
Since 1994: The Original Magazine of the Linux Community

™

NOVEMBER 2012 | ISSUE 223 | www.linuxjournal.com

Chrome | GlusterFS | Salt Stack | PostGIS | Sympy

PYTHON

SYMBOLIC
MATH
with
Python

CREATE
APPLICATIONS
inside the
Chrome Browser

TIPS AND
TRICKS
for People Stuck
with Windows

Extend
PostgreSQL’s

Capabilities with

PostGIS 2.0

INTRO TO
SALT STACK
the Python-Built
Configuration
Management System

Incorporate
Python into Your
Bash Workflow

Write Extensions
for GlusterFS
with Python

FREE TO

SUBSCRIBERS

EPUB, Kindle, Android, iPhone & iPad editions

Cover223-Final-banner.indd 1 10/24/12 3:45 PM

http://www.linuxjournal.com

Sponsored by:

in cooperation with LOPSA
Dec. 9–14, 2012

San Diego, CA

Join us for 6 days

of practical training

on topics including:

• Virtualization with VMWare

John Arrasjid, Wade Holmes,

David Hill, Ben Lin, and Mahesh

Rajani, VMware

• Using and Migrating to IPv6

Shumon Huque,

University of Pennsylvania

• Puppet

Eric Shamow, Puppet Labs

www.usenix.org/lisa12

December 9–14, 2012
San Diego, CA

Register by November 19th
and SAVE!

Strategies, Tools, and Techniques

Keynote Address by Vint Cerf, Google

Plus 3-day Technical Program:• Invited Talks by industry leaders such as Owen DeLong, Valerie Detweiler, Matt Blaze, and Selena Deckelmann
• Refereed Papers covering key topics: storage and data, monitoring, security and systems management, and tools

• Workshops, Vendor Exhibition, Posters, BoFs, “Hallway Track,” and more!

lisa12_LinuxJournal_Nov.indd 1 10/8/12 12:34 PM
LJ223-Nov2012.indd 2 10/24/12 9:30 AM

http://www.usenix.org/lisa12

R ACKMOUNT SERVERS STOR AGE SOLUTIONS HIGH-P ERFORMANCE COMPUTING

visit us at www.siliconmechanics.com or call us toll free at 888-352-1173

Silicon Mechanics and Silicon Mechanics logo are registered trademarks of Silicon Mechanics, Inc. NVIDIA, the NVIDIA logo, and Tesla, are trademarks or registered trademarks of NVIDIA Corporation in the US and other countries.

Pierre, our new Operations Manager,
is always looking for the right tools to get more
work done in less time. That’s why he respects
NVIDIA ® Tesla ® GPUs: he sees customers return
again and again for more server products
featuring hybrid CPU / GPU computing, like the
Silicon Mechanics Hyperform HPCg R2504.v3.

We start with your choice of two state-of-
the-art processors, for fast, reliable, energy-
efficient processing. Then we add four NVIDIA ®
Tesla® GPUs, to dramatically accelerate parallel
processing for applications like ray tracing and
finite element analysis. Load it up with DDR3
memory, and you have herculean capabilities
and an 80 PLUS Platinum Certified power supply,
all in the space of a 4U server.

When you partner with
Silicon Mechanics, you
get more than stellar
technology - you get an
Expert like Pierre.

“ Just because
 it’s badass,
 doesn’t mean
 it’s a game.”

“ Just because
 it’s badass,
 doesn’t mean
 it’s a game.”

LJ223-Nov2012.indd 3 10/24/12 9:30 AM

http://www.siliconmechanics.com

4 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

CONTENTS NOVEMBER 2012
ISSUE 223

ON THE COVER
• Extend PostgreSQL's Capabilities with PostGIS 2.0, p. 102
• Intro to Salt Stack—the Python-Built Configuration Management System, p. 90
• Incorporate Python into Your Bash Workflow, p. 68
• Write Extensions for GlusterFS with Python, p. 80
• Create Applications inside the Chrome Browser, p. 32
• Symbolic Math with Python, p. 24
• Tips and Tricks for People Stuck with Windows, p. 54

PYTHON
FEATURES
68 Python Scripts as
 a Replacement for
 Bash Utility Scripts
 Learn how to use Python
 and existing UNIX tools to
 improve your productivity
 in the shell.
 Richard Delaney

80 Extending GlusterFS
 with Python
 GlusterFS is a distributed
 filesystem with a strong
 emphasis on extensibility.
 Now extensions can be
 written in Python, bringing
 significant performance
 and other improvements
 within reach of even
 more programmers.
 Jeff Darcy

90 Getting Started with
 Salt Stack—the Other
 Configuration
 Management System
 Built with Python
 Install and configure
 software on multiple
 servers at once.
 Ben Hosmer

INDEPTH
102 The Past, Present and Future of GIS: PostGIS 2.0 Is Here!
Have the workhorse of GIS at your fingertips.
 Stefano Iacovella

COLUMNS
32 Reuven M. Lerner’s At the Forge
Chrome Extensions

42 Dave Taylor’s Work the Shell
SIGALRM Timers and Stdin Analysis

48 Kyle Rankin’s Hack and /
What’s Up Dock?

54 Shawn Powers’ The Open-Source Classroom
People in Glass Houses Are Stuck with Windows

112 Doc Searls’ EOF
Playing Value Subtraction Games

IN EVERY ISSUE
8 Current_Issue.tar.gz
10 Letters
20 UPFRONT
30 Editors’ Choice
65 New Products
117 Advertisers Index

LJ223-Nov2012.indd 4 10/24/12 9:30 AM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 5

LINUX JOURNAL (ISSN 1075-3583) is published monthly by Belltown Media, Inc., 2121 Sage Road, Ste. 310, Houston, TX 77056 USA. Subscription rate is $29.50/year. Subscriptions start with the next issue.

INDEPTH
102 The Past, Present and Future
 of GIS: PostGIS 2.0 Is Here!
 Have the workhorse of GIS at
 your fingertips.
 Stefano Iacovella

COLUMNS
32 Reuven M. Lerner’s At the Forge
 Chrome Extensions

42 Dave Taylor’s Work the Shell
 SIGALRM Timers and Stdin Analysis

48 Kyle Rankin’s Hack and /
 What’s Up Dock?

54 Shawn Powers’ The Open-Source
 Classroom
 People in Glass Houses Are Stuck
 with Windows

112 Doc Searls’ EOF
 Playing Value Subtraction Games

IN EVERY ISSUE
8 Current_Issue.tar.gz
10 Letters
20 UPFRONT
30 Editors’ Choice
65 New Products
117 Advertisers Index 54 PUTTY

48 MOTOROLA ATRIX DOCK

30 FOLDERSYNC

LJ223-Nov2012.indd 5 10/24/12 9:30 AM

http://www.linuxjournal.com

Executive Editor

Senior Editor

Associate Editor

Art Director

Products Editor

Editor Emeritus

Technical Editor

Senior Columnist

Security Editor

Hack Editor

Virtual Editor

Jill Franklin
jill@linuxjournal.com
Doc Searls
doc@linuxjournal.com
Shawn Powers
shawn@linuxjournal.com
Garrick Antikajian
garrick@linuxjournal.com
James Gray
newproducts@linuxjournal.com
Don Marti
dmarti@linuxjournal.com
Michael Baxter
mab@cruzio.com
Reuven Lerner
reuven@lerner.co.il
Mick Bauer
mick@visi.com
Kyle Rankin
lj@greenfly.net
Bill Childers
bill.childers@linuxjournal.com

Publisher

Advertising Sales Manager

Associate Publisher

Webmistress

Accountant

Carlie Fairchild
publisher@linuxjournal.com

Rebecca Cassity
rebecca@linuxjournal.com

Mark Irgang
mark@linuxjournal.com

Katherine Druckman
webmistress@linuxjournal.com

Candy Beauchamp
acct@linuxjournal.com

Contributing Editors
Ibrahim Haddad • Robert Love • Zack Brown • Dave Phillips • Marco Fioretti • Ludovic Marcotte

Paul Barry • Paul McKenney • Dave Taylor • Dirk Elmendorf • Justin Ryan

Linux Journal is published by, and is a registered trade name of,
Belltown Media, Inc.

PO Box 980985, Houston, TX 77098 USA

Editorial Advisory Panel
Brad Abram Baillio • Nick Baronian • Hari Boukis • Steve Case

Kalyana Krishna Chadalavada • Brian Conner • Caleb S. Cullen • Keir Davis
Michael Eager • Nick Faltys • Dennis Franklin Frey • Alicia Gibb
Victor Gregorio • Philip Jacob • Jay Kruizenga • David A. Lane

Steve Marquez • Dave McAllister • Carson McDonald • Craig Oda
Jeffrey D. Parent • Charnell Pugsley • Thomas Quinlan • Mike Roberts

Kristin Shoemaker • Chris D. Stark • Patrick Swartz • James Walker

Advertising
E-MAIL: ads@linuxjournal.com

URL: www.linuxjournal.com/advertising
PHONE: +1 713-344-1956 ext. 2

Subscriptions
E-MAIL: subs@linuxjournal.com

URL: www.linuxjournal.com/subscribe
MAIL: PO Box 980985, Houston, TX 77098 USA

LINUX is a registered trademark of Linus Torvalds.

LJ223-Nov2012.indd 6 10/24/12 9:31 AM

mailto:jill@linuxjournal.com
mailto:doc@linuxjournal.com
mailto:shawn@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:newproducts@linuxjournal.com
mailto:dmarti@linuxjournal.com
mailto:mab@cruzio.com
mailto:reuven@lerner.co.il
mailto:mick@visi.com
mailto:lj@greenfly.net
mailto:bill.childers@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:rebecca@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:ads@linuxjournal.com
http://www.linuxjournal.com/advertising
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/subscribe
http://www.linuxjournal.com/subscribe

Unified. Scalable. Flexible.

Thanks to the Intel® Xeon® Processor 5600 series and high-
performance flash, every TrueNAS Storage appliance delivers
the utmost in throughput and IOPS.

As IT infrastructure becomes increasingly virtualized, effective
storage has become a critical requirement. iXsystems’ TrueNAS
Storage appliances offer high-throughput, low-latency backing
for popular virtualization programs such as Hyper-V, VMWare®,
and Xen®. TrueNAS hybrid storage technology combines
memory, NAND flash, and traditional hard disks to dramatically
reduce the cost of operating a high performance storage
infrastructure. Each TrueNAS appliance can also serve multiple
types of clients simultaneously over both iSCSI and NFS, making
TrueNAS a flexible solution for your enterprise needs.

For growing businesses that are consolidating infrastructure,
the TrueNAS Pro is a powerful, flexible entry-level storage
appliance. iXsystems also offers the TrueNAS Enterprise, which
provides increased bandwidth, IOPS and storage capacity for
resource-intensive applications.

Call 1-855-GREP-4-IX, or go to www.iXsystems.com

TrueNAS™ Storage Appliances

Harness the Cloud

Supports iSCSI and NFS exports
simultaneously

Compatible with popular
Virtualization programs such
as Hyper-V, VMware, and Xen

128-bit ZFS file system with up
to triple parity software RAID

Intel, the Intel logo, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the U.S. and other countries.

TrueNAS Pro Features
One Six-Core Intel® Xeon® Processor •	
5600 Series
High Performance Write Cache•	
Up to 480GB MLC SSD Cache•	
Up to 220 TB SATA Capacity•	
Quad Gigabit Ethernet•	
48GB ECC Memory•	

TrueNAS Enterprise Features
Two Six-Core Intel® Xeon® Processors •	
5600 Series
Extreme Performance Write Cache•	
Up to 1.2TB High Performance ioMemory•	
Up to 500TB SATA or 320TB SAS Capacity•	
Dual Ten Gigabit Ethernet•	
96GB ECC Memory•	

LJ223-Nov2012.indd 7 10/24/12 9:31 AM

http://www.iXsystems.com

Current_Issue.tar.gz

SHAWN POWERS

8 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

Indiana was
the Dog’s Name
My wife is afraid of snakes.

Actually, “afraid” may not be
a big enough word. My wife

is terrifyingly and abundantly mortified of
snakes. Like any good husband, I remind her
that Indiana Jones also was afraid of snakes,
so she’s in good company. This month, our
issue is all about vipers—no, wait, Python.
Whether you’re a new programmer or an
old coder, Python is flexible, cross-platform
and really quite robust.

Joey Bernard gets the Python train
rolling in our UpFront section. Sympy
is a library for Python providing a full-
featured computer algebra system.
Although I have no problem with
my kids learning long division, there
certainly are some great advantages to
using computers for complex maths.

Reuven M. Lerner takes a trip into
HTML5 land. He shows how to create
Chrome extensions, which can be
entire applications running inside your
browser. With HTML5, CSS, JavaScript
and so on, Chrome applications can be
robust, complex and a far cry from the
Web applications of just a few years

ago. In fact, if you recall from last
month, I use a Chrome extension for
writing my Linux Journal articles.

Our other resident programmer is
Dave Taylor, who teaches how to use
SIGALARM in scripts to add valuable
complexity to scripts that need it. That
might sound overwhelming, but Dave
explains what he’s doing along the way,
and in the end, what seems like a complex
and confusing idea makes sense. Speaking
of confusing ideas, I had to do a double
take when I read Kyle Rankin’s article on
his new Android device. Yes, you read that
right, Kyle uses Android. Like most things
Kyle does, however, it’s more than just
switching from his N900 to a new phone.
He’s never happy with just a phone;
Kyle wants a communication device
that doubles as an International Space
Station. This month, he comes close.

I haven’t been happy with the lack
of hate mail in my inbox recently, so I
thought it would be a good time to write
an article about Windows. Okay, to be
honest, it’s a little more complicated
than that, but I fully expect to get hate

LJ223-Nov2012.indd 8 10/24/12 9:31 AM

http://www.linuxjournal.com

CURRENT_ISSUE.TAR.GZ

WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 9

mail nonetheless! As a Linux user
currently stuck in a job with a Windows
infrastructure (not here at Linux Journal,
of course), I’m working hard to feel as
at home as possible. I share my struggles
with you, and maybe make Windows a
little easier to deal with.

After my sacrilegious foray into
the Windows world, Richard Delaney
brings us back to topic with his article
on replacing Bash scripts with Python.
Since Bash scripting is the only form of
programming I ever do, I’m both hesitant
and excited about this topic. Learning a
new language would be very beneficial
for me, and if I can use it for the same
purposes I use Bash, all the better!

GlusterFS is a fascinating distributed
filesystem, which can scale to enormous
size. If you’re a Python programmer and
want to add functionality to GlusterFS,
Jeff Darcy’s article is perfect. Integrating
code across languages can be a daunting
task, but with the flexibility of Python,
Jeff shows us it’s worth the effort.

Configuration management systems are
all the rage. This is obviously because it
makes managing large numbers of servers
much easier to do. A part of me thinks
it might be due to the funny sounding
project names as well. Puppet and Chef
are both fairly well known, and thanks to
their names, they’re easy to remember.
This month, Ben Hosmer introduces us to a
Python-based configuration management

tool named Salt Stack. Apparently having
interesting names is a requirement in the
configuration management world, and
Salt Stack lives up to that. Does it live up
to the functionality of its competition?
Ben lets us know.

Stefano Iacovella finishes off this issue
with PostGIS. PostgreSQL is a great open-
source database system, but for keeping
track of spatial data (think maps), it really
needs to run with an extension like PostGIS
in order to handle that type of stuff.
Not only does PostGIS allow for complex
mapping of spatial data, but it also can
handle four-dimensional information as
well. Good luck to Indiana Jones if he
tries to follow a four-dimensional treasure
map though. It’s hard enough to keep
track of snakes in three dimensions!

This month is a well-rounded issue,
which is heavy on the Python. If you’re
not a programmer, or don’t want to learn
about programming, fear not. We still have
a lineup of content sure to please. Oh, and
before you think of sending a rubber snake
to the Linux Journal office, keep in mind
that I’m not afraid of them at all. Now
bees? That’s another story altogether.■

Shawn Powers is the Associate Editor for Linux Journal.

He’s also the Gadget Guy for LinuxJournal.com, and he has

an interesting collection of vintage Garfield coffee mugs.

Don’t let his silly hairdo fool you, he’s a pretty ordinary guy

and can be reached via e-mail at shawn@linuxjournal.com.

Or, swing by the #linuxjournal IRC channel on Freenode.net.

LJ223-Nov2012.indd 9 10/24/12 9:31 AM

http://www.linuxjournal.com
mailto:shawn@linuxjournal.com
http://LinuxJournal.com
http://Freenode.net

letters

10 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

Short
vs. Clear
Regarding
Dave Taylor’s
question to
readers in his
September
2012 column,
my vote is
for both.
I f ind the

various short forms useful and
l ike to discover them; however,
I absolutely agree about the
problem of obfuscation. I tend
to avoid shortcuts in code I wil l
have to maintain and use them
only on the command l ine or in
“throw-away” code.

I suggest that you focus on clever ideas
for the most part and maybe dedicate
occasional columns to shortcuts.

Alternatively, you could finish
the column with a shortened
version of your monthly script with
some minimal notation to guide
the advanced or the curious in
deciphering the syntax.

Love your column Dave, keep it up.
—Keith

Another Response for Dave
Use new bash features even if some
old servers don’t understand them?
My answer is yes! My clients want the
best solution for their challenges. If
they can’t or don’t want to upgrade
an old server, they will pay the extra
time to adapt the script to the ancient
version of the shell. But they want me
to be as efficient on the new servers
as I (not the script language!) can be.
So I learn everyday something new
and use it in my daily work. Please do
the same!
—Eugen

Bash Notational Shortcuts
When efficiency is important, but
gets in the way of clarity, I like to
use a feature found not only in bash,
but in sh, csh, zsh and many other
scripting languages. If you start a line
with a # character, the shell ignores
the remainder of the line, which
allows you to include human-readable
explanatory material.

You even can precede the # with
white space, so the explanatory
material aligns with the indentation
level of the code!

i18n? No problem—the shell

LJ223-Nov2012.indd 10 10/24/12 9:31 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 11

[LETTERS]

automatically adjusts to whatever
human-readable language you use
in the remainder of the l ine!

But wait—there’s more! It doesn’t even
have to be a human language! If you
replace a clunky but clear construct
with a tight, abstruse one, you even
can include the former as explanatory
material, as long as you precede it with
this almost-magical # character!

Given how much time we all spend
debugging or enhancing other people’s
code, I am continually astonished at
how many shell programmers seem to
be unaware of this universal feature
of scripting languages.
—Jenny Howard

Linux-Based Security Camera
Systems
I have read in the Letters section that
readers say they wish to see different
articles or more home-use practical-
type projects. May I suggest a possible
article about Linux-based camera
security systems? ZoneMinder is one
that comes to mind, but I’d also like
to read about what is available in the
commercial product area that supports
IP cameras as well as DVR cards with
cameras attached.

I have used several brands of DVR
capture cards, and most ran on a
Windows-based system. I purchased
a 16-port card and experimented
with ZoneMinder and then discovered
a company called Bluecherry
(http://www.bluecherry.net or
http://store.bluecherry.net), and
I purchased one of its hardware-
compression DVR cards and use its
Linux-based camera server system.
The company has a newly released
2.0 version of its server software
running on Ubuntu 12.04 Linux.

Many people like the idea of being able
to put up cameras around their homes
or businesses. LJ might want to do a
simple article of some of the commercial
and open-source DVR-security-camera-
type applications available for Linux. I
have seen articles written for Asterisk
and other IP phone/PBX systems that can
be used in homes or businesses, so why
not one for security cameras?

I have been reading the magazine for
more than seven years, and given the
pros and cons of what others have
said about the switch to the all-digital
format, I am very pleased with it and
the choices of formats available.
—Chad Pauli

LJ223-Nov2012.indd 11 10/24/12 9:31 AM

http://www.bluecherry.net
http://www.bluecherry.netor
http://store.bluecherry.net
http://www.linuxjournal.com

12 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

Setting up a Linux-based camera system
certainly sounds like a cool project. I
actually really like the folks at Bluecherry,
and I tried my best to purchase an entire
32-camera system from them. Sadly, the
red tape at my day job prevented it, but
I did try the software, and it really was
amazing. For some strange reason, it
seems that many systems are Windows-
only, or claim to be Web-enabled but
then require Internet Explorer in order to
work. Hopefully, someone will read this
letter and offer an article on configuring
a camera system. It certainly sounds
interesting to me!—Ed.

Comment to Jeff Shutt
When reading the Letters section in the
September 2012 issue of Linux Journal,
I saw Jeff Shutt’s message about shell
scripting and .csv files, and I wondered
if he’d already heard of csvdb
(http://sandbox.ltmnet.com/csvdb).
This tool allows one to manipulate .csv
files with SQL (including UPDATE and
ALTER TABLE), and it could be a good
alternative to shell scripts.

I don’t know how to contact him,
but maybe you could act as gateway
and forward this info to him? Thanks
in advance.
—Frank Scheiner

Even better, how about we print your
letter? That way Jeff won’t be the
only one benefiting. Thanks!—Ed.

Kyle’s Raspberry Pi Beer Fridge
Suggestion
I received my Raspberry Pi a couple
weeks ago, a month after I ordered it,
but it seems that production times are
improving and that the new boards
are being manufactured in Britain.

I started playing with it, and I have a
suggestion for Kyle’s beer fridge. My
idea is to use a TI LaunchPad board
(http://www.ti.com/LaunchPad)
with an MSP430 micro-controller that
has an integrated temperature sensor.
TI provides all the development tools
for free, and the price is less than $5.

The idea is to control the
temperature on the LaunchPad and
use the Raspberry Pi to retrieve the
information and display it or post it on
a Web server.

I had only one problem. The Raspberry
Pi didn’t boot with the LaunchPad
connected to the USB port. I have
no idea why, but the workaround is
to connect them using the SPI port
(a tutorial on how to do this can

[LETTERS]

LJ223-Nov2012.indd 12 10/24/12 9:31 AM

http://www.linuxjournal.com
http://sandbox.ltmnet.com/csvdb
http://www.ti.com/LaunchPad

WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 13

be found at http://mitchtech.net/
raspberry-pi-msp430-spi).

I really enjoy every issue of LJ, and
read each of them from the BOF all
the way to the EOF (no more cover
to cover).
—jschiavon

Constructive Complaint, a
Thank You and Further Ideas
Here in Belgium, I bought LJ at the
store for years, and now I have to
cope with Texterity. I don’t really
enjoy the format, but the content is
there. I restrained from protesting
and gave this a lot of thought. Since
you went digital, I finally realized
what was bugging me the most: it is
not the change of media, but that it
wouldn’t be possible to select “text
mode by default” in some settings.
The second issue is related to my
media consumption habits. I read LJ
when I’m not at home, thus, almost
exclusively on mobile Internet, which
often is very slow. Some kind of cache,
allowing on-line sync and off-line
reading would be a killer feature.

Considering that this would not be
possible with Texterity, you taught me
there has to be another way, as I will

explain now. Last week, I received a
new keyboard with heaps of funky
keys (Corsair K90). Upon connecting
the keyboard to the computer and
searching the Internet on how to
get it to work, I discovered that so
far, no one has gotten the funky keys
to feed the penguin. I decided to
dig a little deeper into the problem.
Combining tricks I learned from Kyle
Rankin’s hacks and Dave Taylor’s
scripts, it took me four days to get
a very functional script that should
already be able to manage various
types of custom inputs with minor
tweaks. It is still far from perfect, but
the code is on https://github.com/
jupiter126/k90-test.

Have you considered crowdsourcing
the LJ app? Again, I thought about
it a lot, and it seems to be the best
long-term solution. (No, I don’t sound
like Lennart!) The main argument is
that since LJ went digital, there is
no point in paying for copies of LJ
anymore, and that most LJ readers
have the technical know-how required
to wget pirate versions, although
they willingly choose to pay instead,
in order to support LJ. Thus, piracy is
not an issue, as nowadays we are not
buying an app, but rather sponsoring

[LETTERS]

LJ223-Nov2012.indd 13 10/24/12 9:31 AM

http://www.linuxjournal.com
http://mitchtech.net/raspberry-pi-msp430-spi
http://mitchtech.net/raspberry-pi-msp430-spi
https://github.com/jupiter126/k90-test
https://github.com/jupiter126/k90-test

[LETTERS]

14 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

the writers of the content.

Another important argument is
security, it is normal that you don’t
want to run unknown code on a
server, but hey, I never said I wanted
to crowdsource the server! Setting
standard procedures and protocols
for authentication and issue retrieval
are the key elements for successful
adoption (like passing zipped XMLs
after successful authentication). From
that point on, users or groups of users
will be able to code their own apps
for their own devices, and instead
of having users like me complaining
all year long about the past, you will
promote the *NIX way. If you don’t
like the application, stop losing time
complaining and start writing one you
like better.

On the other hand, I am sure a lot of
your readers are not only willing to
code a killer app, but also have the
skills to do so and prefer running code
they know rather than an obscure
app. Do I really need to convince you
that the future is open source? What
are you waiting for in setting up an
“LJ Git”? I would love to find Dave’s
code there, for example!
—Nelson

Thank you for the feedback. I like the
idea of a Linux Journal Git repo. We’ll
have to see if it’s feasible. Regarding
your text-mode question, I find that
the .mobi and .epub versions are much
more text-friendly. My favorite way to
read Linux Journal currently is either via
PDF on a big tablet or with Amazon’s
Kindle, because the latter will sync my
reading progress between devices.

