
http://www.linuxjournal.com

http://www.cyclades.com/lja

FEATURES

52 F I X I N G W E B S I T E S W I T H

G R E A S E M O N K E Y
This Web site is fine, but it could
really use....Redesign other people’s
Web sites to your liking, on the fly.
N I G E L M C FA R L A N E

60 T H E L I N U X F O R K I D S

E X P E R I M E N T
Can a Linux dad get his family moved
to a secure, easy-administration
box without giving up the fun
and education?
PA U L B A R R Y

66 P R O J E C T U TO P I A
Traditionally, Linux has protected
the hardware from the user for
security. When apps need to
understand the hardware, new
modes of communication are arising.
R O B E R T L O V E

INDEPTH

72 B U I L D I N G A C A L L C E N T E R

W I T H LT S P A N D S O F T

P H O N E S
You don’t need to put a phone and
a computer at every desk. Use a
soft phone on an almost-thin client.
M I C H A E L G E O R G E

78 D I R T C H E A P 3 - D S PAT I A L

A U D I O
Look out! Bogey at 10 o’clock high!
Your next simulator project can
have realistic sound above, below
and on all sides of the user.
E R I C K L E I N , G R E G S . S C H M I D T,

E R I K B . T O M L I N A N D

D E N N I S G . B R O W N

88 TA M I N G T H E TO D O
Is your computer helping you get
work done, or making more work
for you? Try these software options
to get your act together.
S A C H A C H U A

EMBEDDED

42 D E V E L O P M E N T O F A

U S E R - S PA C E A P P L I C A T I O N

F O R A N H I D D E V I C E ,

U S I N G L I B H D
We won’t show you the money, but
we’ll show you the code for the
device that shows you the money.
E O I N V E R L I N G

TOOLBOX

14 AT T H E F O R G E
Ruby on Rails
R E U V E N M . L E R N E R

22 K E R N E L KO R N E R
Network Programming in the Kernel
P R A D E E P PA D A L A A N D

R AV I PA R I M I

34 C O O K I N G W I T H L I N U X
Trekking through the Desktop Jungle
M A R C E L G A G N É

38 PA R A N O I D P E N G U I N
Limitations of shc, a Shell Encryption
Utility
N A L N E E S H G U A R

COLUMNS

47 L I N U X F O R S U I T S
The Only Silo
D O C S E A R L S

96 E O F
The Universal Internet Time Source
A D R I A N V O N B I D D E R

REVIEW

71 T H E B O O K O F P O S T F I X

D O N M A R T I

C O V E R S T O R Y
66 P R O J E C T U TO P I A

Linux’s long-standing tradition of isolating the user from the hardware might be

great for security, but it can be a real pain when you just want to snag some

photos from your camera or check for wireless access points you’re allowed to

use. But there is a plan. This month, Robert Love covers Project Utopia.

O C T O B E R 2 0 0 5 I S S U E 1 3 8

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 3

D E PA R T M E N T S

4 F R O M T H E E D I TO R

6 L E T T E R S

10 U P F R O N T

70 N E W P R O D U C T S

81 A D V E R T I S E R S I N D E X

95 M A R K E T P L A C E

Internet radio doesn’t have to tie you
to the computer. Dan Rasmussen, Jon
Morgan and Paul D. Norton have
updated a classic radio design with
the ability to tune in Internet streams.

Stuart Brorson covers the electronic
design automation tools needed to
work with schematics and crank out
professional-looking board designs
that you can build yourself or order
from a PCB house.

If you think your favorite pinball
machine is complicated now, try
interfacing it to a Linux box. John Bork
covers digital I/O techniques to help
you connect to useful devices such as
solenoids and switches.

HACK ANYTHING

N E X T M O N T H

NetworkManager gets notifications of new
network hardware and available access
points, so all you have to do is find a hotspot
(page 66).

C O V E R P H O T O :

BETHANY PASEMAN

http://www.linuxjournal.com

4 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

A Linux desktop shouldn’t be a kick in the teeth.

B Y D O N M A R T I

T
o understand the IT indus-
try, start with On Bullshit
by Harry G. Frankfurt. Prof.
Frankfurt poses, but doesn’t

answer, the question of why there is
so much B.S. in our society. He
compares his subject to shoddy con-
struction, and that’s an analogy we
can work with, because in software
we’re working at the thrilling edge
of language and craftsmanship. We
have the tools for dealing with B.S.
in computer languages. Try to B.S. a
compiler and that’s a bug. It’s time
to tackle the B.S. problem head-on
and start reporting bugs in human
communications too.

Consider this filler, I mean
essay, to be a bug report on the
big companies that are doing
Linux for the desktop. “Let’s
‘position’ Linux as a simplified
desktop for ‘transactional users’ ”,
they say. That’s right—employees,
if your company gives you Linux,
that means Management thinks
you’re a human servlet. Decision-
makers and content creators get a
proprietary desktop OS.

Of course, offending the
employees’ pride might not show
up on a TCO spreadsheet. But no
executive would want to admit to
running a division full of transac-
tional, replaceable, outsourceable
“human resources”.

But what about Clayton
Christensen, disruptive innovation
and The Innovator’s Dilemma?
Doesn’t the cheap, good-enough
contender always grow the fea-
tures and stability it needs to win?
Yes, when it lets in the customers
left pressing their noses against
the Expensive Stuff Store window.
In the 1980s Macintosh let you do
layouts even if you couldn’t afford
phototypesetting. In the 1990s

Linux let you put up a Web server
without blowing the price of a
Coupe de Ville on a UNIX box.

But selling less-capable prod-
ucts to customers who can get the
good stuff doesn’t fly. Seen an
F-20 at an air show lately? It was a
capable airplane, but it was posi-
tioned as an “export fighter” for air
forces that weren’t allowed to
have, or couldn’t afford, the F-16.
Naturally, countries held out for
the “real” fighter. Information free-
dom ideals can go only so far when
vendors patronize Linux cus-
tomers. “Aww, the little transaction
worker filled out a Web form! Isn’t
that cute?”

Desktop Linux marketing is
doing more harm than good, but
work is under way to make Linux
out-perform the other OSes. Robert
Love’s Project Utopia is bringing
together the desktop interface and
the necessary tweaking of hardware
to make things work smoothly, not
just securely (page 66).

Michael George has an example
of how a thin-client environment
almost works to solve a problem,
but the project needed one key
local app, the soft phone. See a
hybrid approach to a VoIP station
that works as a phone and a PC on
page 72.

One of the projects where soft-
ware excellence, not transaction-
workerism, has triumphed, is
Mozilla Firefox. Mozilla expert and
author Nigel McFarlane died last
month, leaving us with one last
article (page 52). Let Firefox serve
as an example for the standards the
desktop is coming to meet because
all B.S. aside, it has to.

Don Marti is editor in chief of Linux
Journal.

EDITOR IN CHIEF Don Marti, ljeditor@ssc.com

EXECUTIVE EDITOR Jill Franklin, jill@ssc.com

SENIOR EDITOR Doc Searls, doc@ssc.com

SENIOR EDITOR Heather Mead, heather@ssc.com

ART DIRECTOR Garrick Antikajian, garrick@ssc.com

TECHNICAL EDITOR Michael Baxter, mab@cruzio.com

SENIOR COLUMNIST Reuven Lerner, reuven@lerner.co.il

CHEF FRANÇAIS Marcel Gagné, mggagne@salmar.com

SECURITY EDITOR Mick Bauer, mick@visi.com

CONTRIBUTING EDITORS

David A. Bandel • Greg Kroah-Hartman • Ibrahim Haddad •

Robert Love • Zack Brown • Dave Phillips • Marco Fioretti •

Ludovic Marcotte • Paul Barry • Paul McKenney

PROOFREADER Geri Gale

VP OF SALES AND MARKETING Carlie Fairchild, carlie@ssc.com

MARKETING MANAGER Rebecca Cassity, rebecca@ssc.com

INTERNATIONAL MARKET ANALYST James Gray, jgray@ssc.com

REGIONAL ADVERTISING SALES

NORTHERN USA: Joseph Krack, +1 866-423-7722 (toll-free)

EASTERN USA: Martin Seto, +1 905-947-8846

SOUTHERN USA: Laura Whiteman, +1 206-782-7733 x119

INTERNATIONAL: Annie Tiemann, +1 866-965-6646 (toll-free)

ADVERTISING INQUIRIES ads@ssc.com

PUBLISHER Phil Hughes, phil@ssc.com

ACCOUNTANT Candy Beauchamp, acct@ssc.com

LINUX JOURNAL IS PUBLISHED BY, AND IS A REGISTERED

TRADE NAME OF, SSC PUBLISHING, LTD.

PO Box 55549, Seattle, WA 98155-0549 USA • linux@ssc.com

EDITORIAL ADVISORY BOARD

Daniel Frye, Director, IBM Linux Technology Center

Jon “maddog” Hall, President, Linux International

Lawrence Lessig, Professor of Law, Stanford University

Ransom Love, Director of Strategic Relationships, Family and Church

History Department, Church of Jesus Christ of Latter-day Saints

Sam Ockman, CEO, Penguin Computing

Bruce Perens

Bdale Garbee, Linux CTO, HP

Danese Cooper, Open Source Diva, Intel Corporation

SUBSCRIPTIONS

E-MAIL: subs@ssc.com • URL: www.linuxjournal.com

PHONE: +1 206-297-7514 • FAX: +1 206-297-7515

TOLL-FREE: 1-888-66-LINUX • MAIL: PO Box 55549, Seattle, WA

98155-0549 USA • Please allow 4–6 weeks for processing

address changes and orders • PRINTED IN USA

USPS LINUX JOURNAL (ISSN 1075-3583) is published monthly by

SSC Publishing, Ltd., 2825 NW Market Street #208, Seattle, WA

98107. Periodicals postage paid at Seattle, Washington and at

additional mailing offices. Cover price is $5 US. Subscription rate

is $25/year in the United States, $32 in Canada and Mexico, $62

elsewhere. POSTMASTER: Please send address changes to Linux

Journal, PO Box 55549, Seattle, WA 98155-0549. Subscriptions

start with the next issue. Back issues, if available, may be ordered

from the Linux Journal Store: store.linuxjournal.com.

LINUX is a registered trademark of Linus Torvalds.

n F R O M T H E E D I T O R

rrmm --rrff //oopptt//bbss
OCTOBER 2005

ISSUE 138

mailto:ljeditor@ssc.com
mailto:jill@ssc.com
mailto:doc@ssc.com
mailto:heather@ssc.com
mailto:garrick@ssc.com
mailto:mab@cruzio.com
mailto:reuven@lerner.co.il
mailto:mggagne@salmar.com
mailto:mick@visi.com
mailto:carlie@ssc.com
mailto:rebecca@ssc.com
mailto:jgray@ssc.com
mailto:ads@ssc.com
mailto:phil@ssc.com
mailto:acct@ssc.com
mailto:linux@ssc.com
mailto:subs@ssc.com
http://www.linuxjournal.com
http://www.linuxjournal.com

http://www.sbei.com

Ultimate Linux Box Cooling?

I was impressed by the desire to make a
quiet PC—more people should complain
to their OEMs/System integrators about
this—it is the only way it will be fixed
[“Ultimate Linux Box”, August 2005]. But
I am not sure that removing 100% of the
airflow is a positive thing for overall sys-
tem performance or stability.

I have seen motherboards designed where the
processor power supply components can
exceed the design rating from the suppliers
without airflow. Even if things don’t go bad
enough to cause system stability issues, it can
damage the processor by allowing the CPU
voltage to go out of specification. Intel is so
concerned about this—they are telling moth-
erboard manufacturers to add circuits to the
motherboard to monitor the temperature of
the processor power supply and modulate the
clock of the processor if things get too hot.
See Section 9.4 in download.intel.com/
design/Pentium4/guides/30235604.pdf.

Thanks—and looking forward to more sub-
minute kernel compiles.

--

Robin

Whenever you experiment with any alternate
cooling method, always measure and log
temperatures.—Ed.

Linux/BSD Confusion

My child is almost two in the picture. The
laptop is running KDE on FreeBSD. He
quite plainly CALLED it “Linux”. My wife
and I both looked at each other and at him,
and he said it again. He has also said
“Ethernet”. We are afraid, very afraid.
Thanks for a (decade of a) great publication!

--

kurtseel

More on the ULB

I’m used to reading the annual Ultimate PC
article in Maximum PC magazine each year,
and they give a great deal of detail and
many more pictures than the Ultimate
Linux Box article [August 2005]. However,
the big difference between the two articles
is that your Ultimate Linux Box does much
more customization.

The big question is, if I want to replicate the
Ultimate Linux Box, where would I get
details on the custom-made power supply
cooler modifications?

I went to the Resources page, but many of
the things I would need to access require that
I’m a Linux Journal subscriber. I have sub-
scribed to the Linux Journal in the past, but
for the last year, I simply run out and pur-
chase Linux Journal.

--

Dean

Articles from that issue will be openly avail-
able soon. We’ll look for more info on the
power supply mods.—Ed.

Ten Years of Progress

The shock has worn off from seeing my
name in Linux Journal, and I’m able to
write again. [See “Ten Years Ago in Linux
Journal”, July 2005, page 14.] Has it been
ten years since “Novice to Novice”
appeared in Linux Journal? It must be. I
stopped writing the column after my first
child was born and—bless it!—if it’s not
his tenth birthday already.

And how much has Linux changed (and
stayed the same) in ten years. Though I
haven’t quite made the switch away from
Microsoft, I did recently install Fedora
Core. In ten years, installation has vastly
improved since when I used version 0.99 of
Slackware. The Fedora installation was rela-
tively fast and idiot-proof. Everything
worked except the modem, and although
I’m finally getting DSL installed, I wanted
modem access as backup. Turns out I have a
PCTel modem, which seems unsupported by
the 2.6+ kernel and by the drivers currently
out there in Webland.

(Hmmm, could be another “Novice to
Novice” here.)

But what’s blown me away about Linux are

the live CDs. Knoppix and the variations are
fantastic not only for emergencies but also
just to learn *nix, which is why I got
involved with Linux originally.

Ah well! Thanks for remembering me after
all these years. Yes, I still have the 0.99
Slackware CD with the grinning Bob. It just
seems right to keep it.

--

Dean

Become Boring and Pigeonholed,
Please

Hi. I’ve been a subscriber to LJ for several
years, and I’ve never figured out your
niche. Servers, or desktops? Sysadmins,
application programmers, system develop-
ers or home users? Your intention seems
to be: appeal to everyone. Unfortunately
for me, you cover so many different
topics that there is very little in each issue
for me.

If you can’t figure out your niche, I’ll let my
subscription expire in January.

--

jh

When different areas of information technol-
ogy can stop learning from each other, we’ll
pick a “niche”.—Ed.

Ergonomic Comments on Ultimate
Linux Box

The case on the cover for your Ultimate
Linux Box is gorgeous [August 2005].
Beautiful. Amazing.

It also blows. It’s a terrible design. Ghastly.
Ideal for a computer show, but awful to use.
There’s no leg room on the box. For many
folks, that would mean sitting obliquely or
too far from the keyboard—both would
cause strain.

6 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n L E T T E R S

http://www.linuxjournal.com

• Intel® Pentium 4 Processor® at 3.0E GHz
• 1U Rackmount Chassis
• 512MB PC3200 DDR
• Maxtor 80GB Serial ATA Hard Drive
• Dual Onboard Gigabit NIC’s $959 or lease for $33/mo.

• Includes CDROM, Floppy and Video
• Lifetime toll free tech support
• 3 Year Warranty

Reduce Your Deployment and Support Costs

www.mbx.com
1.800.688.2347

Intel, Intel Inside, Pentium and Xeon are trademarks and registered trademark of Intel Corporation or its subsidiaries in the United States and other countries. Lease calculated for 36 months, to approved business customers. Prices and
specifications subject to change without notice. Setup fee may apply to certain branding options. Motherboard Express Company. 1101 Brown Street Wauconda, IL. 60084.

MBX is the leader for your server and appliance manufacturing needs

$999 or lease for $38/mo.

• Same Configuration as Above
• Custom Branded With Your Logo
• Worldwide Deployment and Support
• Custom Branded Packaging Available
• Configurations in 2U and 4U Available
• Custom OS and Software Install
• Custom Chassis Color Available
• No Minimum Quantity Required

Or Promote Your Brand

MBX is the leader in custom appliances. Many premier application developers have chosen MBX as
their manufacturing partner because of our experience, flexibility and accessibility. Visit our website or
better yet, give us a call. Our phones are personally answered by experts ready to serve you.

SMB-OEM 512.indd 1 4/11/2005 4:17:46 PM

http://www.mbx.com

Tactile response acts as a brake reducing the
amount of impact on the end of the fingers
(while, agreed, increasing the finger travel),
so the keyboard used may actually increase
hand stress for some. Its placement isn’t
adjustable for height, and that can be catas-
trophic for arm stress.

On a much less important note, I’d point
out that the case puts the cooling up very
high indeed, into airspace often several
degrees hotter than the rest of the room.

--

Paul Pomerleau

The coolant loops need to run well above the
motherboard in order to get adequate con-
vective cooling. For daily use, you can build
a tall case without the monitor mounts or
keyboard shelf.—Ed.

Another Happy Reader

Here’s a photo of my son Merit (about 26-
months old) sitting on his trusty fire truck
checking out my July 2005 issue of LJ.
When he was done, he went back into the
office and picked up an Advanced C
Programming book!

--

tim

Pipe Tip

“Text Manipulation with sed” by Larry
Richardson had some useful hints [July
2005]. For instance, I wasn’t aware of the !
modification to the range field.

But writing to a file at the same time you are
reading it is decidedly dangerous. You are
depending on the pipe buffer between cat and
sed to hold the entire contents of the file.
You are also banking on the assumption that
cat will be started and allowed to fill its
buffer before the file is written and, there-
fore, truncated at zero length. A far better
way to do this is in two steps:

sed -e 's/$/ mycomputer/' < \

/etc/exports > tempfile \

&& mv tempfile /etc/exports

The mv command is executed only if sed
returns without problems. You don’t want to
be overwriting important files with the
wrong data!

--

Allen Brown

Her First Computer T-Shirt

My daughter (2.2-years old) made the transi-
tion. She was introduced to Potato Guy and
Tux Paint on my Linux box. On this day, she
learned everything she needed to know
about the mouse operations. A very proud
moment for me, she is on the road to becom-
ing a geek just like her daddy. Elizabeth Su
WOHID Certified (Wireless Optical Human
Interface Device), T-shirt awarded shortly
after. You can’t start them too young. This is
only the beginning for them. I am just happy
to be there.

--

Jesse Apple

8 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n L E T T E R S

Photo of the Month: a Linux Father’s Day

I had a great Father’s Day and hope all the
other open-source dads did too. Of course,
the best gift was Paige, my going-to-be-
seven-in-September daughter—and you
will see she painted Tux on a rock for me
this Father’s Day. She always has been a
good drawer, and her favorite program is
Tux Paint with Tux Racer a close second.

--

James M. Susanka

Photo of the month gets you a one-year
subscription or extension. Send photos to
ljeditor@ssc.com.

LLEETTTTEERRSS CONTINUED ON PAGE 94

mailto:ljeditor@ssc.com
http://www.linuxjournal.com

ABERDEENThe Straight Talk People
S I N C E 1 9 9 1

SM

888-297-7409
www.aberdeeninc.com/linux

YOU CAN BUY THESE NOW
OR WAIT TILL DELL FREEZES OVER

Trademarks are of their respective owners. lj010

1U Dual Opteron™ 4 SATA/SCSI
High performance dual server for top-of-the-line
processing power with ultra-dense storage
capacity.

• Dual AMD Opteron™ Processors w/HyperTransport
and 1MB Cache

• AMD 8000 Series Chipset w/64-bit Support
• Up to 16GB DDR-400 Reg. ECC Memory
• Up to 4 x 400GB (1.6TB) Hot-Swap SATA or

4 x 300GB (1.2TB) Hot-Swap SCSI Drives
• 400W AC Power Supply w/PFC
• 5-Year Limited Warranty

Starting at
$1,895

ABERDEEN STONEHAVEN A141

2U Dual Opteron™ 6 SATA/SCSI
The highest performing 2U server available for the
money. “Staggering ... Powerhouse Performance ...
Highest Webbench numbers we've seen to date” –
PC Magazine, December 27, 2004.
• Dual AMD Opteron™ Processors w/HyperTransport

and 1MB Cache
• AMD 8000 Series Chipset w/64-bit Support
• Up to 16GB DDR-400 Reg. ECC Memory
• Up to 6 x 400GB (2.4TB) Hot-Swap SATA or

6 x 300GB (1.8TB) Hot-Swap SCSI Drives
• 460W Hot-Swap Redundant Power Supply
• 5-Year Limited Warranty

Starting at
$2,875

ABERDEEN STONEHAVEN A261

3U Dual Opteron™ 8 SATA/SCSI
Gargantuan storage beast with a capacity of up to
3.2TB, room for a dual-height tape drive, at an
incomparable cost/TB ratio.

• Dual AMD Opteron™ Processors w/HyperTransport
and 1MB Cache

• AMD 8000 Series Chipset w/64-bit Support
• Up to 16GB DDR-400 Reg. ECC Memory
• Up to 8 x 400GB (3.2TB) Hot-Swap SATA or

8 x 300GB (2.4TB) Hot-Swap SCSI Drives
• 760W Hot-Swap Redundant Power Supply
• 5-Year Limited Warranty

Starting at
$2,975

ABERDEEN STONEHAVEN A381

1U Quad Opteron™ HPC
64-bit HPC environment workhorse server/cluster
node. Superior cooling with plenty of power to
handle any project.

• Quad AMD Opteron™ 800 Series Processors
• AMD 8000 Series Chipset w/64-bit Support
• Up to 32GB DDR-400 Reg. ECC Memory
• Up to 2 x 300GB (600GB) SCSI Hard Drives
• 500W Power Supply
• Ultra Cool with Superb Air Flow
• 5-Year Limited Warranty

Quads Starting at
$8,265

ABERDEEN STONEHAVEN A124

2U Quad Opteron™ 3 SATA/SCSI
Robust 64-bit server ideal for the HPC environment
as a high performance server. Able to provide all the
power and I/O for large databases and memory
intensive projects.
• Quad AMD Opteron™ Processors w/HyperTransport

and 1MB Cache
• AMD 8000 Series Chipset w/64-bit Support
• Up to 32GB DDR-400 Reg. ECC Memory
• Up to 3 x 400GB (1.2TB) Hot-Swap SATA or

3 x 300GB (900GB) Hot-Swap SCSI Drives
• 700W Power Supply
• Ultra Cool with Superb Air Flow
• 5-Year Limited Warranty

Quads Starting at
$8,125

ABERDEEN STONEHAVEN A234

4U Quad Opteron™ 8 SATA/SCSI
Best of both worlds, all-inclusive server with
enterprise-class 64-bit HPC Quad power along with
maximum storage capacity.

• Quad AMD Opteron™ Processors w/HyperTransport
and 1MB Cache

• AMD 8000 Series Chipset w/64-bit Support
• Up to 32GB DDR-400 Reg. ECC Memory
• Up to 8 x 400GB (3.2TB) Hot-Swap SATA or

8 x 300GB (2.4TB) Hot-Swap SCSI Drives
• 950W 3+1 Hot Swap Redundant Power Supply
• Ultra Cool with Superb Air Flow
• 5-Year Limited Warranty

Quads Starting at
$9,625

ABERDEEN STONEHAVEN A484

lj010.qxd 7/7/2005 11:57 AM Page 1

http://www.aberdeeninc.com/linux

1 0 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n U P F R O N T N E W S + F U N

>>>> Do you want to move to
OpenOffice.org but aren’t sure
what to expect? Are you trying
to convince friends and/or family
members to give OOo a try, but
they want to know about the
learning curve? If so, Bruce
Byfield’s article “OOo Off the
Wall: What New Users Need to
Know About OpenOffice.org”
(www.linuxjournal.com/article/
8443) is suggested reading.
Bruce sheds some light on OOo’s
“interface shortcomings” and
“the limits of its on-line help”,
as well as the “logic of its inter-
face design and the importance
of styles and templates in an
efficient work flow”.

>>>> Audio for Linux has come a long
way in the past couple of years,
and Dave Phillips continues his
tour of what’s new for musicians
and engineers, whether full-time
or part-time. In recent months, he’s
introduced us to FreeWheeling, “a
powerful loop-based performance
tool” (www.linuxjournal.com/
article/8445), as well as
QSynth and QJackCtl, GUI front
ends that “make Linux audio
tasks easier and faster, letting
you get straight to the music”
(www.linuxjournal.com/
article/8354).

>>>> Finally, Collin Park shares his
story of “How a Corrupted USB
Drive Was Saved by GNU/Linux”
(www.linuxjournal.com/article/
8366), offering hope to those of
us who have lost important data
and will lose it again.

After a long and difficult life, DevFS is final-
ly being removed from the Linux kernel.
Created by Richard Gooch, DevFS has been
around for years, and it represented a serious
attempt to cure the runaway /dev directory.
Developing DevFS was an uphill battle
against many detractors, but Richard did suc-
ceed in creating a very useful tool. In the end,
however, critics of DevFS won out, citing
“unfixable races” and other problems, and
Richard vanished from kernel development
completely. Greg Kroah-Hartman and others
then developed udev as a replacement for
DevFS. Some lingering sense of the 2.6 kernel
as a stable tree has made this decision slightly
controversial even now, but almost certainly
it’s not enough to influence the outcome.
Farewell DevFS—it was a valiant effort.

Recently, various folks have reported com-
pilation problems when trying to compile the
2.4 kernel with GCC version 4, and some
developers have posted patches to address these
issues; however, Marcelo Tosatti has stated that
it is simply too late in the day for these sorts of
patches to make it into the 2.4 tree. Unlike 2.6
development, the maintainers of 2.4, 2.2 and 2.0
have not decided to follow suit and abandon the
idea that their trees must aim for stability.
Marcelo has been trying to rein in 2.4 develop-
ment ever since the first 2.6 kernel came out,
but he has still allowed large IDE changes, new
hardware support and other patches whose inva-
siveness would typically fly in the face of a
push for stability. And with 2.6 development
showing no sign of slowing down, Marcelo has
been under constant pressure to incorporate new
features into 2.4 to be available to folks who
needed 2.4’s stability. With the advent of the
w.x.y.z tree, however, some of this pressure has
undoubtedly flagged, and Marcelo has been
able to tighten up the restrictions on what can
and cannot get into 2.4 at this late date.

The git versioning system continues to
grow and strengthen. Andrew Morton’s
-mm tree will be available as a git repository,
although Andrew himself has no plans to use
any versioning tool for actual development.
The ALSA Project has migrated development
to git, as has libata. Marcelo Tosatti’s 2.4 tree
also will use git for ongoing development.
Linus Torvalds is still very strongly involved
with the project, and although mailing-list
traffic has tapered off somewhat from its fran-
tic early weeks, much of this is explained by
the fact that folks now understand the basics
of the tool, and the fundamental concepts no

longer need to be explained to newcomers.
In the midst of all the version-control

upheaval, it’s hard to know for certain if the
new w.x.y.z stable kernels are working out. But
several kernel folks, including Jeff Garzik and
Alan Cox, feel that this tree successfully pro-
vides a stable kernel to supplement the 2.6
tree’s ongoing large-scale development. Greg
Kroah-Hartman and Chris Wright, the primary
maintainers of the w.x.y.z tree, do seem to be
doing a rigorous job, not only collecting and
applying patches, but adhering to Linus
Torvalds’ strict guidelines on what patches may
be applied, and how and when they may be
accepted. A number of aspects make this project
less appealing than doing real development
work, but Chris and Greg seem to be bearing up
nicely, and the rest of us are the beneficiaries.

Martin J. Bligh has put together a set of
automatic testing scripts that compile and boot
all official kernel releases (including the w.x.y.z
kernels) and several prominent branches like the
-mm tree, within 15 minutes of their release. If
a kernel boots successfully, Martin’s scripts hit
it with a variety of benchmarks. Compilation
and boot results are recorded, benchmark results
are graphed and everything is made available as
a set of ongoing kernel.org Web pages. This is
the sort of project that will not solve all bugs,
but it will identify many trivial bugs, track per-
formance problems across multiple kernel
releases and may identify hard-to-find bugs that
regular users would not normally see.

The relatively recent introduction of
Signed-Off-By tags in kernel patch submis-
sions has made a huge difference in providing a
trail of authorship, so that if anything like the
SCO lawsuit occurs again, it will be easy to
prove who wrote any disputed source code.
This was, in fact, Linus Torvalds’ stated pur-
pose in introducing the Signed-Off-By header.
When first introduced, the idea was quite amor-
phous, with few details settled. Since then, var-
ious wrinkles have been introduced to improve
its usefulness. One of the most recent of these
is the addition of a From header as the first line
of the body of patch e-mails. This header iden-
tifies the true author of a given patch. Before
this wrinkle, the true author was assumed to be
the person with the bottom-most Signed-Off-By
header. This, however, became confusing and
was not always adhered to. The From header is
intended to leave no doubt as to the original
authorship of a given patch.

— Z A C K B R O W N

diff -u
What’s New in Kernel Development

To go along with this month’s
theme of Personal Desktop, here
are some articles from the Linux
Journal Web site that will help
you find your way through
OpenOffice.org, try out some
Linux audio software and rescue
data from a hosed USB device:

On the

WEB

http://www.linuxjournal.com/article/8443
http://www.linuxjournal.com/article/8443
http://www.linuxjournal.com/article/8445
http://www.linuxjournal.com/article/8445
http://www.linuxjournal.com/article/8354
http://www.linuxjournal.com/article/8354
http://www.linuxjournal.com/article/8366
http://www.linuxjournal.com/article/8366
http://www.linuxjournal.com

http://www.cyclades.com/ljb

1 2 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n U P F R O N T N E W S + F U N

With the sudden death of Nigel
McFarlane, the Web Development and
Open Source Software communities,
both in Australia and around the
world, have lost one of their most
well-known authors, consultants and
pundits.

Although in many ways a very pri-
vate person, Nigel had a professional
and personal network that spanned

the globe and included such on-line
luminaries as the lead engineer for the
open-source browser Firefox Ben
Goodger, and countless others in the
Open Source, Web Development and
Linux communities. Since his passing,
many community sites, in a number of
languages, have expressed their sor-
row, a testament to Nigel’s influence.

A real Melbourne boy, describing
the city proudly as “the World’s most
liveable”, Nigel had science degrees
from both the University of
Melbourne and LaTrobe University.
Even when speaking in Sydney, he was
always keen to get home as soon as
possible, where he would bushwalk
and ramble, swim and surf.

Nigel forged a global reputation
from his beloved Melbourne, in a way
impossible until the 1990s. Many oth-
ers have and will follow his lead, but as
with much of what he did, here, too,
Nigel was a pioneer. Since 1997, Nigel
had become well known and respect-
ed in the Web Development and more
recently Open Source Technology com-
munities through the publication of
several successful books on JavaScript,
Mozilla and most recently, the increas-
ingly popular free open-source brows-
er Firefox.

Two earlier books on JavaScript,
Instant JavaScript in 1997 and the co-
authored Professional JavaScript in 2001,
are still considered by many to be
among the best books on the subject.
More recently, the benchmark Rapid
Application Development with Mozilla, and
Firefox Hacks carved out a place in the
increasingly important Open Source
community.

Nigel’s writing extended to the
columns “Searching for Substance” for
InformIT, and articles for such publica-
tions as Linux Journal, DevX, Builder.com,
CNet, The Age and the Sydney Morning
Herald. Nigel was an entertaining speak-
er as well as a writer. I particularly recall
chairing a conference session that Nigel
presented late last year. Often confer-
ence-goers are anxious to get early
places in the meal queue, but although
we had gone overtime for lunch, Nigel
captivated the room. When offered the
opportunity to break, the entire room
turned it down, glued as they were to
Nigel’s presentation.

Generous with his time, energies
and knowledge, Nigel contributed to
mailing lists, newsgroups and forums,
as well as speaking to audiences large
and small at conferences and for user
groups. His reach went far beyond

When Zork appeared on the scene in
the late 1970s, computer enthusiasts
from around the world were instantly
hooked on the interactive fiction
genre known fondly as the Text
Adventure game.

HLA Adventure is the latest in a
long line of public domain and free
software text adventures being
released by people all over the world.
It combines elements from MUDs,
Advanced Dungeons & Dragons and
J.R.R. Tolkien’s famous
The Lord of the Rings.

Using verbs and nouns to communi-
cate with the game world, the player
moves about HLA Adventure with but a
simple goal in mind: slay the menacing
dragon at the end of a large expanse
of caves. While solving this main quest,

the player is also presented with nine
other unique quests, which allow the
player to find items and equip
weapons, armor and a brightly lit
lantern. Even a magical flute plays a
role—useful in putting magical beasts
to sleep.

Players will encounter hellhounds,
werewolves, vampires, hobbits, ghosts,

barbarians and demigorgons. Talk to
creatures in the game with the TALK
TO command. Once you have acquired
the necessary armament and passed
the requisite number of quests, you
can then enter into the cave and slay
the dragon for good.

