

 LINUX JOURNAL | MASTHEAD

 [image: 33429.png]

 [image: ljlogo_masthd.eps]

 Editor in Chief — Doc Searls, doc@linuxjournal.com

 Executive Editor — Jill Franklin, jill@linuxjournal.com

Deputy Editor — Bryan Lunduke, bryan@lunduke.com

 Tech Editor — Kyle Rankin, lj@greenfly.net

 Associate Editor — Shawn Powers, shawn@linuxjournal.com

 Contributing Editor — Petros Koutoupis, petros@linux.com

 Contributing Editor — Zach Brown, zacharyb@gmail.com

 Senior Columnist — Reuven Lerner, reuven@lerner.co.il

 Senior Columnist — Dave Taylor, dave@linuxjournal.com

 Publisher — Carlie Fairchild, publisher@linuxjournal.com

 Associate Publisher — Mark Irgang, mark@linuxjournal.com

 Director of Digital Experience — Katherine Druckman, katherine@linuxjournal.com

Director of Sales — Danna Vedder, danna@linuxjournal.com

 Graphic Designer — Garrick Antikajian, artwork@linuxjournal.com

 Accountant — Candy Beauchamp, acct@linuxjournal.com

 Community Advisory Board

 	John Abreau, Boston Linux & UNIX Group

 	John Alexander, Shropshire Linux User Group

 	Robert Belnap, Classic Hackers UGA Users Group

 	Lawrence D'Oliveiro, Waikato Linux Users Group

	Chris Ebenezer, Silicon Corridor Linux User Group

 	David Egts, Akron Linux Users Group

 	Michael Fox, Peterborough Linux User Group

 	Braddock Gaskill, San Gabriel Valley Linux Users' Group

 	Roy Lindauer, Reno Linux Users Group

	James Mason, Bellingham Linux Users Group

 	Scott Murphy, Ottawa Canada Linux Users Group

 	Andrew Pam, Linux Users of Victoria

	Bob Proulx, Northern Colorado Linux User Group

 	Ian Sacklow, Capital District Linux Users Group

 	Ron Singh, Kitchener-Waterloo Linux User Group

 	Jeff Smith, Kitchener-Waterloo Linux User Group

 	Matt Smith, North Bay Linux Users' Group

 	James Snyder, Kent Linux User Group

 	Paul Tansom, Portsmouth and South East Hampshire Linux User Group

 	Gary Turner, Dayton Linux Users Group

 	Sam Williams, Rock River Linux Users Group

 	Stephen Worley, Linux Users' Group at North Carolina State University

 	Lukas Yoder, Linux Users Group at Georgia Tech

 Linux Journal is published by, and is a registered trade name of, Linux Journal, LLC.

 4643 S. Ulster St. Ste 1120 Denver, CO 80237 USA

 LINUX is a registered trademark of Linus Torvalds.

 At Your Service

 SUBSCRIPTIONS: Linux Journal is available as a digital magazine in PDF, EPUB, and MOBI formats. Renewing your subscription, changing your e-mail address for issue delivery, paying your invoice, viewing your account details or other subscription inquiries can be done instantly on-line: http://www.linuxjournal.com/subscribe. E-mail us at subs@linuxjournal.com or reach us via postal mail at Linux Journal, 9597 Jones Rd, #331, Houston, TX 77065 USA. Please remember to include your complete name and address when contacting us.

 ACCESSING THE DIGITAL ARCHIVE: Your monthly download notifications will have links to the various formats and to the digital archive. To access the digital archive at any time, log in at http://www.linuxjournal.com/digital.

 LETTERS TO THE EDITOR: We welcome your letters and encourage you to submit them at http://www.linuxjournal.com/contact or mail them to Linux Journal, 9597 Jones Rd, #331, Houston, TX 77065 USA. Letters may be edited for space and clarity.

 SPONSORSHIP: We take digital privacy and digital responsibility seriously. We've wiped off all old advertising from Linux Journal and are starting with a clean slate. Ads we feature will no longer be of the spying kind you find on most sites, generally called "adtech". The one form of advertising we have brought back is sponsorship. That's where advertisers support Linux Journal because they like what we do and want to reach our readers in general. At their best, ads in a publication and on a site like Linux Journal provide useful information as well as financial support. There is symbiosis there. For further information, email: sponsorship@linuxjournal.com or call +1-360-890-6285.

 WRITING FOR US: We always are looking for contributed articles, tutorials and real-world stories for the magazine. An author’s guide, a list of topics and due dates can be found on-line: http://www.linuxjournal.com/author.

 FREE e-NEWSLETTERS: Linux Journal editors publish newsletters on both a weekly and monthly basis. Receive late-breaking news, technical tips and tricks, an inside look at upcoming issues and links to in-depth stories featured on http://www.linuxjournal.com. Subscribe for free today: http://www.linuxjournal.com/enewsletters.

 [image: PIA_logo]

 Private Internet Access is a proud sponsor of Linux Journal.

 LINUX JOURNAL (ISSN 1075-3583) is published monthly by Linux Journal, LLC., 9597 Jones Rd, #331, Houston, TX 77065 USA. Subscription rate is $34.50/year. Subscriptions start with the next issue.

