
A new extension for ML with object oriented
features of Focal

Stéphane Fechter1

stephane.fechter@lip6.fr
Laboratoire d’Informatique de Paris VI

8, rue du Capitaine Scott
75015 Paris, France

1 Introduction

New paradigms are appearing in relation to object oriented programming like
mixins [1–4] for instance. The framework Focal belongs to this tendency. In par-
ticular, it brings object oriented solutions to develop certified softwares. More-
over, Focal has the originality to allow to write in a same program specifica-
tions, code and proofs.
Focal allows to develop certificate components called collections containing
a set of functions working on an only data representation called carrier. Ele-
ments manipulated by functions of a collection are called entities. To avoid to
break representation invariants, an abstraction barrier is imposed on collections.
Hence, a collection can be considered as an algebraic abstract type. The contri-
bution of Focal is the possibility to create collections with the help of powerful
tools in order to ease the proof of properties and the reusing.

To obtain step by step a collection, Focal provides constructions called
species. A species allows to specify the carrier with a type : the carrier type.
Focal allows to build an hierarchy of species bound by an inheritance rela-
tion. At the top of the hierarchy, the carrier type and functions called methods
are only declared. The declarations are like virtual methods of object oriented
languages. By inheritance, the definitions of carrier type and methods are post-
poned. The developer can also declare properties. However, he will have to prove
them. Finally, the different steps of specification, implementation and proofs end
up at species called complete species. More precisely, the carrier type and ev-
ery method of a complete species are defined, and every property is proved.
Lastly, collection is obtained from a complete species.

In addition to the multi-inheritance, Focal provides other object oriented
features as the late binding, method redefinition and the self reference. Moreover,
species can be defined with parameters whose instances are collections. However,
the object oriented features of Focal must be used carefully in order to avoid
logical inconsistencies. On the one hand, along of a hierarchy of species, the
carrier type must not be redefined, but it can be instantiated. On the other
hand, parameterization, inheritance imply the existence of strong dependencies
between methods and properties. The compilation of Focal checks that this
dependency graph is acyclic.

In this paper, only operational aspects of Focal are considerate. An exten-
sion of ML with notions of species and collections is given in order to exhibit
an operational semantics. Thus, the model provided here will be able to be
compared with other ML extensions dedicated to object oriented programming.
Thus, in a general way, the object oriented approach of Focal will be able to be
compared with the ones provided by more traditional object oriented languages
such as Java [5] or OCaml[6].

This paper is organized as follows: the section 2 is an overview of the model,
called here FML1. Abstract syntax is presented in section 3. Type system is
presented in section 4. The operational semantics of FML is presented in section
5. In section 5, type soundness is proved. In section 6, we present relative works
and we conclude.

Notational conventions In this paper, the symbols x, y range over the set V ar of
term variables, the symbols m, n, p, q range over the set M of method names, the
symbols S ranges over the set S of species names and the symbols c, d, e range
over the set C of collection names. Term variables are α-convertibles oppositely
to method names. Also all identifiers used can be indexed.

2 An overview of FML

In this section, simple examples are written with the concrete syntax (near to
the one of OCaml [6]) of FML in order to introduce the notions of Focal.
They start at top of a hierarchy to finish with complete species and collections.

A basic species is defined at the top of the hierarchy:

species Basic =
struct
rep;
parse : string -> rep;

end;;

Such a species declares a carrier type, here still abstract with the field rep. The
method parse is declared and be seen as a virtual method of object oriented
languages. It returns an element of rep, that is an entity of the future collec-
tion. For the sequel, the type associated to a method is called specification.
Specifications given by the programmer allow to build a structure in order to
indicate elements exported by the species. This structure is called interface and
presented as follows:

I_Basic =
struct
rep;
parse : string -> rep;

end
1 FML meaning Focal - ML

The interface exports the carrier type and the methods that are only declared.
The carrier type of an interface is always opaque in order to abstract it.
For the sequel of the presentation, names of species are prefixed with I to
indicate that their interfaces are considered.

The species in Focal are refined by inheritance. With FML, Basic can be
extended as follows:

species Basic_add =
struct
inherits Basic;

add : rep -> rep -> rep;
end;;

Basic add inherits carrier type and methods from Basic. The interface bound
to Basic add is written as follows:

I_Basic_add =
struct
rep;
parse : string -> rep;
add : rep -> rep -> rep;

end

Species can be parameterized:

species ProdCart = fun (c is Basic) -> fun (d is Basic) ->
struct
inherits Basic ;
rep = c!rep * d!rep;
parse : string -> rep = fun x ->

let (c1,c2) = decompose(x) in (c!parse c1 , d!parse c2);
end;;

ProdCart uses two parameters c and d specified by the interface of Basic. We
can access to methods of c and d and to their carrier type. However, the carrier
type of c and the one of d are incompatible.
The carrier type of ProdCart is defined as the cartesian product of the carrier
type of c (c!rep) and the one of d (d!rep).
The interface of ProdCart is defined as follows:

I_ProdCart = fun (c:I_Basic) -> fun (d:I_Basic) ->
struct
rep;
parse : string -> rep;

end

This interface erases the definition of the carrier type and the definition of parse.
It is also parameterized by c and d.

In order to parameterize a species A by a parameterized species B, every pa-
rameter of the species B has to be instantiated.

A parameterized species can be also refined by inheritance. For instance,
ProdCart is derived as follows:

species ProdCart_R = fun (c is Basic_add) -> fun (d is Basic_add) ->
struct
inherits (ProdCart c d);

add : rep -> rep -> rep = fun x -> fun y ->
let (e1 , e2) = x and (e3 , e4) = y in
((c!add e1 e3) , (d!add e2 e4));

const : c!rep -> d!rep -> rep = fun x -> fun y -> (x , y)
end;;

Since the interface of Basic is included in the one of Basic add, the parame-
ters of ProdCart can be instantiated vy d and d. So, the methods of I Basic
are retrieved in Basic add.
The interface of ProdCart R is obtained by unfolding the inheritance of ProdCart(c,d):

I_ProdCart_R = fun (c : I_Basic_add) -> fun (d : I_Basic_add) ->
rep;
parse : string -> rep ;
add : rep -> rep -> rep ;
const : c!rep -> d!rep -> rep ;

end

The definition of methods add and const are erased from the interface.
Toward the bottom of a hierarchy, complete species can be obtained. For

FML, a complete species is a species with no parameters, all methods defined
and rep associated to a type. From Basic add, we can obtain the complete
species Integers:

species Integers =
struct
inherits Basic_add ;

rep = int;
parse = fun x -> #int of string x;
add = fun x -> fun y -> x + y;

end;;

From a complete species, a collection can be created as follows:

collection My_Integers = Integers ;;

A collection has also an interface. The interface of My Integers is given by the
one of Integers:

I_My_Integers =
rep;
parse : string -> rep;
add : rep -> rep -> rep;

end

As the carrier type is opaque in a interface, an abstraction of the carrier type for
a collection is obtained. Thus, we can only apply add on entities of My Integers.

In the same way, a complete species Booleans can be obtained from Basic add
in order to implement algorithms for booleans. Then, a collection My Booleans
can be created from Booleans. Thus, the interface of Basic add is included in
the ones of My Integers and My Booleans. So, a new collection can be created
as follows:

collection IntXBool = Prod_Cart_R My_Integers My_Booleans ;;

Prod Cart R applied to the collections My Integers and My Booleans provides
a complete species. Thus the collection IntXBool can be created. Its interface
is:

I_IntXBool =
struct
rep;
parse : string -> rep ;
add : rep -> rep -> rep ;
const : My_Integers!rep -> My_Booleans!rep -> rep ;

end

Above, the parameters c and d of Prod Cart R are respectively instantiated by
My Integers and My Booleans.

The collections previously created can now be used in the following simple
ML program:

let one_true = IntXBool!parse "1 and true" ;;
let zero_false = IntXBool!parse "0 and false" ;;
let resu = IntXBool!add one_true zero_false ;;

By using the method parse, entities one true and zero false of the collec-
tion IntXBool are created. In relation to the type of parse exported by the
interface of IntXBool, one true and zero false have the type IntXBool!rep,
that is the carrier type of IntXBool. The type of add, in relation to the inter-
face of IntXBool, is IntXBool!rep → IntXBool!rep → IntXBool!rep. Thus,
one true and zero false can be applied to add.
The species (Prod Cart R My Integers My Booleans) has the carrier type de-
fined with int (carrier type of My Integers) and bool (carrier type of My Booleans).
Thus, the type of method add has the type int*bool→ int*bool→ int*bool.
However, the collection IntXBool has abstracted the type int*bool. Thus, in
the above example, we cannot directly call add with (1,#t) and (0,#f).

In addition to above features, Focal and FML allow multi-inheritance. To
resolve the diamond problem, if a method is defined several times in a list of
inherited species, by convention, it is the rightest definition that is retained.
Focal and FML also provides method redefinition, the self reference and the
late binding by default. Self reference is obtained by a variable self used to
represent underlying collection inside a species.
Moreover, specifications of methods must not change during the inheritance,
even if a method is (re)defined. In the same way, once the carrier type is defined,
it must not be changed. These constraints avoid to break type soundness.
Lastly, collections are not first class objects: a method cannot be parameterized
by collections. Collections are only applied to species.

3 Syntax

In this section, type expressions used to define specifications of method and
interfaces are introduced. Then, abstract syntax to define a FML program is
presented.

3.1 Type expressions and interfaces

Type expressions The type expressions are divided in the two following cate-
gories:

carrier type definition:
t ::= ι atomic type

| c!rep carrier type of collection
| t → t | t ∗ t functional and product type

specification syntax:
i ::= rep reference to carrier type

| ι | c!rep | i → i | i ∗ i

The first category is used to define the carrier type. The second category allows
to give a specification for a method.

A carrier type t can be an atomic type ι (that is the type of constants), a
carrier type c!rep of a collection c, a functional type t → t or a product type
t ∗ t. The definition for i is included in the one of t. The only difference between
the two definitions is rep. Using rep to define the carrier type does not have
any sense in FML.

Interfaces In the abstract syntax of FML, parameters of species are directly
specified by interfaces instead of using species. It avoids to overload the model
too much. As we previously said, an interface associated to parameters is not
parameterized. Thus, such an interface is simply represented here by a list of
method names associated to specifications:

I ::= ∅ | m:i; I

∅ represents empty interfaces.

