
System76’s
Oryx Pro Laptop

FOSS Project
Spotlight: Tutanota

How-To:
Configure NAS

Understanding Bash | Getting Started with Rust
Intro to Go | Create Command-Line Tools with Clojure

PROGRAMMING
ISSUE 291 | OCTOBER 2018

www.linuxjournal.com

Since 1994: The original magazine of the Linux community

http://www.linuxjournal.com

CONTENTS OCTOBER 2018
ISSUE 291

2 | October 2018 | http://www.linuxjournal.com

73 Understanding
Bash: Elements of
Programming
by Vladimir Likic
Ever wondered why programming
in Bash is so difficult? Bash
employs the same constructs as
traditional programming languages;
however, under the hood, the logic
is rather different.

98 Getting Started with
Rust: Working with
Files and Doing File I/O
by Mihalis Tsoukalos
How to develop command-line
utilities in Rust.

116 Introductory Go
Programming Tutorial
by Jay Ts
How to get started with this useful
new programming language.

125 Creating Linux
Command-Line
 Tools in Clojure
by Mihalis Tsoukalos
Learn how the leiningen utility
can help you manage your
Clojure projects.

72 DEEP DIVE: Programming

http://www.linuxjournal.com

LINUX JOURNAL (ISSN 1075-3583) is published monthly by Linux Journal, LLC. Subscription-related correspondence may be sent to
9597 Jones Rd, #331, Houston, TX 77065 USA. Subscription rate is $34.50/year. Subscriptions start with the next issue.

CONTENTS

3 | October 2018 | http://www.linuxjournal.com

6 From the Editor—Doc Searls
 Shall We Study Amazon’s Pricing Together?

12 Letters

 UPFRONT
16 FOSS Project Spotlight: Tutanota, the First Encrypted Email

Service with an App on F-Droid
 by Matthias Pfau

23 Patreon and Linux Journal

24 Introducing Genius, the Advanced Scientific Calculator for Linux
 by Joey Bernard

33 News Briefs

 COLUMNS
36 Kyle Rankin’s Hack and /
 Papa’s Got a Brand New NAS: the Software

42 Reuven M. Lerner’s At the Forge
 Automate Sysadmin Tasks with Python’s os.walk Function

52 Shawn Powers’ The Open-Source Classroom
 Have a Plan for Netplan

60 Dave Taylor’s Work the Shell
 Normalizing Filenames and Data with Bash

66 Zack Brown’s diff -u
 What’s New in Kernel Development

158 Glyn Moody’s Open Sauce
 Now Is the Time to Start Planning for the Post-Android World

http://www.linuxjournal.com

AT YOUR SERVICE
SUBSCRIPTIONS: Linux Journal is available as a digital
magazine, in PDF, EPUB and MOBI formats. Renewing
your subscription, changing your email address for issue
delivery, paying your invoice, viewing your account details
or other subscription inquiries can be done instantly
online: http://www.linuxjournal.com/subs. Email us at
subs@linuxjournal.com or reach us via postal mail at Linux Journal,
9597 Jones Rd #331, Houston, TX 77065 USA. Please remember to
include your complete name and address when contacting us.

ACCESSING THE DIGITAL ARCHIVE: Your monthly download
notifications will have links to the different formats and to the
digital archive. To access the digital archive at any time, log in
at http://www.linuxjournal.com/digital.

LETTERS TO THE EDITOR: We welcome your letters
and encourage you to submit them at
http://www.linuxjournal.com/contact or mail them to
Linux Journal, 9597 Jones Rd #331, Houston, TX 77065 USA.
Letters may be edited for space and clarity.

SPONSORSHIP: We take digital privacy and digital
responsibility seriously. We've wiped off all old advertising
from Linux Journal and are starting with a clean slate. Ads
we feature will no longer be of the spying kind you find
on most sites, generally called "adtech". The one form of
advertising we have brought back is sponsorship. That's where
advertisers support Linux Journal because they like what we
do and want to reach our readers in general. At their best,
ads in a publication and on a site like Linux Journal
provide useful information as well as financial support.
There is symbiosis there. For further information, email:
sponsorship@linuxjournal.com or call +1-281-944-5188.

WRITING FOR US: We always are looking for contributed
articles, tutorials and real-world stories for the magazine. An
author’s guide, a list of topics and due dates can be found
online: http://www.linuxjournal.com/author.

NEWSLETTERS: Receive late-breaking news, technical tips
and tricks, an inside look at upcoming issues and links to
in-depth stories featured on http://www.linuxjournal.com.
Subscribe for free today: http://www.linuxjournal.com/
enewsletters.

CONTENTS

4 | October 2018 | http://www.linuxjournal.com

 ARTICLES
140 Review: System76 Oryx Pro Laptop
 by Rob Hansen
 Can “by hackers, for hackers” sell laptops? System76 sold an Oryx Pro to Rob, and
 he’s here to tell you about it.

151 3D-Printed Firearms Are Blowing Up
 by Kyle Rankin
 What’s the practical risk with 3D-printed firearms today? In this opinion piece,
 Kyle explores the current state of the art.

http://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/digital
http://www.linuxjournal.com/contact
mailto:sponsorship@linuxjournal.com
http://www.linuxjournal.com/author
http://www.linuxjournal.com
http://www.linuxjournal.com/enewsletters
http://www.linuxjournal.com/enewsletters
http://www.linuxjournal.com

EDITOR IN CHIEF: Doc Searls, doc@linuxjournal.com

EXECUTIVE EDITOR: Jill Franklin, jill@linuxjournal.com

TECH EDITOR: Kyle Rankin, lj@greenfly.net

ASSOCIATE EDITOR: Shawn Powers, shawn@linuxjournal.com

EDITOR AT LARGE: Petros Koutoupis, petros@linux.com

CONTRIBUTING EDITOR: Zack Brown, zacharyb@gmail.com

SENIOR COLUMNIST: Reuven Lerner, reuven@lerner.co.il

SENIOR COLUMNIST: Dave Taylor, taylor@linuxjournal.com

PUBLISHER: Carlie Fairchild, publisher@linuxjournal.com

ASSOCIATE PUBLISHER: Mark Irgang, mark@linuxjournal.com

DIRECTOR OF DIGITAL EXPERIENCE:
Katherine Druckman, webmistress@linuxjournal.com

GRAPHIC DESIGNER: Garrick Antikajian, garrick@linuxjournal.com

ACCOUNTANT: Candy Beauchamp, acct@linuxjournal.com

COMMUNITY ADVISORY BOARD
John Abreau, Boston Linux & UNIX Group; John Alexander, Shropshire Linux User Group;

Robert Belnap, Classic Hackers UGA Users Group; Aaron Chantrill, Bellingham Linux Users Group;
Lawrence D’Oliveiro, Waikato Linux Users Group; Chris Ebenezer, Silicon Corridor Linux User Group;

David Egts, Akron Linux Users Group; Michael Fox, Peterborough Linux User Group;
Braddock Gaskill, San Gabriel Valley Linux Users’ Group; Roy Lindauer, Reno Linux Users Group;

Scott Murphy, Ottawa Canada Linux Users Group; Andrew Pam, Linux Users of Victoria;
Bob Proulx, Northern Colorado Linux User's Group; Ian Sacklow, Capital District Linux Users Group;
Ron Singh, Kitchener-Waterloo Linux User Group; Jeff Smith, Kitchener-Waterloo Linux User Group;

Matt Smith, North Bay Linux Users’ Group; James Snyder, Kent Linux User Group;
Paul Tansom, Portsmouth and South East Hampshire Linux User Group;

Gary Turner, Dayton Linux Users Group; Sam Williams, Rock River Linux Users Group;
Stephen Worley, Linux Users’ Group at North Carolina State University;

Lukas Yoder, Linux Users Group at Georgia Tech

Linux Journal is published by, and is a registered trade name of,
Linux Journal, LLC. 4643 S. Ulster St. Ste 1120 Denver, CO 80237

SUBSCRIPTIONS
E-MAIL: subs@inuxjournal.com

URL: www.linuxjournal.com/subscribe
Mail: 9597 Jones Rd, #331, Houston, TX 77065

SPONSORSHIPS
E-MAIL: sponsorship@linuxjournal.com

Contact: Publisher Carlie Fairchild
Phone: +1-281-944-5188

LINUX is a registered trademark of Linus Torvalds.

Private Internet Access is a proud sponsor of Linux Journal .

Join a
community
with a deep

appreciation
for open-source

philosophies,
digital

freedoms
and privacy.

Subscribe to
Linux Journal
Digital Edition

for only $2.88 an issue.

SUBSCRIBE
TODAY!

5 | October 2018 | http://www.linuxjournal.com

http://blu.org/
https://shropshirelug.wordpress.com/
http://chugalug.uga.edu/
http://blug.org/
http://www.wlug.org.nz/
http://sclug.org.uk/
https://plugintolinux.ca/
http://sgvlug.org/
http://www.rlug.org/
https://linux-ottawa.org/
https://luv.asn.au/
mailto:bob@proulx.com
http://www.nclug.org/
http://www.cdlug.net/
https://kwlug.org/
https://kwlug.org/
http://www.nblug.org/
http://kentlug.org/
http://portsmouth.lug.org.uk/
http://www.dma1.org/linux
http://www.rrlug.org/
https://lug.ncsu.edu/info
https://lugatgt.org/
mailto:doc@linuxjournal.com
mailto:jill@linuxjournal.com
mailto:lj@greenfly.net
mailto:shawn@linuxjournal.com
mailto:petros@linux.com
mailto:zacharyb@gmail.com
mailto:reuven@lerner.co.il
mailto:taylor@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:subs@inuxjournal.com
http://www.linuxjournal.com/subscribe
mailto:sponsorship@linuxjournal.com
http://www.linuxjournal.com/subscribe

Doc Searls is a veteran
journalist, author and part-time
academic who spent more than
two decades elsewhere on the
Linux Journal masthead before
becoming Editor in Chief when
the magazine was reborn in
January 2018. His two books
are The Cluetrain Manifesto,
which he co-wrote for Basic
Books in 2000 and updated
in 2010, and The Intention
Economy: When Customers
Take Charge, which he wrote
for Harvard Business Review
Press in 2012. On the academic
front, Doc runs ProjectVRM,
hosted at Harvard’s Berkman
Klein Center for Internet and
Society, where he served as a
fellow from 2006–2010. He was
also a visiting scholar at NYU’s
graduate school of journalism
from 2012–2014, and he has
been a fellow at UC Santa
Barbara’s Center for Information
Technology and Society since
2006, studying the internet as
a form of infrastructure.

FROM THE EDITOR

6 | October 2018 | http://www.linuxjournal.com

Shall We Study
Amazon’s Pricing
Together?
Is it possible to figure out how we’re being
profiled online?

By Doc Searls

This past July, I spent a quality week getting rained out in
a series of brainstorms by alpha data geeks at the Pacific
Northwest BI & Analytics Summit in Rogue River, Oregon.
Among the many things I failed to understand fully there
was how much, or how well, we could know about how the
commercial sites and services of the online world deal with us,
based on what they gather about us, on the fly or over time, as
we interact with them.

https://www.strategic-pr.com/bi-analyst-summit/
https://www.strategic-pr.com/bi-analyst-summit/
http://www.linuxjournal.com

7 | October 2018 | http://www.linuxjournal.com

FROM THE EDITOR

The short answer was “not much”. But none of the experts I talked to said “Don’t
bother trying.” On the contrary, the consensus was that the sums of data gathered
by most companies are (in the words of one expert) “spaghetti balls” that are hard, if
not possible, to unravel completely. More to my mission in life and work, they said it
wouldn’t hurt to have humans take some interest in the subject.

In fact, that was pretty much why I was invited there, as a Special Guest. My topic was
“When customers are in full command of what companies do with their data—and
data about them”. As it says at that link, “The end of this story...is a new beginning
for business, in a world where customers are fully in charge of their lives in the
marketplace—both online and off: a world that was implicit in both the peer-to-peer
design of the Internet and the nature of public markets in the pre-industrial world.”

Obviously, this hasn’t happened yet.

This became even more obvious during a break when I drove to our AirBnB
nearby. By chance, my rental car radio was tuned to a program called From
Scurvy to Surgery: The History Of Randomized Trials. It was an Innovation Hub
interview with Andrew Leigh, Ph.D. (@ALeighMP), economist and member of
the Australian Parliament, discussing his new book, Randomistas: How Radical
Researchers Are Changing Our World (Yale University Press, 2018). At one
point, Leigh reported that “One expert says, ‘Every pixel on Amazon’s home page
has had to justify its existence through a randomized trial.’”

I thought, Wow. How much of my own experience of Amazon has been as a
randomized test subject? And can I possibly be in anything even remotely close
to full charge of my own life inside Amazon’s vast silo?

After I got back to the meeting, I looked up Dr. Leigh’s book on Amazon. (Here’s the
link.) I was kind of surprised to find the Kindle price was $26.12, while the hardcover
price was the publisher’s listed one: $27.50. Shouldn’t the Kindle be a lot less? Then I
found myself wondering: Are these prices part of a randomized trial?

So I conducted a quick trial of my own on two different browsers. One was Chrome,
the other Brave. I wasn’t logged in to Amazon on either, but on Brave, I did my best

https://www.strategic-pr.com/doc-searls
https://www.strategic-pr.com/doc-searls
http://blogs.wgbh.org/innovation-hub/2018/7/27/scurvy-surgery-history-randomized-trials/
http://blogs.wgbh.org/innovation-hub/2018/7/27/scurvy-surgery-history-randomized-trials/
http://blogs.wgbh.org/innovation-hub/
https://twitter.com/ALeighMP
https://en.wikipedia.org/wiki/Andrew_Leigh
https://yalebooks.yale.edu/book/9780300236125/randomistas
https://yalebooks.yale.edu/book/9780300236125/randomistas
https://www.amazon.com/gp/product/0300236123/
https://www.amazon.com/gp/product/0300236123/
http://www.linuxjournal.com

8 | October 2018 | http://www.linuxjournal.com

FROM THE EDITOR

to mask where I was coming from by searching in a private tab over Tor. (Far as I
know, Brave is the only browser to offer Tor on a start page.) I took screenshots of
the results and posted them on Flickr, here. So you don’t have to fire up a browser of
your own, Table 1 shows the results.

Table 1. Results on July 27, 2018, in Rogue River

Book Kindle Hardcover Paperback

Randomistas on
Chrome $26.12 $27.50

Randomistas on Brave $20.02 $27.50

The Intention Economy
on Chrome $14.57 $14.50

The Intention Economy
on Brave $19.65 $26.21

The Cluetrain
Manifesto (10th

Anniversary Edition
paperback) on Chrome

$11.99 $9.97 $13.11

The Cluetrain
Manifesto (10th

Anniversary Edition
paperback) on Brave

$9.34 $9.97 $13.11

Biblio Tech on Chrome $17.99 $13.93

Biblio Tech on Brave $14.04 $13.93

Data and Goliath
(hardcover) on

Chrome
$21.30

Data and Goliath
(hardcover) on Brave $21.26

The Undoing Project
on Chrome $10.83 $9.46–$11.40 $13.75–$14.48

The Undoing Project
on Brave $9.90 $9.46–$11.40 $13.75–$14.48

https://www.flickr.com/photos/docsearls/albums/72157696419019402
https://www.amazon.com/gp/product/0300236123/
https://www.amazon.com/gp/product/0300236123/
https://www.amazon.com/Intention-Economy-When-Customers-Charge/dp/1422158527
https://www.amazon.com/Intention-Economy-When-Customers-Charge/dp/1422158527
https://www.amazon.com/Cluetrain-Manifesto-10th-Anniversary/dp/0465018653/
https://www.amazon.com/Cluetrain-Manifesto-10th-Anniversary/dp/0465018653/
https://www.amazon.com/Cluetrain-Manifesto-10th-Anniversary/dp/0465018653/
https://www.amazon.com/Cluetrain-Manifesto-10th-Anniversary/dp/0465018653/
https://www.amazon.com/Cluetrain-Manifesto-10th-Anniversary/dp/0465018653/
https://www.amazon.com/Cluetrain-Manifesto-10th-Anniversary/dp/0465018653/
https://www.amazon.com/Cluetrain-Manifesto-10th-Anniversary/dp/0465018653/
https://www.amazon.com/Cluetrain-Manifesto-10th-Anniversary/dp/0465018653/
https://www.amazon.com/dp/B00TT1VL8Q/
https://www.amazon.com/dp/B00TT1VL8Q/
https://www.amazon.com/Data-Goliath-Battles-Collect-Control/dp/039335217X/ref=sr_1_1?s=books&ie=UTF8&qid=1533267587&sr=1-1&keywords=data+and+goliath+bruce+schneier
https://www.amazon.com/Data-Goliath-Battles-Collect-Control/dp/039335217X/ref=sr_1_1?s=books&ie=UTF8&qid=1533267587&sr=1-1&keywords=data+and+goliath+bruce+schneier
https://www.amazon.com/Data-Goliath-Battles-Collect-Control/dp/039335217X/ref=sr_1_1?s=books&ie=UTF8&qid=1533267587&sr=1-1&keywords=data+and+goliath+bruce+schneier
https://www.amazon.com/Data-Goliath-Battles-Collect-Control/dp/039335217X/ref=sr_1_1?s=books&ie=UTF8&qid=1533267587&sr=1-1&keywords=data+and+goliath+bruce+schneier
https://www.amazon.com/Undoing-Project-Friendship-Changed-Minds/dp/0393254593
https://www.amazon.com/Undoing-Project-Friendship-Changed-Minds/dp/0393254593
http://www.linuxjournal.com

9 | October 2018 | http://www.linuxjournal.com

FROM THE EDITOR

Table 2. August 3, 2018, in New York City

Book Kindle Hardcover Paperback

Randomistas on Chrome $26.12 $27.50

Randomistas on Brave $32.66* $27.50

The Intention Economy on
Chrome $14.57 $14.50

The Intention Economy on
Brave $18.21 $14.50

The Cluetrain Manifesto
(10th Anniversary Edition

paperback) on Chrome
$11.99 $10.38 $9.89–$12.93***

The Cluetrain Manifesto
(10th Anniversary Edition

paperback) on Brave
$9.34 $10.38** $13.11

Biblio Tech on Chrome $17.99 $13.82

Biblio Tech on Brave $14.04 $13.82

Data and Goliath (hardcover)
on Chrome $22.00****

Data and Goliath (hardcover)
on Brave $22.00****

The Undoing Project on
Chrome $10.39 $14.06 $14.48

The Undoing Project on Brave $9.34 $14.06 $14.48

* Another price appeared and disappeared before I could read it. I also needed to answer a CAPTCHA to prove I wasn’t a robot.

** Earlier it said “From $1.14”.

*** Earlier it said “$9.89–$13.11”.

**** Earlier it said “$21.26”.

https://www.amazon.com/gp/product/0300236123/
https://www.amazon.com/gp/product/0300236123/
https://www.amazon.com/Intention-Economy-When-Customers-Charge/dp/1422158527
https://www.amazon.com/Intention-Economy-When-Customers-Charge/dp/1422158527
https://www.amazon.com/Cluetrain-Manifesto-10th-Anniversary/dp/0465018653/
https://www.amazon.com/Cluetrain-Manifesto-10th-Anniversary/dp/0465018653/
https://www.amazon.com/Cluetrain-Manifesto-10th-Anniversary/dp/0465018653/
https://www.amazon.com/Cluetrain-Manifesto-10th-Anniversary/dp/0465018653/
https://www.amazon.com/Cluetrain-Manifesto-10th-Anniversary/dp/0465018653/
https://www.amazon.com/Cluetrain-Manifesto-10th-Anniversary/dp/0465018653/
https://www.amazon.com/dp/B00TT1VL8Q/
https://www.amazon.com/dp/B00TT1VL8Q/
https://www.amazon.com/Data-Goliath-Battles-Collect-Control/dp/039335217X/ref=sr_1_1?s=books&ie=UTF8&qid=1533267587&sr=1-1&keywords=data+and+goliath+bruce+schneier
https://www.amazon.com/Data-Goliath-Battles-Collect-Control/dp/039335217X/ref=sr_1_1?s=books&ie=UTF8&qid=1533267587&sr=1-1&keywords=data+and+goliath+bruce+schneier
https://www.amazon.com/Undoing-Project-Friendship-Changed-Minds/dp/0393254593
https://www.amazon.com/Undoing-Project-Friendship-Changed-Minds/dp/0393254593
http://www.linuxjournal.com

10 | October 2018 | http://www.linuxjournal.com

FROM THE EDITOR

Since then, I’ve been checking Amazon prices often on different browsers, different
devices, both logged in and not, and again using Tor on Brave. Prices for lots of
stuff (not just books) have been all over the place. And information about products
changes too.

For example, today (as I write this, on deadline) is August 19th. On Chrome,
Randomistas is now $18.24 on Kindle, $19.20 in hardcover and available in paperback
for $32.39. (It wasn’t in paperback before. See here.) On Brave through Tor, it’s the
same for hardcover and paperback but $20.09 on Kindle.

To my amateur mind, Amazon’s pricing calls to mind Dave Barry’s classic column,
“The Unfriendly Skies”, published in 2010 and more relevant than ever today. Under
“Answers to Common Airline Questions”, he begins:

Q. Airline fares are very confusing. How, exactly, does the airline determine the price
of my ticket?

A. Many cost factors are involved in flying an airplane from Point A to Point B,
including distance, passenger load, whether each pilot will get his own pilot hat or
they’re going to share, and whether Point B has a runway.

Q. So the airlines use these cost factors to calculate a rational price for my ticket?

A. No. That is determined by Rudy the Fare Chicken, who decides the price of
each ticket individually by pecking on a computer keyboard sprinkled with corn.
If an airline agent tells you that they’re having “computer problems,” this means
that Rudy is sick, and technicians are trying to activate the backup system,
Conrad the Fare Hamster.

I now know, after doing some digging, that what’s really going on here is
“dynamic pricing”, and there is a lot of jive about it on the web. (Here’s a
search: https: / /www.google.com/search?q=amazon+dynamic+pricing.) And I get
that it’s about lots of variables other than personal ones: A/B and randomized
testing across populations, competitors’ prices (again, viewed through
different browsers or whatever Amazon’s robots might use to simulate human

https://www.flickr.com/photos/docsearls/41908196180/in/dateposted/
https://www.amazon.com/Undoing-Project-Friendship-Changed-Minds/dp/0393254593
http://www.linuxjournal.com
https://www.google.com/search?q=amazon+dynamic+pricing

11 | October 2018 | http://www.linuxjournal.com

FROM THE EDITOR

queries), short- and long-term trends, inventory available now or back-up
supply chains, scenarios, choice presentation and so on.

So here are a few serious questions: How might we best research this from our
side—the one where humans use browsers and actually buy stuff? Is it possible to
figure out how we’re being profiled, if at all—and how might we do that? Are there
shortcuts to finding the cheapest Amazon price for a given product, among all the
different prices it presents at different times and ways on different browsers, to
persons logged in or not? Is this whole thing so opaque that we’ll never know much
more than a damn thing, and we’re simply at the mercy of machines probing and
manipulating us constantly?

I’m hoping some of you have answers. I also think it would be fun to put together an
Amazon Pricing System Research Project using Linux Journal readers. (Or maybe,
hmm, Amazon’s own Mechanical Turk.)

Possible? If so, write to me and let’s see what we can do. ◾

Note: pricing gun image used with this article courtesy of PriceGun.com.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.mturk.com/
https://www.pricegun.com/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

12 | October 2018 | http://www.linuxjournal.com

FROM THE EDITOR

LETTERS

Responses from Social Media
We asked the Twitterverse, “When did you begin using Linux on the desktop?
What was your first distro?”

• Alejandro LANGUREN Alex_Languren: I started with a boxed
edition of Turbolinux in 1999, now discontinued; the CDs are still in
my personal library.

• David Colon @davidpcolon: Slackware in 1995, back when we had to create
modelines in our XF86Config file.

• Bill Studley @BillStudley: Floppy version of Slackware that I downloaded
from MIT

• Jonathan Coker @jmc2038: It was Slackware in 1994. Used most of
a pack of 50 3.5 floppies to load Linux and XWin. Set up to dual boot
with NT 3.51 (had to for a class) on a 1GB SCSI drive. Modified the settings
for my system then recompiled the kernel. Still took less time than the
Win install.

• Mika Nieminen @peisi1: My first was Linux Mandrake 10.0. Today Fedora,
and tomorrow maybe openSUSE.

• Kevin Adler @kadler_ibm: Mandrake 7.2, around 2000–2001. Switched
to @SUSE shortly thereafter (now @openSUSE), and it has been my primary
OS since 2004. Windows-free since 2014 or so (I don’t have definitive record
that I can find).

• Saptech @saptech: Early 2000, Caldera Linux with KDE.

• Rolf Besier @rolf_besier: Jumped in first in 1996 with Delix, then SUSE.
It was a pain in arse switching floppies like a disc jockey. Delix was for me
state of the art in networking. Had some server experiences with SUN

http://www.linuxjournal.com

13 | October 2018 | http://www.linuxjournal.com

LETTERS

Solaris & HP-UX for remote controlling. Now over 10 years on Debian
with xfce4.

• Daniel Bristot de Oliveira @bristot: 2002, using @acmel’s Conectiva!
It came with KDE and 2.4.18 kernel. First I thought that the / would run
with swap “FS” because it was the only FS listed with “linux” in the description.
No internet in my small town in .br that time, CD bought with a magazine!

