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Overview

1.1.

This document provides Memory Expansion Card (MEC) design guidelines for the Intel® 840 chipset
platform. The memory cards will be designed to support both PC800 and PC600 RDRAM. These
RDRAM-based MECs are intended for use as the main memory subsystem for workstation and server
designs using the Intel® 840 chipset.

This design guide organizes Intel’ s design recommendations for memory expansion cards. In addition to
providing motherboard design recommendations (e.g., layout and routing guidelines), this document also
addresses system design issues.

This document presents design recommendations, board schematics, debug recommendations, and a
MEC checklist. The design recommendations should be followed strictly for all MEC designs. These
design guidelines have been devel oped to ensure maximum flexibility for MEC designers while reducing
the risk of board-related issues.

Schematics for aMemory Expansion Card are included in this design guide. MEC board designers can
use the MEC schematics as a reference. They provide areference for RDRAM-based MEC designs.
Additional flexibility is possible through other permutations of these options and components.

Terminology

Term

Direct RDRAM

RSL
Rclk
RAC
RMC

RIMM
Components

MCH

Intel® 82803AA
(MRH-R)

‘expansion’
channel

‘stick’ channel

Design Guide

Description

Rambus* Signaling Level isthe name of the signaling technology used by Direct
RDRAM.

Refers to the RSL bus' high speed clock in a generic fashion, often in the context of
clock countsin timing specs.

Direct RDRAM ASIC Cell. It isthe embedded cell designed by Direct RDRAM
that interfaces with the Direct RDRAM devices using RSL signaling.

Direct RDRAM Memory Controller. Thisisthe logic that directly interfaces to the
RAC.

Direct RDRAM Interface Memory Module.

The Memory Controller Hub component that contains the processor interface,
Direct RDRAM controller, and AGP interface. It communicates with the 1/O
Controller Hub over a proprietary interconnect called Hub Interface.

The Memory Repeater Hub for RDRAM.

The RSL bus which connects the MCH to the 82803AA (MRH-R). Thisterm only
applies to the interface between the MCH and MRH-R component.

An RSL Direct RDRAM bus which connects an 82803AA (MRH-R) to its
RDRAM devices. An MRH-R can support a max. of 2 stick channels, Stick
Channel A and Stick Channel B.
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1.2.

1.3.

10

References

e Intel® 840 (MCH) Datasheet

e Intel® 840 Chipset Platform Design Guide
e Rambus®™ RDRAM Documentation

e Intel® 82803AA (MRH-R) Datasheet

Chipset MEC Memory Components

A memory expansion card can be used to increase memory size configurations that are required for most
server and workstation designs. The Intel® 840 chipset has a memory repeater hub component that allows
for this memory expandability (up to 2 GB). The Intel® 82803AA Memory Repeater Hub for RDRAM
(MRH-R) provides this memory expansion capability.

The MRH-R provides a pass-through architecture for two additional Direct RDRAM channels from each
MCH RDRAM ‘expansion’ channel. One MRH-R components per MCH Direct RDRAM channel is
supported. It integrates:

e Support for two Direct RDRAM channels and one expansion channel
Support for PC800 and PC600RDRAM

Support for 64Mbit, 128Mbit and 256Mbit RDRAM technologies.

400 MHz or 300 MHz Direct RDRAM interface

Integrated System Management Bus(SMBus) Controller for SPD of RIMMs

Design Guide
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Memory Expansion Card Pinout

2.1.

2.2.

2.2.1.

Design Guide

Edge Connector Example Pinout

Contact your local Intel representative for an example pinout.

Edge Connector Pin Description

The following pin description is only for the pins that are required/recommended to implement a fully
functional Memory Expansion Card using Intel® 840 chipsets.

RSL and CMOS pins

Signal Type Description

CHx_EXP1 RSL Row Control: This signal carries the row control packets from the memory
controller to attached MRH-Rs.

CHx_EXPO RSL Column Control: This signal carries the column control packets from the
memory controller to attached MRH-Rs.

CHx_DQA[8:0] RSL RDRAM Data Bus, Data Byte A. Bi-directional 9 bit data bus A. These
correspond to the CHx_DQA[8:0] signals on the MCH.

CHx_DQB[8:0] RSL RDRAM Data Bus, Data Byte B: Bi-directional 9 bit data bus B. These
correspond to the CHx_DQB[8:0] signals on the MCH.

CHx_RQI7:5]/ RSL RDRAM Row Request: These signals carry row request packets from the

ROW/[2:0] memory controller to the MRH-Rs.

CHx_RQI4:0]/ RSL RDRAM Column Request: These signals carry column request packets from

COL[4:0] the memory controller to the MRH-Rs.

CHx_CTM RSL RDRAM Clock To MCH: One of the two differential transmit clock signals used

for MRH-R to MCH operations.

CHx_CTM# RSL RDRAM Clock To MCH Complement: One of the two differential transmit clock
signals used for MRH-R to MCH operations.

CHx_CFM RSL RDRAM Clock from MCH: One of the differential receive clock signals used for
MCH to MRH-R operation.

CHx_CFM# RSL RDRAM Clock From MCH Complement: One of the differential receive clock
signals used for MCH to MRH-R operation.

CHx_SIO CMOS RDRAM Serial 10 Chain: Serial input/output pins used for reading and writing
control registers. These correspond to the SIO signals on the MCH.

CHx_SCK CMOS RDRAM Serial Clock: Clock source used to used for timing of the CHx_SIO and
CHx_CMD signals. This corresponds to the SCK signal on the MCH.

CHx_CMD CMOS RDRAM Serial Command: Serial command input used for control register read
and write operations. This corresponds to the CMD signal on the MCH.

SDA CMOS SMBus Data: SMBus interface for DIMM SPD detection, disabling of SDRAM
clocks and reading of any on-board FRU EEPROM.

11
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Signal Type Description
SCLK CMOS SMBus Clock: SMBus clock used for timing on SDA.
SMBWE CMOS Write Protect for SMBus EEROMS: This signal is used to write protect all

SMBus EEPROM devices to avoid SPD data corruption. This can be controlled
by a system GPO.

RCI_AUX CMOS System GPO: This pin is required to implement the workaround for excessive
RDRAM power consumption during initialization. See section for details.

PWROK CMOS PWROK for CMOS Shunting Logic on MEC: The system PWROK signal is
used to shunt the SCK CMOS signal to GND when entering/exiting the STR
state. See section B.5.7.2]for details.

RESET# CMOS Reset: When asserted, this signal asynchronously resets the MRH-R logic. This
is the system reset signal used for resetting the MCH, ICH, etc.

NOTE: Review MRH-R documentation for proper RESET# recommendations
for STR implementations.

NOTES:
1. “x" denotes MCH ‘Expansion’ channel A and B. For example, the “x” in the signal name CHx_DQB[8:0] denotes
A and B.

2.2.2. Voltage/Ground References

Signal Description

CHx_RAMREF_FM Source Generated RSL Reference Voltage (1.4V): This signal is from voltage
divider network near memory controller on motherboard to MRH-R on MEC.

CHx_RAMREF_TM Source Generated RSL Reference Voltage (1.4V): This signal is from voltage
divider network on MEC to memory controller on motherboard.

1.8v 1.8V Power Pins: Power pins for MRH-R and all Vierm on MEC.

3.3V 3.3V Power Pins: Power Pins for DRCG

12v 12V Power Pins: Power pins for on-board DC-to-DC converter for 2.5V (RDRAM)
generation on MEC.

SPD_VCC 2.5V Power Pin: Power pin used for MRH-R SMBus pull-ups for operation at a 2.5V
signaling level.

GND Ground Pins: Ground pins placed between all RSL signals.

NOTES:

1. “x” denotes MCH ‘Expansion’ channel A and B. For example, the “x” in the signal name CHx_RAMREF_TM
denotes A and B.

12 Design Guide
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MEC Layout and Routing Guidelines

Caution:

3.1.

3.1.1.

Design Guide

This chapter describes layout and routing recommendations to ensure a robust MEC design. Follow these
guidelines as closely as possible. Any deviations from the guidelines listed here should be simulated to
ensure adequate margin is still maintained in aMEC design.

If the guidelineslisted in this document are not followed, it is very important that thorough signal
integrity and timing simulations are completed for each design. Even when the guidelines are followed,
critical signals should still be simulated to ensure proper signal integrity and flight time. As bus speeds
increase, it is imperative that the guidelines documented are followed precisely. Any deviation from
these guidelines must be simulated!

General Recommendations

When calculating flight times, it isimportant to consider the minimum and maximum impedance of a
trace based on the switching of neighboring traces. Using wider spaces between the traces can minimize
this trace-to-trace coupling. In addition, these wider spaces reduce crosstalk and settling time.

