Minimizing Places Storage Capacities of a Weighted Event
Graph*

Olivier Marchetti and Alix Munier-Kordon
Laboratoire d’Informatique de Paris 6 - Péle ASIM
Université Pierre et Marie Curie
4 place Jussieu, PARIS 75252 Cedex 05, FRANCE
olivier.marchetti@lip6.fr, alix.munier@lip6.fr

10th May 2005

Abstract

The minimization of the places capacities storage of a Weighted Event Graph (in
short WEQG) is a crucial problem in industrial area such as the design of embedded
systems or manufacturing systems. The objective of this paper is to set out an algo-
rithm for solving polynomially this problem. It also computes an initial live marking.
Firstly, a lower bound formula for each place capacity storage is expressed. A sim-
ple transformation of the initial WEG G into another WEG Gr modelling that the
limitation storage of each place of G is equal to these bounds is then detailed. Then,
a restriction of the set of feasible initial markings of Gr is made by the analysis of
the liveness problem. Finally, we develop a polynomial algorithm which computes an
initial live marking of G .

Keywords : Petri nets, Liveness, Buffer requirement, Manufacturing.

1 Introduction

Petri nets are a very well suited formalism for the modelling and the analysis of dynamic
systems. In this article, our analysis is concentrated on a subclass of Petri nets called
Weighted Events Graphs (in short WEG) for which each place p has exactly one input
transition ¢; and one output transition ¢;. Moreover, the number of tokens placed in p after
the firing of ¢; (resp. removed from p for the firing of ¢;) is a given integer w(p) (resp. v(p)).
Notices that WEG are conflict free and constitute a very restrictive subclass of Petri nets.
However, they may be used for the design and the modelling of manufacturing systems or
embedded systems. Transitions represent actions. Tokens correspond to physical products
in an assembly line or data exchanged between two processes in embedded systems. In
both cases, the capacity storage of any place p, which consists on the maximum number of
tokens that p can hold at a time, is proportional to the surface needed to store products
or data. In the field of manufacturing systems design, many authors studied the tokens

“This research was partialy supported by a partnership CNRS-STMICROELECTRONICS

minimization of an Event Graph under the constraint of the existence of a schedule with a
given throughput. In this case, the system is live (i.e. every transition may be fired infinitely
often) iff there is at least one token in every circuit of the Event Graph. So, the optimization
problem is in NP and several authors develop efficient optimization algorithms to solve it
[HP89, Gau90, LPX92] or some interesting variants [GPS02]. On the contrary, the liveness
of a WEG is still an open problem despite original attempts to solve it [CWR93]. In a
slightly different formalism called Computation Graph [KM66], Karp and Miller has shown
that the deadlock decision problem is in A/P. From a practical point of view, the liveness
problem of a WEG is solved using pseudo-polynomial algorithms [Sau03, TCCS92] which
are mainly based upon a transformation of the WEG into an Event Graph introduced in
[Mun93, Mun96].

In the field of the design of embedded systems, the high cost of memories implies that
the minimization of the capacity storage is crucial. In this area, the Synchronous Data-
Flow paradigm (in short SDF) introduced by Lee and Messerschmitt [LM87b, LM87a] is
exclusively considered. However, WEG and SDF are equivalent formalisms, since processes
of a SDF graph correspond to transitions and arcs to places. In this specific domain,
many researches concentrate on the search of periodic schedules with particular features
(such as minimal schedule lenght or maximal concurrency schedule) that minimizes the
whole amount of memory used [BML99, MBL97, CP93]. Several authors consider the
minimization of places capacities storage of a WEG for a given initial marking. This
problem is proved N'P-complete even for Event Graphs [Mur96]. Some authors develop
heuristics to solve it [Adé97, ALP94]. In [GGDO02], the authors formulate by an integer
linear program the minimization of the places capacities storage for a periodic schedule of
a maximum throughput.

In this paper, we are interested in the minimization of places capacities storage of a
WEG in the case that the initial marking is not given. More precisely, let f be an increasing
function of the places capacities storage. The question is : is it possible to compute for
each place p of a given WEG G, a capacity M*(p) and an initial marking My(p) such that
G is live, the number of tokens of any place p remains anytime bounded by M*(p) and
f(M*(p1),--+ , M*(py,)) is minimum ? We develop an original (to our best knowledge)
polynomial algorithm to solve exactly this problem. Notice that, since the liveness of a
WEG is still an open problem, the analysis of the whole problem is subtle. In order to get
our result, we consider a sufficient condition of liveness proved in [MMKO04].

This paper is structured as follow : Section 2 is devoted to recall the basic concepts
of WEG in order to clearly formulate the problem dealt in this paper. In Section 3, we
set out some new relevant results about place capacity which form the theoretical basis of
our approach. In Section 4, we study the liveness of minimally bounded WEG. Section’s
4 results lead us to make some restrictions on the space solution. Then, we devise step by
step in Section 5 an algorithm which builds polynomially a live marking. Section 6 displays
this algorithm (illustrated by an example) and its generalization. Lastly, we conclude with
some perpectives in Section 7.

2 Basic definitions and notations

The aim of this section is to introduce some basic definitions and to express formally the
problem tackled in this paper. First, we give the notations and the definition of Weighted
Event Graphs. Then, we formulate our problem.