Even if there is not an official LJ
repo on GitHub, I like the idea of a
crowdsourced app to interface with
the existing distribution model!—Ed.

Configuration Management
Article
I’ve been one of your readers for
about eight years, and since then, a
lot of stuff has changed. As a long-
term Linux hacker, I’ve been hacking
on a configuration management
system for some time.

As it has matured, I think it could
be time to make it more public.
Thus, I was wondering whether you
are interested in getting or writing
an article about cdist—the new
kid on the block of configuration
management systems. cdist is kind
of a revolution, because it is almost

LJ223-Nov2012.indd 14 10/24/12 9:31 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 15

completely dependency-free and has
very well known DSL. Let me know
what you think.
—Nico

By all means, submit an article query on
the topic to ljeditor@linuxjournal.com.
Configuration management is
certainly something sysadmins are
pretty much forced to use now.
I’ll admit I’ve never heard of cdist;
at the very least, thank you for
bringing it to my attention!—Ed.

Readable Shell Scripting
I just read Dave Taylor’s Work the
Shell column titled “Bash Notational
Shortcuts: Efficiency over Clarity” in
the September 2012 issue. I agree
wholeheartedly. Bash code should be
written for readability, not efficiency.
If the code needs to be efficient, then
use a compiled language to reduce
processing time. If I use some clever
Bash construct in a script, six months
(or however much time) later, I may
have to dig around to figure out
what I did and how I did it. Not to
mention that others coming after you
may need to figure out what you did
so they can make requisite changes.
This holds for any moderately usable
programming language that gives

potentially many ways to solve a
particular problem.

I say keep your examples easily
understandable and inefficient. You
may want to pepper your examples
with more efficient examples, but
because your audience potentially
could be at many different levels of
knowledge, keeping the examples
readable and understandable without
having resort to research in order to
understand them will benefit more of
us who don’t script on a daily basis.

Thanks, and I look forward to your
column next month!
—Trey Blancher

Thanks!
Thanks so much for offering a digital
version of Linux Journal in .epub
format. I already had a NOOK (original)
and a NOOK Color reader, so I didn’t
need any additional hardware to take
advantage of your format change.

In 2011, I was offered an early
retirement, which I took. A short time
later, I moved overseas. Linux Journal
is the only magazine I have renewed
my subscription to. At this point, I
have two requirements: a digital-only

[LETTERS]

LJ223-Nov2012.indd 15 10/24/12 9:31 AM

mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

[LETTERS]

16 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

subscription option and .epub as
a format option. Thankfully, Linux
Journal fits both of my requirements.

Thanks again for an affordable
way to keep up with one of my
favorite publications.
—Gar

That’s great to hear, Gar! We decided
to invest the time to produce the
.epub and .mobi versions, because
we wanted the switch to digital to
offer more rather than less. I f ind
the multiple formats very nice,
because I don’t always read from
the same device.—Ed.

Xoom: It Really Whips the
ZaReason Tablet’s Arse!
Although I think it is a always a noble
endeavor to try to produce hardware
tailored for Linux/open source, I’m not
so sure about Android’s future in that
it is so extremely limited and kludgey
compared to any bona fide laptop/
desktop Linux distribution, but that
is beyond the scope of a mere letter
to the editor. (Yes, yes, I know it is
possible to run a real Linux distribution
using chroot and a VNC client on
rooted Android devices. Go ahead and
try it and see how much fun you have!)

Err, getting back to the point,
ZaReason’s underpowered tablet is
just not worth the price—not when
there are used Motorola Xooms on
eBay for about $200. The Xoom has
a dual-core processor, a 1200x800
screen nearly big enough for
comfortable magazine PDF reading, a
surprisingly good quality camera, USB
host support via a cheap $5 cable, and
the latest version Android. What with
all the competition, with the price of a
used original iPad in freefall and $200
Nexus 7s, why would anybody buy
this ZaReason thingy? (I am in no way
affiliated with Motorola and have no
love of big corporations. I just want a
cheap tablet!)

Come to think of it, don’t most
Linux-preinstalled laptops—still rare
beasties—command a hefty premium?
You often can buy a svelte used high-
end Lenovo or MacBook Pro for the
price of one of those $1,200 Emperor
seven-pound Dell boat anchors. What
is this, the Linux Tax?!

Dirty word or not, I doubt rooting is
such a big deal for most FUD-resistant,
warranty-voiding, independent-
minded Linux users. Rooting the
Wi-Fi-only Xoom was trivial, after a

LJ223-Nov2012.indd 16 10/24/12 9:31 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 17

[LETTERS]

few hours of wading through Web
fora. (Wading through semi-literate
forum-geek nonsense is nothing new
to anyone who has used Linux for any
length of time.)

Like most new Android devices, the
Xoom sucked at first: a microSD card
slot you couldn’t use because there
was no driver and a sluggish UI that
I was tempted to refer to as another
sort of sandwich besides ice cream.
But now, the Xoom is nearly mature.
Although the UI still looks like crap—a
perennial problem of all Android
devices (haven’t the devs ever heard
the old realtor’s saying “light and
bright”?)—it is definitely “buttery”
smooth ugliness with plenty of mostly
free apps: Netflix, eBay, Firefox,
e-book readers and so on. If only the
half-baked Android UI didn’t resemble
something out of the Addams’ Family
School of Design....
—Mike "Zaphod" Grossman

I understand where you’re coming
from, but in the case of ZaReason,
the company’s willingness to leave
its product open is a philosophical
mindset I really want to support. For
me, it’s sort of like shopping at a local
farm market and paying more for

vegetables, because I want to support
those folks. ZaReason may not be able
to match the price point of bigger
companies, but it gets my hat tip for
its business ideals.

I’ll admit, as an end user more than
a developer, I’d be more likely to buy
a Nexus 7, but if I were a developer, I
could see the wide-open model being
very refreshing.—Ed.

Random Numbers and OpenMP
I was reading the May 2012 issue
when I came across “Parallel
Programming in C and Python” by
Amit Saha, which had relevance to
my job supporting weather/climate
modeling on HPC systems. OpenMP
is a particularly nice way to handle
threading, but you have to be careful
what you use in your parallel code.
The common example of calculating
pi in pi_openmp.c is a nice way of
showing parallelism, but I would have
liked to have seen a comment about
using rand() in your function called in
the parallel region. Creating random
numbers in threaded applications
can be tricky due to the hidden
state of the generator being stored
across calls. rand() is probably not
the best method to use in C due to

LJ223-Nov2012.indd 17 10/24/12 9:31 AM

http://www.linuxjournal.com

[LETTERS]

18 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

this, possibly rand_r(unsigned int) to
store the state and be suitable for this
example. There is also probably a race
condition to decide which thread gets
which random number due to using
the same random state.

Another aspect I would have l iked
to have seen is repeatabil ity of
answers, which is important in
science where OpenMP can affect
the order of calculations.

Otherwise, I found the article to be
a great way to introduce people to
threading, and I especially found the
Python aspect useful to add to my
understanding. I hope to see more
HPC-relevant articles in the future.
—Thomas Green

Amit Saha replies: Thank you for
reading my article and writing in with
your comments. I am glad you found
the Python bits interesting.

I find your comments about rand()
and OpenMP enlightening, as I myself
didn’t think of it before. This blog
post seems to be suggesting the same
thing: http://software.intel.com/
en-us/blogs/2009/11/05/use-of-
rand-in-openmp-parallel-sections.

And, a number of other blog posts
seem to suggest that the initialization
of the generator be done separately in
the individual threads. This means that
in pi_openmp.c, the random number
generator should be initialized using a
random seed (such as current time) in
the part_count function. Thanks again
for writing in.

Eight-Year-Old Linux User
I have an eight-year-old son who is fond
of computers, mainly because of games,
naturally. Last week when I got home,
I saw that my Xubuntu laptop was
open. I asked my son who opened it.
He replied that he did it. Once I defined
a user for him on Xubuntu, so that he
could Google his homework. It seems
he remembered the user name and
password, logged on, opened Chrome,
and listened to music via YouTube. For
basic stuff like this, Ubuntu is simple
enough for a small kid like him. I
wanted to share this for those who
think Linux is only for geeks.
—Kaan

You are absolutely correct. It’s weird for
me to watch my kids use technology.
They don’t care at all what operating
system they’re using. In fact, my girls
tend to do homework research on their

LJ223-Nov2012.indd 18 10/24/12 9:31 AM

http://www.linuxjournal.com
http://software.intel.com/en-us/blogs/2009/11/05/use-of-rand-in-openmp-parallel-sections
http://software.intel.com/en-us/blogs/2009/11/05/use-of-rand-in-openmp-parallel-sections

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 19

At Your Service
SUBSCRIPTIONS: Linux Journal is available
in a variety of digital formats, including PDF,
.epub, .mobi and an on-line digital edition,
as well as apps for iOS and Android devices.
Renewing your subscription, changing your
e-mail address for issue delivery, paying your
invoice, viewing your account details or other
subscription inquiries can be done instantly
on-line: http://www.linuxjournal.com/subs.
E-mail us at subs@linuxjournal.com or reach
us via postal mail at Linux Journal, PO Box
980985, Houston, TX 77098 USA. Please
remember to include your complete name
and address when contacting us.

ACCESSING THE DIGITAL ARCHIVE:
Your monthly download notifications
will have links to the various formats
and to the digital archive. To access the
digital archive at any time, log in at
http://www.linuxjournal.com/digital.

LETTERS TO THE EDITOR: We welcome your
letters and encourage you to submit them
at http://www.linuxjournal.com/contact or
mail them to Linux Journal, PO Box 980985,

Houston, TX 77098 USA. Letters may be
edited for space and clarity.

WRITING FOR US: We always are looking
for contributed articles, tutorials and
real-world stories for the magazine.
An author’s guide, a list of topics and
due dates can be found on-line:
http://www.linuxjournal.com/author.

FREE e-NEWSLETTERS: Linux Journal

editors publish newsletters on both
a weekly and monthly basis. Receive
late-breaking news, technical tips and
tricks, an inside look at upcoming issues
and links to in-depth stories featured on
http://www.linuxjournal.com. Subscribe
for free today: http://www.linuxjournal.com/
enewsletters.

ADVERTISING: Linux Journal is a great
resource for readers and advertisers alike.
Request a media kit, view our current
editorial calendar and advertising due dates,
or learn more about other advertising
and marketing opportunities by visiting
us on-line: http://ww.linuxjournal.com/
advertising. Contact us directly for further
information: ads@linuxjournal.com or
+1 713-344-1956 ext. 2.

phones before cracking open their laptops. I think
I’m too old to consider my smartphone my “primary
computing device”, but my kids don’t have a
problem with that mindset. They also grab my Dell
D420 running Xubuntu and use the system without
hesitation. Kids are amazing.—Ed.

Photo of the Month
Here is a photo of a pack made by a pizzeria
on a beach in Palermo, Sicily, Italy. As you
can read, Linux offers pizza, panini and other
magnificent stuff, like “arancini”. The content
is excellent, like our preferred OS.
—Giovanni Organtini

Linux Pizza

WRITE LJ A LETTER We love hearing from our readers. Please send us
your comments and feedback via http://www.linuxjournal.com/contact.

[LETTERS]

LJ223-Nov2012.indd 19 10/24/12 9:31 AM

http://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/digital
http://www.linuxjournal.com/contact
http://www.linuxjournal.com/author
http://www.linuxjournal.com
http://www.linuxjournal.com/
http://ww.linuxjournal.com/
mailto:ads@linuxjournal.com
http://www.linuxjournal.com/contact
http://www.linuxjournal.com

UPFRONT
NEWS + FUN

20 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

diff -u
WHAT’S NEW IN KERNEL DEVELOPMENT
This edition of diff -u is dedicated
to Andre Hedrick, who committed
suicide in July 2012. He was best
known for his work on the IDE
driver and later the ATA subsystem,
which provided essentially the
same features.

I knew Andre only from his
e-mails to the kernel mailing list.
He seemed supremely confident in
his understanding of the intricacies
of IDE hard drive technology. He
had a deep understanding of the
specifications and standards, but he
also had a deep understanding of the
way the different pieces of hardware
violated those specs and standards.
Sometimes his understanding
derived from conversations with the
manufacturers and engineers who
developed the hardware. IDE/ATA
was one of the biggest nightmares
of the entire kernel, for years. It was
one of those areas that just had to
work right, but that was steeped
in mystery and confusion. Even
detecting which hard drive was on
the system was a nightmarish puzzle
in many cases.

Andre really could lose his temper
though when someone disagreed
with him. Once upon a time in
2000, he discovered that the root
user could physically damage the
hard drive on a given system. To
him, this was an important bug,
because if malicious users gained
root, he felt they shouldn’t be able
to do real physical harm. But when
he submitted his patch to fix the
problem, no one wanted to take
it, on the grounds that if someone
gains root privileges, it’s already
game-over. During the ensuing flame
war, Andre famously said in multiple
different e-mail messages, “Here is
your SECURITY HOLE! JOE-SIX-PACK-
HACKER can fry your butt.”

He may have been hard to deal
with sometimes, but I believe
his heart always was in the right
place. The cantankerous rantings
that seemed so abusive at times,
all stemmed from a desire to help
and protect users, in the face of a
truly ugly yet absolutely essential
hardware industry.

The kernel configuration system

LJ223-Nov2012.indd 20 10/24/12 9:31 AM

http://www.linuxjournal.com

[UPFRONT]

WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 21

is about to become much simpler
for the great mass of users in the
world. Linus Torvalds recently put
out a call to action, of sorts. He’d
noticed that Linux distributions
often had odd and unpredictable
kernel configurations, and the
system might break in subtle
ways if users compiled a kernel
that lacked some obscure option
or other. This typically was not
a problem for kernel developers
themselves who tend to have a deep
understanding of configuration
options, but for regular users, he
felt it resulted in fewer people
being comfortable compiling their
own kernels. Linus asked the kernel
developers in general to work on
providing a minimal default kernel
configuration for all versions of
all main distributions. This would
ensure a working kernel and give
users a jumping-off point for their
own explorations.

Kernel development often is
pretty crazy, and kernel developers
l ike their l itt le jokes. Recently
when Alexandre Pereira da Silva
suggested adding a “Tested-by:”
signature to all of the kernel’s
git commits, it led to a discussion
of all the different types of

git signatures that have been
accepted into the kernel. Some
of the choicest were things l ike
“Fatfingered-by:” and “Heckled-for-
on-IRC-by:”. These are actually in
the kernel, or at least in the git log.
On one level, it’s a shame, because
people doing data mining to analyze
kernel development may have a
harder time with their analysis,
but on another level, it’s all pretty
funny.—ZACK BROWN

Since 1985
OVER

27
YEARS OF

SINGLE BOARD
SOLUTIONS

Phone: (618) 529-4525 · Fax: (618) 457-0110 · www.emacinc.com

2.6 KERNEL

EQUIPMENT MONITOR AND CONTROL

Low Cost Panel PC
PDX-089T

l Vortex86DX 1 GHz Fanless CPU
l Low Power Consumption
l 1 RS232/422/485 serial port
l Mini-PCI Expansion slot
l 2 USB 2.0 Host Ports
l 10/100 BaseT Ethernet & Audio
l PS/2 mouse & keyboard
l CompactFlash & MicroSD card sockets
l Resolution/Colors: 1024 x 600 @ 256K
l Resistive Touch Screen
l Free EMAC OE Linux
l Free Eclipse IDE

Setting up a Panel PC can be a Puzzling experience. However, the PDX-089T
comes ready to run with the Operating System installed on flash disk. Apply power
and watch the Linux X-Windows desktop user interface appear on the vivid color
LCD. Interact with the PDX-089T using the responsive integrated touchscreen.
Everything works out of the box, allowing you to concentrate on your application
rather than building and configuring device drivers. Just Write-It and Run-It...
Starting at $450 Qty 1.

www.emacinc.com/panel_pc/pdx089.htm

LJ223-Nov2012.indd 21 10/24/12 9:31 AM

http://www.linuxjournal.com
http://www.emacinc.com/panel_pc/pdx089.htm

22 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

[UPFRONT]

Let him who would
enjoy a good future
waste none of his
present.
—Roger Babson

Happiness is not
something you
postpone for
the future; it is
something you
design for the
present.
—Jim Rohn

Change is the law of
life. And those who
look only to the past
or present are certain
to miss the future.
—John F. Kennedy

If you want a vision
of the future,
imagine a boot
stamping on a human
face—forever.
—George Orwell

The best way to
predict the future
is to create it.
—Peter Drucker

They Said ItSteam Nukem
Forever

Although many
thought Duke
Nukem Forever
was nothing
more than
vaporware meant
to be used as
a metaphor for
“never gonna
happen”,

we were all shocked when it was actually
released. Linux users have a similar love/hate
relationship with with Valve, the makers of
the Steam platform for gaming. Rumors of
Linux-native Steam have been circulating for
years, but nothing apart from running Steam
under Wine ever has brought the popular
platform to Linux.

Several months ago, Valve announced it
was working on a client, and I excitedly wrote
about it, only to look foolish when months
went by and nothing happened. Based on
communication from Valve, it looks like in
October 2012 there will be 1,000 real-life
Linux users chosen for an external beta release!
Will those chosen few be sworn to secrecy?
Is Valve messing with journalists and not even
have a Linux plan? For news right from the
horse’s mouth, check out Valve’s Linux blog:
http://blogs.valvesoftware.com/linux.
—SHAWN POWERS

LJ223-Nov2012.indd 22 10/24/12 9:31 AM

http://www.linuxjournal.com
http://blogs.valvesoftware.com/linux

WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 23

[UPFRONT]

Space Is Big—See It All!
I have a huge collection of NASA photos taken from the Astronomy Pic of
the Day Web site (http://apod.nasa.gov/apod/astropix.html) stored in a
folder in my Dropbox. No matter what computer system I’m using, I rotate
those images on my background, getting a virtual tour of the universe
on every screen. Oddly enough, it can be challenging to get that image
rotation to work well in Linux. I’ve mentioned some wallpaper-rotating
applications before, but Slidewall is really pretty cool.

Slidewall includes a small dæmon process to change GNOME-based
desktop wallpaper images. It’s in the Ubuntu 12.04+ repositories, but it
wil l work with any GNOME-based system. Rotating a wallpaper collection
works well, but Slidewall goes the extra mile and will fetch collections
l ive from the Internet, or it can display a l ive picture of the Earth showing
which parts have sunlight and which don’t. Sl idewall is a huge step
forward in desktop wallpaper management, and if you have a difficult time
deciding what picture to use as your background, now you don’t have to
choose just one!—SHAWN POWERS

LJ223-Nov2012.indd 23 10/24/12 9:31 AM

http://www.linuxjournal.com
http://apod.nasa.gov/apod/astropix.html

24 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

[UPFRONT]

Symbolic Math with Python
Many programming languages include
libraries to do more complicated
math. You can do statistics, numerical
analysis or handle big numbers. One
topic many programming languages
have difficulty with is symbolic math.
If you use Python though, you have
access to sympy, the symbolic math
library. Sympy is under constant
development, and it’s aiming to be a
full-featured computer algebra system
(CAS). It also is written completely
in Python, so you won’t need to
install any extra requirements. You
can download a source tarball or a
git repository if you want the latest
and greatest. Most distributions also
provide a package for sympy for those
of you less concerned about being
bleeding-edge. Once it is installed,
you will be able to access the sympy
library in two ways. You can access it
like any other library with the import
statement. But, sympy also provides a
binary called isympy that is modeled
after ipython.

In its simplest mode, sympy can
be used as a calculator. Sympy has
built-in support for three numeric
types: float, rational and integer. Float
and integer are intuitive, but what is
a rational? A rational number is made
of a numerator and a denominator.

So, Rational(5,2) is equivalent to 5/2.
There is also support for complex
numbers. The imaginary part of a
complex number is tagged with
the constant I. So, a basic complex
number is:

a + b*I

You can get the imaginary part with
“im”, and the real part with “re”.
You need to tell functions explicitly
when they need to deal with complex
numbers. For example, when doing a
basic expansion, you get:

exp(I*x).expand() exp(I*x)

To get the actual expansion, you
need to tell expand that it is dealing
with complex numbers. This would
look like:

exp(I*x).expand(complex=True)

All of the standard arithmetic
operators, like addition, multiplication
and power are available. All of the
usual functions also are available,
like trigonometric functions, special
functions and so on. Special constants,
like e and pi, are treated symbolically
in sympy. They won’t actually evaluate

LJ223-Nov2012.indd 24 10/24/12 9:31 AM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 25

[UPFRONT]

to a number, so something like “1+pi”
remains “1+pi”. You actually have to
use evalf explicitly to get a numeric
value. There is also a class, called
oo, which represents the concept of
infinity—a handy extra when doing
more complicated mathematics.

Although this is useful, the real
power of a CAS is the ability to do
symbolic mathematics, like calculus or
solving equations. Most other CASes
automatically create symbolic variables
when you use them. In sympy, these
symbolic entities exist as classes, so
you need to create them explicitly. You
create them by using:

x = Symbol('x')

y = Symbol('y')

If you have more than one symbol
at a time to define, you can use:

x,y = symbols('x', 'y')

Then, you can use them in other
operations, like looking at equations.
For example:

(x+y)**2

You then can apply operations to
these equations, like expanding it:

((x+y)**2).expand()

x**2 + 2*x*y + y**2

You also can substitute these
variables for other variables, or even
numbers, using the substitution
operator. For example:

((x+y)**2).subs(x,1)

(1+y)**2

You can decompose or combine more
complicated equations too. For example,
let’s say you have the following:

(x+1)/(x-1)

Then, you can do a partial fraction
decomposition with:

apart((x+1)/(x-1),x)

1 + 2/(x-1)

You can combine things back
together again with:

together(1 + 2/(x-1))

(x+1)/(x-1)

When dealing with trigonometric
functions, you need to tell operators
like expand and together about it.
For example, you could use:

sin(x+y).expand(trig=True)

sin(x)*cos(y) + sin(y)*cos(x)

The really big use case for a CAS
is calculus. Calculus is the backbone

LJ223-Nov2012.indd 25 10/24/12 9:31 AM

http://www.linuxjournal.com

26 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

[UPFRONT]

of scientific calculations and is
used in many situations. One of the
fundamental ideas in calculus is the
limit. Sympy provides a function called
limit to handle exactly that. You
need to provide a function, a variable
and the value toward which the limit
is being calculated. So, if you wanted
to calculate the limit of (sin(x)/x) as
x goes to 0, you would use:

limit(sin(x)/x, x, 0)

1

Because sympy provides an infinity
object, you can calculate limits as they
go to infinity. So, you can calculate:

limit(1/x, x, oo)

0

Sympy also allows you to do
differentiation. It can understand basic
polynomials, as well as trigonometric
functions. If you wanted to
differentiate sin(x), then you could use:

x = Symbol('x')

diff(sin(x), x)

cos(x)

You can calculate higher derivatives
by adding an extra parameter to the
diff function call. So, calculating
the first derivative of (x**2) can be

done with:

diff(x**2, x, 1)

2*x

While the second derivative can be
done with:

diff(x**2, x, 2)

2

Sympy provides for calculating
solutions to differential equations.
You can define a differential equation
with the diff function. For example:

f(x).diff(x,x) + f(x)

where f(x) is the function of interest,
and diff(x,x) takes the second
derivative of f(x) with respect to x. To
solve this equation, you would use the
function dsolve:

dsolve(f(x).diff(x,x) + f(x), f(x))

f(x) = C1*cos(x) + C2*sin(x)

This is a very common task in
scientific calculations.

The opposite of differentiation
is integration. Sympy provides
support for both indefinite and
definite integrals. You can integrate
elementary functions with:

integrate(sin(x), x)

LJ223-Nov2012.indd 26 10/24/12 9:31 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 27

[UPFRONT]

-cos(x)

You can integrate special functions
too. For example:

integrate(exp(-x**2)*erf(x), x)

Definite integrals can be calculated
by adding limits to the integration.
If you integrate sin(x) from 0 to pi/2,
you would use:

integrate(sin(x), (x, 0, pi/2))

1

Sympy also can handle some
improper integrals. For example:

integrate(exp(x), (x, 0, oo))

1

Sometimes, equations are too
complex to deal with analytically. In
those cases, you need to generate
a series expansion and calculate
an approximation. Sympy provides
the operator series to do this. For
example, if you wanted a fourth-order
series expansion of cos(x) about 0, you
would use:

cos(x).series(x, 0, 4)

1 - (x**2)/2 + (x**4)/24

Sympy handles linear algebra
through the use of the Matrixclass.

If you are dealing with just numbers,
you can use:

Matrix([[1,0], [0,1]])

If you want to, you can define the
dimensions of your matrix explicitly.
This would look like:

Matrix(2, 2, [1, 0, 0, 1])

You also can use symbolic variables
in your matrices:

x = Symbol('x')

y = Symbol('y')

A = Matrix([[1,x], [y,1]])

Once a matrix is created, you can
operate on it. There are functions to
do dot products, cross products or
calculate determinants. Vectors are
simply matrices made of either one
row or one column.

