
Since 1994: The Original Magazine of the Linux Community

Validate
E-Mail
Addresses
in PHP

The Object Relational
Mapping Quagmire

METAPROGRAMMING
PRIMER

VIEW CODE IN
YOUR BROWSER

SCGI FOR FASTER
WEB APPLICATIONS

OPENOFFICE.ORG
EXTENSIONS

LUA OVERVIEW

JUNE 2007 | ISSUE 158

Interview with
SUN’S CHIEF OPEN
SOURCE OFFICER

L
IN

U
X

 J
O

U
R

N
A

L
L

A
N

G
U

A
G

E
S

R
JS

| P
ython

| S
CG

I
| O

penO
ffice.org

| D
atabase Com

parison
| Q

t
| P

H
P

JU
N

E
2007

IS
S

U
E

158

USA $5.00 | CAN $6.50

w w w . l i n u x j o u r n a l . c o m

U|xaHBEIGy03102ozXv+:' Qt 4.x Asynchronous Data Access+

RJS | PYTHON | SCGI | OPENOFFICE.ORG | Qt | PHP
™

http://www.l

http://www.appro.com

 Today, Jack confi gured a switch in London,
rebooted servers in Sydney, and watched
his team score the winning run in Cincinnati.
With Avocent data center management solutions, the world can fi nally revolve around you.

Avocent puts secure access and control right at your fi ngertips — from multi-platform servers to network

routers, remote data centers to fi eld offi ces. You can manage everything from a single screen, from virtually

anywhere. This means you can troubleshoot, reboot or upgrade your data center devices — just as if you

were sitting in front of them. Avocent simplifi es your workday. What you do with the extra time is up to you.

For information on improving data center performance, visit

www.avocent.com/control

 Avocent, the Avocent logo and The Power of Being There are registered trademarks of Avocent Corporation. All other trademarks or
company names are trademarks or registered trademarks of their respective companies. Copyright © 2007 Avocent Corporation.

Today_BB2_Linux.indd 1 4/3/07 12:36:29 PM

http://www.avocent.com/control

CONTENTS JUNE 2007
Issue 158

2 | june 2007 www.l inux journa l .com

FEATURES
50 Programming Python, Part I

Find out what the love for Python is about.

José P. E. Fernandez

58 Asynchronous Database Access with Qt 4.x
Want your database-driven app to run better?

Dave Berton

64 Validate an E-Mail Address with PHP,
the Right Way
Not all that glitters is gold.

Douglas Lovell

70 Christof Wittig and Ted Neward on
Object-Oriented Language Mapping
to Databases
Object/Relational impedence mismatch.

Nicholas Petreley

COVER STORY

ON THE COVER
• Metaprogramming Primer, p. 74
• View Code in Your Browser, p. 78
• SCGI for Faster Web Applications, p. 82
• OpenOffice.org Extensions, p. 88
• Lua Overview, p. 92
• Validate E-Mail in PHP, p. 64
• Interview with Sun's Chief Open Source Officer, p. 46
• The Object Relational Mapping Quagmire, p. 70
• Qt 4.x Asynchronous Data Access, p. 58

46 Interview with
Simon Phipps
Why did Sun decide
to GPL Java?
Glyn Moody

http://www.linuxjournal.com

The competition doesn’t
stand a chance.

© 2007 Coyote Point Systems, Inc. All Rights Reserved. www.coyotepoint.com

If you base deployment decisions on performance and price,
Coyote Point’s for you. We’ve cornered that market.

To prove it we asked The Tolly Group to evaluate our E350si application
traffic manager against the competition. The results speak for themselves.

Throughput? Almost 40% more than others in our space. Cost of
transactions per second? Up to four times less. Connection rate? In some

cases, one-sixth the cost. One-sixth! And we’re told Coyote Point is the
#1 choice for today’s open source networks.

But don’t just take our word for it. Get the facts. Call 1.877.367.2696
or write info@coyotepoint.com for your free copy of the full Tolly Report.

mailto:info@coyotepoint.com
http://www.coyotepoint.com

COLUMNS
18 REUVEN M. LERNER’S

AT THE FORGE
RJS Templates

24 MARCEL GAGNÉ’S
COOKING WITH LINUX
Languages Build Character,
or Vice Versa

28 DAVE TAYLOR’S
WORK THE SHELL
Displaying Image Directories in
Apache, Part III

32 JON "MADDOG" HALL’S
BEACHHEAD
Languages—Some Dead and
Some Still Kicking

36 DOC SEARLS’
LINUX FOR SUITS
Picking New Fights

96 NICHOLAS PETRELEY’S
/VAR/OPINION
Is GPL Java Too Little, Too Late?

IN EVERY ISSUE
8 LETTERS
12 UPFRONT
40 NEW PRODUCTS
81 ADVERTISERS INDEX

QUICK TAKES
42 OPEN-SOURCE DATABASES,

PART III: CHOOSING
A DATABASE
Reuven M. Lerner

INDEPTH
74 AN INTRODUCTION TO

METAPROGRAMMING
Let your computer do
the programming.

Ariel Ortiz

78 READ SOURCE CODE THE
HTML WAY
Browser access to source code.

Kamran Soomro

82 FASTER WEB APPLICATIONS
WITH SCGI
Can your Web apps go even faster?

Jeroen Vermeulen

88 EXTEND OPENOFFICE.ORG
Want to add features to
OpenOffice.org?

Dmitri Popov

92 A LOOK AT LUA
Lua is a lulu.

Joseph Quigley

CONTENTS JUNE 2007
Issue 158

4 | june 2007 www.l inux journa l .com

USPS LINUX JOURNAL (ISSN 1075-3583) is published monthly by Belltown Media, Inc., 2211 Norfolk, Ste 514, Houston, TX
77098 USA. Periodicals postage paid at Houston, Texas and at additional mailing offices. Cover price is $5 US. Sub scrip tion rate is
$25/year in the United States, $32 in Canada and Mexico, $62 elsewhere. POSTMASTER: Please send address changes to Linux
Journal, PO Box 980985, Houston, TX 77098. Subscriptions start with the next issue.

IMAGE PROCESSING
The third Shrek movie involves
vastly more complex image pro-
cessing compared to the first
two. Next month, we explore
the details of how DreamWorks
Animation put Linux through
20 million CPU render hours to
produce this amazing work of
art. Want to switch to Linux
but can’t do it without Adobe
Photoshop? Our interview with
Pavel Kanzelberger, the creator
of the Photoshop Linux work-alike,
Pixel, is a must read for you.

As always, there’s much more.
For example, we give you
details on how to implement
Internationalization and
Localization in your code,
and we continue our tutorial
on Python with the basics we
bypassed in the first installment.

Next Month
14 TREKSTOR’S VIBEZ PLAYER

http://www.linuxjournal.com

http://www.OpenSourceSystems.com

Executive Editor

Senior Editor

Art Director

Products Editor

Editor Emeritus

Technical Editor

Senior Columnist

Chef Français

Security Editor

Proofreader

Publisher

General Manager

Director of Sales

Regional Sales Manager

Regional Sales Manager

Circulation Director

Marketing Coordinator

System Administrator

Webmaster

Accountant

Jill Franklin
jill@linuxjournal.com
Doc Searls
doc@linuxjournal.com
Garrick Antikajian
garrick@linuxjournal.com
James Gray
newproducts@linuxjournal.com
Don Marti
dmarti@linuxjournal.com
Michael Baxter
mab@cruzio.com
Reuven Lerner
reuven@lerner.co.il
Marcel Gagné
mggagne@salmar.com
Mick Bauer
mick@visi.com

Geri Gale

Carlie Fairchild
publisher@linuxjournal.com

Rebecca Cassity
rebecca@linuxjournal.com

Laura Whiteman
laura@linuxjournal.com
Joseph Krack
joseph@linuxjournal.com
Kathleen Boyle
kathleen@linuxjournal.com

Mark Irgang
mark@linuxjournal.com
Lana Newlander
mktg@linuxjournal.com

Mitch Frazier
sysadm@linuxjournal.com
Keith Daniels
webmaster@linuxjournal.com

Candy Beauchamp
acct@linuxjournal.com

Contributing Editors
David A. Bandel • Greg Kroah-Hartman • Ibrahim Haddad • Robert Love • Zack Brown • Dave

Phillips • Marco Fioretti • Ludovic Marcotte • Paul Barry • Paul McKenney • Dave Taylor

Editor in Chief
Nick Petreley, ljeditor@linuxjournal.com

Linux Journal is published by, and is a registered trade name of, Belltown Media, Inc.
PO Box 980985, Houston, TX 77098 USA

Editorial Advisory Board
Daniel Frye, Director, IBM Linux Technology Center
Jon “maddog” Hall, President, Linux International

Lawrence Lessig, Professor of Law, Stanford University
Ransom Love, Director of Strategic Relationships, Family and Church History Department,

Church of Jesus Christ of Latter-day Saints
Sam Ockman, CEO, Penguin Computing

Bruce Perens
Bdale Garbee, Linux CTO, HP

Danese Cooper, Open Source Diva, Intel Corporation

Advertising
E-MAIL: ads@linuxjournal.com

URL: www.linuxjournal.com/advertising
PHONE: +1 713-344-1956 ext. 2

Subscriptions
E-MAIL: subs@linuxjournal.com

URL: www.linuxjournal.com/subscribe
PHONE: +1 713-589-3503

FAX: +1 713-589-2677
TOLL-FREE: 1-888-66-LINUX

MAIL: PO Box 980985, Houston, TX 77098 USA
Please allow 4–6 weeks for processing address changes and orders

PRINTED IN USA

LINUX is a registered trademark of Linus Torvalds.

mailto:ljeditor@linuxjournal.com
mailto:jill@linuxjournal.com
mailto:doc@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:newproducts@linuxjournal.com
mailto:dmarti@linuxjournal.com
mailto:mab@cruzio.com
mailto:reuven@lerner.co.il
mailto:mggagne@salmar.com
mailto:mick@visi.com
mailto:publisher@linuxjournal.com
mailto:rebecca@linuxjournal.com
mailto:laura@linuxjournal.com
mailto:joseph@linuxjournal.com
mailto:kathleen@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:mktg@linuxjournal.com
mailto:sysadm@linuxjournal.com
mailto:webmaster@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:ads@linuxjournal.com
http://www.linuxjournal.com/advertising
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/subscribe

http://www.tyanpsc.com

In Praise of Linux Games
I’m increasingly impressed by the variety and
quality of games that are available for Linux. Most
of them are pretty wholesome, which I appreci-
ate, as I don’t care for on-screen violence any
more than the real thing. Have you considered
adding a column devoted to Linux games? I’d bet
lots of people would read it. By the way, I’ve
enjoyed Marcel Gagné’s articles immensely and
have tried a lot of the programs he has men-
tioned. Reading LJ is a great way to learn about
interesting software. Keep up the good work!

--
Mike Ford

Now You’re Cooking with Linux
I would like to address the critics of Mr Gagné.
Marcel’s column provides people who are new
to Linux topics that are not way over their
heads or beyond their needs. The different writ-
ing style/format makes the column even more
appealing to the Linux newbie.

By attracting new desktop users, Mr Gagné
makes a huge contribution to the Linux com-
munity. Mr Gagné does this both as a profes-
sional writer and as a citizen. Evidence of this
can be found in Mr Gagné’s WFTL-LUG. I would
suggest that the complainers join the WFTL-LUG
and find out for themselves. Perhaps they can
make a contribution or two in the LUG instead
of all this unproductive negativism.

By the way, the March 2007 edition was super.
Keep up the good work.

--
John Kerr

Now You Don’t See Them,
Now You Do
In the April 2007 issue, Chris Trayner states in his
letter “Now You See Them, Now You Don’t” that
Konqueror no longer allows one to right-click
on a file and see an option to delete it. True, it
is not there by default. However, if you go to
Settings→Configure Konqueror→Behavior, you
will see an option Show Delete context menu
entries, which bypasses the trash can. Check this
box, and the delete option will be present at right-
click. Thank you for an outstanding publication!

--
Dwight Middlebrook

Thanks for clearing up that issue for us!—Ed.

Doc Searls, iPhone Home
In the April 2007 issue on page 42, “Why an
iPhone When We Can Make Our Own
OpenPhone?” by Doc Searls, the context that
ANA is relating directly with customers via the
cell is misleading. I have worked with all three
carriers in Japan: NTT DoCoMo, AU and Yahoo
Keitai (formerly Vodaphone Japan). Yes, there
is an IC system that allows passengers to check
in quickly. Yes, ANA will get stats on how
many people are using the system, but JAL also
has this system and also the Japan railways (JR
East/West). The technology is based on Sony’s
contactless IC chip. But, the system is con-
trolled by each cell carrier. The carriers also
control the Java applet that runs the IC chip,
so they too can receive stats on who is using
the system. The carriers here in Japan control
which phones their service will use. It’s not as
bad as in the US, as there are only three silos
here. But, the customers have no rights. With
locked SIM chips, you can’t get any unlocking
code. Until last year, there was no number
portability. Just in the last five years, Japan cell
phones could be used overseas without the
blessing of the carrier. Interactive programs
with the end user aren’t possible. One addi-
tional comment, the only reason IC-enabled
cell phones exist is because the train system
started using IC-enabled train passes—JR being
the majority of railways and majority of the
population rides those trains every day.

--
Robert Balfour

Cell-Phone Silos
Doc, you didn’t mention the worst cell-phone
silo of them all [LJ, April 2007, “Why an iPhone
When We Can Make Our Own OpenPhone?”]:
the crippling system that makes it impossible for

cell phones to communicate directly with each
other. Whatever happens in software develop-
ment for mobile phones, this silo will stand as
an insurmountable obstacle to progress until
the network model changes from the current
client/server system to an unrestricted, peer-to-
peer, ad hoc model.

This transformation is certainly disruptive technol-
ogy. As such, it will probably follow the usual dis-
ruptive technology development path. It will be
ignored, ridiculed, lobbied against and actively
resisted by the existing technology providers, until
it makes them irrelevant and takes over the world.

What if this technology had been in use when
Katrina hit New Orleans? There would have been
no communications problems into any area where
there was at least one phone within range of
another, at any time, including the height of the
storm. Rescuers would not have had to wait for
days or weeks for destroyed infrastructure to be
replaced just to have basic communications.

Instead, there were thousands of working
cell phones in the disaster area, all rendered
completely useless by the silo owners’ com-
munication restrictions.

The future of wireless is already written large in
the form of the Internet. A self-organizing, self-
healing worldwide network is an unstoppable
force. The next obvious step is to remove the
wires, and in keeping with the best Free Software
traditions, this can be accomplished from the
bottom up, simply by doing it.

--
Carl Brown

Banning Novell or Buying SCO?
A few issues ago [March 2007, /var/opinion],
Nicholas Petreley called for a ban on Novell after it
signed an agreement with Microsoft. Today, I read
on Slashdot that Novell assents to “Windows
Is Cheaper Than Linux” (news.zdnet.co.uk/
software/0,1000000121,39286295,00.htm).

My advice to Novell: buy SCO. They both seem
to be on the same path.

--
Paul Ammann

News about Dell’s Article
As a frequent reader of LJ, I must tell you
about good news from Dell. For sure, in
consequence of the article “A Modest
GNU/Linux Proposal for Michael Dell” (from

8 | june 2007 www.l inux journa l .com

letters

™

ECRYPTFS | SELINUX | MONDO | PYTHON | OPENSSH | IPTABLES

Since 1994: The Original Magazine of the Linux Community

iptables Primer

Asterisk Time-Zone Processing

Python Manipulates ODF

Magic with Inkscape and XLST

>> SELINUX
MULTI-CATEGORY
SECURITY

>> PACKETFENCE NETWORK
ACCESS CONTROL

>> SINGLE PACKET
AUTHORIZATION

APRIL 2007 | ISSUE 156

USA $5.00
CAN $6.50

w w w . l i n u x j o u r n a l . c o m

OpenSSH
Under the Hood

SECURITY

+

Linux on
PlayStation 3

U|xaHBEIGy03102ozXv!:%

http://www.l
http://www.linuxjournal.com

TotalView® Introduces
The Most Powerful Command

For The Multi-core Age.

TotalView is the proven debugging solution built
specifically to address your unique challenges when
developing multi-core, multi-threaded applications.

As part of a complete suite of proven multi-core debugging and performance tools that supports C,

C++ and Fortran on Linux, UNIX and Mac OS X, TotalView 8.1 is the only solution you can count on

for all of your multi-core debugging needs. Developed to help debug the world's most demanding

applications, TotalView is extremely powerful, yet easy to use. Visually-driven, it provides enhanced

graphical representations that enable users to quickly recognize

problems and zoom in to identify root causes. TotalView does not

require instrumentation, relinking, or rebuilding. TotalView has been

proven to reduce debugging time by up to 80%.

Try it now, for free! Go to www.totalviewtech.com/command

to power-up your 15-day trial version, or call

1-800-856-3766 for more information. Built for the Multi-core age

© 2007 TotalView Technologies, LLC TotalView is a registered trademark of TotalView Technologies, LLC. All other names are trademarks of their respective holders.

http://www.totalviewtech.com/command

www.informationweek.com):

Dell launched a Linux Web survey

this week, moving it a bit closer to

reintroducing the open-source oper-

ating system as a factory-installed

option for home or office use.

The survey, which was posted

Tuesday and runs through March 23,

asks a variety of questions, including

which Dell system respondents would

like to see with Linux, what kind of

computing chores they would use

the machine for, what type of soft-

ware support they would like, and

the Linux distribution they favor.

In launching the survey, Matt

Domsch, Linux software architect for

Dell, said in the company’s official

blog that Dell has been moved to

action by the more than 110,000

requests for Linux computers on

the company’s on-line customer

sounding-board IdeaStorm.

So, for those of us who love to work outside
the Windows world, this kind of movement
comes at a very important moment and
shows to the “monolitic, one-way” CEOs and
“Masters of the universe” that intelligent life
exists here! Keep up the great work there!

--
Eduardo

Blast from the Past
While cleaning out my desk, I found my
Winter 1996 Linux Internet Archive set.
Linux that ran on 4MB of RAM, MFM
drives, EISA buses, Gravis Ultrasound
cards—it brings a tear to one’s eye.

Anyway, thanks for the informative articles. I
am a longtime reader (someday I will get a sub-
scription) and fan! Keep up the good work!.

--
John Harper

Re: the “Someone Else May
Have to Decipher Your Code”
Letter in April 2007 Issue
In his letter titled “Someone Else May Have
to Decipher Your Code Someday”, Michael
C. Tiernan suggested the use of temp files
instead of pipes for readability, instead of
thinking that pipes can be as easy to read
as code used in temporary files.

But, when using temporary files in a
production environment, it should be
done right, so the lines:

Tmp1=/tmp/tmp.1.$$

Tmp2=/tmp/tmp.2.$$

Tmp3=/tmp/tmp.3.$$

Tmp4=/tmp/tmp.4.$$

should be replaced by:

Tmp1=`mktemp`

Tmp2=`mktemp`

Tmp3=`mktemp`

Tmp4=`mktemp`

or:

Tmp1=`mktemp /tmp/tmp.1.XXXXXXXXXX`

Tmp2=`mktemp /tmp/tmp.2.XXXXXXXXXX`

Tmp3=`mktemp /tmp/tmp.3.XXXXXXXXXX`

Tmp4=`mktemp /tmp/tmp.4.XXXXXXXXXX`

for security reasons. First, mktemp
ensures the filenames are unused, and
the files generated do have the access
rights set to ensure that only the owner
can read the content.

--
Berthold Hollmann

Miniature OpenGL
Development System
I just thought you might want to know
about this project: the myOS—Miniature
OpenGL development system. It is a mini-
malistic OpenGL-capable GNU/Linux-
based system without X. It is a bare-
bones Linux system, stripped down of
everything but the core necessary files to
compile and run OpenGL/C code. It has a
simplified directory structure and cleaned
up internal cross-referencing. It starts up
with, and in total has, only a single script
(one.xthost.info/zelko/opengl.html).

--
ZeAtShuttle

Did you know Microsoft owns the patent to
OpenGL?—Ed.

10 | june 2007 www.l inux journa l .com

[LETTERS]

At Your Service

MAGAZINE
PRINT SUBSCRIPTIONS: Renewing your
subscription, changing your address, paying your
invoice, viewing your account details or other
subscription inquiries can instantly be done on-line,
www.linuxjournal.com/subs. Alternatively,
within the U.S. and Canada, you may call
us toll-free 1-888-66-LINUX (54689), or
internationally +1-713-589-2677. E-mail us at
subs@linuxjournal.com or reach us via postal mail,
Linux Journal, PO Box 980985, Houston, TX
77098-0985 USA. Please remember to include your
complete name and address when contacting us.

DIGITAL SUBSCRIPTIONS: Digital subscriptions
of Linux Journal are now available and delivered as
PDFs anywhere in the world for one low cost.
Visit www.linuxjournal.com/digital for more
information or use the contact information above
for any digital magazine customer service inquiries.

LETTERS TO THE EDITOR: We welcome
your letters and encourage you to submit them
to ljeditor@linuxjournal.com or mail them to
Linux Journal, 1752 NW Market Street, #200,
Seattle, WA 98107 USA. Letters may be edited
for space and clarity.

WRITING FOR US: We always are looking
for contributed articles, tutorials and real-
world stories for the magazine. An author’s
guide, a list of topics and due dates can be
found on-line, www.linuxjournal.com/author.

ADVERTISING: Linux Journal is a great
resource for readers and advertisers alike.
Request a media kit, view our current
editorial calendar and advertising due
dates, or learn more about other advertising
and marketing opportunities by visiting us
on-line, www.linuxjournal.com/advertising.
Contact us directly for further information,
ads@linuxjournal.com or +1 713-344-1956 ext. 2.

ON-LINE
WEB SITE: Read exclusive on-line-only content on
Linux Journal’s Web site, www.linuxjournal.com.
Also, select articles from the print magazine
are available on-line. Magazine subscribers,
digital or print, receive full access to issue
archives; please contact Customer Service for
further information, subs@linuxjournal.com.

FREE e-NEWSLETTERS: Each week, Linux
Journal editors will tell you what's hot in the world
of Linux. Receive late-breaking news, technical tips
and tricks, and links to in-depth stories featured
on www.linuxjournal.com. Subscribe for free
today, www.linuxjournal.com/enewsletters.

http://www.informationweek.com):
http://www.linuxjournal.com
http://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/digital
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com/author
http://www.linuxjournal.com/advertising
mailto:ads@linuxjournal.com
http://www.linuxjournal.com
mailto:subs@linuxjournal.com
http://www.linuxjournal.com
http://www.linuxjournal.com/enewsletters

http://www.uniwide.com

12 | june 2007 www.l inux journa l .com

UPFRONT
N E W S + F U N

Ingo Molnar has imple-
mented a new language-
like wrapper system called
Syslets to manage system
calls from user space.
These little mini-programs
can run system calls asyn-

chronously, responding to their behavior as the user
desires, without having to return out of kernel space.
Using Syslet wrappers, Ingo has measured 33.9%
speedups over cached synchronous I/O and 19.2%
speedups over uncached synchronous I/O. Interest in
Syslets among kernel hackers is fairly high, though
Linus Torvalds feels the Syslet programming inter-
face is too complicated and difficult for casual users
to experiment with. Clearly some work remains
before Syslets are ready to go into the main tree.

Intel has produced a PRO/Wireless 3945ABG
Network Connection adapter driver. Unlike some
other Intel drivers, this one doesn’t depend on a
proprietary dæmon; it is fully open source. It does,
however, require a microcode upgrade. This
improved licensing situation is apparently not due
to any different feature of the hardware, but
rather is due to improvements in the microcode
itself. Intel’s driver has received a good reaction
among kernel folks, and it seems on the way to
being included in the source tree.

The well-known and long-standing \0 loophole,
allowing drivers to pretend to be GPLed when they
aren’t, is being closed. Several folks are working on
this, most notably Jan Engelhardt, who recently
posted a patch to fix it. There’s a controversy sur-
rounding this patch, because some folks feel that if
the kernel places greater restrictions on non-GPLed
drivers than on GPLed ones, this constitutes a license
enforcement feature, which could violate the terms of
the GNU General Public License. So long as the loop-
hole exists within the code, the debate can stay dor-
mant, because driver writers can bypass the controls.
Once the controls actually start to work, the debate
gains immediacy for companies such as LinuxAnt,
who have made use of the loophole in the past.

The KVM virtual machine code has migrated
its development tree from Subversion to git for a cou-
ple reasons. Avi Kivity said, by way of explanation,

that Subversion could not efficiently host the entire
kernel tree and that developers wanted to maintain
their own branches independently.

Jon Masters is the new module-init-tools
maintainer, having taken over the job from Rusty
Russell and patched the MAINTAINERS file to
reflect the change. Evgeniy Dushistov also has
created a UFS entry in the MAINTAINERS file, and
listed himself as the maintainer.

Alessandro Di Marco got more than he bar-
gained for when he posted a new user inactivity
trigger he’s been playing around with. It’s a nice little
feature that issues an ACPI event when no user
activity occurs for a certain amount of time. He’d
hammered the code out for fun, intentionally avoid-
ing questions about optimal implementation details,
on the assumption that not too many folks actually
would be interested in this work. As it turned out, a
lot of folks were interested, and they had many
implementation suggestions. For starters, Arjan van
de Ven pointed out that uevent would be a better
delivery mechanism than ACPI. Pavel Machek
pointed out that Alessandro’s new /proc file would be
better in the /sys directory. Pavel also suggested that
user space would be a better place overall for such
a feature, although Alessandro feels this would add a
lot of complexity to the code. He responded quickly
to a lot of the suggestions, producing new versions of
his patch that answered the objections raised on the
linux-kernel mailing list.

Planning for the next Linux Kernel Summit
has begun. The kernel folks are spicing it up with a
move to Cambridge, England, instead of the tradi-
tional Ottawa gathering in Canada. The new venue
has opened up the possibility of different venues in
the future, and a bunch of them have been pro-
posed, including Australia, India and the Czech
Republic. A major factor in selecting future loca-
tions will be the overall cost. A lot of kernel folks
work at companies that pay for their plane tickets
to the Summit each year, but some prices become
prohibitive. Countries that are home to more
attendees are more likely to host the Summit than
others, according to Theodore Y. Ts’o, one of the
organizers. But of course, anything can happen.

— Z A C K B R O W N

WHAT’S NEW
IN KERNEL
DEVELOPMENT

diff -u

LJ Index,
June 2007
1. Number of billionaires in the world: 946

2. Number of billionaires in India: 36

3. Indian billionaire gain over the prior year: 12

4. Position of India among countries with
billionaires: 1

5. Number of billionaires in Japan: 24

6. Position of Bangalore among number of
“Linux” queries on Google: 1

7. Position of Tokyo among number of “Linux”
queries on Google: 2

8. Number of Western Hemisphere locations
among the top ten sources of queries for
“Linux” on Google: 0

9. Number of US locations among the top ten
sources of queries for “Microsoft” on Google: 7

10. Millions of Internet radio listeners per
month in 2005: 45

11. Millions of Internet radio listeners per
month in 2006: 72

12. Dollars (US) paid per-listener/per-
“performance” (recording) by US commercial
Webcasters between 2002–2005: .0007

13. Same obligation as above for noncommercial
Webcasters between 2002–2005: .0002

14. Dollars (US) to be paid per-listener/per-
“performance” (recording) by all US
Webcasters (commercial and noncommercial)
retroactively for 2006: .0008

15. Dollars (US) paid per-listener/per-
“performance” (recording) by all US
Webcasters for 2007: .0011 per performance

16. Same rates for 2008: .0014 per performance

17. Same rates for 2009: .0018 per performance

18. Same rates for 2010: .0019 per performance

19. Position of Linux-based Radio Paradise as
“most successful in its class” of Internet
radio stations: 1

20. Royalty obligations of the above as a
percentage of Radio Paradise’s current total
income: 125

Sources: 1–5: Forbes, CNN | 6–9: Google | 10, 11:
Radio and Internet Newsletter | 12, 13: Librarian of
Congress in 2002 | 14–18: Copyright Royalty Board in
2007 | 19, 20: KurtHanson.com

— D o c S e a r l s

http://www.linuxjournal.com

http://www.verio.com/linuxlineage

14 | june 2007 www.l inux journa l .com

[UPFRONT]

This Issue of LJ Dedicated
to John Backus
I had written and submitted this month’s Beachhead column, with a slant toward this issue’s
theme of computer languages, and in particular, the language FORTRAN, which was the first
computer language I ever learned. And, although in my column I pointed out the benefit of
learning machine and assembly language, I honestly do not believe that I would have gone into
the programming field if it were not for FORTRAN.

On March 20, 2007, two weeks after I submitted the article, I got the very sad news
of the March 17th death of John Backus. John was the man who people credit as the “Father
of FORTRAN”, and one of two people credited with Backus-Naur Form, a language invented to
describe languages. I sent the message out to my local Linux user group, and during the next
week it appeared again and again in various mailing lists.

With today’s languages and computers, it is hard for people to know or (for those of us old
enough) even to remember those early days. Today, concepts we take for granted were both
revolutionary and difficult in conception in those days. There were people who thought com-
puters would never be able to be programmed in anything other than machine code, and I am
sure that John and his staff met more than their share of skeptics, but they persevered. And,
out of the work they did on the first successful high-level language came many more successes
by many more people on many more languages.

So I asked Linux Journal to dedicate this issue devoted to languages to John Backus:
Computer Scientist Extraordinaire and Humanitarian, 1924–2007.

And, as we contribute our pieces to the future of computer science, may we hope someday
in our own way to contribute as much as he did.

— J O N " M A D D O G " H A L L

A Nice Handful
You’ve gotta like an MP3 player that goes out of its way to play OGG and brag
about its Linux-friendliness (the literature says “Linux from kernel 2.4.x”). That
would explain why TrekStor’s Vibez player has been getting some nice buzz in
Linux circles.

Upsides: you can
load it as a plain
USB storage device.
It plays back OGG
(plus MP3, WAV,
FLAC and WMA).
It has line-in and
microphone record-
ing, a color display,
a USB-chargeable
battery (plus a
spare), device-
deletion of files,
adjustable play
speed and a very
slick non-iPod
design. It’s the
size of a soap
bar—4"x2"x.7",
with highly rounded
corners. And, it’s
a lot lighter—only
2.5 ounces.

Downside: not a lot of storage. Ranges from 8–15GB at prices that start at
around $200 US.

— D O C S E A R L S

IdeaStorm
Hardware OEM Learnings
of Linux for Make
Benefit Glorious
Company of Dellstan
Early this year, Dell created a Digg-like
site called Dell | IdeaStorm (“Where
Your Ideas Reign”). The idea was for
readers to submit ideas for the company,
then have other readers vote and
comment on them. Next to the title
logo ran hints, such as “How can
technology companies address climate
change?” (over “click here to Read
Dell’s point of view”). Needless to say,
this opened the floodgates holding
back a tide of Linux demand.

As of 8am CDT on March 13, 2007,
here were the top ten vote-getters:

1. 108,886 votes: “Pre-Installed Linux |
Ubuntu | Fedora | OpenSUSE |
Multi-Boot”

2. 73,840 votes: “Pre-Installed
OpenOffice.org | alternative to
MS Works & MS Office”

3. 54,300 votes: “Stripped down,
fast Linux box”

4. 50,653 votes: “Have Firefox pre-
installed as default browser”

5. 49,990 votes: “No OS preloaded”

6. 51,048 votes: “NO EXTRA
SOFTWARE OPTION”

7. 35,867 votes: “Provide Linux drivers
for all your hardware”

8. 29,041 votes: “Linux 2.6.16
ready (sticker)”

9. 20,288 votes: “National Call
Centers”

10. 17,376 votes: “LinuxBIOS
instead of proprietary BIOS”

One hour later, Dell added two more
posts of its own. On the IdeaStorm page,
it posted “Linux—We’re listening—Now
Tell Us More”. On the Direct2Dell.com
page, it added “Dell to Expand Linux
Options”. Both pointed to a survey at
www.dell.com/linuxsurvey. The
survey was also titled “Linux Learnings:
We’re Listening”.

Hence the headline above.
— D O C S E A R L S

http://www.linuxjournal.com
http://www.dell.com/linuxsurvey

http://www.pgroup.com

16 | june 2007 www.l inux journa l .com

[UPFRONT]

Where Wants What?
One of the fun uses to which Google puts its vast Linux server
farms can be found at trends.google.com. Here you can see and
compare queries for keywords over a period of time that runs
from the end of 2003 to the present.

In addition to showing trends on a graph, Google Trends
also shows the top ten places from which queries come. This
brings up some surprising results.

See if you can match the search terms on the left with the
top search query locations on the right.

Answers on page 81.
— D O C S E A R L S

A. Prague, Czech Republic

B. Pune, India

C. Oslo, Norway

D. Athens, Greece

E. Washington, DC

F. Honolulu, Hawaii

G. Tokyo, Japan

H. Rancho Santa Margarita, California

I. San Francisco, California

J. Stanford, California

K. Jakarta, Indonesia

L. Austin, Texas

M. Lima, Peru

N. London, United Kingdom

O. Thanh Pho Ho Chi Minh, Vietnam

P. Kyoto, Japan

Q. Bangalore, India

R. Bogotá, Colombia

S. Ljubljana, Slovenia

T. Hanoi, Vietnam

1. gnome

2. kde

3. linux

4. shell

5. hat

6. hacker

7. laptop

8. widget

9. driver

10. emacs

11. vi

12. weenie

13. redhat

14. oracle

15. asterisk

16. internet

17. net

18. majordomo

19. maddog

20. vulnerability

The problem, of course, is
that life is anti-formulaic,
anti-institutional....Life
can’t be shrink-wrapped,
caged, dissected, analyzed,
or owned. Life is free.
—Christopher Locke, The
Cluetrain Manifesto

I think a world full of
anonymous monopolists
is a really painful one
to live in and create in.
—Mike Taht,
the-edge.blogspot.com/2007/02/

keeping-copyright-accessible.html

Good thing Henry Ford
stopped in Waltham,
Massachusetts, to learn
about bicycle manufactur-
ing rather than spending
time in Mr Hobson’s stable
shoveling up after those
horses.
—Bob Frankston, from an
e-mail message

In isolation our wants
exceed our powers. In
society our powers exceed
our wants.
—Frederic Bastiat, quoted in
The Logic of Co-operation by
George Jacob Holyoake, Co-
operative Printing Society, 1873,
www.citizenblog.org/node/23

They Said It

http://www.linuxjournal.com
http://www.citizenblog.org/node/23

www.mbx.com 1-800-681-0016

© 2006 MBX Systems, 1101 Brown Street Wauconda, IL. 60084. All trademarks used herein are the property of their respective trademark holders.

The Industry Leader for Server Appliances

Custom server appliances or off the shelf reference platforms,
built with your image and software starting under $1,000.

From design to deployment, we handle it all.

Delivering an appliance requires the right partner. MBX Systems
is the right partner. We understand that by putting your name on
our hardware, you’re putting your reputation in our hands. We
take that seriously. We provide the services you need to support
your customers. Better than the competition. You never even

need to touch the hardware. Engineering. Design. Deployment.
We handle it all, so you can focus on what’s important to you.
Your software. Your sales. Your success.

Visit us at www.mbx.com or call 1-800-681-0016 today.

Industry Leader V2.indd 1 6/6/2006 4:58:26 PM

http://www.mbx.com
http://www.mbx.com

18 | june 2007 www.l inux journa l .com

The past few months, I’ve written a number
of articles in this space about JavaScript. This
language, built in to nearly every modern Web
browser, has now come into its own and is at the
heart of a paradigm for modern Web develop-
ment known as Ajax. Whereas knowledge of
JavaScript was long an optional skill for Web
developers, it has become a must-have skill,
along with SQL, HTML, HTTP and CSS.