3.2 Language of terms

The main terms are defined by extending ML with constructions for method
invocations and constructions for species and collections:

a ::= κ | x | λx. a | a a | (a, a) | let x = a in a Core ML
| col!m Method invocation
| species S = e in a Species definition
| collection c = e in a Creation of collection

col !
= c Collection
| self Self reference

In the first line, the core ML is defined from constants κ, term variables x, func-
tions λx. a, applications a a, pairs (a, a) and locale declarations let x = a in a.
We add the invocation method col!m, the species definition species S = e in a
and the creation of collection collection c = e in a.
The invocation method is limited only either on a collection c or on the variable
self. This syntactic constraint allows to forbid the collection to be a first class
object. Here, the variable self is used for the self reference. In a species, this
variable represents the family of underlying collections. However, in a species, a
concrete implementation for the future collection is given. This implementation
must be coherent in relation to the type of self. Hence, self represents the un-
derlying collection that will be used during the execution. As it will be showed
in the semantics, self is not substituted by the identifier of a collection, but by
the value of this collection.
The construction species S = e in a is used to define a species S with a species
expression e (defined below). The scope of S is limited to the expression a.
The construction collection c = e in a is used to defined a collection c from
the species e. The scope of c is limited to the one of the expression a. Every
collection name used to define a new collection must be fresh. This constraint
provides the abstraction of elements of the collection.

The species expression is defined as follows:

e ::= S Species name
| struct w end Structure
| λ(c : I). e Parameterized species
| e col Species application

w ::= ∅ | d; w
d ::= rep=t Carrier type

| m:i=a Methode
| inherit e Inherited species

A species expression e is used to explicitly define a species. It can be a species
name S, a structure struct w end, a parameterized species λ(c : I). e or an
application e col of an species expression e on a collection a.

In order to define the body of a species, a structure struct w end (called for the
sequel species structure) is used where w is the list (eventually empty) of its
components d. A component d can be a carrier type definition rep=t, a method
m:i=a or a inherited species inherit e. In the previous introduction of FML,
the inherited species have appeared before the others components. Here, we are
less restrictive on this order to ease the presentation. Thus, methods can appear
before inherited species. However in this case, these methods cannot access to
ones appearing in the inherited species.
In the section 2, we said that there is at most one declaration of carrier type in
a species. However, thanks to the definition of w, several rep=ti can appear. It
is the type system which restrains all ti to be the same. Thus, it is amounted to
have one declaration of carrier type at maximum.

4 Type system

In addition to validate expressions, the type system presented here builds a fix
point to obtain the self reference and offers an abstraction mechanism for entities
of collections.

For the type system, the symbol α ranges over the set Tvar of type variables.
Moreover, the row variable ρ is also used.

4.1 Type language

The type language is formally defined as:

Basic type:
τ ::= α type variable

| ι atomic type
| c!rep carrier type of a collection c
| τ→τ | τ ∗ τ functional and product type

List of specification fields:
ω ::= rep | α | ι | c!rep | ω→ω | ω ∗ ω
Φ ::= ∅ | m:ω; Φ | rep=τ ; Φ

Notations :
Φd

!
= Φ\{rep=τ}

Φc
!
= (rep=τ ; Φd)

Φe
!
= Φd | Φd; ρ

Collection type:
ξ ::= 〈Φc〉 | 〈Φc; ρ〉

Species type:
γ ::= sig (ξ) Φ end structure type

| ξ→γ functional type

The basic types τ are the types of expressions a. They can be a type variable
α, an atomic type (int, bool, etc ...), a carrier type c!rep of a collection c, a
functional type τ→τ or product type τ ∗ τ .

In the type system, the list Φ is used to represent the interface of a collection
or a species. In order to return the method types, the list Φ contains at least a
field rep = τ . For every method with a specification ω, we just have to replace
rep by the type τ in ω in order to get the type τ ′ of the method.
Formally, a list Φ can be empty or contain a method specification m:ω and a
carrier type definition rep = τ . A specification ω can be a reference rep to the
carrier type, a type variable α, a carrier type c!rep of a collection c, a functional
type or a product type ω ∗ ω.
We suppose that in a list Φ, all the rep fields are associated to the same type
τ . This constraint comes from the interdiction to redefine the carrier type. Like-
wise, if several occurrences of a method m appear in a list Φ, the specification ω
associated is the same for all.
We define a binary operator ⊕ to concatenate a list Φ1 to a list Φ2. Moreover,
⊕ checks the preservation of specifications and the carrier type. With the verifi-
cation of the preservation of specifications, the preservation of types associated
to methods are also verified in the same time. Thus, the type soundness is not
broken.
Lastly, some notations are introduced for the list Φ in order to ease the presen-
tation of rules and to avoid to add supplementary verification rules. Then Φd is
a list deprived of all rep = τ occurrences. The notation Φc is a list Φ defined
with an only one occurrence of rep = τ . Then the list Φe denotes a list Φd or a
list Φd followed by the row variable ρ.
In order to avoid to be constrained by the order induced by a list Φ, a permuta-
tion axiom is given as follows:

s
!
= rep=τ | m : ω

s1; s2;Φ1 = s2; s1;Φ1

The type ξ is reserved for the collection and to define the type for the variable
self. More precisely, ξ can be the 〈Φc〉 shape or the 〈Φc; ρ〉 shape. The first shape
gives a type to the variable self or a collection c. If 〈Φc〉 denotes the type of
a collection c, we use rep = c!rep in Φc in order to abstract the entities of the
collection. The second shape is used for parameterized species. Here the row
variable ρ is used in case of a collection with an interface greater than expected
by the specification of parameter.

The type γ is the one of species. It can be either a type of structure sig (ξ) Φ end
or a type of parameterized species ξ→γ.
The type of a structure sig (ξ) Φ end is composed of a type ξ and a list Φ.
The type ξ will allow to assign a type for the variable self. It represents the
type of the underlying collection but with a concrete form. So the rep field is
defined with a τ type compatible with the one defined in the species. It allows
to verify the compatibility of the interface of the underlying collection with the
set of method types. For the sequel, we call the type ξ, the signature of species

type.
As for the list Φ, it corresponds to the one of defined fields in the species. More
precisely, the fields of Φ are the ones of the structure, but also the ones of in-
herited species. Lastly, the fields of Φ must appear in the type ξ. On the other
hand, a declared method in ξ does not necessarily appear in the list Φ. In this
case, this method corresponds to a declaration. In an analogous way, if the field
rep is not present in Φ, then the carrier type is not yet defined in the species.
Lastly if the all fields declared in ξ belong to Φ, then the species is complete.
Afterwards, Φ is called list of types of defined fields.

The type schemas are defined as follows:

στ ::= ∀ᾱ.τ
σγ ::= ∀ᾱ.∀ρ.γ

where ᾱ denotes the set (eventually empty) of type variables α1 . . .αn. The row
variable ρ may be omitted.
We denote by τ ≤ στ (respectively γ ≤ σγ), that τ (resp. γ) is an instance of
στ (resp. σγ).

In FML, several syntactic categories are used. In order to homogenize them,
we introduce the following notations:

ă
!
= a | w | col | e

τ̆ !
= τ | Φ | ξ | γ

These notations must be used in a consistent way. For example (ă, τ̆) means
(a, τ), (w,Φ), etc... but not (e, τ).

4.2 Typing rules

The typing rules for FML use two environments defined as follows:

– the typing environment A:

A ::= ∅ | A + x:στ | A + S:σγ | A + c:ξ | A + self:ξ

The environment A, possibly empty, is composed of term variables x:στ ,
species variables S:σγ , collection names c:ξ and self:ξ variable.

– the collection name environment Ω defined like a set of collection names
possibly empty.

We denote A∗ the typing environment A deprived of any occurrence of self .
We call this environment, starry environment. Starry environment allows to
control the scope of self. It allows to avoid the capture of self by an other
species different to the one is typing.

An environment A is considered as a partial function. Notations are used as
follows:

– A(x) for the type scheme στ associated to the variable x declared in A,

– A(S) for the type scheme σγ associated to the variable S declared in A,
– A(c) for the type ξ associated to the collection name c declared in A,
– A(self) for the type ξ associated the self variable declared in A.

The environmentΩ contains collection names declared with constructions collection c =
e in a or corresponding to parameters of a species. The types of variables de-
clared in A can only use collection names declared in Ω as types. That implies
some coherence between A and Ω. So, a notion of well formed environment is
introduced:

Definition 1. A typing environment A is a well formed typing environment
in relation to a collection name environment Ω iff for all x:στ ∈ A (respectively
for all S:σγ ∈ A, for all c:ξ ∈ A, for all self:ξ ∈ A), all occurrences of collection
names in στ (respectively in σγ , in ξ) are declared in Ω.

A generalization operator Gen is defined:

Gen(τ̆ , A) = ∀α1 . . .αn.τ̆

with α1 . . .αn the free variable types of τ̆ , except in A.

The typing rules must validate well typed expressions, but also type expres-
sions used in terms. Indeed, for all carrier type c!rep used in expression types,
the collection name c must be declared in the collection name environment Ω.
So, there is the function |-|Ω : {i} → {ω} ∪ ⊥ defined by induction as follows:

|ι|Ω = ι
|rep|Ω = rep
|c!rep|Ω = c!rep si c ∈ Ω
|c!rep|Ω = ⊥ si c ,∈ Ω
|i1→i2|Ω = |i1|Ω→|i2|Ω
|i1 ∗ i2|Ω = |i1|Ω ∗ |i2|Ω

The function |-|Ω applied to a specification i, returns a type ω containing eventu-
ally occurrences of an error symbol ⊥. The symbol ⊥ corresponds to occurrences
of c!rep in i for the ones c ,∈ Ω. Thus the validate specifications correspond to
the types without occurrence of ⊥.
Note, the function |-|Ω can be applied also on a carrier type definition t. Indeed
the set {t} is included in the set {i}.

The judgement used in the typing rules have the shape A ; Ω - ă : τ̆ : the
expression ă has the type τ̆ in the environments A and Ω. To be validated, the
environment A of a judgement must be well formed in relation to Ω. Moreover,
collection names used like type in τ̆ must be declared in Ω. For these constraints,
a notion well formed judgement is introduced:

Definition 2. A judgement A ; Ω - ă : τ̆ is well formed iff A is well formed
in relation to Ω and all occurrences of collection names in τ̆ are declared in Ω.

In the rules presented below, all judgments used must be considered well formed
in relation to the environment Ω. If a typing derivation tree created from typing
rules, uses a judgment not well formed, then it is rejected.