2.1 Basic definitions

Let us consider a Weighted Event Graph G = (P,T) (WEG in short) given by a set
of transitions 7' = {t1,...,t,} and a set of places P = {p1,...,pm}. Every place p € P is
defined between two transitions ¢; and ¢; and is denoted by p = (t;,t;) (see Figure 1 on
this page). For any transition ¢t € T, we set :

PHt)={p=(t,t) e Pt €T}

P-(t)={p=(t',t)e P,t' €T}

Arcs (t;,p) and (p,t;) are valued by a strictly positive integer denoted respectively by
w(p) and v(p) called the marking functions. We also denote by My(p) the initial marking
of the place p. In order to clearly distinguish the structural aspect from the behavioral
aspect, a WEG graph with an initial marking M is called a Marked WEG (MWEG in
short) and is denoted by G = (P, T, My). Its structure is the WEG G = (P, T).

In this paper, we first focus our attention on the relationships between the structural
and behavioural aspects. Then, Section 5 is devoted to the study of strongly connected
WEG (i.e. for any couple (t;,t;) € T', there exists a path in G from ¢; to t;). We will show
in Section 6 that strongly connected components of G may be tackled separately.

tiD w(p) v(p) D .

Figure 1: A place p = (;,1;)

For any firing of the transition ¢; (resp. t;), w(p) (resp. v(p)) tokens are placed in (resp.
removed from) the place p. So, if v; (resp. v;) denotes the number of firings of the transition
ti (resp. t;), the number of tokens in the place p is :

M (p) = Mo(p) + viw(p) — v;jo(p)

For any v € N* and any ¢t € T, < t,v > denotes the vth firing of ¢.

If w(p) = v(p) = 1 for any place p € P, then G is an Event Graph. For a sake of
simplicity, ged(w(p),v(p)) = gcd, denotes the great common divisor of the integers w(p)
and v(p) for any place p € P.

2.2 Problem definition

Let G = (T, P) be a WEG. Let f : N™ — N be an increasing function. The problem
considered here is to find, for any p € P, a minimum value M*(p) € N and an initial
marking My(p) < M*(p) such that :

e the marked graph G = (T, P, M) is live. Moreover, there exists an infinite firings
sequence of the transitions such that the number of tokens in any place p remains
bounded by M*(p);

o f(M*(p1), -+, M*(pm)) is minimum.

3 Preliminaries

This section reminds and shows some basic useful properties on WEG and MWEG.
Firstly, we make a slight restriction on the class of graphs tackled here. After this, we
introduce the notion of bounded place and we prove that every bounded place may be
replaced by a couple of places. We naturally extend these concepts to define bounded
graphs and associated capacity graphs. Then, we recall that any unitary strongly connected
graph may be transformed into a normalized graph, which is a subclass of unitary strongly
connected graphs such that the marking functions depends on transitions. In the last part,
we recall a nice sufficient condition of liveness of normalized graph and we deduce a lower
bound of the capacity storage of each bounded place.

3.1 Self-loop places elimination

Definition 3.1. A place p = (t;,t;) is called a self-loop place.

As we are dealing with WEG, the number of tokens of a self-loop place p = (¢;,¢;) only
depends on the number of firings of transition ¢;. However, ¢; has to be fired infinitely often
so that the number of tokens of the whole graph remains bounded on every places. One can
see that w(p) > v(p) is a necessary condition of liveness for transition ¢; and w(p) < v(p) is
a necessary condition of boundedness of a self-loop place p. So it comes that w(p) = v(p)
which induces that the number of tokens on p is always equal to My(p). In the same way,
My(p) > v(p) is obviously a necessary condition of liveness of transition ¢;. So if all the
previous conditions are met then the self-loop place does not prevent at any time ¢; to be
fired. Moreover, the maximum number of tokens held by a self-loop place p is always equal
to its initial marking so we can set M*(p) = My(p). Since all theses conditions have to be
checked for self-loop places, we can limit our study without loss of generality to WEG G
free of self-loop places.

3.2 Bounded places and bounded MWEG

Definition 3.2. A M*-bounded place is a place p € P such that the number of tokens of
p remains bounded by M*(p) € N. M*(p) is called the capacity of place p.

Let p = (t;,t;) € P. There exists a (strict) precedence constraint between < ¢;,v; >
and < tj,Vj > iff .

Condition 1 < t;,v; > can be done after < t;,v; >;

Condition 2 < t¢;,v; —1 > can be done before < t;,; > but not < ¢;,v; >.

Lemma 3.1. A place p = (t;,t;) € P with initial marking Mo(p) models a precedence
constraint between the v;th firing of t; and the v;th firing of t; iff :

w(p) > Mo(p) +w(p)v; — v(p)v; > max(w(p) — v(p),0)

Proof. A place p = (t;,t;) € P with initial marking My (p) models a precedence constraint
between < t;,; > and the < t;,v; > iff Conditions 1 and 2 hold.

1. Condition 1 is equivalent to
My(p) + w(p)vi — v(p)v; = 0
2. Condition 2 is equivalent to
v(p) > Mo(p) + w(p)(vi — 1) —v(p)(v; — 1) > 0
Combining these two inequalities, we get the inequality required. O

In the same way, we can derive a condition of precedence between < t;,1; > and
< t;,v; > due to the storage constraint of place p = (t;,1;).

Condition 3 < t;,v; > can be done after < t;,v; >;

Condition 4 < t;,; — 1 > can be done before < t;,v; > but not < t;,v; >.