Doing all of these calculations is a bit
of a waste if you can’t print out what
you are doing in a form you can use.
The most basic output is generated
with the print command. If you want
to dress it up some, you can use the
pprint command. This command
does some ASCII pretty-printing, using
ASCII characters to display things like
integral signs. If you want to generate
output that you can use in a published
article, you can make sympy generate

LJ223-Nov2012.indd 27 10/24/12 9:31 AM

http://www.linuxjournal.com

28 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

[UPFRONT]

LaTeX output. This is done with the
latex function. Simply using the plain
function will generate generic LaTeX
output. For example:

latex(x**2)

x^{2}

You can hand in modes, however,
for special cases. If you wanted to
generate inline LaTeX, you could use:

latex(x**2, mode='inline')

x^{2}

You can generate full LaTeX
equation output with:

latex(x**2, mode='equation')

\begin{equation}x^{2}\end{equation}

To end, let’s look at some gotchas
that may crop up. The first thing to
consider is the equal sign. A single
equal sign is the assignment operator,
while two equal signs are used for
equality testing. Equality testing
applies only to actual equality, not
symbolic. So, testing the following will
return false:

(x+1)**2 == x**2 + 2*x + 1

If you want to test whether two
equations are equal, you need to

subtract one from the other, and
through careful use of expand,
simplify and trigsimp, see
whether you end up with 0. Sympy
doesn’t use the default Python int
and float, because it provides more
control. If you have an expression that
contains only numbers, the default
Python types are used. If you want to
use the sympy data types, you can use
the function sympify(), or S(). So,
using Python data types, you get:

6.2 -> 6.2000000000000002

Whereas the sympy data types give:

S(6.2) -> 6.20000000000000

Expressions are immutable in sympy.
Any functions applied to them do not
change the expressions themselves,
but instead return new expressions.

This article touched on only the
most basic elements of sympy. But, I
hope you have seen that it can be very
useful in doing scientific calculations.
And by using the isympy console, you
have the flexibility to do interactive
scientific analysis and work. If some
functionality isn’t there yet, remember
that it is under active development,
and also remember that you always
can chip in and offer to help out.
—JOEY BERNARD

LJ223-Nov2012.indd 28 10/24/12 9:31 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 29

[UPFRONT]

Non-Linux
FOSS
Usually the Non-Linux
FOSS article is dedicated to
open-source software for
Windows or OS X, but since
this month’s The Open-
Source Classroom column
is about surviving in a
Windows world as a Linux
user, I thought I’d take some
liberties here and talk about
open-source soda!

If you’ve been to Penguicon
(http://www.penguicon.org),
it’s l ikely you’ve been able
to taste OpenCola, the fully
open-source soda-pop drink
designed to take the mystery
out of cola. The original
formula is available all over
the Internet (because it’s open source!), but there are some great
step-by-step procedures as well. Wiki-How has a great outline here:
http://www.wikihow.com/Make-OpenCola.

For a more complex rec ipe and at least one other f lavor, be sure to
v is i t http://www.opensoda.org as wel l . Shar ing rec ipes is nothing
new for homebrewers of beer, but i t ’s surpr is ingly diff icult to f ind soda-
pop rec ipes. Perhaps with the supermarket avai labi l i ty of SodaStream
(http://www.sodastream.com) , open-source rec ipes wi l l become more
common. In the meant ime, i f you’d l ike to try open-source soda, be sure
to stop by Penguicon’s Consuite next year.
—SHAWN POWERS

LJ223-Nov2012.indd 29 10/24/12 9:31 AM

http://www.penguicon.org
http://www.wikihow.com/Make-OpenCola
http://www.opensoda.org
http://www.sodastream.com
http://www.linuxjournal.com

30 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

Android Candy:
Never Plug In
Your Phone Again!
Last month (the October 2012 issue
of LJ), I showed you an awesome
audiobook player app for Android,
but I didn’t share my frustration
in getting the audio fi les on to
my phone. When I plugged my
phone in to the computer, I couldn’t
get the SD card to mount, no
matter what settings I changed.
It was very frustrating and forced
me to come up with a better way.
Enter: FolderSync.

First off, it’s important to note
that FolderSync isn’t free. There is
a free version, but it’s l imited to
a single account and has ads, and
although it works, it really isn’t the
same as the full app. If you’re l ike
me, you don’t think twice about
spending $5 on a fancy cup of
coffee, but if you have to pay for
an app on your phone, you debate
internally for hours. I’ve never been
so happy I spent $2.29 on an app.

Basically, FolderSync works on
your phone sort of l ike Dropbox
works on your desktop computer.

Instead of syncing only your
Dropbox fi les, however, FolderSync
supports a wide variety of data
sources. At the time of this
writing, data can be synchronized
with Amazon S3, Google Docs,
Google Drive, SkyDrive, Dropbox,
SugarSync, Box.net, Ubuntu One,
NetDocuments, FTP/FTPES/FTPS,
SFTP, WebDAV/WebDAVs and
Samba/SMB/CIFS.

[EDITORS' CHOICE]

EDITORS’
CHOICE

★

™

Image from the FolderSync Home Page:
http://www.tacit.dk

LJ223-Nov2012.indd 30 10/24/12 9:31 AM

http://www.linuxjournal.com
http://www.tacit.dk

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 31

[EDITORS' CHOICE]

In my case, I keep an Audiobooks
folder on a share at home, and
every night the fi les are synced
up. With the paid version,
synchronizations can be forced
as well. Although the Audiobook
syncing is the only thing I use
FolderSync for, it’s the perfect tool
to keep music, photos, documents
or anything else synchronized on
your phone without ever plugging
it in to the computer. Because
FolderSync supports two-way
synchronization, it is possible to
delete fi les from your home server,
so be careful!

After configuring FolderSync to

sync my Audiobooks automatically,
but only over Wi-Fi and only while
plugged in, I realized it had to be
Editors’ Choice for this month. That
means two Android apps in a row
win the coveted title, but once you
try it, I suspect you’l l agree. Check
out FolderSync at the Google Play
Store: https://play.google.com/
store/apps/details?id=dk.tacit.
android.foldersync.full, or if
you’d prefer to keep your pumpkin
latte money, try out the Lite version:
https://play.google.com/store/
apps/details?id=dk.tacit.android.
foldersync.lite.
—SHAWN POWERS

Image from the FolderSync Home Page: http://www.tacit.dk

LJ223-Nov2012.indd 31 10/24/12 9:31 AM

https://play.google.com/store/apps/details?id=dk.tacit.android.foldersync.full
https://play.google.com/store/apps/details?id=dk.tacit.android.foldersync.full
https://play.google.com/store/apps/details?id=dk.tacit.android.foldersync.full
https://play.google.com/store/apps/details?id=dk.tacit.android.foldersync.lite
https://play.google.com/store/apps/details?id=dk.tacit.android.foldersync.lite
https://play.google.com/store/apps/details?id=dk.tacit.android.foldersync.lite
http://www.tacit.dk
http://www.linuxjournal.com

COLUMNS

32 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

Chrome
Extensions
Create applications inside the Chrome browser with standard
Web technologies: HTML, CSS and JavaScript.

Back when Netscape was a rising
star in the high-tech world, cofounder
Marc Andreessen announced that the
browser was a new form of operating
system, within which people could
create applications. Rather than
writing apps for Windows, or the
Macintosh, or even Linux (a laughable
idea back then), we would write
them for the browser. This seemed
like a far-fetched idea at the time,
but it obviously has become the
case. Today, it is the norm to speak
of a “Web application”, meaning
something that is delivered via the
browser, but whose code sits on a
server. This is what I think of when
someone says “Web application”,
and it has been a while since I really
thought seriously about even writing
a desktop application.

That said, there’s certainly an
advantage to working with desktop
applications. They work more
smoothly with other applications; they

can interact with the filesystem, and
they just have a more natural look
and feel. This is changing, especially
given the capabilities that HTML5
brings to the table and the ways that
browsers are becoming integrated into
the overall user experience, rather
than being one of many applications
running on the computer.

What I really like is the relative
simplicity of creating a Web
application, including using the
technologies that are the Web’s
bread and butter—HTML, CSS and
JavaScript—and which I use, at least
for client-side development, on a
day-to-day basis.

Firefox has offered developers
the chance to write extensions
for a long time. However, I must
admit that I wasn’t thrilled with the
idea of learning an entirely new
language and paradigm (Mozilla’s
XUL). The Greasemonkey extension
for Firefox has long been a favorite

REUVEN M.
LERNER

AT THE FORGE

LJ223-Nov2012.indd 32 10/24/12 9:31 AM

http://www.linuxjournal.com

COLUMNS

WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 33

AT THE FORGE

of mine, making it possible for me
to make client-side changes and
customizations to Web sites of all
sorts. But, it wasn’t completely
integrated into the browser, and it
required installation and configuration
beyond what most people are willing
to accept.

Extensions in Google Chrome (or
the open-source Chromium), by
contrast, use Web technologies and
are built in to the browser, making
it truly possible to extend the
browser in a number of different
ways by loading packages of HTML,
CSS and JavaScript.

This month, I look at the different
types of extensions you can write
with Chrome and consider when it’s
better to write an extension than
a Web application, as well as show
how to develop a simple extension
of your own.

Creating an Extension
As I mentioned previously, a Chrome
extension is a combination of HTML,
CSS and JavaScript. There are different
types of extensions; right now, let’s
concentrate on a browser extension,
which puts an icon in the top-right
corner of the browser, which produces
a pop-up and also can interact with
the contents of the browser window.

Creating an extension is actually

quite simple and can be done
from within any directory on your
computer. Create a new directory, and
in it, create a file called manifest.json.
As the file extension indicates, this
file (which gives Chrome information
about your extension) is written in
JSON (JavaScript object notation),
which is natural and easy to pick up
by anyone familiar with JavaScript.
The manifest tells Chrome how to
load the extension, what permissions
it should have and what elements
should be displayed within the
browser window.

For example, here is a simple
extension manifest for the extension
I’m building for this article:

{

 "name": "ATF sample extension",

 "version": "1.0",

 "manifest_version": 2,

 "description": "Description of my ATF sample extension",

 "browser_action": {

 "default_icon": "atf.png"

 }

}

As you can see, manifest.json
contains a number of name-value
pairs, as you would expect from a JSON
or JavaScript object. The names are
set by the Chrome extension standard
document, and although most of the

LJ223-Nov2012.indd 33 10/24/12 9:31 AM

http://www.linuxjournal.com

COLUMNS

34 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

AT THE FORGE

values are strings, there are cases when
they will contain numbers (for example,
the manifest_version), objects
(for example, the browser_action)
or even arrays.

According to the standard
document (see Resources), the only
required fields in manifest.json are
“name” (containing the extension
name) and “version” (indicating the
extension version). However, Google
also says that as of Chrome 18,
“developers should specify 2” for
the version number, and that seems
like a reasonable idea to me.

Because this extension is a
browser action, you need to specify
this name-value pair, stating
“browser_action” as the name and
a JSON object as its value. That
value, which can (and will) contain
several additional name-value
pairs, currently has just one, namely
“default_icon”, which indicates what
icon should be displayed in Chrome’s
toolbar to the right of the address
bar. default_icon is a string containing
a filename, which should be a PNG

graphic of the correct size (19x19)
that represents your extension.

Once you have created manifest.json,
create (or download) a 19x19 PNG
icon, and put it inside the extension
folder with the filename atf.png. With
the extension directory, manifest.json
and icon, you’re now ready to load
the extension into Chrome. Open
your browser to chrome://chrome/
extensions/—a special URL for
extension management—and
make sure the “developer mode”
check box is set, so that you can
load extensions without Google’s
permission and from your local disk.
Once you have done that, a “Load
unpacked extension” button should
be available. Click on that, and then
use the file-selection dialog to select
the extension directory. (Don’t select
a file within the directory, but rather
the directory itself.)

Once you have done this, your
extension should show up in
Chrome with the extension name,
description and version number. If
and when you update the extension,

Extensions can do any number of things, from
providing snapshots of other sites, to interacting
with the overall browser environment, to
interacting with the page currently being viewed.

LJ223-Nov2012.indd 34 10/24/12 9:31 AM

http://www.linuxjournal.com

COLUMNS

WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 35

AT THE FORGE

you can tell Chrome to reload it by
cl icking the reload l ink under the
extension name.

Make the Extension Useful
Now that you’ve created a basic
extension, let’s try to make it useful.
Extensions can do any number of
things, from providing snapshots
of other sites, to interacting with
the overall browser environment, to
interacting with the page currently
being viewed.

Let’s first create a pop-up. The
manifest.json file already indicates
what popup_icon will be. Let’s add
to that an HTML file, which then will
be displayed when you click on your
extension’s icon. To do this, just set
the “default_popup” value within
manifest.json to the name of an HTML
file within the extension directory.
Then, create an HTML file with that
name. For example:

{

 "name": "ATF sample extension",

 "version": "1.1",

 "manifest_version": 2,

 "description": "Description of my ATF sample extension",

 "browser_action": {

 "default_icon": "icon.png",

 "default_popup": "popup.html"

 }

}

Notice I also have increased the
version number of the extension to
make sure I can keep track of which
version was created when. (If you’re
using a version-control system,
such as Git, you can keep a tag or
a commit note indicating when you
updated the version number.)

Now that I’ve told Chrome that it
should load popup.html whenever I
click on the extension’s icon, I really
should create an HTML file named
popup.html. Here’s a simple one that
you can include:

<!doctype html>

<html>

 <head>

 <title>ATF extension</title>

 </head>

 <body>

 <h1>Extension headline</h1>

 <p>I am an extension paragraph.</p>

 </body>

</html>

Now, if this file looks simple to
you, that’s the point. Extensions can
become complex, but they don’t
have to be, particularly if you’re doing
something simple. Save the new version
of manifest.json and popup.html
inside the extension directory, reload
the extension, and click on the
extension icon. You should see the

LJ223-Nov2012.indd 35 10/24/12 9:31 AM

http://www.linuxjournal.com

COLUMNS

36 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

AT THE FORGE

text pop up, albeit in an ugly black-
and-white window.

If you want to add some nice
styl ing to popup.html, you can do
so with CSS. Create a file, popup.css,
and place it (of course) in the
extension directory:

h1 {

 color: blue;

}

Now, add a link to that stylesheet
inside popup.html:

<!doctype html>

<html>

 <head>

 <title>ATF extension</title>

 <link rel="stylesheet" type="text/css" href="popup.css">

 </head>

 <body>

 <h1>Extension headline</h1>

 <p>I am an extension paragraph.</p>

 </body>

</html>

Sure enough, the h1 headline is
now colored blue.

JavaScript in Extensions
All of this seems pretty
straightforward—and it is. But if
you’re thinking that you can just
stick some JavaScript inside the HTML

file and have it execute, as would
be the case in a normal HTML file...
well, that’s where things become a
bit tricky and different. For security
reasons (which I admittedly don’t
quite understand), JavaScript needs to
be in a separate file, referenced from
the HTML file. In such a case, the file
looks like this:

<!doctype html>

<html>

 <head>

 <title>ATF extension</title>

 <script src="popup.js"></script>

 <link rel="stylesheet" type="text/css" href="popup.css">

 </head>

 <body>

 <h1>Extension headline</h1>

 <p>I am an extension paragraph.</p>

 </body>

</html>

What can be in your popup.js?
Anything you want, actually. Here’s a
really simple (and annoying!) one:

alert("You have loaded the popup!");

Now clicking on the extension icon
will produce a JavaScript alert. Once
you have dismissed it by clicking
the OK button, you will get your
beautifully formatted HTML page,
in popup.html.

LJ223-Nov2012.indd 36 10/24/12 9:31 AM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 37

COLUMNS

AT THE FORGE

What can you do within popup.js?
Truth be told, you can do just about
anything you want—modify text,
retrieve content from other sites,
calculate things and send information
elsewhere. If you can do it in
JavaScript, the odds are that you can
do it within the browser. You even
can use a library, such as jQuery,
so long as your copy of jQuery is
referenced and loaded from within
the extension directory.

So, let’s try something a bit bolder.
Let’s retrieve data from a Web site
and insert it into the pop-up window,
using jQuery. In order to do this, you’ll
need to modify your popup.html a bit:

<!doctype html>

<html>

 <head>

 <title>ATF extension</title>

 <script src="jquery.js"></script>

 <script src="popup.js"></script>

 <link rel="stylesheet" type="text/css" href="popup.css">

 </head>

 <body>

 <h1>Extension headline</h1>

 <p id="paragraph">I am an extension paragraph.</p>

 </body>

</html>

Notice how I’ve added the line
referencing jquery.js in the extension
directory. You also can reference one

of the copies that Google or another
company has put on-line, in order
to improve caching and download
speeds. I’ve also given an ID attribute
of “paragraph” to the “p” tag
in the HTML, which will make it
easier to grab the paragraph and do
something with it.

The biggest difference will be in
popup.js. No longer will you just have
a call to alert() in there. Instead, you’ll
actually use jQuery’s Ajax facilities to
retrieve information from a Web site
and stick it into the pop-up window.
You’re going to do it in an ugly,
brute-force way here, in order to
see the results more obviously, but
you easily can imagine an example
that would go through the contents
of a Web site more gracefully (or,
perhaps, its RSS/Atom feed), picking
out information that is of use and
then displaying it. For example, you
could create a browser extension that
displays the current weather.

For this example, let’s just have the
browser go to a Web site, retrieve its
contents and stick the raw content
into the pop-up’s “p” tag. Here’s the
updated popup.js:

alert("Popup -- before");

function showText(data) {

 $("#paragraph").text(data);

LJ223-Nov2012.indd 37 10/24/12 9:31 AM

http://www.linuxjournal.com

COLUMNS

38 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

AT THE FORGE

};

$.get('http://lerner.co.il/', showText);

alert("Popup -- after");

Now, the reason I put in the
“before” and “after” alerts is not
because I enjoy annoying my users,
but because I find it instructive
to see when things happen in the
asynchronous Ajax world. (Hint:
remove the calls to “alert” before
you unleash this amazing extension
on your users.) You define a function,
showText, which adheres to jQuery’s
definition of what a function should
look like, namely that it accepts (at
least) one parameter, named “data”,
which contains the contents of the
URL you tried to retrieve. That’s
all you’re going to do here, using
the “text” method to stick in the
HTML source. That means the end
user will see the source; if you want
something a bit more aesthetic, you
can use the html() method rather
than the text() method.

But, showText isn’t invoked directly.
Rather, it’s invoked as a callback
function, executing when your
invocation of $.get(), a function that
executes in the background (that is,
asynchronously), returns the contents
of the Web site. This could take one

second or ten, but in most cases,
it’ l l be pretty fast. However, the
callback almost certainly wil l be
invoked only after your second call
to alert(). That is, you’l l see the first
alert() call, the second alert() call
and then a change in the contents
of the paragraph. Such event-based
coding is the norm in the JavaScript
world, and it can take a l ittle time
to get used to it. Notice that the
second parameter is showText,
the function itself, which then is
invoked after a successful Ajax call.

If you now reload the browser
extension and click on the button,
you’l l f ind...that nothing really
happens. That is, you get the
first and second calls to alert, but
the paragraph doesn’t change its
contents. This is because you haven’t
told Chrome that it’s okay to retrieve
data from lerner.co.il, or from any
other URL. Because retrieving data
from an external URL is a potentially
dangerous event, exposing you to
things in the outside world, you need
to allow its use explicitly. This is done
by returning to manifest.json and
adding a “permissions” key:

{

 "name": "ATF sample extension",

 "version": "1.1",

 "manifest_version": 2,

LJ223-Nov2012.indd 38 10/24/12 9:31 AM

http://www.linuxjournal.com

COLUMNS

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 39

AT THE FORGE

 "description": "Description of my ATF sample extension",

 "browser_action": {

 "default_icon": "icon.png",

 "default_popup": "popup.html"

 },

 "permissions": [

 "http://lerner.co.il/"

]

}

The “permissions” key can
contain a large variety of items,
from URLs (as in this case) to
wild-card matches, to keywords that
Google has defined. For example,
if you’l l want your extension to use
such HTML5 abil it ies as geolocation
or local storage, you’l l need to
indicate that here.

Now, all of this is nice if you want
to modify popup.html, namely the
pop-up that you get with your
browser extension. What if you
actually want to interact with the
page itself, either reading from it or
writing to it? The answer is that you
can do this by writing not a “browser
action”, as it is known in the Chrome
world, but a “content script”.

Now, a content script requires a
different manifest.json, but it also
raises questions about how you can
interact with a page that itself might
have some JavaScript executing.
The answer is that Chrome provides

an interesting facility known as
“isolated worlds”, in which two
separate JavaScript environments—
one on the page and the other in the
browser—can operate independently,
each with its own JavaScript library
(and version of jQuery, if necessary),
but interact simultaneously with
the DOM and the contents of the
page. Such isolation not only means
that your content script can play
with the contents of the page in a
number of ways without worrying

LINUX JOURNAL
on your

Android device
Download
app now in
the Android
Marketplace

www.linuxjournal.com/android

LJ223-Nov2012.indd 39 10/24/12 9:31 AM

http://www.linuxjournal.com/android
http://www.linuxjournal.com

COLUMNS

40 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

AT THE FORGE

about interfering with existing
JavaScript, but also that the page
cannot “break out” of its sandbox,
infecting or otherwise affecting the
browser itself.

I should note that although I
haven’t used them in this article’s
examples, Chrome provides a wide
variety of JavaScript methods and
functionality through the “chrome”
object, which you can access via
the permissions key in manifest.json.
Such methods give you access to
(for example) the current tabs and
windows, really allowing you to
control and use the browser as an
application platform, rather than just
a mechanism for displaying content.

Conclusion
Chrome was designed to use Web
technologies, and nowhere is that

more obvious than the extension
mechanism, which uses a combination
of HTML, CSS and JavaScript to
produce new user experiences.
Now, browser extensions aren’t a
panacea; they break the idea that
the Web is browser-independent and
that everything can be downloaded
on demand from a server. But if
your entire organization will be
using Chrome, or if you’re looking
for something that interacts with
existing pages, or if you want to add
capabilities to your browser, Chrome’s
extension mechanism makes it easy to
experiment and try new ideas.■

Reuven M. Lerner is a longtime Web developer, consultant

and trainer. He is also finishing a PhD in learning sciences at

Northwestern University. His latest project, SaveMyWebApp.com,

went live this spring. Reuven lives with his wife and children

in Modi’in, Israel. You can reach him at reuven@lerner.co.il.

Resources

The home page for Google Chrome is http://google.com/chrome. The home page for

Chromium, its open-source counterpart, is at http://chromium.org.

Extensive information about writing Chrome extensions, including video tutorials, is

available from Google at http://developer.chrome.com/extensions.

Specifically, you can read more about the standard for manifest.json and what it can

contain at http://developer.chrome.com/extensions/manifest.html.

jQuery, which is the 900-pound gorilla of JavaScript libraries, is at http://jquery.org.

LJ223-Nov2012.indd 40 10/24/12 9:31 AM

http://www.linuxjournal.com
mailto:reuven@lerner.co.il
http://google.com/chrome
http://chromium.org
http://developer.chrome.com/extensions
http://developer.chrome.com/extensions/manifest.html
http://jquery.org
http://SaveMyWebApp.com

* Offer valid for a limited time only. Lifetime 50% off applies to base fee and configurations. Base configuration includes 1 processor core, 1 GB RAM, 100 GB storage. This offer applies to new
contracts only. 12 month minimum contract term. Other terms and conditions may apply. Visit www.1and1.com for full promotional offer details. Program and pricing specifications and availability
subject to change without notice. 1&1 and the 1&1 logo are trademarks of 1&1 Internet, all other trademarks are the property of their respective owners. © 2012 1&1 Internet. All rights reserved.

1&1 Dynamic
clouD Server
Our data centers offer top security, Cisco firewall
protection and maximum uptime. With more than
20 years experience and an extensive server range,
we know what IT professionals need. Get full root
access for complete control. We are a strong
global company with 3 billion dollars in annual
revenue and over 6,000 employees worldwide

 1&1 Dynamic clouD Server
A fully flexible server for a range of requirements
including applications, databases, gaming and
much more!

n Independently configure CPU, RAM, and storage

n Accurate and fair: Control costs with
pay-per-configuration and hourly billing

n Up to 6 Cores, 24 GB RAM, 800 GB storage

n 2000 GB of traffic included free

n Parallels® Plesk Panel 11 for unlimited domains,
reseller ready

n Up to 99 virtual machines with different
configurations under one contract

n No setup fee

n 24/7 phone and e-mail support

$24.99per month* $49.99
per month*

liFeTime DiScounT

50% oFF
incluDinG conFiGuraTionS,
no SeTuP Fee

2000 GB included

maximum SecuriTy
Redundant storage and mirrored
processing units reliably protect your
server against any failure

incluDeD TraFFic

ParallelS PleSk ® Panel 11
for unlimited domains

Full rooT acceSS
The control and functionality of a root
server with dedicated resources

maximum FlexiBiliTy
Independently adjust CPU cores, RAM and
hard disk space and add up to 99 virtual machines.
We offer cost transparency through hourly billing.

8,125 x 10,875Zoll

www.1and1.com

®

LJ223-Nov2012.indd 41 10/24/12 9:31 AM

https://www.1and1.com/cloud-hosting?ac= OM.US.USe79K42159T7073a

COLUMNS

42 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

WORK THE SHELL

DAVE TAYLOR
SIGALRM
Timers and
Stdin Analysis
It’s not hard to create functions to ensure that your script
doesn’t run forever. But what if you want portions to be
timed while others can take as long as they need? Not so
fast, Dave explains in his latest Work the Shell.

