
        
            
                
            
        

    
  Table of Contents


  
    


    

  


  The Security Issue by Bryan Lunduke


  
    

  


  
    From the Editor—Doc Searls

  


  
    
      A Line in the Sand
    

  


  UPFRONT


  
    
      Some (Linux) Bugs Have All the Fun by Bryan Lunduke
    


    
      

    


    
      Astronomy Software by Any Other Name  by Joey Bernard
    


    
      

    


    
      Patreon and Linux Journal
    

  


  
    


    
      Reality 2.0: a Linux Journal Podcast 
    

  


  
    
      News Briefs

    

  


  
    Columns

  


  
    

  


  
    
      Reuven M. Lerner's At the Forge
    


    
      Easier Python paths with pathlib
    

  


  
    
      Dave Taylor's Work the Shell
    


    
      Writing Secure Shell Scripts
    


    

  


  
    
      Zack Brown's diff -u
    


    
      What's New in Kernel Development
    

  


  
    

  


  
    
      Glyn Moody's Open Sauce
    


    
      If Software Is Funded from a Public Source Its Code Should Be Open Source
    

  


  Deep Dive: Security


  
    
      Password Manager Roundup by Shawn Powers
    


    
      If you can remember all of your passwords, they're not good passwords.
    


    
      

    


    
      Everyday Security Tips by Michael McCallister
    


    
      Make your computer safer with these guidelines based on the Linux Foundation's Security Checklist developed for corporate systems.
    

  


  
    
      Understanding Public Key Infrastructure and X.509 Certificates by Jeff Woods
    


    
      An introduction to PKI, TLS and X.509, from the ground up.
    


    
      

    


    
      
        WebAuthn Web Authentication with YubiKey 5 by Todd A. Jacobs
      


      
        A look at the recently released YubiKey 5 hardware authenticator series and how web authentication with the new WebAuthn API leverages devices like the YubiKey for painless website registration and strong user authentication.
      


      
        

      


      
        
          The Purism Librem Key by Todd A. Jacobs
        


        
          The Librem Key is a new hardware token for improving Linux security by adding a physical authentication factor to booting, login and disk decryption on supported systems.
        


        
          

        


        
          
            Tamper-Evident Boot with Heads by Kyle Rankin
          


          
            Learn about how the cutting-edge, free software Heads project detects BIOS and kernel tampering, all with keys under your control.
          

        

      

    

  


  


  
    

  


  Articles


  
    
      Programming Text Windows with ncurses by Jim Hall
    


    
      How to use ncurses to manipulate your terminal screen.
    


    
      

    


    
      
        Open Science, Open Source and R by Andy Wills
      


      
        Free software will save psychology from the Replication Crisis.
      

    


    
      
        

      


      
        

      


      
        
          

        


        
          

        


        

      

    

  


  
    
      LINUX JOURNAL | MASTHEAD

    


    
      [image: 33429.png]

    


    
      [image: ljlogo_masthd.eps]


      Editor in Chief — Doc Searls, doc@linuxjournal.com


      Executive Editor — Jill Franklin, jill@linuxjournal.com


      Tech Editor — Kyle Rankin, lj@greenfly.net


      Associate Editor — Shawn Powers, shawn@linuxjournal.com


      Contributing Editor — Petros Koutoupis, petros@linux.com


      Contributing Editor — Zach Brown, zacharyb@gmail.com


      Senior Columnist — Reuven Lerner, reuven@lerner.co.il


      Senior Columnist — Dave Taylor, dave@linuxjournal.com


      Publisher — Carlie Fairchild, publisher@linuxjournal.com


      Associate Publisher — Mark Irgang, mark@linuxjournal.com


      Director of Digital Experience — Katherine Druckman, katherine@linuxjournal.com


      Graphic Designer — Garrick Antikajian, artwork@linuxjournal.com


      Accountant — Candy Beauchamp, acct@linuxjournal.com


      Community Advisory Board


      
        	John Abreau, Boston Linux & UNIX Group


        	John Alexander, Shropshire Linux User Group


        	Robert Belnap, Classic Hackers UGA Users Group


        	Aaron Chantrill, Bellingham Linux Users Group


        	Lawrence D'Oliveiro, Waikato Linux Users Group


	Chris Ebenezer, Silicon Corridor Linux User Group


        	David Egts, Akron Linux Users Group


        	Michael Fox, Peterborough Linux User Group


        	Braddock Gaskill, San Gabriel Valley Linux Users' Group


        	Roy Lindauer, Reno Linux Users Group


        	Scott Murphy, Ottawa Canada Linux Users Group


        	Andrew Pam, Linux Users of Victoria


	Bob Proulx, Northern Colorado Linux User Group


        	Ian Sacklow, Capital District Linux Users Group


        	Ron Singh, Kitchener-Waterloo Linux User Group


        	Jeff Smith, Kitchener-Waterloo Linux User Group


        	Matt Smith, North Bay Linux Users' Group


        	James Snyder, Kent Linux User Group


        	Paul Tansom, Portsmouth and South East Hampshire Linux User Group


        	Gary Turner, Dayton Linux Users Group


        	Sam Williams, Rock River Linux Users Group


        	Stephen Worley, Linux Users' Group at North Carolina State University


        	Lukas Yoder, Linux Users Group at Georgia Tech




      Linux Journal is published by, and is a registered trade name of, Linux Journal, LLC.


      4643 S. Ulster St. Ste 1120 Denver, CO 80237 USA


      



      LINUX is a registered trademark of Linus Torvalds.


      At Your Service


      SUBSCRIPTIONS: Linux Journal is available as a digital magazine in PDF, EPUB, and MOBI formats. Renewing your subscription, changing your e-mail address for issue delivery, paying your invoice, viewing your account details or other subscription inquiries can be done instantly on-line: http://www.linuxjournal.com/subscribe. E-mail us at subs@linuxjournal.com or reach us via postal mail at Linux Journal, 9597 Jones Rd, #331, Houston, TX 77065 USA. Please remember to include your complete name and address when contacting us.


      ACCESSING THE DIGITAL ARCHIVE: Your monthly download notifications will have links to the various formats and to the digital archive. To access the digital archive at any time, log in at http://www.linuxjournal.com/digital.


      LETTERS TO THE EDITOR: We welcome your letters and encourage you to submit them at http://www.linuxjournal.com/contact or mail them to Linux Journal, 9597 Jones Rd, #331, Houston, TX 77065 USA. Letters may be edited for space and clarity.


      SPONSORSHIP: We take digital privacy and digital responsibility seriously. We've wiped off all old advertising from Linux Journal and are starting with a clean slate. Ads we feature will no longer be of the spying kind you find on most sites, generally called "adtech". The one form of advertising we have brought back is sponsorship. That's where advertisers support Linux Journal because they like what we do and want to reach our readers in general. At their best, ads in a publication and on a site like Linux Journal provide useful information as well as financial support. There is symbiosis there. For further information, email: sponsorship@linuxjournal.com or call +1-281-944-5188.



      WRITING FOR US: We always are looking for contributed articles, tutorials and real-world stories for the magazine. An author’s guide, a list of topics and due dates can be found on-line: http://www.linuxjournal.com/author.


      FREE e-NEWSLETTERS: Linux Journal editors publish newsletters on both a weekly and monthly basis. Receive late-breaking news, technical tips and tricks, an inside look at upcoming issues and links to in-depth stories featured on http://www.linuxjournal.com. Subscribe for free today: http://www.linuxjournal.com/enewsletters.


      



      [image: PIA_logo]



      Private Internet Access is a proud sponsor of Linux Journal. 


      



      LINUX JOURNAL (ISSN 1075-3583) is published monthly by Linux Journal, LLC., 9597 Jones Rd, #331, Houston, TX 77065 USA. Subscription rate is $34.50/year. Subscriptions start with the next issue.

    

  


The Security Issue



On January 13th, 2018—at 8:07 am—an emergency alert was issued in
Hawaii. The message, in its entirety: "BALLISTIC MISSILE THREAT INBOUND TO
HAWAII. SEEK IMMEDIATE SHELTER. THIS IS NOT A DRILL."




Although this message—which showed up on smart phones across the
state—was, indeed, not a drill...it also was not a real threat. There was no
missile hurtling through the atmosphere towards Hawaii. It turns out someone
had simply clicked the wrong option from a very poorly designed user
interface and sent out a fake (but very real-looking) emergency alert.




This is officially known as a "whoopsie daisy".




As the story spread around the globe, obviously all the news reports were
going to need a picture to run along with it. As luck would have it, the
Associated Press had published a picture taken inside the Hawaii Emergency
Management Agency—showing computer workstations where they watch for such
possible threats. This picture was spread far and wide.




On that picture, people noticed something. Something amusing. Something,
for many of us, relatable.




On one of the monitors was a sticky note. With the password written on it.




(There were actually two sticky notes on the monitors in the picture. The
second sticky note contained the message "SIGN OUT". Because, you know,
security is important.)




While the accidental, non-real emergency alert was not caused by any sort of
security breach (sticky-note-based or otherwise), this picture served as a
great reminder to the entire world that we probably shouldn't write down
our passwords on sticky notes. Not even a government agency tasked with
Emergency Management is immune to this sort of weak security.




It reminds me of a scene from the Mel Brooks' film Spaceballs. In the film,
an advanced security barrier had been constructed around a planet. The
dastardly space-villains forced the king of the planet to give up the code
that would open that barrier. That code? 12345. Upon learning of the code,
one of the characters was shocked. "Remind me to change the code on my
luggage."




Any of this sound familiar? Perhaps it's time to get rid of the sticky
notes—and the passwords that are no more complex than
"password123"—and get
yourself a good password manager.




In this issue, Shawn Powers provides a good "Password Manager Roundup", laying out the pros
and cons of various options.




Then, while you're in a security frame of mind, familiarize yourself with a
good set of guidelines (based on the Linux Foundation's Security Checklist)
for how to keep your system secure with Mike McCallister's "Everyday Security
Tips".




Following these suggestions will make you far more secure than that Emergency
Agency in Hawaii or that planet in Spaceballs, but what if you want to
take things a step further? What if you want to dive into the world of
encryption and hardware security keys?




First things first: get a basic grasp on how current, modern encryption
works with Jeff Woods' "Understanding Public Key Infrastructure and X.509
Certificates". It may not seem like a page-turner, but trust me. This is
good stuff to know.




Then, move on to hardware security keys and the benefits they can provide to
Linux-based workstations and laptops.




Todd A. Jacobs' "WebAuthn Web Authentication with YubiKey 5" gives an
overview to using a YubiKey for website authentication (how it works and how to
use it). Then he follows that up with "The Purism Librem Key" and how that
specific USB hardware key compares to others on the market (like the
YubiKey).




Once you've decided on a password manager, started using a set of security
guidelines and even begun utilizing a hardware key, you're probably
feeling like your computers are pretty gosh-darned secure. Right?




But what if you want more. What if you want to be confident that not even
the BIOS of your computer has been tampered with in any way?




Enter Kyle Rankin (Tech Editor for Linux Journal) and his article,
"Tamper-Evident Boot with Heads". Kyle breaks down how Heads is set up and how it can be used to verify, at boot, that your BIOS and kernel haven't
been messed with by dastardly villains (like the ones in Spaceballs).




All of these tools are powerful ways to secure your Linux
systems—whether for
work or personal use. But, here's the key, they're effective only when
used.




In other words, no more sticky notes.


  About the Author


  


Bryan Lunduke is a former Software Tester, former Programmer, former VP of
Technology, former Linux Marketing Guy (tm), former openSUSE Board
Member...and current Deputy Editor of Linux Journal as well as host of the
(aptly named) Lunduke Show.


[image: Bryan Lunduke]


From the Editor: A Line in the Sand



There's a new side to choose. It helps that each of us is already on it. By
Doc Searls


[image: Alt Tag Name]







Linux Journal was born in one fight and grew through a series of others.




Our first fight was for freedom. That began in 1993, when Phil Hughes started
work toward a free
software magazine. The fight for free software was still
there when that magazine was born as Linux Journal in April 1994. Then a
second fight began. That one was against all forms of closed and proprietary
software, including the commercial UNIX variants that Linux would eventually
defeat. We got in the fight for open source starting in 1998. (In 2005, I got a
ribbon for my own small part in that battle.) And last year, we began our fight
against what Shoshana Zuboff calls surveillance
capitalism, and Brett
Frischmann and Evan
Selinger call re-engineering
humanity.




This new fight is against actual and wannabe corporate and government
overlords, all hell-bent on maintaining the caste system that reduces each of
us to mere "consumers" and "data subjects" in a world Richard Brautigan
described perfectly half a century ago in his poem "All Watched Over By
Machines of Loving Grace". You know, like The Matrix, only for real.




They'll fail, because no machine can fully understand human beings. Each of us
is too different, too original, too wacky, too self-educating, too built for
gaming every system meant to control us. (Discredit where due: we also suck in
lots of ways. For example, Scott Adams is
right that we're easy to hack with a
good con.)




But why wait for nature to take its course when surveillance capitalists are
busy setting civilization back decades or more—especially when we can
obsolesce their whole business in the short term?




Here at Linux Journal, we're already doing our part by not
participating in
the surveillance business that digital advertising has mostly become, and by
doing
pioneering work in helping the online publishing business obey the
wishes of its readers.




At a deeper level, what we've been trying to do all along—just by working
on Linux—is prove that free people are worth more than captive
ones, both
to themselves and to everyone and everything else. In Matrix terms, we want to
make each of us
a Neo.




What's hard about this isn't making the software and hardware we need. That's
low-hanging fruit, even if most VCs haven't seen that yet. So is getting
publicity for it.




The hard thing is that lots of our friends are working to improve our lives as
captives.




It doesn't help that much—or most—of the work they do is good and
necessary. We need people pushing the status quo in a helpful direction. There
are also countless ways to improve and reform all our standing institutions,
from politics to health care to education to social media and its platforms.
And doing that work tends to pay, through credentials, experience and money.




And it's so much easier to see what's wrong in the world as it is, and to
fight for changing it, than it is to see first causes at a deeper level, and
work to change damn near everything with a few good lower-level hacks. (That's
what we did with all the free and open-source protocols and code bases on
which our networked world now utterly depends.)




So it's really hard to draw a line here: one between what we want for people
as independent agents of themselves and all the ways people can work to move
the status quo for both institutions and the people who depend on them.




But let's draw one anyway. Maybe it will help.




On one side is work toward proving free people are worth more than captive
ones. On the other side is work toward making life easier for people who
remain captive in existing systems.




We can sort this out with a two-part question:



	
Are you working to give people their own ways of dealing with companies and
other organizations in the world, at scale? (By scale, I mean having one way to
deal with many others, such as we already get with protocols like TCP/IP,
HTTP, IMAP, SMTP and FTP, and with apps, such as browsers and email clients.)
Or...



	
Are you working to help companies and other organizations (for example,
governments) treat people better than they do already?






I think it's safe to say that most Linux Journal readers are on the first
side. It's also safe to say that most people working to make life better for
other people are on the other side.




So let's not try to recruit over there on the other side. Let's look instead
at how best to recruit from our own ranks.




Three challenges there.




One is that everybody qualified to join and help a cause is already busy.




Another is that everybody doing good and original person-liberating work in
the world is damn good at being self-liberated in the world as it is. For
example, the wizards among us are very good at securing their own borders in
the networked world, and at maintaining as many different login/password
combinations as there are sites and services to log in to—while relatively
few are working to obsolesce the whole login/password convention.




The third is that lots of us have the attitude Chris Hill lampooned in his
brilliant Switch to
Linux video back in 2003 (and I wrote about here). That
video stars an alpha geek who says, "Linux runs on anything", then adds,
"You've got to config it...write some shell scripts...update your RPMs...partition your drives...patch your kernel...compile your binaries...check your
version dependencies...probably do that once or twice....It's just so easy, and
so simple. I don't know why everyone doesn't run Linux." That litany has
changed a lot in the last 16 years, but to assume that muggles should do
what wizards do is just as wrong as it ever was.




So what's right? Glad you asked.




Last April, in "How
Wizards and Muggles Break Free from the Matrix", I put up a
punch list of 13 different things already being done to help break
everyone free of institutions that would rather hold them captive—and to
build bases for far better institutions in the process.




At the time I wrote that, I assumed that the GDPR would clear paths for work
already moving forward within all 13 items on that muggle-liberating
punch list. Alas, the GDPR's single positive achievement so far has been
shaking things up. That's it. The worst thing the GDPR has done is encourage
surveillance capitalists to keep doing the same damn things, only now with the
"consent" of "data subjects" clicking "agree" to misleading cookie notices
everywhere.




But the work proceeds, and all of it can use your help.




So please, let us know which side of the line you stand on and what you're
ready to do about it (or, better yet, already doing). Thanks.



  About the Author


  
  Doc Searls is a veteran journalist, author and part-time academic who spent more than two decades elsewhere on the Linux Journal masthead before becoming Editor in Chief when the magazine was reborn in January 2018. His two books are The Cluetrain Manifesto, which he co-wrote for Basic Books in 2000 and updated in 2010, and The Intention Economy: When Customers Take Charge, which he wrote for Harvard Business Review Press in 2012. On the academic front, Doc runs ProjectVRM, hosted at Harvard's Berkman Klein Center for Internet and Society, where he served as a fellow from 2006–2010. He was also a visiting scholar at NYU's graduate school of journalism from 2012–2014, and he has been a fellow at UC Santa Barbara's Center for Information Technology and Society since 2006, studying the internet as a form of infrastructure.

[image: Doc Searls]


Letters


Why I've Been Reading LJ Since 1996



The January 2019 issue of LJ came to me while I was in my Summer Holidays.
Since 1996, I've been an LJ subscriber—maybe I'm even the oldest and farthest (both
conditions together) subscriber. Many times I've asked myself why I'm so
loyal to the magazine. Well, the January 2019 issue came with an answer.




First was Bryan
Lunduke and his comments on the issue. His story about
the first Linux installation made me remember my own story. I was in the
second year of a PhD course on Astrophysics at Universidad de Buenos Aires
(Argentina). At that time (early 1990s), all we had were PCs with Windows for
personal use. The Institute had a VAX mostly used for atomic physics
calculations, and it bought a SUN for Astronomical data analysis (using IRAF
and AIPS) and an IBM for number-crunching (the same atomic physics). These
two worked with UNIX. This was my first introduction to the UNIX world.




A young researcher came back to the Institute from the US carrying all his
experience with the Internet and UNIX world. So, after some discussion, we
concluded that we needed a change of paradigm. The PCs should also work
with UNIX, and I helped, with my modest knowledge of UNIX, to make the
move. We discovered that the Institute bought a commercial UNIX
distribution for PCs that never was installed. The distro came in 5 1/4
floppy diskettes! We installed the basic command-line tools, but the X
system never worked. I remember long afternoons trying to find the magic
numbers to configure it. We even tried to discover some of them using an
oscilloscope. It never worked.




Another young scientist, also from the US, told us about a "UNIX-like"
(later we learned its name was Linux) operating system. We decided to give it
a try. It was on a bunch (~30) of 3.5" diskettes. The first try we failed; the
booting diskette did not pass some of the tests. But then somebody came with
another one, and this time everything went smoothly. The best part was the
X system. We chose an imitation of the Solaris windows manager, and it
worked out of the box. We were completely euphoric. What never worked
even after one week of hard work with a commercial system, took a couple
hours with this free system. It was love at first sight. I will never forget that
SLS distribution with kernel 0.99 PL 12. I never abandoned Linux in my
life. Even when my children had their own PCs, I emphatically recommended
that they
install Linux. Now, there is only one (out of six) double-boot PC at home;
the rest are pure Linux.




Then, in the same LJ issue, Doc Searls' gave his views about our non-gravity
non-geographical internet world. He tells us that in his first visit to
LA, he went to Mount Wilson. I had the opportunity to visit Pasadena in
July 2018 during a COSPAR meeting. With three students, I rented a car and
drove to Mount Wilson and had a fascinating and charming visit to the
old facilities there: the 100" reflector, where Hubble discovered the
expansion of the universe, and the 150' heliostat with which Hale
demonstrated that sunspots are magnetic structures in essence. As a solar
physicist, visiting this old monster of the solar field with my graduate
students was very stimulating.




So, that's it. Linux is a community. It's my community, where I find people
with similar life stories, and so besides computing, I can share other
interests. And Linux Journal is one (the best?) way for the community to be
linked. Thank you for the good job. You'll have my support if you keep
going this way.




—Guigue




Doc Searls replies: Thanks, Guillermo. Everything we do here is about
satisfying, keeping and growing our community. And it really helps when we
find, in essays such as the one I wrote about Mt. Wilson, that a non-Linux
topic strikes a responsive chord.




Re: "Put Down the Pipe"



Some of the sample shell commands in Kyle Rankin's "Put Down the
Pipe"
(in the January 2019 issue) are incorrect:




cat file | grep "foo"
...
grep "foo" file







A more exact replacement would be:




grep "foo" < file







which, like the cat ... command, causes grep to read from its standard
input.
They're nearly equivalent, because grep takes a filename as an argument,
but
it's good to know the more general solution for commands that behave
differently. 



Also:




sort < file1 file2 | uniq







This won't work. The < redirection operator cannot take two filenames as
an argument. The command is actually valid, but file2 will be passed as
an
argument to sort. It's equivalent to this:




sort file2 < file1 | uniq







This command:




find ./ -name "*.mp3" -type f -print0 | rm -f







also doesn't work. The find command prints a list of filenames
to stdout
(separated by null characters due to the -print0 argument). The
rm
command
does not take a list of filenames from standard input. You'd have to use
xargs -0.



And then there's this:




find ./ -name "*.mp3" -type f -print0 | echo







Similarly, the echo command does not read from
stdin; you'd have to use
xargs -0.
(Incidentally, I'd use just "." rather than "./". Adding a "/" to ensure
that
you're referring to a directory can be useful, but "." is always a
directory.) Then:




find ./ -name "*.mp3" -type f -print0 | xargs echo
find ./ -name "*.mp3" -type f -print0 | xargs rm -f







You need to use xargs -0.




—Keith Thompson




"Way, Way Outside!"



Marcel Gagné's article titled "Linux and the Multiverse",
published in the January 2019 issue, featured a subsection titled "Way, Way
Outside!" about PonyOS. It is always an honor to see my creations featured
in
media publications, especially in magazines. As I say on my website, and
as
Marcel reiterates in the article (though perhaps with a tone that may not
convey sincerity), PonyOS is not a Linux distribution—its kernel and core
applications instead are derived from my real hobby OS project (ToaruOS),
where
they were written from scratch by myself and a handful of contributors over
nearly a decade. PonyOS is, of course, a joke—a special release, updated
once a year on an equally special day. As it's been several months since
the
last April Fools, much has happened in the upstream project, and as such,
the
latest release of PonyOS is a sort of time capsule, capturing a bygone era
for both projects—rather nostalgic to me! PonyOS and its progenitor
ToaruOS
are not alone in the hobby OS world—there's plenty of other great
projects
worth checking out like Sortix, Redox
and Kolibri—all
with different goals and histories. Thanks again for the article, and I
hope
you're looking forward to the release of PonyOS 6 in a few months—there's
a
lot in store for it!




PS. There is a typo in the article: "Mimix" should be "Minix", the OS
famed
for being the one Linus himself was running while writing Linux.




—K. Lange




Marcel Gagné replies:
First and foremost, while I poke fun, I assure you that my intentions were
sincere. I have the utmost respect for anyone who puts in as much work as went
into PonyOS, even if it's done for laughs. For those laughs, I thank you,
again sincerely. Linux Journal is about Linux, but it's also about the nearly
infinite world of open source where I see Linux as a kind of poster child.
When planning to write about Linux distributions, I chose to wrap up my
exploration by stepping outside the mainstream Linux box to other open-source
OS projects, which is how PonyOS came to be featured. Thanks for the heads up
on Sortix, Redox and Kolibri. I definitely will check them out, but I think
I'll start with your own project, ToaruOS. I also will keep my eyes open for
PonyOS 6.




As for the "Mimix/Minix" typo, I blame that one on Discord.
(My kid made me watch tons of My Little Pony: Friendship is
Magic.)




Addendum to Zack Brown's "Non-Child Process Exit Notification Support"



Thanks for writing
about this work! I just want to add that the project is
ongoing, and that I plan to refresh my non-child wait work after Christian
Brauner's pidfd_kill patches land. My current thinking is that a system call
returning an exit handle might be a viable alternative to a new
readdir-visible proc file.




One unresolved difficulty is figuring out who should be able to read a
process's exit status, as in the thread here. Do just parents have access? All
processes, as apparently in FreeBSD? Same user only? Root?




Still, the general idea is that you should be able, somehow, to get a file
descriptor from which you read(2) a siginfo_t containing exit status (like for
waitid(2)), and I'm looking forward to adding this capability to Linux one way
or another.




—Daniel Colascione



Re: "All Your Accounts Are Belong to Us"



Although Shawn Powers' article "All
Your Accounts Are Belong to Us" was written 
in 2017, I think it is still very
valid.



I just wanted to thank you for the article and at the same time recommend
"KeepassXC". It is an open-source fork of the well known Keepass/KeepassX.




Once again, thanks for the article.




—Guillermo Vazquez




Shawn Powers replies: Wow, I'd forgotten all about that article! The stars aligned, and your
email came just in time for the Security issue, wherein I cover the
topic of password managers in depth. KeeppassXC is indeed one of the
managers I highlight, and if I weren't so entrenched in the LastPass
world (which, looking back, was the case in 2017's article too), it
might be the option I'd choose. Nevertheless, thank you for the great
suggestion and the perfect timing!



From Social Media



In response to
"If
Your Privacy Is in the Hands of Others Alone, You Don't Have Any" by Doc
Searls





Christine Hall @BrideOfLinux:
Being an old-fashioned human being takes a lot of work in a world where most
people are willing cyborgs.



Not very bright and things just got out of hand. @dluippold:
Interesting ideas, but a quick note. A person can't be a controller of her own
data, because you can't process your own data, and you need to identify the
controller/processor to appropriate liability for violations. Great read
though, I'm going to share with my team.





In response to "The
State of Desktop Linux 2019" by Bryan Lunduke




Chan Lai Sun: I am a Linux user for 20 years and I can say that the
it's best PC OS. It's FOC, and it's preloaded with much useful software. It
doesn't need anti-virus software, and the OS update has never caused
interruptions to PC operations. 




Sameer Verma: 2019—the year of the Desktop!


Send LJ a Letter


We'd love to hear your feedback on the magazine and specific articles.
Please write us here or
send email to ljeditor@linuxjournal.com.


Photos



Send your Linux-related photos to ljeditor@linuxjournal.com, and we'll
publish the best ones here.



 






Some (Linux) Bugs Have All the Fun



Bugs happen.




Every minute of every hour of every day, software bugs are hard at work,
biting computer users in the proverbial posterior. Many of them go
unnoticed (the bugs, not the posteriors). More still rise to the illustrious
level of "bugs that are minor annoyances".




Yet sometimes, when the stars align just so, a bug manifests itself in a
truly glorious way. And when I say "glorious", I mean "utterly destructive
and soul-obliterating".
Nowhere are these bugs more insidious than when they are within the operating
systems (and key components) themselves.




Case in point: an October 2018 bug in an update for Windows 10 caused entire
user folders to be deleted. Documents? Gone. Pictures? Like they never
existed at all. This was a singular OS update that vaporized files from
low-Earth orbit.