Coupling between two tracesis a function of the coupled length, the distance separating the traces, the
signal edge rate, and the degree of mutual capacitance and inductance. In order to minimize the effects of
trace-to-trace coupling, the routing guidelines documented in this section should be followed. In addition,
the PCB should be fabricated as documented in section Plof this document.

All recommendations in this section (except where noted) assume wider tracesin trying to achieve a
28-ohm Direct RDRAM channel impedance. If trace width is greater than this recommendation then the
trace spacing requirements must be adjusted accordingly (linearly).

Additionally, these routing guidelines are created using the stack-up described in section EI If this stack-
up is not used, extremely thorough simulations of every interface must be completed. Using a thicker
dielectric (prepreg) will make routing very difficult or impossible.

Test Coupon Design Guidelines

Characterization and understanding of the trace impedance is critical for delivering reliable systems at
the increased bus frequencies. Incorporating atest coupon design into the MEC will make testing simpler
and more accurate. The test coupon pattern must match the probe type being used.

The Printed Circuit Board (PCB) Test Methodology Document should be used to ensure MEC are within
the 28Q2 +10% requirement. The Intel Controlled Impedance Design and Test Document should be used
for the test coupon design and implementation. These documents can be found at:

http://devel oper.intel.com/desi gn/chi psets/appl notes/index.htm#rdram — Select “ Application Notes”

13
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3.2. 82803AA (MRH-R) Quadrant Layouts

The quadrant layouts shown should be used to conduct routing analysis. These quadrant layouts are also
designed for use during component placement.

Figure 1. 82803AA (MRH-R) 324-MBGA Quadrant Layout (topview)

Clocks / Miscillaneous

MRH-R
324 - mBGA

Channel B RDRAM Interface
(Master Interface)
(eoepIaU] J21SBIN)
9delaIU| NVYAY V [suueyd

Expansion Channel
(Slave Channel)

quadrant_mrh-r

14 Design Guide



Intel® 840 Chipset Platform MEC

Printed Circuit Board Description

The perfect matching of transmission line impedance and uniform trace length are essential for the Direct
RDRAM interface to work properly. Maintaining 28 Q +10%) loaded impedance for every RSL
(Rambus* Signaling Level) signal has changed the standard requirements for trace width and prepreg
thickness across Intel® 840 chipset platforms and Memory Expansion Card designs.

A Memory Expansion Card printed circuit board stack-up recommendation calls for six layers. However,
the MEC design depends on the memory capacity required. The PCB stackup must be designed to
achieve the following calculated board characteristics (see examples below):

Table 1. PCB Calculated Parameters

Parameter Min Max Notes
Propagation delay: So [ps/in] (outer layers) 150 160 3
Propagation delay: Sy [ps/in] (inner layers) 175 185 3
Trace impedance: Zy [Q] (RSL signal layers: 28-ohm, £10%) 25.2 30.8 1,2

NOTES:
1. Required Dielectric: 4.1 to 4.3.
2. This is a strict requirement for routing all RSL signals.
3. Assumptions based on stack-up examples below.

The following stack-up examples allow for a uniform channel impedance of 28 Q +10%. Typically, to
achieve 28 Q nominal impedance with a standard prepreg will require wider traces (i.e., 28 milswide
with 7 mil standard prepreg thickness). Wider traces can make it difficult to break out of and break into
the rows of RSL signals on the MRH-R. To reduce the trace width, athinner prepreg isrequired. This
thinner prepreg allows smaller trace widths to meet the 28 Q +10%) nominal impedance requirement
(i.e., 18 mil wide traces).

The figure below is an exampl e stack-up that can be used to design an MEC using the MRH-R
component.

e Assumptions
— Example stack-up should meet the RSL impedance requirement of 28 Q +10% on inner/outer
signa layers.
— Recommend routing all RSL signals referenced to a GND plane to insure proper current return
paths.
— 18 mil wide RSL traces on inner and outer layers.

Figure 2. Example 6-layer RDRAM-based MEC PCB Stackup

Design Guide

OO Outer Signal Layer (1.4 mils)
4.5 mils -- PREPREG
I  P\WR/GND Plane (1.4 mils)
5 mils -- CORE
Z=28ohms T Inner Signal Layer #1 (1.4 mils)
(10% tolerance) 34.6 mils -- PREPREG
on Outer & Inner . .
Layers OO T Inner Signal Layer #2 (1.4 mils)
5 mils -- CORE
I GND Plane (1.4 mils)
4.5 mils -- PREPREG
OO 1 Outer Signal Layer (1.4 mils)

Total board thickness = 62 mils

15
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3.4. MEC Component Placement

Notes:
1. The component placements and layouts shown in the following figure are conceptual diagrams.
2. Thetrace length limitation between critical connectionsis addressed later in this document.
3. Thefiguresarefor reference only.

Figure 3. Example 8 RIMM/2 MRH-R MEC Component Placement

| RIMM Connector | | RIMM Connector |

| RIMM Connector | | RIMM Connector |

DRCG DC-DC DRCG
MRH-R Converter MRH-R
DRCG DRCG

| RIMM Connector | | RIMM Connector |

| RIMM Connector | | RIMM Connector |

S —

mrhr_placement_1

3.5. RDRAM Interface

The Direct RDRAM Channel is a multi-symbol interconnect. Due to the length of the interconnect, and
the frequency of operation, this busis designed to allow multiple command and data packets to be
present on asignal wire at any given instant. The driving device sends the next data out before the
previous data has left the bus.

The nature of the multi-symbol interconnect forces many requirements on the bus design and topol ogy.
First and foremost, a drastic reduction in signal reflections is required. The interconnect transmission
lines must be terminated at their characteristic impedance, or the signal reflections resulting from a
mismatch in impedance will degrade signal quality. These reflections will reduce noise, timing margins,
and the maximum operating frequency of the bus. Potentially, the reflections could create data errors.

Due to the tolerances of components such as PCBs, connectors, and termination resistors, there will be
noise on the interconnect. In this multi-symbol interconnect, timings are pattern dependent due to the
reflections interfering with the next transfer.

Additionally, coupled noise can greatly affect the performance of high-speed interfaces. Just as in source
synchronous designs, the odd and even mode propagation velocity change creates skew between the
clock and data or command lines; this reduces the maximum operating frequency of the bus. Efforts must
be made to significantly decrease crosstalk, as well as the other sources of skew.

To achieve these bus requirements, the Direct RDRAM channel is designed to operate as a transmission
line. All components, including the individual RDRAMS, are incorporated into the design to create a
uniform bus structure that can support repeater hubs running at 800 MegaT ransfers/second (MT/s).
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Direct RDRAM Layout Guidelines

The signals on the Direct RDRAM Channel are broken into three groups: RSL signals, CMOS signals,
and clocking signals.

e RSL Signas
— DQA[8:0]
— DQBJ8:0]
— RQ[7:0]

e CMOS Signals
— CMD (high-speed CMOS signals)
— SCK (high-speed CMOS signals)
— SIO

e Clocking Signals
— CTM
— CTM#
— CFM
— CFM#

RSL Signal Routing — MEC ‘Expansion’ Channels and ‘Stick’ Channels

The ‘stick’ channel RSL signals from the 82803AA (MRH-R) enter the first RIMM (on either side),
propagate through the RIMM, and then exit on the opposite side. The signals continue through the
second RIMM until terminated at V1ggy- All unpopulated slots must have continuity modulesin place to
ensure that the signals propagate to the termination. However, the MRH-R has the added feature of
allowing for its ‘stick’ channels to be powered-down if not in use, thus, avoiding the popul ation of
continuity modules. For example, ‘stick’ channel A can be populated with RIMMs and ‘stick’ channel B
can be powered off if not used.

Refer to http://www.rambus.com/htmi/direct_docs.html for more information regarding the Direct
RDRAM technology.

To maintain anominal 28 Q trace impedance, the RSL signals must be wider and is affected by whether
the RSL channel is routed on inner or outer layers (asymmetrical stripline vs. microstrip).

e Outer Layer Routing: For outer layer (microstrip) RSL routing, an 18 mil wide trace will allow for
a 28-ohm channel impedance if using the RDRAM-based MEC stack-up example defined in
E. RSL trace widths of 14-15 mils can be used with the SDRAM-based MEC stack-up example
defined in To control crosstalk and odd/even mode velocity deltas, there must be a 10 miil
ground isolation trace routed between adjacent RSL signals. These 10 mil ground isolation traces
must be connected to ground with aviaevery 1”. A 6 mil gap is required between the RSL signals
and the ground isolation trace. These signals must be length matched to £10 mils from the MRH-R
to the first RIMM and +£2 mils between the RIMM s using the trace length matching methodsin
Section To ensure uniform trace lines, trace width variation must be uniform on al RSL
signals at every neck-down for each line section.

e Inner Layer Routing: For inner layer (asymmetrical stripline) RSL routing, the same routing
methods apply as described for outer layer routing. shows an RDRAM-based MEC stack-
up example using 14-15 mil wide RSL traces when routing on inner layers.

