
W
h
ite

P
a
p
er

L
ib
sa
fe:

P
ro
tectin

g
C
ritica

l
E
lem

en
ts

o
f
S
ta
ck
s

A
ra
sh

B
a
ra
tlo

o
,
T
im

o
th
y
T
sa
i,
a
n
d
N
av
jo
t
S
in
g
h

B
ell

L
a
b
s,
L
u
cen

t
T
ech

n
o
lo
g
ies

6
0
0
M
o
u
n
ta
in

A
v
e

M
u
rra

y
H
ill,

N
J
0
7
9
7
4
U
S
A

f
a
ra
sh
,ttsa

i,sin
g
h
g
@
resea

rch
.b
ell-la

b
s.co

m

h
t
t
p
:
/
/
w
w
w
.
b
e
l
l
-
l
a
b
s
.
c
o
m
/
o
r
g
/
1
1
3
5
6
/
l
i
b
s
a
f
e
.
h
t
m
l

D
ecem

b
er

2
5
,
1
9
9
9

A
b
s
t
r
a
c
t

T
h
e
ex
p
lo
ita

tio
n
o
f
b
u
�
er

o
v
er

o
w

v
u
ln
era

b
ilities

in
p
ro
cess

sta
ck
s
co
n
stitu

tes
a
sig

n
i�
ca
n
t
p
o
rtio

n

o
f
secu

rity
a
tta

ck
s.

W
e
p
resen

t
a
n
ew

m
eth

o
d
to

d
etect

a
n
d
h
a
n
d
le
su
ch

a
tta

ck
s.

In
co
n
tra

st
to

p
rev

io
u
s

m
eth

o
d
s,
th
is
n
ew

m
eth

o
d
w
o
rk
s
w
ith

a
n
y
ex
istin

g
p
re-co

m
p
iled

ex
ecu

ta
b
le
a
n
d
ca
n
b
e
u
sed

tra
n
sp
a
ren

t-

ly,
ev
en

o
n
a
sy
stem

-w
id
e
b
a
sis.

T
h
e
m
eth

o
d
in
tercep

ts
a
ll
ca
lls

to
lib

ra
ry

fu
n
ctio

n
s
th
a
t
a
re

k
n
o
w
n
to

b
e

v
u
ln
era

b
le.

A
su
b
stitu

te
v
ersio

n
o
f
th
e
co
rresp

o
n
d
in
g
fu
n
ctio

n
im

p
lem

en
ts

th
e
o
rig

in
a
l
fu
n
ctio

n
a
lity,

b
u
t

in
a
m
a
n
n
er

th
a
t
en
su
res

th
a
t
a
n
y
b
u
�
er

o
v
er

o
w
s
a
re

co
n
ta
in
ed

w
ith

in
th
e
cu
rren

t
sta

ck
fra

m
e.

T
h
is

m
eth

o
d
h
a
s
b
een

im
p
lem

en
ted

o
n
L
in
u
x
a
s
a
d
y
n
a
m
ica

lly
lo
a
d
a
b
le
lib

ra
ry

ca
lled

lib
sa

fe.
L
ib
sa
fe
h
a
s
b
een

sh
o
w
n
to

d
etect

sev
era

l
k
n
o
w
n
a
tta

ck
s
a
n
d
ca
n
p
o
ten

tia
lly

p
rev

en
t
y
et

u
n
k
n
o
w
n
a
tta

ck
s.

E
x
p
erim

en
ts

in
d
ica

te
th
a
t
th
e
p
erfo

rm
a
n
ce

o
v
erh

ea
d
o
f
lib

sa
fe

is
n
eg
lig

ib
le.

1
In
tr
o
d
u
c
tio

n

A
s
th
e
In
tern

et
h
a
s
g
row

n
,
th
e
o
p
p
o
rtu

n
ities

fo
r
a
ttem

p
ts

to
a
ccess

rem
o
te

sy
stem

s
im
p
ro
p
erly

h
av
e
in
-

crea
sed

.
S
ev
era

l
secu

rity
a
tta

ck
s,
su
ch

a
s
th
e
1
9
8
8
In
tern

et
W
o
rm

[7
,
1
8,
1
9],

h
av
e
ev
en

b
eco

m
e
en
tren

ch
ed

in
In
tern

et
h
isto

ry.
S
o
m
e
a
tta

ck
s,
su
ch

a
s
th
e
In
tern

et
W
o
rm

,
m
erely

a
n
n
oy

o
r
o
ccu

p
y
sy
stem

reso
u
rces.