After that bug impacted roughly 1,500 Windows 10 users—before it even
hit widespread distribution—Microsoft pulled the update entirely.




Then, after the engineering team in Redmond thoroughly tested and fixed this
gnarly bug, they did the only obvious thing: re-release the system
update—with another file-destroying issue. This time it was in their un-zip functionality.
More files lost to the sands of time.




Seriously. That actually happened.




Things aren't necessarily that much better over in Apple land, either.




A little more than a year ago—at the end of November 2017—a bug occurred
in Mac OS X (yeah, I know they've renamed it "macOS", but I'm stubborn and
I'll call it what I want) that allowed anyone to gain root access to any Macintosh
(running the latest version of the OS) by following these extremely complex
steps:




	
Turn on a Macintosh.



	
Type root as the user name and leave the password blank.



	
Press Enter.






I know. I know. That'll be hard to remember, right?




To Apple's credit, the company did manage to release a system update rather
quickly, thus minimizing the potential damage. But, just the same, I'd say
that one calls for a "yikes"—possibly even an "oh, dear".




As satisfying as it is to make fun of Microsoft and Apple—and, boy howdy, is
it ever—we in the Linux (and general Free and Open-Source Software world)
are not immune from highly embarrassing, crazy destructive bugs and security
vulnerabilities.




What follows are two that I find rather interesting. One is a remote exploit
that had serious ramifications. The other is a local security bug that,
well, I find amusing.




Note: there are lots of bugs—more than likely can be cataloged—in
every system on the planet. These are just the two that I picked.




For the first one, let's travel back to the year 2014—September 24th, to be
precise. Taylor Swift and Meghan Trainor were dominating the radio. The
Guardians of the Galaxy were busy doing their galaxy-guarding thing.




And ShellShock was unveiled to the world: a "privilege escalation" bug (or
rather, a series of related bugs) in Bash that allowed commands to be
executed...that should not be accessible to that shell instance. Obviously,
that's a bad thing.




Although technically not Linux-specific (it impacted multiple systems that
utilize the Bash shell), Linux was (due to its popularity in internet-facing
servers) the system that got the bulk of the attention.




By the next day, September 25, 2014, attacks already were occurring that took advantage
of ShellShock, including botnets targeted at critical web infrastructure and
the United States Department of Defense.




Thanks to the hard work of the Bash maintainers, along with those working on
various Linux distributions, the bug was patched, and the patch was released within two to
three
days for all the major Linux systems. Apple, who also was impacted by
ShellShock, managed to release fixes a few days later.




Although these sorts of issues are never fun—and don't make anyone look
good—at least we can take comfort in the fact that we (in the Linux world)
patched our systems before Apple did.
Gotta take pleasure in the little things in life.




This next bug ranks in as my favorite Linux bug of all time. (Yes, I have a
favorite bug. And, yes, I agree, that's odd.) It goes a little something
like this.




Picture yourself in December 2015, sitting in front of your lovely
computer, running any of a variety of major distributions.




You turn that lovely machine on and get to the Grub (Grub2, to be precise)
menu. Hit backspace. Then hit backspace again.
In fact, hit backspace 26 more times (28 in total), and boom—you're
entered into a rescue shell.




What can you do in said rescue shell? Well, as it turns out, just about
anything you can dream up, including, but not limited to, loading a custom
Linux kernel (providing the opportunity to rootkit the main system),
deleting
all manner of data and even deleting Grub itself.




But, don't worry, this impacted only any version of Grub between 2009 and
2015—so, you know, six years worth of Linux distributions (including
desktops, servers, mobile devices and embedded systems). Or, as I like to
call it, "Just about every important, and not-so-important, computer on
Earth." No biggie.




Once again, the maintainers of the major Linux distributions were right on
the case—most with fixes pushed out to their repositories within days (if
not hours) of the exploit being released to the public.




If you are somewhat new to the wonderful world of Linux and, thus, didn't get
to live through those fun moments in time, never fear. If I've learned
anything about software, it's this:
There'll always be more bugs. And, going on odds, the ones next year will be
more destructive than the last crop.




Let's just hope they're at least as entertaining as hitting backspace 28
times.




—Bryan Lunduke


Astronomy Software by Any Other Name



In this article, I introduce another option available for
the astronomers out there—specifically, 
Cartes du Ciel, also known as SkyChart. Similar to other larger
astronomy programs, you can use SkyChart from the desktop to the
observatory. 




SkyChart probably won't be available in your
distribution's package management system, so you'll need to go
to the main website to download it. DEB, RPM
and TAR files are available, so you should be able to use it for just
about any distribution. Downloads also are available
for other operating systems and for other hardware. You even can
download a version to run on a Raspberry Pi.




When you first start Cartes du Ciel, you'll be asked where on
the globe your observatory is located. 



[image: Observatory screen]

Figure 1. The first step is to set the location where you'll be making observations.





A number of locations already are listed in the database. If your location
isn't there, you can enter the latitude and longitude. Once you
are done, clicking the OK button pops up a new window with
the sky at the current time and location. 



[image: Sky Chart]

Figure 2. The initial display is the sky over your location at the current time.






Unlike many
other astronomy programs, time does not progress automatically. The
design is more along the lines of being able to generate viewing
charts for observation. Buttons in the toolbar at the top
allow you to update the time easily.




The default view is to look at the sky at due south. You can change
this view by clicking and dragging the star field. If you want
to center it on a cardinal direction, there are buttons along the
bottom right-hand side of the screen for that task. Just above these cardinal
direction buttons, field of view (FOV) buttons set
the amount of the sky that is visible. 




Along the left-hand side of
the main window are several buttons for turning various
coordinate systems and markers on and off. Along the top, several
toolbars allow you to select which elements of the sky are
visible within the sky chart that you are generating. All of these
options also are available as menu items. Clicking the Chart
menu item provides a list where you can change parameters, such as
the field of view, the viewing direction or the coordinate system
to use.




Under the View menu item, several other informational
windows are available that you can use to see even more details about
what's visible in the sky. For example, when you click the menu
item View→Solar System Information, you get a pop-up window
showing what major objects are visible and when. 



[image: Solar Sytem Information]

Figure 3. You can find out what each of the planets looks like from your current location for the current time.





Clicking
each of the entries at the top of the window will pull up the
relevant planet as it would look from your current location at
the current time, giving a preview of what you should
be able to see from your telescope. Clicking the View→Calendar
menu item pops up a window with a table view of several different astronomical
events for a given set of dates. 



[image: Calendar]

Figure 4. You can get detailed positioning and timing information for objects in the sky that can be used to point your telescope.





For example, you can
get a list of the positions of several artificial satellites for
the dates listed, or the times for twilight or the positions of
comets and asteroids. You can use these types of details for ideas on where to point your telescope.




Speaking of telescopes, you also can connect directly
to your telescope if it includes the functionality of being computer-controlled. Clicking the Telescope→Telescope 
settings menu item pops up a window where you can select from one of
several telescope control unit drivers. Once you have selected the
correct driver, you can click the Telescope→Connect
telescope menu item to get a new window where you can enter the
parameters for your particular telescope. 



[image: ASCOM Telescrope]

Figure 5. You can connect to a telescope that accepts computer instructions to help coordinate and direct your viewing.





Once that's
done, you can get the telescope to slew or even track a given
point in space. Along with being able to connect to telescopes,
Cartes du Ciel also supports the SAMP (Simple Application Messaging
Protocol) intercommunication protocol to talk to other pieces of
equipment. The networking design is to have several units connected
together through a central hub. Cartes du Ciel does not include
software to act as a hub, so you will need some other piece of
software to be the hub for your network.




Cartes du Ciel can track several categories of objects in the sky,
including lots of smaller natural objects and man-made objects.
These lists are being updated constantly, so functionality
is included to perform updates of those catalogs. The catalogs are all located under
the Update menu item. 




On this list, you can update the Artificial
satellites, Asteroid elements, Comet elements and the core
software. Clicking on any of those menu items opens a window
that checks for any updates and automatically downloads and
installs them. This way, you always can keep Cartes du Ciel as
up to date as possible. But, even the most robust updating system
may miss out on objects that are of special interest to you. In
those cases, you can add objects to your catalog manually. Clicking
the Setup→Catalog menu item pops up a new window where you
can edit the details of the data catalogs available to Cartes du
Ciel. 



[image: Catalog Screen]

Figure 6. If necessary, you can add objects manually that may be missing from the standard catalogs of celestial objects.





If you select the User defined objects tab,
you can enter a list manually of individually defined objects so
that you can add them to your sky charts.




Once you have a sky chart ready, you can output the results in a few
different ways. You can save the results in a file format specific to Cartes du Ciel.
You also can export
the result to an image file (PNG, JPEG or BMP). 




If you have to
travel to get to your telescope and can't bring a computer, you may
need more detail than what's available from an image. Clicking the
View→Object list menu item pops up a window with the details
of all of the objects in the current view of the main window. This includes
everything you should need in order
to direct your telescope and make appropriate observations.



[image: Information Screen]

Figure 7. You can print out everything you need to be able to make your
observations, even if you won't have access to any kind of
computing.





I hope
this short article gives you some ideas of how you can get and
use the type of data that's available to professional astronomers.



Patreon and Linux Journal

    [image: Patreon Logo]


Together with the help of Linux Journal supporters and subscribers,
we can offer trusted reporting for
the world of open-source today, tomorrow and in the future. To our
subscribers, old and new,
we sincerely thank you for your continued support. In addition to magazine
subscriptions, we are now receiving
support from readers via Patreon on our website.
LJ community members
who pledge $20 per month or more will be featured each month in the
magazine. A
very special thank you this month goes to:





	
Appahost.com



	Chris Short


	Christel Dahlskjaer


	
David Breakey


	
Dr. Stuart Makowski



	Fred


	James Mayes


	
Josh Simmons




 
    [image: Linux Journal Logo]
  


Reality 2.0: a Linux Journal Podcast



Join us each week as Doc Searls and Katherine Druckman navigate the realities
of the new digital world: https://www.linuxjournal.com/podcast.



[image: Alt Tag Name]






  News Briefs


  
    	Opera announced the launch of a built-in cryptocurrency wallet for Android. According to The Verge, "The wallet will first support ethereum, with support for other coins likely to come later. Ether investors using Opera would potentially be able to more easily access their tokens using the feature." You can get Opera for Android here.


    	Valve's Steam link app for Raspberry Pi 3B and 3B+ is now officially available. Phoronix reports that "This app provides similar functionality to the low-cost Steam Link dedicated device that's been available the past few years for allowing in-home streaming of games on Steam from your personal PC(s) to living room / HTPC type setups using Steam Link." You can get the app here.


    	Qt introduced Qt for Python. This new offering allows "Python developers to streamline and enhance their user interfaces while utilizing Qt's world-class professional support services". According to the press release, "With Qt for Python, developers can quickly and easily visualize the massive amounts of data tied to their Python development projects, in addition to gaining access to Qt's world-class professional support services and large global community." To download Qt for Python, go here.


    	As of January 1, 2019, all works published in the US in 1923 will enter the public domain. The Smithsonian reports that it's been "21 years since the last mass expiration of copyright in the U.S." The article continues: "The release is unprecedented, and its impact on culture and creativity could be huge. We have never seen such a mass entry into the public domain in the digital age. The last one—in 1998, when 1922 slipped its copyright bond—predated Google. 'We have shortchanged a generation,' said Brewster Kahle, founder of the Internet Archive. 'The 20th century is largely missing from the internet.'"


    	KStars v3.0.0 was released in January after four months of development. Jasem's Ekosphere blog post lists all the new features, including the XPlanet Solar System View developed by Robert Lancaster, significant improvements to FITS viewer GUI, scheduler improvements and more.


    	Malware targeting IoT devices is growing. BetaNews reports that according to McAfee Labs, "new malware targeting IoT devices grew 72 percent with total malware growing 203 percent in the last four quarters". The growth is partly attributed to devices being harnessed for cryptomining. See the McAfee Labs Threats Report, December 2018 for all the details.


    	Mozilla announced the latest release of Firefox Focus, introducing enhanced privacy settings. According to the Mozilla blog, "You can choose to block all cookies on a website, no cookies at all—the default so far—third party cookies or only 3rd party tracking cookies as defined by Disconnect's Tracking Protection list. If you go with the latter option, which is new to Firefox Focus and also the new default, cross-site tracking will be prevented." You can get the latest version of Firefox Focus from Google Play and in the App Store.


    	Google's Fuchsia OS will have Android app support via Android Runtime. According to 9To5Google, it was expected that Fuchsia would support Android apps, and now "that suspicion has been confirmed by a new change found in the Android Open Source Project, and we can say with confidence that Fuchsia will be capable of running Android apps using the Android Runtime." The article also notes that "How exactly Fuchsia will use the Android Runtime from there is still unclear. This includes whether the Android Runtime is able to work as expected to replace Linux kernel calls with equivalents from Fuchsia's Zircon kernel or if ART will run inside of a Linux virtual machine using Machina, Fuchsia's virtual machine system."


    	Linux servers equipped with poorly configured IPMI (Intelligent Platform Management Interface) cards are prone to attack. ITPro Today reports that "since November, black hat hackers have been using the cards to gain access in order to install JungleSec ransomware that encrypts data and demands a 0.3 bitcoin payment (about $1,100 at the current rate) for the unlock key". The post recommends that to secure against these attacks, make sure the IPMI password isn't the default and "access control lists (ACLs) should be configured to specify the IP addresses that have access the IPMI interface, and to also configure IPMI to only listen on internal IP addresses, which would limit access to admins inside the organization's system."


    	LinuxGizmos has published its 2019 catalog of open-spec Linux hacker boards. These are all "hacker-friendly, open-spec SBCs that run Linux or Android", and LinuxGizmos provides "recently updated descriptions, specs, pricing, and links to details for all 122 SBCs."


    	Linux 5.0-rc1 was released last month. Linus Torvalds wrote: "The numbering change is not indicative of anything special. If you want to have an official reason, it's that I ran out of fingers and toes to count on, so 4.21 became 5.0. There's no nice git object numerology this time (we're _about_ 6.5M objects in the git repo), and there isn't any major particular feature that made for the release numbering either. Of course, depending on your particular interests, some people might well find a feature _they_ like so much that they think it can do as a reason for incrementing the major number. So go wild. Make up your own reason for why it's 5.0."


    	MIT recently released Scratch 3, the latest version of its visual programming language. The Raspberry Pi blog announced it has upgraded to make this a smooth transition for those who use its free project resources, "whether that be at a Code Club, CoderDojo, Raspberry Jam, or at home, so we've been busy upgrading our resources to work with Scratch 3". In addition, "Scratch 3 versions of all projects in the Code Club Scratch Modules 1–3 and the CoderDojo Scratch Sushi Cards are already live!" See the post for more details related to Scratch 3 on RPi.


    	GitHub's CEO Nat Friedman announced that free accounts now can create private repositories (previously only paid accounts could have private repositories). Ars Technica reports that "Now every GitHub account can create an unlimited number of private repositories. These are still restricted—only three people can collaborate on these repositories—but a great many of those projects that once had no option but to be opened up might now be marked as private." The Ars Technica article also expresses concern that one possibility with this change is that "programs that would previously have been published as open source will now be closed up forever".


    	Bash-5.0 was released recently. This release fixes several bugs and introduces many new features. From the release announcement: "The most notable new features are several new shell variables: BASH_ARGV0, EPOCHSECONDS, and EPOCHREALTIME. The `history' builtin can remove ranges of history entries and understands negative arguments as offsets from the end of the history list. There is an option to allow local variables to inherit the value of a variable with the same name at a preceding scope. There is a new shell option that, when enabled, causes the shell to attempt to expand associative array subscripts only once (this is an issue when they are used in arithmetic expressions). The `globasciiranges' shell option is now enabled by default; it can be set to off by default at configuration time."


    	Purism announced the fourth version of its Librem laptops. The Librem 13 and 15 will be "now be upgraded with a 7th Gen Intel Core i7-7500U Processor with integrated HD Graphics that still works with coreboot. In addition, the Librem 15 display will be upgraded to 4K resolution. Upgraded models are available now for purchase whether you pick Librem 13: the road warrior or Librem 15: the desktop replacement." Note that the base cost will remain the same despite these updates (the Librem 15 starts at $1599, and the Librem 13 starts at $1399).

  


At the Forge: Easier Python paths with pathlib


A look at the benefits of using pathlib, the "object-oriented way of dealing with
paths". By Reuven M. Lerner



Working with files is one of the most common things developers
do. After all, you often want to read from files (to read information
saved by other users, sessions or programs) or write to files (to
record data for other users, sessions or programs).




Of course, files are located inside directories. Navigating through
directories, finding files in those directories, and even extracting
information about directories (and the files within them) might be
common, but they're often frustrating to deal with. In Python, a
number of different modules and objects provide such
functionality, including os.path, os.stat and glob.




This isn't necessarily bad; the fact is that Python developers have
used this combination of modules, methods and files for quite some
time. But if you ever felt like it was a bit clunky or old-fashioned,
you're not alone.




Indeed, it turns out that for several years already, Python's standard
library has come with the pathlib module, which makes it easier to
work with directories and files. I say "it turns out", because although I
might be a long-time developer and instructor, I discovered
"pathlib" only in the past few months—and I must admit, I'm
completely smitten.




pathlib has been described as an object-oriented way of dealing with
paths, and this description seems quite apt to me. Rather than working
with strings, instead you work with "Path" objects, which not only
allows you to use all of your favorite path- and file-related
functionality as methods, but it also allows you to paper over the
differences between operating systems.




So in this article, I take a look at pathlib, comparing the ways you might
have done things before to how pathlib allows you to
do them now.




pathlib Basics



If you want to work with pathlib, you'll need to load it into
your Python session. You should start with:




import pathlib







Note that if you plan to use certain names from within pathlib on a
regular basis, you'll probably want to use from-import. However, I
strongly recommend against saying from pathlib import *, which
will indeed have the benefit of importing all of the module's names
into the current namespace, but it'll also have the negative effect
of importing all of the module's names into the current namespace. In
short, import only what you need.




Now that you've done that, you can create a new Path object. This
allows you to represent a file or directory. You can create it with a
string, just as you might do a path (or filename) in more traditional
Python code:




p2 = pathlib.Path('.')







But wait a second. Do you use pathlib.Path to represent files or
directories? The answer is "yes". You actually can use it for both.
If you're not sure what kind of object you have, you always can ask
it, with the is_dir and is_file methods:




>>> p1 = pathlib.Path('hello.py')
>>> p2 = pathlib.Path('.')

>>> p1.is_file()
True

>>> p2.is_file()
False

>>> p1.is_dir()
False

>>> p2.is_dir()
True







Notice that just because you create a Path object doesn't mean that the
file or directory actually exists. You can check that with the
exists method:




>>> p1 = pathlib.Path('hello.py')
>>> p1.exists()
True

>>> p2 = pathlib.Path('asdfafafsafaa')
>>> p2.exists()
False







Manipulating Paths



Let's say you want to work with a file called abc.txt in the directory
/foo/bar. In a typical Python program, you then would say:




open('/foo/bar' + 'abc.txt')







You aren't doing anything particularly exciting here; you're just
joining two strings together, the first of which represents a
directory and the second of which represents a file. But as you can
see, there's already a problem, in that you don't have a /
separating the directory from the filename.




You can avoid such problems by using os.path.join:




>>> import os.path
>>> dirname = '/foo/bar'
>>> filename = 'abc.txt'

>>> os.path.join(dirname, filename)
'/foo/bar/abc.txt'







Using os.path.join not only ensures that there are slashes
where you
need them, but it also works cross-platform, using \ if your program
is running on a Windows system.




That's nice, but pathlib offers another option: you can use the
/ operator, normally used for division, to join paths together. For
example:




>>> dirname = pathlib.Path('/foo/bar')

>>> dirname / filename
PosixPath('/foo/bar/abc.txt')







It takes a bit of time to get used to seeing / between what you might
think of as strings. But remember that dirname isn't a string;
rather, it's a Path object. And / is a Python operator, which means
that it can be overloaded and redefined for different types.




If you forget and try to treat your Path object as a string, Python
will remind you:




>>> dirname + filename
TypeError: unsupported operand type(s) for +: 'PosixPath' 
 ↪and 'str'







Working with Directories



If your Path object contains a directory, there are a bunch of
directory-related methods that you can run on it. Actually, you can
run these methods on non-directory Path objects as well, but it won't
end very usefully or well.




For example, let's say you want to find all of the files in the
current directory. You can say:




>>> p = pathlib.Path('.')
>>>
>>> p.iterdir()
<generator object Path.iterdir at 0x111e4b1b0>







Notice that the result from calling p.iterdir() is a generator
object. You can put such an object in a for loop or other context
that expects/requires iteration. The generator will return one value
for each filename in your directory.




But, what if you're not interested in getting all of the filenames? What
if you want to get only those files ending with .py? If you were
working in the UNIX shell, you'd say something like ls *.py.
Such a pattern isn't a regular expression, despite what many people
believe. Rather, such a pattern is known as "globbing". The
glob
module in Python handles that for you, letting you say something like:




import glob
glob.glob('*.py')







The result of invoking glob.glob is a list of strings, with each
string containing a filename that matches the pattern.




Path objects have similar functionality, thanks to the glob
method. Like iterdir, the glob method returns a generator, meaning
that you can use it in a for loop. For example:




>>> p.glob('*.py')
<generator object Path.glob at 0x111b38480>

>>> for one_item in p.glob('*.py'):
    print(f"{one_item}: {type(one_item)}")

hello.py: <class 'pathlib.PosixPath'>
reverse_lines.py: <class 'pathlib.PosixPath'>
old_test_hello.py: <class 'pathlib.PosixPath'>







The good news is that you get back the filenames in the directory. And
the filenames already have been filtered by glob, so you're 
getting only matches. The even better news is that you get back Path
objects (in this case, PosixPath objects, since this example
isn't on a UNIX
system), which means that you can use all the tricks you've enjoyed
so far.




Working with Files



Once you have a file, what can you do with it? Well, one obvious
candidate is to open it and read its contents. You can do that with
the read_bytes and read_text methods, which
return "bytes" and
string objects, respectively.




Note that unlike the read method that you typically can run on a
"file" object in Python, both read_text and
read_bytes open the
file, retrieve its contents and close it again. Thus, you don't have
to worry about where the internal file pointer is located or whether
you'll be reading from the start of the file or elsewhere.




However, those methods can cause problems if you read from a
particularly large file. Python happily will read as much as it can
into a huge string, potentially using all (or most) of the memory on
your computer.




A better strategy, and a traditional one in Python, is to read through
the file's contents one line at a time. This is accomplished by
putting an open "file" object into a for loop; file objects are
iterable and return one line (that is, up to and including the following
newline) in each iteration.




Note that although you certainly can use the built-in open
function, you
also can take advantage of the open method for
Path objects:




>>> p = pathlib.Path('hello.py')

>>> for one_line in p.open():
>>>     print(one_line)







This will print all of the lines in the file. Notice that open knows
how to work with a Path object just as easily as a string. However,
you'll also notice that when you print the file, the lines are
double-spaced. That's because each iteration includes the newline
character, and print also inserts a newline character after each
line it prints. You can adjust this by passing an empty string to the
end parameter in the print function:




>>> for one_line in p.open():
>>>     print(one_line, end='')







Aside from opening files, you also can invoke a number of other methods
on a Path object. For example, I mentioned before that you might not
want to read the entirety of a large file into memory. You can check
the file's size, as well as many other attributes, using the
stat
method. This method, like the traditional os.stat Python function,
returns a file's size in bytes:




>>> p.stat().st_size
123







You similarly can retrieve other items that stat reports, including
the file's most recent modification timestamp, and IDs of the user and
group that own the file.




If you want to manipulate the filename, you can do so with 
methods, such as suffix:




>>> p.suffix()
'.py'







Conclusion



If you work with files on a regular basis from within Python programs,
I suggest you look at pathlib. It's not revolutionary, but it
does help to bring a lot of file-manipulating code under one
roof. Moreover, the / syntax, although odd-looking at the start,
emphasizes the fact that you're dealing with Path objects, rather
than strings. And besides, it's just convenient to have access to so
much functionality without having to remember where it's
located.




Resources



pathlib was first proposed (and accepted) in PEP 428, which is worth
reading here. It has been
around since Python 3.4. If you're still using Python 2.7, a package
is available on PyPI with a backport, known as pathlib2.



About the Author


  

Reuven Lerner teaches Python, data science and Git to companies
around the world. You can subscribe to his free, weekly "better
developers" e-mail list, and learn from his books and courses at
http://lerner.co.il. Reuven lives with his wife and children in
Modi'in, Israel.


[image: Reuven M. Lerner]


Work the Shell: Writing Secure Shell Scripts


Don't expose your system with sloppy scripts! By Dave Taylor




Although a Linux desktop or server is less susceptible to viruses and malware
than a typical Windows device, there isn't a device on the internet that
isn't eventually attacked. The culprit might be the stereotypical nerd in
a bedroom testing his or her hacker chops (think Matthew Broderick in War
Games or Angelina Jolie in Hackers). Then again, it might be an
organized military, criminal, terrorist or other funded entity creating
massive botnets or stealing millions of credit cards via a dozen redirected
attack vectors.




In any case, modern systems face threats that were unimaginable in the early
days of UNIX development and even in the first few years of Linux as a hobbyist
reimplementation of UNIX. Ah, back in the day, the great worry was about
copyrighted code, and so useful tools constantly were being re-implemented from
scratch to get away from the AT&T Bell Labs licenses and so forth.




I have personal experience with this too. I rewrote the Hunt the
Wumpus game
wumpus from scratch for BSD 4.2 when the Berkeley crowd was trying to get
away from AT&T UNIX legal hassles. I know, that's not the greatest claim to fame,
but I also managed to cobble together a few other utilities in my time too.




Evolution worked backward with the internet, however. In real life, the
lawless Wild West was gradually tamed, and law-abiding citizens replaced the
outlaws and thugs of the 1850s and the Gold Rush. Online, it seems that there
are more, smarter and better organized digital outlaws than ever.




Which is why one of the most important steps in learning how to write shell
scripts is to learn how to ensure that your scripts are secure—even if
it's just your own home computer and an old PC you've converted into
a Linux-based media server with Plex or similar.




Let's have a look at some of the basics.




Know the Utilities You Invoke



Here's a classic trojan horse attack: an attacker drops a script called
ls
into /tmp, and it simply checks to see the userid that invoked it, then hands
off its entire argument sequence to the real /bin/ls. If it recognizes userid
= root, it makes a copy of /bin/sh into /tmp with an innocuous name, then
changes its permission to setuid root.




This is super easy to write. Here's a version off the top of my head:




#!/bin/sh

if [ "$USER" = "root" ] ; then
  /bin/cp /bin/sh /tmp/.secretshell
  /bin/chown root /tmp/.secretshell
  /bin/chmod 4666 root /tmp/.secretshell
fi

exec /bin/ls $*







I hope you understand what just happened. This simple little script has
created a shell that always grants its user root access to the Linux system.
Yikes. Fancier versions would remove themselves once the root shell has been
created, leaving no trace of how this transpired.




Because irony should be, well, ironic, I demonstrate above how to avoid this
danger within the little trojan horse script. Never invoke programs by just
their name; make sure you include their path. A script that has ls
$HOME is
begging for trouble, so fix it with /bin/ls $HOME instead.




