting results. When applied on the example presented in
section 2 of this paper7, the transformed program is 50% faster than the original one
on a modern local network with about 0.1 ms of program-to-program latency, and up
to 90% faster with a latency of 10 ms.

Future work

There are two features we want to add in a near future to our language : user-defined
procedures and functions, and data arrays. Then, Silfa will look like a pointer-less
Pascal, which is what numerical simulation programmers actually use. Introduction
of user-defined procedures and functions require the compiler to compute the call
graph of the program. This is not a difficult issue if there is no pointer to function
nor higher-order functions. Introduction of arrays into the language will require that

7These tests have been done with a 100*100 matrix.

28

the decision for introducing code mobility would be constrained by the size of the
data that would have to be moved. This is because with big amounts of data, the
bandwidth (and not only the latency) of the network becomes an issue. Finally, we
intend to consider runtime informations in the decision procedure, such as statistical
data on previous timings, actual latency, actual size of data.

We intend to apply mobility introduction in the domain of Distributed Numerical
Simulation Frameworks (DNSF), by implementing programs from this application
domain and showing performance gains with fine-grained data interfaces. Still, we
believe that DNSF is not the only application domain of mobility introduction. For
instance, any system based on Distributed Object Computing or Remote Procedure
Call techniques where performances of the communication framework are critical
can benefit from our approach. Nowadays, in such systems, reusability is often sac-
rificed in order to preserve performances. With mobility introduction techniques, it
would not be the case.

References

[1] IBM Corp. The IBM aglets workbench. http://www.trl.ibm.co.jp/aglets/, 1996.
[2] Federico Bassetti, David Brown, Kei Davis, William Henshaw, and Dan Quin-

lan. OVERTURE: An object-oriented framework for high-performance scientific
computing. In Proceedings of Supercomputing’98 (CD-ROM). ACM SIGARCH and
IEEE, 1998.

[3] Luca Cardelli. A language with distributed scope. In Conference Record of POPL
’95: 22nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, San Francisco, Calif., pages 286–297, New York, NY, 1995.

[4] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of Soft-
ware Science and Computation Structures: First International Conference, FOSSACS
’98. Springer-Verlag, Berlin Germany, 1998.

[5] David M. Chess, Colin G. Harrison, and Aaron Kershenbaum. Mobile Agents:
Are they a good idea? In Mobile Object Systems – Toward a Programmable Internet,
LNCS 1222, pages 25–47, Berlin, Germany, 1997. Springer-Verlag.

[6] M. Dahm. The doorastha system. Technical report B-1-2000, Freie Universität
Berlin, 2000.

[7] Alexandre Denis, Christian Pérez, Thierry Priol, and André Ribes. Padico: A
component-based software infrastructure for grid computing. In 17th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2003), Nice, France,
April 2003. IEEE Computer Society.

[8] Paul Feautrier. Dataflow analysis of array and scalar references. International
Journal of Parallel Programming, 20(1):23–53, 1991.

[9] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier
Rémy. A calculus of mobile agents. In Proceedings of the 7th International Confer-
ence on Concurrency Theory (CONCUR’96), pages 406–421. Springer-Verlag, 1996.

[10] D. Hagimont and D. Louvegnies. Javanaise: distributed shared objects for In-
ternet cooperative applications. In Middleware’98, The Lake District, England,
1998.

[11] Galen C. Hunt and Michael L. Scott. The coign automatic distributed partition-
ing system. In Operating Systems Design and Implementation, pages 187–200, 1999.

[12] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained
mobility in the Emerald system. ACM Transactions on Computer Systems,
6(1):109–133, February 1988.

29

[13] P. Merle, C. Gransart, and J. Geib. How to make corba objects user-friendly with
a generic object-oriented dynamic environment, 1996.

[14] T. Nguyen and C. Plumejeaud. An integration platform for metacomputing ap-
plications. In J.J. Dongarra P.M.A. Sloot, C.J. Kenneth Tan and A.G. Hoekstra,
editors, Lecture Notes in Computer Science – Computational Science - ICCS 2002: In-
ternational Conference, Amsterdam, The Netherlands, April 21-24, 2002. Proceedings,
Part I, volume 2329 / 2002, ISSN: 0302-9743. Springer-Verlag Heidelberg, 2002.

[15] Linear Algebra Package. http://www.netlib.org/lapack/.

[16] Michael Philippsen and Matthias Zenger. JavaParty — transparent remote ob-
jects in Java. Concurrency: Practice and Experience, 9(11):1225–1242, nov 1997.

[17] Christian Queinnec and David De Roure. Sharing code through first-class en-
vironments. In Proceedings of ICFP’96 — ACM SIGPLAN International Conference
on Functional Programming, pages 251–261, Philadelphia (Pennsylvania, USA),
1996.

[18] John V. W. Reynders, Paul J. Hinker, Julian C. Cummings, Susan R. Atlas, Sub-
hankar Banerjee, William F. Humphrey, Steve R. Karmesin, Katarzyna Keahey,
Marikani Srikant, and Mary Dell Tholburn. POOMA: A Framework for Scien-
tific Simulations of Paralllel Architectures. In Gregory V. Wilson and Paul Lu,
editors, Parallel Programming in C++, pages 547–588. MIT Press, 1996.

[19] Salome. http://www.opencascade.org/salome/salome platform.php.

[20] Simulog. http://www.simulog.fr/.

[21] André Spiegel. Automatic distribution in pangaea. Proc. Workshop on
Communications-Based Systems, CBS 2000, April 2000.

[22] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano. A byte-
code translator for distributed execution of “legacy” Java software. Lecture Notes
in Computer Science, 2072:236–256, 2001.

[23] E. Tilevich and Y. Smaragdakis. J-orchestra: Automatic java application parti-
tioning, 2002.

[24] ObjectSpace Inc. ObjectSpace Voyager. http://www.objectspace.com/voyager,
1997.

[25] Pawel Wojciechowski and Peter Sewell. Nomadic pict: Language and infras-
tructure design for mobile agents. In First International Symposium on Agent Sys-
tems and Applications (ASA’99)/Third International Symposium on Mobile Agents
(MA’99), Palm Springs, CA, USA, 1999.

30