Among the typing rules, ones to type ML expressions are retrieved:

Cst

A ; Ω - κ : ι

Var
τ ≤ A(x)

A ; Ω - x : τ

Fun-ML
A + x : τ1 ; Ω - a : τ2
A ; Ω - λx. a : τ1→τ2

App-ML
A ; Ω - a1 : τ1→τ2 A ; Ω - a2 : τ1

A ; Ω - a1 a2 : τ2

Pair-ML
A ; Ω - a1 : τ1 A ; Ω - a2 : τ2

A ; Ω - (a1, a2) : τ1 ∗ τ2

Let-ML
A ; Ω - a1 : τ1 A + x : Gen(τ1, A) ; Ω - a2 : τ2

A ; Ω - let x = a1 in a2 : τ2

Then add rules:
Send
A ; Ω - col : 〈rep=τ ; m:ω;Φd〉

A ; Ω - col!m : ω[rep←τ]

Species Let
A ; Ω - e : γ A + S : Gen(γ, A) ; Ω - a : τ

A ; Ω - species S = e in a : τ

Abstract
A ; Ω - e : sig (〈rep=τ ′;Φd〉) (rep = τ ′;Φd) end

A + c : 〈rep=c!rep;Φd〉 ; (Ω; c) - a : τ
A ; Ω - collection c = e in a : τ

The rule Send is used to type the invocation of a method m on an expression
col (collection or self variable). Intuitively, this rules consist in verifying the
existence of the method m. More formally, the type of col in the environment
A and Ω, must have the form 〈rep=τ ; m:ω;Φd〉 with m declared in this type.
The type returned for col!m, is the specification ω with every occurrence of rep
replaced by the definition of the carrier type τ found in the type of col. In other
words, the rule Send returns the type ω[rep←τ].

To type an expression species S = e in a, we use the rule Species Let. It
is similar to the one used to type an expression let x = a in a. The species e
must have the type γ in environments A and Ω. Then, the expression a is typed
in the environment A extended with S : Gen(γ, A) (the environment Ω stays
fixed). The type of a, that is τ , is the type returned by Species Let.

The rule Abstract is used to type the creation of a collection collection c =
e in a. Intuitively this rule must verify that the species e is complete. Then, it
must type the expression a with the environment A and Ω extended with the
collection c. During the typing phase of the expression a, the carrier type c!rep of
the collection c plays the role of a formal variable different of all other variables
and all types declared in the environments. Moreover, the scope of type c!rep is
limited to the one of the expression a.
Formally, in environments A and Ω, the type of species e must have the form
sig (〈rep=τ ′;Φd〉) 〈rep=τ ′;Φd〉 end. In other words, the signature of this type
must be the same than the list of types of defined fields. Hence, we guarantee
that the species e is complete. Then, the expression a is typed in the environ-
ment (Ω; c) and the environment A extended with c:〈rep=c!rep;Φd〉. The type
for the name c is descended from the signature of the species type. However, the
definition of carrier type τ ′ has been replaced by c !rep in order to abstract it.
Lastly, the rule Abstract returns the type τ of the expression a. Moreover,
the type τ must not possess any occurrence of type c!rep. To guarantee this
constraint, the environment Ω in the judgement of the conclusion, does not con-
tain the collection name c. In other words, we constrain the judgement of the
collection to be well formed only in relation to Ω.

For the collection names and the self variable, the rules are defined as
follows:

Collection name

A ; Ω - c : A(c)

Self

A ; Ω - self : A(self)

To type species expressions, the rules are the following:

Species name
γ ≤ A(S)

A ; Ω - S : γ

Species Body
A∗ + self : ξ ; Ω - w : Φ

A ; Ω - struct w end : sig (ξ) Φ end

Species Fun
A + c : 〈rep=c!rep; mk:ωk〉 ; (Ω; c) - e : γ where |ik|Ω = ωk

A ; Ω - λ(c : mk:ik). e : 〈rep=α, mk:ωk; ρ〉→γ[c!rep ← α]

Species App
A ; Ω - e : ξ→γ A ; Ω - col : ξ

A ; Ω - e col : γ

The rule Species name and Species App are relatively classic.
The rule Species name simply returns an instance γ of type scheme A(S). As
for the rule Species App, for an expression e col, checks that e has the type
ξ → γ and col has the type ξ in the environments A and Ω.

The rule Species Fun allows to type a parameterized species λ(c : mk:ik). e.
Intuitively, like a ML function, the expression e must be well typed in the en-
vironments A and Ω extended with the identifier c. So, the type associated to
c must be coherent in relation to its interface mk:ik. Formally, e is typed in the

environment A extended with c : 〈rep=c!rep; mk:ωk〉. On the one hand, in the
type of c, the field rep is equal to c!rep in order to get an abstract vision of
parameter in e. And on the other hand, the mk correspond to method names
given in the interface associated to the parameter of species. Their types ωk must
correspond to types returned by the application of |-|Ω on the specification ik.
For |ik|Ω, Ω is not extended with the name c. Indeed, the identifier c is bound
in the expression e, but not in the interface of parameter.
For a standard function, the type of the expression λ(c : mk:ik). e would have
to be 〈rep=c!rep, mk:ωk〉→γ with γ, the type of the class e. However, we type
the expression e for all collection c whose the interface is mk:ωk. Thus, we must
replace all occurrences of c!rep in γ, by a type variable α. This type variable will
be instantiated by the carrier type of the collection instantiating the parameter
c.
Lastly, an instance of parameter c must contain the interface mk:ωk completed
with a row variable ρ. The row variable will be instantiated by the types of
supplementary methods of the collection instantiating the parameter c.
In final, for the expression λ(c : mk:ik). e, the rule Species Fun returns the
type 〈rep=α, mk:ωk; ρ〉→γ[c!rep ← α].

The rule Species Body allows to type the structure struct w end of a
species. The list w of fields of the structure is typed in the environment A∗

extended with the variable self. Here the use of the starry environment allows
to not interfere with the use of self reserved to type an other species.
The returned type for the structure is sig (ξ) Φ end, with Φ the type of the list
w. The type of self in the premise corresponds to the signature ξ from returned
type. By proceeding in this way, a fix point is built in order to obtain the self
reference.

To finish, the list of fields of a species is typed with the following rules:

Basic

A ; Ω - ∅ : ∅

Then
A ; Ω - d : Φ1 A ; Ω - w : Φ2

A ; Ω - d; w : Φ1 ⊕ Φ2

Inherit
A ; Ω - self : ξ A∗ ; Ω - e : sig (ξ) Φ end

A ; Ω - inherit e : Φ

Carrier type
A ; Ω - self : 〈rep=τ ; Φd〉 where |t|Ω = τ

A ; Ω - rep = t : (rep=τ)

Method
A ; Ω - self : 〈rep=τ ; m:ω; Φd〉

A ; Ω - a : ω[rep ← τ] where |i|Ω = ω

A ; Ω - (m:i = a) : (m : ω)

The rule Then allows to type a list d; w in relation to the order induced by
the declaration of fields of this list. The head d of this list is typed by the rules

Inherit, Carrier type and Method. The rest w is typed again by the rule
Then. This process is reiterated until to obtain the empty list ∅. The end is
marked with the rule Basic by returning simply the empty list.
The rule Then returns the concatenation of the list Φ1, type of d, with the list
Φ2, type of w. We use for this concatenation the operator ⊕ in order to check
the type preservation in case of method redefinition. Likewise, the carrier type
preservation must be verified.

The rule Inherit allows to type the field inherit e. For this, the species e is
typed in the environment A∗. The use of the starry environment is explained by
the possibility to use a same inherited species in order to define different species.
For example, suppose two species e1 and e2. These two species inherit from the
species e. However the type of self in e1 and in e2 is not the same. Thus to
type e, the correct type for self must be taken. This correct type corresponds
to the species that is typing actually. In order to make the good choice, the rule
Inherit imposes that the signature ξ of the species type must be identical to
the type of the variable self declared in the environment A.
Lastly the rule Inherit returns the list Φ of the type of the species e. The
list Φ corresponds to defined methods (thus different of declarations) within the
species e.

The rule Carrier type checks simply the agreement between the definition
t of rep = t and the carrier type declared in the type of the variable self. The
function |-|Ω is applied to t in order to do it. The returned type must be the
type τ associated to the field rep in the type of self.

The rule Method allows to type the definition a of a method m. Intuitively,
the coherence between the underlying collection represented by self and the
definition a of the method must be verified. Moreover we must check the coher-
ence of a in relation to the specification i associated to the method m. To do it,
the type of self must be 〈rep=τ ; m:ω; Φd〉 in A. More precisely, the method
m:ω must appear in the type of self. Then in the environment A, the type of a
must correspond to ω with the occurrences of rep replaced by the carrier type
τ , declared in the type of the variable self. Lastly the specification i declared
with m, must correspond to the specification ω declared in the type of self. To
do it, the function |-|Ω is applied on i. The returned type must be ω then.

5 Semantics

An operational semantics with a call by value strategy is proposed for FML.
The choice of call by value strategy comes from the one done for Focal.
A set of elementary rules is provided in order to reduce expressions in head term.
In order to reduce deeply, contextual rules are provided also.

Classically, type expressions do not intervene in operational semantics. How-
ever, in order to prove the type soundness, types expressions must be used. More
precisely, for a collection c created from a type species whose the carrier type
is t, all occurrences of c!rep must be replaced by t. It allows to avoid to get
free occurrences of c!rep after reduction of expressions. Thus after reduction,

expressions would always be well typed.
Here, we have decided to present the semantics with operations on type expres-
sions. In order to retrieve a more traditional semantics, it is enough to remove
all substitution operations on c!rep.

5.1 Values

The values of FML as defined as follows:
v ::= κ | λx. a | (v, v)

vcol ::= 〈vw〉

vs ::= struct vw end
| λ(c : I). e

vw ::= ∅ | vd; vw

vd ::= m:i = a | rep=t

Conditions on vw are imposed as follows:
– field names are not overloaded,
– there is one occurrence of rep = t at most.

There are three categories of values corresponding respectively to ML values (v),
values for collections (vcoll) and values for species (vs).

The value vcol is the one for a collection and called collection value for the
sequel. Collection value 〈vw〉 is analogous to the formalization of objects in [7]
and ones used in [8].
The list vw comes from the species used to create the collection. This version of
the collection is no more abstract. Indeed, it contains the field rep = t coming
from the species, that is not used nevertheless in the semantic rules.

For the species, there are two types of values vs called species values for the
sequel. The value struct vw end corresponds to a species whose inheritance has
been entirely resolved. Thus in the list vw, no more field inherit e is present
yet. The value struct vw end does not necessarily correspond to a complete
species. Thus, in vw the field rep = t is not necessarily present. Lastly, the other
species value is the parameterized species λ(c : I). e.

In the list vw, method expressions are not values. Indeed, late binding and
declarations (analogous to virtual methods of OO languages) are provided by
FML. Thus, the evaluation of definitions of methods is not possible.

At last, a list vw can be seen as a partial function. Thus we denote vw(m) for
the definition associated to the method m declared in vw. And we denote vw(rep)
the type expression associated to the field rep declared in vw. By language abuse,
we denote vcol(rep) for vw(rep) so that vcol = 〈vw〉.
Then the domain dom(vw) of the list vw is defined as follows:

dom(∅) = ∅
dom(rep = t; vw) = {rep} ∪ dom(vw)
dom(m = a; vw) = {m} ∪ dom(vw)

5.2 Rules

Among the elementary rules, there are two classic rules using β-reduction oper-
ation for the ML expressions :

1 (λx. a) v →ε a[v/x]
2 let x = v in a →ε a[v/x]

For the method invocation, the following rule is used:

3 〈vw〉!m →ε vw(m)[〈vw〉/self]

The reduction of the invocation of a method m is done on a collection value 〈vw〉.
The returned value corresponds to the expression vw(m) with every occurrence
of self replaced by the collection value 〈vw〉 itself. This rule is analogous to the
one for the invocation of a method on an object as it is described in [7].