H
ow

ev
er,

o
th
er

a
tta

ck
s
a
re

m
o
re

in
sid

io
u
s
b
eca

u
se

th
ey

seize
ro
o
t
p
riv

ileg
es

a
n
d
m
o
d
ify,

co
rru

p
t,
o
r
stea

l
d
a
ta
.0 5 10 15 20 25 30

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

Y
ear

Number of alerts

buffer
overflow

total

0%

10%

20%

30%

40%

50%

60%

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

Y
ear

% buffer overflow/total

F
ig
u
re

1
:
N
u
m
b
er

o
f
R
ep
o
rted

C
E
R
T
S
ecu

rity
A
d
v
iso

ries
A
ttrib

u
ta
b
le
to

B
u
�
er

O
v
er

ow
(D

a
ta

fro
m

[2
4])

P
erh

a
p
s,
th
e
m
o
st

co
m
m
o
n
fo
rm

o
f
a
tta

ck
ta
k
es

a
d
va
n
ta
g
e
o
f
th
e
b
u
�
er

ov
er

ow
b
u
g
.
F
ig
u
re

1
sh
ow

s
th
e
in
crea

se
in

th
e
n
u
m
b
er

o
f
rep

o
rted

C
E
R
T
[3]

secu
rity

a
d
v
iso

ries
th
a
t
a
re

b
a
sed

o
n
b
u
�
er

ov
er

ow
.
In

1

White Paper

recent years, attacks that exploit bu�er over
ow bugs have accounted for approximately half of all reported
CERT advisories. The bu�er over
ow bug may be due to errors in specifying function prototypes or in
implementing functions. In either case, an inordinately large amount of data is written to the bu�er, thus
over
owing it and overwriting the memory immediately following the end of the bu�er. The over
ow injects
additional code into an unsuspecting process and then hijacks control of that process to execute the injected
code. The hijacking of control is usually accomplished by overwriting return addresses on the process stack
or by overwriting function pointers in the process memory. In either case, an instruction that alters the
control
ow (such as a return, call, or jump instruction) may inadvertently transfer execution to the wrong
address that points at the injected code instead of the intended code.

Table 1: Partial List of Unsafe Functions in the Standard C Library
Function prototype Potential problem

strcpy(char *dest, const char *src) May over
ow the dest bu�er.
strcat(char *dest, const char *src) May over
ow the dest bu�er.
getwd(char *buf) May over
ow the buf bu�er.
gets(char *s) May over
ow the s bu�er.
fscanf(FILE *stream, const char *format, ...) May over
ow its arguments.
scanf(const char *format, ...) May over
ow its arguments.
realpath(char *path, char resolved path[]) May over
ow the path bu�er.
sprintf(char *str, const char *format, ...) May over
ow the str bu�er.

Programs written in C have always been plagued with bu�er over
ows. Two reasons contribute to
this factor. First, the C programming language does not automatically bounds-check array and pointer
references. Second, and more importantly, many of the functions provided by the standard C library, such
as those listed in Table 1, are unsafe. Therefore, it is up to the programmers to check explicitly that the use
of these functions cannot over
ow bu�ers. However, programmers often omit these checks. Consequently,
many programs are plagued with bu�er over
ows, which makes them vulnerable to security attacks.

Preventing bu�er over
ows is clearly desirable. If one did not have access to a C program's source code,
the general problem of automatically bounds-checking array and pointer references is very diÆcult, if not
impossible. So at �rst, it might seem natural to dismiss any attempts to perform automatic bounds checking
at runtime when one does not have access to the source code. One of the contributions of this paper is to
demonstrate that by leveraging some information that is available only at runtime, together with context-
speci�c security knowledge, one can automatically prevent security attacks that exploit unsafe functions to
over
ow stack bu�ers. Such an exploit is illustrated in the following example.

2 Bu�er Over
ow Exploit

The most general form of security attack achieves two goals:

1. Inject the attack code, which is typically a small sequence of instructions that spawns a shell, into a
running process.

2. Change the execution path of the running process to execute the attack code.

It is important to note that these two goals are mutually dependent on each other: injecting attack code
without the ability to execute it is not a security vulnerability.

By far, the most popular form of bu�er over
ow exploitation is to attack bu�ers on the stack, referred
to as the stack smashing attack. As is discussed below, the reason for this popularity is because over
owing
stack bu�ers can achieve both goals simultaneously. Another form of bu�er over
ow attack known as the
heap smashing attack, is to attack bu�ers residing on the heap (a similar attack involves bu�ers residing in
data space). Heap smashing attacks are much harder to exploit, simply because it is diÆcult to change the
execution path of a running process by over
owing heap bu�ers. For this reason, heap smashing attacks are
far less prevalent.

