
Since 1994: The Original Magazine of the Linux Community

™

OCTOBER 2012 | ISSUE 222 | www.linuxjournal.com

Chrome | Kbuild | Android | Linux Training | JaxoDraw

THE KERNEL

+
TIPS FOR

LINUX
TRAINERS

A LOOK AT
SERVER
DEPLOYMENT
STRATEGIES

CREATING THE
PERFECT TEMPLATE
FOR POWERFUL
BASH SHELL SCRIPTS

HOW TO
ROOT AN
ANDROID
PHONE

DETECT
STACK

CORRUPTION
WITH

CANARIES

AN AUTOMATED
SOLUTION FOR
MANAGING
KERNEL
CRASHES

EXTEND A
LINUX KERNEL
TREE WITH
THE KBUILD
SYSTEM

SOME
ADVANTAGES
TO SWITCHING
TO CHROME

FREE TO

SUBSCRIBERS

EPUB, Kindle, Android, iPhone & iPad editions

Cover222-Final-banner.indd 1 9/18/12 8:20 PM

http://www.linuxjournal.com

Sponsored by:

in cooperation with LOPSA
Dec. 9–14, 2012

San Diego, CA

Join us for 6 days

of practical training

on topics including:

• Virtualization with VMWare

John Arrasjid, Ben Del Vento,

David Hill, Ben Lin, and Mahesh

Rajani, VMware

• Using and Migrating to IPv6

Shumon Huque,

University of Pennsylvania

• Puppet

Nan Liu, Puppet Labs

www.usenix.org/lisa12

December 9–14, 2012
San Diego, CA

Register by November 19th
and SAVE!

Strategies, Tools, and Techniques

Keynote Address by Vint Cerf, Google

Plus 3-day Technical Program:• Invited Talks by industry leaders such as Owen DeLong, Valerie Detweiler, Matt Blaze, and Selena Deckelmann
• Refereed Papers covering key topics: storage and data, monitoring, security and systems management, and tools

• Workshops, Vendor Exhibition, Posters, BoFs, “Hallway Track,” and more!

lisa12_LinuxJournal_Oct.indd 1 9/11/12 11:17 AM
LJ222-Oct2012.indd 2 9/18/12 11:44 AM

http://www.usenix.org/lisa12

R ACKMOUNT SERVERS STOR AGE SOLUTIONS HIGH-P ERFORMANCE COMPUTING

visit us at www.siliconmechanics.com or call us toll free at 888-352-1173

Silicon Mechanics and Silicon Mechanics logo are registered trademarks of Silicon Mechanics, Inc. NVIDIA, the NVIDIA logo, and Tesla, are trademarks or registered trademarks of NVIDIA Corporation in the US and other countries.

Pierre, our new Operations Manager,
is always looking for the right tools to get more
work done in less time. That’s why he respects
NVIDIA ® Tesla ® GPUs: he sees customers return
again and again for more server products
featuring hybrid CPU / GPU computing, like the
Silicon Mechanics Hyperform HPCg R2504.v3.

We start with your choice of two state-of-
the-art processors, for fast, reliable, energy-
efficient processing. Then we add four NVIDIA ®
Tesla® GPUs, to dramatically accelerate parallel
processing for applications like ray tracing and
finite element analysis. Load it up with DDR3
memory, and you have herculean capabilities
and an 80 PLUS Platinum Certified power supply,
all in the space of a 4U server.

When you partner with
Silicon Mechanics, you
get more than stellar
technology - you get an
Expert like Pierre.

“ Just because
 it’s badass,
 doesn’t mean
 it’s a game.”

“ Just because
 it’s badass,
 doesn’t mean
 it’s a game.”

LJ222-Oct2012.indd 3 9/18/12 11:44 AM

http://www.siliconmechanics.com

4 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

CONTENTS OCTOBER 2012
ISSUE 222

ON THE COVER
• Detect Stack Corruption with Canaries, p. 94
• An Automated Solution for Managing Kernel Crashes, p. 76
• Extend a Linux Kernel Tree with the Kbuild System, p. 62
• Some Advantages to Switching to Chrome, p. 34
• A Look at Server Deployment Strategies, p. 46
• Create the Perfect Template for Powerful Bash Shell Scripts, p. 42
• How to Root an Android Phone, p. 52
• Tips for Linux Trainers, p. 86 Cover Image: © Can Stock Photo Inc. / colorvalley

THE KERNEL
FEATURES
62 Kbuild: the
 Linux Kernel
 Build System
 Learn how to extend a
 Linux kernel tree using
 the kbuild system.
 Javier Martinez Canillas

76 Automated Linux
 Kernel Crash
 Infrastructure—
 Eye in the
 Digital Sky
 With environment health
 and uptime as the
 paramount objectives in
 mind, we propose a
 proactive, automated
 solution to managing and
 handling kernel crashes.
 Igor Ljubuncic
 and Raphael Sack

LJ222-Oct2012.indd 4 9/18/12 11:44 AM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 5

LINUX JOURNAL (ISSN 1075-3583) is published monthly by Belltown Media, Inc., 2121 Sage Road, Ste. 310, Houston, TX 77056 USA. Subscription rate is $29.50/year. Subscriptions start with the next issue.

INDEPTH
86 Raising the Bar for Linux Trainers
 Ever been in a terrible Linux training
 session? Learn how to save others
 from the misery you endured.
 Darren Douglas

94 Sacrifice a Canary upon the
 Stack of the Gods: on Canaries,
 Coal Mines and Stack Sanity
 Stack canaries provide a simple
 means of detecting stack corruption
 and can prevent unintended stack
 overflow-based execution.
 Matt Davis

COLUMNS
34 Reuven M. Lerner’s At the Forge
 Switching to Chrom(ium)

42 Dave Taylor’s Work the Shell
 The Über-Skeleton Challenge

46 Kyle Rankin’s Hack and /
 How to Deploy a Server

52 Shawn Powers’ The Open-Source
 Classroom
 Pwn Your Phone

106 Doc Searls’ EOF
 Heavy Backup Weather

IN EVERY ISSUE
8 Current_Issue.tar.gz
10 Letters
16 UPFRONT
32 Editors’ Choice
58 New Products
109 Advertisers Index

20 JAXODRAW

52 PWN YOUR PHONE

LJ222-Oct2012.indd 5 9/18/12 7:09 PM

http://www.linuxjournal.com

Executive Editor

Senior Editor

Associate Editor

Art Director

Products Editor

Editor Emeritus

Technical Editor

Senior Columnist

Security Editor

Hack Editor

Virtual Editor

Jill Franklin
jill@linuxjournal.com
Doc Searls
doc@linuxjournal.com
Shawn Powers
shawn@linuxjournal.com
Garrick Antikajian
garrick@linuxjournal.com
James Gray
newproducts@linuxjournal.com
Don Marti
dmarti@linuxjournal.com
Michael Baxter
mab@cruzio.com
Reuven Lerner
reuven@lerner.co.il
Mick Bauer
mick@visi.com
Kyle Rankin
lj@greenfly.net
Bill Childers
bill.childers@linuxjournal.com

Publisher

Advertising Sales Manager

Associate Publisher

Webmistress

Accountant

Carlie Fairchild
publisher@linuxjournal.com

Rebecca Cassity
rebecca@linuxjournal.com

Mark Irgang
mark@linuxjournal.com

Katherine Druckman
webmistress@linuxjournal.com

Candy Beauchamp
acct@linuxjournal.com

Contributing Editors
Ibrahim Haddad • Robert Love • Zack Brown • Dave Phillips • Marco Fioretti • Ludovic Marcotte

Paul Barry • Paul McKenney • Dave Taylor • Dirk Elmendorf • Justin Ryan

Linux Journal is published by, and is a registered trade name of,
Belltown Media, Inc.

PO Box 980985, Houston, TX 77098 USA

Editorial Advisory Panel
Brad Abram Baillio • Nick Baronian • Hari Boukis • Steve Case

Kalyana Krishna Chadalavada • Brian Conner • Caleb S. Cullen • Keir Davis
Michael Eager • Nick Faltys • Dennis Franklin Frey • Alicia Gibb
Victor Gregorio • Philip Jacob • Jay Kruizenga • David A. Lane

Steve Marquez • Dave McAllister • Carson McDonald • Craig Oda
Jeffrey D. Parent • Charnell Pugsley • Thomas Quinlan • Mike Roberts

Kristin Shoemaker • Chris D. Stark • Patrick Swartz • James Walker

Advertising
E-MAIL: ads@linuxjournal.com

URL: www.linuxjournal.com/advertising
PHONE: +1 713-344-1956 ext. 2

Subscriptions
E-MAIL: subs@linuxjournal.com

URL: www.linuxjournal.com/subscribe
MAIL: PO Box 980985, Houston, TX 77098 USA

LINUX is a registered trademark of Linus Torvalds.

LJ222-Oct2012.indd 6 9/18/12 11:44 AM

mailto:jill@linuxjournal.com
mailto:doc@linuxjournal.com
mailto:shawn@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:newproducts@linuxjournal.com
mailto:dmarti@linuxjournal.com
mailto:mab@cruzio.com
mailto:reuven@lerner.co.il
mailto:mick@visi.com
mailto:lj@greenfly.net
mailto:bill.childers@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:rebecca@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:ads@linuxjournal.com
http://www.linuxjournal.com/advertising
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/subscribe
http://www.linuxjournal.com/subscribe

Unified. Scalable. Flexible.

Thanks to the Intel® Xeon® Processor 5600 series and high-
performance flash, every TrueNAS Storage appliance delivers
the utmost in throughput and IOPS.

As IT infrastructure becomes increasingly virtualized, effective
storage has become a critical requirement. iXsystems’ TrueNAS
Storage appliances offer high-throughput, low-latency backing
for popular virtualization programs such as Hyper-V, VMWare®,
and Xen®. TrueNAS hybrid storage technology combines
memory, NAND flash, and traditional hard disks to dramatically
reduce the cost of operating a high performance storage
infrastructure. Each TrueNAS appliance can also serve multiple
types of clients simultaneously over both iSCSI and NFS, making
TrueNAS a flexible solution for your enterprise needs.

For growing businesses that are consolidating infrastructure,
the TrueNAS Pro is a powerful, flexible entry-level storage
appliance. iXsystems also offers the TrueNAS Enterprise, which
provides increased bandwidth, IOPS and storage capacity for
resource-intensive applications.

Call 1-855-GREP-4-IX, or go to www.iXsystems.com

TrueNAS™ Storage Appliances

Harness the Cloud

Supports iSCSI and NFS exports
simultaneously

Compatible with popular
Virtualization programs such
as Hyper-V, VMware, and Xen

128-bit ZFS file system with up
to triple parity software RAID

Intel, the Intel logo, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the U.S. and other countries.

TrueNAS Pro Features
One Six-Core Intel® Xeon® Processor •	
5600 Series
High Performance Write Cache•	
Up to 480GB MLC SSD Cache•	
Up to 220 TB SATA Capacity•	
Quad Gigabit Ethernet•	
48GB ECC Memory•	

TrueNAS Enterprise Features
Two Six-Core Intel® Xeon® Processors •	
5600 Series
Extreme Performance Write Cache•	
Up to 1.2TB High Performance ioMemory•	
Up to 500TB SATA or 320TB SAS Capacity•	
Dual Ten Gigabit Ethernet•	
96GB ECC Memory•	

LJ222-Oct2012.indd 7 9/19/12 10:28 AM

http://www.iXsystems.com
http://www.iXsystems.comTrueNAS%E2%84%A2

Current_Issue.tar.gz

SHAWN POWERS

8 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

The Seats
Are Bolted Down

One of my favorite Linux kernel

analogies is that of an airplane

losing altitude. In the movies,

when a plane suffers damage, the brave

hero rips off the door and starts throwing

things out in order to lighten the load.

Suitcases fly, bags of peanuts scatter and

anything not bolted down goes out in order

to save the passengers. When a computer

system gets old, or is low-powered to begin

with, the Linux kernel can work the same

way. Computers are so powerful now, we

don’t often think about removing kernel

modules to gain speed, but not too many

years ago, it was common to tweak our

systems by stripping out unneeded or

unused drivers. We seldom turn to our

beloved kernel for speed increases anymore,

but it’s still the core of our OS. Most users

don’t think about the kernel, but then

again, Linux Journal readers aren’t most

users. This month’s issue is dedicated to the

kernel. If that scares you off, fear not, we

cover lots of other topics too.

Reuven M. Lerner starts off the issue

with his take on switching to the Chrome

browser. Like Reuven, I’ve been a Firefox

user since before it was cool. About six

months ago, I switched to Chrome too. This

month, Reuven discusses how the switch

went for him. Whether you’re a Google

fan, or think Google is horrible (or both),

Chrome is a popular and viable browser.

Now you get to see what a programmer

thinks. Our other resident programmer,

Dave Taylor, tackles another interesting

challenge. Can there be a template for a

bash script that is flexible enough to fill

most needs, while providing a standard

framework to facilitate best practices? If

you’ve ever written a script knowing you

should add more, but don’t have the time

to do it “right”, Dave’s article is for you.

Kyle Rankin writes about methods for

deploying servers this month. Oh sure,

that sounds like a basic tenant of system

administration, but Kyle goes from the

standard “insert CD and boot” method

all the way to centralized configuration. If

you’re working in a corporate environment,

chances are you don’t have time to install

servers one by one, and even if you do have

LJ222-Oct2012.indd 8 9/18/12 11:44 AM

http://www.linuxjournal.com

CURRENT_ISSUE.TAR.GZ

WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 9

time, it would be time wasted. Kyle’s article

might change the way you think about

server installation, and more important, it

might change the way you do it.

My contribution to the kernel issue is rather

small. In fact, it will fit in your pocket. In my

Open-Source Classroom column, I discuss

the oft-confusing art of rooting an Android

device. And, because rooting often is followed

by installing custom ROMs, I cover that too. If

you’ve ever wanted to try CyanogenMod on

your phone, this month’s article should be a

big help. If you have an iPhone, well, feel free

to read about what all the cool kids can do!

Javier Martinez Canillas starts off the nitty-

gritty kernel articles with an introduction to

kbuild. Like any other open-source project,

the Linux kernel is the work of many people

working together. Javier describes the system

and shows how to add to the kernel. After

reading an article on how to add to the

kernel, I recommend a quick followup with

Igor Ljubuncic and Raphael Sack’s article on

dealing with kernel crashes. An unstable

kernel can go from bad to catastrophic

quite quickly, so Igor and Raphael discuss

how to automate the identification and

handling of such events. Following their

lead, hopefully your next kernel panic

won’t mean sysadmin panic as well.

Matt Davis also helps us deal with

system problems at a low level using

canaries. No, it’s not just listening to their

beautiful songs to soothe us. Rather, just

like the miners of old using canaries to

detect problems in a mine, a stack canary

can detect system problems before any

serious damage happens. If building

safeguards into your code sounds like

a good idea, or if you just want to read

Matt’s discussion of the Terminator Canary,

you’ll want to check out his article.

We finish the issue with a topic near

and dear to my heart. Darren Douglas talks

about teaching. I’ve been a professional

Linux trainer for several years now, and

Darren really drives home some important

points regarding how we teach what we

teach. Whether you’re a trainer yourself

looking for a gut check, or just an avid

user desiring to share your knowledge with

others, Darren really hits the target.

On the surface, this issue might sound

intimidating to those folks who usually steer

clear of the kernel. Thankfully, we do the

hard work of tossing out the extra baggage

so all you have left are those things

bolted down and worth reading. Plus,

we have plenty of other things—product

announcements, tech tips and more—to

keep you informed and entertained. So have

a seat, put your trays in the upright position

and enjoy this issue of Linux Journal.■

Shawn Powers is the Associate Editor for Linux Journal.

He’s also the Gadget Guy for LinuxJournal.com, and he has

an interesting collection of vintage Garfield coffee mugs.

Don’t let his silly hairdo fool you, he’s a pretty ordinary guy

and can be reached via e-mail at shawn@linuxjournal.com.

Or, swing by the #linuxjournal IRC channel on Freenode.net.

LJ222-Oct2012.indd 9 9/18/12 11:44 AM

http://www.linuxjournal.com
mailto:shawn@linuxjournal.com
http://linuxjournal.com
http://Freenode.net

10 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

letters

10 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

Reading the
LJ Archive
CD on a
Netbook
Here is a quick

tip for readers

who have

purchased the

Linux Journal

Archive CD.

What do you

do if you want to read the CD on a

Netbook? Mount the CD and run

Start Linux.sh on one of your

computers (say, with IP 192.168.0.20)

that has a CD-ROM drive. This will

start the localhost-bound Web server

“FlyingAnt” on port 8091. You can verify

this port number with the command:

sudo lsof -i | grep FlyingAnt

Now on your Netbook, issue a secure

shell tunnel to the “FlyingAnt” server:

ssh -L 8091:127.0.0.1:8091 user@192.168.0.20

Next, on your Netbook, start a

browser and use the following

URL: http://127.0.0.1:8091.

—Ransel Yoho

SSH tunneling is one of my favorite

things about running Linux as my OS.

You are absolutely correct; that’s a fast

way to get around a lack of CD drive.

Another method would be to make an

ISO file of the CD and mount it on your

Netbook directly. On your computer with

a CD drive, create the ISO file (with the

CD unmounted) by typing:

sudo dd if=/dev/cdrom of=cd.iso

Then, once copied to your Netbook,

you can mount the ISO fi le by typing:

sudo mkdir /mnt/iso

sudo mount -o loop cd.iso /mnt/iso

You now should have the CD image

mounted as if you popped the CD into

the non-existent CD drive. There are

plenty of GUI ways to mount an ISO file

too, and in a pinch, Ransel, your SSH

tunneling method is much quicker.

Thanks for the tip!—Ed.

Linux for Senior Citizens
I work with senior citizens and have found

very little content/apps aimed at making it

easier for them to choose the penguin.

I am aware that it’s a small market, and

although there are a few options on the

Web, they are hard to come by to try

LJ222-Oct2012.indd 10 9/27/12 10:36 AM

http://www.linuxjournal.com
http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 11

[LETTERS]

them out. Are you guys planning to write

about the subject?

—Hernàn

While I’m not sure we will be targeting

senior citizens directly, I do know many

fellow Linux users who install Linux

for their folks so they don’t have to

worry about accidental trojan installs,

malware and the dreaded browser-

bar-addon disease. Thanks to the

Web, the underlying operating system

is becoming less and less important.

In fact, for most people a browser is

all they ever use (which explains why

Internet Explorer is so targeted by

malware and addon-bar junk).

Are there specific applications you find

lacking in the Linux world for the folks

you work with? If we find something

particularly useful for seniors, we’ll try to

mention it. And if you have suggestions,

please let us know.—Ed.

Android App
First of all, thanks for a great magazine!

I am a pleased subscriber!

I was wondering if your Android

application is available in a .apk file

rather than through the Market (or

Google Play, that is)? I do not have nor

want a Google account for personal

reasons, so a .apk file would be great,

because it wouldn’t require me to install

the Market application.

—Marcus

The app isn’t officially available outside

the Google Play store, but it would be

possible to get it from someone who

already has downloaded it. The downside

is that updates won’t be detected and

applied, because you don’t use the official

store. So although we don’t distribute

the application, there is certainly nothing

stopping you from procuring it from

someone and installing it.—Ed.

iOS Texterity App
No complaints about the digital

version—I l ike it a lot, but the Texterity

app really went backwards with its last

update. With each page turn, every

active l ink flashes in yellow. I f ind that

very distracting, and there is no way

to turn it off. If I want to see the l inks

highlighted, I can click the button for

it. Far worse is that the application

no longer remembers my place. When

I open it, I’m back at the front cover.

There is sometimes a lag between page

turns as if its downloading the page—

that would very inconvenient I if had

no connectivity.

LJ222-Oct2012.indd 11 9/18/12 11:44 AM

http://www.linuxjournal.com

12 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

Of the many formats offered, this one is

my favorite. The application did not have

these problems in the past, and it would

be great if they could be addressed.

—Steve Johnson

Hmm, we’ll make sure the Texterity

folks get the message. In the meantime,

perhaps try deleting the app and all its

data, and then re-installing. It's possible

something was messed up during the

upgrade.—Ed.

Tablets
I l ike the digital editions, but I need

to get a tablet to read them. How

about doing a survey so people can

make suggestions? It must not have

proprietary software and must be

configurable. A 10" screen is almost

necessary to view the pages properly.

A relatively cheap Chinese one would

be okay. I have seen several on eBay

that look good.

—Jon GrosJean

We’ll try to get a survey regarding

the most popular tablet up, Jon. The

only thing to note is that many of our

readers are hard-core geeks, and they

likely will go for powerful tablets over

inexpensive ones, so they can use them

for other things as well.—Ed.

Zipwhip Linux App (Ubuntu and
Mint) Ready for Download
Hey Linux Journal, I just wanted to share

the news that we’ve just released our

desktop app for Linux users. Libby Clark

from the Linux Foundation did a story

on our app a few months ago, and after

a couple months of head scratching, it’s

finally ready. We’d love to get the word

out to the community that our app is ready

to roll, for free. We welcome any feedback

on the app’s usability as well, so don’t

hesitate to contact me. I put together this

video to show off some of the features:

http://blog.zipwhip.com/2012/08/07/
linux-desktop-app.

—Kelsey Klevenberg

Kelsey, what a neat concept. Thanks for the

link, and thanks for supporting Linux!—Ed.

Bash Pointers
In his reply to Steven W. Orr’s letter titled

“Substandard Working the Shell” in the

August 2012 issue, Dave Taylor asked

for some pointers to documentation on

newer bash capabilities.

My personal favorite is the Advanced

Bash Scripting Guide by Mendel

Cooper, last revised April 5, 2012.

It’s available from Amazon and also

for free at the Linux Documentation

[LETTERS]

LJ222-Oct2012.indd 12 9/18/12 11:44 AM

http://www.linuxjournal.com
http://blog.zipwhip.com/2012/08/07/linux-desktop-app
http://blog.zipwhip.com/2012/08/07/linux-desktop-app

Project: http://tldp.org/LDP/abs/html.
—Jon

Google Play?
Now that Google Play has a magazine

section of the play store, would you

consider putting yours up there? I’m

subscribed to several other tech magazines

that way, and I’d love to add LJ to the list. I

love Linux, and I feel a magazine format is

one of the best ways to stay up to date on

what’s happening with the community, and

I’ve heard yours is the one to go with.

—aig787

Thanks for your interest! We are working

on getting LJ on Google Play, and hopefully,

it will be available there soon.—Ed.

Scientology Ad?
I respect your publication, and I’m even

about to purchase a subscription. However,

do you guys really need to advertise for

Scientology on your site? First, it does not

match what you’re selling quite well. Second,

it’s not serious...or is it? I know it’s not such

a big deal, but come on, seriously? I’m not

sure I can subscribe to this kind of marketing.

—LL

[LETTERS]

Linux JournaL
on your

e-Reader

Customized
Kindle and Nook

editions
now available

LEARN MORE

e-Reader
editions

FREE
for Subscribers

LJ222-Oct2012.indd 13 9/18/12 11:44 AM

http://tldp.org/LDP/abs/html
http://www.linuxjournal.com/content/ios-android-and-e-readers-oh-my

[LETTERS]

14 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

We occasionally run Google AdSense ads on our Web

site, and sometimes irrelevant ads display. Although

we do try to filter out ads that we feel don’t belong

on our site, sometimes something quite unexpected

will slip through.—Ed.

Correction
Regarding my article “Arduino Teaches Old Coder

New Tricks” in the September 2012 issue: the

resource for getting source code and hardware

files for the vt100lcd is incomplete. The correct

link is http://code.google.com/p/vt100lcd.

—Edward Comer

Photo of the Month
Here’s a poster I found when I changed desks last year.