Despite some bugs in the game,
HLA Adventure is a solid, robust open-

HLA Adventure
members.tripod.com/~panks/hlaadv.html

Nigel McFarlane

http://www.linuxjournal.com

http://www.levanta.com

1 4 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

R
uby, an interpreted programming language that looks
and feels like a cross between Smalltalk and Perl,
has been around for about ten years. Ruby has been
gaining in popularity over the last few years, partly

because of the release of English-language books and docu-
mentation. In addition, programmers have become more inter-
ested in finding an alternative to Perl and Python for their gen-
eral-purpose programming needs.

Ruby’s popularity might have continued to grow slowly
were it not for Ruby on Rails, a Web development framework
that has become the focus of enormous attention. Everyone in
the Web development world seems to be talking about Rails;
magazine articles, blog postings, conference tracks and even
some new books all are dedicated to Rails. Rails is supposed to
be elegant, easy to use and easy to modify. Even developers
with no previous Ruby experience are switching to Rails.

Does Rails live up to the hype surrounding it? To a large
degree, I believe the answer is “yes”—it has a relatively shal-
low learning curve, it connects easily and quickly to relational
databases and it makes the creation of many small- and medi-
um-sized sites faster and easier than I would have expected.
But, of course, no framework is perfect, particularly one that
was released publicly only one year ago. It remains to be
seen whether Rails can hold up against more-established
technologies on several different fronts.

This month, we begin to look at several aspects of Ruby on
Rails, so you can decide for yourself if my assessment is accurate.
We begin by installing and configuring a basic Rails application.
Over the next few installments of At the Forge, we will extend our
application in several different ways, considering the ways in
which Rails allows us to create and modify our applications.

Installing Rails
The first step in creating a Rails application is to install Ruby
and then Rails itself. Most modern Linux distributions come
with Ruby, although only the latest released version as of this
writing (1.8.2) works with the most recent version of Rails
(0.12.1). New versions of Rails have been coming out fre-
quently, which means that one or both of these versions might
have changed by the time you read this.

Assuming you have installed Ruby, you next need to install
Gems. It provides access to the Ruby Gems library, which is
something of a cross between SourceForge and Perl’s CPAN

(see the on-line Resources). Download and unpack the most
recent .tar.gz file:

tar -zxvf rubygems-0.8.10.tar.gz

Enter the directory as the root user and type:

ruby setup.rb all

This installs the entire Gems package. Among other
things, this installs the gem program in /usr/bin. You then
can install Rails, which is distributed via Gems, with the
following command:

gem install --remote rails

As with such systems as CPAN and Debian’s apt, the gem
program is smart enough to identify and download any depen-
dencies it might encounter. By default, you need to answer “y”
explicitly when asked if you are interested in installing any
dependencies. Because Rails depends on a number of other
packages, you should be sure to answer “y” when prompted.

When you are returned to the shell prompt, you can assume
that Rails has been installed. However, this is not quite enough.
If you are interested in working with a relational database,
you also need to install a database interface library. Because
I work with PostgreSQL, I installed the pure Ruby client,
called postgres-pr:

gem install --remote postgres-pr

Somewhat confusingly, there also is a set of PostgreSQL
client libraries (called postgresql) that can be used with Ruby.
However, it seems as though most Rails developers are work-
ing with the postgres-pr library, at least for now.

Creating an Application
Once Rails is installed, we can create a simple “Hello, world”
program. To do this, we use the rails command, which is
installed in /usr/bin/ by default. Because our example applica-
tion is a Weblog, we call the application blog. For reference,
the name of the application doesn’t have to be linked to the
name of the URL under which it will appear. Type:

rails blog

Running this produces a fair amount of output, listing the
files that have been created on our filesystem. When we give
only a single name, blog, the application is created inside of a
directory with that name. We can keep all of our applications
inside of a single container directory, such as ~/Rails, with:

mkdir ~/Rails

rails ~/Rails/blog

If we look inside the newly created application directory,
we see a number of directories and files. The script directory
contains administrative programs, written in Ruby, of course.
The public directory contains static HTML files, as well as
images, stylesheets, JavaScript code and templates that you

n T O O L B O X A T T H E F O R G E

Ruby on
Rails
Explore a Web development framework that comes

with its own Web server, magically keeps track of

details for you and integrates new code without

restarting. B Y R E U V E N M . L E R N E R

http://www.linuxjournal.com

http://www.EmperorLinux.com

http://www.vxrack.com

may use in your application.
The directory you are mostly likely to work with is app,

which contains the application itself. The app directory
contains subdirectories named models, views and con-
trollers. This design reflects the fact that Rails uses the
MVC (model/view/controller) style widely used in many
modern desktop and Web applications.

In an MVC architecture, we divide our work into three
parts—the controller, which acts like a switchboard, invok-
ing the appropriate model and view; the model, which con-
tains the data and some of the logic; and the view, which
displays information to the user. If you have ever built a
database-backed site with PHP and Smarty templates or
with Zope and its Page Templates or even with Java and
JavaServer Pages (JSPs), you already are familiar with at
least some of these ideas. Rails simply makes them more
explicit with its prenamed directory structure.

Although it can’t do much, we now can start our empty
Rails application with:

cd ~/Rails/blog

ruby script/server

This starts the WEBrick HTTP server on port 3000. To
access this fairly empty Rails site, we point our browsers to
an appropriate IP address or hostname. In my particular
case, I started Rails on my test server, whose IP address
is 192.168.2.3. I thus point my Web browser to
http://192.168.2.3:3000/. And sure enough, there I see a
“Welcome on board” message, indicating I have set up
Rails correctly.

Customizing the Behavior
Now that we know how to see the default message, let’s move
toward a “Hello, world” program. In Rails, there are two basic
ways to do this. We can create a controller that returns HTML
to the user’s browser, or we can create a view that does the
same. Let’s try it both ways, so that we can better understand
the relationship between controllers and views.

If all we want to do is include a simple, static HTML docu-
ment, we can do so in the public directory. In other words, the
file blog/public/foo.html is available under WEBrick—started
by executing blog/script/server—at the URL /foo.html.

Of course, we’re interested in doing something a bit more
interesting than serving static HTML documents. We can do
that by creating a controller class and then defining a method
within that class to produce a basic “Hello, world” message.
Admittedly, this is a violation of the MVC separation that Rails
tries to enforce, but as a simple indication of how things work,
it seems like a good next step.

To generate a new controller class named MyBlog, we
enter the blog directory and type:

ruby script/generate controller MyBlog

Each time we want to create a new component in our Rails
application, we call upon script/generate to create a skele-
ton. We then can modify that skeleton to suit our specific
needs. As always, Rails tells us what it is doing as it creates the
files and directories:

exists app/controllers/

exists app/helpers/

create app/views/my_blog

exists test/functional/

create app/controllers/my_blog_controller.rb

create test/functional/my_blog_controller_test.rb

create app/helpers/my_blog_helper.rb

Also notice how our controller class name, MyBlog, has
been turned into various Ruby filenames, such as
app/views/my_blog and app/helpers/my_blog_helper.rb. Create
several more controller classes, and you should see that all of
the names, like FooBar, are implemented in files with names
like foo_bar. This is part of the Rails convention of keeping
names consistent. This consistency makes it possible for Rails
to take care of many items almost magically, especially—as we
will see next month—when it comes to databases.

The controller that interests us is my_blog_controller.rb. If
you open it up in an editor, you should see that it consists of
two lines:

class MyBlogController < ApplicationController

end

In other words, this file defines MyBlogController, a class
that inherits from the ApplicationController class. As it stands,
the definition is empty, which means that we have neither
overridden any methods from the parent class nor written any
new methods of our own. Let’s change that, using the built-in
render_text method to produce some output:

class MyBlogController < ApplicationController

def hello_world

render_text "Hello, world"

end

end

After adding this method definition, we can see its results
by going to http://192.168.2.3:3000/MyBlog/hello_world.

Notice how the URL has changed: static items in the
public directory, such as our file foo.html, sit just beneath the
root URL, /. By contrast, our method hello_world is accessed
by name, under the controller class that we generated. Also
notice that we did not need to restart Rails in order to create
and test this definition. As soon as a method is created or
changed, it immediately is noticed and integrated into the
current Rails system.

If we define an index method for our controller class, we
can indicate what should be displayed by default:

class MyBlogController < ApplicationController

def hello_world

render_text "Hello, world"

end

def index

render_text "I am the index!"

1 8 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n T O O L B O X A T T H E F O R G E

http://192.168.2.3:3000
http://192.168.2.3:3000/MyBlog/hello_world
http://www.linuxjournal.com

http://www.appro.com

end

end

Of course, it’s not that exciting to be able to produce static
text. Therefore, let’s modify our index method such that it uses
Ruby’s built-in Time object to show the current date and time:

def index

render_text "The time is now " + Time.now.to_s + "\n"

end

And voilà! As soon as we save this modification to disk,
the default URL (http://192.168.2.3:3000/MyBlog/, on my
computer) displays the time and date at which the request was
made, as opposed to a never-changing “Hello, world” message.

Let’s conclude this introduction to Rails by separating the
controller from its view once again. In other words, we want to
have the controller handle the logic and the view handle the
HTML output. Once again, Rails allows us to do this easily by
taking advantage of its naming conventions. For example, let
us modify our index method again, this time removing its
entire body:

def index

end

This might seem strange at first glance. It tells Rails that
the MyBlog controller class has an index method. But it does-
n’t generate any output. If you attempt to retrieve the same
URL as before, Rails produces an error message indicating that
it could not find an appropriate template.

Because the template is a view, we can define it inside of
the blog/app/views directory of our application. And because
we are defining the index view for the MyBlog class, we modi-
fy the index.rhtml file in the my_blog subdirectory of views.
Notice how Rails turns ThisName into this_name when it
comes to directories. Doing so saves users from having to
think about capitalization in URLs, while staying consistent
with traditional Ruby class naming conventions.

.rhtml files are a Ruby version of the same kind of template
that you might have seen before. It acts similarly to ASP and
JSP syntax, with <% %> blocks containing code and <%= %>
blocks containing expressions that should be interpolated into
the template. However, nothing stops us from creating an
.rhtml template that actually is static:

<html>

<head>

<title>

Hello, again!

</title>

</head>

<body>

<p>Hello, again!</p>

</body>

</html>

Consider what happens now if you attempt to load
MyBlog in your browser. The controller class MyBlog is
handed the request. Because no method was named explicitly,
the index method is invoked. And because index doesn’t
produce any output, the my_blog/index.rhtml template is
returned to the user.

Finally, let’s take advantage of our template’s dynamic
properties to set a value in the controller and pass that along to
the template. We modify our index method to read:

def index

@now = Time.now.to_s

end

Notice how we have used an @ character at the beginning
of the variable @now. I found this to be a little confusing at
first, as @ normally is used as a prefix for instance variables
in Ruby. But it becomes fairly natural and logical after a
little time.

Finally, we modify our template such that it incorporates
the string value contained in @now:

<html>

<head>

<title>

Hello, world!

</title>

</head>

<body>

<p>Hello, world!</p>

<p>It is now <%= @now %>.</p>

</body>

</html>

Once again, you can retrieve the page even without restart-
ing Ruby. You should see the date and time as kept on the serv-
er, updated each time you refresh the page.

Conclusion
Ruby on Rails is, without a doubt, one of the most talked-about
Web technologies to emerge in the past few years. This month,
we saw how straightforward it is to create a new Rails applica-
tion, to create a controller and a view and to integrate them
using a combination of naming conventions and relatively stan-
dard template syntax. However, we did not discuss views, par-
ticularly those associated with a relational database. Next
month, we will do exactly that, connecting Rails to the
PostgreSQL database. I believe doing so will begin to show
why people are so excited about Rails and why it might be a
good tool for many Web developers to learn.

Resources for this article: www.linuxjournal.com/article/
8457.

Reuven M. Lerner, a longtime Web/database con-
sultant and developer, now is a graduate student in
the Learning Sciences program at Northwestern
University. His Weblog is at altneuland.lerner.co.il,
and you can reach him at reuven@lerner.co.il.

2 0 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n T O O L B O X A T T H E F O R G E

http://192.168.2.3:3000/MyBlog
http://www.linuxjournal.com/article
mailto:reuven@lerner.co.il
http://www.linuxjournal.com

http://www.coraid.com

2 2 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

A
ll Linux distributions provide a
wide range of network appli-
cations—from dæmons that
provide a variety of services

such as WWW, mail and SSH to client
programs that access one or more of these
services. These programs are written in
user mode and use the system calls pro-
vided by the kernel to perform various
operations like network read and write.
Although this is the traditional method of
writing programs, there is another inter-
esting way to develop these applications
by implementing them in the kernel. The
TUX Web server is a good example of an
application that runs inside the kernel and
serves static content. In this article, we
explain the basics of writing network
applications within the kernel and their
advantages and disadvantages. As an
example, we explain the implementation
of an in-kernel FTP client.

Advantages and Disadvantages of
In-Kernel Implementations
Why would one want to implement
applications within the kernel? Here are
a few advantages:

n When a user-space program makes a
system call, there is some overhead
associated in the user-space/kernel-
space transition. By programming all
functionality in the kernel, we can
make gains in performance.

n The data corresponding to any appli-
cation that sends or receives packets
is copied from user mode to kernel
mode and vice versa. By implement-
ing network applications within the
kernel, it is possible to reduce such
overhead and increase efficiency by

not copying data to user mode.

n In specific research and high-perfor-
mance computing environments, there
is a need for achieving data transfers
at great speeds. Kernel applications
are useful in such situations.

On the other hand, in-kernel imple-
mentations have certain disadvantages:

n Security is a primary concern within
the kernel, and a large class of user-
mode applications are not suitable to
be run directly in the kernel.
Consequently, special care needs to
be taken while designing in-kernel
applications. For example, reading
and writing to files within the kernel
is usually a bad idea, but most appli-
cations require some kind of file I/O.

n Large applications cannot be imple-
mented in the kernel due to memory
constraints.

Network Programming Basics
Network programming is usually done
with sockets. A socket serves as a com-
munication end point between two pro-
cesses. In this article, we describe net-
work programming with TCP/IP sockets.

Server programs create sockets, bind
to well-known ports, listen and accept
connections from clients. Servers are usu-
ally designed to accept multiple connec-
tions from clients—they either fork a new
process to serve each client request (con-
current servers) or completely serve one
request before accepting more connec-
tions (iterative servers). Client programs,
on the other hand, create sockets to con-
nect to servers and exchange information.

FTP Client-Server Interaction
Let’s take a quick look at how an FTP
client and server are implemented in user
mode. We discuss only active FTP in this
article. The differences between active
and passive FTP are not relevant to our
discussion of network programming here.

Socket Programming Basics
Here is a brief explanation of the design
of an FTP client and server. The server
program creates a socket using the
socket() system call. It then binds on a
well-known port using bind() and
waits for connections from clients using
the listen() system call. The server
then accepts incoming requests from
clients using accept() and forks a new
process (or thread) to serve each incom-
ing client request.

The client program creates a control
socket using socket() and next calls
connect() to establish a connection with
the server. It then creates a separate
socket for data transfer using socket()
and binds to an unprivileged port

n T O O L B O X K E R N E L K O R N E R

Network
Programming in
the Kernel
Take a tour of the kernel’s networking functionality by

writing a network client that runs in kernel space.

B Y P R A D E E P PA D A L A A N D R AV I PA R I M I

Figure 1. The FTP protocol uses two sockets: one

for control messages and one for data. Here’s how

the first connection, used for commands, gets set up.

http://www.linuxjournal.com

http://www.penguincomputing.com

(>1024) using bind(). The client now listen()s on this port
for data transfer from the server. The server now has enough
knowledge to honor a data transfer request from the client.
Finally, the client uses accept() to accept connections from the
server to send and receive data. For sending and receiving data,
the client and server use the write() and read() or sendmsg()
and recvmsg() system calls. The client issues close() on all
open sockets to tear down its connection to the server. Figure 1
sums it up.

FTP Commands
Here is a list of a few FTP commands we used. Because our
program provides only a basic implementation of the protocol,
we discuss only the relevant commands:

n The client sends a USER <username>\r\n command to the
server to begin the authentication process.

n To send the password, the client uses PASS password\r\n'.

n In some cases, the client sends a PORT command to inform
the server of its preferred port for data transfer. In such
cases, the client sends PORT <a1,a2,a3,a4,p1,p2>\r\n.
The RFC for FTP requires that the a1–a4 constitute the 32-
bit IP address of the client, and p1–p2 constitute the 16-bit
port number. For example, if the client’s IP address is
10.10.1.2 and it chooses port 12001 for data transfer, the
client sends PORT 10,10,1,2,46,225.

n Some FTP clients request, by default, that data be trans-
ferred in binary format, while others explicitly ask the serv-
er to enable data transfer in binary mode. Such clients send

a TYPE I\r\n command to the server to request this.

Figure 2 is a diagram that shows a few FTP commands and
their responses from the server.

Socket Programming in the Kernel
Writing programs in the kernel is different from doing the
same in user space.

We explain a few issues concerned with writing a network
application in the kernel. Refer to Greg Kroah-Hartman’s arti-
cle “Things You Never Should Do in the Kernel” (see the on-
line Resources). First, let’s examine how a system call in user
space completes its task. For example, look at the socket()
system call:

sockfd = socket(AF_INET,SOCK_STREAM,0);

When a program executes a system call, it traps into the
kernel via an interrupt and hands over control to the kernel.
Among other things, the kernel performs various tasks, such as
saving contents of registers, making changes to address space
boundaries and checking for errors with system call parame-
ters. Eventually, the sys_socket() function in the kernel is
responsible for creating the socket of a specified address and
family type, finding an unused file descriptor and returning this
number back to user space. Browsing through the kernel’s code,
we can trace the path followed by this function (Figure 3).

Design of an FTP Client
We now explain the design and implementation of a kernel
FTP client. Please follow through the code available at the
Linux Journal FTP site (see Resources) as you read through
this article. The main functionality of this client is written in
the form of a kernel module that adds a system call dynamically
that user-space programs can invoke to start the FTP client pro-
cess. The module allows only the root user to read a file using
FTP. The user-space program that calls the system call in this
module should be used with extreme caution. For example, it is
easy to imagine the catastrophic results when root runs:

./a.out 10.0.0.1 10.0.0.2 foo_file /dev/hda1/*

and overwrites /dev/hda1 with a downloaded file from 10.0.0.1.

Exporting sys_call_table
We first need to configure the Linux kernel to allow us to add
new system calls via a kernel module dynamically. Starting

2 4 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n T O O L B O X K E R N E L K O R N E R

Figure 2. The client issues FTP commands over the control connection to set up

the file transfer.

Figure 3. Behind the scenes of a system call: when user space executes socket(),

the kernel does necessary housekeeping and then returns a new file descriptor.

http://www.linuxjournal.com

http://www.shoprcubed.com

2 6 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n T O O L B O X K E R N E L K O R N E R

with version 2.6, the symbol sys_call_table is no longer
exported by the kernel. For our module to be able to add a sys-
tem call dynamically, we need to add the following lines to
arch/i386/kernel/i386_ksyms.c in the kernel source (assuming
you are using a Pentium-class machine):

extern void *sys_call_table;

EXPORT_SYMBOL(sys_call_table);

After recompiling the kernel and booting the machine into it,
we are all set to run the FTP client. Refer to the Kernel Rebuild
HOWTO (see Resources) for details on compiling a kernel.

Module Basics
Let’s examine the code for the module first. In the code snip-
pets in this article, we omit error checking and other irrelevant
details for clarity. The complete code is available from the LJ
FTP site (see Resources):

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

/* For socket etc */

#include <linux/net.h>

#include <net/sock.h>

#include <linux/tcp.h>

#include <linux/in.h>

#include <asm/uaccess.h>

#include <linux/file.h>

#include <linux/socket.h>

#include <linux/smp_lock.h>

#include <linux/slab.h>

...

int ftp_init(void)

{

printk(KERN_INFO FTP_STRING

"Starting ftp client module\n");

sys_call_table[SYSCALL_NUM] = my_sys_call;

return 0;

}

void ftp_exit(void)

{

printk(KERN_INFO FTP_STRING

"Cleaning up ftp client module, bye !\n");

sys_call_table[SYSCALL_NUM] = sys_ni_syscall;

}

...

The program begins with the customary include directives.
Notable among the header files are linux/kernel.h for
KERN_ALERT and linux/slab.h, which contains definitions for
kmalloc() and linux/smp_lock.h that define kernel-locking rou-
tines. System calls are handled in the kernel by functions with
the same names in user space but are prefixed with sys_. For

example, the sys_socket function in the kernel handles the
task of the socket() system call. In this module, we are using
system call number 223 for our new system call. This method
is not foolproof and will not work on SMP machines. Upon
unloading the module, we unregister our system call.

The System Call
The workhorse of the module is the new system call that per-
forms an FTP read. The system call takes a structure as a
parameter. The structure is self-explanatory and is given below:

struct params {

/* Destination IP address */

unsigned char destip[4];

/* Source IP address */

unsigned char srcip[4];

/* Source file - file to be downloaded from

the server */

char src[64];

/* Destination file - local file where the

downloaded file is copied */

char dst[64];

char user[16]; /* Username */

char pass[64]; /* Password */

};

The system call is given below. We explain the relevant
details in next few paragraphs:

asmlinkage int my_sys_call

(struct params _ _user *pm)

{

struct sockaddr_in saddr, daddr;

struct socket *control= NULL;

struct socket *data = NULL;

struct socket *new_sock = NULL;

int r = -1;

char *response = kmalloc(SNDBUF, GFP_KERNEL);

char *reply = kmalloc(RCVBUF, GFP_KERNEL);

struct params pmk;

if(unlikely(!access_ok(VERIFY_READ,

pm, sizeof(pm))))

return -EFAULT;

if(copy_from_user(&pmk, pm,

sizeof(struct params)))

return -EFAULT;

if(current->uid != 0)

return r;

r = sock_create(PF_INET, SOCK_STREAM,

IPPROTO_TCP, &control);

memset(&servaddr,0, sizeof(servaddr));

servaddr.sin_family = AF_INET;

servaddr.sin_port = htons(PORT);

servaddr.sin_addr.s_addr =

htonl(create_address(128, 196, 40, 225));

http://www.linuxjournal.com

http://www.ztgroup.com/go/linuxjournal

2 8 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n T O O L B O X K E R N E L K O R N E R

r = control->ops->connect(control,

(struct sockaddr *) &servaddr,

sizeof(servaddr), O_RDWR);

read_response(control, response);

sprintf(temp, "USER %s\r\n", pmk.user);

send_reply(control, temp);

read_response(control, response);

sprintf(temp, "PASS %s\r\n", pmk.pass);

send_reply(control, temp);

read_response(control, response);

We start out by declaring pointers to a few socket structures. kmalloc() is the ker-
nel equivalent of malloc() and is used to allocate memory for our character array. The
array’s response and reply will contain the responses to and replies from the server.

The first step is to read the parameters from user mode to kernel mode. This is cus-
tomarily done with access_ok and verify_read/verify_write calls. access_ok checks
whether the user-space pointer is valid to be referenced. verify_read is used to read
data from user mode. For reading simple variables like char and int, use _ _get_user.

Now that we have the user-specified parameters, the next step is to create a control
socket and establish a connection with the FTP server. sock_create() does this for
us—its arguments are similar to those we pass to the user-level socket() system call.
The struct sockaddr_in variable servaddr is now filled in with all the necessary
information—address family, destination port and IP address of the server. Each
socket structure has a member that is a pointer to a structure of type struct proto_ops.
This structure contains a list of function pointers to all the operations that can be per-
formed on a socket. We use the connect() function of this structure to establish a
connection to the server. Our functions read_response() and send_reply() transfer
data between the client and server (these functions are explained later):

r = sock_create(PF_INET, SOCK_STREAM,

IPPROTO_TCP, &data);

memset(&claddr,0, sizeof(claddr));

claddr.sin_family = AF_INET;

claddr.sin_port = htons(EPH_PORT);

clddr.sin_addr.s_addr= htonl(

create_address(srcip));

r = data->ops->bind(data,

(struct sockaddr *)&claddr,

sizeof (claddr));

r = data->ops->listen(data, 1);

Now, a data socket is created to transfer data between the client and server. We fill
in another struct sockaddr_in variable claddr with information about the client—
protocol family, local unprivileged port that our client would bind to and, of course,
the IP address. Next, the socket is bound to the ephemeral port EPH_PORT. The func-
tion listen() lets the kernel know that this socket can accept incoming connections:

a = (char *)&claddr.sin_addr;

p = (char *)&claddr.sin_port;

send_reply(control, reply);

read_response(control, response);

strcpy(reply, "RETR ");

strcat(reply, src);

strcat(reply, "\r\n");

send_reply(control, reply);

read_response(control, response);

http://www.linuxjournal.com
http://www.insistthebest.com

http://www.intel.com/go/xeon

http://www.pgroup.com

As explained previously, a PORT command is issued to
the FTP server to let it know the port for data transfer. This
command is sent over the control socket and not over the
data socket:

new_sock = sock_alloc();

new_sock->type = data->type;

new_sock->ops = data->ops;

r = data->ops->accept(data, new_sock, 0);

new_sock->ops->getname(new_sock,

(struct sockaddr *)address, &len, 2);

Now, the client is ready to accept data from the server.
We create a new socket and assign it the same type and ops
as our data socket. The accept() function pulls the first
pending connection in the listen queue and creates a new
socket with the same connection properties as data. The new
socket thus created handles all data transfer between the
client and server. The getname() function gets the address at
the other end of the socket. The last three lines in the above
segment of code are useful only for printing information
about the server:

if((total_written = write_to_file(pmk.dst,

new_sock, response)) < 0)

goto err3;

The function write_to_file deals with opening a file in
the kernel and writing data from the socket back into the file.
Writing to sockets works like this:

void send_reply(struct socket *sock, char *str)

{

send_sync_buf(sock, str, strlen(str),

MSG_DONTWAIT);

}

int send_sync_buf

(struct socket *sock, const char *buf,

const size_t length, unsigned long flags)

{

struct msghdr msg;

struct iovec iov;

int len, written = 0, left = length;

mm_segment_t oldmm;

msg.msg_name = 0;

msg.msg_namelen = 0;

msg.msg_iov = &iov;

msg.msg_iovlen = 1;

msg.msg_control = NULL;

msg.msg_controllen = 0;

msg.msg_flags = flags;

oldmm = get_fs(); set_fs(KERNEL_DS);

3 2 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n T O O L B O X K E R N E L K O R N E R

repeat_send:

msg.msg_iov->iov_len = left;

msg.msg_iov->iov_base = (char *) buf +

written;

len = sock_sendmsg(sock, &msg, left);

...

return written ? written : len;

}

The send_reply() function calls send_sync_buf(), which
does the real job of sending the message by calling
sock_sendmsg(). The function sock_sendmsg() takes a pointer
to struct socket, the message to be sent and the message
length. The message is represented by the struture msghdr. One
of the important members of this structure is iov (io vector).
The iovector has two members, iov_base and iov_len:

struct iovec

{

/* Should point to message buffer */

void *iov_base;

/* Message length */

_ _kernel_size_t iov_len;

};

These members are filled with appropriate values, and
sock_sendmsg() is called to send the message.

The macro set_fs is used to set the FS register to point
to the kernel data segment. This allows sock_sendmsg() to
find the data in the kernel data segment instead of the user-
space data segment. The macro get_fs saves the old value
of FS. After a call to sock_sendmsg(), the saved value of FS
is restored.

Reading from the socket works similarly:

int read_response(struct socket *sock, char *str)

{

...

len = sock_recvmsg(sock, &msg,

max_size, 0);

...

return len;

}

The read_response() function is similar to send_reply().
After filling the msghdr structure appropriately, it uses
sock_recvmsg() to read data from a socket and returns the
number of bytes read.

A User-Space Program
Now, let’s take a look at a user-space program that invokes our
system call to transfer a file. We explain the relevant details for
calling a new system call:

...

#define _ _NR_my_sys_call 223

_syscall1(long long int, my_sys_call,

struct params *, p);

int main(int argc, char **argv)

{

struct params pm;

/* fill pm with appropriate values */

...

r = my_sys_call(&pm);

...

}

#define _ _NR_my_sys_call 223 assigns a number to our
system call. _syscall1() is a macro that creates a stub for the
system call. It shows the type and number of arguments that
our system call expects. With this in place, my_sys_call can be
invoked just like any other system call. Upon running the pro-
gram, with correct values for the source and destination files, a
file from a remote FTP server is downloaded onto the client
machine. Here is a transcript of a sample run:

make

make -C /lib/modules/2.6.9/build SUBDIRS=/home/ppadala/ftp modules

make[1]: Entering directory `/home/ppadala/linux-2.6.9'

CC [M] /home/ppadala/ftp/ftp.o

Building modules, stage 2.

MODPOST

CC /home/ppadala/ftp/ftp.mod.o

LD [M] /home/ppadala/ftp/ftp.ko

make[1]: Leaving directory `/home/ppadala/linux-2.6.9'

gcc do_ftp.c

./a.out <local host's IP address> 152.2.210.80 /README /tmp/README anonymous anon@cs.edu

Connection from 152.2.210.80

return = 215 (length of file copied)

Conclusions
We have seen a basic implementation of an FTP client within
the kernel. This article explains various issues of socket pro-
gramming in the kernel. Interested readers can follow these
ideas to write various network applications, such as an HTTP
client or even a Web server in the kernel. Kernel applica-
tions, such as the TUX Web server are used for high-perfor-
mance content serving and are well suited for environments
that demand data transfer at high rates. Careful attention has
to be paid to the design, implementation and security issues
of such applications.

Resources for this article: www.linuxjournal.com/article/
8453.

Pradeep Padala is a PhD student at the University of
Michigan. His general interests are in distributed
systems with specific emphasis on scheduling and
fault tolerance. He is the author of the NCurses
Programming HOWTO and contributes to various

open-source projects. More about him can be found on his Web
site at www.eecs.umich.edu/~ppadala.

Ravi Parimi has a Master’s degree in Computer
Engineering and currently works in Silicon Valley,
California. His main interests are in operating
systems, networking and Internet security. He
has been using Linux since 1998 and aspires to

be a kernel hacker. In his free time, he pursues Vedic studies
and Chess.

mailto:anon@cs.edu
http://www.linuxjournal.com/article
http://www.eecs.umich.edu/~ppadala
http://www.linuxjournal.com

Where Open
Minds Meet…

Register NOW at www.linuxworldexpo.co.uk

CONFERENCE PROGRAMMES
Technical and Enterprise:
Two streams, two days of informative and in-depth
sessions covering key issues and topics for technical
and enterprise.

Linux in Business:
Practical applications, benefits and analysis
of Linux and open source in business:

SPEAKERS INCLUDE:
Klaus Knopper, Engineer, Consultant and Software
Developer, KNOPPER.NET & Maker, Knoppix
Mark Shuttleworth, President, Ubuntu Foundation
Rasmus Lerdorf, Engineer, Yahoo! Inc.
Paul Everitt, Founder, Zope Europe Association

Linux for the Technical team:
What’s here now; and what’s coming next.

SPEAKERS INCLUDE:
Andrew Eddie, Senior Systems Integrator,
Toowoomba City Council, Australia
Kevin Carmony, President and CEO, Linspire Inc
Michael Tiemann, Vice President Open Source Affairs,
Red Hat
Brian Green, Director of Solutions Management, Novell

Delegate places are limited, so book today and also
benefit from:

� FREE LPI Examination – Saving £125
� GUARANTEED seating at The Great Linux Debate
� FREE Entry to the exhibition

View the full conference programme
and book your place TODAY! -

www.linuxworldexpo.co.uk

All trademarks acknowledged. E&OE. Programme may be subject to change. Correct at time of press.

The UK’s only event for business
and the technical community
Come along to LinuxWorld Expo and tackle IT business issues, gain

real-time Linux and open source solutions, meet key suppliers, ask

technical points and get answers, discover ‘how-to’, see new

technologies, source products and network with the entire

community; experts, colleagues and suppliers;

Register NOW at www.linuxworldexpo.co.uk
for FREE entry into the exhibition, featuring;

� The Great Linux Debate

� OSC/Open Source Academy

� FREE Product Briefings and Demonstrations

� FREE Showcases of Technology

� FREE Case Study Presentations

� FREE Open Forum Europe Advice Centre

� .org village

� Internet Café with Wireless Connection

� Pre-registered visitors can take the LPI exam

for ONLY £25 – Saving £100

PLATINUM SPONSORS OWNED BY ORGANISED BYGOLD SPONSOR

LINUX WEXPO US_AD 8/5/05 9:07 AM Page 1

http://www.linuxworldexpo.co.uk
http://www.linuxworldexpo.co.uk
http://www.linuxworldexpo.co.uk

3 4 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

T
hat certainly does make it difficult, François. When I
asked you to locate the wine order from last month and
you told me it was somewhere on your disk, I didn’t
expect that it was sitting “somewhere on your disk” in

quite this way. This is possibly the most disorganized home direc-
tory I’ve ever seen. Every document is in the same folder, and all
the files are cryptically named. What were you thinking, mon ami?

Quoi? Well, of course there is a way to find it. If the docu-
ment still exists somewhere on your disk, we’ll find it. We just
need to use the right tools. Later, though—our guests will be
here any moment and...too late, François, they are already
here! Welcome, everyone, to Chez Marcel, home of fine Linux
fare and exquisite wines. Please sit and make yourselves com-
fortable. François will fetch your wine immédiatement.
François, head to the east wing of the wine cellar and bring
back that 2001 Nuits Saint George Pinot Noir we’ve been tast-
ing, er, I mean, subjecting to quality control. Vite!