In my last article, I started building
out a skeleton script that would have the
basic functions needed for any decent
shell script you might want to create. I
started with command-line argument
processing with getopts, then explored
syslog and status logging as scripts.
Finally, I ended that column by talking
about how to capture signals like Ctrl-C
and invoke functions that can clean up
temp files and so on before actually
giving up control of your shell script.

This time, I want to explore a
different facet of signal management
in a shell script: having built-in timers
that let you specify an allowable
quantum of time for a specific
function or command to complete
with explicit consequences if it hangs.

When does a command hang? Often

when you’re tapping into a network
resource. For example, you might
have a script that looks up definitions
by handing a query to Google via
curl. If everything’s running fine, it’ll
complete in a second or two, and
you’re on your way.

But if the network’s off-line or
Google’s having a problem or any of the
million other reasons that a network
query can fail, what happens to your
script? Does it just hang forever, relying
on the curl program to have its own
timeout feature? That’s not good.

Alarm Timers
One of the most common alarm timer
approaches is to give the entire script
a specific amount of time within
which it has to finish by spawning

LJ223-Nov2012.indd 42 10/24/12 9:31 AM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 43

COLUMNS

WORK THE SHELL

a subshell that waits that quantum,
then kills its parent. Yeah, kinda
Oedipal, but at least we’re not poking
any eyes out in this script!

The additional lines end up looking
like this:

(

sleep 600 # if 10 minutes pass

kill -TERM $$ # send it a SIGTERM signal

)&

There’s no “trap” involved—easy
enough. Notice especially that the
closing parenthesis has a trailing
ampersand to ensure that the subshell
is pushed into the background and
runs without blocking the parent
script from proceeding.

A smarter, cleaner way to do this
would be for the timer child subshell
to send the appropriate SIGALRM
signal to the parent—a small tweak:

(

sleep 600 # if 10 minutes pass

kill -ALRM $$ # send it a SIGALRM signal

)&

If you do that, however, what
do you need in the parent script
to capture the SIGALRM? Let’s
add that, and let’s set up a few
functions along the way to continue
the theme of useful generic
additions to your scripts:

function allow_time

{

 (echo timer allowing $1 seconds for execution

 sleep $1

 kill -ALRM $$

) &

}

This first function lets you easily
set a time for subsequent execution,
while the second presents your ALRM
handler in a bit neater fashion:

function timeout_handler

{

 echo allowable time for execution exceeded.

 exit 1

}

Note that both scripts have

But if the network’s off-line or Google’s having
a problem or any of the million other reasons
that a network query can fail, what happens to
your script?

LJ223-Nov2012.indd 43 10/24/12 9:31 AM

http://www.linuxjournal.com

COLUMNS

44 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

WORK THE SHELL

debugging output that’s probably
not needed for actual production
code. It’s easily commented out,
but running it as is will help you
understand how things interact and
work together.

How might this be used? Like this:

trap timeout_handler SIGALRM

allow_time 10

code that has ten seconds to complete

That would give the script ten seconds
to finish.

The problem is, what happens if it
finishes up in less time than allotted?
The subshell is still out there, waiting,
and it pushes out the signal to a
nonexistent process, causing the
following sloppy error message to
show up:

sigtest.sh: line 7: kill: (10532) - No such process

There are two ways to fix this, either
kill the subshell when the parent shell
exits or have the subshell test for
the existence of the parent shell just
before it sends the signal.

Let’s do the latter. It’s easier, and
having the subshell float around
for a few seconds in a sleep is
certainly not going to be a waste
of computing resources.

The easiest way to test for the

existence of a specified process is
to use ps and check the return code,
like this:

ps $$ >/dev/null ; echo $?

If the process exists, the return
code will be 0. If it’s gone, the return
code will be nonzero. This suggests a
simple test:

if [! $(ps $$ > /dev/null)]

But, that won’t work because it’s
the return code, not what’s handed to
the shell. The solution? Simply invoke
the ps command, then have the
expression test the return code:

function allow_time

{

 (echo timer allowing $1 seconds for execution

 sleep $1

 ps $$ > /dev/null

 if [! $?] ; then

 kill -ALRM $$

 fi

) &

}

That solves that problem. But, what
if you have sections of code where
you want to limit your execution time
followed by other sections where you
don’t care?

LJ223-Nov2012.indd 44 10/24/12 9:31 AM

http://www.linuxjournal.com

COLUMNS

WORK THE SHELL

That’s easy if you don’t mind leaving
some child processes around waiting
to shoot a signal at the parent. Just
use this:

trap '' SIGALRM

when you’re done with the timed
passage. What happens is that the
timer generates a signal, but the
parent script ignores it.

The limitation on this, of course, is
if you have code like this:

regular code

possible runaway code <-- allocate 100 seconds

cancel timer

more regular code

possible runaway code <-- allocate 100 seconds

The situation arises if the second
code block is started before the first
timer runs out. Imagine that you’ve
allocated 100 seconds for the first
timed block and it finishes in 90
seconds. Regular code takes five
seconds, then you’re in block two,

LJ223-Nov2012.indd 45 10/24/12 9:31 AM

http://www.EmperorLinux.com

COLUMNS

46 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

WORK THE SHELL

for exactly ten seconds. Then the
first ALRM timer triggers, after ten
seconds rather than another 100.
Not good.

This is admittedly a bit of a corner
case, but to fix it, let’s reverse
the decision about having child
processes test for the existence
of the parent before sending the
signal and instead have the parent
script kil l al l child subshells upon
completion of the timed portion.
It’s a bit tricky to build, because
it requires the use of ps and picks
up more processes than just that
subshell, so you not only need to
screen out your own process, you
also want to get rid of any subshell
processes that aren’t actually the
script itself.

I use the following:

ps -g $$ | grep $myname | cut -f1 -d\ | grep -v $$

This generates a list of process IDs
(pids) for all the subshells running,
which you then can feed to kill:

pids=$(ps -g $$ | grep $myname | cut -f1 -d\ | grep -v $$)

kill $pids

The problem is that not all of those
processes are still around by the time
they’re handed to the kill program.
The solution? Ignore any errors

generated by PID not found:

kill $pids > /dev/null 2>&1

Combined as a function, it’d look
like this:

function kill_children

{

 myname=$(basename $0)

 pids=$(ps -g $$ | grep $myname | cut -f1 -d\ | grep -v $$)

 kill $pids > /dev/null 2>&1

}

If you’re thinking “holy cow,
multiple timers in the same script
is a bit of a mess”, you’re right. At
the point where you need something
of this nature, it’s quite possible
that a different solution would be a
smarter path.

Further, I’m sure there are other
ways to address this, in which case
I’d be most interested in hearing
from readers about whether you’ve
encountered a situation where
you need to have multiple timed
portions of your code, and if so, how
you managed it! Send e-mail via
http://www.linuxjournal.com/contact.■

Dave Taylor has been hacking shell scripts for more than 30 years.

Really. He’s the author of the popular Wicked Cool Shell Scripts

and can be found on Twitter as @DaveTaylor and more generally

at http://www.DaveTaylorOnline.com.

LJ223-Nov2012.indd 46 10/24/12 9:31 AM

http://www.linuxjournal.com
http://www.linuxjournal.com/contact
http://www.DaveTaylorOnline.com

December 4-7, 2012
San Francisco Bay Area

Attend

Choose from more than 80 classes and workshops!

Follow us: twitter.com/AnDevCon

Register Early
and SAVE BIG!

www.AnDevCon.com

n Learn from the top Android experts,
including speakers straight from !

n Attend sessions that cover app development,
deployment, management, design and more

n Network and connect with hundreds of
experienced developers and engineers
like yourself

“AnDevCon is a fantastic conference! There is no better
place to experience the latest and greatest technologies
and techniques in the field of Android development. If you
attend one conference this year, this one should be it!”

—Jay Dellinger, Senior Software Engineer, Manheim

AnDevCon™ is a trademark of BZ Media LLC. Android™ is a trademark of Google Inc. Google’s Android Robot is used under terms of the Creative Commons 3.0 Attribution License.

A BZ Media Event

Get the best real-world
Android developer training anywhere!

Project2_Layout 1 10/22/12 10:51 AM Page 1

LJ223-Nov2012.indd 47 10/24/12 9:31 AM

http://www.AnDevCon.com

COLUMNS

48 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

HACK AND /

What’s Up
Dock?
Kyle finally has found a replacement for his beloved Nokia
N900, but maybe not for the reasons you might suspect.

If you have followed my column
during the past few years, you’ll
know that I am a big fan of having a
portable Linux environment with me
wherever I go. For years, this took the
form of small laptops (like the Fujitsu
P series) and most recently the Nokia
N900, which took the form factor
down to pocket size.

When I got the N900, I thought
technology finally had caught up to
a dream of mine: the ability to carry
my computer in my pocket and, when
I’m out walking around, interface
with it via the small keyboard and
touchscreen. When I get home, I
can dock it, and it will expand to a
larger display with a proper keyboard
and mouse and become my regular
computer. The big advantage of this
idea is that I can keep my files and
environment with me wherever I go.

Where the N900 Fell Short
Unfortunately, as much as I loved

the N900, it had two major
shortcomings that stopped me from
realizing this dream: low-resolution
composite video output and slightly
underpowered hardware.

Although the N900 display was
800x480 (not great but large enough
for a desktop environment), it could
output only standard composite video.
When I first got the N900, I thought
my presentations looked pretty good
on it. I had planned to use it for all
my conference presentations going
forward, but after seeing the low-res
results over composite video, I realized
that wasn’t going to work. I’ve tried
a number of different techniques to
work around this limitation—I could
set up a local USB network and then
see the display over VNC. In fact, I
even wrote a previous column talking
about how to do this, but although
interesting, it ultimately was not the
solution I wanted.

The N900 was a reasonably fast

KYLE RANKIN

LJ223-Nov2012.indd 48 10/24/12 9:31 AM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 49

COLUMNS

HACK AND /

device at the time it was released with
a 600MHz ARM processor, 256MB
RAM and 32GB of onboard storage
expandable to 64GB with an extra
microSD card. Although those specs
are fine for a portable device and
really worked pretty well for my usage
model (mostly terminals and Web
browsing), when on a larger screen,
it seemed like the computer should
perform a bit faster.

Basically, the N900 was almost
there, but not quite. Since a number
of phones released after the N900
not only had better hardware specs
but also HDMI output, my plan was to
wait for the N900+1, whatever that
product ended up being, because I
assumed it likely would be faster and
have HDMI output. Unfortunately, if
you’ve been following the Nokia story,
you know that Nokia abandoned its
Linux-based phones shortly after the
N900, and the follow-on device never
really lived up to expectations—the
version that had a hardware keyboard
wasn’t even available for purchase
and still had composite out. With the
rise and fall of most of the remaining

mobile Linux environments and no
real platform to go with, I just kept
using the N900 and prayed it wouldn’t
break before I found a successor.

Kyle’s Using Android?
I’m about as surprised as anyone that I
found the N900’s successor in a Droid
4—an Android device. I’ll be honest,
I don’t really like Android. I want a
true Linux distribution in my pocket,
not a phone OS where you need a
special app to do anything. All of the
pre-installed junkware you get from
your carrier reminds me of Windows
desktops. I don’t like that you have
to sneak around and root the
device to use it truly how you want
(and to get a halfway usable terminal).
I don’t like how fragmented Android
is and how beholden you are to your
carrier to get OS upgrades on your
device. I also don’t like that all of my
favorite Linux apps can’t be ported
over easily. So when I recently got a
Droid 4 from my employer, my plan
was just to use it for work e-mail and
calendaring and keep the N900 for all
my mobile computing.

I want a true Linux distribution in my pocket,
not a phone OS where you need a special app
to do anything.

LJ223-Nov2012.indd 49 10/24/12 9:31 AM

http://www.linuxjournal.com

COLUMNS

50 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

HACK AND /

So, what caused me to get past
all of my feelings about Android? It
came down to a laptop dock. When I
first heard about the Motorola Atrix
and the fact that it had a laptop
dock that essentially turned it into a
Netbook running a strange version
of Linux (Figure 1), I was intrigued
but not enough to run Android and
put down a few hundred dollars for a
dock. Recently though, I saw an article
on-line that described how someone
had used a series of USB and HDMI
adapters to connect his Raspberry
Pi to the Atrix laptop dock. Because
the dock is basically just a dumb (but
high-res) display with an integrated
USB keyboard and touchpad, if you
had the right adapters, you could
connect just about any computer to it.
Plus, because it had a big integrated
battery designed to charge the

phone over USB, it even could
power the Raspberry Pi. The dock
never really took off for its intended
use, so he was able to find one for
around $70 or so, and combined
with a Raspberry Pi, it made a nice
little portable Linux environment.

I had some birthday money burning
a hole in my pocket, so I found an
Atrix laptop dock for $65 on-line
and decided to see if I couldn’t get it
working with my Raspberry Pi. When
the dock arrived, I hadn’t yet ordered
all of the various adapters to use it
with my Raspberry Pi, so I figured in
the meantime, I would try to test it
with my Droid 4. Although the micro
HDMI and USB connectors were the
right size and the right distance apart
to work in my Droid 4, unfortunately
they were both turned 180 degrees
the wrong way. I wasn’t the first
person who tried to do this, however,
and I was able to find a solution
on-line and turned the connectors
around in about ten minutes.

Once I docked the Droid 4, a
special webtop mode kicked in and
basically took my regular phone
desktop and expanded it to fill the
new larger screen (Figure 2). What
used to be the notification area at
the top of the screen now filled
the bottom of the screen like a
panel, and mouse clicks acted like

Figure 1. Atrix Dock Promotional Picture
from Motorola

LJ223-Nov2012.indd 50 10/24/12 9:31 AM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 51

touchscreen taps. Many native apps
took advantage of the larger space
and resized as though I were using a
tablet. What I realized then was that
if I could figure out a way to get a
real Linux environment on this device,
I may be able to get close to the
dream of that dockable computer
I could take with me everywhere.

Install Linux on Android
Although the laptop dock was
interesting as it was, what I wanted
was a real Linux environment. I knew
that it was possible to install a Linux
environment on Android by taking
advantage of a chroot environment
combined with VNC. While a chrooted
environment was not as nice as native

COLUMNS

HACK AND /

Figure 2. My Default Docked Desktop

What I realized then was that if I could figure
out a way to get a real Linux environment on
this device, I may be able to get close to the
dream of that dockable computer I could take
with me everywhere.

LJ223-Nov2012.indd 51 10/24/12 9:31 AM

http://www.linuxjournal.com

COLUMNS

52 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

HACK AND /

Linux, all I really needed to be happy
was a Linux shell environment with all
of my favorite command-line tools plus
a browser. It turns out that a number
of different apps make it easy to set up
a Linux chroot environment (some that
even inexplicably charge money just
for the instructions), but I was able to
find a free app called Complete Linux
Installer in the Android Market to make
the process relatively simple.

The Complete Linux Installer app is
from the LinuxonAndroid Project at
http://linuxonandroid.org, and it
allows you to install a number of Linux
distributions including Ubuntu, Debian
and Backtrack. The first step is to root

your phone, which can vary from phone
to phone, so I won’t go into that here
[see Shawn Powers’ article “Pwn Your
Phone” in the October 2012 issue for
more on that topic]. Then, launch the
Complete Linux Installer app and follow
the instructions, which involve installing
the Terminal Emulator app, the BusyBox
app and a VNC client. Once the required
software is installed, you then select the
distribution you want to install. In my
case, I picked Ubuntu 12.04, and I could
choose from a small console-only image,
a medium-size image with LXDE or a
full-size image with a Unity desktop.
I went with the medium-size image,
and once it downloaded, I was able to

Figure 3. A Customized Green and Black XFCE Desktop

LJ223-Nov2012.indd 52 10/24/12 9:31 AM

http://www.linuxjournal.com
http://linuxonandroid.org

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 53

launch it from the app.
Linux ends up launching inside a

terminal app, and on first boot, it
asks a couple basic questions for
account setup and whether to enable
VNC and SSH at boot time. After
that, you can use the terminal like a
standard Ubuntu distribution and
apt-get install any software you want.
If you want to access the desktop
environment, just start your VNC client
and connect to localhost (Figure 3).
Although there’s some lag accessing
the desktop over VNC, and you have to
deal with redrawing windows, it’s still
usable. For my part though, because
I mostly need the desktop for a Web
browser, I use the Ubuntu chroot for
my console and use a native Android
browser for Web browsing. That way,
I get a console environment the way

I want it with a browser that can play
multimedia content.

What’s nice about this arrangement is
I get functionality a lot like a Netbook
with a nice screen and an okay
keyboard, but after a number of hours
when I’ve used up the laptop dock’s
battery, I still can undock my now fully
charged phone and go on my way. So
far, I’ve tried this with a Droid 4 and a
Razr, and both were able to dock and
enter webtop mode just fine. Of course,
any device with HDMI and USB (like the
Raspberry Pi) should be able to use the
webtop too, as long as you can track
down the right adapters.■

Kyle Rankin is a Sr. Systems Administrator in the San Francisco

Bay Area and the author of a number of books, including The

Official Ubuntu Server Book, Knoppix Hacks and Ubuntu Hacks.

He is currently the president of the North Bay Linux Users’ Group.

COLUMNS

HACK AND /

Resources

How to Make a Raspberry Pi Laptop: http://www.raspberrypi.org/phpBB3/
viewtopic.php?f=63&t=6747

LinuxonAndroid Project Page: http://linuxonandroid.org

After that, you can use the terminal like a
standard Ubuntu distribution and apt-get
install any software you want.

LJ223-Nov2012.indd 53 10/24/12 9:31 AM

http://www.raspberrypi.org/phpBB3/viewtopic.php?f=63&t=6747
http://linuxonandroid.org
http://www.raspberrypi.org/phpBB3/viewtopic.php?f=63&t=6747
http://www.linuxjournal.com

COLUMNS

54 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

THE OPEN-SOURCE CLASSROOM

People in
Glass Houses
Are Stuck
with Windows
It’s not easy being stuck with Windows, but here are a few tips
and tricks to make life a little more familiar.

The universe seems to have a
big, cosmic-size sense of humor.
I recently switched from a job
position that allowed me to use
Linux as my day-to-day operating
system to a position that forces
me to use Windows. Mind you,
I’ve had to use different operating
systems in the past, and even
managed an entire fleet of OS X
workstations, but I’ve never been
stuck using Windows as my day-to-
day computer before. If you worry
that your faithful editor wil l turn to
the dark side and start touting the
benefits of a Microsoft operating
system—yeah, not so much. Although
I’ll admit my computer has locked up
only once in the past month (which

would mean a serious hardware
problem in Linux, but I digress), even
a stable Windows system isn’t Linux.
So in this article, I try to make life a
little bit easier for fellow Linux users
who can see the light, but are stuck
behind the Windows.

The Simplest Answer: Virtualization
My first day on the job, after I learned
to press Ctrl-Alt-Delete to log in (am
I the only one who finds that weird?),
I downloaded virtualization software.
On Windows, there are quite a few
options from which to choose, but
it turns out that many of them are
expensive. Thankfully, VirtualBox is
free, and it runs quite nicely under
Windows (Figure 1).

SHAWN POWERS

LJ223-Nov2012.indd 54 10/24/12 9:31 AM

http://www.linuxjournal.com

COLUMNS

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 55

I’ve found my favorite way to use
Linux in a virtual machine is to put it
full screen on a secondary monitor.
If you can use a second monitor
at work, it is reminiscent of using
Synergy to share the same mouse
and keyboard on two computers. It’s
important to note that although VM
technology has come a long way, the
performance is not quite the same
as a real machine, especially when
it comes to video acceleration. For
general office work, however, I’ve
found the VM to be quite responsive
and usable.

If you don’t have a second monitor

or can’t dedicate a full screen to
Linux, VirtualBox (and most other
virtualization packages) offers a
“seamless” mode. This is a nifty
mode that puts the menu bar on your
screen, but it allows for application
windows to work alongside Windows
applications. The downside of this,
however, is that because they appear
as native apps, it would seem that
you could drag applications from
screen to screen. This is not the case,
however, so know your Linux apps
will be stuck to a single screen. (This
obviously is a moot point if you have
only one screen!)

THE OPEN-SOURCE CLASSROOM

Figure 1. VirtualBox is really quite nice, and it supports Linux fairly well.

LJ223-Nov2012.indd 55 10/24/12 9:31 AM

http://www.linuxjournal.com

COLUMNS

56 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

THE OPEN-SOURCE CLASSROOM

Because VirtualBox allows you to set
up a virtual NAT network, installing
one or more instances of Linux won’t
necessarily show up on the corporate
network. Ideally, your Linux installs
will be isolated behind your Windows
box, and no one will be the wiser. It’s
important to see how your network
settings are configured, however,
because you might not be able to
connect at all if your network is set
to bridged mode.

Yes, Cygwin...
Anytime someone talks about
Linux users forced to use Windows,
the discussion invariably turns to
Cygwin—and rightly so. Cygwin is
an interesting program that brings a
Linux look and feel to Windows. The
Cygwin setup utility will install a wide
variety of familiar applications that
are compiled to run natively under
Windows (Figures 2 and 3).

Cygwin not only provides

Figure 2. Cygwin does have a nice installation system.

LJ223-Nov2012.indd 56 10/24/12 9:31 AM

http://www.linuxjournal.com

COLUMNS

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 57

THE OPEN-SOURCE CLASSROOM

Windows-native versions of many
Linux applications, it also includes
a full X server. This X server runs
alongside Windows, and it can run
X applications installed locally or
tunneled over SSH from a remote
server. If it sounds like Cygwin is too
good to be true, you’re sorta right.
Although it includes some amazing
features and has a very familiar
interface, to me it feels clunky to
use. Before I get hate mail, let me
be clear. Cygwin is amazing; it’s
just that I don’t like the feel of the
interface. It reminds me of using

Linux back in the days when TWM
was a viable window manager. I
recommend giving Cygwin a try
to see if it fil ls your needs. It is
completely free, so there’s no reason
not to install it.

What I Actually Use: Putty
If you’re like me, chances are you
have a Linux machine running at
home. It’s also very likely you have
broadband Internet and a dedicated
“always on” connection. With a
little bit of port forwarding on your
router, accessing your computer

Figure 3. Trusty old vim is running in Windows.

LJ223-Nov2012.indd 57 10/24/12 9:31 AM

http://www.linuxjournal.com

COLUMNS

58 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

THE OPEN-SOURCE CLASSROOM

at home is usually pretty painless.
It turns out that a simple terminal
window connected to a familiar
Linux computer is all I need. When
I add Xming (which unfortunately
requires a donation to get the latest
version), everything I need from
home is available on my Windows
machine. Here’s my basic setup:

■ Putty: if you like the command
line and are comfortable with
tools like Irssi and BitlBee (Figure
4), Putty is an open-source SSH
client for Windows that supports
many features Linux users expect.
That said, the configuration for
Putty can be confusing. Basically,
you need to set up all the options

you want for a particular profile,
then save the profile. The next
time you load that profile, all
the settings will return. I’ve had
issues with trying to change
settings on an existing profile, but
I eventually managed to figure
it out. Figures 5 and 6 show a
couple important settings in Putty.
It’s possible to tunnel X traffic
to your local Windows machine,
and it’s also easy to set up port
tunneling for multiple ports.

■ Xming: this option, like many
things in Windows, isn’t really
free. It’s sort of free, in that you
don’t actually pay for a license,
but if you want to get the

Figure 4. The #linuxjournal channel in a Putty window, silly as always.

LJ223-Nov2012.indd 58 10/24/12 9:31 AM

http://www.linuxjournal.com

COLUMNS

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 59

THE OPEN-SOURCE CLASSROOM

program for Windows, you
need to donate to the Xming
Project. Basically, Xming is an
X11 server that happily sits in
the system tray and waits for an
X program to access it. If you

have X forwarding turned on with
Putty (or use the -X flag while
SSHing from Cygwin), starting
an X Window System application
is as easy as typing its name.
Figure 7 shows a Putty window

Figure 5. Putty will forward X11 traffic to your local Windows X server, if you have one.

LJ223-Nov2012.indd 59 10/24/12 9:31 AM

http://www.linuxjournal.com

60 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

COLUMNS

in which I’ve typed gnome-terminal.
You can see GNOME Terminal
started and appeared on the screen
like a regular Windows application.
I also put a tiny instance of

Notepad in the screenshot to
show that it really is Windows!
Although the pay wall for Xming is
frustrating, I find it’s unobtrusive
nature to be worth it.

Figure 6. Tunneling traffic to your remote connection can give you access to your
entire home network.

THE OPEN-SOURCE CLASSROOM

LJ223-Nov2012.indd 60 10/24/12 9:31 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 61

COLUMNS

■ Screen: although starting X
applications is seamless, it’s
not something I do very often.
Most of the time I just use the
command line and the screen
command. To be fair, “screen”
has nothing to do with Windows,
but it makes working from a
Windows environment much
easier. I simply run Irssi in a
screen session, and IRC/IM is
available anywhere, anytime
(Figure 4). Kyle Rankin has
done some great articles on
screen in the past, so I won’t
elaborate much here. Simply

put, screen allows applications
to stay running even after you
disconnect your SSH session. For
IRC, this means never logging
out, which is very convenient.

Going Native
If you aren’t thri l led with the idea
of using SSH or setting up an X
server on Windows, it’s certainly
possible to stick with Windows
applications. Granted, that won’t
be the same as using Linux, but
many open-source applications
are available for Windows users.
The most commonly used are

Figure 7. From the top, clockwise: Putty window, GNOME Terminal, Notepad—all
running side by side!