An interesting additional place this risk can appear is in your PATH. Again,
imagine if your PATH is set like this:




PATH=".:/bin:/usr/bin:$HOME/bin:/usr/local/bin"







95% of the time, that's no problem, and an invocation to ls or
cp or even
date will do just what you expect by failing to be found in the first
directory in your PATH and so cascading down to /bin where the legit binary
is stored. But what happens if you happen to be in /tmp when you invoke the
command? Without realizing it, you actually invoke the trojan version and
have created that root shell again (if you were root at the time, of course).




Solution: either never have dot as a directory in your PATH (my
recommendation) or have it as the last entry in the chain, not the first.




Don't Store Passwords in Scripts



I admit, I'm not the best at this because I have some aliases that
actually push passwords into my copy/paste buffer and then invoke an
ssh or
sftp connection to a remote computer. It's a dumb solution because it
rather inevitably means that I have a shell script—or aliases file, in this
case—that has lines like this:




PASSWORD="froBOZ69"







Or like this:




alias synth='echo secretpw | pbcopy; sftp adt@wsynth.net'







Solution: just don't do this. If you must, well, then at least don't
use such a ridiculously obvious (and easy to identify during a scan) variable
name. But really, find an alternative utility to accomplish the job, it's
not worth the security risk.




Beware of Invoking Anything the User Inputs



This is a subtle one, but there's a big security risk in a simple sequence
like the following:




echo -n "What file do you seek? "
read name
ls -l $name







What happens if the user enters something malicious like this as the filename:




. ; /bin/rm -Rf /







Quite dire consequences, whether the script is being invoked
as root or just a regular user. Bash has some level of protection if you
quote the argument, so the earlier sequence would be protected with the
change to:




/bin/ls -l "$name"







But, if it's invoked as eval /bin/ls -l "$name", that doesn't
apply. Oh, and there's also the infamous backticks. Imagine user input
like this:




. `/bin/rm -Rf /`







This is another risky one because the `` pair is the lazy
shortcut to $( )
and invokes a subshell when it's encountered on the command line. The
invocation of ls will be performed by just such a shell too.




To fix this danger, if you have reason to believe that your script might have
malicious users, scan and scrub your input. Easy solution: error out if you
encounter a character that's not alphanumeric or a small set of safe
punctuation marks.




Don't Use Shell Scripts for CGI Scripts



Running a Linux web server and learning about CGI scripts? It's not only
tempting to use shell scripts for basic CGI functions, it's quick and
easy too. Here's a script that tells you the load on the server:




#!/bin/sh

echo "Content-type: text/html"; echo ""
echo "Uptime on the Server:<pre>"
uptime -a
echo "</pre>"







This'll work fine once you get the permissions set properly. It's not too
dangerous, but what if you wanted to do something similar as a home-grown
search system for your site? Again, any time you have a script that runs with
input from an unknown user, you've added some major risk factors.




In this case, the solution is don't do it. Use a compiled program instead
that can implement safe and proper security or just use a third-party search
system like Google Custom Search Engine to be maximally safe.




Be Smart about Your Coding



There are lots of reasons to love programming in the Linux shell, not the
least of which is that it's fast and easy to prototype. But if you're
really going to create a safe computing environment, you need to focus on
security as you go, not realize after the fact that you did something dumb.




Some good online resources cover these topics in more depth.
Check out the Shell
Style Guide on GitHub 
to get started. Also, Apple has
a document
on shell script security that's also well worth a read.




Be careful out there! A little extra time making sure your scripts are safe
from major known risks is time well spent.



  About the Author


  

Dave Taylor has been hacking shell scripts on UNIX and Linux systems for a
really long time. He's the author of Learning Unix for Mac OS
X and Wicked Cool Shell Scripts. You can find him on Twitter
as @DaveTaylor, and you can reach him through his tech Q&A site: Ask Dave Taylor.


[image: Dave Taylor]


diff -u


What's New in Kernel Development By Zack Brown



Removing Profanity from the Source Tree


Warning: this article contains profanity.



Linus Torvalds recently stepped away from kernel development
temporarily in order to think about how to be less harsh with
developers in certain situations. Simultaneous with his departure
was a patch introducing a new Code of Conduct into the kernel
source tree. The effects of this are beginning to be felt.




Jarkko Sakkinen recently posted a patch to change a kernel comment
containing the word "fuck" to use the word "hug" instead. So the
code comment, "Wirzenius wrote this portably, Torvalds fucked it
up" would become "Wirzenius wrote this portably, Torvalds hugged
it up".




Steven Rostedt replied to this, saying that the code in question
had changed so much that the original comment was out of date, and
it should just be removed entirely. He said, "that will be an accurate
change with or without CoC."




Jonathan Corbet remarked, "I'd much rather see either deletion or
a rewrite over bleeping out words that somebody might not like."
And Jiri Kosina agreed, saying, "turning comments into something
that often doesn't make sense to anybody at all is hardly productive."




Sergey Senozhatsky pointed out that Linus was the author of the
original self-deprecating comment. He asked, "Linus has made a
comment, in his own words, about his own code. Why would anyone be
offended by this?"




And Tobin C. Harding remarked of the original code comment, "This
is my favourite comment to date in the kernel source tree. Surely
there are still some people working on the kernel that do so for
fun. I actually laughed out loud when I first stumbled upon this
file."




In a different thread, Kees Cook said he agreed with removing "fuck"
from the source tree, but felt that the word "hug" was not a good
replacement, since it didn't maintain the original meaning. He said:





"This API is hugged" doesn't make any sense to me. "This API is
hecked" is better, or at least funnier (to me). "Hug this interface"
similarly makes no sense, but "Heck this interface" seems better.
"Don't touch my hecking code", "What the heck were they thinking?"
etc...."hug" is odd.







He added, "Better yet, since it's only 17 files, how about doing
context-specific changes? 'This API is terrible', 'Hateful interface',
'Don't touch my freakin' code', 'What in the world were they
thinking?' etc.?"




Geert Uytterhoeven replied to Kees, saying, "As a non-native speaker,
I find both replacements ['hug' and 'heck'] difficult to understand.
While many of the original comments are easy to grasp for +7 year
olds who were never taught English, but are exposed to modern global
ways of communication." And Matthias Brugger also said, "I don't
think that the word 'fuck' is something we have to ban from the
source code, but I don't care too much. Anyway, please don't change
it to something like heck as it might be difficult for non-English
speakers to understand."




Some developers just shook their heads in bewilderment. Davidlohr
Bueso remarked of Jarkko's original patch, "I hope this is some
kind of joke. How would anyone get offended by reading technical
comments? This is all beyond me."




John Paul Adrian Glaubitz added, "We're all grown up and
don't freak out when a piece of text contains the word 'fuck'. I
still don't understand why people think that the word 'fuck' is
what would keep certain groups from contributing to the Linux kernel.
In all seriousness, it doesn't."




And Jens Axboe said, "Agree, this is insanity."




David Miller also said, "Whether or not it is a joke, it is censorship.
And because of that, I have no intention to apply any patches like
this to any code I am in charge of."




At one point Jarkko pointed to the part of the Code of Conduct
he relied on when posting his original patch:
"Harassment includes the use of abusive, offensive or degrading
language, intimidation, stalking, harassing photography or recording,
inappropriate physical contact, sexual imagery and unwelcome sexual
advances or requests for sexual favors."




He felt that the word "fuck" clearly fell into the category of
offensive language.




James Bottomley replied, "No, because use of what some people consider
to be bad language isn't necessarily abusive, offensive or degrading.
Our most heavily censored medium is TV and 'fuck' is now considered
acceptable in certain contexts on most channels in the UK and EU."




Taking another tack, James also pointed out that the
Documentation/process/code-of-conduct-interpretation.rst file said
specifically, "contributions submitted for the kernel should use
appropriate language. Content that already exists predating the
Code of Conduct will not be addressed now as a violation."
Which, James said, "definitely means there should be no hunting down
of existing comments in kernel code."




Jarkko replied, "Ugh, was not aware that there two documents."




The discussion petered out shortly thereafter, but this is the sort
of discussion we can expect to see again and again on the linux-kernel
mailing list, as long as the Code of Conduct retains its current
form.




The interesting thing for me is that the original issue had to
do specifically with Linus' rough statements toward developers
in specific situations. If he felt that someone should know better
regarding a given issue, and already had been told how a given patch
or feature should be done, but still persisted in trying to get a
rejected patch or feature into the kernel, Linus might yell at them.




Somehow this has morphed into removing banned sets of "unacceptable"
words from code comments. And, it did this in a brief matter of
a few weeks. I wonder what else is in store.




Fun Little Tidbits in a Howling Storm (Re: Intel Security Holes)



Some kernel developers recently have been trying to work around the
massive, horrifying, long-term security holes that have recently
been discovered in Intel hardware. In the course of doing so, there
were some interesting comments about coding practices.




Christoph Hellwig and Jesper Dangaard Brouer were working on
mitigating some of the giant speed sacrifices needed to avoid Intel's
gaping security holes. And, Christoph said that one such patch would
increase the networking throughput from 7.5 million packets per
second to 9.5 million—a 25% speedup.




To do this, the patch would check the kernel's "fast path" for any
instances of dma_direct_ops and replace them with a simple direct
call.




Linus Torvalds liked the code, but he noticed that Jesper and Christoph's
code sometimes would perform certain tests before testing the fast
path. But if the kernel actually were taking the fast path, those
tests would not be needed. Linus said, "you made the fast case
unnecessarily slow."




He suggested that switching the order of the tests would fix it
right up. He added:





In fact, as a further micro-optimization, it might be a good idea
to just specify that the dma_is_direct() ops is a special pointer
(perhaps even just say that "NULL means it's direct"), because that
then makes the fast-case test much simpler (avoids a whole nasty
constant load, and testing for NULL in particular is often much
better).




But that further micro-optimization absolutely *requires* that the
ops pointer test comes first. So making that ordering change is not
only "better code generation for the fast case to avoid extra cache
accesses", it also allows future optimizations.






Regarding Linus' micro-optimization, Christoph explained:





I wanted
to do the NULL case, and it would be much nicer. But the arm folks
went to great lengths to make sure they don't have a default set of
dma ops and require it to be explicitly set on every device to catch
cases where people don't set things up properly, and I didn't want
to piss them off....But maybe I should just go for it and see who
screams, as the benefit is pretty obvious.






Linus also suggested that for Christoph's and Jesper's tests, the
dma_is_direct() function should be sure to use the likely() call.
And this was interesting because likely() is used to alert the
compiler that a block of code is more "likely" to be run than
another in order to optimize it. And, Christoph wasn't sure this
was true. He said, "Yes, for the common case, it is likely. But if
you run a setup where you say always have an iommu, it is not, in
fact, it is never called in that case, but we only know that at
runtime."




So Christoph was concerned about misleading the compiler and
generating worse code. But Linus explained:





Note that "likely()" doesn't have any really huge overhead—it
just makes the compiler move the unlikely case out-of-line.




Compared to the overhead of the indirect branch, it's simply not a
huge deal, it's more a mispredict and cache layout issue.




So marking something "likely()" when it isn't doesn't really penalize
things too much. It's not like an exception or anything like that,
it's really just a marker for better code layout.






And that was it. Helpful hints in a time of desperate sorrow. These
Intel hardware security holes are almost beyond belief. And we keep
hearing about new batches of them being discovered all the time,
or new exploits that require different workarounds from the ones
already in place.




I'm sure Intel is working like mad to address all of this in future
generations of its hardware. But the thing about security holes
is that they are, by definition, hard to discover. Hardware
manufacturers can poke and prod their products all they please and
still miss the thing that a lone actor out in the world discovers
one day by mistake. This time, it was Intel; next time, it'll be
something else. Kudos to Intel for working with the OS people in
spite of the public embarrassment to find good workarounds for
these problems.




Disk Encryption for Low-End Hardware



Eric Biggers and Paul Crowley were unhappy with the disk encryption
options available for Android on low-end phones and watches. For
them, it was an ethical issue. Eric said:





We believe encryption is
for everyone, not just those who can afford it. And while it's
unknown how long CPUs without AES support will be around, there
will likely always be a "low end"; and in any case, it's immensely
valuable to provide a software-optimized cipher that doesn't depend
on hardware support. Lack of hardware support should not be an
excuse for no encryption.






Unfortunately, they were not able to find any existing encryption
algorithm that was both fast and secure, and that would work with existing
Linux kernel infrastructure. They, therefore, designed the Adiantum
encryption mode, which they described in a light, easy-to-read and
completely non-mathematical way.




Essentially, Adiantum is not a new form of encryption; it relies
on the ChaCha stream cipher developed by D. J. Bernstein in 2008.
As Eric put it, "Adiantum is a construction, not a primitive. Its
security is reducible to that of XChaCha12 and AES-256, subject to
a security bound; the proof is in Section 5 of our paper. Therefore,
one need not 'trust' Adiantum; they only need trust XChaCha12 and
AES-256."




Eric reported that Adiantum offered a 20% speed improvement over
his and Paul's earlier HPolyC encryption mode, and it offered a very
slight improvement in actual security.




Eric posted some patches, adding Adiantum to the Linux kernel's
crypto API. He remarked, "Some of these patches conflict with the
new 'Zinc' crypto library. But I don't know when Zinc will be
merged, so for now, I've continued to base this patchset on the
current 'cryptodev'."




Jason A. Donenfeld's Zinc ("Zinc Is Not crypto/") is a front-runner
to replace the existing kernel crypto API, and it's more simple and
low-level than that API, offering a less terrifying coding experience.




Jason replied to Eric's initial announcement. He was very happy to
see such a good disk encryption alternative for low-end hardware,
but he asked Eric and Paul to hold off on trying to merge their
patches until they could rework them to use the new Zinc security
infrastructure. He said, "In fact, if you already want to build it
on top of Zinc, I'm happy to work with you on that in a shared repo
or similar."




He also suggested that Eric and Paul send their paper through various
academic circles to catch any unanticipated problems with their
encryption system.




But Paul replied:




Unlike a new primitive whose strength can only
be known through attempts at cryptanalysis, Adiantum is a construction
based on well-understood and trusted primitives; it is secure if
the proof accompanying it is correct. Given that (outside competitions
or standardization efforts) no-one ever issues public statements
that they think algorithms or proofs are good, what I'm expecting
from academia is silence :) The most we could hope for would be
getting the paper accepted at a conference, and we're pursuing that
but there's a good chance that won't happen simply because it's not
very novel. It basically takes existing ideas and applies them using
a stream cipher instead of a block cipher, and a faster hashing
mode; it's also a small update from HPolyC. I've had some private
feedback that the proof seems correct, and that's all I'm expecting
to get.





Eric also replied, regarding Zinc integration:




For now
I'm hesitant to completely abandon the current approach and bet the
farm on Zinc. Zinc has a large scope and various controversies
that haven't yet been fully resolved to everyone's satisfaction,
including unclear licenses on some of the essential assembly files.
It's not appropriate to grind kernel crypto development to a halt
while everyone waits for Zinc.






He added that if Zinc is ready, he'd be happy to use it. He just
wasn't sure whether it was.




However, in spite of the uncertainty, Eric later said, "I started
a branch based on Zinc:
https://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/linux.git, branch
'adiantum-zinc'."




He listed the work he'd done so far and the work that remained to
be done. But regarding Zinc's remaining non-technical issues, he said:





Both
myself and others have expressed concerns about these issues
previously too, yet they remain unaddressed nor is there a documentation
file explaining things. So please understand that until it's clear
that Zinc is ready, I still have to have Adiantum ready to go without
Zinc, just in case.






Jason was happy to see the Zinc-based repository and promised to
look it over. He also promised to add a documentation file covering
many of Eric's concerns before posting another series of Zinc
patches. And as far as Eric and Paul being ready to go without Zinc
integration, he added, "I do really appreciate you taking the time,
though, to try this out with Zinc as well. Thanks for that."




Meanwhile, Herbert Xu accepted Eric and Paul's original patch-set,
so there may be a bit of friendly shuffling as both Zinc and Adiantum
progress.




It's nice to see this sort of attention being given to low-end
hardware. But, it's nothing new. The entire Linux kernel is supposed
to be able to run on absolutely everything—or at least everything
that's still in use in the world. I don't think there are too many
actual 386 systems in use anymore, but for real hardware in the
real world, pretty much all of it should be able to run a fully
featured Linux OS.



Note: if you're mentioned in this article and want to send a
response,
please send a message with your response text to ljeditor@linuxjournal.com
and we'll run it in the next Letters section and post it on the website as
an addendum to the original article.



  About the Author


  

Zack Brown is a tech journalist at Linux Journal and Linux
Magazine, and is a former author of the "Kernel Traffic" weekly
newsletter and the "Learn Plover" stenographic typing tutorials. He
first installed Slackware Linux in 1993 on his 386 with 8 megs of RAM
and had his mind permanently blown by the Open Source community. He
is the inventor of the Crumble pure strategy board game,
which you can make yourself with a few pieces of cardboard. He also
enjoys writing fiction, attempting animation, reforming Labanotation,
designing and sewing his own clothes, learning French and spending time
with friends'n'family.


[image: Zack Brown]


Password Manager Roundup



If you can remember all of your passwords, they're not good passwords. By
Shawn Powers



I used to teach people how to create "good" passwords. Those passwords
needed to be lengthy, hard to guess and easy to remember. There were lots
of tricks to make your passwords better, and for years, that was enough.




That's not enough anymore.




It seems that another data breach happens almost daily, exposing sensitive
information for millions of users, which means you need to have separate, secure
passwords for each site and service you use. If you use the same password
for any two sites, you're making yourself vulnerable if any single
database gets compromised.




There's a much bigger conversation to be had regarding the best way to
protect data. Is the "password" outdated? Should we have something better
by now? Granted, there is two-factor authentication, which is a great way
to help increase the security on accounts. But although passwords remain
the main method for protecting accounts and data, there needs to be a
better way to handle them—that's where password managers come into play.




The Best Password Manager



No, I'm not burying the lede by skipping all the reviews. As Doc Searls,
Katherine Druckman and myself discussed in Episode 8 of the Linux
Journal
Podcast, the best password manager is the one you use. It may seem like a
cheesy thing to say, but it's a powerful truth. If it's more complicated
to use a password manager than it is to re-use the same set of passwords
on multiple sites, many people will just choose the easy way.




Sure, some people are geeky enough to use a password manager
at any cost. They understand the value of privacy, understand security,
and they take their data very seriously. But for the vast majority of people,
the path of least resistance is the way to go. Heck, I'm guilty of that
myself in many cases. I have a Keurig coffee machine, not because the coffee
is better, but because it's more convenient. If you've ever eaten a
Hot Pocket instead of cooking a healthy meal, you can understand the
mindset that causes people to make poor password choices. If the goal is 
having smart passwords, it needs to be easier to use smart passwords than
to type "password123" everywhere.




The Reason It Might Work Now



Mobile devices have become the way most people do most things
online. Heck, Elon Musk said that we've become cybernetic beings,
it's just that the bandwidth to our cybernetic components is really
slow (that is, typing on our phones). It's always been possible to have some
sort of password management app on your phone, but until recently, the
operating systems didn't integrate with password managers. That meant
you'd have to go from one app into your password manager, look up the
site/app, copy the password, switch back to the app, paste the password,
and then hope you got it right. Those days are thankfully in the past.




Both recent Android systems and iOS (Apple, not Cisco) versions allow
third-party password managers to integrate directly into the data entry
system. That means when you're using a keyboard to type in a login
or password, in any app, you can pull in a password manager and enter
the data directly with no app switching. Plus, if you have biometrics
enabled, most of the time you can unlock your password database with
a fingerprint or a view of your face. (For those concerned about the
security of biometric-only authentication, it can, of course, be turned off,
but remember how important ease of use is for most people!)




So although password managers have been around for years and years, I truly
believe it's only with the advent of their integration into the main
operating system of mobile devices that people will actually be able to use
them widely. Not all Linux users will agree with me, and not all people
in general will want their passwords available in such an easy manner. For
the purpose of this article, however, a mobile option is a necessity.




A Tale of Two Concepts



Remember when "the cloud" was a buzzword that didn't really mean anything
specific, but people used it all the time anyway? Well, now it very clearly
means servers or services run on computers you don't own, in data centers
you don't control. The "cloud" is both awesome and terrible. When it comes
to storing password data, many people are rightfully concerned about
cloud storage. When it comes to password managers, there are basically
two types: the kind that stores everything in a local database
file and those that store the database in the cloud.




The cloud-based storage isn't as unsettling as it seems. When the database
is stored on the "servers in the sky", it's encrypted before it leaves
your device. Those companies don't have access to your actual passwords,
just the highly encrypted database that holds them—as long as you trust
the companies to be honest about such things. For what it's worth, I do
think the major companies are fairly trustworthy about keeping their
grubby mitts off your actual passwords. Still, with the closed-source
options, a level of trust is required that some people just aren't
willing to give. I'm going to look at password managers from both camps.




The Contenders



I picked five(-ish) password managers for this review. Please realize
there are dozens and dozens of very usable, very secure, password
managers for Linux. Some are command-line only. Some are just basic PGP
encryption of text files containing user name/password pairs. Today's
review is not meant to be all-encompassing; it's meant to be helpful
for average Linux users who want to handle their passwords better
than they currently do. I say five(-ish), because one of the entries has
multiple versions. The list is:



	
KeePass/KeePassX/KeePassXC: this is the one(-ish) that has multiple variations on the same theme. More
details later.


	
1Password.


	
LastPass.


	
Bitwarden.


	
Browser.





I highlight each of these in this article, in no particular order.



Your Browser's Password Database



Most people don't consider using their browser as a password manager
a good idea. I'm one of those people. Depending on the browser, the
version and the settings you choose, your passwords might not even be
encrypted. There is also the problem of using those passwords in other
apps. Granted, if you use Chrome, your Android phone likely will be able
to access the passwords for you to use in other apps, but I'm simply
not convinced the browser is the best place to store your passwords.




I'm sure the password storage feature of modern browsers is more secure
than in the past, but a browser's main function isn't to secure your
passwords, so I wouldn't trust it to do so. I mention this option because
it's installed by default with every browser. It's probably the most
widely used option, and that breaks my heart. It's too easy to click
"save my password" and conveniently have your password filled in the
next time you visit.




Is using the browser's "save password" function better than using nothing
at all? Maybe. It does allow people to use different passwords, trusting
the browser to remember them. But, that's about it. I'm sure the latest
browsers have the option to secure the passwords a bit, but it's not that
way by default. I know this, because when I sit at my wife's computer,
I simply start her browser (Chrome), and all her passwords are filled
in for me when I visit various websites. They've almost made it too easy
to use poor security practices. The only hope is to have better options
that are even easier—and I think we actually do. Keep reading!




The KeePass Kraziness



First off, these password managers are the ones that use a local,
non-cloud-based database for storing passwords. If the thought of
your encrypted passwords living on someone else's servers offends your
sensibilities, this is probably the best choice for you. And it is
a really good choice, whichever flavor you pick.




The skinny on the various programs that share similar names is that
originally, there was KeePass. It didn't have a Linux version, so
there was another program, KeePassX, that used an identical (and fully
compatible) database. KeePassX runs natively on Linux, along with the
other major OSes. To complicate issues, KeePass then released a Linux
version, which runs natively, but it uses Mono libraries. It runs, and
it runs fine, but Mono is a bit kludgy on Linux, so most folks still used
KeePassX. Then KeePassXC came around, because the KeePassX program was getting
a little long in the tooth, and it hadn't been updated in a long time. So
now, there are three programs, all of which work natively on Linux, and all
of which are perfectly acceptable programs to use. I prefer KeePassXC
(Figure 1), but only because it seems to be most actively developed. The good
news is, all three programs can use the exact same database file. Really. If
there is a single ray of sunshine on a messy situation, it's that.



[image: KeePassXC screen]

Figure 1. KeePassXC has a friendly, native Linux interface.





KeePass(X/XC) Features:



	
Local database file, with no syncing mechanism.


	
Database can be synced by a third party (such as Dropbox).


	
Supports master password and/or keyfile unlocking.


	
Very nice password generator (Figure 2).


	
Secure localhost-only browser integration (KeePassHTTP).





KeePass(X/XC) Pros:


	
No cloud storage.


	
Command-line interface included.


	
2FA abilities (YubiKey).


	
Open source.


	
No "premium" features, everything is free.





KeePass(X/XC) Cons:


	
No cloud storage (yes, it's a pro and a con, depending).


	
Brand confusion with multiple variations.


	
Requires third-party Android/iOS app for mobile use.


	
More complicated than cloud-based alternatives (file to sync/copy).




[image: KeePassXC generator]

Figure 2. The KeePassXC password generator is awesome. I don't even use
KeePassXC for my password manager, but I still like the generator!






The KeePass family of password managers is arguably the most
open-source-minded option of those I cover here. Depending on the user, to
handle syncing/copying the database rather than depending on an unknown
third party to store the data has a traditional Linux feel. For those
folks who are most concerned about their data integrity, a KeePass
database is probably the best option. Thankfully, due to third-party
tools like KeePass2Droid (for Android) and MiniKeePass/KyPass for iOS,
it's possible to use your database on mobile devices as well. In fact,
most apps handle syncing your database for you.




Bitwarden



I didn't know the Bitwarden password manager even existed until we did a
Twitter poll asking what password managers LJ readers used. I have to
admit, it's an impressive system, and it ticks almost all the "feel good"
boxes Linux users would want (Figure 3). Not only is it open source,
but also the non-premium offering is a complete system. Yes, there is a premium
option for $10/year, but the non-paid version isn't crippled in any way.



[image: Bitwarden]

Figure 3. Bitwarden is very well designed, and with its open-source nature,
it's hard to beat.





Bitwarden does store your data in its own cloud servers, but since the
software is open source, you can examine the code to make sure the company
isn't doing anything underhanded. Bitwarden also has its own apps for
Android/iOS and extensions for all major browsers. There's no need to
use a third-party tool. In fact, it even includes command-line tools for
those folks who want to access the database in a text-only environment.




Bitwarden Features:


	
Open-source.


	
Cloud-based storage.


	
Decent password generator.


	
Native apps for Linux, Windows, Mac, Android and iOS.


	
Browser extensions for all major browsers.


	
Options to store logins, secure notes, credit cards and so on.





Bitwarden Pros:


	
One developer for all apps.


	
Open-source!


	
Cloud-based access.


	
Works offline if the "cloud" is unavailable.


	
Free version isn't crippled.


	
Browser plugin works very well.





Bitwarden Cons:


	
Database is stored in the cloud (again, it's a pro and a con, depending).


	
Some 2FA options require the Premium version.





Bitwarden Premium Version:


	
$10/year.


	
Additional 2FA options.


	
1GB encrypted storage.





I'll admit, Bitwarden is very, very impressive. If I had to pick a
personal favorite, it probably would be this one. I'm already using a
different option, and I'm happy with it, but if I were starting from
scratch, I'd probably choose Bitwarden.




1Password



1Password is a widely used program for password management. But honestly,
I'm not sure why. Don't get me wrong; it works well, and it has great
features. The problem is that I can't find any features it has over the
alternatives, and there isn't a free option at all.