The next rule is destined for species definitions:

4 species S = vs in a →ε a[vs/S]

This rule is similar to the rule 2. Every occurrence of S in the expression a is
substituted by the species value vs.

In order to evaluate the application of a parameterized species on a collection
value, use the rule defined as follows:

5 (λ(c : I). e) vcol →ε e[vcol/c][vcol(rep)/c!rep]

This rule is similar to the rule 1. Every occurrence of c in the species e is substi-
tuted by the collection value vcol. Moreover, in order to avoid to get free c!rep
in e after reduction, they are substituted by the carrier type vcol(rep) from the
collection vcol.

The reduction of creation of collection from complete species is done with
the rule defined as follows:

6 collection c = (struct vw end) in a →ε a[〈vw〉/c][vw(rep)/c!rep]

To create a collection, the species must be value such that struct vw end.
More precisely, inheritance and method redefinitions must have been resolved
in order to create the collection. Note that it is not checked if struct vw end
corresponds to a complete species but it is done by the typing.
Then every occurrence c in the expression a is substituted by the collection value
〈vw〉. Moreover, in order to have no more free c!rep in e after reduction, they
are replaced by the carrier type vw(rep) defined in the species struct vw end.

Lastly, there is a set of rules in order to reduce inside a species:

7 m:i=a; vw →ε vw if m ∈ dom(vw)
8 rep=t; vw →ε vw if rep ∈ dom(vw)
9 inherit (struct vw end); w →ε vw @ w

The two first rules respectively allow to treat the redefinition of methods and
the overloading of rep. If the method m is already present in the rest vw of the
list, then vw is returned. For the field rep = t, the principle is the same.
The last rule is used to resolve inheritance. For this, the species must be a struc-
ture value form in order to retrieve its list vw. Thus vw can be concatenated to
the rest w of the list.
Lastly, in the case of redefinition of method or overloading of rep, the combined
use of these three rules allows to choose the rightest definition among the ones
proposed in the list of inherited species.

Lastly, the context rules are defined as follows:

a→εa
′

E[a]→E[a′]
e→εe

′

E[e]→E[e′]
w→εw

′

E[w]→E[w′]

The context is defined as follows:

E ::= [] | let x = E in a | E a | v E | (E, a) | (v, E)
| Ecol!m
| collection c = Ee in a | species S = Ee in a

Ecol ::= 〈F 〉

Ee ::= [] | struct F end
| Ee col | vs Ecol

F ::= [] | Fd; w | vw; F
Fd ::= inherit Ee

E is defined by sub contexts in order to take in consideration the different
syntactic classes.

6 Type soundness

The type soundness is the property establishing that every well typed expression
can be reduced to a value. Moreover, the type soundness assures that every
invoked method possesses a definition.
Here, we present a short version of the proof of the type soundness. A complete
version can be found in [9].

Just before present the proof, some considerations and notations are needed.
The types for ML values are the ones given by the type system. Likewise, the
types for the species values and for the lists vw (used for different values) are
the ones given in the type system. On the other hand, the notion of type for
collection value is defined here:

Definition 3. Under the hypothesis of a typing environment A well formed in
relation to an environment Ω, a collection value 〈vw〉 have for type 〈Φc〉, denoted
A ; Ω - 〈vw〉 : 〈Φc〉, iff the judgement A∗ + self : 〈Φc〉 ; Ω - vw : Φc is valid.

For commodity reasons, the above definition is summarized with this rule:

Executive collection
A∗ + self : 〈Φc〉 ; Ω - vw : Φc

A ; Ω - 〈vw〉 : Φc

Moreover, a typing rule is needed for invocation method on collection value:

Send
A ; Ω - 〈rep=t; vw〉 : 〈rep=τ ; m:ω;Φd〉 where |t|Ω = τ

A ; Ω - 〈rep=t; vw〉!m : ω[rep←τ]

Lastly, some definitions, relations and notations are necessary for the proof.

Definition 4. A type schema σ is more general than a type schema σ′ iff all
instance of σ is also an instance of σ′.

Definition 5.

– a1 ⊂ a2 (resp. e1 ⊂ e2) iff for all A∗, Ω and τ , (A∗ ; Ω - a1 : τ) (resp.
(A∗ ; Ω - e1 : γ)) implies (A∗ ; Ω - a2 : τ) (resp. (A∗ ; Ω - e2 : γ)).

– w1 ⊂ w2 iff for all A, Ω and Φ, (A ; Ω - w1 : Φ) implies (A ; Ω - w2 : Φ).

For the sequel, substitutions on type variables are needed. However the types
brought by such substitutions must be coherent in relation to the collection name
environment. Thus on the one hand, a notion of well formed type in relation to
a collection name environment must be defined. On the other hand, a notion of
well formed substitution in relation to a collection name environment must be
defined:

Definition 6. A type τ̆ is said well formed in relation to a collection name
environment Ω, if for all occurrences c!rep, the collection names c are declared
in Ω.

Definition 7. A substitution θ = [α1 → τ1, . . . ,αn → τn] is said well formed
in relation to a collection name environment Ω, if all τ1 . . . τn are well formed in
relation to Ω.

In order to homogenize the different categories of contexts, the following
notation is introduced:

Ĕ !
= E | Ecol | Ee | F | Fd

Before to prove the type soundness, some classic propositions are given:

Proposition 1 (Stability of typing by reinforcement of hypotheses).
Let A and A′ two environments well formed in relation to a collection name
environment Ω such that :

– dom(A) = dom(A′)
– A′(x̆) ≥ A(x̆) for all x̆ ∈ dom(A).

Then (A ; Ω - ă : τ̆) implies (A′ ; Ω - ă : τ̆).

Proof. The proof is done by induction on (A ; Ω - ă : τ̆).

Lemma 1. For all substitution θ and all environment A, one have:

θ(A∗) = θ(A)∗

Proof. By definition A = A∗ + self : ξ. Thus θ(A) = θ(A∗) + self : θ(ξ).
Therefore θ(A)∗ = θ(A∗).

Proposition 2. If A ; Ω - ă : τ̆ , then for all substitution of type variables θ
well formed in relation to Ω, then θ(A) ; Ω - ă : θ(τ̆).

Proof. The proof is done by induction on A ; Ω - ă : τ̆ from different typing
rules.

Proposition 3 (Typing indifference in relation to useless hypotheses).
Let A and A′ two typing environments, Ω a collection name environment and ă
an expression such that:

– A and A′ are well formed in relation to Ω.
– A(x̆) = A′(x̆) for all free variable x̆ of ă.

Then A ; Ω - ă : τ̆ implies A′ ; Ω - ă : τ̆

Proof. The proof is done by induction on A ; Ω - ă : τ̆ from different typing
rules.

Proposition 4. For all context Ĕ, if ă1 ⊂ ă2 then Ĕ[ă1] ⊂ Ĕ[ă1].

Proof. The proof is simply done by induction on Ĕ.

For the sequel, notations are introduced as follows:

ã
!
= a | e

τ̃ !
= τ | γ

These notations must be used in consistent way. Thus (ã, τ̃) must be understand
as (a, τ), (e, γ) but not as (a, γ) and (e, τ).

Lemma 2 (Substitution des variables de terme). Let Ω a collection name
environment, A a typing environment well formed in relation to Ω, ã1 and ă2

expressions, τ̃1 and τ̆2 well formed in relation to Ω.
If A∗ ; Ω - ã1 : τ̃1, A + x̃ : ∀α1 . . .αn.τ̆1 ; Ω - ă2 : τ̆2, α1, . . . ,αn are not free
type variables in A and bound variables in ă2 are not free in ã1, then A ; Ω -
ă2[ã1/x̃] : τ̆2.

Proof. The proof is done by induction on ă2 and by derivation of A + x̃ :
∀α1 . . .αn.τ̃1 ; Ω - ă2 : τ̃2. It is relatively classic, however some less for con-
structions of FML.
We show some examples in relation to FML. For this, we note Ax̃ for A + x̃ :
∀α1 . . .αn.τ̃1.

Case ă2
!
= col!m :

Let the following derivation:

Send
Ax̃ ; Ω - col : 〈rep=τ ; m:ω;Φd〉 (1)

Ax̃ ; Ω - col!m : ω[rep←τ]

By induction hypothesis applied on the expression col of the premiss (1), we get:

Send
A ; Ω - col[ã1/x̃] : 〈rep=τ ; m:ω;Φd〉

A ; Ω - col[ã1/x̃]!m : ω[rep←τ]

Thus A ; Ω - (col!m)[ã1/x̃] : ω[rep←τ]

Case ă2
!
= collection c = e in a :

Let the following derivation:

Abstract
Ax̃ ; Ω - e : sig (〈rep=τ ′;Φd〉) (rep = τ ′;Φd) end

Ax̃ + c:〈rep=c!rep;Φd〉 ; (Ω; c) - a : τ
Ax̃ ; Ω - collection c = e in a : τ

If αi appear in Φd, then they can be renamed in βi not free in A and distinct of
αi thanks to the substitution θ = [αi ← βi]. And if the αi don’t appear in the
type Φd, then the identity function is taken for the substitution θ.
By the proposition 2 applied on the premises of the above derivation, we get:

Abstract
θ(Ax̃) ; Ω - e : θ(sig (〈rep=τ ′;Φd〉) (rep = τ ′;Φd) end)

θ(Ax̃ + c:〈rep=c!rep;Φd〉) ; (Ω; c) - a : θ(τ)
θ(Ax̃) ; Ω - collection c = e in a : θ(τ)

As αi and βi are not free A, then:

Abstract
Ax̃ ; Ω - e : sig (〈rep=θ(τ ′); θ(Φd)〉) (rep = θ(τ ′); θ(Φd)) end (1)

Ax̃ + c:〈rep=c!rep; θ(Φd)〉 ; (Ω; c) - a : θ(τ) (2)

Ax̃ ; Ω - collection c = e in a : θ(τ)

By induction hypothesis applied on the expression e of the premiss (1):

A ; Ω - e[ã1/x̃] : sig (〈rep=θ(τ ′); θ(Φd)〉) (rep = θ(τ ′); θ(Φd)) end

However, the induction hypothesis can’t be applied on the expression a of the pre-
miss (2). The hypothesis A∗ ; Ω - ã : τ̃1 is extended so that A∗ ; (Ω; c) - ã : τ̃1.
It is valid because the name c is fresh in relation to the environment Ω. Then
A∗ ; (Ω; c) - ã : τ̃1 is extended so that A∗ + c:〈rep=c!rep; θ(Φd)〉 ; (Ω; c) -
ã : τ̃1. This extension is possible thanks to the proposition 3. Indeed, the envi-
ronment A∗ + c:〈rep=c!rep; θ(Φd)〉 is well formed in relation to (Ω; c).
Thus the induction hypothesis can be applied on the expression a of the premiss
(2):