Lemma 3.2. Let p = (t;,t;) € P with initial marking Mo(p). The limitation by an integer
M*(p) > My(p) of the capacity storage of place p = (t;,t;) € P induces a precedence
constraint between the v;th firing of t; and the v;th firing of t; iff :

v(p) > (M*(p) — Mo(p)) + v(p)v; — w(p)v; > max(v(p) — w(p),0)

Proof. A place p = (t;,t;) € P with a capacity bounded by M*(p) and My(p) initial tokens
models a precedence constraint between < t;,v; > and the < t;,; > iff Conditions 3 and
4 hold.

1. Condition 3 is equivalent to
M?*(p) = Mo(p) + w(p)vi — v(p)v;

We get :
(M*(p) — Mo(p)) + v(p)vj —w(p)v; > 0

2. Condition 4 is equivalent to
M*(p) = Mo(p) + w(p)(vi —1) = v(p)(v; — 1) > M*(p) — w(p)
So, we get :
M*(p) + w(p) — v(p) = Mo(p) + w(p)vi — v(p)v; > M*(p) — v(p)

Hence,
v(p) > (M*(p) — Mo(p)) + v(p)v; — w(p)vi > v(p) — w(p)

Combining these two inequalities, we get the lemma. O
We deduce the following theorem :

Theorem 3.1. Any M*-bounded place p with initial marking My(p) < M*(p) may be
replaced by two places py = (ti,t;) and pa = (tj,t;) such that w(p1) = v(p2) = w(p),
v(p1) = w(p2) = v(p), Mo(p1) = Mo(p) and My(p2) = M*(p) — My(p) (see Figure 2).

Proof. By Lemma 3.1 we derive that all precedence constraints between firings of ¢; and
t; are modeled by place p;. By Lemma 3.2 we deduce that all precedence constraints due
to the boundedness of p are modeled by place po. O

In the following, places p; and po are called the associated places of p and we say that
p1 (resp. p2) is the backward place of ps (resp. p1).

b1

Figure 2: Replacement of an M*-bounded place p = (t1,t2) by p1 = (t1,t2) and ps =
(tQ,tl).

In the same way, bounded graphs can be defined as follow :

Definition 3.3. G = (T, P, My) is a bounded graph iff Vp € P, there exists M*(p) > 0
such that :

e all transitions can be fired infinitely often,

e for each place p, the number of tokens remains bounded by M*(p).

3.3 Capacity graphs - Unitary graphs

Firstly, we define the capacity graph obtained by a simple transformation of the WEG
places according to Theorem 3.1. Indeed, each M*-bounded place of graph may be replaced
by a couple of places.

Definition 3.4. Let G = (T, P, My) be a MWEG and Vp € P, M*(p) > My(p) denotes the
capacity bound. The associated capacity graph Gr = (T, Pr, M{) is the MWEG obtained
from G by replacing any place p € P by two places (p1,p2) € Pr x Pr following Theorem
3.1.

We set P} (resp. P%) the set of places p = (ti,tj) € Pr such that the corresponding
place of P is defined from t; to t; (resp. t; to t;).

Remark 3.1. Gp is strongly connected.

Here, we give a fundamental characterization of capacity graphs which relies on the
weight notion of a path. Let us consider a path u of G defined as a sequence of « places
such as = {p1 = (t1,t2),p2 = (t2,3), ..., Pa = (ta,ta+1)}. The weight W (u) of this path
is defined as :)

w(p
W=]

peEPNu

Now, we set out the definition of an important class of WEG called unitary graphs :

Definition 3.5. A WEG G = (T, P) is a unitary graph iff all its circuits have a unitary
weight. Similarly, a MWEG G = (T, P, My) is unitary iff its WEG G = (T, P) is unitary.

Remark 3.2. One can observes that the replacement of a bounded place p by two places
p1 and po always generates a unitary circuit.

Assuming that G is a live strongly connected MWEG, it is proved in [Mun93| that the
number of tokens remains bounded iff G is a unitary graph. Now, we can give a structural
result on bounded graphs :

Theorem 3.2. Let G = (T, P,My) be a MWEG. G is a bounded graph iff there is an
associated capacity graph Gr = (T, Pr, M{) which is unitary and live.

Proof. We get this theorem by double implications.
e (=) : We get this implication by contradiction. Suppose that G is a bounded graph
and GR is not unitary or holds a deadlock whatever M™*.

— First, if G is not live whatever M™* then according to Definition 3.3, it follows
that G is not an bounded graph, the contradiction.

— Now, we assume that G is a bounded graph and that G is not unitary. In
[Mun93], it is stated that a necessary condition of liveness for a MWEG is that
all its circuits have a weight greater than one. If G is not unitary then there
exists a circuit C such that W(C) > 1. Then, all its backward places form a
circuit C’ in Gg. However, we can deduce by Remark 3.2 the following equality :

So it follows that W (C’) < 1 which implies that G is not a live WEG. As this
result holds for all M™*, according to Definition 3.3 we deduce that G is not a
bounded graph.

o (<) : If it exists M™* such that Gr = (T, Pr, My) is live and unitary then according
to [Mun93| G is a bounded graph so G too.
O

The above theorem defines formally the class of graph with which we are concerned.
Without any loss of generality, we assume that G is a bounded graph.

Remark 3.3. According to Theorem 3.2, the structure of a bounded graph is such that the
corresponding capacity graph’s structure is unitary. So in the sequel, we focus our attention
on graphs whose structure confirms this property.

Now, we have to consider the liveness problem that arises in our problem’s definition.