There's also no native Linux application, but the 1PasswordX browser
extension works well under Linux, and it's user-friendly enough to use for
things other than browser login needs. Still, although I don't begrudge
the company for charging a fee for the service, the alternatives
offer significant services for free, and that's hard to beat. Finally,
1Password utilizes a "secret key" that's required on each device to
log in. Although it is an additional layer of security, in practice, it's
a bit of a pain to install on each device.




1Password Features:


	
Cloud-based storage.


	
Non-login data encryption (Figure 4).


	
Printable "emergency kit" for recovering account.


	
Cross-platform browser extension.


	
Offline access.





1Password Pros:


	
Easy-to-use interface.


	
Very good browser integration.





1Password Cons:


	
$3/month, no free features.


	
Secret-key system can be cumbersome.


	
No native Linux app.


	
Proprietary, closed-source code.





1Password Premium Features:


	
All features require a monthly subscription.




[image: 1Password Screen]

Figure 4. 1Password has a great interface, and it stores lots of
data.






If there weren't any other password managers out there, 1Password would
be incredible. Unfortunately for the 1Password company, there are other
options, several of which are at least as good. I will admit, I really
liked the browser extension's interface, and it handled inserting
login information into authentication fields very well. I'm not convinced
it's enough for the premium price, however, especially since there isn't
a free option at all.




LastPass



Okay, first I feel I should admit that LastPass is the password manager I
use (Figure 5). As I mentioned previously, if I were to start over from
scratch, I'd probably choose Bitwarden. That said, LastPass keeps
getting better, and its integration with browsers, mobile devices
and native operating systems is pretty great.



[image: LasstPass]

Figure 5. I seldom use anything other than LastPass's browser extension,
unless I'm on my mobile device, but the app looks very similar.





LastPass offers a free tier and a paid tier. Not too long ago, you had
to pay for the premium service ($2/month) in order to use it on a mobile
device. Recently, however, LastPass opened mobile device syncing
and integration into the completely free offering. That is significant,
because it brings the free version to the same level as the free version
of Bitwarden. (I suspect perhaps Bitwarden is the reason LastPass
changed its free tier, but I have no way of knowing.)




LastPass Features:


	
Cloud-based storage.


	
Native apps for Linux, iOS and Android.


	
2FA.


	
Offline access.


	
Cross-platform browser extension.





LastPass Pros:


	
Cloud-based storage.


	
Very robust free offering.


	
Smoothest browser-based password saving (in my experience).





LastPass Cons:


	
Data stored in the cloud (yes, it's a pro and a con, depending).


	
Rumored to have poor support (I've never needed it).


	
Proprietary, closed-source code.





LastPass Premium:



	
$2/month.


	
Gives 1GB online file storage.


	
Provides the ability to share passwords.


	
Enhanced 2FA possibilities.


	
Emergency access granting (Figure 6).




[image: Emergency Access Screen]

Figure 6. This is sort of a "deadman's" switch for emergency access. It
allows you to give emergency access to someone, with the ability to
revoke that access before it actually happens. Pretty neat!





LastPass is the only option I can give an opinion on based on extended
experience. I did try each option listed here for a few days, and honestly,
each one was perfectly acceptable. LastPass has been rock-solid
for me, and even though it's not open source, it does work well across
multiple platforms.




The Winner?



Honestly, with the options available, especially those highlighted today,
it's hard to lose when picking a password manager. I sort of picked the
top managers, and gave an overview of each. There are other, more obscure
password managers. There are some options that are Linux-only. I decided
to look at options that would work regardless of what platform you find
yourself on now or even in the future. Once you pick a solution, migrating
is a bit of a pain, so starting with something flexible is ideal.




If you're concerned about someone else controlling your data (even if
it's encrypted), the KeePass/KeePassX/KeePassXC family is probably
your best bet. If you don't mind trusting others with your data-syncing,
LastPass or Bitwarden probably will be ideal. I suppose if you don't
trust "free" products, or if you just really like the layout of 1Password,
it's a viable option. And I guess, in a pinch, using browser password
management is better than nothing. But please, be sure the data is
encrypted and password-protected.




Finally, even if none of these options are something you'd use on a
daily basis, consider recommending one to someone you care
about. Keeping track of passwords in a secure, sync-able database is
a huge step in living a more secure online lifestyle. Now that mobile
devices are taken seriously in the password management world, password
managers make sense for everyone—even your non-techie friends and family.



Resources


	
KeePass


	
KeePassX


	
KeePassXC


	
1Password


	
LastPass


	
Bitwarden




About the Author



Shawn is Associate Editor here at Linux Journal, and has been around Linux
since the beginning. He has a passion for open source, and he loves to teach. He also drinks too much coffee, which often shows in his writing.


[image: Shawn Powers]


Everyday Security Tips


Make your computer safer with these guidelines based on the Linux
Foundation's Security Checklist developed for
corporate systems. By Michael McCallister



It's an eternal problem. How can you best protect your computer from all
the threats that being connected to a network brings? It's as much a concern for
corporate system administrators as it is for everyday computer users.
For Linux system administrators, it's one thing to protect a single
system with permissions, but it's another matter altogether to protect a network when
all your users can be physically located elsewhere. 




Since 2015, the Linux Foundation has published a Security
Checklist on GitHub, making the guidelines available to Linux admins
everywhere. Sysadmins are encouraged to fork the checklist and then customize
it for their own users. At the time of this writing in December 2018, 324 forks were recorded
in the GitHub repository.




Although the guidelines are focused on laptops that connect to company servers, every Linux
user who can sign in as root (that is, be a system administrator) will
find useful tips and software recommendations to keep their systems safer,
if not entirely bullet-proof. 




In this article, I highlight some of
the most important recommendations and provide some relevant tips from
my own experience.



Hardware: It's Time to Reconcile with Secure Boot



Let's start with a brief history lesson. Computers nearly always have had an interface
that allowed its firmware to hand over control of the system
to humans. In the early days of IBM-compatible personal computing,
that interface was called the Basic Input Output System (BIOS). This
system worked just fine for a long time. There was a security problem
with the BIOS, however.  The BIOS didn't care whether the operating system that
it was told was taking over was actually an operating system. Some folks
developed malware, called rootkits, that seized control of the computer on
which it
was loaded, and the infected computer did the rootkit's bidding
instead of the OS it was impersonating.




The solution (many years later) is the Unified Extensible Firmware
Interface (UEFI), which began implementation in most Windows-based
PCs in 2011. Among other things, UEFI contained the Secure Boot feature,
requiring an operating system to present a digital signature that matched
one in the UEFI database. Since Microsoft developed this standard and
defined the approved signatures, Windows machines were preferred. For
nearly two years after the standard was introduced, Linux installations
often were rejected by Secure Boot. The Linux Foundation, among others,
developed workarounds that allowed both replacement of pre-installed
Windows and multibooting systems with a bootloader allowing users
to select the OS at boot time.




Today, nearly every PC and laptop running UEFI and Secure Boot also
can run Linux with little extra effort. The Linux Foundation checklist calls running
with Secure Boot an essential piece of a secure Linux system. Chances
are good that your laptop is running under the UEFI, as long as it was
built after 2011.




If you're already running Linux on your laptop, look for the efi folder
on your system:




ls /sys/firmware/efi/







If you're installing Linux on a new machine, you may want to check
your distribution's documentation to confirm that it will boot under
Secure Boot. [See Kyle Rankin's article "Tamper-Evident Boot with Heads"
for more on securing the boot process.]




Anti Evil Maid



If you're not persuaded, or for some reason you can't get Secure Boot
working with your distribution, the checklist offers an alternative called
Anti Evil Maid (AEM). Created and maintained by the QubesOS project,
Anti Evil Maid flips the authentication paradigm by "authenticating
machine to the user".




AEM runs on systems using dracut/initramfs, including (besides QubesOS)
Fedora, Red Hat Enterprise, openSUSE, SUSE Linux Enterprise, Debian
and Gentoo. 



To get started with AEM,
simply download the code from 
GitHub and 
review the setup instructions in the 
README.




Protecting UEFI



Secure Boot and UEFI are designed to protect the boot sector, so make sure
that the UEFI configuration tool is password-protected. Manufacturers
may limit the length of such a password, so check that as well.




If you're lucky, you can set up the system to require the UEFI password
to boot the system. This ability is considered "nice to have", but not
essential, especially if your disk is encrypted, and you shut down/restart
the machine regularly.



Encrypt, Encrypt, Encrypt



Say you're ready to install Linux on a machine. There are two things to check
before choosing a distribution:



	
It should support full-disk encryption.


	
It should support either Mandatory Access Controls (MAC) or Role-Based Access
Controls (RBAC), usually managed through SELinux or AppArmor.





All of your partitions (home, root and swap) will carry a big pile of
sensitive data that likely will make some evil-doer very happy should
it get loose. If your system can use the bootloader from an encrypted
/boot partition, you should do that too.




The reigning standard for Linux disk encryption is the Linux Unified
Key System (LUKS). This system, including the dm-crypt package, encrypts
the disk with the strong AES-256 encryption algorithm. It also supports
multi-user logins into the operating system.




Ideally, your selected distribution will include dm-crypt/LUKS as
part of its installation package. If not, ensure that it's available in a
repository. The package has different names, but searching for "LUKS"
in your package manager should find the right package. If you encrypt
your disk after initial system install, be sure to back up your system
to a remote location first, as dm-crypt will wipe the existing partitions!



SELinux and AppArmor



Security Enhanced Linux (SELinux) was originally developed by the US
National Security Agency (NSA) in 2000 and merged into the Linux kernel
in 2003. SELinux is a Mandatory Access Controls (MAC) system designed
to extend core permissions. For those suspicious of the NSA's intent,
the code is released under the GNU General Public License. The system
was considered to be more of a hindrance by many at the beginning, but the
Linux Foundation guidelines declare that it's "mature, robust, and has come a long way since
its initial rollout".




Nonetheless, the Linux Foundation says that SELinux "will have limited security benefits
on the workstation", because most desktop-type applications an ordinary
user runs would be unconfined. The Linux Foundation recommendation is don't turn off
SELinux if you run Red Hat or another distribution that uses SELinux
for security, but leave its default settings alone.




Many distributions prefer AppArmor to enhance Linux system security. This
Role-Based Access Control (RBAC) is easier to configure than SELinux,
and it will better protect your network-facing applications.




Reminder about Strong Passphrases



The checklist recommends creating and using two "distinct, robust,
equally strong passphrases" if you are the only user of your machine. One
passphrase is for your administrative tasks (unlocking your encrypted disk,
bootloader and other root tasks), and a separate passphrase is for your
user account and also is to open your password manager for all the other
accounts you have.




If someone else uses your machine, you should have a third passphrase
for unlocking the disk. That way, you can continue to manage the machine
as root, but your ordinary users can unlock their own files.




You still may pause when reading about "passphrases". You know about
passwords, and you know (at least in theory) that p@ssw0rd really doesn't
keep anything safe. The problem is that the more secure your passwords
are, the  harder they are to remember.  Passphrases—a series of words
that you can memorize that no one else can crack—are so much better!




Don't forget Passphrase Rule #1: don't use "The future is already
here—it's just not evenly distributed" or some other phrase that
you think is cool, geeky but obscure. Chances are the phrase isn't
so obscure. If you want to use a quote from classic literature,
you might choose "Future is obscure more like a granfalloon" instead.




Post-Install Hardening



Once you have installed your Linux distribution, and your data and Swap
partitions are encrypted, you should tweak a few more settings to get the system
in better shape.




Obsolete kernel modules: FireWire and Thunderbolt standards were created
to make it easier for multiple devices to connect to a laptop or desktop
system. They, along with ExpressCard, allowed connecting devices to have full
direct memory access to your system—really nice when you're the only
one trying to access the machine with another device. It's not so good when
attackers are everywhere, including unprotected coffee-shop WiFi.




Since more secure technologies have been developed, you don't need
these kernel modules. Although newer machines  may not have these ports
(and you're better off if they don't), you should blacklist those kernel modules.
Open /etc/modprobe.d/blacklist-dma.conf and 
add these lines:




blacklist firewire-core
blacklist thunderbolt







Readable root mail: your system sets up mailboxes for every user on
the system, and that email box is likely open at username@systemname. By
"every user", I include root. The system automatically sends messages
to root's system email. These messages can include security reports and other
important notifications. You may be like me and not
add that mailbox to your email reader, so the mailbox fills up with
important unread email.




Are you suddenly getting the feeling that you may not know what horrible security
breaches may have already happened that you don't even know about? You
can fix this relatively easily. Forward system mail to an account that
is in your email reader. Open /etc/aliases (as root) in your favorite
text editor, and add these recommended lines:




#Person who should get root's email
root: mike@example.com







Close incoming sshd ports: Secure SHell (SSH) is a wonderful thing,
but you probably don't need to allow other machines (even with a
passphrase!) to connect to this laptop.  Without a really good reason to
allow incoming secure connections, don't do it. Check your firewall settings,
as they vary from distribution to distribution, and filter out incoming sshd
requests. Then disable the sshd service with these systemd commands:




systemctl disable sshd.service
systemctl  stop sshd.service







Updates: I'm obsessive about updating my software, partly because I've
always wanted the latest and greatest stuff, but also because updates fix
bugs and security holes. Although I have my complaints with KDE's Discover
update service, I still am almost gleeful when I'm told I have updates
ready to install.




You may be one of those people who had an automatic update go badly,
rendering your system useless. Perhaps you update software on a
case-by-case basis, reading carefully what exactly an update is intended
to fix. You read carefully every security bulletin that comes out on
your system, and update accordingly.




The Linux Foundation checklist recommends turning on automatic updates, but if you
fall into the camp of wary updaters, you should at least permit automatic
notifications of available updates. Combine that with immediate response
to any security bulletins you receive from your distribution, and you
should be in good shape.



Backups



As a security-conscious Linux user, you probably have a backup regimen
already in place. In case you don't, the checklist offers a set of
guidelines you should be able to follow:



	
Critical directories to back up: /home, /etc, and /var/log.


	
Ideally, you have an external (LUKS-encrypted) hard drive to copy over
those directories to on a regular basis.


	
Don't ever put your home directory on an unencrypted medium, even as a
temporary measure!


	
If you haven't encrypted your backup disk, your backup tool should be able to
encrypt your backups. The shell program Duplicity and its deja-dup GUI
counterpart should work nicely.


	
Cloud or otherwise offsite backups should focus on the most important files to
avoid shoving huge amounts of data over the internet.


	
Consider using SpiderOak for managing offsite content.





Suggestions for Desktop Users



Okay, Linux is installed, and it's as secure as you can make it. You have a
backup strategy in place, so you can protect your work if something bad
happens. Now you're ready for day-to-day use of your Linux computer. You're
still not done with security. As the checklist puts it, "The world of IT
security is a rabbit hole with no bottom."




As a "non-exhaustive list", the Linux Foundation offers a set of best practices for
day-to-day use:




	
Dump the X Window System for Wayland. As the World Wide Web protocols
were not conceived with security in mind, so X11 (which is much older than
the web) is much more about connecting people and machines than preventing
bad actors from wreaking havoc. It's taking a while for distributions
to transition to Wayland, but consult with your distribution to see how
you can default to Wayland yourself.



	
Use a password manager. Most browsers prompt you whether you want to save
a site password after you enter credentials the first time. These
are okay, but that won't help if you use a different browser the next
time you visit that site. The Linux Foundation recommends a standalone, cross-browser
password manager, such as KeePassX, Pass, Django-Pstore or (if you're
using Puppet for infrastructure) Hiera-Eyaml.



	
Use Fido U2F USB tokens to provide two-factor authentication. The FIDO
group works to eliminate passwords for authentication altogether. This
hardware-based two-factor authentication system is a first step. Go
here for a list of services supporting U2F.



	
Secure your private keys! Public Key Infrastructure (PKI) breaks
down if anyone other than you gains access to your SSH and PGP private
keys. Protect them with strong passphrases.



	
Don't suspend your machine at the end of the day. It's much better to shut
it down or put it in hibernation if you're going to be away from the
box for a long time.





Using Multiple Browsers



The Linux Foundation checklist expresses concern that web browsers offer "the largest
and most exposed attack surface on your system. It is a tool written
specifically to download and execute untrusted, frequently hostile
code." As an essential means to mitigate the size of this attack surface,
the checklist recommends using two browsers for all online activity:




	
Use Firefox for work and high-security sites.  The Linux Foundation suggests
that Firefox
should be used when you want to ensure that data like cookies, sessions,
login information and keystrokes aren't captured by attackers.



	
Use a Chromium-based browser for everything else. Give it a distinctive
theme from Firefox for a visual cue that  this is your browser for
untrusted sites. Development on this project is further along than
Firefox for security features like seccomp sandboxes and kernel user
namespaces. These features "act as an added layer of isolation between
the sites you visit and the rest of your system".






Install Privacy Badger, HTTPS Everywhere and uMatrix plugins on both
browsers. Add Firejail on Firefox for sandbox protection. These plugins
make it less likely that your browsing data is being collected across the
web. uMatrix is apparently so effective at preventing active third-party
content from loading on your screen, it makes it a bit of a hassle to use
the web at all, so install it with caution!




I use Privacy Badger and HTTPS Everywhere on Firefox, and I feel like that's
enough to protect me on the web. I'll continue to think about this last
recommendation (using browsers based on what I'm doing). Interesting to
consider though.



Conclusion



In this article, I've gone over the "essential" recommendations
on the checklist and some of the "nice" options. The checklist
offers a few items for the paranoid among us as well. Be sure to check out
the whole
list, with more links and discussion points, and see also the Resources
section
for this article.



Resources



	Linux
workstation security checklist


	UEFI


	
UEFI
Secure Boot


	
SELinux


	
AppArmor


	
Duplicity


	
SpiderOak


	
USB-Dongle Authentication


	
KeePassX


	
pass—the standard unix password
manager


	django-pstore


	Hiera-Eyaml


	
Privacy Badger


	
HTTPS Everywhere


	
uMatrix


	
Firejail Security Sandbox





  About the Author


  

Mike McCallister has written about Linux and FLOSS since the turn of the
millennium. Find him at michaelmccallister.com,
Author.MichaelMcCallister
on Facebook, and @workingwriter at Twitter and most everywhere else online.





Understanding Public Key Infrastructure and X.509 Certificates


An introduction to PKI, TLS and X.509, from the ground up. By Jeff Woods



Public Key Infrastructure (PKI) provides a framework of encryption and data
communications standards used to secure communications over public networks.
At the heart of PKI is a trust built among clients, servers and certificate
authorities (CAs). This trust is established and propagated through the
generation, exchange and verification of certificates. 




This article focuses on understanding the certificates used to establish
trust between clients and servers. These certificates are the most visible
part of the PKI (especially when things break!), so understanding them will
help to make sense of—and correct—many common errors. 




As a brief introduction, imagine you want to connect to your bank to
schedule a bill payment, but you want to ensure that your communication is secure.
"Secure" in this context means not only that the content remains
confidential, but also that the server with which you're communicating actually
belongs to your bank.




Without protecting your information in transit, someone located between you
and your bank could observe the credentials you use to log in to the server,
your account information, or perhaps the parties to which your payments are
being sent. Without being able to confirm the identity of the server, you
might be surprised to learn that you are talking to an impostor (who now has
access to your account information).




Transport layer security (TLS) is a suite of protocols used to negotiate a
secured connection using PKI. TLS builds on the SSL standards of the late
1990s, and using it to secure client to server connections on the internet has
become ubiquitous. Unfortunately, it remains one of the least understood
technologies, with errors (often resulting from an incorrectly configured
website) becoming a regular part of daily life. Because those errors are
inconvenient, users regularly click through them without a second thought.




Understanding the X.509 certificate, which is fully defined in RFC 5280, is
key to making sense of those errors. Unfortunately, these certificates have a
well deserved reputation of being opaque and difficult to manage. With the
multitude of formats used to encode them, this reputation is rightly deserved.




An X.509 certificate is a structured, binary record. This record consists of
several key and value pairs. Keys represent field names, where values may be
simple types (numbers, strings) to more complex structures (lists). The
encoding from the key/value pairs to the structured binary record is done
using a standard known as ASN.1 (Abstract Syntax Notation, One), which is a
platform-agnostic encoding format. 




Designed for efficient operation across a broad range of hosts, ASN.1 allows
several ways to encode values using its "basic encoding rules" (BER). As
you
will see shortly, multiple encodings for the same data will not work for your
certificates, so the X.509 standard designated a subset of BER as the
"distinguished encoding rules" (DER). The use of DER ensures that there is
exactly one way any value might be encoded. 




A certificate may be distributed in this raw, binary DER format. Since binary
data is not terminal- or email-friendly, the encodings defined in the Privacy
Enhanced Mail (PEM) standard are commonly applied. Although PEM is largely an
obsolete standard, it defines methods of encoding binary material in a
text-safe format. Most important, it defines the base64 scheme for encoding
binary data into text and specifies the use of encapsulation boundaries to
signal the beginning and ending of encoded content. The use of the PEM format
is generally preferred on Linux servers (more on that later in
this article).




Certificates may be distributed in a multitude of other formats as well. What
is important to understand is that regardless of the encoding format—DER,
PEM, PFX or something else—all certificates are basically the same when
they are decoded. Tools, such as OpenSSL, are able to read or convert any of
these formats easily.




The certificate encodes two very important pieces of information: the
server's public key and a digital signature that can be used to confirm
the certificate's authenticity. Additionally, the certificate will
include metadata used by the CA to track the certificate and provide
guidelines on how the public key can be used.




Public key cryptography, also known as asymmetric key cryptography, provides a
mechanism to establish a secured communication channel over an insecure
network. 
Using the server's public key, the client and
server are able to negotiate a shared symmetric key securely, which can be used
to secure communications.




Encryption: Symmetric vs. Asymmetric



Two broad types of encryption are widely used to secure web traffic:
symmetric key and asymmetric key. 




In both types of encryption, the key refers to a passphrase (of sorts)
required to encrypt or decrypt the data. Without the key, an entity
attempting to read the data would be unable to read the encrypted content.
Likewise, malicious content would be difficult to generate.




Symmetric key encryption uses the same key on both sides of the communication
channel to encrypt or decrypt data. Symmetric key encryption is implemented
in algorithms such as AES or DES. It has the advantage of being very fast
with a low overhead, but a secure channel must exist between the two parties
through which the key may be exchanged. 




Asymmetric key encryption uses a pair of keys, known as a private key and a
public key. These keys are different values. Data encrypted using the
private key can be decrypted only using the public key. The reverse is also
true: data encrypted with the public key can be decrypted only with the
private key. Asymmetric encryption algorithms include algorithms such as RSA,
DSA and ECDSA. 




While symmetric keys have desirable properties for communication, they must be
generated and exchanged in a secure manner. Asymmetric algorithms fit this
niche, and you can use them as the foundation for building a secured channel.






But, how do you (as the client) know that the public key can be trusted as
authentic? You can use the certificate authority (CA), a trusted third party, 
as a mediator of sorts. By submitting the certificate to be signed by the CA,
the owner of the server gives consent for the certificate to be
"authenticated" by the CA. If the client, who trusts that the CA has
verified the server properly, can confirm that the signature is valid, 
the certificate can be trusted.




A hash, often using the SHA256 algorithm, is a digital fingerprint of the
data. If you change a single bit in the data, the hash will change. By
computing a hash over the DER-encoded public key section of the certificate
and then signing the hash with its own private key, the CA is giving its stamp
of approval on the certificate. This signed hash value is the signature
appended to the certificate.




When the client receives the server's certificate, the client can create
the hash over the same data in the certificate that was signed by the CA. If
the client is able to decrypt the signature using the CA's public key and
it matches the hash the client computed itself, the client can be certain that
the server's certificate was endorsed by the CA.




The final piece of the puzzle is understanding that the client must 
trust the CA explicitly. This is done by adding the CA's public key to the
client's "trusted key store". As the user of common web services,
you don't need to think much about certificate authorities. Both your
operating system and your web browser ship with curated lists of authorities,
which have been pre-selected as trustworthy for you. Still, from time to
time, it may be necessary to install a certificate from a non-standard CA.




Now that you understand the basics of how a certificate is put together, let's
look at a real-world example. Using the following command, you can pull the
certificate from the google.com domain:




$ openssl s_client -showcerts -connect google.com:443 </dev/null 







This command connects to the remote server using TLS and dumps a large amount
of information about the TLS handshake to your console. If you had not
redirected standard input from /dev/null, the connection would remain open,
allowing you to interact directly with the server on port 443 (you can
close this connection explicitly with Ctrl-D). 




Below is an (abbreviated) view of the output, which I explore through
the remainder of this article:




$ openssl s_client -showcerts -connect google.com:443 
 ↪</dev/null 
CONNECTED(00000003) 
depth=2 OU = GlobalSign Root CA - R2, O = GlobalSign, CN = 
 ↪GlobalSign 
verify return:1 
depth=1 C = US, O = Google Trust Services, CN = Google 
 ↪Internet Authority G3 
verify return:1 
depth=0 C = US, ST = California, L = Mountain View, O = 
 ↪Google LLC, CN = *.google.com 
verify return:1
--- 
Certificate chain 
0 s:/C=US/ST=California/L=Mountain View/O=Google 
 ↪LLC/CN=*.google.com 
  i:/C=US/O=Google Trust Services/CN=Google Internet 
 ↪Authority G3 
-----BEGIN CERTIFICATE----- 
MIIIgjCCB2qgAwIBAgIITFQTbb/xK/QwDQYJKoZIhvcNAQELBQAwVDELMAkGA1UE 
BhMCVVMxHjAcBgNVBAoTFUdvb2dsZSBUcnVzdCBTZXJ2aWNlczElMCMGA1UEAxMc 
R29vZ2xlIEludGVybmV0IEF1dGhvcml0eSBHMzAeFw0xODEwMzAxMzE1MDVaFw0x 
        <... content omitted ...>
OTAxMjIxMzE1MDBaMGYxCzAJBgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlh 
pvxysdjrJ8qfUyD0AY/Z8dCs1RQfx8SKbXuoML9e0X5uxRmeyjQ0s+BPJDIQG5b8 
IGSRGSm8vWtg9vz/GDZIErtEO1kgXOslBBGL5NSCFpxkp1lh/Usi3nFzPcU6Fbvx 
WMSdoZZKpgy5+6GGjYv/dEyEdnXYzg== 
-----END CERTIFICATE----- 
1 s:/C=US/O=Google Trust Services/CN=Google Internet 
 ↪Authority G3 
  i:/OU=GlobalSign Root CA - R2/O=GlobalSign/CN=GlobalSign 
-----BEGIN CERTIFICATE----- 
MIIEXDCCA0SgAwIBAgINAeOpMBz8cgY4P5pTHTANBgkqhkiG9w0BAQsFADBMMSAw 
HgYDVQQLExdHbG9iYWxTaWduIFJvb3QgQ0EgLSBSMjETMBEGA1UEChMKR2xvYmFs 
U2lnbjETMBEGA1UEAxMKR2xvYmFsU2lnbjAeFw0xNzA2MTUwMDAwNDJaFw0yMTEy 
        <... content omitted ...>
FIwsIONGl1p3A8CgxkqI/UAih3JaGOqcpcdaCIzkBaR9uYQ1X4k2Vg5APRLouzVy 
7a8IVk6wuy6pm+T7HT4LY8ibS5FEZlfAFLSW8NwsVz9SBK2Vqn1N0PIMn5xA6NZV 
c7o835DLAFshEWfC7TIe3g== 
-----END CERTIFICATE----- 
--- 
        <... content omitted ...>
--- 
DONE







This output shows that the server returned not one, but two
PEM-encoded certificates. Each certificate is bracketed by -----BEGIN
CERTIFICATE----- and -----END CERTIFICATE----- markers.
Although
they look intimidating, remember that they are nothing more than
base64-encoded DER data, and you have tools that can look inside!