• HomeTechHacker @HomeTechHacker: Red Hat, I believe, back
in 1995. Before that, I used NetBSD for a couple years. From 1999–2005
I used Windows, but I’ve been primarily Ubuntu since 6.06 in 2006,
with some dabbles with Linux Mint, Kubuntu, Dreamlinux, Debian
and Lubuntu.

• Vincenzo Lalli @vincenzo_lalli: It was 2007 I think. I bought a Dell
that came with Win Vista. Soon I realized I had to find an alternative. I
installed #Ubuntu 7-something. Over the years I tried many other distros,
now mainly using #debian. Never looked back; it’s been a liberating
experience. #linux

• Anders Karlsson @skallen: 1993, Slackware downloaded floppies from
http://funet.fi via a 9600 bps modem. It took all night to download them...

More from Social Media
Positive Internet @posipeople: The @linuxjournal is one of the few
GNU/Linux institutions that’s been around longer than us :-) Proper, in-depth
technical analyses don’t get any better than those in the journal. They merit
all our support!

I am Gareth’s Smirking Revenge @garethgreenaway: Finally got around
to resubscribing to @linuxjournal and was pleasantly surprised to see that ALL
previous issues were available digitally. How awesome is that. If you haven’t
already, you should go subscribe.

http://www.linuxjournal.com
http://funet.fi

14 | October 2018 | http://www.linuxjournal.com

LETTERS

Photo of the Month

Andrea Polidori @andpoli: A relaxing moment with the @linuxjournal August
issue on my #Linux based @pocketbook #eReader. That’s cool. ;-) #ontheBeach

SEND LJ A LETTER We’d love to hear your feedback on the magazine and

specific articles. Please write us here or send email to ljeditor@linuxjournal.com.

PHOTOS Send your Linux-related photos to ljeditor@linuxjournal.com, and we’ll

publish the best ones here.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com
mailto:ljeditor@linuxjournal.com
mailto:ljeditor@linuxjournal.com

Have you subscribed or renewed

your subscription to Linux Journal?

We can’t do this without you!

S T O P

Feedback? Please tell us what you think! https://www.surveymonkey.com/r/ljreader

Follow the below link to get $5 off your subscription order, offer valid through October 31, 2018.

http://www.linuxjournal.com/save5

SUBSCRIBE

TODAY TO RECEIVE:

12 monthly issues

Free ebook with paid order,
SysAdmin 101

Free access to our nearly
300 back issue archive

https://www.surveymonkey.com/r/ljreader
http://www.linuxjournal.com/save5

16 | October 2018 | http://www.linuxjournal.com

UPFRONTUPFRONT

FOSS Project
Spotlight: Tutanota,
the First Encrypted
Email Service with
an App on F-Droid
Seven years ago, we started building Tutanota, an encrypted email service with
a strong focus on security, privacy and open source. Long before the Snowden
revelations, we felt there was a need for easy-to-use encryption that would allow
everyone to communicate online without being snooped upon.

As developers, we know how easy it is to spy on email that travels through
the web. Email, with its federated setup is great, and that’s why it has become
the main form of online communication and still is. However, from a security
perspective, the federated setup is troublesome—to say the least.

End-to-end encrypted email is difficult to handle on desktops (with key
generation, key sharing, secure storing of keys and so on), and it’s close to
impossible on mobile devices. For the average, not so tech-savvy internet user,
there are a lot of pitfalls, and the probability of doing something wrong is,
unfortunately, rather high.

That’s why we decided to build Tutanota: a secure email service that is so easy
to use, everyone can send confidential email, not only the tech-savvy. The entire

http://www.linuxjournal.com

17 | October 2018 | http://www.linuxjournal.com

UPFRONT

encryption process runs locally on users’ devices, and it’s fully automated. The
automatic encryption also enabled us to build fully encrypted email apps for
Android and iOS.

Finally, end-to-end encrypted email is starting to become the standard: 58%
of all email sent from Tutanota already are end-to-end encrypted, and the
percentage is constantly rising.

The Open-Source Email Service to Get Rid of Google
As open-source enthusiasts, our apps have been open source from the start, but

Figure 1. The Tutanota team’s motto: “We fight for privacy with automatic encryption.”

https://tutanota.com/blog/posts/secure-email-encryption
https://tutanota.com/blog/posts/secure-email-encryption
https://tutanota.com/blog/posts/secure-email-encryption
http://www.linuxjournal.com

18 | October 2018 | http://www.linuxjournal.com

UPFRONT

putting them on F-Droid was a challenge. As with all email services, we have used
Google’s FCM for push notifications. On top of that, our encrypted email service
was based on Cordova, which the F-Droid servers are not able to build.

Not being able to publish our Android app on F-Droid was one of the main
reasons we started to re-build the entire Tutanota web client. We are privacy and
open-source enthusiasts; we ourselves use F-Droid. Consequently, we thought
that our app must be published there, no matter the effort.

When rebuilding our email client, we made sure not to use Cordova anymore and
to replace Google’s FCM for push notifications.

The Challenge to Replace Google’s FCM
GCM (or, as it’s now called, FCM, for Firebase Cloud Messaging) is a service
owned by Google. Unfortunately, FCM includes Google’s tracking code for

Figure 2. Easy email encryption on desktops and mobile devices is now possible for everyone.

http://www.linuxjournal.com

19 | October 2018 | http://www.linuxjournal.com

UPFRONT

analytics purposes, which we didn’t want to use. And, even more important: to
use FCM, you have to send all your notification data to Google. You also have to
use Google’s proprietary libraries.

Because of privacy and security concerns, we didn’t send any info in the
notification messages. Therefore, the push notification mentioned only that
you received a new message without a reference to the mailbox in which that
message has been placed.

We wanted our users to be able to use Tutanota on every ROM and every device,
without the control of a third-party. That’s why we decided to take on the
challenge and to build a push notification service ourselves.

When we started designing our push system, we set the following goals:

• It must be secure.

• It must be fast.

• It must be power-efficient.

We’ve researched how others (Signal, Wire, Conversations, Riot, Facebook and
Mastodon) have been solving similar problems, and we had several options in
mind, including WebSockets, MQTT, Server Sent Events and HTTP/2 Server Push.

We settled for the SSE (Server Sent Events), because it seemed like a simple
solution. By that, I mean “easy to implement, easy to debug”. Debugging these
types of things can be a major headache, so one should not underestimate that
factor. Another argument in favor of that solution was relative power efficiency.
We didn’t need upstream messages, and constant connection was not our goal.

So, What Is SSE?
SSE is a web API that allows a server to send events to connected clients. It’s a

http://www.linuxjournal.com

20 | October 2018 | http://www.linuxjournal.com

UPFRONT

relatively old API, which is, in my opinion, underused. We’d never heard of SSE
before the federated network Mastodon, which uses SSE for real-time timeline
updates, and it works great.

The protocol itself is very simple and resembles good old polling. The client
opens a connection, and the server keeps it open. It’s different from classical
polling in that we keep this connection open for multiple events. The server can
send events and data messages, they’re just separated by new lines. So the only
thing the client needs to do is to open a connection with a big timeout and read
the stream in a loop.

SSE fits our needs better than WebSocket would (it’s cheaper and converges
faster, because it’s not duplex). We’ve seen multiple chat apps trying to use
WebSocket for push notifications, and it didn’t seem power-efficient.

We had some experience with WebSocket already, and we knew that firewalls
don’t like keepalive connections. To solve this, we used the same workaround for
SSE that we did for WebSocket. We sent “heartbeat” empty messages every few
minutes. We made this interval adjustable from the server side and randomized it
not to overwhelm the server.

In the end, we had to do some work—I could describe loads of challenges we had
to overcome to make this finally work, but maybe some other time. Yet, it was
totally worth it. Our new app is still in beta, but thanks to non-blocking IO, we’ve
been able to maintain thousands of simultaneous connections without problems.
Our users are no longer forced to use Google Play Services, and we’ve been able
to publish our app on F-Droid.

As a side-note: wouldn’t it be great if the user could just pick a “push
notifications provider” in the phone settings and the OS managed all these hard
details by itself, so every app that doesn’t want to be policed by the platform
owner didn’t have to invent the system anew? It could be end-to-end encrypted
between the app and the app server. There’s no real technical difficulty in that,

https://tutanota.com/blog/posts/open-source-email
https://tutanota.com/blog/posts/open-source-email
http://www.linuxjournal.com

21 | October 2018 | http://www.linuxjournal.com

UPFRONT

but as long as our systems are controlled by big players, we as app developers
have to solve this by ourselves.

Tutanota Is the First App of an Email Service Available
on F-Droid
Our app release on F-Droid really excites us, as it proves that it is possible to
build a secure email service that’s completely Google-free, giving people a real
open-source alternative to the data-hungry market-leader Gmail.

This is a remarkable step, as so far no other email service has managed (or
cared) to publish its app on F-Droid. The reason for this is that, in general,
email services rely on Google’s FCM for push notifications, which makes an
F-Droid release impossible.

The F-Droid team also welcomed our move in the right direction:

We are happy to see how enthusiastic Tutanota is about F-Droid and
free software, having rewritten their app from scratch so it could be
included. Furthermore, they take special measures to avoid tracking you,
and the security looks solid with support for end-to-end encryption and
two-factor authentication.

We are very excited about this release as well. And, we are thankful for the
dedication and hard work of the numerous F-Droid volunteers helping us to
publish our app there. We are also proud that the new Android app finally
comes without any ties to Google services. As a secure email service, this is very
important to us. We encourage our users to leave Google behind, so offering a
Google-free Android app, therefore, is a minimum requirement for us.

A Privacy-Focused Email Service for Everyone
We’ve been using Tutanota ourselves for a couple years now. The new Tutanota
client and apps are fast, come with a nice and minimalistic design, enable
search on encrypted data, and support 2FA and auto-sync. Since we’ve added

https://tutanota.com/
https://tutanota.com/blog/posts/how-to-leave-google-gmail
http://www.linuxjournal.com

22 | October 2018 | http://www.linuxjournal.com

UPFRONT

search, there’s no major feature missing for professional use any longer, and
we’ve noticed the numbers of new users rising constantly. We recommend that
everyone who wants to stop third parties from reading their private email to just
give it a try.

—Matthias Pfau

Figure 3. The new Tutanota client comes with a dark theme—a nice and minimalistic design that lets
you easily encrypt email messages to every email address in the world.

http://www.linuxjournal.com

23 | October 2018 | http://www.linuxjournal.com

UPFRONT

Patreon and
Linux Journal

Together with the help of Linux Journal
supporters and subscribers, we can
offer trusted reporting for the world
of open-source today, tomorrow and
in the future. To our subscribers, old

and new, we sincerely thank you for your continued support. In addition to magazine
subscriptions, we are now receiving support from readers via Patreon on our website. LJ
community members who pledge $20 per month or more will be featured each month in
the magazine. A very special thank you this month goes to:

• Appahost.com
• Black Baron
• Chris Short
• David Breakey
• Dr. Stuart Makowski
• James Mayes
• James Weatherell
• Josh Simmons
• Magnus Magicman
• Mostly_Linux
• NDCHost.com
• Robert J. Hansen

https://www.patreon.com/linuxjournal
http://www.linuxjournal.com

24 | October 2018 | http://www.linuxjournal.com

UPFRONT

Introducing Genius,
the Advanced Scientific
Calculator for Linux
Genius is a calculator program that has both a command-line version and a GNOME
GUI version. It should available in your distribution’s package management system.
For Debian-based distributions, the GUI version and the command-line version are

Figure 1. When you start Genius, you get the version and some license information, and then you’ll
see the interpreter prompt.

http://www.linuxjournal.com

25 | October 2018 | http://www.linuxjournal.com

UPFRONT

two separate packages. Assuming that you want to install both, you can do so with
the following command:

sudo apt-get install genius gnome-genius

If you use Ubuntu, be aware that the package gnome-genius doesn’t appear to be
in Bionic. It’s in earlier versions (trusty, xenial and arty), and it appears to be in the
next version (cosmic). I ran into this problem, and thought I’d mention it to save
you some aggravation.

Figure 2. The GUI interface provides easy menu access to most of the functionality within Genius.

http://www.linuxjournal.com

26 | October 2018 | http://www.linuxjournal.com

UPFRONT

Starting the command-line version provides an interpreter that should be familiar to
Python or R users.

If you start gnome-genius, you’ll see a graphical interface that is likely to be more
comfortable to new users. For the rest of this article, I’m using the GUI version in
order to demonstrate some of the things you can do with Genius.

You can use Genius just as a general-purpose calculator, so you can do things like:

genius> 4+5

= 9

Along with basic math operators, you also can use trigonometric functions. This
command gives the sine of 45 degrees:

genius> sin(45)

= 0.850903524534

These types of calculations can be of essentially arbitrary size. You also can use
complex numbers out of the box. Many other standard mathematical functions are
available as well, including items like logarithms, statistics, combinatorics and even
calculus functions.

Along with functions, Genius also provides control structures like conditionals and
looping structures. For example, the following code gives you a basic for loop that
prints out the sine of the first 90 degrees:

for i = 1 to 90 do (

 x = sin(i);

 print(x)

)

As you can see, the syntax is almost C-like. At first blush, it looks like the semicolon

http://www.linuxjournal.com

27 | October 2018 | http://www.linuxjournal.com

UPFRONT

is being used as a line-ending character, but it’s actually a command separator.
That’s why there is a semicolon on the line with the sine function, but there is no
semicolon on the line with the print function. This means you could write the for
loop as the following:

for i = 1 to 90 do (x = sin(i); print(x))

Along with for loops, there are while loops, until loops, do-while loops,
do-until loops and foreach loops. You also can control whether or not to
pop out of a loop with the break and continue commands. They behave the
same way that they do in languages like C. The conditional structure in Genius is
a very basic if structure, so a basic if-then statement looks like the following:

if (a==5) then (a=a-1)

You also can use an else statement:

if (c>0) then (c=c-1) else (c=0)

Genius has no elseif statement.

You can use conditionals anywhere you would put an expression, which means you
could use an if structure to set a variable value:

a = (if b>0 then b else 1)

As you can see, I didn’t use parentheses here. You need to use them only in cases
where the order of operations might be confusing.

So far, I’ve covered commands, variables, conditionals and looping structures.
Genius also claims it uses a programming language called GEL. A programming
language should have one last structure, the ability to organize code into reusable
chunks. And, of course, GEL has the ability for end users to define their own

http://www.linuxjournal.com

28 | October 2018 | http://www.linuxjournal.com

UPFRONT

functions. The basic syntax of a function definition looks like this:

function <identifier>(<comma separated arguments>) =

 ↪<function body>

As a really simple example, the following code defines a cubing function:

function my_cube(x) = x*x*x

You then can use it just like any other function:

genius> my_cube(3) = 27

Sometimes, you may need to be able to handle a variable list of input parameters to
your function. In those cases, you define your function with the last parameter being
“...”. It looks like the following:

function my_func(a, b, c...) = <function body>

In such cases, the input parameters are handed to your function body as a vector
of values.

When you start writing larger pieces of code, you likely will need to start handling
error conditions. Genius (and, hence, GEL) has basic error handling capabilities.
When you detect an error in your code, you can send a message to the end user with
the error command:

if not IsMatrix (M) then (

 error("M is not a matrix")

)

This might not be enough, however. If the error isn’t recoverable, you’ll need to
stop execution somehow. GEL provides two options. The first is to stop the current

http://www.linuxjournal.com

29 | October 2018 | http://www.linuxjournal.com

UPFRONT

function and go back to the calling code using the bailout command. If the error
is extremely horrendous, you may need to stop all execution. In those cases, you can
use the exception command.

Genius also has a huge number of advanced functions. As an example of the kinds
of advanced calculations you can do, let’s look at doing a numerical integration.

Figure 3. The “Create Plot” window lets you define both line plots and surface plots for multiple functions.

http://www.linuxjournal.com

30 | October 2018 | http://www.linuxjournal.com

UPFRONT

You can integrate a function, from a start limit to an end limit. For example, you
can find the numerical integral of the sine function from 0 degrees to 180 degrees
with the following:

genius> NumericalIntegral(sin, 0, 180) = 1.59846942736

Figure 4. GNOME Genius lets you plot multiple functions easily. For example, you could plot sine and
tangent in order to see how they compare to each other.

http://www.linuxjournal.com

31 | October 2018 | http://www.linuxjournal.com

UPFRONT

You also can do infinite sums, numerical derivatives and limits.

The last item I want to look at is available only with the GNOME version of Genius.
In this case, you have the ability to plot data and functions and display them on the
screen. When you click on the plot button on the main window, you’ll get a new
window where you can define the plot parameters.

Figure 5. You easily can plot a single function in terms of x and y—for example, x*sin(y).

http://www.linuxjournal.com

32 | October 2018 | http://www.linuxjournal.com

UPFRONT

Since you can plot multiple functions, you can see them side by side in the same
window. If, instead, you need to do a 3D plot of a surface, you can select the
surface plot tab of the plotting window and define a function in terms of x and y.
Within the plot window, there are several options for changing the view. For the
surface plot, you even can make it rotate so you can see the resultant plot from all
angles. When you have the plot looking exactly the way you want, click the Graph
menu entry and export it to one of several file formats so you can use it in other
publications or reports.

As you can see, Genius provides a fair bit of functionality within a small package.
It’s been used in education to allow students to see the results of different
calculations quickly and to show how they vary based on inputs or changes in
algorithm. As well, it provides the essentials of an advanced scientific calculator.
People who have used the HP or TI advanced hand-held calculators will find Genius
a very powerful replacement on the desktop. You can find much more information
at the main website, including the manual and a set of examples.

—Joey Bernard

https://www.jirka.org/genius.html
http://www.linuxjournal.com

33 | October 2018 | http://www.linuxjournal.com

UPFRONT

News Briefs
• Mozilla announced its 2018–2019 Fellows in openness, science and tech policy.

These fellows “will spend the next 10 to 12 months creating a more secure,
inclusive, and decentralized internet”. In the past, Mozilla fellows “built secure
platforms for LGBTQ individuals in the Middle East; leveraged open-source
data and tools to bolster biomedical research across the African continent; and
raised awareness about invasive online tracking.” See the Mozilla blog for more
information and the list of Fellows.

• According to a recent Cloud Foundry Foundation (CFF) survey, Java and
JavaScript are the top enterprise languages. See ZDNet for more information
on the survey results.

• Valve announced that it’s releasing the Beta of a new and improved Steam
Play version to Linux. The new version includes “a modified distribution of
Wine, called Proton, to provide compatibility with Windows game titles.” Other
improvements include DirectX 11 and 12 implementations are now based on
Vulkan, full-screen support has been improved, game controller support has
been improved, and “Windows games with no Linux version currently available
can now be installed and run directly from the Linux Steam client, complete
with native Steamworks and OpenVR support”.

• Intel has now reworked the license for its microcode security fix after outcry from
the community. The Register quotes Imad Sousou, corporate VP and general
manager of Intel Open Source Technology Center, “We have simplified the Intel
license to make it easier to distribute CPU microcode updates and posted the new
version here. As an active member of the open source community, we continue to
welcome all feedback and thank the community.”

• UBports Foundation has released Ubuntu Touch OTA-4. This release features
Ubuntu 16.04 and includes many security fixes and stability improvements.

Visit LinuxJournal.com for
daily news briefs.

https://blog.mozilla.org/blog/2018/08/21/mozilla-announces-25-new-fellows-in-openness-science-and-tech-policy
https://www.cloudfoundry.org/foundation
https://www.zdnet.com/article/cloud-foundry-survey-finds-top-enterprise-languages
https://www.zdnet.com/article/cloud-foundry-survey-finds-top-enterprise-languages
https://steamcommunity.com/games/221410#announcements/detail/1696055855739350561
https://www.theregister.co.uk/2018/08/23/intel_microcode_license
https://01.org/mcu-path-license-2018
https://ubports.com/blog/ubports-blog-1/post/ubuntu-touch-ota-4-release-166
http://linuxjournal.com
http://www.linuxjournal.com

34 | October 2018 | http://www.linuxjournal.com

UPFRONT

UBports notes that “We believe that this is the ‘official’ starting point of the
UBports project. From the point when Canonical dropped the project until today,
the community has been playing ‘catch up’ in development, infrastructure, and
community building. This release shows that the community is soundly based and
capable of delivering.”

• NordVPN recently released the NordVPN Linux app. This dedicated app for Linux
makes it even easier to install the VPN on your machine. For more information and
to download, visit the NordVPN for Linux download page.

• Mozilla announced a different approach to anti-tracking on the internet.
Mozilla’s new approach means that “in the near future, Firefox will—by default—
protect users by blocking tracking while also offering a clear set of controls to give
our users more choice over what information they share with sites.” In order to
accomplish this, Mozilla has three key initiatives: improve page load performance,
remove cross-site tracking and mitigate harmful practices.

• Linux Mint Debian Edition “Cindy” is now available. LDME’s goal is to be as
similar as possible to Linux Mint, but with a Debian base instead of Ubuntu. See
the release notes for more information.

• Tor Browser version 8.0 was released. This is the first stable release based on
Firefox 60 ESR, and it includes “a new user onboarding experience; an updated
landing page that follows our styleguide; additional language support; and new
behaviors for bridge fetching, displaying a circuit, and visiting .onion sites.” You
can download it from here.

• Nextcloud announced the release of version 14. This new version introduces
two big security improvements: video verification and signal/telegram/SMS
2FA support. Version 14 also includes many collaboration improvements as
well as a Data Protection Confirmation app in compliance with the GDPR. Go
here to install.

https://nordvpn.com/blog/setup-linux-vpn
https://nordvpn.com/download/linux
https://blog.mozilla.org/futurereleases/2018/08/30/changing-our-approach-to-anti-tracking
https://blog.linuxmint.com/?p=3633
https://linuxmint.com/rel_cindy.php
https://blog.torproject.org/new-release-tor-browser-80
https://www.torproject.org/download/download-easy.html
https://nextcloud.com/blog/nextcloud-14-now-available-with-video-verification-signaltelegram-2fa-support-improved-collaboration-and-gdpr-compliance
https://nextcloud.com/install
http://www.linuxjournal.com

Thanks to Sponsors Linode and Pulseway
for Supporting Linux Journal

Want to see your company's logo here?

Find out more, https://www.linuxjournal.com/sponsors.

Cloud Hosting
for You.

High performance SSD Linux servers for all of your infrastructure needs.

www.linode.com

System Management
at Your Fingertips.

www.pulseway.com

https://www.linuxjournal.com/sponsors
http://www.linode.com
http://www.pulseway.com

36 | October 2018 | http://www.linuxjournal.com

Papa’s Got a
Brand New NAS:
the Software
Who needs a custom NAS OS or a web-based
GUI when command-line NAS software is so easy
to configure?

By Kyle Rankin

In a recent letter to the editor, I was contacted by a reader
who enjoyed my “Papa’s Got a Brand New NAS” article,
but wished I had spent more time describing the software
I used. When I wrote the article, I decided not to dive into
the software too much, because it all was pretty standard
for serving files under Linux. But on second thought, if you
want to re-create what I made, I imagine it would be nice to
know the software side as well, so this article describes the
software I use in my home NAS.

The OS
My NAS uses the ODROID-XU4 as the main computing
platform, and so far, I’ve found its octo-core ARM CPU
and the rest of its resources to be adequate for a home
NAS. When I first set it up, I visited the official wiki page
for the computer, which provides a number of OS images,
including Ubuntu and Android images that you can copy
onto a microSD card. Those images are geared more

Kyle Rankin is a Tech Editor
and columnist at Linux
Journal and the Chief Security
Officer at Purism. He is the
author of Linux Hardening
in Hostile Networks, DevOps
Troubleshooting, The Official
Ubuntu Server Book, Knoppix
Hacks, Knoppix Pocket
Reference, Linux Multimedia
Hacks and Ubuntu Hacks, and
also a contributor to a number
of other O’Reilly books.
Rankin speaks frequently
on security and open-
source software including at
BsidesLV, O’Reilly Security
Conference, OSCON, SCALE,
CactusCon, Linux World Expo
and Penguicon. You can follow
him at @kylerankin.

HACK AND /

https://www.linuxjournal.com/content/papas-got-brand-new-nas
https://www.hardkernel.com/main/products/prdt_info.php
https://wiki.odroid.com/odroid-xu4/odroid-xu4
http://www.linuxjournal.com

37 | October 2018 | http://www.linuxjournal.com

HACK AND /

toward desktop use, however, and I wanted a minimal server image. After some
searching, I found a minimal image for what was the current Debian stable
release at the time (Jessie).

Although this minimal image worked okay for me, I don’t necessarily recommend
just going with whatever OS some volunteer on a forum creates. Since I first
set up the computer, the Armbian project has been released, and it supports a
number of standardized OS images for quite a few ARM platforms including the
ODROID-XU4. So if you want to follow in my footsteps, you may want to start
with the minimal Armbian Debian image.

If you’ve ever used a Raspberry Pi before, the process of setting up an alternative
ARM board shouldn’t be too different. Use another computer to write an OS
image to a microSD card, boot the ARM board, and at boot, the image will
expand to fill the existing filesystem. Then reboot and connect to the network,
so you can log in with the default credentials your particular image sets up.
Like with Raspbian builds, the first step you should perform with Armbian or
any other OS image is to change the default password to something else. Even
better, you should consider setting up proper user accounts instead of relying
on the default.