3.4 Normalization

Normalization of a unitary strongly connected graph G is a transformation of all the
marking functions and initial marking values such that the marking functions adjacent to
any transition ¢; have the same value Z;. This transformation does not affect the precedence
constraints between the firings, so that these two graphs are equivalent. More formally :

Definition 3.6. A transition t; is normalized iff there exists Z; € N* such that:
Vp € PT(ti), wlp) =2
Vp e P~ (ti), U(p) =7;

A WEG G is said normalized iff all its transitions are normalized.

In [MMKO04], it is stated that any strongly connected unitary MWEG can be polyno-
mially transformed into an equivalent normalized MWEG by modifying marking functions
and initial markings.

Consequence 3.1. As we are concerned with bounded graph and according to Remark 3.1
and Theorem 3.2, capacity graphs which are tackled here can be normalized. It follows that
bounded graphs can be normalized too.

In the rest of the paper, we assume that all graphs which are dealt here are normalized.

3.5 Lower bound on the capacity storage of places

We present here a lower bound on the capacity storage of bounded places of G. Firstly,
we remind some results proved in [MMKO04]. Then we prove these lower bounds formally.
The next lemma allows us to limit the values of initial markings of a MWEG :

Lemma 3.3 ([MMKO04]). The initial marking My(p) of any place p = (t;,t;) may be
replaced by M| (p) = {Mo(p)J .gcd, without any influence on the precedence constraints

gedp
induced by p.

In the rest of the paper, we assume that the initial marking of any place p is a multiple
of gcd,.
Theorem 3.3 ([MMKO04]). Let G be a normalized MWEG. G is live if for all circuit C
of G :
S M) > S (i) - gedy)

peCNP peCNP

It is shown in [MMKO04] that this condition is also necessary for any circuit with two
transitions :

Theorem 3.4 ([MMKO04]). Let C be a normalized circuit composed by two places p; and
p2 and two different transitions. C' is live iff

Mo(p1) + Mo(p2) > v(p1) + v(p2) — 2.9cdy,

It is now possible to determine a lower bound M}, (p) of the capacity storage M*(p)
of a place p as follows :

Theorem 3.5. Let p be a M*-bounded place. Setting M. (p) = w(p) + v(p) — gedy, we
get M*(p) = M7, (p)-

Proof. By Theorem 3.1, p may be replaced by a circuit with two places p; and ps. By
Lemma 3.3, inequality of Theorem 3.4 can be refined such that :

Mo (p1) + Mo(p2) > v(p1) + v(p2) — gedyp,

By definition of p; and pe, M*(p) = My(p1) + Mo(p2) and v(p1) = v(p), v(p2) = w(p) and
gedy,, = gedy, = ged,. So it comes that :

M*(p) > w(p) + v(p) — gedp

Setting M*

min

(p) = w(p) + v(p) — ged,y, we get the theorem. O
All these results allow us to strengthen Theorem 3.2 :

Theorem 3.6. Let G = (T, P, My) be a live MWEG. G is a bounded graph iff the associated
capacity graph’s structure Gg = (T, PRr) is unitary.

Proof. As the first implication of the proof of Theorem 3.2 still holds, we just need to show
the converse proposition. More precisely, we have to show that if G = (T, P, My) is a live
MWEG such that its capacity graph’s structure is unitary then there exists an infinite
sequence of firing such that for each place p the number of tokens remains bounded by a
value M*(p). Firstly, according to Consequence 3.1, as Gr = (T, Pg) is unitary, it can
be normalized. We consider that Gr = (T, Pr) is normalized. In order to show that G
is a bounded graph, we have to show that there exists an initial marking for each place

> M7, (p)
peP

of P2 such that Gg is live. By putting B*(p) = s

w .gcd, tokens on each place

p of PI%, we ascertain that Gp is live (notice that since G is normalized and each place
P2 € P}% partially models a place p € P, we have gcd,, = gcd, and therefore the value
B*(p) only depends on the place p € P). Indeed, according to Theorem 3.5, it can be
claim that all circuit of size 2 of Gy is live. In the same way, the sufficient condition of
liveness of Theorem 3.3 is checked for all the circuit except perhaps those which are solely
made of place of Pj. However, we have assumed that G = (T, P, M) is a live MWEG,
so all circuits of G are live. So, we have found an initial marking such that Gp is live. It
follows that G is a bounded graph with capacities M*(p) = My(p) + B*(p), Vp e P. O

4 Restriction and simplification of the problem

In this Section, we define the minimum capacity graph, which is obtained by transform-
ing every bounded place of GG into a couple of places with the sum of initial tokens equal to
the lower bound shown previously. Then, we express a sufficient condition of liveness for
this type of MWEG. Lastly, we restrict the problem to the determination of a live marking
of the minimum capacity graph.

4.1 Definition

Definition 4.1. The minimum capacity graph denoted by G = (T, Pr, M) of a MWEG
G = (P, T,My) with Vp € P, My(p) < M},,.(p) is the capacity graph which is built in

accordance with building rules of Theorem 3.1 with M* = M}, .
According to Consequence 3.1, the minimum capacity graph is a normalized MWEG
so the liveness property defined below still works.
Clearly, graph G 3" is live iff there exists an infinite sequences of firings of G such that,
for any place p € P, the instantaneous marking of p remains bounded by M. (p). In the

following, we study the liveness of Gﬁ“”.

4.2 A sufficient condition of liveness

In order to establish the sufficient condition of liveness for any minimum capacity graph,
we first provide a necessary condition of liveness which allow us to restrict the set of MWEG
dealt subsequently such as we have done it for the self-loop places case.