OpenSSL provides a little bit of context just above the BEGIN mark
of each certificate with the s: (subject) and i: (issuer)
tags. The subject tells you what server (or other entity) the certificate was
generated for, while the issuer tells you which certificate authority signed
the certificate. If the subject matches the server to which you are connecting
and you trust the issuer, you can be on your way.




At this point, let's pause to note that the X.509 standard used to encode
certificates descends from the same series of X.500 standards as LDAP. You
can see some of this common lineage in the directory syntax used to identify
the subject and issuer: 




C=US,ST=California,L=Mountain View,O=Google LLC,CN=*.google.com







If you're not familiar with LDAP naming standards, it's most important to
understand that the "CN" is the "common name" of the
certificate owner, with the remainder of the name being used for organization
within a directory.




You can decode these certificates using OpenSSL. Extract the first certificate
(CN=*.google.com) into a file named "google_com.crt" and the second
certificate (CN=Google Internet Authority G3) into a file named
"google_authority_g3.crt". Include the BEGIN and
END wrapping each certificate, but nothing more. When you're
done, you should have two files that look like this:





$ cat google_com.crt
-----BEGIN CERTIFICATE----- 
MIIIgjCCB2qgAwIBAgIITFQTbb/xK/QwDQYJKoZIhvcNAQELBQAwVDELMAkGA1UE 
BhMCVVMxHjAcBgNVBAoTFUdvb2dsZSBUcnVzdCBTZXJ2aWNlczElMCMGA1UEAxMc 
R29vZ2xlIEludGVybmV0IEF1dGhvcml0eSBHMzAeFw0xODEwMzAxMzE1MDVaFw0x 
        <... content omitted ...>
OTAxMjIxMzE1MDBaMGYxCzAJBgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlh 
pvxysdjrJ8qfUyD0AY/Z8dCs1RQfx8SKbXuoML9e0X5uxRmeyjQ0s+BPJDIQG5b8 
IGSRGSm8vWtg9vz/GDZIErtEO1kgXOslBBGL5NSCFpxkp1lh/Usi3nFzPcU6Fbvx 
WMSdoZZKpgy5+6GGjYv/dEyEdnXYzg== 
-----END CERTIFICATE-----

$ cat google_authority_g3.crt
-----BEGIN CERTIFICATE----- 
MIIEXDCCA0SgAwIBAgINAeOpMBz8cgY4P5pTHTANBgkqhkiG9w0BAQsFADBMMSAw 
HgYDVQQLExdHbG9iYWxTaWduIFJvb3QgQ0EgLSBSMjETMBEGA1UEChMKR2xvYmFs 
U2lnbjETMBEGA1UEAxMKR2xvYmFsU2lnbjAeFw0xNzA2MTUwMDAwNDJaFw0yMTEy 
        <... content omitted ...>
FIwsIONGl1p3A8CgxkqI/UAih3JaGOqcpcdaCIzkBaR9uYQ1X4k2Vg5APRLouzVy 
7a8IVk6wuy6pm+T7HT4LY8ibS5FEZlfAFLSW8NwsVz9SBK2Vqn1N0PIMn5xA6NZV 
c7o835DLAFshEWfC7TIe3g== 
-----END CERTIFICATE----- 







Now you can decode the content of either certificate using the command:




$ openssl x509 -in google_com.crt -noout -text







Here's a slightly edited version of the output:




Certificate: 
   Data: 
       Version: 3 (0x2) 
       Serial Number: 5500042407018834932 (0x4c54136dbff12bf4) 
   Signature Algorithm: sha256WithRSAEncryption 
       Issuer: C = US, O = Google Trust Services, CN = Google 
 ↪Internet Authority G3 
       Validity 
           Not Before: Oct 30 13:15:05 2018 GMT 
           Not After : Jan 22 13:15:00 2019 GMT 
       Subject: C = US, ST = California, L = Mountain View, 
 ↪O = Google LLC, CN = *.google.com 
       Subject Public Key Info: 
           Public Key Algorithm: rsaEncryption 
               Public-Key: (2048 bit) 
               Modulus: 
                  00:d1:bf:94:10:1f:94:15:bd:6c:3b:83:97:49:29: 
                  ad:08:63:18:11:1b:57:7d:4d:b3:3f:9c:cd:62:ed: 
                  eb:4d:d2:6b:78:3f:3f:01:48:43:a8:81:b6:42:f6: 
                           <... content omitted ...>
                  e1:e4:24:b8:21:c4:9e:e5:86:c6:73:45:4f:a8:6f: 
                  e0:81:f3:4e:46:03:3d:e9:d2:01:5b:6f:57:3c:22: 
                  d4:83 
               Exponent: 65537 (0x10001) 
       X509v3 extensions: 
           X509v3 Extended Key Usage:
               TLS Web Server Authentication 
           X509v3 Subject Alternative Name:
               DNS:*.google.com, DNS:*.android.com, 
 ↪<... content omitted ...> 
           X509v3 CRL Distribution Points:
               Full Name: 
                 URI:http://crl.pki.goog/GTSGIAG3.crl 

   Signature Algorithm: sha256WithRSAEncryption 
        c7:57:a4:97:ad:32:e1:5f:10:53:05:ba:03:c4:cd:2e:11:c9: 
        7d:36:a9:4c:16:a8:46:a1:5a:30:c4:4f:04:86:8d:8b:e1:95: 
        24:34:62:94:48:b9:8a:3d:d2:d7:49:eb:a5:6c:59:72:c3:64: 
                <... content omitted ...>
        16:9c:64:a7:59:61:fd:4b:22:de:71:73:3d:c5:3a:15:bb:f1: 
        58:c4:9d:a1:96:4a:a6:0c:b9:fb:a1:86:8d:8b:ff:74:4c:84: 
        76:75:d8:ce







This looks like progress—you can see the certificate provided by the
google.com server in all of its glory! Let's visit the highlights.




Near the top of the certificate, you can see the serial number in the
"Data" section. The certificate authority gives each certificate a unique
serial number when it is generated. This allows certificates to
be identified uniquely if there ever is a need to revoke them.




Two "Signature Algorithm" blocks follow the Data block.
The first of these contains the server's public key information along with
any extensions (options) enabled by the CA. The second block contains the
signed hash generated by the CA.




Looking at the detail within the first "Signature Algorithm" block, you
can see the subject, issuer and validity dates for the certificate. In
general, the certificate may be used only on a server with a name matching the
subject and within the dates specified. The "Issuer" (a CA)
identifies the public key used to validate the signature in the second block.
If this issuer's public key is in the trusted key store, the certificate
is valid.




Perhaps most important, you can see the server's public key in this
section. This is the key the client will use to encrypt content so that it
can be decrypted only on the server. In this case, the server is providing a
2048-bit RSA key.




Below the server's public key, you'll find a block labeled "X509v3 extensions".
The extensions in this section are set by the CA when the certificate is
signed and can be used to enable (or restrict) the use of the certificate.
The full details of these extensions are defined in RFC 5280, but I'll
cover the highlights here.




You can see in the "X509v3 Extended Key Usage" section that the
certificate is authorized for "TLS Web Server Authentication". This
means that the certificate may be used to identify a web server positively.
Other common uses that might be listed here include functioning as a CA
(allowing the signing of certificates for other servers) or authorizing the
certificate to be used as proof of a client's identity.




The "Subject Alternative Names" section is optional, but it may be used
to list any additional web servers permitted to use this certificate. The SAN
section allows servers to be listed using either DNS names or IP addresses.
As you can see in the example, wild cards are supported. If the
certificate's subject does not match the server name, but a match can be
made here, the certificate is treated as if the subject were a match.




The final entry to look at in the X509v3 extensions block is
the "X509v3 CRL Distribution Points". A CRL is a "certificate
revocation list". These lists contain the serial numbers of any
certificates issued by the CA that have been compromised, retired or (for
some other reason) made invalid.




As a regular step in negotiating a TLS connection, the client should verify
that the certificate presented by the server—or the serial numbers of a
certificate used as a CA—does not appear on a CRL. Ideally, these serial
numbers would be checked against a current version of the domain's CRL
each time a certificate is verified. In practice, pulling an updated CRL for
each connection adds a lot of overhead to the process. Most clients will use
a cache, which is rarely up to date but avoids issues if the site hosting the
CRL is unavailable.




The second "Signature Algorithm" block contains the signed hash of the
DER-encoded X.509 data found in the first block. You can see that the SHA256
hash algorithm was used, and that an RSA private key was used to sign the
hash. After being decoded with the CA's corresponding public key, this
hash must match the value computed by the client for the same data.




This is where the use of DER for encoding is important: if there were
multiple ways to encode the data in the certificate, as there might be using
BER, the hash might assume several different values. By using DER, you
guarantee that the values are encoded and decoded consistently into the same
series of bytes. If a single byte changes, a different hash would be created
and the verification of the signature could not be completed!




Certificates contain a lot of detail, and all of it must line
up before a client can trust the certificate. It shouldn't be
surprising that things fall apart as often as they do.




The most common errors with TLS connections include:



	
Server name mismatch, meaning that the certificate's CN (or any entries in
the subject alternative names section) doesn't match the host that presents
it.


	
A certificate has expired and needs to be re-issued by the CA.


	
The root CA used to sign the certificate is not in the client's trusted
key store.





With the knowledge you've gained about certificates in this article, the meanings and
(perhaps more important) solutions to those problems should become more
clear.




Resources


	
Introduction
to ASN.1


	
RFC 5280 (X.509
standard)


	
RFC 1421 (Privacy Enhanced
Mail)


	
OpenSSL man pages relating to x509 manipulation, specifically man
x509 or man openssl-x509.


	
OpenSSL man pages relating to secure client, specifically man
s_client or man openssl-s_client.





  About the Author


  


Jeff Woods has worked in the IT field for more than 20 years, with broad
experience in areas including software engineering, data engineering,
operations, security engineering and DevOps. His experience with Linux dates
back to 1993, when he began working with the SLS distribution. He currently
works as an IT Architect for a global FinTech near Atlanta, Georgia. In addition
to his IT experience, Jeff is a Navy veteran, Dad, and has served as a leader
in various BSA programs for the past 12 years. You can contact him at
jcwoods@gmail.com or via LinkedIn at
https://www.linkedin.com/in/jeff-woods-a50b921. 




WebAuthn Web Authentication with YubiKey 5



A look at the recently released YubiKey 5 hardware
authenticator series and how web authentication with the new
WebAuthn API leverages devices like the YubiKey for painless website
registration and strong user authentication. By Todd A. Jacobs



I covered the YubiKey 4 in the May 2016 issue of Linux Journal, and
the magazine has published a number of other articles on both YubiKeys
and other forms of multi-factor authentication since then.
Yubico recently has introduced the YubiKey 5 line of products. In addition to the
YubiKey's long-time support of multiple security protocols, the most
interesting feature is the product's new support for FIDO2 and WebAuthn. 



[image: YubiKey 5]

Figure 1. YubiKey 5 Series from Yubico





WebAuthn is an application programming interface (API) for web
authentication. It uses cryptographic "authenticators", such as a YubiKey
5 hardware token to authenticate users, in addition to (or even instead
of) a typical user name/password combination. WebAuthn is currently a
World Wide Web Consortium (W3C) candidate recommendation, and it's already
implemented by major browsers like Chrome and Firefox.




This article provides an overview of the YubiKey 5 series, and then
goes into detail about how the WebAuthn API works. I also look at
how hardware tokens, such as the YubiKey 5 series, hide the complexity of
WebAuthn from users. My goal is to demonstrate how easy it is to use a
YubiKey to register and authenticate with a website without having to
worry about the underlying WebAuthn API.




About the YubiKey 5 Series



The YubiKey 5 series supports a broad range of two-factor and
multi-factor authentication protocols, including:



	
Challenge-response (HMAC-SHA1 and Yubico OTP).



	
Client to Authenticator Protocol (CTAP).



	
FIDO Universal 2nd-Factor authentication (U2F).



	
FIDO2.



	
Open Authorization, HMAC-Based One-Time Password (OATH-HOTP).



	
Open Authorization, Time-Based One-Time Password (OATH-TOTP).



	
OpenPGP.



	
Personal Identity Verification (PIV).



	
Web Authentication (WebAuthn).



	
Yubico One-Time Password (OTP).






In addition, the entire YubiKey 5 series (with the exception of the
U2F/FIDO2-only Security Key model) now supports OpenPGP public key
cryptography with RSA key sizes up to 4096 bits. This is a notable bump
from the key sizes supported by some earlier models. Yubico's OpenPGP
support also includes an additional slot for an OpenPGP authentication
key for use within an SSH-compatible agent, such as GnuPG's
gpg-agent.




You can create OpenPGP keys on your computer and then move them into the
YubiKey, or you can create them directly on the key itself for extra security.
On-key generation of crypto keys ensures that secret keys never
are exposed to a host computer. This provides the ability to sign and
decrypt data in relative safety, even when attached to systems that
shouldn't be trusted with secret key material.




The YubiKey 5 series is also notable for its broad array of form
factors, including USB-A, USB-C and low-profile "nano" devices that can
be left in a port indefinitely. A number of form factors also support
Near-Field Communication (NFC) for use with tablets and mobile phones.



[image: YubiKey 5]

Figure 2. YubiKey 5 with NFC






The YubiKey 5 series also includes a low-cost model (aptly named the
"Security Key") in a USB-A form factor. The Security Key provides only
U2F and FIDO2 authentication. This model is currently less than half the
cost of its more capable brethren in the series. If you don't need the
other features or form factors and just want to make use of WebAuthn
web authentication, this model is a great place to start.



[image: Security Key]

Figure 3. Security Key by Yubico





What's WebAuthn All About?



Two-factor authentication (2FA) is something everyone likely is becoming increasingly
familiar with. In security, authentication requires one or more of the
following:



	
Something you know, like a password.


	
Something you have, like a cryptographic token or officially issued ID
card.


	
Something you are, like a person with a specific fingerprint or retinal
pattern.





The user name and password combination is the "something you know" type
of authentication. Many websites and services now provide users with
better security through a second factor. This is typically a one-time
password service via Short Message Service (SMS), single-use Time-Based
One-Time Password (TOTP) tokens through Google Authenticator or similar
applications, push-based TOTP tokens from Duo or LastPass integration,
or U2F challenge/response authentication.




U2F is most notably used by Google services, and until quite recently, it
has been limited to users with a recent Chrome browser. From a security
perspective, U2F and other 2FA techniques are useful tools for
increasing web application security. However, there's a growing need for
a more seamless user experience, and an ever-increasing need for more
robust authentication protocols. As part of an evolving W3C draft
standard, WebAuthn provides a better user experience (and arguably a
stronger approach to identification and authorization) when using
compliant authenticators, such as the YubiKey token.




WebAuthn is designed to be backward-compatible with devices built for
the earlier FIDO U2F standard. This includes hardware tokens such as the
YubiKey 4, Google's Titan key and various U2F-only devices. However,
unlike the YubiKey 5 series, many U2F devices are limited to providing
only a hardware-based second factor and aren't designed for the full
suite of multi-factor capabilities provided for by WebAuthn.




As an API, WebAuthn is fundamentally a set of protocols that interacts
with CTAP-enabled devices like the YubiKey 5 to provide a comprehensive
suite of authentication services that rely on public key cryptography.
Depending on the capabilities of both the server and the user's device,
WebAuthn supports the following:




	
Single-factor authentication:
passwordless logins, where the presence of the hardware token is
sufficient. This is somewhat similar to passwordless SSH keys, only much
more secure. A physical YubiKey token won't expose secret key material
to the local or remote host systems even when plugged in, and it can't be
used at all when physically removed.



	

Two-factor authentication (2FA):
this is typically a user name and password combination (something you
know), followed by detection of the hardware token (something you have).
This type of 2FA is generally considered more secure than second-factor
authentication systems, such as SMS, TOTP or HOTP generators, because of
the requirement for a physical token.


	
Multi-factor authentication (MFA):
true MFA often involves a PIN or biometric signature that isn't
transmitted over the network. This third factor is typically used
locally to unlock the functionality of the hardware token, and it adds
another "something you know" or "something you are" layer for successful
authentication.







Google Authenticator and Alternatives



Although proprietary systems, such as RSA's SecurID solutions, have been
around a long time, the past decade has seen the rise of many
alternatives for second-factor authentication. Today's users are likely
familiar with SMS solutions that send a six-digit code to their cell
phone, but other types of client-side software and hardware tokens have
been increasingly on the rise since 2003.




Google Authenticator, initially released in 2010, is arguably the most
well known software token solution for typical web users. Google
Authenticator leverages a number of open (if not necessarily
open-source) protocols, including the widely used QR barcode symbology.
Scanning the QR code imports a software token into the user's smartphone, populating a client-side code generator on the device.




Common alternatives to Google Authenticator include:



	
FreeOTP (notable for being open-sourced by Red Hat and available under an
Apache 2.0 license on GitHub).


	
Authy (notable for providing multi-device capabilities).


	
LastPass Authenticator.


	
Microsoft Authenticator.


	
Duo Mobile.





There are certainly many, many others, each with its own set of pros,
cons and specialized use cases. This relatively small handful
represents the bulk of mind-share among typical users, but you can
definitely consider additional alternatives based on issues of cost, open
standards support and security track record.




WebAuthn, Overly Simplified



The current working draft of the WebAuthn specification is more than 100
pages long, so describing it in simple terms runs the risk of
over-simplification. With that in mind, this section is not a
comprehensive guide to the entire WebAuthn API. It's intended to be a
useful abstraction that highlights how WebAuthn works behind the
scenes, highlighting the value of the YubiKey in simplifying the web
registration and authentication process.




The heart of WebAuthn is the challenge/response that takes place between
a "relying party server" (aka the remote service, such as a website)
and a token in the user's possession. The server issues a challenge that
is ultimately received by your browser, which then interacts with the
YubiKey or another U2F- or FIDO2-compliant token. This token is called
the "authenticator".




With a hardware token like the YubiKey, the authenticator can create
a signed response to the server's challenge without ever exposing the
secret key portion of the credentials stored within the token. The
server then validates the response from the authenticator to complete
the registration or authentication process.




Even with software tokens, as opposed to hardware tokens like the
YubiKey, the API is designed to limit the amount of data exposed to the
server during token registration or authentication. Although hardware
tokens are considered more secure, the WebAuthn API allows for other
types of authenticators as well.




With WebAuthn, the user experience involves just a few simple steps:



	
Receive an authentication prompt from your browser.


	
Use your YubiKey to provide a response.


	
Wait a few milliseconds for the WebAuthn framework to validate your YubiKey's
response.


	
Do fun stuff as an authenticated user!





Under the hood though, WebAuthn and the YubiKey are doing a lot more
work. Let's take a closer look.




The Not-So-Simple WebAuthn API



Although the user experience is straightforward, the implementation details
are anything but. The WebAuthn API covers two closely related key-management activities for handling registration and authentication, and
it calls these activities "ceremonies".




Both ceremonies require a Relying-Party Server, a Relying-Party
JavaScript Application, a supported web browser and an Authenticator
with certain properties.




Currently, supported web browsers include:



	
Mozilla Firefox 60+.


	
Google Chrome 67+.


	
Google Chrome for Android Beta 70+.





Support by Microsoft Edge was introduced into development builds in July
2018. Meanwhile, Apple is a participant in the WebAuthn working
group, but there is no indication of if (or when) the Safari browser
will support the WebAuthn API.




Authenticator properties include key management capabilities and the
ability to generate cryptographic signatures. FIDO2 authenticators must
also be able to map credentials to each 64-byte user handle associated
with a given Relying Party, although the underlying implementation
details may vary. Since the YubiKey 5 documentation states that it
supports "unlimited" credentials, I assume that the mapping is
derived from input during the WebAuthn ceremonies, rather than using
fixed storage space within the YubiKey token.




Protocol and implementation details related to how the Authenticator
Attestation Globally Unique Identifier (AAGUID) is tied to individual
tokens without creating privacy concerns, and how attestation of
authenticator provenance is handled by X.509 certificates, are certainly
important for the security of the WebAuthn system. But while these
concerns are addressed within the specification, the average user
doesn't actually need that level of technical detail to use a
YubiKey 5 device safely. The elegance of the WebAuthn/YubiKey solution is that
the API handles those details for you.




Registration Using the WebAuthn API




Before you can use a YubiKey to authenticate to a web service, a U2F- or
FIDO2-capable device must register with the relying party server
through a registration ceremony. There are some potential use cases
where registration is optional or when first-time registration is
combined with authentication for new enrollments. However, a typical website
likely will want to associate a given credential with a user
handle, which is a 64-byte identifier for a user account.




At the time of this writing, the registration ceremony defined by the
API follows seven steps (Figure 4):



	
Registration request: the server-side application initiates a registration request. How this
is done is not specified by the WebAuthn API. This is currently an
application-specific implementation detail.



	
Server passes input to client-side JavaScript:
the server sends a challenge, along with user information and
relying-party data, to a JavaScript application running in the client's
browser.


	
Browser requests credential from authenticator:
the user's browser provides sufficient information to an authenticator
so the device can generate a unique credential. The YubiKey 5 includes
the server-generated user handle when generating a new credential, while
older YubiKeys or other U2F-only devices will create a credential with
userHandle set to null for backward-compatibility.



	
Authenticator creates an attestation:
the YubiKey creates a cryptographic key pair for the credential and
bundles the public key inside a special message called an "attestation
statement".



	  
Authenticator sends attestation object to browser:
the YubiKey signs the attestation statement with a verifiable digital
signature and passes the statement along with other data back to the
browser as an "attestationObject".


	
Credential passed to relying party:
the JavaScript application packs up the attestationObject, along with
some JSON and encoded data, and sends it back to the relying party
Server as an "AuthenticatorAttestationResponse".



	  
Server validates response:
the server then validates the response and the credential's digital
signature. If all the validations succeed, the server completes the
registration process by associating the public key in the attestation
with the user's account. This public key can then be used for immediate
or future authentication.




[image: Web Authentication]

Figure 4. WebAuthn Registration Flow ("Web Authentication: An API for
accessing Public Key Credentials Level 1." W3C Candidate Recommendation, 7
August 2018. https://www.w3.org/TR/webauthn/#web-authentication-api)





To be quite frank, even this "deep dive" into the registration process
glosses over a great deal of cryptography and message-passing. However,
the beauty of WebAuthn, especially when paired with a YubiKey, is that
all of this cryptographic work and interprocess communication is
essentially invisible to end users. In actual use, basic registration
simply involves inserting a YubiKey in response to a browser prompt and
tapping the touch-sensitive part of the YubiKey (which varies by model)
to activate it.




Once the authenticator is registered, you're only halfway done. You've
registered a WebAuthn credential using a YubiKey, but you still have to
present the newly registered credentials to the website before you're
actually authorized. In practice, websites can present registration and
authentication as a seemingly unified process from the user's point of
view, but they're actually different ceremonies within the WebAuthn API.




Authentication with the WebAuthn API




The process for authentication is actually quite similar in its outlines
to the registration process. Although protocols and messages may vary, the
key difference is that the relying party server and the authenticator
are validating an existing credential that was created during the
registration process described above.



[image: WebAuthn]

Figure 5. WebAuthn Authentication Flow
("Web Authentication: An API for accessing Public Key Credentials Level 1."
W3C Candidate Recommendation, 7 August 2018. https://www.w3.org/TR/webauthn/#web-authentication-api)





As with registration, the user perspective is simply to insert the
YubiKey and trigger it with a touch. What could be easier?




Passwordless Login Example



If you have a YubiKey device that supports U2F or FIDO2, you can test
out registration and authentication using a number of publicly available
testing services. For this set of examples, let's use the site provided
by Duo Security for YubiKey testing.




Launch your browser, and navigate to https://webauthn.io. Next,
register your YubiKey by entering a unique user name. As many other users
are likely testing their keys too, I recommend using a UUID for your
user name. Running the uuidgen command, available on most Linux and
macOS systems, will print a value that is sufficiently random for this
purpose.




For this exercise, leave the other values, such as Attestation Type and
Authenticator Type, at their defaults.



[image: Register Credential]

Figure 6. Register Credential





After you've entered your user name, click Register a User/Credential.
You'll then be prompted to tap your YubiKey to complete the
registration process.



[image: Tap Yubikey]

Figure 7. Tap YubiKey






Note that this particular application shows two different dialog boxes.
Other WebAuthn sites show only the top modal dialog; the second (and
admittedly prettier) dialog seems to be unique to the Duo website.




In any case, once you've tapped your YubiKey, you'll be registered and
logged in immediately. You'll see a screen similar to the one shown in Figure
8.



[image: Registered screen]

Figure 8. Registered and Logged In





If you return to the home page, you'll again see the login screen. To
test that your YubiKey is working properly, enter your user name and then
click Login with Credential. No password required!




Although this example seems trivial, it highlights how easy it is for a
user to register or authenticate with a YubiKey. Even though the
underlying implementation is complex, the user experience is smooth
and simple.




Privacy Considerations



When properly implemented, WebAuthn and compliant tokens like the
YubiKey robustly guard user privacy while providing strong user
authentication features. Sections of the standard address ways to
prevent data correlation, de-anonymization and the use of credentials
without user consent.




A full examination of WebAuthn privacy issues is outside the scope of
this article, but section 14 of the standard is titled "Privacy
Considerations". If you're an IT auditor, security administrator,
security engineer or application programmer, section 14 will be
useful to you.




Cryptographic Weaknesses



In late August 2018, security researchers from Paragon
Initiative Enterprises raised concerns about the WebAuthn API's use of
certain algorithms, specifically Elliptic Curve Direct Anonymous
Attestation (ECDAA) and RSA with PKCS1v1.5 padding. ZDNet picked up the
story and added some additional clarification.




The short version for non-cryptographers is that certain algorithms in
the standard represent potential weaknesses. These weaknesses are not
currently easy to exploit in practice, but they may present problems for the
future. The researchers' cautions are aimed more at API implementers
than users, with the goal of improving the WebAuthn standards before
they're finalized. The researchers themselves say:





WebAuthn and ECDAA are not doomed. Don't throw away your hardware
tokens, revert your codebases to use SMS or TOTP, or any other such
drastic measures.





Resources



	
"Web Authentication: An API for
accessing Public Key Credentials Level 1." W3C Candidate Recommendation, 7
August 2018


	
FIDO
2.0: Client To Authenticator Protocol


	
FreeOTP Two-Factor Authentication


	
Server-side Web
Authentication library for Java


	
WebAuthn Rails
Demo App


	
Ruby implementation of a
WebAuthn Relying Party


	
WebAuthn/FIDO2
JavaScript application


	
Mozilla
Web Authentication API


	
"Introducing
Web Authentication in Microsoft Edge"


	
"Security
Concerns Surrounding WebAuthn: Don't Implement ECDAA (Yet)"


	
"Worries
arise about security of new WebAuthn protocol" (ZDNet)


	
FIDO
ECDAA Algorithm


	
WebAuthn
Privacy Considerations




  About the Author


  

Todd A. Jacobs is the CEO of Flow Capital Group, which acquires and
manages companies specializing in IT automation, DevOps & agile
transformations, security and compliance, fractional CIO/CTO services,
and board advisory services for cyber risk and other hot technology
issues.
Todd waited his whole life for Matt Smith's character on Dr. Who to
make bow ties cool again. He lives near Baltimore, MD with his wife and
son, to whom he hopes to pass on his love of Linux and technology—but
perhaps not his fashion sense.