—Saul Alanis

Oldie but Goodie

At Your Service
SUBSCRIPTIONS: Linux Journal is available
in a variety of digital formats, including PDF,
.epub, .mobi and an on-line digital edition,
as well as apps for iOS and Android devices.
Renewing your subscription, changing your
e-mail address for issue delivery, paying your
invoice, viewing your account details or other
subscription inquiries can be done instantly
on-line: http://www.linuxjournal.com/subs.
E-mail us at subs@linuxjournal.com or reach
us via postal mail at Linux Journal, PO Box
980985, Houston, TX 77098 USA. Please
remember to include your complete name
and address when contacting us.

ACCESSING THE DIGITAL ARCHIVE:
Your monthly download notifications
will have links to the various formats
and to the digital archive. To access the
digital archive at any time, log in at
http://www.linuxjournal.com/digital.

LETTERS TO THE EDITOR: We welcome your
letters and encourage you to submit them
at http://www.linuxjournal.com/contact or
mail them to Linux Journal, PO Box 980985,

Houston, TX 77098 USA. Letters may be
edited for space and clarity.

WRITING FOR US: We always are looking
for contributed articles, tutorials and
real-world stories for the magazine.
An author’s guide, a list of topics and
due dates can be found on-line:
http://www.linuxjournal.com/author.

FREE e-NEWSLETTERS: Linux Journal

editors publish newsletters on both
a weekly and monthly basis. Receive
late-breaking news, technical tips and
tricks, an inside look at upcoming issues
and links to in-depth stories featured on
http://www.linuxjournal.com. Subscribe
for free today: http://www.linuxjournal.com/
enewsletters.

ADVERTISING: Linux Journal is a great
resource for readers and advertisers alike.
Request a media kit, view our current
editorial calendar and advertising due dates,
or learn more about other advertising
and marketing opportunities by visiting
us on-line: http://ww.linuxjournal.com/
advertising. Contact us directly for further
information: ads@linuxjournal.com or
+1 713-344-1956 ext. 2.WRITE LJ A LETTER We love hearing from our readers. Please send us

your comments and feedback via http://www.linuxjournal.com/contact.

LJ222-Oct2012.indd 14 9/18/12 11:44 AM

http://www.linuxjournal.com
http://code.google.com/p/vt100lcd
http://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/digital
http://www.linuxjournal.com/contact
http://www.linuxjournal.com/author
http://www.linuxjournal.com
http://www.linuxjournal.com/
http://ww.linuxjournal.com/
mailto:ads@linuxjournal.com
http://www.linuxjournal.com/contact

www.1and1.com

®®

ONLY PAY FOR WHAT YOU NEED!
TO YOUR BUSINESS.
MATCH YOUR SERVER

 With a 1&1 Dynamic Cloud Server, you can
change your server confi guration in real time.

■ Independently confi gure CPU, RAM, and storage

■ Control costs with pay-per-confi guration and hourly billing

■ Up to 6 Cores, 24 GB RAM, 800 GB storage

■ 2000 GB of traffi c included free

■ Parallels® Plesk Panel 11 for unlimited domains, reseller ready

■ Up to 99 virtual machines with different confi gurations

■ NEW: Monitor and manage your cloud
server through 1&1 mobile apps for Android™
and iPhone®.

* Offer valid for a limited time only. Lifetime 50% off applies to base fee and confi gurations. Base confi guration includes 1 processor core, 1 GB RAM, 100 GB Storage. Offer applies to new contracts
only. 12 month minimum contract term. Other terms and conditions may apply. Visit www.1and1.com for full promotional offer details. Program and pricing specifi cations and availability subject
to change without notice. 1&1 and the 1&1 logo are trademarks of 1&1 Internet, all other trademarks are the property of their respective owners. © 2012 1&1 Internet. All rights reserved.

LIFETIME DISCOUNT
1&1 DYNAMIC CLOUD SERVER

50% OFF*

INCLUDING CONFIGURATIONS, NO SETUP FEE
$24.99 per month (regularly $49.99 per month).

LJ222-Oct2012.indd 15 9/18/12 11:44 AM

http://www.1and1.com�ONLY
http://www.1and1.com
https://www.1and1.com/cloud-hosting?ac= OM.US.USe79K42159T7073a

16 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

UPFRONT
NEWS + FUN

16 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

diff -u
WHAT’S NEW IN KERNEL DEVELOPMENT
Some futex benchmarking code
seems to be making its way into the
official Linux tree. Hitoshi Mitake
started porting over some of Darren
Hart’s and Michel Lespinasse’s out-of-
kernel benchmarking suite and turning
it into a new perf subsystem for futexes.

Futexes are simple locking
mechanisms that allow the kernel
to divvy up resources among all the
users on a given system, without each
user’s actions conflicting with any of
the others. There are a lot of simple
and complicated locking mechanisms
in the kernel, and futexes are used in
the design of many of them. Without
them, the kernel would have a tough
time being multitasking.

Darren had no major objections to
Hitoshi’s work, and Hitoshi suggested
migrating even more of Darren’s futex
test code into perf’s tools/ directory,
because it offered good examples
of how to use futexes, in addition
to being useful test code in general.
Everyone seemed favorable, so it looks
like this will happen.

It can be difficult to navigate the
vicissitudes of feature requirements.

Sometimes a seemingly inexplicable
aspect of a feature can turn out to
be needed by one particular corner
case of users.

John Stultz recently tried to improve
the way the kernel handled anonymous
memory on swapless systems. He’d
noticed that anonymous RAM was
tracked on two lists: an active page list
and an inactive page list. Inactive pages
typically would be swapped to disk if
they went unused too long. But on
swapless systems, inactive pages would
just sit on the inactive list, making that
list seem irrelevant. John proposed that
on swapless systems, it made more
sense to have just a single list.

Minchan Kim pointed out that he
too had tried introducing a similar
refinement, but that Rik van Riel had
vetoed his patch. The reason Rik gave
was that swapless systems were not
always entirely swapless—sometimes they
were systems where swap had been only
temporarily disabled, or systems where
there really was not going to be any
swap, but people still could enable it if
they wished. In that case, the absence of
an inactive page list would make it harder

LJ222-Oct2012.indd 16 9/18/12 11:44 AM

http://www.linuxjournal.com
http://www.linuxjournal.com

[UPFRONT]

to use the newly available swap space.
Back in June, the world gained a

“leap second”, and Richard Cochran
wrote up some code in preparation for
it that he hoped would be less messy
than the current way such things were
handled in the kernel. The problem,
apparently, is that POSIX UTC was
designed as a standard back in the
before-time, when computer clocks
were highly inaccurate, and no one
could clearly anticipate why any such
issues would matter in the future.

But, to be POSIX-compliant,
Linux still has to support POSIX
UTC. Richard’s answer to this was
interesting. Instead of actually
implementing POSIX UTC as the true
“Way of the Kernel”, he implemented
a better system that could track things
like leap seconds and other oddities.
And then, for the benefit of any user
threads that wanted POSIX semantics,
Richard’s code would translate the
inner timekeeping mechanism into
UTC for that process.—ZACK BROWN

Read
LINUX JOURNAL

on your
Android device

www.linuxjournal.com/android

For more information about advertising opportunities within Linux Journal iPhone, iPad and
Android apps, contact Rebecca Cassity at +1-713-344-1956 x2 or ads@linuxjournal.com.

Download the app
now in the
Android

Marketplace.

LJ222-Oct2012.indd 17 9/18/12 11:44 AM

http://www.linuxjournal.com/android
mailto:ads@linuxjournal.com

18 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM18 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

[UPFRONT]

It’s getting harder and
harder to differentiate
between schizophrenics
and people talking on
a cell phone. It still
brings me up short to
walk by somebody who
appears to be talking
to themselves.
—Bob Newhart

The only still center of
my life is Macbeth. To
go back to doing this
bloody, crazed, insane
mass-murderer is a huge
relief after trying to get
my cell phone replaced.
—Patrick Stewart

The single biggest
problem in
communication is
the illusion that it
has taken place.
—George Bernard Shaw

Effective communication
is 20% what you know
and 80% how you feel
about what you know.
—Jim Rohn

Of all of our inventions
for mass communication,
pictures still speak
the most universally
understood language.
—Walt Disney

They Said ItChromium
for the Masses
Every time my paycheck is direct-deposited,
I contemplate purchasing a Chromebook. Long
gone are the days of the CR-48 laptops with
the clunky interface and frustrating usability.
Although I never quite seem to pull the trigger
and buy a Chromebook, thanks to the developer
Hexxeh, it’s possible to run the Chromium OS
on a wide variety of hardware combinations. I’m
writing this on my Dell Latitude D420 booted into
Hexxeh’s Vanilla build of Chromium. (I’m using
the excellent Chrome App Writebox as an editor.)
You can get the most recent build of Vanilla from
Hexxeh’s Web site: http://chromeos.hexxeh.net.

The
exciting
news,
however,
has nothing
to do with
laptops at
all. Like most
Linux-based
pseudo-
embedded

projects, Hexxeh’s Chromium build is getting ported
to the Raspberry Pi. Once complete, a Chromium-
enabled Raspberry Pi desktop machine will be a very
affordable, power-sipping alternative to Google’s
ChromeBox units. Projects like this really beg the
question: is there anything the Raspberry Pi can’t
do? For more details on the Pi port, visit Hexxeh’s
blog: http://hexxeh.net.—SHAWN POWERS

Image from http://hexxeh.net

LJ222-Oct2012.indd 18 9/18/12 11:44 AM

http://www.linuxjournal.com
http://www.linuxjournal.com
http://chromeos.hexxeh.net
http://hexxeh.net
http://hexxeh.net

WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 19

[UPFRONT]

Writebox

I’ve reviewed plenty of simple text editors

designed for writers. For my writing, I

really desire only a few features:

■ Support for plain text.

■ Spell Czech.

■ Running word count.

Oddly enough, the last item is the most

difficult to find. In fact, most text editors

don’t have a running word count, even

though that’s the metric most writing is

measured by. In fact, the editor I’m using

right now, from http://is.gd/writebox,

didn’t have that simple feature when

I first started using it. I e-mailed the

developer, and within hours, the feature

was added to the application!

If you followed the link, you’ll notice

Writebox is a Chrome application that runs

completely inside your browser. Because it’s

a Web application, when the running word-

count feature was added, it instantly was

available to all users. If a text-only editor

with Dropbox syncing, off-line support and

a running word count sounds like the text

editor of your dreams, check out Writebox.

—SHAWN POWERS

LJ222-Oct2012.indd 19 9/18/12 11:44 AM

http://www.linuxjournal.com
http://is.gd/writebox

20 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM20 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

[UPFRONT]

Feynman Figures
for Fun
In quantum physics, one of the calculations

you might want to do is figure out how

two or more particles may interact. This

can become rather complicated and

confusing once you get to more than

two particles interacting, however. Also,

depending on the interaction, there

may be the creation and annihilation

of virtual particles as part of the

interaction. How can you keep all of this

straight and figure out what could be

happening? Enter the Feynman diagram

(http://en.wikipedia.org/wiki/
Feynman_diagram). American physicist

Richard Feynman developed Feynman

diagrams in 1948. They represent complex

quantum particle interactions through a

set of very simple diagrams, made up of

straight lines, wavy lines and curly lines. This

works really well if you happen to be using

a chalk board or white board. But, these

media are not very useful when sharing your

ideas across the Internet. Additionally, most

word-processing software is unable to draw

these diagrams for your articles, papers

and documents. So what can you do?

Use the JaxoDraw software package

(http://jaxodraw.sourceforge.net).

JaxoDraw provides a graphical

environment for drawing Feynman

diagrams on your computer. JaxoDraw

is a Java application, so it should run

on any OS that has a reasonably recent

Java virtual machine. There currently are

packages only for Fedora and Gentoo,

but both source and binary downloads

are available. The binary download is a jar

file containing everything you need. There

also are installers for Windows and a disk

image for Mac OS X users. You also can

download the source files and compile

JaxoDraw for yourself or make alterations

to the sources to add extra functionality.

JaxoDraw supports a plugin architecture,

with documentation on how to create your

own. This might be a more effective way of

adding any extra functionality you need.

Let’s use the most flexible setup for

JaxoDraw. This involves downloading a

tarball from the main Web site, in the

Downloads section. The filename you

should see is jaxodraw-x.x-x-bin.tar.gz.

Once this file is downloaded, you can

unpack it with the command:

tar xvzf jaxodraw-x.x-x-bin.tar.gz

This will create a subdirectory

containing the jar file and some

documentation files. To start up

LJ222-Oct2012.indd 20 9/18/12 11:44 AM

http://www.linuxjournal.com
http://www.linuxjournal.com
http://en.wikipedia.org/wiki/Feynman_diagram
http://en.wikipedia.org/wiki/Feynman_diagram
http://jaxodraw.sourceforge.net

WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 21

[UPFRONT]

JaxoDraw, first change to the new

subdirectory and run:

java -jar jaxodraw-x.x-x.jar

Be aware that currently the GNU Java

virtual machine doesn’t run JaxoDraw. On

start up, you will have an empty canvas

and a list of the elements available to

draw your Feynman diagram (Figure 1).

The left-hand side is broken into several

sections, including the types of particles

or the types of edits available. JaxoDraw

uses XML files to save Feynman diagrams.

This way, you can load them again

later to make edits or build up more-

complicated reactions.

To begin drawing, first select an object

type from the left-hand side. The regular

particle types are fermions (straight lines),

scalars (dashed lines), ghost (dotted lines),

photons (wiggly lines) and gluons

Figure 1. JaxoDraw on Startup

LJ222-Oct2012.indd 21 9/18/12 11:45 AM

http://www.linuxjournal.com

22 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM22 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

[UPFRONT]

(pig-tailed lines). In the diagrams, there are

four versions of these particle lines: lines,

arcs, loops and beziers. Once you select

one of those, you can draw on the canvas

by clicking and dragging to draw the

relevant line. You can draw anywhere on

the canvas, or you can force the drawing

to snap to grid points. The spacing of these

grid points is adjustable in the Preferences.

At least in the beginning, you probably will

want to turn this on so that you can make

the different sections of your drawing line

up. Each of the elements of your drawing

has properties that can be edited. You

need to select the edit tool from the left-

hand side, and then select the element you

want to edit (Figure 2).

From here, you can edit the location,

whether there is an arrow and which

direction it points, the line width and

arrow dimensions. There is also a text

element you can use to label your

diagram. You can enter text in either

LaTeX format or PostScript format. This

allows you to use special characters, such

Greek letters, in your text label. One

thing to remember is that you can’t mix

PostScript and LaTeX text objects. Be sure

to select the text type based on what you

want to produce for exported output.

You can group a number of diagram

elements together in a single entity. You

need to press the selection tool on the

left-hand side and then click on each of

the entities for the group you are creating.

This grouped entity then can be moved as

a single object. You can group together

these groups into super groups. There is

no technical limit to this type of nesting.

You can get a rough idea of what

your Feynman diagram will look like, but

things like LaTeX text aren’t rendered on

the drawing canvas. You need to pass it

through a rendering program and then

view the output. You will need to go to

Options→Preferences and set the paths

Figure 2. Edit Options

LJ222-Oct2012.indd 22 9/18/12 11:45 AM

http://www.linuxjournal.com
http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 23

[UPFRONT]

for the helper programs. To get a preview

of your finished diagram, be sure to set

the preferred PostScript viewer, the LaTeX

path and the dvips path. A common

PostScript viewer is gv, the viewer that

comes with ghostscript.

Once you have finished your diagram,

save it as a JaxoDraw XML file. This way,

you always can go back and re-create the

diagram if needed.

You can export your Feynman diagram in

one of several formats. You can export into

image files (JPEG and PNG). This is useful if

you are using PowerPoint or Web pages or

some other software package that doesn’t

understand LaTeX or PostScript. You also

have the option to export into LaTeX or

PostScript file formats. If you export to

LaTeX, you need to include the JaxoDraw

LaTeX style file to handle the rendering

of your Feynman diagram. This style file

is called axodraw4j.sty, which is based

Figure 3. Electron/Positron Collision

LJ222-Oct2012.indd 23 9/18/12 11:45 AM

http://www.linuxjournal.com

24 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

[UPFRONT]

on J. Vermaseren’s original axodraw.sty

(http://www.nikhef.nl/~form/maindir/
others/axodraw/axodraw.html). This is

now a separate download from the main

JaxoDraw application download. You

will want to install this where your LaTeX

installation can find it and use it. The

easiest thing to do is copy it into the same

directory as your LaTeX document source

files. LaTeX searches there by default

when you render your LaTeX documents.

axodraw4j.sty is still in beta, so you may

want to stick with the original axodraw

package. This package also is needed if you

want to preview your diagram in JaxoDraw.

Now that I’ve covered some of JaxoDraw’s

features, let’s look at drawing one of the

classic particle interactions. This is where an

electron and a positron collide, producing

photons. The first step is to draw two

fermions, with arrows pointing in opposite

directions (Figure 3). In these diagrams,

Figure 4. Producing a Photon

LJ222-Oct2012.indd 24 9/18/12 11:45 AM

http://www.linuxjournal.com
http://www.nikhef.nl/~form/maindir/others/axodraw/axodraw.html
http://www.nikhef.nl/~form/maindir/others/axodraw/axodraw.html

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 25

[UPFRONT]

space is in the vertical direction, and time is

in the horizontal direction. Time increases

from left to right. The electron and positron

collide and annihilate, producing at least

one photon (Figure 4).

At the time of this writing, four plugins

are available. These are different export

functions. Two of them are for exporting

to PDF or SVG file formats. The third

one is to serialize your diagram in the

Java binary file serialization format. This

format should be functionally equivalent

to the XML file format, but it is smaller

and loads faster, especially for larger

diagrams. The only problem with it is

that it is a binary file format, so you can’t

take a look inside it. The last plugin is

just a text exporter. It provides a template

to show you what a simple custom

exporter looks like.

JaxoDraw has a plugin manager to

handle installing and uninstalling plugins

(Figure 5). You simply have to download

the relevant jar file, then use the plugin

manager to install it. Plugins are stored

at $HOME/.jaxodraw/$VERSION/plugins.

If you like, you can install plugins

manually by dropping the associated

jar file into this directory. To uninstall

manually, you can delete the relevant

jar file and any corresponding property

files from this location.

With the possible sighting of the Higgs

boson at the LHC, interest in particle

physics is growing. Now, with JaxoDraw,

you too can write about particle

interactions and be able to draw a proper

picture to show others what you are

trying to describe. Have fun, and share

your insights with others.—JOEY BERNARD

Figure 5. Plugin Manager

LJ222-Oct2012.indd 25 9/18/12 11:45 AM

http://www.linuxjournal.com

26 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

[UPFRONT]

Drupal Special Edition

This month, all subscribers will
receive a bonus issue in addition to
their regular October 2012 issue of
Linux Journal. This Drupal Special
Edition focuses on Drupal’s versatility
as a CMS, a platform and as a base
on which to develop products and

distributions. This special
issue features articles
with technical takeaways
for all levels of Drupal
users and developers.
So, whether you’re a
seasoned developer or
just curious about Drupal
and its capabilities, I
encourage you to dive in.

In this special issue,
you’ll learn more about
Drupal’s hook system,
the Drupal community,
how to create a re-usable
installation profile, how
a distribution aimed
at higher education
scrapes and imports
large amounts of data,
continuous integration
options, customizing
the popular Open
Atrium distribution,
and much more.

Subscribers will receive a
notification when the Drupal Special
Edition is ready for download, or
you can find out how to get a copy
at http://www.linuxjournal.com/
special/drupal2012.
—KATHERINE DRUCKMAN

LJ222-Oct2012.indd 26 9/18/12 11:45 AM

http://www.linuxjournal.com
http://www.linuxjournal.com/special/drupal2012
http://www.linuxjournal.com/special/drupal2012

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 27

[UPFRONT]

Non-Linux FOSS
If you’re using Windows and want an incredible virtual music studio,
DarkWave Studio is something you definitely should check out. Licensed
under the GPLv3, DarkWave Studio has a slew of built-in audio plugins,
and it supports VST and VSTi plugins out of the box.

Screenshot Courtesy of http://www.experimentalscene.com

The DarkWave Studio installer includes both the 32-bit and 64-bit versions
of the program. Once installed, you can create electronic music, mix existing
sounds and do post-production editing as well. A shining example of open-
source programming, DarkWave Studio has a modular design allowing for
third-party instruments and plugins while keeping its source code completely
open. Check out DarkWave Studio at http://www.experimentalscene.com.
—SHAWN POWERS

LJ222-Oct2012.indd 27 9/18/12 11:45 AM

http://www.experimentalscene.com
http://www.experimentalscene.com
http://www.linuxjournal.com

28 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

[UPFRONT]

Kernel Poll
We recently asked our LinuxJournal.com

readers to answer a poll about all things

Linux kernel, and we present the answers

below. Although it’s clear that we have

readers with widely varying experiences,

a few answers stand out. We’re happy

to learn that most of you have read the

GNU GPL v.2, and that a full 40% of

you have helped a friend compile the

kernel for the first time. We’re not at all

surprised to learn that 68% of you have

read the kernel source code just for fun,

and that 27% have grepped for naughty

words. We do, however, wonder how the

17% of you who have never sacrificed

sleep to keep coding have managed it.

We’ll just assume programming isn’t

your thing in order to feel better about

our own time management skills. And

finally, I would love to know more

details on the machine that has had

3,649 days of uptime.

1. What’s the earliest kernel
version you’ve used?
■ 0.01: 1%
■ 0.02–0.12: 2%
■ 0.95–1.0.0: 12%
■ 1.2.0–2.2.0: 39%
■ 2.4.0–2.6.x: 39%
■ 3.0–3.5.1: 7%

2. Have you ever read the
GNU General Public License,
version 2?
■ Yes: 63%
■ No: 37%

3. Have you ever configured
and compiled the kernel
yourself, from source code?
■ Yes: 80%
■ No: 20%

4. Have you ever helped a
friend compile the kernel for
the very first time?
■ Yes: 40%
■ No: 60%

5. Have you ever compiled a
kernel on one architecture,
that was intended to run on
a different architecture?
■ Yes: 30%
■ No: 70%

6. Have you ever compiled
a kernel on a virtual Linux
machine running on your
own hardware?
■ Yes: 35%
■ No: 65%

LJ222-Oct2012.indd 28 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 29

[UPFRONT]

7. Have you ever compiled other
free software kernels (BSD, GNU
Hurd and so on)?
■ Yes: 25%
■ No: 75%

8. Have you ever run an
alternative free software OS
(BSD, GNU Hurd and so on)
under a virtual machine on
a Linux box?
■ Yes: 52%
■ No: 48%

9. Have you ever tried to find
out how deeply you could nest
virtual machines under Linux
before something would break?
■ Yes: 12%
■ No: 88%

10. Have you ever browsed
through the /proc directory and
catted the files?
■ Yes: 85%
■ No: 15%

11. How many days are given
as the output if you run uptime
on your current computer
right now?
■ Less than 7: 53%
■ 8–30: 19%
■ 31–180: 16%
■ 181–365: 7%
■ 366–730: 4%
■ More than 730 (and if so, how

many): 1% (longest uptime was
3,649 days)

12. Have you ever boasted
about your Linux uptime
(not counting this poll)?
■ Yes: 45%
■ No: 55%

13. Have you ever reported a
kernel bug to the linux-kernel
mailing list?
■ Yes: 15%
■ No: 85%

14. Have you ever upgraded
your kernel because of a bug
you’d heard existed in your
running version?
■ Yes: 63%
■ No: 37%

LJ222-Oct2012.indd 29 9/18/12 11:45 AM

http://www.linuxjournal.com

30 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

15. Have you ever read some of
the kernel source code for fun?
■ Yes: 68%
■ No: 32%

16. Have you ever grepped for
naughty words in the kernel
source tree?
■ Yes: 27%
■ No: 73%

17. Have you ever run
git log (or the equivalent)
on a kernel tree and read the
patch comments for fun?
■ Yes: 24%
■ No: 76%

18. Have you ever edited
the kernel source code, and
compiled and used the result?
■ Yes: 39%
■ No: 61%

19. Have you ever submitted
a kernel patch to the linux-
kernel mailing list?
■ Yes: 7%
■ No: 93%

20. Have you ever maintained
your own kernel patch across
multiple official releases of
the kernel?
■ Yes: 8%
■ No: 92%

21. Have you ever run a
program as a regular user just
because you heard it could
crash a Linux box?
■ Yes: 38%
■ No: 62%

22. Have you ever written a
program whose purpose was
to expose bugs in (or crash)
the kernel?
■ Yes: 18%
■ No: 82%

23. Without looking it up,
do you know what the SCO
lawsuit was about?
■ Yes: 65%
■ No: 35%

24. Without looking it up, do you
know how Linus Torvalds came
to own the Linux trademark?
■ Yes: 45%
■ No: 55%

[UPFRONT]

LJ222-Oct2012.indd 30 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 31

[UPFRONT]

25. Without looking it up,
do you know what events
precipitated Linus’ migration
away from BitKeeper, and
his creation of git?
■ Yes: 50%
■ No: 50%

26. Without looking it up, do
you know why Microsoft was
legally forced to contribute
code to the Linux kernel?
■ Yes: 34%
■ No: 66%

27. Have you ever read any
POSIX specifications?
■ Yes: 50%
■ No: 50%

28. Have you ever had an
argument with someone
else about whether a given
Linux kernel feature was
POSIX-compliant or not?
■ Yes: 13%
■ No: 87%

29. Have you ever tried to
write a standard or a
specification for anything?
■ Yes: 38%
■ No: 62%

30. Have you ever sacrificed
sleep in order to keep coding?
■ Yes: 83%
■ No: 17%

2.6 KERNEL

System on Module

The SoM-3517 uses the same small SODIMM form-factor utilized by other
EMAC SoM modules and is the ideal processor engine for your next design. All of
the ARM processor core is included on this tiny board including: Flash, Memory,
Serial Ports, Ethernet, SPI, I2C, I2S Audio, CAN 2.0B, PWMs, Timer/Counters,
A/D, Digital I/O lines, Video, Clock/Calendar, and more. The SoM-3517M
additionally provides a math coprocessor, and 2D/3D accelerated video with
image scaling/rotation. Like other modules in EMAC's SoM product line, the
SoM-3517 is designed to plug into a custom or off-the-shelf Carrier board
containing all the connectors and any additional I/O components that may be
required. The SoM approach provides the flexibility of a fully customized product
at a greatly reduced cost. Contact EMAC for pricing & further information.