Definition 4.2. Let G = (P,T) be a WEG. Two places p = (t;,t;) and ¢ = (t;,t;) are said
parallel. A generic WEG is a WEG without parallel places. So by merely deleting parallel
places of WEG, we can build its generic WEG.

Lemma 4.1. Let G = (P,T,My) be a MWEG with Vp € P, My(p) < M}, (p). If the
minimum capacity graph G = (T, Pr, M{) is live then for any couple (p,q) of parallel
places we have My(p) = Moy(q).

Proof. This proof is get by contradiction. Assume that there exists two parallel places p =
(ti,t;) and g = (t;,t;) in G such as Mo(p) < My, (p), Mo(q) < M7, (q), Mo(p) > Mo(q)
and G = (T, Pg, My) is live. It comes that G = (T, Pr, Mg) holds a backward
place p’ (resp. ¢') associated to p (resp. q) with My(p') = M. (p) — Mo(p) (resp. Mo(q') =
M. (q) — My(q))- Since G is normalized then w(p) = w(q) = v(p) = v(¢’), v(p) = v(q) =
w(p') = w(q’) and ged, = gedy = gedy = gedyy. We deduce that M. (p) = MY, (q). Let
us consider the initial marking of circuit C' = {q = (t;,t;),p' = (t;,t:)} -

Mo(q) + Mo(p') Mo(q) + My, (p) — Mo(p)

< Mo(q) + M, (p) — Mo(a)
< Mg, (p)
< v(g) +v(p') — gedq
So according to theorem 3.4, this circuit is not live. We get a contradiction. 0

10

Remark 4.1. According to lemma 4.1 and to lemma 3.1, since parallel places with the same
number of initial tokens model exactly the same constraints, it follows that given a WEG
which holds some parallel places there is an initial live marking for its minimum capacity
graph if and only if there is an initial live marking for the minimum capacity graph of its
generic WEG. So without any loss of generality, we focus our study on generic WEG in
the rest of the paper.

Theorem 4.1. Let us suppose that, for any circuit C' of G,’%””,

Yoowp)> Y. Molp)> > (v(p) — gedy)

peCNPgr peCNPgr peCNPgr
then, G}%’”'" is live.
Proof. Let us consider a circuit C' of G"". We have to consider two cases :

e If the number of places in C' is equal to 2 then C involves two transitions denoted
here by ?; and ¢;. Assume moreover that there is only one place p between them in
G. It follows that, by contruction of Gz"" and by theorem 3.4, C is live.

Now, since Y. My(p) = w(p) + v(p) — gedy

pGCﬂPR
we deduce Y w(p)> Yo Mo(p)> > (v(p)— gcdy)
peCNPgr peCNPgr peCNPgr

e Otherwise, in accordance with Gﬁ””’s building rules, there exists a circuit C'’ of G}%’”'”

such that, to any place p = (t;,t;) of C' corresponds a backward place p’ = (¢;,;) in
C’. Since G is normalized then for any couple of places (p,q) € Pg x Pr which
both share the same transitions, we have M}, (p) = M},.(¢). So the number of
tokens in places from C U C verifies :

Neucr = > M..(p)
pGCﬂPR

= > (w(p) +v(p) — gedy)
peCNPgr

= >, Mo(p)+ >. Mo(p)
peCnPg peC'NPx

As G}%’”'” is normalized, by Theorem 3.3, C is live if

> Molp)> Y (v(p) — gedy)

peCNPgr peCNPgr

In the same way, C’ is live if

Y. Myp)> > (v(p) - gedy)

peC’'NPr peC’'NPr

Since > (v(p) —gedp) = 3 (w(p) — gedp)

peC’'NPr peCNPr

11

and Y. My(p) = > (w(p)+v(p)—gedy) — > My(p), the condition

peC'NPr peCNPgr peCNPgr
becomes :
o owlp)> D Molp)
peCNPRr peCNPr

4.3 Problem restriction

In next Section, we consider the more restrictive version of our prime problem (see.
sub-section 2.2 on page 3) for which M*(p) = M. (p) for each place p of G. In the sequel,
when we talk about capacity graph, as opposed to Definition 4.1 and as our objective is
to build a marking, we only refer to its structure which is common to all capacity graphs
and we omit the marking’s definition.

We develop a polynomial algorithm which computes a live initial marking of a capacity
graph such that for each couple of place p = (¢;,t;) and p’ = (t;,;) we get Mo(p)+Mo(p') =
My .. (p). As we are seeking a marking such that the graph is live and minimally bounded,
initially G 3" = (T, Pr) just denotes the structure of the capacity graph. For any place p of
G the two possible initial markings considered by this algorithm are v(p) or v(p) —gcd,,.

More formally, the algorithm is a constructive proof of the following theorem :

Theorem 4.2. Let G = (T, Pg) be the capacity graph’s structure of a unitary WEG
G = (T, P). An initial live marking of G ™ can be built in polynomial time such that, for
any place p € Pr, My(p) € {v(p),v(p) — gcd,}.

5 Towards a polynomial algorithm for the construction of a
live marking under restriction of minimum capacity storage

In this Section, we only consider the problem of building for strongly connected bounded
graph an initial marking which is live and minimally bounded. The general case will be
treated in the forthcoming section.

Theorem 5.1. Let Gg“'” = (T, PR) be the capacity graph’s structure of a strongly connected
unitary graph G = (T, P). An initial live marking of Gg”” can be built in polynomial time
such that, for any place p € Pr, My(p) € {v(p),v(p) — gcdp}.