One of the reasons for JavaScript’s renais-
sance is the emergence of cross-platform
libraries, which hide the incompatibilities that
long plagued the language. For quite some time,
programs written in JavaScript had to contain
many if/then statements that looked at possible
cross-platform incompatibilities.

Today, we can avoid having such if/then state-
ments in our code by using libraries that take care
of these low-level tasks for us. Prototype and
Dojo, two of the JavaScript libraries I profiled in
previous columns, have become popular precisely
because they hide many of these details. They
make JavaScript a truly cross-platform language,
where “platform” means the Web browser as
much as the operating system.

Some clever programmers, in an effort to
make JavaScript standardization even more com-
plete and effortless, have gone one step further.
Why not use your server-side programming lan-
guage to generate the JavaScript for you? That
is, if you are using Ruby on Rails, perhaps you could write
commands in Ruby and have them translated into
JavaScript. Doing so would allow you to use roughly the
same code in all of your templates, without having to
switch syntax in different parts of the template.

This might sound like a strange idea, but the more I think
about it, the more I like it. RJS (short for Ruby JavaScript) tem-
plates are one incarnation of this. If you prefer to create your
JavaScript in Java, you might want to look at the Google Web
Toolkit, which is now available under an open-source license
and has gained many fans in the Java world.

This month, we look at RJS and how it makes life
much easier for Web developers. Although I don’t think
that JavaScript will ever disappear, or that Web developers
will be able to ignore it completely, technologies such as
RJS mean that it might become something like machine
code today—available and sitting at the bottom of the
pyramid, but generally ignored by high-level programmers.

Ajax and Rails
To create a new Rails project called ajaxdemo, type:

rails ajaxdemo

Now, let’s create a simple controller called showme:

script/generate controller showme

We’re not going to have any model in this system,
but you still might have to define one or more lines
in config/database.yml. Instead, let’s create a new
view within our showme controller, stored as
app/views/showme/index.rhtml, shown in Listing 1.

As you can see, the index.rhtml page is a relatively
standard page of HTML, with some JavaScript code that
uses the Prototype library. The page consists of a headline,
a text field and a button. Pressing the button invokes the

RJS Templates
The power of Ajax to fetch and run JavaScript
generated by your server-side language.

AT THE FORGE
COLUMNS

REUVEN M. LERNER

Listing 1. index.rhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title id="title">Sample HTML page</title>

<%= javascript_include_tag 'prototype' %>

<script type="text/javascript">

function updateHeadline()

{

var headline = $('headline');

var new_headline_text = $F('future-headline');

Element.update(headline, new_headline_text) ;

}

</script>

</head>

<body>

<h1 id="headline">Headline</h1>

<p><input type="text" id="future-headline" /></p>

<p><input type="button" onclick="updateHeadline();"

value="Update headline" /></p>

</body>

</html>

Why not
use your

server-side
programming

language to
generate the

JavaScript
for you?

http://www.linuxjournal.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

http://www.pogolinux.com

20 | june 2007 www.l inux journa l .com

AT THE FORGE
COLUMNS

function updateHeadline. This function takes the current
value of the future-headline text field and changes the
headline to reflect its contents.

Using a Remote Call
So far, we haven’t done anything special. Now, however, we’re
going to do something a bit more sophisticated: send the con-
tents of our text field to the server in an Ajax call. The server’s
response will be our headline, translated into Pig Latin.

Making this change requires doing two things. First,
we need to write a method in our application controller
that takes the headline, turns it into Pig Latin, and then
returns that text. Second, we need to modify our template
so that it gets the updated text from the server, rather
than from a local JavaScript function.

Our updated template is shown in Listing 2. We have
made a number of changes, starting with the fact that our
form now has an id attribute associated with it, named
theForm. The form contains a single element, a text field
whose name is future_headline. Note that we need to use
the name attribute instead of the id attribute, so that the
form element will be submitted with our Ajax call. Also
notice that we have changed the name to a Ruby-friendly
future_headline (with an underscore), rather than the
CSS-friendly future-headline (with a hyphen).

We also have replaced our button with a call to the
submit_to_remote helper:

<p><%= submit_to_remote "submit-button",

"Pig Latin it!",

:url => { :action => "piglatin_sentence" },

:submit => "fakeForm",

:update => "headline" %></p>

The above code does quite a few things:

� It creates a button, whose DOM ID is submit-button.

� The button has a label of “Pig Latin it!”.

� When the button is clicked, it uses Ajax to invoke
the piglatin_sentence action on the server, within
the current controller.

Listing 2. index.rhtml (Ajax Version)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title id="title">Sample HTML page</title>

<%= javascript_include_tag 'prototype' %>

</head>

<body>

<h1 id="headline">Headline</h1>

<form id="theForm">

<p><input type="text" name="future_headline" /></p>

</form>

<p><%= submit_to_remote "submit-button",

"Pig Latin it!",

:url => { :action => "piglatin_sentence" },

:submit => "fakeForm",

:update => "headline" %></p>

</body>

</html>

Listing 3. showme_controller.rb

class ShowmeController < ApplicationController

def piglatin_sentence

Get the headline

sentence = params[:future_headline]

words = sentence.split

sentence = ""

Go through each word, applying the secret

Pig Latin algorithm

words.each do |word|

if word =~ /^[aeiou]/i

word << "way"

else

first_letter = word.slice(0,1)

rest = word.slice(1..-1)

word = "#{rest}#{first_letter}ay"

end

sentence << word

sentence << " "

end

render :text => sentence

end

end

Even better, because we’re returning a JavaScript program, rather than the
contents of an individual HTML element, we can modify multiple parts of
the page and even throw in some Scriptaculous effects for good measure.

http://www.linuxjournal.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

Are you

by the
high cost
of iSCSI &

Fibre Channel
storage?

AoE is your answer!
ATA-over-Ethernet = simple, low cost, expandable storage.

1.706.548.7200 www.coraid.com

EtherDrive® SR1520

· RAID enabled 3U appliance
with 15 slots for hot swap SATA disks

· Check out our other Storage Appliances and
NAS Gateway

1. Ethernet Storage – without the
TCP/IP overhead!

2. Unlimited expandability, at the
lowest possible price point!!

3. You want more storage…you
just buy more disks – it’s that
simple!!!

Visit us at www.coraid.com
for more information.

www.coraid.com

shocked

Coraid_SysAdmin_ad_Einstien.indd 1 10/26/06 2:01:04 PM

http://www.coraid.com
http://www.coraid.com
http://www.coraid.com

� The contents of the form with the ID fakeForm
are submitted.

� The value returned from the Ajax invocation is used
to update the contents of the HTML element with
the ID headline.

All that’s left for us to examine is our controller, shown
in Listing 3. The controller doesn’t necessarily know that it
is being invoked by a background Ajax process or that its
contents will be used to update the headline element.
Rather, it simply is invoked like any method, turning the
words into Pig Latin. The translated sentence is returned to
the user’s browser as a plain-text file.

Returning JavaScript
Now, the real magic begins. As we just saw, our controller
(piglatin_sentence) returns a plain-text document to its
caller. Of course, we’re free to return data in whatever
format we please. One possible format might be XML.
Indeed, the term Ajax is supposed to stand for Asynchronous
JavaScript and XML, so it should come as no surprise
that XML is a common format for return values. Another
format that is growing in popularity is JSON (JavaScript
Object Notation), a textual version of JavaScript objects
that makes it fast and easy to exchange data.

But, in the world of Ruby on Rails, there is another type
of data that the controller might return to the user’s browser,
namely JavaScript. This might not sound all that clever,
but consider what Prototype does with it. If a controller
is invoked with link_to_remote or submit_to_remote, and
if the HTTP response has a content-type of xml+javascript,
the JavaScript is evaluated.

This could potentially save time—instead of returning
the text that should be used for the headline and then
using JavaScript to insert it. (True, we were able to say
this tersely by using an :update parameter to the call to
submit_to_remote. But the code still exists.) Rather, we simply
could return JavaScript code that uses the DOM to modify the
document. This would simplify our code quite a bit.

To see this in action, look at Listings 4 and 5. Listing 4
is an updated version of our template, index.rhtml, and it
is basically unchanged from the previous version, except
that we now are able to remove the :update parameter
from the call to submit_to_remote:

<p><%= submit_to_remote "submit-button",

"Pig Latin it!",

:url => { :action => "piglatin_sentence" },

:submit => "fakeForm" %></p>

Instead of indicating what should be changed on the
client side, we instead do that on the server side:

output = "Element.update($('headline'), '#{sentence}');"

render :text => output, :content_type => "text/javascript"

In other words, we tell our controller to produce a

22 | june 2007 www.l inux journa l .com

AT THE FORGE
COLUMNS

Listing 4. index.rhtml (Updated for JavaScript in the HTTP Response)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title id="title">Sample HTML page</title>

<%= javascript_include_tag 'prototype' %>

</head>

<body>

<form id="fakeForm">

<h1 id="headline">Headline</h1>

<p><input type="text" name="future_headline" /></p>

</form>

<p><%= submit_to_remote "submit-button",

"Pig Latin it!",

:url => { :action => "piglatin_sentence" },

:submit => "fakeForm" %></p>

</body>

</html>

Listing 5. showme_controller.rb (Updated to Return JavaScript)

class ShowmeController < ApplicationController

def piglatin_sentence

Get the headline

sentence = params[:future_headline]

words = sentence.split

sentence = ""

Go through each word, applying the

secret Pig Latin algorithm

words.each do |word|

if word =~ /^[aeiou]/i

word << "way"

else

first_letter = word.slice(0,1)

rest = word.slice(1..-1)

word = "#{rest}#{first_letter}ay"

end

sentence << word

sentence << " "

end

output = "Element.update($('headline'), '#{sentence}');"

render :text => output, :content_type => "text/javascript"

end

end

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.linuxjournal.com

response of type text/javascript, knowing that whatever
we send will be evaluated by the user’s browser. We then
send a response that uses Element.update to change the
headline to our translated sentence. Sure enough, as soon
as we install this new version of our software, the headline
continues to be changed.

The power that’s associated with this is tremendous.
For example, we could update the headline conditionally,
checking it against a dictionary of forbidden words in our
server’s database. We could keep track of what words are
most commonly used. We could restrict users to a certain
number of headline updates per day.

Even better, because we’re returning a JavaScript program,
rather than the contents of an individual HTML element, we
can modify multiple parts of the page and even throw in some
Scriptaculous effects for good measure. Returning JavaScript is
a seemingly simple feature that Prototype provides, but it is
one that opens the door to tremendous possibilities.

RJS
And now, the moment you’ve been waiting for—you
might be thinking that although the notion of evaluated
JavaScript responses is powerful, it’s annoying to have to
create and maintain JavaScript code in Ruby controllers. It’s
bad enough that we need to have SQL in there; three lan-
guages in a single file seems like overkill.

And, that’s where RJS templates come in. The basic idea is
that we assume a response will be in the form of JavaScript,
and that it will modify one or more elements on the current
page. RJS provides us with a compact syntax for making those
changes, so we can create very small files that do a great deal.

The changes we need to make are minor. First, we
modify our piglatin_sentence method such that it modifies
not sentence (a local variable) but @sentence (an instance
variable). We also remove the call to render, because we
won’t be rendering anything directly.

We then create a file called piglatin_sentence.rjs. This
is a view, just like an .rhtml file, and thus goes alongside it
in the views directory. But, it consists of a single line:

page[:headline].replace_html @sentence

In other words, we should take the current page, find the
element with an ID of headline and replace its HTML content
with the value of @sentence, which we got from the method.

Sure enough, this works well. With a tiny bit of code,
we’ve managed to do quite a bit. And, as before, we can
add Scriptaculous calls, update multiple elements on the

page, show and hide HTML elements—basically, anything
we might want to do.

Conclusion
When I first read about RJS templates, I thought it was
one of the weirdest ideas I had heard of. That’s because
the notion of writing JavaScript in Ruby seemed both
strange and unnecessary. I now understand the power and
cleverness of this type of template and look forward to
using it on many of my Ajax-powered sites. With a bit of
study and some changes in how you think about Web
development, you’re likely to make the same discovery.�

Reuven M. Lerner, a longtime Web/database consultant, is a PhD candidate in
Learning Sciences at Northwestern University in Evanston, Illinois. He currently
lives with his wife and three children in Skokie, Illinois. You can read his
Weblog at altneuland.lerner.co.il.

www.l inux journa l .com june 2007 | 23

Listing 6. showme_controller.rb (Updated to Use RJS)

class ShowmeController < ApplicationController

def piglatin_sentence

Get the headline

sentence = params[:future_headline]

words = sentence.split

@sentence = ""

Go through each word, applying the

secret Pig Latin algorithm

words.each do |word|

if word =~ /^[aeiou]/i

word << "way"

else

first_letter = word.slice(0,1)

rest = word.slice(1..-1)

word = "#{rest}#{first_letter}ay"

end

@sentence << word

@sentence << " "

end

end

end

Resources

There are many good printed and on-line resources for learning about Ajax. One of my favorite sites is ajaxian.com, in which the authors discuss and
review Ajax-related tools.

Two good books might come in handy. The Pragmatic Programmers have published a second edition of the award-winning Agile Development in Rails by
Dave Thomas and David Heinemeier-Hansson, and O’Reilly has released Ajax on Rails by Scott Raymond. Between these two books, you should expect to
get a full understanding of not only how Ruby on Rails works, but also how to use JavaScript and RJS to create interesting and dynamic Web applications.

http://www.linuxjournal.com

24 | june 2007 www.l inux journa l .com

François, our guests will be here soon. What are you
doing? Quoi? You are learning a language for this issue’s
theme? You might have picked a better time to study,
mon ami, but I applaud you nonetheless. What language
did you choose to learn? PHP? C++? Python? You chose
Spanish? I am sorry, François, I am not laughing at you, I
am just laughing in general. This issue isn’t supposed to be
about human languages; it’s about computer languages.
Now, don’t fret. Let’s hear a line of Spanish. You speak
Spanish very good. Did you learn it from a book? Now,
now, François, I promise. No more Fawlty Towers jokes.
Besides, our guests will be here any moment. Head down
to the cellar and bring back the 2003 Errazuriz Don
Maximiano Cabernet from Chile. I’ll finish getting the
tables ready. Vite!

Ah, welcome everyone, to Chez Marcel, home of
exquisite wines and super open-source software. Please, sit
and make yourselves comfortable. François has gone to
fetch the wine and will be back shortly. I have decided to
make some last-minute changes to the menu in honor of
my faithful waiter’s well-meaning intentions. Tonight’s
menu will feature languages, or at least, dealing with the
special characters that make up many languages.

Even if you don’t speak any language other than
English, there will be times when you find yourself need-
ing to enter a special accented letter or character into your
writing. This is particularly true if your name contains a
letter with an accent at the end of it, as my own last name
does. Sure, I could keep a document with these letters
already written, handy and open on my desktop, select the
letters, copy them and finally, paste that é into my text,
but doing so can become amazingly time consuming.

If, like me, you spend a lot of time working with

OpenOffice.org’s word processor, Writer, the solution is
fairly simple. Click Insert on the menu bar and select
Special Characters from the drop-down menu. A window
labeled Special Characters appears (Figure 1).

From the dialog, you can select your font and
international character set—North and South Americans,
Australians and most Europeans will work with the Latin
subset. All in all, this is great solution, except that it works
only with OpenOffice.org running and requires you to
open the dialog every time you want to enter a special
character. Furthermore, not all applications have a handy
list of characters from which to choose. There are several
ways to get around this problem, and I show you a few
of them now.

Let’s start with some KDE solutions. Fire up kcontrol,
the KDE Control Center. Under Regional & Accessibility,
select the submenu for Keyboard Layout. On the right-
hand pane, you’ll see a number of flags from different
countries. Click Enable keyboard layouts to un-gray these
choices. If you installed your system using US English as
your language of choice, the default is to provide you with
US English. Because my background is French Canadian
rather than French from France, I am most familiar with a
North American keyboard layout, including the French
Canadian keyboard (I honestly have no idea how a French
keyboard in France is laid out). Consequently, I always add
Canada to that list (Figure 2).

When you click OK or Apply, a little icon that looks like
a tiny flag appears in your icon tray. Clicking that icon
switches between the various layouts (of which there are

Languages Build
Character, or Vice Versa
Just what do you have to do to type those special characters anyhow?

COOKING WITH LINUX
COLUMNS

MARCEL GAGNÉ

Figure 1. OpenOffice.org provides a dialog for entering special characters into your documents.
Figure 2. From the KDE Control Center, you can assign additional
keyboard layouts.

If, like me,
you spend

a lot of time
working with

OpenOffice.org’s
word processor,

Writer, the
solution is

fairly simple.

http://www.linuxjournal.com

two at the moment). When you are on the alternate lay-
out (for example, Canada), pressing different keys causes
whatever character from the keyboard layout that the map
presents to appear. This may require some experimentation
on your part so you can discover what each key does—
unless, of course, you happen to be familiar with your
chosen layout.

In order to continue working normally, click the tray
icon another time to switch back to the US English key-
board layout. This switching back and forth, however, isn’t
for everyone, and taking the time to learn an alternate
keyboard layout when you need only the occasional char-
acter may not be the best approach. Another way around
this problem is to use a tool called KCharSelect. You
generally can find it in your KDE Utilities menu, but you
also can run it with the command kcharselect. When
the program starts, a table of all 256 available characters
in your current locale appear (Figure 3).

Figure 3. KCharSelect is like a buffet table for special characters.

Select a font from the drop-down list at top. Then, if nec-
essary, select an alternate character table (the Latin set is at 0
on my system). If you hover your mouse pointer over a charac-
ter, you’ll see its Unicode and ASCII value. To use a character
in an application (such as e-mail), click on that character, and
it will appear in the text field at the bottom of the dialog.
You even can enter multiple characters if you want. To use
what you have selected, click the To Clipboard button, and
then paste the result into your application of choice.

A similar application called Gucharmap exists for users
of the GNOME desktop. You likely can find it under the
Accessories submenu by clicking the Applications button
on the top GNOME panel (as it is under my Ubuntu test
system). The program name is gucharmap if you want to
run it directly. When the window appears (Figure 4), you’ll
see that the concept is similar to the KDE KCharSelect
tool, but there are some interesting differences. From the
left-hand sidebar, select your character set or script (Latin,
for most of us here), choose a font, then double-click on
the character you want from the main display pane on the
right. When you do so, that character appears in the Text
to copy field at the bottom of the dialog. Click the Copy
button, then paste the text into whatever application you
are currently running.

Tools like KCharSelect and Gucharmap are wonderful

to have at your disposal, but for some people, there is only
an occasional need for entering special characters. As
such, these programs seem to live a little large on the
desktop, non? A tiny application, an applet that lives in
your panel, might be more to taste for those of us who
need to enter only a small number of characters. In the
KDE environment, there are many applets, and one of
these, the Character Selector, may be just what you need.

To add the applet, right-click on a blank section of
your Kicker panel, and select Add Applet to Panel. The
Add Applet dialog appears with a list of programs you can
use to populate your Kicker panel (Figure 5). Each program
(or applet) is listed alphabetically with a short description.
Look for the Character Selector. To add the applet, simply
click the Add to Panel button.

Figure 5. Adding applets to the KDE Kicker panel.

Your Kicker panel now should have a box containing a
handful of special characters—12 by default. To use one of
these characters in your text, simply single-click the char-
acter of your choice, and paste it into your application. It’s
that easy. That said, the set of characters provided by the
application may not be quite what you want. To change
that, right-click on the applet’s handle (that little bar with
the arrow to the left of the applet), and select Configure
Character Selector from the pop-up menu. A configuration
window appears above the applet (Figure 6).

www. l inux journa l .com june 2007 | 25

Figure 4. Gucharmap is a great GNOME way to select
special characters.

http://www.linuxjournal.com

Figure 6. By adding the Character Selector to your Kicker panel,
special characters are always handy.

Modify the character list to suit your taste or need,
then click OK. You may want to use KCharSelect, just this
once, to paste in your list of characters.

Those of you who are running GNOME as your default
desktop environment have a similar tool at your disposal,
and it also is an applet. Right-click on the bottom (or top)
panel and select Add to Panel. A window of the same
name appears with a list of available applets (Figure 7).
Scroll down until you see the Utilities section. There you
will find an applet named Character Palette. Select it, then
click Add or simply drag the applet to the panel in the
location of your choice.

Figure 7. Add the GNOME Character Palette panel applet.

You will see a row of characters appear on your panel
with a drop-down arrow to the left of those characters. To
use any of these characters in a document (or e-mail mes-
sage or chat session or other application) click the character
of your choice, then paste it into your application. If you
don’t see the character you need, there’s a good chance it
already has been defined for you. All you need to do is
switch palettes. Click the down arrow, and a selection of
more than 20 predefined palettes appear; simply click to
switch. As rich as this selection is, it still is possible that the
characters you need on a day-to-day basis are not there. To
edit the palette or add to it, right-click on the down arrow
and select Preferences from the submenu. The Character
Palette Preferences dialog appears (Figure 8).

From this dialog, you can choose to edit a current
palette, delete a palette or create something entirely new.
To create a new palette, click the Add button and enter
the characters into the dialog window that appears—of
course, you may need to paste them from another charac-
ter application, such as Gucharmap or OpenOffice.org.

Now, when François becomes a master of Spanish, he
will be able to enter all the Spanish characters he wants. In
the meantime, mes amis, it appears that it is nearly time to
bid you all Adieu. Nearly, being the key word, or as François
might now say it, casi. Quoi? You plan on learning
Japanese next week? Why not. Until next time, please
raise your glasses, mes amis, and let us all drink to one
another’s health. A votre santé! Bon appétit!�

Marcel Gagné is an award-winning writer living in Waterloo, Ontario. He is the
author of the all-new Moving to Free Software, his sixth book from Addison-
Wesley. He also makes regular television appearances as Call for Help’s Linux
guy. Marcel is also a pilot, a past Top-40 disc jockey, writes science fiction and
fantasy, and folds a mean Origami T-Rex. He can be reached via e-mail at
mggagne@salmar.com. You can discover lots of other things (including great
Wine links) from his Web site at www.marcelgagne.com.

26 | june 2007 www.l inux journa l .com

COOKING WITH LINUX
COLUMNS

Resources

GNOME Web Site: www.gnome.org

Gucharmap: live.gnome.org/Gucharmap

KDE Web Site: www.kde.org

OpenOffice.org: www.openoffice.org

Marcel’s Web Site: www.marcelgagne.com

The WFTL-LUG, Marcel’s On-line Linux User Group:
www.marcelgagne.com/wftllugform.html

Figure 8. So many special characters, so little time.

Tools like
KCharSelect and
Gucharmap are

wonderful to
have at your

disposal, but for
some people,

there is only
an occasional

need for
entering special

characters.

mailto:mggagne@salmar.com
http://www.marcelgagne.com
http://www.linuxjournal.com
http://www.gnome.org
http://www.kde.org
http://www.openoffice.org
http://www.marcelgagne.com
http://www.marcelgagne.com/wftllugform.html

The Freedom to
Build Exactly
What You Need.

TM

For more information visit us at www.supermicro.com

PDSMUX7DBUX7DBN

SC815TQ-R650U

X7DAL-E+/X7DAL-E

Available Motherboard Options

Optimized Chassis Solutions

Supermicro UIO servers allow users to select from a wide range of I/O options to provide the ultimate
in storage and networking flexibility. The UIO card becomes a part of the serverboard, allowing the
system to retain all of it’s PCI Express and PCI X slots for expansion cards. As a result, future
upgrades can be acheived by replacing the UIO card and/or expansion cards instead of replacing the
entire system. This versatility helps to minimize the amount of different servers that customers need to
operate their business.

0 +

SC825TQ-R700U

3/7 Add-on Cards for 1U/2U

Highly Upgradeable

High Efficiency Power (up to 90%+)

Multiple Expansion Card Options
(SAS RAID 5, 10-G, IB...up to 20 choices)

Simplify Your Inventory Management

UIOAdLinuxJournalFA.ai 3/15/2007 2:49:18 PM

http://www.supermicro.com

28 | june 2007 www.l inux journa l .com

In last month’s column, we built our directory
display script to the point where you could get a smart
listing that showed your image files (offering links to
any other file type), and we allowed thumbnails to be
displayed too.

The latter trick is done by letting the Web browser
do the work. If you specify a height or width that’s
different from the actual image size, Web browsers
automatically scale the image to fit the specified
dimensions. Even better, if you specify only one dimension,
it scales proportionally to fit.

Let me explain that just a wee bit more, because
it’s critical to this particular scripting project. If you
have an image that’s 250x250 pixels and you’d like to
display a 75x75 thumbnail, the best practice is to spec-
ify both height=“75” and width=“75”, of course. The
problem is, what if the image is actually 250x317 and
you want to reduce it to exactly 75 pixels wide. How
tall should it be?

You could do the math, of course, but it’s much nicer
to let the browser do the work for you automatically,
which happens if you specify only width=“75” or use a
full HTML statement:

Doing that scales it, and you end up with an image
that’s exactly 75x95 pixels in size. However, if you
always constrain one dimension, things can break.
What if the image is actually 250x1100, because it’s a
very tall graphic? Now the thumbnail is going to break
the entire layout, because the scaled version of it is
330 pixels wide, quite a bit more than the 75x75
target box for the image!

That’s why an ideal script would figure out which
of the dimensions is larger, and then constrain that one
to the size of the box we seek, letting the other scale
proportionally automatically, thanks to the Web browser.
And, that’s exactly what we’ll do!

Big Important Caveat: I realize there’s a significant
performance penalty for letting the browser scale
images—the entire full-size image has to be downloaded,

even though you’re seeking a smaller version. If it was
a problem, you could use a tool such as ImageMagick
to scale the images and create thumbnail graphics that
were displayed instead, probably dropping them into a
cache and creating new ones on the fly as needed. But
honestly, don’t you have a high-bandwidth Internet
connection, and does an additional second or two of
load time really matter?

On to the Script!
Last month, we created the darn useful script function
figuresize, which, when given a graphic image,
returned height and width parameters when those
could be calculated. The resultant main loop in the
script ended up looking like this:

for name in *

do

if [! -z "$(file -b $name|grep 'image data')"]

then

figuresize $name

if [! -z "$height"] ; then

echo ""

echo "
$name ($height x $width)
"

else

echo ""

echo "
$name
"

fi

else

echo "$name

"

fi

done

If you read the code closely, it’s really not doing any-
thing smart with the height and width parameters, just
displaying them in the output. Instead, let’s turn that
into a test to figure out which is larger. Before I do that
though, we need to make some rudimentary improve-
ments to the loop so the output is more attractive:

for name in *

do

Displaying Image
Directories in Apache,
Part III
The incredible shrinking script knows
a better way to resize your thumbnails.

WORK THE SHELL
COLUMNS

DAVE TAYLOR

http://www.linuxjournal.com

if [! -z "$(file -b $name|grep 'image data')"]

then

figuresize $name

if [! -z "$height"] ; then

echo "<img src=$name border=0"

echo "alt=$name height=$size "

echo "align="absmiddle" />"

echo "$name ($height x $width)"

else

echo "<img src=$name border=0"

echo "alt=$name height=$size"

echo "align="absmiddle" />"

echo "$name"

fi

else

echo "$name
"

fi

echo "<hr />"

done

The result of running this improved script (where images are
clickable, there’s a horizontal rule between entries and so forth) is
shown in Figure 1.

Figure 1. Result of Running the Improved Script

http://www.asacomputers.com

Now, let’s look at how to make the script even
smarter:

if [! –z "$height"] ; then

if [$height –gt $width] ; then

dimensionlabel="height"

else

dimensionlabel="width"

fi

Can you see what I’ve done here? This lets us figure
out which of the two dimensions of the graphic is larger
and then set the dimensionlabel to that particular
dimension. Here’s the result:

echo ""

where I’ll set size to the desired thumbnail size—75 in
our example script.

I’m also going to add a few counters so we can
summarize images displayed versus total files displayed
at the end. Just because it’s, uh, interesting, right?

Here’s the latest version of the loop, and as you
might expect, it’s getting more complicated as it
becomes more sophisticated:

for name in *

do

if [! -z "$(file -b $name|grep 'image data')"]

then

imgcount=$(($imgcount + 1))

figuresize $name

if [! -z "$height"] ; then

if [$height -gt $width] ; then

dimensionlabel="height"

else

dimensionlabel="width"

fi

echo "<img src=$name border=0"

echo "alt=$name $dimensionlabel=$size"

echo "align="absmiddle" />"

echo "$name ($height x $width)"

else

echo "<img src=$name border=0"

echo "alt=$name height=$size"

echo "align="absmiddle" />"

echo "$name"

fi

else

echo "$name
"

fi

echo "<hr />"

totcount=$(($totcount + 1))

done

echo "<i>Displayed $imgcount images out of

$totcount entries total.</i>"

The resultant output, which is hopefully more attractive,
is shown in Figure 2.

Now that we can normalize these thumbnails in the
script (at least for non-JPEG images, due to a limitation
in the file command), the next thing to examine is how
to display the results with multiple images across, in a
grid or table, rather than one per line as we see now.
That’s a bit more complicated, because it involves yet
another counter, but while you’re waiting for your next
issue of Linux Journal, you might bone up on the basic
HTML table tags, because that’s what we’ll be using.
Then, finally, we’ll switch to ImageMagick from file, so
we can get the dimensions of all image files, not only
GIF and PNG files.�

Dave Taylor is a 26-year veteran of UNIX, creator of The Elm Mail System,
and most recently author of both the best-selling Wicked Cool Shell Scripts
and Teach Yourself Unix in 24 Hours, among his 16 technical books. His
main Web site is at www.intuitive.com, and he also offers up tech support
at AskDaveTaylor.com.

30 | june 2007 www.l inux journa l .com

WORK THE SHELL
COLUMNS

Figure 2. More Attractive Output

http://www.intuitive.com
http://www.linuxjournal.com

ABERDEENThe Straight Talk People
S I N C E 1 9 9 1

SM

888-297-7409
www.aberdeeninc.com/linux

STORAGE

3U 12TB Dual-Core Ready Storage Server
• Up to two Dual-Core AMD Opteron™ 2000 Series processors
• Up to 16 x 750GB (12TB) Hot-Swap SATA Hard Drives
• Internal SATA 2.5" Hard Drive Bay for OS Drive
• 800+ MB/sec sustained data throughput RAID Controller
• Up to 32GB 667/533MHz ECC Registered DDR2 SDRAM
• nVIDIA nForce Pro Chipset with 64-Bit Support
• 650W Redundant Hot-Swap Power Supply
• 55-YYeeaarr WWaarrrraannttyy

Starting at
$4,259

ABERDEEN STONEHAVEN X318

5U 18TB Dual-Core Ready Storage Server
• Up to two Dual-Core AMD Opteron™ 2000 Series processors
• Up to 24 x 750GB (18TB) Hot-Swap SATA Hard Drives
• Two Internal SATA Hard Drive Bays for Mirrored OS Drives
• 800+ MB/sec Sustained Data Throughput RAID Controller
• Up to 32GB 667/533MHz ECC Registered DDR2 SDRAM
• nVIDIA nForce Pro Chipset with 64-Bit Support
• 950W Triple Redundant Hot-Swap Power Supply
• 55-YYeeaarr WWaarrrraannttyy

Starting at
$5,679

ABERDEEN STONEHAVEN X526

6U 24TB Dual-Core Ready Storage Server
• Up to two Dual-Core AMD Opteron™ 2000 Series processors
• Up to 32 x 750GB (24TB) Hot-Swap SATA Hard Drives
• Two Rear Hot-Swap SATA Hard Drive Bays for Mirrored OS Drives
• 800+ MB/sec sustained data throughput RAID Controller
• Up to 32GB 667/533MHz ECC Registered DDR2 SDRAM
• nVIDIA nForce Pro Chipset with 64-Bit Support
• 1350W Redundant Hot-Swap Power Supply
• 55-YYeeaarr WWaarrrraannttyy

Starting at
$7,139

ABERDEEN STONEHAVEN X633

“The Ultimate Linux Server... too fast for our benchmarks... we recommend
the Aberdeen line of servers without reservation.”

Linux Journal—Aberdeen Stonehaven A261T

“terrific for video serving or other storage intensive tasks”
PC Magazine —Aberdeen XDAS

“Aberdeen surpasses HP … markedly higher scores … AberNAS 128 boasts
outstanding features”

Network Computing—Aberdeen AberNAS 128

“powerhouse performance … staggering … eye-opening … the highest
WebBench numbers to date”

PC Magazine—Aberdeen Stonehaven A261S

AMD, the AMD Arrow logo, AMD Opteron, combinations thereof, are trademarks of Advanced Micro
Devices, Inc. For terms and conditions, please see www.aberdeeninc.com/abpoly/abterms.htm. lj019

lj019.qxd 3/5/2007 6:16 PM Page 1

http://www.aberdeeninc.com/linux
http://www.aberdeeninc.com/abpoly/abterms.htm

32 | june 2007 www.l inux journa l .com

“maddog”, rang out the voice that I knew very well. It
belonged to one of my young friends, Eduardo. “Why did you
name your boat Agape? Is it because the boat is wide open?”

I stopped sanding my little sloop and faced my young
friend. “No, the word is not English, but Latin. It is not
meant to rhyme with a small fruit that is used in wine,
but to speak of the highest form of love.”

Eduardo looked at me a moment and said, “I did not
know that you spoke any languages other than English.”

“For the most part, I do not”, I answered. “I studied
Latin and French in grade school many decades ago, but
by the time I understood how valuable it was to know
multiple languages, most of that training had slipped
away. Yet, having studied Latin and French does come in
handy from time to time, as I sometimes use that forgot-
ten training to understand new words both in foreign
languages and my native English. Now, the languages
I study are mostly computer languages.”

“That is another thing”, said Eduardo. “Why are there
are so many languages when all you really need is Java?”

I put down my sanding block, leaned up against the
Agape and thought carefully for a little while.

FORTRAN was the first computer language I ever
learned. It was in 1969, and I learned FORTRAN by reading
a book called Programming the IBM 1130 in FORTRAN
and practicing on an IBM 1130 computer system that had
4,000 words of main memory and a card reader and
punch. The system also had a chain printer (you probably
do not want to know what that was) and a pen plotter.
Notice that the name of the language was FORTRAN, in all
capital letters. That is how we wrote it in that day, for it
stood for FORmula TRANslator, just like COBOL stood for
COmmon Business Oriented Language. FORTRAN was for
engineers and scientists, and COBOL was for business
people. Both languages did their jobs fairly well.

Because I was an engineering student and a co-op for
the Western Electric Corporation (a member of the Bell
System), I learned FORTRAN. Somewhere along the line,
marketing people decided that people did not like all
capital letters in names, so the language became called
Fortran. Through the years, FORTRAN (which started in the
early 1950s) became FORTRAN II, FORTRAN III, FORTRAN
IV and then started to use names related to the years that
it was updated. Today, work is being done for a definition
for Fortran 2008. Fortran is a good example of a language
(and not just a name) that changed to meet the needs
of the time.

After returning to Drexel Institute of Technology (now
Drexel University) from my co-op period, I started seeking
out more of those devices known as computers. I found
several Digital PDP-8 mini-computers in a computer lab of
the Electrical Engineering Department. Although these sys-
tems had a small language that was FORTRAN-like, called
Focal, the PDP-8 mini-computers at Drexel were mostly
programmed in assembly and/or machine language, the
ones and zeros that the machine used.