2

White Paper

#include <stdio.h>

char shellcode[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"

"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" 5

"\x80\xe8\xdc\xff\xff\xff/bin/sh";

char large string[128];
int i;
long �long ptr; 10

int main() f
char bu�er[96];

long ptr = (long �)large string; 15

for (i=0; i<32; i++)
�(long ptr+i) = (int)bu�er;

for (i=0; i<(int)strlen(shellcode); i++)
large string[i] = shellcode[i];

strcpy(bu�er, large string); 20

return 0;
g

Figure 2: A Sample Program to Demonstrate a Stack Smashing Attack

void main() {
 char buffer[96];
 ...
 strcpy(buffer, large_string);
 return
}

executed code segment

stack
growth

parameters

stack vars

parameters

buffer[96]

return addr

stack
frame 0

stack
frame for

main()

stack pointer

env. vars

prev. frame ptr

return addr

prev. frame ptr
frame pointer

buffer
growth

0xbfffffb

bottom of stack

stack address space

instruction
pointer

(a) before the attack

void main() {
 char buffer[96];
 ...
 strcpy(buffer, large_string);
 return;
}

executed code segment

instruction
pointer

parameters

stack vars

buffer
overflow

stack pointer

env. vars

prev. frame ptr

return addr

frame pointer

0xbfffffb

bottom of stack

stack address space

expected location of the
return addr

addr of the
attack code

attack
code

(b) after injecting the attack code

void main() {
 char buffer[96];
 ...
 strcpy(buffer, large_string);
 return;
}

executed code segmen t

instruction
pointer

parameters

stack vars

stack pointer

env. vars

prev. frame ptr

return addr

0xbfffffb

bottom of stack

stack address space

attack
code

addr of the
attack code

(c) executing the attack
code

Figure 3: Bu�er Over
ow on Process Stack

3

White Paper

A complete C program to demonstrate the stack smashing attack is shown in Figure 2. Figure 3 illustrates
the address space of a process undergoing this attack. The process stack after executing the initialization code
and entering the main() function (but before executing any of the instructions) is illustrated in Figure 3(a).
Notice the structure of the top stack frame (i.e., the stack frame for main()). This stack frame contains, in
order, the function parameters, the return address of the calling function, the previous frame pointer, and
�nally the stack variable buffer. Looking at the sample program in Figure 2, a sequence of instructions
for spawning a shell is stored in a string variable called shellcode (lines 3-6). The two for loops in the
main function prepare the attack code by writing two sequences of bytes to large string: the for loop
starting on line 16 writes the (future) starting address of the attack code; then the for loop starting on
line 18 copies the attack code (excluding the terminating null character). The stack is smashed on line 20
by the strcpy() function. Figure 3(b) depicts the process' stack space after executing the strcpy() call.
Notice how the unsafe use of strcpy() simultaneously achieves both requirements of the stack smashing
attack: (1) it injects the attack code by writing it on the process' stack space, and (2) by overwriting the
return address with the address of the attack code, it instruments the stack to alter the execution path. The
attack completes once the return statement on line 21 is executed: the instruction pointer \jumps" and
starts executing the attack code. This step is illustrated in Figure 3(c).

In a real security attack, the attack code would normally come from an environment variable, user input,
or even worse, from a network connection. A successful attack on a privileged process would give the attacker
an interactive shell with the user-ID of root!

3 Related Work

The Internet Worm that infected tens of thousands of hosts in 1988 was one of the �rst well-known bu�er
over
ow attacks, although there are some anecdotal evidence that bu�er over
ow attacks date back to the
1960's [4]. In particular, the Internet Worm exploited a bu�er over
ow vulnerability of the �nger daemon.
The proportion of attacks based on bu�er over
ows is increasing each year|in recent years, bu�er over
ow
attacks have become the most widely used type of security attack [24]. Among such attacks, the stack
smashing attack is the most popular form [10, 22].

The majority of bu�er over
ow attacks, including the one exploited by the Internet Worm is based on
the stack smashing attack. Detailed descriptions of stack smashing attacks are presented in [20, 22], and
cook-book-like recipes are presented in [15, 16, 6].

Researchers in the areas of operating systems, static code analyzers and compilers, and run-time mid-
dleware systems have proposed solutions to circumvent stack smashing type of attacks. In most operating
systems the stack region is marked as executable, which means that code located in the stack memory can
be executed. Because this \feature" is used by stack smashing attacks, making the stack non-executable is
a commonly proposed method for preventing over
ow attacks. A kernel patch removing the stack execution
permission has been made available [17]. This approach, however, has some drawbacks. First, patching and
recompiling the kernel is not feasible for everyone. Second, nested function calls or trampoline functions,
which are used extensively by LISP interpreters and Objective C compilers, and the most common imple-
mentation of signal handler returns on Unix (as well as Linux), rely on an executable stack to work properly.
And �nally, an alternative attack on stacks known as return-into-libc, which directs the program control into
code located in shared libraries, cannot be prevented by making the stack non-executable [25]. Because of
those reasons, Linus Torvalds has consistently refused to incorporate this change into the Linux kernel [23].

Snarskii has developed a custom implementation of the standard C library for FreeBSD [21]. Similar
to libsafe, this library targets the set of unsafe functions, and inspects the process stack to detect bu�er
over
ows that write across frame pointers. In contrast to libsafe, this is a custom implementation and
replaces the standard C library.