Firstly, we transform Gg”'” into an associated graph G in order to simplify the presen-
tation of the algorithm. We also translate the sufficient condition of liveness of G 7" into
a property of the labeling of arcs of G. We deduce from this last property the termination
of the algorithm. Then, we describe the initialization and the iterative step.

5.1 Definition of the associated graph G

Let G be a strongly connected normalized unitary WEG and Gﬁ”” its associated ca-
pacity graph’s structure. In order to simplify the proof’s writing, we define the associated

oriented graph G = (T,U) as follows :

12

1. vertices of G are transitions of G;

2. any place p = (t;,t;) of Pg is associated with an arc u, from ¢; to t;. Moreover, in
order to differentiate places of P} from those of PI%, we use on figures a solid style
(resp. dotted style) to depict arcs of U associated with P} (resp. P3).

By hypothesis, the initial marking of any place p € Pg verifies My(p) € {v(p),v(p) —
gedy . So, to any initial marking My of Gg””, we associate a label [of the arcs of G defined

as :
{ l(up) =0 if My(p) =v(p) — gedp
l(up) =1 if My(p) = v(p)
Conversely, to any label of G, an initial marking of G2 can be associated.

Property 5.1. If My is a live marking of G", then for any couple of places (p1,p2) €
PL x P% associated to a same place p of G, 1(up,) + l(up,) = 1

Proof. By definition of G, My(p1) + Mo(p2) = M}, (p) = w(p) + v(p) — gedyp. Since
Mo (p1) € {v(p), v(p)—gedp} and Mo(p2) € {w(p), w(p)—gedy}, we deduce the property. [

Lemma 5.1. Let [be a label of G which verifies Property 5.1. If every circuit C of G has at
least one arc x and one arc y such that [(x) = 0 and l(y) = 1, then the associated marking
My of GR™ s live.

Proof. Let us consider a circuit C of G and let C' be the corresponding circuit of G". If
[verifies the condition of the lemma, then

Cl> Y l(up) >0

peCNPr

where |C| is the number of arcs in C. We get :

Yoovp) > > Molp)> D (v(p) — gedy)

peCNPgr peCNPgr peCNPgr
By Theorem 3.3, we deduce that the associated marking My of G,’%”” is live. O
One can notice that this problem seems to be closely related to the well-know NP-
Complete problem FEEDBACK ARC SET [Kar72].
5.2 Termination of the algorithm

Let Uy be the set of null labeled arcs of G and Gy = (T, Up). Likewise, let UOA be the
subset of dotted arcs from Uy and G5* = (T, US).

Theorem 5.2. If Gy is a Directed Acyclic Graph (DAG in short) then the corresponding

marking My of Gﬁ”” is live.

Proof. Let us suppose that GJ"" is not live for a marking M. Since [verifies Property
5.1, by Lemma 5.1, there exists a circuit C of G such that [(x) = 0 for any arc x of C. C is
included in Gy, which is not a DAG. O

13

5.3 Initialization of G,

Let us consider a spanning out-tree 7 of G (i.e. 7 is a partial subgraph of G which is
an out-tree and connecting every vertex of GG). 7 exists since G is strongly connected. We
build an initial label of G as follows :

e If u, is a solid arc, then I(u,) = 1 iff the corresponding place p € P of G is in 7.

o If u, is a dotted arc, then I(u,) = 1 iff the backwards solid arc u, has its label
l(uy) = 0.

Property 5.2. Gy does not hold any dotted circuit.

Proof. Assume that Gy holds a dotted circuit C. According to the building’s rules of the
labels, Property 5.1 holds. So, the backwards circuit C’ of C is composed by solid arcs and
C' is included in 7, which is impossible. O

Now, since Gy does not hold dotted circuits :

Consequence 5.1. Initially, all circuits of Gy are either solely made of solid arcs or by
solid and dotted arcs.

5.4 Breaking circuits of G

The idea of the algorithm is to compute a label of G such that Gy has no circuit. By
Theorem 5.2, the corresponding initial marking of Gﬁ”” is live.

At this step of the algorithm, one can imagine that Gy is (still) not a DAG, so we have
to devise an algorithm which breaks all circuits of Gy.

Theorem 5.3. If Gy is free of dotted circuits and contains a circuit C, then there is at
least one solid arc of C which can be labeled by 1 without creating dotted circuits in Gy.

Proof. We prove it by contradiction. Suppose that Gy is free of dotted circuits. Let C be a
circuit such that no solid arc of C may be labeled by 1 without creating a dotted circuit by
appending to Gy the corresponding dotted backward arc. Notice that removing a solid arc
from Gy cannot create a solid circuit in Gy. In this case, it follows that there were already
a dotted circuit in Gy (see. Figure 3 on the following page), the contradiction. O

The algorithm will remove arcs from Gy following Theorem 5.3. So, the number of solid
arcs of Gy is strictly decreasing at each step of the algorithm. The algorithm stops when
Go has no more circuits.

6 Algorithms and an example

In this section, we sum up the algorithm for the strongly connected case and we express
its complexity. Then, we will see a basic example. Finally, we extend these results to all
bounded graphs.

14

s YA
‘\ , ‘\ ,
~ S v "

e
Figure 3: At the center of the figure, we have the considered circuit C. If, it is not possible
to change any labels of solid arcs without creating some new dotted circuits, then there
were previously in Gy a dotted circuit (cf. the dotted outside circuit).