I was given some books on how to program the PDP-8
in machine language, and I taught myself how to program
using the most fundamental language of the computer.
Fortunately for me, the machine language of the PDP-8
was a very simple one, having only eight basic instructions
and one main register that acted as an “accumulator”.
Each instruction was the same length and matched the
word size of 12 bits, so the PDP-8 was simple, though
tedious, to program. The PDP-8 could not subtract (much
less multiply or divide), so you had to add the two’s
complement of the subtrahend in order to subtract.

The processors had switches and lights on the front
panel, and by toggling these switches you could input the
program directly into the memory of the system. More
important, you could step through your program one
machine language instruction at a time, seeing the results
of each instruction on the accumulator of the machine
and in the program counter (also designated by lights on
the console).

Most people did not enter their entire program
through the switches, of course; they used an ASR-33
Teletype to enter the source code of the assembly lan-
guages into an editor, punched out a source-code paper
tape, input that tape to an assembler and (finally) got an
object-level tape punched that would contain the 1s and
0s to be fed into the computer.

One turnaround of your program typically took 45
minutes at a minimum. It took five minutes to read in the
editor (paper tape). Next, you typed in your program, did a
few edits and punched out your program onto new paper
tape. Then, you read in the three-pass assembler (15 min-
utes of paper-tape reading), read in your source-code pro-
gram (assuming your paper tape did not rip) and punched
out the binary (paper) tape that contained your program.

Finally, you read your binary paper tape into the mem-
ory of the computer, watched while the program probably
over-wrote itself and everything else in real memory,
and then you started the whole process over again

Languages—Some Dead
and Some Still Kicking
There’s more to programming than Java.

BEACHHEAD
COLUMNS

JON “MADDOG” HALL

http://www.linuxjournal.com

(after cursing loudly at the programming gods).
But, it was fun and a challenge. And, it was the

“will of the machine” versus the pure logic of 1s and
0s. I was hooked.

During this same period, I switched from being an
Electrical Engineer to a major that was both engineering
and business, with a minor in what became Computer
Science. I studied several different languages: Algol, Lisp,
PL/I, SNOBOL and APL, each one with its own special niche
in the computer field.

I remember SNOBOL as a language for string process-
ing, and although I do not remember much of it, I do
remember thinking that almost any string of characters
input into a SNOBOL compiler would generate some type
of syntactically correct program. I remember thinking that
the only syntax error that might be generated was the lack
of the END statement.

APL, on the other hand, was an array programming
language that was very powerful. It even fostered its own
special set of symbols that meant you had to paint them
on the side of the keys of your regular keyboard, and (in
the case of an IBM Selectric typewriter) use a print head
specially made for APL.

In a class on comparative language design, our profes-

sor gave us a challenge of re-implementing a 40-line
FORTRAN program in as few lines of APL as possible.
Most of us reduced the FORTRAN program to three lines
of APL, some to two lines of APL. And, one of the
brightest students in the class (David Erb) had stayed
up the entire night reducing the program to only one
line of APL. It was a truly amazing line of code.

After inputting the data to the program and seeing
the correct result, the professor (with a gleam in his eye)
asked David to explain how the program worked. David,
having finished the program only hours before, tried
desperately to remember how it actually worked, but he
could not explain how he had come to that particular sin-
gle line, or even how it would produce the desired result.

As a class, we had experienced our first “write-only” lan-
guage. It was a lesson remembered over the next 38 years—
never write a program you could not easily change or re-use.

It was an interesting time in the days before Computer
Science degrees. It was more like “Computer Black
Magic”, where the computers were owned by the Math
Department, the Electrical Engineering Department, the
Business school, the Physics Department and so forth. I
even had one professor who told me I never would be
able to make a living writing software. It has yet to be

Expert I

Silicon Mechanics and the Silicon Mechanics logo are registered trademarks of
Silicon Mechanics, Inc.

Intel, the Intel logo, Xeon, and Xeon Inside are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States and other countries.

Ivan is dedicated to processes that make every server from Silicon Mechanics a model of
consistency and reliability. The build and quality processes he applies guarantee that your server
doesn’t ship until it is ready for its intended purpose.

Ivan likes the Rackform iServ R255 with two Quad-Core Intel® Xeon® Processors
5300 series. Its redundant power supply, four hot-swap drive bays, and two PCI
expansion slots combine to make it an ideal 1U server for space-constrained,
mission-critical deployments.He knows the Rackform iServ R255 will take
advantage of Intel’s proven reliability, while providing breakthrough
performance and energy effi ciency.

When you partner with Silicon Mechanics, you get more than a fi nely tuned
Intel solution—you get an expert like Ivan.

seen if he was correct.
And, as time went on and computers became more

and more important to the world, universities started
granting Computer Science, Computer Engineering,
Network Engineering and Information Science degrees.
And, what we experienced as very painful steps toward
understanding these procedures became formalized into
what we now call (generally) Computer Science.

I eventually graduated from Drexel University, and in
looking for my first job, I was determined that I would not
program in a “higher-level language”, such as FORTRAN
or COBOL. I wanted to program in assembly language. I
turned down many jobs, looking for that chance.

Eventually, that chance came to me: to program in the
systems programming group of Aetna Life and Casualty in
Basic Assembly Language (BAL) for the IBM 360 series com-
puter—an assembly language and computer system I had
never seen before. They asked me if I could program it in
assembly language. I said, “Sure, just show me the book.”

Fortunately there was a book, Programming the IBM
360 in BAL, and after reading it and practicing a few
days at Aetna, I started a four-year career of system
programming there—a time in my life where I learned
many, many things.

The one “language”, if I may call it that, which sus-
tained me over the years, however, was the 1s and 0s of
machine code.

It was machine code that allowed me to learn
how compilers and interpreters can translate different
languages to what the machine can follow. It was
machine code that showed me how reentrant and
recursive languages worked, and how minute changes
in the code of a program could cut many minutes, if
not hours or days, off a program’s execution.

It was the study of machine code and machine
architecture that allowed me to know how the operat-
ing system really worked, and allowed me to under-
stand the protocols of networking. And, it was machine
code and looking at the sources of it that let me under-
stand the issues of big-endian versus little-endian and
single-precision versus double-precision.

And, it was the knowledge of machine language that
allowed me to find places where the compilers had made
mistakes in doing the translation of source code to those 1s
and 0s. People who knew only higher-level languages could
have kept looking at the source code of those high-level
languages forever and would not have found the problems.

Nevertheless, other than brief excursions into teaching
machine and assembly language courses (the last time
was in 1985 when I taught a course in PDP-11 assembly
language, another assembly language that I taught myself),
I have not actually written in assembly or machine language
since I left Aetna in 1977.

The simple reason is that it takes too long to write in
those low-level languages, and it is too error-prone.
Compiler optimization techniques have gotten better,
CPUs faster, memories cheaper and people’s time more

expensive. Don’t get me wrong; there still are plenty of
places where assembly language and machine code are
used, particularly in places that need absolutely the best
performance or the smallest size. But overall, the compilers
are doing a pretty good job, and the average person’s
mind does not adapt well to the tedious task of writing
in assembly.

Yet, when I do sit down and write a bit of code in
some modern language, I do two things:

� I think about whether there is a language that can
do the program better and in a clearer, more human-
maintainable way.

� I think about what that language may be generating in
machine language and whether changes to the source
code or to the algorithm or to the way the data is
positioned in memory might affect the speed at which
the program runs.

A friend of mine, David Mossberger, once did a study
of multiplying two very large arrays. One multiplication
was done in the standard linear-algebra “textbook” fashion
of analyzing rows and columns. The second multiplication
took into account the cache of the CPU and memory,
knowing how the 1s and 0s were arranged. The second
multiplication took one-fortieth of the time on an
Alpha processor (which had large cache memories),
and one-tenth of the time on an Intel processor (with
smaller cache memories).

During the years, I have been exposed to many new
languages and many new technologies. I have been able
to understand each and every one because I stop to think
about what the 1s and 0s are doing. There have been
few new computer technologies that have stumped me
in the past 38 years.

This is why I object to colleges and universities who
feel that high-level languages, such as Java (or Python, or
PHP, or you name it) are the only languages worth teach-
ing, and that machine and assembly languages are not
worth teaching to students.

In the end, it all comes down to 1s and 0s, and if you
do not know what they are doing, and how the machine
actually works, you are at the mercy of others.

In a lot of ways, machine code and assembly language
are like Latin—perhaps little used, but still useful to know
for the serious language enthusiast and programmer.

Carpe diem from the Agape.�

Jon “maddog” Hall is the Executive Director of Linux International (www.li.org), a
nonprofit association of end users who wish to support and promote the Linux
operating system. During his career in commercial computing, which started in
1969, Mr Hall has been a programmer, systems designer, systems administrator,
product manager, technical marketing manager and educator. He has worked for
such companies as Western Electric Corporation, Aetna Life and Casualty, Bell
Laboratories, Digital Equipment Corporation, VA Linux Systems and SGI. He is
now an independent consultant in Free and Open Source Software (FOSS)
Business and Technical issues.

34 | june 2007 www.l inux journa l .com

BEACHHEAD
COLUMNS

http://www.li.org
http://www.linuxjournal.com

http://www.polywell.com/us/lj

36 | june 2007 www.l inux journa l .com

The best LinuxWorld Expos were the early ones. There
were two in 1999 alone, both in the San Jose Convention
Center. The second one, in August, had an official atten-
dance of 14,278. It felt like ten times that many. My
favorite memory of that show was sitting among thou-
sands of geeks packed into a vast space where they could
hear (though barely see) Linus Torvalds speak, hanging on
every word as if Linus were Billy Graham calling the
Faithful to a crusade. Never mind that Linus’ whole schtick
was the antithesis of box office, and that most of what he
wanted to talk about—as always—was incremental
progress on the Linux kernel.

Linux energy back then was like the electric charge
that swells in hills below a gathering thundercloud. The
high-tension wires that crossed the computing world
sparked and glowed with vast anticipation of a world
where the advantages of open over closed, free over
captive, common over exclusive, were all as plain as
day to the Faithful—but to few others.

Now the storm has passed, lightning has flown, and
the world we expected is largely here. In GhandiCon
(www.faqs.org/docs/jargon/G/GandhiCon.html) terms
(first they ignore you, then they laugh at you, then they
fight you, then you win), we’ve pretty much arrived at
GhandiCon Four. Of course, the future is not evenly dis-
tributed. Desktop Linux, for example, has been arriving
asymptotically for years. All we need to close that gap is
one smart hardware OEM move, which has to happen
eventually. (See UpFront for the Dell IdeaStorm story,
which is very encouraging.)

Meanwhile, the device drivers keep piling up. If we
spelled out the whole LAMP stack, it would be more than
145,000 letters long. Today, it’s kinda hard to build “solu-
tions” to anything requiring computing and Net connec-
tions and not to take advantage of so many free and open
building materials. There is also a huge demand market for
smart techies who not only know how to build with those
materials, but how to improve them as well.

Yet the number of Linux queries (www.google.com/
trends?q=linux) on Google has trended downward
during the past two years. Although the news volume has
held steady, the query volume today is about half what it
was at the end of 2003. (That’s as far back as Google
goes, and it doesn’t give precise numbers.)

That’s why fighting for Linux today is like fighting for
geology, botany or the periodic table. There may be
some holdouts around less sensible paradigms, but
what’s the point? The Linux Revolution has become the
Linux Establishment. We’ve won. Now what?

Good question. (That’s what you say when you don’t

know the answer. Good question.) Here at Linux Journal, we
like a good cause as much as the next magazine. And, we’d
like to celebrate Linux’s victory in exactly the way you’d
expect any born fighter to behave: by looking for new fights.

Fights are naturally interesting. That’s what story theory
says. For a story you need only three elements: 1) a protag-
onist—somebody or something you care about and can
identify with; 2) a problem against which the protagonist
struggles; and 3) movement toward a resolution. You don’t
have a story if your protagonist isn’t interesting, the problem
is pointless, or if there’s no movement toward an end state.
That’s why sports and war stories are so compelling.

So, what will our story, or stories, be? I’ll suggest four
and leave the rest up to you.

Citizens vs. Carriers
Linux and the Net have grown together ever since Apache
became the standard Web server in the mid-1990s. Yet
while Linux rocks on, the Net is becoming trapped in carrier
silos. Net users today are no less trapped by their phone
or cable companies than personal computer users in 1999
were trapped by Microsoft Windows.

The difference is that every carrier is its own Microsoft,
every Net service is as crippled as Windows, and customer
choice (in the US, at least) is between Tweedle-telco and
Tweedle-cableco—or just one of those. These carriers still
look relatively good to customers because the connection
speeds they offer (labeled “broadband” or “high speed”)
are many times higher than dial-up. It’s too easy to forget
that dial-up was what broke Net access wide open, making
it available to nearly everybody—and did it in spite of the
phone companies, rather than because of them. If it hadn’t
been for the original dial-up ISPs—The Little Garden, Panix,
Batnet, Earthlink and even AOL—the Net still would belong
only to universities, government and big business.

Now customers think the Net is gravy on top of their
phone or cable TV services. They don’t realize that the Net is
the real base utility, and that it can carry any kind of gravy
you like, including telephony and television. Almost nobody
talks about all the businesses a wide-open Internet makes
possible, mostly because the cablecos and telcos support
consumption and discourage production. The “Net
Neutrality” fight is a red herring. Most “high-speed Internet”
customers have never experienced truly neutral service.
Instead, they’ve enjoyed asymmetrical bandwidth and port
blockages, without ever tasting what they’ve been missing.

Things are much better in some other parts of the
world. Japan and Korea have notoriously high bandwidth
at low prices, for example. The country with the highest
broadband penetration is Denmark, with Estonia not far

Picking New Fights
Now that Linux has won, what’s the next cause to take on?

LINUX FOR SUITS
COLUMNS

DOC SEARLS

That’s why
fighting for

Linux today
is like

fighting for
geology,

botany or
the periodic

table.

http://www.faqs.org/docs/jargon/G/GandhiCon.html
http://www.google.com/trends?q=linux
http://www.google.com/trends?q=linux
http://www.linuxjournal.com

behind. However, all is not rosy there either.
Networks may be fast in Korea, but
Microsoft’s market share in many categories,
including desktops, verges on 100%.
Broadband growth in Europe has recently
slowed in regions (including Denmark) where
incumbent carriers are making comebacks.

The big fight here is between indepen-
dence and dependence, between citizens
and monopolies (or duopolies), between
local initiatives—backed in many cases by
local governments—and some of the nastiest
state and federal politics you’re ever going to
find. In every case, the protagonists are indi-
viduals, local groups, local companies, local
governments and local utilities.

The problem they face is a combination of
duopoly entrenchment and well-lobbied protec-
tion at the federal and state levels. The telcos
alone are the biggest-spending lobbying group
in US history—even bigger than the pharma-
ceuticals. And, they don’t just work Congress.
Some carriers are working at the state level to
make it against the law for anybody to carry
the Internet other than themselves.

Linux folks can help enormously here,
because Linux techies—our readers—know
how to build good, strong, reliable, easily fixed
and easily improved solutions. And, they know
how to do it on the cheap. We’ve been water-
ing grass roots for up to two decades or more.
Stallman taught us what freedom means, and
Torvalds taught us how to have fun putting it
to use. We have a lot of leverage.

Mobile: the Ultimate
User Space
Sometime this year there will be more than
three billion mobile phones in the world. To put
that in perspective (relying on last month’s LJ
Index), compare that to 1.4 billion credit cards,
1.3 billion land lines, 1.1 billion Net connec-
tions, 800 million cars, 200 million computer
games, 100 million PVRs and 85 million iPods.

Cell phones are networked computing
devices. A growing percentage of them
run on Linux. Yet the OpenMoko
(openmoko.com) and Trolltech’s Qtopia
Greenphone (www.trolltech.com/products/
qtopia/greenphone), both wide-open
working prototypes, are rarities. They face an
enormous uphill battle against silo’d alliances
between cell service carriers and equipment
makers, such as Nokia and Motorola.

Yet the world needs open phones. In fact,
I’d hazard a prophesy that open phones are
inevitable, because there will be far more

money to be made because of open phones
than will ever be made with closed ones (and
closed services offered only by carriers). We’re
starting to see vertical cracks in the closed
wall of mobile telephony in settings such as
universities, where rogue companies like Rave
Wireless (disclosure: I consult them) provide
students with custom (based on open)
phones that run on familiar networks (such as
Cingular and T-Mobile), but that do far more
than the closed phones sold at stores by
those same networks. Users are even free to
do their own programming, create and add
their own features and services. With each
crack of this kind in a vertical market, the
chance improves that open phones will
become the norm rather than the exception.

The protagonists here are Linux techies,
but working a much larger world of possibili-
ties. The problem, as ever, is less a matter of
closed systems than of the mentality behind it.

Once markets start to open up, it will be
easy to fill whole magazine issues with stories
of clever hacks and deployment successes.

Desktop and Laptop Linux
Desktop Linux has been approaching without
ever arriving since the mid-1990s. Most Linux
Journal readers are there already, of course.
But they’re wizards. The muggles are still on
Windows and Mac boxes. What we’ve need-
ed for the duration is one or more of the
major hardware OEMs to wake up and smell
the volume. Last year, Lenovo began selling
Linux-loaded ThinkPads in a committed way,
but not aggressively. Lenovo didn’t push it.
This year, Dell set out bait in the form of
IdeaStorm, a site that had all the look of a
“conversational” marketing ploy, but instead
served as a hole in the Windows-only dike
that has been holding the Linux desktop river
outside of Dell’s headquarters for the dura-
tion. That hole quickly widened to a river of
its own, flooding through Dell’s product
development system. (See the IdeaStorm
story in this issue’s UpFront.)

I’d love to be a fly on the wall when
Michael Dell tells Steve Ballmer that Dell will
be selling Linux-branded laptops and desktops
in a much more public way, because the com-
pany has no choice: the market demands it.

HP, Sony and the rest won’t be far
behind. As the volume grows, so will the
portfolio of applications and the sum of
expertise about Linux desktops and laptops.

This is a category that will explode very
quickly. I’m willing to bet right now that in

http://www.trolltech.com/products/qtopia/greenphone
http://www.trolltech.com/products/qtopia/greenphone
http://www.shoprcubed.com

June 2008, Linux Journal will have an unavoidably personal
focus to every issue—for the simple reason that there will
be too much going on with desktops and laptops.

Or maybe not. We don’t know yet. Lenovo, HP and
Dell may continue quietly to fill orders for desktop Linux
without ever marketing it aggressively. This won’t go on
forever, but the asymptote may still stay flat for another
year, two or three.

Meanwhile, desktop and laptop Linux are still worth
fighting for, just like we’ve been doing for the last decade
or more.

DIY Everything
I have a confession to make. Or a Make to confess. I love
Make magazine. I wish we’d done something like that
first. Kudos to Dale Daugherty and the O’Reilly folks for
pulling that one off and doing a great job with it—also for
not running too much Linux-type stuff in there.

When I started with Linux Journal in the late 1990s,
we were basically a how-to magazine. To a large degree,
we still are. Most of our readers are hands-on types in any
case. Problem solvers. Most of our writers (myself exclud-
ed) are too.

So I’m wondering...now that Linux is (or can be) in
nearly everything, what can we make or fix that’s one or
more layers up? What can we do with MythTV that’s
beyond a set-top box? Pluto is a cool (and Linux-based)
whole-home automation, security, entertainment and tele-
com system. But, it’s still a system. A deep and under-
appreciated (and under-deployed) virtue of openness is
modularity. You want to be able to mix and match differ-
ent stuff from different makers, including (especially) your-
self. We should be making Legos with Linux, not just
embedding it in finished closed products that work only
with themselves.

Here the fight is for the right and ability to build what
you want, any way you want to build it. Although Make is
oriented toward doing fun hacks on already-made stuff
(turning a mouse into a robot or adding temperature con-
trol to a coffeemaker), we’d angle more toward making
the modules, and the things-with-modules that allow
anybody to build anything. Our protagonists would be the
same DIY-ers we’ve had all along, but the problem would
be Building Anything. Fun problem.

Years ago, I talked about how the software industry
was turning into a construction industry—when architects,
designers, builders and their specialties would all be inde-
pendent of any one company’s platform or development
environment. Now we’re almost there, but not quite. The
fight here is to make Linux and its endless variety of
“stacks” into the base materials with which people can
put together using their own virtual Home Depots.

Freedom vs. Control
Although it’s easy to point to the exemplary successes of
Linux-built giants such as Google and Amazon, it’s just as
easy to overlook the degree to which the practical value

system behind Linux development has become the default
approach to networked progress.

Yet even as Linux and the LAMP+ stack have
become standard building materials, there’s nothing to
stop them from being used in service of a proprietary
mentality that seeks to lock in customers, lock out
competition and lock down markets. As Steven Hodson
puts it (www.winextra.com/?p=354):

Many would like to believe that the best and

strongest weapon against the old guard of technol-

ogy is the Open Source movement, but what they

don’t see is that they have already been co-opted

and have just become another way to make

money. While the roots of the OSM (Open Source

movement) may still technically be free to all, the

old guard is quickly locking up parts of it with ser-

vice contracts and corporate licensing.

It’s still customary for VCs to ask their potential portfo-
lio companies, “What’s your lock-in?” This is an Industrial
Age mentality that needs to be exposed as a value-
subtracting anachronism in a world where creation and
choice yield abundances that can be put to countless pro-
ductive uses. You should want to build goods and provide
services that customers choose freely. You should keep
customers because they want to stay, not because you’ve
trapped them in a silo.

Even Steve Jobs this year came out and said the record
industry would be better off without DRM. That’s because
he’s no less trapped than any of his customers.

The protagonist here is nothing less than the cause of
freedom, which will never be old Gnus. (Pun intended.)
The problem here—the enemy—is a mentality that’s as old
as the Industrial Age.

The battle for freedom, of course, is one we’ve been
fighting all along. The difference now is that the logic of
lockup is more and more exposed, and its flaws are more
and more evident—though not yet widely obvious.

The fight, then, will shift from ideals to practical mat-
ters. How do you make money by building with free stuff
and putting it to use, rather than just by selling it? How is
software more useful and important as it becomes less
and less of an industry? How do you get more work done,
and become more valuable as a contributor because
you’re working with free and open goods?

These are still new questions, even though Linux
Journal has been a living answer to all of them since 1994.

What’s Your Story?
So now the question goes to the floor. What are the Good
Fights you want to read about in Linux Journal? You tell
us. Write to ljeditor@linuxjournal.com.�

Doc Searls is Senior Editor of Linux Journal. He is also a Visiting Scholar at the
University of California at Santa Barbara and a Fellow with the Berkman Center
for Internet and Society at Harvard University.

38 | june 2007 www.l inux journa l .com

LINUX FOR SUITS
COLUMNS

Net users
today are

no less
trapped by

their phone
or cable

companies
than personal

computer
users in

1999 were
trapped by

Microsoft
Windows.

http://www.winextra.com/?p=354):
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

- - - - - - -

- - - - - - -

- - - - - - -

Designed to deliver exceptional availability,
simplified manageability, outstanding performance
and revolutionary scalability to help you build a
cost-effective, flexible IT infrastructure

Ideal choice for small businesses looking for
their first server or to upgrade an existing
server

True SATA II 3Gb/s storage server
configured with dual Xeon CPUs and room
for a tape backup

SERVERS DIRECT CAN HELP YOU CONFIGURE YOUR NEXT HIGH PERFORMANCE SERVER SYSTEM - CALL US TODAY!

1.877.727.7887 | www.ServersDirect.com

Our flexible on-line products configurator allows you to source a custom solution, or call and our product experts are standing by to
help you assemble systems that require a little extra. Servers Direct - your direct source for scalable, cost effective server solutions.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, Pentium, and Pentium III Xeon are trademarks of
Intel Corporation or it’s subsidiaries in the United States and other countries.

AIC 5U Rackmountable with 950W Triple
Redundant Power Supply

Supermicro Super X7DBE Server Board with
Intel® 5000P (Blackford) Chipset

Intel Dual-Core Xeon 5050 Processor 3.0GHz
667MHz

Total 1024MB, 2pcs x 512MB Kingston DDR2
533MHz FB-DIMM ECC

Seagate SATA II 400GB 7200 RPM 16MB
Cache SATA 3.0Gb/s Hard Drive

24 x 1" Hot-swap Drive Bays

Intel® (ESB2/Gilgal) 82563EB Dual-port
Gigabit Ethernet Controller

Intel ESB2 SATA 3.0Gbps Controller RAID 0, 1,
5, 10 support

*

*

*

*

*

*

*

*

SDR-5500T

Supermicro 4U Rackmountable / Tower Chassis
with 800W High Efficiency Redundant Power
Supply

Supermicro Super X7DBE+ Server Board

Intel Dual-Core Xeon 5030 Processor 2.6GHz
667MHz

Total 1024MB, 2pcs x 512MB Kingston DDR2
533MHz FB-DIMM ECC

Seagate SATA II 400GB 7200 RPM 16MB Cache
SATA 3.0Gb/s Hard Drive

8 x 1” Hot-swap Drive Bays

Intel® (ESB2/Gilgal) 82563EB Dual-port Gigabit
Ethernet Controller

Intel ESB2 SATA 3.0Gbps Controller RAID 0, 1, 5,
10 support

*

*

*

*

*

*

*

*

$1,999STARTING
PRICE $5,399STARTING

PRICE

SDP-7045B-TR+B

3U Chenbro Rackmount Chassis with 600W power
supply

Intel S5000PSLSATA Xeon 5000P Server Board

Intel Dual-Core Xeon 5030 Processor 2.6GHz
657MHz

Total 1024MB, 2pcs x 512MB Kingston DDR2
533MHz FB-DIMMECC

Seagate SATA II 80GB 7200 RPM 8MB Cache SATA
3.0GB/s Hard Drive

12 x 1” Hot-swap SATA Drive Bays

Dual-port Gigabit Ethernet Controller

Intel SATA 3.0 Gbps 6-PORT Controller RAID 0, 1, 10
support

*

*

*

*

*

*

*

*

$1,699STARTING
PRICE

SDR-3111T
3u Mission Critical Application server 5U advanced Storage Server2U Application Server

2U Chenbro Rackmount Chassis with 600W
 power supply

Supermicro X7DVL-E Server Board with
Intel® 5000V (Blackford VS) Chipset

Intel Dual-Core Xeon 5030 Processor 2.6GHz
667MHz

Total 1024MB, 2pcs x 512MB Kingston DDR2
533MHz FB-DIMM ECC

Seagate SATA II 80GB 7200 RPM 8MB Cache
SATA 3.0Gb/s Hard Drive

6 x 1" Hot-swap SATA Drive Bays

Intel® (ESB2/Gilgal) 82563EB Dual-port Gigabit
Ethernet Controller

Intel ESB2 SATA 3.0 Gbps Controller RAID 0, 1,
5, 10 support

*

*

*

*

*

*

*

*

$1,299STARTING
PRICE

Ideal solution for a stable business-critical
application server that minimizes
deployment and support costs

SDR-2501T

SDR-6015T-TB 1U Data Center Clustering Server

* Dual-processor Quad & Dual Core Intel® 64-bit Xeon® Support

* Up to 32GB DDR2 667 & 533 SDRAM Fully Buffered DIMM (FB-DIMM)

* 2x Intel® (ESB2/Gilgal) 82563EB Dual port Gigabit Ethernet Controller

* 2x Hot-swap SATA Drive Bays

* 900/980W High-efficiency Power Supply

Two systems (nodes) in a 1U form factor. Each node
supports the following:

* High Density Computing Technology

* Reducing Cost, Engery and Space Requirements

* Support up to 16 processor cores Quad Xeon 5300 Series

1U TwinTM Innovation

SERVERS THAT WORK SMART
SAVE TIME AND REDUCE OPERATIONS COSTS WITH THE DUAL-CORE INTEL® XEON® PROCESSOR IN YOUR SERVERSDIRECT SYSTEM

MORE PRODUCTS, BETTER SERVICE, GUARANTEED.
GO STRAIGHT TO THE SOURCE!

http://www.ServersDirect.com

40 | june 2007 www.l inux journa l .com

NEW PRODUCTS

OpenSTV
Ever feel like voting your conscience by supporting the Penguin Party rather than settling
for the lesser of two “Republicrat” or “Demopublican” evils? To solve this dilemma,
alternative (and Constitutional and increasingly popular) voting methods, such as single
transferable vote (STV) and instant runoff voting have evolved that allow one to rank
candidates in an election. If your Penguin Party candidate has no chance in hell to win,
your vote counts instead for your lower-ranked choice who has a shot at winning.
Sorting out these voting preferences is the job of OpenSTV, now in version 1.1, an
open-source application that tabulates votes according to the respective voting rules.
Data generally comes from from paper ballots and is dumped into OpenSTV. The lead
developer says that “some of the voting rules have been extensively verified by com-
paring the results over hundreds of elections against other software”. OpenSTV runs
on Linux, Mac OS X or Windows and can be downloaded from SourceForge.

stv.sourceforge.net

TotalView Technologies’
MemoryScape
The company you’ve known as Etnus has rechristened itself as TotalView Technologies,
and to celebrate, it has released version 2.0 of its MemoryScape standalone interactive
memory debugger. MemoryScape “helps developers identify, inspect and resolve diffi-
cult memory problems in C, C++ and FORTRAN, including complex multiprocess and
multithreaded programs”, says TotalView. Some key features include tools that allow
developers “to monitor heap memory, view memory usage, locate memory leaks, track
memory events and show corrupted memory”. Developers also can save and compare
memory states, compile memory reports and find memory problems without recompil-
ing. New features in MemoryScape 2.0 include support for MPI programs and remote
memory debugging. A trial version is available for download from TotalView’s Web site.

www.totalviewtech.com

Introversion Software’s DEFCON
The UK’s Introversion Software was proud to tell us that it is “keen support-
ers of the Linux community” and, therefore, is releasing its third and latest
Linux-based game, DEFCON. DEFCON is an on-line, competitive, multiplayer
strategy game based around the theme of global thermonuclear war.
Inspired by the 1983 cult-classic Wargames, the game “evokes the tension,
paranoia and suspicion surrounding the Cold War era”. The player assumes
the role of a general hidden in an underground bunker, whose mission is to
exterminate the enemy’s civilian population while simultaneously disabling
the enemy’s ability to retaliate. PC Gamer UK described DEFCON as “pure,
deep, utterly unconscionable fun”. A Windows version is already available.
Introversion should get an award for best URL to boot!

www.everybody-dies.com

Xandros Server
Xandros’ new Server 2.0 just hit the streets and contains new features like
integrated OpenDocument collaboration and comprehensive server backup
and restore. The OpenDocument collaboration extension, created in tandem
with the firm O3Spaces B.V., “provides OpenDocument and MS-Office docu-
ment collaboration, management and retention services” and serves as an
alternative to the Microsoft Office SharePoint server. For server backup and
restore, Xandros has integrated SEP AG’s “SEP sesam application, which pro-
vides comprehensive data security for the Xandros Linux Server, including full
integration with its new Scalix 11 collaboration platform”.

www.xandros.com

�
�

�

�

http://www.everybody-dies.com
http://www.linuxjournal.com
http://www.totalviewtech.com
http://www.xandros.com

www.l inux journa l .com june 2007 | 41

NEW PRODUCTS

Woven Systems’ EFX-1000 Ethernet Fabric Switch
Woven Systems has put more than a beach bucket’s worth of VC money into its new switch product, the EFX-1000. The end result, says
Woven, is the first of a new class of Ethernet Fabric Switches, intended to meet the needs that accompany multicore servers, server consolida-
tion and virtualization, IP storage and data center grids. Ethernet Fabric Switches can be interconnected to build “resilient, low-latency, non-
blocking meshed Layer 2 fabrics scaling to more than 4,000 10GbE ports”. The 10GbE EFX-1000 switch “incorporates the performance and
low cost of InfiniBand, the reliability of Fibre Channel, and the plug-and-play interoperability of Ethernet”, all at a significantly reduced per-port
price. Woven Systems has been dubbed one of the “Top 10 Startups to Watch” by the publication Byte and Switch due to its “potentially
disruptive data center technology”, as well as “Cool Vendor” by the Gartner Group.

www.wovensystems.com

Moonwalk Software Suite
The Aussie firm Moonwalk made its own giant leap for our kind, this one to
these North American shores, by unveiling version 6.0 of its self-titled, “all-
inclusive data management and protection software”. Moonwalk’s raison
d’être is to “automate and proactively manage the migration, copying and
movement of data transparently throughout the enterprise” regardless of plat-
form, including Linux, Windows, UNIX and NetWare. The application exploits
secondary over primary storage by migrating, copying and moving data accord-
ing to user-defined rules and policies based on criteria such as age, size, file
type, filename, file creator and so on. It further “dispenses with tiered or hier-
archical storage approaches and SRM applications that merely provide visibility
into storage usage”. Moonwalk is compatible with available backup solutions.

www.moonwalkinc.com

Concurrent Real-Time
Computing Solutions
The real-time computing specialist, Concurrent, released three new products in April 2007, name-
ly its RedHawk Linux 4.2, NightStar Tools 4.1 and SIMulation Workbench. First, the new release of
RedHawk, Concurrent’s real-time Linux OS, features a 2.6.18.8 Linux kernel with many of Ingo
Molnar’s accepted real-time patches, performance and stability enhancements, support for the
latest Intel quad-core processors and 32/64-bit OSes on AMD Opteron processors. Second,
NightStar Tools 4.1, an integrated toolset for developing time-critical applications, adds an
enhanced Qt-based GUI, an application illumination feature and tuning enhancements. Finally,
SIMulation Workbench is a new simulation software product to simplify real-time modeling, pro-
viding a complete framework to develop and execute real-time hardware-in-the-loop simulations.

www.ccur.com

Pogo Linux’s StorageDirector 3000
Our pals at Pogo Linux passed on news of their new series of network attached storage
(NAS) appliances, called StorageDirector 3000. The philosophy behind StorageDirector is
to take a “simple, efficient approach to storage management”, leveraging open architec-
tures to reduce costs yet “still providing a high-end feature set” that targets Pogo’s core
customer, “the SMB with enterprise aspirations”. Powered by the custom StorageDirector
OS, the new product line enables the following: simple, secure management of storage
and backup via a Web browser; cross-platform file sharing and utilization of all major file-
sharing protocols; disaster recovery and backup; multi-pathing; advanced monitoring and
alerts and both hardware and software RAID, including RAID 6 (double-parity). Customers
can configure their own StorageDirector 3000 on Pogo’s Web site.

www.pogolinux.com/go/sd3000

Please send information about releases of Linux-related products to James Gray at newproducts@linuxjournal.com or New Products
c/o Linux Journal, 1752 NW Market Street, #200, Seattle, WA 98107. Submissions are edited for length and content.

�

�

�

http://www.moonwalkinc.com
http://www.wovensystems.com
http://www.linuxjournal.com
http://www.ccur.com
http://www.pogolinux.com/go/sd3000
mailto:newproducts@linuxjournal.com

42 | june 2007 www.l inux journa l .com

If you are an application developer, you’re probably working
with large quantities of data. And, if that data is anything more
complex than a hash table, you might want to consider moving
some or all of it into a relational database. Relational databases
are designed for reliable and flexible retrieval of data. The magic
of a relational database is not the use of two-dimensional tables
to store all of the information, but it’s the fact that tables can be
combined in many different ways and manipulated using the SQL
query language.

As we saw in my database articles in the last two issues of LJ,
open-source programmers are fortunate enough to have several
database options at their disposal. By far, the two most popular
open-source relational databases are MySQL and PostgreSQL. Each
has a large and loyal following, and each continues to improve
with every successive version.