[image: Todd A. Jacobs]


The Purism Librem Key


The Librem Key is a new hardware token for improving Linux security 
by adding a physical authentication factor to booting, login and disk
decryption on supported systems. It also has some features that make it
a good general-purpose OpenPGP smart card.
This article looks at how the Librem Key stacks up against 
other multi-factor tokens like the YubiKey 5 and also considers what
makes the Librem Key a unique trusted-computing tool. By Todd A.
Jacobs



Purism is a new player in the security key and multi-factor authentication
markets. With the introduction of the Librem Key, Purism joins the ranks
of other players—such as Yubico, Google, RSA and so on—in providing
hardware tokens for multi-factor authentication.




In addition, like the YubiKey 5 series, the Librem Key also provides
OpenPGP support with cryptographic functions that take place securely
on-key. This allows users to generate and use GnuPG public and private
keys without exposing any secret key material to the host computer where
the USB device is attached.




The Librem Key is based on the German-manufactured Nitrokey Pro 2, but it has
been modified to focus on "trusted boot" when used with Purism's Linux
laptops. (I take a closer look at what the trusted boot process is
and how the Librem Key fits into that process, later in this article.)




Comparing the Librem Key to the YubiKey 5



There is certainly overlap between the features of the Librem Key and
the YubiKey 5 series. Let's look at what they have in
common before I go into what makes the Librem Key unique.




Table 1. Librem Key and YubiKey Feature Comparison







	Feature
	Librem Key
	YubiKey 5






	OpenPGP support
	yes
	yes



	PAM support
	yes
	yes



	PIV smart card
	no
	yes



	HOTP support
	yes
	yes



	TOTP support
	yes
	yes



	Password management
	yes
	yes



	PKCS#11 support
	yes
	yes



	S/MIME support
	yes
	yes



	X.509 support
	yes
	yes


	FIDO U2F
	no
	yes



	FIDO2
	no
	yes



	Hardware TRNG
	yes
	no



	USB-A
	yes
	yes



	USB-C
	no
	yes









As you can see from Table 1, the two devices are more alike than they are different. Both
devices can be used for the following:



	
PAM-enabled logins on Linux systems.


	
One-time password credentials, such as TOTP and HOTP.


	
OpenPGP support, including onboard key generation and slots for encryption,
signing and authentication keys.


	
Password management:
two configurable slots on the YubiKey with touch-to-send and touch-to-generate
functionality once the device is configured, and
16 entries on the Librem Key when used with the Nitrokey App supporting
application.


	
Source of randomness using the OpenSC protocol: hardware randomness from the
Librem Key and algorithmic randomness from the YubiKey.





There also are areas where the YubiKey 5 series and certain Nitrokey
models offer more features than the Librem Key. In particular, the YubiKey
comes in more form factors, and it's significantly thinner or smaller than
the chunkier thumb-drive form factor of the Librem Key.



[image: Purism Librem Key]

Figure 1. Purism Librem Key (Photo Credit: Purism, SPC)




[image: Nitrokey Pro]

Figure 2. Nitrokey Pro (Photo Credit: Nitrokey UG)





[image: YubiKey 5 Series]

Figure 3. YubiKey 5 Series Form Factors





The YubiKey offers 32 slots for onboard HMAC-based One-Time Password
(HOTP) storage. In contrast, the Librem Key currently holds only three.




The Nitrokey offers FIDO U2F and secure on-key storage on several of its
models, although you can't get both features on the same device. Since
the Nitrokey Pro 2 doesn't offer either of these features currently,
the Librem Key doesn't either.




Of the three devices, the YubiKey offers the most options for multi-factor
authentication. In direct comparison, the Librem Key supports far fewer
slots and protocols.



[image: YubiKey Diagram]

Figure 4. YubiKey Diagram (Photo Credit: Yubico, Inc.)





However, feature-by-feature and form-factor comparisons don't do the
Librem Key justice. The unique value of the device is in its approach
to improving Linux system security. Let's take a closer look at how
that's done.




Librem Key for Secure Boot



Purism currently sells a set of Linux laptops aimed at 
security-conscious users. These laptops include unique features like a
physical toggle for the camera and microphone, and a second switch for
toggling WiFi and Bluetooth.



[image: Librem Hardware Switches]

Figure 5. Librem Hardware Switches (Photo Credit: Purism, SPC)





The laptops come with PureOS installed, as well as a Heads-enabled
coreboot process that leverages each system's Trusted Platform Module
(TPM). When paired with the Librem Key, these components collectively
verify the integrity of the boot process. Purism says:





[T]he Librem Key makes it easy to prove your system is secure
by detecting whether your laptop BIOS or kernel has been tampered
with. Insert the key at boot time and if it blinks green, all systems
are go. If it ever detects tampering, the Librem Key's LED blinks red,
alerting you to the problem.





Note: see Kyle Rankin's "Tamper-Evident Boot with Heads" article in
this issue for a more indepth look at the Heads project.



Heads—which is probably a play on the name of the security-focused
distribution Tails—displays a time-based one-time password (TOTP) at
boot calculated from various BIOS measurements. You then can verify this
one-time code against the code generated in a multi-factor app, such as
Google Authenticator or FreeOTP. Matching codes provide cryptographic
guarantees that the boot process has not been tampered with.




In this scenario, you aren't actually using the one-time password to
authenticate yourself to the system. Instead, the system is authenticating
itself to you, the user, so that you can verify its integrity!




With Heads, you can boot the computer without validating the TOTP. This
ensures that the validation process won't block you if you don't have
access to your smartphone or other validation device, but doing so
is clearly a security trade-off that swaps strong verification for
convenience at your discretion.




Removing the Librem Key's reliance on the host computer's system clock
increases security further, since the Librem Key doesn't have its
own independent time source. Purism modified the Nitrokey Pro 2 to use
HOTP instead of TOTP. This functionality
is paired with a boot-time application that attempts to communicate with
a connected Librem Key to validate the HOTP code in a more visual and
automated way.




If a Librem Key is detected, and everything is as it should be, the
key flashes green as a visual indication that your TPM and BIOS haven't been
tampered with. If it flashes red, your system's boot process has failed
the integrity check, and it may have been tampered with. Depending on the
type of tampering, the Heads system (which may itself have been tampered
with) should report an error, but the tamper-resistant Librem Key will
reliably display a flashing red light to warn you of an unsafe system.




As a thoughtful design choice, a lost Librem Key won't lock you out
of your system. Although you temporarily will lose the visual indicator and
automated self-checking mechanism, you still can use the boot system's
standard TOTP mechanism for manual verification until you find or replace
your Librem Key.




Not Just for Purism Laptops



Although this article focuses on using the Librem Key with Purism
laptops, it's worth noting that the underlying magic is the combination
of four key components:



	
A computer system with a TPM module.


	
The Heads coreboot system.


	
The libremkey_hotp_initialize command-line tool.


	
The libremkey_hotp_verification command-line tool.





In theory, anyone running PureOS on a TPM-enabled system should be able
to make use of the Librem Key's secure-boot functionality. Additionally,
any distribution that can use Heads modified with the command-line tools
listed above also could take advantage of a Librem Key.




Although a Librem Key is obviously most useful out of the box when paired
with a Purism laptop, the open-source nature of the solution makes it an
ideal playground for Linux enthusiasts on other TPM-enabled hardware
as well. Purism deserves credit for providing an open-source security
solution without vendor lock-in!




Librem Key for Disk Decryption



The Librem Key also is intended to support automatic decryption
of LUKS-encrypted disks simply by having the key inserted at boot
time. However, this functionality currently is pending support from
upstream Debian maintainers, followed by some additional work by the
PureOS team. The problem is likely to be resolved by the time this
article is published, but it remains outstanding at the time of this writing.




While LUKS decryption with the Librem Key is not yet available, the device
could be used by other tools such as VeraCrypt to provide keyfile-based
decryption or other workarounds.




The Librem Key provides PKCS#11 support. That means it should
be compatible with VeraCrypt's smart card and hardware token
support. VeraCrypt allows smart card tokens to be used as keyfiles for
cryptographic operations such as disk decryption. The following comes
directly from VeraCrypt's keyfile documentation:





VeraCrypt can directly use keyfiles stored on a security token or smart card
that complies with the PKCS #11 (2.0 or later) standard and that allows the
user to store a file (data object) on the token/card. To use such files as
VeraCrypt keyfiles, click Add Token Files (in the keyfile dialog window).




Access to a keyfile stored on a security token or smart card is typically
protected by PIN codes, which can be entered either using a hardware PIN pad
or via the VeraCrypt GUI. It can also be protected by other means, such as
fingerprint readers.




In order to allow VeraCrypt to access a security token or smart card, you need
to install a PKCS #11 (2.0 or later) software library for the token or smart
card first. Such a library may be supplied with the device or it may be
available for download from the website of the vendor or other third parties.




If your security token or smart card does not contain any file (data object)
that you could use as a VeraCrypt keyfile, you can use VeraCrypt to import any
file to the token or smart card (if it is supported by the device). To do so,
follow these steps:




1) In the keyfile dialog window, click Add Token Files.




2) If the token or smart card is protected by a PIN, password or other means
(such as a fingerprint reader), authenticate yourself (for example, by
entering the PIN using a hardware PIN pad).




3) The 'Security Token Keyfile' dialog window should appear. In it, click
Import Keyfile to Token and then select the file you want to import to the
token or smart card.






While this workaround should work, there's an important caveat. Because of
initial high demand for the Purism Librem Key, I was unable to get a hold of a
key to test this configuration. This alternative
approach is offered in the spirit of can-do Linux hacking rather than as a
tried-and-true method. Your mileage may therefore vary.




As yet another option, the ability to use the Librem Key to encrypt or decrypt
documents, passwords (such as with the pass command-line password manager)
or block devices using standard OpenPGP operations works as expected.




Finally, it's worth noting that existing LUKS, dm-crypt and ecryptfs options
are typically "good enough" for most users, provided that you can trust the
integrity of your BIOS and operating system. Since PureOS and the Librem Key
already offer those integrity guarantees on TPM-enabled systems, the main
benefit of using the Librem Key to unlock encrypted disks is the
tamper-resistant automation of the decryption process.




Conclusion



If you want to implement trusted boot, or prefer to work with a fully
open-source OpenPGP smart card, the Librem Key is a great choice. For
other uses, the value proposition is less clear.




The Librem Key is an early-stage product. This is most apparent in its smaller
feature set and less-rugged construction when compared to the YubiKey.




At a retail price of $59 plus shipping, the Librem Key is also pricier than
comparable products from Yubico. It's also slightly more expensive than the
original Nitrokey Pro 2 on which it's based.




As an OpenPGP smart card or hardware-based authentication token, the Librem
Key falls a little short of its competition in features and pricing. However,
its use of open-source hardware, firmware and software make the Librem Key a
very compelling alternative to similar tokens with proprietary firmware (such
as the YubiKey) when optimizing for trust and transparency.




Furthermore, no other consumer product on the market currently provides
hardware validation of a trusted boot process the way Purism's Librem Key
does. If hardware tamper-detection is important to you, the use of a
Librem Key with compatible hardware and software should be an integral
component of your defense-in-depth security strategy.




A fully trusted boot process is essential to effective computer security. The
Librem Key increases security by validating that process each and every time.
The visual green/red indicator automates the validation process and greatly
simplifies the user experience.




The Librem Key is a unique product and a significant step forward in
user-friendly trusted-boot authentication. For its intended use case, it's the
best option on the market today—and a product worth following as it continues
to evolve.




Glossary


	
FIDO U2F:
FIDO Universal 2nd Factor Authentication.


	
FIDO2:
a second-generation U2F protocol that is part of the W3C WebAuthn
framework.


	
HOTP:
HMAC-based One-time Password algorithm defined by RFC 4226 and frequently used
by OAUTH-enabled systems.



	
LUKS:
Linux Unified Key Setup.



	
OATH:
Initiative for Open Authentication.


	
OTP:
One-Time Password.



	
PIV:
Personal Identity Verification, usually associated with the FIPS 201 standards.



	
PRNG:
Pseudo-random number generators approximate randomness by applying software
algorithms to a seed value. Contrast with TRNG.


	
TOTP:
Time-based One-Time Password algorithm.



	
TRNG:
a true (or hardware) random number generator generates the random values
important to cryptography through physical processes. Contrast with PRNG.




Resources




Software and Documentation:


	
coreboot


	
dm-crypt


	
ecryptfs


	
Heads


	
Librem Key
Specifications


	
Librem
Key Tamper Detection


	
Nitrokey



	
Nitrokey HOTP
Verification


	
pass Password Manager


	
PureOS


	
VeraCrypt


	
VeraCrypt
Keyfiles


	
YubiKey
5 NFC specifications



Bugs and Tickets:



	
Debian bug:
OpenPGP support for unlocking encrypted volumes



	
PureOS ticket: OpenPGP smartcard and
LUKS integration




  About the Author


  

Todd A. Jacobs is the CEO of Flow Capital Group, which acquires and
manages companies specializing in IT automation, DevOps & agile
transformations, security and compliance, fractional CIO/CTO services,
and board advisory services for cyber risk and other hot technology
issues.
Todd waited his whole life for Matt Smith's character on Dr. Who to
make bow ties cool again. He lives near Baltimore, MD with his wife and
son, to whom he hopes to pass on his love of Linux and technology—but
perhaps not his fashion sense.


[image: Todd A. Jacobs]




Tamper-Evident Boot with Heads



Learn about how the cutting-edge, free software Heads project detects
BIOS and kernel tampering, all with keys under your control. By Kyle
Rankin



Disclaimer: I work for Purism, and my experience with Heads began
as part of supporting it on Purism's hardware. As a technical writer,
I personally find ads that mask themselves as articles in technical
publications disingenuous, and this article in no way is intended to be
an advertisement for my employer. However, in writing this deep dive piece, I
found that mentioning Purism was unavoidable in some places
without leaving out important information about Heads—in particular,
the list of overall supported hardware and an explanation of Heads'
HOTP alternative to TOTP authentication, because it requires a specific
piece Purism hardware.




Some of the earliest computer viruses attacked the boot sector—that bit
of code at the beginning of the hard drive in the Master Boot Record
that allowed you to boot into your operating system. The reasons for this have
to do with stealth and persistence. Viruses on the filesystem itself
would be erased if users re-installed their operating systems, but
if they didn't erase the boot sector as part of the re-install process,
boot sector viruses could stick around and re-infect the operating system.




Antivirus software vendors ultimately added the ability to scan the boot sector
for known viruses, so the problem was solved, right? Unfortunately, as computers,
operating systems and BIOSes became more sophisticated, so did the boot-sector attacks. Modern attacks take over before the OS is launched and
infect the OS itself, so when you try to search for the attack through
the OS, the OS tells you everything is okay.




That's not to say modern defenses to this type of
attack don't exist. Most modern approaches involve proprietary software that locks
down the system so that it can boot only code that's signed by a vendor
(typically Microsoft, Apple, Google or one of their approved third-party
vendors). The downside, besides the proprietary nature of this defense,
is that you are beholden to the vendor to bless whatever code you want
to run, or else you have to disable this security feature completely (if you can).




Fortunately, an alternative exists that is not only free software, but
that also takes a completely different approach to boot security by alerting
you to tampering instead of blocking untrusted code. This approach,
Heads, can detect tampering not only in the BIOS itself but also in
all of your important boot files in the /boot directory, including the
kernel, initrd and even your grub config. The result is a trusted boot
environment with keys fully under your own control. 




In this article,
I describe some of the existing boot security approaches in more
detail, along with some of their limitations, and then I describe how Heads
works, and how to build and install it on your own system.




Why Boot Security Matters




To understand why having a secure boot process matters so much,
it's useful to understand one of the most common threats on a Linux
system: rootkits. A rootkit is a piece of software attackers can
use to exploit vulnerabilities in the kernel or other software on the
system that has root privileges, so it can turn normal user-level access
into root-level access. This ability to escalate to root privileges is
important, because although in the old days, all network services ran as root,
these days, servers more often run as regular users. If attackers find
a flaw in a network service and exploit it so they are able to run
commands locally, they will only be able to run those commands as the
same user. The rootkit allows them to turn those local user privileges
into root privileges, whereby they then can move on to the next step,
which is installing backdoors into your system, so they can get back in
later undetected.




Although sometimes attackers will install a backdoor that just has a
service listening on an obscure port all the time, kernel backdoors are
preferred because once they exploit the kernel, they then can mask any
attempts by your OS to detect the attack. After all, if you want to know
what files are in a directory, or which processes are running, you have
to ask the kernel. If you can exploit the kernel, you can hide your
malicious processes or files from prying eyes. Many rootkits 
also will set up a kernel backdoor for attackers automatically as part of
the automated attack.




Rootkits aren't only a threat on servers; it's just that servers are
accessible on the network all the time, and they run software that listens
for requests. Although modern Linux desktop installs don't have any services
listening on the network, there still are plenty of ways for attackers
to launch code locally as your user—via the web browser is one of the
most common ways, and malicious file attachments in email is another.




The whole point of a rootkit is to make it difficult for you to detect
it from the running OS, but you still always can boot the system from a
live USB-based OS and examine the hard drive. Or, you could re-install the
OS completely and be rid of the threat. Yet even in that case, you are
relying on the BIOS to boot your live USB-based OS. Your BIOS is the
first code your CPU executes when it boots. Once it loads, it detects
the hardware on your system, initializes it, and then lets you boot
either from an internal hard drive or perhaps from external USB or DVD
media. If attackers were able to modify your BIOS, in theory, they could
just re-install their backdoor in any kernel it loads and persist even
with re-installing the OS or examining it from a live USB disk.




The BIOS then becomes the root of trust for the entire rest of the
system. Until you can trust it, you can't fully trust the rest of the
code that executes after it. 




Next I describe some of the current
approaches to secure the boot process, all of which involve executing only
pre-approved code.




Other Boot Security Methods




It's easier to understand how Heads works, and how it is different from
the existing approaches, once you understand how the existing approaches
work. The main two approaches that provide boot security on modern
systems are UEFI Secure Boot and Intel Trusted Boot. 




UEFI Secure Boot




Of all of the different approaches to secure the boot process, UEFI
Secure Boot is the most popular, and it's included in just about every
modern laptop and desktop you would buy. The way that Secure Boot works
is that the UEFI flash chip contains certificates for Microsoft and
its approved third-party vendors. UEFI boot firmware that works with
Secure Boot contains a signature created by the private keys of either
Microsoft or its approved vendors. Secure Boot then checks that signature
against its certificates, and if the signature matches, it allows the
boot firmware to execute. If the signature doesn't match or is missing,
Secure Boot will not allow it to run.




Because it was initially designed for Windows, and initially Windows
was the only OS that used it, Secure Boot often is thought of as a
Microsoft-only technology, and many in the FOSS community spoke out
against it because of the risk that it could be used to lock out a system
from loading Linux. It's true that initially you could use Secure
Boot only with Windows, but Linux distribution vendors like Red Hat and Ubuntu
worked with Microsoft to get a boot "shim" signed that would allow them
to load GRUB and boot their OSes.




Of course, there still are plenty of Linux distributions that haven't
gotten boot shim code signed by Microsoft, including Debian. This means
that if you want to install Debian on a system with Secure Boot, you
first must go into your UEFI settings and disable Secure Boot entirely
before you are allowed to boot the USB installer—that is, if your UEFI
software allows you to disable Secure Boot. Some lower-cost computers
these days ship with stripped-down UEFI firmware that allow only a very
minimal level of configuration, and on these systems, Secure Boot
often is no longer optional.




Secure Boot does have a mechanism that would allow you to replace the
existing vendor certificates with your own, and that might be an option
for Linux users who want to use Secure Boot on systems that don't
use Microsoft-signed boot firmware. The process itself is somewhat
complicated though, and the end result would boot your own custom-signed
code but then would lock out anything not signed with your own signatures,
such as a typical USB OS installer. Again, this is an option only if you
first can disable Secure Boot to load your untrusted OS and modify UEFI,
or else attempt the modification from a trusted OS.




Intel Trusted Boot




Along with Secure Boot, modern Intel computers also have the option of
a security mechanism called Intel Trusted Boot. This mechanism takes
advantage of the special capabilities of the Trusted Platform Module
(TPM) chip on a system. The TPM is a standalone chip available on some
motherboards that can act as its own Hardware Security Module (HSM)
by generating its own cryptographic keys and performing cryptographic
operations on-chip independent of the system CPU. The TPM also contains
Platform Configuration Registers (PCRs) that can contain measurements of
executed code in the form of a chain of hashes. Generally, different PCRs
are used to store measurements of different phases of the boot process.




Intel Trusted Boot works by sending the measurements of code as it is
executing over to the TPM where it is hashed and stored in a corresponding
PCR. As new code is executed, it also gets hashed and combined with
hashes of previous code in the PCR. The TPM allows you to seal secrets
(disk decryption keys are common) within it that are unlocked only if the
PCRs contain previously stored values. Combined with Secure Boot, Intel
Trusted Boot allows you to detect tampering in boot-time executables.




Secure Boot Limitations



Secure Boot is the main way vendors provide boot-time security
on modern computers, but it has quite a few limitations. The first big
limitation is also its biggest claimed feature—that it requires boot
code to be signed by keys under the vendor's control. This means if you
did happen to want to run custom boot code, you must work with vendors
to get them to sign your binary or else replace all of their certificates
with your own and run only your own code.




Another limitation is that although Secure Boot ensures that you are running
code that has been signed, it doesn't ensure that you are running the
same boot code that you ran previously. An attacker who was able to
get access to one of the vendor signing keys could create a boot-time
executable that would pass Secure Boot protections. What would happen
to existing computers if one of the Microsoft (or other vendor) signing
keys were leaked or forced to be shared with a nation state?




Secure Boot is also proprietary software, so you have to take vendors
at their word that there are no backdoors within it, and you also have less
visibility into what code might be signed. In addition, Secure Boot validates
only executables. It can't validate your initrd files or GRUB
configs—both
places where attackers could add malicious changes. Ultimately, the
issue with Secure Boot is that it takes control of your computer and its
security out of your hands and into the hands of vendors. If you fully
trust your vendor, perhaps you are fine with that trade-off, but many people
would prefer to have full control over their own software and hardware.




Introduction to Heads




Heads was created by Trammell Hudson to solve some of the trust issues
and other limitations of Secure Boot by replacing it with a system that
focuses on detecting tampering instead of blocking it. The idea with Heads
is to capture a stable, trusted state in the BIOS and boot code, and then
ensure that at each subsequent boot, the BIOS and boot code haven't
changed. Heads is written under a free software license, so it not only
can be inspected, but it also is reproducibly built, so if you were to get
a pre-built Heads ROM, you also could build the same revision of Heads
yourself and get the same result, thereby proving that the code wasn't
tampered with at some point in the build process.




Heads loads from within the open-source coreboot BIOS (or optionally
LinuxBoot for some server platforms) and is actually its own standalone
Linux kernel and runtime environment that performs tamper checks and
then boots into your system kernel once everything checks out. Unlike
with Secure Boot, it detects tampering using keys that are fully under
your control—keys you can change at any point.




Hardware Support




Because Heads relies on coreboot or LinuxBoot, its current hardware
support is somewhat limited to hardware that both supports either coreboot
or LinuxBoot, has a TPM, and has someone who has defined that board's
configuration, including coreboot settings and other options, and submitted
it to Heads. Currently, that list is pretty small: Lenovo ThinkPad X220
and X230, the Purism Librem laptop line and a handful of servers.




How Heads Works




On the surface, Heads works similarly to Intel Trusted Boot in that it uses
the TPM to verify measurements of itself to then unlock a secret. That's
where the similarities end though, as Heads approaches boot security
in a much different way, because its aim is to provide tamper
detection,
not tamper proofing. Heads will alert you to tampering, but it still
provides you the ability to boot whatever software you want.




You can break down the default Heads boot process into a few main phases:



	
The coreboot BIOS starts and loads the Heads kernel and initrd.


	
As code executes, measurements are sent over to the TPM chip.



	
Heads presents a TOTP/HOTP code to prove to the user that it hasn't been
tampered with.


	
The user selects a boot option.


	
Heads checks all the files in /boot for tampering before loading the
OS.


	
If the files all check out, Heads boots the OS.






Heads uses two different sets of keys to detect tampering. First it uses a
shared secret stored in the TPM and also on either a TOTP authenticator
application on your phone or on a special USB security token like the Librem
Key. This shared secret is used to prove the BIOS itself hasn't been
tampered with. The next set of keys is a set of trusted GPG public keys
within a GPG keyring that you add to the Heads ROM. Once you know the BIOS
hasn't been tampered with, you can trust that the GPG keyring it has within
it hasn't been modified to add an untrusted key. Heads then uses that
trusted keyring to verify all of the signatures on the files in /boot. In
both cases, these are secrets that are fully under your control, and you
can change them and reset signatures at any point. 




Next, let's look at
more specifics of how Heads works by focusing on each of these two secrets
and how they are used in their respective parts of the boot process.




Boot Security and the TPM




The very first thing Heads must do is prove to you that it can be
trusted and that it hasn't been tampered with. The challenge is, if it
has been tampered with, couldn't it lie to you and tell you everything is
okay? This is where the TPM comes in. When you first set up Heads, you
go through a process to reset the TPM and set up a new admin password
(called taking ownership), and then Heads will generate a random secret
and store it in the TPM (called sealing) along with the current valid
measurements it will take to unlock that secret.




Once the secret is sealed in the TPM, Heads will convert that secret into
a QR code and display it on the screen, so you can scan it with your phone
to add it to your TOTP authenticator application of choice (FreeOTP is a
free software option that works on Android, for instance). If you have
added Librem Key support into Heads, you also can store a copy of the
secret onto Purism's Librem Key USB security token.




When Heads boots, it then sends measurements of the code it executes
over to the TPM. If the BIOS has been tampered with, those measurements
won't match what was there before, and the TPM will not unlock the shared
secret. In that case, Heads will output an error to the screen alerting
you to the problem. If the measurements do match, the TPM will unlock
the shared secret, send it to Heads, and Heads will combine the secret
with the current time to convert it to a six-digit TOTP code that it will
display on the screen. You then can compare that code to the six-digit TOTP
code in your phone's app, and if they match, you know that the secret was
valid. Alternatively, if you enabled Librem Key support, you could insert
the device at boot, and Heads would generate a six-digit HOTP code and send
it over USB. If it matched the code the Librem Key generated on itself,
the Librem Key would blink green; otherwise, it would blink red.



[image: Alt Tag Name]

Figure 1. The Default Heads Boot Screen





So if an attacker modifies the BIOS, the TPM will generate an error, but
what if the attacker then resets the TPM with a different secret using
the measurements from the tampered BIOS? Those measurements would match,
and the TPM would unlock the new secret, but that secret would generate a
different six-digit code from what your phone or Librem Key would generate,
and you would know something suspicious was happening. Because the TPM
is designed to be a tamper-proof device, you cannot extract the shared
secret from it without providing valid measurements. If you reset the TPM,
that secret is also erased.