A + c:〈rep=c!rep; θ(Φd)〉 ; (Ω; c) - a[ã1/x̃] : θ(τ)

Thus a derivation is obtained as follows:

Abstract
A ; Ω - e[ã1/x̃] : sig (〈rep=θ(τ ′); θ(Φd)〉) (rep = θ(τ ′); θ(Φd)) end

A + c:〈rep=c!rep; θ(Φd)〉 ; (Ω; c) - a[ã1/x̃] : θ(τ)
A ; Ω - collection c = e[ã1/x̃] in a[ã1/x̃] : θ(τ)

By the proposition 2 applied on the conclusion of the above derivation, with the
inverse renaming of θ, we get:

A ; Ω - collection c = e[ã1/x̃] in a[ã1/x̃] : τ

That is:
A ; Ω - (collection c = e in a)[ã1/x̃] : τ

Case ă2
!
= struct w end :

Let the following derivation:

Species Body
A∗

x̃ + self : ξ ; Ω - w : Φ (1)

Ax̃ ; Ω - struct w end : sig (ξ) Φ end

Remark:
(A∗ + self : ξ)∗ = A∗

Thus the hypothesis A∗ ; Ω - ã1 : τ̃1 is equivalent to (A∗ + self : ξ)∗ - ã1 : τ̃1.
Thus, the induction hypothesis on the expression w of the premiss (1). Then:

Species Body
A∗ + self : ξ ; Ω - w[ã1/x̃] : Φ

A ; Ω - struct w[ã1/x̃] end : sig (ξ) Φ end

That is:
A ; Ω - (struct w end)[ã1/x̃] : sig (ξ) Φ end

Case ă2
!
=λ(c : mk:ik). e :

Let the following derivation:

Species Fun
Ax̃ + c : 〈rep=c!rep; mk:ωk〉 ; (Ω; c) - e : γ where |ik|Ω = ωk (1)

Ax̃ ; Ω - λ(c : mk:ik). e : 〈rep=τ ′, mk:ωk; Φe〉→γ[c!rep ← τ ′]

The induction hypothesis can’t be applied directly on the expression e of the
premiss (1). At begin, the hypothesis A∗ ; Ω - ă1 : τ̆1 is extended so that
A∗ ; (Ω; c) - ă1 : τ̆1. It is valid because the name c is fresh in relation to
the environment Ω. Then, A∗ ; (Ω; c) - ă1 : τ̆1 is extended so that A∗ + c :
〈rep=c!rep; mk:ωk〉 ; (Ω; c) - ă1 : τ̆1. This extension is possible thanks to
the proposition 3. Indeed the environment A∗ + c : 〈rep=c!rep; mk:ωk〉 is well
formed in relation to (Ω; c).
Lastly, the types ωk don’t possess free type variable. Indeed, on the one hand,
there is |ik|Ω = ωk. On the other hand, the specifications ik don’t possess type
variable. Thus the variables α1 . . .αn are not free in A∗+c : 〈rep=c!rep; mk:ωk〉.
Thus the induction hypothesis can be applied on the expression a of the premiss
(1). Then:

Species Fun
A + c : 〈rep=c!rep; mk:ωk〉 ; (Ω; c) - e[ã1/x̃] : γ where |ik|Ω = ωk

A ; Ω - λ(c : mk:ik). e[ã1/x̃] : 〈rep=τ ′, mk:ωk; Φe〉→γ[c!rep ← τ ′]

That is:

A ; Ω - (λ(c : mk:ik). e)[ã1/x̃] : 〈rep=τ ′, mk:ωk; Φe〉→γ[c!rep ← τ ′]

Lemma 3. Let Ω a collection name environment, c a collection name, τ a well
formed type in relation Ω, ω a well formed type in relation to (Ω; c).
If |i|Ω = τ et |i|(Ω; c) = ω, then |i[t/c!rep]|Ω = ω[τ/c!rep].

Proof. The proof is done by induction on |i|(Ω; c) = ω. There is an only case
that can be delicate:

Case i !
= c′!rep :

There are two cases:

– case c′ is different to c:
There is |c′!rep|(Ω; c) = c′!rep with c′ ∈ (Ω; c). As c′ is different to c, then
c′ ∈ Ω. Thus |c′!rep|Ω = c′!rep.
On the other hand, there is c′!rep[t/c!rep] = c′!rep and c′!rep[τ/c!rep] =
c′!rep. Thus |c′!rep[t/c!rep]|Ω = c′!rep[τ/c!rep].

– case c′ is equal to c :
In this case, there are c′!rep[t/c!rep] = t and c′!rep[τ/c!rep] = τ .
Then by hypothesis, there is |t|Ω = τ . Thus |c′!rep[t/c!rep]|Ω = c′!rep[τ/c!rep].

Lemma 4 (substitution des noms de collection). Let Ω a collection name
environment, c a collection name, A a typing environment well formed in relation
to (Ω; c), ă2 an expression, τ̆2 a well formed type in relation to Ω, 〈rep=t; vw〉
a collection value, τ a well formed type in relation to Ω, Φc a list of well formed
types in relation to Ω.
If A∗ ; (Ω; c) - 〈rep=t; vw〉 : 〈rep=τ ;Φc〉, A + c : 〈rep=c!rep;Φc〉 ; (Ω; c) -
ă2 : τ̆2, |t|Ω = τ , bound variables of ă2 are not free in 〈rep=t; vw〉, then:

A[τ/c!rep] ; Ω - ă2[〈rep=t; vw〉/c][t/c!rep] : τ̆2[τ/c!rep]

Proof. The proof resembles to the one of lemma 2. A priori, we would be able
to combine these two lemmas together. However, we have preferred to separate
them in order to avoid to overload notations too much.
The lemma is proved by induction on ă2 and by derivation of A+ c : 〈rep=c!rep;Φc〉 ; (Ω; c) -
ă2 : τ̆2. The lemma 4 is used as needed.
For the proof, note Ac for A + c : 〈rep=c!rep;Φc〉 and [A] for A[τ/c!rep].
Here, show some cases for examples.

Case ă2
!
= c′ :

Let a derivation for Ac ; (Ω; c) - ă2 : τ̆2:

Collection name

Ac ; (Ω; c) - c′ : Ac(c′)

There are two cases:

– case c is equal to c′:
Then c′[〈rep=t; vw〉/c][t/c!rep] = 〈rep=t; vw〉. Thus by hypothesis:

A ; (Ω; c) - c′[〈rep=t; vw〉/c][t/c!rep] : 〈rep=τ ;Φc〉

As 〈rep=τ ;Φc〉 is well formed in relation to Ω and doesn’t contain occurrence
of c!rep, then:

〈rep=τ ;Φc〉 = 〈rep=τ ;Φc〉[τ/c!rep]

Thus:

A ; (Ω; c) - c′[〈rep=t; vw〉/c][t/c!rep] : 〈rep=τ ;Φc〉[τ/c!rep]

By application of [τ/c!rep] on A, then:

[A] ; Ω - c′[〈rep=t; vw〉/c][t/c!rep] : 〈rep=τ ;Φc〉[τ/c!rep]

– case c is different to c′ :
Then:

c′[〈rep=t; vw〉/c][t/c!rep] = c′

Thus by hypothesis:

Ac ; (Ω; c) - c′[〈rep=t; vw〉/c][t/c!rep] : Ac(c′)

More precisely:

Ac ; (Ω; c) - c′[〈rep=t; vw〉/c][t/c!rep] : A(c′)

By application of [τ/c!rep] on Ac, then:

A[τ/c!rep] + c:〈rep=τ ;Φd〉 ; (Ω; c) - c′[〈rep=t; vw〉/c][t/c!rep] :
(A[τ/c!rep])(c′)

By hypothesis, the environment A[τ/c!rep] is well formed in relation to
(Ω; c). Thus by the proposition 3:

A[τ/c!rep] ; (Ω; c) - c′[〈rep=t; vw〉/c][t/c!rep] :
(A[τ/c!rep])(c′)

By application [τ/c!rep] on the environment A, the environment A[τ/c!rep]
and the type (A[τ/c!rep])(c′) are well formed in relation to Ω. Indeed, there
are no any occurrences of c!rep. Then:

[A] ; Ω - c′[〈rep=t; vw〉/c][t/c!rep] : (A[τ/c!rep])(c′)

Thus:
[A] ; Ω - c′[〈rep=t; vw〉/c][t/c!rep] : A(c′)[τ/c!rep]

Case ă2
!
= col!m :

Let a derivation for Ac ; (Ω; c) - ă2 : τ̆2:

Send
Ac ; (Ω; c) - col : 〈rep=τ ′; m:ω′;Φ′

d〉
Ac ; (Ω; c) - col!m : ω′[rep←τ ′]

By induction hypothesis applied on col, then:

Send
[A] ; Ω - col[〈rep=t; vw〉/c][t/c!rep] : 〈rep=τ ′[τ/c!rep]; m:ω′[τ/c!rep];Φ′

d[τ/c!rep]〉
[A] ; Ω - col[〈rep=t; vw〉/c][t/c!rep]!m : ω′[τ/c!rep][rep←τ ′[τ/c!rep]]

That is:

[A] ; Ω - (col!m)[〈rep=t; vw〉/c][t/c!rep] : (ω′[rep←τ ′])[τ/c!rep]

Case ă2
!
= collection c′ = e in a :

Let a derivation for Ac ; (Ω; c) - ă2 : τ̆2:

Abstract
Ac ; (Ω; c) - e : sig (〈rep=τ ′;Φ′

d〉) (rep = τ ′;Φd) end (1)

Ac + c′:〈rep=c′!rep;Φ′
d〉 ; (Ω; c; c′) - a : τ ′′ (2)

Ac ; (Ω; c) - collection c′ = e in a : τ ′′

Remark: By definition on Ω, the collection name c′ is different to c.
For the sequel, note Φ′′

d for Φ′
d[τ/c!rep] and τ ′′′ for τ ′[τ/c!rep].