Several commonly used tools, such as Lint [11], and those proposed in [8] use compile-time analysis
to detect common programming errors. Existing compilers have also been augmented to perform bounds-
checking [13]. These projects have demonstrated a limited success in preventing the general bu�er over
ow
problem. Wagner et al. have recently proposed the use of compile-time range analysis to ensure the \safe"
use of C library functions [24]. Similar to our libsafe method, this project speci�cally concentrates on the
set of unsafe library functions. However, unlike our approach, this method requires source code, which is

4

White Paper

not always available, and may produce false positives: a correct program may produce warning or error
messages.

StackGuard [5] is another compiler extension that instruments the generated code with stack-bounds
checks. Speci�cally, on function entry, a canary is placed near the caller's return address on the stack. Before
the function returns to the caller, the validity of this canary is checked and the program is terminated if a
discrepancy is detected. This approach works on the assumption that if the return address is tampered with
(due to bu�er over
ows), the canary will also be modi�ed, thus causing validation of the canary to fail. With
the exception of a few programs, this approach has shown to be e�ective. In contrast to libsafe, StackGuard
introduces a noticeable run-time overhead. Furthermore, StackGuard requires source code access, and there
are some programs, such as Netscape Navigator, Adobe Acrobat Reader, and Star OÆce, that it does not
currently support.

Janus [9] is a run-time sand-boxing environment that con�nes each application to a set of prede�ned
operations. It works on the principle that \an application can do little harm if its access to the underlying
operating system is appropriately restricted." It relies on the operating system's debugging features, such
as trace and strace, to observe and to con�ne a process to a sand-box. Similar to our work, this approach
works with existing binary applications and does not require an application's source code. However, unlike
our approach, Janus does not work with applications that legitimately need high privileges. For example,
the Unix login process requires a high level of privilege to execute, but Janus is unable to selectively allow
legitimate privileges while denying unauthorized privileges. This inherent limitation prevents Janus from
being applied to high privileged applications, where secure execution is most critical.

4 Libsafe

This paper presents a novel method for performing detection and handling of bu�er over
ow attacks. In
contrast to previous methods and without requiring source code, our novel method can transparently protect
processes against stack smashing attacks, even on a system-wide basis. The method intercepts all calls to
library functions that are known to be vulnerable. A substitute version of the corresponding function
implements the original functionality, but in a manner that ensures that any bu�er over
ows are contained
within the current stack frame.

The key idea is the ability to estimate a safe upper limit on the size of bu�ers automatically. This
estimation cannot be performed at compile time because the size of the bu�er may not be known at that
time. Thus, the calculation of the bu�er size must be made after the start of the function in which the bu�er
is accessed. Our method is able to determine the maximum bu�er size by realizing that such local bu�ers
cannot extend beyond the end of the current stack frame. This realization allows the substitute version of the
function to limit bu�er writes within the estimated bu�er size. Thus, the return address from that function,
which is located on the stack, cannot be overwritten and control of the process cannot be commandeered.

Table 2: List of Some Known Exploits That Are Detected

Program Name Version Description

xlockmore 3.10 Program to lock an X Window display
amd 6.0 Automatic remote �le system mount daemon
imapd 3.6 IMAP mail server
elm 2.5 PL0pre8 ELM mail user agent
SuperProbe 2.11 Program to probe for and identify video hardware

We have implemented the previously described method on Linux as a dynamically loadable library called
libsafe. Libsafe has demonstrated its ability to detect and prevent known security attacks on several com-
monly used applications, including those listed in Table 2.1 Libsafe's key bene�t, moreover, is its ability to
prevent yet unknown attacks.

1The security attacks are available from Crv's Security Bugware Page (http://oliver.efri.hr/~crv/).

5

White Paper

Table 3: Summary of Detection Technique Characteristics

Instrumentation Techniques
None Libsafe StackGuard Janus Non-

Executable
Stack

E�ectiveness (what types of errors are handled?)
Kernel Errors No No Yes No Yes

Speci�cation Errors No Yes Yesa Maybeb Maybec

Implementation Errors No Maybed Yesa Maybeb Maybec

User Code Errors No No Yes Maybeb Maybec

Other characteristics
Performance Overhead None Very low Medium Medium None
Disk Usage Overhead None Very low Low Very low None
Source Code Needed No No Yes No No
Ease of Use | Very easy Easye Easy-

Mediumf

Easy-
Mediumg

aIf libraries are instrumented.
bCannot catch hijacked privileges that are similar to legitimate privileges.
cFor certain types of exploits (see Section 3).
dIf we know which functions have errors.
eSource code must be recompiled, and the compiler may also needed to be recompiled.
f Policies need to be written.
gKernel may need to be patched and recompiled.