The nice thing about these Debian-based ARM images is that you end up with
a kernel that works with your hardware, but you also have the wide variety of
software that Debian is known for at your disposal. In general, you can treat
this custom board like any other Debian server. I’ve been using Debian servers
for years, and many online guides describe how to set up servers under Debian,
so it provides a nice base platform for just about anything you’d like to do with
the server.

In my case, since I was migrating to this new NAS from an existing 1U Debian
server, including just moving over the physical hard drives to a new enclosure,
the fact that the distribution was the same meant that as long as I made sure I
installed the same packages on this new computer, I could generally just copy

https://forum.odroid.com/viewtopic.php?f=96&t=17542
https://forum.odroid.com/viewtopic.php?f=96&t=17542
https://www.armbian.com/odroid-xu4
http://www.linuxjournal.com

38 | October 2018 | http://www.linuxjournal.com

HACK AND /

over my configuration files wholesale from the old computer. This is one of the
big benefits to rolling your own NAS off a standard Linux distribution instead of
using some prepackaged NAS image. The prepackaged solution may be easier
at first, but if you ever want to migrate off of it to some other OS, it may be
difficult, if not impossible, to take advantage of any existing settings. In my
situation, even if I had gone with another Linux distribution, I still could have
copied over all of my configuration files to the new distribution—in some cases
even into the same exact directories.

NFS
As I mentioned, since I was moving from an existing 1U NAS server built on top of
standard Debian services, setting up my NFS service was a simple matter of installing
the nfs-kernel-server Debian package, copying my /etc/exports file over from my old
server and restarting the nfs-kernel-server service with:

$ sudo service nfs-kernel-server restart

If you’re not familiar with setting up a traditional NFS server under Linux, so
many different guides exist that I doubt I’d be adding much to the world of NFS
documentation by rehashing it again here. Suffice it to say that it comes down to
adding entries into your /etc/exports file that tell the NFS server which directories
to share, who to share them with (based on IP) and what restrictions to use. For
instance, here’s a sample entry I use to share a particular backup archive directory
with a particular computer on my network:

/mnt/storage/archive 192.168.0.50(fsid=715,rw)

This line tells the NFS server to share the local /mnt/storage/archive directory with
the machine that has the IP 192.168.0.50, to give it read/write privileges and also
to assign this particular share with a certain filesystem ID. I’ve discovered that
assigning a unique fsid value to each entry in /etc/exports can help the NFS server
identify each filesystem it’s exporting explicitly with this ID, in case it can’t find a
UUID for the filesystem (or if you are exporting multiple directories within the

http://www.linuxjournal.com

39 | October 2018 | http://www.linuxjournal.com

HACK AND /

same filesystem). Once I make a change to the /etc/exports file, I like to tell the
NFS service to reload the file explicitly with:

$ sudo service nfs-kernel-server reload

NFS has a lot of different and complicated options you can apply to filesystems,
and there’s a bit of an art to tuning things exactly how you want them to be
(especially if you are deciding between version 3 and 4 of the NFS protocol). I
typically turn to the exports man page (type man exports in a terminal) for
good descriptions of all the options and to see configuration examples.

Samba
If you just need to share files with Linux clients, NFS may be all you need. However,
if you have other OSes on your network, or clients who don’t have good NFS
support, you may find it useful to offer Windows-style SMB/CIFS file sharing using
Samba as well. Although Samba is configured quite differently from NFS, it’s still
not too complicated.

First, install the Samba package for your distribution. In my case, that meant:

$ sudo apt install samba

Once the package is installed, you will see that Debian provides a well
commented /etc/samba/smb.conf file with ordinary defaults set. I then edited
that /etc/samba/smb.conf file and made sure to restrict access to my Samba
service to only those IPs I wanted to allow by setting the following options in
the networking section of the smb.conf:

hosts allow = 192.168.0.20, 192.168.0.22, 192.168.0.23
interfaces = 127.0.0.1 192.168.0.1/24
bind interfaces only = Yes

These changes restrict Samba access to only a few IPs, and explicitly tell Samba

http://www.linuxjournal.com

40 | October 2018 | http://www.linuxjournal.com

HACK AND /

to listen to localhost and a particular interface on the correct IP network.

There are additional ways you can configure access control with Samba, and by
default, Debian sets it up so that Samba uses local UNIX accounts. This means
you can set up local UNIX accounts on the server, give them a strong password,
and then require that users authenticate with the appropriate user name and
password before they have access to a file share. Because this is already set up in
Debian, all I had left to do was to add some file shares to the end of my smb.conf
file using the commented examples as a reference. This example shows how to
share the same /mnt/storage/archive directory with Samba instead of NFS:

[archive]

 path = /mnt/storage/archive/

 revalidate = Yes
 writeable = Yes
 guest ok = No

 force user = greenfly

As with NFS, there are countless guides on how to configure Samba. In addition
to those guides, you can do as I do and check out the heavily commented smb.conf
or type man smb.conf if you want more specifics on what a particular option
does. As with NFS, when you change a setting in smb.conf, you need to reload
Samba with:

$ sudo service samba reload

Conclusion
What’s refreshing about setting up Linux as a NAS is that file sharing (in particular,
replacing Windows SMB file servers in corporate environments) is one of the first
major forays Linux made in the enterprise. As a result, as you have seen, setting
up Linux to be a NAS is pretty straightforward even without some nice GUI. What’s
more, since I’m just using a normal Linux distribution instead of some custom NAS-
specific OS, I also can use this same server for all sorts of other things, such as a

http://www.linuxjournal.com

41 | October 2018 | http://www.linuxjournal.com

HACK AND /

local DNS resolver, local mail relay or any other Linux service I might think of. Plus,
down the road if I ever feel a need to upgrade, it should be pretty easy to move
these configurations over to brand new hardware. ◾

Resources
“Papa’s Got a Brand New NAS” by Kyle Rankin, LJ, September, 2016

ODROID-XU4

Official Wiki Page for ODROID-XU4

Original Minimal Jessie Image for Odroid XU4

Armbian Images

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.linuxjournal.com/content/papas-got-brand-new-nas
https://www.hardkernel.com/main/products/prdt_info.php
https://wiki.odroid.com/odroid-xu4/odroid-xu4
https://forum.odroid.com/viewtopic.php?f=96&t=17542
https://www.armbian.com/odroid-xu4
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

42 | October 2018 | http://www.linuxjournal.com

UPFRONT

42 | October 2018 | http://www.linuxjournal.com

Automate
Sysadmin Tasks
with Python’s
os.walk Function
Using Python’s os.walk function to walk through a
tree of files and directories.

By Reuven M. Lerner

I’m a web guy; I put together my first site in early 1993. And
so, when I started to do Python training, I assumed that most
of my students also were going to be web developers or
aspiring web developers. Nothing could be further from the
truth. Although some of my students certainly are interested
in web applications, the majority of them are software
engineers, testers, data scientists and system administrators.

This last group, the system administrators, usually comes
into my course with the same story. The company they
work for has been writing Bash scripts for several years, but
they want to move to a higher-level language with greater
expressiveness and a large number of third-party add-ons.
(No offense to Bash users is intended; you can do amazing
things with Bash, but I hope you’ll agree that the scripts can
become unwieldy and hard to maintain.)

AT THE FORGE

Reuven M. Lerner teaches
Python, data science and Git to
companies around the world.
A new cohort of his online
“Weekly Python Exercise”
course will be starting in late
September 2018; learn more at
http://WeeklyPythonExercise.com.
You also can subscribe to his
free, weekly “better developers”
email list and the courses he
offers at http://lerner.co.il.
Reuven lives with his wife and
children in Modi’in, Israel.

http://weeklypythonexercise.com/
http://lerner.co.il/
http://www.linuxjournal.com

43 | October 2018 | http://www.linuxjournal.com

AT THE FORGE

It turns out that with a few simple tools and ideas, these system administrators can
use Python to do more with less code, as well as create reports and maintain servers.
So in this article, I describe one particularly useful tool that’s often overlooked:
os.walk, a function that lets you walk through a tree of files and directories.

os.walk Basics
Linux users are used to the ls command to get a list of files in a directory.
Python comes with two different functions that can return the list of files. One is
os.listdir, which means the “listdir” function in the “os” package. If you want, you
can pass the name of a directory to os.listdir. If you don’t do that, you’ll get the
names of files in the current directory. So, you can say:

In [10]: import os

When I do that on my computer, in the current directory, I get the following:

In [11]: os.listdir('.')

Out[11]:

['.git',
 '.gitignore',
 '.ipynb_checkpoints',
 '.mypy_cache',
 'Archive',
 'Files']

As you can see, os.listdir returns a list of strings, with each string being a
filename. Of course, in UNIX-type systems, directories are files too—so along with
files, you’ll also see subdirectories without any obvious indication of which is which.

I gave up on os.listdir long ago, in favor of glob.glob, which means the
“glob” function in the “glob” module. Command-line users are used to using
“globbing”, although they often don’t know its name. Globbing means using the *
and ? characters, among others, for more flexible matching of filenames. Although

http://www.linuxjournal.com

44 | October 2018 | http://www.linuxjournal.com

AT THE FORGE

os.listdir can return the list of files in a directory, it cannot filter them. You can
though with glob.glob:

In [13]: import glob

In [14]: glob.glob('Files/*.zip')
Out[14]:

['Files/advanced-exercise-files.zip',
 'Files/exercise-files.zip',
 'Files/names.zip',
 'Files/words.zip']

In either case, you get the names of the files (and subdirectories) as strings. You
then can use a for loop or a list comprehension to iterate over them and perform
an action. Also note that in contrast with os.listdir, which returns the list of
filenames without any path, glob.glob returns the full pathname of each file,
something I’ve often found to be useful.

But what if you want to go through each file, including every file in every
subdirectory? Then you have a bit more of a problem. Sure, you could use a for loop
to iterate over each filename and then use os.path.isdir to figure out whether it’s
a subdirectory—and if so, then you could get the list of files in that subdirectory and
add them to the list over which you’re iterating.

Or, you can use the os.walk function, which does all of this and more. Although
os.walk looks and acts like a function, it’s actually a “generator function”—a
function that, when executed, returns a “generator” object that implements the
iteration protocol. If you’re not used to working with generators, running the function
can be a bit surprising:

In [15]: os.walk('.')

Out[15]: <generator object walk at 0x1035be5e8>

http://www.linuxjournal.com

45 | October 2018 | http://www.linuxjournal.com

AT THE FORGE

The idea is that you’ll put the output from os.walk in a for loop. Let’s do that:

In [17]: for item in os.walk('.'):
 ...: print(item)

The result, at least on my computer, is a huge amount of output, scrolling by so fast
that I can’t read it easily. Whether that happens to you depends on where you run this
for loop on your system and how many files (and subdirectories) exist.

In each iteration, os.walk returns a tuple containing three elements:

• The current path (that is, directory name) as a string.

• A list of subdirectory names (as strings).

• A list of non-directory filenames (as strings).

So, it’s typical to invoke os.walk such that each of these three elements is assigned
to a separate variable in the for loop:

In [19]: for currentdir, dirnames, filenames in os.walk('.'):
 ...: print(currentdir)

The iterations continue until each of the subdirectories under the argument to
os.walk has been returned. This allows you to perform all sorts of reports and
interesting tasks. For example, the above code will print all of the subdirectories under
the current directory, “.”.

Counting Files
Let’s say you want to count the number of files (not subdirectories) under the
current directory. You can say:

In [19]: file_count = 0

http://www.linuxjournal.com

46 | October 2018 | http://www.linuxjournal.com

AT THE FORGE

In [20]: for currentdir, dirnames, filenames in os.walk('.'):
 ...: file_count += len(filenames)
 ...:

In [21]: file_count
Out[21]: 3657

You also can do something a bit more sophisticated, counting how many files there
are of each type, using the extension as a classifier. You can get the extension with
os.path.splitext, which returns two items—the filename without the extension
and the extension itself:

In [23]: os.path.splitext('abc/def/ghi.jkl')

Out[23]: ('abc/def/ghi', '.jkl')

You can count the items using one of my favorite Python data structures, Counter.
For example:

In [24]: from collections import Counter

In [25]: counts = Counter()

In [26]: for currentdir, dirnames, filenames in os.walk('.'):
 ...: for one_filename in filenames:
 ...: first_part, ext =
 ↪os.path.splitext(one_filename)
 ...: counts[ext] += 1

This goes through each directory under “.”, getting the filenames. It then iterates
through the list of filenames, splitting the name so that you can get the extension.
You then add 1 to the counter for that extension.

http://www.linuxjournal.com

47 | October 2018 | http://www.linuxjournal.com

AT THE FORGE

Once this code has run, you can ask counts for a report. Because it’s a dict, you can
use the items method and print the keys and values (that is, extensions and counts).
You can print them as follows:

In [30]: for extension, count in counts.items():
 ...: print(f"{extension:8}{count}")

In the above code, f strings displays the extension (in a field of eight characters)
and the count.

Wouldn’t it be nice though to show only the ten most common extensions? Yes, but
then you’d have to sort through the counts object. It’s much easier just to use the
most_common method that the Counter object provides, which returns not only the
keys and values, but also sorts them in descending order:

In [31]: for extension, count in counts.most_common(10):
 ...: print(f"{extension:8}{count}")

 ...:

.py 1149
 867
.zip 466
.ipynb 410
.pyc 372
.txt 151

.json 76

.so 37

.conf 19

.py~ 12

In other words—not surprisingly—this example shows that the most common file
extension in the directory I use for teaching Python courses is .py. Files without
any extension are next, followed by .zip, .ipynb (Jupyter notebooks) and .pyc
(byte-compiled Python).

http://www.linuxjournal.com

48 | October 2018 | http://www.linuxjournal.com

AT THE FORGE

File Sizes
You can ask more interesting questions as well. For example, perhaps you want
to know how much disk space is used by each of these file types. Now you don’t
add 1 for each time you encounter a file extension, but rather the size of the file.
Fortunately, this turns out to be trivially easy, thanks to the os.path.getsize
function (this returns the same value that you would get from os.stat):

for currentdir, dirnames, filenames in os.walk('.'):
 for one_filename in filenames:
 first_part, ext = os.path.splitext(one_filename)
 try:
 counts[ext] +=

 ↪os.path.getsize(os.path.join(currentdir,one_filename))
 except FileNotFoundError:

 pass

The above code includes three changes from the previous version:

1. As indicated, this no longer adds 1 to the count for each extension, but rather the
size of the file, which comes from os.path.getsize.

2. os.path.join puts the path and filename together and (as a bonus) uses the
current operating system’s path separation character. What are the odds of a
program being used on a Windows system and, thus, needing a backslash rather
than a slash? Pretty slim, but it doesn’t hurt to use this sort of built-in operation.

3. os.walk doesn’t normally look at symbolic links, which means you potentially can
get yourself into some trouble trying to measure the sizes of files that don’t exist.
For this reason, here the counting is wrapped in a try/except block.

Once this is done, you can identify the file types consuming the greatest amount of
space in the directory:

http://www.linuxjournal.com

49 | October 2018 | http://www.linuxjournal.com

AT THE FORGE

In [46]: for extension, count in counts.most_common(10):
 ...: print(f"{extension:8}{count}")

 ...:

.pack 669153001

.zip 486110102

.ipynb 223155683

.sql 125443333

 46296632
.json 14224651
.txt 10921226
.pdf 7557943
.py 5253208
.pyc 4948851

Now things seem a bit different! In my case, it looks like I’ve got a lot of stuff in .pack
files, indicating that my Git repository (where I store all of my old training examples,
exercises and Jupyter notebooks) is quite large. I have a lot in zipfiles, in which I store
my daily updates. And of course, lots in Jupyter notebooks, which are written in JSON
format and can become quite large. The surprise to me is the .sql extension, which I
honestly had forgotten that I had.

Files per Year
What if you want to know how many files of each type were modified in each year?
This could be useful for removing logfiles or (if you’re like me) identifying what large,
unnecessary files are taking up space.

In order to do that, you’ll need to get the modification time (mtime, in UNIX
parlance) for each file. You’ll then need to convert that mtime from a UNIX time
(that is, the number of seconds since January 1st, 1970) to something you can
parse and use.

Instead of using a Counter object to keep track of things, you can just use a
dictionary. However, this dict’s values will be a Counter, with the years serving

http://www.linuxjournal.com

50 | October 2018 | http://www.linuxjournal.com

AT THE FORGE

as keys and the counts as values. Since you know that all of the main dicts will be
Counter objects, you can just use a defaultdict, which will require you to write
less code.

Here’s how you can do all of this:

from collections import defaultdict, Counter
from datetime import datetime

counts = defaultdict(Counter)

for currentdir, dirnames, filenames in os.walk('.'):
 for one_filename in filenames:
 first_part, ext = os.path.splitext(one_filename)
 try:
 full_filename = os.path.join(currentdir,
 ↪one_filename)
 mtime =

 ↪datetime.fromtimestamp(os.path.getmtime(full_filename))
 counts[ext][mtime.year] += 1
 except FileNotFoundError:

 pass

First, this creates counts as an instance of defaultdict with a Counter. This
means if you ask for a key that doesn’t yet exist, the key will be created, with its value
being a new Counter that allows you to say something like this:

counts['.zip'][2018] += 1

without having to initialize either the zip key (for counts) or the 2018 key (for the
Counter object). You can just add one to the count and know that it’s working.

Then, when you iterate over the filesystem, you grab the mtime from the filename

http://www.linuxjournal.com

51 | October 2018 | http://www.linuxjournal.com

AT THE FORGE

(using os.path.getmtime). That is turned into a datetime object with
datetime.fromtimestamp, a great function that lets you move from UNIX
timestamps to human-style dates and times. Finally, you then add 1 to your counts.

Once again, you can display the results:

for extension, year_counts in counts.items():
 print(extension)

 for year, file_count in sorted(year_counts.items()):
 print(f"\t{year}\t{file_count}")

The counts variable is now a defaultdict, but that means it behaves just like a
dictionary in most respects. So, you can iterate over its keys and values with items,
which is shown here, getting each file extension and the Counter object for each.

Next the extension is printed, and then it iterates over the years and their counts,
sorting them by year and printing them indented somewhat with a tab (\t)
character. In this way, you can see precisely how many files of each extension have
been modified per year—and perhaps understand which files are truly important
and which you easily can get rid of.

Conclusion
Python can’t and shouldn’t replace Bash for simple scripting, but in many cases, if
you’re working with large number of files and/or creating reports, Python’s standard
library can make it easy to do such tasks with a minimum of code. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

52 | October 2018 | http://www.linuxjournal.com52 | October 2018 | http://www.linuxjournal.com

Have a Plan
for Netplan
Ubuntu changed networking. Embrace the YAML.

By Shawn Powers

If I’m being completely honest, I still dislike the switch from eth0,
eth1, eth2 to names like, enp3s0, enp4s0, enp5s0. I’ve
learned to accept it and mutter to myself while I type in unfamiliar
interface names. Then I installed the new LTS version of Ubuntu
and typed vi /etc/network/interfaces. Yikes. After a
technological lifetime of entering my server’s IP information in a
simple text file, that’s no longer how things are done. Sigh. The
good news is that while figuring out Netplan for both desktop
and server environments, I fixed a nagging DNS issue I’ve had for
years (more on that later).

The Basics of Netplan
The old way of configuring Debian-based network interfaces
was based on the ifupdown package. The new default is
called Netplan, and although it’s not terribly difficult to use,
it’s drastically different. Netplan is sort of the interface used
to configure the back-end dæmons that actually configure
the interfaces. Right now, the back ends supported are
NetworkManager and networkd.

If you tell Netplan to use NetworkManager, all interface
configuration control is handed off to the GUI interface on the
desktop. The NetworkManager program itself hasn’t changed;

THE OPEN-SOURCE CLASSROOM

Shawn Powers is Associate
Editor here at Linux Journal,
and has been around Linux
since the beginning. He has
a passion for open source,
and he loves to teach. He also
drinks too much coffee, which
often shows in his writing.

http://www.linuxjournal.com

53 | October 2018 | http://www.linuxjournal.com

THE OPEN-SOURCE CLASSROOM

it’s the same GUI-based interface configuration system you’ve likely used for years.

If you tell Netplan to use networkd, systemd itself handles the interface
configurations. Configuration is still done with Netplan files, but once “applied”,
Netplan creates the back-end configurations systemd requires. The Netplan files
are vastly different from the old /etc/network/interfaces file, but it uses YAML
syntax, and it’s pretty easy to figure out.

The Desktop and DNS
If you install a GUI version of Ubuntu, Netplan is configured with NetworkManager
as the back end by default. Your system should get IP information via DHCP or
static entries you add via GUI. This is usually not an issue, but I’ve had a terrible
time with my split-DNS setup and systemd-resolved. I’m sure there is a magical
combination of configuration files that will make things work, but I’ve spent a lot
of time, and it always behaves a little oddly. With my internal DNS server resolving
domain names differently from external DNS servers (that is, split-DNS), I get
random lookup failures. Sometimes ping will resolve, but dig will not. Sometimes
the internal A record will resolve, but a CNAME will not. Sometimes I get resolution
from an external DNS server (from the internet), even though I never configure
anything other than the internal DNS!

I decided to disable systemd-resolved. That has the potential to break DNS
lookups in a VPN, but I haven’t had an issue with that. With resolved handling
DNS information, the /etc/resolv.conf file points to 127.0.0.53 as the nameserver.
Disabling systemd-resolved will stop the automatic creation of the file.
Thankfully, NetworkManager itself can handle the creation and modification of
/etc/resolv.conf. Once I make that change, I no longer have an issue with split-DNS
resolution. It’s a three-step process:

1. Do sudo systemctl disable systemd-resolved.service.

2. Then sudo rm /etc/resolv.conf (get rid of the symlink).

3. Edit the /etc/NetworkManager/NetworkManager.conf file, and in the [main]
section, add a line that reads DNS=default.

http://www.linuxjournal.com

54 | October 2018 | http://www.linuxjournal.com

THE OPEN-SOURCE CLASSROOM

Once those steps are complete, NetworkManager itself will create the /etc/resolv.conf
file, and the DNS server supplied via DHCP or static entry will be used instead of a
127.0.0.53 entry. I’m not sure why the resolved dæmon incorrectly resolves internal
addresses for me, but the above method has been foolproof, even when switching
between networks with my laptop.

Netplan CLI Configuration
If Ubuntu is installed in server mode, it is almost certainly configured to use
networkd as the back end. To check, have a look at the /etc/netplan/config.yaml file.
The renderer should be set to networkd in order to use the systemd-networkd
back end. The file should look something like this:

network:

 version: 2

 renderer: networkd

 ethernets:

 enp2s0:

 dhcp4: true

Important note: remember that with YAML files, whitespace matters, so the
indentation is important. It’s also very important to remember that after
making any changes, you need to run sudo netplan apply so the back-end
configuration files are populated.

The default renderer is networkd, so it’s possible you won’t have that line in your
configuration file. It’s also possible your configuration file will be named something
different in the /etc/netplan folder. All .conf files are read, so it doesn’t matter what it’s
called as long as it ends with .conf. Static configurations are fairly simple to set up:

network:

 version: 2

 renderer: networkd

 ethernets:

http://www.linuxjournal.com

55 | October 2018 | http://www.linuxjournal.com

THE OPEN-SOURCE CLASSROOM

 enp2s0:

 dhcp4: no

 addresses:

 - 192.168.1.10/24
 - 10.10.10.10/16
 gateway4: 192.168.1.1
 nameservers:

 addresses: [192.168.1.1, 8.8.8.8]

Notice I’ve assigned multiple IP addresses to the interface. Netplan does not support
virtual interfaces like enp3s0:0, rather multiple IP addresses can be assigned to a
single interface.

Unfortunately, networkd doesn’t create an /etc/resolv.conf file if you disable the
resolved dæmon. If you have problems with split-DNS on a headless computer, the
best solution I’ve come up with is to disable systemd-resolved and then manually
create an /etc/resolv.conf file. Since headless computers don’t usually move around
as much as laptops, it’s likely the /etc/resolv.conf file won’t need to be changed.
Still, I wish networkd had an option to manage the resolv.conf file the same way
NetworkManager does.

Advanced Network Configurations
The configuration formats are different, but it’s still possible to do more advanced
network configurations with Netplan:

Bonding:

network:

 version: 2

 renderer: networkd

 bonds:

 bond0:

 dhcp4: yes

http://www.linuxjournal.com

56 | October 2018 | http://www.linuxjournal.com

THE OPEN-SOURCE CLASSROOM

 interfaces:

 - enp2s0

 - enp3s0

 parameters:

 mode: active-backup

 primary: enp2s0

The various bonding modes (balance-rr, active-backup, balance-xor,
broadcast, 802.3ad, balance-tlb and balance-alb) are supported.

Bridging:

network:

 version: 2

 renderer: networkd

 bridges:

 br0:

 dhcp4: yes
 interfaces:

 - enp4s0

 - enp3s0

Bridging is even simpler to set up. This configuration creates a bridge device using the
two interfaces listed. The device (br0) gets address information via DHCP.

CLI Networking Commands
If you’re a crusty old sysadmin like me, you likely type ifconfig to see IP
information without even thinking. Unfortunately, those tools are not usually
installed by default. This isn’t actually the fault of Ubuntu and Netplan; the old
ifconfig toolset has been deprecated. If you want to use the old ifconfig
tool, you can install the package:

sudo apt install net-tools

http://www.linuxjournal.com

57 | October 2018 | http://www.linuxjournal.com

THE OPEN-SOURCE CLASSROOM

But, if you want to do it the “correct” way, the new “ip” tool is the proper way to do
it. Here are some equivalents of things I commonly do with ifconfig:

Show network interface information.