OVER

27
YEARS OF

SINGLE BOARD
SOLUTIONS

Since 1985

Phone: (618) 529-4525 · Fax: (618) 457-0110 · Web: www.emacinc.com

 http://www.emacinc.com/som/som3517.htm

New - SoM-3517
Ÿ TI ARM Cortex-A8 600 MHZ Fanless Processor
Ÿ Up to 512 MB of DDR2 SDRAM
Ÿ Up to 1GB of NAND Flash
Ÿ Up to 2GB of eMMC Flash
Ÿ 2 High Speed USB 1.1/2.0 Host ports
Ÿ 1 High Speed USB 2.0 OTG port
Ÿ 4 Serial Ports, 2 I2C and 2 SPI ports
Ÿ Processor Bus Expansion
Ÿ 10/100 BaseT Fast Ethernet
Ÿ CAN 2.0 B Controller
Ÿ Neon Vector Floating Point Unit
Ÿ 24-bit DSTN/TFT LCD Interface
Ÿ 2D/3D Accelerated Video w/ Resistive Touch
Ÿ Small, 200 pin SODIMM form factor (2.66 x 2.375”)

EQUIPMENT MONITOR AND CONTROL

LJ222-Oct2012.indd 31 9/18/12 11:45 AM

http://www.emacinc.com/som/som3517.htm
http://www.linuxjournal.com

32 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

Android Candy—
Smart Audiobook
Player
The Audible app for Android is a great
way to consume audiobooks. You have
access to all the books you’ve purchased
on Audible, and you can download them

at will. Plus, the app provides all the
bookmarking features you’d expect from
a professional application. Unfortunately,
if your audiobooks are from somewhere
other than Audible, you need something
a little more flexible.

For non-DRM audiobooks, there are
a few stand-out apps. Mort Player and
Audiobook Player 2 are the standbys I’ve
been using for a couple years, but the
newer Smart Audiobook Player is truly
an amazing piece of software. Although
it boasts the same features you’d expect
from any audiobook player, Smart
Audiobook Player also includes:

■ Support for almost every audio
format, including .m4b (the format
iPods use).

■ Built-in cover art searching
and downloading.

■ Lock screen feature to avoid
accidental chapter skipping.

■ Playback speed adjustment.

[EDITORS' CHOICE]

EDITORS’
CHOICE

★

™

LJ222-Oct2012.indd 32 9/18/12 11:45 AM

http://www.linuxjournal.com

[EDITORS' CHOICE]

Audiobooks are organized by putting
each book, whether it is a single large
file or many small files, into its own
folder. Smart Audiobook Player treats
each folder as a separate book and
sorts the files inside each folder by
filename. In order to keep audiobook
files from appearing in your music
collection, a simple .nomedia file can be
added to your root audiobook folder.

Although the features all work
together to make an incredible
audiobook player, by far my favorite
feature is the speed control. By setting

playback speed to 1.2x, the voices are
still quite comprehensible, and you can
cram more book into each morning
commute. Smart Audiobook Player
is free, but for a $2 in-app purchase,
you can unlock the “Full” features
permanently, allowing for bookmarking
of several books simultaneously, and a
few other nifty features. If you listen to
audiobooks, but don’t purchase them
all directly from Audible, you owe it to
yourself to try Smart Audiobook Player:
http://is.gd/smartaudiobook.
—SHAWN POWERS

Linux JournaL
now available
for the iPad and
iPhone at the
App Store.

linuxjournal.com/ios

For more information about advertising opportunities within Linux Journal iPhone, iPad and
Android apps, contact Rebecca Cassity at +1-713-344-1956 x2 or ads@linuxjournal.com.

LJ222-Oct2012.indd 33 9/18/12 11:45 AM

http://is.gd/smartaudiobook
mailto:ads@linuxjournal.com
http://linuxjournal.com/ios

COLUMNS

34 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

Switching to
Chrom(ium)
What browser do you use? Reuven recently switched to
Chrome, and he describes the reasons and some of the
advantages here.

For someone who works with,

writes about and teaches cutting-

edge technologies, I tend to be a

bit of a laggard when adopting new

ones. I upgrade my laptop and servers

very conservatively. I got my first

smartphone just earlier this year. I

still use the Apache HTTP server, even

though I know that nginx is a bit faster.

And until recently, Mozilla’s Firefox was

my default browser.

Firefox is a remarkable piece of

software, and it has been a massive

success by any measure. It was around

before and during Netscape’s IPO, which

marked the start of the IPO-crazy dot-com

era. I then watched as it declined as a

company, turning its flagship product

(Firefox) into an open-source project

before disappearing.

I used Firefox from its first pre-release

versions and have been a loyal user ever

since. This was not only because Firefox

generally adhered to and promoted

standards, but also because of the

wide variety of plugins and extensions

available for it. As a Web developer, I

found that a combination of plugins—

from Firebug to the aptly named Web

developer to Tamper Data—gave me

enormous power and flexibility when

developing, debugging and working on

Web applications.

During the past year, I’ve discovered

that a very large number of non-

techies have switched browsers. But,

they haven’t been switching to Firefox.

Rather, they’ve been switching to

Chrome, a relatively new browser

whose development is sponsored by

Google. I’ve certainly used Chrome

through the years, and I’ve generally

been impressed by its abilities. But

for a long time, some combination of

nostalgia and comfort with Firefox’s

tools kept me from switching.

Well, no more. As of recently, Google

Chrome has become my browser of

REUVEN M.
LERNER

AT THE FORGE

LJ222-Oct2012.indd 34 9/18/12 11:45 AM

http://www.linuxjournal.com

COLUMNS

WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 35

AT THE FORGE

choice. In this article, I describe a bit

about Chrome and why I’ve switched,

both for personal use and browsing,

and in my Web development work.

In a future article, I’ll explain how to

write extensions for Chrome. One of

the nice things about Chrome is that

writing extensions is extremely easy and

exclusively uses Web technologies (for

example HTML, CSS and JavaScript).

I should make it clear before I

continue that Chrome is not an open-

source product. It is free-as-in-beer, but

it isn’t released under an open-source

license. That said, there are several

reasons why open-source advocates

should take a look at Chrome. First,

it is rapidly growing in popularity,

with many developers and users alike

adopting it. Just as my clients expect

that I’ll test Web applications against

IE, they now expect that I’ll test

applications against Chrome. If you

aren’t including Chrome in your testing,

you might be missing some issues in

your site’s design or functionality.

A second reason to look at Chrome

is that although you might prefer

open-source solutions, there are (as you

know) many commercial solutions for

Linux, and some of them are even of

high quality. Ignoring these products

doesn’t make them go away, and it

even can do a disservice to people

who are more interested in having a

computer “that just works” than one

that is fully open source.

A third reason to look at Chrome is

the level of sophisticated development

tools it brings to the table. Web

developers suffered for a long time

with a lack of serious tools. Fortunately,

Firebug came along and brought us to

the next level. Chrome similarly has

raised the bar for Web development

tools, making it easier and faster to test

and experiment with HTML, JavaScript

and CSS. Google has its flaws as

a company, but when it comes to

development tools in general (and Web

development tools in particular), you

can be sure that Google is “eating its

own dog food”, as the saying goes.

The final reason is that Chrome can

be thought of as a mostly open-source

product. I realize this might sound similar

Chrome similarly has raised the bar for
Web development tools, making it easier
and faster to test and experiment with HTML,
JavaScript and CSS.

LJ222-Oct2012.indd 35 9/18/12 11:45 AM

http://www.linuxjournal.com

COLUMNS

36 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

AT THE FORGE

to saying that a woman is only partly

pregnant, but hear me out. From the

beginning, Google has sponsored an

open-source browser called Chromium

that uses the same JavaScript and

rendering engine. Most or all of Chrome’s

capabilities are in Chromium as well.

From what I can tell, the main things you

don’t get in Chromium are automatic

updates and access to the Chrome Web

store for extensions.

Given my increasing misgivings

about the amount of personal data

that Google is collecting, I certainly

can understand why someone would

prefer Chromium to Chrome, or prefer

to use a browser (such as Firefox)

sponsored by a nonprofit, rather than a

commercial company. That said, Google

has used Chrome (among other things)

to promote modern Web standards,

which is good for all developers,

regardless of what browser they use.

Installing and Using Chrome
Google Chrome isn’t a new browser,

even though I only recently switched

to using it on a full-time basis. It first

was released in 2008, and since then,

it has been available on Windows,

Macintosh and Linux systems, generally

at the same time. Firefox users recently

were surprised to find that their version

numbers jumped significantly, and that

new versions were being released on

a rapid schedule. This happened in no

small part thanks to Chrome, which

is updated automatically on a regular

basis by Google. These regular updates

come with new version numbers,

meaning that although Chrome has

been out only for several years, version

numbers already are in the 20s, with

new versions pushed out every six

weeks or so.

There are actually three different

versions of Chrome: the standard

production release is what the

general public uses and is meant

for non-developers. A “dev” release

is for developers, and it has more

functionality and features, at the price

of being slightly less stable.

Another version of Chrome, namely

Chrome Canary, includes a huge

number of new features, but it isn’t

at all guaranteed to be stable. That

said, when working on my Mac, I

find that Chrome Canary certainly

is stable enough for day-to-day use.

It’s unfortunate that Chrome Canary

isn’t yet available for Linux. Given the

large number of Web developers using

Linux, I would have expected Google

to provide such a version, and hope it

does so in the near future.

Basic Capabilities
At a basic level, Chrome offers the

same sorts of features you would

LJ222-Oct2012.indd 36 9/18/12 11:45 AM

http://www.linuxjournal.com

COLUMNS

WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 37

AT THE FORGE

expect from any Web browser. It lets

you enter URLs, search on the Web

with your favorite search engine,

interact with forms, watch videos,

execute programs written in JavaScript,

handle CSS markup and identify pages

encrypted with SSL. But if it didn’t do

those things, as well as many other

basics that everyone now associates

with a Web browser, Chrome wouldn’t

even be a contender.

On the user interface front, it ’s true

that Chrome is s l ightly cleaner than

Firefox, with a window that appears

to contain only tabs, and with tabs

that can be moved from one window

to another. Again, that’s now the

norm among Web browsers, and no

one would use a browser that did

anything differently.

So, why would someone like me

switch to Chrome? First, I find that it

runs faster than Firefox. The difference

is no longer as pronounced as it once

was, when Google set the standard

with its V8 JavaScript execution

environment. Firefox has caught up

with Chrome’s execution, and I say this

not as someone who runs benchmarks,

but who interacts with a Web browser

on a very regular basis and who is

sensitive to the speed with which Web

applications execute.

A second reason to switch is, sadly,

site compatibility. In Israel, for reasons

that drive me mad, there still are some

sites—including government and bank

sites—that give preference to IE and

that refuse to work with Firefox. When

I call their support lines and ask for

help with Firefox, I’m told that the site

won’t ever work with it. But Chrome is

popular enough that they are (usually)

willing to consider making it work

better, or to adhere to standards.

Finally, as I mentioned above, the

developer tools in Chrome are already

excellent, and they are getting better

with each release. Firebug continues to

be a great tool, but I increasingly have

found that Chrome does everything

Firebug does, and often better and

more intuitively.

If you just want to install Chromium,

the open-source version of Chrome,

you can do so with apt-get on

Firebug continues to be a great tool, but I
increasingly have found that Chrome does
everything Firebug does, and often better
and more intuitively.

LJ222-Oct2012.indd 37 9/18/12 11:45 AM

http://www.linuxjournal.com

COLUMNS

38 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

AT THE FORGE

Debian/Ubuntu or with yum on RPM-based

machines. You also can download the

source and compile it (although I haven’t

done so) from http://chromium.org.

If you are comfortable with the

proprietary version of Chrome, you can

go to http://google.com/chrome, and

download an appropriate .deb or .rpm

file that will let you install Chrome on

your machine. In the case of Chrome

itself, you can choose from the stable or

development branches, but you will need

to install updates yourself manually.

By contrast, because Chromium is an

open-source project, it can be included in

the standard Linux distribution channels

and will be updated every time you do

an apt-get upgrade.

Chrome (as opposed to Chromium)

tries hard to get you to sign in with

your Google account—the same one

you would use with Gmail, Google

Calendar and every other Google

service. The good news with signing

in with Google is that Chrome

synchronizes your bookmarks and other

settings across every copy of Chrome

you’re running. The bad news is that

not everyone wants Google to have

access to such information, of course.

Developer Tools
Perhaps the most common task for

which I need developer tools when

working on Web applications is the

abil ity to change HTML and CSS. That

is, I see a page, and I wonder what

would happen if I were to modify

the tag, add a new tag or even add

a new style to the tag via CSS. For

example, if I were working on the

Linux Journal home page, I might go

to the “Trending Topics” headline and

want to see how I could change it in a

number of ways. With Chrome, I don’t

need to install a plugin; I always can

right-click to get a menu over some

text. One of the options is “inspect

element”. This divides my browser

window in half, letting me see the

HTML source on the bottom and the

original site on the top.

If I want to change the text, I can

just double-click on it within the

lower (inspection) window and type

what I want. Obviously, the changes I

make aren’t saved back to the server,

but that’s usually not what I want.

Changing things within the browser

gives me a laboratory within which

I can experiment without having to

change or modify my server program.

That’s not all, of course. I also can

change the tags or any of the tags’

attributes. So where “Trending Topics”

has a class of “title”, I was able to

change it to “awesome”, which, of

course, immediately reverted the style

to have the page defaults, because

no such class previously existed. I can

LJ222-Oct2012.indd 38 9/18/12 11:45 AM

http://www.linuxjournal.com
http://chromium.org
http://google.com/chrome

WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 39

COLUMNS

AT THE FORGE

see that right away on the right-hand

side of the inspection window, which

gives me a l ive view of the CSS styles

that have been applied to the tag in

question (“matched CSS rules”). If I

change the class back to “title”, the

matches change accordingly.

Now, the “matched CSS rules” show

me all of the rules that have been

applied to a particular element, and

that’s really useful—especially since

this l ist shows me each rule that has

been applied and the fi le in which

it was defined. But because of the

cascading nature of CSS, multiple rules

can apply to an element, and it can

sometimes be hard to keep track of

which rule was defined where. For this

reason, Chrome provides a “computed

style” section in that same area of the

screen, allowing you to see the final

l ist of styles that apply to a tag and

text. You even can ask to see all of the

inherited styles, which can sometimes

provide additional insight.

The bottom part of the screen isn’t

just a tag-and-style inspection screen,

but the initial tab of the “Chrome

developer tools”. These tools are

constantly under development, and it’s

a bit of a challenge just to know what

has been updated and improved in

each version. (Although to be fair, the

folks at Google do provide a changelog

for each version they release.)

The second tab, after the

initial “elements” tab, is marked

“resources”, and that refers to just

about everything you can imagine.

Through the l ist in the left frame, you

can get to every HTML element on

the page, including images, movies

and stylesheets. But if you have been

following the development and release

of the HTML5 standard, you know that

there have been multiple proposed

standards for a number of features,

including client-side storage. Well,

the “resources” tab gives you access

to some of these under the “Web

I have often used this sort of functionality
on other browsers to keep track of how
long pages take to download, but to get a
graph of the browser’s memory consumption
at each point during the rendering of a page
is extremely useful.

LJ222-Oct2012.indd 39 9/18/12 11:45 AM

http://www.linuxjournal.com

40 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

COLUMNS

AT THE FORGE

SQL” and “local storage” lists. If your

application uses these features, you

can poke around inside their contents

using this tab.

The other tabs are quite useful as

well: “network” lets you see Ajax calls,

and “sources” shows you which fi les

have been loaded by the browser.

The f inal tabs are where Chrome

real ly starts to show its stuff. The

“timeline” functional ity isn’t on by

default, but rather requires you to

press the round “record” button,

so that Chrome wil l keep track of

when different parts of the browser

are being used, and how much t ime

they’re taking. I have often used this

sort of functional ity on other browsers

to keep track of how long pages take

to download, but to get a graph of

the browser’s memory consumption at

each point during the rendering of a

page is extremely useful. I t becomes

even more useful if you keep the

t imel ine recording on and then have

a browser-heavy appl ication that uses

lots of JavaScript, because it can show

you when your memory consumption

is r is ing.

The “profiles” tab does two things.

It checks the efficiency and speed of

your CSS selectors, and it also checks

memory use. The first can be quite

useful when you have an extremely

complex set of stylesheets, which can

take a long time to render. You can

optimize your style selectors and also

concentrate on creating styles only for

those elements that actually need them

and which appear on the page.

The “Audit” tab is similar to the

famous YSlow tool for Firefox, in

that it checks a number of common

problems that can lead to slow loading

and delivery. Your page will be ranked

on a number of different criteria,

getting a score, detailed results and

a handy red-yellow-green indicator

showing how well you’re doing on

each of these criteria. If you’re not

sure whether your site is slow, or what

you can do to speed it up, this tool can

provide some quick fixes or at least

advise you as to where you need to

concentrate your efforts.

Finally, Chrome offers a JavaScript

console, much like the one I’ve grown

to know and love in Firebug. This has

become an essential tool for my work

in JavaScript, letting me query and

modify the page, as well as check my

work and test snippets of code before

committing them.

Now, none of these things are

unique to Chrome. With the right

combination of plugins, I can get all

this, and more, with Firefox. But the

level of polish, the rate at which these

capabil it ies are expanding, and the

fact that they’re included by default

LJ222-Oct2012.indd 40 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 41

COLUMNS

AT THE FORGE

with every copy of the browser has

proven to be very useful in my day-to-

day work.

But, that’s not the full story. Chrome

offers developers the chance to

extend the browser in numerous ways,

including by adding new developer

tools and functionality. For example,

I’ve been using the “Ghostery”

extension to show me which external

services (from advertising to auditing)

are included when I load a page. This

is less useful on my own pages than

on others, but I actually have learned

of several interesting third-party

extensions in this way. The Google

Chrome store, which is available to

Chrome users (and less easily for

Chromium users) offers a huge number

of extensions—some are aimed at

developers, and others are aimed more

at end users.

Indeed, the true power of Chrome

is in its openness to extensions, which

are surprisingly easy to write and

which offer a great deal of power to

Web developers—either to add new

developer capabil it ies or even to add

specialized functionality for cl ients and

users. In my next article, I’ l l show how

to create such extensions and ways you

might want to use them.

Conclusion
During the past year, I ’ve found

myself drawn more and more to

Google Chrome. I f inal ly took the

plunge, making it my default browser,

and I haven’t been disappointed—as

a developer or as a user. There are

things that I miss, such as Firefox’s

abi l i ty to sync tabs between my

Android phone and my laptop, but I

can get over that. For the most part,

I ’ve found the transit ion to Chrome

to be smooth and easy, and a very

worthwhile one at that.■

Reuven M. Lerner is a longtime Web developer, consultant

and trainer. He is also finishing a PhD in learning

sciences at Northwestern University. His latest project,

SaveMyWebApp.com, went live this spring. Reuven lives

with his wife and children in Modi’in, Israel. You can reach

him at reuven@lerner.co.il.

Resources

Information about Google Chrome is at http://google.com/chrome.The Chromium
open-source project is at http://chromium.org.

Some basic information about the developer tools is at https://developers.google.com/
chrome-developer-tools.

LJ222-Oct2012.indd 41 9/18/12 11:45 AM

mailto:reuven@lerner.co.il
http://google.com/chrome.The
http://chromium.org
https://developers.google.com/chrome-developer-tools
http://SaveMyWebApp.com
https://developers.google.com/chrome-developer-tools
http://www.linuxjournal.com

COLUMNS

42 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

WORK THE SHELL

DAVE TAYLOR

The Über-Skeleton
Challenge
Dave tries his hand at creating the perfect template
for powerful, sophisticated Bash shell scripts.

I received an interesting message

from Angela Kahealani with a

challenge: “Here’s what I’d l ike to

see in Work the Shell: a full-blown

shell script template. It should comply

with all standards applicable to CLI

programs. It should handle logging,

piped input, arguments, traps,

tempfiles, configuration fi les and so

on.” That’s an interesting idea, and

it fits neatly into something I’ve been

talking about in the last few columns

too: the difference between writing

something quick and streamlined

and writing bulletproof scripts. So

let’s jump in!

Parsing Command-Line
Arguments
The first step of any meaningful

shell script is to parse the starting

arguments. There’s a function built in

to Bash for this, but it’s rather tricky to

work with. For example:

while getopts "ab:c" opt; do

 case $opt in

 a) echo "-a was specified" ;;

 b) echo "arg given to b is $OPTARG" ;;

 c) echo "-c was specified" ;;

 \?) echo "Invalid option: -$OPTARG" >&2 ;;

 esac

done

This specif ies that you’re going

to have three possible parameters:

-a, -b and -c, and that -b has an

argument. Using getopts, they

can occur in any order and can be

combined where it makes sense.

LJ222-Oct2012.indd 42 9/18/12 11:45 AM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 43

COLUMNS

WORK THE SHELL

For example, -cab arg works f ine,

with arg being set as the optional

parameter for -b. -abc arg

wouldn’t work, however, because

what appears immediately after the

b needs to be its optional parameter.

What’s nice about working with

getopts is that it does al l the hard

work for you—there’s no need to

worry about shift ing twice after an

optional parameter is read and so

on. If you give it bad parameters,

the “?” value wil l be tr iggered, with

an error output.

Many programs continue to parse

input after all the flags have been

eaten, and you’l l need code to handle

that situation too. The key variable

in this situation is OPTIND , which

contains the number of positional

parameters that getopts has

processed. The solution looks l ike this:

shift $((OPTIND-1))

Now $1 is the f irst non-start ing-f lag

option; $@ is the ful l set of arguments

given minus al l the start ing f lags and

so on.