The characteristics of libsafe are shown in Table 3 along with the corresponding characteristics of two
alternative methods, StackGuard and Janus, which were described earlier in Section 3. The �rst instrumen-
tation technique labeled \None" is presented as a point of comparison and represents the original program
with no modi�cations. The upper half of Table 3 describes the types of errors that each method is able to
handle. Speci�cation and implementation errors refer speci�cally to errors in standard library functions as
described in the introductory section. Kernel errors and user code errors refer to implementation errors in
kernel code and user code, respectively. The bottom half of the table describes other characteristics. The
performance overhead includes only the run-time overhead. Time spent during con�guration and compilation
are not included. The disk usage overhead is the extra disk space required due to additional shared libraries,
increased executable binary �le sizes, and con�guration �les. The next to last row indicates whether source
code is needed for that method. The ease of use considers the complexity and time requirement of human
e�orts needed for con�guration and compilation.

5 Implementation

The fundamental observations forming the basis of the libsafe library are the following:

� Over
owing a stack variable|that is, injecting the attack code into a running process|does not
necessarily lead to a successful stack smashing attack. The attack must also divert the execution
sequence of a process to run the attack code.

� Although bu�er over
ows cannot be stopped in general, automatic and transparent run-time mech-
anisms can prevent the over
ow from corrupting a return address and altering the control
ow of a
process.

Refer to Figure 3(a) for an example. The strcpy() function cannot determine the exact size of the
destination variable buffer. At the time strcpy() is called, the frame pointer (i.e., ebp register in the

6

White Paper

char * memcpy(void *dest, const void *src, size_t n) {
 ...
}

char *strcpy(char dest, const char *src) {
 ...
}

char *strcpy(char *dest, const char *src) {
 // compute length of input string
 // compute upper bound of destination's buffer size
 // bounds check
 // call libc's memcpy()
 // return
}

void main() {
 char buffer[96];
 ...
 strcpy(buffer, large_string);
 return;
}

1

2
3

4

parameters

stack vars

limit
buffer

overflow
to this
region

stack pointer

env. vars

prev. frame ptr

return addr

frame pointer

0xbfffffb

bottom of stack

stack address space

prev. frame ptr

return addr

attack
code

text
region

libsafe
library

libc
library

Figure 4: Libsafe Containment of Bu�er Over
ow

Intel Architecture) will be pointing to a memory location containing the previous frame's frame pointer.
Furthermore, this memory address separates the stack variables (local to the current function) from the
function arguments. Continuing with the example of Figure 3(a), the size of buffer and all other stack
variables residing on the top frame cannot extend beyond the frame pointer|this is a safe upper limit. The
size of variables residing on previous stack frames|below the top frame|can be bounded by traversing
frame pointers to determine the stack frame locations and sizes for those variables. A correct C program
should never explicitly modify any stored frame pointers, nor should it explicitly modify any return addresses
(located next to the frame pointers). We use this knowledge to detect and limit stack bu�er over
ows. As
a result, the attack executed by calling the strcpy() can be detected and terminated before the return
address is corrupted (as in Figure 3(b)).

Libsafe implements the above technique. It is implemented as a dynamically loadable library that is
preloaded with every process it needs to protect. The preloading injects the libsafe library between the
program code and the dynamically loadable standard C library functions. The library can then intercept
and bounds-check the arguments before allowing the standard C library functions to execute. In particular,
it intercepts the unsafe functions listed in Table 1 to provide the following guarantees:

� Correct programs will execute correctly, i.e., no false positives.
� The frame pointers, and more importantly return addresses, can never be overwritten by an intercepted
function. In most cases, an over
ow that leads to overwriting the return address can be detected.

Figure 4 illustrates the memory of a process that has been linked with the libsafe library, and in particular,
it shows the new implementation of strcpy() in the libsafe library. Once the program invokes strcpy(), the
version implemented in the libsafe library gets executed|this is due to the order in which the libraries were
loaded. The libsafe implementation of the strcpy() function �rst computes the length of the source string
and the upper bound on the size of the destination bu�er (as explained above). It then veri�es that the
length of the source string is less than the bound on the destination bu�er. If the veri�cation succeeds, then
the strcpy() calls memcpy() (implemented in the standard C library) to perform the operation. However,
if the veri�cation fails, strcpy() creates a syslog entry and terminates the program. A similar approach is
applied to the other unsafe functions in the standard C library.

The libsafe library has been implemented on Linux. It uses the preload feature of dynamically loadable
ELF libraries to automatically and transparently load with processes it needs to protect. In essence, it
can be used in one of two ways: (1) by de�ning the environment variable LD PRELOAD, or (2) by listing
the library in /etc/ld.so.preload. The former approach allows per-process control, where as the latter

7

W
h
ite

P
a
p
er

a
p
p
ro
a
ch

a
u
to
m
a
tica

lly
lo
a
d
s
th
e
lib
sa
fe
lib
ra
ry

m
a
ch
in
e-w

id
e.