Old way:

ifconfig

New way:

ip address show

(Or you can just do ip a, which is actually less typing than ifconfig.)

Bring interface up.

Old way:

ifconfig enp3s0 up

New way:

ip link set enp3s0 up

Assign IP address.

Old way:

ifconfig enp3s0 192.168.1.22

New way:

http://www.linuxjournal.com

58 | October 2018 | http://www.linuxjournal.com

THE OPEN-SOURCE CLASSROOM

ip address add 192.168.1.22 dev enp3s0

Assign complete IP information.

Old way:

ifconfig enp3s0 192.168.1.22 net mask 255.255.255.0 broadcast
 ↪192.168.1.255

New way:

ip address add 192.168.1.22/24 broadcast 192.168.1.255
 ↪dev enp3s0

Add alias interface.

Old way:

ifconfig enp3s0:0 192.168.100.100/24

New way:

ip address add 192.168.100.100/24 dev enp3s0 label enp3s0:0

Show the routing table.

Old way:

route

New way:

ip route show

http://www.linuxjournal.com

59 | October 2018 | http://www.linuxjournal.com

THE OPEN-SOURCE CLASSROOM

Add route.

Old way:

route add -net 192.168.55.0/24 dev enp4s0

New way:

ip route add 192.168.55.0/24 dev enp4s0

Old Dogs and New Tricks
I hated Netplan when I first installed Ubuntu 18.04. In fact, on the particular server I
was installing, I actually started over and installed 16.04 because it was “comfortable”.
After a while, curiosity got the better of me, and I investigated the changes. I’m
still more comfortable with the old /etc/network/interfaces file, but I have to admit,
Netplan makes a little more sense. There is a single “front end” for configuring
networks, and it uses different back ends for the heavy lifting. Right now, the only
back ends are the GUI NetworkManager and the systemd-networkd dæmon. With
the modular system, however, that could change someday without the need to learn a
new way of configuring interfaces. A simple change to the renderer line would send
the configuration information to a new back end.

With regard to the new command-line networking tool (ip vs. ifconfig), it really
behaves more like other network devices (routers and so on), so that’s probably a good
change as well. As technologists, we need to be ready and eager to learn new things. If
we weren’t always trying the next best thing, we’d all be configuring Trumpet Winsock to
dial in to the internet on our Windows 95 machines. I’m glad I tried that new Linux thing,
and while it wasn’t quite as dramatic, I’m glad I tried Netplan as well! ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

60 | October 2018 | http://www.linuxjournal.com

UPFRONT

60 | October 2018 | http://www.linuxjournal.com

Normalizing
Filenames and
Data with Bash
URLify: convert letter sequences into safe URLs
with hex equivalents.

By Dave Taylor

This is my 155th column. That means I’ve been writing for
Linux Journal for:

$ echo "155/12" | bc

12

No, wait, that’s not right. Let’s try that again:

$ echo "scale=2;155/12" | bc

12.91

Yeah, that many years. Almost 13 years of writing about
shell scripts and lightweight programming within the Linux
environment. I’ve covered a lot of ground, but I want to go
back to something that’s fairly basic and talk about filenames
and the web.

It used to be that if you had filenames that had spaces in them,
bad things would happen: “my mom’s cookies.html” was a

Dave Taylor has been hacking
shell scripts on Unix and Linux
systems for a really long time.
He’s the author of Learning
Unix for Mac OS X and
Wicked Cool Shell Scripts.
You can find him on Twitter
as @DaveTaylor, and you can
reach him through his tech
Q&A site Ask Dave Taylor.

WORK THE SHELL

https://www.askdavetaylor.com/
http://www.linuxjournal.com

61 | October 2018 | http://www.linuxjournal.com

WORK THE SHELL

recipe for disaster, not good cookies—um, and not those sorts of web cookies either!

As the web evolved, however, encoding of special characters became the norm,
and every Web browser had to be able to manage it, for better or worse. So spaces
became either “+” or %20 sequences, and everything else that wasn’t a regular
alphanumeric character was replaced by its hex ASCII equivalent.

In other words, “my mom’s cookies.html” turned into “my+mom%27s+cookies.html”
or “my%20mom%27s%20cookies.html”. Many symbols took on a second life too, so
“&” and “=” and “?” all got their own meanings, which meant that they needed to be
protected if they were part of an original filename too. And what about if you had a
“%” in your original filename? Ah yes, the recursive nature of encoding things....

So purely as an exercise in scripting, let’s write a script that converts any string you
hand it into a “web-safe” sequence. Before starting, however, pull out a piece of paper
and jot down how you’d solve it.

Normalizing Filenames for the Web
My strategy is going to be easy: pull the string apart into individual characters, analyze
each character to identify if it’s an alphanumeric, and if it’s not, convert it into its
hexadecimal ASCII equivalent, prefacing it with a “%” as needed.

There are a number of ways to break a string into its individual letters, but let’s use
Bash string variable manipulations, recalling that ${#var} returns the number of
characters in variable $var, and that ${var:x:1} will return just the letter in $var
at position x. Quick now, does indexing start at zero or one?

Here’s my initial loop to break $original into its component letters:

input="$*"

echo $input

http://www.linuxjournal.com

62 | October 2018 | http://www.linuxjournal.com

WORK THE SHELL

for ((counter=0 ; counter < ${#input} ; counter++))

do

 echo "counter = $counter -- ${input:$counter:1}"

done

Recall that $* is a shortcut for everything from the invoking command line other
than the command name itself—a lazy way to let users quote the argument or not.
It doesn’t address special characters, but that’s what quotes are for, right?

Let’s give this fragmentary script a whirl with some input from the command line:

$ sh normalize.sh "li nux?"
li nux?
counter = 0 -- l

counter = 1 -- i

counter = 2 --

counter = 3 -- n

counter = 4 -- u

counter = 5 -- x

counter = 6 -- ?

There’s obviously some debugging code in the script, but it’s generally a good idea to
leave that in until you’re sure it’s working as expected.

Now it’s time to differentiate between characters that are acceptable within
a URL and those that are not. Turning a character into a hex sequence is a bit
tricky, so I’m using a sequence of fairly obscure commands. Let’s start with just
the command line:

$ echo '~' | xxd -ps -c1 | head -1
7e

Now, the question is whether “~” is actually the hex ASCII sequence 7e or not.

http://www.linuxjournal.com

63 | October 2018 | http://www.linuxjournal.com

WORK THE SHELL

A quick glance at http://www.asciitable.com confirms that, yes, 7e is indeed
the ASCII for the tilde. Preface that with a percentage sign, and the tough job of
conversion is managed.

But, how do you know what characters can be used as they are? Because of the weird
way the ASCII table is organized, that’s going to be three ranges: 0–9 is in one area of
the table, then A–Z in a second area and a–z in a third. There’s no way around it, that’s
three range tests.

There’s a really cool way to do that in Bash too:

if [["$char" =~ [a-z]]]

What’s happening here is that this is actually a regular expression (the =~) and a
range [a-z] as the test. Since the action I want to take after each test is identical, it’s
easy now to implement all three tests:

if [["$char" =~ [a-z]]]; then
 output="$output$char"

elif [["$char" =~ [A-Z]]]; then
 output="$output$char"

elif [["$char" =~ [0-9]]]; then
 output="$output$char"

else

As is obvious, the $output string variable will be built up to have the desired value.

What’s left? The hex output for anything that’s not an otherwise acceptable character.
And you’ve already seen how that can be implemented:

hexchar="$(echo "$char" | xxd -ps -c1 | head -1)"

 output="$output%$hexchar"

http://www.asciitable.com/
http://www.linuxjournal.com

64 | October 2018 | http://www.linuxjournal.com

WORK THE SHELL

A quick run through:

$ sh normalize.sh "li nux?"
li nux? translates to li%20nux%3F

See the problem? Without converting the hex into uppercase, it’s a bit weird looking.
What’s “nux”? That’s just another step in the subshell invocation:

hexchar="$(echo "$char" | xxd -ps -c1 | head -1 | \

 tr '[a-z]' '[A-Z]')"

And now, with that tweak, the output looks good:

$ sh normalize.sh "li nux?"
li nux? translates to li%20nux%3F

What about a non-Latin-1 character like an umlaut or an n-tilde? Let’s see
what happens:

$ sh normalize.sh "Señor Günter"
Señor Günter translates to Se%C3B1or%200AG%C3BCnter

Ah, there’s a bug in the script when it comes to these two-byte character sequences,
because each special letter should have two hex byte sequences. In other words, it
should be converted to se%C3%B1or g%C3%BCnter (I restored the space to make
it a bit easier to see what I’m talking about).

In other words, this gets the right sequences, but it’s missing a percentage sign—
%C3B should be %C3%B, and %C3BC should be %C3%BC.

Undoubtedly, the problem is in the hexchar assignment subshell statement:

hexchar="$(echo "$char" | xxd -ps -c1 | head -1 | \

http://www.linuxjournal.com

65 | October 2018 | http://www.linuxjournal.com

WORK THE SHELL

 tr '[a-z]' '[A-Z]')"

Is it the -c1 argument to xxd? Maybe. I’m going to leave identifying and fixing the
problem as an exercise for you, dear reader. And while you’re fixing up the script to
support two-byte characters, why not replace “%20” with “+” too?

Finally, to make this maximally useful, don’t forget that there are a number of symbols
that are valid and don’t need to be converted within URLs too, notably the set of
“-_./!@#=&?”, so you’ll want to ensure that they don’t get hexified (is that a word?). ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

66 | October 2018 | http://www.linuxjournal.com

What’s New
in Kernel
Development
By Zack Brown

Dealing with printk()
It’s odd that printk() would pose so many problems for kernel
development, given that it’s essentially just a replacement for
printf() that doesn’t require linking the standard C library
into the kernel.

And yet, it’s famously a mess, full of edge cases, corner cases,
deadlocks, race conditions and a variety of other tough-to-
solve problems. The reason for this is, unlike printf(), the
printk() system call has to produce reasonable behavior even
when the entire system is in the midst of crashing. That’s really
the whole point—printk() needs to report errors and warnings
that can be used to debug whatever strange and unexpected
catastrophe has just hit a running system.

Trying to fix all the deadlocks and other problems at the
same time would be too large a task for anyone, especially
since each one is a special case defined by the particular
context in which the printk() call appeared. But, sometimes
a bunch of instances in a particular region of code can be
addressed all together.

diff -u

Zack Brown is a tech
journalist at Linux Journal
and Linux Magazine, and is a
former author of the “Kernel
Traffic” weekly newsletter
and the “Learn Plover”
stenographic typing tutorials.
He first installed Slackware
Linux in 1993 on his 386 with
8 megs of RAM and had his
mind permanently blown by
the Open Source community.
He is the inventor of the
Crumble pure strategy board
game, which you can make
yourself with a few pieces
of cardboard. He also enjoys
writing fiction, attempting
animation, reforming
Labanotation, designing
and sewing his own clothes,
learning French and spending
time with friends’n’family.

http://www.linuxjournal.com

67 | October 2018 | http://www.linuxjournal.com

diff -u

Sergey Senozhatsky recently tried to address some printk() deadlocks, although
he acknowledged he wouldn’t address any instances that were caused by the printk()
code itself triggering a separate recursive printk() call. He wanted to concern himself
with non-recursion-based deadlocks only.

Sergey focused on the console code, which was where printk() generally sent its
output, and which was one place where printk() could deadlock. He added a very
small safeguard to the code, but the result seemed to be that drivers all throughout
the kernel would have to be updated to use the new safeguard.

His code was not met with universal acclaim. Alan Cox noticed that Sergey’s
safeguard added code to the “fast path”—a region of code that needed to be as fast
and efficient as possible, because it was run all the time, many times per second.
Slowing down the fast path would slow down the whole system. Alan suggested
instead of this, it would be better for the kernel simply not to call printk() if the
console code would be in a position to deadlock.

Sergey was not in any way satisfied, however. He pointed out that his patch solved
real-world problems that users had reported experiencing directly. He didn’t see how
it would help anything simply to pull out the printk() instances that triggered the
problem, especially if those instances were doing important work like reporting on the
real reason the system was crashing and so on.

Sergey wanted to keep the printk() instances and implement the safeguards to
protect them. However, at this point Linus Torvalds joined the discussion, saying:

The rule is simple: DO NOT DO THAT THEN.

Don’t make recursive locks. Don’t make random complexity. Just stop doing the
thing that hurts.

There is no valid reason why an UART driver should do a printk() of any sort inside
the critical region where the console is locked.

http://www.linuxjournal.com

68 | October 2018 | http://www.linuxjournal.com

diff -u

Just remove those printks, don’t add new crazy locking.

If you had a spinlock that deadlocked because it was inside an already spinlocked
region, you’d say “that’s buggy”.

This is the exact same issue. We don’t work around buggy garbage. We fix the
bug—by removing the problematic printk.

Sergey pointed out that the printk() instances were called from all those drivers he
wanted to change. It wasn’t a case of some simple part of the kernel having an extra
printk(). The drivers all needed to be updated with the safeguard, or they would
continue to report the wrong thing.

The conversation ended with no conclusion. It’s difficult to know when something
should be fixed versus removed. There are all sorts of technical questions that come
up, including wondering if the fix is worth all the fuss.

Internationalizing the Kernel
At a time when many companies are rushing to internationalize their products
and services to appeal to the broadest possible market, the Linux kernel is actively
resisting that trend, although it already has taken over the broadest possible market—
the infrastructure of the entire world.

David Howells recently created some sample code for a new kernel library, with
some complex English-language error messages that were generated from several
sources within the code. Pavel Machek objected that it would be difficult to
automate any sort of translations for those messages, and that it would be preferable
simply to output an error code and let something in userspace interpret the error at
its leisure and translate it if needed.

In this case, however, the possible number of errors was truly vast, based on a variety
of possible variables. David argued that representing each and every one with a single
error code would use a prohibitively large number of error codes.

http://www.linuxjournal.com

69 | October 2018 | http://www.linuxjournal.com

diff -u

Ordinarily, I might expect Pavel to be on the winning side of this debate, with Linus
Torvalds or some other top developer insisting that support for internationalization was
necessary in order to give the best and most useful possible experience to all users.

However, Linus had a very different take on the situation:

We don’t internationalize kernel strings. We never have. Yes, some people
tried to do some database of kernel messages for translation purposes, but I
absolutely refused to make that part of the development process. It’s a pain.

For some GUI project, internationalization might be a big deal, and it might be
“TheRule(tm)”. For the kernel, not so much. We care about the technology, not
the language.

So we’ll continue to give error numbers for “an error happened”. And if/when
people need more information about just what _triggered_ that error, they are as
English-language strings. You can quote them and google them without having to
understand them. That’s just how things work.

[...]

There are places where localization is a good idea. The kernel is *not* one of
those places.

He added later:

I really think the best option is “Ignore the problem”. The system calls will still continue
to report the basic error numbers (EINVAL etc), and the extended error strings will be
just that: extended error strings. Ignore them if you can’t understand them.

That said, people have wanted these kinds of extended error descriptors forever,
and the reason we haven’t added them is that it generally is more pain than it is
necessarily worth.

http://www.linuxjournal.com

diff -u

70 | October 2018 | http://www.linuxjournal.com

Pavel still felt that, since David’s code was all new, there was no ancient cruft standing in
the way of implementing internationalization in this one new area. He agreed there was
no point in a lot of other cases, but for this one, it felt like being given a fresh chance.

But Linus said, “Really. No translation. No design for translation. It’s a nasty nasty
rat-hole, and it’s a pain for everybody.”

He added, “the fact is, I want simple English interfaces. And people who have issues
with that should just not use them. End of story. Use the existing error numbers if you
want internationalization, and live with the fact that you only get the very limited error
number. It’s really that simple.”

The discussion ended shortly thereafter. It’s a fascinating rejection of a very politically
popular attitude, based on the technical consideration that keeping the programming
interface simple is worth more than keeping the user interface friendly.

Keeping Control in the Hands of the User
Various efforts always are underway to implement Secure Boot and to add features
that will allow vendors to lock users out of controlling their own systems. In that
scenario, users would look helplessly on while their systems refused to boot any
kernels but those controlled by the vendors.

The vendors’ motivation is clear—if they control the kernel, they can then stream
media on that computer without risking copyright infringement by the user. If the
vendor doesn’t control the system, the user might always have some secret piece of
software ready to catch and store any streamed media that could then be shared with
others who would not pay the media company for the privilege.

Recently, Chen Yu and other developers tried to submit patches to enhance Secure
Boot so that when the user hibernated the system, the kernel itself would encrypt
its running image. This would appear to be completely unnecessary, since as Pavel
Machek pointed out, there is already uswsusp (userspace software suspend), which
encrypts the running image before suspending the system. As Pavel said, the only

http://www.linuxjournal.com

71 | October 2018 | http://www.linuxjournal.com

diff -u

difference was that uswusp ran in userspace and not kernel space.

Perhaps in an effort to draw Chen into admitting the deeper motives behind the patch
submission, Pavel asked Chen to elucidate exactly what security hole his patches
addressed and how they would deal with them. Pavel would ask that question over
and over again before the end of the discussion, and he would not receive an answer.

Chen offered a variety of justifications for the patch, including letting users do less
work, but none of them answered the fundamental question: why was this patch
needed as a security enhancement in the first place? And eventually, Pavel called it like
he saw it. He said, “Purpose here is to prevent the user from reading/modifying kernel
memory content on machine he owns. Strange as it may sound, that is what ‘secure’
boot requires (and what Disney wants).”

The discussion ended inconclusively, but not utterly. It’s clear that Pavel, and a group
of core kernel developers including Linus Torvalds, will continue to guard against
allowing vendors to control user systems. This seems to be one of the fundamental
values of the Linux kernel—to prevent the reemergence of the kind of situation we
had in the 1980s, where vendors had ultimate control over virtually all software, while
users were at the mercy of business decisions they didn’t agree with but could do
nothing about.

Note: if you’re mentioned in this article and want to send a response, please send a
message with your response text to ljeditor@linuxjournal.com, and we’ll run it in the next
Letters section and post it on the website as an addendum to the original article. ◾

71 | October 2018 | http://www.linuxjournal.com

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com
mailto:ljeditor@linuxjournal.com

72 | October 2018 | http://www.linuxjournal.com

DEEP DIVE
PROGRAMMING

http://www.linuxjournal.com

73 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE
DEEP
DIVE

Understanding
Bash: Elements
of Programming
Ever wondered why programming in Bash is so difficult? Bash
employs the same constructs as traditional programming
languages; however, under the hood, the logic is rather different.

By Vladimir Likic

The Bourne-Again SHell (Bash) was developed by the Free
Software Foundation (FSF) under the GNU Project, which
gives it a somewhat special reputation within the Open
Source community. Today, Bash is the default user shell on
most Linux installations. Although Bash is just one of several
well known UNIX shells, its wide distribution with Linux makes
it an important tool to know.

The main purpose of a UNIX shell is to allow users to interact effectively with the
system through the command line. A common shell action is to invoke an executable,
which in turn causes the kernel to create a new running process. Shells have
mechanisms to send the output of one program as input into another and facilities to
interact with the filesystem. For example, a user can traverse the filesystem or direct
the output of a program to a file.

Although Bash is primarily a command interpreter, it’s also a programming language.

DEEP DIVE

http://www.linuxjournal.com

Bash supports variables, functions and has control flow constructs, such as conditional
statements and loops. However, all of this comes with some unusual quirks. This
is because Bash attempts to fulfill two roles at the same time: to be a command
interpreter and a programming language—and there is tension between the two.

All UNIX shells, including Bash, are primarily command interpreters. This trait has a
deep history, stretching all the way to the very first shell and the first UNIX system.
Over time, UNIX shells acquired the programming capabilities by evolution, and this
has led to some unusual solutions for the programming environment. As many people
come to Bash already having some background in traditional programming languages,
the unusual perspective that Bash takes with programming constructs is a source of
much confusion, as evidenced by many questions posted on Bash forums.

In this article, I discuss how programming constructs in Bash differ from traditional
programming languages. For a true understanding of Bash, it’s useful to understand
how UNIX shells evolved, so I first review the relevant history, and then introduce
several Bash features. The majority of this article shows how the unusual aspects
of Bash programming originate from the need to blend the command interpreter
function seamlessly with the capabilities of a programming language.

Doing Two Different Things at Once
The original Thompson shell was a simple command interpreter whose mode of
operation was as follows:

$ command [arg1 ... [argN]

where command is the name of the executable file (that is, a command to be
executed), and the optional arguments arg1 ... argN are passed to the
command. The Thompson shell had no programming capabilities. This changed with
the development of the Mashey shell (and later the Bourne shell). In his seminal
paper “The UNIX Shell”, published in 1978, Stephen Bourne wrote:

The UNIX shell is both a programming language and a command language. As a

DEEP
DIVE

74 | October 2018 | http://www.linuxjournal.com

75 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Bash History

The term “shell” originated from the MULTICS project, a collaboration between
Massachusetts Institute of Technology (MIT), General Electric and Bell
Telephone Laboratories (henceforth Bell Labs) to develop a next-generation
time-sharing operating system. Unhappy with the progress, Bell Labs withdrew
from the project in 1969, and the Bell Labs team who worked on MULTICS
went on to develop their own operating system: UNIX.

The ancestor of Bash is the Thompson shell, the first UNIX command
interpreter, developed by Ken Thompson in 1971. Figure 1 shows an

Figure 1. An Excerpt from the UNIX Programming Manual, 1st Edition, Published in 1971,
Describing the Original Thompson Shell

http://www.linuxjournal.com

76 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

excerpt from the UNIX Programming Manual, 1st edition, that describes the
Thompson shell.

Between 1973–1975, John R. Mashey extended the original Thompson
shell and added several programming capabilities, making it a high-level
programming language. In Mashey’s own words:

Modifications have been aimed at improving the use of the shell...and making
it even more convenient to use as a high-level programming language. In line
with the philosophy of much existing UNIX software, an attempt has been
made to add new features only when they are shown necessary by actual
user experience in order to avoid contaminating a compact, elegant system
through “creeping featurism”. (From J. Mashey, “Using a Command Language
as a High-level Programming Language”, CSE ‘76 Proceedings of the 2nd
International Conference on Software engineering, 1976.)

Stephen Bourne started working on a new shell early in 1976. The Bourne shell
benefited from the concepts introduced by the Mashey shell, and it brought
some new ideas of its own. The Bourne shell officially was introduced in UNIX
Version 7, released in 1979.

The original Thompson shell, the Mashey shell and the Bourne shell were all
called sh, and they overlapped or replaced one another in the years 1970–1976
as they were refined and gained additional capabilities. Throughout 1970s,
UNIX was mostly being developed at Bell Labs and, in parallel, at the University
of California at Berkeley (the variant known as BSD). With the development
of UNIX, shells were constantly developed and refined. At the time when
the Bourne shell already was in use, Bill Joy at Berkeley developed the C
shell (csh). The C shell was the first truly alternative UNIX shell, and it was
incorporated in the 2BSD release of Berkeley UNIX. In the early 1980s, David
Korn developed the Korn shell (ksh). Compared to the Bourne shell, the C

http://www.linuxjournal.com

77 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

shell emphasized the command interpreter mode, and the Korn shell came with
more extensive programming capabilities.

UNIX development efforts at Bell Labs and Berkeley enriched each other, and
the two versions were later merged. In the 1980s, AT&T licensed UNIX to a
number of commercial vendors, and this resulted in the disruptive wars for
the UNIX market domination. In 1985, Richard Stallman established the Free
Software Foundation (FSF), whose main initiative was to build a free-to-use
UNIX-like system, one that is not encumbered by the intellectual property
issues surrounding UNIX. This is the famous GNU Project (“GNU’s not UNIX”).
In fact, the original letter from Stallman, sent on the net.unix-wizards mailing
list in September 1983, started with the cry: “Free Unix!”

Since it’s impossible to have free UNIX without a shell, that was a priority
for the GNU Project. Brian Fox, the Free Software Foundation’s first paid
programmer, started working on a shell 1988. This became Bash, first released
as beta in 1989. Bash is mostly a clone of the Bourne shell (hence “Bourne-
Again”), but it also includes additional features inspired by the C shell and Korn
shell. Brian Fox was the official maintainer of Bash until 1992. At the time, Chet
Ramey already was involved with the work on Bash, and he became the official
maintainer in 1993. Chet Ramey continued to maintain and develop Bash for
the next 25 years, and he’s still Bash’s current maintainer.

http://www.linuxjournal.com

78 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

programming language, it contains control-flow primitives and string-valued variables.
As a command language, it provides a user interface to the process-related facilities
of the UNIX operating system. (S.R Bourne, “The UNIX Shell”, The Bell System
Technical Journal, Vol 56, No 6, July–August 1978.)

Note the emphasis on the different functionality: a programming language and a
command language. In fact, it was the Mashey and Bourne shells that extended the
capabilities of the Thompson shell beyond the command interpreter. The shell’s
original role was a command interpreter, and the programming capabilities of shells
were added later. UNIX shells evolved some ingenious ways of consolidating the
programming capabilities with the original command interpreter role.