All RSL signals must have the same number of vias. It may be necessary to place viason RSL signals
where they are not necessary to meet this vialoading requirement (i.e. dummy vias).

17
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Figure 4. General RSL Signal Routing Guidelines

Figure 5.

MECC

Stub length from "T" to 36 Q
termination resistor is 50 mils

maximum \ 36 Q+1%

. » MRH-R
1.8V
MECC to "T"
L2=6.5"to 7.0" 36.Q +1%
) / T 1
Channels: 28 Q, 18 mil Length from "T" to MRH-R

ball is 450 mil to 750 mil

RSL_Sig_Routing

RSL (Outer Layer) Routing Diagram

18 mils

6 mils
10 mils

6 mils

18 mils

6 mils

10 mils

6 mils

RSL Signal Trace

Ground

Space

RSL Signal Trace

Ground

Space

Figure 5shows a top view of the trace width/spacing requirements for the RSL signals when routing on

outer layers.
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Table 2. Recommended Trace Lengths

Route From To Min Max Notes
Expansion Channel Card Edge Fingers Resistor-T 6.5" 7.0" 12,4
Expansion Channel Resistor - T MRH-R 0.45” 0.75” 1,2
Expansion Channel Resistor - T Resistor 0.00” 0.05” 1,2
Stick Channel MRH-R 1% RIMM 1" 6” 2,3
Stick Channel 1% RIMM 2" RIMM 0.4” 0.45" 2,3
Stick Channel 2" RIMM Termination 0" 3 2,3

NOTES:

1.
2. These numbers apply to both ‘expansion’ channels A & B.

3.

4. These lengths include the RSL length matching as described in Section 4.5.4.

Design Guide

These numbers are all preliminary.

These numbers apply to a 2RIMM per ‘stick’ channel implementation.
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3.5.2. RSL Signal Layer Alternation

All RSL signals must alternate layers as they are routed through the channel. A signal routed on a
particular side from the MRH-R to the first RIMM socket must be routed on a different side from the
first RIMM to the second RIMM. Signals can be routed on either layer from the last RIMM to the
termination resistors.

Figure 7. RSL Signal Layer Alternation

Signal B
Signal A
Can be routed on
R R | either layer. Ground
I I isolation is
M M REQUIRED!
82803AA| . . . M M
MRH-R /
_|
. - e
. Signal A :% 3
...... - =
= z
. B =}
Signal B S

----- Signal on Layer X
Signal on Layer Y

NOTE: Signals can be routed on either layer from the last RIMM to the termination resistors.

3.5.3. RSL Termination Recommendation

All RSL signals must be terminated to 1.8V (Vterm) on the Memory Expansion Card using 27 Q +1% or
28 Q +2% resistors at the end of both the ‘expansion’ channel opposite the MCH and at the end of the
‘stick’ channels opposite the MRH-R. Resistor packs are acceptable.

Vterm must be decoupled using very high speed bypass capacitors (one 0.1 uF ceramic chip capacitor

per two RSL lines) near the terminating resistors. Additionally, two 100 uF tantalum capacitors of bulk
capacitance are required. The trace length between the last RIMM and the termination resistors should be
lessthan 3". Length matching in this section of the channel is not required. The Vterm power island
should be at LEAST 50 mils wide. This voltage does not need to be supplied during a Suspend-to-RAM
sleep state.
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Figure 8. Direct RDRAM Termination
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R-packs

\

RSL
Signals

Figure 9. Direct RDRAM Termination Example
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3.5.4. Length Matching Methods

For greater routing flexibility, the RSL signals require the following trace length matching methods:
¢ pad-to-pad length matching between the MCH and MRH-R
¢ pad-to-pin length matching between the MRH-R and the first RIMM connector.

If only the PCB trace lengths between the balls of the MCH and the balls of the MRH-R are matched,
then the length mismatch between the pad (on the die) and the ball for each component has not been
compensated. However, given the package dimension for each component, which is a representation of
the length from the pad (on the die) to the ball, the PCB routing can compensate for this package
mismatch.

The RSL channel requires matching trace lengths from pad-to-pad and pad-to-pin to within £10 mils.

Given the following definitions:
e Package Dimension (AL pkg): arepresentation of the length from the pad to the ball.
e Board TraceLength (Lysg): the trace length on the board.

e Nominal RSL Length: the length to which all signals are matched. (Note: there is not necessarily a
trace that isEXACTLY to nominal length, but all RSL signals must be matched to within £10 mils
of anominal length). The Nominal RSL Length is an arbitrary length (within the limits of the routing
guidelines) to which all the RSL signals will be matched (within £10 mils).

Figure 10. RDRAM Trace Length Matching Example From MRH-R to RIMM

L1, L2 -> Package Dimensions Ff T
L3, L4 -> Board Trace Length M M
L1 M M
|
82803AA[MRH-R] c c
Package
| 0 0
| ‘\ : n n
MRH-R L Ball ' L3 n n
Die / : / e e
@ --]-..-- . c c
) ' V
. L t t
. t
' 0 0
--------------------- i X e
| \ r
L2 L4 N

22 Design Guide



In

tel

Figure 11.

Intel® 840 Chipset Platform MEC

RDRAM Trace Length Matching Example From MCH to MRH-R

L1, L2, L7, L8 -> Package Dimensions
L3, L4, L5, L6 -> Board Trace Length

L1 L7
82840 MCH L3 L5 MRH-R Package
Package ' N
A : /1
MCH Balll : E Ball MRH'R
. L~ : : N Die
Die o : : ~Sa
@y : 2| i -]

REREE mip--
o i

T --------- O -------- I T

I \ / I
L2 L4 L6 L8

RDRAM_MRHR_TrLen
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RSL Signals Length Match Requirement

For ‘stick’ channel RSL length compensation on a Memory Expansion Card, L1 and L3 must be length
matched to L2 and L4 within +10 mils. SeeFigure 10]

For ‘expansion’ channel RSL length matching on a Memory Expansion Card, L7 and L5 must be length
matched to L8 and L6 on the MEC within +10 mils. See[Figure 11]

Compensated Trace Length Calculation

ALpcg = (ALpke * Package trace veLocity) / PCBrrace veLociTy

The PCB trace length for each signal is a calculated value, and may vary with designs. The actual
package trace velocity is between 177 ps/in and 183 pg/in. The nominal trace velocity of 180 ps/in can be
used when cal culating the compensated PCB trace length. The PCBrrace veLociTy 1S board dependent.

Refer to the appropriate Intel® 840 chipset datasheet for specific package information. NOTE: The
ballout document provides signal lengths NORMALIZED TO THE LONGEST RSL trace length in
each package. They do not represent the actual lengths from pad to ball. By normalizing to the longest
length, you can reduce PCB trace lengths. Additional RSL length matching on the MEC is recommended,
with the 82803AA (MRH-R). Package information for these componentsis also included in the
datasheet.
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The RSL signal lengths (ALp«g) can be normalized to either the shortest or longest RSL trace using the
equation below:

Equation 1. Normalized Trace Length Calculation

New Alpkg = Old Alpkc - ALrsL

Outer Layer Routing

The RDRAM clocks (CHx_CTM, CHx_CTM#, CHx_CFM and CHx_CFM#) must be longer than the
RDRAM signals due to their increased trace velocity (because they are differential and routed as a pair)
when routed on outer layers. To calculate the length for each clock, the following formula should be
used:

Clock Length = Nominal RSL Signal Length (package + motherboard + card) * 1.021

Using this formula, the clock signals will be 21mils/inch longer than the Nominal Length. The
lengthening of the clock signals, to compensate for their trace vel ocity change, ONLY appliesto the
routing of RSL signals on outer layers.

Inner Layer Routing

The clock signals should matched in length to the RSL signals when routing on inner layers. Refer to the
clock section for more detailed Direct RDRAM clock routing guidelines.

VIA Compensation

As described in Section all RSL signals must have the same number of vias As aresult, each
trace will have 1 via (near the BGA pad) because some of the RSL signals must be routed on either top,
bottom, or inner. It will be necessary to place “dummy” viaon all signals that are routed on the top or
bottom layers. The electrical characteristics between “dummy” and “real” vias are not exact, so
additional compensation is needed on each signal that has “ dummy” vias.

Each signal with dummy via must have 25 mils of additional trace length. The additional 25 milstrace
length must be added to the signal, routed on the top layer, after length matching. Real via= Dummy via
+ 25 mils of trace length.

It isimportant to compensate for the electrical difference between “real” and “dummy” vias.
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Figure 12. ‘Dummy’ via vs. ‘Real’ via

3.5.6.