T
h
e
lib
sa
fe
lib
ra
ry

d
o
es

n
o
t
u
se

a
n
y
L
in
u
x
sp
eci�

c
fea

tu
re

o
f
E
L
F
;
th
ese

E
L
F
fea

tu
res

a
re

ava
ila
b
le
fo
r

m
a
n
y
o
th
er

v
ersio

n
s
o
f
U
n
ix
su
ch

a
s
S
o
la
ris,

a
n
d
h
av
e
b
een

u
sed

fo
r
o
th
er

p
u
rp
o
ses

[1
,
1
4].

F
u
rth

erm
o
re,

a
n

a
ltern

a
tiv

e
tech

n
iq
u
e
w
ith

a
sim

ila
r
fea

tu
re

ca
n
b
e
u
sed

fo
r
W
in
d
ow

s
N
T
[2
,
1
2].

W
e
h
av
e
in
sta

lled
th
e
lib
sa
fe
lib
ra
ry

o
n
a
L
in
u
x
m
a
ch
in
e.

T
h
e
lib
ra
ry

is
a
u
to
m
a
tica

lly
lo
a
d
ed

w
ith

ev
ery

p
ro
cess

a
n
d
tra

n
sp
a
ren

tly
p
ro
tects

ea
ch

p
ro
cess

fro
m

sta
ck

sm
a
sh
in
g
a
tta

ck
s.

T
h
e
p
ro
tected

a
p
p
lica

tio
n
s

in
clu

d
e
d
a
em

o
n
p
ro
cesses

su
ch

a
s
A
p
a
ch
e
H
T
T
P
serv

er,
sen

d
m
a
il,

a
n
d
N
F
S
serv

er,
a
s
w
ell

a
s
th
o
se

sta
rted

b
y
u
sers

su
ch

a
s
X
F
ree8

6
serv

er,
E
n
lig
h
ten

m
en
t
w
in
d
ow

m
a
n
a
g
er,

G
N
U

E
m
a
cs,

N
etsca

p
e
N
av
ig
a
to
r,
a
n
d

A
d
o
b
e
A
cro

b
a
t
R
ea
d
er.

W
e
h
av
e
u
sed

th
is
m
a
ch
in
e
fo
r
ov
er

a
w
eek

a
n
d
fo
u
n
d
th
e
m
a
ch
in
e
to

b
e
sta

b
le
a
n
d

ru
n
n
in
g
w
ith

o
u
t
a
n
o
ticea

b
le
p
erfo

rm
a
n
ce

h
it.

6
P
e
r
fo
r
m
a
n
c
e

T
h
e
lib
sa
fe

lib
ra
ry

is
e�
ectiv

e
in

d
etectin

g
a
n
d
p
rev

en
tin

g
sta

ck
sm

a
sh
in
g
a
tta

ck
s.

E
x
tra

co
d
e
is
n
eed

ed
to

p
erfo

rm
th
is
d
etectio

n
,
a
n
d
th
a
t
ex
tra

co
d
e
in
cu
rs

a
p
erfo

rm
a
n
ce

ov
erh

ea
d
.
In

th
is
sectio

n
w
e
q
u
a
n
tify

th
e
p
erfo

rm
a
n
ce

ov
erh

ea
d
a
sso

cia
ted

w
ith

u
se

o
f
th
e
lib
sa
fe

lib
ra
ry.

S
ectio

n
6
.1

d
escrib

es
th
e
ov
erh

ea
d
s

a
sso

cia
ted

w
ith

sy
n
th
etic

k
ern

el
p
ro
g
ra
m
s
to

illu
stra

te
th
e
ra
n
g
e
o
f
p
o
ssib

le
ov
erh

ea
d
s.

S
ectio

n
6
.2

g
iv
es

p
erfo

rm
a
n
ce

d
a
ta

fo
r
a
selected

set
o
f
a
ctu

a
l
a
p
p
lica

tio
n
s.

A
ll
ex
p
erim

en
ts

w
ere

co
n
d
u
cted

o
n
a
4
0
0
M
H
z
P
en
tiu

m
II

m
a
ch
in
e
w
ith

1
2
8
M
B

o
f
m
em

o
ry

ru
n
n
in
g

R
ed
H
a
t
L
in
u
x
v
ersio

n
6
.0
.
L
ib
sa
fe
a
n
d
a
ll
p
ro
g
ra
m
s
in

S
ectio

n
s
6
.1
a
n
d

6
.2
w
ere

co
m
p
iled

(a
n
d
o
p
tim

ized
u
sin

g
-O

2
)
w
ith

G
C
C
co
m
p
iler

v
ersio

n
2
.9
1
.6
6
.