And, when I write “large and loyal following” above, I’m not kid-
ding. MySQL and PostgreSQL have long been at the center of a major
flame war within the Open Source world. If someone on Slashdot
dares say something about one of these products, you can be sure
it won’t be long before someone writes a nasty (and often childish)
note about the other one. These disagreements often reflect the
knee-jerk attitudes of uninformed users, but there have been no
shortage of attacks from well-known and informed users of these
products as well.

I believe there are circumstances when either MySQL or
PostgreSQL might be an appropriate choice. I’ve strongly preferred
PostgreSQL in my work during the last decade—yet, there definitely
are times when MySQL seems to be the more appropriate solution.

So, despite my personal biases and the risk of opening a flame
war within the Open Source community, I now conclude this series
about open-source databases with a comparison between MySQL
and PostgreSQL in a number of different categories. I hope by the
time you finish reading this article, you understand that choosing a
database is almost never a matter of finding the “fastest” or “best”
product, because there is no one way to measure the quality or
appropriateness of a relational database server. Rather, I hope
you’ll be able to consider each of these on the basis of its own
merits, rather than on the propaganda that is so widespread.

Data Integrity
Perhaps the first and foremost task of a database is to store and
retrieve data reliably. Just as you wouldn’t want to use a hard disk that
occasionally loses data, you don’t want to put things into a database
that occasionally mangles its contents. This is true even if the reliability
comes at the expense of speed.

The gold standard for reliability in the database world has an
acronym, ACID (Atomicity, Consistency, Isolation and Durability). This

means that under all circumstances in the database, the following
hold true:

� Atomicity: each query is guaranteed to complete or not, without
any possibility of halfway or incomplete states.

� Consistency: the database is always in a legal state before and after
a transaction.

� Isolation: each transaction occurs separately from other actions, so
that you can’t have two transactions interfering with one another.

� Durability: transactions persist over time, typically by being stored
on a filesystem.

The attitude toward ACID within the PostgreSQL community has
been unchanged since I first started to use it a decade ago, placing it
as the highest possible priority. This doesn’t mean PostgreSQL is lack-
ing in other features, but rather it means the developers have worked
to ensure that data stored in a PostgreSQL system will be consistent
and reliable, even if you do nasty things such as issue a kill -9 or
pull the plug.

During the past few years, PostgreSQL has begun to offer even
better support for transactions and database stability, using write-
ahead logs (WALs) that describe each action taken by the database.
These WAL files can be used to recover from a disaster or even to
recover the database to an earlier point in its history—a feature
known as point-in-time recovery (PITR). Thus, if you know something
happened yesterday, but the database was working perfectly two days
ago, you could use PITR to recover to the earlier, stable state. Recent
versions of PostgreSQL also support two-phased commit, a type of
transaction you’re likely to see in a distributed system where multiple
servers must coordinate their actions.

MySQL has had a mixed attitude toward ACID during the years.
When I first started to use MySQL in 1995, the authors’ attitude was
that transactions should be handled by the application, not the database.
Indeed, as recently as 2000, the to-do list for MySQL included tasks
having to do with production-quality transaction-safe tables. This has
led to a great deal of bad blood between the MySQL and PostgreSQL
communities, with members of the latter sometimes claiming that no
critical data should ever be stored in MySQL.

The good news is that modern versions of MySQL do indeed
support transaction-safe tables, using InnoDB, a third-party product
released under the GPL that has been integrated into MySQL for several
years. Moreover, InnoDB appears to use techniques that PostgreSQL
and Oracle have used for years, such as MVCC (multi-version concur-
rency control). The bad news is that at least some benchmarks I’ve

Open-Source Databases,
Part III: Choosing a Database
Which database is right for you? MySQL or PostgreSQL? REUVEN M. LERNER

QUICK TAKES

http://www.linuxjournal.com

www.l inux journa l .com june 2007 | 43

seen indicate that InnoDB has some problems scaling to large numbers
of simultaneous queries.

In addition, the company that develops InnoDB recently was
bought by Oracle, which might lead some people to worry about
future licensing, development and pricing issues. For the time being,
this latter issue does not appear to be a serious one, because Oracle
and MySQL signed a contract in 2006 extending the licensing for
InnoDB. But, MySQL does not appear to be taking any chances and
has hired several experts to create a new table structure that will be
owned by MySQL and thus be impervious to such business problems.

I’m personally of the persuasion that true ACID compliance is
always a good thing to have around, much like seat belts in a car.
Sure, you can drive without a seat belt, and the odds are that nothing
will happen to you. But, it’s impossible to predict when something bad
might happen, and you really don’t want to be without a seat belt
under such circumstances. In the same way, if your data is important
to you, it’s best to ensure that it will persist with integrity.

A related problem has to do with the degree to which each
database enforces constraints and limits. PostgreSQL tends to be quite
stringent on such matters, refusing to accept illegal data. MySQL tries
to be more forgiving and flexible, but that can result in strange and
illegal data being stored.

For example, consider the following set of MySQL commands,
in which we create a table foo with a single column (named a) of
type DATE:

mysql> CREATE TABLE foo (a date);

Query OK, 0 rows affected (0.08 sec)

mysql> INSERT INTO foo (a) VALUES ('2007-feb-30');

Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SELECT * FROM foo;

+------------+

| a |

+------------+

| 0000-00-00 |

+------------+

1 row in set (0.00 sec)

By contrast, this is what happens in PostgreSQL:

atf=# CREATE TABLE foo (a date);

CREATE TABLE

atf=# \d foo

Table "public.foo"

Column | Type | Modifiers

--------+------+-----------

a | date |

atf=# INSERT INTO foo (a) VALUES ('2007-feb-30');

ERROR: date/time field value out of range: "2007-feb-30"

It is possible to configure MySQL to be more strict on such issues,
but most users will not think to do so and will be stuck with illegal
values in their tables.

Given the political and technical issues at MySQL, as well as the
weird (and potentially dangerous) default behavior in MySQL, I believe
that PostgreSQL has a big edge on issues of data integrity.

Features
MySQL and PostgreSQL offer a very large number of built-in features,
many of which have been added in response to community requests
and reactions. Both offer a large number of data types, which can be
mixed and matched within a single row without restrictions. (The very
limiting row-length restriction that plagued versions of PostgreSQL is
now ancient history, I’m happy to say.) Both databases now support
Unicode characters; MySQL supports both UCS-2 and UTF-8 encoding,
and PostgreSQL supports only the latter.

Both databases also offer a very large number of functions
that manipulate data, including strings and dates. It’s quite conve-
nient to be able to compare and sort dates or to find all rows
whose timestamp was within the last 24 hours. PostgreSQL’s inter-
val data type, which describes a length of time (rather than a par-
ticular point in time), has proven to be particularly useful. MySQL
has a number of different types that database purists like myself
frown upon, such as SET and ENUM, but that are undoubtedly
popular for many users.

In many areas where PostgreSQL has had an advantage, MySQL is
beginning to catch up. PostgreSQL users have long been able to create
new data types and functions that operate on those types. Indeed,
PostgreSQL offers developers the unusual ability to write server-side
functions in a number of languages, including SQL, Perl, Python, Java,
Tcl and the R statistical language. MySQL does not allow for the cre-
ation of new data types, but recent versions do provide the ability to
write server-side functions and stored procedures.

MySQL has offered a built-in solution for full-text search, accom-
plished by using a special type of index on text fields. However, there
are some important restrictions on this index, such as the fact that it
works only with MyISAM tables. Given that these tables support nei-
ther foreign keys nor transactions, I am a bit nervous about suggesting
them as a solution.

PostgreSQL’s full-text search solution (tsearch2) has the opposite
problem. Although it is robust and works well within PostgreSQL’s
standard transactional tables, it requires some work to configure
and install. Most administrators and programmers will be able to
install it successfully within a short period of time, but nonetheless,
there is a difference between a built-in capability and one that
needs to be added.

PostgreSQL has a number of built-in features that MySQL either
has yet to implement or that are scheduled for future releases. Among
these are the ability to use subselects anywhere in a query, the use of
sequences (rather than simple auto-increment columns), rules that
allow users to modify the way queries are interpreted on a given table
and CHECK constraints on column values. Recent versions of MySQL
now include features that were previously available only in PostgreSQL,
such as triggers and views.

In general, the PostgreSQL development group seems to empha-
size SQL standards more than MySQL does, although the MySQL
developers appear to be increasingly sensitive to this need and now
offer an --ansi command-line switch for those people who want to
work in a standards-compatible mode all of the time.

Both MySQL and PostgreSQL are extremely easy to use. Each

http://www.linuxjournal.com

44 | june 2007 www.l inux journa l .com

comes with a command-line client program that is packed with
features, allowing you to manipulate your database by sending
SQL queries. I have become spoiled by some of the features of the
PostgreSQL command line, such as the expanded output (\x).

The command-line interfaces for both databases have grown
more useful over time. Although the MySQL interface might
appear to have fewer commands, that’s partly because MySQL
has made some data available via SQL queries (for example,
SHOW TABLES), which would require more complicated queries in
PostgreSQL, leading to the creation of a shorthand command, \dt.
Both command-line interfaces use GNU readline, making it easy
to edit and re-issue queries. Both also allow users to edit the
previous query using the \e command.

Overall, it’s probably fair to say that PostgreSQL offers a superset
of MySQL’s capabilities, aside from a few issues (for example, built-in
text indexing). Those capabilities that PostgreSQL does not have,
such as new data types and functions, are added into the system
easily, without needing to recompile or otherwise modify the core
PostgreSQL server. That said, I believe MySQL’s capabilities are nothing
to sneeze at and are likely more than adequate for most applications
you might be writing.

Administration
Both MySQL and PostgreSQL are amazingly easy to administer,
especially in small- and medium-size cases. You (optionally) change a
few configuration options, start the server and then walk away.
There’s really not much more to do than that. For anyone who has
worked with a larger database system, such as Oracle, this is a refresh-
ing change. However, there are slight differences in the ways the two
systems operate.

PostgreSQL relies on several external UNIX-level commands to
create and manage databases and users, as well as the activity of
the PostgreSQL server. There is no central PostgreSQL administrative
program. MySQL, by contrast, has a central mysqladmin program
that handles most functions having to do with server startup and
shutdown, as well as the creation and destruction of databases. The
creation and management of users is handled by manipulating tables
in the mysql database.

PostgreSQL’s counterparts to the mysql database are special system
tables and views, all of which begin with the pg_ prefix. These tables,
although necessary for the system to run, easily can be ignored by
most programmers and come into play only when trying to tune the
system or figure out how to optimize queries.

GUI-based administration tools are available for both programs,
as well as Web-based tools written in PHP. To be honest, I haven’t
used these tools much during the years, given my familiarity with
(and preference for) command-line systems for working with databases.
However, my experience with both sets of GUI programs has been
positive, and my impression is that they are both stable and secure,
as well as useful.

Another aspect of administration unique to PostgreSQL is the need
to “vacuum” dead rows from the database to return them to the
operating system or to other rows that could benefit from the space.
In addition, PostgreSQL’s vacuum function visits the rows of the dead
and uses the statistics it collects to inform the optimizer and query
planner. Nowadays, the auto-vacuum dæmon takes care of this auto-
matically for most people, removing the long-dreaded need to

schedule it in cron.
One administrative area that is particularly hot right now is

replication. Many Web sites and other applications are pushing
the limits of their database servers, and it would be useful to split
the work among multiple servers. Of course, this raises issues of
data integrity and synchronization among distributed processes.
The simple solution to the problem is to have a master/slave rela-
tionship among the different servers, with UPDATEs and INSERTs
taking place only on the master server, and SELECTs taking place
on the slave servers. Solutions for this exist under both MySQL
and PostgreSQL, although the PostgreSQL solution (Slony) is
external to the standard package and apparently can be difficult
to install and configure.

A more complicated setup involves the use of two master
database servers. MySQL appears to have taken the lead on this front
with a relatively new clustering tool. But, PostgreSQL users, who have
been clamoring for such tools for several years now, appear to be on
the verge of getting their wishes fulfilled.

Finally, no database server would be worthwhile if it weren’t
possible to perform regular backups. pg_dump and mysqldump
are command-line programs that turn the current contents of a
database into a text file. Such dump files are quite useful and can
be used to rebuild the database when necessary.

I would argue that when it comes to administration, the two
database products are identical—unless you need replication, in which
case you’ll probably benefit from MySQL’s greater experience and
replication integration.

Performance
For years, one of the claims made in the MySQL/PostgreSQL flame war has
had to do with speed. MySQL fans often have claimed that their system is
faster, particularly for read-only tasks, making it a superior choice for
Web sites where most data is read. PostgreSQL advocates, in contrast,
claim that their system holds up to big loads much better than MySQL.

I haven’t conducted any benchmarks of my own, but my reluc-
tance to do so is an admission that I’m unqualified to create a good

QUICK TAKES

Resources

The PostgreSQL home page is www.postgresql.org. Similarly,
the MySQL home page is www.mysql.org. Each has its latest
manuals posted, as well as software, drivers and discussion lists.

A table comparing administration and programming of the
two databases is available at linuxboxadmin.com/articles/
postgresql-for-mysql-users.php.

A relatively recent comparison of the two databases’ performance
is at www.mysqlperformanceblog.com/2006/11/30/
interesting-mysql-and-postgresql-benchmarks, which points
to the following: tweakers.net/reviews/657.

Finally, a comparison between the databases (but perhaps a bit out of
date), along with Oracle, was conducted at CERN, the European center
for particle physics, and is available at dcdbappl1.cern.ch:8080/dcdb/
archive/ttraczyk/db_compare/db_compare.html.

http://www.linuxjournal.com
http://www.postgresql.org
http://www.mysql.org
http://www.mysqlperformanceblog.com/2006/11/30

www.l inux journa l .com june 2007 | 45

benchmark, and not that I believe the two
systems are identical or that performance
isn’t important. Moreover, as I stated previ-
ously, I believe that performance is secondary
to data integrity. I would much rather have a
slow, reliable database than a fast one that
occasionally will wreak havoc on my data.

From the benchmarks I’ve seen, it
appears that MySQL is indeed faster than
PostgreSQL when working with a small
number of clients or with read-only data.
However, all of the comparisons I’ve seen
over the last few years indicate that as
more clients are added to the system,
PostgreSQL handles the load better.

Does this mean that PostgreSQL always
will be faster? Of course not. But, it does
mean that on particularly popular sites,
PostgreSQL may hold up better.

Maybe I’m simply naïve, but I decided
several years ago that I would largely ignore
the performance debate when it came to
databases. Both MySQL and PostgreSQL have
large followings and have been used on
large-scale systems. The data seems to indi-
cate that PostgreSQL has an advantage, but
enough people are using MySQL on large
Web sites that I have to assume it is working
well enough for them.

Support
Finally, no comparison would be complete
without mentioning support. We might consider
several types of support—from the strength of
the Open Source community to the number and
quality of companies supporting (and develop-
ing) the software to the number of third-party
applications that support each database.

It is impossible to ignore the extremely large
number of MySQL users in the world. This has
led to an outpouring of books, tutorials and
mailing lists for MySQL—some (but not all)
of which have been sponsored by the MySQL
company itself. If the community-based
support is not enough, it is possible to buy
commercial support for MySQL from a num-
ber of companies, including MySQL AB.

PostgreSQL has a smaller community, and
a smaller number of books and tutorials
available. However, my experience has been
that the community is responsive to ques-
tions and suggestions, and that the lead
developers often are quite willing to answer
questions from all levels of users.

Many open-source packages support both
MySQL and PostgreSQL. But, it is rare to find a
package that supports PostgreSQL exclusively,

and it is easy to find packages that support
MySQL alone. This has been a source of some
frustration for members of the PostgreSQL
community; however, there doesn’t seem to
be much anyone can do about it, short of ask-
ing for patches or contributing such patches.

A recent thread on the main PostgreSQL
mailing list asked about CRM packages that
support the database. Although there were a
few, there was definitely some grumbling
about the lack of PostgreSQL from other
open-source projects. Those projects often
are staffed by small groups of volunteers
who rarely understand how they can make
their SQL more portable and thus easier to
use on multiple brands of databases.

The bottom line on support is that
although PostgreSQL support is excellent,
MySQL support is overwhelming. If there is
a winner here, it’s MySQL.

Conclusions
So, should you pick MySQL or PostgreSQL for

your next database task? All things being
equal, I strongly recommend PostgreSQL. Its
community might be smaller, and there are
fewer resources available in print and on the
Web. But, it has more features to ensure
data integrity, its features are largely a super-
set of MySQL, and it always offers transac-
tions and referential integrity, without having
to specify a particular type of table.

That said, there are reasons to use MySQL: if
you already are using it, if you need commercial
or community support, if you need replication,
or if you are using software that is incompatible
with PostgreSQL, MySQL is a fine choice. Just
make sure to use InnoDB tables, so that you can
take advantage of what a database always was
meant to do—ensure the quality of the data.�

Reuven M. Lerner, a longtime Web/database consultant, is
a PhD candidate in Learning Sciences at Northwestern
University in Evanston, Illinois. He currently lives with his wife
and three children in Skokie, Illinois. You can read his Weblog
at altneuland.lerner.co.il.

http://www.linuxjournal.com

46 | june 2007 www.l inux journa l .com

http://www.linuxjournal.com

www.l inux journa l .com june 2007 | 47

Before joining Sun in 2001, Simon Phipps
spent ten years at IBM, where he was Chief
Java and XML Evangelist. He first came
across free software in the late 1980s, when
he was selling freeware from home as a side-
line while working at Unisys. Today, Phipps is
Sun’s Chief Open Source Officer, and he
plays a key role as the company moves its
entire software portfolio to open source.

GM: What was the state of the open-
source activity at Sun when you joined?
SP: I regard Sun as the original open-source
startup company. It’s the first long-lived
company I can think of that used open
source as the basis of a business model. If
you look back down Sun’s history, through
the decades, you see that Sun kept on work-
ing openly with communities around soft-
ware and hardware. It did it with NFS, it did
with TCP/IP, it did with Java, and it’s continu-
ing to do it now with OpenSolaris and the
rest of the portfolio. So, in one sense, there
was always and there remains a very, very
strong open software ethos at Sun.

When I joined Sun, Sun was right at the
forefront of some really quite radical commer-
cial open-source experiments—one of them,
starting OpenOffice.org, and the other,
getting NetBeans started. Inside Sun, people
were talking strongly about the open-source

future for Solaris because its heritage had
been open source, and it was pretty clear that
it was a good thing for its future to be open
source as well. So, it was 2000/2001 that the
legal clearance work for Solaris started off.

GM: What did that involve?
SP: The process you have to go through when
you’ve got a piece of 20-year-old code is work-
ing out who owns it all. It’s actually a reasonably
intractable problem, because over the decades,
the standard of proof has gradually gotten
stronger and stronger. Just because there’s
nothing in the file header, doesn’t mean it
doesn’t belong to someone else. Someone else
might have the right to it. So we had an abso-
lutely stunning team of people in the Solaris
group who did what you might call licensing
archaeology—looking at the code, comparing it
with other code whose provenance was known,
looking at variable naming styles and indenta-
tion styles, the language of the comments,
trying to get a reasonable standard of proof
about where the code had come from.

There are things that were much more
obvious as to where they’d originated, and
we were able to look back in our legal
archives at the licenses and work out
whether we had the rights. And, for quite a
lot of those we then had to go back and
negotiate third-party sublicensability. In many

cases, we found that people were perfectly
happy just to give us that right. There were
some cases where we found the licensee
didn’t exist any more; finding out who aban-
doned code belongs to is another art form.

Something else you have to look out for is
code that was based on disclosure of informa-
tion where the disclosure itself was under trade
secret terms. So, although we’d written the
code, we didn’t actually have the right to dis-
close it, because to do so would have disclosed
the trade secrets. And, we still have problems
with some of that code, in particular from video
card manufacturers, where they were willing to
tell us under trade secret terms how their
chipset works, but they continue to refuse to
allow us actually to disclose the source code.

GM: Presumably parallel to what you
were thinking about licenses—how did
you end up with the CDDL license?
SP: Solaris flowed out of BSD. It was actually
BSD merged with System V at one point, so
there were a lot of people who felt that we
should be using BSD as a license. However, a
lot of the innovations that have happened in
Solaris have been by quite recently hired peo-
ple—younger, brilliant engineers. And, there
was a strong view as well that we should
be using the GPL. Also, there were a lot of
people who felt that the Mozilla approach to

INTERVIEW WITH

SIMON
PHIPPS

Simon Phipps defends the open-source
roots of Sun and the GPL-ization of Java.

Glyn Moody

http://www.linuxjournal.com

licensing had been correct.
The difficulty with using the GPL was that

it became clear as we did the licensing archae-
ology that there were going to be places in the
software where we couldn’t negotiate a free
license for the source code. And, there were
going to be some quite important places in the
code, and there were going to be quite a lot of
them for a long time. And, that was probably
the deciding factor not to use GPL but to use
the Mozilla license.

We looked at the Mozilla license, and we
realised that we couldn’t use it as it was. We
saw that license proliferation was an increasing
problem. So, we decided that we would have
a go doing a good thing for the Free Software
and Open Source community, by making the
last clone of the Mozilla license that would
ever need to be made, by parametrising it.
We left as much of the language as identical
as we could and produced the Common
Development and Distribution License, the
CDDL. The CDDL is, in my view, an absolutely
excellent license; if anyone but Sun had written
it, it would have been hailed as brilliant.

GM: How do you see the relationship
between OpenSolaris and GNU/Linux?
SP: I think that there is a huge overlap in
those worlds. One of the interesting things
you discover when you run an OpenSolaris
distribution like Nexenta is, my goodness, it
looks just like Ubuntu. And you know, there’s
a really good reason for that: because it is
Ubuntu, but it’s got a Solaris kernel in it.

When you look at what UNIX-like
operating systems really are, each is a set of
editorial choices about which free software
userland to assemble around which kernel.
So you discover that everyone in Fedora, and
everyone in FreeBSD, and everyone in
OpenSolaris are all using the same stuff.
They’re all using GNOME or KDE, they’re all
using Sendmail, and they’re all using Mozilla.

In the Solaris community, they’ve tended
to use the OpenSolaris ON, which is the
OpenSolaris jargon for the kernel and network.
ON stands for Operating System/Networking.
And the userland that’s around it, well, there is
a style of userland that’s used by people who
run servers. And then there’s the style of user-
land used by developers, and that’s typically
GNOME or KDE, and tools. And it’s just the
same on Solaris as it is on Fedora. The look
and feel is different, the editorial choices about
where to put the icons are different, but
ultimately, it’s all the same stuff.

So I think we’re going to see a gradual
shift in the way we think about UNIX-like
operating systems as we go forward. We are
going to see much less of people trying to

arbitrarily distinguish between the different
peers in that community. I think that the dis-
tinction people try to force between UNIX
and Linux is part of a strategy by corpora-
tions to diminish their competitors’ versions
of UNIX. And I think it harms us all, because
the real competitor out there isn’t somebody
else’s UNIX-like operating system, it’s actually
the closed stuff. I think that in the future,
we’ll see people who are deciding to run a
Debian userland with a Solaris kernel, as well
as people who are using a Solaris-inspired
minimalist install with a Linux 2.6 kernel.
We’ll see people starting to use the BSD kernel
together with KDE and a package manager
that they got from the Solaris community.

GM: What’s the history behind the
opening up of Java?
SP: What was happening in the Open Source
world [in the late 1990s] was the realisation that
with-source-style licensing was commercially
viable. We saw Mozilla being released, and then
we saw the Open Source Initiative picking up
the Debian Social Contract and turning it into
the Open Source Definition. Meanwhile, over at
Sun, everything was incredibly busy; there was
way more business than Sun could cope with. It
really didn’t have the bandwidth to cope with
this stuff that was happening over in the Open
Source community. So it largely ignored it
because the days were already full.

What’s more, the people who were doing
the open-source stuff were really pretty hostile
to Java. Their hostility wasn’t moderated by a
recognition that Java came from what would
now be recognised as an open-source company.
The Open Source movement is busily accepting
grace from IBM to promote Linux—shall we say,
not entirely in isolation from the fact that Linux
isn’t Solaris. And, an engine of bad feeling was
busy humming away nicely, between 2000 and
2003, with all the players doing their utmost to
make sure that understanding and cooperation
didn’t break out.

GM: So what happened?
SP: Sun had a sort of near-death experience,
when the [dot-com] bubble burst. It saw its
stock price go down to a tenth of its previ-
ous value, and it saw the need to dismiss
large numbers of staff. It became suddenly
very obvious that lots of the people who
didn’t share Sun’s values didn’t belong here
anymore; it also became very obvious that
some of the approaches to software that Sun
had been taking weren’t actually in keeping
with Sun’s long-term values.

What then changed around about 2003,
was it became obvious that Java had a huge
international community. It actually had a

huge Open Source community, developing
on top of the Java platform, using open-
source tools like Spring, Hibernate, JBoss and
so on. And, I think it gradually became more
and more obvious to people that this com-
munity probably was no longer as vulnerable
to monopolisation as it had been. And, that
meant it was less and less important to keep
as the number-one priority the prevention of
monopolisation, and it became acceptable to
begin to think about other priorities for the
licensing of the Java platform.

GM: What about the license? How did
you end up making the surprising choice
of the GPL?
SP: We looked at pretty much every license
you can imagine for the Java platform.
Obviously, lots of people thought we were
going to use CDDL. There were several
questions we had to ask ourselves: one of them
was which license was most likely to prevent
monopolisation by somebody loving us to
death. Another factor was asking who wasn’t
using Java. And, Java is actually pretty
widespread. It’s on five billion devices, it’s on
eight out of ten cell phones, and it’s used on a
strong majority of enterprise application servers.

So the question has to be, well, how can
you grow when you’ve already got such a
strong market? And, the obvious place that we
could grow was actually to GNU/Linux. If you
look at the use of GNU/Linux outside Europe
and North America, you discover that distribu-
tions like Fedora and Debian are actually very,
very important in those geographies. And,
none of those distributions were actually carry-
ing Java, because of the licensing concerns.

Worse than that, it had been such a long
time since they’d carried Java, that their pack-
age management systems had grown up in
such a way that the versions of Java that Sun
was actually making for those platforms didn’t
install. So, there was no way you could apt-get
Java on Debian, for example. All Sun made
available was an RPM. And, yes, if you were
resolute, you could force it in there, but funda-
mentally, Java just wasn’t available for Debian.

We felt that the biggest impact we could
have on the Java market was by settling the
long dispute with the GNU/Linux community.
We felt that doing that would grow the
market to everyone’s benefit.

As an application developer on GNU/Linux,
you don’t want to have to worry about which
version of the kernel is in use and which desk-
top environment people have, and which pack-
age management system they’re using; you
don’t want to have 500 different versions of
your installer for all the different versions of
GNU/Linux out there. So, Java’s got a really

48 | june 2007 www.l inux journa l .com

FEATURE Interview with Simon Phipps

http://www.linuxjournal.com

strong value that it can offer the GNU/Linux
community allowing not every application, but
a lot of applications that are not too tightly
coupled, to the system internals to be written
using a platform-independent programming
mechanism. And, that’s the chief value that Perl
and Python and others were bringing to the
platform. And we thought, well, it’s a great fit.

Another driver in choosing the GPL was
we felt that the behaviour that would lead to
monopolistic abuse of the Java platform
would typically be done in secret until it was
launched. By using the GPL, people will find
it very tricky to do extensive development in
secret. So we felt that the GPL provided us
with the strongest protection against misbe-
haviour by monopolists in the Java platform.

GM: In a speech a couple of years back,
Sun’s CEO Jonathan Schwartz argued that
the GPL is “IP colonialism”, because he
claimed it imposed on poorer countries “a
rather predatory obligation to [give back]
all their IP to the wealthiest nation in the
world”. Why did he change his mind?
SP: Well, you know, this is an interesting
thing to contemplate, because I’m not sure
he was wrong. The GPL does require you to
set aside commercial protections for your
software. And, it is possible that the use of
the GPL for the indigenous software industry,
for example, in Brazil, might harm the
Brazilian economy. If you actually read the
argument that Jonathan was making at the
time, it’s a good academic argument. What
made it controversial was that it was the
Chief Operating Officer of Sun saying it.

GM: To what extent is Sun now commit-
ted to opening up everything that it can?
SP: We’re completely committed to open-
sourcing every thing that we’re able to.
Jonathan Schwartz asserted that as our posi-
tion about two years ago. We’re well on the
road to fulfilling that commitment.

GM: Given this commitment to free soft-
ware, and the Open Source community,
wouldn’t it be more sensible for Sun to
join Eclipse rather than pushing
NetBeans on its own?
SP: The deal here is once again how you
view open source. Open source isn’t some-
thing you join; it’s something you do. And,
Sun doesn’t want to join the Eclipse commu-
nity, just like IBM doesn’t want to join the
OpenOffice.org community. Why would we
want to join a community that isn’t making
any code we want to use in a product?

[Eclipse] has significant disadvantages for
Sun in the way that IBM decided to set it up. If

you want to join the board, you have to pay out
a very large sum of money, you have to commit
a certain number of engineers to work only on
that, at the direction of the Eclipse community,
and you have to guarantee to produce products
that use the Eclipse core code within a year.
And, for us to fulfill those requirements, we
would need to drop NetBeans. And, NetBeans is
a big part of our tools development.

GM: Finally, what’s your vision of the
world where open source is a major part
of computing?
SP: I actually think that we’re in the middle of
a pivot point in the way society functions. I
believe the World Wide Web as the vehicle for
popularising the Internet is producing something
that is as impactful as the Industrial Revolution.
And, I think during the next decade, we will
see that process of changing how absolutely
everything works rolling out in front of us.

Pre-World Wide Web, most things that
happened in the world were done on a hub-
and-spoke basis where you’d have, for exam-
ple, government in the middle and citizens on
the end of the spokes. Or, you’d have industry
in the middle and customers on the end of the
spokes. I think the introduction of the World
Wide Web has changed the basic topology of
society from hub-and-spoke to mesh.

Because the software industry is so closely
connected to the World Wide Web, it’s been
one of the first to be impacted. So I see open
source as an inevitable consequence of the
switch to a meshed world. It’s, in my view, the
dominant way that software is developed in a
participation age. The way you make money is
not by locking people in with a license at the
beginning, but rather by providing the capabili-
ties people want once they’re running things.

In the meshed world, what helps you be
successful in a business is influence. And,
you get influence not by power but by being
valuable. My vision is that we’re switching
over to this new world of influence instead
of control, of value instead of power, of par-
ticipation instead of distribution.

So, we can expect to see a rolling tide of
change where the principles of the meshed
society begin to be worked out in other
areas, like politics, like journalism, like the
way families function, like the way money is
handled, represented and stored. All of these
things will gradually fall under the influence
of the meshed society. And, I think being at
the forefront of working with that meshed
society is going to serve Sun and the people
in the Open Source communities very well.�

Glyn Moody writes about free software and open source at
opendotdotdot.blogspot.com.

http://www.embeddedARM.com

50 | june 2007 www.l inux journa l .com

Python is a programming language that is

highly regarded for its simplicity and ease of

use. It often is recommended to program-

ming newcomers as a good starting point.

Python also is a program that interprets

programs written

in Python. There are other implemen-

tations of Python, such as Jython (in Java),

CLPython (Common Lisp), IronPython (.NET)

and possibly more. Here, we use only Python.

This tutorial jumps right in to the power of Python without
dragging you through basic programming.

JOSÉ P. E. "PUPENO" FERNÁNDEZ

Programming
Python, Part I

IL
LU

ST
RA

TI
O

N
 ©

IS
TO

CK
PH

OT
O.

CO
M

/A
LL

EN
 T

EN
G

http://www.linuxjournal.com

www.l inux journa l .com june 2007 | 51

Installing Python
Installing Python and getting it running is the first step. These days, it
should be very easy. If you are running Gentoo GNU/Linux, you already
have Python 2.4 installed. The packaging system for Gentoo, Portage,
is written in Python. If you don’t have it, your installation is broken.

If you are running Debian GNU/Linux, Ubuntu, Kubuntu or MEPIS,
simply run the following (or log in as root and leave out sudo):

sudo apt-get install python

One catch is that Debian’s stable Python is 2.3, while for the
rest of the distributions, you are likely to find 2.4. They are not
very different, and most code will run on both versions. The main
differences I have encountered are in the API of some library
classes, new features added to 2.4 and some internals, which
shouldn’t concern us here.

If you are running some other distribution, it is very likely that
Python is prepackaged for it. Use the usual resources and tools you
use for other packages to find the Python package.

If all that fails, you need to do a manual installation. It is not
difficult, but be aware that it is easy to break your system unless
you follow this simple guideline: install Python into a well-isolated
place, I like /opt/python/2.4.3, or whatever version it is.

To perform the installation, download Python, unpack it, and run
the following commands:

./configure --prefix=/opt/python2.4/

make

make install

This task is well documented on Python’s README, which is
included in the downloaded tarball; take a look at it for further details.
The only missing task here is adding Python to your path. Alternatively,
you can run it directly by calling it with its path, which I recommend
for initial exploration.

First Steps
Now that we have Python running, let’s jump right in to programming
and examine the language as we go along. To start, let’s build a blog
engine. By engine, I mean that it won’t have any kind of interface,
such as a Web interface, but it’s a good exercise anyway.

Python comes with an REPL—a nice invention courtesy of the Lisp
community. REPL stands for Read Eval Print Loop, and it means there’s
a program that can read expressions and statements, evaluate them,
print the result and wait for more. Let’s run the REPL (adjust your path
according to where you installed Python in the previous section):

$ python

Python 2.4.3 (#1, Sep 1 2006, 18:35:05)

[GCC 4.1.1 (Gentoo 4.1.1)] on linux2

Type "help", "copyright", "credits" or "license" for

more information.

>>>

Those three greater-than signs (>>>) are the Python prompt where
you write statements and expressions. To quit Python, press Ctrl-D.

Let’s type some simple expressions:

>>> 5

5

The value of 5 is, well, 5.

>>> 10 + 4

14

That’s more interesting, isn’t it?
There are other kinds of expressions, such as a string:

>>> "Hello"

'Hello'

Quotes are used to create strings. Single or double quotes are
treated essentially the same. In fact, you can see that I used double
quotes, and Python showed the strings in single quotes.

Another kind of expression is a list:

>>> [1,3,2]

[1, 3, 2]

Square brackets are used to create lists in which items are separat-
ed by commas. And, as we can add numbers, we can add—actually
concatenate—lists:

>>> [1,3,2] + [11,3,2]

[1, 3, 2, 11, 3, 2]

By now, you might be getting bored. Let’s switch to something
more exciting—a blog. A blog is a sequence of posts, and a Python list
is a good way to represent a blog, with posts as strings. In the REPL,
we can build a simple blog like this:

>>> ["My first post", "Python is cool"]

['My first post', 'Python is cool']

>>>

That’s a list of strings. You can make lists of whatever you want,
including a list of lists. So far, all our expressions are evaluated, shown
and lost. We have no way to recall our blog to add more items or to
show them in a browser. Assignment comes to the rescue:

>>> blog = ["My first post", "Python is cool"]

>>>

Now blog, a so-called variable, contains the list. Unlike in the
previous example, nothing was printed this time, because it is an
assignment. Assignments are statements, and statements don’t have
a return value. Simply evaluating the variable shows us the content:

>>> blog

['My first post', 'Python is cool']

Accessing our blog is easy. We simply identify each post by number:

>>> blog[0]

'My first post'

>>> blog[1]

'Python is cool'

Be aware that Python starts counting at 0.

http://www.linuxjournal.com

Encapsulating Behavior
A blog is not a blog if we can’t add new posts, so let’s do that:

>>> blog = blog + ["A new post."]