That wine, mes amis, just happens to represent part of an
order lost in one of François’ documents on his computer.
Trouble is, he doesn’t remember which document. What we
need to do, is set him up with a desktop search engine. Luckily,
this just happens to be the basis of tonight’s menu, so we all
will profit from my faithful waiter’s lack of organization.

The original desktop search engine, mes amis, is something
that’s been around in Linux from the beginning, and that’s the
find command. This is an amazingly powerful tool and one that
is easily overlooked in this age of cutting-edge graphical desk-
tops. In its most basic form, find is used like this:

find starting_dir [options]

One of those options is -print, which makes sense only if
you want to see any kind of output from this command. You
easily could get a listing of every file on the system by starting
at the top and recursively listing the disk:

find / -print

Of course, it makes more sense to search for something, for
instance, all the MP3-type music files sitting on your disk.
Because you know that the files end in a .mp3 extension, you
can use that to search:

find / -name "*.mp3" -print

This is also great for locating big files you haven’t looked
at in forever. Maybe it’s time to do a little archiving of those
old files, but how do you find only them? Say you want to look
for anything that has not been modified (this is the -mtime
parameter) or accessed (the -atime parameter) in the past 12
months. The -o option is the “or” in this equation:

find /home/marcel -size +1024 \(-mtime +365 -o -atime +365 \) -ls

In case you are curious, the back-slashes in front of the
parentheses are escape characters; they are there to make sure
the shell does not interpret them in ways you do not want it
to—in this case, the open and close parentheses on the second
line. The preceding command also searches for files that are
greater than 500KB in size. That is what the -size +1024
means, because 1024 refers to 512-byte blocks. The -ls at the
end of the command tells the system to do a long listing of any
files it finds that fit the search criteria. So far so good?

The find command is fairly simple to use on the surface,
but it also has many command-line options and (as you can
see) interesting ways of passing the results of a search to other
commands, so that the results can be narrowed down or fine-
tuned. Getting to know find is a great idea, but there are alter-
natives that are a little friendlier.

Many people out there have grown up in the graphical
world of KDE or GNOME, so desktop tools have been created
in each of these environments. Even so, my experience indi-
cates that these excellent tools are, for many users, as equally
overlooked as find. Let’s have a look at those now.

Let’s begin our search for search tools under KDE. Click
the application launcher and look for a submenu labeled Find.
The Find menu has two options, one for files and one for Web
search (which, by default, launches Konqueror on the Google
Web site). You also can fire up the files search tool by using
the Alt-F2 quick launch (program name: kfind). When the
application starts, the Find Files/Folders dialog appears. It
contains three different tabs, and each is designed to help you
locate the information you need. They are labeled
Name/Location, Contents and Properties.

Under the Name/Location tab, specify the starting folder,
either by entering it manually or by clicking the Browser but-
ton and navigating over to it using the KDE file navigator.
There’s also a field labeled Named where you enter part of a
filename using Linux metacharacters. For instance, if I wanted
to find all the files with Cooking anywhere in the title, I would
enter *cooking*. By default, this is a case-insensitive search,
so upper- and lowercase don’t matter in terms of the search
results. You can, however, override this behavior by clicking
the Case-sensitive search check box.

Under the Contents tab, the real action takes place.
Generally speaking, I don’t have a problem locating a file by
name. It’s the content that is the real issue. Which of your sev-
eral hundred documents contains a reference to a particular

n T O O L B O X C O O K I N G W I T H L I N U X

Trekking
through the
Desktop
Jungle
Is it easier to find a document on a faraway Web

server than one on your own hard drive? Try some

search programs to dig up the files you need.

B Y M A R C E L G A G N É

http://www.linuxjournal.com

word or phrase is a more difficult search than which has a par-
ticular word in the name. The Contents tab lets you enter your
search text (again, case-insensitive by default), regular expres-
sion searches and so on. You even can specify that Kfind
search through binary files and not only documents (Figure 1).
There’s also a meta-info search feature for things like MP3
files that contain embedded information, such as title and artist.

Finally, the Properties tab provides a means of searching
for files or folders based on creation or modification date, own-
ership and more.

Similarly, GNOME users have access to the GNOME
search tool (program name: gnome-search-tool), a similar
program that lets you search based on filename, file content
(text search) and date. Choose Search for files in the GNOME
Places menu (I’m running 2.10 in this example), and this
brings up the file find dialog (Figure 2).

When the dialog first appears, there isn’t much to see. The
defaults are to search for a file by name, which you enter in the
Name contains field. Below that is your starting folder for the
search, the default being your home directory. To get the full
power of the GNOME search tool, click on the arrow next to

the label that says Show more options. A new field appears
through which you can specify some text in the file itself.

Finally, directly below the text search field, is one other
option that can be quite complex. A drop-down box labeled
Available options includes size, date and ownership search cri-
teria that can be applied to narrow down your search results
even further.

If you’ve been following search technology in any way,
you’ll know that there’s a lot of excitement concerning desktop
search engines these days—think Google for your desktop. In
fact, Google does provide such a tool, but alas, only for non-
Linux operating systems. However, this is not to say that desk-
top search tools don’t exist for Linux.

One such tool is Roberto Cappuccio’s Kat, a desktop search
engine and indexing tool that makes it easy and fast to do full-
text searches in a variety of document formats (for example,
PDF, OpenOffice.org, KWord and so on). You also can search
for images using thumbnails and more.

The Kat Web site (see the on-line Resources) provides bina-
ry packages for a number of distributions, so you may not need
to build from source. Should you need to, however, the process
is nothing more than the classic extract-and-build five-step. In
terms of prerequisites, you need the SQLite database and its
development libraries.

To use Kat, simply start the program (name: kat) and a
plain three-pane window appears where you will do your work

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 3 5

Figure 1. KFind makes it easy for Marcel to locate all those columns that

mention “wine”.

Figure 2. The GNOME search tool allows you to search by name as well as text

within a file.

We’ve got
problems with your

name on them.
At Google, we process the world’s information and make it
accessible to the world’s population. As you might imagine,
this task poses considerable challenges. Maybe you can help.

We’re looking for experienced software engineers with superb
design and implementation skills and expertise in the
following areas:

• high-performance distributed systems
• operating systems
• data mining
• information retrieval
• machine learning
• and/or related areas

If you have a proven track record based on cutting-edge
research and/or large-scale systems development in these
areas, we have brain-bursting projects with your name on
them in Mountain View, Santa Monica, New York, Bangalore,
Hyderabad, Zurich and Tokyo.

Ready for the challenge of a lifetime? Visit us at
http://www.google.com/lj for information. EOE

Susan Becker 237059 2 bj/es

SF015950

LINUX JOURNAL

3.33' X 4.875"

January 1, 2005

HHTGOO0001

http://www.google.com/lj
http://www.linuxjournal.com

and your searching. The first step is to create a catalog. To do
this, click File on the menu bar and select New.

When creating a new catalog, a four-tabbed window
appears. The first tab, labeled Catalog, is where you enter the
starting directory, the name of the catalog and other identifying
information. On the second tab, labeled Metadata, you’ll see a
list of the various metadata engines that are available to Kat for
indexing. You can remove different formats, but most likely,
this will stay as is (Figure 3). Similarly, the Fulltext tab. Under
Thumbnails, you can select the size of the thunmbnails created
during the index process.

A status window keeps you abreast of the number of files
and folders scanned, as well as the size of the collection
(Figure 4).

This brings us to the one big drawback of a tool like this. If

the folder for which you are creating a catalog is large, this can
take an amazing amount of time. Be prepared or keep your cat-
alogs confined to a reasonable collection of files. I tried to
index my own home directory in its entirety at nearly 6.6GB of
data—suffice it to say, that was a mistake.

Once a catalog has been created, finding information is
blazingly fast. Simply click on the search icon on the far right
(the magnifying glass), enter your search term and Kat returns
the results of the search almost instantly (Figure 5).

According to the clock on the wall, it would appear, mes
amis, that closing time has arrived. Before we leave this topic
of desktop search engines, I’d like to mention another package
with the friendly, puppy-dog name of Beagle. Beagle is built
on Mono (the open-source .Net implementation) and requires
an inotify-enabled kernel. Neither is uncommon in the more
modern distributions. Beagle also shows promise in that it is
very fast and works silently in the background, keeping an eye
on what you tell it while automatically updating its catalog of
information. Unfortunately, Beagle is very much alpha code
and not quite ready for prime time, as they say (although it is
included with the new SUSE Linux Professional 9.3).
Nevertheless, Beagle is a tool to watch, and I’ve included the
link in the on-line Resources.

Please raise your glasses, mes amis, and let us all drink to
one another’s health. A votre santé! Bon appétit!

Resources for this article: www.linuxjournal.com/article/
8456.

Marcel Gagné is an award-winning writer living
in Mississauga, Ontario. He is the author of
Moving to the Linux Business Desktop (ISBN
0-131-42192-1), his third book from Addison-
Wesley. He also makes regular television appear-

ances as Call for Help’s Linux guy. Marcel also is a pilot and a
past Top-40 disc jockey. He writes science fiction and fantasy
and folds a mean Origami T-Rex. He can be reached via
e-mail at mggagne@salmar.com. You can discover a lot of
other things (including great Wine links) from his Web site
at www.marcelgagne.com.

3 6 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n T O O L B O X C O O K I N G W I T H L I N U X

Figure 4. As Kat creates the new catalog, the program reports statistics on the process.

Figure 5. Although the initial indexing can take some time, Kat searches are

blazingly fast.

Figure 3. Using kfile hooks, Kat can index almost anything.

http://www.linuxjournal.com/article/8456
mailto:mggagne@salmar.com
http://www.marcelgagne.com
http://www.linuxjournal.com

R1™ Router
The R1 is designed for extended tempera-
ture applications including outdoor installa-
tions. The R1 has a small footprint, and can
be installed in set-top, wall-mount, and
rackmount applications.

Enterprise Router™

The Enterprise features four 8 Gbps
buses, dual CPUs, and redundant AC or
DC power supplies. It can route multiple
OC3 or OC12 circuits at wire speed.

Gateway Router™

ImageStream’s Gateway is the industry’s
lowest cost OC3 router. The upgraded
dual bus Gateway 64™ can route multiple
DS3/E3 or OC3 circuits at wire speed.

Rebel Router™

The Rebel is the industry’s lowest cost
DS3/E3 router. The 1U Rebel can route
one DS3/E3 or up to 16 T1/E1 circuits
at wire speed.

The TransPort™is ImageStream’s best-
selling router. With its small footprint,
business-class features, and competitive
price, the TransPort is an ideal rout-
er for T1 and E1 applications that
demand low latency wire-speed
performance.

The TransPort includes 128 MB
RAM, three 10/100 ethernet ports,
and an expansion slot for add-on cards.
It also features the ImageStream Linux™

router distribution, which supports most
WAN protocols and advanced features
including NAT firewall, peer-to-peer traffic

control, bridging, bandwidth limiting,
QoS, dynamic routing, VPN, and more.

Like all ImageStream routers, the
TransPort includes 12 months of free

24/7 technical support, a full 12-month
warranty on parts and labor, free software
upgrades for life, and the industry’s only
money back performance guarantee.

• Best Software The ImageStream Linux™

router distribution has everything you need to
deploy advanced network applications including
secure shell, menu-based configuration, real-time
monitoring, IP firewall, bridging, interface bonding,
dynamic routing, QoS, IPsec VPN, free software
upgrades for life, and more.

• Best Support ImageStream routers include
a full year of free 24/7 support. When you consider
total cost of ownership, ImageStream routers cost
less up front and over time.

• Guaranteed Performance Our 31-day
performance guarantee ensures your router will
function as promised. If your ImageStream router
does not work as specified in writing, and our
support team cannot correct the problem, you can
return your router for a full refund of the purchase
price. See our web site for details.

Well Connected
The TransPort provides three
10/100 ethernet ports for
flexible LAN connectivity.

Fanless CPU
The TransPort’s highly
efficient CPU minimizes
power consumption and
cooling requirements.

Easy Indicators
The TransPort provides front
panel LEDs to show LAN
connection status.

BEST PRICE. BEST PERFORMANCE. BEST SUPPORT.

800 . 813 . 5123
www.imagestream.com
1 . 5 7 4 . 9 3 5 . 8 4 8 4

Routers for the Real World™2.0 in.

8.7 in. 10.0 in.

Sized Right The TransPort’s small footprint
allows it to be installed just about anywhere.

ImageStream, Enterprise Router, Gateway Router, Gateway 64, Rebel Router, R1, TransPort, ImageStream Linux and “Routers for the Real World”
are trademarks of ImageStream Internet Solutions, Inc. Linux is a registered trademark of Linus Torvalds. Specifications are subject to change
without prior notice. *Please refer to ImageStream’s Web site for more information on wire-speed specifications and the performance guarantee.

http://www.imagestream.com

3 8 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

s
hc is a popular tool for protecting shell scripts that con-
tain sensitive information such as passwords. Its popu-
larity was driven partly by auditors’ concern over pass-
words in scripts. shc encrypts shell scripts using RC4,

makes an executable binary out of the shell script and runs it as
a normal shell script. Although the resulting binary contains
the encryption password and the encrypted shell script, it is
hidden from casual view.

At first, I was intrigued by the shc utility
(www.datsi.fi.upm.es/~frosal/sources/shc.html) and consid-
ered it as a valuable tool in maintaining security of sensitive
shell scripts. However, upon further inspection, I was able to
extract the original shell script from the shc-generated exe-
cutable for version 3.7. Because the encryption key is stored in
the binary executable, it is possible for anyone with read access
to the executable to recover the original shell script. This arti-
cle details the process of extracting the original shell exe-
cutable from the binary generated by shc.

shc Overview
shc is a generic shell script compiler. Fundamentally, shc takes
as its input a shell script, converts it to a C program and runs
the compiler to compile the C code. The C program contains
the original script encrypted by an arbitrary key using RC4
encryption. RC4 is a stream cipher designed in RSA laborato-
ries by Ron Rivest in 1987. This cipher is used widely in com-
mercial applications, including Oracle SQL and SSL. Listing 1
demonstrates running shc.

The two new files, named with the .x and .x.c extensions to
the name of the source shell script, are the executable and an
intermediate C version. Upon executing pub.sh.x, the original
shell source is executed. shc also specifies a relax option, -r.
The relax option is used to make the executable portable.
Basically, shc uses the contents of the shell interpreter itself,

such as /bin/sh, as a key. If the shell binary were to change, for
example, due to system patching or by moving the binary to
another system, the shc-generated binary does not decrypt
or execute.

I inspected the shell executable using strings and found no
evidence of the original shell script. I also inspected the inter-
mediate C source code and noted that it stores the shell script
in encrypted octal characters, as depicted in Listing 2.

The C source code also includes as arrays the password as
well as other encrypted strings. Therefore, anyone with access
to the source code easily can decrypt and view the contents of
the original shell script. But what about the original shell binary
executable generated by shc? Is it possible to extract the
original shell script from nothing but the binary executable?
The answer to this question is explored in the next section.

Extraction Approach
I generated and reviewed the C source code for several shell
scripts to better understand how the shell source is encrypt-
ed and decrypted. Fundamentally, shc uses an implementa-
tion of RC4 that was posted to a Usenet newsgroup on
September 13, 1994. I set off by first identifying the encryp-

n T O O L B O X P A R A N O I D P E N G U I N

Limitations
of shc,
a Shell
Encryption
Utility
The shell script compiler, shc, obfuscates shell

scripts with encryption—but the password is in the

encrypted file. Could an intruder recover the original

script using objdump? B Y N A L N E E S H G U A R

Listing 1. Running shc

[user1@shiraz test]# cat pub.sh

#!/bin/sh

echo "Hello World"

user1@shiraz test]# ./pub.sh

Hello World

[user1@shiraz test]# shc -v -r -f pub.sh

shc shll=sh

shc [-i]=-c

shc [-x]=exec '%s' "$@"

shc [-l]=

shc opts=

shc: cc pub.sh.x.c -o pub.sh.x

shc: strip pub.sh.x

[user1@shiraz test]# ls

pub.sh pub.sh.x pub.sh.x.c

[user1@shiraz test]# ./pub.sh.x

Hello World

Listing 2. The original shell script becomes an RC4-encrypted string in the C

version.

static char text[] =

"\223\004\215\264\102\216\322\060\300\070\101\217\277\161\033\130"

"\217\145\370\170\106\257\176\301\057\132\172\044\217\247\276\222"

"\203\076\334\201\323\107\064\334\120\132\001\241\267\052\203\216"

"\116\232\156\337\121\145\235\003\156\244\142\246\117\200\206\014"

"\004\153\372\152\030\262\171\275\137\342\247\367\231\315\353\151"

"\264\241\230\105\344\053\034\247\342\142\156\305\327\255\036\111"

"\234\061\013\355\300\336\324\257\175\124\222\044\132\040\276\067"

"\007\002\371\063\021\320\060";

http://www.datsi.fi.upm.es/~frosal/sources/shc.html
http://www.linuxjournal.com

tion key and the encryption text. The
objdump utility came in handy for
this. bjdump, part of GNU binutils,
displays information about object
files. First, we use objdump to retrieve
all static variables, for this is where
the encryption key and the encrypted
shell text are stored. Listing 3 pro-
vides a brief overview of objdump.

The first column of the output in
listing 3 specifies the starting address-
es in hexadecimal, followed by the
stored data in the next four columns.
The last column represents the stored
data in printable characters. So some-
where in the first four columns of the
output is the array of characters that
form the encryption key (password)
and the encrypted shell script.

Comparing the original C source
code and Listing 3, you can see that
the password most likely begins at
address 0x804a540. After comparing
other executables, I determined that the
first address after the zeros leading the
“Please contact your provider” text
usually is the starting address. To
retrieve these arrays, such as the one
depicted in Listing 2, we also need to
look at the disassembled code. We use
objdump again here, except this time
with the -d option, for disassemble, as
shown in Listing 4.

The last two columns represent
assembly instructions. The movl
instruction is used to move data—
movl Source, Dest. The Source and
Dest are prefixed with $ when referenc-
ing a C constant. The push takes a single
operand, the data source, and stores it at
the top of stack.

Now that we have the basics of
objdump, we can proceed to extract the
encryption password and eventually
the shell code.

In the intermediate C code pro-
duced by shc, about nine arrays are
referenced by the variables pswd, shll,
inlo, xecc, lsto, chk1, opts, txt and
chk2. The pswd variable stores the
encryption key, and the txt variable
stores the encrypted shell text. shc
hides the useful information as smaller
arrays within these variables. Thus,
obtaining the actual array involves two
steps. First, identify the length of the
array. Second, identify the starting
address of the array.

The objdump output needs to be
looked at in detail to obtain the actual

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 3 9

Other company and product names are registered trademarks or trademarks of their respective owners. © 2005 FairCom Corporation

Need a sharper
development
tool for your
application’s

database ?

See for yourself —
download c-tree Plus® Today!

SQL is
only one
of our
options...

FEATURED
HIGHLIGHTS

• Fast, reliable, and
portable

• Low deployment
cost

• No DBA required

• Professional
technical support

• Source code

• 64-bit support

• 16-exabyte file
support

• Memory files

• Embeddable
database

• Full OLTP support

C-TREE PLUS® DATABASE TECHNOLOGY
OPENS UP YOUR OPTIONS

CUSTOMER
TESTIMONIAL

“We have reviewed
Oracle and some of
the other big
relational databases
and chose FairCom
for our database
development needs.
With c-tree Plus, we
see transactional
volume that is 8 to 10
times faster than what
we can get with other
databases. I have
been using c-tree
based solutions since
the 80's and highly
recommend it…”

Visit our Web site for
more testimonials
about c-tree!

Go to www.faircom.com/go/open for a FREE evaluation of c-tree Plus!

Database your way.

SQL offers a convenient and
easy-to-use database interface.
ISAM provides powerful performance
with precision indexing control in a
small footprint. With c-tree Plus you
can simultaneously enjoy BOTH!
Superior ISAM indexing technology
PLUS an industry-standard SQL
interface provide blazing fast data
management for every
environment. Break the limitations
of a single solution and open up
your database options. Experience
the benefits c-tree Plus can deliver
to your application!

FairComLJ0505(Final).qxd 5/16/05 12:05 PM Page 1

http://www.faircom.com/go/open
http://www.linuxjournal.com

array length and the starting address. My first hint here is to
look for all addresses that are within the data section
(Listing 2) of the disassembled object code. Next, seek out
all the push and mov commands in Listing 4. Addresses will
be different for different scripts, but when you encrypt a
few scripts and read the resulting C code, the patterns
become familiar.

The 804a540 address seems to correspond to the pswd vari-
able, the encryption key. The length of the useful portion of the
encryption key is represented by 0x128, or 296 in decimal
form. Similarly, the next variables, shll and inlo, have useful
lengths of 0x8 and 0x3 and starting addresses of 804a672 and

804a68a, respectively. This way, we are able to obtain the start-
ing addresses and lengths of all nine variables. Next, we need
to be able to decrypt the original shell script using only the
binary as input.

In shc, before the shell script itself is encrypted, many
other pieces of information are encrypted. Furthermore, the
RC4 implementation maintains state between encrypting
and decrypting each individual piece of information. This
means that the order in which shc encrypts and decrypts
information must be maintained. Failure to do so results in
illegible text. To extract the original shell script, we need to
perform several decryptions. For this step, I wrote a small
program called deshc, using the existing code from one of
the intermediate C files. The program reads two files as its
input, the binary executable and an input file that specifies
the array lengths and addresses. deshc executes the following
four steps:

n Reads binary executable.

n Extracts data section from the disassembled output.

n Retrieves individual arrays based on input file.

n Decrypts individual arrays in order, so that the RC4 state is
maintained.

Based on the objdump output, I have arrived at the follow-
ing array lengths and addresses for the pub.sh.x executable:

pswd 0x128 0x804a540

shll 0x8 0x804a672

inlo 0x3 0x804a68a

xecc 0xf 0x804a68e

lsto 0x1 0x804a6a4

chk1 0xf 0x804a6a6

opts 0x1 0x804a6be

txt 0x76 0x804a6e0

All of these parameters are used in an input file to deshc,
which then decrypts and prints the original shell script.

Conclusion
An approach to extract the shell source code successfully from
shc version 3.7 generated binary executable was demonstrated.
The pub.sh script was used for illustrative purposes only. I
have indeed tested the deshc program on executables that I did
not create and without access to the source code or the original
shell script.

Francisco Garcìa, the author of shc, recently released ver-
sion 3.8. It uses somewhat different data structures and
improves upon the security of the previous version.
Nevertheless, I believe that embedding the encryption pass-
word within the binary executable is dangerous and prone to
extraction as discussed in this article.

Nalneesh Gaur, CISSP, ISAAP, works at Diamond Cluster
International as a BS7799 Lead Auditor.

4 0 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n T O O L B O X P A R A N O I D P E N G U I N

Listing 3. objdump browses the object file for interesting-looking strings.

/usr/bin/objdump --section=.data -s pub.sh.x

pub.sh.x: file format elf32-i386

Contents of section .data:

804a4e0 00000000 00000000 3ca80408 00000000 <.......

804a4f0 00000000 00000000 00000000 00000000

804a500 00000000 506c6561 73652063 6f6e7461 Please conta

804a510 63742079 6f757220 70726f76 69646572 ct your provider

804a520 00000000 01000000 00000000 00000000

804a530 00000000 00000000 00000000 00000000

804a540 e554f49f 93dcd6dc bb0bdc9b ad60edd0 .T...........`..

804a550 7a9beb67 60277cb2 dd9e0886 0797aeec z..g`'|.........

804a560 eba28b7e 7e615a3a 6d37d51a 97c2ea11 ...~~aZ:m7......

...

Listing 4. The output of objdump -d pub.sh.x shows information needed

to find the encrypted script. Lines in parentheses were added.

8048e52: 68 28 01 00 00 push $0x128

(Length of encryption key)

8048e57: 68 40 a5 04 08 push $0x804a540

(Key address)

8048e5c: e8 17 fb ff ff call 0x8048978

8048e61: 83 c4 10 add $0x10,%esp

8048e64: 83 ec 08 sub $0x8,%esp

8048e67: 6a 08 push $0x8

(Length of shll)

8048e69: 68 72 a6 04 08 push $0x804a672

(shll address)

8048e6e: e8 a0 fb ff ff call 0x8048a13

8048e73: 83 c4 10 add $0x10,%esp

8048e76: 83 ec 08 sub $0x8,%esp

8048e79: 6a 03 push $0x3

(length of inlo)

8048e7b: 68 8a a6 04 08 push $0x

8048e80: e8 8e fb ff ff call 0x8048a13

http://www.linuxjournal.com

4 2 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

T
he Matrix is a USB bill validator, sometimes known as
a note reader or bill acceptor, made by Validation
Technologies International. The bundled software was
developed for Microsoft Windows, but fortunately the

device comes with low-level technical documentation that
defines device-specific aspects, such as flow control, status
bytes and local status LEDs.

The device is a Human Interface Device (HID), as iden-
tified by an enumeration process upon connection. The
Windows device manager reports the device as such, as
does usbfs on Linux. This article is specific to this particu-
lar HID device, so including all of its code probably is
unnecessary, but it should provide help for developing
other HID-class devices.

After some initial research, I decided to develop user-space
code using an in-development library called libhid, which pro-
vides a cross-platform way to access and interact with USB
HID devices. libhid is implemented on top of libusb, so it
does not depend directly on the kernel’s USB support.

Another option for driving the Matrix is to use libusb
directly, but doing so would be re-inventing the libhid
wheel. A third option is to implement the Matrix driver as a
kernel module, but it would incur the large overhead of
learning kernel particulars. This option also would render
the code platform-specific.

Investigation
USB devices are categorized into device classes. A modem is
in the communications class, and a speaker falls into the audio
class. The HID class mainly consists of devices that people use
to control computers. Examples of HID devices are mice, joy-

sticks and force-feedback game controllers. Also included in
the HID class are devices that may not require human interac-
tion but do provide data in a similar format to HID-class
devices, such as bar-code readers and, in my case, the Matrix
note reader.

Information about a USB device is stored in segments of its
ROM called descriptors. A diagram of the descriptor structure
is provided in Figure 1, where an overall view of the hierarchy
can be seen. When a USB device is attached to a USB bus, an
enumeration process takes place that equates to the descriptors
on the device being read into memory. Information about an
HID-class device is contained in its HID report descriptors.

I plugged the device in to the Linux box in order to read the
descriptors and monitor the device, the machine and the com-
munications. I did this to try to get as much information as
possible so I could have a better understanding of how to write
code for the device.

A key component of these report descriptors is the usage
information, which is defined in the USB HID Usage Tables
(see the on-line Resources). Usage values describe three basic
types of information about the device:

n Controls—information about the state of the device, such as
on/off or enable/disable.

n Data—all other information that passes between the device
and the host.

n Collections—groups of related controls and data.

Taken together, the usage page and usage number define a
unique constant that describes a particular type of device or
part of that device. For example, on the Generic Desktop usage
page (page number 0x01), usage number 0x05 is a game pad,
and usage number 0x39 is a hat switch.

n E M B E D D E D l i b h d

Development
of a User-Space
Application for
an HID Device,
Using libhid
When it’s time to get a new device working on

Linux, every piece of information helps, whether it’s

reading the hardware documentation, snooping

data, reading sample code or even running utilities

on a non-Linux OS. B Y E O I N V E R L I N G

Figure 1. A USB device’s descriptors, stored in its ROM, hold information about it.

http://www.linuxjournal.com

Because my device is unique—it isn’t a mouse, joystick or
something commonly found in the examples of HID-class
devices—the usage page is set to 65,440, which is a vendor-
defined value. In comparing outputs of lsusb for other HID-
class devices, they all had a defined usage page, such as
Generic Desktop Controls or Game Controls. Because libhid
still is in development, few previous examples of code are
available to browse for reference. My work was much like an
exploratory investigation.

On Linux, with a standard Debian 2.6.9 kernel and usbutils,
I was able to see that Linux recognises the device as a USB
HID device, bInterfaceClass = HID, and loads the hiddev ker-
nel module. This module, or piece of kernel code, is a generic
driver for HID devices. It is not specific to our needs—it main-
ly is used for mice, joysticks and the like—so it needs to be
detached from the device or disabled (see the Communicating
with the Device section).

The device, like all USB devices, is enumerated upon
connection to the USB bus. So looking at the output of lsusb
-vvv, run as root, for more information is helpful in determining
what the device capabilities are. lsusb parses the usbfs filesys-
tem into a more readable format:

[sample lsusb -vvv]

Bus 001 Device 004: ID 0ce5:0003

Device Descriptor:

...

idVendor 0x0ce5

idProduct 0x0003

...

Configuration Descriptor:

...

Interface Descriptor:

...

bNumEndpoints 1

bInterfaceClass 3 Human Interface Devices

bInterfaceSubClass 0 No Subclass

bInterfaceProtocol 0 None

...

HID Device Descriptor:

...

Report Descriptor: (length is 32)

Item(Global):Usage Page,data=[0xa0 0xff]65440

(null)

Item(Local):Usage, data= [0x01] 1

(null)

Item(Main):Collection, data= [0x01] 1

Application

Item(Local):Usage, data= [0x03] 3

(null)

Item(Global):Logical Minimum,data=[0x00] 0

Item(Global):Logical Maximum,data=[0xff]255

Item(Global): Report Size, data= [0x08] 8

Item(Global): Report Count, data= [0x05] 5

Item(Main): Input, data= [0x02] 2

Data Variable Absolute No_Wrap Linear

Preferred_State No_Null_Position

Non_Volatile Bitfield

Item(Local): Usage, data= [0x05] 5

(null)

Item(Global):Logical Minimum,data=[0x00]0

Item(Global):Logical Maximum,data=[0xff]255

Item(Global): Report Size, data= [0x08] 8

Item(Global): Report Count, data= [0x05] 5

Item(Main): Output, data= [0x02] 2

Data Variable Absolute No_Wrap Linear

Preferred_State No_Null_Position

Non_Volatile Bitfield

Item(Main): End Collection, data=none

The above output—some of the information has been omit-
ted—follows the hierarchy depicted in Figure 1. Some values
of note are:

n idVendor and idProduct—unique identifiers for all USB
devices, used for identifying and accessing the device
in code.

n bNumEndpoints—lists the number of endpoints available in
a device. This value actually means the number of endpoints
in addition to the default endpoint, endpoint 0, available in
every USB device.

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 4 3

http://www.linuxjournal.com
http://www.layer42.net

n bInterfaceClass—the value that determines that a device is
an HID-class device.

n bInterfaceSubClass—the subclass of a device, in this case,
HID. For example, the boot interface subclass of the device
must be bootable or available to the BIOS, such as a mouse
or keyboard.

n bInterfaceProtocol—the protocol used. Possible values are 0
for none, 1 for keyboard or 2 for mouse; additional informa-
tion is available in the HID spec.

Communicating with the Device
A block diagram depicting the flow of control of data is shown
in Figure 2. It may help in picturing where your code fits in
with respect to the libraries and the device. From my investiga-
tion, I know that control messages periodically are written by
way of the control pipe, and interrupt reads are made through
endpoint 0.

The control pipe is used for three tasks: receiving and
responding to requests for USB control and class data; trans-
mitting data when polled by the HID class driver, using the
Get_Report request; and receiving data from the host. The
Interrupt pipe is used for two tasks: receiving asynchronous, or
unrequested, data from the device and transmitting low-latency
data to the device.

The kernel has a DEBUG feature that can be activated
in order to log extra information about what is happening
when communicating with the device. To do this, a file in
the kernel source needs to be modified. In the /usr/src/linux/
drivers/usr/input/hid-core.c file, these two lines need to be
changed from:

#undef DEBUG

#undef DEBUG_DATA

to:

#define DEBUG

#define DEBUG_DATA

The module needs to be recompiled and installed. Once this
is done, the modules should prove helpful in determining
whether your code is working and doing what you expect.

Sample code containing some helpful comments comes
with libhid. The file test_libhid.c in the libhid/test directory is a
good place to start writing code for the device. Below is a
snippet of that code, along with some more explanation of the
functions; details are omitted for brevity:

HIDInterface* hid;

hid_return ret;

HIDInterfaceMatcher matcher =

{ 0x0ce5, 0x0003, NULL, NULL, 0 };

ret = hid_force_open(hid, 0, &matcher, 3);

int const PATH_LEN = 2;

int const PATH_IN[2] = { 0xffa00001, 0xffa00003 };

int const WRITE_PACKET_LEN = 8;

char write_packet[8] =

{ 0x04,0x7f,0x7f,0x00,0x02,0x00,0x00,0x00 };

int const READ_PACKET_LEN = 5;

char read_packet[5];

ret = hid_set_output_report(hid,

PATH_IN,

4 4 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n E M B E D D E D l i b h d

Figure 2. The new driver uses libhid, which depends on libusb.

Phone 618 - 529 - 4525 Fax 618 - 457 - 0110
2390 EMAC Way, Carbondale, Illinois 62901
World Wide Web: http://www.emacinc.com

Since 1985
OVER

YEARS OF

SINGLE BOARD

SOLUTIONS

19

What is the 5-letter word for
“an Inexpensive Compact Panel PC”?