“DUMMY Via” “REAL Via”

( Trace \' ( Trace

‘\— Via Via -/A /
Trace

dum_vias_vs_real.v

Direct RDRAM Reference Voltage

Figure 13. Secondary RDRAM Channel RAMREF Generation
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Vterm
CHA_VREFA =
CHA_VREFB =
82803AA R1
[MRH-R] R3 160 2%

100
CHB_VREFA f=—y

CHB_VREFB ANV
R2
560 2%
Cl—= C2=—¢=
AuF AuF C3 — RIMM| C4 RIMM

AuF | AuF |

The Direct RDRAM reference voltage (RAMREF), must be generated on all ‘stick’ channels as shown in
RAMREF should be generated from aresistor divider network using 2% tolerant resistors and
the values shown. It is also recommended that a separate RAMREF resistor divider network for each
MRH-R stick channel be implemented. Additionally, RAMREF should be routed with a 6 mil trace and
must be properly decoupled. Finally, as shownin anoise filter network composed of a 100 Q
series resistor with two 0.1 uF caps is recommended near the CHx_VREF/EXVREF/RAMREF pinson
the memory repeater hubs and near the CHx_REF pins on MCH.
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Figure 14. Primary RDRAM Channel RAMREF Generation

'A' = Noise Filter

MCH

é : =
100 Q : E T2 :
: AT 0.1uF @| 0.LuF=- |&| |
1T ? FoLS B
: 82803AA AT — % T ;
e = . MRH-R 0.1 uF | 0.1uF :
i T T
E|: - =
c|: J
Vterm cl:
5 LN
' CHA_RAMREF_F

! CHA_RAMREF_T

§ Vterm
lTl

...........................................................

Notes:
1. Only one MCH 'expansion' channel topology is shown.
2. Second 'expansion’ channel would follow a similar RAMREF
3. Block diagram is not to scale.

ramref_gen_pri-ch

The generation of RAMREF on ‘expansion’ channelsis different. To account for potential differences
between RAMREF and GND on the motherboard and on the memory expansion cards, it is recommend
using source generated RAMREF for the expansion channels.

That is, the RAMREF signal is generated at the memory repeater hubs on the MEC and sent down the
memory expansion card connector to the MCH, and a separate RAMREF is generated on the
motherboard at the MCH and sent up the memory expansion card connector to the repeater hubs (the
signal names are EXVREFx for MRH-Rs where x-denotes the channel). (refer to

There are four pins defined on the MEC connector pinout example to allow for this RAMREF passing.
These pins are:

CHx_RAMREF_TM - RAMREF from the MEC to the chipset
CHx_RAMREF_FM - RAMREF from the chipset to the MEC
**x-denotes expansion channel A&B

The voltage divider networks consists of DC elements as shown in

The RAMREF divider network should be placed as close to the memory repeater hubs asis practical to
get the benefit of the common mode power supply effects. However, the trace spacing around the
RAMREF signals must be a minimum of 25 mils to reduce crosstalk and maintain signal integrity. In
addition the RAMREF signals should be routed with 6-8 mil wide traces.
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High-speed CMOS Routing

Due to the synchronous requirements between the RSL signals and the high-speed CMOS signals, these
signals should be routed as part of the RSL channel. They must be impedance matched and properly
terminated (using a different termination scheme than the RSL signals — See

It is not necessary to perform the length matching calculation for the high-speed CMOS signals as
described in section For routing on the motherboard, the mismatch between the CMOS signals
(CMD and SCK) and the RSL signals should be kept to within 1200 mils (1.2 in) due to atiming
requirement between CMOS and RSL signals during NAP Exit and PDN Exit. Route the CMOS signals
PCB trace length equal to the nominal RSL PCB trace length.

The high-speed CM OS signals should be routed in their respective positions in the channel. The only line
section that does not have strict PCB length matching requirements is the section from the last RIMM to
the termination resistors.

Figure 15. High-speed CMOS Termination on MRH-R Stick Channels

CHx_CMD
CHx_SCK

**y-denotes stick channel A&B R2 % 39 ohm

MRH-R

ramref_gen_sec-ch

Figure 16. High-speed CMOS Termination from MCH to MRH-R

Design Guide

MRH-R
MCH
Vterm
|
CHy_CMD
CHy_SCK R1 91 ohm
** y-denotes expansion channel A&B

R2 39 ohm

HS_CMOS_term
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A CMOS voltage must be supplied to each RIMM. This CMOS voltage is used by the RDRAMs CMOS
interface. This voltage (Vcmos) must be 1.8V and the maximum load is 3mA. Additionally, this voltage
must be supplied during Suspend-to-RAM. Therefore, Vterm and V cmos cannot be generated from the
same source (i.e., they can not be the same power plane). Due to the low power requirements of Vcmos,
it can be generated by a36 Q / 100 Q resistor divider from 2.5V.

SI0 Routing

The SIO signal isabi-directional signal that operatesat 1 MHz. The SIO signal entersthe first RIMM,
propagates through all the devices (this signal is buffered by each device) on the RIMM, and then exits
the RIMM. The signal continues through the rest of the existing RIMMs and is terminated.

A pull-down through a 2.2KQ-10KQ resistor must be placed on the end of the SIO signal as shown in

The SIO signal isrouted with a5 mil wide 60 ohm trace with no need for ground isolation. Route from
CHx_SIO (MRH-R) to SIN (RIMM #1 — Pin B36), from SOUT (RIMM #1 — Pin A36) to
SIN (RIMM# 2 — Pin B36), and from SOUT (RIMM #2 — Pin A36) to termination.

Figure 17. SIO Routing Example

3.5.7.2.

28

82803AA
[MRH-R]

CHXx SIO)

\ 4

SIN SOUT SIN SOuUT
2.2K-10K ohm

Suspend-to-RAM Shunt Transistor

When the Intel® 840 chipset-based systems enter or exit Suspend-to-RAM, power will be ramping to both
the MCH and MRH-R (i.e., they will be powering-up or powering-down). When power is ramping, the
state of the their CM OS outputs is not guaranteed. Therefore, the MCH could drive the CMOS signals
through the MRH-R and issue some CMOS commands. One of the commands (the only one the
RDRAMs would respond to) is the powerdown exit command. To avoid the MCH inadvertently taking
the RDRAMSs out of power-down due to the CMOS interface being driven during power ramp, the SCK
(CMOS clock) signal must be shunted to ground when the MCH and MRH-R are entering and exiting
Suspend-to-RAM. This shunting can be accomplished by placing the NPN transistor between the MRH-
Rsand RIMMs as shown in The transistor should have a Cyy, Of 4 pF or less (i.e.,
MMBT3904LT1).
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In addition, to match the electrical characteristics on the SCK signals, the CMD signals need adummy

transistor placed between the MRH-R and RIMMSs. This transistor’ s base should be tied to ground
(i.e., ways turned off).

To minimize impedance discontinuities, the traces for the CMD and SCK signals should have a

neckdown from the routed trace widths down to 5 mil traces for 175 mils on either side of the SCK/CMD
attach points as shown in

Figure 18. RDRAM CMOS Shunt Transistor

5 mils
wide

MRH-R oS

2.5V 175 | 175 |

mils M

25V M

25V 2N3904 S
47K

PWROK

2N3904 L
lSN74LVCO7A SCK

MRH-R

n
]l

2N3904
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Direct RDRAM Ground Plane Reference

All RSL signals must be referenced to GND to provide an optimal current return path. The ground
reference must be continuous from MRH-R to the RIMM connectors. This may require a GND reference
island on the plane layers closest to the RSL signals. Choose the reference island shape such that power
delivery to components is not compromised.

By referencing all RSL signals to ground, the optimized current return paths will improve system
operation.

Figure 19. MEC with Ground Reference for RSL Signals
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Vterm Capacitors

Extend GND PLANE Vterm Layer Not Shown
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Vterm Capacitors

The ground reference island under the RSL signals MUST be connected to the ground pins on the
RIMM connector and the ground vias used to connect the ground isolation on the outer layers.

The direct RDRAM ground plane reference must be continuous to the Vterm capacitors.

The ground reference island under the RSL signals must be continuous from the last RIMM to the
back of the termination capacitors. The return current will flow through the VVterm capacitors into
the ground island and under the RSL traces. Any split in the ground island will provide a sub-
optimal return path.
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3.5.9. Direct RDRAM Connector Compensation

The RIMM connector inductance causes an impedance discontinuity on the Direct RDRAM channel.
This may reduce voltage and timing margin.

Note: The examplesin this section are specific to the Intel® 820 chipset. The Intel® 840 chipset only supports 2
RIMMs per Direct RDRAM channel.