6.1 Algorithm for a strongly connected graph

Firstly, one can observes that the algorithm computes for each place p an initial marking
My(p) € {v(p)—gcdy,v(p)}. As the normalization operation is an increasing linear function
of initial place’s attributes (i.e. w(p),v(p), Mo(p) and as ged(k.w(p), k.v(p)) = k.gcd,), the
normalization step is not necessary.

1. Build an out-tree 7 of the initial graph G using DIJKSTRA’s algorithm. For any arc
of 7, label the corresponding solid arc of G by 1. For any arc of G — 7, label the
corresponding solid arc of G by 0. Dotted arcs of G are labeled following Property
5.1.

2. Extract from G the subgraph Gy.
3. Check with the DEPTH-FIRST SEARCH algorithm that Gy is a DAG :
(a) If Gy is a DAG then the associated initial marking of G 2™ is live (see. Theorem
5.2). Go to STEP 4.
(b) If Gp holds a circuit C then let S be the set of solid arcs from C.

i. Select an arc ugs € S and denote by ug its backwards dotted arc.
ii. If the dotted subgraph G&* = (T,U& U {u4}) is a DAG, then u, may be
labeled by 1 : set Uy = Uy U {uq} — {us} and go back to STEP 3.
iii. Otherwise, set S =S — {us} and go to STEP 3(b)i.

4. Build an initial marking of G " as follow :

for each arc u, of G, set My(p) = v(p) — ged,, if L(up) = 0 else set My(p) = v(p).

Lemma 6.1. The complexity of this algorithm is in O(m?).

Proof. The complexity of DIJKSTRA and DEPTH-FIRST SEARCH algorithms are in O(m).
At each step of the algorithm, a solid arc is selected and we have to check that if this arc
can be safely replaced by its backward dotted arc by using the DEPTH-FIRST SEARCH
algorithm. As the number of iterations of STEP 3 is in O(m) then it follows that the whole
complexity of the algorithm is in O(m?). O

15

6.2 A basic example

Now, we apply the algorithm on a small example. The initial WEG is depicted by
Figure 4 a) on the current page. Figure 4 b) shows the capacity graph’s structure.

Figure 4: Let us consider the WEG depicted above on the left. On the right hand side,
the capacity graph is presented. Now, we are looking for a live marking on this capacity
graph.

According to STEP 1, the algorithm builds a spanning out-tree 7 from vertex t5 for
example. The arcs of this spanning out-tree 7 are labeled by 1. The resulting graph is
shown by Figure 5 c) on this page. Then, the labels for the associated graph G (as shown
by Figure 5 d)) are computed as defined in Section 5.

Figure 5: The initialization step is made on Figure c). Figure d) depicts the associated
graph with this initial label.

The subgraph G extracted from G is represented by Figure 6 e) on the next page. Then
at STEP 3, the algorithm checks that Gy is a DAG. Here, the algorithm finds a circuit which

16

is depicted with thick arcs and we set out it on Figure 6 e). There is several candidate
arcs in order to break this circuit. So we choose to break the circuit by “reversing” the arc
(t1,t4) as shown on the right hand side. At the next iteration, the algorithm attests that
the modified graph Gy is a DAG (Figure 6) on this page). So we achieve our goal and the
algorithm stops.

Figure 6: On the right hand side, a circuit of Gy is displayed. Figure f) shows the resulting
graph at the end of the first iteration of STEP 3.

The whole label for this graph can be easily deduced according to Property 5.1. It
is given on the left hand side of Figure 7 on the current page. Lastly, according to the
definition of the associated graph, we can computes a live initial marking for our WEG
which is minimally bounded for each place.

Figure 7: On Figure g), the whole label is shown for the associated graph G. Then, we
have depicted the initial marking for the G, This initial marking is live.

17

6.3 Generalization

We extend the first algorithm in order to treat all bounded graphs. In the sequel, if G
contains k strongly connected components then they will be denoted by C4,...,C). For
this purpose, we need to introduce a new definition :

Definition 6.1. An independent place p = (t,,t,) is a place such that :
(testy) € Ci x Cj (i, §) €{1,... kY2 i #j

The set of independent places of G is denoted by P C P. In the same way, P C Pg
denotes the set of places of Pr associated with an independant place.

The following algorithm is the generalization of the first one :

1. Compute all strongly connected components of graph G using the DEPTH-FIRST
SEARCH’s algorithm. Determine the set P; of independant places of G.

2. Compute using the previous algorithm a marking for each strongly connected com-
ponent of G.

3. For each place p € P2, if p € P} set My(p) = v(p) else My(p) = v(p) — gedp,.
Theorem 6.1. This algorithm computes a live initial marking for GIQ’”'”.

Proof. This proof is get by contradiction. Assume that G holds k strongly connected
components and all places are marked according to the algorithm computation. If this
initial marking is not live then, by Theorem 4.1, there is in the capacity graph G"" a
circuit C' where each place p is marked by v(p) — gcd, tokens. We consider two cases :

e First case : If C does not involve any associated place of any component C; then the
circuit is solely made of places of P/*. As G does not hold a circuit which is solely
made of places from P; then we deduce that C holds at least 1 place of P}l2 and 1
place of P}%- However according to the algorithm all places p € P N P/ are initially
marked with v(p) tokens. So, we get a contradiction.

e Second case : If C' contains some associated places from at least one strongly con-
nected component then according to Theorem 5.1 we can deduce that C' holds at
least two places of P;*. We have now two sub-cases :

— All places of CN P} are in PI%. If all those places belong to P}% then the backward
circuit C'’ defines a new strongly connected component in G, a contradiction.