The PPC-E5 is the Solution that Fits !

Setting up a Linux Panel PC can be a experience. However, the

PPC-E5 comes ready to run with the Operating System installed on flash

disk. Apply power and watch the Linux X Window Graphic User Interface

appear on the vivid color LCD. Interact with the PPC-E5 using the

responsive integrated touchscreen. Everything works out of the box,

allowing you to concentrate on your application rather than building and

configuring device drivers. Just Write-It and Run-It. Starting at $995.

Puzzling

Linux

2.4 Kernel

http://www.emacinc.com
http://www.linuxjournal.com

PATH_LEN,

write_packet,

WRITE_PACKET_LEN);

ret = hid_interrupt_read(hid,

USB_ENDPOINT_IN+1,

read_packet,

READ_PACKET_LEN,

0);

The first thing to do is identify the particular device we
want to talk to. This is done with the HIDInterfaceMatcher call
simply by entering the vendor ID and the product ID. These
two identifiers are all that is required to identify any USB
device. If you have more than one identical device, it is possi-
ble to separate them by serial number, that is, two Matrix note
readers would have the same vendor ID and product ID but
different serial numbers. The HIDInterfaceMatcher call can do
this; see the comments in the test_libhid.c file.

After some variable setup, the next step is to detach the
kernel driver from the HID device. Upon insertion of the HID
device, the kernel usually loads the usbhid module, which we
don’t want. We do have a few options, however, for unloading
it or for not loading it in the first place. One such way is to
enter this command:

root@localhost #> modprobe -r usbhid

When the hid_force_open function
runs, it attempts, n times, to detach the
device before it fails. The device is
now free from any control, so our code
now “opens” the device. As with any
USB device, it is necessary to send
control information to the device to
activate it. This information must be
sent periodically in order for the device
to remain active. If the control poll
stops, the device deactivates after a cer-
tain timeout.

Writing to a device requires the
HID usage path and its length, plus a
packet and its length. To find this out,
we need to parse the usage tree—the
output of lsusb -vvv—and obtain the
path to the interface we want. As with
everything else, there are various meth-
ods for determining the path. At this
stage, a lot of time was spent determin-
ing what path to write to, and a number
of tools are helpful here, such as:

1. The test_libhid.c code: when the
correct vendor and product ID are
entered in the code, the function
hid_dump_tree, which uses the
MGE hidparser (see Resources),
which parses the HID usage tree and
places the available usages at its
leaves, outputs the available paths.

2. A Windows application available from Arnaud, one of the
libhid authors, also parses the usage tree and produces a
nice GUI output, as shown in Figure 3.

3. By parsing the output of lsusb -vvv, run as root, it is possi-
ble to parse the tree manually to determine the path. This
process is explained in the comments of test_libhid.c code.

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 4 5

Figure 3. Understanding a device: one way to browse the available nodes of the

HID tree is to use the SystemSoft HID Browser.

http://www.linuxjournal.com
http://www.embeddedARM.com

From the above methods, we now have a path value we can
use for the hid_set_output_report. Once we know where to
write to, it’s a matter of what to send. This information should
be in the technical documentation that comes with the device,
and it can be verified with the USB-sniffing tools. As with the
particular device I was using, verifying the format of a packet
with the sniffing tools turned out to be important, as the infor-
mation in the documentation didn’t match what the sniff log
reported (see the Snooping section).

Once the control message or output report is sent, we can start
to read from the read pipe, endpoint0. The function needed is an
interrupt read function. It already exists in libusb, but a corre-
sponding libhid function doesn’t. The developers of libhid simply
hadn’t come across a device that required it yet, so I studied the
format of the other functions and implemented it appropriately. I
also added a new error code to the existing list. These additions
are being considered for inclusion in the latest version of libhid.

At this stage, once the interrupt read value is stored, I then
parse this value, as per the Matrix documentation, to display
the results to the user. For this device, that equates to informa-
tion such as, “A ten-euro note has been inserted” or “The cash
box is disconnected” and other such device-specific informa-
tion. The details are unnecessary for the purposes of this arti-
cle, but if anyone requires this detail, feel free to contact me.

This process is repeated for as long as the driver is running.
We must keep polling the device to keep it active. There is a
status LED on the device that turns green when the device is
active and remains orange when inactive. The goal for quite
some time was to make the little light go green.

Snooping
Snooping can be done with a number of utilities. This is where
I learned about the discrepancies between what the Matrix doc-
umentation says and what actually happens:

[5037 ms] <<< URB 647 coming back <<<

-- URB_FUNCTION_CONTROL_TRANSFER:

PipeHandle = 8180c814

TransferFlags = 00000002 (DIRECTION_OUT)

TransferBufferLength = 00000005

TransferBuffer = 92a137ed

TransferBufferMDL = fe9876e8

UrbLink = 00000000

SetupPacket =

00000000: 21 09 00 02 00 00 05 00

[5038 ms] <<< URB 645 coming back <<<

-- URB_FUNCTION_BULK_OR_INTERRUPT_TRANSFER:

PipeHandle = fe9876a0 [endpoint 0x81]

TransferFlags = 00000003 (DIRECTION_IN)

TransferBufferLength = 00000005

TransferBuffer = fefeef08

TransferBufferMDL = 81a18f48

00000000: 00 20 00 00 1a

UrbLink = 00000000

[5038 ms] >>> URB 648 going down >>>

-- URB_FUNCTION_BULK_OR_INTERRUPT_TRANSFER:

PipeHandle = fe9876a0 [endpoint 0x81]

TransferFlags = 00000003 (DIRECTION_IN)

TransferBufferLength = 00000005

TransferBuffer = fefeef08

TransferBufferMDL = 00000000

UrbLink = 00000000

From the snoop log, we see the control message sent to the
device at the start, followed by a series of interrupt reads.
According to the documentation, “The Host sends [a] poll to
request information from Matrix at a periodic rate. Matrix
answers to the poll and reports all the happening events.” So, my
interpretation of this was to send periodic control write messages
to the device and read the responses from the interrupt endpoint.
Also according to the documentation, the format of the write
message is five bytes in length, so with this information, I used
the test_libhid.c file included with libhid to see what happens. I
found that functions within libhid give error codes if they fail and
that the /var/log/messages file, with the extra DEBUG informa-
tion from the modified kernel file, reports useful errors.

Upon closer inspection of the snoop log, I saw that the
control write was, in fact, eight bytes in length. See
SetupPacket in snoop log output. The five bytes described
in the documentation seemed to represent the first five bytes
of the packet, and the last three bytes seemed to be padding.
That is, changing these last three bytes doesn’t seem to
affect the operation. Subsequent error-free testing, with the
packet set to eight bytes, confirmed that the documentation
had been misleading.

Conclusion
In terms of where to start with this project, I found the mailing
list for libhid to be helpful. The libusb mailing list also provid-
ed guidelines. The Linux usbutils are quite useful in determin-
ing what interfaces are available on the device and the meaning
of the descriptors.

The libhid source code, still in constant development, also
is a source of help. Because the code constantly is being devel-
oped, it is a good idea to keep an eye on the Subversion reposi-
tory for changes, including documentation changes such as
helpful comments in the code.

Acknowledgements
Special thanks to Charles Lepple and Arnaud Quette, the origi-
nal authors of libhid, and also to Martin F. Krafft, who later
joined and led the rewrite. They all provided me with a lot of
help, and without them I certainly wouldn’t have gotten my lit-
tle light to go green.

Also, thanks to my supervisor, Dr Paul O’Leary, at WIT, for
his encouragement and analytical skills. It always is good to have
an experienced pair of eyes to guide me in the right direction.

libhid uses the HIDParser framework made available
by MGE.

Resources for this article: www.linuxjournal.com/article/
8275.

Eoin Verling (everling@theverlings.com) qualified
in 1998 and has been a sysadmin since. He cur-
rently is undertaking a research Master’s in parallel
computing at Waterford Institute of Technology,
Ireland. There’s nothing he likes better than a bit

of ceol agus craic!

4 6 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n E M B E D D E D l i b h d

http://www.linuxjournal.com/article/8275
mailto:everling@theverlings.com
http://www.linuxjournal.com

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 4 7

n L I N U X F O R S U I T S

W
e’ve been fighting closed and proprietary soft-
ware for a long time now. And we’ve had lots
of success—enough, I think, that we need to
move to the next stage: to the marketplace.

We can see the problem when we look at how many closed
systems have open foundations: Google and Amazon on
Linux, Apple’s Mac OS X and Yahoo’s search infrastructure
on BSD. Also, countless closed Web habitats served up
by Apache.

Am I being unfair here? Perhaps a little. You can’t be open
in every possible respect, right? Some stuff needs to be locked
down or closed off. Customer data, future product plans, trade
secrets and “secret sauces” of one kind or another. But those

aren’t the issue.
The real issue is silos: closed habitats that serve as private

marketplaces that lock customers in and competitors out.
Dick Hardt of Sxip Networks gives a killer talk about

“Identity 2.0”. As Dick puts it, Identity 1.0 is a province of
walled gardens. Amazon, eBay, Flickr and Skype are all walled
gardens. They may be lovely places to hang out, but they are
also enclosed and private market spaces, as false in their own
way as the faux Venetian canals and Parisian streets in Las
Vegas hotels.

What makes them most different from closed systems of
the traditional sort is not a lack of interoperability—often they
have that—but the lock-in of personal data. You can’t take

The Only Silo

“Edison’s light bulb was important not because he was the first with the idea; as

many as ten others envisioned similar schemes. Rather it was significant because he

conceived not just a bulb but a whole electrified world.”—Teresa Riordan, US News

B Y D O C S E A R L S

find out more at novell.com

and then it hits you://

LINUX ISN’T A POLITICAL STATEMENT.

IT’S A PROFIT STATEMENT.

©2005 Novell, Inc. All rights reserved. Novell is a registered trademark of Novell, Inc. in the United States and other countries.

DOC: 51460_M5446A.indd Ad #: M5446A EPS#: 51460 JOB#: NVL GEN M54728

BLEED: TRIM: SAFETY: 7" x 4-3/4" GUTTER:

OPERATOR: Laura PREV OP: PROOF#: 4 to FTP PAGE#: 1

SAVED: 6-16-05 8 pm PRINTED:

DOC PATH: Production: PROD_MECHANICALS:WIP June 05-1: Novell

Ad No. M5446A

Desc: Novell Trade Ad “Linux isn’t a political...”

1/2P4/C Horizontal

Size: 7" x 4-3/4"

JWT, NY 2005

Job No. NVL-GEN-M54728

A/D: Glenn Price

C/W: Howard Lenn

P/P: Suzin Sessa

EPS No. 51460

7”

4.
75

”

62281_1

you://LINUX
you://LINUX
http://www.linuxjournal.com
http://www.novell.com

your eBay reputation, or the business you’ve built inside
eBay’s walled garden, over to Amazon. Even trivial data, such
as your Skype contact list, isn’t portable. It’s locked inside a
space that is not your own.

To hear Dick describe it, Identity 1.0 is barely past
medieval. It’s a country of duchies and city states. But since
we’re so used to it, we can barely think outside its walls. Yet
that’s where we belong, he says. The world we want—the
Identity 2.0 world—is one of independent actors: free-range
customers, conducting business and building relationships in
ways that each individual controls and that work with many
different vendors.

The problem with the walled garden metaphor is that all the
familiar examples are native to the Web. Silos, on the other
hand, are everywhere, both on the Web and off. Nearly every
familiar business category you can name—banking, hospitality,
retailing, commercial aviation, car rental...even office equip-
ment, such as copiers and printers—is a forest of silos. Take
airlines. I am a registered frequent flyer with United,
American, Delta, America West and Southwest. Yet the only
common way I can relate to any of the five is money. None of
my data in the United silo is available for my dealings with
American or Delta.

We’ve lived in a world packed with silos for so long
that we now confuse them with a free marketplace. We

actually believe that a choice of silos comprises all the con-
ditions required for a free market. We can see how limited
this is when we look at the market category we call com-
puters. A quarter century ago, we thought the category was
free and open because we had a choice of silos from IBM,
Digital, Data General, Wang and HP. We thought the same
way about networks when our choices were OmniNet,
WangNet, IBM Token Ring, Sytek, Corvus, 3Com and
Ungermann-Bass.

I remember a long conversation I had with Ralph
Ungermann about how his company’s goods were “open”
because they interoperated with other networks. In a rela-
tive sense, they may have been. But the market was essen-
tially a field of silos. What he offered was inter-silo-oper-
ability. Good for its day, but nothing like the Net that was
to come—and which didn’t come from any one vendor
at all.

I remember Earl Gillmor talking about silos, way back
in 1980. Earl enjoyed a small measure of notoriety as a
member of a splinter group at Data General that lost “the
shoot-out at the Holiday Inn” in Durham, North Carolina—
an event immortalized in the early pages of Tracy Kidder’s
book, The Soul of a New Machine. After the shoot-out, Earl

left DG and formed a new systems integration company in
Raleigh called BAS, for Business Application Systems.
BAS’s goal was to produce what they called “machine-
independent software”. To be independent, Earl explained,
you needed software that was independent of every hard-
ware vendor’s silo.

One day, early in my company’s relationship with BAS,
Earl explained the ideals of machine independence, all of
which are familiar to anybody acquainted with open source
today. (Although, naturally, BAS’s code was proprietary.)
When he was done with his rap, my business partner asked
the impolite question, “So how do you make your money?”
“We’re whores”, Earl replied. “We walk the streets with the
rest of them.” His point: they had no choice—except
among silos. (BAS, it turned out, bet on the wrong silo:
Texas Instruments’ DS990s.)

Silo was just one container metaphor kicking around in
those days. Others were smokestacks and stovepipes. Today
those metaphors have fallen behind silo in popularity. I sus-
pect that’s because silos are completely contained. Unlike
smokestacks and stovepipes, they don’t have an opening at
the top.

The prototypical office building is a silo of sorts. With its
security systems, its employee and visitor badges, it comprises
what David Weinberger calls “Fort Business”:

This fort is, at its heart, a place apart. We report there every
morning and spend the next eight, ten or twelve hours inacces-
sible to the “real” world. The portcullis drops not only to keep
out our enemies, but to separate us from distractions such as our
families. As the drawbridge goes up behind us, we become
businesspeople, different enough from our normal selves that
when we first bring our children to the office, they’ve been
known to hide under our desks, crying.

Within this world, the Web looks like a medium that exists to
allow Fort Business to publish on-line marketing materials and
make credit-card sales easier than ever....The Web isn’t primari-
ly a medium for information, marketing or sales. It’s a world in
which people meet, talk, build, fight, love and play. In fact, the
Web world is bigger than the business world and is swallowing
the business world whole. The vague rumblings you’re hearing
are the sounds of digestion.

The change is so profound that it’s not merely a negation of
the current situation. You can’t just put a big “not” in front
of Fort Business and say, “Ah, the walls are coming down.”
No, the true opposite of a fort isn’t an unwalled city. It’s
a conversation.

4 8 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n L I N U X F O R S U I T S

The world we want—the Identity 2.0 world—is one of independent

actors: free-range customers, conducting business and building

relationships in ways that each individual controls and that work

with many different vendors.

http://www.linuxjournal.com

David wrote that more than six years ago, in Chapter 6
of The Cluetrain Manifesto. We still aren’t having the con-
versation required to bring the walls down. True, there are
some significant conversations growing out of employee
blogs. For example, nothing has done more to bring down
Microsoft’s walls than interaction with outsiders by Robert
Scoble, Kim Cameron (a subject of last month’s column)
and about 2,000 other blogging Microsoft employees.

But the problem isn’t communication. It’s the structure
of markets themselves. I’m not talking about structure in an
architectural sense, but in a deeper way that’s more like
geology. Because the Internet is geological, not just archi-
tectural. It has a nature that goes deeper than whatever
structures private efforts can provide. But that nature is
hard to see when your frames of reference are closed
and proprietary.

Like many in the Linux community (including my good
friend Eric Raymond), I have strong Libertarian sensibili-
ties. I understand the liberating advantages of private prop-
erty to societies and their economies. Ownership matters,
and ownership works. But we in the Free Software and
Open Source communities also know there are some things
that are beyond the scope of ownership and the control
ownership naturally implies. Earth below the crust is as
beyond the practical scope of ownership as the weather and
the stars. Yet they provide us with services so fundamental
we couldn’t live without them. One of those services is a

deep and easily ignored context for property: gravity. Real
estate would be meaningless without the gravitational pull
provided by a mass we’ll never see. The Net’s geology is
like that.

I’ve written many times about the NEA nature of the Net,
and of all free and open-source software: Nobody owns it,
Everybody can use it and Anybody can improve it. The same
applies to markets, and it’s time we started improving the ones
we’ve got, by putting silos in a context that makes clear their
limited advantages.

The Supreme Court missed a chance to do that with the
Brand X case. In a 6–3 decision that was handed down on
June 27, 2005—the same day as Grokster, which is a big
reason why not much of a fuss was made about it—the
Supremes upheld a 2002 FCC ruling that classified cable
broadband as a deregulated “information service” rather
than a “telecommunications service”. Unpacked, that means
the cable and telephone companies can (and will) be exclu-
sive Internet service providers. Independent ISPs like
Brand X and Earthlink, which don’t own physical connec-
tions to homes and businesses, are out of luck if the cable
and phone companies want to keep captive customers
to themselves.

More important, the FCC’s understanding of the Internet
achieved the stature of law with the Brand X decision. That
understanding is basically feature-rich broadcast. It’s a concept
of service anchored on the supply side of the highly asymmet-

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 4 9

find out more at novell.com

and then it hits you://

YOU’RE WORKING WITH LINUX 24/7 IN

EIGHT TIME ZONES. AND SO ARE WE.

©2005 Novell, Inc. All rights reserved. Novell is a registered trademark of Novell, Inc. in the United States and other countries.

DOC: 51460_M5445A.indd Ad #: M5445A EPS#: 51460 JOB#: NVL GEN M54728

BLEED: TRIM: SAFETY: 7" x 4-3/4" GUTTER:

OPERATOR: Laura PREV OP: PROOF#: 3 to FTP PAGE#: 1

SAVED: 6-16-05 2 pm PRINTED:

DOC PATH: Production: PROD_MECHANICALS:WIP June 05-1: Novell

Ad No. M5445A

Desc: Novell Trade Ad “You’re working with Linux 24/7...”

1/2P4/C Horizontal

Size: 7" x 4-3/4"

JWT, NY 2005

Job No. NVL-GEN-M54728

A/D: Glenn Price

C/W: Howard Lenn

P/P: Suzin Sessa

EPS No. 51460

7”

4.
75

”

62280_1

you://YOU%E2%80%99RE
you://YOU%E2%80%99RE
http://www.novell.com
http://www.linuxjournal.com

rical distribution system the FCC has governed for most of the
last century.

Former FCC Chairman Michael Powell, in a speech at
the VON (Voice On the Net) conference one year ago, said,
“To realize the innovation dream that IP communications
promises, however, we must ensure that a willing provider
can reach a willing consumer over the broadband connec-
tion.” He generously acknowledged “the importance of
consumer empowerment” and rights such as “Freedom to
Access Content”, which he explained with “Consumers
should have access to their choice of legal content.”
Generous as that may have been, it was no less top-down
than anything owned by Rupert Murdoch. Nowhere did he
acknowledge the Net’s most profound commercial grace:
supporting the ability of people to go into business, and to
do business, with anybody they please, anywhere.

Thomas Madsen-Mygdal, a young serial entrepreneur in
Denmark who hosts the delightful annual reboot conference in
Copenhagen, recently told me he likes and appreciates Flickr—
the on-line photo gallery phenomenon that has taken the world
by storm (and which was built on LAMP)—but that it has
“lock-in” issues:

I don’t mean “a total lock-in” in the traditional BigCo IT
sense. More like that if open data standards existed, the col-
lective value would be in the commons—not on one photo
sharing site. The London bombings wouldn’t be about the
“flickr tag”, but about the “photo tag” or just the tag—which
in my book is much more aligned with our values and the
society we want to create.

Thomas’ higher-level concern is that “we’re selling out on
values of open standard and decentralization”. What Tim
O’Reilly calls the “architecture of participation”, Thomas says,
is turning into something that is “based on silos” in practice.
So, he adds, “I’m gonna try and push some open standards in
the photo sharing space to level the competition.”

He’ll do that, he says, by “dividing what is the commons
from what is the product. That way, thousands of photo sharing
products can create a collective value that’s a lot greater.
Competition will be on the product side, rather than on who
aggregates most of the commons.” Thomas’ site,
23people.com, is open for beta.

In September 2005, O’Reilly put on its second Web 2.0
conference. (Shouldn’t they call it Web 2.1?) In September
2004, Tim O’Reilly described Web 2.0 as “the Internet as a
platform”. Then he added:

We heard about that idea back in the late 1990s, at the
height of the browser wars, but that turned out to be a
false alarm. But I believe we’re now starting the third age
of the Internet—the first being the telnet-era command-line
Internet, the second the Web—and the third, well, that tale

grows in the telling. It’s about the way that open source
and the open standards of the Web are commoditizing
many categories of infrastructure software, driving value
instead to the data and business processes layered on top
of (or within) that software; it’s about the way that Web
sites like eBay, Amazon and Google are becoming plat-
forms with rich add-on developer communities; it’s about
the way that network effects and data, rather than software
APIs, are the new tools of customer lock-in; it’s about the
way that to be successful, software today needs to work
above the level of a single device; it’s about the way that
the Microsofts and Intels of tomorrow are once again
going to blindside established players because all the rules
of business are changing.

That was a lead-in to the Web 2.0 conference. After
the conference, in an interview with Richard MacManus,
Tim said:

I actually ran a couple of panels on this at our Open Source
convention, a year and a half or two years ago—called “Open
Data—Do We Need a Bill of Rights for Web Services?” We had
people from Amazon, eBay and others trying to answer that
question: what does it mean when we’re investing our on-line
data in these sites? Will we end up with something like the
Open Source movement because the companies have ended up
locking in their users?

....But the actual data ownership is maybe less important, in
some areas, than people think. When we talk about user-
contributed data, we’re not just talking about my data prop-
er (as in having your mail stored on Gmail or Yahoo! Mail
or whatever). We’re also talking about a kind of content
that users are contributing to a collective work. So for
example, Amazon Reviews—people don’t really care about
that in the same way. They’re not saying, “Oh I created that
review and I want to be able to export it to Barnes & Noble
as well.” They’re creating it in a particular context of
that community.

....Despite what I’ve said...data lock-in absolutely should be
a concern. I believe that data lock-in of various kinds is
going to be one of the key tools of business advantage in
the Internet era. I think that as companies realize this, they
will figure out how to be evil—so to speak (to use Google’s
terminology)—and I predict that we will in fact have some
major battles in that area.

As I said last month, one answer is to create ways to do
what Drummond Reed calls “Company Relationship
Management” (or CoRM), which should look far more
interesting and useful to companies than their own
Customer Relation Management (CRM) systems, which by

5 0 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n L I N U X F O R S U I T S

What makes Linux so different, and so

successful, is that it’s not designed as a silo.

http://www.linuxjournal.com

nature have no view outside the company’s own silo. In
fact, CRMs are one of the main ways companies maintain
their silos.

Another is to pay more attention to where the Net’s deep,
almost geological market-making infrastructure comes from.
It’s not from the physical cables that run to homes or from the
“services” available exclusively from cable and phone compa-
nies, but from the open protocols that define the Net’s environ-
ment. It’s also not from fancy private services inside corporate
walled gardens but from the raw building materials that make
deploying those services so free and easy.

Which brings us back to the L in the LAMP suite that
makes possible the last phrase above.

What makes Linux so different, and so successful, is that
it’s not designed as a silo. Linux didn’t come from a silo,
and it had no ambitions to be a silo. At one point, Linus
talked about “world domination”, but his tongue was in his
cheek—even if he was indulging in prophesy that would
prove out in the long run.

Linux was never a business. It was, and remains, a great
way to build anything, to support anything, for anybody.
That’s the fundamental virtue we need to fight for when we
go to battle.

Our battle, however, is not with the companies that use

open code to build walled gardens and silos. Our battle is
with the closed, top-down silo-oriented value system that
has been with us since the dawn of the Industrial Age. It’s
that lame old value system that prevents us from imagining
how we can improve markets that nobody owns and any-
body can improve.

The best way to shed the old mentality is to embrace our
customers and not only their money. Today the preponderance
of inventiveness and productivity is out in the free world, in
the hands of free-range individuals. Linus Torvalds is the
prototypical example of one of those individuals. There are
countless more like him, producing all kinds of goods, expressing
all kinds of demand—much of which they are able to supply
for themselves, as Linus did, and with the help of others, as
the Linux community has done.

In fact, the only silo that matters is the most fundamen-
tal and indivisible unit in the marketplace, the individual.
What we need is to create and support independence,
not dependence.

Work to free individuals, and to take advantage of what
they do with that freedom, and you’ll have a winning strategy
in the new marketplace we’re all making together.

Doc Searls is senior editor of Linux Journal.

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 5 1

find out more at novell.com

and then it hits you://

LINUX WORKS WITH ANY PLAN.

ESPECIALLY THE FY ’06 BUDGET.

©2005 Novell, Inc. All rights reserved. Novell is a registered trademark of Novell, Inc. in the United States and other countries.

D

you://LINUX
you://LINUX
http://www.novell.com
http://www.linuxjournal.com

5 2 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

H
ere’s a strange thing: hacking open source isn’t done
only at midnight, in the spare room, hunched over the
protocol analyser, the breadboard, source code control
and some helpless device. No, sometimes it’s done

inside a different crucible entirely: a public world of shameless
posturing and self-promotion. A lurid and neon habitation of
signs, shops, styles and stuff populated by the babble of conver-
sations both informed and banal. It’s a place of great joy and
great angst; a place of towering conservatism and the last bastion
of the radical voice. Within it, a good hairdo or a radically cut
legline can get you as far as a symbolic debugger, possibly even
further. Devices they may be, but of a different cut entirely from
those of hardware. Its denizens slip hyperactively in and out of
view like character actors with coffee addictions and inspired
agents. Of course, I refer to the World Wide Web.

In this article, you learn how to code in a new way, a way that’s
about changing media, not about changing programs. To enter this
nightclub and experience the beat, you need the right gear, and the
right gear is Mozilla Firefox and GreaseMonkey. Alfred Bester and
William Gibson are waiting, so ready your Mojo and prepare for
cyberspace insertion. But first, a bit of background.

Web Pages as Open Source
We tend to forget that the Web is open source, in a way. Some of
the Web’s infrastructure, browsers and servers, is traditional
open-source software, but the idea also applies to Web page con-
tent. Appropriation of code is an everyday occurrence. Every day,
Web developers and designers use the View Source browser fea-
ture to appropriate (industry term: steal) code and design from
other people’s pages. It was ever thus, and it remains so. Ideas
and code are shared freely and often; it’s an art design sensibility.

Most technical people have dabbled with Web develop-
ment, and dabbling is an easy way to have a bad experience.
The big three technologies—HTML, CSS and JavaScript—
were riddled with bugs for many years after their inception.
That’s the experience that probably looms large for early
adopters who first tried it out in the 1990s and walked away in
disgust. Cross-browser code? No, thank you.

Fortunately, matters have improved tremendously as of late,
and the Web is reviving as a technology platform. Better stan-
dards support, more standards support and the decline of hoary
old misgivings, such as Netscape Communicator 4.x and
Internet Explorer 5.0, have left Web developers with a nearly

clear shot at real portability, a shot frustrated only by the once
shiny but now fairly rusty Internet Explorer. In 2005, the buzz
is about Modern DHTML, Layout without Tables, Semantic
Markup and Asynchronous JavaScript and XML (AJAX).
Client-side Web development is coming back, and these are the
things of which it’s made. This time, the Web is backed by pro-
fessionals with formal Web training and veterans with ten years
of experience. These people have their acts together, and it’s
possible to say things about Web technology that are no longer
drowned out by the static of incompatibility issues.

Supporting and colonizing this trend is the Mozilla Firefox
Web browser, and Mozilla technology in general. Of course,
Mozilla is fully open source, as open as a religious movement
can be, and so there’s plenty of room for experimentation. The
critical bit of Mozilla and Firefox is its interpreted nature. On top
of a big, bad, networked C++ rendering engine is a thin skin of
JavaScript scripts and XUL, an XML dialect. This makes Mozilla
a distant cousin to Emacs or Tcl/Tk, as it provides the whole
Firefox user interface by way of interpreted code. By writing an
extension, you can enhance this user interface and drop it in to
thousands of willing people’s daily experience. Go to
update.mozilla.org to see the endless possibilities made real by
this system. Every variant hardware device requires Linux kernel
driver support; every variant human expectation about user inter-
faces requires a Firefox extension. That’s a lot of extensions.

Grabbing GreaseMonkey
GreaseMonkey is a Firefox extension (see the on-line
Resources). You have to click on the link twice, once to trust
www.mozdev.org and once afterward to install the extension.
GreaseMonkey differs from the other extensions because it
provides no specific user-interface enhancements of its own
other than a configuration dialog box. Instead, it creates a
macro-like scripting environment into which you put
JavaScript scripts. Those scripts operate on Web pages that you
specify. When such a page loads, your script goes to work on
the page content, no matter who provided it. You’re intercept-
ing a content provider’s content and modifying it before it hits
you. No wonder GreaseMonkey’s been called “TiVo for the
Web”. I wrote about page modification tactics in Rapid
Application Development with Mozilla (Prentice Hall, 2004),
but GreaseMonkey has moved that idea into the mainstream by
supporting traditional Web-scripting techniques and by packag-

n F E A T U R E P E R S O N A L D E S K T O P

Fixing Web Sites with
GreaseMonkey
Who says “View Source” on a Web page has to be

a read-only proposition? Re-mix your favorite Web

sites by changing styles, adding and removing

elements, and more. B Y N I G E L M C FA R L A N E

http://www.mozdev.org
http://www.linuxjournal.com

5 4 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n F E A T U R E P E R S O N A L D E S K T O P

ing it all up into a digestible product.
For all Firefox extensions, you must restart Firefox com-

pletely to finish the install. Use File→Exit to do that safely.
Bucket-loads of pre-existing GreaseMonkey scripts are

available (see Resources). Before you get too excited though,
note that such scripts are tied to one Firefox installation and
have no effect on any server. On a Linux or UNIX box, such
scripts might affect a large user population, but they’re primar-
ily a personal thing. For those readers switched on to people
problems, the broader implications should be obvious.

Spotlight on LinuxJournal.com
To see all this at work, in this article I hack the Linux Journal
Web site with GreaseMonkey. My esteemed editor, Don Marti,
even asked me to do this. A brave man indeed. [Maybe next
time they’ll invite me to the Web site meeting.—Ed.]

Give me a hill and I’ll climb it. First up is a bit of scrutiny of
the site due for surgery. Recall it’s www.linuxjournal.com, if
you’re reading this in print. This is also the fun part; personal
tastes differ, and for user-side drivers—which effectively is what
GreaseMonkey scripts are—it’s entirely valid and professional to
be picky and subjective. In Mozilla-land, dogfood means testing
your fixed bugs for technical correctness, and catfood means test-
ing your inventions against unreliable and subjective people who
might spring in any direction. It’s all catfood here, and there’s no
right or wrong. After reading this article, LJ’s long-suffering site
maintainer will likely glare at me venomously or perhaps change
the site before this sees print. Design sensibilities, you see. Sorry
mate, they made me do it. Hard-core engineers should look away;
you might find this analysis distressing. On to the site.

Here’s a handful of observations.

n The site icon, which appears in the location bar and on the
current tab if you use tabbed browsing is dinky and unin-
spired. Oh well.

n There’s advertising everywhere.

n Linux Journal’s supposed to be the granddaddy of technical
journals in open source, excluding academia and profession-
al bodies. Where’s that indicated?

n The headings are red. What’s with red? I’m not in a hurry.

On the plus side—my survival as a critic is at stake—the
site has a robust three-column layout and is clean overall.
Someone knows his or her stuff. Viewing the source, the layout
is all done with CSS, so that’s relatively modern; many indus-
try sites still pump out the worst HTML you can imagine. The
excessive use of <DIV> tags shows that LJ is halfway through
modernisation; there’s still some Semantic Markup work to go,
where meaningful tags are used as content descriptors instead
of the meaningless <DIV>. That update might improve the
site’s search engine performance or so it’s claimed.

The Right Tool for the Right Job
Now, of the above personal observations, some are simple to
rectify and do not require GreaseMonkey. If you dislike adver-
tising, then the AdBlock extension is for you; there’s nothing,
or at least little, to code. Similarly, for a long time, all browsers

have supported user-specified stylesheets. If you install the
ChromEdit extension, you can get at that stylesheet without
having to grovel through the filesystem looking for it. Bring it
up via Tools→Edit User Files, click the userContent.css tab
and start typing. To make headings blue, you might add:

h1.title a { color : blue !important; }

@-moz-document domain(linuxjournal.com) {

h1.title a { color : blue !important; }

}

The first rule applies to all Web sites; the second is a
Mozilla special that applies only to the Web site specified.
Browser-specific is okay here, because we’re working purely
on and in the client side.