Boot Security and GPG Keys




Once you have verified that the BIOS is trustworthy, you can move on to
booting your OS. But before Heads will boot into the OS, it first checks
all of the files within the /boot partition to make sure they haven't
changed from when you last signed all of them. When you first set
up Heads, you add one or more public GPG keys to a keyring within the
Heads runtime environment. Heads provides a mechanism not only to add
GPG keys to a standalone Heads coreboot ROM file, but you also can add them
to the running BIOS. In that case, Heads actually will pull down a copy
of the running BIOS, modify it on the fly, and then reflash it.




Once you have a set of trusted GPG keys in the Heads keyring, you 
then can sign the files within /boot with your corresponding GPG private
key using the Heads GUI. Heads will create a file containing sha256sums
for all of the files within /boot and then sign that file with your GPG
private key and store the signature in /boot as well. This will require
that you have some kind of USB security token that has OpenPGP smartcard
support, and Heads will prompt you to insert your USB GPG key whenever
you sign these files.




When you tell Heads to boot into your OS, it first gets flashed into the
BIOS, and it can read your GRUB config file and provide you with a boot
menu based on the options in that config file.




Also, whenever you update or add a new kernel, change an existing initrd
file, or modify your GRUB config, Heads will detect the change, showing
you an error at the next boot. Along with that error will be an option
to re-sign all of the files in /boot, in the case that you changed the
files yourself. If you didn't expect those files to change, of course,
then this could be a sign of tampering!




Building and Installing Heads




Heads is reproducibly built, which means that it's designed so that if
multiple people were to build the same specific release of Heads with the
same build options at different times on different systems, they should
get the exact same binary. Because Heads runs on specific BIOS chips, it
needs to cross-compile the kernel and other software for that platform,
which means that in addition to building a complete Linux kernel and
coreboot, you also will need to build a cross-compiler and supporting
tools when you build Heads.




Your local system also will need certain system libraries so you can
build coreboot and Heads. On a Debian-based system, you can use apt to
install them:




sudo apt install git build-essential bison flex m4 zlib1g-dev 
 ↪gnat libpci-dev libusb-dev libusb-1.0-0-dev dmidecode 
 ↪bsdiff python2.7 pv libelf-dev pkg-config cmake







For other systems, use your packaging tool to install the equivalent
packages for your platform. Once those are installed, the next step is
to get the most recent Heads source code and go into the root of that
build directory:




git clone https://github.com/osresearch/heads.git
cd heads/







The next step is to pull down any binary blobs your board might need
for coreboot to boot. Go to the blobs/ directory inside Heads, and see
if your board has a directory represented in there. If so, cd to it
and read the instructions for how to pull down your binary blobs for
coreboot. For instance, on Librem hardware:




cd blobs/librem_skl/
./get_blobs.sh







Once you have gotten any blobs you may need, move back to the root of
the Heads build directory. From there, you will see a boards/ directory,
and within it are directories for each of the motherboards that Heads
supports. Each of those boards has a corresponding configuration file
inside its respective directory that set important options, such as what
partition to use for /boot and for USB boot devices, what kernel options
(if any) to pass along to the OS when it boots, and which init script
to load into. These configuration files are already set up for the most
part to work with the corresponding motherboard, but you should review
the configuration file for your board and confirm in particular that
the CONFIG_BOOT_DEV and CONFIG_USB_BOOT_DEV variables are pointing to
the correct /boot and USB boot device, respectively.




Once you are finished editing the configuration file, it's time to build
Heads. Change back to the root of the Heads source code and set the
particular board with an environment variable while running the
make
command. So for instance, to build for a ThinkPad X230, you would type:




make BOARD=x230







The first time you build Heads, it will take quite a long time! Just be
patient as it builds GCC, coreboot, the Linux kernel and a number of
other pieces of software. Subsequent builds will be a lot faster. If the
build fails at some point in the process, make a note of what package
it was attempting to build, and then check the corresponding build
log for that software inside the logs/ directory. More often than not,
if you see a build failure for a particular piece of software, it's
because you are missing a development library on your system. Reviewing
the log file should tell you which libraries are missing.




Once Heads completes the build process, it will dump the corresponding
coreboot ROM image into boards/<boardname>/coreboot.rom, so in the case
of the above X230 example, it would be in boards/x230/coreboot.rom. You
now are ready to install Heads as your BIOS by flashing that ROM image.




Flashing Heads




Once you have built your Heads coreboot ROM, the next step is to flash it
over the top of your existing BIOS. How you flash Heads on your computer
will vary depending on the specific motherboard you have for a number
of reasons. First, each laptop uses its own set of flashrom options
that are specific to the BIOS chip it has on board, so you will need to
reference the flashrom options appropriate for your board. Check out the
initrd/bin/flash.sh script from within the Heads code base for an example
script that provides flashrom options for the supported boards. Note
that this script is designed to be run from within the Heads environment
itself with a relatively new version of flashrom (1.0 or above). Older
flash chips (like on the ThinkPad boards) should work with older flashrom
versions that you should be able to install via a package on your current
Linux distribution, but newer boards (like on the Purism Librem laptops)
will require a newer (1.0) flashrom program. In the latter case, Purism
provides instructions here to pull down and
build a current flashrom.




Another reason that flashing Heads varies for different platforms is that
although you can update coreboot from within your own operating system using
flashrom if it is already installed, if coreboot isn't already installed,
some laptops require an initial hardware flash. For instance, unless you
bought it from a special vendor, the Lenovo ThinkPad laptops come with
a proprietary vendor-provided BIOS instead of coreboot, so they require
an initial hardware flash to overwrite the vendor BIOS. This hardware
flash means opening the laptop to expose the BIOS chip, connecting a
Pomona clip to it that's attached to one of the many hardware platforms
that support flashrom, such as a Raspberry Pi or Beaglebone Black. I cover
these steps, including how to back up the existing BIOS, in a past Hack and /
article: "Flash
ROMs with a Raspberry Pi".



[image: Raspberry Pi BIOS]

Figure 2. Hardware Flashing a BIOS with a Raspberry Pi





If your hardware already has coreboot installed, you should be able
to install Heads purely from software by running flashrom from within
the native OS. For instance, the Purism Librem laptops come with coreboot
already installed (and plan to offer Heads as a pre-installed option
in the near future), so you can use flashrom from within the regular
operating system to flash the Heads BIOS without opening the machine. In
this case, you will want to run flashrom first with the -r
option, so it
will pull down a backup of your existing BIOS to store on a USB thumb
drive in case you ever want to revert back.




Using Heads




Once you have flashed Heads for the first time and rebooted, Heads will
guide you through the initial setup. First you'll be prompted to add
at least one public GPG key to the Heads keyring, which will require
that you have the public key on some sort of USB thumb drive ending in
.asc. Heads will mount the USB drive and find all possible .asc files on
the device and then prompt you as to which of them you want to add. Once
you have added the key, Heads will reflash the BIOS and reboot.




Once Heads reboots with GPG keys in place, it will get a TPM error,
because the TPM has not yet been set up, so it will guide you through
setting up a password for your TPM and creating the initial TOTP/HOTP
secret. After it reboots another time, you finally should see the default
Heads boot menu that lets you select between your default boot option
(not yet configured) or opening an Advanced menu of options.




If you select default boot with no default boot option set, it will detect
that state and guide you through selecting a boot option. At that point,
it also should detect that you have not yet signed any files in /boot,
and it also will guide you through that process (you will need your USB
security token containing your GPG private keys at that point).




Once all of the files have been signed and your default boot option has
been set, you should be able to treat Heads much like a regular GRUB
menu—boot the computer, confirm there are no alerts and just press Enter
to boot into your default OS. Note that as you update software on
your underlying OS, if your package updates change or add any files to
the /boot directory, you'll get an alert the next time you reboot that
files may have been tampered with. If you know that this was caused by
your package update and not something malicious, you can just re-sign
all of the files in /boot with your private GPG key.




You can apply updates to Heads completely within the Heads menu. Within
the Advanced options menu is a submenu that allows you to flash the
BIOS. Within this menu, you can insert a USB drive containing *.rom files
and have Heads flash them over the top of your current Heads ROM. There
are two main flashing options: flash a ROM and flash a cleaned ROM. The
first option is pretty self-explanatory, but in the case of a cleaned ROM,
Heads will flash the BIOS, but it won't copy over any existing GPG public
keys or other custom changes you may have made to Heads on top of the
default ROM. Use this option if you ever want to revert back to a pure
factory state (or flash some other non-Heads BIOS), and otherwise use
the default flashing option to copy your keyring to the updated Heads ROM.




Conclusion




Although installing and using Heads is not for the faint of heart, if
you have experimented with coreboot on systems in the past, it's
not that much more complicated. If you want the best in boot security,
the effort is definitely worth it, as you will end up with a system that
can alert you you both to BIOS and kernel-level tampering but with keys
completely under your control.




Resources


	
The Heads Project



	UEFI


	
UEFI
Secure Boot


	Intel
Trusted Boot


	
TPM
(Trusted Platform Module)


	
HSM (Hardware
Security Module)


	
coreboot


	
LinuxBoot


	"FOSS
Project Spotlight: LinuxBoot" by David Hendricks, Andrea Barberio and Ron
Minnich


	Lenovo


	Purism


	"Flash
ROMs with a Raspberry Pi" by Kyle Rankin




  About the Author


  
  Kyle Rankin is a Tech Editor and columnist at Linux Journal and the Chief Security Officer at Purism. He is the author of Linux Hardening in Hostile Networks, DevOps Troubleshooting, The Official Ubuntu Server Book, Knoppix Hacks, Knoppix Pocket Reference, Linux Multimedia Hacks and Ubuntu Hacks, and also a contributor to a number of other O'Reilly books. Rankin speaks frequently on security and open-source software including at BsidesLV, O'Reilly Security Conference, OSCON, SCALE, CactusCon, Linux World Expo and Penguicon. You can follow him at @kylerankin.

[image: Kyle Rankin]


Programming Text Windows with ncurses


How to use ncurses to manipulate your terminal
screen. By Jim Hall.



In my article series about programming for the text console using the ncurses
library, I showed you how to draw text on the screen and use basic text
attributes. My examples of Sierpinski's Triangle (see "Getting
Started with ncurses") and a simple Quest
adventure game (see "Creating
an Adventure Game in the Terminal with ncurses") used the entire screen at once. 




But what if it makes more
sense to divide the screen into portions? For example, the adventure game
might divide the screen to use part of it for the game map and another
portion of the screen for the player's status. Many programs organize the
screen into multiple parts—for instance, the Emacs editor uses an editing
pane, a status bar and a command bar. You might need to divide your
program's display areas similarly. There's an easy way to do that,
and that's with the windows functions in ncurses. This is a standard part
of any curses-compatible library.




Simple Senet



You may associate "windows" with a graphical environment, but that is
not the case here. In ncurses, "windows" are a means to divide the
screen into logical areas. Once you define a window, you don't need to
track its location on the screen; you just draw to your window using a set of
ncurses functions.




To demonstrate, let me define a game board in an unexpected way. The ancient
Egyptian game Senet
uses a
board of 30 squares arranged in three rows and ten columns. Two players
move their pieces around the board in a backward "S" formation, so
that the board looks like this:








	
1
	2
	3
	4
	5
	6
	7
	8
	9
	10




	20
	19
	18
	17
	16
	15
	14
	13
	12
	11




	21
	22
	23
	24
	25
	26
	27
	28
	29
	30








Without the windows functions, you'd have to keep track of the row and
column for each piece and draw them separately. Since the board is arranged
in a backward "S" pattern, you'll always need to do weird math 
to position the row and column correctly every time you update each square on
the board. But with the windows functions, ncurses lets you define the squares
once, including their position, and later refer to those windows by a logical
identifier.




The ncurses function newwin() lets you define a text window of certain
dimensions at a specific location on the screen:




WINDOW *newwin(int nlines, int ncols, int begin_y, 
 ↪int begin_x);







The newwin() function returns a pointer of type
WINDOW* that you can store in
an array for later reference. To create a Senet board, you can use a global
array BOARD[30], and write a function to define the 30 squares of the
Senet board using windows:




#define SQ_HEIGHT 5
#define SQ_WIDTH 8

WINDOW *BOARD[30];

void create_board(void)
{
    int i;
    int starty, startx;

    starty = 0;
    for (i = 0; i < 10; i++) {
        startx = i * SQ_WIDTH;
        BOARD[i] = newwin(SQ_HEIGHT, SQ_WIDTH, starty, 
         ↪startx);
    }

    starty = SQ_HEIGHT;
    for (i = 10; i < 20; i++) {
        startx = (19 - i) * SQ_WIDTH;
        BOARD[i] = newwin(SQ_HEIGHT, SQ_WIDTH, starty, 
         ↪startx);
    }

    starty = 2 * SQ_HEIGHT;
    for (i = 20; i < 30; i++) {
        startx = (i - 20) * SQ_WIDTH;
        BOARD[i] = newwin(SQ_HEIGHT, SQ_WIDTH, starty, 
         ↪startx);
    }

    /* put border on each window and refresh */

    for (i = 0; i < 30; i++) {
        box(BOARD[sq], '2', '2');
        wrefresh(BOARD[sq]);
    }
}







The first part of this function uses newwin() to define the 30 squares. I
divided this into three parts to make it obvious that the second row actually
counts backward.




Text windows in ncurses don't create a "frame" to show the window
on the screen. If you want to draw a frame, you can do so using one of two
functions. Here, after defining the windows, the function then calls the
ncurses function box() to draw the square on the screen.
Normally, the box()
function takes arguments for the characters to use for the vertical and
horizontal borders; if you pass zero as either or both arguments, ncurses
uses a default line-drawing character.




Note that instead of the usual refresh() function to update the
screen, you
need to use the window-specific wrefresh() function to refresh the window.




In the Senet game, several squares carry certain meaning. Under
common Senet
rules, players must stop on square 26 (window array element
BOARD[25]) before
they can move off the board. Square 27 (array element BOARD[26]) is a trap,
which sends the player back to square 15 (BOARD[14]). Squares 28 and 29
(BOARD[27] and BOARD[28], respectively) require the player to throw a
"3" or "2" exactly to move their piece off the board.




To represent these special squares, I replaced the box() and
wrefresh()
functions at the end of draw_board() with a call to my own function,
draw_square(). This function draws a different border for the special
squares:




/* put border on each window and refresh */

    for (i = 0; i < 30; i++) {
        draw_square(i);
    }
}

void draw_square(int sq)
{
    switch (sq) {
    case 14:                    /* revive square */
        wborder(BOARD[sq], '#', '#', '#', '#', '#', '#', 
         ↪'#', '#');
        break;

    case 25:                    /* stop square */
        box(BOARD[sq], 'X', 'x');
        break;

    case 26:                    /* water square */
        box(BOARD[sq], 'O', 'o');
        break;

    case 27:                    /* 3-move square */
        box(BOARD[sq], '3', '3');
        break;

    case 28:                    /* 2-move square */
        box(BOARD[sq], '2', '2');
        break;

    default:
        box(BOARD[sq], 0, 0);
    }

    wrefresh(BOARD[sq]);
}







The draw_square() function shows two ways to draw a frame on a text window. I
covered the box() function earlier. The other method is with the
wborder()
function, which takes separate arguments for the left, right, top and bottom
edges of the window, and the upper-left, upper-right, lower-left and
lower-right corners. As with box(), if you pass zero as any or all of the
arguments, ncurses will use a default line-drawing character.




Look in the sample output to see the difference between calling
box() and
wborder() with different arguments. I've intentionally used different
methods in my Senet program to show a few combinations. For example, the
"stop" square uses lowercase "x" for the top and bottom
borders, and uppercase "X" for the left and right borders. The
"revive" square uses wborder() to fill the corners, while the other
squares are drawn more simply with box(). Note that calling
box() with
character arguments still draws line graphic characters for the corners.



[image: Senet Board]

Figure 1. The Senet Board with the First Square Highlighted




[image: Senet Board]

Figure 2. The Senet Board with the 29th Square
Highlighted





Because this uses the windows functions, the draw_square() function
doesn't need to know the location of each square. That's all tracked
by ncurses as an attribute of the 30 windows that make up the 30
squares on the board. Once the program defines the windows, including their
position, drawing to each square is a simple call to an associated
"w" function, referencing the window to draw to.




For example, to draw a character in a window, you use the
waddch() function,
or mvwaddch(), if you want to draw at a specific location in the window. Most
curses functions have a "w" partner function that operates on a
specific window, such as these:




int move(int y, int x);
int wmove(WINDOW *win, int y, int x);

int addch(const chtype ch);
int waddch(WINDOW *win, const chtype ch);

int mvaddch(int y, int x, const chtype ch);
int mvwaddch(WINDOW *win, int y, int x, const chtype ch);







Full Program



Now that you've seen how to use windows to create 30 independent
drawing areas, let's walk through a simple program to draw a Senet board
and allow the user to navigate through the squares using the plus and minus
keys. At a high level, the program follows these steps:



	
Initialize the curses environment.



	
Define and draw the 30 squares on the Senet board.



	
Loop: 1) get a key from the keyboard; 2) adjust the player's location to the
previous or next square, accordingly; and 3)
repeat.



	
When done, close the curses environment and exit.






Here's the program:




/* senet.c */

#include <stdlib.h>
#include <ncurses.h>

#define SQ_HEIGHT 5
#define SQ_WIDTH 8

void create_board(void);
void destroy_board(void);

void draw_square(int sq);
void highlight_square(int sq);

WINDOW *BOARD[30];

int main(int argc, char **argv)
{
    int key;
    int sq;

    /* initialize curses */

    initscr();
    noecho();
    cbreak();

    if ((LINES < 24) || (COLS < 80)) {
        endwin();
        puts("Your terminal needs to be at least 80x24");
        exit(2);
    }

    /* print welcome text */

    clear();

    mvprintw(LINES - 1, (COLS - 5) / 2, "Senet");
    refresh();

    /* draw board */

    create_board();

    /* loop: '+' to increment squares, '-' 
       to decrement squares */

    sq = 0;
    highlight_square(sq);

    do {
        key = getch();

        switch (key) {
        case '+':
        case '=':
            if (sq < 29) {
                draw_square(sq);
                highlight_square(++sq);
            }
            break;

        case '-':
        case '_':
            if (sq > 0) {
                draw_square(sq);
                highlight_square(--sq);
            }
        }
    } while ((key != 'q') && (key != 'Q'));

    /* when done, free up the board, and exit */

    destroy_board();

    endwin();
    exit(0);
}

void create_board(void)
{
    int i;
    int starty, startx;

    starty = 0;
    for (i = 0; i < 10; i++) {
        startx = i * SQ_WIDTH;
        BOARD[i] = newwin(SQ_HEIGHT, SQ_WIDTH, starty, 
         ↪startx);
    }

    starty = SQ_HEIGHT;
    for (i = 10; i < 20; i++) {
        startx = (19 - i) * SQ_WIDTH;
        BOARD[i] = newwin(SQ_HEIGHT, SQ_WIDTH, starty, 
         ↪startx);
    }

    starty = 2 * SQ_HEIGHT;
    for (i = 20; i < 30; i++) {
        startx = (i - 20) * SQ_WIDTH;
        BOARD[i] = newwin(SQ_HEIGHT, SQ_WIDTH, starty, 
         ↪startx);
    }

    /* put border on each window and refresh */

    for (i = 0; i < 30; i++) {
        draw_square(i);
    }
}

void destroy_board(void)
{
    int i;

    /* erase every box and delete each window */

    for (i = 0; i < 30; i++) {
        wborder(BOARD[i], ' ', ' ', ' ', ' ', ' ', ' ', ' 
         ↪', ' ');
        wrefresh(BOARD[i]);

        delwin(BOARD[i]);
    }
}

void draw_square(int sq)
{
    switch (sq) {
    case 14:                    /* revive square */
        wborder(BOARD[sq], '#', '#', '#', '#', '#', '#', 
         ↪'#', '#');
        break;

    case 25:                    /* stop square */
        box(BOARD[sq], 'X', 'x');
        break;

    case 26:                    /* water square */
        box(BOARD[sq], 'O', 'o');
        break;

    case 27:                    /* 3-move square */
        box(BOARD[sq], '3', '3');
        break;

    case 28:                    /* 2-move square */
        box(BOARD[sq], '2', '2');
        break;

    default:
        box(BOARD[sq], 0, 0);
    }

    wrefresh(BOARD[sq]);
}

void highlight_square(int sq)
{
    wattron(BOARD[sq], A_BOLD);
    draw_square(sq);
    wattroff(BOARD[sq], A_BOLD);
}









This is just the bare bones of a Senet game. All it does is generate a game
board and allow the user to navigate through all of the squares. To keep
this focused on the windows functions in ncurses, I've left out all the
gameplay and rules.




The program uses only a few functions:



	
void create_board(void); —
defines the 30 squares as text windows and draws them on the screen.


	
void destroy_board(void); —
erases the 30 squares and deletes the windows.


	
void draw_square(int sq); —
draws a single square on the board. This function draws a different outline
depending on the special squares used in Senet.


	
void highlight_square(int sq); —
highlights a square as the user navigates through each square on the board.
To keep things simple, this uses the A_BOLD attribute instead of color.





Learning on Your Own



This program is a simple example of how to use nurses windows functions to
define separate areas on the screen. The sample program is a game, but you
can use this as a starting point for your own programs. Any program that
requires updating multiple areas of the screen can use the windows functions.




The ncurses library provides a rich set of functions to update and access the
screen in text mode. While graphical user interfaces are very cool, not every
program needs to run with a point-and-click interface. If your program runs
in plain-text terminals, consider using ncurses to manipulate the terminal
screen.



Resources


	
If you are interested in learning more about curses, the ncurses man pages
provide extensive documentation on the different functions. 



	
For more
information, including programming examples, read Pradeep
Padala's "NCURSES
Programming HOWTO" 
at the Linux Documentation
Project.



	
"Creating
an Adventure Game in the Terminal with ncurses" by Jim Hall



	
"Getting
Started with ncurses" by Jim Hall


	
"Programming
in Color with ncurses" by Jim Hall


	
"About
ncurses Colors" by Jim Hall


	
Senet (Wikipedia)





About the Author



Jim Hall is an advocate for free and open-source software, best known for his
work on the FreeDOS Project, and he also focuses on the usability of
open-source software. Jim is the Chief Information Officer at Ramsey County,
Minnesota.




Open Science, Open Source and R


Free software will save psychology from the Replication Crisis. By Andy Wills


"Study reveals that a lot of psychology research really is just
'psycho-babble'".—The Independent.




Psychology changed forever on the August 27, 2015. For the previous
four years, the 270 psychologists of the Open Science Collaboration
had been quietly re-running 100 published psychology
experiments. Now, finally, they were ready to share their findings.
The results were shocking. Less than half of the re-run experiments
had worked.




When someone tries to re-run an experiment, and it doesn't work, we
call this a failure to replicate. Scientists had known about failures
to replicate for a while, but it was only quite recently that the
extent of the problem became apparent. Now, an almost existential
crisis loomed. That crisis even gained a name: the Replication Crisis.
Soon, people started asking the same questions about other areas
of science. Often, they got similar answers. Only half of results
in economics replicated. In pre-clinical cancer studies,
it was worse; only 11% replicated.




Open Science



Clearly, something had to be done. One option would have been to
conclude that psychology, economics and parts of medicine could
not be studied scientifically. Perhaps those parts of the universe
were not lawful in any meaningful way? If so, you shouldn't be
surprised if two researchers did the same thing and got different
results.




Alternatively, perhaps different researchers got different results
because they were doing different things. In most cases, it wasn't
possible to tell whether you'd run the experiment exactly the same
way as the original authors. This was because all you had to go on
was the journal article—a short summary of the methods used and
results obtained. If you wanted more detail, you could, in theory,
request it from the authors. But, we'd already known for a decade
that this approach was seriously broken—in about 70% of cases,
data requests ended in failure.




Even when the authors sent you their data, it often didn't help
that much. One of the most common problems was that when you
re-analysed their data, you ended up with different answers to it!
This turned out to be quite common, because most descriptions of
data analyses provided in journal articles are incomplete and
ambiguous. What you really needed was the original authors' source
code—an unambiguous and complete record of every data processing
step they took, from the raw data files, to the graphs and statistics
in the final report. In Psychology in 2015, you almost never
could get this.




If you did eventually manage to replicate the authors' analysis,
could you be confident that their results were real? Not necessarily.
Perhaps they tested only a few people, who were not particularly
representative of the population as a whole. In this case, you might
want to re-run the experiment yourself, testing a lot more people.
Or perhaps the problem was not with their analysis, or their data,
but with the method by which they collected their data. For the
last 20 years, psychology experiments largely have involved
computer-based testing. So, for very many experiments, there is a
complete and unambiguous specification of the methods used—the
source code for the testing program. But in 2015, this almost
never was publicly available either.




In other words, psychology research at the beginning of the Replication
Crisis was like closed-source software. You had to take the authors'
conclusions entirely on trust, in the same way you have to trust
that closed-source software performs as described. There 
essentially was no way to audit research properly, because you could
not access the source code on which the experiment was based—the
testing software, the raw data and the analysis scripts.




A growing number of scientists felt this had to change. The year
before, in 2014, I had read Stephen Levy's Hackers, and from
there, I went on to read more about Richard Stallman, Eric S. Raymond
and Linus Torvalds. For me, it was a revelation. The Free and Open
Source Software community, I felt, showed how science could be
different. The pervasiveness of Linux showed that tens of thousands
of people with different views and goals could collaborate on a
complex project for the common good. Just as important, they could
do so without necessarily even having to like each other all the time.
That was good news for science. Discussions between academics can
get...well, let's just say "heated".




So, in the same way that computing has its advocates of open-source
software, psychology and other sciences started gaining advocates
for Open Science. The phrase Open Science had been coined back
in 1998 by Steve Mann, but once the Replication Crisis hit psychology,
a lot more of us began to sit up and take notice. Early on, the
Centre for Open Science, a non-profit company started in 2013,
had set up the Open Science Framework (OSF). The OSF is a
web-based public repository for experiment-related data and code.
It's built entirely from free and open-source software.




As awareness of the Replication Crisis grew, peer reviewers started
insisting that data and code be made publicly available. Peer
review in research is a bit like a code review in IT. Scientists
send their articles to a journal for consideration. The journal
sends the article out to experts in the field for comment, and the
work is accepted for publication only when the journal editor thinks
those comments have been adequately addressed. In 2015, Richard
Morey and colleagues started the Peer Reviewers' Openness
Initiative, a declaration that they would not recommend any
paper for publication unless it met certain basic standards of open
science. Within three years, more than 500 peer reviewers in psychology
had signed that declaration.




Open Platforms and R


[image: Open Platforms and R Logo]








There's still one major problem to solve. Publishing your scientific
source code is essential for open science, but it's not enough. For
fully open science, you also need the platforms on which that code
runs to be open. Without open platforms, the future usability of
open-source code is at risk. For example, there was a time when
many experiments in psychology were written in Microsoft Visual
Basic 6 or in Hypercard. Both were closed-source platforms, and
neither are now supported by their vendors. It is just not acceptable
to have the permanent archival records of science rendered unusable
in this way. Equally, it's a pretty narrow form of Open Science,
if only those who can afford to purchase a particular piece of
proprietary software are able to access it. All journal articles
published in psychology since around 1997 are in PDF format. Academic
libraries would not tolerate these archival files being in a
proprietary format such as DOCX. We can and must apply the same
standards of openness to the platforms on which we base our research.