>>> blog

['My first post', 'Python is cool', 'A new post.']

Here we set blog to a new value, which is the old blog, and a new
post. Remembering all that merely to add a new post is not pleasant
though, so we can encapsulate it in what is called a function:

>>> def add_post(blog, new_post):

... return blog + [new_post]

...

>>>

def is the keyword used to define a new function or method (more
on functions in structured or functional programming and methods in
object-oriented programming later in this article). What follows is the
name of the function. Inside the parentheses, we have the formal param-
eters. Those are like variables that will be defined by the caller of the
function. After the colon, the prompt has changed from >>> to ... to
show that we are inside a definition. The function is composed of all
those lines with a level of indentation below the level of the def line.

So, where other programming languages use curly braces or
begin/end keywords, Python uses indentation. The idea is that if you are
a good programmer, you’d indent it anyway, so we’ll use that indentation
and make you a good programmer at the same time. Indeed, it’s a con-
troversial issue; I didn’t like it at first, but I learned to live with it.

While working with the REPL, you safely can press Tab to make an
indentation level, and although a Tab character can do it, using four
spaces is the strongly recommended way. Many text editors know to
put four spaces when you press Tab when editing a Python file.
Whatever you do, never, I repeat, never, mix Tabs with spaces. In other
programming languages, it may make the community dislike you, but
in Python, it’ll make your program fail with weird error messages.

Being practical, to reproduce what I did, simply type the class
header, def add_post(blog, new_post):, press Enter, press Tab,
type return blog + [new_post], press Enter, press Enter again,
and that’s it. Let’s see the function in action:

>>> blog = add_post(blog, "Fourth post")

>>> blog

['My first post', 'Python is cool', 'A new post.',

'Fourth post']

>>>

add_post takes two parameters. The first is the blog itself, and it
gets assigned to blog. This is tricky. The blog inside the function is not
the same as the blog outside the function. They are in different
scopes. That’s why the following:

>>> def add_post(blog, new_post):

... blog = blog + [new_post]

doesn’t work. blog is modified only inside the function. By now, you
might know that new_post contains the post passed to the function.

Our blog is growing, and it is time to see that the posts are simply
strings, but we want to have a title and a body. One way to do this is
to use tuples, like this:

>>> blog = []

>>> blog = add_post(blog, ("New blog", "First post"))

>>> blog = add_post(blog, ("Cool", "Python is cool"))

>>> blog

[('New blog', 'First post'),

('Cool', 'Python and is cool')]

>>>

In the first line, I reset the blog to be an empty list. Then, I added two
posts. See the double parentheses? The outside parentheses are part of
the function call, and the inside parentheses are the creation of a tuple.

A tuple is created by parentheses, and its members are separated
by commas. They are similar to lists, but semantically, they are differ-
ent. For example, you can’t update the members of a tuple. Tuples are
used to build some kind of structure with a fixed set of elements. Let’s
see a tuple outside of our blog:

>>> (1,2,3)

(1, 2, 3)

Accessing each part of the posts is similar to accessing each part
of the blog:

>>> blog[0][0]

'New blog'

>>> blog[0][1]

'This is my first post'

This might be a good solution if we want to store only a title and
a body. But, how long until we want to add the date and time,
excerpts, tags or messages? You may begin thinking you’ll need to
hang a sheet of paper on the wall, as shown in Figure 1, to remember
the index of each field—not pleasant at all. To solve this problem, and
some others, Python gives us object-oriented programming.

Object-Oriented Programming
Object-oriented programming was born more than 20 years ago so
developers could separate each part of a computer program in a way
similar to how objects are separated in the real world. Python models
objects by using classes. A class is an abstract definition of what an
object has and what an object can do. If this sounds foreign, don’t
worry, OOP (object-oriented programming) is difficult at first.

52 | june 2007 www.l inux journa l .com

Figure 1. Index Handling the Hard Way

FEATURE Programming Python, Part I

http://www.linuxjournal.com

An example might help. A bridge is a structure that allows people
or vehicles to cross an obstacle, such as a river, canal or railway. A
bridge has some length, some width and even some color. It may allow
vehicles or only persons. It may allow heavy vehicles or not. When I
say “bridge”, I am not defining any of those details. Bridge is a class.
If I say Golden Gate, Le Pont de Normandie or Akashi-Kaikyo, I am
naming particular bridges; they have some specific length, width, vehicle
allowance and color. In OOP jargon, they are instances of bridge.

Back to our blog, let’s create a class to model our post:

>>> class Post(object):

... pass

...

>>>

We start with class, the keyword for creating new classes. Next
comes the name of the class—in this case, Post. In parentheses, we
have the super-classes—ignore that for now.

Here again, the prompt has changed from >>> to ..., and Python
expects something in a class. Because we don’t want to put anything
in yet, we write pass, which is something, but in fact, it is nothing.
Python knows when a class starts and ends because of the indenta-
tion, the same as with functions.

To reproduce what I did, simply type the class header, class
Post(object):, press Enter, press Tab, type pass, press Enter,
press Enter again, and that’s it.

Now, we can create a Post:

>>> cool = Post()

>>> cool

<_ _main_ _.Post object at 0xb7ca642c>

Note that what is being printed when we evaluate a post is a
generic representation for the object. We can set its title and body:

>>> cool.title = "Cool"

>>> cool.body = "Python is cool."

And retrieve them:

>>> cool.title

'Cool'

>>> cool.body

'Python is cool.'

Up to this point, a Post is like a simple container for anything you
can imagine putting there. The problem with this is we may get lost as
to what to put in it, or what not to put in it. Back to a sheet of paper?
No! Although we can’t stop making the posts a container in that way,
we can put some methods there, so users have an idea of what a post
may contain. To do this, we write our own methods in the class Post:

>>> class Post(object):

... def set_title(self, title):

... self._title = title

... def get_title(self):

... return self._title

...

>>>

http://www.asacomputers.com
http://www.asacomputers.com

Methods are like functions, but as they are in a class, they are
associated with the objects of the class. This means different classes
can have different methods with the same name. Just imagine the
difference between bat.hit(ball) and stick.hit(drum).

Python has a convention that the first parameter (normally called
self) to a method is the object on which we are calling the method.
That means running cool.set_title("Cool")will set self to be
cool, and title to be "Cool". Running:

cool.set_title("Cool")

is the equivalent of:

cool._title = "Cool"

The leading underscore lets others know that we don’t want them
playing with it. It means “don’t access _title; use get_title and set_title”.

The previous interaction with the cool object can be rewritten as:

>>> cool = Post()

>>> cool.set_title("Cool")

>>> cool.set_body("Python is cool.")

>>> cool.get_title()

'Cool'

>>> cool.get_body()

'Python is cool.'

Writing the same set of methods for body should be easy now. But,
be aware that you have to write the whole class in one go. Write the
class header, the set_title and get_title methods, and then create your
set_body and get_body methods. It may take you a couple of tries.

Files
As the Post class becomes bigger, you’ll get tired of rewriting it every
time you want to add a method. If you’re tired already, that’s a good
sign. And besides, all that’s in the REPL will be lost when we quit
Python. We should start saving our work in files.

Python modules are simple text files, and you can use any text
editor you want. As a programmer, you are going to spend most of
your time with your editor, so take some time to choose one you really
like and learn to use it well.

Emacs might not be the most beautiful editor, but for many pro-
gramming tasks, it is awesome. (You could read that as “I don’t like
Emacs but it makes my life so much easier that I keep coming to it
time after time”.) Installing Emacs from source is beyond the scope of
this article. As usual, with programs that are so popular, your distribu-
tion is likely to provide it. In Debian and its derivatives try:

apt-get install emacs

For Gentoo, the counterpart is:

emerge emacs

To achieve the magic I am going to show here, you need python-mode.
In Debian:

apt-get install python-mode

In Gentoo:

emerge python-mode

Run Emacs. If you are serious about learning how to use it, now it
is time to press Ctrl-H T, which in Emacs jargon means press Ctrl-H,
release it and then press T. But, you can leave that for later, when
you’ve finished reading this Linux Journal issue. For this article, I
provide all the keystrokes you need.

Press Ctrl-X Ctrl-F (Ctrl-X, release, Ctrl-F) to visit a file. On the
bottom of the Emacs window, you’ll see the cursor waiting for you to
type the path and filename. Type blog.py and press Enter. (Python
modules should have the extension .py.) Now, you can start typing the
Post class we programmed before. Emacs tries to be smart about
indentation and places it where you are likely to want it. If you need a
different indentation, simply press Tab and keep pressing it until you
get the desired results.

On the top, you should have two menus: IM-Python and Python.
The first one contains a list of classes and methods in the file you are
editing. Click on Rescan if it doesn’t show information you know is
there. This is very useful when working with huge files. The second
menu is even more useful, but explore and play with it later. For now,
simply run Start interpreter... or press Ctrl-C !.

Suddenly the window is split, and you have an embedded Python
interpreter below the file you are editing (Figure 2). And the fun is
only beginning. Click on the file you are editing to set the focus on it.
Run Import/reload file from the Python menu or press Ctrl-C Enter.
Now, you’re ready to test your code on the REPL, but be aware that

54 | june 2007 www.l inux journa l .com

Figure 2. Testing the REPL

Python modules are simple text files,
and you can use any text editor you want.

FEATURE Programming Python, Part I

http://www.linuxjournal.com

http://www.emperorlinux.com

56 | june 2007 www.l inux journa l .com

you’ll have to add blog. before the name of the class, Post, because
now the class is in the module blog. See Figure 2 for further reference.

You can, of course, do the same without Emacs. But for that, you
need to learn how Python modules and packages are made. Set
PYTHON_PATH, an environment variable, accordingly, and use the built-
in function reload. With Emacs, you’ll find iterating between coding
and testing the code to be very fast. This speed can improve your per-
formance and make programming more fun. In fact, Lisp programmers
have been advocating this way of working for more than two decades.

Special Methods
Having to create an object and then set each of its members is not pleas-
ant. It takes a lot of lines and is very error-prone—did I remember to set
the tags? There’s a better way to do it—using the initialization method.

This special method is called _ _init_ _, and the parameters you
define it to take have to be passed in the creation of the object. A
possible initialization method would be:

class Post(object):

def _ _init_ _(self, title, body):

self.set_title(title)

self.set_body(body)

Simply add the _ _init_ _ definition to the file and reload it. We
now can, and have to, set the title and body at initialization time:

>>> cool = blog.Post("Cool", "Python is cool")

>>> cool.get_title()

'Cool'

>>> cool.get_body()

'Python is cool'

>>>

Hint: to retrieve previous lines in the REPL inside Emacs use Alt-P.
There are other special methods. Remember how ugly it was to

evaluate a Post itself? Let me remind you:

>>> cool

<blog.Post object at 0xb7c7e9ac>

We can solve that. There’s another special method called _ _repr_ _,
which is used to retrieve that string. Inside the Post class add:

def _ _repr_ _(self):

return "Blog Post: %s" % self.get_title()

Reload the file, the same way you loaded it previously, and
evaluate a post:

>>> ## working on region in file /usr/tmp/python...

>>> cool

<blog.Post object at 0xb7c7e9ac>

>>>

Oops! That’s not what we wanted. The problem here is that the
cool object was created with an older version of the Post class, so it
doesn’t have the new method. That is a very common mistake, and
not being prepared for it can cause a lot of headaches. But, simply
re-create the object, and you are set:

>>> ## working on region in file /usr/tmp/python...

>>> cool = blog.Post("Cool", "Python is cool")

>>> cool

Blog Post: Cool

>>>

That’s better.

What Now?
Easy—wait for the next issue of Linux Journal for Part II of this tutorial.
If you really want something to do now, start learning Emacs.�

José P. E. “Pupeno” Fernández has been programming since...at what age is a child capable of
siting in a chair and reaching a keyboard? He has experimented with more languages than can
be listed on this page. His Web site is at pupeno.com, and he always can be reached, unless you
are a spammer, at pupeno@pupeno.com.

Resources

Python: python.org

Python Download: python.org/download

Python 2.4.3: www.python.org/ftp/python/2.4.3/Python-2.4.3.tgz

FEATURE Programming Python, Part I

http://www.linuxjournal.com
mailto:pupeno@pupeno.com
http://www.python.org/ftp/python/2.4.3/Python-2.4.3.tgz

Hear Yourself Think Again!Hear Yourself Think Again!

WhisperStationWhisperStation
For 64-bit HPC, Gaming and Graphic Design Applications
Originally designed for a group of power hungry, demanding engineers in the automotive industry,
WhisperStation™ incorporates two dual core AMD Opteron™ or Intel® EM64T™ processors, ultra-quiet
fans and power supplies, plus internal sound-proofing that produce a powerful, but silent, computational
platform. The WhisperStation™ comes standard with 2 GB high speed memory, an NVIDIA e-GeForce
or Quadro PCI Express graphics adapter, and 20" LCD display. It can be configured to your exact
hardware specification with any Linux distribution. RAID is also available. WhisperStation™ will also
make a system administrator very happy, when used as a master node for a Microway cluster!
Visit www.microway.com for more technical information.

Experience the “Sound of Silence”.
Call our technical sales team at 508-746-7341 and design your personalized WhisperStation™ today.

Cool... Fast... Silent!Cool... Fast... Silent!Cool... Fast... Silent!

 ™

http://www.microway.com

58 | june 2007 www.l inux journa l .com

Asynchronous Database Access with

Qt4.x
How to code around the default synchronous database access in Qt 4.

Dave Berton

The database support in Qt 4.x is quite robust. The
library includes drivers for Oracle, PostgreSQL,
SQLite and many other relational databases. Out
of the box, the Qt database library also contains
bindings for many widgets and provides data types
for the transparent handling of result sets coming
from a database. But, your application can pay a
price for these conveniences. All database access is
synchronous by default, which means that inten-
sive and time-consuming SQL queries normally will
lock up the UI unless precautions are taken. Using
stored procedures on the server can sometimes
help the situation; however, this is not always
possible or desirable. And often, the length and
cost of the queries generated by your application
simply cannot be known in advance, so the door
is left open for undesirable UI behavior. People
don’t want their application to “lock up” at odd
moments; however, this is the default behavior,

and so we must contend with it.
Fortunately, Qt 4.x also has robust support for

multithreaded programming. By placing the heavy-
duty database work in separate threads, the UI is
free to respond to the user normally, without
ungraceful interruptions. As with all concurrent
programming, however, you must take precautions
to ensure the correct sequence of interactions
between threads. For example, when sharing data
among threads, guard it properly using mutexes.
When communicating between threads, consider
carefully how the interaction will behave, and in
what sequence. In addition, when utilizing a
database connection within a thread separate from
the UI thread, you must pay attention to some
extra caveats. A proper implementation that keeps
certain things in mind will make significant
improvements in the UI behavior and responsive-
ness of a database application.

http://www.linuxjournal.com

Thread Strategies
There are several ways to distribute the database load to separate
threads of execution. Fortunately, all of them share the same char-
acteristics when it comes to the details of creating and using a
database connection properly. The primary consideration is to use
a database connection only within the thread that created it. For
regular synchronous applications, the default behavior is fine. The
QSqlDatabase::addDatabase() static function creates a database con-
nection within the context of the application’s main UI thread. Queries
executed within this same thread will then cause blocking behavior.
This is to be expected.

In order to run queries in parallel with the main UI thread, so that
they do not interrupt the main event processing loop, a database con-
nection must be established in the thread in which the query executes,
which should be separate from the main UI thread. However you
structure the threading in your application, your design must be able
to establish a connection within the context of each thread that will
be performing database work.

For example, creating a thread pool in which a few threads handle
the load of querying the database in a round-robin fashion (without
the overhead of creating and destroying threads all the time) will push
the time-consuming work outside the main event loop. Or, depending
on the needs of your application, you simply can spawn threads on an
as-needed basis to perform database work. In either case, you must
create a connection per thread.

There is a further limitation (imposed by most of the underlying
database-specific libraries used by Qt). As a general rule, connections
cannot be shared by multiple threads. This means you cannot simply
create a pool of connections on startup and hand them out to various
threads as needed. Instead, each thread must establish and maintain
its own connection, within its own context. To do otherwise is unde-
fined, and probably disastrous. Multiple separate connections can be
established in each thread by using the name parameter of the
QSqlDatabase::addDatabase() static function, as shown in Listing 1.

In Listing 1, the thread objects establish two different database
connections. Each connection is named separately, so that
QSqlDatabase can maintain them properly in its internal list. And,
most important, each connection is established within the separate
thread of execution of each object—the run() method is invoked
by QThread::start() once the new thread of execution is launched.
The mechanism provided by QSqlDatabase to create new connec-
tions is thread-safe. Listing 2 shows another example of a more
generic approach.

The pseudo-code in Listing 2 creates and starts two worker
threads. Each thread establishes a named connection to the database
and waits for work to do. Each thread always will deal only with its

www. l inux journa l .com june 2007 | 59

Listing 1. Create two instances of QThread, one for queries, another for
updates.

class QueryThread : public QThread

{

public:

QueryThread(QObject* parent = 0)

{

//...

}

void run()

{

QSqlDatabase db = QSqlDatabase::addDatabase(

�"QPSQL", "querythread");

// use 'db' here

}

};

class UpdateThread : public QThread

{

public:

UpdateThread(QObject* parent = 0)

{

//...

}

void run()

{

QSqlDatabase db = QSqlDatabase::addDatabase(

�"QPSQL", "updatethread");

// use 'db' here

}

};

Listing 2. A More Generic Approach with a Single Instance of QThread
Used Twice

class QueryThread : public QThread

{

public:

QueryThread(const QString& name)

: m_connectionname(name)

{

//...

}

void run()

{

QSqlDatabase db =QSqlDatabase::addDatabase("QPSQL", m_connectioname);

//...

db.open();

forever

{

// wait for work

// and then execute it...

}

}

}

void main()

{

QApplication app(...);

MainWin mw;

QueryThread db1("queries");

db1.start();

QueryThread db2("updates")

db2.start();

//...

mw.show();

app.exec();

}

http://www.linuxjournal.com

own database connection, which is never shared or visible outside the
worker thread object.

Setting up thread-specific connections and running queries within
that thread is only the first part of the problem. A decision needs to
be made regarding how data is shuffled back and forth between the
worker threads and the main application UI thread. Additional meth-
ods will give the thread object some database work to perform, and
those methods will themselves need to be thread-safe.

Moving Data between Threads
You should observe all of the usual caveats surrounding the sharing of
data between different threads of execution, including the proper uses
of mutexes and wait conditions. In addition, there is an added compli-
cation regarding the size of the data, which potentially can be
extremely large in the case of result sets returned from the database.

Qt provides several specialized mechanisms for sending data
between threads. You can post events manually to any object in any
thread using the thread-safe function QCoreApplication::postEvent().
The events will be dispatched automatically by the event loop of the
thread where the destination object was created. To create an event
loop within each thread, use QThread::exec(). Using this method,
threads are given “work” to do in the form of events.

QCoreApplication passes these events in a thread-safe manner
from the application thread to the worker thread, and they will be
handled by the worker thread within its own execution context. This
is critical, because the worker thread will be utilizing its database
connection only from within its own context (Listing 3).

This method works in the other direction as well. Events posted by
individual worker threads will show up back in the main UI event loop
for handling, within the context of the UI’s thread of execution. These
events can, for example, contain the result of a query or database
update. This approach is convenient, as the worker threads can simply
“post it and forget it”, and Qt will take care of the inter-thread
communication, mutexing and memory management for you.

Constructing all the necessary events and event handlers for this
type of system has advantages—most notably compile-time type

60 | june 2007 www.l inux journa l .com

Listing 3. Code That Shares Information from Worker Thread to
Application Thread via Event

class WorkEvent : public QEvent

{

public:

enum { Type = User + 1 }

WorkEvent(const QString& query)

: QEvent(Type)

, m_query(query)

{}

QString query() const

{

return m_query;

}

private:

QString m_query;

};

QueryThread thread;

thread.start();

//...

WorkEvent* e = new WorkEvent("select salary from employee

�where name='magdalena';");

app.postEvent(&thread, e);

//...

Listing 4. Sharing information across threads is cleaner with signals
and slots.

class Worker; // forward decl

class QueryThread : public QThread

{

QueryThread();

signals:

void queryFinished(const QList<QSqlRecord>& records);

slots:

void slotExecQuery(const QString& query);

signals:

void queue(const QString& query);

private:

Worker* m_worker;

};

int main()

{

QApplication app;

MainWin mw;

QueryThread t;

t.start();

connect(&mw, SIGNAL(execQuery(const QString&)),

&t, SLOT(slotExecQuery(const QString&)));

connect(&t, SIGNAL(queryFinished(const QList<QSqlRecord>&)),

&mw, SLOT(slotDisplayResults(const QList<QSqlRecord>&)));

mw.show();

return app.exec();

}

Communicating between threads now becomes a matter of
connecting signals from one thread to the slots in another,
and the mutexing and thread-safety issues of exchanging
data between threads are handled by Qt.

FEATURE Asynchronous Database Access with Qt 4.x

http://www.linuxjournal.com

checking. However, getting all the events designed and dealt with
properly can be an onerous task, especially if your application has
multiple types of database queries to perform, with multiple return
types, each of which needing an associated event and event handler
and so forth.

Fortunately, Qt permits signals and slots to be connected across
threads—as long as the threads are running their own event loops.
This is a much cleaner method of communication compared to send-
ing and receiving events, because it avoids all the bookkeeping and
intermediate QEvent-derived classes that become necessary in any
nontrivial application. Communicating between threads now becomes
a matter of connecting signals from one thread to the slots in another,
and the mutexing and thread-safety issues of exchanging data
between threads are handled by Qt.

Why is it necessary to run an event loop within each thread to
which you want to connect signals? The reason has to do with the
inter-thread communication mechanism used by Qt when connecting
signals from one thread to the slot of another thread. When such a

connection is made, it is referred to as a queued connection. When
signals are emitted through a queued connection, the slot is invoked
the next time the destination object’s event loop is executed. If the slot
had instead been invoked directly by a signal from another thread,
that slot would execute in the same context as the calling thread.
Normally, this is not what you want (and especially not what you want
if you are using a database connection, as the database connection
can be used only by the thread that created it). The queued connec-
tion properly dispatches the signal to the thread object and invokes its
slot in its own context by piggy-backing on the event system. This is
precisely what we want for inter-thread communication in which some
of the threads are handling database connections. The Qt signal/slot
mechanism is at root an implementation of the inter-thread event-
passing scheme outlined above, but with a much cleaner and easier-
to-use interface.

For example, you can create two simple connections between the
main UI object and a worker thread object; one to add a query to the
worker thread and another to report back the results. This simple
setup, only a few lines of code, establishes the main communication
mechanism for an asynchronous database application (Listing 4).

Here, the MainWin and the QueryThread objects communicate
directly with one another via signals and slots in the usual way. The
trick here is that the QueryThread object, behind the scenes, utilizes a
Worker object to perform all the work. Why is this extra level of indi-
rection necessary? Because we want to dispatch the work to an object
that is associated with a completely separate thread of execution.

www. l inux journa l .com june 2007 | 61

Listing 5. An extra level of indirection makes execution more asynchronous.

class Worker : public QObject

{

Q_OBJECT

public:

Worker(QObject* parent = 0);

~Worker();

public slots:

void slotExecute(const QString& query);

signals:

void results(const QList<QSqlRecord>& records);

private:

QSqlDatabase m_database;

};

void QueryThread::run()

{

// Create worker object within the context of the new thread

m_worker = new Worker();

// forward to the worker: a 'queued connection'!

connect(this, SIGNAL(queue(const QString&)),

m_worker, SLOT(slotExecute(const QString&)));

// forward a signal back out

connect(m_worker, SIGNAL(results(const QList<QSqlRecord>&)),

this, SIGNAL(queryFinished(const QList<QSqlRecord>&)));

exec(); // start our own event loop

}

void QueryThread::execute(const QString& query)

{

emit queue(query); // queues to worker

}

http://www.linuxjournal.com

Notice above that QueryThread is instantiated and start()ed within
the main thread of execution; therefore, QueryThread will “belong”
to the application’s main thread. Connecting signals from the
application’s widgets to its slots will be via “direct” connections—
they will be invoked immediately by Qt, in the usual way, and thus
be blocking, synchronous function calls. Instead, we are interested
in “pushing” the signals into slots that are running in a separate
thread of execution entirely, and this is where the internal Worker
class comes into play (Listing 5).

Utilizing this Worker class internally, QueryThread can dispatch
SQL queries properly to a separate thread by employing the conve-
nient inter-thread signal/slot queued connections provided by Qt.
QueryThread encapsulates the idea of a thread, by being derived
from QThread and being able to start() a new thread of execution,
and it also encapsulates the idea of a worker (by exposing convenient
methods that perform database work, which are internally dispatched
to a separate thread of execution). So, instead of tangling with all the
necessary events and event handlers to accomplish the same task, the
Qt metaobject system rigs up all the necessary code for you and
exposes the connect() function to trigger it all. Signals can be emitted
at any time and will be dispatched to the destination object correctly,
within that object’s context.

It is important to note that, above, the execute() method of
QueryThread is intended to be invoked synchronously by the main
application. QueryThread presents this method not only as a
convenience; indeed, it also encapsulates and hides all the queued
connection details from the user of the QueryThread class. When
execute() is invoked, QueryThread simply emits it as a signal to the
worker. Because the worker is an object “living” in a separate
thread, Qt will “queue” the connection and pass it through the
event loop so that it arrives in the proper execution context of
the worker—essential so the worker can utilize its database con-
nection according to the rules that are laid out in the beginning
of this article. Finally, any signals coming from the worker are
“forwarded” back out through the QueryThread interface—another
convenience for the users of QueryThread, which also serves to
hide all the details of the Worker class from those who really
don’t need to know about it in the first place.

If the sizes of your queries are gigantic, or potentially can be
gigantic, you should consider a different strategy for dealing with the
result sets. For example, writing the results out to disk before passing
them back to the UI thread will reduce the memory load of your
application, at the cost of some runtime speed. However, if you are
already dealing with massive queries, the speed hit likely will be
minor in comparison with the overall execution time of the query.
Because all database queries execute in a completely separate
thread from the UI, users will not perceive any significant lag. Store
the intermediate results in a text file, or for maximum flexibility, in
a local SQLite database.

One element of this puzzle still needs to be solved. The

queued connection mechanism relies on the thread’s event loop
to invoke a slot within that thread’s context properly, as discussed
previously. However, in order to marshal the data necessary to
dispatch the event to another thread of execution, the Qt object
system must be made aware of any custom data types used in the
signal/slot declaration. Failure to register custom data types will
cause the queued connection to fail, because in order to dispatch
the event, a copy of each of the signal’s parameters must be
made. Fortunately, it is a simple matter to “register” additional
types, as long as those types have public constructors, copy
constructors and destructors (Listing 6).

The sample application provided with this article implements the
strategy outlined above, in which queries are executing in parallel
with the rest of the application [the application is available for down-
load from the Linux Journal FTP site, ftp.linuxjournal.com/pub/lj/
issue158/9602.tgz]. The UI is not disturbed while the queries
are underway. A queued connection is created between the
QueryThread interface and the encapsulated worker thread after
the appropriate types are registered with the Qt metaobject sys-
tem. This allows the separate threads to communicate safely with
one another, with minimal overhead and code complexity. The
sample application was tested with SQLite and PostgreSQL; however,
it will work with any database connection supported by Qt that
enforces the same connection-per-thread limitation.

Summary
The following points should be kept in mind when designing
asynchronous database applications with Qt:

� Create a database connection per thread. Use the name parameter
of the thread-safe QSqlDatabase::addDatabase() method in order to
distinguish various database connections.

� Encapsulate the database connection within worker thread objects
as much as possible. Never share a database connection with
another thread. Never use a database connection from any thread
other than the one that created it.

� Manage communication between threads using the tools provided
by Qt. In addition to QMutex, QSemaphore and QWaitCondition,
Qt provides much more direct mechanisms: events and signals/slots.
The implementation of signals/slots across thread boundaries relies
on events; therefore, ensure that your threads start their own event
loop using QThread::exec().

� Register unknown types with the Qt metaobject system. Any
unknown types cannot be marshaled properly without first invok-
ing qRegisterMetaType(). This enables a queued connection to
invoke a slot in a separate thread within that thread’s context using
new types.

� Utilize queued connections to communicate between the appli-
cation and the database threads. The queued connection pro-
vides all the advantages for dealing with asynchronous database
connections, but maintains a simple and familiar interface using
QObject::connect().�

Dave Berton is a professional programmer working for Eventide, Inc. He welcomes your
comments at dberton@eventide.com.

62 | june 2007 www.l inux journa l .com

Listing 6. You must register any custom data types in order to share them.

// first, make the object system aware

qRegisterMetaType< QList<QSqlRecord> >("QList<QSqlRecord>");

// now set up the queued connection

connect(m_worker, SIGNAL(results(const QList<QSqlRecord>&)),

this, SIGNAL(queryFinished(const QList<QSqlRecord>&)));

FEATURE Asynchronous Database Access with Qt 4.x

mailto:dberton@eventide.com
http://www.linuxjournal.com

64 | june 2007 www.l inux journa l .com

Validate an
E-Mail Address
with PHP,
the Right Way

T
he Internet Engineering Task Force (IETF) document,
RFC 3696, “Application Techniques for Checking and
Transformation of Names” by John Klensin, gives
several valid e-mail addresses that are rejected by many

PHP validation routines. The addresses: Abc\@def@example.com,
customer/department=shipping@example.com and
!def!xyz%abc@example.com are all valid. One of the more popular
regular expressions found in the literature rejects all of them:

"^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)

�*(\.[a-z]{2,3})$"

This regular expression allows only the underscore (_) and hyphen
(-) characters, numbers and lowercase alphabetic characters. Even
assuming a preprocessing step that converts uppercase alphabetic
characters to lowercase, the expression rejects addresses with valid
characters, such as the slash (/), equal sign (=), exclamation point (!)
and percent (%). The expression also requires that the highest-level
domain component has only two or three characters, thus rejecting
valid domains, such as .museum.

Another favorite regular expression solution is the following:

"^[a-zA-Z0-9_.-]+@[a-zA-Z0-9-]+.[a-zA-Z0-9-.]+$"

This regular expression rejects all the valid examples in the preced-
ing paragraph. It does have the grace to allow uppercase alphabetic
characters, and it doesn’t make the error of assuming a high-level
domain name has only two or three characters. It allows invalid
domain names, such as example..com.

Listing 1 shows an example from PHP Dev Shed (www.devshed.com/
c/a/PHP/Email-Address-Verification-with-PHP/2). The code
contains (at least) three errors. First, it fails to recognize many
valid e-mail address characters, such as percent (%). Second, it
splits the e-mail address into user name and domain parts at the
at sign (@). E-mail addresses that contain a quoted at sign, such
as Abc\@def@example.com will break this code. Third, it fails to
check for host address DNS records. Hosts with a type A DNS
entry will accept e-mail and may not necessarily publish a type MX
entry. I’m not picking on the author at PHP Dev Shed. More than
100 reviewers gave this a four-out-of-five-star rating.

Develop a working
PHP function to validate
e-mail addresses.

DOUGLAS LOVELL

IL
LU

ST
RA

TI
O

N
 ©

IS
TO

CK
PH

OT
O.

CO
M

/A
N

DR
EY

 Z
YK

mailto:shipping@example.com
mailto:abc@example.com
http://www.linuxjournal.com
http://www.devshed.com/c/a/PHP/Email-Address-Verification-with-PHP/2
http://www.devshed.com/c/a/PHP/Email-Address-Verification-with-PHP/2

One of the better solutions comes from Dave Child’s blog at
ILoveJackDaniel’s (ilovejackdaniels.com), shown in Listing 2
(www.ilovejackdaniels.com/php/email-address-validation).
Not only does Dave love good-old American whiskey, he also
did some homework, read RFC 2822 and recognized the true
range of characters valid in an e-mail user name. About 50 people
have commented on this solution at the site, including a few
corrections that have been incorporated into the original solution.
The only major flaw in the code collectively developed at
ILoveJackDaniel’s is that it fails to allow for quoted characters,
such as \@, in the user name. It will reject an address with more
than one at sign, so that it does not get tripped up splitting the
user name and domain parts using explode("@", $email). A
subjective criticism is that the code expends a lot of effort check-
ing the length of each component of the domain portion—effort
better spent simply trying a domain lookup. Others might appreciate
the due diligence paid to checking the domain before executing a
DNS lookup on the network.

Requirements
IETF documents, RFC 1035 “Domain Implementation and
Specification”, RFC 2234 “ABNF for Syntax Specifications”,
RFC 2821 “Simple Mail Transfer Protocol”, RFC 2822 “Internet
Message Format”, in addition to RFC 3696 (referenced earlier),
all contain information relevant to e-mail address validation. RFC
2822 supersedes RFC 822 “Standard for ARPA Internet Text
Messages” and makes it obsolete.

Following are the requirements for an e-mail address, with relevant
references:

1. An e-mail address consists of local part and domain separated by
an at sign (@) character (RFC 2822 3.4.1).

2. The local part may consist of alphabetic and numeric characters,
and the following characters: !, #, $, %, &, ’, *, +, -, /, =, ?, ^, _, `,
{, |, } and ~, possibly with dot separators (.), inside, but not at the
start, end or next to another dot separator (RFC 2822 3.2.4).

3. The local part may consist of a quoted string—that is, anything
within quotes ("), including spaces (RFC 2822 3.2.5).

4. Quoted pairs (such as \@) are valid components of a local part,
though an obsolete form from RFC 822 (RFC 2822 4.4).

5. The maximum length of a local part is 64 characters (RFC
2821 4.5.3.1).

6. A domain consists of labels separated by dot separators
(RFC1035 2.3.1).

7. Domain labels start with an alphabetic character followed by zero
or more alphabetic characters, numeric characters or the hyphen (-),
ending with an alphabetic or numeric character (RFC 1035 2.3.1).

8. The maximum length of a label is 63 characters (RFC 1035 2.3.1).

9. The maximum length of a domain is 255 characters (RFC 2821
4.5.3.1).

10. The domain must be fully qualified and resolvable to a type A or
type MX DNS address record (RFC 2821 3.6).

www. l inux journa l .com june 2007 | 65

Listing 1. An Incorrect E-mail Validation

function checkEmail($email) {

if(preg_match("/^([a-zA-Z0-9])+([a-zA-Z0-9\._-])

�*@([a-zA-Z0-9_-])+([a-zA-Z0-9\._-]+)+$/",

$email)){

list($username,$domain)=split('@',$email);

if(!checkdnsrr($domain,'MX')) {

return false;

}

return true;

}

return false;

Listing 2. A Better Example from ILoveJackDaniel’s

function check_email_address($email) {

// First, we check that there's one @ symbol,

// and that the lengths are right.

if (!ereg("^[^@]{1,64}@[^@]{1,255}$", $email)) {

// Email invalid because wrong number of characters

// in one section or wrong number of @ symbols.

return false;

}

// Split it into sections to make life easier

$email_array = explode("@", $email);

$local_array = explode(".", $email_array[0]);

for ($i = 0; $i < sizeof($local_array); $i++) {

if

(!ereg("^(([A-Za-z0-9!#$%&'*+/=?^_`{|}~-][A-Za-z0-9!#$%&

�'*+/=?^_`{|}~\.-]{0,63})|(\"[^(\\|\")]{0,62}\"))$",

$local_array[$i])) {

return false;

}

}

// Check if domain is IP. If not,

// it should be valid domain name

if (!ereg("^\[?[0-9\.]+\]?$", $email_array[1])) {

$domain_array = explode(".", $email_array[1]);

if (sizeof($domain_array) < 2) {

return false; // Not enough parts to domain

}

for ($i = 0; $i < sizeof($domain_array); $i++) {

if

(!ereg("^(([A-Za-z0-9][A-Za-z0-9-]{0,61}[A-Za-z0-9])|

�([A-Za-z0-9]+))$",

$domain_array[$i])) {

return false;

}

}

}

return true;

}

http://www.ilovejackdaniels.com/php/email-address-validation
http://www.linuxjournal.com

Requirement number four covers a now obsolete form that is
arguably permissive. Agents issuing new addresses could legitimately
disallow it; however, an existing address that uses this form remains a
valid address.