Bash Mode of Operation
Today’s Bash is more powerful compared to the original Mashey shell and the Bourne shell.
However, the purpose of the shell remains exactly the same. Arguably, the most important
function of the shell is running commands (that is, submitting an executable file to the
kernel for execution). This has several profound ramifications. For a start, Bash treats
(almost) anything that is given to it as a command. Consider the following Bash session:

$ VAR

bash: VAR: command not found

$ 9

bash: 9: command not found

$ 9 + 1

bash: 9: command not found

$

This shows that Bash splits the input into words, then attempts to execute the first
word as a command (the “words” VAR and 9). Here, a “command” may be either
a Bash built-in command (such as cd), a utility (such as /bin/ls) or some other
executable file. When the string 9 + 1 was given on input, Bash split it into three
“words”: 9, + and 1. It’s important to note that Bash keeps all words as strings and
has no concept of numbers until forced to do an arithmetic evaluation. As a rather

http://www.linuxjournal.com

79 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

simplified summary, Bash operates as follows:

1. Takes the input and splits it into words on white spaces (space or tab).

2. Assumes that the first word is a command. If anything follows the first word, it
assumes they are arguments to be passed to the command.

3. Attempts to execute the command (and pass the arguments to it, if any).

This view ignores several intermediate steps. For example, Bash scans the input line
and performs all sorts of expansions and replacements. It also checks for a built-in
command with the name given, and executes that, if it exists. Not to lose sight of the
big picture, I often ignore these details.

So, Bash’s most essential purpose is to execute commands, and this has some
profound implications. Notably, the programming constructs in Bash, which at first
sight may look like a programming language, are derived from this mode of operation.
And, that is the central theme of this article.

Bash Built-ins vs. External Commands
The point that’s often confusing to Bash newcomers is the difference between
Bash built-in commands and external commands. On a typical Linux/UNIX system,
a number of common commands are both built-in in Bash and also exist as
independent executables with the same name. Examples of this include echo
(built-in) and /bin/echo, kill (built-in) and /bin/kill, test (built-in) and
/usr/bin/test (and there are more). Consider how the Bash built-in echo and
/bin/echo behave very similarly:

$ echo 'Echoed with a built-in!'

Echoed with a built-in!

$ /bin/echo 'Echoed with external program!'

Echoed with external program!

$

http://www.linuxjournal.com

80 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

However, there are also subtle differences (try echo --version). Why this
duplication of commands? There are several reasons. The built-in version typically
exists for performance reasons: Bash built-ins execute within the shell process
that’s already running. In contrast, executing an external utility involves loading and
executing the external binary by the kernel, which is a much slower process.

At this point, it’s useful to note that some shell commands, by their nature, cannot be
external utilities (in other words, they must be shell built-ins). Consider the cd command
that changes the current working directory. An external utility wouldn’t be able to change
the shell’s current working directory, so cd must be a Bash built-in. Why? Because invoking
a command as an external utility would make the shell its parent process, and a child
process cannot change the current working directory of the parent process.

You could turn this question around and ask, “if echo is already built in to the
shell, why does the external utility /bin/echo exist?” That’s because one doesn’t
always work through the shell and may need to invoke echo without the mediating
shell process. Second, in principle, there’s nothing to enforce that a UNIX shell
must have echo as a built-in, and therefore, it’s important to have the external
utility /bin/echo as a fallback.

A practical problem users often face is this: how do you know whether the command
you just called is the shell built-in or an external utility with the same name? The Bash
command type (which is itself a shell built-in) indicates what command would be
used if executed. For example:

$ type echo
echo is a shell builtin

$ type ls
ls is hashed (/bin/ls)

$

The basic rule is as follows: if the built-in command with a given name exists, it will
be executed. If the built-in command doesn’t exist, Bash will search for an external

http://www.linuxjournal.com

81 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

program, and if found, will execute it. If you want to be sure to use the executable,
which happens to have the same name as a shell built-in, calling the executable with
the full path will do.

Variable Assignment
When a command is entered in Bash, Bash expects that the first word it encounters
is a command. However, there’s one exception: if the first word contains =, Bash will
attempt to execute a variable assignment. For example:

$ VAR=7
$

This has assigned the value 7 to the variable named VAR. To retrieve the value of a
variable, you need to prefix the variable name with the dollar sign. Thus, to view the
value of a variable, you can combine the dollar-sign prefix with echo:

$ echo $VAR

7
$

For a variable assignment, a contiguous string that contains = is important. The
following will fail:

$ VAR = 1

bash: VAR: command not found

$

In this case, Bash splits the input VAR = 1 into three “words” (VAR, = and 1) and
then attempts to execute the first word as a command. This clearly isn’t what was
intended here.

The ? Built-in Variable
Although Bash allows you to create arbitrary variables on the fly simply by assigning

http://www.linuxjournal.com

82 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

the values to them, it also has a number of built-in variables. An example of a built-in
variable is BASHPID. This contains the process ID of the Bash shell itself:

$ echo $BASHPID
2141

$

Another built-in variable (and one that I cover extensively here) is ?. At any point in
a Bash session, this variable contains the return value of the last executed command.
The return value is always an integer. (And specifically, this is the return value of the
C program function main(). Note: in any C program the function main() must
return an integer.) By the UNIX convention, the return value of 0 denotes success,
and any other value denotes failure. For example, consider the utility /bin/ls:

$ touch NEWFILE

$ /bin/ls NEWFILE

NEWFILE

$ echo $?
0

$

As per the convention, the utility /bin/ls returned 0 on success, which you can see
by inspecting the value of ?. If ls is unable to execute (for example, unable to access
the file), it returns the value >0:

$ /bin/ls DOESNOTEXIST

ls: cannot access 'DOESNOTEXIST': No such file or directory
$ echo $?
2

$ echo $?
0

$

http://www.linuxjournal.com

83 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

In the last example, note that the first ? was set to 2, and the second ? was set to 0.
Why? Because the second ? contains the exit status of the echo command (which
executed successfully). Remember, the ? variable contains the exit status of the last
executed command. You can use the commands true and false to set the value of
? to 0 or 1, respectively:

$ false

$ echo $?
1

$ false

$ true

$ echo $?
0

$

That might look rather silly at first, but keep reading.

Bash Blending Behavior
Now let’s consider how Bash provides an impression of a seamlessly integrated
command environment, even when the tasks it executes are inherently quite different.
First, note that running a Bash built-in command produces the same effect on the ?
variable as running an external program:

$ false # set ? to 1
$ echo 'Calling a built-in command'

Calling a built-in command

$ echo $?
0

This example shows that calling the built-in command echo changed ? to 0 (to
confirm this, first run the false command, which sets ? to 1). The point is that it
behaves the same as calling the external program echo:

http://www.linuxjournal.com

84 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

$ false # set ? to 1
$ /bin/echo 'Calling external program'

Calling external program

$ echo $?
0

Yet, these two scenarios are quite different. In the first scenario, Bash invoked an
internal command echo; in the second example, Bash requested from the kernel
to run an external executable (/bin/echo) and suspended itself waiting for the
executable to complete. The effect on the ? variable is exactly the same.

Even for a variable assignment, Bash will set the ? variable accordingly:

$ false # set ? to 1
$ VAR=one

$ echo $?
0

$

From this, you can see that Bash treats a variable assignment as a command. If the
variable assignment is not successful, ? is set to a value >0. For example, the built-in
variable BASHPID is read-only, and you can’t change it (that is, Bash can’t change its
own process ID). So this will fail:

$ true # set ? to 0
$ BASHPID=99
$ echo $?
1

$

Attempting to execute a non-existent command would also set ? to indicate a failure:

$ true # set ? to 0

http://www.linuxjournal.com

85 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

$ DUMMY
bash: DUMMY: command not found
$ echo $?
127
$

In this case, Bash filled the special variable ? with the number 127. This number is
hard-wired in Bash, and it specifically means “command not found”.

To summarize, the above examples show three completely different scenarios:
invoking an internal Bash command, running an external program and variable
assignment. Yet, Bash views all three as command execution and provides a common
behavior with respect to the ? special variable. Armed with these insights, now let’s
examine three basic programming constructs in Bash: the if statement, the while
loop and the until loop.

The Conditional if Statement
The fundamental element of almost every programming language is the conditional
if statement. In the C language, it looks like this:

if (TRUTH_TEST) {
 statements to execute

}

Here TRUTH_TEST is a test that evaluates true or false according to the rules of
the C language. This is sometimes called “truth value testing”. Here’s an example of
this in Python:

if True:

 print('Yay true!')

In Bash, the same example looks like this:

http://www.linuxjournal.com

86 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

if true

then

 echo 'Yay true!'
fi

You can reformat this by using ; to provide a handy one-liner to type in:

$ if true; then echo 'Yay true!'; fi
Yay true!
$

This looks very much like the if conditional statement in any programming
language. However, it’s not. In the above example, true is a command. In fact,
true is a shell built-in:

$ type true
true is a shell builtin

$ help true

true: true

 Return a successful result.

 Exit Status:

 Always succeeds.

Let that sink in: true is a command. In fact, that’s the same true command that
was run above from the command line to set the value of the ? variable. What
then is the if statement evaluating? It’s evaluating the return value of the true
command. If you’re not convinced, consider that true can be replaced with the
external utility /bin/true:

$ if /bin/true; then echo 'Yay true!'; fi
Yay true!
$

http://www.linuxjournal.com

87 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Where:

$ man true

TRUE(1) User Commands TRUE(1)

NAME

 true - do nothing, successfully

SYNOPSIS
 true [ignored command line arguments]

 true OPTION

DESCRIPTION
 Exit with a status code indicating success.

If true is a command, you can put any command there, right? Indeed:

$ if /bin/echo; then echo 'Yay true!'; fi

Yay true!
$

Notice how the blank line was printed before the string Yay true!. That’s because the
if statement actually executed the command /bin/echo, and without any arguments,
this prints a newline character. You actually can give an argument to the echo command:

$ if /bin/echo 'Hi'; then echo 'Yay true!'; fi
Hi
Yay true!
$

The two echo commands executed here are different: the first is the external utility
/bin/echo; the second, an echo that appears in the body of the if statement, is the

http://www.linuxjournal.com

88 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

shell built-in. Clearly, the second echo could be replaced with the external utility too.

Moving on, I mentioned previously that Bash will treat the variable assignment as a
command. Thus, variable assignment can be used in the same place as the built-in
command or external executable:

$ if VAR=99; then echo 'Assignment done!'; fi

Assignment done!

$ echo $VAR

99

$

To sum up, the general form of the if conditional statement is: if CMD1; then
CMD2; fi where CDM1 and CMD2 are commands. The if statement controls flow
by evaluating the exit code of the command CMD1: if CMD1 was successful (judging
by the exit status of 0), then CMD2 is executed. This is rather different compared to
truth value testing in most traditional programming languages, and it’s the source of
much confusion. I shall call this source of confusion number 1.

The false Command
I just described how true is a command. So not surprisingly, there is a false, the
exact opposite of true. For the Bash built-in:

$ type false
false is a shell builtin

$ help false

false: false

 Return an unsuccessful result.

 Exit Status:

 Always fails.
$

http://www.linuxjournal.com

89 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

And, there is an external utility with the same function:

$ man false

FALSE(1) User Commands FALSE(1)

NAME

 false - do nothing, unsuccessfully

SYNOPSIS
 false [ignored command line arguments]

 false OPTION

DESCRIPTION
 Exit with a status code indicating failure.

The commands true and false do nothing, but exit with the status 0 or 1, respectively.
Since the if statement evaluates the exit code when deciding whether to execute the
body, if true always succeeds, and if false always fails. Note that the exit value of
true is 0, and the exit value of false is 1. This is somewhat counterintuitive, and it’s
the exact opposite of most programming languages. For example, in Python truth value
testing, 0 is equated with False (boolean), and 1 is equated with True (boolean).

Bash if Is Testing the Exit Value
Let’s confirm that the if statement in Bash is merely testing the value of the
program’s exit value by writing a simple C program, true.c, that returns 1 (note, the
real utility true returns 0, or success!):

int main() {

 return 1;

}

This program doesn’t do much; it merely returns 1 as the exit status. According to the
UNIX convention, the exit status of 1 indicates a failure (no matter that the program

http://www.linuxjournal.com

90 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

may run just fine!). Let’s compile and execute this program, and confirm that it
returns an “unsuccessful” exit status to the shell:

$ gcc true.c -o true

$./true

$ echo $?
1

$

So, if you use this program in the if statement, the output won’t be what you may expect:

$ if ./true; then echo 'Yay true!'; fi
$

In other words, the true command has “failed”. This example confirms that all the if
statement does is evaluate the exit status. It doesn’t matter that the program runs just
fine, exactly as intended; from the Bash perspective, a non-zero exit status indicates
failure. This I shall call the source of confusion number 2.

More Bash Ingenuity
Consider the following task: test if the file exists, and if it does, delete it. For this you
can use the Bash built-in test command with the -e flag:

$ rm dum.txt # make sure file 'dum.txt' doesn't exist

$ test -e dum.txt # test if file 'dum.txt' exists

$ echo $? # confirm that the command test failed
1

$ touch dum.txt # now create file 'dum.txt'

$ test -e dum.txt # test if file 'dum.txt' exists

$ echo $? # confirm the command test was successful
0

$

http://www.linuxjournal.com

91 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Therefore, to test if the file exists, and if yes, delete it:

$ touch dum.txt # create file 'dum.txt'

$ if test -e dum.txt; then rm dum.txt; fi # file deleted

$

The key to note here is that if test -e dum.txt; then rm dum.txt; fi
actually executes the command test -e dum.txt. In this case, test is a Bash
built-in. As you might suspect, there is a /usr/bin/test utility that does the same
thing and could be used to the same effect:

$ touch dum.txt # create file 'dum.txt'

$ if /usr/bin/test -e dum.txt; then rm dum.txt; fi

 ↪# file deleted
$

Now, Bash implements [] as a synonym for the built-in test command:

$ test -e dum.txt # command successful if file exists

$ [-e dum.txt] # exactly the same as previous example!

Note, [-e dum.txt] is a command. And this, of course, returns 0 on success and
1 on failure. Let’s confirm:

$ rm dum.txt

$ [-e dum.txt]

$ echo $?
1

$ touch dum.txt

$ [-e dum.txt]

$ echo $?
0

$

http://www.linuxjournal.com

92 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

With this understanding, you can repeat the above example with the [-e ...]
construct:

$ touch dum.txt # create file 'dum.txt'

$ if [-e dum.txt]; then rm dum.txt; fi # file deleted

$

The last construct looks even more like the if control statement in most traditional
programming languages. However, it’s not. [] is a command—basically another way
to call the built-in test command.

Command Lists
The surprises don’t quite end there. In Bash, the if statement can take any number
of commands separated by a semicolon, after the keyword if and before the body
denoted with the keyword then. Something like this: if CMD1; CMD2; ...
CMDN; then CMDN+1; CMDN+2; CMDN+M; fi. The if statement evaluates all
commands sequentially and executes the body of the loop only if the exit status of the
last command is 0 (a success by convention). Consider the following example:

$ if false; true; then echo 'Yay true!'; fi
 ↪# body will execute
Yay true!
$ if true; false; then echo 'Yay true!'; fi
 ↪# body will not execute
$

So in Bash, it’s completely legal to write something like this:

$ if [-e dum.txt]; echo 'Hi'; false; then rm dum.txt; fi
Hi
$

This executes three commands given after if, and it never will execute the body

http://www.linuxjournal.com

93 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

(rm dum.txt) because the last command is false, which always fails (more
precisely, returns a non-zero status). In summary, in place of a single command,
you can use a list of commands. The overall exit status of such a command list is
given by the exit status of the last command in the list. This I shall call the source
of confusion number 3.

The Loops while and until
Understanding the behavior of the if statement is rather useful because the same
behavior applies to while and until loops. Consider the following example:

$ while true; do echo 'Hi, while looping ...'; done
Hi, while looping ...
Hi, while looping ...
Hi, while looping ...
^C

$

Let’s understand exactly what happened here. First, the while loop executed the
true command and evaluated its exit status. Since the exit status of true is always
0, it executed the body of the loop (echo 'Hi, while looping ...'). Then
it went back for another cycle of the same. Because the true command always runs
with success, this created an infinite loop (which was broken with Ctrl-C). Since true
is a command, you can replace it with any command. For example:

$ while /bin/echo 'ECHO'; do echo 'Hi, while looping ...'; done
ECHO
Hi, while looping ...
ECHO
Hi, while looping ...
ECHO
Hi, while looping ...
^C

$

http://www.linuxjournal.com

94 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Thus, this while loop merely alternates the execution of the two echo
commands: /bin/echo, the external executable, and echo, the Bash built-in.

As you might suspect, the while construct can accept a command list, and in such
a case, it would proceed to execute the body of the loop based on the exit status of
the last command in the list. In other words, the general form of the while loop is
as follows: while CMD1; CMD2; ... CMDN; do CMDN+1; CMDN+2; CMDN+M;
done. For example:

$ while true; false; do echo 'Hi, looping ...'; done
$

In this example, the body of the loop is not executed because the last command is
false (which always fails). The until loop works similarly:

$ until false; do echo 'Hi, until looping ...'; done
Hi, until looping ...
Hi, until looping ...
Hi, until looping ...
^C

$

In the case of the until loop, the body of the loop executes as long as the
command listed after the keyword until is returning a non-zero exit status. Since
the command false returns a non-zero exit status every time, the above example
resulted in an infinite loop. And of course, in the general form, the until loop can
accept command lists: until CMD1; CMD2; ... CMDN; do CMDN+1; CMDN+2;
CMDN+M; done.

You may ask, if these loops merely execute two commands (or two command lists),
how is it useful in practice at all? The commands that are tested in the loop may
depend on some dynamic condition (for example, the number of bytes written to a
file, or the type of network traffic and so on). The change in conditions may cause

http://www.linuxjournal.com

95 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

the command to fail or succeed. Also you can modify the Bash variable in the body of
the loop, which leads to the use of loops similarly as shown here:

$ i=1

$ while [$i -le 3]; do echo $i; i=$((i+1)); done

1

2

3

$

Here ((i + 1)) forces Bash arithmetic evaluation, and $((i + 1)) returns the
resulting value; the construct [$i -le 3] is a synonym for test $i -le 3
that performs arithmetic comparison. Note that from the perspective of Bash, this is
a command that executes successfully or not:

$ i=1

$ [$i -le 3]

$ echo $?
0

$ i=9

$ [$i -le 3]

$ echo $?
1

$

This is why the [$i -le 3] construct can be used after the while keyword,
which expects a command (or a command list).

Conclusion
Bash is an independently implemented derivative of the Bourne shell produced by
the GNU Project, with enhancements inspired by the C shell and the Korn shell.
The original UNIX shell (the Thompson shell) was a simple command interpreter.
Subsequently, the Mashey shell and the Bourne shell blended in programming

http://www.linuxjournal.com

96 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

capabilities. Since Bash is a direct descendant of the Bourne shell, it inherited all the
key ideas of how a programming environment works. This includes how it blends the
programming language with the command interpreter. And for that purpose, UNIX
shells have evolved some ingenious solutions.

In Bash, the programming constructs look similar to those found in traditional
programming languages. However, how those programming constructs
inherently work is quite different. This can be rather confusing to people
coming with some knowledge of the traditional programming languages
(which is usually the case for Bash users). Here are the three main sources
of confusion with Bash programming:

1. The surprising aspect of Bash programming is that the constructs if, while and
until evaluate the exit status of a command. Basically these constructs evaluate
the following: “is the exit status zero?” By the UNIX convention, the exit status of 0
denotes success, and anything else denotes a failure.

2. The exit status is an integer returned by the executable—think of this as the value
returned by the C function main(). Note that a program that runs just fine may
return a non-zero exit status (I showed an example of this above). However,
writing such programs is not recommended. It would break the convention, and
it most likely will break other things since the entire environment relies heavily on
this convention.

3. A single command can be replaced by a list of commands separated by a
semicolon. In such a case, the exit status of a command list is the status returned
by the last executed command.

Acknowledgements
My sincere thanks to Chet Ramey for his feedback on the draft of this article. I would
also like to thank Isidora C. Likic for checking the text and examples.

http://www.linuxjournal.com

97 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Vladimir Likic holds a PhD in bioinformatics, and he has been using UNIX since 1991 and Linux since 1995. Originally from Europe, he
lived in the US for a number of years and now calls Australia home. Follow Vladimir on Twitter: @unix_byte.

Resources
Too many articles and books on this topic exist to list in this space, but if you’re
interested in learning more, we recommend these Linux Journal articles (and
there are actually too many LJ articles to list here as well, but here are some to
get you started):

• “Creating the Concentration Game PAIRS with Bash” by Dave Taylor

• “Create Dynamic Wallpaper with a Bash Script” by Patrick Wheelan

• “Developing Console Applications with Bash” by Andy Carlson

• “Hacking a Safe with Bash” by Adam Kosmin

• “Ubuntu Linux and Bash as a Windows Program!” by Dave Taylor

• “Bash Parameter Expansion” by Mitch Frazier

• “Bash Regular Expressions” by Mitch Frazier

• “Bash Extended Globbing” by Mitch Frazier

• “My Favorite bash Tips and Tricks” by Prentice Bisbal

• Parsing an RSS News Feed with a Bash Script” by Jim Hall

Bash Videos:

• “Getting Loopy with Bash: Using for Loops” by Shawn Powers

• “Bash Startup Scripts: bashrc and bash_profile” by Shawn Powers

https://www.linuxjournal.com/content/creating-concentration-game-pairs-bash
https://www.linuxjournal.com/content/create-dynamic-wallpaper-bash-script
https://www.linuxjournal.com/content/developing-console-applications-bash
https://www.linuxjournal.com/content/hacking-safe-bash
https://www.linuxjournal.com/content/ubuntu-linux-and-bash-windows-program
https://www.linuxjournal.com/content/bash-parameter-expansion
https://www.linuxjournal.com/content/bash-regular-expressions
https://www.linuxjournal.com/content/bash-extended-globbing
https://www.linuxjournal.com/article/7385
https://www.linuxjournal.com/content/parsing-rss-news-feed-bash-script
https://www.linuxjournal.com/video/getting-loopy-bash-using-loops
https://www.linuxjournal.com/video/bash-startup-scripts-bashrc-and-bashprofile
http://www.linuxjournal.com

DEEP
DIVE

98 | October 2018 | http://www.linuxjournal.com

Getting Started
with Rust: Working
with Files and Doing
File I/O
How to develop command-line utilities in Rust.

By Mihalis Tsoukalos

This article demonstrates how to
perform basic file and file I /O operations
in Rust, and also introduces Rust’s
ownership concept and the Cargo tool.
If you are seeing Rust code for the first
time, this article should provide a pretty
good idea of how Rust deals with files and
file I /O, and if you’ve used Rust before, you
still will appreciate the code examples in
this article.

Ownership
It would be unfair to start talking about Rust without first discussing ownership.
Ownership is the Rust way of the developer having control over the lifetime of a
variable and the language in order to be safe. Ownership means that the passing
of a variable also passes the ownership of the value to the new variable.

http://www.linuxjournal.com

99 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Another Rust feature related to ownership is borrowing. Borrowing is about taking
control over a variable for a while and then returning that ownership of the variable
back. Although borrowing allows you to have multiple references to a variable, only
one reference can be mutable at any given time.

Instead of continuing to talk theoretically about ownership and borrowing, let’s look
at a code example called ownership.rs:

fn main() {

 // Part 1
 let integer = 321;

 let mut _my_integer = integer;
 println!("integer is {}", integer);
 println!("_my_integer is {}", _my_integer);
 _my_integer = 124;
 println!("_my_integer is {}", _my_integer);

 // Part 2
 let a_vector = vec![1, 2, 3, 4, 5];
 let ref _a_correct_vector = a_vector;
 println!("_a_correct_vector is {:?}", _a_correct_vector);

 // Part 3
 let mut a_var = 3.14;
 {

 let b_var = &mut a_var;
 *b_var = 3.14159;
 }

 println!("a_var is now {}", a_var);
}

So, what’s happening here? In the first part, you define an integer variable
(integer) and create a mutable variable based on integer. Rust performs a

http://www.linuxjournal.com

100 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

full copy for primitive data types because they are cheaper, so in this case, the
integer and _my_integer variables are independent from each other.

However, for other types, such as a vector, you aren’t allowed to change a variable
after you have assigned it to another variable. Additionally, you should use a reference
for the _a_correct_vector variable of Part 2 in the above example, because Rust
won’t make a copy of a_vector.

The last part of the program is an example of borrowing. If you remove the
curly braces, the code won’t compile because you’ll have two mutable variables
(a_var and b_var) that point to the same memory location. The curly braces
make b_var a local variable that references a_var, changes its value and returns
the ownership back to a_var as soon as the end of the block is reached. As both
a_var and b_var share the same memory address, any changes to b_var will
affect a_var as well.

Executing ownership.rs creates the following output:

$./ownership

integer is 321

_my_integer is 321
_my_integer is 124
my_vector is [1, 2, 3, 4, 5]
a_var is now 3.14159

Notice that Rust catches mistakes related to ownership at compile time—it uses
ownership to provide code safety.

The remaining Rust code shown in this article is pretty simple; you won’t need to
know about ownership to understand it, but it’s good to have an idea of how Rust
works and thinks.

http://www.linuxjournal.com

101 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

The Cargo Tool
Cargo is the Rust package and compilation manager, and it’s a useful tool for
creating projects in Rust. In this section, I cover the basics of Cargo using a small
example Rust project. The command for creating a Rust project named LJ with
Cargo is cargo new LJ --bin.