Logging Messages
Adding logging to a scr ipt actual ly

is quite easy, if you’re not going to

have a lot of instantiat ions running

simultaneously. You could use syslog,

but let’s start with the most basic:

if [$logging] ; then

 echo $(date): Status Message >> $logfile

fi

Or, better, here’s a more succinct

“date” format and the process ID:

echo $(date '+%F %T') $$: Status Message >> $logfile

In the logfile itself, you’d see

something like:

2012-08-07 15:07:56 7026: Status Message

When there’s a lot going on, that

information will prove invaluable for

debugging and analysis.

But what if you did want to use

syslog and get the script messages

in the standard system logfile?

That can be done with the handy

“logger” program, which has

Many programs continue to parse input after all
the flags have been eaten, and you’ll need code to
handle that situation too.

LJ222-Oct2012.indd 43 9/18/12 11:45 AM

http://www.linuxjournal.com

COLUMNS

44 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

WORK THE SHELL

surprisingly few options, none of

which you need.

Instead of the echo statement

above, you would simply use:

logger "Status Message"

Check /var/ log/system.log,

and you can see what has been

automatical ly added:

Aug 7 15:12:26 term01 taylor[7100]: status message

In fact, if you want to be really

streamlined, you could have something

like this at the top of your über-script:

if [$logging] ; then

 logger="/usr/bin/logger"

else

 logger="echo >/dev/null"

fi

Now every invocation where you’d

potentially log information in the system

log will either be the standard /usr/
bin/logger message or echo
>/dev/null message, the latter

causing the information to be discarded

without being displayed or saved.

Trapping Signals
For most shell scripts, a quick ^C kil ls

them and that’s that. For other scripts,

however, more complicated things

are going on, and it’s nice to be

able to, for example, remove temp

fi les rather than leave detritus all over

the fi lesystem.

The key player in this instance is

a program called trap, which takes

two parameters, the function (or name

of the function) to invoke and the

signal or set of signals to associate

with that function.

Here’s an interesting example:

trap '{ echo "You pressed Ctrl-C" ; exit 1; }' INT

echo "Counting, press Ctrl-C to exit"

for count in 1 2 3 4 5 6 7 8 9 10; do

 echo $count; sleep 5

done

I f you run this , you’ l l f ind that

the scr ipt wi l l count from 1–10

with a 5-second delay between each

digit . At any point, press Ctr l -C

and the trap is t r iggered; the echo

statement is invoked, and the

scr ipt ex i ts with a nonzero return

code (exit 1) .

Sometimes you want to make the

script have trap management in certain

places, but not others, in which case

you can disable it at any time by

specifying a null command sequence:

trap '' INT

Easy enough. The code snippet

LJ222-Oct2012.indd 44 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 45

COLUMNS

WORK THE SHELL

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 45

probably would appear similar to:

trap '{ /bin/rm -f $tempfile $temp2; exit 1 }' SIGINT

If you’re wondering about the last

parameter, it’s the signal name.

There are a lot of signals defined

in the Linux world, and they’re all

documented in the signal man page.

The most interesting signals are

SIGINT, for program interruptions;

SIGQUIT for a program quit request;

SIGKILL, the famous “-9” signal

that cannot be trapped or ignored

and forces an immediate shutdown;

SIGALRM, which can be used as a

timer to constrain execution time;

and SIGTERM, a software-generated

termination request.

Let’s take a closer look at SIGALRM,

as it’s darn useful for situations when

you’re concerned that a portion of

your script could run forever.

To set the timer, use trap, as usual:

trap '{ echo ran out of time ; exit 1 }' SIGALRM

Then elsewhere in the script, prior

to actually invoking the section that

you fear might take too long, add

something l ike this:

(

 sleep $delay ; kill -s SIGALRM $$

)&

That’l l spawn a subshell that waits

the specified number of seconds then

sends the SIGALRM signal to the

parent process (that’s what the $$

specifies, recall).

Next month, I’ l l continue this

interesting project by showing an

example of the SIGALRM code and

adding some additional smarts to the

script, including the abil ity to test and

change its behavior based on whether

it’s receiving input from the terminal

(command line) or from a redirected

fi le/pipe.

Any other fancy tr icks you’d

l ike it to do? E-mail me via

http://www.linuxjournal.com/contact.■

Dave Taylor has been hacking shell scripts for more than 30 years.

Really. He’s the author of the popular Wicked Cool Shell Scripts

and can be found on Twitter as @DaveTaylor and more generally

at http://www.DaveTaylorOnline.com.

Let’s take a closer look at SIGALRM, as it’s darn
useful for situations when you’re concerned that
a portion of your script could run forever.

LJ222-Oct2012.indd 45 9/18/12 11:45 AM

http://www.linuxjournal.com/contact
http://www.DaveTaylorOnline.com
http://www.linuxjournal.com

COLUMNS

46 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

HACK AND /

How to
Deploy A Server
Discover the advantages and disadvantages to the four main
server deployment strategies in practice today.

When I write this column, I try to stick

to specific hacks or tips you can use

to make life with Linux a little easier.

Usually, I describe with pretty specific

detail how to accomplish a particular

task including command-line and

configuration file examples. This time,

however, I take a step off this tried-and-

true path of tech tips and instead talk

about more-general, high-level concepts,

strategies and, frankly, personal opinions

about systems administration.

In this article, I discuss the current

state of the art when it comes to

deploying servers. Through the years,

the ways that sysadmins have installed

and configured servers has changed as

they have looked for ways to make their

jobs easier. Each change has brought

improvements based on lessons learned

from the past but also new flaws of its

own. Here, I identify a few different

generations of server deployment

strategies and talk about what I feel

are the best practices for sysadmins.

The Beginning: by Hand
In the beginning, servers were

configured completely by hand. When

needing a Web server, for instance,

first a sysadmin would go through

a Linux OS install one question at a

time. When it came to partitioning,

the sysadmin would labor over just

how many partitions there should be

and how much space /, /home, /var,

/usr and /boot truly would need for this

specific application. Once the OS was

installed, the sysadmin either would

download and install Apache packages

via the distribution’s package manager

(if feeling lazy) or more likely would

download the latest stable version of

the source code and run through the

./configure; make; make install

dance with custom compile-time

options. Once all of the software was

installed, the sysadmin would pore over

every configuration file and tweak and

tune each option to order.

Even the server’s hostname was

KYLE RANKIN

LJ222-Oct2012.indd 46 9/18/12 11:45 AM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 47

COLUMNS

HACK AND /

labored over with names chosen

specif ical ly to suit this server’s

part icular personal ity (although it

probably was named after some

Greek or Roman god at some point

in the sysadmin’s career—sysadmins

seem to love that naming scheme).

In the end, you would have a very

custom, highly optimized, tweaked

and tuned server that was more l ike

a pet to the sysadmin who created

it than a machine. This server was

truly a unique snowflake, and a year

down the road, when you wanted a

second server just l ike it , you might

be able to get close if the original

sysadmin was st i l l there (and if he

or she could remember everything

done to the server during the past

year); otherwise, the poor sysadmin

who came next got to play detective.

Worse, if that server ever died, you

had to hope there were good backups,

or there was no tel l ing how long it

would take to bui ld a replacement.

The fact is, plenty of sysadmins still

deploy servers this way today, and

that’s fine if you are responsible for

only a handful of servers, or if your

company can afford one administrator

for every ten servers or so (the old

recommendation many years ago). For

the most part though, administrators

have moved on from configuring servers

completely by hand to one of the

following three generations of server

deployment automation.

First Generation: Images
Sysadmins started to realize that

deploying servers completely by hand

wasn’t sustainable for large numbers

of servers, especially if you needed

multiple servers of a certain type. In

response, administrators would go

through all of the steps lovingly to

craft a new server from scratch, then

once that work was done, they would

create a complete disk image of that

server and lock in its fresh install state.

When they needed another server just

like it, they simply would apply that

image to the new hardware using

software like Ghost or even dd, then

go in and change a few of the server-

specific settings like hostname and

network information (maybe by a script

if they wanted to automate it even

Sysadmins started to realize that deploying
servers completely by hand wasn’t sustainable
for large numbers of servers, especially if you
needed multiple servers of a certain type.

LJ222-Oct2012.indd 47 9/18/12 11:45 AM

http://www.linuxjournal.com

COLUMNS

HACK AND /

further), and the server would be ready.

Instead of days or weeks to deploy a

server, they could have this server up

and running in a few hours. When

sysadmins wanted a Web server, they

would just locate and apply the Web

server image they created before on

top of bare metal, and in an hour or so

in many cases, they would have a new

functioning Web server.

The problem with images ultimately

became the maintenance. Whenever

you decided to upgrade the software

on your servers, you were faced with a

dilemma: either go through the painful

steps to create a new image with the

upgraded software or deploy the old

image and run through any software

upgrades by hand afterward. Either

way, you sti l l had to figure out what

to do with existing servers in the field.

Do you re-image them with an updated

image and go through the hassle of

backing up and restoring any unique

data made after the image or do you

manually apply the changes you just

made to your image? In addition,

you might face two servers that were

mostly the same but had enough

differences that they justified having

New: Intel Xeon E5 Based Clusters
Benchmark Your Code on Our Xeon E5 Based
Tesla Cluster with:
AMBER, NAMD, GROMACS, LAMMPS, or Your Custom CUDA Codes

Microway MD SimCluster with
8 Tesla M2090 GPUs
8 Intel Xeon E5 CPUs and InfiniBand
2X Improvement over Xeon 5600 Series

NAMD F1-ATP Performance Gain
Upgrade to New Kepler GPUs Now!

Configure Your WhisperStation or Cluster Today!
www.microway.com/tesla or 508-746-7341

Harness Microway’s Proven GPU Expertise
Thousands of GPU cluster nodes installed.
Thousands of WhisperStations delivered.

Award Winning BioStack – LS
Award Winning WhisperStation Tesla – PSC with 3D

ns
/D

ay
 (H

ig
he

r i
s

Be
tt

er
)

1 Node

CPU + GPU

1.07
0.33

2.02

0.65

3.54

1.30

2 Nodes 4 Nodes

CPU Only

GS-35F-0431N

GSA Schedule
Contract Number:
GS-35F-0431N

‘11
AWARD

BEST
Best New

Technology

LJ222-Oct2012.indd 48 9/18/12 11:45 AM

http://www.microway.com/numbersmasherclusters.html?src=LJElectronicEdition
http://www.microway.com/tesla/gputestdrive/simcluster/index.html?src=LJElectronicEdition
http://www.microway.com/tesla/gputestdrive/simcluster/index.html?src=LJElectronicEdition
http://www.microway.com/tesla/1UGPUchassis.html?src=LJElectronicEdition
http://www.microway.com/tesla/index.html?src=LJElectronicEdition
http://www.microway.com/index.html?src=LJElectronicEdition

different images, and eventually you

found yourself maintaining an ever-

growing l ibrary of large disk images

even though they all may share 90% of

the same software.

Second Generation: the
Post-Install Script
In response to all of the hassles with

maintaining server images, some

administrators realized they could

bypass the pain of regenerating disk

images due to the fact that they were

install ing the same base OS to all of

their machines and only afterward

were they applying any specific

changes. It was out of this realization

that this next generation—the

automated install with the post-install

script—was born.

With an automated install (l ike

kickstart for Red Hat-based distros

or preseeding for Debian-based

distros), administrators could create

a configuration fi le with all of those

install-time options they used to

pick by hand and then feed it to the

installer at the boot time, go get some

coffee, and when they returned, the

server went through the complete

COLUMNS

HACK AND /

New: Intel Xeon E5 Based Clusters
Benchmark Your Code on Our Xeon E5 Based
Tesla Cluster with:
AMBER, NAMD, GROMACS, LAMMPS, or Your Custom CUDA Codes

Microway MD SimCluster with
8 Tesla M2090 GPUs
8 Intel Xeon E5 CPUs and InfiniBand
2X Improvement over Xeon 5600 Series

NAMD F1-ATP Performance Gain
Upgrade to New Kepler GPUs Now!

Configure Your WhisperStation or Cluster Today!
www.microway.com/tesla or 508-746-7341

Harness Microway’s Proven GPU Expertise
Thousands of GPU cluster nodes installed.
Thousands of WhisperStations delivered.

Award Winning BioStack – LS
Award Winning WhisperStation Tesla – PSC with 3D

ns
/D

ay
 (H

ig
he

r i
s

Be
tt

er
)

1 Node

CPU + GPU

1.07
0.33

2.02

0.65

3.54

1.30

2 Nodes 4 Nodes

CPU Only

GS-35F-0431N

GSA Schedule
Contract Number:
GS-35F-0431N

‘11
AWARD

BEST
Best New

Technology

LJ222-Oct2012.indd 49 9/18/12 11:45 AM

http://www.microway.com/tesla
http://www.microway.com/tesla/index.html?src=LJElectronicEdition
http://www.microway.com/tesla/index.html?src=LJElectronicEdition
http://www.microway.com/whisperstation/whisperstation-tesla.html?src=LJElectronicEdition
http://www.microway.com/tesla/index.html?src=LJElectronicEdition
http://www.microway.com/tesla
http://www.microway.com/whisperstation/whisperstation-tesla.html?src=LJElectronicEdition
http://www.microway.com/tesla

COLUMNS

50 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

HACK AND /

install without them. If administrators

wanted a Web server, they would just

select the installer configuration fi le

for Web servers that would l ist a set of

distribution packages including Web

server software for the installer to

select and install automatically.

Of course, an automated installer

generally just left you with a base OS

with some extra packages installed

but left unconfigured. The real magic

in these automated installers was in

their post-install script. Simply stated,

the post-install script was a shell

script the installer would execute on

the system after the base install was

complete. What the post-install script

became was an automation dream for

sysadmins. If you could describe all

of the commands and configuration

fi le changes you wanted to make to a

system inside a shell script, you could

put it in a post-install script and have a

completely automated server install.

The benefits to post-install scripts

compared to images became apparent

pretty quickly. Whenever you wanted

to change the installer, al l you had

to do was change either the installer

config fi le or your post-install script—

there was no image to regenerate.

These fi les were text and took up very

l ittle space on your disk. The fi les

were easy to change, although unlike

with images, when you changed a

post-install script, usually you would

need to run through a complete

automated install to make sure you

didn’t introduce a bug.

The fact is, automated installs

customized with post-install scripts

can be an effective way to automate

server deployments, and it’s a method

that’s sti l l in wide use today. That said,

it isn’t without its own problems. The

main problem with the post-install

script method is that the automation

stops the moment the server is

originally created. Any improvements

you make to your Web server post-

install script wil l help only any new

servers—any servers created before

those improvements wil l be different.

You will be faced with the dilemma

of trying to back-port improvements

to your existing servers or completely

rebuilding them based on the new

install scripts. Although it’s easier

just to try to apply any improvements

to existing servers, you never wil l be

confident that the server you set up six

months ago and the server you set up

today are identical. At one point, what

I did to try to resolve this dilemma

The real magic in these automated installers
was in their post-install script.

LJ222-Oct2012.indd 50 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 51

was put all of my configuration fi le

changes into packages I would put on

a local package repository and then

install on any relevant servers.

Third Generation: Central
Configuration Management
The final generation of server

deployment attempts to address the

main problem with post-install scripts:

any changes to the configuration

apply only to newly installed servers;

therefore, new and old servers tend

to fall out of sync with each other.

To solve that problem, administrators

now are turning to configuration

management systems like Puppet and

Chef. With centralized configuration

management, any changes you need to

make are made on the configuration

management server and then deployed

to all relevant servers, whether they

have been around for a year or were

just created today. As long as you

make your changes through the central

server, you can be confident your

servers’ configurations are identical.

With centralized configuration

management, automated installs and

post-install scripts aren’t thrown away,

they just become more generic. Instead

of all configuration being done via a

post-install script, the automated install

just installs the bare essentials for the

operating system, and the post-install

script just does whatever it needs to

do so the configuration management

software can check in. The configuration

management system takes over from

there and makes any changes it needs

to make including package installs and

configuration file changes to make the

server ready for use. Because you can

be more confident that a new server will

match an old one, you end up being less

fearful about any individual server going

down—after all, why worry if you can

re-create it in a few minutes?

Hopefully this article has given you

some ideas for ways to improve your

server deployment strategies or otherwise

has validated the server deployment

decisions you’ve already made. Just be

careful; this automation is powerful stuff,

and if you aren’t careful, you may go into

work one day to find you’ve replaced

yourself with a shell script.■

Kyle Rankin is a Sr. Systems Administrator in the San Francisco

Bay Area and the author of a number of books, including The

Official Ubuntu Server Book, Knoppix Hacks and Ubuntu Hacks. He

is currently the president of the North Bay Linux Users’ Group.

With centralized configuration management,
automated installs and post-install scripts aren’t
thrown away, they just become more generic.

COLUMNS

HACK AND /

LJ222-Oct2012.indd 51 9/18/12 11:45 AM

http://www.linuxjournal.com

COLUMNS

52 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

THE OPEN-SOURCE CLASSROOM

Pwn Your Phone
Whether you want to install a custom theme or just get rid
of apps installed by your carrier, rooting an Android phone
puts you in charge.

I’ve owned two different Android

phones since they first were released,

and I eventually rooted both of them.

My Droid (original) was such a popular

phone that rooting it was very simple.

I used my rooted Droid until it wore out

and rebooted every time I slid open the

keyboard. My second Android phone,

the Samsung Galaxy S2, is the phone I

have right now. It actually was quite a

bit more challenging to root, but in the

end, I couldn’t resist the lure of total

control. Sadly, no amount of rooting can

supply a hardware keyboard for my S2,

but at least I can run whatever ROM I

want on it now. Before I go into how to

root an Android device, it’s important to

discuss why you might want to do so, or

why you might not.

One of the most common questions

I get via e-mail or Twitter is how to

root an Android phone. As you can

see by the size of the following article,

that’s not a question easily answered in

140 characters. So, in this article, I talk

about rooting an Android device and

then describe the process for installing

a custom ROM. It’s complex, sometimes

frustrating, and it can be dangerous

if you don’t do your homework in

advance. If that doesn’t scare you off,

read on.

What Is Rooting?
Rooting your phone simply means

gaining access to the underlying Linux

(Android) operating system with root

privileges. It’s basically the same thing as

having sudo access to a Linux desktop.

By default, your phone will give you only

user-level privileges, which means you

can’t run programs requiring superuser

access to the underlying system.

There is some confusion regarding

what rooting actually gives you. If

you root your phone, you’l l sti l l be

running the same firmware. Your

phone won’t look any different, apart

SHAWN POWERS

LJ222-Oct2012.indd 52 9/18/12 11:45 AM

http://www.linuxjournal.com

COLUMNS

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 53

from a new app called “superuser”,

which will al low you to give certain

applications elevated privi leges. From

a functionality standpoint, rooting

your phone gives you the abil ity to run

applications that wouldn’t otherwise

work, but it won’t completely

transform your phone l ike a custom

ROM would do (more on that in a bit).

 Rooting Your Phone, the Pros:
■ Some useful apps, like backup apps,

will work only with root access.

■ Some apps, like Tasker, work with

unrooted phones, but they do much

more if your phone is rooted.

■ Rooting is the first step toward

installing new ROMs.

■ Overclocking and underclocking are

possible only with root access.

■ Having a rooted phone implies some

geek street cred.

 Rooting Your Phone, the Cons:
■ Rooting most l ikely wil l void

your warranty.

■ Some apps (Amazon video

streaming, for example) wil l not

work on a rooted phone.

■ Rooting is the first step toward

potentially bricking your device.

■ Using some root-requiring apps

(Wi-Fi tethering, for example) may

cause fees from your wireless carrier.

I Want Root!!!
Unlike Apple’s iPhone, the Android world

is full of multiple vendors, multiple devices

and multiple procedures for rooting. Heck,

even my Samsung Galaxy S2 comes in

different models for different carriers, all

with slightly different ways to do things.

There just isn’t a single “way” to root an

Android device. To add more frustration

to the mix, the methods and even the

feasibility of rooting often depend not only

on the hardware, but also on the specific

version of the Android OS installed on

the hardware. For example, I upgraded

my Galaxy S2 to the official AT&T version

of Ice Cream Sandwich. For quite a while

after that official upgrade was released,

rooting wasn’t possible for folks who

upgraded using official channels. This

means that before attempting to root your

phone, it’s important to research your exact

model phone and the exact version of

Android you’re currently running.

THE OPEN-SOURCE CLASSROOM

This means that before attempting to root your
phone, it’s important to research your exact
model phone and the exact version of Android
you’re currently running.

LJ222-Oct2012.indd 53 9/18/12 11:45 AM

http://www.linuxjournal.com

COLUMNS

54 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

THE OPEN-SOURCE CLASSROOM

Luckily for Android users, there is a

large and active community of users for

almost every device available. A quick

trip to http://androidforums.com

usually will turn up a thread dedicated

to rooting a particular phone or tablet.

Be careful with generic Google searches,

because it seems there are unending blog

posts and forum entries claiming to have

the newest and best rooting methods.

Unfortunately, those well-meaning

blog posts aren’t always updated when

a less-dangerous or more-reliable

method is developed. Sticking to sites

like http://androidforums.com or

http://forum.xda-developers.com is

a good way to keep up on the latest

developments with regard to the world

of hacking and rooting.

But My Phone Looks the Same!
The superuser app is all well and good,

but apart from opening up the possibility

for root-requiring apps, rooting a phone

doesn’t change the way it looks. For that,

you need a new ROM. Unfortunately,

installing a custom ROM is a complex

endeavor for some devices, and not all

devices even support custom ROMs.

What is a ROM, you ask? Basically, in the

Android world, the terms “ROM” and

“firmware” often are interchangeable.

The actual Linux operating system

with all its applications and sometimes

kernel usually are packaged together

in a downloadable ROM file for a

particular phone or tablet. One of my

favorite custom ROMs is the open-source

CyanogenMod (Figure 1). Because

hardware is so different across devices, it’s

important to get a ROM file specifically

created for your exact model. This is

one instance where buying a particularly

popular phone is a boon, because those

devices usually are supported first.

Once your phone is rooted, you

need to make sure you have a recovery

Figure 1. Even the boot screen of
CyanogenMod is cool.

LJ222-Oct2012.indd 54 9/18/12 11:45 AM

http://www.linuxjournal.com
http://androidforums.com
http://androidforums.com
http://forum.xda-developers.com

COLUMNS

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 55

THE OPEN-SOURCE CLASSROOM

system that supports custom, unsigned

ROMs. The system recovery is a part of

the Android device that acts a little like

the system BIOS of a computer system.

Most times, when you root a phone, a

custom recovery program is flashed too.

That isn’t always the case, however, so

it’s important to make sure you have

a recovery program flashed onto your

system that supports custom ROMs.

The most popular recovery program

by far is ClockworkMod, available at

http://www.clockworkmod.com. It

can be very challenging to flash

ClockworkMod onto your rooted phone by

hand, so I highly recommend the program

Rom Manager from the Google Play store.

The free version of Rom Manager includes the

ability to flash a custom recovery program,

so unless you run into problems using Rom

Manager, it’s hard to find a reason to use any

other method. If you want a one-stop method

for installing complete ROMs, the paid version

of Rom Manager can make that process

painless too. If you don’t want to shell out

the dough, however, using ClockworkMod

to install ROMs is dead simple.

Before You Begin
You’ve read the warnings, but you’ve

seen CyanogenMod in action, and you

really think a custom ROM is for you.

Before I talk about flashing, let’s quickly

look at the pros and cons.

Custom ROM—the Pros:
■ Most custom ROMs are compiled

for specific devices and often are

optimized for better battery life or

faster performance.

■ Custom ROMs eliminate all the pre-

installed applications your carrier

forces you to keep on your device.

■ If you want to tweak the look of

your phone, most ROMs support

elaborate customizations.

Major Warning:
Rooting your phone will void your warranty and possibly cause other unforeseen

problems. Once you go down the path of custom ROMs, like I discuss here, the

likelihood of a bricked phone increases. A truly ruined phone or tablet is pretty

uncommon anymore, but it’s easy to get your device into a completely unusable

state that takes hours and hours to try to undo. I’m a pretty tech-savvy guy, but

getting CyanogenMod on my Galaxy S2 took several hours, and there were several

times when I did something wrong and my phone was temporarily “bricked”.