The standard assumes a seven-bit character encoding, not multi-
byte characters. Consequently, according to RFC 2234, “alphabetic”
corresponds to the Latin alphabet character ranges a–z and A–Z.
Likewise, “numeric” refers to the digits 0–9. The lovely international
standard Unicode alphabets are not accommodated—not even encoded
as UTF-8. ASCII still rules here.

Developing a Better E-mail Validator
That’s a lot of requirements! Most of them refer to the local part and
domain. It makes sense, then, to start with splitting the e-mail address
around the at sign separator. Requirements 2–5 apply to the local part,
and 6–10 apply to the domain.

The at sign can be escaped in the local name. Examples are,
Abc\@def@example.com and "Abc@def"@example.com. This means
an explode on the at sign, $split = explode("@", $email); or
another similar trick to separate the local and domain parts will not
always work. We can try removing escaped at signs, $cleanat =
str_replace("\\@", "");, but that will miss pathological cases,
such as Abc\\@example.com. Fortunately, such escaped at signs are
not allowed in the domain part. The last occurrence of the at sign
must definitely be the separator. The way to separate the local and
domain parts, then, is to use the strrpos function to find the last at

sign in the e-mail string.
Listing 3 provides a better method for splitting the local part and

domain of an e-mail address. The return type of strrpos will be
boolean-valued false if the at sign does not occur in the e-mail string.

Let’s start with the easy stuff. Checking the lengths of the local
part and domain is simple. If those tests fail, there’s no need to do the
more complicated tests. Listing 4 shows the code for making the
length tests.

66 | june 2007 www.l inux journa l .com

Listing 3. Splitting the Local Part and Domain

$isValid = true;

$atIndex = strrpos($email, "@");

if (is_bool($atIndex) && !$atIndex)

{

$isValid = false;

}

else

{

$domain = substr($email, $atIndex+1);

$local = substr($email, 0, $atIndex);

// ... work with domain and local parts

}

Listing 4. Length Tests for Local Part and Domain

$localLen = strlen($local);

$domainLen = strlen($domain);

if ($localLen < 1 || $localLen > 64)

{

// local part length exceeded

$isValid = false;

}

else if ($domainLen < 1 || $domainLen > 255)

{

// domain part length exceeded

$isValid = false;

}

Listing 5. Partial Test for Valid Local Part Content

if (!preg_match('/^(\\\\.|[A-Za-z0-9!#%&`_=\\/$\'*+?^{}|~.-])+$/',

str_replace("\\\\","",$local)))

{

// character not valid in local part unless

// local part is quoted

if (!preg_match('/^"(\\\\"|[^"])+"$/',

str_replace("\\\\","",$local)))

{

$isValid = false;

}

}

Listing 6. Check for dot placement in the local part.

if ($local[0] == '.' || $local[$localLen-1] == '.')

{

// local part starts or ends with '.'

$isValid = false;

}

else if (preg_match('/\\.\\./', $local))

{

// local part has two consecutive dots

$isValid = false;

}

Listing 7. Domain Checks

if (!preg_match('/^[A-Za-z0-9\\-\\.]+$/', $domain))

{

// character not valid in domain part

$isValid = false;

}

else if (preg_match('/\\.\\./', $domain))

{

// domain part has two consecutive dots

$isValid = false;

}

else if (!(checkdnsrr($domain,"MX") || checkdnsrr($domain, "A")))

{

// domain not found in DNS

$isValid = false;

}

FEATURE Validate an E-Mail Address with PHP

http://www.linuxjournal.com

Now, the local part has one of two forms. It may have a begin
and end quote with no unescaped embedded quotes. The local part,
Doug \"Ace\" L. is an example. The second form for the local part is,
(a+(\.a+)*), where a stands for a whole slew of allowable characters.
The second form is more common than the first; so, check for that
first. Look for the quoted form after failing the unquoted form.

Characters quoted using the back slash (\@) pose a problem. This
form allows doubling the back-slash character to get a back-slash
character in the interpreted result (\\). This means we need to check
for an odd number of back-slash characters quoting a non-back-slash
character. We need to allow \\\\\@ and reject \\\\@.

It is possible to write a regular expression that finds an odd num-
ber of back slashes before a non-back-slash character. It is possible,
but not pretty. The appeal is further reduced by the fact that the back-
slash character is an escape character in PHP strings and an escape
character in regular expressions. We need to write four back-slash
characters in the PHP string representing the regular expression to
show the regular expression interpreter a single back slash.

A more appealing solution is simply to strip all pairs of back-slash
characters from the test string before checking it with the regular
expression. The str_replace function fits the bill. Listing 5 shows a test
for the content of the local part.

The regular expression in the outer test looks for a sequence of
allowable or escaped characters. Failing that, the inner test looks for a
sequence of escaped quote characters or any other character within a

pair of quotes.
If you are validating an e-mail address entered as POST data,

which is likely, you have to be careful about input that contains back-
slash (\), single-quote (’) or double-quote characters ("). PHP may or
may not escape those characters with an extra back-slash character
wherever they occur in POST data. The name for this behavior is
magic_quotes_gpc, where gpc stands for get, post, cookie. You can
have your code call the function, get_magic_quotes_gpc(), and strip
the added slashes on an affirmative response. You also can ensure that
the PHP.ini file disables this “feature”. Two other settings to watch for
are magic_quotes_runtime and magic_quotes_sybase.

The two regular expressions in Listing 5 are appealing because
they are relatively easy to comprehend and don’t require repetition of
the allowable character group, [A-Za-z0-9!#%&`_=\\/$\’*+?^{}|~.-].
Here’s a test for you. Why does the character group require two back-
slash characters before the forward slash and one back-slash character
before the single quote?

One deficiency of the outer test of Listing 5 is that it passes local
part strings that include dots anywhere in the string. Requirement
number two states that dots can’t start or end the local part, and they
can’t appear together two or more times. We could address this by
expanding the outer regular expression into form ^(a+(\.a+)+)$, where
a is (\\\\.|[A-Za-z0-9!#%&`_=\\/$\’*+?^{}|~-]). We could, but that leads
to a long, hard-to-read, repetitive expression that’s difficult to believe
in. It’s clearer to add the simple checks shown in Listing 6.

www. l inux journa l .com june 2007 | 67

Listing 8. Test the e-mail validation function.

<?php

require("validEmail.php"); // your favorite here

function testEmail($email)

{

echo $email;

$pass = validEmail($email);

if ($pass)

{

echo " is valid.\n";

}

else

{

echo " is not valid.\n";

}

return $pass;

}

$pass = true;

echo "All of these should succeed:\n";

$pass &= testEmail("dclo@us.ibm.com");

$pass &= testEmail("abc\\@def@example.com");

$pass &= testEmail("abc\\\\@example.com");

$pass &= testEmail("Fred\\ Bloggs@example.com");

$pass &= testEmail("Joe.\\\\Blow@example.com");

$pass &= testEmail("\"Abc@def\"@example.com");

$pass &= testEmail("\"Fred Bloggs\"@example.com");

$pass &= testEmail("customer/department=shipping@example.com");

$pass &= testEmail("\$A12345@example.com");

$pass &= testEmail("!def!xyz%abc@example.com");

$pass &= testEmail("_somename@example.com");

$pass &= testEmail("user+mailbox@example.com");

$pass &= testEmail("peter.piper@example.com");

$pass &= testEmail("Doug\\ \\\"Ace\\\"\\ Lovell@example.com");

$pass &= testEmail("\"Doug \\\"Ace\\\" L.\"@example.com");

echo "\nAll of these should fail:\n";

$pass &= !testEmail("abc@def@example.com");

$pass &= !testEmail("abc\\\\@def@example.com");

$pass &= !testEmail("abc\\@example.com");

$pass &= !testEmail("@example.com");

$pass &= !testEmail("doug@");

$pass &= !testEmail("\"qu@example.com");

$pass &= !testEmail("ote\"@example.com");

$pass &= !testEmail(".dot@example.com");

$pass &= !testEmail("dot.@example.com");

$pass &= !testEmail("two..dot@example.com");

$pass &= !testEmail("\"Doug \"Ace\" L.\"@example.com");

$pass &= !testEmail("Doug\\ \\\"Ace\\\"\\ L\\.@example.com");

$pass &= !testEmail("hello world@example.com");

$pass &= !testEmail("gatsby@f.sc.ot.t.f.i.tzg.era.l.d.");

echo "\nThe email validation ";

if ($pass)

{

echo "passes all tests.\n";

}

else

{

echo "is deficient.\n";

}

?>

http://www.linuxjournal.com
mailto:dclo@us.ibm.com
mailto:Bloggs@example.com
mailto:Blow@example.com
mailto:shipping@example.com
mailto:A12345@example.com
mailto:abc@example.com
mailto:somename@example.com
mailto:mailbox@example.com
mailto:piper@example.com
mailto:Lovell@example.com
mailto:abc@def@example.com
mailto:testEmail("@example.com
mailto:qu@example.com
mailto:dot@example.com
mailto:dot.@example.com
mailto:dot@example.com
mailto:world@example.com
mailto:gatsby@f.sc.ot.t.f.i.tzg.era.l.d

The local part is a wrap. The code now checks all local part
requirements. Checking the domain will complete the e-mail valida-
tion. The code could check all of the labels in the domain separately,
as does the whiskey-loving code shown in Listing 2, but, as hinted
earlier, the solution presented here allows the DNS check to do most
of the domain validation work.

Listing 7 makes a cursory check to ensure only valid characters in
the domain part, with no repeated dots. It goes on to make DNS
lookups for MX and A records. It makes the check for the A record
only if the MX record check fails. The code in Listing 4 verified the
length of the domain value.

So, is it good? You decide. But, it would be nice to test the
logic to ensure that it at least is correct. Listing 8 contains a series
of e-mail address test cases that any e-mail validation should pass.

Be sure to run the test to see the valid and rejected e-mail
addresses, the double-escaping (\\) inside the PHP strings tends
to obfuscate the addresses. You’re challenged to subject your
favorite e-mail validation code to this test. Be assured that the
code in Listing 9 does pass!

Listing 9 contains a complete function for validating an e-mail
address. It isn’t as concise as many—it certainly isn’t a one-liner.
But, it is straightforward to read and comprehend, and it correctly
accepts and rejects e-mail addresses that many other published
functions incorrectly reject and accept. The function orders the
validation tests roughly according to increasing cost. In particular,
the more complex regular expression and, certainly, the DNS
lookup, both come last.

Spread the word! There is some danger that common usage
and widespread sloppy coding will establish a de facto standard for
e-mail addresses that is more restrictive than the recorded formal
standard. If you want to fool the spambots, adopt an e-mail
address like, {^c\@**Dog^}@cartoon.com. Unfortunately, you
might fool some legitimate e-commerce sites as well. Which do
you suppose will adapt more quickly?�

Douglas Lovell is a software engineer with IBM Research, author of The XSL Formatting Objects
Developer’s Handbook published by Sams, and Web site editor for iac52.org.

68 | june 2007 www.l inux journa l .com

Listing 9. A Complete E-mail Validation Function

/**

Validate an email address.

Provide email address (raw input)

Returns true if the email address has the email

address format and the domain exists.

*/

function validEmail($email)

{

$isValid = true;

$atIndex = strrpos($email, "@");

if (is_bool($atIndex) && !$atIndex)

{

$isValid = false;

}

else

{

$domain = substr($email, $atIndex+1);

$local = substr($email, 0, $atIndex);

$localLen = strlen($local);

$domainLen = strlen($domain);

if ($localLen < 1 || $localLen > 64)

{

// local part length exceeded

$isValid = false;

}

else if ($domainLen < 1 || $domainLen > 255)

{

// domain part length exceeded

$isValid = false;

}

else if ($local[0] == '.' || $local[$localLen-1] == '.')

{

// local part starts or ends with '.'

$isValid = false;

}

else if (preg_match('/\\.\\./', $local))

{

// local part has two consecutive dots

$isValid = false;

}

else if (!preg_match('/^[A-Za-z0-9\\-\\.]+$/', $domain))

{

// character not valid in domain part

$isValid = false;

}

else if (preg_match('/\\.\\./', $domain))

{

// domain part has two consecutive dots

$isValid = false;

}

else if

(!preg_match('/^(\\\\.|[A-Za-z0-9!#%&`_=\\/$\'*+?^{}|~.-])+$/',

str_replace("\\\\","",$local)))

{

// character not valid in local part unless

// local part is quoted

if (!preg_match('/^"(\\\\"|[^"])+"$/',

str_replace("\\\\","",$local)))

{

$isValid = false;

}

}

if ($isValid && !(checkdnsrr($domain,"MX") ||

�checkdnsrr($domain,"A")))

{

// domain not found in DNS

$isValid = false;

}

}

return $isValid;

}

FEATURE Validate an E-Mail Address with PHP

http://www.linuxjournal.com

70 | june 2007 www.l inux journa l .com

I urge our readers to have a look at the “Vietnam of Computer
Science” by Ted Neward, which compares the quagmire of the
Vietnam War to the current quagmire that results from our
attempts to blend object-oriented languages with relational or
even object-relational databases. A link to Ted’s article can be
found at www.odbms.org/vietnam.html.

The article discusses a problem called object-relational impedance
mismatch. Here’s how I’d sum up the problem:

We have two great technologies at our disposal: object-oriented
languages and relational databases. Problems occur, however, when
you try to blend the two, because neither is designed to work seam-
lessly with the other. A Query-By-Example style of programming may
solve the problem, but this works only for simple database access.
Mapping classes to tables may work, but the normalization of

databases makes this approach difficult. For example, a “customer”
table is not likely to include the city and state where the customer
lives. A database administrator (DBA) will likely pull out that data and
store it by zip code in another table. An option is simply to pass query
strings to the database and sort out the fields manually. This is likely to
lead to performance problems and breakage if the data types are not
handled properly. To confuse matters more, even if you get everything
right, there’s always the possibility that a DBA will change the
database in such a way that it breaks your code.

Languages like PHP include tricks to help smooth out the language-
to-database mapping, but even these tricks can be undermined by
certain changes to the database schema. The problem lies in the fact
that these options are merely tricks, not true database-to-language
mapping techniques.

THE PROBLEM OF LANGUAGE-TO-DATABASE MAPPING.
Nicholas Petreley

CHRISTOF WITTIG
and TED NEWARD on
OBJECT-ORIENTED
LANGUAGE MAPPING
to DATABASES

http://www.odbms.org/vietnam.html
http://www.linuxjournal.com

LJ: Does that sum up things fairly well
or is there something you want to add?
TED: There’s a lot of issues at stake here,
one of which is the fundamental tension
between developers and DBAs over
“who owns the data”, and more impor-
tant, the schema corresponding to that
data. Developers who own the schema
will create something that’s comfortable
for them to use, but awkward for the
DBAs to manipulate, and DBAs who own
the schema will create something that’s
easy for them to maintain and report
from, but which in turn creates awkward-
ness for the developers. To suggest that a
technology—any technology—is going to
eliminate completely those problems that
are fundamentally rooted in politics is
somewhat foolish.
CHRISTOF: The object/relational, dual-
schema approach, which puts data above
the application and into the hands of a
DBA, has organizational advantages in tra-
ditional, centralized enterprise IT environ-
ments. There is, however, a whole class of
applications, where the data store is
entirely embedded and invisible to the end
user—for example, in device software, in
packaged software on your cell phone or
PC, in real-time control systems and in
SOA applications. These zero-admin
database scenarios have no benefit from
having two schemata, but incur all the
cost of reconciling these inherently incom-
patible models. Distributed and mobile
software architectures, proliferated in a
networked world, drive demand for zero-
administration database engines, so we
will hear a lot more of them in the future.

LJ: I realize that not all databases that
call themselves “relational” actually
conform to the Codd and Date aca-
demic view of relational databases.
But, that aside, is this problem limited
to relational database mapping to OO
languages? Why don’t object-relation-
al databases (ORDBMSes) solve this
problem? Or do they?
TED: In a lot of ways, the impedance
mismatch isn’t limited only to objects and
relations; trying to stuff objects into a
hierarchical data format (like XML) suffers
from some of the same problems. So, to
suggest that this is “just” an object-rela-
tional problem is misleading. Date’s posi-
tion on this is interesting; he insists that
an ORDBMS really doesn’t exist, that the

O
th

er
 c

om
pa

ny
 a

nd
 p

ro
du

ct
 n

am
es

 a
re

 re
gi

st
er

ed
 tr

ad
em

ar
ks

 o
r t

ra
de

m
ar

ks
 o

f t
he

ir
re

sp
ec

tiv
e

ow
ne

rs
. ©

 2
00

7
Fa

irC
om

 C
or

po
ra

tio
n

w w w. f a i r c o m . c o m / g o / ? s p e e d

Chip manufacturing,
warehouse automation,

and other throughput-intensive
systems require

FairCom database
technology makes
it possible.

processing of
c-tree technology

http://www.faircom.com/go/?speed

fields of an object are, in fact, simply
nothing more than columns in a table (or
attributes in a relation, to use his more
formal terminology). That also implies that
inheritance is nothing more than a simple
association between tables, somehow
silently joined together in a manner that
he doesn’t seem to specify clearly (at least,
not in his eighth edition of Introduction to
Database Systems). While I’m not going to
try to debate relational theory with him, I
suspect that his views of the object world
are somewhat skewed and therefore not
entirely accurate.

LJ: Some have questioned why you
drew the comparison between this
technical problem and the Vietnam War,
and in fact suggested that it’s an entirely
inappropriate comparison. What are
your thoughts on that?
TED: I have two reactions, really. First of
all, to all those people who are offended
that someone would draw an analogy to
Vietnam that wasn’t somehow rooted in
war or political conflict, I’m sorry that
they’re offended, but American involve-
ment in Vietnam ended more than 30
years ago, and it’s time that we as a
nation grow up and stop nursing old
wounds. Yes, bad things happened, and
some of them happened to us, and some
of them happened because of us. It’s
high time we start looking at Vietnam
critically, instead of in a knee-jerk emo-
tional reaction state.

Second, Vietnam is in many ways a
perfect analogy to what goes on with
many object/relational-mapping tools, not
just because Vietnam is the synonym to
“quagmire” these days, but because,
according to Robert McNamara’s recently
published memoirs, American leadership
knew that they were getting into a poten-
tial quagmire, and thought they could
manage it somehow. To many, Vietnam
was the definition of unclear goals, but
McNamara’s memoirs make it clear that
America was, in fact, trying to “win” the
war, which meant winning “the hearts
and minds” of the Vietnamese people. It
just wasn’t clear how they could accom-
plish that with the tools available to them.
O/R-M is a similar situation: it’s clear what
we want to have happen, it’s just not clear
how we can make it work.

LJ: I got the impression last time we
spoke that db4o users were well aware

of this impedance mismatch, and that’s
why they contributed code and requests
that addressed this very problem rather
than pressure you to embrace the SQL
model. Do I read that right?
CHRISTOF: Yes, what happened was that
some managers wanted to see a check
mark next to “SQL” in their evaluation
spreadsheets. However, OO developers
don’t want SQL to access their data,
unless they have to or are unaware of the
alternatives. In fact, SQL is a DBA lan-
guage, not a developer language. Our
developers speak Java and .NET. So, db4o
has “Native Queries”, the ability to query
the database with native Java or .NET
semantics, a type-safe and 100% OO
approach, for instance.

LJ: And what about reporting, for
instance?
CHRISTOF: If you run a distributed appli-
cation with db4o, you usually don’t need
reporting (do you run Crystal Reports in
your car?). If you still need to link your
data at some stage to your back-end
RDBMS, then you can use the db4o
Replication System (dRS), which uses
Hibernate to sync persisted objects into
a central relational data warehouse for
analysis, backup and so on.

Reporting, specifically, may actually go
OO. Several vendors in the Java space
(Actuate, Elixir, JasperSoft) and Microsoft in
.NET (Visual Studio 2005—ReportViewer)
have brought OO reporting tools to the
market. And, people may find it easier to
report against a plain business object, say
“customer”, rather than umpteen normal-
ized tables with cryptic names.

LJ: How exactly does db4o address this
impedance mismatch?
TED: The db4o approach, like other
OODBMSes, avoids the impedance mis-
match because we’re not trying to store
anything other than objects into the sys-
tem. In other words, there’s no “mapping”,
per se, because there’s nothing to map to.
(Obviously, internally db4o is doing some
storage tricks to avoid blatant inefficien-
cies, but these are the same tricks that any
relational database plays and are, for the
most part, entirely black box and removed
from the end user’s perspective.) This
means that the schema of the stored data
is that of the objects themselves, thus
avoiding the “dual-schema problem”
I mentioned in the Vietnam essay.

CHRISTOF: Class model == database
schema.

LJ: Is it fair to say that you want db4o
to appear as an extension of Java, thus
avoiding an impedance mismatch? Is
that even possible to accomplish?
TED: I’m not sure I’d say that it’s an
extension of Java, so much as a mostly
transparent persistence system. There have
been numerous research projects over the
years that have tried to make the persis-
tence entirely transparent, including sever-
al within the Java space, and they play
interesting tricks like hooking constructors
to create persistent objects on “new”
calls, and loading objects out of persistent
space when invoking non-default con-
structors, and so on. Most of these
haven’t made it out of the research space,
for a variety of reasons, so I’d be a bit
wary of suggesting that db4o “extends”
Java (or .NET, for that matter).
CHRISTOF: Strictly speaking, you’re
right, Ted. But if we have a design philos-
ophy, it is exactly that—let’s be as trans-
parent as possible. Let’s use the semantics
and behavior of Java or .NET for persis-
tence wherever we can to make it least
intrusive and most intuitive to developers.

LJ: So the learning curve for db4o is not
very steep?
CHRISTOF: No. In fact, there is a podcast
on odbmsjournal.org (Episode 2) that
shows that you are up and running with
db4o in five minutes—including the down-
load! What’s more challenging though, is
that some people have to unlearn bad
(=non-OO) habits. They ask, “Where’s my
primary key?” (There is no primary key in
OOP.) So, for us, it is actually easiest to
work with young developers, especially in
Asia, who have no mental legacy and
enjoy a ten-times higher productivity when
writing their persistence-related code.

LJ: When I talk to database designers
and programmers, I often hear them sing
the praises of multi-value databases
like PICK. Do you get any demand
from your users and developers for
multi-value fields?
TED: My experience has been different—
that multi-value databases are awkward
and difficult to work with. I think what
ultimately drives the discussion is what
one’s own experience is like, and what you
find to be obvious and intuitive to you.

72 | june 2007 www.l inux journa l .com

FEATURE Christof Wittig and Ted Neward

http://www.linuxjournal.com

For myself, and I think Date would agree
with this, multi-value fields are anathema
and something to be avoided, because I
personally believe pretty strongly in the
power of the relational model for data
storage and manipulation.

LJ: How does that fit in with O/R map-
ping? Does that present more problems?
TED: In some respects, no, because it would
be “just” a List (or other collection) stored as
an attribute of the class. But in other ways, it
would represent a significant problem for O/R-M
tools, because now trying to decide if a List
inside a class should map to a multi-value
field or an association to another table would
require yet another annotation/attribute on
the field to control the mapping, creating
even more coupling between the object
model and the database schema.

LJ: Does the GPL-ization of Java factor
into your work in any way? Does it
present problems or opportunities for
your business?
CHRISTOF: The GPL-ization, in fact, the
dual licensing of Java, is great news for db4o
on three accounts. First, open-sourcing Java
certainly fosters the Java ecosystem, from
IBM to Eclipse to many open-source projects
and startups. Second, with open source, we
can look to build a much closer integration
of db4o’s persistence solution with the Java
VM than previously possible. Third, the dual-
license model itself, as used by MySQL,
db4objects, Trolltech and many others, has
received further endorsement as a viable
open-source business model, which also
makes our life as a company much easier.

LJ: How have your customers reacted
to the fact that Java is going GPL? Do
you see any increase or decrease in
interest in Java? A decrease or increase
in interest in db4o?
CHRISTOF: We have seen a huge increase
in Java users of db4o during the last few
months, both in absolute terms as well as
in proportion to our other platform, .NET.
We don’t really know whether this is going
back to open-sourcing Java, but that would
provide a good explanation.

LJ: Thank you so much for taking the
time and effort to speak with us.�

Nicholas Petreley is Editor in Chief of Linux Journal and a former
programmer, teacher, analyst and consultant who has been
working with and writing about Linux for more than ten years.

Never tried SlickEdit?
What’s your excuse?

www.slickedit.com

Download a FREE trial at www.slickedit.com/trial
or call 1-800-934-3348.

Top 10 Reasons NOTto Use SlickEdit

1. The more I type, the better I get at it.
2. The office is so peaceful after 10pm.
3. Real Programmers don’t need no fancy tools.
4. Nothing is more satisfying than formatting my

code by hand.
5. I’ll get disability if my Repetitive Stress Injury

is severe enough.
6. I get paid by the hour.

7. Milestones? What are milestones?
8. Traffic is so much lighter later at night.
9. If I finish my work on schedule they’ll just give

me more to do.
10. I never liked spending time with my family

anyway.

There's really only one good reason not to use SlickEdit —

you've never tried it. For 19 years power programmers have found

our multi-language development tools and advanced code editors

exceed their expectations. SlickEdit proves fast, powerful, and flexible —

whether you're developing on Windows, Linux, UNIX, or Mac OS.

Whatever your environment, SlickEdit has a tool for you. Our product

suite includes SlickEdit
®
, SlickEdit

®
Tools for Microsoft

®
Visual Studio

®
2005, and

the SlickEdit
®

Plug-in for Eclipse™.

http://www.slickedit.com
http://www.slickedit.com/trial

74 | june 2007 www.l inux journa l .com

A metaprogram is a program that generates other programs or
program parts. Hence, metaprogramming means writing metaprograms.
Many useful metaprograms are available for Linux; the most common
ones include compilers (GCC or FORTRAN 77), interpreters (Perl or
Ruby), parser generators (Bison), assemblers (AS or NASM) and prepro-
cessors (CPP or M4). Typically, you use a metaprogram to eliminate or
reduce a tedious or error-prone programming task. So, for example,
instead of writing a machine code program by hand, you would use a
high-level language, such as C, and then let the C compiler do the
translation to the equivalent low-level machine instructions.

Metaprogramming at first may seem to be an advanced topic,
suitable only for programming language gurus, but it’s not really that
difficult once you know how to use the adequate tools.

Source Code Generation
In order to present a very simple example of metaprogramming, let’s
assume the following totally fictional situation.

Erika is a very smart first-year undergraduate computer science
student. She already knows several programming languages, including
C and Ruby. During her introductory programming class, Professor
Gomez, the course instructor, caught her chatting on her laptop
computer. As punishment, he demanded Erika write a C program
that printed the following 1,000 lines of text:

1. I must not chat in class.

2. I must not chat in class.

...

999. I must not chat in class.

1000. I must not chat in class.

An additional imposed restriction was that the program could not
use any kind of loop or goto instruction. It should contain only one big
main function with 1,000 printf instructions—something like this:

#include <stdio.h>

int main(void) {

printf("1. I must not chat in class.\n");

printf("2. I must not chat in class.\n");

/* 996 printf instructions omitted. */

printf("999. I must not chat in class.\n");

printf("1000. I must not chat in class.\n");

return 0;

}

Professor Gomez wasn’t too naïve, so he basically expected Erika

to write the printf instruction once, copy it to the clipboard, do 999
pastes, and manually change the numbers. He expected that even this
amount of irksome and repetitive work would be enough to teach her
a lesson. But, Erika immediately saw an easy way out—metaprogram-
ming. Instead of writing this program by hand, why not write another
program that writes this program automatically for her? So, she wrote
the following Ruby script:

File.open('punishment.c', 'w') do |output|

output.puts '#include <stdio.h>'

output.puts 'int main(void) {'

1.upto(1000) do |i|

output.puts " printf(\"#{i}. " +

"I must not chat in class.\\n\");"

end

output.puts ' return 0;'

output.puts '}'

end

This code creates a file called punishment.c with the expected
1,000+ lines of C source code.

Although this example might seem a bit fabricated, it illustrates
how easy it is to write a program that produces the source of another
program. This technique can be used in more realistic settings. Let’s
say that you have a C program that needs to include a PNG image,
but for some reason, the deployment platform can accept one file
only, the executable file. Thus, the data that conforms the PNG file
data has to be integrated within the program code itself. To achieve
this, we can read the PNG file beforehand and generate the C source
text for an array declaration, initialized with the corresponding data as
literal values. This Ruby script does exactly that:

INPUT_FILE_NAME = 'ljlogo.png'

OUTPUT_FILE_NAME = 'ljlogo.h'

DATA_VARIABLE_NAME = 'ljlogo'

File.open(INPUT_FILE_NAME, 'r') do |input|

File.open(OUTPUT_FILE_NAME, 'w') do |output|

output.print "unsigned char #{DATA_VARIABLE_NAME}[] = {"

data = input.read.unpack('C*')

data.length.times do |i|

if i % 8 == 0

output.print "\n "

end

output.print '0x%02X' % data[i]

output.print ', ' if i < data.length - 1

end

An Introduction to
Metaprogramming
How to write programs that write programs. ARIEL ORTIZ

INDEPTH

http://www.linuxjournal.com

output.puts "\n};"

end

end

This script reads the file called ljlogo.png and creates a new output
file called ljlogo.h. First, it writes the declaration of the variable ljlogo as an
array of unsigned characters. Next, it reads the whole input file at once
and unpacks every single input character as an unsigned byte. Then, it
writes each of the input bytes as two-digit hexadecimal numbers in groups
of eight elements per line. As should be expected, individual elements are
terminated with commas, except the last one. Finally, the script writes the
closing brace and semicolon. Here is a possible output file sample:

unsigned char ljlogo[] = {

0x89, 0x50, 0x4E, 0x47, 0x0D, 0x0A, 0x1A, 0x0A,

0x00, 0x00, 0x00, 0x0D, 0x49, 0x48, 0x44, 0x52,

/* A few hundred lines omitted. */

0x0B, 0x13, 0x00, 0x00, 0x00, 0x00, 0x49, 0x45,

0x4E, 0x44, 0xAE, 0x42, 0x60, 0x82

};

The following C program demonstrates how you could use the
generated code as an ordinary C header file. It’s important to note
that the PNG file data will be stored in memory when the program
itself is loaded:

#include <stdio.h>

#include "ljlogo.h"

/* Prints the contents of the array ljlogo as

hexadecimal byte values. */

int main(void) {

int i;

for (i = 0; i < sizeof(ljlogo); i++) {

printf("%X ", ljlogo[i]);

}

return 0;

}

You also can have a program that both generates source code and
executes it on the spot. Some languages have a facility called eval,
which allows you to translate and execute a piece of source code con-
tained within a string of characters at runtime. This feature is usually
available in interpreted languages, such as Lisp, Perl, Ruby, Python and
JavaScript. In this Ruby code:

x = 3

s = 'x + 1'

puts eval(s)

The string ’x + 1’ is translated and executed when the code is run,
printing 4 as a result. Note that even the value bound to variable x is
available during the runtime evaluation.

The following Ruby code demonstrates a contrived way to find the
result of adding all the integer numbers between 1 and 100. Instead of

http://www.genstor.com

76 | june 2007 www.l inux journa l .com

using a normal loop or iteration method, we generate a big string contain-
ing the expression “1+2+3+...+99+100” and then proceed to evaluate it:

puts eval((1..100).to_a.join('+'))

The eval function should be used with care. If the string used as the
argument to eval comes from an untrusted source (for example, from
user input), it can be potentially dangerous (imagine what could happen
if the string to evaluate contains the Ruby expression rm -r *). In many
cases, there are alternatives to eval that are more flexible, less insecure
and do not require the speed hit of parsing code during runtime.

Quines
A quine is special kind of source code generator. The jargon file
defines a quine as “a program that generates a copy of its own
source text as its complete output”. You might be right if you think
this lacks any practical value by itself, but as a brain-teaser, it can be
mind-blowing. Here’s a quine written by Ryan Davis, which is one of
the shortest ones for the Ruby language:

f="f=%p;puts f%%f";puts f%f

Run this program, and you will get it as output. You might even
try something like this from a shell prompt:

ruby -e 'f="f=%p;puts f%%f";puts f%f' | ruby

Here we’re using the -e option from the command line to specify
one line of Ruby source to execute, and then we use a pipe to send its
output to another instance of the Ruby interpreter. The output is once
again the same program source.

Modifying Programs during Runtime
Dynamic languages, such as Ruby, allow you to modify different parts
of your program easily during runtime without having to generate
source code explicitly as we did previously. Ruby’s core API and
frameworks, such as Ruby on Rails, employ this facility to automate
common programming tasks. For example, in a class definition,
you can use the attr_accessor method to produce the read/write
access methods automatically for a given attribute name. Thus,
the following code:

class Person

attr_accessor :name

end

is equivalent to this more verbose code:

class Person

def name

@name

end

def name=(new_name)

@name = new_name

end

end

The previous code has a minor drawback: the corresponding
instance variable @name is not really created until you first set its
value. This means you’ll get a nil value if you happen to read the name
attribute before writing to it. If you’re not careful, this could introduce
a few subtle bugs into your programs. The easiest way to avoid this
problem is to set the @name instance variable to a reasonable value in
the Person#initialize method. Because this is a quite common scenario,
wouldn’t it be nice to have this method generated automatically, in
addition to the read/write accessors? Let’s define an attr_initialize
method that’ll do that using Ruby’s metaprogramming facilities.

First, let’s briefly address two methods that are key to performing
our desired metaprogramming magic:

cls.define_method(name) { body }

This adds a new instance method to the receiving class. It takes as
input the method’s name (as a symbol or string) and its body (as a
code block):

obj.instance_variable_set(name, value)

The above code binds an instance variable to the specified value.
The name of the instance variable should be a symbol or string, and it
also should include the @ prefix.

Now, we’re ready to define the attr_initialize class method as an
extension to the Object class so that any other class can use it:

require 'generator'

class Object

def Object.attr_initialize(*attrs)

define_method(:initialize) do |*args|

if attrs.length != args.length

raise ArgumentError,

"wrong number of arguments " +

"(#{args.length} for #{attrs.length})"

end

SyncEnumerator.new(attrs, args).each do

|attr, arg|

instance_variable_set("@#{attr}", arg)

end

end

attr_accessor *attrs

end

end

The attr_initialize method takes as input a variable number of
attribute names (attrs). Each attribute name has the same position
reserved for it in the dynamically created initialize method parameter
list (args) in order to set its initial value. We start the new method’s
code by checking that the number of arguments being received are
the same as the number of attributes we originally specified. If not,
we raise an error with a descriptive message. Afterward, we use a
SyncEnumerator object (from the generator library) to iterate at the
same time over the declared attributes list (attrs) and the actual argu-
ments list (args) so as to perform a one-by-one attribute-argument
binding using the instance_variable_set method. Finally, we delegate

INDEPTH

http://www.linuxjournal.com

to the attr_accessor method in order to create the read/write access
methods for all the declared attributes.