THE OPEN-SOURCE CLASSROOM

LJ223-Nov2012.indd 61 10/24/12 9:31 AM

http://www.linuxjournal.com

62 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

COLUMNS

Firefox and LibreOffice, but if
you’re committed to using as much
open source as possible, there are
many, many options. In fact, each
month I highlight an open-source
application available for non-Linux
platforms in our UpFront section.

Along with running open-source
programs specifically compiled for
Windows, don’t forget the Web-only
applications available, regardless of
your underlying operating system.
Whether you want to use TweetDeck
for sending Tweets or want a simple
word processor l ike WriteBox (which
I’m using right now), Web apps are
getting more and more powerful
every day. I f ind myself using
Pixlr more often than The GIMP
or Photoshop, regardless of what
platform I’m using.

Flip the Problem on Its Head!
Do you have control over the
computer you’re using at work?

Maybe suffering through Windows
isn’t something you need to do at
all. If there’s anything Linux users are
used to, it’s surviving in a Windows
world. Perhaps you actually could
run Linux on your computer, and no
one ever has to know!

If you have to run only an
application or two under Windows,
it’s possible Wine will work instead
of booting into Windows. Sometimes
the only reason we need to use
Windows is because certain Web
sites will function only under
Internet Explorer. Using Wine, or
CrossOver Office, running IE under
Linux can be very possible.

If Wine won’t run the applications
you need, or if you need the
Windows operating system for
other specific purposes, what
about running Windows inside a
virtual environment? Oddly enough,
Windows support as a guest
operating system is usually better

Beware the License Beast
Something I’ve noticed about using Windows is that many software packages are

“free”, but only for personal use. If you are stuck using Windows at work, be sure to

read the fine print. The VirtualBox add-on from Oracle is a perfect example. In order

to get USB2 and PXE support, you need to install the add-on, but if you’re not using

it for personal use, it’s not free.

THE OPEN-SOURCE CLASSROOM

LJ223-Nov2012.indd 62 10/24/12 9:31 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 63

COLUMNS

than Linux support, so even things
like video acceleration might work.
If you can do most of your work
in Linux, but need that Windows
environment every once in a while, a
VM might be the perfect solution.

And, of course, if nothing else,
Linux will dual-boot quite nicely
with Windows. Even if you’re stuck
using Windows for every aspect of
your job, perhaps you can reboot
into Linux when you want a familiar
environment.
(This is especially
useful if you have
a company laptop
you are allowed to
take home.)

Home Is So
Much Sweeter
For many readers,
installing programs,
partitioning
hard drives and
running virtual
environments is
just not allowed.
All I can offer you
is the comfort that
at home, you can
run whatever you
like. If you’re stuck
running Windows
and can’t even

run the programs I talked about
today, at least you can browse Linux
Journal on your Windows machine.
The Web version even works with
Internet Explorer!■

Shawn Powers is the Associate Editor for Linux Journal.

He’s also the Gadget Guy for LinuxJournal.com, and he has an

interesting collection of vintage Garfield coffee mugs. Don’t let

his silly hairdo fool you, he’s a pretty ordinary guy and can be

reached via e-mail at shawn@linuxjournal.com. Or, swing by

the #linuxjournal IRC channel on Freenode.net.

Resources

Cygwin: http://www.cygwin.com

Xming: http://www.straightrunning.com/XmingNotes

Putty: http://www.chiark.greenend.org.uk/~sgtatham/putty

VirtualBox: http://www.virtualbox.org

Irssi: http://www.irssi.org

BitlBee: http://www.bitlbee.org

TweetDeck: http://www.tweetdeck.com

WriteBox: http://is.gd/writebox

Pixlr: http://www.pixlr.com

LibreOffice: http://www.libreoffice.org

Wine: http://www.winehq.org

CrossOver Office: http://www.codeweavers.com

THE OPEN-SOURCE CLASSROOM

LJ223-Nov2012.indd 63 10/24/12 9:31 AM

mailto:shawn@linuxjournal.com
http://www.cygwin.com
http://www.straightrunning.com/XmingNotes
http://www.chiark.greenend.org.uk/~sgtatham/putty
http://www.virtualbox.org
http://www.irssi.org
http://www.bitlbee.org
http://www.tweetdeck.com
http://is.gd/writebox
http://www.pixlr.com
http://www.libreoffice.org
http://www.winehq.org
http://www.codeweavers.com
http://Freenode.net
http://www.linuxjournal.com

NEW PRODUCTS

SUSE Cloud
Veteran Linux provider SUSE announced the availability

of SUSE Cloud, an automated cloud computing

platform that enables the rapid deployment and easy

ongoing management of an infrastructure-as-a-service

(IaaS) private cloud. SUSE describes SUSE Cloud as

the first enterprise-supported private cloud solution powered by OpenStack, which includes

contributions from 3,300+ developers at 180 companies and enjoys broad industry support and

a vibrant community. The solution integrates seamlessly with SUSE Studio and SUSE Manager,

allowing enterprises to rapidly deploy, adapt and manage applications and workloads across

private and public clouds. Additional SUSE Cloud features include the ability to leverage existing

infrastructure, optimize licensing costs, improve the speed and accuracy of delivering services to

the line of business and take advantage of a high level of support, among others.

http://www.suse.com/susecloud

SoftMaker Office Mobile
for Android
Working with office documents on a mobile device

always has been clunky at best. In an effort to make

handheld computers truer replacements for desktops

and laptops, software house SoftMaker has brought

forth a new innovation in the form of SoftMaker

Office Mobile 2012, a full-featured office software app

suite designed for smartphones and tablets running Android. Going beyond document viewers,

SoftMaker Office Mobile includes three separate office applications: the TextMaker word processor,

the PlanMaker spreadsheet and the SoftMaker Presentations presentation package. Each app, says

SoftMaker, is fully functional and capable of interoperating with Microsoft Office documents with

no loss of layout or formatting including advanced items, such as charts, calculations, transitions

and animations. Advanced office functions, such as tracking document changes and adding

annotations, spreadsheet calculations and charting, presentation slide transitions and animations

and PDF creation, also are included. Cloud-based services include Save to Dropbox and Save to

Evernote, which expand functionality for document sharing and collaboration regardless of location.

http://www.softmaker.com

64 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

LJ223-Nov2012.indd 64 10/24/12 9:31 AM

http://www.linuxjournal.com
http://www.suse.com/susecloud
http://www.softmaker.com

NEW PRODUCTS

WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 65

Denim Group’s ThreadFix
The target audience for Denim Group’s ThreadFix—an open-source software

vulnerability management tool—is mainly mid-size companies unable to

afford the half a million it typically costs for a full testing suite. The company

says that ThreadFix gives enterprise developers the ability to review a single

comprehensive security profile of their applications. Furthermore, ThreadFix can

operate at the same time that software development is occurring and creates

Web application firewall virtual patches, which protect the applications during

remediation. By using tools the developers already know and love, the security

team can work with the development team by using the language they speak.

At the same time, the security team has a platform to manage the resolution

process that is, says the Denim Group, light-years better than the Excel

spreadsheets typically used for this effort.

http://denimgroup.com

GrammaTech’s
CodeSonar
GrammaTech’s flagship product is

CodeSonar, a static-analysis tool that

performs a whole-program, interprocedural

analysis on C/C++ code. The solution,

now in version 3.8, identifies complex

programming bugs that can result in

system crashes, memory corruption,

concurrency errors and other serious problems. The new version is six times faster with fewer

false positives due to a combination of new models for C/C++ libraries, making it much

easier to analyze projects with millions of lines of code. The speedup was achieved, notes

GrammaTech, by parallelizing the analysis engine to take full advantage of multicore processors.

On an eight-core machine, analysis times are said to have been reduced by 85%. Improvements

to the analysis engine empower developers to pinpoint defects faster and with greater precision.

Improvements to the user interface make it easy for developers to understand and analyze very

large projects, including those developed by complex software-development organizations.

http://www.grammatech.com

LJ223-Nov2012.indd 65 10/24/12 9:31 AM

http://www.linuxjournal.com
http://denimgroup.com
http://www.grammatech.com

NEW PRODUCTS

66 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

Kord Davis and Doug Patterson’s
Ethics of Big Data (O’Reilly)
The technology we create, peddle and service in today’s Brave New

World presents once unthinkable possibilities, both for better and for

worse. In order to get the jump on the downside risks, sneak a peek

at Kord Davis and Doug Patterson’s new book Ethics of Big Data:

Balancing Risk and Innovation. The O’Reilly published tome provides

a framework for productive discussion and thinking about ethics

and Big Data in business environments. With the increasing size and

scope of information that Big Data technologies can provide business, maintaining an ethical

practice benefits from a common framework of understanding and vocabulary for discussing

questions about coherent and consistent practices. The approach involves developing a set of

terms and concepts, considering ethical principles useful in meaningful business discussions,

and then exploring and comparing several overall views on data handling to help inform the

development of an ethics-based data strategy. The focus is to enhance effective decision-

making in business rather than legislate what ought to be done with data.

http://www.oreilly.com

Brian Evans’ Practical 3D Printers: The
Science and Art of 3D Printing (Apress)
Announcing new books like Brian Evans’ Practical 3D Printers: The

Science and Art of 3D Printing is dangerous. Now we’ll never get you out

of the basement. Should you decide to sequester yourself in pursuit of

3-D-printing guru-dom, you will find yourself fully armed with everything

you need to know. In case you are not yet aware, a 3-D printer is a device

you can either buy or (oh so much more fun) build to make parts, toys, art and even 3-D images

captured by a sensor or modeled in software. The book takes readers beyond building the printer

to calibrating it, customizing it and creating amazing models with it, including 3-D printed text,

a warship model, a robot body, windup toys and arcade-inspired alien invaders. Readers also

will explore the different types of popular 3-D printer models like the MakerBot, the whiteAnt

RepStrap and RepRap printers. Other topics range from finding and creating 3-D models,

including using Google Sketchup, creating a 3-D model from a 2-D image, the printer toolchain,

creating multipart models and meshes, and upgrading both the mechanical and electronic parts.

http://www.apress.com

LJ223-Nov2012.indd 66 10/24/12 9:31 AM

http://www.linuxjournal.com
http://www.oreilly.com
http://www.apress.com

NEW PRODUCTS

Attunity CloudBeam

In today’s distributed environments, many enterprises feel constrained by traditional data

management methods and are looking to the cloud for solutions. One fine cloud-based

option is Attunity CloudBeam, a recently announced data-replication SaaS solution for

Amazon Web Services (AWS) Simple Storage Service (S3). Attunity says that the service

provides replication and synchronization of Big Data stored in S3 across AWS cloud regions to enable

business-critical initiatives, including disaster recovery, backup and data distribution. The new Attunity

CloudBeam service is designed to ensure that information availability in the cloud is quick, reliable,

easy-to-use and affordable for AWS customers. The service provider cites the fact that organizations can

configure cloud systems properly to be ready to go when needed but never pay for any services until

they’re actually used. Other key features include parallelized and elastic data transfer to maximize use of

bandwidth, configurable scheduling to ensure predictable information availability, optimized data transfer

for moving large objects and large numbers of objects, delta replication using comparative snapshot

technology, fast set up with “Click-2-Replicate” configuration, and no server or appliance setup required.

http://www.attunity.com

WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 67

Please send information about releases of Linux-related products to newproducts@linuxjournal.com or
New Products c/o Linux Journal, PO Box 980985, Houston, TX 77098. Submissions are edited for length and content.

Codethink’s Baserock Embedded Linux
The role of Codethink’s Baserock Embedded Linux is to enable silicon chipset and board

vendors—not to mention Original Device Manufacturers and Systems Integrators—to keep

pace with the rapid development of Linux and dramatically reduce product development cycles.

Baserock, just elevated to v1.1, is an open-source Linux build system for the development

of embedded, industrial or bare-metal server-based Linux systems. This new release provides

virtual machine images for developers and a sample base image to demonstrate a Baserock-

produced small system image. The OS also delivers the proven benefits of continuous integration (CI) to

Linux system development, which heretofore were available only to developers of server and Web-based

applications, says Codethink. CI, adds Codethink, makes it easier to develop Linux-based systems and

to integrate system components. Baserock source code is available for building on 64-bit x86 and ARM

systems. Virtual machine binaries are available for 64-bit x86 machines. Through native compilation

of software and images, Codethink asserts that Baserock provides a robust and highly efficient build

environment that is as closely aligned to upstream development environments as possible.

http://www.codethink.com

LJ223-Nov2012.indd 67 10/24/12 9:31 AM

http://www.linuxjournal.com
http://www.attunity.com
mailto:newproducts@linuxjournal.com
http://www.codethink.com

68 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

PYTHON
SCRIPTS
AS A
REPLACEMENT
FOR BASH
UTILITY
SCRIPTS
Incorporate Python into your bash workflow,
and create simple Python utilities that can
combine and connect with other UNIX utilities.
Richard Delaney

FEATURE Python Scripts as a Replacement for Bash Utility Scripts

LJ223-Nov2012.indd 68 10/24/12 9:31 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 69

F or Linux users, the command
line is a celebrated part of our
entire experience. Unlike other
popular operating systems,

where the command line is a scary
proposition for all but the most
experienced veterans, in the Linux
community, command-line use is
encouraged. Often the command
line can provide a more elegant and
efficient solution when compared to
doing a similar task with a graphical
user interface.

As the Linux community has
grown up with a dependence on
the command line, UNIX shells,
such as bash and zsh, have grown
into extremely formidable tools that
complement the UNIX shell experience.
With bash and other similar shells,
a number of powerful features are
available, such as piping, filename
wild-carding and the ability to read
commands from a file called a script.

Let’s look at a real-world example
to demonstrate the power of the
command line. Every time users log
in to a service, their user names are
logged to a text file. For this example,
let’s find out how many unique users
use the service.

The series of commands in the
following example show the power

of more complex utilities by chaining
together smaller building blocks:

$ cat names.log | sort | uniq | wc -l

The pipe symbol (|) is used to
pass the standard output of one
command into the standard input of
the next command. In the example
here, the output of cat names.txt
is passed into the sort command.
The output of the sort command
is each line of the file rearranged in
alphabetical order. This subsequently
is piped into the uniq command,
which removes any duplicate names.
Finally, the output of uniq is passed
to the wc command. wc is a counting
command, and with the -l flag set,
it returns the number of lines. This
allows you to chain a number of
commands together.

However, sometimes what is
needed can become quite complex,
and chaining commands together
can become unwieldy. In that case,
shell scripts are the answer. A shell
script is a list of commands that are
read by the shell and executed in
order. Shell scripts also support some
programming language fundamentals,
such as variables, flow control and
data structures. Shell scripts can

LJ223-Nov2012.indd 69 10/24/12 9:31 AM

http://www.linuxjournal.com

FEATURE Python Scripts as a Replacement for Bash Utility Scripts

be very useful for batch jobs that
will be run often and repeatedly.
Unfortunately, shell scripts come with
some disadvantages:

■ Shell scripts easily can become
overly complicated and unreadable
to a developer wanting to improve
or maintain them.

■ Often the syntax and interpreter for
these shell scripts can be awkward
and unintuitive. The more awkward
the syntax, the less readable it is
for the developer who must work
with these scripts.

■ The code is generally unusable in
other scripts. Code reuse among
scripts tends to be difficult, and
scripts tend to be very specific to a
certain problem.

■ Libraries for advanced features, such
as HTML parsing or HTTP requests,
are not as easily available as they
are with modern programming and
scripting languages.

These problems can make shell
scripting an awkward undertaking
and often can lead to a lot of wasted
developer time. Instead, the Python
programming language can be used
as a very able replacement. There are
many benefits to using Python as a
replacement for shell scripts:

■ Python is installed by default on
all the major Linux distributions.
Opening a command line and
typing python immediately will
drop you into a Python interpreter.
This ubiquity makes it a sensible
choice for most scripting tasks.

■ Python has a very easy to read
and understand syntax. Its style
emphasizes minimalism and clean
code while allowing the developer
to write in a bare-bones style that
suits shell scripting.

■ Python is an interpreted language,
meaning there is no compile
stage. This makes Python an ideal
language for scripting. Python also

70 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

Python is an interpreted language, meaning
there is no compile stage. This makes Python
an ideal language for scripting.

LJ223-Nov2012.indd 70 10/24/12 9:31 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 71

comes with a Read Eval Print Loop,
which allows you to try out new
code quickly in an interpreted way.
This lets the developer tinker with
ideas without having to write the
full program out into a file.

■ Python is a fully featured
programming language. Code reuse
is simple, because Python modules
easily can be imported and used in
any Python script. Scripts easily can
be extended or built upon.

■ Python has access to an excellent
standard library and thousands of
third-party libraries for all sorts of
advanced utilities, such as parsers
and request libraries. For instance,
Python’s standard library includes
datetime libraries that allow you
to parse dates into any format that
you specify and compare it to other
dates easily.

■ Python can be a simple link in the
chain. Python should not replace
all the bash commands. It is as
powerful to write Python programs
that behave in a UNIX fashion (that
is, read in standard input and write
to standard output) as it is to write
Python replacements for existing shell
commands, such as cat and sort.

Let’s build on the problem that was
solved earlier in this article. Besides
the work already done, let’s find out
know how many times a certain user
has logged in to the system. The uniq
command simply removes duplicates
but gives no information on how
many duplicates there are. Instead
of uniq, a Python script can be used
as another command in the chain.
Here’s a Python program to do this
(in my examples, I refer to this fi le
as namescount.py):

#!/usr/bin/env python

import sys

if _ _name_ _ == "_ _main_ _":

 # Initialize a names dictionary as empty to start with.

 # Each key in this dictionary will be a name and the value

 # will be the number of times that name appears.

 names = {}

 # sys.stdin is a file object. All the same functions that

 # can be applied to a file object can be applied to sys.stdin.

 for name in sys.stdin.readlines():

 # Each line will have a newline on the end

 # that should be removed.

 name = name.strip()

 if name in names:

 names[name] += 1

 else:

 names[name] = 1

 # Iterating over the dictionary,

LJ223-Nov2012.indd 71 10/24/12 9:31 AM

http://www.linuxjournal.com

72 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Python Scripts as a Replacement for Bash Utility Scripts

 # print name followed by a space followed by the

 # number of times it appeared.

 for name, count in names.iteritems():

 sys.stdout.write("%d\t%s\n" % (count, name))

Let’s look at how this Python script
fits into the chain of commands.
First, it reads in input from standard
input exposed through the sys.stdin
object. Any output is written to
the sys.stdout object, which is how
standard output is implemented
in Python. A Python dictionary
(often called a hash map in other
languages) is used to get a mapping
from the user name to the duplicate
count. To get a count of all the
users, execute the following:

$ cat names.log | python namescount.py

This displays a count of how many
times a user appears along with the
user’s name using a tab as a separator.
The next thing to do is display, in
order, the users who used the system
most often. This can be done at the
Python level, but let’s implement it
using the utilities that are already
provided by the core UNIX utilities.
Previously, I used the sort command
to sort alphabetically. If the command
is provided with a -rn flag, it sorts

the lines numerically, in descending
order. As the Python script prints to
standard out, you simply can pipe the
command into sort and retrieve the
output you want:

$ cat names.log | python namescount.py | sort -rn

This is an example of the power
of using Python as part of a chain of
commands. The advantages of using
Python in this scenario are as follows:

■ The ability to chain with tools
like cat and sort. Simple utilities
(reading a file line by line and
sorting a file numerically) are
handled by tried-and-trusted UNIX
commands. These commands also
are reading line by line, which
means these functions can scale to
files that are large in size, and they
are very quick.

■ When some heavy-lifting is needed
in the chain, a very clear, concise
Python script can be written, which
does what it needs to do and then
offloads the responsibility to the
next link in the chain.

■ It is a reusable module, although
this example is specifically about

LJ223-Nov2012.indd 72 10/24/12 9:31 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 73

names, if you feed this any input
that contains duplicate lines, it will
print out each line and the number
of duplicates. Making the Python
code modular allows you to apply it
in a range of scenarios.

To demonstrate the power of
combining Python scripts in a modular
and piped fashion, let’s expand further
on the problem space. Let’s find the
top five users of the service. head is a
command that allows you to specify a
certain number of lines to display of the
standard input it is given. Adding this to
the command chain gives the following:

$ cat names.log | python namescount.py | sort -rn | head -n 5

This prints only the top five users
and ignores the rest. Similarly, to
get the five users who use the
service least, you can use the tail
command, which takes the same
arguments. The result of the Python
command being printed to standard
output allows you to build and
extend upon its functionality.

To demonstrate the modularity of
this script, let’s once again change
the problem space. The service also
generates a comma-separated value
(CSV) log file that contains a list of

e-mail addresses and the comments
that each e-mail address made about
the service. Here’s an example entry:

"email@example.com", "This service is great."

The task is to provide a way for
the service to send a thank-you
message to the top ten users in terms
of comment frequency. First, you
need a script that can read and print
a certain column of CSV data. The
standard library of Python provides a
CSV reader. The Python script below
completes this goal:

#!/usr/bin/env python

CSV module that comes with the Python standard library

import csv

import sys

if _ _name_ _ == "_ _main_ _":

 # The CSV module exposes a reader object that takes

 # a file object to read. In this example, sys.stdin.

 csvfile = csv.reader(sys.stdin)

 # The script should take one argument that is a column number.

 # Command-line arguments are accessed via sys.argv list.

 column_number = 0

 if len(sys.argv) > 1:

 column_number = int(sys.argv[1])

LJ223-Nov2012.indd 73 10/24/12 9:31 AM

http://www.linuxjournal.com

74 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Python Scripts as a Replacement for Bash Utility Scripts

 # Each row in the CSV file is a list with each

 # comma-separated value for that line.

 for row in csvfile:

 print row[column_number]

This script can parse the CSV data
and return in plain text the column
that is supplied as a command-line
argument. It uses print instead
of sys.stdout.write, as print,
by default, uses standard out as its
output file.

Let’s add this script to the chain.
The new script is chained with the
others to print out a list of e-mail
addresses and their comment
frequencies using the command listed
below (the .csv log file is assumed to
be called emailcomments.csv and the
new Python script, csvcolumn.py):

$ cat emailcomments.csv | python csvcolumn.py |

 ➥python namescount.py | sort -rn | head -n 5

Next, you need a way to send an
e-mail. In the Python standard library
of functions, you can import smtplib,
which is a module that allows you to
connect to an SMTP server to send
mail. Let’s write a simple Python
script that uses this library to send a
message to each of the top ten e-mail
addresses found already:

#!/usr/bin/env python

import smtplib

import sys

GMAIL_SMTP_SERVER = "smtp.gmail.com"

GMAIL_SMTP_PORT = 587

GMAIL_EMAIL = "Your Gmail Email Goes Here"

GMAIL_PASSWORD = "Your Gmail Password Goes Here"

def initialize_smtp_server():

 '''

 This function initializes and greets the smtp server.

 It logs in using the provided credentials and returns

 the smtp server object as a result.

 '''

 smtpserver = smtplib.SMTP(GMAIL_SMTP_SERVER, GMAIL_SMTP_PORT)

 smtpserver.ehlo()

 smtpserver.starttls()

 smtpserver.ehlo()

 smtpserver.login(GMAIL_EMAIL, GMAIL_PASSWORD)

 return smtpserver

def send_thank_you_mail(email):

 to_email = email

 from_email = GMAIL_EMAIL

 subj = "Thanks for being an active commenter"

 # The header consists of the To and From and Subject lines

 # separated using a newline character

 header = "To:%s\nFrom:%s\nSubject:%s \n" % (to_email,

LJ223-Nov2012.indd 74 10/24/12 9:31 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 75

 from_email, subj)

 # Hard-coded templates are not best practice.

 msg_body = """

 Hi %s,

 Thank you very much for your repeated comments on our service.

 The interaction is much appreciated.