You can get a lot done in these stylesheets, especially if you
know CSS well. You can hack the page’s layout to bits by
reordering, hiding or floating columns and other content. All of
these options are possible via GreaseMonkey as well, but
GreaseMonkey is better suited to bigger stuff. In other words,
don’t go to GreaseMonkey if page changes are easily solved
with a stylesheet; it’s overkill.

For this article, we’ll make one simple change. We’ll bring
some gravitas to the site by replacing some content with fancy
calligraphy drawn from another site.

Illuminated Drop-Caps for Paragraphs
The CSS :first-letter pseudo-selector lets you take an ordinary
paragraph of text and make the first letter big, so that several
lines of text flow around it. It’s a self-important feature and
what we’re looking for. We simply could apply that feature, but
most computers don’t have fancy medieval fonts installed. And,
a big Times Roman letter F isn’t that exciting. It would be bet-
ter if we could get the LinuxJournal.com Web site properly illu-
minated, like the Book of Kells, with extra fancy calligraphy.

Here are a couple of screenshots showing the before-and-
after looks, taken on Windows XP Professional. This is a time-
ly reminder that the user experience is what’s important here. It
also emphasizes that open source means cross-platform when
stated in Mozilla terms. Everything described in this article

Figure 1. A Regular Linux Site

http://www.linuxjournal.com
http://www.linuxjournal.com

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 5 5

works identically on Windows, Macintosh, Linux and various
obscure Mozilla platforms, such as Solaris.

In the second screenshot, you can see that the first letter of
each paragraph has been replaced with a fancy illuminated letter.
Because I don’t have access to the back end of the LJ Web site,
that’s something of a feat. In fact, these images come from the
Australian National University’s Medieval Studies image server.

I’ve used the thumbnail images only. It’s a bit naughty to

serve up some other Web site’s images, and these images aren’t
perfectly cropped, registered scans, but for the purposes of, well,
illustrating a technique, they’ll do. Let’s hope some parsimonious
old sod doesn’t take them down by the time you read this.

Spinning Up the Script
To make this embellishment work, you need a GreaseMonkey
JavaScript script. To make such a script, proceed as though this
were any other Web page project. I saved to local disk the LJ
home page and then added this to the end of the <head> section:

<script src="illuminate.js></script>

Now I’m free to develop that script in pure Mozilla JavaScript,
with no cross-browser constraints, because GreaseMonkey works
only on Firefox. Let me tell you, it’s real 200%-proof pleasure to
charge forward in JavaScript without once having to trip over
document.all or other MSIE aberations. More than that, there’s a
bit of now-established rigor we can bring to the code. Here’s a
skeleton of the job at hand, in the shape of a JS object signature,
which is the bit of syntactic dogma that I like to propagate:

var illuminate = {

caps : { ... },

load : function () { ... },

image : function (text) { ... },

mask : function () { ... },

Figure 2. That’s better. We didn’t need monks to illuminate this manuscript, sim-

ply a GreaseMonkey script.

http://www.linuxjournal.com

5 6 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n F E A T U R E P E R S O N A L D E S K T O P

insert : function () { ... },

getElements : function (node) { ... },

getElementsRecursive : function (l, n) { ... },

};

There’s no static typing and barely any forward declarations
in JavaScript, so there’s nowhere to declare an object. Instead,
we work with an object literal. This approach creates a pack-
aged set of functionalities that expose only the illuminate

option to the page’s namespace. So it’s both a reuse strategy
and a namespace non-pollution strategy. All the methods of the
object are expressed as anonymous functions, and caps is a
sub-object in which we put data. Anonymous functions also save
you from forcing a function name into the page’s namespace.
That’s a vast improvement on early scripting techniques.

Once defined, this object does nothing. You need a line
such as this to make it go:

var illuminate = {

caps : {

"a" : "102.PNG", "b" : "103.PNG",

"c" : "104.PNG", "d" : "105.PNG",

"e" : "106.PNG", "f" : "107.PNG",

"g" : "108.PNG", "h" : "109.PNG",

"i" : "110.PNG", "j" : null,

"k" : "111.PNG", "l" : "112.PNG",

"m" : "113.PNG", "n" : "114.PNG",

"o" : "115.PNG", "p" : "116.PNG",

"q" : "117.PNG", "r" : "118.PNG",

"s" : "119.PNG", "t" : "120.PNG",

"u" : null,

"v" : "121.PNG",

"w" : null,

"x" : "122.PNG",

"y" : null,

"z" : "123.PNG"

},

load : function () {

this.mask();

this.insert();

},

image : function(text) {

var a = text.substring(0,1).toLowerCase();

var link = "";

if (a && this.caps[a]) {

link = 'http://rubens.anu.edu.au/htdocs/' +

'bytype/prints/ornament/0001/' +

this.caps[a];

}

return link;

},

mask : function () {

var head = document.getElementsByTagName(

'head')[0];

var rules = document.createElement('style');

var text = document.createTextNode(

'div.node > div.content > img[ill] : ' +

'{ display: inline; float:left; }\n' +

'div.node > div.links : ' +

'{ clear : left; }\n' +

'img[ill] : { display : none; }\n'

);

rules.appendChild(text);

head.appendChild(rules);

},

insert : function () {

var list = this.getElements(window.document);

var img;

var text;

for (var i=0; i<list.length; i++) {

text = list[i].firstChild;

if (text.nodeType == 3) {

img = document.createElement('img');

img.setAttribute('ill','true');

img.setAttribute('width','64px');

img.setAttribute('height','64px');

img.setAttribute('src',

this.image(text.nodeValue));

text.nodeValue =

text.nodeValue.substring(1);

list[i].insertBefore(img, text);

}

}

},

getElements : function (node) {

var rv = [];

this.getElementsRecursive(rv, node);

return rv;

},

getElementsRecursive : function (list, node) {

for (var i=node.childNodes.length-1;i>=0;i--)

{

var child = node.childNodes.item(i);

var klass = null;

if (child.nodeType == 1) {

klass = child.getAttribute("class");

if (klass && klass == "content") {

list.push(child);

}

this.getElementsRecursive(list, child);

}

}

}

}

Listing 1. Illuminating the Current Object

http://rubens.anu.edu.au/htdocs
http://www.linuxjournal.com

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 5 7

window.onload = function () { illuminate.load(); }

That causes the load() method to run when the page is finished
loading. The anonymous function that wraps it provides an
extra scope that makes illuminate the current object. Done that
way, the reference points to the illuminate object, which means
this can be exploited from inside the methods of the object.
That saves the object from ever having to use the illuminate
variable name—more namespace non-pollution.

Listing 1 shows this object fully implemented, so let’s go
through it. You also can grab the complete script from the
Linux Journal FTP site.

The caps associative array points to the individual letters
available at the ANU Web site. Because they’re from medieval
times, new-fangled letters such as J, U, W and Y are nowhere in
sight. We simply have to do without those for now and also resist
the urge to use I for J biblically. The alphabet’s constantly chang-
ing, albeit slowly, anyway. The way I hear it, if radio is a true
reflection of the street argot, Double-u is next to undergo change.
Evidently it’s being replaced with an identical letter named Dub,
as in: “Go to Dub Dub Dub dot sell you something dot com”.
Think what you will of that despicable trend. But I digress.

The load() method does all the work. It calls mask(), which
inserts a <style> tag as the last thing in the head of the current
page. Careful study of the neatly designed LJ home page lets
one create styles that fit like extra jigsaw pieces in the existing
layout regime. This first style acts on the new illuminated let-
ters, allowing text to flow around them:

div.node > div.content > img[ill]

{ display : inline; float : left; }

This next style stops the float effect so that the next news
item doesn’t flow around it as well:

div.node > div.links { clear : left; }

That’s all standard CSS2 stuff. Finally, the rest of the
JavaScript code is a bit over-enthusiastic in its page hacks, as
you will see. So, here’s a style to shut up the accidental extras:

img[ill] : { display : none; }

In all cases, the ill bit is simply a custom tag attribute
added to identify the images specific to this script, so that they
can be picked out easily with a style rule.

The second thing that the load() method does is call the
insert() method, which adds tags to the main content of
the page. To those who dabble only in client-side scripting,
perhaps an onclick handler or two, this looks fairly formidable,
but it’s pretty routine stuff for quality client-side scripting.

The insert() method acquires a list of important nodes in the
page using the now robustly supported DOM APIs. It then uses a
loop to run through that list, adding an tag of this kind:

This is added to every node found that has a Text node as its
first child. That amounts to adding a new child node to any
<div class="content"> tag that’s immediately inside a

<div class="node"> tag. That’s a big assumption about the page’s
structure. Also, there are many unwanted examples of that combi-
nation, for instance, in the advertising column on the right and in
miscellaneous content outside the list of articles. That’s why I had
to shut up some images with an extra style—too many are inserted.
It keeps the code simple to use a broad brush, though.

While developing this, I also noticed that on one instance of
the home page, someone had added extra <p> tags to the deck of
one article. The deck is the lead-in remarks that draw the reader
to the full article content. That’s a simple typo or random act of
innovation on some editor’s part. For that one article, displayed
in a layout marginally different to the rest, the script failed to do
anything. At least that’s better than generating an error or an
exception and halting. It does go to show, though, how fragile
GreaseMonkey scripts can be if one’s not circumspect enough
and has ignored the matter of graceful degradation, in which
scripts melt away to NO-OPs if things go pear-shaped. Any
assumptions made about the page’s expected structure should be
as general and as flexible as possible. Tread lightly.

Back in the code, insert() also uses standard JavaScript string
operations to chop the first character off the deck’s text. So that’s
one plain textual character gone, one image of a character added.
Between the Web and Unicode, saying the word character with-
out caution is to flush out in a trice all the lexicographical
pedants lurking in the woodwork. Let them come, I say.

The rest of the object is some routine processing leveraged

http://www.linuxjournal.com
http://www.pfu.fujitsu.com/en/hhkeyboad

5 8 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n F E A T U R E P E R S O N A L D E S K T O P

by the insert() method. The image() function is the easier utili-
ty: it merely performs a dictionary look-up on the caps object,
which is effectively an associative array. JavaScript allows lit-
eral strings to be used as array indices and object member
names. The retrieved filename is concatenated into a full URL
and returned. It’s simple data-driven programming.

The other utility is the remaining two methods,
getElements() and getElementsRecursive(). They implement a
standard prefix tree-walking algorithm that acts on the whole
DOM of the page and that is wrapped up in the neater façade
of getElements(). They are page-scanning routines and not
overly general as there are logic tests inside specific to Linux
Journal content. Someone should write a set of qsort(3)-like
navigation routines so one simply can plug in a comparator
functor or two. Probably that’s already been done, but I haven’t
tracked down such a thing for this article.

As the DOM tree is walked, any <div class="content">
nodes are appended to the list of discovered nodes. There’s no
copying at work; it’s all nodes by reference. Walking a whole
DOM tree is a bit ambitious. For more focused GreaseMonkey
hacks, it’s more efficient to go straight to the page element at
issue, perhaps with a document.getElementById() call. When
you’re not sure about the exact structure of the page, though,
it’s better to grope blindly through all the content with a mini-
mum of assumptions. How directly you proceed simply
depends on what kind of leverage you’re looking for.

Now that the script is developed, all that needs to be done
is to configure it into the GreaseMonkey extension. Recall that
so far it has been developed on a static and locally held test
page. That configuration task is, to be frank, a bit weird, at
least at GreaseMonkey 0.3.3.

To get it in place, make sure the script is named
illuminate.user.js. Next, using Firefox with GreaseMonkey
installed, navigate to the local directory where the script is.
On Linux that is something like:

file:///home/nrm/

On Windows it may start with:

file:///C|/Documents%20and%20Settings/nrm/Desktop/

Notice the three forward slashes. The file URI scheme is
similar to NFS or SMB and, in theory, can retrieve files located
anywhere, for example:

file://www.example.com/something.txt

Omit a domain and the default is localhost, which generally
is what you want.

Once that directory listing appears, you should see a link
for the illuminate.user.js file. Right-click on it (context-click on
Mac OS X), and the magic option is revealed: “Install User
Script ...”. Pick that, because no amount of fiddling with the
GreaseMonkey options on the Tools menu can bring you equal
joy. The GreaseMonkey configuration dialog box appears next,
with the new script lodged on the left. Click Add on the right,
and type in the Linux Journal URL, like so:

http://www.linuxjournal.com/*

Click OK and the script’s installed. Now it can be reached via
the Tools menu for subsequent administration. Reload the LJ
page and everything should work, with illuminated capitals in
place. If not, it’s time to open the JavaScript Console and go back
to script debugging, testing with 1.0.4 and GreaseMonkey 0.3.3.

Illumination Postmortem
The tale of illuminated capitals thus is told, and it’s a tale of
content aggregation. Of course, this is but a trivial example.
You’re not restricted to patching-in a single, grubby tag,
nor must you be so sanguine about the existing page content.
GreaseMonkey scripts can hack the page content to bits, and
you can stick any amount of extra content into the page, from
any source. The redoubtable XMLHttpRequest object is avail-
able to such scripts, and it can be used to load any content in
the world that’s accessible by HTTP—content that then can be
put in the current page. You also can send bits of the current
page elsewhere with this object, but that’s another article. Here
I’ve attempted a graceful addition to the page.

Now you might say, “this is an exercise in folly, no one will
see my work but me.” That, however, simply is a distribution
problem, one solvable by many different IT deployment tech-
niques, not the least of which is hypertext links.

Such enhancements are not so silly either. Imagine the Web
interface to your favourite network device, perhaps a router.
Wouldn’t it be nice if the host status lights from the open-
source and Web-enabled Big Brother LAN-monitoring applica-
tion appeared next to the IP addresses of the matching hosts in
the filtering rules in the Web pages served up by that router? At
least then you wouldn’t be trying to fix a route for a box that’s
not even running in the first place. You’d see a big red light
next to the entry in the router’s configuration pages.
GreaseMonkey is exactly the right tool for such problems,
especially since no one has access to the source pages generat-
ed by the router’s embedded Web server.

Furthermore, many Web pages are busy places, full of navi-
gation widgets and data entry fields. GreaseMonkey scripts can
hack all that to bits, removing or adding elements to the page
that streamline the user’s individual surfing behaviour. Don’t
like that menu bar at the top? Hide it. Can’t remember how to
fill in that form? Add some reminder text that floats above it.
You get the idea.

Finally, because GreaseMonkey is content-based, analogies
with other content media are worth considering. If there are hit
records and hit movies, then a hit GreaseMonkey script no
doubt will emerge in time. What political orientation it has
with respect to the Web site it hacks will set a very interesting
precedent. Will it be a script that protests, deconstructs, graffi-
tis, supports or censors the site in question? Only time will tell.
In the meantime, GreaseMonkey is a handy tool for Web
content that’s otherwise difficult to change.

Resources for this article: www.linuxjournal.com/article/
8458.

Nigel McFarlane is the author of Firefox Hacks
(O’Reilly Media) and Rapid Application Development
with Mozilla (Prentice Hall PTR). For more informa-
tion about Nigel’s contributions to the Open Source
community, see page 12.

file:///home/nrm
file:///C|/Documents%20and%20Settings/nrm/Desktop
file://www.example.com/something.txt
http://www.linuxjournal.com/*
http://www.linuxjournal.com/article/8456
http://www.linuxjournal.com

http://www.storix.com

6 0 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

W
hen pressed to answer truthfully, most parents
agree that raising kids is a big experiment. In the
December 2004 issue of LJ, Diego Betancor’s
letter motivated me to experiment with some-

thing I’ve been meaning to do for some time. Diego wanted to
see more content in LJ aimed at kids, and his suggestion was
the inspiration for the next phase of my child-rearing experi-
ment: moving the kids to Linux.

My wife Deirdre and I have three young children: Joseph,
age nine; Aaron, age seven; and Aideen, age five—see Figure
1. As shown in the photo, indoctrination starts early in the
Barry household: there’s a fluffy Tux in the foreground and an
electronic Tux on the screen.

With his dad being a longtime computer geek, it came as no
surprise when Joseph took to the computer at a young age. For
years, our home computer was a first-generation iMac, running
Mac OS. A great 3-D shoot’em-up game came with the iMac,
Nanosaur, that Joseph just loves. Despite this, our household
software policy always has been to try to ensure that any soft-
ware brought into the house is classified as educational.
Therefore, Joseph also has a bunch of Land Before Time and

Zoombini titles, as well as kiddie-strategy games, such as
Darby the Dragon. Other software includes the usual encyclo-
pedia, dinosaur and space-exploration titles.

Aaron is the sporty child in the house as well as the artist,
and he has been happy to sit and play with the paint application
integrated into ClarisWorks, the simple office suite that came
with the iMac. Aaron also likes to play with Joseph’s software,
as well as some of Aideen’s titles, which include Green Eggs
and Ham, Sammy’s Science House and Thinking Things.

As long as there are a lot of bright colors and funny sound
effects, Aideen’s happy, even though this five-year-old’s atten-
tion span is not at all lengthy.

As great as it is, the iMac had been showing its age for
some time. It also has become increasingly difficult to find
original software titles for its effectively discontinued OS ver-
sion. Trying to upgrade to Mac OS X or any modern version of
Linux was not an option for the iMac; it’s simply too under-
powered. Without new titles, the kids were getting bored with
the iMac and had been asking for a new computer. They also
constantly bugged both me and their Mum to install various
Windows titles on our laptops—especially the demo software
that comes free inside various cereal packets. As Deirdre has to
run Windows 2000 for work, her laptop was the one infected
with a growing collection of these types of titles.

A few months back, a new computer arrived in the form of
a Dell Optiplex GX270, with 512MB of RAM, a 40GB hard
disk and a flat-panel monitor. As I’d rather eat the new PC than
allow the kids to use the factory-installed Windows XP, I
looked for a family-friendly Linux distribution to install
instead. Having recently experimented with Ubuntu Linux as
my office desktop, I downloaded and burned a copy of the
Warty Warthog release for use at home.

Like most big kids, I love experiments, and now my experi-
ment had a plan: replace the Dell’s factory-installed OS with
Ubuntu, pack it full of kid-friendly software, let the kids at it
and see how they get on.

Going Cold Turkey
I deliberately decided against installing any type of emulation
that would have allowed the kids to run any of their existing
software titles, even though such technology is well established
within the Linux community. My main reason for doing this
was to see if the kids would identify any titles that they missed.

n F E A T U R E P E R S O N A L D E S K T O P

The Linux for Kids
Experiment

This Linux dad got the young members of his family

set up with educational software, art tools and games.

B Y PA U L B A R R Y

Figure 1. The “Linux for Kids” Kids, (left-to-right) Joseph, Aideen and Aaron

http://www.linuxjournal.com

If they did, I’d try to find native alternatives, install them and
see if the yearning subsided.

Installing and Configuring Ubuntu
Ubuntu installed easily on the Dell, taking about one hour from
start to finish. Once the base OS was up and running, I
installed a bunch of stuff for the kids to use. I created a user ID
called kids with a password of dinosaur and then set up a win-
dow in Nautilus to mimic the look and feel of the Mac OS
Launcher program, as shown in Figure 1. Nautilus hopefully
would provide a familiar look and feel for my pint-sized, Mac-
loving user community.

Software for the Kids
In an attempt to ease the introduction of a new—and somewhat
different—computer into the house, we decided to relax our
household software policy and install a few nice Linux games
along with the educational software. Here’s a quick rundown of
the titles we decided to make available on the desktop launch-
er. Unless stated otherwise, these titles were downloaded into
Ubuntu using the included Synaptic Package Manager. It helps
to refer to Figure 2 while working through this list.

n AisleRiot Solitaire (/usr/games/sol) is a Linux version of the
classic solitaire game. It came pre-installed on Ubuntu and
was elevated to the Launcher in an attempt to provide a
familiar piece of software on the new desktop.

n Bug Squish (/usr/games/bugsquish) is a bit mindless but fun
all the same. Little bugs drop down and try to land on an
arm. Your mission—should you accept it—is to squish as
many bugs as you can by clicking your mouse on them. As I
said, it’s mindless, but it does allow little people to practice
their mouse skills while having some fun.

n Calculator (/usr/bin/gcalctool) is the GNOME calculator.

n Four-in-a-Row/Connect 4 (/usr/games/gnect) is just like the
board game. You can play against another human opponent
or an increasingly more skillful computer user.

n G Compris (/usr/games/gcompris) has to be the real find of

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 6 1

Figure 2. The Linux for Kids Launcher, Courtesy of Nautilus

© 2005 Coyote Point Systems Inc.

The new wire-speed load balancer from Coyote is a gigabit

Layer7 solution with cookie-based persistence. Easy to use and

deploy, and based on open standards, it features failsafe zero

downtime. Best of all, it’s all yours for under $10K. Get flawless

performance for a whole lot less. With IT resources so scarce

and limited, does this take a load off your mind, or what?

http://www.coyotepoint.com

the experiment. This is a single program that has many,
many parts. It is an entire suite of educational tools pack-
aged together and aimed at 3–8 year olds. Within the suite
are—among many other things—word and number games,
color-matching and memory exercises and geography
quizzes. There are loads of educational functionality in G
Compris, and it is graduated, which means children cannot
proceed to a later exercise until they have mastered the ear-
lier ones. G Compris can be installed in one of a number of
languages and has a friendly soundtrack and voice-over. I
initially thought Aaron and Aideen would spend a lot of
time in this program and was surprised to find Joseph enjoy-
ing it too. There’s so much in G Compris that it really needs
to be experienced to be believed.

n K Tuberling, the Potato Guy (/usr/games/ktuberling) is a
simple little program that provides a blank picture upon
which you can place, for example, ears, eyes, noses, specta-
cles, hats and hair. The default blank picture is a potato, but
a blank Tux also is provided. Aideen loves this program, as
do the boys. The boys love it so much that they used K
Tuberling to create a gallery of Tux and his family. Check
out Tux’s mother-in-law, as shown in Figure 3.

n MathWar (/usr/bin/mathwar) is a simple X-based math-drill
program.

n Office Draw (/usr/bin/oodraw) and Office Writer
(/usr/bin/oowriter), both part of the OpenOffice.org suite,
were included primarily for Aaron, who likes to draw
with the computer as well as write short stories and
poems. I’d recently convinced the kids’ schoolteacher to
try OpenOffice.org for Windows in their school, in an
effort to fix file format-compatibility problems she was
having with the school’s existing choice of office suite.
So, making OpenOffice.org available on the kids’ PC
made perfect sense.

n Play a DVD (/usr/bin/xine) allows the kids to view any of
the DVDs that they own. To get DVD playing to work on
Ubuntu, I had to search Google for the libdvdcss library,
which allows for the DVD movie encoding to be deci-
phered. Once the library was installed, DVD viewing
worked. Xine was a big hit, not only because it supports
DVD menus and the like but also because it allows viewers
to capture snapshots of the currently playing movie. Once
he discovered this Xine feature, Joseph wasted no time and
created a gallery of snapshots of his current DVD favorite,
The Incredibles. An added bonus to being able to view
DVDs on the new computer is that the main household TV
and DVD player are freed-up for Mum and Dad to use. Xine
was chosen over the Ubuntu-installed Totem, which did not
work as well as Xine in any of my tests.

n Play a Music CD (/usr/bin/gnome-cd) turns the PC into a
CD player, with the default GNOME CD player popping up
whenever an audio CD is popped in to the CD drive.

n Super Tux (/usr/games/supertux) is a classic, Mario-style,
jump-and-bump-level game that should be familiar to many

readers. Saying that the boys love this game would be a
complete understatement: they are totally besotted with it. A
little animated Penguin jumps and bumps his way through
increasingly difficult levels in search of his goal. The sound-
track to this game is great, as are the effects and configura-
bility. If anything, it’s a little too addictive and, of all the
programs described in this article, Super Tux is the program
most likely to be on-screen when I enter the playroom. This
has caused Deirdre to worry that the boys are playing it too
much. However, as the game allows players to design and
use their own levels, and as the boys have started to do just
that, I’ve been happy to let Super Tux survive. I figure that
building a level is the first tentative step toward getting the
computer to work the way the kids want it to, which isn’t a
huge leap away from that other popular customization tech-
nique: programming. So, highly addictive or not, Super Tux
stays for now—unless the boys are cheeky to their Mum, in
which case it’ll be wiped from the PC faster than they can
say “yahtzee!”

n Tali/Yahtzee (/usr/games/gtali) is a nice implementation of
the classic dice game. The iMac had a great version of this
game that the boys always liked to play, and the GNOME
version is similar and familiar.

n Tux Kart (/usr/games/tuxkart) is an arcade-type racer game.
Little Tux sits in a go-kart and races around one of a selec-
tion of pre-built tracks. The music is fun, and the game is
not too hard to play, which means that even Aideen can play
without too much trouble. I’ve seen some games of this type
that take the physics to the extreme, making them incredibly
hard to play well. Tux Kart, thankfully, does not fall into
this category.

n Tux Paint (/usr/bin/tuxpaint) is a great kids-targeted drawing
program. The sound is great, the effects are wonderful and it
is easy to use. Aideen spends more time in Tux Paint than in
all of the other installed programs combined, and Aaron
enjoys using it too. The built-in collection of stamper shapes
especially are appreciated by our budding Picassos.

n Tux Racer (/usr/games/tuxracer) is the one program that’s
fired-up and shown-off whenever either of the boys have a
friend over to play. Tux Racer is, quite simply, one very cool
program. Watching Tux slide on his belly at 90km/h in
stunning, realistically rendered graphics remains—for me,
anyway—one of the best examples of just how far Linux
has come as a multimedia platform.

n Tux Type (/usr/games/tuxtype) is a fun typing tutor. All three
of the kids play it, and Aideen loves the way Tux eats the
letters as they drop from the sky and correctly are identified
on the keyboard. Aideen especially likes the cartoon-type
sound effects and animation that occur when Tux eats a fish
at the last possible moment, which usually results in Tux
making a mad dash across the screen.

n X Tux (/usr/games/xtux) is a 2-D, Pac Man-type game that
works well and is fun to play. Although not as popular with the
boys as Tux Racer or Super Tux, it still is played quite often.

6 2 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n F E A T U R E P E R S O N A L D E S K T O P

http://www.linuxjournal.com

The International Business Development,
Educational and Consumer Event for
Personal, Service and Mobile Robotics

� 50 Robotics Visionaries and Thought Leaders
� 50,000 Square Foot Exposition
� 5 Comprehensive Professional Development Conferences:

— Business Development and Opportunities Conference
— Emerging Robotics Technologies and Applications Conference
— Robotics Design, Development and Standards Conference
— Robotics Education and Instruction Conference
— Consumer Robotics and Entertainment Event

New for RoboNexus 2005!
� Business-to-Business and Consumer Entertainment Expo Areas
� Service Robotics Summit
� Service Robotics Pavilion
� “Robotics at Home” Demo Stage
� Robotics Innovators Awards —the ‘Robi’

www.robonexus.com

The Largest Robotics Event
in the Western Hemisphere

October 6-9, 2005
San Jose Convention Center, San Jose, CA

roboticstrends

Founding Sponsor

Premier Sponsor

Gold Sponsors

Corporate Sponsors

Media Sponsors

Association Sponsors

Premier
Media Sponsor

/ / g

http://www.robonexus.com

6 4 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n F E A T U R E P E R S O N A L D E S K T O P

Problems
Thankfully, there are no show-stopper problems to report.
The Warty Warthog release of Ubuntu did have some prob-
lems with sound. After a restart or a new login, the sound
configuration would be lost, resulting in no more sound.
Upon investigation, I discovered that the GNOME volume
controls were being set automatically to zero. To fix this
temporarily, I popped a shortcut to the GNOME Volume
Control applet on the desktop and then used it to reset all
the volume sliders. This fixed the sound problem, until the
next restart or login, of course. I planned to research a per-
manent fix but then quickly realized that the complaints
about the new computer having no sound had stopped. It
turned out that Aaron had watched me fiddle with the vol-
ume controls, he’d told his siblings what to do, and all three
of them had developed the habit of sliding up the volume
controls immediately after logging in.

Upgrading Ubuntu
In the last few weeks, I upgraded the PC to the most recent
release of Ubuntu, Hoary Hedgehog. This resulted in much
merriment, primarily because of the inclusion of a newer
release of Super Tux that, I’m told, is much better, has
improved graphics, animation and sound. Speaking of
sound, this Ubuntu release is better but still has a few prob-
lems. Any that surfaced were all fixable, permanently, and
all I needed to do was search the Ubuntu support wiki for
sound and the name of the program that was misbehaving.
The fixes found in the wiki worked, and sound is no longer
a problem.

With the upgrade, Joseph asked if the shared login ID
could be replaced by individual IDs, which I did. This is
less to do with privacy and more to do with his little sis-

ter’s fondness for pressing the Delete key when viewing
Joseph’s K Tuberling Tux family collections. By the way,
Tux’s family has been extended to include cousins, friends
and neighbors.

Once the novelty factor started to wear off, I began to
get requests for some of their older software titles. Most of
these, despite being targeted to Mac OS, did come in dual-
install format, in that they can be installed on Windows too.
In an effort to see how much work was involved, I decided
to play around with Wine in an attempt to install some of
the titles the kids were asking for. After a few hours of
research on the Internet and some reading, I spent about a
day trying to get the latest release of Wine to work on
Ubuntu. I managed to run the installers successfully for a
lot of the Windows titles that the kids had, but none of the
programs would run properly once installed, so I had to
abandon the effort. Since giving up—and since the upgrade
to the latest Ubuntu—the requests for the older titles have
become less frequent; although Aaron misses one of the
freebie, cereal-pack soccer games that he used to play on
his Mum’s laptop. As I finish off this article, I’m in the
process of downloading and evaluating a small collection
of Linux soccer games from The Linux Game Tome. The
Eat The Whistle technology looks the most promising. If
this does not satisfy Aaron’s craving for a soccer game, I
plan to dedicate additional time to configuring Wine.

Is Linux Ready for Kids?
The answer is yes, of course it is! It’s not that Linux is a
better platform than the others for kids to use, it’s that
Linux is as good as any other. Children are happy to sit
down and play with most any computer as long as the soft-
ware titles provided are engaging and fun. This is true of
Linux, Windows and Mac OS. Of course, the point to make
is that if Linux is as good as the others, there’s nothing
stopping anyone from using Linux as a primary OS for chil-
dren. It’s not a case of “is Linux ready for kids?” but rather
“why not Linux for kids?”

The Barry household has made the move to Linux and
won’t be turning back. The wealth of software available on
the Internet and within Ubuntu’s Debian archives has been
only scratched. There are loads out there for me to evaluate
and install for my kids as they grow out of the programs
they currently are enjoying. If you have any suggestions for
programs you think they might like, drop me a note and
we’ll take a look.

Acknowledgement
Thanks to Peter Garrett from Marcel Gagné’s WFTL-LUG
mailing list for suggesting I use Nautilus to mimic the Mac OS
Launcher application.

Paul Barry (paul.barry@itcarlow.ie) lectures
at the Institute of Technology, Carlow, in
Ireland. Information on the courses he teaches,
in addition to the books and articles he has
written, can be found on his Web site,

glasnost.itcarlow.ie/~barryp.

Figure 3. A Rather Cool-Looking Granny Tux

mailto:barry@itcarlow.ie
http://www.linuxjournal.com

http://www.lpi.org

6 6 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

F
or the better part of a decade, Linux enthusiasts have
waxed poetic on the inherent greatness and looming
success of Desktop Linux. Our kernel is so robust! Our
applications are infinitely configurable! This is the year

of Desktop Linux! Who would ever use Microsoft Windows?
These claims and similar—particularly when made back in the
20th century—seem, in retrospect, so trite. Not that I stand
righteous—oh no, I laid the praise down as thick as anyone
else did. I too was a convert.

At least, I did until I realized that hardware support in
Linux was awful. Like a deck of cards, my rosy view of
Desktop Linux came crashing down, making a 180-degree turn
from glowing to ghastly. Heartbroken, I cried myself to sleep
every night and went on an inexplicable diet consisting only of
cheese and pudding.

But this did not last long. One day, the Linux community
decided to do something about it. We outlined a plan not only
to reach feature parity with the other desktop operating sys-
tems, but also to surpass them. Hardware support has come a
long way in the last year and a half. This is the story of just
how far.

A Past Since Forgotten
The steps for installing a new hardware peripheral on a Mac
might go a bit like this:

n Step 1: plug hardware in to Mac.

n Step 2: begin using hardware.

Most of us would not even include these two items as steps.
The first is a physical necessity; the second is the original and
ultimate goal. Lost, somewhere between steps one and two, are
39 other steps, right? Kernel modules? Configuration files?
Rebooting? Extensive mastery of sed and awk?

At some point in Linux’s history, support for new hard-
ware could easily require compiling a new kernel module,
becoming root, editing configuration files, loading said
module, checking dmesg, cursing, removing the module,
unplugging the hardware, plugging the hardware back in,
reloading the module and so on.

Forgotten, perhaps clouded by a love for free software

and the invigoration of do-it-yourself, is the notion that
stuff should just work. As fun as writing my own kernel
module might be—and I use the term fun here loosely—
sometimes I just want to plug in my camera, get my photos
and be done with it.