By induction hypothesis applied on e of the premiss (1), we get:

[A] ; Ω - e[〈rep=t; vw〉/c][t/c!rep] : sig (〈rep=τ ′′′;Φ′′
d〉) (rep = τ ′′′;Φ′′

d) end

In order to apply the induction hypothesis on the expression a of the premiss
(2), the hypothesis A∗ ; (Ω; c) - 〈rep=t; vw〉 : 〈rep=τ ;Φc〉 is extended so that
A∗ ; (Ω; c; c′) - 〈rep=t; vw〉 : 〈rep=τ ;Φc〉 (Ω has been extended with the name
c′). This extension is valid because A is well formed in relation to (Ω; c). Thus
A doesn’t possess occurrences of c′!rep. Thus A is well formed in relation to
(Ω; c; c′) also. Then, A∗ ; (Ω; c; c′) - 〈rep=t; vw〉 : 〈rep=τ ;Φc〉 is extended
so that A∗ + c′:〈rep=c′!rep;Φ′

d〉 ; (Ω; c; c′) - 〈rep=t; vw〉 : 〈rep=τ ;Φc〉. These
extension is valid by the proposition 3. Indeed A∗ + c′:〈rep=c′!rep;Φ′

d〉 is well
formed in relation to (Ω; c; c′). Thus by induction hypothesis applied on a,
then:

[A] + c′:〈rep=c′!rep;Φ′′
d〉 ; (Ω; c′) - a[〈rep=t; vw〉/c][t/c!rep] : τ ′′[τ/c!rep]

Thus, there is the derivation as follows:

Abstract
[A] ; Ω - e[〈rep=t; vw〉/c][t/c!rep] : sig (〈rep=τ ′′′;Φ′′

d〉) (rep = τ ′′′;Φ′′
d) end

[A] + c′:〈rep=c′!rep;Φ′′
d〉 ; (Ω; c′) - a[〈rep=t; vw〉/c][t/c!rep] : τ ′′[τ/c!rep]

[A] ; Ω - collection c′ = e[〈rep=t; vw〉/c][t/c!rep] in a[〈rep=t; vw〉/c][t/c!rep] : τ ′′[τ/c!rep]

Then:

[A] ; Ω - (collection c′ = e in a)[〈rep=t; vw〉/c][t/c!rep] : τ ′′[τ/c!rep]

Case ă2
!
=λ(c′ : mk:ik). e :

Let a derivation for Ac ; (Ω; c) - ă2 : τ̆2:

Species Fun
Ac + c′ : 〈rep=c′!rep; mk:ωk〉 ; (Ω; c; c′) - e : γ (1) where |ik|(Ω; c) = ωk

Ac ; (Ω; c) - λ(c′ : mk:ik). e : 〈rep=τ ′, mk:ωk; Φe〉→γ[c′!rep ← τ ′]

Remark: by definition on Ω, the collection name c is different to c′.

In order to apply the induction hypothesis on the expression e of the premiss
(1), the hypothesis A∗ ; (Ω; c) - 〈rep=t; vw〉 : 〈rep=τ ;Φc〉 must be extended
so that A∗ ; (Ω; c; c′) - 〈rep=t; vw〉 : 〈rep=τ ;Φc〉 (Ω has been extended with
c′). This extension is valid because A is well formed in relation to (Ω; c). Thus
A doesn’t possess occurrence of c!rep. Thus A is well formed in relation to
(Ω; c; c′) also. Then A∗ ; (Ω; c; c′) - 〈rep=t; vw〉 : 〈rep=τ ;Φc〉 is extended so

that A∗ + c′ : 〈rep=c′!rep; mk:ωk〉 ; (Ω; c) - 〈rep=t; vw〉 : 〈rep=τ ;Φc〉. This
extension is valid by the proposition 3. Indeed A∗ + c′ : 〈rep=c′!rep; mk:ωk〉 is
well formed in relation to (Ω; c; c′). Thus by induction hypothesis applied on
e, then:

[A]+ c′ : 〈rep=c′!rep; mk:ωk[τ/c!rep]〉 ; (Ω; c′) - e[〈rep=t; vw〉/c][t/c!rep] : γ[τ/c!rep]

By hypothesis there is |t|Ω = τ . Thus by the lemma 3 applied on |ik|(Ω; c) = ωk,
there is:

|ik[t/c!rep]|Ω = ωk[τ/c!rep]

Then the derivation is obtained as follows:
Species Fun

[A] + c′ : 〈rep=c′!rep; mk:ωk[τ/c!rep]〉 ; (Ω; c′) - e[〈rep=t; vw〉/c][t/c!rep] : γ[τ/c!rep]
where |ik[t/c!rep]|Ω = ωk[τ/c!rep]

[A] ; Ω - λ(c′ : mk:ik[t/c!rep]). e[〈rep=t; vw〉/c][t/c!rep] :
〈rep=τ ′[τ/c!rep], mk:ωk[τ/c!rep]; Φe[τ/c!rep]〉→(γ[τ/c!rep])[c′!rep ← τ ′[τ/c!rep]]

By hypothesis τ is well formed in relation to Ω. Thus it doesn’t contain occur-
rence of c′!rep. Then:

(γ[τ/c!rep])[c′!rep ← τ ′[τ/c!rep]] = (γ[c′!rep ← τ ′])[τ/c!rep]

Thus:

〈rep=τ ′[τ/c!rep], mk:ωk[τ/c!rep]; Φe[τ/c!rep]〉→(γ[τ/c!rep])[c′!rep ← τ ′[τ/c!rep]] =
(〈rep=τ ′, mk:ωk; Φe〉)[τ/c!rep]→(γ[c′!rep ← τ ′])[τ/c!rep] =
(〈rep=τ ′, mk:ωk; Φe〉→γ[c′!rep ← τ ′])[τ/c!rep]

By the conclusion of the derivation that is previously obtained, there is:

[A] ; Ω - (λ(c′ : mk:ik). e)[〈rep=t; vw〉/c][t/c!rep] :
(〈rep=τ ′, mk:ωk; Φe〉→γ[c′!rep ← τ ′])[τ/c!rep]

Case ă2
!
= rep=t′ :

Let a derivation for Ac ; (Ω; c) - ă2 : τ̆2:

Carrier type
Ac ; (Ω; c) - self : 〈rep=τ ′; Φ′

d〉 (1) where |t′|(Ω;) = τ ′

Ac ; (Ω; c) - rep = t′ : (rep=τ ′)

By induction hypothesis applied on the expression self of the premiss (1), there
is:

[A] ; Ω - self[〈rep=t; vw〉/c][t/c!rep] : 〈rep=τ ′[τ/c!rep]; Φ′
d[τ/c!rep]〉

There is self[〈rep=t; vw〉/c][t/c!rep] = self, thus more precisely there is:

[A] ; Ω - self : 〈rep=τ ′[τ/c!rep]; Φ′
d[τ/c!rep]〉

By hypothesis there is |t|Ω = τ . Thus by the lemma 3 applied on |t′|(Ω;c) = τ ′,
there is |t′[t/c!rep]|Ω = τ ′[τ/c!rep]. Then:

Carrier type
[A] ; Ω - self : 〈rep=τ ′[τ/c!rep]; Φ′

d[τ/c!rep]〉
where |t′[t/c!rep]|Ω = τ ′[τ/c!rep]

[A] ; Ω - rep = t′[t/c!rep] : (rep=τ ′[τ/c!rep])

Thus:

[A] ; Ω - (rep = t′)[〈rep=t; vw〉/c][t/c!rep] : (rep=τ ′)[τ/c!rep]

Case ă2
!
= m:i = a :

Let a derivation for Ac ; (Ω; c) - ă2 : τ̆2:

Method
Ac ; (Ω; c) - self : 〈rep=τ ′; m:ω′; Φ′

d〉 (1)

Ac ; (Ω; c) - a : ω′[rep ← τ ′] (2) where |i|(Ω; c) = ω′

Ac ; (Ω; c) - m:i = a : (m : ω′)

By hypothesis induction applied on the expressions self and a, respectively of
premises (1) and (2), then:

[A] ; Ω - self : 〈rep=τ ′[τ/c!rep]; m:ω′[τ/c!rep]; Φ′
d[τ/c!rep]〉

and
[A] ; Ω - a[〈rep=t; vw〉/c][t/c!rep] : (ω′[rep ← τ ′])[τ/c!rep]

that is:

[A] ; Ω - a[〈rep=t; vw〉/c][t/c!rep] : (ω′[τ/c!rep])[rep ← τ ′[τ/c!rep]]

By hypothesis there is |t|Ω = τ . By the lemma 3 applied on |i|(Ω; c) = ω′, then
|i[t/c!rep]|Ω = ω′[τ/c!rep].
Thus the obtained derivation as follows;

Method
[A] ; Ω - self : 〈rep=τ ′[τ/c!rep]; m:ω′[τ/c!rep]; Φ′

d[τ/c!rep]〉
[A] ; Ω - a[〈rep=t; vw〉/c][t/c!rep] : (ω′[τ/c!rep])[rep ← τ ′[τ/c!rep]]

where |i[t/c!rep]|Ω = ω′[τ/c!rep]
Ac ; (Ω; c) - m:i[t/c!rep] = a[〈rep=t; vw〉/c][t/c!rep] : (m : ω′[τ/c!rep])

Thus:

Ac ; (Ω; c) - (m:i = a)[〈rep=t; vw〉/c][t/c!rep] : (m : ω′)[τ/c!rep]

Lemma 5. Let Ω a collection name environment, A a typing environment well
formed in relation to Ω, w1 and w2 two lists of fields, Φ1 and Φ2 two compatible
lists and well formed in relation to Ω.
If A ; Ω - w1 : Φ1 et A ; Ω - w2 : Φ2 then A ; Ω - w1 @ w2 : Φ1 ⊕ Φ2.

Proof. The proof is done by induction on w1.

For the lemma described after, it is given:

ã !
= a | col | e

τ̃ !
= τ | 〈Φ〉 | γ

These notations must be used in a consistence way. Thus (ã, τ̃) must be under-
stood like (a, τ), (col, 〈Φ〉) , (e, γ) but not like (a, γ) or (e, τ) for example.

Lemma 6. Let Ω a collection name environment, A a starry environment (that
is A is A′∗) well formed in relation to Ω, a list of fields vw, a collection value
〈vw〉, a type 〈Φc〉 well formed in relation to Ω.
If A + self : 〈Φc〉 ; Ω - vw : Φc, A + self : 〈Φc〉 ; Ω - ã : τ̃ , bound variables of
ã are not free in 〈vw〉, then A ; Ω - ã[〈vw〉/self] : τ̃ .

Proof. The proof is by induction on ã and by derivation of A+self : 〈Φc〉 ; Ω -
ã : τ̃ .
Some cases are shown for examples. We note As for A + self : 〈Φc〉.