In order to compensate for the inductance of the connector, approximately 0.65 pF0.85 pF
compensating capacitive tab (C-TAB) is required on each RSL connector pin. This compensating
capacitance must be added to the following connector pins at each connector:

LCTM
LCTM#
RCTM
RCTM#
LCFM
LCFM#
RCFM
RCFM#
LROW[2:0]
RROW[2:0]
LCOL[4:0]
RCOL[4:0]
RDQA[8:0]
LDQA[8:0]
RDQB[8:0]
LDQB[8:0]
SCK

CMD

This can be achieved on the motherboard by adding a copper tab to the specified RSL pins at each
connector. The target value is approximately 0.65 p—0.85 pF. The copper tab area for the recommended
stackup was determined through simulation. The placement of the copper tabs can be on any signal layer,
independent of the layer on which the RSL signal is routed.
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is an approximation that can be used for calculating copper tab area on an outer layer.

Equation 2: Approximate Copper Tab Area Calculation

Length*Width = Area = Cpiate * Thickness of prepreg / [(€o) (er) (1.1)]

€0 = 2.25 x 10™® Farads/mil
€, = Relative dielectric constant of prepreg material
Thickness of prepreg = Stackup dependent

Length, Width = Dimensions in mils of copper plate to be added
Factor of 1.1 accounts for fringe capacitance.

Different stackups require different copper tab areas. The table below shows example copper tab areas.

Table 3. Copper Tab Area Calculation

; : Separation - Air Gap .
Dielectric Minimum Compensating Copper Tab :
Thickness _Between Ground between Capacitance in (C.TAB) Area c TAB_Shape
Signal Trace Signal & : (mils)
©) & Copper Tab | flood GND Flood pF (A) In sq mils
140Lx20 W
4.5 6 10 6 0.65 2800
70Lx40W

Based on the tab area is 2800 sq mils, where g, is4.2 and D is 4.5. These values are based on
2116 prepreg material.

The tab dimensions are based on copper area over the ground plane. The actual length and width of the
tabs may be different due to routing constraints (e.g., if tab must extend to center of hole, or antipad);
however, each copper tab should have equivalent area. For example, the copper tabs in have
the following dimensions, when measured tangent to the antipad:

Inner C-TAB = 140 (length) x 20 (width)
Outer C-TAB = 70 (length) x 40 (width)

The following figures show a routing exampl e of tab compensation capacitors. Note that the capacitor
tabs must not interrupt ground floods around the RIMM pins, and they must be connected to avoid
discontinuity in the ground plane as shown. The following figures are examples from the Intel® 820
Chipset Platform and consequently display two RIMMs.
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Figure 20. Connector Compensation Example
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Figure 21. Section Al, Top Layer
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Figure 22. Section Al, Bottom Layer
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Figure 23. Section B1, Top Layer

(mm)

(mm)

mm) mm) mm)

R

() () (mm )

1 Refer to Figure 29. Ground flood removed from picture for clarity.
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Figure 24. Section B1, Bottom Layer
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1 Refer toFi gure 29. Ground flood removed from picture for clarity.
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MEC Clock Topologies

4.1.

Figure 25. RDRAM-based MEC Clock Topology

RDRAM Clock Routing Guidelines

The following figure shows a conceptual overview of the RDRAM-based Memory Expansion Card clock
topologies.

Figure 26
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MECC to BGA Ball = 6"

Notes:

) MRH
\ Note 3

1. See CFM/CFM# Trace Length Calculation Equation.
2. See CTM/CTM# Trace Length Calculation Equation.
3. 48 Q, 350 mils Maximum neck-down for package Zo compensation

PCLKA
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CK133 REFCLKXx REFCLKA
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© - M ™ CHB_CFM
CHx_CTM# c MMM CHB_CFM#
82840 +_ L L
CHx_CFM# ' PCLKB
SYNCLKB DRCG
REFCLKB
[N 0=
1. Only one MCH channel clock topology is shown.
2. Additional MCH channel would follow similar clock topology.
MEC_CLK_Topo
. Additional RDRAM Clock Routing Guidelines
MECC 280Q
CFM/CFM# Note 1 1" Max Termination
CTM/CTM# Note2 | g~

28Q I 0.1 uF

CLK_Route_Guide_2
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Equation 3: CFM/CFM# Trace Length Calculation

CFM_Length = (RSL_Channel_Nominal_Length + CFM_Package_Compensation_Length) * 1.021

CFM#_Length = CFM_Length

Equation 4: CTM/CTM# Trace Length Calculation

CTM_Length = (RSL_Channel_Nominal_Length + 0.5" +
CTM_Package_Compensation_Length) * 1.021

CTM#_Length = CTM_Length

Notes:
1. Inboth the equations above the variable “RSL_Channel_Nominal_Length” correspondsto “L2” in
Each set of differential clocks must be matched to within + 2mils.
Add 21mils of trace to the differential clock routing per 1000 mils of RSL signal trace.
48 Q, 350 mils MAX neck-down for package Zo compensation.

Refer to Section 4.5.4 for more information on CFM_Package Compensation_Length and
CTM_Package Compensation_Length.

ok~ 0D

4.1.1. MRH-R to DRCG

VddIR and REFCLKXx routing Example
e REFCLKA, REFCLKB
e VddIR — Used as areference for 1.8V signaling

An example of VddIR and REFCLKXx routing is shown in the following figure.

Note: If a1.8V plane can be placed near the DRCG, then the VddIR pin should be connected directly to the
1.8V plane. However, it may be difficult to place a1.8V power plane near the DRCG. If necessary, a
1.8V trace (VddIR) should be routed from the 1.8V plane near the MRH-R to the DRCG and routed as
shown in the figure below. VddIR should be decoupled with a0.1 uF, 0603, ceramic chip capacitor.

The maximum routing length for REFCLKx is8”.
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Figure 27. MRH-R to DRCG Routing Example 1

Note:

6 mils 6 mils 6 mils 6 mils 6 mils
- - - - -
GROUND .q¢——p{ VddiR q—p\m%_» REFCLKX | a¢——pw| GROUND ¢2.1 mils
A 6 mils 6 mils 6 mils 6 mils
4.5 mils

Y

GROUND/POWER PLANE ¢1.4 mils

routing_mrhr-drcg_1

VddIPD, PCLKM and SYNCLKN Routing Example
e PCLKMA, PCLKMB
e SYNCLKNA, SYNCLKNB
e VddIPD — Used as areference for 1.8V signaling

An example of VddIPD, PCLKM and SYNCLKN routing is shown in the following figure.

If a 1.8V power plane can be placed near the DRCG, then the VddIPD pin should be connected directly
to the 1.8V plane. However, it may be difficult to place a 1.8V power plane near the DRCG. If necessary,
a 1.8V trace (VddIPD) should be routed from the 1.8V plane near the MRH-R to the DRCG and routed
as shown in the figure below. VddIPD should be decoupled with a 0.1 uF, 0603, ceramic chip capacitor.
If VddiPD is connected to the 1.8V plane using avia (e.g., atrace is not run from the clock syntesizer),
PCLK/M and SYNCLK/N (HCLKOUT and RCLKOUT) must still be routed differentially and ground
isolated.

This group of signals needs to be routed on the same routing layer. If these signals need to be on different
signal planesto escape the MRH-R, they must via back to the same layers after escaping the BGA
package. If these signals must have vias, the via counts for these signals must be matched. Further, these
signals should be run on the signal layer adjacent to the ground layer (refer to section .

The maximum routing length for PCLKMx and SYNCLKNXx is6”. Additionally, PCLKMx and
SYNCLKNx must be length matched (to each other) within 50 mils.

Figure 28 . MRH-R to DRCG Routing Example 2

Design Guide

6 mils 5 mils 6 mils 6 mils 6 mils 6 mils
- - - - - -
GROUND ‘4_>| VddiPD |<_> GROUND %_M_» GROUND tz'l mils
7y 6 mils 6 mils 6 mils 12 mils 6 mils
4.5 mils
Y
GROUND/POWER PLANE ¢1.4 mils
Routing_mrhr-drcg_2
41




Intel® 840 Chipset Platform MEC

4.1.2.

42

intel
DRCG to RDRAM Channel

The Direct RDRAM clock signals (CHx_CTM/CTM# and CHx_CFM/CFM# on both the expansion and
stick channels) are high-speed, impedance matched transmission lines. The Direct RDRAM clocks begin
at the end of the Direct RDRAM channel and propagate to the MRH-R end as CHx_CTM/CTM# (see
figure below), where it loops back as CHx_CFM/CFM# (see figure below) to the RDRAMs and
terminates at the end of the channel. If any signals are routed on the top or bottom layers of the board
from the 2™ RIMM to the termination, then the ground reference island must extend to the ground side of
the termination capacitors.