A Call for Change
In late 2003, the Linux system was well primed for the
emergence of a new architecture for managing hardware on
the desktop. The 2.6 Linux kernel was out and rapidly gain-
ing adoption. It brought, among numerous other new fea-
tures and improvements, a new mechanism for handling
device drivers, called the device model. The device model
allowed, for the first time, the kernel to build an in-memory
tree of the devices it supported. For example, both my
mouse and my keyboard are connected to my USB hub,
which is connected to my third USB port, which is on my
first PCI bus. Such a rich hierarchy provides all sorts of
opportunities to the kernel. One of the most promising,
however, was sysfs.

sysfs exports this device hierarchy as a filesystem. One
directory lists all the buses on a system. For each bus, another
directory lists all the devices on a given bus. Files for a given
device could link to the associated module. Walking the sysfs
tree, therefore, would allow user space to build a comprehen-
sive picture of the system’s physical device hierarchy, exactly
as the kernel sees it.

That alone is incredibly useful. But another kernel feature,
hotplug, broadened the horizon even more. The kernel’s hot-
plug infrastructure notifies user space whenever a device is
added to or removed from the system. This allows applications
to become aware of changes to sysfs in real time. It also
allowed for the creation of udev.

udev is a user-space implementation of devfs—an auto-
mated and dynamic manager of device nodes. Instead of a
/dev created once, statically, udev updates /dev on the fly,
in response to the exact hardware available to the system.
More important, however, is that udev places intimate
knowledge of devices and their device nodes in user space.
Hotplug, sysfs and udev together allow user space a com-
plete view of the system’s hardware.

Now user space needed to capitalize on the opportunity.

n F E A T U R E P E R S O N A L D E S K T O P

Project Utopia

Users—what will they plug in next? Robert is

making the computer make sense of hardware,

so you don’t have to. B Y R O B E R T L O V E

http://www.linuxjournal.com

Enter HAL
This was 2003. That summer, I
attended a BOF at the Ottawa Linux
Symposium on improving the Linux
desktop by Robert Sanford Havoc
Pennington. In the BOF, Havoc refer-
enced a whitepaper of his entitled
“Making Hardware Just Work”, in
which he unveiled a utopian view
of hardware management on the
Linux desktop. Intrigued, I took
notes—see Figure 1.

We ended up speaking to the group
on this utopia and discussing possible
implementations. The BOF ended with-
out much traction from the audience,
but Havoc and I had a firm understand-
ing of the situation and potential solu-
tions. Other responsibilities kept me
from immediately acting on my crude
sketches, and so they sat idle on the
pages of my notebook.

Two things happened that lifted the
pages to life without my immediate
realization.

First, David Zeuthen, then living
in Copenhagen, decided to bring
Havoc’s documents to life by begin-
ning the HAL Project. HAL, original-
ly hardware abstraction layer but now
not an abstraction of anything what-
soever, is a system-level dæmon that
ties together hotplug, sysfs and udev
in order to provide a Linux system

with a single, comprehensive view of hardware, accessible
via a standardized interface. HAL makes it possible for an
application to say, “give me the device nodes of all input
devices” or to ask, “is there a camera connected to this com-
puter?” With HAL, what was once a hundred lines of hacks,
operating on hard-coded device nodes with intimate knowl-
edge of Linux internals, is now a single, elegant HAL
request. David’s HAL, in effect, brought a 21st-century
hardware infrastructure to Linux.

The second disruptive event came in December of the
same year, when I accepted a job with Ximian, recently
acquired by Novell, as a kernel hacker dedicated to the
desktop. My first mission was to figure out the hardware
situation. I teamed up with a colleague, the inimitable Joey
Shaw, an Ohio native, and we sat down and hashed out our
utopian view of hardware management.

Both Joey and I recognized the strong foundation that the
2.6 Linux kernel, sysfs, hotplug, udev and now HAL supplied.
We concluded that the missing pieces were the layers on top of
HAL. We had a rich infrastructure in place; we just had to do
something with it.

HAL uses a then-nascent but always-promising project
called D-BUS as its communications mechanism. On one
side, D-BUS is a run-of-the-mill interprocess communica-
tion (IPC) system—like CORBA, but a lot easier to use. On
the other side, however, D-BUS introduces the concept of

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 6 7

Figure 1. Early Project Utopia Notes

http://www.linuxjournal.com
http://www.cari.net

the system-wide message bus. In addition to per-user pro-
cess-to-process communication, D-BUS allows components
in a Linux system to send out signals, announcing events or
providing information to all who care to listen. Signals can
announce when a network connection is obtained or when
the laptop battery is running low. Interested applications
higher up the stack can listen for these signals and, upon
receipt, react.

Our plan was literally to flood the system with D-BUS sig-
nals. HAL and other lower-level components of the Linux sys-
tem were to generate numerous useful signals and have higher-
level components respond, evolve and react. In effect, our goal
was to make the Linux system much more dynamic and, ulti-
mately, make hardware just work.

A Project All about Utopia
Joey and I decided to create an umbrella project—a meta-pro-
ject. The plan was to spur development of HAL-aware applica-
tions that can provide hardware policy on the desktop. Never
should a user need to configure hardware. It should happen
automatically in response to the user plugging the hardware in.
Never should the user (or even the programmer) have to mess
with device nodes and esoteric settings. HAL should provide
all of that, on the fly, to the applications. Never should the user
have to guess how to use new hardware. If I plug in a camera,
my photo application should run. If I insert a DVD, it should
start playing. All of this should happen magically, automatically
and cleanly.

I coined the name Project Utopia. It was, after all, a
bit utopian.

We did not have a central Web site or source repository or
cute logo. Project Utopia was a cause and a way of thinking.
We had a goal and a set of use cases and a growing disgust
toward things not working. We blogged and spoke at confer-
ences and wrote code. One by one, piece by piece, we started
to build a set of policy pieces on top of HAL, guided by the
following rules:

n Make hardware just work.

n Use HAL, udev, sysfs and 2.6 Linux kernel as our base.

n Tie it all together with D-BUS.

n No polling, no hacks—everything should be event-driven
and automatic.

n Carefully divide infrastructure into system and user level.

n System level should be platform-agnostic; user level,
GNOME-based.

GNOME Volume Manager
I began writing GNOME Volume Manager in late December
2003. It was originally a proof of concept—a test bed for
my ideas. I wanted to see how feasible hardware manage-
ment on top of HAL could be. The plan was to respond to
events such as “new hardware” or “audio CD inserted” with
specific actions. GNOME Volume Manager is nothing but a
simple finite state machine, receiving hardware-related

events on one end and replying with hardware-induced
actions on the other. The tricky part was to do it all with
HAL: no polling, no hacks.

GNOME Volume Manager implemented the Project Utopia
policy related to block devices. When the user inserted an
audio CD, GNOME Volume Manager would play it. When the
user inserted a USB keychain device, GNOME Volume
Manager would mount it and open a Nautilus window. When
the user plugged in a camera, GNOME Volume Manager
would ask if it should automatically import the photos into the
user’s photo management application (Figures 2 and 3). A
recently added feature even found GNOME Volume Manager
managing iPods!

The Rest of the Puzzle
The next step was bringing HAL support to more applica-
tions, a process Joey and I call halification. The following
months witnessed additional policy pieces, such as automatic
printer configuration and seamless network management
(Figure 4).

For printers, Joey wrote a HAL back end for CUPS, the
Common UNIX Printing System, allowing CUPS to query
HAL on the availability of printers. The result: plug in a printer
and configure it automatically, on the spot.

The ambitious NetworkManager Project, started by
hackers at Red Hat, aimed to solve networking woes. Seth
Nickell, an early designer on the project, described the

6 8 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n F E A T U R E P E R S O N A L D E S K T O P

Figure 2. GNOME Volume Manager Prompting on Discovery of New Photos

Figure 3. F-Spot, a Photo Management Application

http://www.linuxjournal.com

intended use case as an electrical outlet: “you plug it in and
[it’s] on.” For example, plug a laptop in to a docking sta-
tion, and it instantly switches to the station’s Ethernet.
Walk into your favorite coffee shop and instantly begin
using the wireless networking. NetworkManager made
networking simple, automatically choosing the optimal
solution for networking connectivity.

NetworkManager’s architecture is two-part. First, a root-
level dæmon sits alongside HAL, responding to HAL events
and communicating with the system’s networking hardware.
Second, one or more user-level components implement policy
and provide a user interface. Together, the components provide
a complete solution for networking. Figure 5 is a diagram of
the architecture.

Today
Today, the Project Utopia mindset continues to foster new
applications, interesting hacks and fresh projects aimed at
making hardware just work. Linux distributions from
Novell, Red Hat and others sport powerful HAL-based
infrastructures. The GNOME Project is integrating HAL

and D-BUS across the board. The Project Utopia cause is
spreading beyond GNOME too, as other platforms imple-
ment HAL-based solutions in a similar vein.

Linux development has never stood still, however. Like
a rabid cheetah, development sprints forward toward better,
faster, simpler solutions. Support for new hardware contin-
ues to roll in, and solutions in the spirit of Project Utopia
are continually implemented to provide a seamless user
experience.

Cute hacks such as having your music player mute when
your Bluetooth-enabled cell phone receives a call are not a
dream but the reality in which we live. What cute hacks will
tomorrow bring? What new hardware will we support next?
What application will be halified next? Join in and answer
those questions yourself!

Resources for this article: www.linuxjournal.com/article/
8459.

Robert Love is a kernel hacker in Novell’s Ximian
Desktop group and the author of Linux Kernel
Development (SAMS 2005), now in its second
edition. He holds degrees in CS and Mathematics
from the University of Florida. Robert lives in

Cambridge, Massachusetts.

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 6 9

Figure 4. NetworkManager’s Network-Switching Applet

Figure 5. NetworkManager Architecture

http://www.linuxjournal.com/article/8459
http://www.linuxjournal.com
http://www.opinstitute.com

Supermicro SUPER PDSG4 and
SUPER PDSGE

Supermicro Computer announced the launch
of Intel dual-core products, the SUPER
PDSG4 and SUPER PDSGE motherboards,
which support PCI-X 133/100 expansion
cards. Based on the Intel 955X chipset, the
SUPER PDSG4 ATX form factor board sup-
ports one Pentium Processor Extreme Edition,
featuring two processing cores with a
1066/800/533MHz system bus. It also offers
8GB of ECC unbuffered DDR2-667/533/400
SDRAM; a user overclock feature in the sys-
tem BIOS; PCI-Express x16/x1; three 32-bit
PCI, two PCI-X 133/100 and four SATA ports
(3Gbps); RAID 0, 1, 10 and 5; eight USB 2.0
ports; onboard AC97 audio; single PCI-
Express Gigabit LAN; and U320 single-chan-
nel SCSI. The SUPER PDSGE is based on the
945G/P Express and supports one Pentium D
processor, featuring two processing cores with
a 1066/800/533MHz system bus; 4GB of
unbuffered DDR2-667/533/400 SDRAM; a
user overclock feature in the system BIOS;
PCI-Express 1x16/2x1; four 32-bit PCI and
four SATA ports (3Gbps); eight USB 2.0 ports;
onboard AC97 audio; single PCI-Express
Gigabit LAN; and integrated Gfx graphics.
Both boards are RoHS-compliant, lead-free
and optimized for Supermicro’s SC733T-645
and SC733i-645 mid-tower chassis.

C O N TA C T Supermicro Computer, Inc., 980

Rock Avenue, San Jose, California 95131, 408-

503-8000, www.supermicro.com.

PetaBox

Capricorn Technologies introduced the PetaBox
Product Family, designed for massive data stor-
age. The PetaBox supports petabyte-class stor-

age with state-of-the-art density, low power
consumption and a low total cost of ownership.
The PetaBox is scalable from individual tera-
byte nodes to a full petabyte cluster. A single
19-inch rack can support up to 64TB of raw
disk space, a density achieved through a design
that consumes as little as 50 watts per terabyte.
Four models of PetaBox currently are avail-
able: the GB1000, a 1.0TB node; the GB1600,
a 1.6TB node; the TB40, a 40TB rack; and the
TB64, a 64TB rack. Each node has four hard
drives per node, an ATA interface, rotational
vibration compensation, 8MB of cache, 8.5ms
of typical latency and an EZ-Latch disk mount-
ing system. Nodes also feature a 1GHz VIA C3
CPU, up to 1GB of DDR266 RAM, two USB
2.0 ports, 10/100 or 10/100/1000 Ethernet and
an optional 16x2 character LCD.

C O N TA C T Capricorn Technologies, 1021

Mission Street, San Francisco, California 94103,

415-722-2149, www.capricorn-tech.com.

Qt 4

Trolltech released ver-
sion 4 of its Qt
cross-platform
development
software. New
features for Qt 4

include improved
heavy-duty graph-
ics capabilities. Qt’s

painter now supports
semi-transparency, anti-aliasing, optional float-
ing-point coordinate system, painter paths and
gradients. Support for interchangeable underly-
ing paint engines and off-screen rendering also
has been added. Trolltech also extended Qt’s
multithreading capabilities, along with its
database integration and XML support for
building both desktop and server-side applica-
tions. In addition, Qt 4 offers seamless integra-
tion with Microsoft Visual Studio .NET, allow-
ing Visual Studio .NET developers to create
applications that can run on Linux, Mac OS and
other desktop platforms. Furthermore, Qt 4 for
Microsoft Windows is available under the GPL.
Three editions of Qt 4 are available: Qt
Console, Qt Desktop and Qt Desktop Light.

C O N TA C T Trolltech, Inc., 1860 Embarcadero

Road, Suite 100, Palo Alto, California 94303,

650-813-1676, www.trolltech.com.

Equalizer SI Series

Coyote Point recently introduced a new line
of Web server performance appliances
designed to address core availability and per-
formance requirements of Web sites and server
farms. The Equalizer SI Series systems inte-

grate an enhanced version of Coyote Point’s
adaptive server load-balancing and traffic man-
agement software, consolidated switch intelli-
gence and Intel processor-based performance.
Three systems are available: the enterprise-
class E450si, the mid-range E350si and the
entry-level E250si. Their features include con-
solidated switching capacities of up to 16 ports;
support for up to 8,000,000 concurrent connec-
tions; incrementally scalable load balancing
and traffic management for an unlimited num-
ber of virtual servers and up to 64 servers per
cluster; adaptive protection against DoS
attacks; built-in Flash memory for zero-down-
time reliability; SSL acceleration for up to
4,000 encrypted transactions per second; and
an enhanced Web interface for point-and-click
operation of configuration options.

C O N TA C T Coyote Point Systems, Inc., 675

North First Street, Suite 975, San Jose, California

95112.

Motorola E895

Motorola announced the release of the E895
multimedia clam-shell handset,
built on Motorola’s EDGE technol-
ogy, Linux and Java. The E895
offers a suite of intuitive multime-
dia tools, including a 1.3 megapixel
camera, video record and playback
options and an optional removable
memory. E895 features include
3GPP video streaming and the abil-

ity to view files as they download, Bluetooth
wireless technology and Bluetooth Stereo
Headset, SyncML, streaming audio, shared
media player with multiple audio codecs and
stereo through the enhanced mini-USB headset
jack, up to 10MB of embedded memory, and
TransFlash removable memory for up to
512MB of optional memory. The E895 also
offers a full HTML/XHTML Web browser,
multimedia messaging service (MMS) and
instant messaging.

C O N TA C T Motorola, Inc.,

www.motorola.com/motoinfo.

7 0 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n N E W P R O D U C T S

Please send information about releases of Linux-related

products to Heather Mead at newproducts@ssc.com or

New Products c/o Linux Journal, PO Box 55549, Seattle,

WA 98155-0549. Submissions are edited for length

and content.

http://www.supermicro.com
http://www.capricorn-tech.com
http://www.trolltech.com
http://www.motorola.com/motoinfo
mailto:newproducts@ssc.com
http://www.linuxjournal.com

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 7 1

n R E V I E W B O O K

Anyone who has tried to run an e-
mail server knows that mail isn’t a
polite relay race anymore. It’s a game
of smash-mouth football. Nine out of
ten times someone opens an SMTP
connection to you, it’s not with some-
thing you want. And as if coping with
spammers, viruses and other people’s
misconfigured mail software wasn’t
enough, now e-mail is a mission-criti-

cal company IT service and is expect-
ed to plug in to the LDAP directory.
We can’t blame you if you decide to
outsource mail entirely.

If you do decide to stay on as
postmaster@ and fight it out, whatev-
er you do, don’t try it with one of last
decade’s mail books. Although any of
the current mail servers, correctly
configured, can put up a good fight
against the spammers and other bad
people, The Book of Postfix by itself
is a good reason to make Postfix your
mail server of choice. Look here for a
good explanation of the SMTP proto-
col, essential for any mail admin,
along with enough detail on the archi-
tecture of Postfix to help you really
understand the config files. It also
offers real-world advice for putting
together a mail server setup that is
reliable in the face of the spam and
virus blitz.

Postfix offers you a lot of choice in
where to add filters, sanity checks and

other protective countermeasures to
your mail server. For example, do you
want to set up a content_filter or an
smtpd_proxy_filter? Besides offering a
cookbook for each solution, The Book of
Postfix helps you consider the pros and
cons of each feature you’re considering.
A helpful plus is diagrams illustrating
exactly where countermeasures fit into
the Postfix architecture.

Postfix is complicated enough on its
own, as it divides functionality among
multiple processes for security. In order
to add spam-fighting tools and have
everything work, you need a good
understanding of what plugs in to what
and how, and this book is a great way to
get it.

Downloadable scripts and errata,
some of which could save you a late
night of troubleshooting, are available at
www.postfix-book.com.

— D O N M A R T I

The Book of Postfix
by Ralf Hildebrandt and Patrick Koetter

No Starch Press, 2005 | ISBN 1-59327-001-1 | $44.95 US

The
October
1995 issue
covered
“Text
Processing”,
and feature
articles
introduced
groff,
LaTeX
and

Linuxdoc-SGML, which was an
early document format at the Linux
Documentation Project. All three
document formats are still in

use today.
Making the transition to 64

bits is IT news today, but it was
a hot topic for us ten years ago.
Jon “maddog” Hall, then still at
Digital, covered Linux on Alpha
and its advantages for computer
science education:

Over time, this meant that to get
all the sources to our Unix prod-
ucts, 15 separate licenses were
necessary, at a cost of thousands
of dollars, and even then the
sources were restricted to a “need
to know” basis and were not for

consumption by curious students.

Publisher Phil Hughes, in a “Stop
the Presses” item, pointed out that
Microsoft Windows 95 overwrites a
PC’s Master Boot Record—the first
Windows version to do so and a FAQ
for dual-booters ever since. More
help came in the form of an ad for
the “System Commander” boot man-
ager, which offered an easy solution
for multi-OS systems, with the bonus
feature of fixing boot sector virus
infections.

— D O N M A R T I

TEN YEARS AGO IN LJ

October 1995

http://www.postfix-book.com
http://www.linuxjournal.com

7 2 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

A
new customer approached us with a need to provi-
sion the office. The customer was receptive to open-
source software and was interested in using Linux.
Being a nonprofit organization, the budget for the

project was tight.
We provisioned the new office with a server running soft-

ware from the Linux Terminal Server Project (LTSP) to make
the desktop economical from the start. We then installed an
Asterisk server as a PBX for the call center. To make things
easier for the staff, we wanted to have a working soft phone on
their terminals with headsets for hands-free operation.

This article discusses the installation and use of the LTSP
build environment to build Qt and KPhone so the staff mem-
bers could run KPhone locally on their terminals. I do not dis-
cuss the installation of Linux or Asterisk here, but I have
included the relevant context for KPhone, which resides in the
Asterisk sip.conf file. We used Gentoo for this particular LTSP
server, but any Linux distribution can do the job.

Software Needed
The main software packages needed for this project were
LTSP, KPhone and the LTSP build environment (LBE). LTSP
easily provides thin-client access to a main server. We often
recommend LTSP as an economical way to equip an office,
because it focuses monetary resources on the main server
rather than on the individual stations. The incremental cost of
adding a new user to the office is relatively small, and adminis-
tration is simplified.

The customer’s new office is intended to be a small call
center, so hands-free phone operation is a big benefit. We
wanted to try using headsets and amplifiers that use a computer
sound card for their connectivity rather than hardware phones.
These headsets, coupled with software SIP phones on each

user’s local station, allowed us to meet their phone needs with-
out having to buy separate phone equipment.

Because we already were using Asterisk (see the on-line
Resources) as the PBX for the office, it seemed logical to
use an open-source software phone. We decided to use
KPhone (see Resources) as the software SIP phone, because
it had proven reliable on standalone systems previously test-
ed. One of the drawbacks of every SIP soft-phone package
we investigated at the time was none supported a network-
enabled sound protocol. As a result, they were required to
run locally on the station that physically has the sound card.
As these stations are thin clients that boot from the main
server, KPhone needs to be resident in the filesystem on each
station. When a user runs KPhone from the desktop, which
runs on the server, the KPhone process needs to start in the
local terminal environment.

KPhone is not a standard part of the LTSP package, so we
needed to build it inside the local stations’ root filesystem that
is NFS-mounted from the server at boot time. Building soft-
ware for the terminals’ root filesystem requires LBE (see
Resources). Building software in LBE also requires that all
necessary libraries be present in the filesystem. One of the
other benefits of KPhone is that the Qt library is the only
library required beyond those already in LTSP.

Installation and configuration of LTSP are detailed in the
LTSP documentation (see Resources). One deviation from the
standard install of LTSP is that the DHCP configuration file
must reference the root filesystem that LBE builds rather than
the root filesystem installed with the LTSP package (Listing 1).

Technically, we did not need the LTSP package because
LBE includes the necessary boot image and root filesystem.
However, if you are not already familiar with LTSP, I recom-
mend you install that package first and get it operational.
Deploying LTSP involves the configuration of other standard
software included with almost all Linux distributions: DHCP
for assigning IP addresses, boot images and root filesystem
information for the stations; TFTP for client stations to retrieve
their boot images; and NFS for thin clients to remote-mount
their root filesystems and the /home filesystem for running
remote applications. Installing LTSP provides demo configura-
tions for all of these packages that make setup much easier for
a novice.

The main LTSP documentation describes well most of
the preparation for running applications locally on the
clients. Their installation and configuration also are covered
on the LTSP 4.1 Web page. In addition to the software men-
tioned above, you also need to configure SSH client and

n I N D E P T H L T S P A N D S O F T P H O N E S

Building a
Call Center
with LTSP
and Soft
Phones
Need to equip an office with terminals and phones,

all on a small budget? With LTSP and KPhone, you

can do it with only terminals, sound cards and

headsets. B Y M I C H A E L G E O R G E

Listing 1. Our LTSP Section of dhcpd.conf

LTSP Path Options

option root-path

"192.168.42.254:/usr/local/src/lbe/opt/ltsp/i386";

#LTSP boot image (relative to the TFTP root)

filename

"/pxe2/pxelinux.0";

http://www.linuxjournal.com

http://www.sugarcrm.com/swap

7 4 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n I N D E P T H L T S P A N D S O F T P H O N E S

NIS on the server.
SSH is the means we used for starting the process on the

remote client. Notice that the LTSP 4.1 documentation demon-
strates the use of rsh for launching the applications. Although
that would work, the required dæmons for rsh no longer are
part of the LTSP package. SSH is now the norm for launching
local applications. You can find information about preparing
for SSH launching of local applications in the Local
Applications section of the LBE documentation.

NIS is needed because the thin clients need to authenticate
users through SSH as they launch the applications. NIS config-
uration is guided by the NIS HOWTO. One item that was not
immediately obvious from the documentation was that NIS
would complain that /etc/publickey was not present. Creating
that file with touch /etc/publickey solved the problem.

Once all the supporting software is in place, configuring
LTSP to run local applications is easy: set LOCAL_APPS = Y
in /etc/lts.conf within the LTSP root filesystem. This causes
the clients to mount the /home directory from the server with
NFS. Also, NIS is made active by /var/yp/nicknames,
/etc/yp/conf being created on the clients, domainname being
run with the value of the NIS_DOMAIN entry in the lts.conf
file and ypbind being run. The sshd dæmon also is activated
on the client.

For SSH operations to be transparent to users, we need
SSH keys created without expecting users to do it themselves.
To accomplish that, we installed superadduser in Gentoo,
which is reported to be adduser from Slackware (see
Resources) and modified it to generate the SSH keys automati-
cally for the user when the user is created (Listing 2).

Aside from configuring local applications to run on the
client terminals, we also need to make sure the sound cards are
active when the thin clients boot. Normally, one would set
SOUND = Y, SOUND_DAEMON = <nasd or esd>, VOLUME =
<default volume level> and possibly SMODULE_01 = <ISA
configuration string>. However, doing so not only causes
the sound driver to be loaded into the kernel, but it also starts
the sound dæmon, which we do not want. We need the sound
card to be available for KPhone when it starts on the terminal.

What we do instead is set SOUND = N to keep the normal
sound system from being activated and MODULE_01 = <kernel
module for the PCI soundcard>, because LTSP does not
have isapnp support, so audio needs a PCI audio device. We
also set RCFILE_10 = "kphone" to run the initial configuration
script to ready the system for KPhone by using the audio

device. Then, we put the KPhone script (Listing 3) in /etc/rc.d
in the clients’ root filesystem to enable access to the
/dev/sound/* files. -rwrwrw access is not the most secure, but
because only one user is running processes on the terminal at a
time, it works fine. Finally, we turn on the microphone and
adjust the gain and volume levels.

Building Qt and KPhone
Now that you have the LTSP environment configured and oper-
ational, you can build the LBE. Getting LBE from CVS is as
simple as:

cvs -d :pserver:anonymous@cvs.ltsp.org:/usr/local/cvsroot checkout -s

You then need to su to root—using sudo with the LBE
doesn’t reliably work—and run ./build_all. You can take
a break here, as the build of LTSP in LBE takes some time
to complete.

Once you have the new root filesystem for the terminals
built, change your DHCP configuration to refer to that boot
image and root filesystem, and restart your DHCP server.
You probably want to move /etc/lts.conf from your old LTSP
root filesystem to the new one. You also should move the
system-wide SSH known-host keys—the ones you created as
per the Local Applications section of the LBE document—to
the new filesystem.

Now we need to build the Qt libraries and then KPhone
inside the clients’ root filesystem. The LTSP build environment
(LBE) makes this much more manageable. Adding packages
for building in the environment amounts to creating a
package.def file in a directory named for the package.
The package.def files describe how to get, verify the download,
unpack, configure, build and install the package software.
The build script in the ltsp-src directory then does a chroot
and executes the build process.

Through trial and error and discussions on the LTSP IRC
channel (see Resources), we were able to construct the required
package.def files (see Resources for those files). Constructing
the package.def file for building Qt, in ltsp-src/qt under the
LBE root, was a straightforward process. Each build exported
the same variables to the build environment. Notice also that
threading is turned on explicitly at the CONFIGURE stage.

Listing 2. Additions to /usr/sbin/superadduser

su to the user and generate their SSH keys

su - "$LOGIN" -c "ssh-keygen -q -t dsa -C '' -N '' -f "$HME"/.ssh/id_dsa"

#

cp the new public key to the authorized_keys file

cp "$HME"/.ssh/id_dsa.pub "$HME"/.ssh/authorized_keys

chown "$LOGIN":"$(echo $GID | awk '{print $2}')" "$HME"/.ssh/authorized_keys

#

update the NIS stuff

(cd /var/yp; make > /dev/null)

Listing 3. <LTSP root>/etc/rc.d/kphone

#!/bin/bash

echo Setting up the system for using kphone locally

echo change the permissions on the audio files...

/bin/chmod 666 /dev/sound/*

echo Turn on the microphone, adjust gain and volume

/bin/aumix-minimal -m R

echo Turn gain and volumes up to maximum

/bin/aumix-minimal -m 85

/bin/aumix-minimal -p 100

/bin/aumix-minimal -v 100

mailto:anonymous@cvs.ltsp.org:/usr/local/cvsroot
http://www.linuxjournal.com

KPhone builds much more easily if Qt has threading enabled,
but it is not enabled by default in Qt.

Building KPhone was a bit more complicated. The
package.def file (see Resources) works well enough, but
the x-includes configuration option does not seem to
change the resulting Makefiles. This would cause compila-
tion errors when building trayicon.cpp. Manually adding
-I/usr/X11R6/include to CFLAGS in kphone/kphone/kphone/
Makefile (Listing 4) after the configuration stage seemed to
fix the problem, however. The steps to build KPhone in
LBE are then:

ltsp-src# ./build --configure --only=kphone

ltsp-src# vi kphone/kphone/kphone/Makefile

(Add "-I/usr/X11R6/include" to CFLAGS)

ltsp-src# ./build --only=kphone

We also noticed that the icons were not being located prop-
erly by KPhone at first. Making a link to ../../share/kphone in
opt/ltsp/i386/usr/share from the LBE root—/usr/share from the
clients’ root—allowed KPhone to find the icons correctly.

To run KPhone, we put a script in /usr/bin on the terminal
server called kphone (Listing 5). This script simply opens
access to the X server, determines the terminal at which the
user is sitting and starts the KPhone process on that terminal.

To make things easier for the users, we created an entry in
the KMenu for KPhone that they can select or move onto their
docks if they wish. This entry is created by adding the file
kphone.desktop (Listing 6) to /usr/kde/3.3/share/applications/kde
on the terminal server.

The user then can select the KPhone menu item and launch
KPhone (Figure 1). The first time the application is run, the
user has to select File→Identity to open the Identity dialog
(Figure 2) and enter the connection information. The data to
enter here must match that information for the SIP accounts on
the VoIP server (Asterisk in our case). Because KPhone stores
its configuration in the user’s home directory, it needs be con-

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 7 5

Listing 4. Modified CFLAGS in kphone/kphone/kphone/Makefile

CFLAGS=-I/usr/X11R6/include -I/usr/qt/3/include \

-Wall -O3 -I. -I../gsm -I../ilbc -I../dissipate2 \

-D_REENTRANT=1 -DQT_THREAD_SUPPORT=1 \

-DHAVE_LIBX11=1 -DHAVE_LIBXEXT=1 -DHAVE_LIBXT=1 \

-DHAVE_LIBICE=1 -DHAVE_LIBSM=1 -DHAVE_LIBPNG=1 \

-DSTDC_HEADERS=1 -DHAVE_FCNTL_H=1 \

-DHAVE_SYS_IOCTL_H=1 -DHAVE_UNISTD_H=1 \

-DHAVE_SELECT=1 -DINCLUDE_STDLIB_H=1 $(MOREDEFS)

Listing 5. KPhone Script on the Server

#!/bin/bash

xhost + > /dev/null

HOST=`echo $DISPLAY | awk -F: '{ print $1 }'`

export HOST

ssh ${HOST} env DISPLAY=:0.0 /bin/kphone

ASA
COMPUTERS

Want your business to be more productive?
The ASA Servers powered by the Intel® Xeon™ Processor provides the quality

and dependability to keep up with your growing business.

Hardware Systems For The
Open Source Community–Since 1989

(Linux, FreeBSD, NetBSD, OpenBSD, Solaris, MS, etc.)

2354 Calle Del Mundo,
Santa Clara, CA 95054
www.asacomputers.com
Email: sales@asacomputers.com
P: 1-800-REAL-PCS | FAX: 408-654-2910

Intel®, Intel® Xeon™, Intel Inside®, Intel® Itanium® and the Intel Inside® logo
are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

Prices and availability subject to change without notice. Not responsible for
typographical errors.

“Your Logo Here”“Your Logo Here”

6TB + in 5U—$8,450
Intel 7501, Dual Intel® Xeon™ 2.4GHz
512 MB DDR ECC RAM Max: 8GB

6TB + IDE Storage
Dual Gigabit LAN, CD+FD, VGA
Options: SATA Drives, Firewire,

DVD+RW, CD+RW, 64 Bit
OS Configurations, etc.

14" Deep Appliance Server—$865
Intel® Xeon™ 2.4 Ghz Processor
40 GB Hard Drive, One GigE
Options: CD, FD, 2nd HD, Your Logo

on Bezel
Call for Low Cost Options.

1U Dual Xeon™ EM64T Superserver—
$1,799
SuperMicro 6014H-82 Barebones
1 of 2 Intel® Xeon™ 2.8 GHz 800 FSB
1 GB DDR II-400 RAM Max: 16GB

36 GB 10K RPM SCSI Max: 4 HS HDD

CD+FD, Dual GigE, VGA, RAILS
Options: RAID, etc.

ASA Colocation
$50 per month for 1U Rack - 20 GB/month

ASA Colocation Special
First month of colocation free.*

Your Custom Appliance Solution
Let us know your needs, we will get you a solution

All systems installed and tested with user’s choice of Linux
distribution (free). ASA Colocation—$50 per month

Storage Solutions
IDE, SCSI, Fiber RAID solutions
TB storage options
3Ware, Promise, Adaptec,
JMR, Kingston/Storcase solutions

Clusters
Rackmount and Desktop nodes
HP, Intel, 3Com, Cisco switches
KVM or Cyclades Terminal Server
APC or Generic racks

1U Dual Itanium IDE—$3,925
Dual Intel® Itanium® 2 1.4 Ghz
2 GB ECC DDR
1 of 4 x 40 GB HDD
Dual Gigabit LAN
Based on Supermicro 6113M-i

http://www.asacomputers.com
mailto:sales@asacomputers.com
http://www.linuxjournal.com

figured only the first time the user starts KPhone. Because
/home is NFS-mounted from the server, the station where users
log in is their phone, so the phone effectively follows them if
they should change workstations. Once users have registered
with the server, they can make calls from the call dialog and
DTMF panel (Figure 3).