Here’s how we can use the attr_initialize method:

class Student

attr_initialize :name, :id, :address

end

s = Student.new('Erika', 123, '13 Fake St')

s.address = '13 Wrong Rd'

puts s.name, s.id, s.address

The expected output would be:

Erika

123

13 Wrong Rd

Conclusion
Once you’re familiar with the techniques, metaprogramming is not as
complicated as it might sound initially. Metaprogramming allows you
to automate error-prone or repetitive programming tasks. You can use
it to pre-generate data tables, to generate boilerplate code automati-
cally that can’t be abstracted into a function, or even to test your

ingenuity on writing self-replicating code.�

Ariel Ortiz is a faculty member at the Computer Science Department of the Tecnolgico de
Monterrey, Campus Estado de Mexico. He’s been teaching computer programming for almost two
decades. He’s not too sure what his favorite programming language is, but he thinks it’s either
Scheme, Python or Ruby. He can be reached at ariel.ortiz@itesm.mx.

Resources

The Jargon File: www.catb.org/esr/jargon

Ruby Cookbook by Lucas Carlson and Leonard Richardson, published
by O’Reilly Media, 2006. Chapter 10 of this book contains 16 recipes
on reflection and metaprogramming using Ruby. Highly recommended.

The Quine Page: www.nyx.net/~gthompso/quine.htm. This Web
page contains quines in many different programming languages. It
even has quines that work in more than one language.

“I’d rather write programs that write programs than write
programs.”—Richard Sites

Silicon Mechanics and the Silicon Mechanics logo are registered trademarks of Silicon Mechanics, Inc.

AMD, the AMD Arrow logo, AMD Opteron, and combinations thereof, are trademarks of
Advanced Micro Devices, Inc.

visit us at www.siliconmechanics.com
or call us toll free at 866-352-1173

Expert In
Paul has years of experience in matching customers with the servers they need.
What he likes best are servers that combine outstanding performance with long-term
value. Paul is impressed by the Rackform nServ A411 because it’s a compute cluster
in one rack unit, with four Dual-Core AMD Opteron™ 8000 Series processors and
16 DDR2 DIMM sockets.

And he knows that Second-Generation AMD Opteron™ processors are
designed to offer seamless upgradeability to Quad-Core, while AMD’s
Direct Connect Architecture ensures that all eight cores will work
together with maximum effi ciency right now.

When you partner with Silicon Mechanics, you get more than
a powerful AMD server—you get an expert like Paul.

mailto:ortiz@itesm.mx
http://www.catb.org/esr/jargon
http://www.nyx.net/~gthompso/quine.htm
http://www.siliconmechanics.com

Every decent programmer has to study source code at some time
or other. Sometimes it’s to learn new coding styles. Sometimes it’s to get an
idea of how something works. Regardless of the reason, no programmer
can do without it. Studying the source code of small projects is not difficult.
You easily can do without formal methods. However, when you want to
study the source code of large projects, keeping track of the various func-
tions, variables and their definitions becomes a huge problem. People are
lucky if they can find the source code on-line—doing so means they can
use tools to process the source code and help them study it. Such tools
give people studying source code advantages and flexibility never before
dreamed of. One such tool is the LXR (Linux Cross-Reference) tool.

Developed originally as a testbed application for a general
hypertext cross-referencing tool in Norway, its flagship achievement
is cross-referencing the Linux kernel source code. The code is available
at lxr.linux.no/source for browsing. Other projects are at
lxr.mozilla.org/seamonkey, where the Mozilla source code is
available for browsing, and the FreeBSD source code is available at
fxr.watson.org. LXR gives users the capability to jump to function
definitions, search for usages and so forth with only a single click. It
also supports indexing of e-mail and hypertext links.

The project is based on stock Web technology, so it can be
accessed via any Web browser. On the server side, it was developed
using Apache but should work with any Web browser supporting
CGI-scripting capabilities. The scripts that actually do all the work
were developed using Perl and rely heavily on Perl’s powerful
regular expression libraries.

Probably the best feature of this software is that it is presented
to users in HTML format. Because of the HTML format, it is easy to link
various portions of the code to others. It is written in Perl, so theoretically,
it can run on any operating system that has a Perl interpreter. What is
really great about this tool is that it supports multiple languages. This
means it doesn’t matter which language your program is written in; you
still can use this tool to cross-reference and browse your code.

LXR is actually quite simple and clean. The users use a utility called
genxref to generate an index of the complete source code. Once this
is done, users access a Perl script called source through a Web
browser that reads the index files and generates the HTML for the
cross-referenced source code dynamically. Users then can browse
the source code as they want.

Installation
Installing and configuring LXR is pretty simple once you know a bit
about how it works and what the various configuration options are.
First, download the source tarball from sourceforge.net/projects/lxr.
At the time of this writing, lxr-0.3 is the stable release. Once you have
downloaded the tarball, extract it using:

bash# tar -xvf lxr-0.3.tar.gz

After extracting the source, cd to the newly created directory, and
open the Makefile for editing with the text editor of your choice. You
need to set two variables here: INSTALLPREFIX and PERLBIN. PERLBIN
refers to the executable binary of the perl5 interpreter. In my case, it
was in /usr/bin/perl. INSTALLPREFIX is the directory where LXR will be
installed. It should be in a location that is accessible via a Web browser.
On my system, that’s Apache 1.3.33, and I chose to install it under
/var/www/htdcos/. Thus, my Makefile looked something like this:

Makefile for installation and configuration of LXR

The location of your perl5 binary

PERLBIN=/usr/bin/perl

LXR will be installed here

INSTALLPREFIX=/var/www/htdocs/lxr

End of configuration parameters

CGISCRIPTS=find ident search diff source

PERLMODULES=SimpleParse.pm Common.pm Config.pm

....

....

....

Leave the rest of the Makefile unchanged. At the console, type:

bash# make install

and LXR is installed in the specified directory.

Configuration
Now, cd to the directory where LXR was installed (in my case that was
/var/www/htdocs/lxr). Three subdirectories should be there: bin, http and
source. Although the source code you want to cross-reference can be
placed anywhere, I prefer to put it under the $INSTALLPREFIX/source
subdirectory. I put the glibc-2.3.5 and OpenMOSIX-2.4.26 source code
here. Now, we have to generate the index files that LXR will use to
generate the cross-referenced source code. So, cd to the directory with the
source code, and execute the genxref script in $INSTALLPREFIX/bin:

bash# /var/www/htdocs/lxr/bin/genxref .

78 | june 2007 www.l inux journa l .com

INDEPTH

Read Source Code
the HTML Way
Cross-reference and convert source code to HTML for easy viewing. KAMRAN SOOMRO

http://www.linuxjournal.com

www.l inux journa l .com june 2007 | 79

The . at the end tells the script that the source code is contained
within the current directory. Next, sit back and enjoy the ride until the
parsing is complete. Once it’s done, you should have two new files
in the current directory—the directory containing your source code—
fileidx and xref. These two files are the ones lxr needs to generate the
cross-referenced source code when you browse it. Make sure that others
have read permission for these files. To do so, type the following while
still in the source directory:

bash# ls -l fileidx xref

The output should be something like:

-r--r--r-- 1 nobody root 671744 2006-08-24 05:06 fileidx*

-r--r--r-- 1 nobody root 8425472 2006-08-24 05:06 xref*

The third r should be set. If it isn’t, you can set it by doing
the following:

bash# chmod o+x fileidx xref

Now, it’s time to configure LXR for use. Change directory to
$INSTALLPREFIX/http/ (in my case, that is /var/www/htdocs/lxr/http/),
and open the lxr.conf file for editing. The lxr.conf file is the most
important file you need. It has several different configuration options.

Variables
The first thing you’ll see when you open the file is a definition for a
variable called v. As with programming languages, you can define your
own variables and use them later in the configuration file. Wherever
they occur, they will be replaced by whatever value they have. Variable
values are referenced by the configuration file by $/variable-name.
Variable definitions follow one of two possible formats:

variable: /variable-identifier, variable-name,

/(/list-of-values/), /default-value/

or:

variable: /variable-identifier, variable-name,

/[/file-containing-list-of-values/], /default-value/

Here’s what the terms stand for:

� variable-identifier: the name the variable will be known as throughout
the configuration file.

� variable-name: the actual name of the variable that will be
displayed to the user.

� list-of-values: comma-separated list of values to be displayed.

� file-containing: a file that contains a list of possible values.

� list-of-values: the list has each entry on a separate line. The
user can select any one of them. The absolute path of the file

should be provided.

� default-value: the value that the variable will take on by default.
The first value is automatically set if this is not specified.

baseurl
The baseurl is the URL relative to which all of the scripts required by
LXR are placed. It should be accessible via a browser. In my configura-
tion, it’s http://my-ip/lxr/http/ <http://localhost/lxr/http/>. Make sure to
place the / at the end, or the last directory will be ignored.

HTML Headers and Footers
When the HTML for the source is generated, LXR can add headers
and footers to the pages. Sample headers and footers are provided in
the $INSTALLPREFIX/http/ directory. They’re called template-head and
template-tail. In addition, you also can change the way files and
directories are displayed by LXR by modifying the template-dir file.
The locations of these files can be specified by the htmlhead,
htmltail and htmldir options in the lxr.conf file.

sourceroot
This option tells LXR where to look for the actual source code. In my case,
it’s /var/www/htdocs/lxr/source/glibc-2.3.5. If you want to cross-reference
multiple projects, all you have to do is create a variable specifying the

Easy access to every
issue of Linux Journal from
March 1994–December 2006

http://www.linuxjournal.com
http://my-ip/lxr/http
http://localhost/lxr/http
http://www.linuxjournal.com/ArchiveCD

80 | june 2007 www.l inux journa l .com

location of each of the directories that contain the source code. Then, you
can specify the value of the variable as the sourceroot. For example, I set up
the sources for glibc-2.3.5 and OpenMOSIX-2.4.26, placing the sources
for both of them in /var/www/htdocs/lxr/source in their individual directories
with the same names as above. In lxr.conf, I had a line like:

variable: s, Source, (glibc-2.3.5, OpenMOSIX-2.4.26)

then:

sourceroot: /var/www/htdocs/lxr/source/$s

Thus, the appropriate source code is automatically selected based
on the value of the source variable.

srcrootname
srcrootname specifies the name of the project whose source code is
displayed—for example:

srcrootname: $s

incprefix
This specifies the locations of the header files that are to be included
in the project.

dbdir
This is the location of the fileidx and xref files generated by genxref. If you
have multiple projects, specify a separate location for each, as follows:

dbdir: /var/www/htdocs/lxr/source/$s/

These are the only options you need to set when configuring LXR.
Additionally, you can specify the location of the glimpse binary using
glimpsebin.

glimpsebin
glimpse allows users to search for specific files within the source code
and to search for any text within source files. You can obtain the latest
version of glimpse from webglimpse.net/trial/glimpse-latest.tar.gz.
Extract and install it. Once you are done installing glimpse, go
to the directory where the source code is installed, such as
/var/www/htdocs/lxr/source/glibc-2.3.5, and do the following:

bash# glimpseindex -H . .

The output should look something like this:

This is glimpseindex version 4.18.2, 2006.

Indexing "/var/www/htdocs/lxr/source/glibc-2.3.5" ...

Size of files being indexed = 81711416 B, Total #of files = 10075

Index-directory: "/var/www/htdocs/lxr/source/glibc-2.3.5"

Glimpse-files created here:

-rw-r--r-- 1 root root 676398 2006-09-08 05:51 .glimpse_filenames

-rw-r--r-- 1 root root 40300 2006-09-08 05:51 .glimpse_filenames_index

-rw-r--r-- 1 root root 0 2006-09-08 05:50 .glimpse_filetimes

-rw------- 1 root root 1783314 2006-09-08 05:51 .glimpse_index

-rw-r--r-- 1 root root 686 2006-09-08 05:51 .glimpse_messages

-rw------- 1 root root 836 2006-09-08 05:51 .glimpse_partitions

-rw-r--r-- 1 root root 23888 2006-09-08 05:51 .glimpse_statistics

This creates the required glimpse index files in the current directory.
Once they’re created, make sure read permission is set for others:

bash# chmod o+r .glimpse-*

Now, set the glimpsebin option in lxr.conf to wherever you
installed glimpse. I installed it in /usr/local/bin/glimpse.

That’s it; save and close the lxr.conf file. The only thing remaining
to do now is configure the Web server to work with LXR.

Configuring Apache
The Web server I used was Apache 1.3.33. The first order of business
is to set the permissions for the LXR directory. You can do that by edit-
ing the httpd.conf file, normally found under /etc/apache/httpd.conf.
Add the following lines:

<Directory /var/www/htdocs/lxr>

AllowOverride All

Options All

</Directory>

Simply replace the location with wherever you’ve installed LXR.

INDEPTH

Figure 1. Source Code Navigation via the Browser

http://www.linuxjournal.com

Then, go to $INSTALLPREFIX/http/ and create and open a file named
.htaccess for editing. Type the following lines:

<File ~ (search|find|source|diff|ident)?>

SetHandler cgi-script

</Files>

This tells the Web server to treat the above-mentioned files as CGI
scripts. If you don’t do this, the server will display only the contents of
these files. Close and save .htaccess. We are now ready to browse the
cross-referenced source code.

How to Use LXR
After all of the above steps are done, all you have to do is open a
Web browser and go to the URL, http:///my-ip//lxr/http/source, where
/my-ip/ is the IP of your Web server. When you open the Web page,
you will get something like what is shown in Figure 1.

As you can see, users can select any of the source code files for
browsing. At the top, I’m using the template provided by LXR. It includes
links to navigate the source code, search for a particular identifier,
search for any text within the source code and search for any file.

A few utilities of note:

� Source navigation: select this option to browse the source code of
your choice.

� Identifier search: search for the definition and uses of a particular
identifier. Requires the ident script.

� Freetext search: search for any text within the source files. Requires
the search script.

� File search: search for files matching the passed string. Requires the
find script.

All of these utilities also can search using regular expressions to
match the strings.

Conclusion
LXR is an excellent tool. It makes life a lot easier for people who want to
study source code, and it’s powerful and easy to use. The fact that it uses
dynamically generated Web pages to browse the source code gives users a
lot of flexibility in configuring it. Also, because it can be accessed via any
Web browser, it imposes no limitations on the platform, client or location
of users. This interoperability is one of the reasons LXR is so powerful.�

Kamran Soomro is a software engineering student at the National University of Sciences and
Technology, Pakistan. He has had great interest in Linux since he first used it during his first
semester. Since then, he has been avidly involved in promoting Linux in Pakistan.

Answers to the “Where Wants What?”
Matchup (from page 16)

1-C, 2-A, 3-Q, 4-L, 5-T, 6-M, 7-N, 8-I, 9-K, 10-P, 11-O, 12-H, 13-G,
14-B, 15-D, 16-R, 17-S, 18-J, 19-F, 20-E

Advertiser Index

For advertising information, please contact our sales
department at 1-713-344-1956 ext. 2 or ads@linuxjournal.com.

www.linuxjournal.com/advertising

Advertiser Page # Advertiser Page #

ABERDEEN, LLC 31

www.aberdeeninc.com

APPRO HPC SOLUTIONS C2

appro.com

ASA COMPUTERS 29, 53

www.asacomputers.com

AVOCENT CORPORATION 1

www.avocent.com/control

CARI.NET 93

www.cari.net

CORAID, INC. 21

www.coraid.com

COYOTE POINT 3

www.coyotepoint.com

EGI HOSTING 45

www.egihosting.com

EMAC, INC. 61

www.emacinc.com

EMPERORLINUX 55

www.emperorlinux.com

FAIRCOM 71

www.faircom.com

GENSTOR SYSTEMS, INC. 75

www.genstor.com

HURRICANE ELECTRIC 89

www.he.net

IRON SYSTEMS 91

www.ironsystems.com

LINUX JOURNAL 6, 56, 79

www.linuxjournal.com

LINUXWORLD SAN FRANCISCO 63

www.linuxworldexpo.com

LPI 85

www.lpi.org

MBX 17

www.mbx.com

MICROWAY, INC. C4, 57

www.microway.com

O'REILLY OSCON 87

www.conferences.oreilly.com/oscon

OPEN SOURCE SYSTEMS, INC. 5

www.opensourcesystems.com

POGO LINUX 19

www.pogolinux.com

POLYWELL COMPUTERS, INC. 35

www.polywell.com

THE PORTLAND GROUP 15

www.pgroup.com

RACKSPACE MANAGED HOSTING C3

www.rackspace.com

R CUBED TECHNOLOGIES 37

www.rcubedtech.com

SERVERS DIRECT 39

www.serversdirect.com

SILICON MECHANICS 33, 77

www.siliconmechanics.com

SLICKEDIT, INC. 73

www.slickedit.com

SUPERMICRO 27

www.supermicro.com

TECHNOLOGIC SYSTEMS 49

www.embeddedx86.com

TOTALVIEW TECHNOLOGIES 9

www.totalviewtech.com

TYAN COMPUTER USA 7

www.tyan.com

USENIX ANNUAL TECHNICAL CONFERENCE 69

www.usenix.org/usenix07/lj

UNIWIDE TECHNOLOGIES 11

www.uniwide.com

VERIO 13

www.verio.com

www.l inux journa l .com june 2007 | 81

http:///my-ip//lxr/http/source
mailto:ads@linuxjournal.com
http://www.linuxjournal.com/advertising
http://www.aberdeeninc.com
http://www.asacomputers.com
http://www.avocent.com/control
http://www.cari.net
http://www.coraid.com
http://www.coyotepoint.com
http://www.egihosting.com
http://www.emacinc.com
http://www.emperorlinux.com
http://www.faircom.com
http://www.genstor.com
http://www.he.net
http://www.ironsystems.com
http://www.linuxjournal.com
http://www.linuxworldexpo.com
http://www.lpi.org
http://www.mbx.com
http://www.microway.com
http://www.conferences.oreilly.com/oscon
http://www.opensourcesystems.com
http://www.pogolinux.com
http://www.polywell.com
http://www.pgroup.com
http://www.rackspace.com
http://www.rcubedtech.com
http://www.serversdirect.com
http://www.siliconmechanics.com
http://www.slickedit.com
http://www.supermicro.com
http://www.embeddedx86.com
http://www.totalviewtech.com
http://www.tyan.com
http://www.usenix.org/usenix07/lj
http://www.uniwide.com
http://www.verio.com
http://www.linuxjournal.com

If you’re operating a Web server, chances are, you’re not merely
serving up static text and images. You’re likely to be running some
Web applications as well, where pages are generated on the fly by
some program or script using CGI (Common Gateway Interface). Think
of blogging software, bug trackers, news sites and content manage-
ment systems—anything that turns the browser from a document
viewer into a user interface. And, you probably write or at least tweak
some of these yourself.

This article shows how to build faster Web applications using an
alternative to CGI called SCGI (Simple Common Gateway Interface).
SCGI is a protocol, not just a program, but its authors also provide a
reference implementation, which is what we use here. It includes
modules to use SCGI from Apache or lighttpd and Python classes to
help you create SCGI applications. Implementations in other languages
are available, but we examine the combination of Apache 2.x and
Python here.

Where Does the Time Go?
Normally, a Web application runs briefly, but very frequently, in
child processes of the Web server. When a client requests a page,
the Web server consults its configuration and finds that the
request should go to the application. It delegates the request to
a child process, which in turn loads and runs the application
program. The program may be a binary or a script in Perl, Python
or PHP, shell commands, or just about anything else. The CGI
standard defines how the program receives details about the
request, including requested URL, requested body, authenticated
user identity and originating IP address. The program reads these,
produces a page in answer to the client’s request, and exits. All
this happens again at the next request.

Loading, running and exiting programs can be costly. It does
make sense for sloppy programs: they may use memory without
ever freeing it up again, for instance. In that case, you want the
program to run briefly and then let the operating system clean up
after it. But, with today’s popular languages—Perl, Python, PHP,
Java and shell scripts—there really aren’t many problems with this.
A well-written application really should be able to handle multiple
requests in a single run.

Faster Service with SCGI
SCGI lets your program start once and continue servicing requests for
as long as it likes. It works like this: a separate server process, called an
SCGI server, runs separately from the Web server and manages one
Web application. The Web server forwards all requests for that appli-
cation to the application’s SCGI server. It passes on details about the
request in much the same form as in regular CGI.

The SCGI server delegates the request to a child process, just
like the Web server did with a regular CGI application. The child
process also runs the application, but that’s where the similarity
ends. Instead of exiting after it’s done with that one request, the
application can sit and wait for a new one. Each of the SCGI
server’s child processes runs one instance of the application, each
sleeping until there is work for it to do.

The SCGI server spawns a new child process when none are
available to take on the latest request—up to a configurable
maximum, of course. It also cleans up crashing or exiting child
processes, so your Web application can still bail out if things go
wrong. But, most of the time, when a request arrives, the applica-
tion is ready and waiting for it. That’s why Ruby on Rails, the Web
application framework, comes with the option to run on SCGI;
it would be too slow otherwise.

Other Advantages
If the speedup isn’t enough for you, there’s more. The SCGI server
process can be running on the same system as the Web server, but it
doesn’t have to be. You can offload the server by delegating some
Web applications to separate systems, preferably behind a firewall
where only the Web server can access them.

Even with just a single server, you can use SCGI to contain
vulnerabilities. A normal CGI application starts out running under
the same user identity as the Web server process. If an attacker
manages to subvert a normal CGI application, your entire Web site
may be at risk. An SCGI server, on the other hand, can run under
its own user identity, so it can’t easily affect the Web server or
other applications even if it does run amok. Conversely, you don’t
need to give the Web server access to the application’s code or
data anymore; only the application as run by the SCGI server
needs access. Everyone else must go through the Web server,
which in turn talks to the SCGI server.

You also can run an application in a chroot environment or a virtu-
alized server. With CGI, that quickly becomes expensive and hard to
manage. When using SCGI, you start only one server process in your
isolated environment—whether it’s a chroot jail, a virtualized server, a
different user identity or another machine—and the entire application
will stay there.

Installing SCGI
You need two components: the Python classes for building SCGI appli-
cations and a module for your Web server to make it “speak SCGI” to
the applications. If you use Red Hat package management (RPM), you
can install these using yum install python-scgi apache2-mod_scgi;
users of Debian’s apt can use apt-get install python-scgi

82 | june 2007 www.l inux journa l .com

INDEPTH

Faster Web Applications
with SCGI
Speed up your Web applications with SCGI. JEROEN VERMEULEN

http://www.linuxjournal.com

www.l inux journa l .com june 2007 | 83

libapache2-mod-scgi.
You also can install either component by hand. The Apache

module requires a C compiler and Apache’s apxs script. Some distribu-
tions keep apxs in a separate development package rather than
installing it as part of the regular Apache package.

Assuming you now have those components, next download the
source tarball scgi-1.12.tar.gz, and run the commands shown in Listing 1.

Test Run
Now, let’s make sure it all works. The Python package is a module
with some classes, and normally, you’d write your application as a pro-
gram that imports that module. For debugging, however, you also can
run it as a standalone application. When it receives a request from the
Web server, it simply prints the request’s details as a text page. Perfect
for a first test—no coding required!

Find the scgi_server.py module on your system. It should be
installed in /usr/lib/python2.4/site-packages/scgi (the 2.4 may be 2.3 or
2.5 on your system). Then, run the module:

cd /usr/lib/python2.4/site-packages/scgi

python scgi_server.py

This listens for requests from the Web server on a TCP port on
your system, using port 4000 by default. You can make it listen on a
different port by passing the desired port number as a command-line
argument, such as:

python /usr/lib/python2.4/site-packages/scgi/scgi_server.py 63000

The module keeps running until you kill it, so start it in a separate
shell. Remember, you don’t need to run an SCGI server as root or even
under the Web server’s identity.

Now that the SCGI application is waiting for requests, pick a loca-
tion on your Web site to delegate to the application. Let’s say you
want it to answer all requests for “/scgitest” on this server. Write an
Apache configuration snippet, as shown in Listing 2, to a new file in
/etc/apache2/conf.d.

The SCGI server doesn’t really need to run on the same machine
as the Web server, as you can see here. Simply make sure that the
SCGI server’s port is properly firewalled, so that only your Web server
can reach it! That way, your application can be sure that all CGI
parameters have been validated by the Web server first. If an attacker
could connect directly to your SCGI application, you wouldn’t be able
to trust that information. The CGI parameter AUTHENTICATED_USER,
for instance, tells your application that the request comes from a par-
ticular logged-in user. You can believe that only if you hear it from a

Listing 1. Installing SCGI by Hand

Unpack source directory scgi-1.12 from tarball

tar xzf scgi-1.12.tar.gz

cd scgi-1.12

Build the Python part

python setup.py build

Install Python module; we'll need root privileges

sudo python setup.py install

Now build and install the Apache module

cd apache2

sudo make install

Enable the SCGI module in Apache. This may fail,

depending on your Apache version, but no matter.

sudo a2enmod scgi

Make Apache's new configuration take effect

sudo /etc/init.d/apache2 force-reload

Listing 2. Apache Configuration Snippet

Load the SCGI module. This is really only needed

if you installed manually and the "a2enmod scgi"

command failed.

LoadModule scgi_module /usr/lib/apache2/modules/mod_scgi.so

<Location "/scgitest">

Enable SCGI

SCGIHandler On

Other properties for /scgitest, such as access

control

...

</Location>

Hostname and port number where SCGI server for

/scgitest is running.

Port 4000 on localhost (127.0.0.1) is the default.

SCGIMount /scgitest 127.0.0.1:4000

Listing 3. scgi_server.py returns request details.

SERVER_SOFTWARE: 'Apache'

SCRIPT_NAME: '/scgitest'

REQUEST_METHOD: 'GET'

SERVER_PROTOCOL: 'HTTP/1.1'

QUERY_STRING: ''

CONTENT_LENGTH: '0'

HTTP_ACCEPT_CHARSET: 'UTF-8,*'

HTTP_USER_AGENT: 'Mozilla/5.0'

SERVER_NAME: 'testserver.example.org'

REMOTE_ADDR: '10.99.11.99'

SERVER_PORT: '80'

SERVER_ADDR: '192.0.34.166'

DOCUMENT_ROOT: '/srv/www/'

SERVER_ADMIN: 'webmaster@example.org'

HTTP_HOST: 'testserver.example.org'

REQUEST_URI: '/scgitest'

HTTP_ACCEPT:'text/html,text/plain,*/*;q=0.5'

REMOTE_PORT: '47088'

HTTP_ACCEPT_LANGUAGE: 'en'

SCGI: '1'

HTTP_ACCEPT_ENCODING: 'gzip,deflate'

http://www.linuxjournal.com
mailto:webmaster@example.org

84 | june 2007 www.l inux journa l .com

properly configured Web server.
Make Apache reload its configuration with sudo

/etc/init.d/apache2 reload. Your server should now serve a new
location, /scgitest, that simply prints your request’s CGI parameters
when you access it. Verify this by looking it up in a browser. If
your server’s address is example.org, point your browser at
http://example.org/scgitest. You should see a page that looks
like Listing 3.

If that’s not what you see, take a look at the shell where you ran
the module. It may have printed some helpful error message there. Or,
if there is no reaction from the SCGI server whatsoever, the request
may not have reached it in the first place; check the Apache error log.

Once you have this running, congratulations—the worst is behind
you. Stop your SCGI server process so it doesn’t interfere with what
we’re going to do next.

Writing an Application
Now, let’s write a simple SCGI application in Python—one that prints
the time.

We import the SCGI Python modules, then write our application as
a handler for SCGI requests coming in through the Web server. The
handler takes the form of a class that we derive from SCGIHandler.
Call me unimaginative, but I’ve called the example handler class
TimeHandler. We’ll fill in the actual code in a moment, but begin with
this skeleton:

#! /usr/bin/python

import scgi

import scgi.scgi_server

class TimeHandler(scgi.scgi_server.SCGIHandler):

pass # (no code here yet)

Main program: create an SCGIServer object to

listen on port 4000. We tell the SCGIServer the

handler class that implements our application.

server = scgi.scgi_server.SCGIServer(

handler_class=TimeHandler,

port=4000

)

Tell our SCGIServer to start servicing requests.

This loops forever.

server.serve()

You may think it strange that we must pass the SCGIServer our
handler class, rather than a handler object. The reason is that server
object will create handler objects of our given class as needed.

This first incarnation of TimeHandler is still essentially the same
as the original SCGIHandler, so all it does is print out request
parameters. To see this in action, try running this program and

opening the scgitest page in your browser as before. You should
see something like Listing 3 again.

Now, we want to print the time in a form that a browser will
understand. We can’t simply start sending text or HTML; we first
must emit an HTTP header that tells the browser what kind of
output to expect. In this case, let’s stick with simple text. Add
the following near the top of your program, right above the
TimeHandler class definition:

import time

def print_time(outfile):

HTTP header describing the page we're about

to produce. Must end with double MS-DOS-style

"CR/LF" end-of-line sequence. In Python, that

translates to "\r\n.

outfile.write("Content-Type: text/plain\r\n\r\n")

Now write our page: the time, in plain text

outfile.write(time.ctime() + "\n")

By now, you’re probably wondering how we will make our
handler class call this function. With SCGI 1.12 or newer, it’s easy. We
can write a method TimeHandler.produce() to override SCGIHandler’s
default action:

class TimeHandler(scgi.scgi_server.SCGIHandler):

(remove the "pass" statement--we've got real

code here now)

This is where we receive requests:

def produce(self, env, bodysize, input, output):

Do our work: write page with the time to output

print_time(output)

We ignore them here, but produce() takes several arguments:
env is a dict mapping CGI parameter names to their values. Next,
bodysize is the size in bytes of the request body or payload. If
you’re interested in the request body, read up to bodysize bytes
from the following argument, input. Finally, output is the file that
we write our output page to.

If you have SCGI 1.11 or older, you need some wrapper code
to make this work. In these older versions, you override a different
method, SCGIHandler.handle_connection(), and do more of the
work yourself. Simply copy the boilerplate code from Listing 4 into
the TimeHandler class. It will set things up right and call produce(),
so nothing else changes, and we can write produce() exactly as if
we had a newer version of SCGI.

Once again, run the application and check that it shows the time
in your browser.

Next, to make things more interesting, let’s pass some arguments
to the request and have the program process them. The convention
for arguments to Web applications is to tack a question mark onto the
URL, followed by a series of arguments separated by ampersands.
Each argument is of the form name=value. If we wanted to pass the
program a parameter called pizza with the value hawaii, and another
one called drink with the value beer, our URL would look something
like http://example.org/scgitest?pizza=hawaii&drink=beer.

INDEPTH

SCGI lets your program start once
and continue servicing requests for
as long as it likes.

http://example.org/scgitest
http://www.linuxjournal.com
http://example.org/scgitest?pizza=hawaii&drink=beer

86 | june 2007 www.l inux journa l .com

INDEPTH

Any arguments that the visitor passes to the program end up in
the single CGI parameter QUERY_STRING. In this case, the parameter
would read “pizza=hawaii&drink=beer”. Here’s something our
TimeHandler might do with that:

class TimeHandler(scgi.scgi_server.SCGIHandler):

def produce(self, env, bodysize, input, output)

Read arguments

argstring = env['QUERY_STRING']

Break argument string into list of

pairs like "name=value"

arglist = argstring.split('&')

Set up dictionary mapping argument names

to values

args = {}

for arg in arglist:

(key, value) = arg.split('=')

args[key] = value

Print time, as before, but with a bit of

extra advice

print_time(output)

output.write(

"Time for a pizza. I'll have the %s and a swig of %s!\n" %

(args['pizza'], args['drink'])

)

Now the application we wrote will not only print the time, but

also suggest a pizza and drink as passed in the URL. Try it! You
also can experiment with the other CGI parameters in Listing 3 to
find more things your SCGI applications can do.

Porting Applications
Once you’re comfortable writing programs using SCGI, you may want
to try adapting existing applications to use it. Some well-known Web
applications, such as MoinMoin (a wiki) and Trac (a wiki-based collabo-
rative development environment), are implemented as Python mod-
ules. Both of these examples come with CGI scripts in Python that can
be called from Apache. The CGI scripts are very short; they really don’t
do anything except import the application’s modules and invoke a
function on them.

If you find an application like that, all you really need to do to
make it work with SCGI is take that little bit of Python code and move
it into a produce() method, as in the examples you’ve seen here. If you
have SCGI 1.12 or newer, you also might want to take a look at an
alternative SCGIHandler method, produce_cgilike().

Conclusion
That’s about all we have room for. If you wonder about how the CGI
parameters work, try looking at the CGI standard, which calls them
“request meta-variables” (see Resources).

Finally, a word of warning. You’ll notice that the last example
program dies horribly if you fail to pass the expected arguments. The
SCGI server replaces the failing processes, so in this case, there’s no
real problem. But, this should remind you how careful you need to be
when writing Web applications. Never trust the input you receive from
outside! If a program can be crashed, someone can probably subvert it
or take it out of action. People all over the world do that sort of thing
for fun or profit, so take the risk seriously.�

Jeroen Vermeulen works for the Open Source Department of the Thai Software Industry Promotion
Agency. He’s currently working on Suriyan, a server system for those who don’t have time for
server systems.

Resources

SCGI Downloads: quixote.python.ca/releases

SCGI Home Page: www.mems-exchange.org/software/scgi

CGI Standard: ftp.rfc-editor.org/in-notes/rfc3875.txt

More on SCGI with Python and Apache2:
thaiopensource.org/development/suriyan/wiki/UsingScgi

Perl Interface: search.cpan.org/~vipercode/SCGI/lib/SCGI.pm

Lisp Interface: randallsquared.com/download/scgi

Trac: trac.edgewall.com

MoinMoin: moinmoin.wikiwikiweb.de

Listing 4. Boilerplate Code for SCGI 1.11 or Older

Insert this definition into your handler class:

class TimeHandler(scgi.scgi_server.SCGIHandler):

...

def handle_connection(self, conn):

input = conn.makefile("r")

output = conn.makefile("w")

env = self.read_env(input)

bodysize = int(env.get('CONTENT_LENGTH',0))

try:

self.produce(env,bodysize,input,output)

finally:

output.close()

input.close()

conn.close()

Even with just a single
server, you can use SCGI to
contain vulnerabilities.

http://www.linuxjournal.com
http://www.mems-exchange.org/software/scgi

Co-presented by

� An interactive, in-depth, and
comprehensive educational
experience

� The opportunity to connect
face to face with other
Ubuntu users

� A well-edited, coherent
conference program
including tutorials, sessions
and keynotes

� Information and tools
to help managers decide
to switch to Ubuntu and
the developers implement
that transition

� An open-minded meeting
ground for hackers,
developers and IT managers

� An exhibit hall filled with
hardware and software
businesses showcasing
open source products
and services

Listen. Discuss. Learn. Ubuntu in action.

www.ubuntulive.com

July 23 – 27, 2007
Portland, Oregon

Now in its ninth year, the O’Reilly Open Source
Convention is the bazaar of open source
technologies, welcoming new voices and
projects alongside the platforms, languages,
and apps that started the open source
movement. OSCON brings together over 2500
experts, visionaries, open source professionals,
IT managers, sys admins, hackers, and
entrepreneurs to explore the depth and breadth
of open source.