Figure 29 . Direct RDRAM Clock Routing Recommendations

(A) = CHx_CTM/CTM# RIMM to MRH-R
(A) = CHx_CFM/CFM# MRH-R to RIMM
(B) = RIMM to RIMM for Clocks

(C) = RIMM to Termination

(D) = DRCG to RIMM

—P» cFMICFM#

------- P> ctmicTmg

DRCG
MRH-R
L
‘ ®
0’-3.80" 04" — ©
05 o_6
Table 4. Direct RDRAM Clock Routing Length Guidelines (Recommended Trace Lengths)
Clock From To Length (inches) Section?
DRCG 2" RIMM Connector 0.000 — 6.000 D
CHx_CTM/
CHx_CTM# RIMM RIMM 0.400 - 0.500 B
1% RIMM Connector MRH-R 0.000 - 3.800 A
MRH-R 1% RIMM Connector 0.000 - 3.800 A
CHx_CFM/
CHx_CFM# RIMM RIMM 0.400 - 0.500 B
2" RIMM Connector Termination 0.000 - 3.000 C
NOTES: Notes:

1. These are preliminary numbers.
2. Stick channel A&B.
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Trace Geometry

In Sections labeled ‘A’ and ‘D’ in the clock signals (CHx_CTM/CTM# and
CHx_CFM/CFM#) are routed differentially as shown in Sections ‘A’ and ‘D’ inthe
differential routing example are 14 mils wide to meet the 28-ohm channel impedance with the stack-up
shown. There must be a ground isolation trace routed around the differential clock pair (22 mils wide as
shown in the example in [Figure 30). The ground isolation traces must be connected to ground with avia
every 1”. A 6 mil gap is required between the clock signals (NOTE: this gap should be exactly 6 mil —
not greater, not less). When these clocks are routed on outer layers, 0.021 inches of CLK trace per 1 inch
of RSL trace length must be added to compensate for the clocks faster trace velocity on outer (stripline)
layers.

For section ‘B’ and ‘' C’, the clock signals are routed non-differentially as shown in . The clock signalsin
this section, as shown in the routing example, must be routed with 18 mil wide traces to meet the 28-ohm
channel impedance. In addition, a ground isolation trace and a 6 mil gap between the ground isolation
traces and the clock signals (same routing as RSL signals) is recommended. The ground isolation traces
must also be connected to ground with aviaevery 1”.

Trace Length

For the section labeled “A” in (1¥ RIMM to 82803AA (MRH-R) and 82803AA (MRH-R) to
1¥ RIMM), CHx_CTM/CTM# and CHx_CFM/CFM# must be length matched within +2 mils (exact
trace length matching is recommended).

Package trace compensation (as described in section B.5.1.7), via compensation (as described in section
and RSL signal layer alternation (also described in section Error! Refer ence sour ce not found.)
must also be completed on the clock signals. Additionally, 0.021 inches of CLK per 1 inch of RSL trace
length must be added to compensate for the clocks faster trace velocity as described in section

For the line sections labeled ‘B’ in [Figure 29](RIMM to RIMM), the clock signals must be matched
within £2 milsto the trace length of every RSL signal. Exact length matching is preferred.

For the line section labeled ‘D’ (DRCG to 2™ RIMM) the CHx_CTM/CTM# must be length matched
within £2 mils (exactly is recommended), and for the section labeled ‘C’, £ 2 mil trace length
matching isrequired for the CHx_CFM/CFM# signals.

Notethat thetotal trace length matching for the entire CHx_CTM/CTM# signal traces (Sections

A+B+D) and for the CHx_CFM/CFM# signal traces (Sections A+B) is+2 mils (exact length
matching isrecommended).
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Figure 30. Differential Clock Routing Diagram

In

tel

22 mils 14 mils

14 mils

22 mils

Ground CLOCK

6 mils 6 mils

A

4.5 mils

CLOCK#

- Ground
6 mils

I 2.1 mils

A

4.5 mils

Ground/Power Plane

¢ 1.4 mils

routing_diff-clock

Note: “CLOCK” stands for the signals CTM and CFM and “CLOCK#" stands for the signals CTM# and CFM#.

Figure 31. Non-Differential Clock Routing Diagram

10 mils 18 mils

<&
<

»
»

10 mils

Ground

6 mils

CLOCK/CLOCK#

Ground

H i 2.1 mils
6 mils

A

4.5 mils

A

4.5 mils

Ground/Power Plane

¢ 1.4 mils

Routing_non-dif-clk

Note: “CLOCK” standsfor the signals CTM, CTM#, CFM and CFM#.

The CHx_CFM/CFM# differential pair signals require termination using either 27Q +1% ??the 1%
matches figure below?? or 28Q +2% resistors and a 0.1 uF capacitor as shown in the figure below.

Figure 32 . Termination for Direct RDRAM Clocking Signals CHx_CFM/CFM#

CFM

[
-

28Q - 2%
or
27Q - 1%

28Q - 2%
or
27Q - 1%

CFM#

R1
C1
CFM_Term
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4.1.3. DRCG Impedance Matching Circuit

The external DRCG impedance matching circuit is shown in

Figure 33 . DRCG Impedance Matching Network

‘”—_|_O
o T —<L—o

1

(¢}

o T

3.3v

To 3.3V DRCG FBead
Supply
Connection

Table 5. DRCG Impedance Matching Network Values

Component Nominal Value Notes
Co 0.1uF Decoupling caps to GND
Rs 39 Ohms Series termination resistor
Rp 51 Ohms Parallel termination resistor
Cwmip1, Cmip2 0.1 uF Virtual GND caps
Rt 27 Ohms End of channel termination
Ce 4-15 pF Do Not Stuff, leave pads for future use
FBead 50 Ohms @ 100 MHz Ferrite bead
CD2 0.1 uF Additional 3.3V decoupling caps
CBulk 10 uF Bulk cap on device side of ferrite bead

NOTES: (Notes are for above table and Eigure 33 ]

1. Notetheremoval of the origina EMI capacitors between the junctions of Rs, Rp and ground.
These capacitors had minimal impact on EMI and increased DRCG output jitter by approximately

2X.

2. Theintent of component Cr isto decouple CLK, but early data shows this actually increases device
jitter. Cr should not be stuffed at this time.

3. Theferrite bead and 10 uF bulk cap combination improves jitter and helps to keep the clock noise
away from the rest of the system. The additional 3.3V capacitors (CD2) have aminor positive
impact, but the ideal values have not been extensively optimized. There is a possibility that one or
both CD2 caps can be removed in future board revisions.

Design Guide
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0.1 uF capacitors are better than 0.01 pF or 0.001 pF caps for DRCG decoupling. Most decoupling
experiments that replaced 0.1 pF caps with higher frequency caps ended up with the same or worse
jitter. Replacing the existing 0.1 pF caps with higher frequency capsis not advised.

Chrig & 0.1 puF hasimproved jitter versus C;q a 100 pF. However, thiswill increase the latency
coming out of a stop clock or tri-state mode.

Rs, Re, Rt were modified to improve channel signal integrity through increasing CTM/CTM#
swing.

The circuit shown is required to match the impedance of the DRCG to the 28 Q channel
impedance. More detailed information can be found in the Direct RDRAM Clock Generator
Specification.

The previously recommended 15 pF capacitors on CTM/CTM# should be removed. The 4 pF
capacitor shown in the figure should not be assembled (*no-stuff”).

DRCG Layout

Figure 34 . DRCG Layout Example

Cmid - 100pF

EMI Cap - 4pF
Do Not Stuff
M/CTM# route on

71 bottom layer

Rs-39Q
(Keep trace from DRCG to
Rs VERY short)

(Kee;ﬁgc-eﬁr]éngRs

to Rp short) Decoupling Cap - 0.1uF

(Place VERY Near DRCG 3.3V Pin!)
Decoupling Cap - 0.1uF
(Place VERY Near DRCG 3.3V Pin!)

3.3V-DRCG Flood
Flood 3.3V-DRCG on the top layer
around DRCG. Flood MUST include:
4 DRCG Power Pins
4 0.1uF Capacitors
1 10uF Bulk Capacitor

1 Isolation Ferrite Bead

Decoupling Cap - 0.1uF

Decoupling Cap - 0.1uF (Place VERY Near DRCG 3.3V Pinl)

(Place VERY Near DRCG 3.3V Pin!)

Bulk Decoupling Cap - 10uF
(Place Near DRCG)

Ferrite Bead J

(L22 in Reference Schematics)
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DRCG+ and DRCG Frequency Selection

To alow additional flexibility in board design, Intel has enabled a variation of the DRCG labeled the
DRCG+. The device has the same specifications, pinout and form-factor as the existing DRCG device
document at www.rambus.com.

The DRCG+ and DRCG Mult[0:1] select table is shown in The Mult[0:1] pins can be hardwired
for a multiple ratio of 6:1. This is made possible because the reference clock supplied by the MRH-Rs
has already undergone a static 1:6 division ratio, making the net ratio 1:1. Support for 300 MHz and
400 MHz memory busis unchanged.