Psychology has a long history of using closed-source platforms,
perhaps most notably the proprietary data analysis software SPSS.
SPSS initially was released in 1968, and it was acquired by IBM in
2010. Bizarrely, SPSS is such a closed platform, current versions
can't even open SPSS output files if they were generated before 2007!
Although it's still the most used data analysis software in psychology,
its use has been declining steeply since 2009. What's been
taking up the slack?




In large part, it's R. R is a GNU project, and so it's
free software released under the GNU General Public Licence.
It works great under Linux, but it also works just fine on Windows and
Mac OS too. R is a very long-standing project with great community
support. R is also supported by major tech companies, including
Microsoft, who maintain the Microsoft R Application Network.




R is an implementation of the statistical language S, developed at
Bell Labs shortly after UNIX, and inspired by Scheme (a dialect of
Lisp). In the 1990s, Ross Ihaka and Robert Gentleman, at the
University of Auckland, started to develop R as an open-source
implementation of S. R reached version 1.0 in 2000. In 2004, the R
Foundation released R 2.0 and began its annual international
conference: _useR!_. In 2009, R got its own dedicated journal (The
R Journal). In 2011, RStudio released a desktop and web-based
IDE for R. Using R through RStudio is the best option for most new
users, although it also works well with Emacs and Vim. The current
major release of R landed in 2013, and there are point releases
approximately every six months.




I first started using R, on a Mac, in 2012. That was two years
before I'd heard of the concept of Free Software, and it was about three
years before I ran Linux regularly. So, my choice to move from SPSS
to R was not on philosophical grounds. It also was before the
Replication Crisis, so I didn't switch for Open Science reasons
either. I started using R because it was just better than SPSS—a
lot better. Scientists spend around 80% of their analysis time on
pre-processing—getting the data into a format where they can
apply statistical tests. R is fantastically good at pre-processing,
and it's certainly much better than the most common alternative in
psychology, which is to pre-process in Microsoft Excel. Data
processing in Excel is infamously error-prone. For example, one in
five experiments in genetics have been screwed up by Excel. Another
example: the case for the UK government's policy of financial
austerity was based on an Excel screw up.




Another great reason for using R is that all analyses take the form
of scripts. So, if you have done your analysis completely in R, you
already have a full, reproducible record of your analysis path.
Anyone with an internet connection can download R and reproduce
your analysis using your script. This means we can achieve the goal
of fully open, reproducible science really easily with R. This
contrasts with the way psychologists mainly use SPSS, which is
through a point-and-click interface. It's a fairly common experience
that scientists struggle to reproduce their own SPSS-based analysis
after a three-month delay. I struggled with this issue myself for
years. Although I was always able to reproduce my own analyses
eventually, it often took as long to do so as it had the first time
around. Since I moved to R, reproducing my own analyses has become
as simple as re-running the R script. It also means that now every
member of my lab and anyone else I work with can share and
audit each other's analyses easily. In many cases, that audit process
substantially improves the analysis.




A third thing that makes R so great is that the core language is
supplemented by more than 13,000 packages mirrored worldwide on the
Comprehensive R Archive Network (CRAN). Every analysis or
graph you can think of is available as a free software package on
CRAN. There's even a package to draw graphs in the style of the
xkcd cartoons or in the colour schemes of Wes Anderson movies!
In fact, it's so comprehensive, in 2013 the authors of SPSS
provided users with the ability to load R packages within SPSS.
Their in-house team just couldn't keep up with the breadth and depth
of analysis techniques available in R.




R's ability to keep up with the latest techniques in data analysis
has been crucial in addressing the Replication Crisis. This is
because one of the causes of the Crisis was psychology's reliance
on out-dated and easily misinterpreted statistical techniques.
Collectively, those techniques are known as Null Hypothesis
Significance testing, and they were developed in the early 20th century
before the advent of low-cost, high-power computing. Today, we
increasingly use more computationally intensive but better techniques,
based on Bayes theorem and Monte Carlo techniques. New techniques
become available in R years before they're in SPSS. For example,
in 2010, Jon Kruschke published a textbook on how to do Bayesian
analysis in R. It wasn't until 2017 that SPSS supported
Bayesian analyses.





Teaching R



For more than 20 years, teaching statistics in psychology has
been synonymous with teaching people how to use SPSS. However, during
the last few years, several universities have switched to R, and
many more are considering it. One fear about this change was that
psychology students would find R harder to learn than SPSS, and
that they would like it less. This turns out to be incorrect. In pioneering
work by Dale Barr and colleagues at Glasgow University, psychology
undergraduates were taught both SPSS and R. They then got to choose
which software to use in their final assessments. Around two-thirds
of the students chose R. Those who chose R also scored higher on the
exam. They also scored lower on a standard measure of statistics
anxiety. At Plymouth University, new entrants to our Psychology
degrees are now just taught R, with SPSS removed from the curriculum
entirely. We've seen an increase in what our students can achieve
in statistics, while maintaining high levels of student satisfaction.




One of the side benefits of this change, for the R project, is that
psychologists tend to be quite good at writing documentation. Andy
Field's textbook, Discovering Statistics, much-praised by
Psychology undergraduates, has had an R version since 2012. More
recently, academics have started developing teaching materials that
are as open as R is. For example, my own teaching materials, Research
Methods in R, aimed at first-year psychology undergraduates,
are available under a Creative Commons Licence. Just Enough R,
written by Ben Whalley and aimed at postgraduate students, is available
under the same licence.




Open Science in R: an Example


[image: catlearn]







In my lab at Plymouth University, we work on the psychology of
learning, memory and decision making. In many cases, the theories
we are testing are expressed in the form of computer models. For
example, one of the classic theories of how we learn to group objects
into categories (dogs, cats, bagels and so on) is called ALCOVE.
This theory takes the form of a neural network model, which makes
predictions about how people will classify objects. We compare those
predictions to data from real people making those decisions and
evaluate the model on that basis.




Traditionally, this computational modelling side to psychology has
been fairly closed-source. These models of the mind, which are
moderately complex programs, typically are released only as a set
of mathematical equations with some explanatory text. The code
required to reproduce the results reported is seldom fully published.
The result is that it can take several days to several months
to reproduce the results of these computer models. The amount of
time this wastes is substantial.




Starting in 2016, our lab decided to do something about this issue.
Specifically, we released an R package called catlearn, short
for models of CATegorization and LEARNing. In the current version,
released in July 2018, we have implemented nine different models. Like
all R packages, the code is open source. The package also includes
archives of the full code for simulations of specific experiments
and the data sets for those experiments. We're beginning to build
a community around the world, with people in the USA, UK, Germany
and Switzerland all having contributed code. It's a really exciting
time, and I'm looking forward to the release of version 0.7 later
this year. If you'd like to contribute, we'd love to hear from you—we desperately need more good programmers. Prior experience of
psychology is not essential.




A Final Thought



The Replication Crisis might have been one of the best things ever
to happen to psychology. It became a catalyst for much-needed
change to our scientific processes. If we can build 21st-century
psychology on the principles of Open Science, I think great and
enduring discoveries await us. Those future successes will owe a
lot to the pioneering example of the Free and Open-Source Software
community. Thanks in advance, Linux Journal readers!



About the Author



Andy Wills is a Professor of Psychology at the University of Plymouth.
He published his first source code, in BBC BASIC, in 1984.
Since 1997, he's published around 80 research articles on the
psychology and neuroscience of learning and memory. He lives on the
south-west coast of England with his wife, daughter and two cats.
In his spare time, he plays around with synthesizers. You can find him on
Twitter @ajwills72 or via his website.



Resources


	
"Study
reveals that a lot of psychology research really is just 'psycho-babble'"
by Steve Connor, The Independent



	
"Estimating
the Reproducibility of Psychological Science" by Alexander A. Aarts,
Christopher J. Anderson, Joanna E. Anderson and Peter Attridge,
Science


	
Replication
Crisis


	
"Is
Economics Research Replicable? Sixty Published Papers from Thirteen
Journals Say 'Usually Not'" by Andrew C. Chang and Phillip Li, Finance
and Economics Discussion Series 2015-083. Washington: Board of Governors
of the Federal Reserve System




	
"Reproducibility:
Six red flags for suspect work" by C. Glenn Begley,
Nature


	
"The
poor availability of psychological research data for reanalysis" by Jelte
Wicherts, Judith Kats, Denny Borsboom and Dylan Molenaar, American
Psychologist


	
Hackers:
Heroes of the Computer Revolution by Steven Levy, Doubleday,
1984 (Wikipedia)


	
Open Science
(Wikipedia)


	
COS (Center for Open Science)


	
Open Science Framework


	
Peer Reviewers' Openness
Initiative


	
SPSS Statistics
(Wikipedia)


	
"The Popularity of Data
Science Software" by Robert A. Muenchen, r4stats.com


	
The R Project for Statistical
Computing


	
The GNU Operating System


	
GNU General Public
License


	
Microsoft R Application
Network (MRAN)


	
RStudio


	
"Cleaning
Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey
Says" by Gil Press, Forbes


	
"Gene
name errors are widespread in the scientific literature" by Mark Ziemann,
Yotam Eren and Assam El-Osta, Genome Biology


	
"Microsoft
Excel: The ruiner of global economies?" by Peter Bright, Ars
Technica


	
The Comprehensive R Archive
Network


	
xkcd


	
"Calling
R from SPSS" by Catherine Dalzell


	
Doing Bayesian Data
Analysis


	
Bayesian
statistics (IBM Knowledge Center)


	
LTC
Workshop


	
Discovering
Statistics Using R by Andy Field, Jeremy Miles and Zoe Field, Sage
Publishing


	
Research Methods in R by Andy
Wills (Teaching Materials)


Ben Whalley's Just Enough R

	
catlearn GitHub
Page


	
Acorn
Programs




Open Sauce: If Software Is Funded from a Public Source, Its Code Should Be Open
Source



If we pay for it, we should be able to use it.
By Glyn Moody



Perhaps because many free software coders have been outsiders
and rebels, less attention is paid to the use of open source in
government departments than in other contexts. But it's an important
battleground, not least because there are special dynamics at play
and lots of good reasons to require open-source software. It's
unfortunate that the most famous attempt to convert a government
IT system from proprietary code to open source—the city of
Munich—proved such a difficult experience. Although last year saw a
decision to move back to Windows, that seems to be more
a failure of IT management, than of the code itself.
Moreover, it's worth remembering that the Munich project
began back in 2003, when it was a trailblazer. Today, there are dozens
of large-scale migrations, as TechRepublic reports:





Most notable is perhaps the French Gendarmerie, the
country's police force, which has switched 70,000 PCs to Gendbuntu,
a custom version of the Linux-based OS Ubuntu. In the same country 15
French ministries have made the switch to using LibreOffice, as has the
Dutch Ministry of Defence, while the Italian Ministry of Defence will
switch more than 100,000 desktops from Microsoft Office to LibreOffice
by 2020 and 25,000 PCs at hospitals in Copenhagen will move from Office
to LibreOffice.





More are coming through all the time. The Municipality
of Tirana, the biggest in Albania, has just announced it is moving
thousands of desktops to LibreOffice, and nearly 80% of the city
of Barcelona's IT investment this year will be in open source.




One factor driving this uptake by innovative government departments is
the potential to cut costs by avoiding constant upgrade fees. But it's
important not to overstate the "free as in beer" element here. All major
software projects have associated costs of implementation and support.
Departments choosing free software simply because they believe it will
save lots of money in obvious ways are likely to be disappointed, and
that will be bad for open source's reputation and future projects.




Arguably as important as any cost savings is the use of open standards.
This ensures that there is no lock-in to a proprietary solution,
and it makes the long-term access and preservation of files much easier.
For governments with a broader responsibility to society than simply
saving money, that should be a key consideration, even if it hasn't been
in the past.




Open-source advocates have rightly noted that free software
is a natural fit for any organization that requires
solutions based on open standards, interoperability and
re-usable components—key elements of the European Commission's new digital
strategy, for example. One of the leaders here is
the UK government. In 2014, it announced a new policy of "Making
things open, making things better". It achieved this by setting Open
Document Format for Office Applications Version 1.2 as the default
format for sharing or collaborating with
UK government documents. It's produced an interesting review
of how things have gone in the last four years, which concludes:





We cannot have important documents published in formats
which do not meet open standards. Government documents are for
everyone. Whether you're using Windows, Mac, GNU/Linux, Chrome OS, iOS,
Android, or any other system—you have the right to read what we have
written and we will continue on our journey to make documents open and
accessible.






The use of open standards is not the only big benefit of moving
to open source. Another is transparency. Recently it emerged that Microsoft
has been gathering personal information from 300,000 government
users of Microsoft Office ProPlus in the Netherlands, without permission
and without documentation:





Microsoft systematically collects data on a large scale about
the individual use of Word, Excel, PowerPoint and Outlook. Covertly,
without informing people. Microsoft does not offer any choice with regard
to the amount of data, or possibility to switch off the collection,
or ability to see what data are collected, because the data stream is
encoded. Similar to this practice in Windows 10, Microsoft has included
separate software in the Office software that regularly sends telemetry
data to its own servers in the United States.






Moving to open-source solutions does not guarantee that personal data
will not leak out, but it does ensure that the problems, once found,
can be fixed quickly by government IT departments—something that
isn't the case for closed-source products. This is a powerful reason why
public funds should mean open source—or as a site created by the Free
Software Foundation Europe puts it: "If
it is public money, it should be public code as well".




The site points out some compelling reasons why any government
code produced with public money should be free software. They will
all be familiar enough to readers of Linux Journal. For example,
publicly funded code that is released as open source can be used
by different departments, and even different governments, to solve
similar problems. That opens the way for feedback and collaboration,
producing better code and faster innovation. And open-source code is
automatically available to the people who paid for it—members of the
public. They too might be able to offer suggestions for improvement,
find bugs or build
on it to produce exciting new applications. None of these is possible
if government code is kept locked up by companies that write it on behalf
of taxpayers.




Once again, the natural fit of open source with public
computing is evident. Indeed, when you think about it, it
seems ridiculous that public money would be used to produce
anything but public code. The Basque Country understood
that back in 2012 and brought in a law that required all software
developed for the government there should be released
as open source. More recently, the Canadian
government has made the connection too. Its new Directive on
Management of Information Technology says:



Where possible, use open standards and open source software
first.




...




If a custom-built application is the appropriate option, by default
any source code written by the government must be released in an open
format via Government of Canada websites and services designated by the
Treasury Board of Canada Secretariat.




All source code must be released under an appropriate open source
software license.





The fact that this approach is not already the norm is something of a
failure on the part of the Free Software community. Perhaps it's time to
drop the snobbery about open source in government and put more effort
into turning it into the next huge win for the world of free software.



  About the Author


  


Glyn Moody has been writing about the internet since 1994, and about free
software since 1995. In 1997, he wrote the first mainstream feature about
GNU/Linux and free software, which appeared in Wired. In 2001, his
book
Rebel Code: Linux And The Open Source Revolution was published.
Since
then,
he has written widely about free software and digital rights. He has a blog,
and he is active on social media: @glynmoody on Twitter or identi.ca, and
+glynmoody on Google+.


[image: Glyn Moody]

OEBPS/Images/12674aa.jpg





OEBPS/Images/12568f6.jpg
CLTIp— “l+

€ ¢ momonme

WebAuthn.io

“Tris st can b used o tes he WebAut 5pec o the Chiome, irsfo,and Edge browsers. Curenty, e WebAutn spec
‘Supports credentil cration an assertion bst using U2F Token ke those provided by Yubico and Feitan. The code ortis
demo can b found her cn Gt

T see what's happening undor the hood whe you crete  estuser and login sing WebAuthn boow, you can open your
web browser'sconsole and see the otput of th necessary credentl objects beng sed.

snas7iascronoos | eemmpiecom






OEBPS/Images/12569f2.jpg





cover.jpeg
Free Software,
ib Open Science and R

The Heads Project:
a Free Software Solution
for Secure Booting

YubiKey 5 and Web Authentication

The New Purism Librem Key
Hardware Token

Password Manager Roundup

De-mystifying X.509 Certificates

1SSUZ 295 | FEBRUARY 2019
www.linuxjournal.com





OEBPS/Images/12672f6.jpg
Setup Emergency Access aStPaSS

Email Address:

wife@her.email.com

When your trusted contact requests emergency access to your vault, they will have to wait
for the period of time you specify before being allowed access. During that time window, you
can decline their request to access your vault.

Wait Time:
48 hours v

Cancel Send Invite





OEBPS/Images/12568f4.jpg
Relying Party Server (&) sever vaidation

challenge,
PublicKeyCredentialCreateOptions user info,

ORI [O P E—
relying party info

attestationObject

RP JavaScript Application
WebAuthnAPl —

relying party id, new public key,

orie, .
g ary o, @ o, wwetondbiect
Pk e

Authenticator

®

user verification,
new keypair,
attestation





OEBPS/Images/12569f4.jpg
OpenPGP

FIDO U2F,
FIDO2






OEBPS/Images/12568f7.jpg
Registering...






OEBPS/Images/12569f1.jpg
Zl Purism

Librem Key






OEBPS/Images/12675f7.jpg
Object list: There are 90 objects in this field.

MPC  03h55m04.79s +44°49'12.1" As (602) Marianna m: 12.0 phase: 10 * d:
MPC  04h20md0.24s +61°09'52.5" As (433) Eros m: 9.6 phase: 31 ° d:
MPC 0ShS7m4S.48s +49°49°'51.5" As  (71) Nicbe m: 11.9 phase: 9 ° d:
MPC  06h11m36.27s +27°13'18.2" As (776) Berbericia m: 11.2 phase: § * d:
MPC 08h06m03.82s +21°18'06.5" As (24) Themis m: 11.5 phase: 13 ° d:
MPC  08h09n48.80s +16°47'34.6" As (704) Interamnia m: 11.0 phase: 13 * d:
MPC 08h57m42.91s +27°09'07.8" As (324) Bamberga m: 11.0 phase: 18 ° d:
MPC  09h31mdS.14s +18°55'09.8" As (89) Julia m: 11.4 phase: 18 * d:
MPC 05h43nd8.10s +06°40°'08.6" As (48) Doris m: 12.1 phase: 18 ° d:
MPC  09h48m07.82s +18°55'08.1" As (532) Herculina m: 10.1 phase: 21 * d:
MPC  10h57m00.57s +06°27°'23.4" As (64) Angelina m: 11.8 phase: 25 * d:
MPC 11h12m47 .52s +14°05°23.0" As (349) Dembowska m: 11.3 phase: 19 * d:
SAC  21h39m34.09s +57°35'24.8" OC Tr 37 m: 5.10 Name:Cr 433 st
SAC 21h39n40.10s +57°35'24 9" C+N IC 1396 m: 3.50 Name:OCL 222 st
SAC  21h30m04.30s +47°10°'13.7" OC NGC 7082 m: 7.20 Name:OCL 209 st
SAC 21h32m51.79s +48°31'16.7" OC M 39 m: 4.60 Name:NGC 7092 sty
< >

Sortby: & || search Print | save
Help Close






OEBPS/Images/12690f2.jpg
'@ BECOME A PATRON





OEBPS/Images/12569aa.jpg





OEBPS/Images/ljlogo_masthd_fmt.png
Vlllll')fi





OEBPS/Images/PIA_logo.jpg
prlvatemternetaccess

always use protection





OEBPS/Images/12568f3.jpg





OEBPS/Images/12569f5.jpg
D





OEBPS/Images/12568f8.jpg
ese o 7 -

You're logged in!
Youve loggedinto3n sccaun sing Webun

Credentials for 99487148019310036
Type CroateDate D Pubic Ky

NONE  Tuo, 523AMUTC  dRVHAW2-7QBTYZAREI2Br¥oh
94Zq@1CI6MyYDXMMEOHTE)

L25cQ5Q30 ¥r20bRQYNMOSING
prney Y:OURAKVQEAREH] G Ca} GSCKOL7240UABArLa2Cu

X CRRISECe0Dv2Hg_GUSOkSPSAA) OLTNTALVECOu=






OEBPS/Images/12673aa.jpg





OEBPS/Images/12663f2.jpg
" %
# #
# #
sunnnnn
PO0ooG rooooooq (333333 fgzzzzz,
X X0 03 3z r4
X X0 03 32 z
X X0 03 32 Z

Loooood! Loooooo! 1333333/ Lzzzzzz]

Senet






OEBPS/Images/12675f1.jpg
Observatory

Obsenvatory Horizon

Name Geneva Observatory database
Favorite v Save Delete
Latitude Longitude Altitude
Degrees, minutes, seconds Degrees, minutes, seconds Meters

46 |‘IZ 0.0 North  +| | 06 06 | 0.0 East v| |0

Time zone
Country timezone Switzerland v
Europe/Zurich s

Map Internet localization

Help oK Apply Cancel





OEBPS/Images/12568f2.jpg





OEBPS/Images/12668aa.jpg





OEBPS/Images/12688aa.jpg





OEBPS/Images/12568f1.jpg





OEBPS/Images/12663f1.jpg
* L
# #
* #
Rt
XXXXXX] 0000007 333333 (222222,
X X0 03 3z 4
X X0 03 3z 4
X X0 03 32z z

Lo Looooood 1333333/ 12222227

Senet






OEBPS/Images/12689f2.jpg
O O

catilearn





OEBPS/Images/12675f4.jpg
Datefrom [20181210 | 1o [2008215 | Refresh Copy Help Close |
Satelites colcalaiors Quickatby Mike McCorts
Iidhom flare predicon: e by Rabert Matson svetofile print
Tuilght ol System  Comet Aseroid Solrecipses Lunarccpses Avficil satltes
Limiing magritude, s[4 | Tie o wdumot Dlinclude idum fare e
= o] [ viuale

ek [ Clinclude day timepass ~ [5| Minimal ltitude
Date. ‘Satellite. Magn. Az Alt Range RA DE . Dir
Wiez0meT  ComosiseRe (39 (@ | w3 [omem |21 =
Wie101T6®  Comosts 40T | 0w |omm | 39 )
2018-12-10 17:56:59 Cosmos 1743 39 n 27 1024 04h17m 318 8
2011210175919 Genesis 1 3 @ m w0 |#wem w4 )
Wie121016004  Comost0 (37 w1 |65 |aowem | w2 )
Wier20186B  ComszeR (22 0 B m |onwm 518 )
Wierz016083  ComosZ2R 25 M2 | w9 |omam | 240 [
2181210182010 SI6CLMRE W m e |oonaem 469 )
218121018203 Okean3 35 (m e e |owsm w1 i
a0tz ComosBOR 31 08 |3 30 |omsm | 122 )
81210182810 ERS2ArRK 2w s w0 |owwem s m
ierz0162915  Comost9ORe (37 %8 |3 e |mam | 509 )
Werz01BH  FenguniCRe 38 B8 5 s |2nm 413 )
s rz-0 1842 55 26 s @ e ammm 11 )
We01EO  ComostoRe (38w B ew  |2wim | 467 )
Hier010m  Comos2@8Re 27 %2 @ %% |aowem | 57 @ .






OEBPS/Images/12672f3.jpg
Help

Allitems Q Search Va

ITEM INFORMATION

* Favorites Family Jewels .
S
TYPES Family Jewels
@ Login Username
S card shawn ©
& Identity pass
D secure Note e © el
FOLDERS
~ No Folder Website

my.site

Updated: Dec 12, 2018, 11:49:06 AV






OEBPS/Images/12672f2.jpg
Password: [K_Onx-[4r-k)Joc; 2
—————————————
Password Quality: Good Entropy: 90.52 bit

Password | Passphrase

Length: e== 16 -
Character Types
AZ| |az (09 2* ...) |Extended AsCIl
— Generate
Exclude look-alike characters
Copy

Pick characters from every group
Close





OEBPS/Images/12675f3.jpg
-

—0PQ TS ~0009

o |0l () «»

2018-12-10 (AST)

o 2 4 s s

3hours

Planet visibility

Fredericton

w e 2

sun

Moon

Mercury

Venus

Mars

Jupiter

saturn

Uranus

Neptune

L 3
—
p—— @

1

—

.

sun
Moon
Mercury
Venus
Mars
Jupiter
saturn
Uranus

Neptune

Net >>

O st gaph atlocl noon






OEBPS/Images/12568aa.jpg





OEBPS/Images/12683c.jpg





OEBPS/Images/12689f1.jpg





OEBPS/Images/12672f1.jpg
sm i RIS IO R | @

Title ~_Username
© KeePassXC-Bro... | 2 Family Jewels  shawn
£ KeePassXC-Br...

|
G/

General | N

Auto-Type Enabled
Searching Enabled
Expiration Never

Password URL N
[ ] http://no.






OEBPS/Images/12686aa.jpg





OEBPS/Images/12675f2.jpg
Chart_Telescope Window Update

N

ARz coord MER
Apparent
Fredericton
2181200
1ensaméss (AST)
Mag8 810560
FOV:+120°0000"

Help






OEBPS/Images/12672f5.jpg
Welcome to your vault!

Sites.

(none) (525) v

10.100.2

Later

Never

10.100.1
admin

10.10133.1

admin

SortBy: Folder (a-2) ~






OEBPS/Images/12675f6.jpg
CdCstars CdCdeepsky Catalog VO Catalog

User defined objects

x  Type Object  RA(Hour) DEC(Degree)  Magn. Size()
NGP 12h51m26s  +27d07Tmd2s 000  30.00

FOV number: 0:0-0.5 1:05-1 Bi=2 32-5 45-10
5:10-20 6:20-45 7:45-120 8:120-180  9:180-310  10:310- 360

rep | ok ] [ apay | [ conce






OEBPS/Images/33429.png





OEBPS/Images/12690f1.jpg
PATREON





OEBPS/Images/12668f2.jpg
| E
‘ﬂ%?{::. .

g






OEBPS/Images/12683aa.jpg





OEBPS/Images/12675f5.jpg
Driver Selection
elect
Configure
Refresh rate 1000 About
Advanced setting
Observatory
Latitude | +45°57'00" |Longitude | -66°38'00"
Set Location Set Time
RA DEC
0 az ALT
Tracking ‘ Abort Slew
[
Connect ‘ . Disconnect Hide

Help






OEBPS/Images/12687aa.jpg





OEBPS/Images/12672f4.jpg
*

1§/ watchtower

orl

2 Password Generator

CATEGORIES

@) Logins

B Secure Notes
(2 Identities

TAGS

® Starter Kit

T Trash

) Search 1Password

»

Q Search Categories

'CATEGORIES

(®) Login

5 Credit Card [}
[ Secure Note

@3 Identity

/2 Password

B Document

/A Software License
© Bank Account

S Database

@ Driver License





OEBPS/Images/12672aa.jpg





OEBPS/Images/12568f5.jpg
PublicKeyCredentialRequestOptions

RP JavaScript Application
WebAuthnAPl —»

Browser

relying party d, @ henieatoan
clientDataHash signature

Authenticator

®

user verification,
create assertion





OEBPS/Images/12569f3.jpg
W W m 913





OEBPS/Images/12668f1.jpg





OEBPS/Images/12584c.jpg
B, A

Reallty 2 O

ooooooooo