6
.1

K
e
r
n
e
l
T
e
sts

T
h
e
�
rst

tim
e
ea
ch

lib
sa
fe
fu
n
ctio

n
is
a
ctiva

ted
,
th
e
in
itia

liza
tio

n
o
f
th
a
t
p
a
rticu

la
r
fu
n
ctio

n
m
a
k
es
a
d
l
s
y
m
(
)

ca
ll
fo
r
ea
ch

lib
c
fu
n
ctio

n
th
a
t
is
ca
lled

fro
m

th
is
lib
sa
fe

fu
n
ctio

n
.
B
eca

u
se

th
e
lib

c
fu
n
ctio

n
h
a
s
th
e
sa
m
e

n
a
m
e
a
s
th
e
co
rresp

o
n
d
in
g
lib

c
v
ersio

n
,
th
e
d
l
s
y
m
(
)
ca
ll
is
n
eed

ed
to

o
b
ta
in

a
p
o
in
ter

to
th
e
lib

c
fu
n
ctio

n
.

E
a
ch

d
l
s
y
m
(
)
ca
ll
req

u
ires

1
.2
6
�
s.

T
h
e
in
tercep

tio
n
a
n
d
red

irectio
n
o
f
a
C
lib
ra
ry

fu
n
ctio

n
co
n
sists

o
f
a
n

a
d
d
itio

n
a
l
u
ser-lev

el
fu
n
ctio

n
ca
ll,

w
h
ich

a
p
p
rox

im
a
tely

a
d
d
s
0
.0
4
�
s
o
f
ov
erh

ea
d
.

0 2 4 6 8 10 12 14 16 18

getwd()

strcpy(1)

strcpy(256)

strcpy(1024)

strcat(1)

strcat(256)

strcat(1024)

sprintf(1)

sprintf(25)

sprintf(1024)

realpath(49)

F
unctions(buffer

size)

Time (microseconds)

N
o

instrum
entation

W
ith

libsafe

F
ig
u
re

5
:
P
erfo

rm
a
n
ce

o
f
L
ib
sa
fe
F
u
n
ctio

n
s

8

White Paper

To quantify the performance overhead of the libsafe library we measure the execution times of �ve unsafe
C library functions and compare the results with our \safe" versions. The results are depicted in Figure 5.
Reported times are \wall clock" elapsed times as reported by gettimeofday(). An interesting observation is
that the libsafe versions of several functions outperform the original versions. This is a repeatable behavior,
and we have observed consistent �ndings on di�erent machines and operating system versions. This e�ect is
due both to low-level optimizations and the fact that libsafe's implementation of most functions is di�erent
than those of C library. For example, consider the performance of getwd() and sprintf() functions. Our
libsafe library replaces these functions with equivalent safe versions. In particular, getwd() is replaced with
getcwd() and sprintf() is replaced with snprintf(); on Linux, the safe versions execute faster.

The �gure also shows that the libsafe library can slow down the string operations strcpy() and strcat()

by as much as 0.5 �s per function call. However, as the string size increases, the absolute overhead decreases
because the execution time of the safe versions increases more slowly than that for the unsafe versions. In
fact, the safe version of strcat() used with strings longer than 256 bytes is actually faster than the unsafe
version! This is an example of how using a di�erent implementation (e.g., using memcpy() to copy a string)
can outperform the standard implementation for certain cases.

The slowdown e�ect of strcpy() is observed in the realpath() experiment. When a program calls
realpath(), the libsafe library calls realpath() but stores the result in a bu�er in its own memory region.
It then uses strcpy() to copy the result to the �nal destination. As Figure 5 shows, the slowdown e�ect of
strcpy() on realpath() is less than 0.05 �s.

6.2 Application Tests

We used four real-world applications to illustrate the performance overhead associated with libsafe. The
applications are quicksort (a CPU-bound program), imapd (a network-bound program), tar (an I/O-bound
program), and xv (a CPU and video-bound program). Figure 6 shows the execution time for each of these
applications using (1) the original libc (i.e., without libsafe), (2) the libsafe method, and (3) StackGuard.
The execution times are based on 100 runs and are given in seconds, with associated 95% con�dence intervals.
Reported times are \wall clock" elapsed times as reported by /bin/time.

0

1

2

3

4

5

6

7

imapd xv tar quicksort

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

original
libsafe
StackGuard

Figure 6: Mean Execution Times (With 95% con�dence intervals) of Sample Applications

Figure 6 shows that the overheads associated with all detection methods are reasonable. Libsafe is the
most eÆcient method because only the unsafe library functions are intercepted. The overall application test
results are encouraging. We have installed and used libsafe on one of own machine, and in practice, we have
found that this overhead is not noticeable.

9

White Paper

7 Conclusions

We have described a new method for preventing stack smashing attacks that rely on corrupting the return
address, and implemented this method in as a dynamically loaded library called libsafe. The libsafe library
instruments a small set of library functions that are known to be vulnerable to bu�er over
ows.