Before you try to flash a custom ROM, make sure you understand the process!

LJ222-Oct2012.indd 55 9/18/12 11:45 AM

http://www.clockworkmod.com
http://www.linuxjournal.com

COLUMNS

56 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

THE OPEN-SOURCE CLASSROOM

■ If a rooted phone gets you geek cred,

a custom ROM makes you a guru.

Custom ROM—the Cons:
■ Install ing a custom ROM almost

always is tricky.

■ If you’re not comfortable with

troubleshooting, installing software on

your computer or pulling out some hair,

custom firmware may not be for you.

■ Although it’s rare nowadays, it’s still

possible to brick your phone.

■ You almost assuredly will lose your

carrier’s support if something goes

wrong; carriers won’t help and will

have no pity.

Cross Your Is and Dot Your Ts
If you still want to install custom

firmware, go to the Web site to get the

ROM. Again, I really like CyanogenMod

(http://www.cyanogenmod.com).

Once you locate the specific ROM file for

your exact device (remember, even the

Samsung Galaxy S2 has several different

models, all needing different ROMs),

put the zip file on the root of your SD

card. Then, make sure it’s the correct

ROM. Yes, I realize I keep saying that,

but fixing a phone that won’t boot due

to flashing an incompatible ROM can

be very frustrating. Anyway, once you

have the zipped ROM on your SD card,

boot the device into recovery mode.

Most phones have a certain method

for booting into recovery mode, usually

consisting of holding down certain

buttons while booting. But, because you

already have Rom Manager installed,

simply choose “reboot into recovery”

from the menu (Figure 2), and your

phone or tablet should reboot directly

into ClockworkMod.

Figure 2. Rom Manager is a great
tool, and one of the few apps I buy
without hesitation.

LJ222-Oct2012.indd 56 9/18/12 11:45 AM

http://www.linuxjournal.com
http://www.cyanogenmod.com

COLUMNS

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 57

THE OPEN-SOURCE CLASSROOM

Once ClockworkMod is loaded,

navigate the menus using some

combinations of buttons on your phone.

Often volume up/down will traverse

the menus, and the home button will

select. Depending on your device and the

version of ClockworkMod, you may have

other buttons or the touchscreen with

which to navigate. Before you flash your

new ROM, you need to make a backup!

Thankfully, ClockworkMod has the

backup feature built in, and in the event

of a failure, as long as you can reboot

into recovery mode, you should be able

to restore your phone to the backup.

Now that you have a backup (you do

have a backup, right?), navigate the

ClockworkMod menu to find the “install zip

from sdcard” option, and locate the ROM

file you saved onto your SD card. You’ll get

the option of whether to wipe the data

directory, and often with brand-new ROMs,

it’s a good idea to get a fresh start.

After your Android device is flashed,

it will reboot and, hopefully, load the

custom ROM you flashed from your SD

card. If something goes wrong, you’ll

need to go back to the forums and

try to find someone who had a similar

problem or even post a question yourself.

(I urge you to search long and hard

before posting though. I’ve never had a

problem that was unique to my setup,

and it seems someone always has made

a similar mistake and posted about it.)

Success!
If everything went well, you now should

have a pretty great Android system without

all the bundled apps your carrier originally

installed. You’ve also made it so that if you

go to your carrier for support, the customer

service rep will laugh at you and possibly

accuse you of doing horribly nefarious

things by installing a custom ROM. The

advantages outweigh the disadvantages

for many folks, so if you have a few spare

hours and a willingness to put your beloved

Android device at risk, rooting and installing

custom firmware can be a great way to

breathe new life into a tired phone.

In closing, although most devices

available require the bootloader to be

unlocked (that is, rooted) in order to

gain access to the underlying system,

there are a few limited exceptions. If you

want an Android tablet with root access

out of the box, and a vendor who thinks

custom ROMs are a great idea, check out

the review of ZaReason’s ZaTab in the

September 2012 issue of Linux Journal.

ZaReason doesn’t try to lock you out

of your own device, and that deserves

praise (http://www.zareason.com).■

Shawn Powers is the Associate Editor for Linux Journal.

He’s also the Gadget Guy for LinuxJournal.com, and he has an

interesting collection of vintage Garfield coffee mugs. Don’t let

his silly hairdo fool you, he’s a pretty ordinary guy and can be

reached via e-mail at shawn@linuxjournal.com. Or, swing

by the #linuxjournal IRC channel on Freenode.net.

LJ222-Oct2012.indd 57 9/18/12 11:45 AM

http://www.zareason.com
mailto:shawn@linuxjournal.com
http://LinuxJournal.com
http://Freenode.net
http://www.linuxjournal.com

NEW PRODUCTS

Gumstix Waysmall
Silverlode Computer

Gumstix specializes in tiny computers-on-modules (COMs) that end up in the most creative

places, such as on satellite multiprocessor networks, biomimetic fish robots and polar

exploration equipment. The company’s recently released Waysmall Silverlode Computer adds

an extra level of robustness to these COMs by adding the protection of an aluminum case,

enabling even more applications in commercial and industrial vertical markets. Gumstix says

that the solution, at 2.5 Watts, requires half the power of competing solutions. The Waysmall

Silverlode Computer features an 800MHz Gumstix Overo EarthSTORM COM with a Tobi

expansion board, a 5V power supply, HDMI-to-DVI cable, USB OTG cable and an 8GB microSD

card for booting to Ubuntu. Interior support exists for connecting sensors and actuators.

http://www.gumstix.com

Bunpei Yorifuji’s Wonderful
Life of the Elements
(No Starch Press)

Two characteristics that make us geeks are our

erogenous zone for enjoyment of scientific

elegance and our genetic disposition to admire

the quirky. Both tendencies will find fulfillment

from Bunpei Yorifuji’s new book Wonderful Life

of the Elements: The Periodic Table Personified,

an illustrated guide to the periodic table that gives chemistry a friendly face. In this

super periodic table, Japanese artist Yorifuji brilliantly gives every element a unique

character whose properties are represented visually: heavy elements are fat, man-made

elements are robots and noble gases sport impressive afros. Every detail is significant,

from the length of an element’s beard to the clothes on its back. Readers also learn

about each element’s discovery, its common uses and other vital stats like whether

it floats—or explodes—in water. Why bother trudging through a traditional periodic

table? (Though, of course, we would and we do.) In this periodic paradise, the elements

are people too. And once you’ve met them, you’ll never forget them.

http://www.nostarch.com

58 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

LJ222-Oct2012.indd 58 9/18/12 11:45 AM

http://www.linuxjournal.com
http://www.gumstix.com
http://www.nostarch.com

NEW PRODUCTS

WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 59

Fixstars’ M3

While parallel processing is the answer to the need for Big

Data applications, parallel programming is significantly more

difficult than sequential programming, and many applications

fail to take full advantage of their hardware environments. To

address these issues, Fixstars created the new M3 (“M-cubed”)

software development platform for accelerated processing and efficient programming

in multicore, multinode and multi-architecture environments. Fixstars says that

applications, such as image processing and simulation libraries, are optimized for

several different types of hardware and built on an easy-to-use parallel framework,

allowing for efficient development of fast, highly portable applications. M3 offers

customized solutions for key industries in which simulations and image processing

functions demand an enormous volume of computational calculations, such as CG

rendering, computer vision and financial simulation.

http://www.fixstars.com

DVEO’s MultiStreamer
DIG/IP (Micro) Encoder

Most customers will use the new

MultiStreamer DIG/IP (Micro) Encoder

appliance in the field to gather news video

and stream it live to the TV station, says

maker DVEO, the broadcast division of Computer Modules, Inc. Other applications

for “the Micro” include sending video of live events and concerts, sporting events,

corporate training and religious services to iPads, iPhones, OTT televisions and other

portable devices via IP. This small, portable, Linux-based appliance weighs a mere five

pounds (2.27kg). The Micro accepts uncompressed SDI or HD-SDI video (or optional

HDMI or analog) from cameras, editing systems or video servers, and supports

simultaneous IP input. It further creates multiple, simultaneous high, medium and

low bitrate IP streams, which can be provided with most industry-standard protocols,

including UDP, RTP or IGMP, and wrappers, such as HLS, RTMP, RTSP and so on.

http://www.dveo.com

LJ222-Oct2012.indd 59 9/18/12 11:45 AM

http://www.linuxjournal.com
http://www.fixstars.com
http://www.dveo.com

NEW PRODUCTS

60 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

Attensa StreamServer
The key selling point for the Attensa StreamServer, now in version

5.1, is to “meet the demands of people in the Digital Age”, focusing

on the information that matters and ignoring the rest. This enterprise

application delivers personally relevant information—no matter where it

is—to busy professionals instead of making them look for it. The result,

says Attensa, are people who are empowered to do their jobs smarter

and faster than ever before. Features added in the new v5.1 include

group newsletters, improved search and filtering, the ability to subscribe

to library collections (that is, topical collections that span multiple

sources), improved workflow and numerous improvements and fixes.

http://www.attensa.com

Fabric Engine’s
Creation Platform
The crew at Fabric Engine built

the new open-source Creation

Platform—a framework for building

custom, high-performance graphics

applications—because they found

off-the-shelf DCC applications not

flexible enough for studios’ needs. By providing the major building blocks for tool

creation, says Fabric Engine, Creation Platform allows developers to spend less

time building back-end architectures and more time building critical workflows and

high-performance functionality into their tools. Fabric Engine took this approach in

response to the rise of performance-hungry applications like simulation and virtual

production. Because existing solutions are not keeping pace, says the company,

studios have had little choice until now but to build from scratch to fulfill their

creative requirements—something that is outside their core business. Key features

of the Creation Platform include the Fabric Core Execution Engine for exceptional

performance out of both CPUs and GPUs, modularity, extensibility and accessibility.

Most Creation applications are built using Python and Qt.

http://www.fabricengine.com

LJ222-Oct2012.indd 60 9/18/12 11:45 AM

http://www.linuxjournal.com
http://www.attensa.com
http://www.fabricengine.com

NEW PRODUCTS

Eric Giguere, John Mongan and
Noah Suojanen’s Programming
Interviews Exposed, 3rd ed. (Wrox)
Job hunting sucks—big time. If you can master the

psychology, however, you can keep your confidence up

and land a rockin’ new gig. Helpful to this task is the

new 3rd edition of the book Programming Interviews

Exposed: Secrets to Landing Your Next Job, a job-search

guide targeted at the specific needs of programmers.

In this book, authors Eric Giguere, John Mongan and Noah Suojanen offer up a

combination of tried-and-true advice and coverage of the latest trends. Like its

earlier editions, this guide covers what software companies and IT departments want

their programmers to know and includes a plethora of helpful hints that help boost

confidence. This third edition adds new code examples, information on the latest

programming languages, new chapters on sorting and design patterns, tips on using

LinkedIn and a downloadable app to help prepare applicants for job interviews.

http://www.wrox.com

WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 61

Please send information about releases of Linux-related products to newproducts@linuxjournal.com or
New Products c/o Linux Journal, PO Box 980985, Houston, TX 77098. Submissions are edited for length and content.

Energy Sistem Soyntec’s
Energy Tablet i8

A new tablet—this one European-style—is out on the

market in the form of Energy Sistem Soyntec’s Energy Tablet

i8. Gadget-maker Energy Sistem Soyntec S.A. of Spain

claims that the new Android 4 device will wow its users

with its exceptional quality screen, ideal dimensions, high efficiency and stylish design. Vital

stats include 1GB of RAM memory, 8GB of internal memory, an ultra-slim aluminum body,

multi-touch TFT LCD 8" screen in 4:3 format, front and rear cameras, HDMI full HD (1080p)

output to TV or monitor, USB-OTG function and a USB host to connect external USB devices

like pen drives, keyboard or mouse. The Energy Tablet i8 weighs in at 491 grams.

http://www.energysistem.com

LJ222-Oct2012.indd 61 9/18/12 11:45 AM

http://www.linuxjournal.com
http://www.wrox.com
mailto:newproducts@linuxjournal.com
http://www.energysistem.com

62 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM62 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

Kbuild
THE LINUX KERNEL
BUILD SYSTEM

THE FIRST STEP TO
CONTRIBUTING TO A PROJECT
IS TO KNOW HOW ITS BUILD
SYSTEM WORKS. HERE, I
COVER THE KERNEL BUILD
SYSTEM AND SHOW YOU
HOW TO USE IT TO ADD A
FEATURE TO A KERNEL.
JAVIER MARTINEZ CANILLAS

FEATURE Kbuild: the Linux Kernel Build System

LJ222-Oct2012.indd 62 9/18/12 11:45 AM

http://www.linuxjournal.com
http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 63

O ne amazing thing about Linux

is that the same code base is

used for a different range of

computing systems, from supercomputers

to very tiny embedded devices. If you

stop for a second and think about

it, Linux is probably the only OS that

has a unified code base. For example,

Microsoft and Apple use different

kernels for their desktop and mobile

OS versions (Windows NT/Windows CE

and OS X/iOS). Two of the reasons this

is possible on Linux are that the kernel

has many abstraction layers and levels of

indirection and because its build system

allows for creating highly customized

kernel binary images.

The Linux kernel has a monolithic

architecture, which means that the

whole kernel code runs in kernel space

and shares the same address space.

Because of this architecture, you have

to choose the features your kernel will

include at compile time. Technically,

Linux is not a pure monolithic kernel,

because it can be extended at runtime

using loadable kernel modules. To load

a module, the kernel must contain all

the kernel symbols used in the module.

If those symbols were not included in

the kernel at compile time, the module

will not be loaded due to missing

dependencies. Modules are only a way

to defer compilation (or execution) of

a specific kernel feature. Once a kernel

module is loaded, it is part of the

monolithic kernel and shares the same

address space of the code that was

included at kernel compile time. Even

when Linux supports modules, you still

need to choose at kernel compile time

most of the features that will be built

in the kernel image and the ones that

will allow you to load specific kernel

modules once the kernel is executing.

For this reason, it is very important to

be able to choose what code you want

to compile (or not) in a Linux kernel.

The approach for achieving this is using

conditional compilation. There are tons

of configuration options for choosing

whether a specific feature will be

THE LINUX KERNEL HAS A MONOLITHIC
ARCHITECTURE, WHICH MEANS THAT THE WHOLE
KERNEL CODE RUNS IN KERNEL SPACE AND
SHARES THE SAME ADDRESS SPACE.

LJ222-Oct2012.indd 63 9/18/12 11:45 AM

http://www.linuxjournal.com

FEATURE Kbuild: the Linux Kernel Build System

included. This is translated to deciding

whether a specific C file, code segment

or data structure will be included in the

kernel image and its modules.

So, an easy and efficient way to

manage all these compilation options is

needed. The infrastructure to manage

this—building the kernel image and its

modules—is known as the Kernel Build

System (kbuild).

I don’t explain the kbuild infrastructure

in too much detail here, because the

Linux kernel documentation provides

a good explanation (Documentation/

kbuild). Instead, I discuss the kbuild

basics and show how to use it to include

your own code in a Linux kernel tree,

such as a device driver.

The Linux Kernel Build System has four

main components:

■ Config symbols: compilation options

that can be used to compile code

conditionally in source files and to

decide which objects to include in a

kernel image or its modules.

■ Kconfig files: define each config

symbol and its attributes, such as its

type, description and dependencies.

Programs that generate an option

menu tree (for example, make
menuconfig) read the menu entries

from these files.

■ .config file: stores each config

symbol’s selected value. You can edit

this file manually or use one of the

many make configuration targets,

such as menuconfig and xconfig, that

call specialized programs to build

a tree-like menu and automatically

update (and create) the .config file

for you.

■ Makefiles: normal GNU makefiles that

describe the relationship between

source files and the commands

needed to generate each make target,

such as kernel images and modules.

Now, let’s look at each of these

components in more detail.

Compilation Options:
Configuration Symbols
Configuration symbols are the ones

used to decide which features will be

included in the final Linux kernel image.

Two kinds of symbols are used for

conditional compilation: boolean and

tristate. They differ only in the number

of values that each one can take.

But, this difference is more important

than it seems. Boolean symbols (not

surprisingly) can take one of two values:

true or false. Tristate symbols, on the

other hand, can take three different

values: yes, no or module.

64 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

LJ222-Oct2012.indd 64 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 65

Not everything in the kernel can be

compiled as a module. Many features

are so intrusive that you have to decide

at compilation time whether the kernel

will support them. For example, you can’t

add Symmetric Multi-Processing (SMP) or

kernel preemption support to a running

kernel. So, using a boolean config symbol

makes sense for those kinds of features.

Most features that can be compiled as

modules also can be added to a kernel at

compile time. That’s the reason tristate

symbols exist—to decide whether you

want to compile a feature built-in (y), as

a module (m) or not at all (n).

There are other config symbol types

besides these two symbols, such as

strings and hex. But, because they are not

used for conditional compilation, I don’t

cover those here. Read the Linux kernel

documentation for a complete discussion

of config symbols, types and uses.

Defining Configuration
Symbols: Kconfig Files
Configuration symbols are defined in

files known as Kconfig files. Each Kconfig

file can describe an arbitrary number of

symbols and can also include (source)

other Kconfig files. Compilation targets

that construct configuration menus of

kernel compile options, such as make
menuconfig, read these files to build the

tree-like structure. Every directory in the

kernel has one Kconfig that includes the

Kconfig files of its subdirectories. On top of

the kernel source code directory, there is a

Kconfig file that is the root of the options

tree. The menuconfig (scripts/kconfig/

mconf), gconfig (scripts/kconfig/gconf) and

other compile targets invoke programs that

start at this root Kconfig and recursively

read the Kconfig files located in each

subdirectory to build their menus. Which

subdirectory to visit also is defined in each

Kconfig file and also depends on the config

symbol values chosen by the user.

Storing Symbol Values:
.config File
All config symbol values are saved in

a special file called .config. Every time

you want to change a kernel compile

configuration, you execute a make

target, such as menuconfig or xconfig.

These read the Kconfig files to create the

menus and update the config symbols’

values using the values defined in the

NOT EVERYTHING IN THE KERNEL CAN BE
COMPILED AS A MODULE.

LJ222-Oct2012.indd 65 9/18/12 11:45 AM

http://www.linuxjournal.com

66 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Kbuild: the Linux Kernel Build System

.config file. Additionally, these tools

update the .config file with the new

options you chose and also can generate

one if it didn’t exist before.

Because the .config file is plain text,

you also can change it without needing

any specialized tool. It is very convenient

for saving and restoring previous kernel

compilation configurations as well.

Compiling the Kernel: Makefiles
The last component of the kbuild system

is the Makefiles. These are used to build

the kernel image and modules. Like the

Kconfig files, each subdirectory has a

Makefile that compiles only the files in

its directory. The whole build is done

recursively—a top Makefile descends

into its subdirectories and executes each

subdirectory’s Makefile to generate

the binary objects for the files in that

directory. Then, these objects are used

to generate the modules and the Linux

kernel image.

Putting It All Together:
Adding the Coin Driver
Now that you know more about kbuild

system basics, let’s consider a practical

example—adding a device driver to a

Linux kernel tree. The example driver is for

a very simple character device called coin.

The driver’s function is to mimic a coin

flipping and returning on each read one

of two values: head or tail. The driver has

an optional feature that exposes previous

flip statistics using a special debugfs

virtual file. Listing 1 shows an example

interaction with the coin device.

To add a feature to a Linux kernel

(such as the coin driver), you need to do

three things:

1. Put the source file(s) in a place that

Listing 1. Coin Character Device Semantics

root@localhost:~# cat /dev/coin

tail

root@localhost:~# cat /dev/coin

head

root@sauron:/# cat /sys/kernel/debug/coin/stats

head=6 tail=4

LJ222-Oct2012.indd 66 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 67

makes sense, such as drivers/net/

wireless for Wi-Fi devices or fs for a

new filesystem.

2. Update the Kconfig for the

subdirectory (or subdirectories)

where you put the files with config

symbols that allow you to choose

to include the feature.

3. Update the Makefile for the

subdirectory where you put the files,

so the build system can compile your

code conditionally.

Because this driver is for a character

device, put the coin.c source file in

drivers/char.

The next step is to give the user the

option to compile the coin driver. To do

this, you need to add two configuration

symbols to the drivers/char/Kconfig file:

one to choose to add the driver to the

kernel and a second to decide whether

the driver statistics will be available.

Like most drivers, coin can be built

in the kernel, included as a module

or not included at all. So, the first

config symbol, called COIN, is of type

tristate (y/n/m). The second symbol,

COIN_STAT, is used to decide whether

you want to expose the statistics.

Clearly this is a binary decision, so

the symbol type is bool (y/n). Also, it

doesn’t make sense to add the coin

statistics to the kernel if you choose

not to include the coin driver itself. This

behavior is very common in the kernel—

for example, you can’t add a block-

based filesystem, such as ext3 or fat32,

if you didn’t enable the block layer

first. Obviously, there is some kind of

dependency between symbols, and you

should model this. Fortunately, you can

describe config symbols’ relationships

in Kconfig files using the “depends

on” keyword. When, for example, the

make menuconfig target generates

the compilation options menu tree,

it hides all the options whose symbol

dependencies are not met. This is just

one of many keywords available for

describing symbols in a Kconfig

file. For a complete description of

the Kconfig language, refer to

kbuild/kconfig-language.txt in the

Linux kernel Documentation directory.

Listing 2 shows a segment of the

drivers/char/Kconfig file with the symbols

added for the coin driver.

So, how can you use your recently

added symbols?

As mentioned previously, make

targets that bui ld a tree menu

with al l the compilat ion options

use this config symbol, so you can

LJ222-Oct2012.indd 67 9/18/12 11:45 AM

http://www.linuxjournal.com

68 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Kbuild: the Linux Kernel Build System

choose what to compile in your kernel

and its modules. For example, when

you execute:

$ make menuconfig

the command-line uti l ity scripts/

kconfig/mconf wil l start and read all

the Kconfig fi les to build a menu-

based interface. You then use these

programs to update the values

Listing 2. Kconfig Entries for the Coin Driver

Character device configuration

menu "Character devices"

config COIN

 tristate "Coin char device support"

 help

 Say Y here if you want to add support for the

 coin char device.

 If unsure, say N.

 To compile this driver as a module, choose M here:

 the module will be called coin.

config COIN_STAT

 bool "flipping statistics"

 depends on COIN

 help

 Say Y here if you want to enable statistics about

 the coin char device.

LJ222-Oct2012.indd 68 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 69

of your COIN and COIN_STAT

compi lat ion opt ions. F igure 1 shows

how the menu looks when you

navigate to Device Dr ivers→Character

devices; see how the opt ions for the

coin dr iver can be set .

Once you are done with the

compilation option configuration, exit

the program, and if you made some

changes, you will be asked to save

your new configuration. This saves the

configuration options to the .config file.

For every symbol, a CONFIG_ prefix is

appended in the .config file. For example,

if the symbol is of type boolean and you

chose it, in the .config file, the symbol

will be saved like this:

CONFIG_COIN_STAT=y

On the other hand, if you didn’t

choose the symbol, it won’t be set

in the .config file, and you will see

something like this:

CONFIG_COIN_STAT is not set

Tristate symbols have the same

Figure 1. Menu Example

LJ222-Oct2012.indd 69 9/18/12 11:45 AM

http://www.linuxjournal.com

70 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Kbuild: the Linux Kernel Build System

behavior as bool types when chosen or

not. But, remember that tristate also

has the third option of compiling the

feature as a module. For example, you

can choose to compile the COIN driver as

a module and have something like this in

the .config file:

CONFIG_COIN=m

The following is a segment of the

.config file that shows the values chosen

for the coin driver symbols:

CONFIG_COIN=m

CONFIG_COIN_STAT=y

Here you are telling kbuild that

you want to compile the coin driver

as a module and activate the flipping

statistics. If you have chosen to

compile the driver built-in and without

the flipping statistics, you will have

something like this:

CONFIG_COIN=y

CONFIG_COIN_STAT is not set

Once you have your .config file, you

are ready to compile your kernel and its

modules. When you execute a compile

target to compile the kernel or the

modules, it first executes a binary that

reads all the Kconfig files and .config:

$ scripts/kconfig/conf Kconfig

This binary updates (or creates) a C

header file with the values you chose for

all the configuration symbols. This file is

include/generated/autoconf.h, and every

gcc compile instruction includes it, so the

symbols can be used in any source file in

the kernel.