Initially we had KPhone running, but the response time for
any action was horrible. Any time the user would perform an
action that caused an SIP message to be sent—dial a number,
press a phone button on an active call, answer or hang up the
phone—it would take nearly a minute for the action to occur.

We determined that this problem was occurring because
of a DNS name resolution issue that was waiting to time-
out. The solution was to put entries into /etc/hosts for each
of the stations that would be running KPhone, install
dnsmasq on the terminal server and have the terminals ref-
erence the terminal server as their DNS server, configured

in dhcp.conf. There are other, perhaps better, ways to solve
this issue, but this solution took minimal time to configure
and run, and it worked. Finding the source of the problem
was the hard part.

7 6 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n I N D E P T H L T S P A N D S O F T P H O N E S

Figure 2. When first running KPhone for a new user, enter the information for the

Asterisk server.

Figure 3. The KPhone call dialog works like a hardware phone.

Listing 6. kphone.desktop

[Desktop Entry]

Comment=

Exec=kphone

GenericName=Office Telephone

Icon=/usr/kde/3.3/share/icons/Locolor/32x32/apps/kab.p

ng

Name=kphone

Path=

StartupNotify=true

Terminal=0

TerminalOptions=

Type=Application

Categories=Qt;KDE;Office

X-KDE-SubstituteUID=false

X-KDE-Username=

Figure 1. The user’s desktop environment runs on the LTSP server, but KPhone

runs locally.

http://www.linuxjournal.com

Gotchas
There have been a couple drawbacks to this system.
Occasionally KPhone closes for no given reason, which can
be quite annoying. We have not yet determined the cause of
this problem, and we hoped that upgrading KPhone to 4.1
might help.

The KPhone package.def file contains the necessary lines
for building KPhone 4.1.1. The change to the Makefile men-
tioned above for 4.0.5 still applies as of 4.1.1. Our preliminary
tests indicate, however, that 4.1.1 has the same problem of
closing suddenly for an unknown reason. We have inquired
with the maintainers of KPhone to see if they can help, but so
far we do not know the cause of the problem.

Another drawback is that when the phone rings, it rings
through the headset and gives a visual alert on the screen. If
users are not in front of their terminals with their headsets
on, they will not know that their phones are ringing. Once
the call center is in full operation, operators probably will
spend most of their time at the terminals, so this may not be
a problem.

Conclusion
We now have KPhone installed and able to be run from any
terminal attached to the LTSP server. Adding another user is as
simple as creating an account for them on the server, adding an
SIP phone entry for them on the phone system and having
them configure KPhone. The terminal server is the single point
of maintenance for everyone’s desktops. Even though KPhone
runs locally on each terminal, the LTSP build environment is
the single point of maintenance for all of them.

The cost for the system is concentrated in the terminal
server and phone system. The incremental cost for each
new user is the cost of a low-end terminal and a sound card
headset. This expense is much more cost effective than
putting a full workstation at each desktop along with a
headset-capable hard phone.

Acknowledgements
Thanks to James McQuillan at the Linux Terminal Server
Project for his excellent documentation (LTSP and LBS)
and everyone on the LTSP IRC channels that helped me
get KPhone running locally. Also thanks to Thorsten
Kukuk for authoring “The Linux NIS(YP)/NYS/NIS+
HOWTO”. Thanks to Mark Spencer, Digium and everyone
involved with the Asterisk Project who have made open-
source telephony a reality, as well as the author(s) of
KPhone. And thanks to Trolltech, the creators of the Qt
application framework.

Resources for this article: www.linuxjournal.com/article/
8460.

Michael earned his degrees in Computer Science
from Michigan Technological University and
Purdue University more years ago than he likes
to admit. He now lives in rural Michigan with his
wife and five children. He has been using Linux

since 1994 and now works with Ideal Solution, finding new
and creative ways to put open-source software, including
LTSP and Asterisk, to work for clients. He can be reached at
george@idealso.com.

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 7 7

ASA
COMPUTERS

www.asacomputers.com
1-800-REAL-PCS

Hardware Systems For The
Open Source Community–Since 1989

(Linux, FreeBSD, NetBSD, OpenBSD, Solaris, MS, etc.)

The AMD Opteron™ processors deliver high-performance,
scalable server solutions for the most advanced applications.

Run both 32- and 64-bit applications simultaneously

2354 Calle Del Mundo, Santa Clara, CA 95054
www.asacomputers.com

Email: sales@asacomputers.com
P: 1-800-REAL-PCS | FAX: 408-654-2910

Prices and availability subject to change without notice.
Not responsible for typographical errors. All brand names and logos

are trademark of their respective companies.

AMD Opteron™ Value Server—
$795
• 1U 14.3” Deep
• AMD Opteron™ 240
• 512MB RAM Max 8GB

• 40GB IDE HDD
• 2x 10/100/1000 NIC
• Options: CD, FD or 2nd HD, RAID

8 Hot Swap Bays in 2U AMD
Opteron™—$1,950
• 1 of 2 AMD Opteron™ 240
• 512MB RAM Max 16GB

• 3x80GB IDE RAID # 5
• 2xGigE, CD+FD
• Options: SATA/SCSI,

Redundant PS

Front I/O Dual AMD Opteron™

Cluster Node—$1,600
• 1U Dual AMD Opteron™ Capable

Font I/O
• Single 240 AMD Opteron™

• 1GB RAM Max RAM 16GB

• 80GB HDD
• Dual PCI Expansion Slot

No Frills AMD Opteron™

Storage Server—$8,450
• 6TB+ IDE/SATA Storage in 5U
• Dual AMD Opteron™ 240
• 512MB RAM
• 6TB IDE Storage
• Dual GigE, CD
• Options:

SATA HDD,
DVD+RW
etc.

Your Custom Appliance Solution
Let us know your needs, we will get you a solution

Custom Server, Storage, Cluster, etc. Solutions
Please contact us for all type of SCSI to SCSI, Fibre to SATA,

SAN Storage Solutions and other hardware needs.

“Your Logo Here”“Your Logo Here”

http://www.linuxjournal.com/article
mailto:george@idealso.com
http://www.asacomputers.com
http://www.asacomputers.com
mailto:sales@asacomputers.com
http://www.linuxjournal.com

7 8 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

M
any computer systems set up for advanced gam-
ing include Dolby Surround Sound. The typical
speaker configurations are 4.1—four speakers and
one subwoofer— 5.1 and 7.1. This system is

designed for all speakers to be located on a plane centered at
the listener, and thus it is not possible to have a sound truly be
emitted from above or below the listener, although some sys-
tems attempt to simulate that effect. Imagine a game scenario
where a monster is climbing down a wall above and behind the
player while, at the same time, a mouse is scrambling across
the floor behind the listener. In a planar surround system, the
sound effects for both the monster and the mouse would come
from the rear speakers, making it hard to distinguish the actual
locations of the sound sources.

With true 3-D spatial audio, the monster’s sound effects
could be played from speakers located to the back upper-left
and the mouse’s sound from speakers located to the back
lower-left and back lower-right. In this setup, the player has a
much better feel for what is creating the sound and where the
sound is coming from. Now the player can arm the rocket
launcher and turn toward the back upper-left directly and blast
the monster—no need to aim toward the harmless mouse.

Spatial sound has been available for several years and pri-
marily is employed in immersive virtual environments. The
systems are not in mass-scale production and often must be
installed by professionals, making them costly and out of the
reach of most home users. We have devised a low-cost true 3-
D spatial audio solution that requires only inexpensive con-
sumer-level hardware and open-source software. This solution
allows for the arbitrary placement of speakers, not necessarily
co-planar as in other systems. Our 3-D spatial audio solution is
the first that we are aware of that provides true 3-D sound at
such a low cost.

Background on 3-D Spatial Audio
Preliminary technology for 3-D spatial audio, Fantasound, first

was developed in the late 1930s by Disney for the movie
industry. Over the years, a great deal of work has been done to
advance the field, especially by Dolby Laboratories. In the last
few decades, researchers enabled personal computers to emit
spatial audio. Today, spatial audio is commonplace in modern
computer games. Home systems typically use headphones or a
planar array of speakers, usually in a preset configuration, such
as Dolby Surround Sound 5.1.

Headphones present a unique opportunity to provide
inexpensive 3-D audio. Algorithms that use head-related
transfer functions (HRTFs) can create convincing 3-D spatial
audio on headphones using a simple stereo sound card.
HRTFs use data about how sound is transformed by the
user’s body, especially the shape of the ears, for mapping
sounds with 3-D positional sources. The technique relies
heavily on applying different time delays for each ear.
Ultimately, we decided not to use headphones, because we
needed a system that scaled easily to many users. It was far
more practical and cost efficient to use speakers.

A number of high-cost professional-grade hardware pack-
ages are available, such as the RME Hammerfall series, M-
Audio Delta series and Lake Audio, that provide true 3-D spa-
tial audio. Each package has a cost exceeding $1,000 US,
boasts high sound quality and has a large array of features
aimed at the professional market. Although the acoustic quality
of these packages undoubtedly is higher than that of our low-
cost 3-D audio solution in terms of audio clarity and fidelity,
both options provide true 3-D spatial audio.

When we started putting together a spatial audio system, no
inexpensive hardware and software combination existed to pro-
duce true 3-D spatial audio. Although there are software APIs
that allow arbitrary, not necessarily co-planar positioning of
sound sources, such as Microsoft DirectSound and the
Advanced Linux Sound Architecture (ALSA), the low-level
drivers officially support only the co-planar 4.1, 5.1 and 7.1
speaker positions mentioned earlier. There is no way to tell the
drivers that the speakers have been moved to an alternate con-
figuration, for example, with speakers above or below the lis-
tener. So even though software developers could position a
sound above or below the user’s head, the low-level drivers
still assumed the sound was emitted in a circle around the
user’s head. The bulk of true 3-D spatial audio support comes
from customized APIs.

Tommi Ilmonen at the Helsinki University of Technology
(HUT) developed a 3-D spatial audio API called Mustajuuri
that is built on the ALSA drivers. The Mustajuuri API imple-
ments Vector Base Amplitude Panning (VBAP), introduced by
Ville Pulkki (see the on-line Resources), as the underlying 3-D
spatial audio model. In short, VBAP is the algorithm responsi-
ble for moving a sound across a 3-D array of speakers and
making the sound appear to come from a specific direction.
VBAP selects the three speakers closest to the virtual sound
position and calculates the required volumes for each speaker.
See Figure 1 for an example of how VBAP works. Mustajuuri
also simulates depth for audio by using time delays and dis-
tance attenuation. This makes it possible to position a sound
anywhere in space relative to the listener. Mustajuuri already
has been used to produce 3-D spatial audio using high-end
audio cards, but up until now it has not supported low-end
audio cards.

n I N D E P T H 3 - D S P A T I A L A U D I O

Dirt-Cheap
3-D Spatial
Audio

With the addition of free audio software, an ordinary

inexpensive surround sound card becomes the basis

for a 3-D cube for simulation, visualization or gaming.

B Y E R I C K L E I N , G R E G S . S C H M I D T,

E R I K B . T O M L I N A N D D E N N I S G . B R O W N

http://www.linuxjournal.com

Hardware Selection and Setup
The hardware needed to set up a low-cost 3-D spatial audio
system includes a commodity sound card with certain features,
speakers and audio cables. Here, we
describe our choices for hardware com-
ponents and the steps needed to set up
the hardware. Throughout the discus-
sion, refer to Figure 2 for an illustration
of the hardware interconnections,
speaker placement and wiring.

The first thing to consider is the
number of speakers needed to produce
3-D spatial audio for a specific applica-
tion. A minimally encompassing setup
produces sound from all directions
around the user—left-right, front-back
and up-down. The speakers can be
placed in any configuration, but setting
up the 3-D audio panning functions is
not as simple for irregular configura-
tions. We decided to use eight speakers
in a cubic configuration, with each
speaker at a vertex of the cube, as
shown in Figure 2. There is nothing
special about the speakers needed for
this task—the choice is a matter of
budget and taste. We used eight ampli-
fied commercial-grade speakers for the
simple reason that we already had them
in our lab.

The eight speakers require a sound
card that can produce eight channels
of audio. Of the low-cost commodity
audio cards, the only applicable can-
didates are the 7.1 cards. We chose
the Creative Labs Audigy 2 card,
which we found available at the time

of this writing for as low as $90 US. Although it is possible
to produce eight independent channels of audio using more
expensive sound cards, the Audigy 2 card is the only com-
modity card we are aware of that has drivers in place to sup-
port what we are doing.

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 7 9

Figure 1. View of 3-D spatial audio test case in the immersive room. Visual depic-

tions show from which speakers the sound is coming for the current view. For

each sound, the three speakers closest to the virtual sound source are used to

play the sound. Their volumes are varied based on the distance from the speaker

and a number of other factors.

Figure 2. Audio Hardware Setup

http://www.linuxjournal.com
http://www.ironsystems.com

It is important to understand the output from the card. In a
typical Dolby Surround Sound 7.1 speaker arrangement, there
are two front speakers, left and right; two side speakers; two
rear speakers; a center speaker, which sits in front and above
the video screen; and a subwoofer channel, the .1 speaker. The
Audigy 2 ZS has three analog output jacks, an 1/8-inch mini-
phone, labeled 1, 2 and 3, that provides line-level outputs for
the eight speakers. Jack 1 is three-pole, meaning it carries three
signals—two signals drive the front left and right speakers and
the third is ground. Jacks 2 and 3 are four-pole, each carrying
four signals. Jack 2 drives the rear speaker pair and a side
speaker, while Jack 3 drives the subwoofer, the center speaker
and the remaining side speaker. One final consideration is these
signals are unamplified line-level, so the speakers need to be
the amplified type that accept line-level inputs. Alternatively, a
separate amplifier or set of amplifiers should be used between
the sound card and the speakers.

The next step is to install the speakers. Many speakers
designed for surround use include mounts, but speaker mounts
are available commercially for a number of other speaker
types. In our application, we already had the cubic infrastruc-
ture in place and used custom mounts to attach the speakers to
the cube. The simpler the speaker configuration, the simpler
the software configuration can be—that process is explained
later in this article.

Finally, the speakers must be connected to the audio card.
How one connects speakers to the Audigy 2 depends on the
type of speaker and amplification used. A trip to a favorite
electronics store should yield any necessary connectors. In our
case, the speakers each have a two-pole 1/4-inch phone jack,
so we needed to split the three combined outputs of the sound
card into eight separate signals. For Jack 1, we used a readily
available 1/8-inch-stereo-to-dual-RCA adapter. For Jacks 2 and
3, we found similar adapters with four poles and three RCA
connectors. These adapters are used most commonly with cam-
corders, when the three signals are used for composite video
and stereo audio. These adapters gave us eight separate RCA
connectors, and after obtaining eight long RCA-to-1/4-inch-
mono cables, we were set.

In our final configuration, we used an Alesis Studio 32
mixer. This device fits in-line between the audio card’s outputs
and speakers’ inputs and allows fine-tuning of the volume lev-
els. Although the mixer made it a little easier to test and tune
the audio, it wasn’t truly necessary, as the same adjustments
can be made in software.

Software Selection and Setup
The software solution for low-cost 3-D spatial audio is best
described by the layered hierarchy shown in Figure 3. The soft-
ware layers required to interface with the sound cards include
low-level audio drivers and a 3-D spatial audio API. We
focused our primary development efforts on Linux because of
easy access to the source code for low-level audio drivers and
the overall support community that exists for developers work-
ing on projects such as ours.

For the driver layer, we chose ALSA, which was men-
tioned previously. ALSA provides audio and musical instru-
ment digital interface (MIDI) functionality to the Linux
operating system. It supports many types of audio hardware,
ranging from consumer sound cards to professional multi-

channel audio interfaces.
We selected ALSA because it appeared to require the least

effort to generate the eight channels we needed for 3-D spatial
audio. Until we modified the ALSA driver to access all eight
channels, it supported only six channels (5.1) on the Audigy 2.
These changes have been incorporated into ALSA, but they
may or may not be in a release version at publication time. In
that case, one can get the latest source and build it—be sure to
include the emu10k1 sound card argument when using the

./configure script so that the ALSA driver recognizes the
Audigy card.

After the driver is set up, the 3-D spatial sound API can
be installed. It distributes sound effects from a given 3-D
position to the appropriate audio channels. Although there
are quite a few APIs to choose from, we chose Mustajuuri,
as mentioned previously. The Mustajuuri software works
with ALSA and provides 3-D panning over an arbitrary array
of speakers using the VBAP algorithm, also described previ-
ously. The Mustajuuri API provides all of the features need-
ed for a basic 3-D positional sound system and is fairly easy
to extend. Over the course of this project, we made several
minor source code modifications, and they are included in
the October 2004 release.

Mustajuuri does its magic by way of a module called the
Mixer, which mixes multiple sound sources—sound files,
microphone inputs or other sources—into individual audio
streams. These streams then are piped into a panning module,
which is responsible for routing each input signal to the appro-
priate speakers, setting the correct gain and time delay at each
speaker and mixing multiple streams meant for the same
speaker into a single stream to be sent to that speaker. It does
the routing and gain calculations based on VBAP, and some
additional gain and delay calculations are based on distance.
The result is each incoming sound source to the panning mod-
ule leaves from a set of three speakers, and the resulting sound
appears to come from a specific 3-D position in space. Doppler
shifting also is simulated.

Once Mustajuuri is compiled and installed, several tasks
must be performed to configure the software to work with the
given 3-D speaker array.

Configuring ALSA
ALSA needs to know how to communicate with all eight chan-
nels of the audio card. This normally would be achieved sim-

8 0 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n I N D E P T H 3 - D S P A T I A L A U D I O

Figure 3. Audio Driver Layers

http://www.linuxjournal.com

ply by using the device named surround71, but it is not fully
compatible with the spatial sound API Mustajuuri. Mustajuuri
requires support for input channels. The device surround71
supports eight output channels but no input channels.
Therefore, it is necessary to define a new device that has eight
output channels and some input channels.

In order to meet this requirement, an asymmetric device
is defined. The device is called asymmetric because the num-
ber of input and output channels are not necessarily the
same. Notice that the number of input channels is not stated
explicitly. ALSA determines the number of input channels
automatically and assigns the maximum; the Audigy card we
used has two.

To configure ALSA, add the following text to the file
/etc/asound.conf or create the file if necessary. This file holds
information about user-defined devices, so we use the follow-
ing text to add an asymmetric device called eightout:

ctl.eightout {

type hw

card 0

}

pcm.eightout {

type asym

playback.pcm {

type route

slave.pcm surround71

ttable.0.0 1

ttable.1.1 1

ttable.2.2 1

ttable.3.3 1

ttable.4.4 1

ttable.5.5 1

ttable.6.6 1

ttable.7.7 1

}

capture.pcm {

type hw

card 0

}

}

Next, an environment variable must be set to allow
Mustajuuri to talk to the audio card through ALSA. Set the fol-
lowing environment variable:

export MJ_AUDIO_CONF= \

"Input=2=hw:0,0 | Output=8=eightout"

Once this is done, Mustajuuri should be able to output
audio through all eight channels of the audio card.

Configuring the Mustajuuri Mixer Panel
Mustajuuri uses a mixer-board-style GUI for sending input
audio streams to a speaker array, combining them or just pass-
ing them through intact. The input streams can come either
from sound files or from live sources, such as a microphone.
The GUI lays out several strips of channels that can be
assigned different functions applied in a sequential process.

Advertiser Page # Advertiser Page #

AABBEERRDDEEEENN,, LLLLCC 9

www.aberdeeninc.com

AAPPPPRROO HHPPCC SSOOLLUUTTIIOONNSS 19

appro.com

AASSAA CCOOMMPPUUTTEERRSS 75, 77

www.asacomputers.com

AAVVOOCCEENNTT 53

www.avocent.com

CCAARRII..NNEETT 67

www.complexdrive.com

CCIIAARRAA TTEECCHHNNOOLLOOGGYY 16, 17

www.ciara-tech.com

CCOORRAAIIDD,, IINNCC.. 21

www.coraid.com

CCOOYYOOTTEE PPOOIINNTT 61

www.coyotepoint.com

CCYYCCLLAADDEESS CCOORRPPOORRAATTIIOONN C2, 1, 11

www.cyclades.com

EEMMAACC IINNCC 44

www.emacinc.com

EEMMPPEERROORRLLIINNUUXX 15

www.emperorlinux.com

EETTNNUUSS 85

www.etnus.com

FFAAIIRRCCOOMM CCOORRPPOORRAATTIIOONN 39

www.faircom.com

FFRREEEE SSOOFFTTWWAARREE FFOOUUNNDDAATTIIOONN 93

www.gnupress.org

GGOOOOGGLLEE 35

www.google.com/lj

HHUURRRRIICCAANNEE EELLEECCTTRRIICC 55

www.he.net

IIMMAAGGEESSTTRREEAAMM IINNTTEERRNNEETT SSOOLLUUTTIIOONNSS 37

www.imagestream.com

IINNTTEEGGRRAATTEEDD IITT SSOOLLUUTTIIOONNSS DDBBAA SSAAGG EELLEECCTTRROONNIICCSS 87

www.sagelectronics.com

IINNTTEELL 29

intel.com/go/xeon

IINNTTEELL PPRREEMMIIEERR PPRROOVVIIDDEERR 28

www.insistthebest.com

IIRROONN SSYYSSTTEEMMSS 79

www.ironsystems.com

IIWWIILLLL UUSSAA CCOORRPP 2

www.iwillusa.com

JJTTLL NNEETTWWOORRKKSS 92

www.jtl.net/lj

LLAAYYEERR 4422 NNEETTWWOORRKKSS 43

www.layer42.net

LLEEVVAANNTTAA 13

www.levanta.com

LLIINNUUXX JJOOUURRNNAALL 91

www.linuxjournal.com

LLIINNUUXX WWOORRLLDD EEXXPPOO UUKK 33

www.turretgroup.cm

LLPPII 65

www.lpi.org

MMBBXX 7

www.mbx.com

MMIICCRROOWWAAYY,, IINNCC.. C4, 83

www.microway.com

NNOOVVEELLLL 47, 49, 51

www.novell.com

OOPPEENN SSOOUURRCCEE PPRROOFFEESSSSIIOONNAALL IINNSSTTIITTUUTTEE 69

www.ospinstitute.com

PPEENNGGUUIINN CCOOMMPPUUTTIINNGG 23

www.penguincomputing.com

PPFFUU SSYYSSTTEEMMSS 57

www.pfusystems.com

RR CCUUBBEEDD TTEECCHHNNOOLLOOGGIIEESS 25

www.rcubedtech.com

RRAACCKKSSPPAACCEE MMAANNAAGGEEDD HHOOSSTTIINNGG C3

www.rackspace.com

RROOBBOONNEEXXUUSS 63

www.robonexus.com

SSBBEE,, IINNCC.. 5

www.sbei.com

SSCC||0055 89

sc05.supercomputing.org

SSEERRVVEERRSS DDIIRREECCTT 41

www.serversdirect.com

SSTTOORRIIXX SSOOFFTTWWAARREE 59

www.storix.com

SSUUGGAARRCCRRMM,, IINNCC.. 73

www.sugarcrm.com

TTEECCHHNNOOLLOOGGIICC SSYYSSTTEEMMSS 45

www.embeddedx86.com

TTUUXX MMAAGGAAZZIINNEE 90

www.tuxmagazine.com

TTHHEE PPOORRTTLLAANNDD GGRROOUUPP 30, 31

www.pgroup.com

ZZTT GGRROOUUPP IINNTTEERRNNAATTIIOONNAALL 27

www.ztgroup.com

ADVERTISING SERVICES
VP OF SALES AND MARKETING

Carlie Fairchild, carlie@ssc.com

+1 206-782-7733 x110,

+1 206-782-7191 FAX

FOR GENERAL AD INQUIRIES

e-mail ads@ssc.com

or see www.linuxjournal.com/advertising

Please direct international advertising
inquiries to VP of Sales and Marketing,
Carlie Fairchild.

REGIONAL ADVERTISING SALES
NORTHERN USA
Joseph Krack, joseph@ssc.com
866-423-7722 (toll-free),
866-423-7722 FAX

SOUTHERN USA
Laura Whiteman, laura@ssc.com
206-782-7733 x 119

EASTERN USA
Martin Seto, mseto@ssc.com
+1 905-947-8846,
+1 905-947-8849 FAX

INTERNATIONAL
Annie Tiemann, annie@ssc.com
866-965-6646 (toll-free)

PO Box 55549
Seattle, WA 98155-0549 USA
www.linuxjournal.com

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 8 1

http://www.aberdeeninc.com
http://www.asacomputers.com
http://www.avocent.com
http://www.complexdrive.com
http://www.ciara-tech.com
http://www.coraid.com
http://www.coyotepoint.com
http://www.cyclades.com
http://www.emacinc.com
http://www.emperorlinux.com
http://www.etnus.com
http://www.faircom.com
http://www.gnupress.org
http://www.google.com/lj
http://www.he.net
http://www.imagestream.com
http://www.sagelectronics.com
http://www.insistthebest.com
http://www.ironsystems.com
http://www.iwillusa.com
http://www.jtl.net/lj
http://www.layer42.net
http://www.levanta.com
http://www.linuxjournal.com
http://www.turretgroup.cm
http://www.lpi.org
http://www.mbx.com
http://www.microway.com
http://www.novell.com
http://www.ospinstitute.com
http://www.penguincomputing.com
http://www.pfusystems.com
http://www.rcubedtech.com
http://www.rackspace.com
http://www.robonexus.com
http://www.sbei.com
http://www.serversdirect.com
http://www.storix.com
http://www.sugarcrm.com
http://www.embeddedx86.com
http://www.tuxmagazine.com
http://www.pgroup.com
http://www.ztgroup.com
mailto:carlie@ssc.com
mailto:ads@ssc.com
http://www.linuxjournal.com/advertising
mailto:joseph@ssc.com
mailto:laura@ssc.com
mailto:mseto@ssc.com
mailto:annie@ssc.com
http://www.linuxjournal.com
http://www.linuxjournal.com

Some example functions are
input, send (to speaker),
amplitude gain, panning and
synthesizer. The gain and
panning modify how the
audio is distributed to indi-
vidual output audio channels.

The Mixer Panel configu-
ration we use is shown in
Figure 4, which uses two
mixer strips. The first has
two interesting channels: a
synthesizer channel, which
manages the sound files, and
a panning module, which
handles the VBAP-based
panning across speakers. The
second strip is used to man-
age remote connections from
external applications and
does not accept an audio
stream as input. It sends
commands to the synthesizer
and the VBAP module.

To create a similar con-
figuration, launch Mustajuuri
and create a new mixer from
the File menu. This mixer
has several strips already,
and all of these strips essen-
tially are blank. The number
of strips and the number of
modules per strip can be
changed using the Edit menu,
if needed. Modules can be

assigned by clicking with the mouse on a particular slot. To
adjust the module’s properties, simply click on the blue link
defining the module’s type, such as Synth1 or Mixer Input. The
Strip X button at the top of a strip can be used to modify and
remove the modules in any slot in that strip. All mixer configu-
ration changes are saved by using the save options from the
File menu. The resulting configuration file, for example,
SpatialAudio.mj, is specified on the command line when
Mustajuuri is called.

Specifying Speaker Placement
In order to use VBAP, it is necessary for Mustajuuri to know
the locations of the speakers in the 3-D array. Mustajuuri does
this through a configuration file that is specified as part of
the VBAP module setup; this module was created as part
of configuring the Mustajuuri Mixer Panel. This file specifies
the azimuth and elevation angles (in degrees) for each speaker
relative to the listener. Because our system uses eight speakers
arranged in a cube configuration, our configuration file is
specified as follows:

3 # dimensionality

Azimuth, followed by elevation.

0 0 would be straight ahead.

-45 45 # Front upper left

45 45 # Front upper right

-135 45 # Back upper left

135 45 # Back upper right

-45 -45 # Front lower left

45 -45 # Front lower right

-135 -45 # Back lower left

135 -45 # Back lower right

This configuration file is used by the main configuration
file for the Mustajuuri Mixer. This file assumes that all speak-
ers are equidistant from the listener. If this is not the case,
adjust the gain and delay for each speaker manually by using
the Mustajuuri Mixer. In our system, such adjustments were
not necessary, and it would involve significant work if it were
necessary. The easiest solution is to try to place all speakers
equidistant from the ideal listening position.

Configuring the Sound File Loader
In order to use a sound file from Mustajuuri, that sound file
must be known to Mustajuuri at load time. The mechanism
used to do that is a configuration file that specifies all of the
sound files that possibly might be used by Mustajuuri. This
configuration file is used by the synthesizer mixer module,
which was created when we configured the Mustajuuri Mixer
Panel above. A sample configuration file that loads three sound
files follows. Once a file is created, any name can be assigned;
make sure the synthesizer module points to that file:

unusevoices *-stk

polyphony 48

sample audioeffect1.wav

sample audioeffect2.wav

sample sudioeffect3.wav

The polyphony line specifies the maximum number of
audio files that should be loaded by Mustajuuri, so it should be
at least as large as the number of audio files listed in this file.
The last three lines specify three sample audio WAV files. Any
audio files specified here must be placed in a directory speci-
fied separately as part of the synthesizer module configuration.
The unusevoices line is a somewhat more-advanced setting, but
one that should help improve efficiency somewhat.

Configuring Mustajuuri for Remote Control
Mustajuuri is designed to act as a standalone program to
manipulate audio, not as a library to be linked against by
another application. To control Mustajuuri from another appli-
cation, as is the case with our project, two steps are required.
The first involves setting up Mustajuuri to listen for control
commands over the network. The second step consists of writ-
ing a simple API in the main application to talk to Mustajuuri.

To get Mustajuuri to accept commands from the network, a
network module must be loaded. This network module is the
only way for an external application to control Mustajuuri,
even if both the application and Mustajuuri are running on the
same machine. Adding this module is a simple task and simply
requires configuring which port Mustajuuri will listen to; the
default port is 10030. This module automatically communi-
cates with the synthesizer module and the VBAP modules, if

8 2 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n I N D E P T H 3 - D S P A T I A L A U D I O

Figure 4. Screenshot of the

Mustajuuri Mixer GUI (Tommi

Ilmonen, Mustajuuri-2004)

http://www.linuxjournal.com

http://www.microway.com

8 4 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n I N D E P T H 3 - D S P A T I A L A U D I O

they are in the mixer.
In order to control Mustajuuri from an application, it is nec-

essary to add code included with the Mustajuuri API into the
application. We present example code segments here that show
how to connect to a remote audio server, play audio specified
coming from a given 3-D position and change the position of a
sound source and listener position.

The first code segment shows the initial commands to con-
nect the application to the remote Mustajuuri audio server and
initialize it. If Mustajuuri is running on another machine,
change the address to reflect this. To change the default port,
10030, that Mustajuuri listens to, specify the new port in the
address string, for example, mjserver.mydomain.com:12345.
The two objects that we created, one instance each of
AC_Control and AC_VrControl, are used later to send com-
mands to Mustajuuri:

// connecting to a remote server

#include <ac_vr_control.h>

AC_Control acControl =

new AC_Control();

char* mjServerAddress = "127.0.0.1";

if(!acControl->init(mjServerAddress))

{

// error handling code here

}

AC_VrControl acVrControl =

new AC_VrControl(acControl);

The next code segment shows how to specify the position
of the source of the audio and play it. One interesting thing to
note here is that the variable outputChannel identifies the
intended sound source to use. The number of supported sound
sources was specified in the synthesizer module from the
Configuring the Mustajuuri Mixer Panel section, and
outputChannel should be between 0 and the number of sources,
minus one. The variable soundFilename should not have a path
as part of the filename. The filename should be one of the files
listed in the configuration file created as part of configuring the
Sound File Loader file. Lastly, the soundLevel is essentially
the initial gain level for the new sound. This needs to be exper-
imented with to find an appropriate setting:

AC_Vector3 location(

positionX,

positionY,

positionZ);

int soundId =

acVrControl->playSample(

outputChannel,

soundFilename,

soundLevel,

location,

true,

0, 0);

The last code segment shows how to reposition the sound

source location and the orientation and position of the listener.
The outputChannel variable refers to the sound source that is
desired to be moved and should be the same value used to call
playSample from the previous example. The listenerRotation
matrix specifies the orientation of the listener relative to the
world, and the worldRotation matrix specifies the orientation
of the world relative to the speakers:

// reposition a source of sound

AC_Vector3 location(

positionX,

positionY,

positionZ);

acVrControl->moveSource(outputChannel,

0.05, location);

// reposition the listener orientation

AC_Matrix3 listenerRotation(

... listener rotation matrix ...);

AC_Matrix3 worldRotation(

... world rotation matrix ...);

acVrControl->setTransformations(

location, listenerRotation,

worldRotation, 0.05);

Hardware Testing and Calibration
We tested the hardware design of our 3-D spatial audio system
by integrating the hardware with our four-wall immersive vir-
tual reality room at the Virtual Reality Laboratory, part of the
Naval Research Laboratory in Washington, DC. We arranged
the speakers in a cube array and placed them at the corners of
the immersive room, as shown in Figure 5. We designated a
1.2GHz Red Hat Linux machine as an audio server and
installed an Audigy 2 ZS card. We connected the speakers
using the cabling described before and tried the system both
with and without the mixing board mentioned earlier.