— So, there is at least one place of C'N P/* which is in P}z. Then this place was
not marked according to our algorithm.

0

Theorem 6.2. The complezity of the whole approach is in O(n.m?)

18

Proof. The number of computations of the global algorithm mainly depends on the use of
the DEPTH-FIRST SEARCH’s algorithm and on the algorithm for the strongly component
case. The first and the third steps of the algorithm are both in O(m). As |T| = n, the
number of strongly component of a graph G is in O(n). However, according to Lemma 6.1,
the number of computations of the strongly component case is in O(m?). It follows that
the number of computations performed at the second step is in O(n.m?). So, the theorem
holds. O

7 Conclusion

We have been concerned in this paper with a major problem of industrial area. This
article has proposed a new approach for solving this problem by introducing some new
constraints. These restrictions facilitate the design of a polynomial algorithm that com-
putes an initial marking for WEG which is live and minimally bounded. To our knowledge,
all computational solutions that have been devised until now were heuristics or pseudo-
polynomial algorithms. So our polynomial algorithm may be used for treating large size
instances and computing optimal results.

We plan to study in future-work the relationship between the throughput of a MWEG
and the capacity constraints over places.

References

[Adé97] M. Adé, Data memory minimization for synchronous data flow graphs emulated
on dsp-fpga targets, Ph.D. thesis, Université Catholique de Louvain, 1997.

[ALP94] M. Adé, R. Lauwereins, and J. A. Peperstraete, Buffer memory requirements in
dsp applications, IEEE 5th International Workshop on Rapid System Prototyp-
ing (Grenoble, France), 1994, pp. 108-123.

[BML99] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Synthesis of embedded soft-
ware from synchronous dataflow specifications, Journal of VLSI Signal Process-
ing (1999), no. 21, 151-166.

[éP93] M. Cubri¢ and P. Panangaden, Minimal memory schedules for dataflow net-
works., CONCUR ’93, 4th International Conference on Concurrency Theory,
Lecture Notes in Computer Sciences, vol. 715, 1993, pp. 368-383.

[CWR93| P. Chrzastowski-Wachtel and M. Raczunas, Liveness of weighted circuits and
the diophantine problem of frobenius., FCT, 1993, pp. 171-180.

[Gau90] S. Gaubert, An algebraic method for optimizing resources in timed event graphs,
9th conference on Analysis and Optimization of Systems, Lecture Notes in Com-
puter Sciences, vol. 144, 1990, pp. 957-966.

[GGDO02] R. Govindarajan, G. Gao, and P. Desai, Minimizing memory requirements in
rate-optimal schedule in regular dataflow networks, Journal of VLSI Signal Pro-
cessing 31 (2002), no. 3.

19

[GPS02]

[HP8Y]

[Kar72]

[KM66]

[LM87a]

[LMS7b]

[LPX92]

[MBL97]

[MMKO04]

[Mun93]

[Mun96]

[Mur96]

[Sau03]

[TCCS92]

A. Giua, A. Piccaluga, and C. Seatzu, Firing rate optimization of cyclic timed
event graphs., Automatica 38 (2002), no. 1, 91-103.

H. Hillion and J-M. Proth, Performance evaluation of a job-shop system using
timed event graph, IEEE transactions on automatic control 34 (1989), no. 1,
3-9.

R. M. Karp, Reducibility among combinatorial problems, Complexity of Com-
puter Computations (R. E. Miller and J. W. Thatcher, eds.), Plenum Press,
1972, pp. 85-103.

R. M. Karp and R. E. Miller, Properties of a model for parallel computations:
Determinacy, termination, queueing, STAM 14 (1966), no. 63, 1390 — 1411.

E. A. Lee and D. G. Messerschmitt, Static scheduling of synchronous data flow
programs for digital signal processing, IEEE Transaction on Computers C-36
(1987), no. 1, 24-35.

, Synchronous data flow, IEEE Proceedings of the IEEE 75 (1987), no. 9.

S. Laftit, J-M. Proth, and X. Xie, Optimization of invariant criteria for event
graphs, IEEE Transactions on Automatic Control 37 (1992), no. 5, 547-555.

P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, Joint minimization of code
and data for synchonous dataflow programs, Journal of Formal Methods in Sys-
tem Design 11 (1997), no. 1.

O. DMarchetti and A. Munier-Kordon, A sufficient condition
for the liveness of weighted event graphs, Research report,
LIP6, Laboratoire d’Informatique de Paris 6, 2004, available at
ftp://asim.lip6.fr/pub/reports/2004/rp.lip6.2004.marchetti.pdf.

A. Munier, Régime asymptotique optimal d’un graphe d’événements temporisé :
application & un probléme d’assemblage, RAIRO (1993).

A. Munier, The basic cyclic scheduling problem with linear precedence con-
straints., Discrete Applied Mathematics 64 (1996), no. 3, 219-238.

P. M. Murthy, Scheduling techniques for synchronous and multidimensional syn-
chronous dataflow., Ph.D. thesis, University of California at Berkeley, 1996.

N. Sauer, Marking optimization of weighted marked graphs, Discrete Event Dy-
namic Systems 13 (2003), no. 3, 245-262.

E. Teruel, P. Chrzastowski, J. M. Colom, and M. Silva, On weighted t-systems,
Application and Theory of Petri Nets 1992 (K. Jensen, ed.), vol. 616, Springer,
1992, pp. 348-367.

20