The file is composed of thousands

of #define macros that describe the

state for each symbol. Let’s look at the

conventions for the macros.

Bool symbols with the value true and

tristate symbols with the value yes are

treated equally. For both of them, three

macros are defined.

For example, the bool CONFIG_COIN_STAT

symbol with the value true and the

tristate CONFIG_COIN symbol with the

value yes will generate the following:

#define _ _enabled_CONFIG_COIN_STAT 1

#define _ _enabled_CONFIG_COIN_STAT_MODULE 0

#define CONFIG_COIN_STAT 1

#define _ _enabled_CONFIG_COIN 1

#define _ _enabled_CONFIG_COIN_MODULE 0

#define CONFIG_COIN 1

In the same way, bool symbols with

LJ222-Oct2012.indd 70 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 71

the value false and tristate symbols with

the value no have the same semantics. For

both of them, two macros are defined. For

example, the CONFIG_COIN_STAT with

the value false and the CONFIG_COIN

with the value no will generate the

following group of macros:

#define _ _enabled_CONFIG_COIN_STAT 0

#define _ _enabled_CONFIG_COIN_STAT_MODULE 0

#define _ _enabled_CONFIG_COIN 0

#define _ _enabled_CONFIG_COIN_MODULE 0

For tristate symbols with the value

module, three macros are defined. For

example, the CONFIG_COIN with the

value module will generate the following:

#define _ _enabled_CONFIG_COIN 0

#define _ _enabled_CONFIG_COIN_MODULE 1

#define CONFIG_COIN_MODULE 1

Curious readers probably will ask why

are those _ _enabled_option macros

needed? Wouldn’t it be sufficient to

have only the CONFIG_option and

CONFIG_option_MODULE? And, why

is _MODULE declared even for symbols

that are of type bool?

Well, the _ _enabled_ constants are

used by three macros:

#define IS_ENABLED(option) \

 (_ _enabled_ ## option || _ _enabled_ ## option ## _MODULE)

#define IS_BUILTIN(option) _ _enabled_ ## option

#define IS_MODULE(option) _ _enabled_ ## option ## _MODULE

So, the _ _enabled_option and

_ _enabled_option_MODULE always

are defined, even for bool symbols to

make sure that this macro will work for

any configuration option.

The third and last step is to update

the Makefiles for the subdirectories

where you put your source fi les, so

kbuild can compile your driver if you

chose it.

But, how do you instruct kbuild to

compile your code conditionally?

The kernel build system has two main

tasks: creating the kernel binary image

and the kernel modules. To do that, it

maintains two lists of objects: obj-y and

obj-m, respectively. The former is a list

of all the objects that will be built in

CURIOUS READERS PROBABLY WILL ASK WHY ARE
THOSE _ _enabled_option MACROS NEEDED?

LJ222-Oct2012.indd 71 9/18/12 11:45 AM

http://www.linuxjournal.com

72 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Kbuild: the Linux Kernel Build System

Listing 3. Coin Character Device Driver Example

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/fs.h>

#include <linux/uaccess.h>

#include <linux/device.h>

#include <linux/random.h>

#include <linux/debugfs.h>

#define DEVNAME "coin"

#define LEN 20

enum values {HEAD, TAIL};

struct dentry *dir, *file;

int file_value;

int stats[2] = {0, 0};

char *msg[2] = {"head\n", "tail\n"};

static int major;

static struct class *class_coin;

static struct device *dev_coin;

static ssize_t r_coin(struct file *f, char _ _user *b,

 size_t cnt, loff_t *lf)

{

 char *ret;

 u32 value = random32() % 2;

 ret = msg[value];

 stats[value]++;

 return simple_read_from_buffer(b, cnt,

 lf, ret,

 strlen(ret));

}

static struct file_operations fops = { .read = r_coin };

#ifdef CONFIG_COIN_STAT

static ssize_t r_stat(struct file *f, char _ _user *b,

 size_t cnt, loff_t *lf)

{

 char buf[LEN];

 snprintf(buf, LEN, "head=%d tail=%d\n",

 stats[HEAD], stats[TAIL]);

 return simple_read_from_buffer(b, cnt,

 lf, buf,

 strlen(buf));

}

static struct file_operations fstat = { .read = r_stat };

#endif

int init_module(void)

{

 void *ptr_err;

 major = register_chrdev(0, DEVNAME, &fops);

 if (major < 0)

 return major;

 class_coin = class_create(THIS_MODULE,

 DEVNAME);

 if (IS_ERR(class_coin)) {

 ptr_err = class_coin;

 goto err_class;

 }

 dev_coin = device_create(class_coin, NULL,

 MKDEV(major, 0),

 NULL, DEVNAME);

 if (IS_ERR(dev_coin))

 goto err_dev;

#ifdef CONFIG_COIN_STAT

 dir = debugfs_create_dir("coin", NULL);

 file = debugfs_create_file("stats", 0644,

 dir, &file_value,

 &fstat);

#endif

 return 0;

err_dev:

 ptr_err = class_coin;

 class_destroy(class_coin);

err_class:

 unregister_chrdev(major, DEVNAME);

 return PTR_ERR(ptr_err);

}

void cleanup_module(void)

{

#ifdef CONFIG_COIN_STAT

 debugfs_remove(file);

 debugfs_remove(dir);

#endif

 device_destroy(class_coin, MKDEV(major, 0));

 class_destroy(class_coin);

 return unregister_chrdev(major, DEVNAME);

}

LJ222-Oct2012.indd 72 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 73

the kernel image, and the latter is the

list of the objects that will be compiled

as modules.

The configuration symbols from

.config and the macros from autoconf.h

are used along with some GNU make

syntax extensions to fill these lists.

Kbuild recursively enters each directory

and builds the lists adding the objects

defined in each subdirectory’s Makefile.

For more information about the GNU

make extensions and the objects list, read

Documentation/kbuild/makefiles.txt.

For the coin driver, the only thing

you need to do is add a l ine in drivers/

char/Makefile:

obj-$(CONFIG_COIN) += coin.o

Figure 2. Kernel Build Process

LJ222-Oct2012.indd 73 9/18/12 11:45 AM

http://www.linuxjournal.com

74 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Kbuild: the Linux Kernel Build System

This tells kbuild to create an object

from the source file coin.c and to add it to

an object list. Because CONFIG_COIN’s

value can be y or m, the coin.o object

will be added to the obj-y or obj-m list

depending on the symbol value. It then

will be built in the kernel or as a module.

If you didn’t choose the CONFIG_COIN

option, the symbol is undefined, and

coin.o will not be compiled at all.

Now you know how to include

source fi les conditionally. The last

part of the puzzle is how to compile

source code segments conditionally.

This can be done easily by using the

macros defined in autoconf.h.

Listing 3 shows the complete coin

character device driver.

In Listing 3, you can see that the

CONFIG_COIN_STAT configuration

option is used to register (or not) a

special debugfs file that exposes the

coin-flipping statistics to userspace.

Figure 2 summarizes the kernel

build process, and the output of the

git diff --stat command shows

the files you have modified to include

the driver:

drivers/char/Kconfig | 16 +++++++++

drivers/char/Makefile | 1 +

drivers/char/coin.c | 89 ++

3 files changed, 106 insertions(+), 0 deletions(-)

Conclusion
Linux, despite being a monolithic

kernel, is highly modular and

customizable. You can use the same

kernel in a varied range of devices

from high-performance clusters to

desktops all the way to mobile phones.

This makes the kernel a very big and

complex piece of software. But, even

when the kernel has mill ions of l ines

of code, its build system allows you

to extend it with new features easily.

In the past, to have access to an

operating system’s source code, you

had to work for a big company and

sign large NDA agreements. Nowadays,

the source of probably the most

modern operating system is publicly

available. You can use it, study its

internals and modify it in any creative

way you want. The best part is that

you even can share your work and get

feedback from an active community.

Happy hacking!■

Javier Martinez Canillas is a longtime Linux user,

administrator and open-source advocate developer. He

has an MS from the Universitat Autònoma de Barcelona

and works as a Linux kernel engineer. Besides hacking,

he enjoys spending as much time as possible with his

wife Tami, running, reading and photography. He can be

reached at javier@dowhile0.org.

LJ222-Oct2012.indd 74 9/18/12 11:45 AM

http://www.linuxjournal.com
mailto:javier@dowhile0.org

LJ222-Oct2012.indd 75 9/18/12 11:45 AM

http://www2.mediacurrent.com/l/10072/2012-09-12/7yh6q

AUTOMATED
LINUX KERNEL
CRASH
INFRASTRUCTURE—
EYE IN THE
DIGITAL SKY
Despite popular myths, Linux systems can crash, a
situation known as oops or panic. When this happens at
home, you are inconvenienced. When a critical bug in the
kernel causes a production ser ver to stop working, the
importance of environment stability and control gains
more focus. Linux kernel crashes quickly can escalate
from single host events into widespread outages. We
want to identify issues in the Linux kernel quickly and
contain and resolve them without any adverse impact
or downtime for our customers—and we have a solution.

76 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

IGOR LJUBUNCIC and RAPHAEL SACK

FEATURE Automated Linux Kernel Crash Infrastructure

LJ222-Oct2012.indd 76 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 77

I n time-to-market critical data-center

environments, kernel crashes can

adversely impact the availability

and productivity of compute resources.

Resolving bugs in the kernel code that

cause the oops and panic situations is of

paramount importance. In homogeneous

environments, where a single operating

system version dominates most of the

install base, individual bugs gain even

more focus, as they potentially can

manifest on all machines in a very short

period of time.

The automated Linux kernel crash

collection, analysis and reporting

infrastructure is a novel and complete

solution we designed to address the

quality and stability of the system’s

core component, the kernel. The

solution relies on the built-in kernel

memory dumping mechanism called

Kdump (http://lse.sourceforge.net/
kdump), which allows machines

experiencing a kernel oops or panic to

dump the contents of their memory to

a disk. The analysis of memory dumps

is performed using the crash utility

(http://people.redhat.com/anderson/
crash_whitepaper).

Linux Kernel Crash Architecture
The Linux kernel crash infrastructure

consists of a number of individual

components, most of which can be

deployed separately in a modular fashion:

■ Kdump mechanism—the Kdump

functionality is built in to the Linux

kernel. The tool collects memory

cores when kernel oops or panic

states occur and saves them as a

core file to local disk. The necessary

configuration, which also requires

editing the bootloader menu entries,

is deployed using a configuration

management tool.

■ Kernel crash analysis init script—the

script runs on machine startup and

checks if crash data exists on the

disk, creates an analysis file from

the memory core using the crash

utility, uploads the data to the central

NFS repository, and notifies system

administrators about the event via

e-mail. The script was developed

in-house and written in Perl. Like

Kdump, we distribute the script to all

hosts using a centralized configuration

management tool.

■ Central NFS storage repository—the

repository is a large storage area

where kernel crash dumps are copied

into per-machine directories. We

perform data cleanup on a regular

LJ222-Oct2012.indd 77 9/18/12 11:45 AM

http://lse.sourceforge.net/kdump
http://lse.sourceforge.net/kdump
http://people.redhat.com/anderson/crash_whitepaper
http://people.redhat.com/anderson/crash_whitepaper
http://www.linuxjournal.com

78 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Automated Linux Kernel Crash Infrastructure

basis, with information older than 30

days purged to conserve space. The

main purpose of the storage area is to

allow system administrators to keep

data while they escalate problems to

operating system vendors.

■ Kernel crash database and database

population script—a Perl script

runs as a scheduled job once a day

and copies new crash information

from the central NFS repository into

an SQL database for permanent

retention. The script parses out

important fields from the analysis

file. Most notably, the exception RIP

entry shown in the backtrace (bt) of

the crash dump is used as a unique

identifier, as it contains the kernel

function and the offset where the

Figure 1. Sample Kernel Crash Alert

Figure 2. Sample Kernel Crash Report View

LJ222-Oct2012.indd 78 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 79

oops or panic initiated. A single

database serves all our data centers

across the globe.

■ Kernel crash monitoring module—this

Perl-based component reads crash

data from the database and generates

alerts for machines, machine models

and crash reasons that exceed

environment normalcy thresholds

in given time periods. We use the

module to detect site-wide issues that

may not be immediately apparent

from single crashes. The monitor can

send e-mails or display alerts to a 24/7

manned Web console. Figure 1 shows

a mockup view of the monitoring

console output.

Figure 3. Linux Kernel Crash Infrastructure

LJ222-Oct2012.indd 79 9/18/12 11:45 AM

http://www.linuxjournal.com

80 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Automated Linux Kernel Crash Infrastructure

■ Kernel crash reporting module—the

reporting facility allows a global

overview and drill-down of major

kernel crash trends that impact our

sites, including overall uptime and

stability, resolved and unresolved

reasons, patch coverage and other

valuable metrics. Figure 2 shows

a sample monthly analysis report,

and Figure 3 shows the entire

infrastructure layout.

Linux Kernel Crash Monitoring Data
Crash data consists of the entire

memory core dumped at the time

of the crash, kept in a file named

vmcore. We analyze the memory core

using the crash utility. To automate

the procedure, we invoke the crash

utility in an unattended manner using

an input file with line-delimited crash

commands. An interactive view of

the crash utility running in a terminal

Figure 4. Analysis File Parsed from the Crash Data

LJ222-Oct2012.indd 80 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 81

window is shown in Figure 4.

Currently, we use the backtrace (bt)

of the active task at the time of the

crash, the kernel buffer log (log) and the

process tree (ps) as main information

sources for the initial analysis of the

crash data. While a complete analysis

of the crash data requires availability

of sources and can be done only by

the software vendor, the analysis file is

extremely useful in isolating core issues

and identifying crash patterns.

System bugs usually manifest

themselves in specific, repeatable task

call traces that can be uniquely identified

by the exception pointer, a line in the

code where the failure occurred. On the

other hand, hardware problems usually

are erratic and will result in multiple

crash reasons for the same host. In

almost all cases, the function name and

the offset allow analyzing and mapping

crash reasons in a deterministic manner,

separating bugs from hardware failures.

Using the avai lable data, we can

monitor the environment and correlate

crash reasons to recent changes,

l ike the introduction of new system

images, patches, f irmware updates,

new hardware platforms and so on.

We use three main categories to

classify crash data:

■ Individual host crashes—repeated

crashes of the same host usually

stem from hardware problems. We

use this information to schedule

machine downtime for diagnostics

and maintenance.

■ Machine model crashes—multiple

crashes of different hosts sharing the

same hardware configuration might

indicate a problem with one of the

hardware components, such as recent

firmware updates or the hardware +

operating system combination.

■ Crash reasons—multiple instances

of the same crash reason seen on

different machines and machine

models are usually a good indication

of an operating system bug. However,

in most cases, even a single memory

System bugs usually manifest themselves in
specific, repeatable task call traces that can be
uniquely identified by the exception pointer, a
line in the code where the failure occurred.

LJ222-Oct2012.indd 81 9/18/12 11:45 AM

http://www.linuxjournal.com

82 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Automated Linux Kernel Crash Infrastructure

core is sufficient to determine and

patch the problem.

Following an initial analysis based on

the unique crash string match, we can

determine whether we’re dealing with an

existing problem under investigation, a

problem already patched by the vendor

or a completely new phenomenon. The

monitoring component allows us to

determine the scope and severity of the

incident quickly and precisely

We manage the environment in a fully

automated and optimized manner. Known

crash reasons are logged in the database

for the purpose of statistics and trending,

but we skip copying these memory cores

into the NFS repository to minimize network

and storage overhead. On the other hand,

we give new, unknown kernel crash events

full priority. Crash data containing new

information is sent to operating system

vendors for a complete analysis. Most of

the time, the crash data submission results

in important kernel patches.

Challenges
Working with Linux kernel crashes is not

an easy task and entails many difficulties.

Crash data analysis files contain very

high-level information that cannot be

easily interpreted even by experienced

users. Expert knowledge is required.

Diagnosing hardware problems using

crash data is not always straightforward.

Crash reports stemming from hardware

problems are never fully accurate and are

quite difficult to understand. Multiple

crash reports and diagnostic checks are

sometimes required to determine whether

the root cause is in faulty hardware.

Even though most of the software we

use is open source, certain parts of the

kernel code are not available to us. Lack

of familiarity with the code internals also

makes it more challenging to understand

the execution flow, even if all sources are

available. This means that crash analysis

will always depend on vendor support.

Linux crash monitoring takes place

behind the scenes and its value may not

be immediately appreciated. In parallel

to the mission of getting the technical

parts in place, it is important to work

on raising awareness to the need and

benefits of the solution.

Results
Linux kernel crash infrastructure has

proven to be the single-most effective

framework for resolving core system

issues across our data centers. In the

past two years, we have reported more

than 70 unique cases of kernel crashes

to operating system vendors, unknown in

the IT industry beforehand. Many of the

LJ222-Oct2012.indd 82 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 83

resulting bug fixes were ported into the

mainline kernel branch.

More important, we see a clear

correlation between the kernel patching

derived from kernel crash analysis and

fixes and the overall stability of our

operational environment. We have

gradually observed an almost 10x

reduction in the incidence rate of kernel

crashes since we fully deployed the

solution globally in all our data centers.

The reduction in the number of

crashes directly translates into higher

availability of compute resources, as

well as accurate future prediction into

capacity growth against environment

stability. We are capable of quantifying

the control factor as we possess the

tools to detect, assess and resolve

critical problems immediately.

Discussion
The concept of the Linux kernel crash

infrastructure usually raises a number

of interesting questions related to

its functionality and wider impact.

In this discussion, we’ll try to answer

these questions:

■ Why not let vendors handle the

problem entirely on their own; after

all, they provide all the support?

■ What is the monetary return of the

crash infrastructure solution?

■ Is there any impact of this solution

outside your company?

We are aware of the fact that our

computer environment is unique, both

in its size, scope and setup. However, as

technology leaders and early adopters,

we are usually among the first operating

system users to discover core problems

in the kernel.

Therefore, we cannot depend solely

on vendor solutions for managing our

environment. Most operating system

vendors do not have the necessary

resources to replicate a large percentage

of various system bugs that we

encounter, and they rely on our help

to troubleshoot them. Having the right

tools and proper expertise makes the

task easier and faster.

Another question that is often asked is:

In the past two years, we have reported more than 70
unique cases of kernel crashes to operating system
vendors, unknown in the IT industry beforehand.

LJ222-Oct2012.indd 83 9/18/12 11:45 AM

http://www.linuxjournal.com

84 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Automated Linux Kernel Crash Infrastructure

how much money is a kernel crash worth?

In the past year alone, we handled

approximately 30 different crash types,

each of which had the potential of

affecting the entire installation base.

With the theoretical incidence rate of as

little as 0.05 per crash reason, a typical

data center with 10,000 hosts would

encounter some 500 crashes each time

a new critical bug is discovered. This

translates into roughly 15,000 crash

events annually.

If we assume that no customer

productivity is lost because of the

kernel crashes, which is almost never

the case, and an average downtime

of only one hour, an uncontrolled

environment with the install base of

10,000 machines would suffer some

15,000 machine hours lost every year.

However, if the kernel crashes are left

unresolved, the entire install base could

potentially be impacted.

A fully automated and proactive Linux

kernel crash infrastructure allows us not

only to save machines from crashing,

but it also enables us to have new

capabilities and features that otherwise

could not have been used because of

the existing bugs.

Last but not the least, the positive

impact of our crash infrastructure goes

beyond the confines of our company.

Fixes in the kernel resulting from our

reports are sometimes ported into

existing and new releases of various

operating systems and sometimes even

into the mainline kernel. Our work

directly impacts the quality of Linux, as

a whole, worldwide.

Conclusion
Linux kernel crash infrastructure is a

proven, effective and comprehensive

solution for maintaining full situational

awareness of our compute environment.

The benefits are many: we improve the

stability by working with vendors on

resolving critical bugs; we maximize

uptime, and we gain additional expertise

and cooperation between our sites.

We maintain a hassle-free, automated

and almost fully self-governed kernel

health cycle. Most important, we are in

control of our systems. This is evident

in the 10x reduction in the crash

incidence rate since the full deployment

began. We thoroughly recommend its

integral use in large, critical time-to-

market data centers.■

Igor Ljubuncic is a Linux Systems Expert, with primary

focus on kernel optimization and bug-finding.

Raphael Sack is a database and Web solutions developer

and a Linux system administrator.

LJ222-Oct2012.indd 84 9/18/12 11:45 AM

http://www.linuxjournal.com

LJ222-Oct2012.indd 85 9/18/12 11:45 AM

http://www.ZendCon.com

86 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

INDEPTH
Raising the Bar
for Linux Trainers
You can write shell scripts in mere seconds, hack the kernel
in your sleep and perform other feats of Linux wizardry—but
can you teach?

DARREN DOUGLAS

I love teaching Linux. Whether

teaching introductory-level courses

to people new to Linux or teaching

advanced best-practices courses

to experienced administrators, I

hear common feedback. Most Linux

instructors are good, but we can be

better. There are common problems

with Linux training that most of us

have experienced or wil l experience

at some point. I’m convinced that

there also are common solutions.

After hundreds of hours spent in

the classroom, there are a few key

concepts I’m convinced will make

committed Linux instructors as

awesome as the operating system

we teach.

If you’re interested in taking your

practical experience to the classroom

or if you already have a role as a

mentor or teacher, here are some

keys that will help you improve your

students’ experience.

Key #1: Treat the Student Like
a Professional Client
Linux is no longer a technology for

counterculture geeks and hackers

working in their parents’ basements.

Linux professionals, including trainers,

must present themselves as real pros.

That means taking an interest in all

students’ successes and engaging them

as cl ients. I do consulting as well as

training. No good consultant would

think about walking into a client’s site,

opening a terminal and typing away

at random. First, the consultant asks

questions about the client’s objectives,

understands the environment and

only then starts working. A good

LJ222-Oct2012.indd 86 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 87

INDEPTH

trainer approaches the classroom the

same way. We don’t just open the

book, fire up the sl ides and go through

the motions. Instead, we focus on

the students.

Focusing on students means

understanding what they need from

the course. Why are the students in

the course? What are their learning

objectives? How can they leave

feeling that the course was a valuable

expenditure of their time and money?

A good instructor finds the answers to

those questions and then tailors the

course to fulfill the students’ expectations.

A trainer also has to look inward. A

real professional trainer never appears

condescending or detached. The pro

trainer fosters an inviting classroom

environment that makes all students

relaxed and comfortable to ask

questions. We’ve all experienced bad

training. The instructor was perhaps

more concerned with showing how

much he or she knew rather than with

transferring the knowledge. Or, the

trainer might have just read sl ides (in

monotone...“Bueller, Bueller, Bueller”)

for hours.

I’ve been the student in those

situations. In either case, the instructor

has forgotten a key element of the

classroom experience. What he or

she has forgotten is that a classroom

environment is designed to be

interactive. A good instructor expects

to have a conversation about the topic

with the students.

Key #2: Teach Concepts,
Not Commands
An increasing number of enterprises

are adopting Linux-based technologies

for mission-critical business functions.

As they do so, more existing system

administrators are transitioning from

other operating systems like Windows

to Linux. With a growing number of

students coming from Windows system

administration, we have existing

knowledge on which to build. We

should use that to our advantage to

help students understand the Linux-

specific applications of standard system

administration practices. If we focus on

the common ground we already have

with the students who have professional

IT experience, we automatically become

better instructors.

One of the biggest mistakes made

in Linux training is just teaching

l ists of common commands and

options. Teaching that way is boring

and ineffective. Teach concepts. An

experienced Windows admin knows

how to manage users, modify fi le

permissions and schedule automated

jobs. So, instead of jumping directly to

LJ222-Oct2012.indd 87 9/18/12 11:45 AM

http://www.linuxjournal.com

88 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

INDEPTH

describing useradd, chmod and cron,

speak first about the common concepts

involved in accomplishing these tasks

in either operating system. Help the

students understand the philosophy

behind the way things are done in

Linux. Only after those discussions,

introduce the commands.