 Thank You.""" % email

 content = header + "\n" + msg_body

 smtpserver = initialize_smtp_server()

 smtpserver.sendmail(from_email, to_email, content)

 smtpserver.close()

if _ _name_ _ == "_ _main_ _":

 # for every line of input.

 for email in sys.stdin.readlines():

 send_thank_you_mail(email)

This Python script supports
contacting any SMTP server, whether
local or remote. For ease of use, I have
included Gmail’s SMTP server, and it
should work, provided you give the
scripts the correct Gmail credentials.
The script uses the functions provided
to send mail in smtplib. This again
demonstrates the power of using
Python at this level. Something like
SMTP interaction is easy and readable
in Python. Equivalent shell scripts are
messy, and such libraries are not as

easily accessible, if they exist at all.
In order to send the e-mails to the

top ten users sorted by comment
frequency, first you must isolate only
the e-mail column of the output of
column names. To isolate a certain
column in Linux, you use the cut
command. In the example below, the
commands are given in two separate
chains. For ease of use, I wrote the
output into a temporary file, which
can be loaded into the second chain.
This simply makes the process more
readable (the Python script for sending
mail is referred to as sendemail.py):

$ cat emailcomments.csv | python csvcolumn.py |

 ➥python namescount.py | sort -rn > /tmp/comment_freq

$ cat /tmp/comment_freq | head -n 10 | cut -f2 |

 ➥python sendemail.py

This shows the real power of
Python as a utility in a chain of bash
commands such as this. Writing scripts
that accept input from standard input
and write any data out to standard
out, allows the developer to chain
commands such as these together
quickly and easily with a link in the
chain often being a Python program.
This philosophy of designing a small
application that services one purpose
fits nicely with the flow of commands

LJ223-Nov2012.indd 75 10/24/12 9:31 AM

http://www.linuxjournal.com

76 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Python Scripts as a Replacement for Bash Utility Scripts

being used here.
Often in Python scripts that are

used on the command line, arguments
are used to give users options when
they run a certain command. For
instance, the head command takes a
-n argument that takes the number
following it and prints only that
number of lines. Each argument
that is provided to a Python script
is exposed through the sys.argv
array, which can be accessed by
first importing sys. The code below
shows how to take single words as
arguments. This program is a simple
adder, which takes two number
arguments and adds them, and prints
that out to the user. However, this
format of taking in command-line
arguments is rather basic. It is easy
to make mistakes—for instance, pass
two strings, such as “hello” and
“world”, to this command, and you
will start to get errors:

#!/usr/bin/env python

import sys

if _ _name_ _ == "_ _main_ _":

 # The first argument of sys.argv is always the filename,

 # meaning that the length of system arguments will be

 # more than one, when command-line arguments exist.

 if len(sys.argv) > 2:

 num1 = long(sys.argv[1])

 num2 = long(sys.argv[2])

 else:

 print "This command takes two arguments and adds them"

 print "Less than two arguments given."

 sys.exit(1)

 print "%s" % str(num1 + num2)

Thankfully, Python has a number
of modules to deal with command-
line arguments. My personal favorite
is OptionParser. OptionParser is
part of the optparse module that
is provided by the standard l ibrary.
OptionParser allows you to do a
range of very useful things with
command-line arguments:

■ Specify a default if a certain
argument is not provided.

■ It supports both argument flags
(either present or not) and
arguments with values (-n 10000).

■ It supports different formats of
passing arguments—for example,
the difference between -n=100000
and -n 100000.

Let’s use the OptionParser to
enhance the sending-mail script. The
original script had a lot of variables

LJ223-Nov2012.indd 76 10/24/12 9:31 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 77

hard-coded into place, such as the
SMTP details and the users’ login
credentials. In the code provided
below, command-line arguments are
used to pass in these variables:

#!/usr/bin/env python

import smtplib

import sys

from optparse import OptionParser

def initialize_smtp_server(smtpserver, smtpport, email, pwd):

 '''

 This function initializes and greets the SMTP server.

 It logs in using the provided credentials and returns the

 SMTP server object as a result.

 '''

 smtpserver = smtplib.SMTP(smtpserver, smtpport)

 smtpserver.ehlo()

 smtpserver.starttls()

 smtpserver.ehlo()

 smtpserver.login(email, pwd)

 return smtpserver

def send_thank_you_mail(email, smtpserver):

 to_email = email

 from_email = GMAIL_EMAIL

 subj = "Thanks for being an active commenter"

 # The header consists of the To and From and Subject lines

 # separated using a newline character.

 header = "To:%s\nFrom:%s\nSubject:%s \n" % (to_email,

 from_email, subj)

 # Hard-coded templates are not best practice.

 msg_body = """

 Hi %s,

 Thank you very much for your repeated comments on our service.

 The interaction is much appreciated.

 Thank You.""" % email

 content = header + "\n" + msg_body

 smtpserver.sendmail(from_email, to_email, content)

if _ _name_ _ == "_ _main_ _":

 usage = "usage: %prog [options]"

 parser = OptionParser(usage=usage)

 parser.add_option("--email", dest="email",

 help="email to login to smtp server")

 parser.add_option("--pwd", dest="pwd",

 help="password to login to smtp server")

 parser.add_option("--smtp-server", dest="smtpserver",

 help="smtp server url", default="smtp.gmail.com")

 parser.add_option("--smtp-port", dest="smtpserverport",

 help="smtp server port", default=587)

 options, args = parser.parse_args()

 if not (options.email or options.pwd):

 parser.error("Must provide both an email and a password")

 smtpserver = initialize_smtp_server(options.stmpserver,

 options.smtpserverport, options.email, options.pwd)

 # for every line of input.

LJ223-Nov2012.indd 77 10/24/12 9:31 AM

http://www.linuxjournal.com

78 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Python Scripts as a Replacement for Bash Utility Scripts

 for email in sys.stdin.readlines():

 send_thank_you_mail(email, smtpserver)

 smtpserver.close()

This script shows the usefulness of
OptionParser. It provides a simple,
easy-to-use interface for command-
line arguments, allowing you to
define certain properties for each
command-line option. It also allows
you to specify default values. If certain
arguments are not provided, it allows
you to throw specific errors.

So what have you learned?
Instead of replacing a series of bash
commands with one Python script,
it often is better to have Python do
only the heavy lifting in the middle.
This allows for more modular and
reusable scripts, while also tapping
into the power of all that Python
offers. Using stdin as a file object
allows Python to read input, which
is piped to it from other commands,
and writing to stdout allows it to
continue passing the information
through the piping system.
Combining information like this
can make for some very powerful
programs. The examples I have given
here are all for a fictional service
that logs to a file.

As a real-world example, recently I

have been working with gigabytes of
CSV files that I have been converting
using a Python script to a file that
contains SQL commands to insert the
information. To understand the sort
of data I’m concerned with here, I
ran the data for a single table, and
the script took 23 hours to execute
and generated an SQL file that was
20GB in size. The advantage of
using a Python script in the fashion
described in this article is that the
whole file does not need to be read
into memory. This means that an
entire 20GB+ file can be processed
one line at a time. Also it is easier
to think about a problem when each
step (reading, sorting, manipulation
and writing) is separated into these
logical steps. The guarantee that
each of these commands, which are
part of the core utilities of UNIX-like
environment, is efficient and stable
helps the entire experience to be more
stable and secure.

The other benefit is that there is no
hard-coded file that is read in. Often
having the flexibility to pass it strings
rather than the concept of files is
very powerful. For instance, if 20,000
lines through a certain file, the script
breaks, instead of re-running the
script from the start, tail can be used

LJ223-Nov2012.indd 78 10/24/12 9:31 AM

http://www.linuxjournal.com

to read only from the line on which
the script failed.

There are a lot of aspects to
Python in the shell that go beyond
the scope of this article, such as the
“os” module and the “subprocess”
module. The os module is a standard
library function that holds a lot of key
operating system-level operations,
such as listing directories and
stating files, along with an excellent
submodule os.path that deals with
normalizing directories paths. The

subprocess module allows Python
programs to run system commands
and other advanced operations, such
as handling piping as described above
within Python code between spawned
processes. Both of these libraries are
worth checking out if you intend to
do any Python shell scripting.■

Richard Delaney is a software engineer with Demonware Ireland.

Richard works on back-end Web services using Python and the

Django Web framework. He has been an avid Linux user and

evangelist for the past five years.

Linux JournaL
on your

e-Reader

Customized
Kindle and Nook

editions
now available

LEARN MORE

e-Reader
editions

FREE
for Subscribers

LJ223-Nov2012.indd 79 10/24/12 9:32 AM

http://www.linuxjournal.com/content/ios-android-and-e-readers-oh-my

Extending
GlusterFS

with Python
Are you a Python programmer

who wishes your storage
could do more for you?
Here’s an easy way to
add functionality to a

real distributed filesystem,
in your favorite language.

Jeff Darcy

80 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Extending GlusterFS with Python

LJ223-Nov2012.indd 80 10/24/12 9:32 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 81

P rogramming languages are
usually not good neighbors.
Even mixing languages as

closely related as C and C++ often
can lead to a morass of conflicting
conventions with respect to symbol
names, initialization orders and
memory management strategies.
As the distance between languages
increases, the difficulty of integrating
them increases as well. This is
particularly true when attempting
to mix compiled and interpreted

languages. Most interpreted languages
have ways to call functions and access
symbols in compiled libraries, but these
facilities often are far from convenient,
and calling back the other way—from
compiled code to interpreted—is less
convenient still. Integration between
interpreted languages is even less
feasible—the one notable exception
being the several languages that
share the Java Virtual Machine (JVM).
Interoperability between interpreted

languages using different virtual
machines usually is limited to message
passing between separate processes.

In this context, Python’s facilities
for integrating with code written in
other languages are like a breath of
fresh air. One option is Jython, which
exists quite comfortably within the
aforementioned JVM ecosystem.
For integration with compiled code,
Python offers not one but two
methods of integration. The first is
the “extension API”, which allows

you to write Python modules in C.
(“C” is used here as shorthand for
any compiled code that adheres to the
initialization and calling conventions
originally defined for C.) Using this
interface, it is possible to create
compiled modules that offer the full
functionality of native Python modules
with the full performance of compiled
code. There even are projects like
Cython that will generate most of the
necessary “boiler plate” for you.

The Python ctypes module offers an even
more convenient option for integration

with compiled code, with only a very small
decrease in functionality.

LJ223-Nov2012.indd 81 10/24/12 9:32 AM

http://www.linuxjournal.com

82 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Extending GlusterFS with Python

The Python ctypes module offers
an even more convenient option
for integration with compiled code,
with only a very small decrease in
functionality. Using ctypes, Python
code can call functions and access
symbols even in C libraries whose
authors never thought about Python
at all. Python programmers also
can use ctypes to interpret C data
structures (overlapping somewhat
with the functionality provided by
the struct module) and even define
Python callbacks that can be passed
to C functions. Although it is not
possible to do absolutely everything
with ctypes that you can do with
the extension interface, combining
the two approaches can lead to very
powerful results.

As a case study in combining
Python code with an existing compiled
program or language, this article
focuses on the implementation of
a Python “translator” interface for
GlusterFS. GlusterFS is a modern
distributed filesystem based on the
principle of horizontal scaling—
adding capacity or performance to a
system by adding more servers based
on commodity hardware instead of
having to pay an ever-increasing
premium to make existing servers

more powerful. Development is
sponsored by Red Hat, but it’s
completely open source, so anyone
can contribute. In addition to
horizontal scaling, another core
principle of GlusterFS is modularity.
Most of the functionality within
GlusterFS actually is provided by
translators—so called because they
translate I/O calls (such as read or
write) coming from the user into the
same or other calls that are passed
on toward storage. These calls
are passed from one translator to
another, arranged in an arbitrari ly
complex hierarchy, until eventually
the lowest-level calls are executed
on servers’ local fi lesystems. I call
this interface TXAPI here for the
sake of brevity, even though that’s
not an official term. TXAPI has
been used to implement internal
GlusterFS functionality, such as
replication and caching, and also
external functionality, such as
on-disk encryption.

This article is not primarily about
GlusterFS, however. Even though I
use GlusterFS to illustrate techniques
for integrating Python and C code
and show results to illustrate the
potential benefits of such integration,
most of the techniques are equally

LJ223-Nov2012.indd 82 10/24/12 9:32 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 83

applicable to other programs with
a similar set of characteristics.
Those characteristics include a C
“top level” calling into Python
instead of the other way around,
a fundamentally multithreaded
execution model, and the presence
of a well-defined plugin interface
(TXAPI) that makes extensive use of
callbacks in both directions.

The fact that GlusterFS is primarily
a C program—filesystems are, after
all, system software—means that
you can’t use ctypes for everything.
To bootstrap your integration, you
need to use Python’s “embedding
API”, which is a close cousin of the
previously mentioned extension API
and allows C code to call in to the
Python interpreter. You need to invoke
this API at least once to create an
interpreter and invoke an initialization
function in a Python module. For this
purpose, you use a single C-based
“meta translator” that can be loaded
just like translators always have
been. This translator is called glupy
from GLUster and PYthon. (The
preferred pronunciation is “gloopy”
even though “glup-pie” might make
more sense given those origins.)
Most of what glupy does is provide
the generic embedding-API glue to

load the actual Python translator, which
is specified as an option. This loading
is a fairly simple matter of calling
PyImport_Import to load the module,
followed by PyObject_CallObject
to initialize it, as shown below (error
handling has been left out for clarity):

priv->py_module = PyImport_Import(py_mod_name);

Py_DECREF(py_mod_name);

py_init_func = PyObject_GetAttrString(priv->py_module, "xlator");

py_args = PyTuple_New(1);

/* "this" is the C pointer to this glupy instance */

PyTuple_SetItem(py_args,0,PyLong_FromLong((long)this));

priv->py_xlator = PyObject_CallObject(py_init_func, py_args);

Py_DECREF(py_args);

The user’s Python init function is
then responsible for registering TXAPI
callbacks for later, in addition to its
own domain-specific initialization.
Glupy also includes a Python/ctypes
module that encapsulates the GlusterFS
types and some functions that glupy
users can invoke (in the example, this
is done using the “dl” handle).

At this point, you reach a fork in
the road. If you’re already using the
embedding API, why not continue
using it for almost everything? In this

LJ223-Nov2012.indd 83 10/24/12 9:32 AM

http://www.linuxjournal.com

84 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Extending GlusterFS with Python

approach, a glupy dispatch function
would use Py_BuildValue to
construct an argument list and then
use PyObject_CallObject to call the
appropriate Python function/method
from a table. This is pretty tedious
code to write by hand, but much of
the process could be automated. The
bigger problem with this approach is
that TXAPI involves many pointers to
GlusterFS-specific structures, which
must be passed through the embedding
API as opaque integers. The Python

code receiving such a value must then
explicitly use from_address to convert
this into a real Python object. Clutter
within glupy itself is not a problem, but
clutter within glupy users’ code makes
this approach less appealing.

The approach actually used in
glupy involves less C code and
more Python code, with a greater
emphasis on ctypes. In this approach,
the user’s Python code is presented
not as Python functions but as C
functions, using ctypes to define

function types that then can be used
as decorators. Unfortunately, details
of the platform-specific foreign
function interfaces used by ctypes
to implement such a callback mean
that there’s no way to get the actual
function pointer as it’s seen by C
code other than by actually passing
it to a C function. Accordingly, you
pass the Python callback object to a
glupy registration function that can
see the result of this conversion. For
each type of operation, there are two

corresponding registration functions:
one for the dispatch function that
initiates the operation and one for
the callback that handles completion.
The glupy meta-translator then stores
pointers to the registered functions
in a table for fast access later. One
side effect of this approach is that
glupy functions are strongly typed.
This might seem rather un-Pythonic,
but TXAPI itself is strongly typed,
and the consequences of mixing
types could be a hung filesystem,

The approach actually used in glupy
involves less C code and more Python code,

with a greater emphasis on ctypes.

LJ223-Nov2012.indd 84 10/24/12 9:32 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 85

so this seems like a reasonable safety
measure. Although this might all
seem rather complicated, the net
result is Python code that’s relatively
free of type-conversion clutter and
requires very little initialization code.
For instance, the following shows
the init function for an example
I’ll be using that registers dispatch
functions and callbacks for two types
of operations:

def _ _init_ _ (self, xl):

 dl. set_lookup_fop(xl,lookup_fop)

 dl. set_lookup_cbk(xl,lookup_cbk)

 dl. set_create_fop(xl,create_fop)

 dl. set_create_cbk(xl,create_cbk)

The next problem to solve is
multithreading. The Python interpreter
still is essentially single-threaded, so
C code that calls into Python must
be sure to take the Global Interpreter
Lock and do other things to keep
the interpreter sane. Fortunately,
current versions of Python make
this much easier than it used to be.
The first thing you need to do is
enable multithreading by call ing
PyEval_InitThreads after
Py_Initialize. What a surprising
number of people seem to miss, even
though it’s fairly well documented, is

that part of what PyEval_InitThreads
does is acquire the Global Interpreter
Lock on behalf of the calling thread.
This lock must be released explicitly
at the end of initialization, or else
any other code that tries to acquire
it will deadlock. In this case, this
acquisition is implicit in calls to
PyGILState_Ensure, which is
the recommended way to set up
interpreter state before calling into
Python from multithreaded C code.
Each glupy dispatch function and
callback does this, with a matching
call to PyGILState_Release after
the Python function returns.

Before moving on from what’s
inside glupy to what glupy code
looks like, you need to know what
this example glupy-based translator
actually does. The problem this
example tries to solve is one that
occurs frequently when using
GlusterFS to store the code for
PHP Web applications. Often, such
applications try to load literally
hundreds of include files every time
a page is requested. Each include file
might exist in any of several include
directories along a search path. The
example caches information about
“positive lookups” (that is, those that
succeeded) but not about “negative

LJ223-Nov2012.indd 85 10/24/12 9:32 AM

http://www.linuxjournal.com

FEATURE Extending GlusterFS with Python

lookups” (which failed).
Although this behavior makes

sense for many applications, the
performance impact for many PHP
applications can be severe. Without
negative-lookup caching, you’re likely
to search half of those directories
in vain before finding the one that
contains each include file, every time
the including page is requested.
(This pattern does occur in other
environments as well, including

Python Web applications, but
common PHP frameworks cause those
applications to be hit the hardest.)
Just as the effects are severe, the
benefits of adding a negative-lookup
cache can be significant. For example,
a C version of such a translator
decreased average include-search
times nearly seven-fold. What could
a Python version do?

Here’s part of a translator based
on glupy:

New: Intel Xeon E5 Based Clusters
Benchmark Your Code on Our Xeon E5 Based
Tesla Cluster with:
AMBER, NAMD, GROMACS, LAMMPS, or Your Custom CUDA Codes

Microway MD SimCluster with
8 Tesla M2090 GPUs
8 Intel Xeon E5 CPUs and InfiniBand
2X Improvement over Xeon 5600 Series

NAMD F1-ATP Performance Gain
Upgrade to New Kepler GPUs Now!

Configure Your WhisperStation or Cluster Today!
www.microway.com/tesla or 508-746-7341

Harness Microway’s Proven GPU Expertise
Thousands of GPU cluster nodes installed.
Thousands of WhisperStations delivered.

Award Winning BioStack – LS
Award Winning WhisperStation Tesla – PSC with 3D

ns
/D

ay
 (H

ig
he

r i
s

Be
tt

er
)

1 Node

CPU + GPU

1.07
0.33

2.02

0.65

3.54

1.30

2 Nodes 4 Nodes

CPU Only

GS-35F-0431N

GSA Schedule
Contract Number:
GS-35F-0431N

‘11
AWARD

BEST
Best New

Technology

LJ223-Nov2012.indd 86 10/24/12 9:32 AM

http://www.microway.com/numbersmasherclusters.html?src=LJElectronicEdition
http://www.microway.com/tesla/gputestdrive/simcluster/index.html?src=LJElectronicEdition
http://www.microway.com/tesla/1UGPUchassis.html?src=LJElectronicEdition
http://www.microway.com/tesla/gputestdrive/simcluster/index.html?src=LJElectronicEdition
http://www.microway.com/tesla/index.html?src=LJElectronicEdition
http://www.microway.com/index.html?src=LJElectronicEdition

@lookup_fop_t

def lookup_fop (frame, this, loc, xdata):

 pargfid = uuid2str(loc.contents.pargfid)

 print "lookup FOP: %s:%s" % (pargfid, loc.contents.name)

 # Check the cache.

 if cache.has_key(pargfid) and (loc.contents.name in

 ➥cache[pargfid]):

 dl.unwind_lookup(frame,0,this,-1,2,None,None,None,None)

 return 0

 key = dl.get_id(frame)

 requests[key] = (pargfid, loc.contents.name[:])

 dl.wind_lookup(frame,POINTER(xlator_t)(),loc,xdata)

 return 0

This is the function that gets called
to look up a file, which is the core
functionality for this example. Entry
to this function represents a transition
from C to Python, while its return
represents a transition back to C. Calls
through the “dl” object—a handle to
the C dynamic library that supports
glupy—also suspend the Python
interpreter while they run. The Python

New: Intel Xeon E5 Based Clusters
Benchmark Your Code on Our Xeon E5 Based
Tesla Cluster with:
AMBER, NAMD, GROMACS, LAMMPS, or Your Custom CUDA Codes

Microway MD SimCluster with
8 Tesla M2090 GPUs
8 Intel Xeon E5 CPUs and InfiniBand
2X Improvement over Xeon 5600 Series

NAMD F1-ATP Performance Gain
Upgrade to New Kepler GPUs Now!

Configure Your WhisperStation or Cluster Today!
www.microway.com/tesla or 508-746-7341

Harness Microway’s Proven GPU Expertise
Thousands of GPU cluster nodes installed.
Thousands of WhisperStations delivered.

Award Winning BioStack – LS
Award Winning WhisperStation Tesla – PSC with 3D

ns
/D

ay
 (H

ig
he

r i
s

Be
tt

er
)

1 Node

CPU + GPU

1.07
0.33

2.02

0.65

3.54

1.30

2 Nodes 4 Nodes

CPU Only

GS-35F-0431N

GSA Schedule
Contract Number:
GS-35F-0431N

‘11
AWARD

BEST
Best New

Technology

LJ223-Nov2012.indd 87 10/24/12 9:32 AM

http://www.microway.com/tesla
http://www.microway.com/tesla/index.html?src=LJElectronicEdition
http://www.microway.com/whisperstation/whisperstation-tesla.html?src=LJElectronicEdition
http://www.microway.com/tesla/index.html?src=LJElectronicEdition
http://www.microway.com/whisperstation/whisperstation-tesla.html?src=LJElectronicEdition
http://www.microway.com/tesla
http://www.microway.com/tesla/index.html?src=LJElectronicEdition

88 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Extending GlusterFS with Python

decorator syntax allows you to hide
most of the function-type details, and
there’s also a notable lack of type-
conversion code. Most of what’s there
is domain-specific code, not boiler
plate required by the infrastructure.

In the top half of this function,
you simply check the cache to see
if you already know the requested
file won’t be there. If the cache
check succeeds, the lookup fails
immediately, and you “unwind” the
translator stack to report that fact. As
with the registration functions, each
operation type has its own specific
wind (call downward) and unwind
(return upward) functions as well.
This represents a temporary return
from the “Python world” to the “C
world”, and it’s worth noting that
these transitions between worlds
might occur seamlessly many times
while processing a single request.
In particular, a common GlusterFS
translator idiom is for a completion
callback on one request to initiate the
next, and if that request completes
immediately (as done here), then

you can have multiple requests and
completions all on the stack at once.

Returning to the code, if you do
not find an entry in the cache (and
you already know it must not be in
the standard positive-lookup cache
or else you wouldn’t even have been
called), you pass the request on to the
next translator using wind_lookup.
When that next translator is done,
it returns control (through the glupy
meta-translator) to lookup_cbk. Here
you retrieve your request context,
conveniently stashed in a dictionary
for you by lookup_fop, and use it
to update the cache according to
whether the file was found.

There are a few other less relevant
details of how this particular glupy
translator works, but that really is the
meat of it. With less than a hundred
lines of Python code, including
comments and empty lines, you can
add a significant piece of functionality
to a real filesystem. But, how well does
it really work? As it turns out, it works
very well; see Table 1. A simple test
reveals that the result is slower than the

Table 1. Results of Caching Failed-Lookup Requests
ms/lookup minimum average maximum 99th percentile
no caching 0.368 6.898 16.286 9.702

C version 0.379 1.036 18.503 2.180

glupy version 0.381 1.527 21.163 2.916

LJ223-Nov2012.indd 88 10/24/12 9:32 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 89

C-based version of the same thing, but
still more than four times as fast as the
baseline. Clearly, the fact that you’re
caching these results matters more than
what language you’re using to do it.

As promising as these results are,
they’re more of a beginning than an
end. Glupy is still a very young project,
and much remains to be done. Support
needs to be added for a few dozen
more operation types and several data
structures. There still are more ways
that GlusterFS calls into translators
and utility functions that translators
themselves call. There are many ways
the glupy interface could be made more
convenient, and there are undoubtedly
performance or concurrency issues still
to be resolved. The most important thing

is that the basic infrastructure for doing
all of these things already exists, and not
just for GlusterFS translators. If even a
highly multithreaded and asynchronous
program like this can take advantage
of all that Python has to offer, so can
just about any other program. Thanks
to Python’s extension/embedding
interface and ctypes module, a
“best of both worlds” approach to
developing complex software is more
achievable than most people think.■

Jeff Darcy has been working on network and distributed storage

since that meant DECnet and NFS version 2 in the early 1990s.

Since then, he has been a key developer on the MPFS Project

at EMC, product architect at Revivio and founder of the HekaFS

Project (http://hekafs.org) at Red Hat where he now serves on

the GlusterFS architecture team.

Resources

Jython: http://www.jython.org

Cython: http://www.cython.org

GlusterFS: http://www.gluster.org

Glupy Source Repository: https://github.com/jdarcy/glupy

Negative-Lookup Caching Translator in C: https://github.com/jdarcy/negative-lookup

Zend (PHP) Framework on Include Files:
http://framework.zend.com/manual/1.12/en/performance.classloading.html

LJ223-Nov2012.indd 89 10/24/12 9:32 AM

http://hekafs.org
http://www.jython.org
http://www.cython.org
http://www.gluster.org
https://github.com/jdarcy/glupy
https://github.com/jdarcy/negative-lookup
http://framework.zend.com/manual/1.12/en/performance.classloading.html
http://www.linuxjournal.com

90 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Getting Started with Salt Stack

GETTING
STARTED

WITH
SALT

STACK
THE OTHER

CONFIGURATION
MANAGEMENT SYSTEM

BUILT WITH PYTHON
How to: using Salt Stack to install and configure software on

multiple servers at once.