The --bin command-line parameter tells Cargo that the outcome of the project will

Figure 1. Using Cargo to Create Rust Projects

http://www.linuxjournal.com

102 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

be an executable file, not a library. After that, you’ll have a directory named LJ with
the following contents:

$ cd LJ

$ ls -l

total 8

-rw-r--r-- 1 mtsouk staff 117 Jul 14 21:58 Cargo.toml
drwxr-xr-x 3 mtsouk staff 96 Jul 14 21:58 src
$ ls -l src/

total 8

-rw-r--r-- 1 mtsouk staff 45 Jul 14 21:58 main.rs

Next, you’ll typically want to edit one or both of the following files:

$ vi Cargo.toml

$ vi ./src/main.rs

Figure 1 shows all the files and directories of that minimal Cargo project as well as the
contents of Cargo.toml.

Note that the Cargo.toml configuration file is where you declare the dependencies
of your project as well as other metadata that Cargo needs in order to compile your
project. To build your Rust project, issue the following command:

$ cargo build

You can find the debug version of the executable file in the following path:

$ ls -l target/debug/LJ

-rwxr-xr-x 2 mtsouk staff 491316 Jul 14 22:02
 ↪target/debug/LJ

Clean up a Cargo project by executing cargo clean.

http://www.linuxjournal.com

103 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Readers and Writers
Rust uses readers and writers for reading and writing to files, respectively. A
Rust reader is a value that you can read from; whereas a Rust writer is a value
that you can write data to. There are various traits for readers and writers, but
the standard ones are std::io::Read and std::io::Write, respectively.
Similarly, the most common and generic ways for creating readers and writers are
with the help of std::fs::File::open() and std::fs::File::create(),
respectively. Note: std::fs::File::open() opens a file in read-only mode.

The following code, which is saved as readWrite.rs, showcases the use of Rust
readers and writers:

use std::fs::File;

use std::io::prelude::*;

fn main() -> std::io::Result<()> {

 let mut file = File::create("/tmp/LJ.txt")?;
 let buffer = "Hello Linux Journal!\n";
 file.write_all(buffer.as_bytes())?;
 println!("Finish writing...");

 let mut input = File::open("/tmp/LJ.txt")?;
 let mut input_buffer = String::new();
 input.read_to_string(&mut input_buffer)?;
 print!("Read: {}", input_buffer);
 Ok(())

}

So, readWrite.rs first uses a writer to write a string to a file and then a reader to read
the data from that file. Therefore, executing readWrite.rs creates the following output:

$ rustc readWrite.rs

$./readWrite

http://www.linuxjournal.com

104 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Finish writing...

Read: Hello Linux Journal!
$ cat /tmp/LJ.txt

Hello Linux Journal!

File Operations
Now let’s look at how to delete and rename files in Rust using the code of
operations.rs:

use std::fs;

use std::fs::File;

use std::io::prelude::*;

fn main() -> std::io::Result<()> {

 let mut file = File::create("/tmp/test.txt")?;
 let buffer = "Hello Linux Journal!\n";
 file.write_all(buffer.as_bytes())?;
 println!("Finish writing...");

 fs::rename("/tmp/test.txt", "/tmp/LJ.txt")?;
 fs::remove_file("/tmp/LJ.txt")?;
 println!("Finish deleting...");

 Ok(())

}

The Rust way to rename and delete files is straightforward, as each task requires
the execution of a single function. Additionally, you can see that /tmp/test.txt is
created using the technique found in readWrite.rs. Compiling and executing
operations.rs generates the following kind of output:

$./operations

Finish writing...

Finish deleting...

http://www.linuxjournal.com

105 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

The code of operations.rs is far from complete, as there is no error-handling
code in it. Please feel free to improve it!

Working with Command-Line Arguments
This section explains how to access and process the command-line arguments of a
Rust program. The Rust code of cla.rs is the following:

use std::env;

fn main()

{

 let mut counter = 0;

 for argument in env::args()

 {

 counter = counter + 1;

 println!("{}: {}", counter, argument);
 }

}

Let’s look at what’s happening in this example. First, it’s using the env module
of the std crate, because this is how to get the command-line arguments of
your program, which will be kept in env::args(), which is an iterator over
the arguments of the process. Then you iterate over those arguments using a
for loop.

Say you want to add the command-line arguments of a program, the ones that
are valid integers, in order to find their total. You can use the next for loop,
which is included in the final version of cla.rs:

let mut sum = 0;

for input in env::args()

{

 let _i = match input.parse::<i32>() {

http://www.linuxjournal.com

106 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

 Ok(_i) => {
 sum = sum + _i
 },
 Err(_e) => {
 println!("{}: Not a valid integer!", input)
 }

 };

}

println!("Sum: {}", sum);

Here you iterate over the env::args() iterator, but this time with a different purpose,
which is finding the command-line arguments that are valid integers and summing them up.

If you are used to programming languages like C, Python or Go, you most likely will
find the aforementioned code over-complicated for such a simple task, but that’s the
way Rust works. Additionally, cla.rs contains Rust code related to error-handling.

Note that you should compile cla.rs and create an executable file before running
it, which means that Rust can’t easily be used as a scripting programming language.
So in this case, compiling and executing cla.rs with some command-line arguments
creates this kind of output:

$ rustc cla.rs

$./cla 12 a -1 10

1: ./cla

2: 12

3: a

4: -1

5: 10

./cla: Not a valid integer!

a: Not a valid integer!

Sum: 21

http://www.linuxjournal.com

107 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Anyway, that’s enough for now about the command-line arguments of a program. The
next section describes using the three standard UNIX files.

Standard Input, Output and Error
This section shows how to use stdin, stdout and stderr in Rust. Every
UNIX operating system has three files open all the time for its processes. Those
three files are /dev/stdin, /dev/stdout and /dev/stderr, which you also can access
using file descriptors 0, 1 and 2, respectively. UNIX programs write regular data
to standard output and error messages to standard error while reading from
standard input.

The following Rust code, which is saved as std.rs, reads data from standard
input and writes to standard output and standard error:

use std::io::Write;

use std::io;

fn main() {

 println!("Please give me your name:");
 let mut input = String::new();

 match io::stdin().read_line(&mut input) {
 Ok(n) => {

 println!("{} bytes read", n);
 print!("Your name is {}", input);
 }

 Err(error) => println!("error: {}", error),
 }

 let mut stderr = std::io::stderr();

 writeln!(&mut stderr, "This is an error message!").unwrap();
 eprintln!("That is another error message!")

}

http://www.linuxjournal.com

108 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Rust uses the eprint and eprintln macros for writing to standard error,
which is a pretty handy approach. Alternatively, you can write your text to
std::io::stderr(). Both techniques are illustrated in std.rs.

As you might expect, you can use the print and println macros for writing
to standard output. Finally, you can read from standard input with the help of
the io::stdin().read_line() function. Compiling and executing std.rs
creates the following output:

$ rustc std.rs

$./std

Please give me your name:
Mihalis

8 bytes read
Your name is Mihalis
This is an error message!

That is another error message!

If you’re using the Bash shell on your Linux machine, you can discard standard output
or standard error data by redirecting them to /dev/null:

$./std 2>/dev/null

Please give me your name:
Mihalis

8 bytes read
Your name is Mihalis
$./std 2>/dev/null 1>/dev/null

Mihalis

The previous commands depend on the UNIX shell you are using and have nothing to
do with Rust. Note that various other techniques exist for working with UNIX stdin,
stdout and stderr in Rust.

http://www.linuxjournal.com

109 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Working with Plain-Text Files
Now let’s look at how to read a plain-text file line by line, which is the most frequent
way of processing plain-text files. At the end of the program, the total number of
characters as well as the number of lines read will be printed on the screen—consider
this as a simplified version of the wc(1) command-line utility.

The name of the Rust utility is lineByLine.rs, and its code is the following:

use std::env;

use std::io::{BufReader,BufRead};
use std::fs::File;

fn main() {

 let mut total_lines = 0;
 let mut total_chars = 0;
 let mut total_uni_chars = 0;

 let args: Vec<_> = env::args().collect();
 if args.len() != 2 {

 println!("Usage: {} text_file", args[0]);
 return;

 }

 let input_path = ::std::env::args().nth(1).unwrap();
 let file = BufReader::new(File::open(&input_path).unwrap());
 for line in file.lines() {

 total_lines = total_lines + 1;
 let my_line = line.unwrap();
 total_chars = total_chars + my_line.len();
 total_uni_chars = total_uni_chars + my_line.chars().count();
 }

http://www.linuxjournal.com

110 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

 println!("Lines processed:\t\t{}", total_lines);
 println!("Characters read:\t\t{}", total_chars);
 println!("Unicode Characters read:\t{}", total_uni_chars);
}

The lineByLine.rs utility uses buffered reading as suggested by the use
of std::io::{BufReader,BufRead}. The input file is opened using
BufReader::new() and File::open(), and it’s read using a for loop that
keeps going as long as there is something to read from the input file.

Additionally, notice that the output of the len() function and the output of the
chars().count() function might not be the same when dealing with text files
that contain Unicode characters, which is the main reason for including both of
them in lineByLine.rs. For an ASCII file, their output should be the same.
Keep in mind that if what you want is to allocate a buffer to store a string, the
len() function is the correct choice.

Compiling and executing lineByLine.rs using a plain-text file as input will
generate this kind of output:

$./lineByLine lineByLine.rs
Lines processed: 28

Characters read: 756
Unicode Characters read: 756

Note that if you rename total_lines to totalLines, you’ll most likely get
the following warning message from the Rust compiler when trying to compile
your code:

warning: variable 'totalLines' should have a snake case name

such as 'total_lines'
 --> lineByLine.rs:7:6
 |

http://www.linuxjournal.com

111 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

7 | let mut totalLines = 0;
 | ^^^^^^^^^^^^^^

 |

 = note: #[warn(non_snake_case)] on by default

You can turn off that warning message, but following the Rust way of defining
variable names should be considered a good practice. (In a future Rust article, I’ll
cover more about text processing in Rust, so stay tuned.)

File Copy
Next let’s look at how to copy a file in Rust. The copy.rs utility requires
two command-line arguments, which are the filename of the source and the
destination, respectively. The Rust code of copy.rs is the following:

use std::env;

use std::fs;

fn main()

{

 let args: Vec<_> = env::args().collect();
 if args.len() >= 3

 {

 let input = ::std::env::args().nth(1).unwrap();

 println!("input: {}", input);
 let output = ::std::env::args().nth(2).unwrap();

 println!("output: {}", output);
 match fs::copy(input, output)
 {

 Ok(n) => println!("{}", n),
 Err(err) => println!("Error: {}", err),
 };

 } else {

http://www.linuxjournal.com

112 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

 println!("Not enough command line arguments")

 }

}

All the dirty work is done by the fs::copy() function, which is versatile, as you
do not have to deal with opening a file for reading or writing, but it gives you no
control over the process, which is a little bit like cheating. Other ways exist to
copy a file, such as using a buffer for reading and writing in small byte chunks. If
you execute copy.rs, you’ll see output like this:

$./copy copy.rs /tmp/output
input: copy.rs
output: /tmp/output

515

You can use the handy diff(1) command-line utility for verifying that the
copy of the file is identical to the original. (Using diff(1) is left as an exercise
for the reader.)

UNIX File Permissions
This section describes how to find and print the UNIX file permissions of a
file, which will be given as a command-line argument to the program using the
permissions.rs Rust code:

use std::env;

use std::os::unix::fs::PermissionsExt;

fn main() -> std::io::Result<()> {

 let args: Vec<_> = env::args().collect();
 if args.len() < 2 {

 panic!("Usage: {} file", args[0]);
 }

 let f = ::std::env::args().nth(1).unwrap();

http://www.linuxjournal.com

113 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

 let metadata = try!(std::fs::metadata(f));
 let perm = metadata.permissions();

 println!("{:o}", perm.mode());
 Ok(())

}

All the work is done by the permissions() function that’s applied to the
return value of std::fs::metadata(). Notice the {:o} format code in the
println() macro, which indicates that the output should be printed in the
octal system. Once again, the Rust code looks ugly at first, but you’ll definitely
get used to it after a while.

Executing permissions.rs produces the output like the following—the last
three digits of the output is the data you want, where the remaining values have
to do with the file type and the sticky bits of a file or directory:

$./permissions permissions

100755
$./permissions permissions.rs

100644
$./permissions /tmp/

41777

Note that permissions.rs works only on UNIX machines.

Conclusion
This article describes performing file input and output operations in Rust, as
well as working with command-line arguments, UNIX permissions and using
standard input, output and error. Due to space limitations, I couldn’t present
every technique for dealing with files and file I /O in Rust, but it should be clear
that Rust is a great choice for creating system utilities of any kind, including tools
that deal with files, directories and permissions, provided you have the time to
learn its idiosyncrasies. At the end of the day though, developers should decide

http://www.linuxjournal.com

114 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

for themselves whether they should use Rust or another systems programming
language for creating UNIX command-line tools. ◾

Mihalis Tsoukalos is a UNIX administrator and developer, a DBA and mathematician who enjoys technical writing. He is the author of
Go Systems Programming and Mastering Go. You can reach him at http://www.mtsoukalos.eu and @mactsouk.

Resources
• The Rust Programming Language

• Rust Documentation

• The Cargo Book

• Rust Crates

• Programming Rust by Jim Blandy and Jason Orendorff, O’Reilly, 2017

• The Rust Programming Language by Steve Klabnik and Carol Nichols, No
Starch Press, 2018

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.mtsoukalos.eu/
https://www.rust-lang.org/
https://doc.rust-lang.org/
https://doc.rust-lang.org/cargo/index.html
https://crates.io/
http://shop.oreilly.com/product/0636920040385.do
https://nostarch.com/Rust
https://nostarch.com/Rust
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

http://events.linuxfoundation.org/osseu18

116 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Introductory Go
Programming Tutorial
How to get started with this useful new programming language.

By Jay Ts

You’ve probably heard of Go. Like any new
programming language, it took a while to mature
and stabilize to the point where it became useful
for production applications. Nowadays, Go is
a well established language that is used in web
development, writing DevOps tools, network
programming and databases. It was used to write
Docker, Kubernetes, Terraform and Ethereum. Go is
accelerating in popularity, with adoption increasing
by 76% in 2017, and there now are Go user groups
and Go conferences. Whether you want to add

to your professional skills or are just interested in learning a new programming
language, you should check it out.

Why Go?
Go has the safety of static typing and garbage collection along with the speed of a
compiled language. With other languages, “compiled” and “garbage collection” are
associated with waiting around for the compiler to finish and then getting programs
that run slowly. But Go has a lightning-fast compiler that makes compile times barely
noticeable and a modern, ultra-efficient garbage collector. You get fast compile times
along with fast programs. Go has concise syntax and grammar with few keywords,
giving Go the simplicity and fun of dynamically typed interpreted languages like
Python, Ruby and JavaScript.

http://www.linuxjournal.com

117 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

The idea of Go’s design is to have the best parts of many languages. At first, Go looks
a lot like a hybrid of C and Pascal (both of which are successors to Algol 60), but
looking closer, you will find ideas taken from many other languages as well.

Go is designed to be a simple compiled language that is easy to use, while allowing
concisely written programs that run efficiently. Go lacks extraneous features, so it’s
easy to program fluently, without needing to refer to language documentation while
programming. Programming in Go is fast, fun and productive.

Go History

A team of three programmers at Google created Go: Robert Griesemer,
Rob Pike and Ken Thompson. The team decided to create Go because they
were frustrated with C++ and Java, which through the years have become
cumbersome and clumsy to work with. They wanted to bring enjoyment and
productivity back to programming.

The three have impressive accomplishments. Griesemer worked on Google’s
ultra-fast V8 JavaScript engine used in the Chrome web browser, Node.js
JavaScript runtime environment and elsewhere. Pike and Thompson were
part of the original Bell Labs team that created UNIX, the C language and
UNIX utilities, which led to the development of the GNU utilities and Linux.
Thompson wrote the very first version of UNIX and created the B programming
language, upon which C was based. Later, Thompson and Pike worked on the
Plan 9 operating system team, and they also worked together to define the
UTF-8 character encoding.

http://www.linuxjournal.com

118 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Let’s Go
First, let’s make sure you have Go installed. You probably can use your distribution’s
package management system. To find the Go package, try looking for “golang”, which
is a synonym for Go. If you can’t install it that way, or if you want a more recent
version, get a tarball from https://golang.org/dl and follow the directions on that page
to install it.

When you have Go installed, try this command:

$ go version

go version go1.10 linux/amd64

The output shows that I have Go version 1.10 installed on my 64-bit Linux machine.

Hopefully, by now you’ve become interested and want to see what a complete Go
program looks like. Here’s a very simple program in Go that prints “hello, world”:

package main

import "fmt"

func main() {

 fmt.Printf("hello, world\n")
}

The line package main defines the package that this file is part of. Naming main as
the name of the package and the function tells Go that this is where the program’s
execution should start. You need to define a main package and main function even
when there is only one package with one function in the entire program.

At the top level, Go source code is organized into packages. Every source file is part
of a package. Importing packages and exporting functions are child’s play.

https://golang.org/dl
http://www.linuxjournal.com

119 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

The next line, import "fmt" imports the fmt package. It is part of the Go standard
library and contains the Printf() function. Often you’ll need to import more than
one package. To import the fmt, os and strings packages, you can type either this:

import "fmt"

import "os"

import "strings"

or this:
import (

 "fmt"

 "os"

 "strings"

)

Using parentheses, import is applied to everything listed inside the parentheses,
which saves some typing. You’ll see parentheses used like this again elsewhere in Go,
and Go has other kinds of typing shortcuts too.

Packages can export constants, types, variables and functions. To export something,
just capitalize the name of the constant, type, variable or function you want to export.
It’s that simple.

Notice that there are no semicolons in the “hello, world” program. Semicolons at the
ends of lines are optional. Although this is convenient, it leads to something to be
careful about when you are first learning Go. This part of Go’s syntax is implemented
using a method taken from the BCPL language. The compiler uses a simple set of rules
to “guess” when there should be a semicolon at the end of the line, and it inserts one
automatically. In this case, if the right parenthesis in main() were at the end of the
line, it would trigger the rule, so it’s necessary to place the open curly bracket after
main() on the same line.

This formatting is a common practice that’s allowed in other languages, but in

http://www.linuxjournal.com

120 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Go, it’s required. If you put the open curly bracket on the next line, you’ll get an
error message.

Go is unusual in that it either requires or favors a specific style of whitespace
formatting. Rather than allowing all sorts of formatting styles, the language comes with
a single formatting style as part of its design. The programmer has a lot of freedom to
violate it, but only up to a point. This is either a straitjacket or godsend, depending on
your preferences! Free-form formatting, allowed by many other languages, can lead to
a mini Tower of Babel, making code difficult to read by other programmers. Go avoids
that by making a single formatting style the preferred one. Since it’s fairly easy to adopt
a standard formatting style and get used to using it habitually, that’s all you have to do
to be writing universally readable code. Fair enough? Go even comes with a tool for
reformatting your code to make it fit the standard:

$ go fmt hello.go

Just two caveats: your code must be free of syntax errors for it to work, so it won’t fix
the kind of problem I just described. Also, it overwrites the original file, so if you want
to keep the original, make a backup before running go fmt.

The main() function has just one line of code to print the message. In this example,
the Printf() function from the fmt package was used to make it similar to writing a
“hello, world” program in C. If you prefer, you can also use this:

fmt.Println("hello, world")

to save typing the \n newline character at the end of the string.

Now let’s compile and run the program. First, copy the “hello, world” source code to a
file named hello.go. Then compile it using this command:

$ go build hello.go

http://www.linuxjournal.com

121 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

And to run it, use the resulting executable, named hello, as a command:

$ hello

hello, world

As a shortcut, you can do both steps in just one command:

$ go run hello.go

hello, world

That will compile and run the program without creating an executable file. It’s great
for when you are actively developing a project and are just checking for errors before
doing more edits.

Next, let’s look at a few of Go’s main features.

Concurrency
Go’s built-in support for concurrency, in the form of goroutines, is one of the
language’s best features. A goroutine is like a process or thread, but it’s much more
lightweight. It’s normal for a Go program to have thousands of active goroutines.
Starting up a goroutine is as simple as:

go f()

The function f() then will run concurrently with the main program and other
goroutines. Go has a means of allowing the concurrent pieces of the program to
synchronize and communicate using channels. A channel is somewhat like a UNIX
pipe; it can be written to at one end and read from at the other. A common use of
channels is for goroutines to indicate when they have finished.

The goroutines and their resources are managed automatically by the Go runtime
system. With Go’s concurrency support, it’s easy to get all of the cores and threads of
a multicore CPU working efficiently.

http://www.linuxjournal.com

122 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Types, Methods and Interfaces
You might wonder why types and methods are together in the same heading. It’s
because Go has a simplified object-oriented programming model that works along
with its expressive, lightweight type system. It completely avoids classes and type
hierarchies, so it’s possible to do complicated things with datatypes without creating
a mess. In Go, methods are attached to user-defined types, not to classes, objects or
other data structures. Here’s a simple example:

// make a new type MyInt that is an integer

type MyInt int

// attach a method to MyInt to square a number

func (n MyInt) sqr() MyInt {
 return n*n
}

// make a new MyInt-type variable
// called "number" and set it to 5

var number MyInt = 5

// and now the sqr() method can be used

var square = number.sqr()

// the value of square is now 25

Along with this, Go has a facility called interfaces that allows mixing of types.
Operations can be performed on mixed types as long as each has the method
or methods attached to it, specified in the definition of the interface, that are
needed for the operations.

http://www.linuxjournal.com

123 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Suppose you’ve created types called cat, dog and bird, and each has a method
called age() that returns the age of the animal. If you want to add the ages of all
animals in one operation, you can define an interface like this:

type animal interface {
 age() int

}

The animal interface then can be used like a type, allowing the cat, dog and bird
types all to be handled collectively when calculating ages.

Unicode Support
Considering that Ken Thompson and Rob Pike defined the Unicode UTF-8
encoding that is now dominant worldwide, it may not surprise you that Go
has good support for UTF-8. If you’ve never used Unicode and don’t want to
bother with it, don’t worry; UTF-8 is a superset of ASCII. That means you can
continue programming in ASCII and ignore Go’s Unicode support, and everything
will work nicely.

In reality, all source code is treated as UTF-8 by the Go compiler and tools.
If your system is properly configured to allow you to enter and display UTF-8
characters, you can use them in Go source filenames, command-line arguments
and in Go source code for literal strings and names of variables, functions,
types and constants.

In Figure 1, you can see a “hello, world” program in Portuguese, as it might be
written by a Brazilian programmer.

In addition to supporting Unicode in these ways, Go has three packages in its
standard library for handling more complicated issues involving Unicode.

By now, maybe you understand why Go programmers are enthusiastic about the
language. It’s not just that Go has so many good features, but that they are all

http://www.linuxjournal.com

124 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

included in one language that was designed to avoid over-complication. It’s a
really good example of the whole being greater than the sum of its parts. ◾

Jay Ts is a software developer, Linux system administrator and electronic designer. He got started with UNIX and the C Programming
Language in 1981, and switched from UNIX to Linux in 1996. He is familiar with many operating systems, Linux distributions and
programming languages. Jay formerly worked for Caltech, NASA/JPL and the Information Sciences Institute. He currently lives in Sedona,
Arizona. Send comments to jay@jayts.com.

Figure 1. Go “Hello,
World” Program in
Portuguese

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

Resources
• Official Go Website
• Go Tour
• Go Playground
• Go GitHub Repository
• The Go Programming Language by Alan A. A. Donovan and Brian W.

Kernighan, Addison-Wesley, 2015

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://golang.org/
https://tour.golang.org/welcome/1
https://play.golang.org/
https://github.com/golang/go
https://www.gopl.io/
https://www.gopl.io/
http://www.linuxjournal.com
mailto:jay@jayts.com

125 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Creating Linux
Command-Line Tools
in Clojure
Learn how the leiningen utility can help you manage your
Clojure projects.

By Mihalis Tsoukalos

This article is a gentle introduction to
the Clojure Functional Programming
language that is based on LISP, uses the
Java JVM and has a handy REPL. And, as
Clojure is based on LISP, be prepared to
see lots of parentheses!

Installing Clojure
You can install Clojure on a
Debian Linux machine by executing
the following command as root or
using sudo:

apt-get install clojure

Finding the version of Clojure you are using is as simple as executing one
of the following commands inside the Clojure REPL, which you can enter
by running clojure:

http://www.linuxjournal.com

DEEP
DIVE
DEEP
DIVE

clojure

Clojure 1.8.0

user=> *clojure-version*
{:major 1, :minor 8, :incremental 0, :qualifier nil}
user=> (clojure-version)

"1.8.0"

user=> (println *clojure-version*)
{:major 1, :minor 8, :incremental 0, :qualifier nil}
nil

The first command gets you into the Clojure REPL, which displays the user=>
prompt and waits for user input. The remaining three commands that should be
executed within the Clojure REPL will generate the same output, which, in this
example, shows that Clojure version 1.8.0 is being used. So, if you’re following
along, congratulations! You have just run your first Clojure code!

The leiningen Utility
The first thing you should do after getting Clojure is to install a very handy
utility named leiningen, which is the easiest way to use and manage Clojure
projects on your Linux machine. Follow the instructions at leiningen.org or
use your favourite package manager to install leiningen on your Linux machine.
Additionally, if you are using Clojure all the time and working with large Clojure
projects, tools like Jenkins and Semaphore will automate your build and test
phases and save you lots of time.