Case ã !
= collection c = e in a :

Let a possible derivation for A + self : 〈Φc〉 ; Ω - ã : τ̃ :

Abstract
As ; Ω - e : sig (〈rep=τ ′;Φd〉) (rep = τ ′;Φd) end (1)

As + c : 〈rep=c!rep;Φd〉 ; (Ω; c) - a : τ (2)

As ; Ω - collection c = e in a : τ

By induction hypothesis applied on the expression e of the premiss (1), there is:

A ; Ω - e[〈vw〉/self] : sig (〈rep=τ ′;Φd〉) (rep = τ ′;Φd) end

In order to apply the induction hypothesis on the expression a of the premiss
(2), the hypothesis A + self : 〈Φc〉 ; Ω - vw : Φc must be extended so that
A+ self : 〈Φc〉 ; (Ω; c) - vw : Φc (Ω is extended with c). This extension is valid
because c is fresh in relation toΩ. Then, A+ self : 〈Φc〉 ; (Ω; c) - vw : Φc so that
A+ self : 〈Φc〉+ c : 〈rep=c!rep;Φd〉 ; (Ω; c) - vw : Φc. This extension is valid by
the proposition 1. Indeed, the environment A+ self : 〈Φc〉+ c : 〈rep=c!rep;Φd〉
is well formed in relation to Ω.
Thus by induction hypothesis applied on the expression a:

A + c : 〈rep=c!rep;Φd〉 ; (Ω; c) - a[〈vw〉/self] : τ

Then the following derivation is obtained:

Abstract
A ; Ω - e[〈vw〉/self] : sig (〈rep=τ ′;Φd〉) (rep = τ ′;Φd) end

A + c : 〈rep=c!rep;Φd〉 ; (Ω; c) - a[〈vw〉/self] : τ
A ; Ω - collection c = e[〈vw〉/self] in a[〈vw〉/self] : τ

Thus:
A ; Ω - (collection c = e in a)[〈vw〉/self] : τ

Case ã !
= struct w end :

In a structure, self is bound variable. Thus:

(struct w end)[〈vw〉/self] = struct w end

Then by hypothesis:

As ; Ω - (struct w end)[〈vw〉/self] : τ̃

Then by the proposition 3 applied on the above judgement:

A ; Ω - (struct w end)[〈vw〉/self] : τ̃

Case ã !
=λ(c : mk:ik). e :

Let a possible derivation for A + self : 〈Φc〉 ; Ω - ã : τ̃ :

Species Fun
As + c : 〈rep=c!rep; mk:ωk〉 ; (Ω; c) - e : γ (1) o |ik|Ω = ωk

As ; Ω - λ(c : mk:ik). e : 〈rep=τ ′, mk:ωk; Φe〉→γ[c!rep ← τ ′]

In order to apply the induction hypothesis on the expression e on the premiss
(1), the hypothesis A+self : 〈Φc〉 ; Ω - vw : Φc is extended so that A+ self :
〈Φc〉 ; (Ω; c) - vw : Φc (Ω is extended c). This extension is valid because c is
fresh in relation to Ω. Then, A + self : 〈Φc〉 ; (Ω; c) - vw : Φc is extended so
that A+ self : 〈Φc〉+ c : 〈rep=c!rep; mk:ωk〉 ; (Ω; c) - vw : Φc. This extension
is valid by the proposition 1. Indeed the environment A + self : 〈Φc〉 + c :
〈rep=c!rep; mk:ωk〉 is well formed in relation to Ω.
Then by induction hypothesis applied on the expression a:

Species Fun
A + c : 〈rep=c!rep; mk:ωk〉 ; (Ω; c) - e[〈vw〉/self] : γ (1) o |ik|Ω = ωk

A ; Ω - λ(c : mk:ik). e[〈vw〉/self] : 〈rep=τ ′, mk:ωk; Φe〉→γ[c!rep ← τ ′]

Thus:

A ; Ω - (λ(c : mk:ik). e)[〈vw〉/self] : 〈rep=τ ′, mk:ωk; Φe〉→γ[c!rep ← τ ′]

Lemma 7 (Prservation du typage). If ă1→εă2 then ă1 ⊂ ă2.

Proof. The proof is done case by case thanks to previous lemmas.
We suppose A ; Ω - ă1 : τ̆1 with A starry in relation to the context of use of
the relation ⊂.

Case (λx. a) v→εa[v/x] :

Let a derivation for (λx. a) v:

A + x : τ ′ ; Ω - a : τ ′ (1)

A ; Ω - λx. a : τ→τ ′ A ; Ω - v : τ (2)

A ; Ω - (λx. a) v : τ ′

Hence by the lemma 2 applied on the premises (1) and (2):

A ; Ω - a[v/x] : τ ′

Case let x = v in a→εa[v/x] :

Let a derivation for let x = v in a:

A ; Ω - v : τ ′ (1) A + x : Gen(τ ′, A) ; Ω - a : τ (2)

A ; Ω - let x = v in a : τ

Hence by the lemma 2 applied on the premises (1) and (2):

A ; Ω - a[v/x] : τ

Case 〈vw〉!m→εvw(m)[〈vw〉/self] :

For this case, let vw = (m : i = vw(m)) @ v′w with m ,∈ dom(v′w).
Then note As for A∗ + self : 〈rep = τ ; m : ι; Φd〉

Let derivation for 〈vw〉:

As ; Ω - self : 〈rep = τ ; m : ω; Φd〉
As ; Ω - vw(m) : ω[rep ← τ] (1) o |i|Ω = ω

As ; Ω - (m:i = vw(m)) : (m : ω) As ; Ω - v′w : (rep = τ ; Φd)
A∗ + self : 〈rep = τ ; m : ω; Φd〉 ; Ω - (m : i = vw(m)) @ v′w : (rep = τ ; m : ω; Φd) (2)

A ; Ω - 〈(m:i = vw(m)) @ v′w〉 : 〈rep = τ ; m : ω; Φd〉
A ; Ω - 〈(m:i = vw(m)) @ v′w〉!m : ω[rep ← τ]

Thus by the lemma 6 applied on the premises (1) and (2):

A ; Ω - vw(m)[〈(m:i = vw(m)) @ v′w〉/self] : ω[rep ← τ]

Hence:
A ; Ω - vw(m)[〈vw〉/self] : ω[rep ← τ]

Case species S = vs in a→εa[vs/S] :

Let a derivation for species S = vs in a:

A ; Ω - vs : γ (1) A + z : Gen(γ, A) ; Ω - a : τ (2)

A ; Ω - species S = vs in a : γ

Thus by the lemma 2 applied on the premises (1) and (2):

A ; Ω - a[vs/z] : γ

Case (λ(c : I). e) vcol→εe[vcol/c][vcol(rep)/c!rep] :

Here, put mk : ik for I.

Let a derivation for (λ(c : I). e) vcol:

A + c : 〈rep=c!rep; mk : ωk〉 ; (Ω; c) - e : γ (1) where |ik|Ω = ωk

A ; Ω - λ(c : mk:ik). e : (rep=τ ; mk : ωk)→γ[c!rep ← τ]
A ; Ω - vcol : 〈rep=τ ; mk : ωk〉 (2)

A ; Ω - (λ(c : mk:ik). e) vcol : γ[c!rep ← τ]

From the premiss (2), the environment A and the type 〈rep=τ ; mk : ωk〉 are well
typed in relation to Ω. As c is fresh in relation to Ω, then A and 〈rep=τ ; mk : ωk〉
are well formed in relation to (Ω; c). Then A ; (Ω; c) - vcol : 〈rep=τ ; mk : ωk〉
is valid. Hence by the lemma 4 applied on this judgement and the premiss (1):

A ; Ω - e[vcol/c][vcol(rep)/c!rep] : γ[c!rep ← τ]

Case collection c = (struct vw end) in a→εa[〈vw〉/c][vw(rep)/c!rep] :

Let a derivation for collection c = (struct vw end) in a:

A∗ + self : 〈rep = τ ;Φd〉 ; Ω - vw : (rep = τ ;Φd) (1)

A ; Ω - struct vw end :
sig (〈rep = τ ;Φd〉) (rep = τ ;Φd) end

A + c : 〈rep = c!rep;Φd〉 ; (Ω; c) - a : τ ′ (2)

A ; Ω - collection c = struct vw end in a : τ ′

From the premiss (1), a derivation can be obtained as follows:

A∗ + self : 〈rep = τ ;Φd〉 ; Ω - vw : (rep = τ ;Φd)
A ; Ω - 〈vw〉 : 〈rep = τ ;Φd〉

From the conclusion of the above derivation, the environment A and the type
〈rep = τ ;Φd〉 are well formed in relation to Ω. Knowing c is fresh in relation to
Ω, thus A and 〈rep = τ ;Φd〉 are well formed in relation to (Ω; c) also. Hence
the judgement A ; Ω - 〈vw〉 : 〈rep = τ ;Φd〉 is valid. Then by application of
lemma 4 on this judgement and the premiss (2):

A ; Ω - a[〈vw〉/c][vw(rep)/c!rep] : τ ′[τ/c!rep]

Lastly, by the judgement A ; Ω - collection c = struct vw end in a : τ ′,
conclusion of the initial derivation, the type τ ′ is well formed in relation to Ω.
However c is fresh in relation to Ω. Thus τ ′ doesn’t contain occurrence of type
c!rep. Then τ ′[τ/c!rep] = τ ′. Hence:

A ; Ω - a[〈vw〉/c][vw(rep)/c!rep] : τ ′

Case m:i=a; vw→εvw si m ∈ dom(vw) :

Let a derivation for m:i=a; vw:

A ; Ω - m:i = a : (m : ω) A ; Ω - vw : Φ (1)

A ; Ω - (m:i = a; vw) : (m : ω) ⊕ Φ

m ∈ dom(Φ) since m ∈ dom(vw). Then, (m : ω) and Φ are compatible. Hence by
the premiss (1):

A ; Ω - vw : (m : ω) ⊕ Φ

Case rep=t; vw→εvw si rep ∈ dom(vw) :

Let a derivation for rep=t:

A ; Ω - rep=t : (rep : τ) A ; Ω - vw : Φ (1)

A ; Ω - rep=t; vw : (rep : τ) ⊕ Φ

Since rep ∈ dom(vw), then rep ∈ dom(Φ). Indeed rep ∈ dom(vw). Thus (rep :
τ) and Φ are compatible. Thus Φ = (rep : τ) ⊕ Φ. Hence by the premiss (1):

A ; Ω - vw : (rep : τ) ⊕ Φ

Case inherit (struct vw end); w→εvw @ w :

Let a derivation for inherit (struct vw end); w:

A ; Ω - self : ξ (2)

A∗ + self : ξ ; Ω - vw : Φ1 (1)

A∗ ; Ω - struct vw end : sig (ξ) Φ1 end

A ; Ω - inherit (struct vw end) : Φ1 A ; Ω - w : Φ2 (3)

A ; Ω - inherit (struct vw end); w : Φ1 ⊕ Φ2

By the premiss (2), A is equivalent to A∗ + self : ξ. Thus the premiss can be
rewritten as A ; Ω - vw : Φ1. As Φ1 and Φ2 are compatible (that is Φ1 ⊕ Φ2),
the lemma 5 can be applied on the premises (1) and (3). Hence:

A ; Ω - vw @ w : Φ1 ⊕ Φ2

Lemma 8.

1. Let v a value such that ∅ ; Ω - v : τ .
– If τ is a functional type, then v is a function.
– If τ is product type, then v is a pair.