An interesting �nding is the performance of libsafe. We anticipated a low performance overhead at the
onset of this project. We were happily surprised to �nd how little this overhead is in practice. Because
of low-level optimizations and because libsafe's implementation of most functions is di�erent than those of
C library, for some applications we actually observed a speedup. This is encouraging since it indicates the
viability of this approach. Furthermore, the elegance and simplicity of instrumenting the standard C library
lead to a stable implementation.

We believe that the stability, minimal performance overhead, and ease of implementation (i.e., no mod-
i�cation or recompilation of source code) of libsafe makes it an attractive �rst line of defense against stack
smashing attacks. We has demonstrated its e�ectiveness in testing it against several known bu�er over
ow
attacks, but its real bene�t, we believe, is its ability to prevent yet unknown attacks.

References

[1] Albert D. Alexandrov, Maximilian Ibel, Klaus E. Schauser, and Chris J. Scheiman. Extending the
operating system at the user-level: the Ufo global �le system. In Proceedings of the 7th USENIX
Annual Technical Conference, 1997.

[2] Robert Balzer and Neil Goldman. Mediating connectors. In Proceedings the 19th IEEE International
Conference on Distributed Computing Systems Workshop, 1999.

[3] CERT coordination center. http://www.cert.org.

[4] Crispin Cowan. http://geek-girl.com/bugtraq/1999_1/0481.html, 1999. Posting to Bugtraq Mail-
ing List.

[5] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Peat Bakke, Steve Beattie, Aaron Grier, Perry
Wagle, and Qian Zhang. StackGuard: automatic adaptive detection and prevention of bu�er-over
ow
attacks. In Proceedings of the 7th USENIX Security Conference, 1998.

[6] dark spyrit aka Barnaby Jack. Win32 bu�er over
ows (location, exploitation and prevention). http:

//www.insecure.org.

[7] Mark W. Eichin and Jon A. Rochlis. With microscope and tweezers: An analysis of the internet virus of
november 1988. In Proceedings of the 1989 IEEE Computer Society Symposium on Security and Privacy
(SSP '89), 1989.

[8] David Evans. Static detection of dynamic memory errors. ACM SIGPLAN Notices, 31(5):44{53, May
1996. Proceedings of the 1996 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

[9] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure environment for untrusted
helper applications. In Proceedings of the 6th USENIX Security Symposium, 1996.

[10] Shawn Instenes. Stack smashing: What to do? ;login: the USENIX Association newsletter, April 1997.

[11] Stephen C. Johnson. Lint, a C program checker. Bell Laboratories, Murray Hill, New Jersey, USA,
December 1977. Computer Science Technical Report 65.

[12] Michael B. Jones. Interposition agents: Transparently interposing user code at the system interface. In
Proceedings of the 14th Symposium on Operating Systems Principles (SOSP), December 1993.

[13] Richard Jones. Bounds checking patches for gcc. http://web.inter.NL.net/hcc/Haj.Ten.Brugge.

10

White Paper

[14] Alain Kna�. Zlibc - transparent access to compressed �le. http://zlibc.linux.lu.

[15] Mudge. How to write bu�er over
ows. http://www.insecure.org/stf/mudge_buffer_overflow_

tutorial.html, 1995.

[16] Aleph One. Smashing the stack for fun and pro�t. Phrack Magazine, 49(14), 1998.

[17] Openwall Project. Linux kernel patch from the openwall project. http://www.openwall.com/linux.

[18] Jon A. Rochlis and Mark W. Eichin. With microscope and tweezers: The worm from MIT's perspective.
Communications of the ACM, June 1989.

[19] Donn Seeley. A tour of the worm. In Proceedings 1989 Winter USENIX Technical Conference, January
30 - February 3 1989.

[20] Nathan Smith. Stack smashing vulnerabilities in the UNIX operating system. http://millcomm.com/
~nate/machines/security/stack-smashing/nate-buffer.%ps, 1997.

[21] Alexandre Snarskii. Increasing overall security.... ftp://ftp.lucky.net/pub/unix/local/

libc-letter and http://www.lexa.ru:8100/snar/libparanoia, 1997.

[22] Evan Thomas. Attack class: Bu�er over
ows. Hello World!, 1999.

[23] Linus Torvalds. Posting to linux kernel mailing list. http://www.lwn.net/980806/a/linus-noexec.
html, 1998.

[24] David Wagner, Je�rey S. Foster, Eric A. Brewer, and Alexander Aiken. A �rst step towards automated
detection of bu�er overrun vulnerabilities. In Proceedings 7th Network and Distributed System Security
Symposium (to appear), February 2000.

[25] Rafel Wojtczuk. Defeating solar designer non-executable stack path. http://geek-girl.com/bugtraq,
January 1998.

11