After installing leiningen, use the lein command (which is the name of the
executable file for the leiningen package) to create a new project named hw:

$ lein new hw

Generating a project called hw based on the 'default' template.
The default template is intended for library projects,
not applications. To see other templates (app, plugin, etc),
try 'lein help new'.

126 | October 2018 | http://www.linuxjournal.com

https://leiningen.org/#install
https://jenkins.io/
https://semaphoreci.com/
http://www.linuxjournal.com

127 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

The preceding command will create a new directory named hw that will
contain files and other directories. You’ll need to make some changes to some
of the project files in order to execute the project. First, you’ll need to edit the
project.clj that can be found inside the hw directory and make it as follows:

$ cat project.clj

(defproject hw "0.1.0-SNAPSHOT"
 :main hw.core

 :dependencies [[org.clojure/clojure "1.8.0"]])

Then, edit the ./src/hw/core.clj file so it looks like this:

$ cat src/hw/core.clj

(ns hw.core)

(defn -main [& args]
 (println "Hello World!"))

The ./src/hw/core.clj file is where you can find the Clojure code. Executing the
preceding project is as simple as running the lein run command inside the
directory of the project:

$ lein run

Hello World!

The first time you execute lein run, lein might automatically download some
files that are required for building the project. Additionally, keep in mind that lein
can do many more things than what I describe here. The next most important lein
commands are lein clean, which cleans up a Clojure project, and lein repl,
which starts the Clojure console.

Clojure Data Types
Clojure’s philosophy is based on Lisp, which means that Clojure code contains

http://www.linuxjournal.com

128 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE
DEEP
DIVE

128 | October 2018 | http://www.linuxjournal.com

lots of parentheses. Additionally, Clojure is a functional and dynamically typed
programming language that has support for concurrent programming, which
means Clojure’s functions (try to) have no side effects. As the implementation
of Clojure is based on the Java Virtual Machine, Clojure data types are Java
data types, which means that all Clojure values are in reality references to Java
classes. Moreover, most Clojure data types are immutable, which means they
can’t be changed after they’ve been created. Finally, Clojure has an unusual way
of checking for equality. In order to find out whether two lists are the same,
Clojure checks the actual values of the two lists. Most programming languages
don’t do that because it might be a slow process, especially when dealing with
large lists. Nevertheless, Clojure avoids that risk by keeping a hash for each one
of its objects and by comparing the hashes of two objects instead of actually
visiting all their values. This works as long as the objects are immutable, because
if objects are mutable and one of the objects changes, its hash table won’t be
updated to reflect that change.

In summary, Clojure supports numbers, booleans, characters, strings, nil values,
function variables, namespaces, symbols, collections, keywords and vars. A var is
one of the mutable Clojure types. A collection can be a list, a hashmap, a vector
or a sequence, but lists and hashmaps are the most popular Clojure data types.

But, that’s enough of a Clojure introduction; let’s start writing real Clojure code.

Working with Data
First, let’s look at how to define and populate variables in Clojure as well as
how to visit all the elements of a list using the Clojure shell. The Clojure syntax
requires that you put the operators as well as the functions in a prefix way, which
means that operators are placed before their arguments and not between the
arguments (infix). Putting it simply, to calculate the sum of 9 and 4, you would
write + 9 4 and not 9 + 4.

Interaction with the Clojure shell starts like this:

http://www.linuxjournal.com

129 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

user=> (- 10)

-10

user=> (- 10 10)

0

user=> (- 10 (+ 5 5))

0

user=> (/ 10 (+ 5 5))

1

user=> (println "Hello\nLinux Journal!")
Hello
Linux Journal!

nil

user=> (str "w12")

"w12"

This Clojure code does some basic things with numbers first and then with strings. In
the first statement, you can see that everything in Clojure must be put in parentheses.
The third numeric operation is equivalent to 10 - (5 + 5), which equals zero; whereas
the fourth numeric operation is equivalent to 10 / (5 + 5), which equals 1. As you
already saw in the Hello World program, the println function is used for printing
data on the screen; whereas the str function can help you convert anything,
including numbers, into a string. A good bonus of str is that you can use it for
concatenating strings when it’s called with multiple arguments.

The next interaction verifies that characters in Clojure, which are written as \a, \b
and so on, are not equivalent to Clojure strings, which use double quotes, with a
length of 1. However, when you process a single character with str, you get a string:

user=> (= \a "a")

false

user=> (= (str \a) "a")

true

http://www.linuxjournal.com

130 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

And now, get ready for something more advanced:

user=> (map (fn [x] (.toUpperCase x)) (.split

 ↪"Hello Linux Journal!" " "))
("HELLO" "LINUX" "JOURNAL!")

The preceding Clojure code does many things. It splits its input string into words
and converts each word to uppercase—the good thing is that the way this
statement is written in Clojure is natural and easy to read—as long as you start
reading it from the right to the left.

The following interaction with the Clojure shell shows how you can work with
Clojure maps, which (as you might expect) associate keys with values:

user=> (def myMap {:name "Mihalis"
:surname "Tsoukalos"

:livesAt {:country "Greece"
:city "Athens" } })
#'user/myMap

First, you create a new map and assign it to a variable named myMap. Notice that
myMap contains a nested value—that is, a map within a map.

In the next interaction, you’ll see various ways to get data from the previous map:

user=> (get myMap :country)
nil

user=> (get myMap :name)
"Mihalis"

user=> (myMap :name)
"Mihalis"

user=> (:name myMap)
"Mihalis"

http://www.linuxjournal.com

131 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

user=> (get myMap :surname)
"Tsoukalos"

user=> (get-in myMap [:livesAt :country])
"Greece"
user=> (get-in myMap [:livesAt :city])
"Athens"

user=> (get-in myMap [:livesAt :wrong])
nil

So, you can get the value of a key using the get keyword, and you can travel inside
nested values with the get-in keyword. Moreover, there are two additional ways to
get the value of a key without needing to use the get keyword, which are illustrated
in the second and the third commands.

Additionally, if a key does not exist, you’ll get a nil value. Finally, here’s how to iterate
over all the elements of a list:

user=> (def myList (list 0 1 2 3 4 5))
#'user/myList
user=> (doseq [[value index] (map vector myList (range))]
(println index ": " value))

0 : 0

1 : 1

2 : 2

3 : 3

4 : 4

5 : 5

nil

So, first you store a list with numbers to the myList variable, and then you use
doseq to iterate over the elements of the list.

http://www.linuxjournal.com

132 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Calculating Fibonacci Numbers
This section shows how to define a function in Clojure that calculates natural numbers
that belong to the Fibonacci sequence. Create the Clojure project for calculating
numbers of the Fibonacci sequence like this:

$ lein new fibo

$ cd fibo

$ vi src/fibo/core.clj

$ vi project.clj

The contents of src/fibo/core.clj should be this:

$ cat src/fibo/core.clj

(ns fibo.core)

(def fib

 (->> [0 1]

 (iterate (fn [[a b]] [b (+ a b)]))

 (map first)))

(defn -main [& args]
 (println "Printing Fibonacci numbers!"))
 (println (nth fib 10))

 (println (take 15 fib))

In the aforementioned code, the definition of the fib function is responsible for
calculating the numbers of the Fibonacci sequence. After that, the main function uses
fib two times. The first time is to get a specific Fibonacci number, and the second
time is to get a list with the first 15 Fibonacci numbers.

http://www.linuxjournal.com

133 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Executing the fibo project generates output like the following:

$ lein run

55

(0 1 1 2 3 5 8 13 21 34 55 89 144 233 377)
Printing Fibonacci numbers!

When you start feeling comfortable with Clojure, try implementing the fib function
differently because there are many more ways to calculate Fibonacci numbers in Clojure.

Working with Command-Line Arguments
Now, let’s look at how to use the command-line arguments of a program in Clojure
using a lein project. The steps for creating the “cla” project are as follows:

$ lein new cla

$ cd cla

First, you should edit src/cla/core.clj to include the actual Clojure code that deals with
the command-line arguments of the program. After that, you edit project.clj, and you
are done. You can find the Clojure code that actually works with the command-line
arguments of the program in the main function that is defined inside src/cla/core.clj:

(defn -main [& args] ; Get command line arguments
 (if-not (empty? args)
 (doseq [arg args]

 (println arg))

; In case there are no command line arguments

 (throw (Exception. "Need at least one

 ↪command line argument!"))))

The previous Clojure code iterates over the items of the args variable using doseq
and prints each one of its items. Additionally, the last line of code illustrates how

http://www.linuxjournal.com

134 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

to handle exceptions in Clojure. You need that line because doseq won’t run if
the args list is empty, which will happen when a program is executed without any
command-line arguments. Finally, you can see that comments in Clojure are lines that
begin with a semicolon or the part of the line after a semicolon character.

Executing the Clojure project generates output like the following:

$ lein run one 2 three -5

one

2

three

-5

As you can see, the way to give command-line arguments to a Clojure project is
the same as in most programming languages. Note that if you execute lein run
without giving any command-line arguments, the program will panic and produce
lots of debugging output, including the following message:

$ lein run

Exception in thread "main" java.lang.Exception: Need at least

one command line argument!,

Getting User Input
Apart from using the command line-arguments of a program, there is an alternative
way for getting user input, which is during the execution of the program. Here’s how
to get input from the user in the Clojure shell using the read-line function:

user=> (def userInput (read-line))

Hello there!
#'user/userInput

user=> (println userInput)

Hello there!
nil

http://www.linuxjournal.com

135 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

The first command uses the read-line function to read a line from the user and
assigns that line to a new variable named userInput; whereas the second command
prints the value of the userInput variable.

Clojure Macros
Macro definitions look like function definitions, as they have a name, a list of
arguments and a body with the Clojure code, and they allow the Clojure compiler
to be extended using user code. Generally speaking, there are three circumstances
when you need to use macros in Clojure: when you want to execute code at compile
time, when you want to use inline code and when you need to access un-evaluated
arguments. However, as macros are available only at compile time, it’s better to use
functions instead of macros when possible.

File Copying in Clojure
Next, here’s how to copy a file in Clojure, in case you want to evaluate whether
Clojure can be used as a systems programming language like C and Go. As you might
expect, you’ll use the lein utility for generating the project:

$ lein new copy
$ cd copy/
$ vi project.clj

$ vi src/copy/core.clj

The last two commands signify that you need to change the project.clj and
src/copy/core.clj files.

You can find this project’s logic in the implementation of the main() function:

(defn -main [& args]
 (let [input (clojure.java.io/file "/tmp/aFile.txt")

 output (clojure.java.io/file "/tmp/aCopy.txt")]

 (try

http://www.linuxjournal.com

136 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

 (= nil (clojure.java.io/copy input output))
 (catch Exception e (str "exception: "

 ↪(.getMessage e))))))

As it happens with most programming languages, you can use many techniques
in order to copy a file. This example uses the simplest method for copying a file
with a single function call. Other techniques include reading the input file all at
once and writing it to the output file the same way, and reading the input file line
by line and writing to the output file line by line. For reasons of simplicity, the
input and output filenames are hard-coded in the project files and are assigned
to two variables named input and output, respectively. After that, a call to
clojure.java.io/copy creates a copy of the input file. Although this method
doesn’t require many lines of code, it might not be very efficient when you
want to copy huge files or when you want to be able to change some of the
parameters of the process.

Executing the project generates no output, but the desired copy of the input
file will be created:

$ ls -l /tmp/aFile.txt /tmp/aCopy.txt
ls: /tmp/aCopy.txt: No such file or directory
-rw-r--r-- 1 mtsouk wheel 14 Jun 28 10:32 /tmp/aFile.txt

$ lein run

$ ls -l /tmp/aFile.txt /tmp/aCopy.txt
-rw-r--r-- 1 mtsouk wheel 14 Jun 28 10:49 /tmp/aCopy.txt
-rw-r--r-- 1 mtsouk wheel 14 Jun 28 10:32 /tmp/aFile.txt

If you want to make your code more robust, you might want to use a
(.exists (io/file "aFile.txt")) statement to check whether your
input file does exist before trying to copy it and a (.isDirectory (io/file
"/a/path/to/somewhere")) statement to make sure that neither your input
file nor your output file are directories.

http://www.linuxjournal.com

137 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Listing the Directories and the Files of a Directory
Finally, let’s look at how to visit the files and directories that reside in a given
directory. You can create the lein project as follows:

$ lein new list

$ cd list

As expected, you’ll need to edit two files from your new project: project.clj
and src/list/core.clj. You can find the program’s logic in the Clojure code of the
listFileDir function that is defined in src/list/core.clj:

(defn listFileDir [d]

 (println "Files in " (.getName d))

 (doseq [f (.listFiles d)]

 (if (.isDirectory f)
 (print "* ")
 (print "- "))

 (println (.getName f))))

Running your lein project generates output like this:

$ lein run

Files in .

- project.clj

- LICENSE

* test
- CHANGELOG.md
* target
- .hgignore

* resources
- README.md

- .gitignore

* doc
* src

http://www.linuxjournal.com

138 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Conclusion
This article introduces Clojure, which is a very interesting functional programming
language with many fans. The tricky thing is that you need to get used to Clojure by
writing small Clojure programs in order to realize its advantages. ◾

Mihalis Tsoukalos is a UNIX administrator and developer, a DBA and mathematician who enjoys technical writing. He is the author of
Go Systems Programming and Mastering Go. You can reach him at http://www.mtsoukalos.eu and @mactsouk.

Resources
• Clojure Website

• Clojure Documentation

• leiningen Website

• Jenkins

• Semaphore

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.mtsoukalos.eu/
https://clojure.org/
https://clojure.org/reference/reader
https://leiningen.org/
https://jenkins.io/
https://semaphoreci.com/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

Decentralized
Certificate Authority

and Naming

Free and open source contributors only:

handshake.org/signup

http://handshake.org/signup

140 | October 2018 | http://www.linuxjournal.com

REVIEW: SYSTEM76 ORYX PRO LAPTOP

Review: System76
Oryx Pro Laptop
Can “by hackers, for hackers” sell laptops? System76 sold an
Oryx Pro to Rob, and he’s here to tell you about it.

By Rob Hansen

I should start by saying that although I’m definitely no newbie to Linux, I’m new to the
world of dedicated Linux laptops. I started with Linux in 1996, when Red Hat 4.0 had
just adopted the 2.0 kernel and Debian 1.3 hadn’t yet been released. I’ve run a variety
of distros with varying degrees of satisfaction ever since, always looking for the Holy
Grail of a desktop UNIX that just plain worked.

About 15 years ago after becoming frustrated with the state of Linux on laptop
hardware (in a phrase, “nonexistent hardware support”), I switched my laptops over
to Macs and didn’t look back. It was a true-blue UNIX that just plain worked, and I was
happy. But I increasingly found myself frustrated by things I expected from Linux that
weren’t available on macOS, and which things like Homebrew and MacPorts and Fink
could only partly address.

My last MacBook Pro is now four years old, so it was time to shop around again. After
being underwhelmed by this generation of MacBooks, I decided to take the risk on a
Linux laptop again.

Oh my, an awful lot has changed in 15 years!

System76
System76 is a Denver-based firm with a “by hackers, for hackers” ethos. It’s not the
first outfit to have tried to deliver on this promise, nor will it be the last. It follows in a

http://www.system76.com/
http://www.linuxjournal.com

141 | October 2018 | http://www.linuxjournal.com

REVIEW: SYSTEM76 ORYX PRO LAPTOP

long line pioneered by Red Hat and VA Research, and it will continue in the future with
businesses yet to be founded. At this moment in history though, System76 seems to
be doing a pretty good job of maintaining that standard.

Inquiries
My initial contact with System76 came by visiting the website and requesting
a quote for one of its third-generation Oryx Pro models. The sales staff were
responsive, polite and didn’t seem to have their personalities obliterated into
uniform perfection like the Stepford Salesforce of Lenovo or Dell. I also never
caught a whiff of a hard sell from any of them. On three occasions just before
being able to put down my hard-earned dinero on an Oryx Pro, my life went
sideways, and my laptop fund went to pay for strange emergencies that arose out
of nowhere, but the System76 sales staff were cheerfully uncaring about this. The
impression I got was they believed they knew were going to miss a sale right then,
but whether they missed it forever depended on how they behaved in that instant.
It’s an enlightened view from which more vendors could stand to learn.

Sales
At last, my laptop fund regenerated, and there were no emergencies on the horizon.
I visited the System76 site again and discovered in the intervening months that a new
generation of the Oryx Pro had been announced, and the first 100 pre-orders would
receive some nice swag. Judging from the swag I received (mostly a nice-looking
promotional poster that’s actually worth framing and putting on your cube wall), I was
one of the first 100. I placed my order May 7, 2018, and was told shipments would
begin the first week in June.

A couple minor problems arose. The first was that, as tends to happen with pre-
orders, the new units were not available quite on schedule. The second was that
System76 wasn’t proactive about informing me of the delays. I was originally cited
a delivery date of June 11th, but I didn’t receive mine until June 15th. In the grand
scheme of things, this was a minor issue—I’ve had far, far worse delays from much
bigger vendors. Still, the fact that it was on me to ask about shipments, instead of
them telling me there would be a four-day delay was an unforced error on their part.

http://www.linuxjournal.com

142 | October 2018 | http://www.linuxjournal.com

REVIEW: SYSTEM76 ORYX PRO LAPTOP

Price
It’s sweet hardware, and it’s priced like sweet hardware. My laptop came in at $2,704
(including expedited shipping).

Figure 1.
Unboxing, Part 1

Figure 2.
Unboxing, Part 2

http://www.linuxjournal.com

143 | October 2018 | http://www.linuxjournal.com

REVIEW: SYSTEM76 ORYX PRO LAPTOP

Hardware
The new fourth-generation Oryx Pro is what was only a year ago called a “desktop
replacement”. But that class of computers refers to boat anchors that were
unpleasant to lug around in a messenger bag, not a slim machine that’s approaching

Figure 3.
Unboxing, Part 3

Figure 4. Unleashed!

http://www.linuxjournal.com

144 | October 2018 | http://www.linuxjournal.com

REVIEW: SYSTEM76 ORYX PRO LAPTOP

the dimensions of a MacBook. At 15" wide, 10" high, and 3/4" deep, weighing less
than 4.5 pounds, it’s closer to an airweight than a boat anchor. (That’s 38cm by 26cm
by 2cm and just under two kilos, for you nerds out there in civilized countries that use
proper measurements.) And packed into this form factor is a 4.1GHz i7-8750H with
six cores and 12 threads, 32 gigs of DDR4 RAM at 2400MHz, a half-terabyte NVMe
SSD, and—Maestro, cue the drumroll—an 8GB NVIDIA GTX 1070 with a 15.6” 4K
HiDPI display. This thing makes the Mac Retinas look jagged, and that’s not something
I ever thought I’d say.

The usual other things round it out. For video, it has HDMI and two DisplayPort 1.3
outputs, two USB 3.1 Type-C connectors, two USB 3.0 Type-A connectors (one of
them powered), audio and mike jacks, gigabit Ethernet and 802.11ac WiFi up to
867Mbps. Oh yes, and Bluetooth. On the 17" models, you also can get Thunderbolt
3, but this isn’t an option on my 15" model. All of these are pretty much what you
should expect on any modern laptop, really.

The keyboard is what the kids today call a chiclet, but it has absolutely nothing in
common with the chiclet keyboards I remember. People hated the IBM PCjr chiclet
keyboard, but this one is as comfortable as any laptop keyboard I’ve ever used. The
scissor switches are responsive, and the keyboard itself is nicely backlit by a rainbow
of LED lights. It’s a very nearly full keyboard too, with a full-size numeric keypad. Some
buttons are combined with others and accessed via function key-presses, but that’s to
be expected. The keyboard gets high marks.

Mouse support is provided via a trackpad with two buttons, which is one of the very
few mis-designs in the hardware. Although two-button mice are better-understood
by casual and business users, a lot of hard-core Linux hackers like the third mouse
button—myself included. The screen bezel is a little larger than I’m accustomed to
seeing on a modern laptop, but if that’s the price I pay for this crisp 4K HiDPI display, I
consider that affordable.

There’s an integrated webcam that works well out of the box with Google
Hangouts, Google Meet and Skype. I stopped testing it at that point and reached

http://www.linuxjournal.com

145 | October 2018 | http://www.linuxjournal.com

REVIEW: SYSTEM76 ORYX PRO LAPTOP

for a piece of electrical tape to cover it, and while cutting off a piece of tape, I
realized the final mis-design. In 2018, when we’re all so keenly aware of our privacy
and how malware can hijack a webcam, all vendors should place sliding apertures
over their webcams. Getting video should never just be about turning it on in
software. There also should be a physical action performed by the user involved—
something as simple as sliding away a cover.

Bezel, no third mouse button, no webcam physical aperture—if those are my only
complaints about the hardware, I think System76 is doing a pretty good job.

Software
The Pop!_OS is Ubuntu with a skin job, but it’s a pretty nice skin. Scratch the surface,
and you can find standard GNOME underneath, which is in my mind a positive
thing—all those skills you’ve developed on other distros will transfer over to Pop!_OS
nicely. The app store takes visual inspiration from Apple’s, but it could stand some
better curation. Clicking on the “Games” category gives you a nice list of them,
but there’s no facility to read user reviews or choose what kind of games you’re
interested in. Although graphically it’s heads and shoulders beyond the package tools
of yesteryear, usability-wise it still could stand improvement. Given System76 has
committed to making Pop!_OS a first-class hacker distro, I suspect the app store
experience is pretty low on the list of priorities—but really, it would be such an easy
way to distinguish it from Ubuntu and its other derivatives.

My biggest complaint with Pop!_OS is that it’s almost a dark theme but isn’t. “Dark
muddy” might be a better way to describe the color scheme.

Still, as mentioned earlier, it’s all GNOME under the hood, so you can install whatever
theme you’re accustomed to.

As far as development tools, it seems to all be standard Ubuntu 18.04 repositories,
so I won’t rehash it except to say that it offers what you expect: GCC 7.3 and 8.0.1,
GNAT, Golang, OpenJDK, Mono and the like. The Mono libraries are out of date (4.8,
whereas the current is 5.12), but that’s on Ubuntu, not Pop!_OS.

http://www.linuxjournal.com

146 | October 2018 | http://www.linuxjournal.com

REVIEW: SYSTEM76 ORYX PRO LAPTOP

Sound and Video
Sound-wise, the Oryx Pro is a little bit of a letdown. There’s been so much good
stuff that describing the speakers as mediocre feels like a criticism. They’re not bad
speakers, mind you, they’re just not going to impress you much. It’s a laptop. It’s
really, really hard to put good speakers in a laptop. I compromise with a USB headset
and everything’s great. I’ve also had fine results with a pair of external USB speakers.

Video-wise, the Oryx Pro is a docile little lamb up until it turns into the Stay-Puft
Marshmallow Man and starts stomping New York flat. It ships with two different video
chipsets: one an onboard low-power set by Intel and the other the aforementioned
NVIDIA GTX 1070 with 8GB RAM. When you engage this monster, this machine stops
being a laptop. I speak from experience. An hour of it in my lap was enough to leave
my left thigh with first-degree burns. You’re aware it’s hot, but you tell yourself that
you can ignore it. Then you shut down an hour later, look at your leg and wish you
hadn’t ignored it. The price of machismo, I guess.

The Intel chipset is sufficient for pretty much anything short of intensive 3D, 4K gaming
or mining cryptocurrency. If you want to use the HDMI or DisplayPort external jacks,
you’ll need to switch to the NVIDIA chipset. Switching between chipsets requires a reboot
and a surprisingly long wait. My suspicion is some firmware is getting flashed somewhere.
By “surprisingly long wait”, I mean that I’ve seen it take up to 20 seconds more to reboot
on a chipset switch than to reboot without a chipset switch.

Battery Life
Power is supplied by a pretty standard brick that ends in the expected barrel plug. The
trend nowadays is for laptops to be powered by USB-C or Thunderbolt, but really, I
don’t care much about that. What I care about is whether the vendor-supplied power
cable is long enough to be useful, and there we’re on good ground. This contributes
to the overall weight, of course, which is why so many vendors are intent on giving you
power cables that aren’t long enough to let you be more than three feet from a socket.
System76 is having none of that: you’ve got about ten feet of distance to work with.

According to System76, the Oryx Pro’s battery stores 55 watt-hours (~200

http://www.linuxjournal.com

147 | October 2018 | http://www.linuxjournal.com

REVIEW: SYSTEM76 ORYX PRO LAPTOP

kilojoules) of energy. That’s the good news. The bad news is twofold: one, power
draw is significantly higher than I’d expect, and two, the onboard battery monitor is
completely useless.

I’ve been composing this article on my System76 laptop in battery-saver mode. The
screen is at minimum brightness, the graphics are being provided by the Intel chipset,
and I’m avoiding anything that’s especially power-hungry. Still, after just 70 minutes,
I’ve dropped from a 98% charge to a 60% charge—assuming I can trust the battery
monitor, which I really can’t. 70 minutes ago it told me I had 92 minutes of charge
remaining; now it tells me I have two hours and seven minutes.

Whatever. The GNOME battery applet always has been painfully inaccurate, in my
experience, and that’s on GNOME, not System76.