2. Let vs a species value such that ∅ ; Ω - vs : γ
– If γ is a type of species structure, then vs is species structure.
– If γ is functional type, then vs is a parameterized species.

Proof. 1. If τ is functional type, then it have the shape τ1 → τ2. In the empty
environment, only the rules Cst and Fun-ML can be applied on the value
v. However only the rule Fun-ML returns a functional type. Hence v is a
function.

2. In the empty environment, only the rules Species Body and Species Fun
can be applied on the value vs.
In the case where γ is a type of species structure of shape sig (ξ) Φ end,
only the rule Species Body returns a such type. In this case, vs is a species
structure.
Otherwise in the case where γ is a functional type of shape ξ → γ′, only
the rule Species Fun returns a such type. In this case, vs a parameterized
species.

Theorem 1 (Prservation du typage). Reduction preserves typing (i.e. for
any A, if A∗ ; Ω - ă : τ̆ and ă→ă′, then A∗ ; Ω - ă′ : τ̆).

Proof. The proof is done thanks to the different properties established previously.

Theorem 2 (Formes normales bien types sont les valeurs). Well-typed
irreducible normal forms are values (i.e. if ∅ ; ∅ - ă : τ̆ and ă cannot be reduced,
then ă is a value).

Proof. The proof is by structural induction simultaneously on the different forms
of ă. Suppose ∅ ; ∅ - a : τ (respectively, ∅ ; ∅ - e : γ and A ; ∅ - w : Φ with A
containing only the variable self needed to get the type of w).

Case ă !
=κ :

By definition κ is a value.

Case ă !
= x :

The term variable x cannot be typed in an empty environment.

Case ă
!
=λx. a :

By definition λx. a is a value.

Case ă !
= a1 a2 :

Let a typing derivation for a1 a2:

∅ ; ∅ - a1 : τ1→τ2 ∅ ; ∅ - a2 : τ1
∅ ; ∅ - a1 a2 : τ2

By induction hypothesis applied on a1, this expression is a value. From the above
derivation, its type is functional. By the lemma 8, a1 is a function. Then a1 a2

can be reduced. It is contradictory.

Case ă !
= (a1, a2) :

By induction hypothesis applied on a1 and a2, these expressions are values. Thus
by definition (a1, a2) is a value.

Case ă !
= let x = a1 in a2 :

By induction hypothesis applied on a1, this expression is a value. Thus the
expression let x = a1 in a2 can be reduced. It is contradictory.

Case ă !
= col!m :

By induction hypothesis applied on col, this expression is a value. Thus the
expression col!m can be reduced. That is contradictory.

Case ă
!
= species S = e in a :

By induction hypothesis applied on e, this expression is a value. Thus the ex-
pression species S = e in a can be reduced. That is contradictory.

Case ă !
= collection c = e in a :

Let a typing derivation for collection c = e in a:

∅ ; ∅ - e : sig (〈rep = τ ; Φd〉) (rep = τ ; Φd) end
c : 〈rep = c!rep; Φd〉; c - a : τ

∅ ; ∅ - collection c = e in a : τ

By induction hypothesis applied on e, this expression is a value. From the above
derivation, its type is the one of species structure. By the lemma 8, e is a structure
struct vw end. Thus collection c = e in a can be reduced. It is contradic-
tory.

Case ă !
= c :

A collection name cannot be typed in an empty environment.

Case ă !
= self :

The variable self cannot be typed in an empty environment.

Case ă !
= S :

The variable S cannot be typed in a empty environment.

Case ă !
= struct w end :

By induction hypothesis applied on w, this expression is a value. Thus by defi-
nition struct w end is a values.

Case ă !
=λ(c : I). e :

By definition λ(c : I). e is a value.

Case ă !
= e col :

Let a typing derivation for e col:

∅ ; ∅ - e : τcol→γ ∅ ; ∅ - col : τcol

∅ ; ∅ - e a : γ

By induction hypothesis applied on e, this expression is a value. From the above
derivation, its type is functional. By the lemma 8, e is a parameterized species.
Thus e col can be reduced. It is contradictory.

Case ă
!
= ∅ :

By definition ∅ is a value.

Case ă !
= d; w :

By induction hypothesis applied on d and w, these expressions are values.
For the case where the expression d is either a method or field rep, not overloaded
by w, then by definition d; w is a value. On the other hand d; w can be reduced
in the contrary case. Then there is contradiction.

Case ă !
= rep=t :

By definition rep=t is a value.

Case ă
!
= m:i = a :

By definition m:i = a is a value.

Case ă
!
= inherit e :

Let a typing derivation for inherit e:

A ; Ω - self : ξ A∗ ; Ω - e : sig (ξ) Φ end

A ; Ω - inherit e : Φ

By induction hypothesis applied on e, this expression is a value. From the above
derivation, its type is the one of specie structure. By the lemma 8, e is a species
structure struct vw end. Then inherit e can be reduced. It is contradictory.

7 Relative works and conclusion

Focal is a powerful language allowing to develop certificated components. It
provides new aspects for object oriented programming such as collections and
species. FML has been designed to extend ML with notions of collections and
species. FML also provides abstraction of entities. This abstraction is given
by the construction collection c = c in a and controlled by the type sys-
tem. Indeed, the type system imposes that the carrier type of c is different to
others types and other formal variables. Moreover, the type system guarantees
that the carrier type of c is limited to the scope of a. Thus, it is no possi-
ble to confuse c!rep with other types beyond the scope of a. The semantics
of collection c = e in a and constraints imposed on it, recall pack and ab-
stype operators related to existential types described by J.C. Mitchell and G.D.
Plotkin in [10]. Indeed, their operators have similar constraints in order to guar-
antee abstraction of data types.
Our extension of ML is successful since FML has the type soundness proved.
Hence, operational aspects of collections and species in a language extended with
these constructions are coherent.

The design of FML may seem near to the one of Objective ML [8]. Indeed,
a similar syntax is retrieved. Hence, collections may seem similar to objects and
species similar to classes. Moreover, type system and operational semantics are
also similar. The type system also uses a starry environment in order to correctly
build a fix point for the self reference and objects. However, objectives of two

models are not the same. Indeed, Objective ML aims to extend ML with objects
and classes by using the formalization given in [7]. Moreover, the objects are
provided as first class objects. FML has not such an aim. Indeed, collections
are not first class objects although objects are used to give them an operational
semantics. Moreover, collections have not states as objects. Instead, we focus on
entities of collections which are first class objects.
Lastly, FML does not provide sub-typing as Objective ML. However, FML
allows species to be applied on collections whose interfaces are greater than ones
expected. This form of sub-typing is sufficient for our purposes and the one of
Focal. Moreover since collections are not first class object, there are no reason
to add sub-typing as in Objective ML.

FML only takes in account the operational aspects of Focal. It is not
designed to provide specification and proof aspects. Indeed, FML uses the ob-
ject calculus [7] in order to easily give a semantics for the self reference and
collections. Objects provides implicit mutual definitions that cannot be easily
controlled and can bring logical inconsistencies. To avoid it, Focal imposes
syntactic restrictions on recursive definitions and ones are not recursive. More-
over, an analysis is done on the graph of method dependencies [11, 12]. Mini-Foc
is an other model taking into accounts these considerations [9]. It provides fea-
tures of species and collection without using the object calculus. However, the
approach provided by Mini-Foc is quite different to the one of FML. It is near
of modules [13–15] and mixins [16, 1–3]. Comparisons of Focal with modules
and mixins can be found [9]. In [17], Focal examples are coded with mixins.

Lastly, species and collection notions have been used successfully to imple-
ment a certified library for computer algebra [18]. Also, they are used to imple-
ments security politics destinate for data bases [19]. These two examples how
helpful can be these new notions in programming. Then, it would be interesting
to bring species and collection notions in another language, as Ada for instance.

Acknowledgements

I would like to thank Thérèse Hardin, Catherine Dubois, Luigi Liquori for helpful
discussions about this work and Charles Morisset for second reading. I am also
grateful to the referees of an old version of this paper for their constructive
remarks.

References

1. Bracha, G.: The Programming Language Jigsaw: Mixins, Modularity and Multiple
Inheritance. PhD thesis, University of Utah (1992)

2. Ancona, D.: Modular Formal Frameworks for Module Systems. PhD thesis, Di-
partimento di Informatica, Universita‘ di Pisa-Genova-Udine (1998)

3. Ancona, D., Zucca, E.: A calculus of module systems. Journal of functional pro-
gramming 12(2) (2002) 91–132

4. Duggan, D., Sourelis, C.: Mixin modules. In: ICFP. (1996) 262–273

5. Sun Microsystems: Java (2006) http://java.sum.com.
6. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective

Caml system release 3.08 Documentation and user’s manual. INRIA. (2004)
http://pauillac.inria.fr/ocaml/htmlman/.

7. Abadi, M., Cardelli, L.: A Theory of objects. Springer (1996)
8. Rémy, D., Vouillon, J.: Objective ML: An effective object-oriented extension to

ML. Theory and Practice of Object Systems 4(1) (1998) p. 27–50
9. Fechter, S.: Sémantique des traits orientés objet de Focal. Thèse de doctorat,

Université Paris 6 (2005)
10. Mitchell, J., Plotkin, G.: Abstract types have existential types. ACM Trans. on

Programming Languages and Systems 10(3) (1988) 470–502 Preliminary version
appeared in Proc. 12th ACM Symp. on Principles of Programming Languages,
1985.

11. Prevosto, V.: Conception et implantation du langage Foc pour le développement
de logiciels certifiés. PhD thesis, Université Paris VI (2003)

12. Prevosto, V., Doligez, D.: Inheritance of algorithms and proofs in the computer al-
gebra library foc. Journal of Automated Reasoning 29(3-4) (2002) 337–363 Special
Issue on Mechanising and Automating Mathematics, In Honor of N.G. de Bruijn.

13. MacQueen, D.B.: Modules for standard ml. Lisp and Functional Programmaming
(1984) 198–207

14. Leroy, X.: Manifest types, modules, and separate compilation. In: 21st symposium
Principles of Programming Languages, ACM Press (1994) 109–122

15. Harper, R., Lillibridge, M.: A type-theoretic approach to higher-order modules with
sharing. In Press, A., ed.: 21st symposium Principles of Programming Languages,
Portland, OR (1994) 123–137

16. Hirschowitz, T.: Modules mixins, modules et rcursion tendue en appel par valeur.
PhD thesis, Universit Paris VII (2003)

17. Hirschowitz, T.: Mixin modules, modules, and extended recursion in a call-by-value
setting (extended version) (2003)

18. Boulm, S., Hardin, T., Rioboo, R.: Some hints for polynomials in the Foc project.
In: Calculemus 2001 Proceedings. (2001)

19. Jaume, M., Morisset, C.: Formalisation and implementation of access control mod-
els. In: Information Assurance and Security (IAS’05) International Conference on
Information Technology, ITCC, IEEE CS Press (2005) 703–708