The command line is very intimidating

for Linux newbies. What makes any

subject less intimidating to learn is

understanding the patterns involved.

By “patterns”, I mean the common

concepts that carry throughout any

application of a particular topic. For

instance, most good Linux courseware

starts with an early module discussing

the command-option-argument pattern

of the Linux command line. A good

instructor helps the students apply that

to the lab environment. Let’s take that

idea a step further.

For instance, several potentially

destructive fi le management commands

(cp rm , mv) have an option to make

them less destructive. The commands

have a common option to make them

prompt the user before completing

a destructive action. The option is

-i . Of course, many of us who have

used Linux for many years take this

simple fact for granted without ever

wondering why -i is the option

used. Take a look at the man page. It

states that -i puts the command in

“interactive” mode—thus the prompt.

You might ask, “Why does it

matter?” In this example, it matters,

because if we’re teaching a class

of people who are used to being

prompted before a fi le deletion takes

place, they wil l be wondering, “How

can I make this command prompt me

in case I make a mistake?” By knowing

what the -i option stands for, the

instructor can explain the reason or

pattern for the -i option’s behavior.

When you know why -i was chosen

for an option, it becomes much easier

to remember.

The same can be true of using -v to

make commands verbose, -h to make

fi le sizes human-readable and so on.

Explain what the option means and

how to use it, and provide examples

as patterns for students to imitate.

Demonstrating and explaining the

pattern to common command syntax

is the first step in transforming the

command line. A good instructor

A good instructor transforms an intimidating black
terminal with a blinking cursor into a powerful ally
of the Linux newbie.

LJ222-Oct2012.indd 88 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 89

INDEPTH

transforms an intimidating black

terminal with a blinking cursor into a

powerful ally of the Linux newbie.

Key #3: Bring Real-World
Experience to the Classroom
There is a disturbing practice in

mainstream IT training. For many

technology fields, certification equals

experience or know-how—not so in

our world. Certification is not how we

measure experience in the Linux world.

Linux experience is measured more by

how many distributions a person can

fluently administer, whether or not

they are intimidated when they have to

compile a binary from source, or if they

are able to script repetitive tasks easily.

My point is, it is not uncommon

to see trainers for many of the large

training companies have a very long

list of industry certifications ranging

from basic desktop troubleshooting

to “security” certifications. Adding

a Linux certification to a long list of

certifications does not make people

experts, nor does it make them

qualified to teach. It simply means

they were able to pass another test.

Even worse, if the exam does not have

any practical portion where examinees

are challenged to accomplish various

administration tasks, it proves only that

they are good test-takers.

Real work experience matters more

than passing any exam. Although I

carry a number of Linux certifications

and teach many certification classes,

my ability to answer the real-world

questions my students have comes

from my experience in production

environments. Being able to turn slides

about scripting into an interesting

dialogue about working efficiently in

Linux comes from long nights in the

data center. Explaining how to use

Linux in real development projects

comes from working in development

labs using Linux.

If you intend to begin teaching

Linux, please don’t try to know

everything required to pass some

certification. Instead, become more

of whatever you already are. By that,

I mean if you are the person who can

write complicated iptables chains on

the fly, think about how you can teach

that to others. Perhaps you’re the

“go-to” geek for resizing logical

volumes or attaching SAN storage.

Figure out how to take the experience

that has made you valuable in

production environments and transfer

it to the training center. Sure, there is a

necessity for an instructor to be familiar

with all the topics of a course; however,

the value of the instructor comes from

his or her depth in a few topics upon

which he or she can expand and make a

real impact for the student.

LJ222-Oct2012.indd 89 9/18/12 11:45 AM

http://www.linuxjournal.com

90 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

INDEPTH

Key #4: Keep Your Knowledge
Current
I stepped away from Linux system

administration and training for a while

to pursue a different business and

investment opportunity. When I came

back, a few things had changed. Due

to package management uti l it ies l ike

apt and yum, dependency hell was a

thing of the past for the average user.

All the previous courses I taught before

my hiatus focused on rpm or dpkg,

and I got quite good at showing

students how to resolve dependencies.

Now, my experience was outdated and

not as useful.

This taught me a valuable lesson. Don’t

let the only time you touch Linux be

when you’re in the classroom. Don’t wait

until you’re preparing to teach a course.

Stay current. The single best way to stay

current is to have real work to do. So

look for some clients, large or small, that

need system administration help. Build a

sandbox out of an old PC or a VPS. Try to

learn a new programming language on a

Linux server. Do whatever it takes to keep

your experience fresh.

The result is that you’ll understand

what students are going through in the

real world. For instance, I discovered

the change to resolve.conf management

in Ubuntu 12.04 the hard way. (Sure,

I could have read release notes, but

who has time for that?) After editing

the resolv.conf file several times with

no success, I finally spent some time

reading how to use the resolvconf utility.

Now, instead of looking at students with

a blank stare when they mention this

change in the most recent LTS version of

Ubuntu, I can speak intelligently about

the topic.

Am I up to date on every distribution

and every change? Obviously not, but

I’m not in the dark either. According

to students, training managers and

several of my consulting clients, that is

what makes a good trainer great. They

stay active the field. Sure, you could

spend all of your time in the classroom,

make good money and keep students

relatively happy. But, you’ll feel more

knowledgeable and be better able to

accomplish the previous three keys if

you spend time practicing your craft and

staying current.

Never Forget Where You Started
Think back to the first time you sat down

at a Linux or UNIX console. Mine was

around 1996 in a summer class at a local

college—IRIX on an SGI Onyx. I found

the unfamiliar interface intimidating. I’ve

now come to love the terminal.

If you felt any measure of trepidation

your first time in a Linux or UNIX

classroom, remember that when you

step in the room to teach others. Be

sympathetic. Make the environment

LJ222-Oct2012.indd 90 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 91

INDEPTH

relaxed. People don’t learn well when

they’re fearful. Crack a few jokes (not

too many, you’re not a clown). Bring

in some donuts mid-week. Tell one or

(an absolute maximum of) two personal

stories. Become a real person to the

students. Let them see you as a new

friend who sincerely wants them to

be comfortable in the new operating

environment. It helps tremendously if

that’s how you really feel.

Think back to the worst training

experience you ever had in Linux or UNIX.

Mine was in 2002 at my first job out of

college—IBM Systems Group storage

development labs. An engineer I worked

with had me type long commands with

multiple options, redirectors and pipes...

with no explanation of what each fancy

symbol did. I did my best to write each

one down. I spent hours frustrated,

not understanding why I was typing

these long commands and experiencing

unnecessary failure.

If you’ve ever asked the question,

“What does that command do?” or “Why

must that option come last?”, and you

didn’t get a clear answer, remember that

when your students ask you questions.

Better yet, be clear enough in helping

them understand concepts so they don’t

need to ask. If teaching a complicated

topic, walk them through each step and

help them understand what is being done

and why. Don’t move on until you’re

satisfied that a majority of the students

understand. If the majority are still

confused, you didn’t explain the concepts

well enough and you’re not done.

Think back to the most tedious,

irritating, monotonous task you ever

did only to find out later that it could

have been made much easier if you had

been properly trained. Mine was working

with another engineer who wrote down

60–100 worldwide port names (similar

to a MAC address) for several external

storage devices then typed each in

manually when configuring LVM on

HP-UX. He typed a command to get

New on
LinuxJournal.com,
the White Paper

Library

www.linuxjournal.com/whitepapers

LJ222-Oct2012.indd 91 9/18/12 11:45 AM

http://www.linuxjournal.com/whitepapers

92 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

INDEPTH

the code from the system, wrote each

16-digit hexadecimal code down on a

piece of paper, and then typed back in

manually as an argument to another

command. If any mistake was made,

the command took 1–2 minutes to

alert the user to the error.

If you ever realized that the right

training could have made you love

scripting and learning new Linux utilities

after it was too late, and you wasted

eight hours of your life doing something

the hard way, make that experience

different for your students. Many of

them already work hard. Help them

work smart too.

Instead of manually typing in each

16-digit hexadecimal code for each of

the LVM configurations I mentioned

earlier, a Marine taught me better. He

was former special forces and a disability

caused him to return to a lab job. His

military training had taught him to work

efficiently and not waste effort. When he

showed me the right way to accomplish

the task with less effort and less human

error, I was amazed. It was the first time

I saw cut, grep and a for loop used in

a practical way. He made me love *NIX.

Instantly, I realized how to teach other

people. Work on real problems. Show

real solutions. Teach concepts.

By engaging the students, teaching

concepts and keeping our real-world

knowledge fresh, we can be better

professionals and better trainers. So if

you’ve been thinking about becoming a

trainer or you already have some training

responsibilities at your job, follow

the keys above. You’ll provide quality

experiences to those you train and save

the next generation of Linux disciples the

pain many of us have experienced.■

Darren Douglas has been a Linux admin,

advocate and trainer for ten years. He is

Principal Consultant at Synse Solutions.

Only his wife Joanah makes him happier than

the shell prompt. Darren can be reached at

darren@synsesolutions.com, and you can

check http://www.synsesolutions.com to see

what he’s been working on.

If you ever realized that the right training could
have made you love scripting and learning new
Linux utilities after it was too late, and you
wasted eight hours of your life doing something
the hard way, make that experience different
for your students.

LJ222-Oct2012.indd 92 9/18/12 11:45 AM

http://www.linuxjournal.com
mailto:darren@synsesolutions.com
http://www.synsesolutions.com

LJ222-Oct2012.indd 93 9/18/12 11:45 AM

http://strataconf.com

94 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

INDEPTH

Sacrifice a
Canary upon the
Stack of the Gods:
on Canaries,
Coal Mines and
Stack Sanity
This article is a basic introduction to program execution stacks
and how they become corrupted, and it discusses a means
of detecting such corruption. GCC provides a compile-time
solution for stack corruption detection and a set of protection
mechanisms available through an additional GCC plugin.

MATT DAVIS

The Canary, or Serinus canaria, is

a species of bird that was bred for

captivity as early as the 17th century.

These tiny and colorful (Tweety-

bird-esque) birds are well known for

domestication and singing abil it ies

(http://en.wikipedia.org/wiki/
Domestic_Canary). To their dismay,

however, these l ittle feathered-friends

often found themselves victims, acting

as primitive detectors of methane,

carbon monoxide and other toxic gases

that lurk in the dark depths of coal

mines (http://en.wikipedia.org/wiki/
Animal_sentinels).

Like their sacrificial brethren, a stack

canary lies within the dark depths of a

stack frame during execution time of a

LJ222-Oct2012.indd 94 9/18/12 11:45 AM

http://www.linuxjournal.com
http://en.wikipedia.org/wiki/Domestic_Canary
http://en.wikipedia.org/wiki/Domestic_Canary
http://en.wikipedia.org/wiki/Animal_sentinels
http://en.wikipedia.org/wiki/Animal_sentinels

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 95

INDEPTH

program. When a function is executed,

the canary (also known as cookie,

http://en.wikibooks.org/wiki/
Reverse_Engineering/Common_Solutions)

is placed on the stack, and just before

the function returns, it checks to ensure

that the canary value has not been

modified. If the canary value appears to

have been modified (for example, the

canary has been stepped on, crushed,

slaughtered and so on), the program can

terminate prematurely, such as with an

abort(). Such a death of our digital

fowl suggests that the stack has been

modified/corrupted. A premature program

termination—for example, abort()—

prevents the executable from acting on

a corrupted stack, which could be the

result of bad programming or a sign of an

intentional buffer overflow from a user of

malicious intent (getting own3d). If the

program did continue and operate on a

corrupted stack, it might crash, execute

shell code or continue executing but

operating on bad data. The latter case of

continuing to execute without apparent

fault is often difficult to debug.

Personally, I am of the belief that it is

best for a program to crash or terminate

early, rather than be misleading and

produce invalid output. In this article,

I pay homage to the feathered martyrs

and investigate the stack protector

mechanism in GCC, as well as look at

a few other implementations presented

in SatanicCanary, a GCC plugin that

instruments a polymorphic stack

canary—a canary on ’roids.

Stacks, Flapjacks and Hungry
Canaries
When functions are called during the

runtime of a binary, the data for each

function exists on the program’s stack.

The stack grows or shrinks based on the

function being executed. And, as I am

sure you are aware, a function can call

other functions, which can call other

functions, and so on and on. And a

function can, of course, be recursive and

call itself. Well, this path from function

caller to callee is termed a call-graph.

How, at runtime, is a function to know to

whom to return control? This caller-to-

callee path can be envisioned as a stack

data structure. And, in fact, this stack of

function call data, stack frames, resides

in the process’ stack segment of memory.

I am sure most computer science

students have regurgitated the vision of

a stack being a series of pancakes or as

a tower of plates at a buffet. Well, on

this stack is the return address and the

arguments to the caller, as well as local

variables (automatic variables) for the

function being called. The stack grows

as a function calls a function, which calls

another function and so on. When the

callee finishes its work, it pops the stack,

and the caller is returned control. As you

LJ222-Oct2012.indd 95 9/18/12 11:45 AM

http://en.wikibooks.org/wiki/Reverse_Engineering/Common_Solutions
http://en.wikibooks.org/wiki/Reverse_Engineering/Common_Solutions
http://www.linuxjournal.com

96 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

INDEPTH

can probably imagine, the stack frame

holds quite a bit of program integrity.

If a frame is compromised, the return

address, where the callee jumps back into

the caller function, can be overridden.

Because the memory area of a stack

in the typical x86 calling convention is

marked as executable, arbitrary code

can be written to execute in place of the

return address. This is a stack-smash or

stack-overflow—whatever you want to

call it. These can be intentional (exploit

and shell code) or accidental (bad

programming). Either way, protecting the

stack from these vulnerabilities is key for

assuring stack sanity and program safety.

Stack Frames and Calling
Conventions
As I suggested previously, there is a

bit of black magic that occurs when

a program runs and calls functions—

mainly, the magic of returning to the

call site in the caller function, so that

the program can continue on. Well,

the magic is pretty simple: a program

operates on a stack of call frames, also

known as stack frames. These frames

are pushed onto the program’s stack

memory segment each time a function

is called. When the function completes,

it pops the data consisting of the frame

off the stack, and the caller gets control

back, by jumping to the return address

that was pushed onto the stack as the

frame was being constructed.

In this article, I focus on a simple x86

C calling convention, cdecl, but other

architectures can provide a playground

for other calling conventions. For

instance, if the CPU has more registers,

arguments to that function can be

passed in registers that make their data

immediately available to the caller, rather

than pushing and popping arguments

from the stack. Further, a calling

convention also can vary for different

languages. The compiler is responsible

for actually generating the function calls

and doing all of that magic; thus, how

a function is called is based on what the

compiler decides to do. In addition, a

compiler can optimize away arguments

and use various hardware features of the

underlying architecture to accomplish a

function call.

In fact, GCC employs a variety of

calling conventions. For a 64-bit Intel

x86 architecture, the compiler will pass

arguments by using registers instead of

pushing to the stack, à la the System

V AMD64 ABI. This is similar to the

As you can probably imagine, the stack frame
holds quite a bit of program integrity.

LJ222-Oct2012.indd 96 9/18/12 11:45 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 97

INDEPTH

non-standardized “fastcall” calling

convention. The 32-bit version of GCC

for x86 uses a fastcall convention. The

intricacies of these various conventions

do not matter for our purposes here.

Rather, the important piece to remember

is a calling convention is a means of how

a function is called, how the arguments

are passed to it and how that callee

function returns back to the caller.

The simple cdecl x86 call ing

convention places all return values

from a function into the EAX/RAX

register (32- or 64-bit, respectively).

If you really want to explore other

call ing conventions, Wikipedia has

some great articles explaining various

calling conventions in more depth (see

http://en.wikipedia.org/wiki/X86_calling_
conventions and http://en.wikipedia.org/
wiki/Calling_convention).

It’s probably easier to imagine a stack

frame if I provide an example. Here goes:

int foo(int x, int y)

{

 int z = bar(x, y);

 return x + y + z;

}

Let’s assume that the program

is compiled using the cdecl calling

convention on an x86 architecture and

is executing the “foo” function. In this

case, the current frame on top of the

stack is foo. Below the foo frame is

foo’s caller. And it’s turtles all the way

down, until the stack hits main’s frame.

Anyway, foo’s frame consists of both its

parameters and local variables, and it

looks like this:

bottom-of-stack --> [y, x, RIP, caller's stack base pointer, z]

RIP is the instruction pointer register,

and it points to the next instruction to

be executed; therefore, that value is

pushed onto the stack when a function is

called, and that value will be the return

point when the callee returns. Thus, if

the stack is never corrupted, the return

address will be valid. There are two

more registers to be concerned with,

the RBP and RSP (EBP and ESP on 32-

bit x86 architectures). The former is the

stack base pointer, and it represents the

start of a new stack frame. RSP is the

top of the stack. Because the x86 stack

grows downward, meaning that as things

are pushed onto it, the address those

things live at approaches the address

of zero. So, the RSP always should be

at an address smaller than RBP. When

the function being called has been

jumped to, the first thing that function

(the callee) does is sets up the RBP and

RSP. It saves the previous stack frame

base pointer by pushing it on the stack

(the caller’s stack base pointer in the

example above). The RBP is then updated

LJ222-Oct2012.indd 97 9/18/12 11:45 AM

http://en.wikipedia.org/wiki/X86_calling_conventions
http://en.wikipedia.org/wiki/Calling_convention
http://en.wikipedia.org/wiki/X86_calling_conventions
http://en.wikipedia.org/wiki/Calling_convention
http://www.linuxjournal.com

98 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

INDEPTH

to reflect the current frame, so it sets

the current top of the stack to the base

pointer. And the stack is then increased

to hold the local variables. To increase

the stack, the function subtracts from the

base pointer (remember the stack grows

downward toward zero). So the range

from RBP to RSP contains the address of

the previous frame’s base pointer and

the current function’s local variables. By

adding an offset to the function’s current

base pointer, it can access any arguments

passed to it. See http://unixwiz.net/
techtips/win32-callconv-asm.html
for more detail and lovely pictures.

Returning to our example, when the

calling function calls foo, the cdecl

convention first will push the arguments

given to foo, such as foo(666, 667)

from right to left. The construction of

the frame begins with 667 and 666, with

666 on the top. Then, foo is called. By

calling foo, via a “call” instruction, the

return address where foo is to return to

is pushed on the stack. This address is

actually that of the RIP, since it points to

the next instruction to execute, which

just happens to be where foo will return

control to. The RIP then is magically

changed (a call instruction also jumps to

the address of foo), and the foo function

begins to execute. Because foo now has

control, the first thing it does is sets up

its stack frame. To do this, foo pushes the

base pointer and grows the stack enough

for any local variables (in this case z).

Inside foo, the stack now looks like this,

where top is the stack pointer and points

to the top of the stack, z:

--> top [z, base pointer, call return, 666, 667]

The following is assembly output (from

gdb) showing the stack frame for the

example function above, “foo”:

0x00000000004004a7 <+0>: push %rbp

0x00000000004004a8 <+1>: mov %rsp,%rbp

0x00000000004004ab <+4>: sub $0x18,%rsp

As you can see, the first line saves the

caller’s base-stack pointer by pushing it

on top of the stack. Next, the top of the

caller’s stack is set to the bottom/base of

foo’s stack frame. Then, the stack frame

is increased by 0x18 (24) bytes, which is

enough room to hold the local variables.

This can hold three words, or more than

enough to hold the three four-byte local

variables x, y, z.

Why does this stack frame concern

us? Well, the point of return (the RIP

that was pushed onto the stack during

the function call) is on that puppy. If

somehow the stack is flooded with data,

it is possible to overwrite the RIP and

the function will jump to a bad address

or possibly to the address of input data.

This input data might be data passed

from the user, as program input, and it

LJ222-Oct2012.indd 98 9/18/12 11:46 AM

http://www.linuxjournal.com
http://unixwiz.net/techtips/win32-callconv-asm.html
http://unixwiz.net/techtips/win32-callconv-asm.html

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 99

INDEPTH

might contain code that can do some

pretty devious things (such as shell

code). If the program is, say, a server

and running under root privileges, any

malicious user might be able to pass

instructions as user input data to the

server. The server might have a poorly

written function that then might become

victim of the user input data. If the data

was formatted properly and of the right

length, the RIP can be overridden, and

instead of returning to the proper caller,

the user can gain control. Consider the

case where the evil user passes code as

input, and this code (shell code) contains

instructions to spawn another shell (for

example, bash). Well, because in our

scenario the dæmon, server, program,

whatever, is running with root privileges,

any commands it executes (even if they

were from an angry prepubescent user

who hates his daddy) will get executed

as root; thus, the emo-black-hat user can

gain a shell with root privileges. Crikey!

This is when our little buddy comes

into play. The whole purpose of a stack

canary (also known as a cookie) is to

sit its feathered little butt on the stack

and look pretty. If the canary remains

intact from function start to function

return (prologue to epilogue), chances

are the stack was never overwritten by

information, the return address is sane,

and it has not been compromised by

error or malicious intent. See, we like

canaries, they are our friends.

Serinus canaria digitalus
The basic idea of the canary is to be a

sacrificial beast sitting within the stack

frame, and if this canary value is ever

modified, that’s a sign that the stack has

been corrupted. There are a variety of

these little sacrificial creatures. The first

is the basic, static value canary. These are

the easiest to implement from a compiler

perspective and probably the easiest to

defeat. When the compiler inserts code

to summon the canary data into the

stack frame, which will occur at runtime

during function prologue as the stack

frame is being constructed, the value

inserted is constant. This makes checking

the value upon function epilogue/return

quite easy. Because the compiler inserts

a known value at compile time, the

checking routine just checks the canary

data to see if it matches. Of course, if

malware authors know what this value is,

they can craft their exploit code carefully

If the program is, say, a server and running under
root privileges, any malicious user might be able to
pass instructions as user input data to the server.

LJ222-Oct2012.indd 99 9/18/12 11:46 AM

http://www.linuxjournal.com

100 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

INDEPTH

to overwrite the RIP and the canary. A

disassemble of the program will reveal

the canary value.

Another type of canary is the

terminator canary (shudders). This

canary is just a value containing a

NULL or some other control character

typically used for terminating a string

(https://buildsecurityin.us-cert.gov/bsi/
articles/knowledge/coding/310-BSI.html).
Such a canary forces malware authors

to insert a termination character into

their malware source code. This means

if one of the string manipulation

functions (such as strcpy or strcat) is

being used to trigger the stack overflow

(corruption), it also might terminate

the malware shell code prematurely,

preventing the corruption from

compromising the return address.

Random canaries are another species.

These values can be decided upon at

either compile or runtime. If the compiler

chooses a random value, each function

might have a different canary value. The

check code, during function epilogue, is

easy to create, because the compiler is

inserting the value during compilation,

much like the static canary, except that

the value changes for each function and/

or for each compilation of the program.

Runtime random canaries are more tricky

to implement. The value set at prologue

must somehow be used to compare the

canary against during epilogue. There are

a variety of ways to accomplish this, such

as storing the random data somewhere

that both the prologue and epilogue

easily can re-create.

XOR canaries are used to encode data

(possibly random) against another piece

of data, such as the return address. These

canaries can protect the return address

directly, and if the return address and the

XOR’d canary value differ, a corruption

has been detected.

Stack Protector: the GCC
Species of Canary
A good example of a stack canary that

is common and out in the wild is that

which GCC provides, the Stack Protector.