Table 6. Mult[0:1] Ratio Selection

Mult[0:1] DRCG DRCG+
0:0 4:1 9:2
0:1 6:1 6:1
1:0 8:3 16:3
11 8:1 8:1

The jitter timing specifications shown in are expanded to encompass both the component
specification (for DRCG or derivative products) and the channel specification. Follow the component
specification when measuring jitter at the DRCG output resistor. Follow the channel jitter guidelines
when measuring jitter at the MCH or at the termination for CFM/CFM# on the RDRAM interface.

Table 7. Jitter Timing Specifications

Design Guide

Output Frequency (MHz) Component Jitter Channel Jitter
Specification Guidelines
400 50 ps 100 ps
300 70 ps 120 ps

DRCG+ and DRCG frequency selection can be accomplished by strapping the MULT[0:1] pins as shown
in the figure below. This will alow the selection of the 6:1 multiplier that is required by an MRH-R
Memory Expansion Card.

47



Intel® 840 Chipset Platform MEC

48

Figure 35. DRCG+ Frequency Selection

u?
DRCG

Ol O N
S EIREIES

+3.3V

VDDIR
VDDIPD

REFCLK
PWRD#
STOPB#
MULTO
MULT1
SO

S1

GND
PCLKM
SYNCLKN
NC

GNDO2
GNDP

VDDO1
VDDO2

GNDC
GNDI

VDDP

VDDC

CLK
CLKB#

12 GNDO1

21|
_4)
_8]
_S|

drcg+freq_sel
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MEC Power Delivery

5.1.

Design Guide

Definitions

Term

Suspend-To-RAM
(STR)

Full-power
operation

Suspend operation

Core power rail

Standby power rail

Derived power rail

Description

In the STR state, the system state is stored in main memory and all unnecessary
system logic is turned off. Only main memory and logic required to wake the
system remain powered.

During full-power operation, all components on the Memory Expansion Card
remain powered. Note that full-power operation includes both the full-on
operating state and the S1 (processor stop grant state) state.

During suspend operation, power isremoved from some components on the
Memory Expansion Card. MEC designs may support the following two suspend
states. Suspend-to-RAM (S3) and Soft-off (S5).

A power rail that is only on during full-power operation.

A power rail that is on during suspend operation (these rails are also on during
full-power operation). Theserails are on at all times (when the power supply is
plugged into AC power). These standby rails are created with a DC-to-DC
converter on the MEC.

A derived power rail is any power rail that is generated from another power rail
using an on-board voltage regulator or a voltage divider network. For example,
1.8VCMOS can be derived (on the MEC) from either the 2.5V generated using a
DC-to-DC converter.
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Power Delivery Block Diagrams

The figure below shows the power delivery architecture for RDRAM based Memory Expansion Cards.
This power delivery architecture supports the Suspend-to-RAM (STR). During STR, only the necessary
devices are powered and this includes main memory. In order to ensure that enough power is available
during STR, athorough power budget must be completed. The power requirements must include each
device's power requirements, both in suspend and in full-power. The power regquirements must be
compared against the power budget supplied by the power supply.

Figure 36. MRH-R/RDRAM MEC Power Delivery

Note:

50

POWER SUPPLY

33V 5V 5V 12V -
EIEA R | MRH-R/
12V MEM DC_DC Converter RDRAM Core 2.5V
(12V to 2.5V) S0, S1, S3 :I/
M 1.8V MRH-R 1.8V
1.8V Reg Vterm 1.8V RAMBUS CMOS 1.8V
E S0, 51 SO, 1, 53
; SPD_VCC(2.5V) MRH-R SPD
C EEPROM 2.5V
S0, S1 DRCG 3.3V Core
C 3.3V 1.8V Interface
. FRU-3.3V EEPROM S0, s1
S0, S1

The examplesin this Design Guide are only examples. There are many power distribution methods that
achieve the similar results. It is critical, when deviating from these examplesin any way, to consider the
effect of the change.

The examplesin this Design Guide show power planes provided by a WTX power supply. The
requirements for each power plane are documented in this section. In addition, an on-board DC-to-DC
converter is recommended if using aWTX power supply in order to minimize the number of power pins
required on the MECC. Systems implementing an ATX power supply should follow these guidelines, but
make the appropriate power rail changes where needed.

12v

InaWTX system, the 12V plane powers the DC-to-DC converter on the MEC. The DC-to-DC converter
provides either 2.5V or 3.3V as an output depending on the type of MEC: RDRAM. This implementation
minimizes the number of power pins required on the MECC.

This power rail should only be implemented in a WTX design. ATX designs should implement a
different power delivery method to generate 2.5V or 3.3V on the MEC. In addition, this power rail needs
to remain powered during STR.

Design Guide
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2.5V
The 2.5V power planeis used to power the RDRAM core and the VCMOS rail on the RDRAMS.

The RDRAM core requires 2.0 A maximum average DC current at 2.5V. On the Memory Expansion
Card power delivery examples shown, the 2.5V plane is derived from an onboard DC-to-DC converter.

The VCMOSrrail requires amaximum of 3 maat 1.8V. Thisrail MUST be powered during Suspend-to-
RAM and therefore, the VCMOS rail should NOT be connected to the VVterm rail. Because the current
requirements of VCMOS are so low, aresistor divider can be used to generate VCMOS from 2.5V,
which remains powered during STR. The resistor divider should be 36 Q (top) / 100 Q (bottom).
Additionally, it should be bypassed with a 0.1 uF chip capacitor.

1.8v

The 1.8V plane powers the MRH-R core and the RDRAM termination resistors (Vterm). This 1.8V
power plane should be generated on the motherboard via a switching regulator.

The MRH-R component requires 1.8V for operation. The MRH-R is not required to be powered during
the Suspend-to-RAM state. Thus, this power rail can be powered off when the system entersan STR
state.

The termination resistors do NOT need to be powered during the STR state.

SPD_VCC (2.5V)

In an RDRAM-based MEC using MRH-R components, this power plane implements a 2.5V signaling
environment on the MRH-R SMBus interface used for Serial Presence Detect. This power rail should be
generated on the motherboard.

This pinisused to power the EEPROMSs on the RIMMSs. In addition, the SMBus pullups should be
pulled up to SPD_VCC. This power rail should be powered off when entering the Suspend-to-RAM state
to avoid leakage into the MRH-R component, which is also powered off.

3.3V

The 3.3V plane powers the DRCG cores and FRU EEPROMs on the MEC. This power rail can be
powered off when entering an STR state.

In the power delivery examples shown, 3.3V planeis derived from an onboard DC-to-DC converter to
minimize the number of power pins required on the MECC.
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64/72Mbit RDRAM Excessive Power Consumption

Some 64/72Mbit RDRAM devices interpret non-broadcast, device-directed commands as broadcast
commands. These commands are the SET_FAST _CLOCK, SET_RESET, and CLEAR_RESET
commands. RDRAM devices consume more current during these initialization steps than during normal
operation. Asaresult of these devices accepting device directed commands as broadcast commands, the
device can not be reset/initialized serially. All devices must be reset/initialized simultaneously.

Thiswill result in excessive current draw during the initialization of memory. The amount of excessive
current depends on the number of devices and frequency used. There are two potential solutions:

e Reduce the clock frequency during initialization (Section
¢ Increase the current capability of the 2.5V voltage regulator (Section .

Option 1—Reduce Clock Frequency During Initialization

Tieasingle core well GPO with a default high state to both the SO and S1 pins of the DRCG (i.e., tie SO
and S1 together and then connect to a GPO as shown in the figure below. When the core power supply to
the system is turned on, the DRCG will enter atest mode and the output frequency will match the input
REFCLKx frequency. For details on this DRCG mode, refer to the latest DRCG specification. By
slowing down the DRCG output clock, the power consumption from the 2.5V power supply will be
reduced. After the SetR/CIrR commands have been issued, BIOS drives the GPO low to bring the DRCG
back to normal operation.

Note that if a default low GPO is used on power up, al the devices may come up in the standby state at
full speed; this requires more power.

Figure 37. GPO Workaround Diagram

5.3.2.

52

SO

GPO —— DRCG
S0

This solution requires BIOS modifications.

Option 2—Increase Current Capability of 2.5V Voltage
Regulator

The second implementation option requires that the 2.5V power supply be modified to maintain the
maximum amount of current required by two fully populated RDRAM channelsin an Intel system.
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5.4. Vterm/Vdd Power Sequencing Requirement

Power MUST NOT be applied to the RDRAM termination resistors (Vterm) prior to applying power to

the RDRAM core . This can be guaranteed by placing a Schottky diode between 1.8V and 2.5V as shown
in the following figure.