Register Now and Save an Additional 10%
Use Discount Code os07LJR

July 22 – 24, 2007
Portland, Oregon

www.conferences.oreilly.com/oscon

Register
Now

and Save an
Additional 10%
Use Discount Code

ubu07LJR

©2007 O’Reilly Media, Inc. O’Reilly logo is a registered trademark of O’Reilly Media, Inc. All other trademarks are property of their respective owners. 70230

70230_ubuntu_OSCON_ad.indd 1 3/29/07 12:59:41 PM

http://www.ubuntulive.com
http://www.conferences.oreilly.com/oscon

If you have a nifty macro or a nice Writer template you want to
share with other OpenOffice.org users, publishing them on the
Web along with detailed installation instructions is probably not
the best way to go. Fortunately, OpenOffice.org supports exten-
sions—small installable packages that provide added functionality.
You easily can turn your templates, autotext entries, gallery art
and macros into extensions that can be installed with a couple of
clicks. Better yet, OpenOffice.org’s extensions have an easy-to-
understand and well-defined architecture, and you can start build-
ing your own extensions in no time.

Extending OpenOffice.org’s functionality using extensions is noth-
ing new. From the very beginning, users could add new features to
the office suite by installing so-called UNO packages. Usually, these
packages contained OOo Basic code, and they offered a more straight-
forward way of integrating macros into OpenOffice.org applications.
With the release of OpenOffice.org 2.0.4, the idea of adding new
features via installable packages has been rethought thoroughly and
aligned with a concept that is more familiar to end users—namely the
extension architecture of the Mozilla Firefox browser.

The technical implementation of the extension system in
OpenOffice.org also has been reworked. Most notably, the new ver-
sion of OpenOffice.org can handle so-called non-code extensions that
can contain document templates, gallery items, autotext snippets and
so on. The new version of OpenOffice.org also introduces the new
.oxt file extension that allows users to identify installable extension
packages easily.

How Extensions Work
An OpenOffice.org extension is essentially a zip file that includes both
the installable contents and additional metadata required to install and
register the extension properly. OpenOffice.org provides a simple-to-
use tool called Package Manager that lets users install new extensions
and manage existing ones. To install an extension, simply choose
Tools→Package Manager, select My Packages, and press the Add
button. Once the extension is installed, restart OpenOffice.org, and
you are good to go. Unlike Firefox, some types of extensions don’t
require you to restart OpenOffice.org. For example, if you install
non-code extensions, you can use them right away.

To better understand the anatomy of OpenOffice.org extensions,
let’s dissect an empty sample extension from the OpenOffice.org Wiki
(wiki.services.openoffice.org/wiki/Non-code_extensions). In order
to peek inside the package, you have to change its extension from
oxt to zip. This allows you to treat the package as a regular zip
archive. The package consists of three elements: the META-INF
and template folders, as well as the Paths.xcu configuration file.
The META-INF folder contains the manifest.xml file that, among
other things, “points” to the Paths.xcu configuration file. The
Paths.xcu file contains information that the Package Manager uses

to add the templates to the appropriate location. This location is
defined as %origin%/template, and the Package Manager replaces
the %origin% variable with the full path to the internal template
container. The fuse parameter adds the templates to the specified
container or creates a new one if it doesn’t exist. To create a new
template extension, you don’t need to tweak anything; the config-
uration file and the overall structure of the extension remain the
same. All you have to do is copy your custom templates into
the template folder. Change the file extension of the resulting
package back to oxt, and install it via Tools→Package Manager.
To check whether the extension has been installed properly,
choose File→Templates→Organize; you should see your templates
in the My Templates folder.

Creating a Programmatic Extension from Scratch
Although creating non-code extensions is rather trivial, building pack-
ages containing code (let’s call them programmatic extensions) is a dif-
ferent matter. The programmatic extension includes not only the code
itself, but also a more complex configuration file containing informa-
tion about menus, submenus, commands and macros assigned to
them, icons and so forth. Creating a configuration file manually, even
for the most simple programmatic extension, requires some technical
knowledge, and it can be rather time consuming. Fortunately, there is
a tool that can automate the entire process of creating an extension.
Although the Add-on Tool (documentation.openoffice.org/HOW_TO/
various_topics/Addons1_1en.sxw) hasn’t been updated since 2003,
it still does a great job of generating extensions that can be used with

88 | june 2007 www.l inux journa l .com

INDEPTH

Extend OpenOffice.org
It’s easier than you might think to create your own OpenOffice.org extensions.
DMITRI POPOV

Figure 1. The Contents of a Non-Code OpenOffice.org Extension

http://www.linuxjournal.com

the latest version of OpenOffice.org. To get to grips with the Add-on
Tool and better understand the process of creating a programmatic
extension, let’s build a simple dummy text-generator extension
from scratch. Once installed, the extension adds the Lorem ipsum
command to the Tools→Add-Ons menu. This command runs
an OpenOffice.org Basic macro that inserts a specified number
of paragraphs with the Lorem ipsum dummy text. The following
description assumes that you have a general knowledge of
how to create and manage macros, modules and libraries in
OpenOffice.org. The Add-on Tool uses the older term “add-on”,
which you can consider a synonym of “extension”.

Start with creating a macro that generates the dummy text. To
keep things tidy, create a separate library called LoremipsumLib, con-
taining the LoremipsumModule. In this module, add the macro shown
in Listing 1. (Replace the “Lorem ipsum dolor sit amet...” string with a
paragraph of dummy text).

Before you fire up the Add-on Tool, you need to do some
preparatory work. First, create a separate folder for all your working
files (for example, loremipsum). If you want to add icons to the
menu items, make sure you have the necessary graphics files.
According to the official documentation, you need a set of small
(16x16) and big (26x26) icons in BMP format. However, you also can
use 16x16 icons in PNG format (you can find some high-quality icons

Listing 1. loremipsummacro.txt

Option Explicit

Sub LoremipsumMacro()

Dim ThisDoc As Object

Dim Cursor As Object

Dim ParNumber As Integer

Dim InputMsg As String, InputTitle As String, InputReturn As String

ThisDoc=ThisComponent

InputMsg="Number of paragraphs"

InputTitle="Lorem Ipsum Generator"

InputReturn=InputBox (InputMsg, InputTitle)

ParNumber=InputReturn

Do While ParNumber>0

Cursor=ThisDoc.text.createTextCursor

Cursor.String="Lorem ipsum dolor sit amet..." & Chr(13)& Chr(13)

ParNumber=ParNumber-1

Loop

End Sub

90 | june 2007 www.l inux journa l .com

at www.famfamfam.com/lab/icons/silk). Next, copy the entire
LoremipsumLib library into the loremipsum folder. To do this, navigate
to .OpenOffice.org2/user/basic inside your home directory, and copy
LoremipsumLib into the loremipsum folder. Finally, copy the icons into
the LoremipsumLib folder. Now, open the Add-on Tool document, and
make sure that macro execution is enabled. Scroll to the Create the
configuration file chapter, and press the Create XML file button to
launch the Addon Creator.

The process of creating an extension using the Addon Creator can
be roughly divided into three stages. First, you define the general set-
ting, including the top-level menu and its position. Then, you specify
the menu items, and finally, you zip the created package.

In the Basic Information window, specify the path to the main script
file. Press the Browse button, and select the script.xlb file inside the
LoremipsumLib folder. You also must specify a name for your extension
in the Unique name for your addon field. Simply replace the example
part in the org.openoffice.Office.addon.example string with the name
you want (for example, org.openoffice.Office.addon.Loremipsum).
Press Next to choose where to add the top-level extension menu.
You have two choices here: you either can add a menu item to the
Main menu or under the Tools menu. As a rule of thumb, if you
have a simple extension containing only a couple of commands,
tuck it under the Tools menu. A more complex extension deserves
its own entry in the Main menu. Because the Lorem ipsum genera-
tor contains only one command, it makes sense to install it under
the Tools menu. Next, enter a menu title, and press the Add this
text button. If you want to make your extension available only for
a particular language or country, you may do so by specifying the
appropriate settings in the Language restrictions section. Press
Finished when you are satisfied with the settings.

The next step is to link the LoremipsumMacro to the created
menu item. To do this, you have to specify the library, the module
and the macro itself. In our case, these are LoremipsumLib,
LoremipsumModule and LoremipsumMacro, respectively. Once you
have linked the macro to the command, you can add an icon to it.

Because we’ve chosen to use an icon in PNG format, press the
Other image type button, select the 16x16 normal contrast item
from the Icon definition drop-down list, select the icon using the
Browse button, and press OK to add it. When adding icons, you
have two options: you either can link to an icon that will be added
to the extension as an image file, or you can integrate it into the
configuration file (this works only with icons in BMP format).
Which option you choose is more or less a matter of taste, but
linking to icons rather than embedding them produces a cleaner

INDEPTH

Figure 2. Using the Addon Creator to Create a Programmatic Extension

Listing 2. addonxcu.txt

<?xml version='1.0' encoding='UTF-8'?>

<oor:node xmlns:oor="http://openoffice.org/2001/registry"

xmlns:xs="http://www.w3.org/2001/XMLSchema" oor:name="Addons"

oor:package="org.openoffice.Office">

<node oor:name="AddonUI">

<node oor:name="AddonMenu">

<node oor:name="org.openoffice.Office.addon.Loremipsum"

oor:op="replace">

<prop oor:name="Context" oor:type="xs:string">

<value/>

</prop>

<prop oor:name="Title" oor:type="xs:string">

<value>Lorem ipsum</value>

</prop>

<prop oor:name="URL" oor:type="xs:string">

<value>macro:///LoremipsumLib.LoremipsumModule.LoremipsumMacro

</value>

</prop>

<prop oor:name="Target" oor:type="xs:string">

<value>_self</value>

</prop>

<prop oor:name="ImageIdentifier" oor:type="xs:string">

<value/>

</prop>

</node>

</node>

<node oor:name="Images">

<node

oor:name="org.openoffice.Office.addon.Loremipsum.img01"

oor:op="replace">

<prop oor:name="URL" oor:type="xs:string">

<value>macro:///LoremipsumLib.LoremipsumModule.LoremipsumMacro

</value>

</prop>

<node oor:name="UserDefinedImages">

<prop oor:name="ImageSmallURL">

<value>%origin%/LoremipsumLib/Icon.png</value>

</prop>

</node>

</node>

</node>

</node>

</oor:node>

http://www.famfamfam.com/lab/icons/silk
http://www.linuxjournal.com
http://openoffice.org/2001/registry
http://www.w3.org/2001/XMLSchema
macro:///LoremipsumLib.LoremipsumModule.LoremipsumMacro
macro:///LoremipsumLib.LoremipsumModule.LoremipsumMacro

www.l inux journa l .com june 2007 | 91

and easier-to-read configuration file. This can come in handy if
you need to edit the file manually later. Use the Finished button
to finalize the extension, and press the Addon zipping button to
pack it. Now you can install the created extension by choosing
Tools→Package Manager. Restart OpenOffice.org, and you should
see the Lorem ipsum command in the
Tools→Add-Ons menu.

Tweaking Extensions
The Addon Creator conveniently hides the
technical part of the process, which is good if
you don’t want to spend time doing the don-
key work manually. This is, however, less use-
ful if you want to gain a better understand-
ing of what makes extensions tick—not only
to satisfy your curiosity, but also to be able to
troubleshoot your extensions and tweak
them without running the Addon Creator
every single time.

If you look inside the zip package, you
will notice that it contains the familiar
META-INF folder, a folder with the macro
files and the addon.xcu file (Listing 2). The
latter is the key element of the extension,
as it contains all the configuration data.
The addon.xcu is based on XML, and even
if you have only a basic knowledge of
XML, you easily can figure out how it
works simply by looking at its contents.

The XML file contains a number of nodes,
and each node has properties, which, in turn,
have values. For example, the top node <node
oor:name="AddonMenu"> has multiple
properties, such as <prop oor:name="Title"
oor:type="xs:string">, that have a value con-
taining the extension’s menu title <value>Lorem
ipsum</value>. The <prop oor:name="URL"
oor:type="xs:string"> property has the

<value>macro:///LoremipsumLib.LoremipsumModule.LoremipsumMacro
</value> value, which contains the link to the appropriate macro.
Knowing that, you can modify the extension by tweaking its addon.xcu
file. For example, if you want to change the menu title, you simply can
edit the <value>Lorem ipsum</value> value as follows:

<prop oor:name="Title" oor:type="xs:string">

<value>Insert dummy text</value>

</prop>

In more complex macros, you even can add new menus and com-
mands simply by cloning and modifying parts of the configuration file.

Final Word
Now that you know the basics, you can start building your own
OpenOffice.org extensions. If you want to share your creations with
other users, you can add them to the official extension repository
(wiki.services.openoffice.org/wiki/Extensions_repository).
Most of the extensions there are released under the GPL, so you can
dismantle them to see how they work and get new ideas.�

Dmitri Popov is a freelance writer whose articles have appeared in Russian, British and
Danish computer magazines. His articles cover open-source software, Linux, Web applications
and other computer-related topics.

540 Dado Street, San Jose, CA 95131

Figure 3. The Lorem Ipsum Generator Extension in Action

http://www.linuxjournal.com
macro:///LoremipsumLib.LoremipsumModule.LoremipsumMacro
http://www.ironsystems.com

Lua is a free and open-source multi-paradigm programming
language released under the MIT license. Created in 1993 by Roberto
Lerusalimschy, Luiz Henrique de Figueiredo and Waldemar Celes, Lua
is a dynamically typed language. Extremely compact (only 150KB
compiled), it is primarily used as a scripting language or an extension
to another language (mainly C/C++).

What Is Lua and How Is It Used?
Lua is implemented as a library and has no “main” program. It works
only when embedded in a host client. The interpreter is a C program
that uses the Lua library to offer a standalone Lua interpreter. Rather
than provide a complex and rigid specification for a single paradigm,
Lua is intended to be extended to fit different problem types.

Being small, Lua fits on many host platforms and has been ported
and used in video games for both the PlayStation Portable and the
Nintendo DS, and it is used in larger games, such as FarCry and World
of Warcraft. The Adobe Photoshop Lightroom photography program
and the lighthttpd Web server have incorporated Lua as well. Lua
has a few advanced features, primarily coercion, coroutines, garbage
collection, first-class functions and dynamic module loading. Because
Lua is small, it includes only a few data types. It attempts to maintain
a balance between power and small size.

What’s Different about Lua?
Lua is comparably as easy as Python in terms of learning how to write
code. Of the two, Lua is usually the better choice for embedded sys-
tems, simply because it’s smaller. Lua’s strength is in processing strings
and tables. It handles logical equations more adeptly than Python.

For a quick hack, a Lua programmer can process complicated data
more quickly and easily than a Python programmer can (although a
Ruby programmer can do so almost as quickly). But, for a large appli-
cation that handles many chunks of complex data, a heavier language
such as Ruby or Python may be a better choice.

There is no need to worry about different types of integers. You
may have found that the different types of integers and numbers
(such as floats, longs or doubles) can screw up the output of your pro-
gram or even make it crash if you are absent-minded. Lua uses coer-
cion for every integer and number type to convert it into a single type.
You can add a float, long integer or a double to any other type of
integer or number without a hitch in Lua. In contrast, doing this can
cause programs written in Python 2.4 or older versions to crash. Lua is
extremely forgiving syntactically. What if, for some reason, you are
programming on an embedded device with a four-inch wide screen?
You can reduce the amount of lines and other characters, which in
turn enables easy reading of the code to make up for the small screen.

Small is beautiful. A programmer can embed Lua into several other
languages, such as C/C++ and Java, without bloating the host language,
because Lua has a tiny API. Similar to Lisp’s single data structure, tables
are the only data structuring mechanism that Lua has. This makes
tables very powerful, because with a little work, they can emulate data
structures in larger languages.

Object-oriented programming implementation is minimalistic. Lua
uses tables and functions rather than classes.

In contrast to Python, Lua does not focus on 100% backward
compatibility. Many newer releases of Lua break programs written in
previous versions. Fortunately, the Lua developers always announce
what the new versions of Lua will break.

Lua supports threading. Multiple Lua interpreters can coexist in
the same process, and each one can run independently in its own
thread. This often makes Lua desirable for multithreaded programs
in embedded systems.

Installing Lua
To compile and install Lua from the source code, grab a copy of Lua 5.1
from the Lua.org Web site, and untar, configure, make and install it:

tar -xvzf lua-5.1.1.tar.gz

cd lua-5.1.1

make xyz

make xyz install

(xyz is your platform name.)
Lua should now be installed and working. To test your install, type

lua on the command line. An interactive interpreter should appear.

Syntax
Lua is a dynamically typed language whose syntax is very similar to
that of Python and even more similar to Ruby. Line breaks do not play
any role in Lua’s syntax, like that of Python or Ruby. Take, for example,
the following ugly, but valid code:

foo = 89

bar = foo+2

print(bar)

Because it is small, Lua has only eight basic data types:

1. nil (similar to Python’s None)
2. booleans
3. numbers
4. strings
5. functions
6. userdata (a type that allows arbitrary C data to be stored in Lua variables)
7. threads
8. tables

Lua supports only a few data structures, including arrays, lists
and hash tables.

The table type implements an associative array that can be indexed
with any value (similar to Python), except nil (dissimilar to Python). Nil’s
goal is to be different from any other value, as well as the default
value for global variables. Nil also plays a much more important role in

92 | june 2007 www.l inux journa l .com

INDEPTH

A Look at Lua
An overview of the compact yet powerful Lua programming language. JOSEPH QUIGLEY

http://www.linuxjournal.com

www.l inux journa l .com june 2007 | 93

Lua than None does in Python. Although tables are the only data
structuring mechanism in Lua (which may seem like a disadvantage),
the table is just as powerful as Python’s dictionary and list, and it’s
even as powerful as Ruby’s hash. Tables are used to represent many
different types of arrays, sets, trees and several other data structures.
One handy feature of tables is to use strings as keys—for example:

x = { ["hello world!"] = "ciao world!" }

print(x["hello world!"])

When running this example, Lua outputs “ciao world!” and not
“hello world!” as it might appear.

For a more in-depth look at Lua’s tables go to lua-users.org/
wiki/TablesTutorial.

Variables and Identifiers
Because any value can represent a condition, booleans in Lua differ
from those in many other languages. Both false and nil are considered
false in Lua, but Lua considers everything else true (including zero and
an empty string).

Unlike Python, global variables do not need to be declared.
To create one, assign a value to it. To delete it, give it the nil
value. A global variable exists only if it has a non-nil value. Exactly
the opposite of Python, most variables in Lua are global by
default, and you must declare the variable
“local” to make it a local variable rather
than assuming that all variables are local.

Because most CPUs perform floating-point
arithmetic just as fast as integer arithmetic, num-
bers in Lua represent real, double-precision, float-
ing-point numbers rather than common integers.
Because Lua doesn’t need integer types, it doesn’t
have them. This eliminates rounding errors,
floating-point numbers and long integers.

Lua handles strings very adeptly and has
been used for strings that are several megabytes
long. It converts between strings and numbers;
any numeric operation applied to a string con-
verts the string to a number. This conversion
principle applies only to numbers, as Lua converts
numbers to strings when strings are expected.
Even with automatic conversion, Lua still can
differentiate between numbers and strings in
cases like 90 == “90” (which always is false).

Identifiers starting with an underscore
(such as _FOO) are not recommended for use
in Lua, because many are reserved for special
uses. As long as an identifier does not begin
with a digit, the identifier can be made up of a
combination of underscores, letters and digits.

You can basically rename anything in Lua,
even to the point of making it un-callable.
Take, for example, the following code:

x = io

x.read()

io = "Hello world!"

x = "Let's make io uncallable!"

io.read()

The second line gets keyboard input through the io module.
Because io is essentially a variable with a function as a value, you can
give it a different value so that io does not relate to the input/output
functions anymore. When you try to get keyboard input from the io
module again, Lua returns an error. The program is unable to call the
input/output functions now that io’s value has been reassigned. In
order to use io again, you must restart the Lua program.

Operators and Assignment
Lua concatenates strings with the .. operator. Note that
print("Hello".."World!") is valid, but print("I’ve said ’Hello
World’"..5.."or more times.") is not. This is because Lua sees the
periods as decimals after the integer. The operator must have a space
between the strings and the integer. Otherwise, it won’t return an error.
The following code validly concatenates the strings and the integer:

print("I've said 'Hello World' " ..5 .. " or more times.")

Lua uses many of the common operators that Python, Ruby and
most every other language use. For the Python/Ruby logical not opera-
tor, Lua can either use it or use ~= for the negation of equality. Always

http://www.linuxjournal.com
http://www.cari.net/lj

94 | june 2007 www.l inux journa l .com

remember that Lua treats strings and integers differently: "1" < 2 is
always false, and strings are compared alphabetically.

Lua ends while loops if the condition is false. Repeat-until statements
are the opposite of while loops; they loop until the condition is true. for
loops have some hidden twists, which can be annoying to Python or
Ruby programmers. Local variables created in the for loop are visible only
inside the loop. The variable does not exist when the loop ends, so if you
need the value of the control variable, you have to save its value into
another loop. Breaks or returns should appear only as the last statement
before an end, an else or an until in a loop for syntactic reasons.

Lua treats functions as “first class” values and uses them for OOP
(object-oriented programming). Lua can call its own functions or C
functions, and it handles functions as a type. You can give a variable the
function property or create it with the function() method. Functions written
in Lua can return multiple results if you list them after a return keyword.

Lua supports OOP, but due to Lua’s size, its implementation of OOP
lacks a few features. Lua uses tables and functions for OOP rather than
classes. In the same way that Python accesses a function or variable in
a class, Lua accesses it with Table.function or Table.variable.

Lua can be picky when it comes to multiple assignment, because it
adjusts the number of values on the assignment. If the amount of val-
ues is less than the list of variables, all remaining values are given the
nil value. If the list of values is longer than the amount of variables,
Lua silently discards them.

Object-Oriented Programming
Lua has some basic OOP capabilities. The self parameter is an integral
concept in any object-oriented language, and it is one of the few OOP
concepts that Lua has. Many object-oriented languages tend to hide the
self mechanism from you so that you do not have to declare this parame-
ter. Lua hides this parameter with the colon operator. You also can use the
colon, a function and a table to emulate a class. Because Lua does not
have the class concept, each object defines its own behavior and shape:

Earth = {martians = 5389}

function Earth:casualties (survivors)

Earth.martians = Earth.martians - survivors

print("Earth is free! "..Earth.martians.." martians survived!")

end

Earth:casualties(5380)

The colon in the above example is used to add an extra parameter
in the method definition. It also adds an extra argument in the
method call. You don’t have to use the colon. Lua programmers can
define a function with the dot syntax and call it with the colon syntax,
or vice versa if they add an extra parameter:

Earth = {martians = 5389,

casualties = function (self, survivors)

self.martians = self.martians - survivors

print("Earth is free! "..self.martians.." martians survived!")

end

}

Earth.casualties(Earth, 5380)

Earth.martians = 5389

Earth:casualties(5380)

In this case, the function had to be part of the table so that it
could be called via the dot or the colon syntax. Note that I also had to
give the function the self parameter for either calling method to work.
Although these are simple OOP examples that scratch only the surface
of OOP, you can find out about inheritance and other OOP implemen-
tations in the Lua Reference Manual or in the book Programming in
Lua (both are available for free from the Lua Web site).

Show and Tell
Now, let’s compare programming in Lua to programming in Python.
First, let’s write a trivia game. Here is some simple Lua code that uses
a table as a dictionary to store both the questions and the answers:

print("What's your name?")

name = io.read()

questions = {

["Which came first? Minix or Unix?"] = "Unix",

["Who created Linux?"] = "Linus Torvalds",

["In what year was Linux created?"] = "1991"

}

correct_answers = 0

for key,value in pairs(questions) do

print(key)

answer = io.read()

if answer == value then

correct_answers = correct_answers + 1

end

end

if correct_answers == 0 then

print("You need to browse Wikipedia!")

else

print("\nGood job, "..name.."!")

print("Correct answers: "..correct_answers..")

end

Next, let’s break it down and analyze it line by line. On the second
line, the variable name is given the value io.read(). The io library has
many functions that handle all sorts of input and output, but I’m using
it only for keyboard input.

On the next line is the variable questions. The questions variable’s
value is a table that I have used like a dictionary to store both the
questions and the answers. The questions are in brackets to tell Lua
that they are the table’s key.

Skipping the third line, there is a for loop whose function here is
to use pairs() to find the key and the values of each item in the table.
It then needs to place the value of the key and the value of the key’s
value into the variables key and value.

After printing the key (which contains the question), Lua places the
user’s answer through io.read() into the answer variable and checks to
see whether it equals the proper answer. If the answer is correct, it
adds 1 to the value of the correct_answers variable and repeats the
process until there are no more items in the table to go through.

Next, Lua checks to see whether users got any of the questions
correct and then prints a message telling users to learn more about
UNIX (and its variants) hacker history or congratulates users on how
many questions they answered correctly. Notice the concatenation
operators on the 16th line.

INDEPTH

http://www.linuxjournal.com

www.l inux journa l .com june 2007 | 95

In Python, the easiest way to do the above game would be like this:

name = raw_input("What's your name?\n")

questions = {"Which came first? Minix or Unix?":"Unix",

"Who created Linux?":"Linus Torvalds",

"In what year was Linux created?":"1991"}

correct_answers = 0

for key in questions:

print key

answer = raw_input()

if answer == questions[key]:

correct_answers += 1

if correct_answers == 0:

print "You need to browse Wikipedia!"

else:

print "\nGood job, " + name + "!"

print "Correct answers: ", correct_answers

You may notice that it’s easier to get keyboard input in Python than
in Lua, but dictionaries are easier to identify and look much prettier in
Lua. The for loop is a little more complex in Python than it is in Lua,
because Python needs to know the key to be able to get the key’s value.
In Lua, the pairs() function breaks apart the key and its value from the
dictionary table, making it much cleaner and easier to get data from
tables than in Python. As for lines of code, not counting the many
“ends”, Lua wins hands down with 13 lines of code versus 17 in
Python. Even though Lua programmers would be typing more, their
code is much easier to sift through, especially when it’s thousands of
lines long, because of Lua’s use of end rather than colons (as in Python).

Now, how about a GUI? Is programming a GUI in Lua the same,
easier or more difficult than in Python? Before you try to answer that
question, determine which program in the two languages will be easi-
er to maintain, read and understand without comments. Here, I use
the WxGTK library for a GUI. The only hitch with wxLua is that it is an
entirely separate program. A wxLua application will not run with the
regular Lua interpreter, so you must run it with the wxlua program.

Here’s a GTK GUI program made with wxLua:

frame = wx.wxFrame(wx.wxNull, wx.wxID_ANY,

"wxLua App", wx.wxDefaultPosition,

wx.wxSize(250, 50),

wx.wxDEFAULT_FRAME_STYLE)

frame:Show(true)

Now, here’s the code for a program that does the same job in
GTK, but with wxPython:

from wxPython.wx import *

class Main(wxApp):

def OnInit(wxApp):

frame = wxFrame(NULL, -1, "wxPython App")

frame.Show(true)

return true

Main().MainLoop()

This time, Lua’s lack of necessary formatting and full-fledged OOP
makes an easy job easier. Rather than create a class and function,
wxLua incorporates everything needed for this GUI application in a
single system function, whereas Python and wxPython require a Class
as well as a function. Also note that Lua imports system libraries auto-
matically. This wxLua application exercises some of Lua’s OOP features
that I discussed previously. The application creates the frame, sets
the frame’s name and the frame values, and then it calls the Show()
function from within the wxFrame method using the colon. You also
can call the frame with the period syntax rather than the colon:

frame.Show(frame, true)

Embedding and Extending
Although taking a look at embedding and extending Lua is outside the
scope of this article, I touch on a few concepts here. First, the Lua API
is very straightforward. Its design eliminates the need for manual refer-
ence when embedded in C code (unlike Python’s API). Like the lan-
guage, Lua’s C API (for embedding) is fairly minimalistic. If you need
advanced functionality, you can use a secondary library that is primarily
made up of preprocessor macros.

Second, C and C++ are not the only languages in which Lua can
be embedded. Tao.Lua provides straight .NET and Mono bindings to
Lua, and LuaJava allows scripts written in Lua to manipulate Java
components. LuaJava allows Java components to be accessed from
Lua with the same syntax that Lua uses for accessing its native objects.
It also allows Java to use a Lua interface so that any interface can be
implemented in Lua and passed as a parameter to any method. The
method’s result (when called in the Java program) is called in Lua, and
the result is sent back to Java.

Conclusion
Lua is a flexible, powerful, compact language that can be used and extend-
ed in myriad situations. Its focus on simplicity makes for easy debugging
and has attracted many users. Its simple, powerful syntax provides flexibility
because of Lua’s metamechanisms. The small, fast interpreter uses less
resources than Python, and its syntax allows for easier code readability.
Its simple C API makes embedding a breeze. Whether you are doing
data processing, GUIs or game programming, you will find a use for Lua.�

Joseph Quigley has been a Linux user for more than two years. He enjoys fiddling with different
Linux distros and exploring new programming languages.

Resources

Programming in Lua: www.lua.org/pil

lua-users: www.lua-users.org

wxPython: www.wxpython.org

xwPyWiki: wiki.wxpython.org

wxLua: wxlua.sourceforge.net

LuaJava: www.keplerproject.org/luajava

The Tao Framework: www.taoframework.com

Lua Versus Python: www.lua-users.org/wiki/LuaVersusPython

http://www.linuxjournal.com
http://www.lua.org/pil
http://www.lua-users.org
http://www.wxpython.org
http://www.keplerproject.org/luajava
http://www.taoframework.com
http://www.lua-users.org/wiki/LuaVersusPython

Java is on its way to become mostly GPL but is it too late?

Sorry to start with the spoiler, but the
answer is, “No, it is not too late.” I would
certainly have preferred that Sun GPL Java
before Microsoft .NET was released. I think
.NET would have been a total non-starter
in that case. But allow me to present the
evidence that Java is already kicking .NET
keister on Linux.

Look at how pervasive Java has become
even without the benefit of the GPL.
SourceForge is one of the most if not the
most popular repository of software projects
for Linux (software is available for other
operating systems, including Windows, but
SourceForge is primarily a Linux repository).
Java has enjoyed a highly prominent spot on
SourceForge for a long time, well before Sun
announced that it would GPL most of Java.
At the time of this writing, SourceForge lists
5,421 projects written in Java. The number
of Java projects outnumbers even C++ pro-
jects, at 4,582. Only 284 projects are listed
for C# and only 34 projects for BASIC. I
don’t think it will surprise anyone that C
outnumbers all others with 8,558 projects.

Here is what .NET brings to the table
that Java lacks. The .NET API has richer func-

tionality because it is not written to be a
Write-Once-Run-Anywhere (WORA) plat-
form. Java aims to be WORA, so it is missing
some pretty basic features, such as good
support for USB or FireWire. That’s because
direct support for hardware violates the
WORA principle. You have to write hardware
and/or platform-specific Java extension
libraries that make use of the Java Native
Interface to support these things.

Is that a bad thing? Must Java be faithful
to WORA to be Java? In one sense, the
answer is yes. The core JVM should be faith-
ful to WORA. But that doesn’t mean you
can’t extend Java to be platform-specific.
Indeed, I hope compiled Java, in addition to
the WORA JVM, gets even better as the
community gets more involved in the future
of Java. I am confident that only good will
come of the community efforts.

I expect hardware-specific extensions to
projects will flourish once Sun finishes its
GPL-ization of Java. Java can remain a
WORA platform for those who want to use
it that way, and the community can provide
the tools you need to use Java as a magnifi-
cent platform-specific language as well. So
what if the add-ons violate WORA? It’s a
language, not a religion. In contrast, the
Mono team is dead set on providing the
non-WORA functions by playing catchup
with the Windows API portion of .NET. All I
can do is tip my hat and say, “good luck”.

The current problem with Java on Linux
that is now going away is that it isn’t usually
a no-brainer to install Java on your favorite
distribution. That’s changing quickly, but it’s
still hit and miss. Worse, some of the best
Java applications aren’t available with a
simple apt-get.

The apt-cache search jedit
command turns up nothing, even on the
future release of Ubuntu, even though
jEdit is a spectacular Java-based editor.
A search for the BitTorrent client Azureus

brings up the GCJ-compiled version.
There’s nothing wrong with that, but I’d
still prefer to run Azureus as a Java appli-
cation. I have to download and install
Azureus manually if I want the non-GCJ
version. There aren’t all that many profes-
sional-quality standalone client applica-
tions in Java, but the ones I love and use
are rarely available from standard applica-
tion repositories. I expect, or at least
hope, that will change as the GPL-ization
of Java progresses and a Java virtual
machine is installed by default on all
distributions of Linux.

But here’s where Java stands to explode
in usage. Currently, economy Web hosting
supports MySQL and PHP by default, with
perhaps Perl and maybe PostgreSQL. Java
usually costs extra, most likely because it’s
not free, and the commercial hosts who
provide these services didn’t get Java
installed by default. I’m betting that within
one year, you’ll see all those $5 or more per-
month hosting services provide Java and JSP
by default. I’ve even seen a few that already
have taken this step. Could I be wrong?
It’s certainly possible. I was wrong once
before—October 1979, I think, but I could
be wrong about that. Regardless, I stand
by my prediction that Java will explode on
economy hosting services.

The bottom line is that if you haven’t
already taken the plunge, do so. Java isn’t as
easy to pick up as, say, PHP. But, it’s enough
like C/C++ that the learning curve won’t be
overly steep if you come from a traditional
C/C++ background. I’ve found that the key
to learning Java is to focus on how to use
the error-handling features properly, which is
generally where I tripped up when I first tried
my hand at programming in Java.�

Nicholas Petreley is Editor in Chief of Linux Journal and a former
programmer, teacher, analyst and consultant who has been
working with and writing about Linux for more than ten years.

Is GPL Java too little, too late?

Nick Petreley, Editor in Chief

/var/opinion

96 | june 2007 www.l inux journa l .com

http://www.linuxjournal.com

“Not long ago, I reformatted one of our servers. Not until I was driving home did I learn that I brought our entire
site down in the process. I called my guy at Rackspace and he said, ‘We’re already on it.’ By the time I pulled
in the driveway, my site was back up. Now that’s Fanatical Support.”

Keeping little mistakes from causing big problems is one definition of Fanatical Support. What will yours be?

Watch Russ’s story at www.rackspace.com/fanatical
1-888-571-8976

Russ Barnard, President, FlapDaddy Productions

“Fanatical Support™ saved me
from my own mistake.”

http://www.rackspace.com/fanatical

Affordable Infi niBand SolutionsAffordable Infi niBand Solutions
4 Great Reasons to Call Microway NOW!

TriCom™

• DDR/SDR Infi niBand HCA
• "Switchless" serial console
• NodeWatch web enabled

remote monitor and control

FasTree™

• DDR Infi niBand switches
• Low latency, modular design
• 24, 36 and 48 port building blocks

ServaStor™

• Extensible IB based storage
 building blocks
• Redundant and scalable
• Parallel fi le systems
• Open source software
• On-line capacity expansion
• RAID 0,1,1E, 3, 5, 6, 10, 50

Infi niScope™

• Monitors ports on HCA’s and switches
• Provides real time BW diagnostics
• Finds switch and cable faults
• Lane 15 interface
• Logs all IB errors

Upgrade your current cluster, or let us design your
next one using Microway Infi niBand Solutions.

To speak to an HPC expert
call 508 746-7341 and ask
for technical sales or email

sales@microway.com
www.microway.com

COM2
Internal connector

8051 BMC interface and
serial console switch

Headers to fan tach lines,
voltages, temperature probes
PS On/Off and MB reset

Mellanox™ Infi niHost III
Infi niBand HCAInfi niBand

connector

RJ45
RS-485/422
Daisy chain
connectors

LJ-InfinibandSolutions.indd 1 1/16/07 4:15:16 PM

mailto:sales@microway.com
http://www.microway.com