Here’s what I can tell you: running purely on battery on a power-saving profile and
reducing my power-hungry apps, I’ve run this laptop for three and a half hours before
going dry. That’s a significant step below what Apple’s getting with its MacBook line.
I hope System76 invests in improving Linux and GNOME’s power infrastructure,
because we can do better than this.

Like other vendors, System76 has done away with the user-swappable battery pack. It
used to be that if I need more battery life I could carry a spare battery, but apparently
that ship has sailed.

Are we done with this? Good. Hold on while I find a socket, I’m going to go plug this in.

Support
Here’s something that might surprise you: my laptop is defective.

Yes, it’s defective. That’s not unheard of in first-shipped units. Every week or so, it’ll
spontaneously reboot due to a hardware fault. These reboots are infrequent enough
that it’s not severely impacting my work, but it still needs addressing, and that’s given
me a good opportunity to explore System76’s support offerings.

http://www.linuxjournal.com

148 | October 2018 | http://www.linuxjournal.com

REVIEW: SYSTEM76 ORYX PRO LAPTOP

Let me give the bottom line first: they’re human beings and they care. That’s both
good news and bad news. It’s good news, because human beings who care are so
much better than all other alternatives that it’s like comparing a supernova to a
firecracker. It’s bad news, because for things really to get screwed up, you need the
involvement of people who are so fervently committed to getting things right, they
don’t notice they’re digging the hole deeper.

I reported my first bout of reboots, along with a copy of my system log for 30 seconds
prior to reboot, via the web page the afternoon of June 20th. A few minutes after
noon the next day, System76 had approved a no-questions-asked return. On June 22,
a customer service rep named Aaron told me “We are shipping your replacement part
and will provide you with a tracking number as soon as it is available.”

Remember how earlier on when shipments were delayed they didn’t inform me about
it? Yeah, that happened again. On June 26th, I asked them, “Where is this laptop? I’ve
received no tracking information for a product you said was shipping four days ago.”

About an hour later, Emma informed me, “The replacement laptop will take some time
to ship, because we are out of stock and awaiting the 4k display, which is expected to
arrive the week of July 10th. We are sorry for the delays. We were just notified about
the delays and apologize for this inconvenience.”

On June 22nd, I was told it was shipping, not “we will ship it as soon as new stock
comes in”, but that it was shipping. Then, after it became clear there was a delay in
new arrivals, they didn’t reach out to let me know. Instead, I found out four days later
that I wouldn’t be receiving my replacement for two weeks.

I complained loudly. Carl, the head honcho at System76, responded to me directly
and politely. He took responsibility for the error. System76 assures me it has changed
the response system so the company no longer will be sending “we are shipping”
notifications ahead of, well, you know, systems actually shipping.

Let me make it clear, I believe Carl. I also think Emma and Aaron and everyone

http://www.linuxjournal.com

149 | October 2018 | http://www.linuxjournal.com

REVIEW: SYSTEM76 ORYX PRO LAPTOP

else I’ve interacted with are good people who genuinely want to deliver the best
user experience possible. I don’t think my experience with System76 represents its
character as a company, except insofar as it represents a company going through
growing pains as it adjusts to a level of demand it wasn’t expecting.

And really, for how sweet this hardware is, I completely understand the company
getting swamped.

The final question is, “if I had the $2,704 to spend again, would I be better served with
an System76 Oryx Pro, a MacBook Pro or a Dell XPS?” And on balance, even taking
into account the support growing pains, I can say without a shadow of doubt, I would
give my money to System76 again.

And I’ll also still be pestering System76 to do better. Because once the support
infrastructure is cleaned up, believe you me, System76 is going to be giving everybody
else in the Linux laptop space a run for their money.

The Takeaway

Pluses:
• A desktop replacement laptop in a near-MacBook form factor.
• i7-8750H with six cores and 12 threads.
• Up to 32GB RAM, and a wide variety of HD options including large NVMe SSDs.
• 55Wh battery, ~3-hour life under real-world conditions.
• Pop!_OS is a nice-looking Ubuntu 18.04 derivative.
• GTX 1070 and Intel GPUs.
• Backlit near-full-size keyboard with numeric keypad.
• Lots of USB ports, including two USB-3.1 Type-Cs.
• Thunderbolt on the 17” model.
• 15” models offer 4K HiDPI displays, which are amazingly crisp.

Minuses:
• Sales and support departments are experiencing growing pains.

http://www.linuxjournal.com

150 | October 2018 | http://www.linuxjournal.com

REVIEW: SYSTEM76 ORYX PRO LAPTOP

• No third button on trackpad.
• No physical aperture on webcam.
• Screen bezel slightly larger than expected.
• Laptop gets dangerously hot when the GTX 1070 kicks in.

Recommendations:
• If you’ve got the money, this is the best thing I’ve found for dedicated

Linux laptops.
• Be patient with System76’s staff. They’re having growing pains.
• Tell them I sent you. ◾

Rob Hansen (@robertjhansen on Twitter) started using Linux in October 1996 and hasn’t looked back since. He graduated from Cornell
College in 1998, went on to graduate school at the University of Iowa, and he continues to promise his family he’ll someday finish his
PhD. Until then, he’s saving the world with IronNet Cybersecurity where he enjoys curious pastimes like speaking about himself in the
third person while not speaking for his employer.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

151 | October 2018 | http://www.linuxjournal.com

3D-PRINTED FIREARMS ARE BLOWING UP

3D-Printed Firearms
Are Blowing Up
What’s the practical risk with 3D-printed firearms today? In this
opinion piece, Kyle explores the current state of the art.

By Kyle Rankin

If you follow 3D printing at all, and even if you don’t, you’ve likely seen some of
the recent controversy surrounding Defense Distributed and its 3D-printed firearm
designs. If you haven’t, here’s a brief summary: Defense Distributed has created 3D
firearm models and initially published them for free on its DEFCAD website a number
of years ago. Some of those 3D models were designed to be printed with a traditional
home hobbyist 3D printer (at least in theory), and other designs were for Defense
Distributed’s “Ghost Gunner”—a computer-controlled CNC mill aimed at milling
firearm parts out of metal stock. The controversy that ensued was tied up in the
general public debate about firearms, but in particular, a few models got the most
attention: a model of an AR-15 lower receiver (the part of the rifle that carries the
serial number) and “the Liberator”, which was a fully 3D-printed handgun designed to
fire a single bullet. The end result was that the DEFCAD site was forced to go offline
(but as with all website take-downs, it was mirrored a million times first), and Defense
Distributed has since been fighting the order in court.

The political issues raised in this debate are complicated, controversial and have
very little to do with Linux outside the “information wants to be free” ethos in the
community, so I leave those debates for the many other articles on this issue that
already have been published. Instead, in this article, I want to use my background as
a hobbyist 3D printer and combine it with my background in security to build a basic
risk assessment that cuts through a lot of the hype and political arguments on all
sides. I want to consider the real, practical risks with the 3D models and the current

http://www.linuxjournal.com

152 | October 2018 | http://www.linuxjournal.com

3D-PRINTED FIREARMS ARE BLOWING UP

Ghost Gunner CNC mill that Defense Distributed provides today. I focus my risk
assessment on three main items: the 3D-printed AR-15 lower receiver, the Liberator
3D-printed handgun and the Ghost Gunner CNC mill.

3D-Printed AR-15 Lower Receiver
This 3D model was one of the first items Defense Distributed shared on DEFCAD. In
case you aren’t familiar with the AR-15, its modular design is one of the reasons for
its popularity. Essentially every major part of the rifle has numerous choices available
that are designed to integrate with the rest of the rifle, and you can find almost all of
the parts you need to assemble this rifle online, order them independently, and then
build your own—that is, except for the lower receiver. That part of the rifle is what
the federal government considers “the rifle”, as it is the part that’s stamped with the
serial number that uniquely identifies and registers one particular rifle versus all of
the others out there in the world. This part has restrictions like you would find with a
regular rifle, revolver or other firearm.

The fact that the lower receiver gets the serial number is what makes a 3D-printed
lower receiver so controversial, because if you can print your own, you can attach it
to all of the other rifle parts you purchased online and assemble a rifle that has no
serial number. The concern is that people will buy a 3D printer and create an AR-15
rifle that can’t be traced.

If you haven’t done much 3D printing, you may not know that just because a 3D model
for a part exists, it doesn’t mean you can print it. Most of the designs offered by
sites like Thingiverse were created by 3D modelers who understand the limitations
of home 3D printers (like needing to print support material if you print part of an
item over the open air), and they design their parts accordingly. The AR-15 lower
receiver never was designed to be printed on a 3D printer, and it turns out that this
model is a particularly difficult one to print due to the various overhangs and other
complex parts of the model. A number of tech articles have been published in which
the authors attempt to describe how to print out the lower receiver, and the end
result tends to be that it’s technically possible to do so on a home 3D printer if it has
high enough tolerances, but that even after you deal with removing all of the support

https://www.thingiverse.com/
http://www.linuxjournal.com

153 | October 2018 | http://www.linuxjournal.com

3D-PRINTED FIREARMS ARE BLOWING UP

material, you still have to spend quite a bit of time cleaning up the part just to make it
fit, much less work well, in a real AR-15.

If you look online, you’ll also find some video tests of this lower receiver showing that
if you do get things to fit and file down the part properly, eventually you may get a
receiver that can handle at least a few hundred rounds before it breaks. Note that this
is with a well-calibrated and high-quality 3D printer with high-quality plastic. Someone
who isn’t well versed in the hobby likely will create a part with poor layer adhesion,
poor tolerances and poor-quality plastic that won’t be nearly as durable.

So what’s the risk with this part? The risk is that after investing hundreds of dollars in
a 3D printer, many hours of effort in printing and cleaning up the part, and decent
expertise into AR-15 design in order to assemble the rifle from scratch, someone
could create an AR-15 rifle without a serial number. Alternatively, for less than $50,
someone could buy a brand-new, lower receiver made out of metal, and instead of
using a cheap metal file to painstakingly shape a plastic lower receiver into the right
shape, one could just quickly file away the serial number on the metal part.

In the end, any reasonable criminals who wanted to build an untraceable AR-15
wouldn’t go to all of the trouble to 3D-print one. Instead, they would just buy a new
or used, off-the-shelf, cheap lower receiver (either legally or illegally) and remove the
serial number. It’s much cheaper, faster and simpler, and it results in a much stronger
part, so the threat from a 3D-printed lower receiver in my mind is pretty minimal.

The Liberator
The next controversial part from Defense Distributed that made the news was
“The Liberator”, which is the first fully 3D-printed handgun. Unlike with the AR-15
lower receiver, the controversy around this firearm was less the concern that it was
untraceable, but more the concern that because it was almost 100% plastic (the firing
pin is a nail from a hardware store, and Defense Distributed accounted for adding a
sheet of metal inside the plastic to comply with legislation prohibiting firearms that
defeat a metal detector), in theory, someone could print one of those firearms and
get it past a metal detector.

http://www.linuxjournal.com

154 | October 2018 | http://www.linuxjournal.com

3D-PRINTED FIREARMS ARE BLOWING UP

There’s a few things to know about the Liberator. First, the firearm can fire only a
single round. Second, there are examples online of people who have printed out a
Liberator successfully and tested it. The results were that it did indeed fire, although
in some cases, the firearm itself exploded instead. Printing durable parts with a
hobbyist 3D printer requires a certain level of 3D-printing expertise, quality plastic and
a well-calibrated printer.

When you fire a gun, you essentially create an explosion inside the firearm. The
firearm is designed to contain that explosion without breaking, and because the
firearm doesn’t break apart, all of that explosive force propels the bullet through the
barrel and out of the gun. When you create a 3D-printed part, you are creating it out
of layers of melted plastic. If you calibrate your temperatures and printer well, each
layer should melt into the previous layer and stick together. Where those layers join
is still a potential weak spot, however, and it just takes a slightly cooler print head to
result in bad layer adhesion and a weak part.

So, is the Liberator a practical risk? The typical concern seems to be about some
kind of terrorist who is able to smuggle an untraceable gun past security and onto a
plane or inside a secured building. Practically speaking, do you think any reasonable
attackers would want to be limited to a single shot, or are they going to carry a duffel
bag full of these things? Otherwise, what real damage could an attacker do with just
a single round? With air marshals frequently flying undercover on planes, would an
attacker risk hijacking a plane with a single shot knowing someone might be onboard
with a real firearm? The same risk goes for any secured building. Of course, I’m not
even factoring in the fact that such a handgun isn’t going to be very accurate, and that
there’s a reasonable chance it will blow up in the attacker’s hand instead of firing. Any
criminal who would want to use a firearm for a terrorist act would not choose such a
risky, flimsy, single-shot device.

Ghost Gunner CNC Mill
The final item to consider is the Ghost Gunner CNC mill. This is a full-featured
computer-controlled mill that can take a block of metal, accept an uploaded design
and then mill out a perfect metal part. The current Ghost Gunner 2 mill costs around

http://www.linuxjournal.com

155 | October 2018 | http://www.linuxjournal.com

3D-PRINTED FIREARMS ARE BLOWING UP

$2,000, but it requires purchasers to get their own jig sets and, of course, set up the
mill itself. Once that’s done, they can send designs for an AR-15 lower receiver as well
as a frame for a 1911 pistol and mill them out of metal stock. After a bit of clean up,
they have a perfect and strong part suitable for replacing any part they otherwise
could purchase from a gun dealer.

Like with the 3D-printed AR-15 lower receiver, the controversy with the Ghost
Gunner mill is that you can use it to create a part without a serial number. Of course,
gunsmiths have long been allowed to make their own rifles and pistols at home
legally without serial numbers for personal use, so that part is nothing new. The main
controversy here is the fact that you don’t need the same level of machinist skills with
a Ghost Gunner, because the computer takes care of all of the precision cuts you’d
otherwise have to do yourself with a traditional mill. Also unlike the 3D-printed part,
this is a real, strong metal part with high tolerances that doesn’t require a lot of fine
adjustments after it’s made.

So let’s discuss the practical risk with the Ghost Gunner mill. The first concern
presumably is that anyone could purchase a mill and then create an untraceable
rifle or handgun. Like with the 3D-printed part, however, do you think a criminal
who wanted one or two untraceable guns would go to the trouble of buying a
$2,000 machine, buy all of the jigs, set it up, source metal stock and then print
the part, when they could buy a new lower receiver for $50 and remove the serial
number? I guess after around the 50th lower receiver they would break even on the
Ghost Gunner, jigs and metal stock.

The next concern, then, isn’t over someone creating a single untraceable firearm
but instead mass-producing them. I imagine someone who wants to create an
illegal, under-the-radar firearm business could use a Ghost Gunner to do that, but
then again, they also could just hire a gunsmith (or learn how to do it themselves)
and do it with a traditional mill. In either case, the process is relatively slow
compared to normal mass production. The concern here clearly isn’t with large-
scale arms control, as any big player (drug cartels and the like) would have the
resources to buy firearms en masse and wouldn’t want to bother with the slow,

http://www.linuxjournal.com

156 | October 2018 | http://www.linuxjournal.com

3D-PRINTED FIREARMS ARE BLOWING UP

one-part-at-a-time process with a Ghost Gunner.

So is there a practical risk with the Ghost Gunner? In my opinion, the risk is
relatively low. A criminal who wants an untraceable gun has much better, simpler
and cheaper options.

Conclusion
Taking political and other concerns out of the equation and focusing only on the
practical risk, my conclusion is that the practical risk posed by 3D-printed firearms is
relatively low with the current state of the art. In just about every case, criminals or
terrorists who want to use a firearm for their crime have much better alternatives and
wouldn’t bother with the cost, effort and risk associated with 3D-printed weapons.

Disclaimer
The views and opinions expressed in this article are those of the author and do not
necessarily reflect those of Linux Journal. ◾

Kyle Rankin is a Tech Editor and columnist at Linux Journal and the Chief Security Officer at Purism. He is the author of Linux
Hardening in Hostile Networks, DevOps Troubleshooting, The Official Ubuntu Server Book, Knoppix Hacks, Knoppix Pocket Reference,
Linux Multimedia Hacks and Ubuntu Hacks, and also a contributor to a number of other O’Reilly books. Rankin speaks frequently on
security and open-source software including at BsidesLV, O’Reilly Security Conference, OSCON, SCALE, CactusCon, Linux World Expo and
Penguicon. You can follow him at @kylerankin.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

NOV
3-4

BRISTOL, UK

PRESENTING

9AM
OPENS AT

20TH ANNIVERSARY CELEBRATION

The freenode project celebrates its 20th anniversary this year at the
second annual freenode #live conference

At We The Curious in Bristol, UK
November 3-4, 2018 9am Saturday - 6pm Sunday

Registration and call for participation is open now at

HTTPS://FREENODE.LIVE

Keynote speakers include Bradley M. Kuhn, Chris Lamb, Kyle Rankin,
Leslie Hawthorn and VM Brasseur! More to come...

https://freenode.live

Glyn Moody has been writing
about the internet since 1994,
and about free software since
1995. In 1997, he wrote the first
mainstream feature about
GNU/Linux and free software,
which appeared in Wired. In
2001, his book Rebel Code:
Linux And The Open Source
Revolution was published.
Since then, he has written
widely about free software
and digital rights. He has
a blog, and he is active on
social media: @glynmoody
on Twitter or identi.ca, and
+glynmoody on Google+.

OPEN SAUCE

Now Is the
Time to Start
Planning for
the Post-
Android World
We need a free software mobile operating
system. Is it eelo?

By Glyn Moody

Remember Windows? It was an operating system that was
quite popular in the old days of computing. However, its global
market share has been in decline for some time, and last year,
the Age of Windows ended, and the Age of Android began.

Android—and thus Linux—is now everywhere. We take it for
granted that Android is used on more than two billion devices,
which come in just about every form factor—smartphones,
tablets, wearables, Internet of Things, in-car systems and
so on. Now, in the Open Source world, we just assume that
Android always will hold around 90% of the smartphone sector,
whatever the brand name on the device, and that we always will
live in an Android world.

158 | October 2018 | http://www.linuxjournal.com

https://www.wired.com/1997/08/linux-5
http://opendotdotdot.blogspot.com/
https://twitter.com/glynmoody
https://identi.ca/glynmoody
https://plus.google.com/+glynmoody
http://gs.statcounter.com/os-market-share#monthly-200901-201806
https://twitter.com/Google/status/864890655906070529
http://www.linuxjournal.com

159 | October 2018 | http://www.linuxjournal.com

OPEN SAUCE

Except—we won’t. Just as Windows took over from DOS, and Android took over from
Windows, something will take over from Android. Some might say “yes, but not yet”.
While Android goes from strength to strength, and Apple is content to make huge
profits from its smaller, tightly controlled market, there’s no reason for Android to
lose its dominance. After all, there are no obvious challengers and no obvious need
for something new.

However, what if the key event in the decline and fall of Android has already taken place,
but was something quite different from what we were expecting? Perhaps it won’t be a
frontal attack by another platform, but more of a subtle fracture deep within the Android
ecosystem, caused by some external shock. Something like this, perhaps:

Today, the Commission has decided to fine Google 4.34 billion euros for breaching EU
antitrust rules. Google has engaged in illegal practices to cement its dominant market
position in internet search. It must put an effective end to this conduct within 90 days
or face penalty payments.

What’s striking is not so much the monetary aspect, impressive though that is, but the
following: “our decision stops Google from controlling which search and browser apps
manufacturers can pre-install on Android devices, or which Android operating system
they can adopt.”

Whether or not you agree with the EU’s decision, and assuming that it isn’t
overturned on appeal, that demand for Google to loosen its control over the
Android ecosystem is significant, and it may be the beginning of the end of the
Android era as we know it. Even if it isn’t, the EU fine is a timely reminder that the
moment will, inevitably, come. Google clearly knows that, which is probably why it is
developing Fuchsia.

Fuchsia will be open source, made up of a mix of BSD 3 clause, MIT and Apache 2.0
licensed code, but not based on Linux. Significantly, the Fuchsia “book” readme file
begins: “Fuchsia is not Linux”. If Fuchsia turns into a major project that appears on
smartphones and elsewhere, the implications for the Linux community are clearly

https://www.brainyquote.com/quotes/saint_augustine_130906
https://www.nytimes.com/2018/07/31/technology/apple-earnings-report.html
https://www.nytimes.com/2018/07/31/technology/apple-earnings-report.html
http://europa.eu/rapid/press-release_STATEMENT-18-4584_en.htm
https://www.reuters.com/article/us-eu-google-antitrust-reaction/google-says-will-appeal-eu-fine-idUSKBN1K81D9
https://arstechnica.com/gadgets/2018/01/googles-fuchsia-os-on-the-pixelbook-it-works-it-actually-works
https://arstechnica.com/gadgets/2017/05/googles-fuchsia-smartphone-os-dumps-linux-has-a-wild-new-ui
https://arstechnica.com/gadgets/2017/05/googles-fuchsia-smartphone-os-dumps-linux-has-a-wild-new-ui
https://github.com/fuchsia-mirror/docs/blob/master/the-book/README.md
https://www.bloomberg.com/news/articles/2018-07-19/google-team-is-said-to-plot-android-successor-draw-skepticism
https://www.bloomberg.com/news/articles/2018-07-19/google-team-is-said-to-plot-android-successor-draw-skepticism
http://www.linuxjournal.com

160 | October 2018 | http://www.linuxjournal.com

OPEN SAUCE

huge. The Open Source world therefore needs to start thinking about what that will
mean for the community—and to start planning for it.

Smartphone manufacturers currently dependent on Android already have back-up
plans of varying degrees of seriousness. For example, the Chinese tech giant Huawei,
now the number two smartphone manufacturer after Samsung, is developing its
own alternative, although there are no details yet. Samsung still has Tizen, for what
it’s worth. The question is, what kind of insurance policy should the Open Source
world be putting in place against the day when Google moves off Android?

Alongside all the previous (failed) attempts to come up with a viable free software
smartphone operating system, there’s a new option that’s well worth a look. It comes
from Gaël Duval, who probably is best known as the creator of the Mandrake GNU/Linux
distribution in 1998. Based on Red Hat, Mandrake set great store by ease of use, and it
was the first of a new generation of distros aimed at ordinary users, which have become
commonplace today. His new project is the free software mobile operating system called
eelo. Duval says he chose the name in part “because eels are small fish that can hide
into the sea. That’s perfect for my quest of more privacy”. Addressing the woeful lack of
privacy that is a by-product of using today’s smartphones is a major aim of the project:

Last year, I decided to leave Apple and Google: I want to free myself from the
smartphone duopoly; I want to regain control over my data privacy; I want to
protect my freedom.

At first, I thought I would just fork Android, add a better design, remove any Google
stuff, select a few privacy-compliant web services and add them to the system.

A little more than 6 months later, I realize that we’re building something really,
really bigger than I had expected. This is made possible by the tremendous
support I’m getting from many people around the world, and by a growing
community of eelo contributors.

After a successful crowdfunding campaign, Duval has set up a foundation called

https://www.cnet.com/news/huawei-knocks-off-apple-to-become-no-2-smartphone-seller
https://www.scmp.com/tech/article/2143711/huawei-sees-building-alternative-android-insurance-amid-us-china-trade-tensions
https://www.scmp.com/tech/article/2143711/huawei-sees-building-alternative-android-insurance-amid-us-china-trade-tensions
https://www.engadget.com/2017/05/12/samsung-promises-tizen-phones-arent-dead-with-the-budget-z4
https://www.indidea.org/gael/blog/about-gael-duval
https://hackernoon.com/leaving-apple-google-a-global-eelo-development-status-1ee11bf80d06
https://www.kickstarter.com/projects/290746744/eelo-a-mobile-os-and-web-services-in-the-public-in
https://e.foundation/
http://www.linuxjournal.com

161 | October 2018 | http://www.linuxjournal.com

OPEN SAUCE

/e/ to support eelo’s development. Its website contains details about the mobile
operating system roadmap, the applications that are planned and the team behind
the project. There’s also a “manifesto”, which is nothing if not ambitious.

It’s still the early days for eelo. However, what sets it apart from previous open-source
mobile operating system projects—and what makes it worthy of support by the
coding community—is the emphasis on privacy. In this respect, it can be seen as a
representative phenomenon of the GDPR-suffused world we now inhabit:

eelo is committed to providing desirable mobile phones and web-services that respect
the user’s data privacy. The eelo OS will not send a user’s data to eelo, such as his
location, his contacts, his agenda, in an exploitable manner. eelo users will be able
to use eelo cloud services with the guarantee that their data will be kept private and
stored as securely as possible.

That’s only an aspiration at the moment, but it’s a laudable one. For too long, the Open
Source world has been complicit with Google in undermining the privacy and freedom
of Android users. It’s understandable—Android has helped make Linux the most widely
used operating system in the world, overthrowing Windows. Fighting against Google
in the early days of smartphones, as it tried to establish Android as an alternative to
completely proprietary offerings, would have been quixotic. But the time has come
to assert free software’s underlying ethical foundation and to move on from an
Android world to something better—in all senses. Whether that will be Duval’s eelo or
something else is a matter for the Open Source community to debate. But it’s a debate
that we need to have now, as a choice, before it becomes a necessity. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://e.foundation/mobile-phone-os
https://e.foundation/mobile-phone-os
https://e.foundation/applications
https://e.foundation/about-e
https://e.foundation/about-e
https://hackernoon.com/eelo-is-more-than-tech-its-a-societal-project-for-freedom-and-democracy-951ea5c8f162
https://www.linuxjournal.com/content/gdpr-takes-open-source-next-level
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