Figure 38. 1.8V and 2.5V Power Sequencing (Schottky Diode)

1.8V

2.5V

5.5. 8 RIMM / 2 MRH-R Memory Expansion Card Thermal
Considerations

Table 8. RDRAM Power States

Power State Power (W)
ActiveRead 1.524
ActiveWrite 1.683
Active 0.3922
Standby 0.2677
NAP 0.0111

Assumptions:

1. Latest RDRAM 2.5V Current Specification values.
2. 72-Mbit& 144-Mbit components (x18 devices)
3. Vddmax = 2.65V

Table 9. RDRAM Pool Definition

Power State # of Devices
ActiveRead 2
Active 14
Standby 112
NAP 0

Assumptions:

1. Assumes NO NAP for best performance.

2. *Refer to the Intel 840 Chipset: 82840 Memory Controller Hub (MCH) datasheet for pooling
information.
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Table 10. MEC RDRAM Power (Reads)

Power State Power(W)
ActiveRead 3.048
Active 55
Sthy 30.0
NAP 0.0
Total 38.5

Table 11. MEC RDRAM Power (Writes)

Power State Power(W)
ActiveWrite 3.366
Active 5.5
Stby 30.0
NAP 0.0
Total 38.8

Table 12. MEC Discrete Device Power

Device Power(W) Quantity Total (W)
DRCG (3.3V) 0.33 4 1.32
DRCG (1.8V) 0.0036 8 0.0288
MRH-R (1.8V) 2.2 2 4.4
Vterm (1.8V) 0.054 88 4752

Table 13. MEC Power Rails

Rail Current (A) Power(W)
1.8V 5.100444444 9.1808
3.3V 0.4 1.32
25V 15.53568 38.8
12V 3.8 45.7

NOTES:
1. 2.5V is derived from a DC-DC converter with 12V input.
2. Efficiency of the DC-DC converter is rated at ~85%.
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6. Design Checklist

Use the following checklist asafinal check to ensure the motherboard incorporates solid design
practices. Thislist isonly areference. For correct operation, al of the design guidelines within this
document must be followed.

Table 14. Signal List

RSL Signals High-Speed CMOS Serial CMOS Signal Clocks
Signals
e DQA[8:0] e CMD e SIO e CTM
« DQBI[8:0] e SCK o CTM#
e RQ[7:0] e CFM
o CFM#

e Ground Isolation Well Grounded
— Viato ground every ¥z inch around edge of isolation island
— Viato ground very % inch between RIMMs
— Viato ground every ¥2inch between RSL signals
— Viabetween every signal within 100mils of the MRH edge and the connector edge
— No unconnected ground floods
— All ground isolation at lest 10 mils wide
— Ground isolation fills between serpentines
— Ground isolation not broken by C-TABs
— Ground isolation connects to the ground pins in the middle of the RIMM connectors
— Ground isolation vias connect on all layers and should NOT have thermal relieves
— Ground pinsin RIMM connector connect on all layers
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Vterm Layout Yields Low Noise (Decoupling Vtermis CRITICAL!)

— Solid Vterm island is on top routing layer — do not split this plane

— Ground idand (for ground side of Vterm caps) is on top routing layer

— Termination Resistors connect DIRECTLY to the Vterm island on the routing (without vias)

— Decoupling capacitors connect to top layer Vterm island and top routing layer ground island
directly (see layout example)

— Use AT LEAST 2 vias per decoupling capacitor in the top layer ground island

— Use2x 100 uF TANTALUM capacitors to decouple Vterm (AluminunVElectrolytic capacitors
aretoo slow!)

— High-frequency decoupling capacitors MUST be spread-out across the termination island so
that all termination resistors are near high-frequency capacitors

— 100uF TANTALUM capacitors should be at each end of the Vterm island

— 100uF TANTALUM capacitors must be connected to Vterm island directly

— 100uF TANTALUM capacitors must have AT LEAST 2 vias/cap to ground

— Vtermisland should be 50 — 75 mils wide

— Vtermisland should not be broken

— If any RSL signals are routed out of the 2nd RIMM (towards termination) on a plane
referenced to power (even for a short distance), ensure Ground Reference Plane (on the power
plane) is continuous under the termination resistors/capacitors

— Ensure current path for power delivery to the MRH does not go through the Vterm island

— Refer to section B.5.3Jin this design guide.

CTM/CTM# Routed Properly

— CTM/CTM# are routed differentially from DRCG to 2nd RIMM

— CTM/CTM# are ground isolated from DRCG to 2nd RIMM

— CTM/CTM# are ground referenced from DRCG to 2nd RIMM

— Viasare placed in ground isolation and ground reference every %%’

—  When CTM/CTM# serpentine together, they MUST maintain EXACTLY 6 mils spacing

Clean DRCG Power Supply

— 3.3V DRCG power flood on the top layer. This should connect to each

— High frequency (0.1uF) capacitors are near the DRCG power pins. One capacitor next to each
power pin.

— 10 pF bulk tantalum capacitor near DRCG connected directly to the 3.3V DRCG power flood
on the top layer

— Ferrite bead isolating DRCG power flood from 3.3V main power also connecting directly to
the 3.3VDRCG power flood on the top layer

— Use 2 vias on the ground side of each

Good DRCG Output Network Layout

— Seriesresistors (39 Q) should be VERY near CTM/CTM# pins

— Paralld resistors (51 Q) should be very near seriesresistors

— CTM/CTM# should be 18mils wide from the CTM/CTM# pinsto the resistors

— CTM/CTM# should be 14 on 6 routed differential as soon as possible after the resistor network

—  When not 14 on 6, the clocks should be 18 milswide

— Ensure CTM/CTM# are ground referenced and the ground reference is connected to the
ground plane every %2’ to 1”

— Ensure CTM/CTM are ground isolated and the ground isolation is connected to the ground
plane every ¥2" to 1”

— Ensure 15 pf EMI capacitors to ground are removed (the pads are not necessary and removing
the pads provides more space for better placement of other components)

— Ensurethe 4 pf EMI capacitor described in Section[4.1.3]of this design guide isimplemented
(but do not assemble the capacitor)
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Good RSL Transmission Lines

RSL traces are 18 milswide

RSL traces do NOT neckdown when routing into the RIMM connector

If tight serpentining is necessary, 10 mil ground isolation MUST be between serpentine
segments (i.e., an RSL signal CAN NOT serpentine so tightly that the signal is adjacent to
itself with no ground isolation between the serpentines).

RSL traces do not cross power plane splits. RSL signals must also not be routed on next to a
power plane splits

Uniform ground isolation flood is exactly 6 mils from the RSL signals at all times

ALL RSL, CMD/SCK, and CTM/CTM#/CFM/CFM# signals have C-TABs on each RIMM
connector pin

All RSL signals are routed adjacent to a ground reference plane. Thisincludes all signals from
the 2nd RIMM to the termination. If signals are routed referenced to ground from the 2nd
RIMM to the termination, the ground reference plane MUST extend under these signals AND
include the ground side of the Vterm decoupling capacitors.

CTABs must not cross (or be on top of) power plane splits. They must be ENTIRELY
referenced to ground.

At least 10 mils ground flood isolation required around ALL RSL signals (ground isolation
must be exactly 6 mils from RSL signals). Ground flood recommended for isolation. This
ground flood should be as close to the MRH-R (and the 1st RIMM) as possible. If possible
connect the flood to the ground balls/pins on the MRH-R/connector.

Clean Vref Routing

Ensure 1 x 0.1 uF capacitor on Vref at each connector
Use 10 mil wide trace (6 mils minimum)
Do not route Vref near high-speed signals

RSL Routing

All signals must be length matched within £10 mils of the Nominal RSL Length as described in
the in this design guide. Ensure that signals with a dummy via are compensated correctly.

ALL RSL signals must have 1 via near the MRH BGA pad. Signals routed on the bottom layer
of the MB will have a“real via” while signals routed on the top layer will have a“dummy via’.
Additionally, al signals with adummy via must have an additional trace length of 25 mils.
Signals must “aternate” layers as shown in the in this design guide.

RSL Routing

Clock signals must be routed as a differential pair. The traces must be 14 milswide and 6 mils
apart (with no ground isolation) when they are routed as a differential pair. For very short
sections under the MRH-R and under the 1st RIMM, it will not be possible to route as a
differential pair. In these sections, the clocks signals MUST neck up to 18 mils and be ground
isolated with at least 10 mils ground isolation.

Clock signals must be length compensated (using the 1.021 Iength factor described in

Section . Ensure that each clock pair is length matched within £2 mils.

When clock signals serpentine, they must serpentine together (to maintain differential 14:6
routing).

22 mils ground isolation required on each side of the differential pair.
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7.

Intel® 840 Chipset Platform MEC

Schematics

Design Guide

NOTE: The MRH-R MEC schematics shown assume the MRH-R component is completely powered off
if support for Suspend to Ram (S3) is required.
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MRH-R DEVICE 2 DRCG SYNTHESIZERS
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