While Mustajuuri was running with three audio sources in
motion, CPU utilization on this machine generally was less
than 20%, and the memory usage was negligible. Further sav-
ings could be realized, of course, by using optimized compiler
settings rather than the debug settings we used.

Figure 5. Immersive room depiction showing placement of speakers in a cube

array and audio coming from the user’s front upper-right direction; the lines are

colored red.

http://www.linuxjournal.com

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 8 5

We tested the outputs from each speaker to determine the
range of intensities that could be played on each channel. We
listened to each speaker individually for sound quality, sound
balance and percussive resonance. The easiest aspect to listen
for is the sound balance between treble and bass. If one of the
two obviously is higher than the other, adjust the related fre-
quency filters as needed. For example, if there is too much
bass, decrease the bass and/or increase the treble. If there
seems to be excessive low-end or high-end noise, adding a
low-pass or high-pass filter may be necessary.

Another easy aspect to listen for is speaker distortion.
Simply put, if the speakers are so loud that the sound produced
is bad, lower the volume of the speaker. If a given set of speak-
ers cannot produce quality sound at an
acceptable volume, it may be necessary
to acquire more powerful speakers.

One of the hardest aspects to listen
for is the resonance of percussive
sounds generated by a speaker. This
quality basically is how much the
sound echoes from where the speaker
is located. Adjustments have to be
made if it sounds like a speaker is
reverberating with percussive sounds.
Depending on the quality of the
speaker and the quality of the mixer
board, this problem may be corrected
to some degree by continuing to filter
the signal. For excessively bad cases,
hard objects such as exposed metal,
concrete, hard plastic and even glass
should be covered with a sound damp-
ening material such as cloth or foam.

Once each speaker is calibrated,
the entire setup has to be balanced.
This can be done either by using
devices designed to measure acoustic
levels or by listening to the speaker
from the predetermined center of the
3-D speaker array. Either way, the
gain of each speaker should be
adjusted until the same audio intensi-
ty level is received from each chan-
nel. Keep in mind that the outputs for
each channel of the audio card were
customized by the manufacturer for
the intensity requirements for each
type of speaker—satellite, center and
subwoofer—normally attached in a
surround configuration, and the
intensity output for each type differs.
There are many published methods
for dealing with this problem, but we
went with the low-tech solution of
having someone stand and listen at
the center of our speaker array. We
set the software control to maximum
gain and adjusted the mixer board
based on feedback from the listener.
Remember that these changes can be

made in software with the ALSA drivers and Mustajuuri if a
mixer is not available.

Software Testing
We tested the software by integrating sound into an existing in-
house simulation platform, BARS-Utopia, that operates on a
Linux visualization cluster from ORAD Incorporated, which
drives our immersive room. BARS-Utopia supports several vir-
tual world databases, interaction methods and spatial audio.
However, no support was available for interacting with the
Mustajuuri API in particular, so we implemented a plugin to
bridge the BARS-Utopia spatial audio support with Mustajuuri.
BARS-Utopia already contains all of the information needed

http://www.linuxjournal.com
http://www.etnus.com

8 6 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n I N D E P T H 3 - D S P A T I A L A U D I O

by Mustajuuri, such as sound source positions, listener position
and orientation and sound source creating/deletion notifica-
tions—the plugin simply translates that data into a form that
Mustajuuri understands.

When the plugin was completed, we tested and debugged
the new system. The primary software adjustments we made
were to the attenuation level of the audio channel outputs.
Mustajuuri uses a simple attenuation model and requires some
manual tweaking for the expected environment, things such as
outdoor, indoor, time of year and so on. In the real world,
sound attenuation rates are quite complicated and are influ-
enced by factors such as temperature, humidity and the fre-
quency makeup of the sound.

We tested the sound system by implementing several sce-
narios, each with a different scene dataset and different audio
effects attached to an animated object. Before the audio objects
were animated, we evaluated several volume levels and several
distances away for each object. Figure 1 shows a simple sce-
nario we designed and tested—the sound effects of a car. When
we finished testing the volume and distance effects, we gener-
ated an animated path for the car to follow.

Figure 6 shows a more complex scenario with three audio
sources, tank, jet and helicopter—the jet is off the screen and
not shown in view. We performed some simple tests to see how
many sound sources interacted together. It was of primary
importance that the jet, typically far away, not sound too quiet,
while the tank and helicopter, typically closer to the camera,
not dominate the aural bandwidth. As a result, some minor
tweaking was done on both the far and near objects’ attenua-
tion parameters.

System Validation
After all of the testing and calibration was completed, we per-
formed two informal, qualitative user tests that would help us
validate our new low-cost spatial audio system. The first test
evaluated how the new sound system configuration with eight
speakers compared with our previous planar configuration
containing four speakers. The prior configuration simply used

the four speakers on the top of the cube array. We realize that
directly comparing these two configurations is somewhat
biased, due to the placement of the four-speaker array being
located above the user’s head. It would be more fair to com-
pare against a four-speaker array located at the height of the
user. However, by using the top four speakers, we were able to
switch between the two configurations without dismantling
our installation.

We performed the experiment by asking a few test subjects
to stand in the middle of the immersive room and listen to
sounds played for each configuration. We played different
sequences of audio on both speaker configurations and made
use of the full range of speakers available. The subjects were
not told which configurations were being used, nor in which
order the pairs of configurations were presented. Several itera-
tions of the pairs of configurations were tried for each subject.
After each pair was presented, the subjects rated the two sys-
tems. Admittedly, this was not a scientific test, as is evidenced
by several unaddressed biases, but all test subjects clearly pre-
ferred the eight-speaker configuration.

The second user test evaluated how well the listener is
able to localize the source of the audio using the eight-
speaker configuration. Again, the subjects were tested and
each was asked to stand in the center of the immersive
room. Each subject was presented with several sounds
played one at a time and originating from different positions
surrounding the subject. The subjects were asked to point in
the direction of the sound source, as they heard it. The visu-
al system was not running, so the users did not get visual
cues as to the sound source’s location. The subjects were
able to localize the sounds with a high degree of accuracy,
especially with respect to elevation.

The implementation of our 3-D spatial audio system
integrated with our immersive room really enhanced the
simulation and training demos we have. Our completed sys-
tem has improved dramatically the sense of immersion when
running the demos. A simulation user easily perceives heli-
copters and jets flying overhead and a tank rumbling down
one of the many streets nearby in the virtual world. The per-
ception of depth from the source of audio is conveyed accu-
rately and also includes doppler effects. Our system is a step
above a four-speaker solution when we had previously used
the Microsoft DirectSound API. It also is a good replace-
ment for the capable but outdated and unsupported eight-
speaker solution we had running using another expensive
hardware and software platform.

Conclusions and Future Work
We have devised a true 3-D spatial audio solution that is low
cost and has comparable quality to expensive high-end com-
mercial systems. The 3-D spatial audio solution allows sound
effects to be generated from all directions surrounding a
user, not only from planar directions. We accomplished this
feat by using only commodity hardware and open-source
software. We feel this feature, now available at an affordable
price, creates numerous options for game and virtual reality
system developers.

We feel our system leads the way for others to devise simi-
lar solutions with current and future commodity audio equip-
ment. The developer needs only to purchase a Dolby Surround

Figure 6. Shows a user interacting with a scene with multiple sound sources—a

tank, helicopter and a jet that is not visible. The nearest speakers are determined

for each sound source and the output is mixed at each speaker, if overlapping.

http://www.linuxjournal.com

Sound 7.1 audio card, four pairs of low-
cost speakers and audio cables. We
spent less than $150 US on hardware—
Audigy 2 audio card and audio cables—
as we already had speakers available.
From start to finish, including hardware
and software debugging, configuring
and testing, we spent less than a month
developing the low-cost 3-D spatial
audio system. We feel that using this
document as a guide, it should be possi-
ble for others to implement this system
in less than a week.

Acknowledgements
We wish to thank Tommi Ilmonen
from the Helsinki University of
Technology (HUT) for support on
modifications made to Mustajuuri. We
also wish to thank Bryan Hurley,
Simon Julier, Mark Livingston, Yohan
Baillot and Jonathan Sabo for contri-
butions to the research. This research
was sponsored by the Office of Naval
Research under contract #N00014-04-
WX-20102.

Resources for this article:
www.linuxjournal.com/article/8407.

Eric Klein is a graduate stu-
dent in the Institute for
Data Analysis and
Visualization Virtual Reality
Laboratory at UC Davis. He

is working on a PhD in Computer
Science, specializing in virtual reality.
Eric received his BS from UC Santa
Barbara and spent several years work-
ing as an engineer in the industry
before returning to graduate school. His
primary research interests are immer-
sive audio, data sonification, scientific
visualization, collaborative environments
and human-computer interaction.

Greg S. Schmidt is a com-
puter scientist in the 3D
Virtual and Mixed
Environments Laboratory at
the Naval Research

Laboratory. He has a PhD and MCS in
Computer Science from Texas A&M
University and a BS in Biomedical
Engineering from Marquette University.
His research interests include scientific
and information visualization, human-
computer interaction, augmented reality,
modeling and simulation for terrain and
medical applications and computer vision.

Erik B. Tomlin is a student at
the University of Pittsburgh
majoring in computer engi-
neering. He has been work-
ing for the 3D Virtual and

Mixed Environments Laboratory at the US
Naval Research Laboratory on research
projects involving virtual and augmented
reality, human-computer interaction and
scientific visualization.

Dennis G. Brown is a com-
puter scientist at the Naval
Research Laboratory. He
received his BA in Computer
Science from Rice University

and his MS in Computer Science from
the University of North Carolina at Chapel
Hill. He works on the Battlefield
Augmented Reality System (BARS) and
multi-modal virtual reality projects. His
research interests include augmented
and virtual reality, specifically, novel user
interfaces and data distribution.

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 8 7

The core of any custom built HPC solution built by SAG Electronics is the
Intel® Xeon™ Processor based blade server. We have servers , workstations
and storage to create a custom solution that meets your demanding HPC
specs with a service package to meet your needs. Call today for pricing,
based on your configuration requirements.

SAG STF Blade server

• up to 14 Xeon™ Processor
800MHz front side bus

• up to 56G ecc reg
ddr2 400

• up to 24 36gb or 73gb
2.5" SCSI disk drives

• 1x gigabit ethernet
switch chassis

• 1x management module
• 2x blowers
• 1x cd-rom, 1x floppy
• 1x rack mount kit
• 2x 2000 watt power supplies

Please call for detailed configuration
requirements and pricing.

YOUR HIGH PERFORMANCE
COMPUTING SOLUTION
HAS ARRIVED

3 YEAR NO WORRY WARRANTY

Call Now!
1-800-488-4724 Intel® Xeon™ is a trademark of

Intel Corporation

GSA Schedule
GSA# 35F-0313M

http://www.linuxjournal.com/article/8407
http://www.linuxjournal.com

8 8 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

I
n this article, I offer some ways to manage your tasks.
From simple text files to full-blown personal information
managers (PIMs), there’s bound to be one method that
fits your way of working. I also share some tips on man-

aging your tasks and tell you about how I fit a task manager to
my way of working.

You Want the Works
If you’re accustomed to the advanced task management fea-
tures of Microsoft Outlook and other proprietary PIMs, then
Ximian Evolution and the KDE PIM suite are great fits for
you. Ximian Evolution was developed for the GNOME user
environment, and the KDE PIM suite is part of KDE, but each
is usable with other desktop environments.

Offering a polished interface for creating and managing
tasks, attaching files and even synchronizing with personal dig-
ital assistants (PDAs), these full-fledged personal information
managers can help you tame your to-do lists (TODOs) in style.

You Want to Keep Things Simple
Sometimes the simplest method is the best. Keep tasks in a
plain-text file, and you’re already well on your way to taming
your TODOs. Text files win in terms of flexibility. You can
keep your lists in any format you want and edit them using
your favorite editor. You also can share them with others
through e-mail or the World Wide Web. You even can keep
them backed up and synchronized with other computers using
tools such as rsync and CVS.

Memorize keyboard shortcuts for copy and paste.
Incremental search is a great way to jump to tasks if you
remember a small part of the description. Your text editor then
can display matches as you type in characters. Check out your
text editor’s features for more help.

Beyond the basics, a little bit of programming makes
TODOs easier to keep. Write a small program or shell script to
add items from the command line or a keyboard shortcut. The
less effort it takes to write down a task, the more you’ll
remember, so automate as much as you can. You can sort tasks
manually by copying and pasting lines in your TODO list or

even writing programs to put everything together.
For more software support, check out Freshmeat.net for

hundreds of simple TODO managers. If you know how to pro-
gram, pick a TODO manager in a language you know or would
like to learn. Extending a manager’s capabilities not only helps
you grow as a programmer but also lets you tailor it to your
particular quirks.

You Get Most of Your Tasks through E-mail
E-mail is a popular way to keep track of tasks. If you practical-
ly live in your e-mail client, why not use it to keep track of the
things you need to do? You can forward messages or write
yourself reminders. Use meaningful subjects to make it easier
to get a bird’s-eye view of your messages.

Watch out for information overload, however. You may
need to find that urgent TODO in an archive of thousands of
messages. Check out your mail client’s features for options on
how to tag messages. Use folders or labels to flag messages for
follow-up action. Tag or file messages as TODO, and remove
the label or change it to “done” after you finish the task.
Keeping track of tasks is easier with full-fledged PIMs, such as
Evolution and KDE PIM, which allow you to mark a message
for follow-up or convert it to a task.

What about small tasks? It might seem silly to e-mail your-
self a reminder to buy milk, but unless all of these TODOs are
written down somewhere, you’re going to spend mental energy
thinking about them. You therefore may need to supplement
your inbox with a way to keep track of smaller tasks.

If most of your tasks can be accomplished quickly and you
can keep your inbox manageable, e-mail is a convenient way to
keep track of your tasks.

You Work with a Lot of People on Tasks
Many software projects use request trackers to make sure
that bug reports and feature requests don’t slip through the
cracks. You can use one to keep track of your personal
TODOs too. Although a request tracker requires a lot of set-
up time and effort, you reap the benefits of a solid project
management system.

Request trackers, also known as bug-tracking systems
(BTSes) or issue trackers, archive all of the messages related to
a TODO, making them great for tasks occurring over long peri-
ods of time and tasks when you need to collaborate with other
people. You can send the e-mail address or URL for a task to
other people so they can confirm your work or add comments.

Request trackers can produce task-related graphs. For
example, you can track the increase or decrease in open,
resolved and closed tasks over time to get a rough estimate of
when you’re most productive or overloaded.

If most of your tasks require input from others, check out
programs such as RequestTracker and Bugzilla. With a good
bug-tracking system in place, you easily can keep track of what
you’re waiting for and from whom.

You Practically Live in Your Web Browser
Web-based TODO lists are a fun and easy way to create task
lists you can share with other people. If you always have a
Web browser open or you need to keep non-techies updated, a
Web-based TODO list might be a handy way to keep track of
your tasks. New services such as Ta-da and Backpackit use

n I N D E P T H T A M I N G T H E T O D O

Taming the
TODO

Buried under a mass of sticky notes? If you worry

about forgetting important tasks or you want to

schedule things efficiently, here are some ways to

get organized. B Y S A C H A C H U A

http://www.linuxjournal.com

http://www.sc05.supercomputing.org

9 0 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n I N D E P T H T A M I N G T H E T O D O

JavaScript and XHTML tricks to provide a great user interface.
Look for a bookmarklet or extension that lets you easily

create TODOs. Make your task overview the default page in
your browser so that you’re sure to review them daily.

You’re Always on the Move
If you spend a lot of time on the move, you’ve probably
thought about getting yourself a PDA. Both Evolution and
KDE PIM can synchronize your tasks with Palm-based
PDAs, making them ideal for the mobile warrior. Libraries
such as coldsync can help you support synchronization for
your custom hacks.

My productivity tool of choice is a pack of 3"×5" index

cards held together with a fold-back clip or rubber band.
Affectionately called the “Hipster PDA” by productivity geeks,
this surprisingly effective low-tech tool is a great way to keep
track of tasks.

Write down your tasks, one per index card. You can write
down subtasks and notes as well. Shuffle through your tasks
while waiting or sort them by the context you can perform the
tasks in. Rip the card up after completing your TODO for an
extremely satisfying end.

Print useful data onto cards. Around 50 names and contact
numbers can fit on an index card if you use a really small
font. Month and year calendars also are handy. No hardware
worries, no productivity-sapping games and no hassles make

the Hipster PDA great for people on
the go.

Tips for Taming your TODOs
Got an idea about what to use to
manage your tasks? Well, now here
are some tips for keeping on top
of everything.

Make It as Easy as Possible
“Hmm, that looks interesting”, you
think. “Let’s try it out.” You switch to
your task manager to write down that
TODO. Oops, you still need to open
the application. Now you have to
arrange your windows so you can see
the article. Wait, you need to copy the
URL. By the time you have it all set
up, you might’ve forgotten what you
wanted to write down in the first place!

If a task manager is too cumber-
some to use, you won’t bother with it.
Make it as easy as possible to get a
task out of your head and into the sys-
tem. Make your task manager a
keystroke or click away, and you’ll
find yourself using it more often.

Don’t Get Overwhelmed
Keep your TODO list short so that
you don’t get overwhelmed by all the
things you need to do. Ruthlessly
prune TODO items you no longer
have to do or are no longer interested
in doing. Delete or archive completed
tasks so that they don’t clutter your
main task list.

TODO items can be intimidating.
“Write a novel” is an example of a task
that can be difficult to start. Make sure
your TODO items are small enough to
work on. I usually break my tasks
down into subtasks I can do in one sit-
ting. Breaking these tasks down also
makes it easier to stop procrastinating,
because there’s always something small
to work on.

The first and only magazine for the new Linux user.
Your digital subscription is absolutely free!

Sign up today at www.tuxmagazine.com/subscribe

The first and only magazine for the new Linux user.
Your digital subscription is absolutely free!

Sign up today at www.tuxmagazine.com/subscribe

Free

Subscriptions!
Free

Subscriptions!

http://www.tuxmagazine.com/subscribe
http://www.tuxmagazine.com/subscribe
http://www.linuxjournal.com

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 9 1

Fill in the Cracks
Make a system you can trust. Ensure that none of the tasks fall
through the cracks. Make your reminder system the first thing
that shows up after you log on or start your browser. Set aside
time to review all of your tasks regularly.

If your task manager is easy to use, you’ll trust it with more
tasks. Writing down all of your tasks in a reliable system
means you don’t have to worry about forgetting anything—as
long as you don’t forget to check!

Hack Your System
The way you keep track of tasks probably will change as you
come up with new ideas or read about other people’s experi-
ences. Don’t be afraid to improve your system. Instead of mak-
ing a giant step to a brand-new methodology, however, break
changes down into incremental improvements. That way, you
give yourself time to make it a habit.

Don’t spend too much time tweaking your system, though!
One way to manage this impulse is to find a community of
like-minded people. That way, you can use their hacks and cus-
tomizations without having to spend a lot of time coming up
with your own. The trick is to find a personal information man-
ager that fits the way you work and can be extended as you
experiment with new ways of working.

A Truly Personalized Personal Information Manager
I went through the whole spectrum of
personal information managers before I
found something that works for me.
I’m absolutely crazy about Planner.el, a
personal information manager that’s
extremely customizable. I’d like to
share some of the things I love about it
with you so that you can see how per-
sonal work style affects how you plan.

I spend most of my time working
with text files in the Emacs text editing
environment. Because Emacs is so
extensible, it has accumulated a lot of
useful modules along the way, includ-
ing several e-mail clients, Web
browsers, Internet relay chat (IRC)
clients and even instant messengers. I
can program, surf, chat and check mail
within Emacs. Emacs itself runs on
GNU/Linux, Microsoft Windows and
Mac OS X and is surprisingly easy to
learn.

Planner.el is built into my main
working environment, making it only a
keystroke away. Because most of my
tasks are based on what I’m looking at,
I really appreciate how Planner.el stays
out of my way. When I create a task, a
small text prompt shows up at the bot-
tom of my screen (Figure 1). I don’t
get distracted by pop-ups or switching
to another application. I simply type
the task description in, tag it with a
project or two and get back to work.

Not only that, but it also intelligently picks up information
from whatever I’m looking at, automatically creating a hyper-
link back to the file, e-mail, Web page or even IRC session
(Figure 2). Even newbies can add support for new tools, thanks
to extensive examples. Planner.el’s ability to hyperlink to my
mail messages is the only way I can impose order on the thou-
sands of messages in my mail archive!

I like reviewing my week to see what I have accomplished.
Because it’s easy to view completed tasks, I can write accom-

Figure 1. You can create a task using a small text prompt in your regular editing

window.

http://www.linuxjournal.com
http://www.linuxjournal.com/advertising

plishment reports without struggling to remember what I did
the other day. Seeing a lot of crossed-out tasks for today also is
a great morale booster. As a nifty bonus, I can keep detailed
logs of how much time I spend on each task or project—great
for billing time, improving my time estimates or simply finding
out how (un)productive I am each day.

Manageable, not Overwhelming
I like keeping my task list short. I typically have fewer than ten
tasks on my task list for any given day. I like scheduling tasks
for particular days and organizing them according to projects,
keeping my daily task list small and manageable. When I feel
particularly productive, it’s easy to reschedule more tasks onto
today’s page.

I break tasks down into bite-size bits to simplify keeping
track of my progress and to motivate me to work. When tasks
are of a manageable size, they’re much easier to work on.
Instead of goofing off, I find myself picking the next small
task from my list and working on it.

Trustworthy
I need a system that can keep track of small tasks as well as large
projects. Because Planner.el is only a keystroke away and I use it
for all of my tasks, I trust that it holds all the things I need to
remember. I made Planner.el the first thing that shows up when I
turn on my computer, and I check it at least once a day. Knowing
that all of my reminders are safe and can be checked easily from
one place definitely takes a load off my mind.

It’s also easy for me to back up my files. Because
Planner.el uses plain-text files, I don’t have to worry about
corrupted data. If some experimental code makes Planner.el
unusable for me, I still can use any text editor to manage my
plans. In addition, it’s easy to publish my task list and notes as
HTML (Figure 3), so if something happens to my laptop, I can
check my TODOs using any computer with Net access.

Extremely Customizable
My method of planning has really changed over the years. I
went from micromanaging my schedule by assigning specific
times to tasks to keeping an unsorted list on my day page. I
tried both keeping one big list of tasks and using projects to
group together related tasks. Sometimes I think up weird
things, too, such as having my computer automatically display
a fortune cookie whenever I finish a task.

This is where Planner.el really shines. Because it’s built on
top of Emacs, I can change anything I want through a simple,
easy-to-learn programming language. I’ve tweaked it to fit not
only my planning style but also my little quirks. Although my

9 2 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

n I N D E P T H T A M I N G T H E T O D O

Figure 3. Publishing to the Net lets you check your tasks from any

platform, anywhere.

Figure 2. Hyperlinked tasks give you an easy way to refer back to information

related to a task, whether in the form of a file, mail message, Web page or

IRC session.

Call Me!
So we can get close
and personal 24/7...

JTL Network's staff works personally
with your team to offer 24/7 support
for your web hosting needs. We have
a 98.7% customer satisfaction rating.

Linux Hosting Solutions

Starting From $9.95/mo with No Set-up Fees.
Dedicated Servers from $69/mo.
Colocation starting at $35/mo.

• Redhat, Suse, Fedora or Centos Servers
• MySQL, PostgreSQL Database Support
• Online Control Panel for site and

server management
• Remote Reboot
• Virus and Spam protection
• 24/7 Toll-Free Support

1 - 8 7 7 - 7 6 5 - 2 3 0 0

Real People Real SupportTM

since 1998

w w w . j t l . n e t / l j

JTL_ad 8/5/05 1:50 PM Page 1

http://www.linuxjournal.com
http://www.jtl.com/lj

http://www.member.fsf.org

9 4 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

planning style has changed much in the
past three years, being able to replace
bits of Planner.el and add new features
has made it possible for Planner.el to
grow along with me.

Things to Remember
There are many ways to manage your
tasks, so spend some time finding
one that fits you. Here are a few
things to remember:

n Make it as easy as possible. Use
keyboard shortcuts and scripts to
simplify task creation and review.

n Don’t get overwhelmed. Keep your
task list short and simple. Don’t
drown in hundreds of TODOs or
choke on intimidating tasks.

n Fill in the cracks. Put all of your
important tasks in there. If you can,
put minor tasks in as well. Check
your list regularly.

n Hack your system. Keep an eye out
for ways to improve your way of
planning. Don’t spend too much
time hacking your system and not
enough time actually accomplishing
your TODOs, however.

Have fun!
Resources for this article:

www.linuxjournal.com/article/8461.

Sandra Jean Chua—or Sacha,
as she commonly is
known—maintains Planner.el
and is absolutely crazy
about it. Her blog and TODO

list is at sacha.free.net.ph. Write her at
sacha@free.net.ph with your productivity
tips and way of working!

n I N D E P T H T A M I N G T H E T O D O

sed Tip

I read with great interest the article by
Larry Richardson entitled “Text
Manipulation with sed” [July 2005]. We’re
in the early stages of porting a MS Access
application to Linux using MySQL and
Qt to build the GUI. I’ve recently been
working with sed, so the article hit the
spot, so to speak.

One thing I noted missing from the article
is the fact that when writing commands
that substitute one string with another,
for example, using slashes to separate
the from string and the to string is only
one option. Actually, any unique character
could be used as a separator. In the
example on page 81 (first column,
second example), which reads:

cat customer.txt \

sed -e 's/Sam Jones/Samuel Jones/' >

customer.txt

The slashes could be replaced by the plus
(+) sign (or most any other unique character)
as in:

cat customer.txt \

sed -e 's+Sam Jones+Samuel Jones+' >

customer.txt

I’ve found this useful when I’m editing a file
containing paths, such as /etc/exports. In this
case, the command:

cat /etc/exports |

sed -e 's/\/windows/\/winNT/'

>/etc/exports

reduces to:

cat /etc/exports |

sed -e 's+/windows+/winNT+'

>/etc/exports

--

Bill Lugg

Patent Searching

I’ve liked open software since the time it
had no name yet, when you were nearly a
hacker because you had a 1,200-baud
modem and a dial-up connection to some
friend’s BBS.

I’m writing from the old continent, where a
battle is being played between software com-
panies who want the ratification by the EU
of the right for software patents and develop-
ers who don’t want to have their mind and
ideas limited.

And now the question: I suppose that any
person should be granted the same rights
as anyone else, but in the fight between
open software and non-open software there
is a disparity. Any company developing
non-open software can check any open
software to look for similar, copyright
infringing, code. The same right is not
granted to the counterpart. How can we
be sure that Microsoft, Oracle, SAP or
anyone else, is not importing code and
concepts from open-source software?
Maybe this issue has been discussed many
times, but I couldn’t find a definitive
answer to it.

--

Andrea Rui

GPL violators do sometimes get caught. See
gpl-violations.org for examples.—Ed.

LDAP Question

I just found your OpenLDAP article on
www.linuxjournal.com [July 2005]. I
notice you include the nis.schema, but you
don’t use NIS at all, correct? Thanks for
any clarification.

--

Jiann-Ming Su

Craig Swanson replies: thank you for
your interest in “OpenLDAP Everywhere
Revisited”. You are correct that we are
not using Network Information System
(NIS). The nis.schema provides several
essential attribute types that are used in
our LDAP directory. For example,
nis.schema defines the LDAP entries
that take the place of fields in /etc/passwd.
For background information on the history
of NIS and LDAP, see the IETF RFC2307,
“An Approach for Using LDAP as a
Network Information Service”.

We welcome your letters. Please submit “Letters to the

Editor” to ljeditor@ssc.com or SSC/Editorial, POBox 55549,

Seattle, WA 98155-0549 USA.

LLEETTTTEERRSS CONTINUED FROM PAGE 8
Although a request

tracker requires a lot of

setup time and effort,

you reap the benefits

of a solid project

management system.

http://www.linuxjournal.com/article/8461
mailto:sacha@free.net.ph
http://www.linuxjournal.com
mailto:ljeditor@ssc.com
http://www.linuxjournal.com

n M A R K E T P L A C E

W W W . L I N U X J O U R N A L . C O M O C T O B E R 2 0 0 5 n 9 5

http://www.linuxjournal.com
http://store.linuxjournal.com
http://www.crossteccorp.com

9 6 n O C T O B E R 2 0 0 5 W W W . L I N U X J O U R N A L . C O M

I
n theory, setting a computer’s clock over the network is
easy: simply send a query to the time server and get the
current time in return. For low-precision usage on a trusted
network, this process does indeed work fine, as demon-

strated by the old UNIX “time” protocol. For today’s Internet,
however, and for millisecond (ms) or even sub-ms precision,
problems such as authentication, reliability of the time servers
and network delays need to be considered. This is where the
Network Time Protocol (NTP), with its reference implementa-
tion, steps in. The specification and the reference implementa-
tion are being written by Professor David Mills of the University
of Delaware, his graduate students and many other volunteers.

To allow everybody to use NTP to synchronise computers’
clocks over the public Internet, Prof. Mills has long maintained a
list of public time servers. Most of these servers are operated by
universities or national standardisation organisations. Today, this
list is maintained by the NTP Public Services Project, under the
umbrella of the Internet Systems Consortium. However, the
growth of the Internet and the prevalence of small, cheap appli-
ances, such as cable or DSL routers, with built-in NTP clients,
lead to a rapidly growing load on these public time servers. One
of the most famous cases involved a severe firmware problem in
a range of such devices, resulting in more than 150Mbps of NTP
traffic to the University of Wisconsin’s NTP server.

After reading the discussion of one time server operator’s
request to be taken off the public time servers list, I wondered
if there was a better approach to this whole problem—instead
of having tens of thousands of clients targeting one single time
server, the load should be distributed on many different time
servers all over the network. So I went ahead and created the
original time.fortytwo.ch DNS round-robin in January 2003.
The project quickly acquired many interested volunteers and
was well received by Prof. Mills and his team. It soon became
the pool.ntp.org project with a somewhat more official status.

The Road Ahead
During the next two years, the project continued to grow, thanks
to all the people who mentioned it in various Web forums,
HOWTO documents and the like. Today, the project consists of
more than 300 servers, offering service to tens of thousands of
clients, in a very rough estimate. Also, pool.ntp.org is now the
default time server in several operating system distributions,
including Debian GNU/Linux, NetBSD and Gentoo Linux.

So far, the growth in servers could more or less match the
growth of the user base of the project. However, the future
remains challenging, and discussions on the project’s discus-
sion mailing list have shown that the project needs to deal with
an inherent conflict between providing easy service for as
many clients as possible and assuring good quality of the time

servers participating in the project. That aside, the big chal-
lenges for the near and medium future are:

n IPv6 integration.

n More automation—currently, I process server additions and
removals mostly manually.

n Better, more novice-friendly documentation on the Web.

n Of course, we always need more servers too.

n And above all, we need to deal with abusive clients. In one
example, the six worst clients were responsible for 25% of
the traffic on one time server.

Although the first three items are not technically difficult
and the “getting more servers” plan should see a big leap ahead
with the publication of this article, we don’t currently have a
good plan to educate the hundreds of users with sub-optimally
configured clients. Due to their number, they are a serious
problem for the project. At the same time, the bandwidth per
client is small enough that the big ISPs’ abuse departments are
not prepared to help in any way.

In the medium to long term, we will need to face the issue that
DNS round-robin, as currently implemented, is not a good solution
for load balancing on the scale of several hundred servers with a
hundred thousand or more clients. Wide deployment of IP multi-
cast together with the existing multicast support in ntpd would be a
good solution to this problem, but obviously not one the NTP and
pool.ntp.org crew can deploy on their own. Another possible solu-
tion is to make the ntpd dæmon aware of the pool.ntp.org project
and, in some generic way, similar such databases, and have the
dæmon configure itself to use such a resource.

Finally, on a personal note, I honestly can say that it was
fun to get this project started and see it grow, but I now see the
need for somebody new, with fresh ideas, to take over from
here. Indeed, as I write this, I am talking with several people
about the project’s future, and I am certain that the involve-
ment of a new “father figure” will do the project much good as
new ideas are looked at and implemented by a new crew.

Resources for this article: www.linuxjournal.com/article/
8454.

Adrian von Bidder graduated with a degree in computer sci-
ence from the Federal Institute of Technology in Zurich,
Switzerland, in 2004. He is running the pool.ntp.org project in
his spare time. His day job is developing the SEPP e-mail
encryption gateway at Onaras AG in Wettingen, Switzerland.
He can be contacted at avbidder@fortytwo.ch.

n E O F

The Universal Internet
Time Source
If your computer’s clock is wrong, scheduled tasks, such as backup and virus scans, might run during the day,

or your log files could become worthless. The pool.ntp.org project has an answer. B Y A D R I A N V O N B I D D E R

http://www.linuxjournal.com/article
mailto:avbidder@fortytwo.ch
http://www.linuxjournal.com

http://www.rackspace.com

http://www.microway.com

http://www.cyclades.com/ema

	Cover138.pdf
	138.pdf
	138_2.pdf