Ben Hosmer

LJ223-Nov2012.indd 90 10/24/12 9:32 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 91

I was proudly wearing one of my
Salt Stack shirts the other day
when my daughter asked me,

“What is Salt Stack?” I began by
explaining the problem it solved. If
you have multiple servers and want to
do things to those servers, you would
need to log in to each one and do
those things one at a time on each
one. They could be fairly simple tasks
like restarting them or checking how
long they have been running. Or, you
might want to do more complicated

things like installing software and
then configuring that software based
upon your own specific criteria. You
also might want to add users and
configure permissions for them.

What if you have ten or maybe
even 100 servers though? Imagine
logging in one at a time to each
server individually, issuing the same
commands on those 100 machines
and then editing the configuration
files on all 100 machines? What a
pain! Just updating user password

policies would take days, and
introducing an error would be quite
likely. What if you could update all
your servers at once just by typing
one single command? The solution?
Salt Stack!

Like my daughter, you may not have
heard of Salt Stack (http://saltstack.org),
but you might be familiar with Puppet
(http://puppetlabs.com) and
Chef (http://opscode.com). Salt
is a similar tool, but it’s written in
Python, is relatively lightweight as

far as resources and requirements,
and it’s much easier to use
(in my opinion). Salt uses the
0MQ (http://www.zeromq.org)
communication layer, which makes
it really fast. It also is entirely open
source, licensed under the Apache2
(http://www.apache.org/licenses/
LICENSE-2.0) license, and boasts a
vibrant and productive community.

There currently aren’t any plans to
release a crippled community version
or a more feature-rich paid enterprise

WHAT IF YOU COULD UPDATE ALL YOUR
SERVERS AT ONCE JUST BY TYPING ONE SINGLE

COMMAND? THE SOLUTION? SALT STACK!

LJ223-Nov2012.indd 91 10/24/12 9:32 AM

http://saltstack.org
http://puppetlabs.com
http://opscode.com
http://www.zeromq.org
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.linuxjournal.com

92 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Getting Started with Salt Stack

edition either. With Salt, the version
you get is the version everyone
else gets too—whether you’ve paid
money or not. There are plans for
an enterprise version, but it merely
will be less bleeding-edge and will
be subjected to a higher amount of
testing and quality assurance, and it
possibly will include training as well.

Tools like Salt, Puppet and Chef
allow you to issue commands on
multiple machines at once, and install
and configure software too. Salt
has two main aspects: configuration
management and remote execution.

Salt Stack is a command-line tool.
There isn’t anything to click on with your
mouse, and the feedback is presented
as text that is returned on your screen.
This is good. It keeps things lean, and
most servers don’t include a graphical
user interface anyway. (Note: I use the
terms Salt and Salt interchangeably
throughout this article. They mean the
same thing in this context.)

In this article, I cover the two tools
included with Salt. The first is remote
execution, although there isn’t any
clear delineation or any different way
to interact with Salt if you want to
work with configuration management
or remote execution. This allows you
to log in to a master machine and

then execute commands on one or
many other machines at once. With
Salt, you simply type your command
once on your master machine, and it
executes on every machine, or even a
targeted group of machines.

Second, Salt is capable of storing
configuration directives, and then
instructing other machines to
follow those directives by doing
things like installing software,
making configuration changes to
the software, and then reporting
back on the progress and success or
failures of the installation.

Later, I demonstrate using Salt to
install an additional package on one,
or even 1,000 machines, and then
configure that package by issuing
just one command.

Installing Salt
Salt is a constantly evolving
organism. Possibly by the time you
read this, some things may have
changed. You always can find the
most current documentation here:
http://docs.saltstack.org/en/
latest/index.html.

You do need a few prerequisites
before installing Salt:

1. A Linux server.

LJ223-Nov2012.indd 92 10/24/12 9:32 AM

http://www.linuxjournal.com
http://docs.saltstack.org/en/latest/index.html
http://docs.saltstack.org/en/latest/index.html

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 93

2. sudo or root access to this server.

3. An Internet connection to this server.

4. Knowledge of your server’s IP
address (it can be a public or
private address).

Even though Salt is designed to
interact with multiple servers, for this
tutorial, you actually can accomplish
everything on one machine.

Use your package manager
to install Salt, and follow the
installation guide found in the Salt
Docs for your particular distribution
(http://docs.saltstack.org/en/latest/
topics/installation/index.html). You’ll
also need sudo or root privileges to
use Salt and install these packages.

The benefits of using a package
manager or install ing from source
are a constant source of on-line
and water-cooler debates. Depending
on your distribution, you may
have to install the packages from
source instead of using your
package manager.

If you’d like to install from source,
you can find the latest Salt source files
in the Salt Project’s GitHub repository
(https://github.com/saltstack/salt).

After following the instructions

for installing both a salt-master and
salt-minion, hopefully, everything
went well and you didn’t receive
any errors. If things didn’t work
out quite right, support is generally
available quickly from the Salt Stack
mailing list (http://saltstack.org/
learn/#tab-mailinglist) and the
#salt IRC channel.

Configure Your Master
and Minion(s)
The terms master and minion refer
to the controller and the controlled.
The master essentially is the central
coordinator for all of the minions—
similar to a client/server configuration
where the master is the server, and
the minion is the client.

Minion Configuration
For this tutorial, I cover issuing
salt-master and salt-minion
commands on the same machine.
If you are configuring multiple
machines, choose one to be the
master, and all the others will be
minions. The choice of master or
minion is yours, and there are many
reasons to configure one machine
as the master. I explain how to set
one as a master and the other(s) as
minions next.

LJ223-Nov2012.indd 93 10/24/12 9:32 AM

http://docs.saltstack.org/en/latest/topics/installation/index.html
http://docs.saltstack.org/en/latest/topics/installation/index.html
https://github.com/saltstack/salt
http://saltstack.org/learn/#tab-mailinglist
http://saltstack.org/learn/#tab-mailinglist
http://www.linuxjournal.com

94 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Getting Started with Salt Stack

Salt’s configuration files are located
in /etc/salt. By default, these files
are named minion and master. If
you’ve installed the salt-master and
salt-minion on the same machine,
you will see two respective files,
master and minion.

You first need to tell your minion
how to locate and communicate with
your master. Even though you are
running both on the same server,
you still need to tell your minion
where your master is.

1. Using your favorite text editor,
open the minion file.

2. Uncomment the line # master:
salt by removing the # and
replacing salt with the your
master’s IP address. It now
should look l ike this: master:
your.ip.address.here. (If you’re
doing this locally on the same
machine, you can add 127.0.0.1.)

3. Give your minion a nickname.

Locate the line #id:, and again
remove the # and add a name
id: 1st-Salt-Minion. (This
name can be anything you want.)

4. Restart your minion using sudo
salt-minion -d in order for it
to read the new configuration
settings. The -d flag dæmonizes
the process and starts the minion
in the background, so you still can
access your command-line to issue
more commands.

Accept Your Minion’s Keys
Now that your minion knows
where your master is, it’s time
for them to authenticate
one another. Salt uses public
key encryption to secure the
communication between master
and minions. You need to notify
the master and minion that they
can trust each other by accepting
the minion’s keys on the master.

Accept your minion’s keys
using the salt-key command.

SALT USES PUBLIC KEY ENCRYPTION TO
SECURE THE COMMUNICATION BETWEEN

MASTER AND MINIONS.

LJ223-Nov2012.indd 94 10/24/12 9:32 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 95

Salt automatically takes care of
generating these keys for you,
so you simply need to accept the
minion(s) you want.

1. Type salt-key -L to get a list
of all pending, accepted and
rejected keys.

2. You should see an unaccepted
key for 1st-Salt-Minion
(or whatever ID you chose for
your minion).

3. Accept this key using sudo
salt-key -a 1st-Salt-Minion.

Test Communications
Now that you have a salt-master and
a salt-minion, and the minion and
master trust one another, you can
check the connection by issuing a
test ping command from the master.
This will return “True” if your master
can communicate with your minion.
Type salt '*' test.ping, and it
should return:

>{1st-Salt-Minion: True}

Note that the wild-card '*'
targets every minion, and as you
have only one, this is basically moot

(it’s just faster than typing salt
'1st-Salt-Minion' test.ping).

If you receive a “True” response
back from your minion, you have
installed Salt Stack successfully and
configured your master and minion
to communicate properly.

If you don’t, you may want to restart
your master and minion without the
-d (dæmon) flag, so you can observe
the output. For more information,
see the Salt documentation at
http://docs.saltstack.org/en/latest/
topics/configuration.html.

The Salt command syntax involves
the command, the target(s) and the
action. So, for this example, '*'
targets everything (it’s a wild card),
and test.ping is the action.

You can now execute any available
command on any connected and
authenticated minion. Important
note: these commands must be
available on the targeted minion in
order to execute them. For instance,
a command like:

sudo salt '*' cmd.run "service apache2 restart"

would work only for a distribution
that calls the Apache Web server
apache2 and that has the Apache
Web server installed. For others, you

LJ223-Nov2012.indd 95 10/24/12 9:32 AM

http://docs.saltstack.org/en/latest/topics/configuration.html
http://docs.saltstack.org/en/latest/topics/configuration.html
http://www.linuxjournal.com

96 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Getting Started with Salt Stack

would need to issue the command:

sudo salt '*' cmd.run "service httpd restart"

Some other examples might include
querying the amount of time your servers
have been running. You can do that with:

sudo salt '*' cmd.run "uptime"

If you had, for example, Apache

Bench installed on a master but not
on a minion, the command:

sudo salt '*' cmd.run "ab -n 10 -c 2

 ➥http://www.google.com:80/index.html"

would fail if you tried to execute it on
a minion, since Apache Bench isn’t
installed on the minion.

The possibilities here are

practically limitless. You can reboot
all of your machines at once,
update system software and check
your machines’ health from one
terminal instead of logging in to
each machine and issuing these
commands independently.

You also can target specific
groups, based upon criteria that
you select. See the -G f lag
documentation at http://saltstack.org

for more options.
Very rarely should you ever need to log

in to a minion again. All configuration
and execution can be handled remotely,
quickly and simultaneously.

Now that you’ve installed Salt and
can execute remote commands, why
stop there? The second part of Salt’s
power comes from the configuration
management tools included with Salt.

THE POSSIBILITIES HERE ARE PRACTICALLY
LIMITLESS. YOU CAN REBOOT ALL OF YOUR

MACHINES AT ONCE, UPDATE SYSTEM
SOFTWARE AND CHECK YOUR MACHINES’
HEALTH FROM ONE TERMINAL INSTEAD OF

LOGGING IN TO EACH MACHINE AND ISSUING
THESE COMMANDS INDEPENDENTLY.

LJ223-Nov2012.indd 96 10/24/12 9:32 AM

http://www.linuxjournal.com
http://saltstack.org

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 97

Configuration Management
If you haven’t used any type of
configuration management system
before, here is a simple example.
Say you have a set of configurations
and packages that you generally
install for every Web server. You can
keep these configuration directives
in small text files and then instruct
your servers to install these packages
and configure them to your liking,
every time you create a new server.
You also can use configuration
management to keep all of your
servers updated once they have been
created and respond to changes in
packaging or new configurations.

Let’s install the l ibpam-cracklib
package, so you can add additional
requirements for user passwords.
I chose this package because it
is useful for almost any server
connected to the Internet. It
al lows you to set additional
password requirements regarding
length, and it requires that your
users’ passwords contain special
characters or numerals. You easily
could substitute any particular
package you want. These examples
do require that the package be
available in your system’s package
manager though.

Storage of the Configuration
Directives
Salt’s configuration management
directives and files are, by default,
kept within the /srv/salt directory.
This is where all your configuration
files and any files you want to
copy to any of your minions reside.
Salt also includes a file server
system as part of the configuration
management features. Salt doesn’t
touch your master’s system
files though, so don’t worry; all
configuration management takes
place within the /srv/salt directory.

Salt, by default, uses PyYAML
(http://pyyaml.org) syntax for its
template files, but numerous other
templating languages are available
as well. Be sure to follow the proper
formatting techniques for YAML, which
involves two spaces instead of tabs. I
have found the on-line YAML parser
(http://yaml-online-parser.appspot.com)
to be invaluable when troubleshooting
syntax issues with YAML files.

Enable Configuration Management
To enable the configuration
management functionality within
Salt, you need to edit your master
configuration fi le once again. In
/etc/salt, open your master file and

LJ223-Nov2012.indd 97 10/24/12 9:32 AM

http://pyyaml.org
http://yaml-online-parser.appspot.com
http://www.linuxjournal.com

98 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Getting Started with Salt Stack

locate the l ines that refer to
file_roots. In the default configuration,
this was around line 156. Now,
uncomment this directive by removing
the # from the following lines:

file_roots:

 base:

 - /srv/salt

This tells Salt where to locate
your configuration management
files. Depending on how you
installed Salt, you may need to
create the /srv/salt directory.

Create a Top File or “Roadmap”
The base configuration file is known
as a Top File, and it resides within the
/srv/salt directory. Let’s create one
now. This file provides mappings for
other files and can be used to set
a base configuration for all servers.
Again, with your favorite text editor,
create a top.sls file within the /srv/salt
directory. You can think of this file as
a roadmap for different directions for
each minion. Within your top.sls file,
add the following lines:

base:

 '*'

 - servers

The base directive lets Salt know
that this configuration is a base
configuration and can be applied
to all machines. The wild-card
'*' targets every machine. The
- servers directive is an arbitrary
name that allows you to recognize
what the directive pertains to.
Feel free to choose something that
makes sense to you. This entry also
refers to a particular configuration
file that you will now create to
install the libpam-cracklib.

Create a Server-Specific
Configuration File
After you save your top.sls file, create
a new file called servers.sls within
the /srv/salt directory. This file will
hold your specific configuration,
including the name of the package to
be installed and also a reference to a
configuration file. In the new servers.sls
file, add the following:

libpam-cracklib:

 pkg:

 - installed

The first line is the name of the
package specifically how your package
manager refers to it. For example,
the Apache HTTP server is called

LJ223-Nov2012.indd 98 10/24/12 9:32 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 99

apache2 in aptitude-based package
manager distributions, but httpd in
yum-based package management
systems. Make sure you use the proper
name for the package depending
on which package manager you are
using. You can target specific package
names using what Salt refers to as
grains. Refer to the documentation
for more information and advanced
examples of using grains in SLS files
to target distribution-specific systems
(http://salt.readthedocs.org/en/
latest/topics/tutorials/states_pt3.
html#using-grains-in-sls-modules).

Lines 2 and 3 tell Salt what to
do with this package. For this
example, you want it installed.
To remove a package, you simply
would change - installed to
- removed. Remember, spacing is
very important! On line two, there
are two spaces before pkg:, and
on the third l ine, there are four
spaces before - installed. If
you receive any errors, check your
syntax via an on-line YAML parser.

Copy Configuration Files for
Specific Packages
In order to install the libpam-cracklib
package, you need only the first
three lines of this file. You could

stop here, and libpam-cracklib
would be installed with the default
configuration supplied by your
package manager. You then would
need to log in to the machine on
which it is installed and configure
it for your particular needs. This
defeats the purpose of using
configuration management, and Salt
offers a solution to this as well.

Salt can act as a secure file server
and copy files to remote minions.
In this same servers.sls file, add the
following lines:

/etc/pam.d/common-password:

 file:

 - managed

 - source: salt://servers/common-password

 - require:

 - pkg: libpam-cracklib

Take note of line 4; this is where
you tell Salt your particular file’s
location, and the lines after that
tell Salt what package is required
for this file. The line - source:
salt:// maps to your /srv/salt
directory on your master.

After you’ve saved your servers.sls
file, make a new directory under
/srv/salt called servers. This is where
you will store your configuration file

LJ223-Nov2012.indd 99 10/24/12 9:32 AM

http://salt.readthedocs.org/en/latest/topics/tutorials/states_pt3.html#using-grains-in-sls-modules
http://salt.readthedocs.org/en/latest/topics/tutorials/states_pt3.html#using-grains-in-sls-modules
http://salt.readthedocs.org/en/latest/topics/tutorials/states_pt3.html#using-grains-in-sls-modules
http://www.linuxjournal.com

100 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

FEATURE Getting Started with Salt Stack

for the libpam-cracklib.
When you are installing packages

and configuration files, you may
want to install them first on a test
server, and then configure them
to your liking. Then you can copy
the configuration files into your
/srv/salt location. This way, you
can verify that the configuration is
functioning properly before deploying
it to multiple servers.

Now your configuration will be
available to Salt, and you can
place this configuration on every
minion, along with install ing the
l ibpam-cracklib package. Your
/srv/salt directory should look
something l ike this now:

/srv/salt

 top.sls

 servers.sls

 /servers

 common-password

I’m using the libpam-cracklib here
as an example, but this technique
will work for any software that has
configuration files associated with it.
For instance, you easily could modify
your Apache httpd.conf file to include
your server’s hostname and configure
virtual hosts.

With all of your sls fi les in place
and configuration fi les ready to
go, the last step is to tell Salt to
configure your machine remotely.
The state.highstate command is
what triggers this synchronization.
Using the previous syntax to target
all machines, enter this from the
command line:

sudo salt '*' state.highstate

Hopefully, after a brief amount of
time, your minion will return a success
that looks something like this:

>>

 State: - pkg

 Name: libpam-cracklib

 Function: installed

 Result: True

 Comment: Package libpam-cracklib installed

 Changes: wamerican: {'new': '7.1-1', 'old': ''}

 cracklib-runtime: {'new': '2.8.18-3build1', 'old': ''}

 libcrack2: {'new': '2.8.18-3build1', 'old': ''}

 libpam-cracklib: {'new': '1.1.3-7ubuntu2', 'old': ''}

 State: - file

 Name: /etc/pam.d/common-password

 Function: managed

 Result: True

 Comment: File /etc/pam.d/common-password updated

LJ223-Nov2012.indd 100 10/24/12 9:32 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 101

 Changes: diff: ---

+++

@@ -22,7 +22,7 @@

 # pam-auth-update(8) for details.

 # here are the per-package modules (the "Primary" block)

-password requisite pam_cracklib.so retry=3 minlen=8 difok=3

+password requisite pam_cracklib.so retry=3 minlen=14 difok=3

 ➥dcredit=1 ucredit=1 lcredit=1 ocredit=1

 password [success=1 default=ignore] pam_unix.so obscure use_authtok

 ➥try_first_pass sha512

 # here's the fallback if no module succeeds

 password requisite pam_deny.so

As you can see, Salt installed the
libpam-cracklib package and then
copied the common-password file
from the master to the minion in the
/etc/libpam-cracklib directory.

This was a fairly simple example on
just one minion, but if you’ve ever
had to install a LAMP-based Web
server, imagine the amount of time
you can save simply by using Salt’s
configuration management. Storing
these settings in text files allows
you to duplicate and create identical
servers quickly.

Summary
You now have the abi l i ty to execute
remote commands on mult iple
machines at once and store your

configurations in easi ly maintained
text f i les. You can instal l software
packages specif ic to a type of
server too.

With a l ittle effort in the
beginning, you can create one or
many servers with your own specific
configurations in the amount of
time it takes for the packages to
download to each machine. Salt
doesn’t execute these sequentially
either. The commands are mostly
implemented simultaneously on
each machine, and if one minion
happens to fail, the others wil l
continue their progress.

Installing Salt can pay off big
dividends later by allowing you to
create specific-use servers based on a
tested and repeatable configuration.

Visit the Salt Project page for more
detail, and be sure to check the links
for the mailing list, user-contributed
documentation and examples. You’ll
find the community very welcoming
and eager to lend assistance with any
issues you encounter.■

Ben Hosmer is a DEVOP with RadiantBlue Technologies where

he develops and maintains Drupal sites and administers

various servers. He is an open-source advocate and helps

spread the use of Linux and other open-source software

within the US government.

LJ223-Nov2012.indd 101 10/24/12 9:32 AM

http://www.linuxjournal.com

INDEPTH

102 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

The Past, Present
and Future of
GIS: PostGIS 2.0
Is Here!
Extend PostgreSQL’s capabilities with PostGIS 2.0 and discover
all the magic of spatial databases. STEFANO IACOVELLA

Even if you’re unfamiliar with
GIS, I am pretty sure you know what
Web mapping is. GIS stands for
geographical information systems,
and it originated in the early 1970s
as a set of tools and techniques
for scientists (cartographers, land
planners and biologists). Since then,
the field has been experiencing
an amazing evolution, as in many
other computer-related fields. One
of the most revolutionary things is
that now maps, and especially Web
mapping, are a common experience
for millions of people in everyday
life. Not only in the past few years
have we seen people using more
and more mapping apps, there has

been an explosion in personal Web
mapping. Today, a lot of blogs and
personal Web sites have maps.

What Is PostGIS?
So, what’s special with spatial data?
Not really very much—a lot of data
has location references (think of your
address book as a trivial example),
but the spatial component is not
really organized. When you want to
organize your spatial data, you need
to do it with the proper tools.

Spatial data, as all other data types,
needs to be stored somewhere. An
RDBMS is a great tool for storing,
processing and analyzing huge
amounts of data, but you will need

LJ223-Nov2012.indd 102 10/24/12 9:32 AM

http://www.linuxjournal.com

INDEPTH

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 103

an RDBMS with a spatial extension if
you are going to go this route. Do you
know a great open-source RDBMS? I
bet you do. Many of us commonly use
MySQL in Web applications, but when
it comes to spatial data, it’s not the
first choice. Your friend when it comes
to spatial data is PostGIS, an amazing
companion of PostgreSQL.

I’m sure you’ve heard of
PostgreSQL. It’s probably the most
famous open-source RDBMS, and LJ
has covered it often in the past. If you're
not familiar with it though, check
out Reuven M. Lerner’s “PostgreSQL
9.0” in the April 2011 issue of LJ
(http://www.linuxjournal.com/
article/10986).

PostGIS is not a new project. It
started in 2001 and reached maturity
at release 1.0 in 2006. On Apri l 3,
2012, 2.0 was released. Version 2.0
is a major shift, and it indeed broke
backward compatibil ity. PostGIS
developers were forced to cause
this break because of a new
serialization (see Resources). On
June 22, 2012, version 2.0.1 was

released, a bug-fixing release, and
this is the latest release at the time
of this writing.

Installing PostGIS
Whether or not you have PostgreSQL
installed on your Linux box, getting
PostGIS up and running is really
simple. You can download the
source code and compile it yourself,
which isn’t hard, but it’s not really
necessary for a first look at PostGIS.
If you love compiling, take a look at
the reference material—the official
documentation is very detailed and
complete. There also are lots of blog
posts from the community about
custom installations.

When you have no specific
requirements, the easy way often is
the best. You can use the package
delivered by your Linux distribution
(for example, type sudo apt-get
install postgresql-9.1-postgis
for Debian distributions). However,
as with other rapidly evolving
software, you are not going to find
the latest release.

An RDBMS is a great tool for storing, processing
and analyzing huge amounts of data, but you will
need an RDBMS with a spatial extension if you are
going to go this route.

LJ223-Nov2012.indd 103 10/24/12 9:32 AM

http://www.linuxjournal.com/article/10986
http://www.linuxjournal.com/article/10986
http://www.linuxjournal.com

INDEPTH

104 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

A binary prepared by EnterpriseDB
may come in handy if you want the
bleeding-edge version. Installation
is really straightforward, and it also
includes Stack Builder, a utility to add
tools and upgrade your installation
with future releases.

Extending PostgreSQL
Being an extension of PostgreSQL,
you may wonder what PostGIS adds
to the many functions shipped with
PostgreSQL. In a nutshell, it extends
storage, retrieval and analysis
capabilities of spatial objects. Let’s
look at an example to better explain
how it works. You know an RDBMS
can answer questions like “How many
employers are currently on holiday
in each department?”. The standard
way to ask it with PostgreSQL is by
speaking SQL:

SELECT COUNT(E.SERIAL) AS #, D.NAME FROM EMPLOYERS E

 ➥JOIN DEPARTMENT D ON (DEP_ID) WHERE E.ON_HOLYDAY = 1

 ➥GROUP BY D.NAME ORDER BY D.NAME

What if your question has a
spatial component? Suppose you
want know how many houses
are within 3 kilometers from the
new highway path in your county.
Standard SQL has no features to
express this, but here comes PostGIS
to help perform the analysis:

SELECT COUNT(id) FROM houses WHERE ST_DWithin(geom,(SELECT

 ➥highway.geom FROM county, highway WHERE ST_Intersects

 ➥(county.geom, highway.geom) AND county.name = 'Orange'

 ➥AND highway.name = 'Interstate 5'),3000);

Does it seem powerful? Indeed it
is! The code fragment above should
give you some hints about what
PostGIS provides—a huge set of
special functions, prefixed with
ST_ for querying and processing,
plus two new data types called
geometry and geography.

Of course, geometry and geography
are the data types for spatial features.
They are quite similar. Both let you
store simple geometrical objects
in a table. The big difference is
that geography accepts geodetic
coordinates (that is, expressed in
degrees on a spherical reference
system), while geometry accepts
coordinates defined over a planar
reference system. Geography was
introduced in PostGIS with release
1.5.0, and due to underlying complex
math, only a few functions support it.

The simple features I’m talking
about are points, lines and polygons.
With them, you can model the true
world. Indeed, this is a standard
approach—the simple features’
properties and behaviors were
modeled by the Open Geospatial
Consortium (OGC, an organization

LJ223-Nov2012.indd 104 10/24/12 9:32 AM

http://www.linuxjournal.com

INDEPTH

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 105

committed to defining open standards
for GIS and data interoperability),
and PostGIS, since its early versions,
was built with a strong support for
that standard.