This GCC feature can build canaries

and their corresponding validity check

into programs via the command-line

argument -fstack-protector. This

argument guards only certain functions,

and if -Wstack-protector also is

passed as an argument to GCC, those

functions not guarded will be noted by

a compiler warning. To enable the Stack

Protector on all functions, the argument

-fstack-protector-all can be

passed. The concept of this feature is

pretty simple. Upon function prologue,

a value is placed on the stack, and upon

prologue epilogue, just before the return

point, the canary value is checked to see

if it has been corrupted/changed. So, let’s

peek at what this little sacrificial beast

LJ222-Oct2012.indd 100 9/18/12 11:46 AM

http://www.linuxjournal.com
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/310-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/310-BSI.html

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 101

INDEPTH

looks like. The following is the stack

frame (as GDB output) for the “foo”

function when compiled with GCC as:

'gcc -g3 test.c -fstack-protector-all'

0x0000000000400514 <+0>: push %rbp

0x0000000000400515 <+1>: mov %rsp,%rbp

0x0000000000400518 <+4>: sub $0x20,%rsp

0x000000000040051c <+8>: mov %edi,-0x14(%rbp)

0x000000000040051f <+11>: mov %esi,-0x18(%rbp)

0x0000000000400522 <+14>: mov %fs:0x28,%rax

0x000000000040052b <+23>: mov %rax,-0x8(%rbp)

0x000000000040052f <+27>: xor %eax,%eax

Upon function prologue, the stack

frame is set up as normal; however, the

stack is increased by 0x20 (32bytes)

instead of 24. This is enough stack space

to hold four one-word values (the local

versions of x, y, z and a stack canary). Of

course, the neat thing about canaries is

how the value is chosen. What does the

GCC species of canary look like? Well,

this critter is generated at offset +14 and

+23 in the function. The word of data

located at 0x28 (byte 40) from the start

of the fs (an extra segment) of memory

is snagged and copied into the rax

register. The FS segment is an additional

x86 register used for XXXX. This canary

value is stored 8 bytes from the base

of the stack and will be verified that it

has not been changed just before the

function returns.

Before control is returned to the

caller and the stack frame popped, the

additional code injected by GCC for

stack protection, the actual safety canary

mechanism, must be executed to check

for any stack corruption. The assembly

dump for the case above in the epilogue

of foo looks like this:

0x0000000000400589 <+58>: mov -0x8(%rbp),%rdx

0x000000000040058d <+62>: xor %fs:0x28,%rdx

0x0000000000400596 <+71>: je 0x40059d <foo+78>

0x0000000000400598 <+73>: callq 0x400410 <_ _stack_chk_fail@plt>

0x000000000040059d <+78>: leaveq

0x000000000040059e <+79>: retq

As the stack canary was created in the

function prologue, the function epilogue

essentially operates in reverse, by

pulling the canary off the stack and then

comparing it to what is 40 bytes from the

start of the FS segment. If the values are

equal, the canary is unchanged, and the

function returns as normal. If the canary

differs from where the value the canary

was created from, _ _stack_chk_fail

is called, and the program terminates

with an error message:

*** buffer overflow detected ***: ./test terminated

The leaveq instruction cleans up

the stack, performing an addition on

the base pointer restoring it to before

we increased the stack size (via the

subtraction operation at the <+4> offset

LJ222-Oct2012.indd 101 9/18/12 11:46 AM

http://www.linuxjournal.com

102 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

INDEPTH

l isted above). retq then pops the

next value off the stack (the return

address from the caller) and then jumps

to that address.

Of course, the main issue with stack

canaries is that they are not zero-sum

when it comes to efficiency. While the

above canary is relatively cheap on

processing, it still adds a few instructions.

Further, this also increases the code size

of the binary—albeit, it’s a very small

addition, but I felt such “negative”

properties of canaries deserve some

mention. The other issue with canaries

is that they are not 100% effective. If

malware authors know what the value of

the canary being used in the program will

be, they can craft their malware in just the

right fashion so that their code overrides

the stack, but where the canary value

is, they copy the same canary value the

program expects. This is not necessarily

an easy task to accomplish, but it is not

impossible. Nonetheless, stack canaries

still are useful for mere corruption

detection and malware detection. Fly on

good buddy, flap hard and true.

Birds of Another Feather
So, where do we go from here? Well, I

decided to write my own family of stack

canaries that operate in a slightly different

manner—the idea being to have different

canaries inserted into the functions of the

program, somewhat of a compile-time

metamorphic effort. Further, I also

wanted to create a species of canary, a

metamorphic canary, that changes each

time a function is called. This new breed

is called SatanicCanary and is available as

a GCC plugin, specifically for x86 64-bit

architectures (https://github.com/
enferex/sataniccanary).

To become fertile and produce my

own flavor of canaries, I decided to

create a GCC plugin. The plugin operates

toward the end of compilation during

the RTL (register transfer language)

passes (http://gcc.gnu.org/onlinedocs/
gccint). RTL is GCC’s somewhat

architecture-independent representation

of a machine. RTL code is driven against

a machine description (md) for each

platform (such as ARM, x86 or MIPS). The

RTL code must match a template in the

machine description for the platform being

compiled. If there is no match for the RTL

code in the template, the architecture will

not produce the proper code for the RTL,

and GCC will leave you with an error.

Now, SatanicCanary is pretty simple

as a GCC RTL plugin. The main

execution function is called after the

pro_and_epilogue RTL pass. From

that point, the plugin can look at

each RTL expression that makes up

the function. I insert the canary in the

prologue, and I check the canary in

the epilogue portion of the function.

It’s pretty simple. The most useful

LJ222-Oct2012.indd 102 9/18/12 11:46 AM

http://www.linuxjournal.com
https://github.com/enferex/sataniccanary
https://github.com/enferex/sataniccanary
http://gcc.gnu.org/onlinedocs/gccint
http://gcc.gnu.org/onlinedocs/gccint

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 103

INDEPTH

snippet of code from the SatanicCanary

plugin is summarized below and shows

the detection routine used to handle

inserting and checking the canary values:

for (insn=get_insns(); insn; insn=NEXT_INSN(insn))

 if (NOTE_P(insn) && (NOTE_KIND(insn) == NOTE_INSN_PROLOGUE_END))

 insert_canary();

 else if (NOTE_P(insn) && NOTE_KIND(insn) == NOTE_INSN_EPILOGUE_BEG)

 insert_canary_check();

This is a summary of what you will

find in the Git repository in the main

execution routine of the plugin. As stated,

we iterate through each RTL expression

(insn) and check to see if there is a NOTE

rtl expression. Notes do not get compiled

into the binary, but are just metadata

used during compilation. We look for the

prologue end and epilogue begin notes

and insert our canary data as necessary.

SatanicCanary provides three canaries

so far, the first (basic_canary) is just

your typical random number inserted at

compile time. Therefore, each function

can have a different canary value and

would require the malware author to be

lucky or to know beforehand what the

canary value is. Such data is not secret,

as you can disassemble the binary to

find it by looking at the canary check

code just before each function returns.

This does mean that each compilation

of the same binary will change, because

the random numbers will (should) be

different each compile.

The second canary created was more

or less something I was playing with,

and it is disabled because it is totally

insecure. This canary (tsc_canary) uses

the timestamp counter (TSC) value from

the processor as the canary value. This

will change each time the function is

called. So malware authors must be really

lucky if they want to kill this canary...

right? Well, no. The check routine, which

occurs at the epilogue phase, must know

this same value. By the time the epilogue

occurs, the TSC will have elapsed a few

cycles or more. To get the epilogue to

compare the canary TSC value, it must

have the same TSC to compare against.

Well, my solution was poor. I just called

the TSC (rdtsc) instruction and popped

the low 32 bits of it onto the stack twice,

figuring that the low 32 bits would

change more frequently than the higher

bits. This was just blatantly stupid, and

even the most amateur malware writers

can defeat this canary. Recall that I said

we pushed the TSC low 32 bits twice on

the stack: once was the canary value, and

the second push was for the epilogue to

check the canary value against. To defeat

this canary, just copy a string of all the

same value across the stack, and both

the canary and its check will pass the

comparison in the epilogue (as long as

they have the same data). This is merely

an anecdote to say that if you do place

LJ222-Oct2012.indd 103 9/18/12 11:46 AM

http://www.linuxjournal.com

104 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

INDEPTH

your canary check value on the stack,

encode it in some obscure way to prevent

malware from easily compromising its

integrity. Oh, and there is a better way

of doing this canary, but the anecdote of

the method I mentioned is important.

The third canary provided by

SatanicCanary is the TSC canary, but

the TSC is XOR’d against read-only data

(tscdata_canary). Because the read-only

data cannot be modified by the process,

without issuing a segmentation fault,

we encode our TSC against whatever

data is in the code segment of the binary.

In this case, we do store the canary

(TSC value) and the check (TSC xor

DATA) on the stack. Now the TSC and

TSC-xor-DATA are two different values.

Yes, I just went against what I said, and

I placed a canary-check value on the

stack. But it is encoded, so it differs from

the canary value; thus, a simple stack

overwrite will be defeated. This is what

I would like to call a polymorphic stack

canary. It changes each time the function

is called and is also encoded against data

that cannot be physically modified by the

process (read-only). It does require a few

ops: the encoding of TSC-xor-DATA and

the check that just xors the TSC-xor-DATA

and DATA. This should produce the TSC

original canary value.

SatanicCanary is just a proof of

concept. Work can be done to optimize

it, such as not protecting functions that

do not need to be protected, like those

that do not manipulate user input.

Conclusion
I hope this exposé into the world of stack

canaries was useful. I must say that I

did not by any means exhaust this area

of research. I owe a lot of kudos to the

grsecurity and PaX teams for their GCC

plugin for hardening the Linux kernel.

They also provide their own species of

canary/cookie (http://grsecurity.net
and http://pax.grsecurity.net). The

beauty of canaries is that they can be

as wicked and creative as you want, but

remember this is just one means of stack

protection. Non-executable stacks can

get around the malware execution from

stack problem; however, just because a

stack is not executable does not mean

it cannot get corrupted. Canaries help

to detect both corruption and potential

malware attempts at compromise. So

go forthwith my faithful canary-loving

friends, and sacrifice your sanity in the

name of binary integrity.■

Matt Davis is a software engineer on leave from his job in the

US to pursue a PhD from the computer science department at

the University of Melbourne, where he is focusing his hackery

toward the compiler field. He has been involved in both the

fields of modeling and simulation, as well as kernel-level

high-precision timing. His interests include coding, compilers,

kernels, listening to obnoxious music, consuming vast

quantities of coffee and being social with wulfpax and 757.

LJ222-Oct2012.indd 104 9/18/12 11:46 AM

http://www.linuxjournal.com
http://grsecurity.net
http://pax.grsecurity.net

Instant Access to Premium
Online Drupal Training

Instant access to hundreds of hours of Drupal

training with new videos added every week!

Learn from industry experts with real world

experience building high profile sites

Learn on the go wherever you are with apps

for iOS, Android & Roku

We also offer group accounts. Give your

whole team access at a discounted rate!

Learn about our latest video releases and

offers first by following us on Facebook and

Twitter (@drupalizeme)!

Go to http://drupalize.me and
get Drupalized today!

LJ222-Oct2012.indd 105 9/18/12 11:46 AM

http://drupalize.me

106 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

DOC SEARLS

106 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

Heavy Backup
Weather
Time for a new kind of top-down problem-solving.

A few weeks ago, our

neighborhood near Boston

experienced a 30-second

hurricane. The cause, meteorologists

said, was a microburst . Sometimes

cal led “an upside-down tornado”,

this one featured 70–80 mile-per-hour

winds and knocked down or shredded

hundreds of trees in an area about

one mile across. Our house shook and

our trees thrashed about, but we were

spared the worst. Many neighbors

weren’t so lucky. Not only were trees

gone, houses and cars smashed, and

l ines torn down, but power surged

through sections of the grid, blowing

out al l kinds of electr ical gear. One

guy I talked to lost his computers and

al l his backup drives. He was not a

happy man.

Later I noticed that two of my

external drives appeared to be dead.

The folks at the local repair shop said

the circuits were fr ied, but that the

drives were f ine. So they put the old

drives in new enclosures, and no data

was lost. St i l l , I was impressed that a

surge could spare two power supply

bricks (both convert ing 120v AC to

12v DC) while passing through and

ki l l ing the electronics in a hard drive,

but not the drives themselves. I ’d say

“go f igure”, but I ’d rather point to

related problems and opportunit ies

with that other weather system we

cal l “the cloud”—in part icular, i ts

boundless supply of relat ively secure

off-s ite backup.

That should be great for me,

and it ’s why I use Backblaze

(http://www.backblaze.com) as

much as I can, which isn’t enough.

For backup, you need hearty upstream

speeds, and the bandwidth providers

EOF

LJ222-Oct2012.indd 106 9/18/12 11:46 AM

http://www.linuxjournal.com
http://www.linuxjournal.com
http://www.backblaze.com

EOF

mostly don’t care. Their big business

is in “content delivery”, now: TV 2.0.

Typical is our home in California, which

has a cable connection from Cox. While

it provides up to 30Mbps downstream,

the upstream peaks at 4Mbp/s. Two

years ago, a Cox official told me the

downstream would eventually reach

100Mbp/s, and the upstream about

5Mbp/s. The Boston place has Verizon

FiOS, with 25Mbp/s upstream, which

is about as good as it gets in the US.

But we stay there less and less, and are

on the road more and more. In the last

week, I’ve jumped on the Net at two

hotels, two houses, three airports and

two universities. Connection speeds

were sub-minimal in the upstream

direction at all but one of those (my

own home-base university). Where I’m

sitting now, the upstream speed is about

200Kbp/s, over a slow DSL connection.

Meanwhile, I ’ve got about 120GB

of fresh photos on the hard drive of

my main laptop. I can copy those off

to an external drive, but those have

proved remarkably f laky, at least in

my own experience. I carry two with

me, just in case. If the bags they

l ive in are lost or stolen, I ’m out of

luck. More typical ly, they simply fai l .

I have well more than a dozen dead

hard drives in drawers and boxes at

my two homes. Some are old internal

ones. Most are old external ones. I

also have about ten old computers

as wel l . Much of my original Linux

Journal work (dating to the mid-

1990s) is on one of three boxes (one

Red Hat, two Debian) in my garage in

Cal ifornia. From the late 1980s, I have

another box f i l led with 3.5" f loppies

that no modern computer (or app) wil l

read. I could make a project out of

recovering everything and putting it in

one relat ively safe and durable place,

but that would take more t ime than

I ’m wil l ing to spend. What I ’d rather

do, r ight now, is point to the problem,

and to solutions that won’t happen

soon, but need to happen eventual ly.

The problem is televis ion, and it ’s

as old as the Web we know, which

dates back to the mid-1990s, when

WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 107

For backup, you need hearty upstream speeds, and
the bandwidth providers mostly don’t care. Their
big business is in “content delivery”, now: TV 2.0.

LJ222-Oct2012.indd 107 9/18/12 7:11 PM

http://www.linuxjournal.com

108 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM108 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

EOF

the f irst ISPs and graphical browsers

showed up. In March 1995, John Perry

Barlow wrote an essay t it led “Death

From Above”, which contained this

c lear-eyed prophesy:

The cable companies and Baby
Bells have a model for developing
the next phase of telecom
infrastructure which, were it
applied to the design of physical
superhighways, would have us
building them with about five
thousand lanes in one direction
and one lane in the other.

The only more manipulative
consumer architecture I ’ve seen
is the quarter mile of one-way
conveyor belt which sucks the
unsuspecting off the Str ip in
Vegas and drops them into
the digestive maze of Caesar’s
Palace Casino without any
return route at al l .

Nursing such gloomy metaphors

as these, I was encouraged
to receive an e-mail message
recently from Gordon Bell, one
of the Titans of computing,
with the cumbersome but
evocative subject: line,
“Building Cyberspace with
One-way Streets - Bad idea?
Conspiracy? Short-sightedness?
Incompetence?”

In it , he exhorted me and a
number of better qual if ied
digerati (including The Media
Lab’s Nicholas Negroponte and
Bel lcore Vice President and
telecom god Bob Lucky) to put
our “bodies in front of the
backhoes that are instal l ing
asymmetric networks that
s imply mimic cable TV”.

There fol lowed a passionate
argument against what appears
to be the default asymmetry
and the fol lowing vis ion of a
better future: “The dist inction

The problem is television, and it’s as old as
the Web we know, which dates back to the
mid-1990s, when the first ISPs and graphical
browsers showed up.

LJ222-Oct2012.indd 108 9/18/12 11:46 AM

http://www.linuxjournal.com
http://www.linuxjournal.com

and needs between homes and
off ices wil l disappear. Also,
there needn’t be places l ike
information warehouses that
are the sole video providers
into the network to form new
franchises and monopolies.
Every home should, in
principle, be capable of being
a producer or consumer. This
needs to be the goal of the
information highway.”

Unfortunately, as things stand,
it isn’t. At least it is in no way
the goal of the inst itutions
currently bui lding the more
overt ly commercial aspects of
it . Whether cable companies
or telcos, they see the NI I as
pay-per-view on steroids.

And here we are. Credit where

due: speeds have increased through

the years, and the asymmetry is less

lopsided than JPB’s highway metaphor

predicted. But for phone and cable

companies, which are now the only

ISP choices for most of us, upstream

is somewhere between afterthought

and back-burner. Most cable providers

are stopping at 5 or 10Mbp/s.

Verizon’s f iber-based FiOS is faster,

but recently the company said it

Advertiser Index
Thank you as always for supporting our

advertisers by buying their products!

ADVERTISER URL PAGE #

1&1 http://www.1and1.com 15

DrupalCamp atlanta https://www.drupalcampatlanta.com 75

EmaC, InC. http://www.emacinc.com 31

IXsystEms http://www.ixsystems.com 7

lullabot http://www.lullabot.com 105

mICroway, InC. http://www.microway.com 48, 49

sIlICon mEChanICs http://www.siliconmechanics.com 3

strata ConfErEnCE http://strataconf.com/stratany2012 93

usEnIX lIsa 2012 https://www.usenix.org/conference/lisa12 2

ZEnDCon 2012 http://www.zendcon.com 85

ATTENTION ADVERTISERS

The Linux Journal brand’s following has
grown to a monthly readership nearly
one million strong. Encompassing the
magazine, Web site, newsletters and
much more, Linux Journal offers the

ideal content environment to help you
reach your marketing objectives. For

more information, please visit
http://www.linuxjournal.com/advertising.

 WWW.LINUXJOURNAL.COM / OCTOBER 2012 / 109

LJ222-Oct2012.indd 109 9/18/12 11:46 AM

http://www.1and1.com
https://www.drupalcampatlanta.com
http://www.emacinc.com
http://www.ixsystems.com
http://www.lullabot.com
http://www.microway.com
http://www.siliconmechanics.com
http://strataconf.com/stratany2012
https://www.usenix.org/conference/lisa12
http://www.zendcon.com
http://www.linuxjournal.com/advertising
http://www.linuxjournal.com

110 / OCTOBER 2012 / WWW.LINUXJOURNAL.COM

EOF

would cease bui lding out FiOS

(http://www.washingtonpost.com/
blogs/post-tech/post/verizon-ends-
satellite-deal-fios-expansion-as-it-
partners-with-cable/2011/12/08/
gIQAGANrfO_blog.html) and focus

instead on its more profitable mobile

wireless business. It is also showing signs

of getting out of the landline phone

business, and landline-based DSL along

with it, leaving many communities with

the non-choice of a local cable company

with no direct competition. Worse,

Verizon appears to be doing this willfully

(http://www.dslreports.com/shownews/
Verizon-is-Willfully-Driving-DSL-
Users-Into-the-Arms-of-Cable-120473),

by partnering with cable companies

on a spectrum deal for wireless

(http://www.washingtonpost.com/
business/economy/verizon-wireless-
makes-marketing-airwave-deal-with-
three-cable-companies/2011/12/02/
gIQARvPYMO_story.html). How

likely is your local cable monopoly

(http://scrawford.net/blog/
the-cable-monopoly-very-short-
summary-of-185-pages/1631)

to improve its offerings without

competit ion?

So, what can be done?

I think the answer needs to come

from the top of the stack, rather

than the bottom. No use banging our

heads against the walls of obstinate

carr iers and their captive regulators.

Instead let’s start doing things with

each other, and with the cloud

services of the world, that do more

than stretch upstream sphincters

to the snapping point. We need to

show clear benefits to upstream

capacity that are at least as good

for business as the long-standing

carr ier ambit ion of moving televis ion

into their pipes. In the next EOF,

I ’ l l explore one approach to that.

Meanwhile, let’s blue-sky some

better cloud ideas than the ones

we’re reading about now.■

Doc Searls is Senior Editor of Linux Journal. He is also

a fellow with the Berkman Center for Internet and Society

at Harvard University and the Center for Information

Technology and Society at UC Santa Barbara.

But for phone and cable companies, which
are now the only ISP choices for most of us,
upstream is somewhere between afterthought
and back-burner.

LJ222-Oct2012.indd 110 9/18/12 11:46 AM

http://www.linuxjournal.com
http://www.washingtonpost.com/blogs/post-tech/post/verizon-ends-satellite-deal-fios-expansion-as-it-partners-with-cable/2011/12/08/gIQAGANrfO_blog.html
http://www.washingtonpost.com/blogs/post-tech/post/verizon-ends-satellite-deal-fios-expansion-as-it-partners-with-cable/2011/12/08/gIQAGANrfO_blog.html
http://www.washingtonpost.com/blogs/post-tech/post/verizon-ends-satellite-deal-fios-expansion-as-it-partners-with-cable/2011/12/08/gIQAGANrfO_blog.html
http://www.washingtonpost.com/blogs/post-tech/post/verizon-ends-satellite-deal-fios-expansion-as-it-partners-with-cable/2011/12/08/gIQAGANrfO_blog.html
http://www.washingtonpost.com/blogs/post-tech/post/verizon-ends-satellite-deal-fios-expansion-as-it-partners-with-cable/2011/12/08/gIQAGANrfO_blog.html
http://www.dslreports.com/shownews/Verizon-is-Willfully-Driving-DSL-Users-Into-the-Arms-of-Cable-120473
http://www.dslreports.com/shownews/Verizon-is-Willfully-Driving-DSL-Users-Into-the-Arms-of-Cable-120473
http://www.dslreports.com/shownews/Verizon-is-Willfully-Driving-DSL-Users-Into-the-Arms-of-Cable-120473
http://www.washingtonpost.com/business/economy/verizon-wireless-makes-marketing-airwave-deal-with-three-cable-companies/2011/12/02/gIQARvPYMO_story.html
http://www.washingtonpost.com/business/economy/verizon-wireless-makes-marketing-airwave-deal-with-three-cable-companies/2011/12/02/gIQARvPYMO_story.html
http://www.washingtonpost.com/business/economy/verizon-wireless-makes-marketing-airwave-deal-with-three-cable-companies/2011/12/02/gIQARvPYMO_story.html
http://www.washingtonpost.com/business/economy/verizon-wireless-makes-marketing-airwave-deal-with-three-cable-companies/2011/12/02/gIQARvPYMO_story.html
http://www.washingtonpost.com/business/economy/verizon-wireless-makes-marketing-airwave-deal-with-three-cable-companies/2011/12/02/gIQARvPYMO_story.html
http://scrawford.net/blog/the-cable-monopoly-very-short-summary-of-185-pages/1631
http://scrawford.net/blog/the-cable-monopoly-very-short-summary-of-185-pages/1631
http://scrawford.net/blog/the-cable-monopoly-very-short-summary-of-185-pages/1631

If You Use Linux, You Should Be
Reading LINUX JOURNAL

�� In-depth information
providing a full 360-
degree look at featured
topics relating to Linux

�� Tools, tips and tricks you
will use today as well as
relevant information for
the future

�� Advice and inspiration for
getting the most out of
your Linux system

�� Instructional how-tos will
save you time and money

Subscribe now for instant access!
For only $29.50 per year—less
than $2.50 per issue—you’ll have
access to Linux Journal each
month as a PDF, in ePub & Kindle
formats, on-line and through our
Android & iOS apps. Wherever you
go, Linux Journal goes with you.

SUBSCRIBE NOW AT:
WWW.LINUXJOURNAL.COM/SUBSCRIBE

™

LJ222-Oct2012.indd 111 9/18/12 11:47 AM

http://www.linuxjournal.com/subscribe