Adding geometry support to a
table is really simple. Suppose you are
building a table of world capitals, you
would start with basic properties:

CREATE TABLE capitals (

id SERIAL,

state_name TEXT,

capital_name TEXT,

population numeric(8,0),

PRIMARY KEY(id)

);

If you are going to store features
that can be represented on a map,
you need to add a spatial reference.
Point geometry may be a good
approach; AddGeometryColumn is
the function you need:

SELECT AddGeometryColumn('gisuser',

 ➥'capitals','geom',4326,'POINT',2);

Here, you passed values for schema,
table name, geometry column name,
spatial reference system and geometry

type. The last value means you want
a two-dimensional geometry (that is,
a point defined on a surface). If you
are going to store elevation, you can
set three as the dimension value. And
there’s more. PostGIS also supports
four-dimensional geometry. Well, the
fourth dimension is not for travel
trips, but it is useful to associate a
measure to the geometry, and the
fourth dimension is indeed called
M. For example, a stream network
may be modeled as a multilinestring
value with the M coordinate values
measuring the distance from the
mouth of stream. The method
ST_LocateBetween may be used to
find all the parts of the stream that
are between, for example, 10 and 12
kilometers from the mouth.

Before using your table, it is better
to create an index on the geometry
column. The syntax is equivalent to
any other index creation; the index
type is GiST (Generalized Search Tree)
somewhat similar to an R-Tree index:

CREATE INDEX capitals_geom_gist ON capitals USING gist (geom);

Now let’s add real data to the
table. How do you insert values

And there’s more. PostGIS also supports
four-dimensional geometry.

LJ223-Nov2012.indd 105 10/24/12 9:32 AM

http://www.linuxjournal.com

INDEPTH

106 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

in the geometry column? The
ST_GeomFromText function
translates numeric values for you.
So let’s insert the coordinates you
picked up in London when you were
watching the Olympic games:

INSERT INTO capitals (state_name, capital_name, population, geom)

 ➥values('UK','London', 6500000,

 ➥ST_GeomFromText('POINT(-0.01639, 51.53861)', 4326));

The text you are passing to the
function is called a Well-Known
Text (WKT) representation of spatial
objects. Points are really simple to
define, but how do you express a
line or a polygon? You could mimic
the capitals table definition to create
a rivers table and add a record for
the Thames:

ST_GeomFromText('LINESTRING(0.31221 51.47033, 0.33477 51.45171,

 ➥0.44437 51.45851, 0.45877 51.48934, 0.61523 51.49512)',4326)

Another table could contain famous
buildings represented by polygons.
You can find Westminster Abbey here:

ST_GeomFromText('POLYGON((-0.12850 51.49963, -0.12856 51.49929,

 ➥-0.12814 51.49927, -0.12822 51.49896, -0.12722 51.49890,

 ➥-0.12714 51.49919, -0.12627 51.49933, -0.12711 51.49957,

 ➥-0.12707 51.49971, -0.12751 51.49974, -0.12758 51.49956,

 ➥-0.12850 51.49963),(-0.12810 51.49902, -0.12805 51.49924,

 ➥-0.12757 51.49921, -0.12761 51.49897, -0.12810 51.49902))',4326)

The WKT for the polygon contains
two coordinate lists enclosed in
round parentheses, while lines
always are defined by a single list.
Indeed, a polygon may contain
holes. The first list defines the
external ring of the polygon while
the following lists, you can have as
many as you need, define internal
rings that encircle holes.

Data Analysis
Knowing that your features are
safely stored in a database is nice,
but you may want to use them for
purposes other than later retrieval.
PostGIS functions let you interact
with spatial objects and explore
their relationships.

Functions known as constructors
build geometry from definitions in
several formats. They are sort of
like translators. You used it before
with WKT, and ST_GeomFromKML
and ST_GeomFromGeoJSON enable
translations from other popular
formats. Output functions enable the

Points are really simple to define, but how do you
express a line or a polygon?

LJ223-Nov2012.indd 106 10/24/12 9:32 AM

http://www.linuxjournal.com

INDEPTH

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 107

inverse translation as in ST_AsText,
ST_AsGeoJSON and ST_AsKML.
ST_IsValid and ST_GeometryType

check fundamental properties of
geometry. You can interact with
geometry with ST_NumPoint to
retrieve the total number of vertexes
and ST_PointN to get the nth
vertex; ST_RemovePoint removes
the vertex at the position you pass
to the function. Function names
often are self-explanatory, as with
ST_Scale and ST_Rotate.
ST_Distance measures the

minimum distance between two
geometry objects. As others, this
function is overloaded, the exact
definition is:

float ST_Distance(geometry g1, geometry g2);

float ST_Distance(geography gg1, geography gg2);

float ST_Distance(geography gg1, geography gg2, boolean use_spheroid);

The returned distance is measured
along a Cartesian plane for
geometry, and along a spheroid/
sphere for the geography type. If
you are querying objects relatively
nearby, the question of how to use
them may seem futile, but think
about measuring the distance from
San Francisco to Denver:

SELECT to_char(round(ST_Distance(

ST_GeomFromText('POINT(-122.440 37.802)',4326)::geography,

St_GeomFromText('POINT(-104.987 39.757)',4326)::geography

)),'999,999,999');

1,529,519

About 1,530 km is quite a long
way to go, and going straight from
San Francisco to Denver may be
a real challenge, so there’s room
for extra mileage. But if you try to
measure the same distance on a
printed map, you may find a rather
different result. As you learned in
primary school, the Earth’s shape
is almost a sphere. When a map
represents a wide portion of the
planet on the surface of a plane
(yes, curved monitors are yet to come),
it has to distort the real shape and
distance. By passing two geography
objects to ST_Distance, you are
asking it to perform a distance
calculus over the sphere’s surface.
Let’s use geometry, and it will use a
Cartesian plane for the calculus:

SELECT to_char(round(ST_Distance(

ST_Transform(ST_GeomFromText('POINT(-122.440 37.802)',4326),3857),

ST_Transform(ST_GeomFromText('POINT(-104.987 39.757)',4326),3857)

)),'999,999,999');

To get the result in meters,
comparable to the previous one,
you need to add the ST_Transform
function to change, on the fly, the SRS
to the Web Mercator used by most

LJ223-Nov2012.indd 107 10/24/12 9:32 AM

http://www.linuxjournal.com

INDEPTH

108 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

Web mapping systems:

1,962,818

More than 1,900km! Hey, Mr
Mercator, where are you taking me?

Loading Data
You’ve learned how you can process
spatial data in many ways inside
PostGIS, but how do you get the
data into the database? If you are
familiar with PostgreSQL, you know
it is shipped with psql, a command-
line tool, or you probably have been
using pgAdmin I I I if you prefer to
interact with a GUI. Both are not
specialized at dealing with spatial
data, but you can execute SQL code
that performs data loading.

If you search on the Internet,
you quickly wil l realize that a lot
of data is available in shapefiles,
a binary proprietary format that
is the de facto standard in spatial
data exchange. Are you wondering
how you can transform the binary
format in an SQL script? Don’t
worry; since its early releases,
PostGIS has included some tools
that read shapefiles and load them
in the database.

shp2pgsql and pgsql2shp are
command-line tools that make your
data go in and out. Not surprisingly,

shp2pgsql loads the data. In fact,
shapefiles are not really loaded by
shp2pgsql but are translated in a
form that psql can keep and load
for you. So, you just have to pipe
the output to psql:

$ shp2pgsql -s 4269 -g geom -I ~/data/counties.shp

 ➥public.counties | psql -h localhost -p 5432 -d

 ➥postgisDB -U gisuser

The basic set of parameters
required are -s to set the spatial
reference system, -g to name the
geometric column (useful when
appending data) and -I to create
a spatial index. There are quite a
few other parameters that make it
a flexible tool. As usual, -? is your
friend if you need to execute
less-trivial data loading. Apart from
creating a new table, the default
option, you may append data to an
existing table, drop it and re-create or
just create an empty table modeling
its structure according to the shapefile
data. pgsql2shp lets you drop your
data in a shapefile:

$ pgsql2shp -f ~/data/rivers -h localhost -p 5432 -u

 ➥postgres postgisDB0 public.rivers

The source of the data can be a
table or a view, but you also can
filter data at extraction time to

LJ223-Nov2012.indd 108 10/24/12 9:32 AM

http://www.linuxjournal.com

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 109

INDEPTH

export only a portion of a table:

$ pgsql2shp -f ~/data/california_counties -h localhost -p

 ➥5432 -u postgres postgisDB "SELECT * FROM

 ➥public.counties WHERE statefp = '06'"

As declared in its name,
shp2pgsql-gui is a graphical version
of shp2pgsql. Release 2.0 introduced
some interesting features. Despite the
name, you now can use it both for
loading shapefiles and for exporting

them, and although earlier versions
processed one shapefile at a time,
now you can add as many files as you
need to load and then run it once.

Raster Data
Storing and processing raster data in
PostGIS is analogous to vector data.
Aerial imagery and satellite scenes,
like those visible in Google maps,
are common examples, but other
types may be way more useful inside
PostGIS. Indeed, the real value to
having raster data inside PostGIS is
the possibility to perform analysis.
You also can mix raster and vector
data in your analysis. The digital
elevation model, a raster where an
elevation value is associated to each
pixel, is commonly used to perform
terrain analysis by geologists. A raster
data type has been added to support
this kind of data. You can create a
table for raster storage in the same
way that you did for a vector:

CREATE TABLE myraster(rid integer, rast raster);

A raster is ti led in regular ti les,
and each block is loaded as a
record in the table. For example, if
you have an imagery.tif fi le whose
size is 4096x3072 pixels, and you
choose a ti le size of 256x256 pixels,
after loading it, you will have a

Figure 1. Shapefile Loader GUI

LJ223-Nov2012.indd 109 10/30/12 10:23 AM

http://www.linuxjournal.com

INDEPTH

110 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

table with 192 records.
Loading raster data from the

SQL prompt is not easy. As with
vectors, a command-line uti l ity
exists, raster2pgsql:

$ raster2pgsql -s 4326 -t 256x256 -I -C

 ➥/home/postgis/data/imagery.tif imagery |

 ➥psql -d postgisDB -h localhost -p 5432 -U gisuser

Parameters are very similar except
you use -t to set tile sizes, and -C
sets the standard set of constraints
on the raster.

Summary
This article is merely a brief
exploration of what PostGIS can do.
Consider that there are about 700

specialized functions for dealing
with spatial data. I hope you found
it interesting and want to give it a
try. Among experts, PostGIS always
has been considered to be a hard
horse to ride. I think it requires a
little humility and a willingness to
read the manual. Once you start
using it, however, you soon will
find yourself asking why people are
spending big bucks for commercial
spatial databases.■

Stefano Iacovella is a longtime GIS developer and consultant.

He strongly believes in open source and constantly tries to

spread the word, not only in the GIS sector. When not playing

with polygons and linestrings, he loves reading travel books,

riding his bike and having fun with his daughters. You can find

him on Twitter at @iacovellas.

Resources

EnterpriseDB Downloads: www.enterprisedb.com/downloads/postgres-postgresql-downloads

The Shapefile Format: en.wikipedia.org/wiki/Shapefile

Official Whitepaper from ESRI about Shapefiles: www.esri.com/library/whitepapers/pdfs/
shapefile.pdf

The Main Reference for EPSG Codes: epsg-registry.org

PostGIS 2.0 Presentation (you can find details about new serialization on pages 5–13):
s3.cleverelephant.ca/foss4gna2012-postgis2.pdf

PostGIS Users Wiki: trac.osgeo.org/postgis/wiki/UsersWikiMain

PostGIS Official Documentation: www.postgis.org/documentation

LJ223-Nov2012.indd 110 10/24/12 9:32 AM

http://www.linuxjournal.com
http://www.enterprisedb.com/downloads/postgres-postgresql-downloads
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.postgis.org/documentation
http://en.wikipedia.org/wiki/Shapefile
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://epsg-registry.org
http://s3.cleverelephant.ca/foss4gna2012-postgis2.pdf
http://trac.osgeo.org/postgis/wiki/UsersWikiMain

1-up your abilities

Expand
your skills with experts
from across the globe.

February 25 - March 1, 2013
Montreal, Canada

diverse technologies with
160 presentations.

Explore

the best of web community and
culture.

PHP - Python - Ruby - Java - .NET
 HTML5 - Javascript - Mobile

Experience

start
register on confoo.ca
before Jan. 20
for a discount

Follow
@confooca

Sponsored by:

LJ223-Nov2012.indd 111 10/24/12 9:32 AM

http://ConFoo.ca

DOC SEARLS

112 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

Playing Value
Subtraction
Games
Mobile phone companies are good at it. Maybe too good.

I ’m writing this in an Amsterdam
apartment we rented for the
weekend through AirBNB. The

main reason we chose this place
wasn’t comfort or convenience. It
was connectivity. This apartment was
relatively cheap (about a quarter or
a third of the price of a three-star
hotel), but reports said the Internet
connection was good.

And so it is. Speedtest.net tells me
I’m getting 40Mb/s downstream and
2.5Mb/s up. That’s a bit lopsided for
my tastes (I upload a lot of stuff and
back up in the cloud), but it’s a heck
of a lot better than what most of the
hotels provide, which on the whole
is awful. (At least in the US and in
Europe, which is where I do nearly
all my traveling.)

But when we leave the apartment
here, we become data-poor. And

that’s by intent of the mobile
phone companies that provide
the only easily available source
of Internet connectivity.

Open Wi-Fi access points, once
plentiful, are now rare as four-
leaf clovers and far more lucky to
find. (Our many reports in Linux
Journal on open Wi-Fi, published
from 2002–2004, look l ike paradise
compared with today.) That puts
you at the mercy of cell-phone
companies. Most (or all) of those
in other countries would rather
not sell data usage to short-term
visitors, so your only choice is using
your domestic phone.

Ours are AT&T phones. So let’s look
at what AT&T charges, both within
the US and outside the country. Note
that I’m doing this as a customer
trying to figure things out, not as

EOF

LJ223-Nov2012.indd 112 10/24/12 9:32 AM

http://www.linuxjournal.com

EOF

a math whiz looking for problem
challenge. But that’s what we have
here, and if I fail, please correct
me. However, bear in mind that
the failing is not mine alone, but a
feature of AT&T marketing.

For US customers, AT&T has three
plans (http://www.att.com/
shop/wireless/data-plans.
html#fbid=6jmPMqgegnI):

■ $20/month for 300MB ($.067 per
MB, $.0067 per KB), then $20 for
each additional 300MB.

■ $30/month for 3GB ($.01 per MB,
$.001 per KB), then $10 for each
additional 1GB.

■ $50/month for 5GB ($.01 per MB),
then $10 for each additional 1GB.

So here’s what you need to figure
out before you choose one:

1) For both the $30 and the $50
plan, the rate is $10 per GB, which is
$1 per 100MB and $.01 per KB.

2) The per-MB (or KB) rate in the
$20 plan is 6.7x the rate for the other
two plans, and “saves” money only if
you stay under 300MB for the month,
which isn’t much data if you’re an
active user. As soon as you go over,
you get charged for another 300MB,

or $40 total for the month—meaning
you’re better off with the $30 plan.
That is, if you know for sure that
you’ll use more than 300MB.

3) If you pay $30 for 3GB and use
5GB, or 6GB, or 7GB or 10GB, you
pay no more than the person who
uses the same quantity and pays $50
for 5GB. Yet the 5GB customer using
only 3GB still pays for 5GB. So there’s
no reason at all to go for the $50
plan, even if you use 10GB/month.
You’re still paying $10 per GB.

4) You still feel screwed if you pay
$30 and use only 1GB, because you’re
still paying for 3GB.

But all of that is dirt cheap compared
to AT&T’s international data rates
(http://www.wireless.att.com/
learn/international/roaming/
affordable-world-packages.jsp#data).
Let’s unpack those:

1) “Pay-per-use” is $0.015 per KB
in Canada and $0.0195 per KB in
“Rest of World” (aka RoW).

2) Since there’s 1,000 KB in a
MB, that’s $15 for 1MB of data
in Canada and $19.50 for 1MB
everywhere else (actually, 140
countries). If you use 1GB, which is
1,000MB, that’s $1,500 in Canada
and $1,950 in RoW.

3) The above, therefore, shakes you
down in to a plan. There are three to

WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 113

LJ223-Nov2012.indd 113 10/24/12 9:32 AM

http://www.linuxjournal.com
http://www.att.com/shop/wireless/data-plans.html#fbid=6jmPMqgegnI
http://www.att.com/shop/wireless/data-plans.html#fbid=6jmPMqgegnI
http://www.att.com/shop/wireless/data-plans.html#fbid=6jmPMqgegnI
http://www.wireless.att.com/learn/international/roaming/affordable-world-packages.jsp#data
http://www.wireless.att.com/learn/international/roaming/affordable-world-packages.jsp#data
http://www.wireless.att.com/learn/international/roaming/affordable-world-packages.jsp#data

114 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

EOF

choose from:

■ $30 for 100MB.

■ $60 for 300MB.

■ $120 for 800MB.

Translated to GB, that’s $300 for 1GB
at the 100MB and 300MB quantities,
and a bit less at the 800MB level—and
that’s all for less than 1GB of usage.
Even if you pay the top price of $300

for 800MB, you’re paying $3,900 for
the next 200MB, because you’re in
pay-per-use-ville above the 800MB level.

In other words, you pay $4,200 if
you use 1GB while paying $300 for
AT&T’s top International data plan.
(And never mind that AT&T doesn’t
tell you that’s for both upstream and
down, added together. I found that
out when I called the company on the
phone once to talk about it.)

So my wife and I each went with
the $30 plan.

Now, since all this data is metered,
how can we monitor it on our end?

With iPhones (which we’re
using here), we need to go into
Settings→General→Usage→Cellular
Usage after landing outside the US
and then press Reset Statistics, erasing
whatever record we had of use since
the last reset. (The only memory we
have of the statistics is a screenshot.
This sets Cellular Network Data use at
zero—presumably.)

When I did that, while on Wi-Fi
here at the apartment, the meter
immediately read 13KB sent and 56KB

received. For what I had no idea,
but already I felt screwed, because I
wasn’t on the mobile data network.
(VodafoneNL, the phone tells me.)

When we walk around Amsterdam,
we have to keep our Cellular Data
and/or Data Roaming off, until we
want to look at a map or pick up
e-mail or some other thing that doesn’t
invite down a huge blast of data. And
then, to monitor use, we have to drill
back down that same directory path to
see where we stand. My wife has done
most of the roaming. In two days, she
has received 9.5MB and sent 688KB.

In other words, you pay $4,200 if you
use 1GB while paying $300 for AT&T’s
top International data plan.

LJ223-Nov2012.indd 114 10/24/12 9:32 AM

http://www.linuxjournal.com

Is that for real? How can we tell? And
why should we care?

I’ll grant that the cost of connecting
people is more than zero. But is the
cost they’re passing through that of
data? Or are they just charging for
sums of data because they have to
charge for something, so why not?

I don’t know, and I would welcome
some answers, if readers have any. I
know a lot of people in and around
these businesses and still have not
heard satisfying answers.

Meanwhile, it seems to me that there

are matters of economic externality to
consider. High data use costs and fear
of bill shock cause negative externalities
through lost business and diminished
economic activity. Also, given that
the Internet’s cost-free base protocols
comprise one huge positive externality
generator, it should seem wise of mobile
phone companies to participate in that
economy, rather than restrict the whole
thing to what little they can extract from
customers they clearly enjoy frustrating.

A few minutes ago, a friend close to
the business told me the problem is that

EOF

Linux JournaL
now available
for the iPad and
iPhone at the
App Store.

linuxjournal.com/ios

For more information about advertising opportunities within Linux Journal iPhone, iPad and
Android apps, contact Rebecca Cassity at +1-713-344-1956 x2 or ads@linuxjournal.com.

LJ223-Nov2012.indd 115 10/24/12 9:32 AM

mailto:ads@linuxjournal.com
http://linuxjournal.com/ios

116 / NOVEMBER 2012 / WWW.LINUXJOURNAL.COM

EOF

the big mobile phone companies, at
least in the US (that would be AT&T,
Sprint, T-Mobile and Verizon) actually
hate their customers. In fact,
we take this for granted. In a Wall
Street Journal essay of mine last
summer (http://online.wsj.com/
article/SB100008723963904448732
04577535352521092154.html), the
pull-quote they put in bold face was
“Choosing among AT&T, Sprint, T-Mobile
and Verizon for your new smartphone
is like choosing where you’d like to
live under house arrest.” It was the
line quoted most by others as well. But
my friend took the hate thing a step
further. He said treating customers like
prisoners eliminates the main sensory
path between a company and the
marketplace, thus blinding the company
not only to externalities of many kinds,
but to opportunities as well.

So I take heart in another piece of
news I picked up today: Mozilla’s Boot to
Gecko, or B2G (https://wiki.mozilla.org/
B2G), now re-dubbed Firefox OS
(https://developer.mozilla.org/
en-US/docs/Mozilla/Firefox_OS),
“uses a Linux kernel and boots into a
Gecko-based runtime engine, which
lets users run applications developed
entirely using HTML, JavaScript, and
other open Web application APIs”.

In other words, it’s smaller, lighter,

simpler and less complicated to deploy
than Android. Here are the components
listed on the Firefox OS page:

■ Gaia, the user interface, is “a Web
application running atop the Firefox
OS software stack”.

■ Gonk, the OS layer under Gaia,
“consists of a Linux kernel and a
hardware abstraction layer to which
Gecko communicates”.

■ Gecko “is the layer of Firefox OS
that provides the same open Web
standards implementation used by
Firefox and Thunderbird, as well as
many other applications”.

On the Booting to the Web
page (https://wiki.mozilla.org/
Booting_to_the_Web) in the
Mozil la Wiki, it says this:

Mozilla believes that the Web can

displace proprietary, single-vendor

stacks for application development.

To make open Web technologies a

better basis for future applications

on mobile and desktop alike, we

need to keep pushing the envelope

of the Web to include—and in places

exceed—the capabilities of the

competing stacks in question.

LJ223-Nov2012.indd 116 10/24/12 9:32 AM

http://www.linuxjournal.com
http://online.wsj.com/article/SB10000872396390444873204577535352521092154.html
http://online.wsj.com/article/SB10000872396390444873204577535352521092154.html
http://online.wsj.com/article/SB10000872396390444873204577535352521092154.html
https://wiki.mozilla.org/B2G
https://wiki.mozilla.org/B2G
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS
https://wiki.mozilla.org/Booting_to_the_Web
https://wiki.mozilla.org/Booting_to_the_Web

We also need a hill to take, in order

to scope and focus our efforts.

Recently we saw the pdf.js project

expose small gaps that needed

filling in order for “HTML5” to be a

superset of PDF. We want to take a

bigger step now, and find the gaps

that keep Web developers from being

able to build apps that are—in every

way—the equals of native apps built

for the iPhone, Android and WP7.

In July, TechWeek Europe reported
a Firefox OS prototype being shown
off by Telefónica, which is big in
Europe and many Latin countries
(http://www.techweekeurope.co.uk/
news/telefonica-firefox-os-
smartphone-prototype-85340).
Here’s the closing line from that
piece: “The first handset based on the
platform will be released in Brazil on
Telefónica’s Vivo brand in Brazil next
year and will cost less than $100.” Yay.

They’re playing a value creation
game, instead of a value subtraction
one. It’s a winning strategy in the
long run. Let’s help Mozilla make
that run as short as possible.■

Doc Searls is Senior Editor of Linux Journal. He is also a

fellow with the Berkman Center for Internet and Society at

Harvard University and the Center for Information Technology

and Society at UC Santa Barbara.

Advertiser Index
Thank you as always for supporting our

advertisers by buying their products!

ADVERTISER URL PAGE #

1&1 http://www.1and1.com 41

AnddevCon Iv http://www.AnDevCon.com 47

Confoo http://confoo.ca 111

emAC, InC. http://www.emacinc.com 21

emperorLInux http://www.emperorlinux.com 45

Ixsystems http://www.ixsystems.com 7

mICrowAy http://www.microway.com 86, 87

sILICon meChAnICs http://www.siliconmechanics.com 3

usenIx LIsA https://www.usenix.org/conference/lisa12 2

ATTENTION ADVERTISERS

The Linux Journal brand’s following has
grown to a monthly readership nearly
one million strong. Encompassing the
magazine, Web site, newsletters and
much more, Linux Journal offers the

ideal content environment to help you
reach your marketing objectives. For

more information, please visit
http://www.linuxjournal.com/advertising.

 WWW.LINUXJOURNAL.COM / NOVEMBER 2012 / 117

LJ223-Nov2012.indd 117 10/24/12 9:32 AM

http://www.techweekeurope.co.uk/news/telefonica-firefox-os-smartphone-prototype-85340
http://www.techweekeurope.co.uk/news/telefonica-firefox-os-smartphone-prototype-85340
http://www.techweekeurope.co.uk/news/telefonica-firefox-os-smartphone-prototype-85340
http://www.1and1.com
http://www.AnDevCon.com
http://confoo.ca
http://www.emacinc.com
http://www.emperorlinux.com
http://www.ixsystems.com
http://www.microway.com
http://www.siliconmechanics.com
https://www.usenix.org/conference/lisa12
http://www.linuxjournal.com/advertising
http://www.linuxjournal.com