 Table of Contents

 The 25th Anniversary Issue by Bryan Lunduke

 25 Years Later: Interview with Linus Torvalds by Robert Young

 Linux Journal's very first issue featured an interview between LJ's first Publisher, Robert Young (who went on to found Red Hat among other things), and Linus Torvalds (author of the Linux kernel). After 25 years, we thought it'd be interesting to get the two of them together again.

 Interview with Linus, the Author of Linux by Robert Young

 From Issue #1, March/April 1994.

 Letters

 UPFRONT

 A Big Thanks to Our Subscribers

 The Asian Penguins by Bryan Lunduke

 Patreon and Linux Journal

 FOSS Means Kids Can Have a Big Impact by Corbin Champion

 Reality 2.0: a Linux Journal Podcast

 FOSS Project Spotlight: Drupal by Lizz Troudeau

 Plotting on Linux with KmPlot by Joey Bernard

 News Briefs

 Columns

 Kyle Rankin's Hack and /

 What Linux Journal's Resurrection Taught Me about the FOSS Community

 Reuven M. Lerner's At the Forge

 Open Source Is Winning, and Now It's Time for People to Win Too

 Dave Taylor's Work the Shell

 Back in the Day: UNIX, Minix and Linux

 Zack Brown's diff -u

 What's New in Kernel Development

 Glyn Moody's Open Sauce

 Open Source Is Eternal

 Deep Dive: Kids and Linux

 The Kids Take Over by Doc Searls

 As with Linux, these kids are all about making things—and then making them better. They're also up against incumbent top-down systems they will reform or defeat. Those are the only choices.

 Linux...Do It for the Children by Marcel Gagné

 A rundown of some fun and educational Linux software for kids.

 Thoughts from the Future of Linux by Bryan Lunduke

 What do kids want to do with Linux? And, where will the next generation take open-source computing?

 Articles

 Kubernetes Identity Management: Authentication by Marc Boorshtein

 You've deployed Kubernetes, but now how are you going to get it into the hands of your developers and admins securely?

Build Your Own Internet Radio Receiver by Nick Tufillaro

Tune in to communities around the world with the push of a button.

The 25th Anniversary Issue

"Linux is an independent implementation of the POSIX operating system
specification (basically a public specification of much of the Unix operating
system) that has been written entirely from scratch. Linux currently works on
IBM PC compatibles with an ISA or EISA bus and a 386 or higher processor. The
Linux kernel was written by Linus Torvalds from Finland, and by other
volunteers."

Thus begins the very first Letter from the Editor (written by Phil Hughes),
in the very first issue of Linux Journal, published in the
March/April issue in 1994...25
years ago—coinciding, as fate would have it, with the 1.0.0 release of the
Linux kernel itself (on March 14th).

A quarter of a century.

Back when that first issue was published, Microsoft hadn't yet released
Windows 95 (version 3.11 running on MS-DOS still dominated home computing).
The Commodore Amiga line of computers was still being produced and sold.
The music billboards were topped by the likes of Toni Braxton, Ace of Base
and Boyz II Men. If you were born the day Linux Journal debuted, by
now you'd be a
full-grown adult, possibly with three kids, a dog and a mortgage.

Yeah, it was a while ago. (It's okay to take a break and feel old now.)

In that first issue, Robert Young (who, aside from being one of the founders
of Linux Journal, you also might recognize as the founder of Red Hat) had an
interview with Linus Torvalds.

During the interview, Linus talked about his hope to one day "make a living
off this", that he'd guesstimate Linux has "a user base of about 50,000", and
the new port of Linux to Amiga computers.

A lot changes in a quarter century, eh?

To mark this momentous occasion, we've reunited Robert Young with Linus
Torvalds for a new interview—filled with Linus' thoughts on family,
changes since 1994, his dislike of Social Media, and a whole lot more. It
is, without a doubt, a fun read. (We're also republishing the complete original
1994 interview in this issue for reference.)

And, if you're curious about the history of Linux Journal, Kyle Rankin's "What
Linux Journal's Resurrection Taught Me about the FOSS Community" provides an
excellent—and highly personal—look over the last roughly 20 years of
not just Linux Journal, but of Linux and free software itself. He even
includes pictures of his ahem "super-leet Desktop from 1999". How can you
go wrong?

Then we thought to ourselves, "How do we celebrate 25 years of talking about
Linux?" The answer was obvious: by looking to the future—to where we (the
Linux community) are going. And what better way to understand the future of
Linux than to talk to the kids who will shape the world of Linux (and free
and open-source software) to come.

In "The Kids Take Over", Doc Searls (Linux Journal's Editor in Chief) dives
into the world of kidOYO, a non-profit helping to teach computer
programming to kids, with a healthy dose of Linux and open source. Doc talks
to the folks behind the project and gets a demonstration from the kids
themselves.

We follow up with Marcel Gagné's "Linux...Do It for the Children", where he
gives us a run-down on educational (and edu-tainment) software available for
Linux. How do you introduce kids to the wide, wonderful world of computing
(and Linux)? How do you give them the fundamental understanding and
experience to empower them to do whatever they want in the Open Source world
throughout their lives? Turns out, there's some great options, and Marcel
goes through a handful of solid ones to get them started.

Then I get the chance to talk to three teenagers with a passion for
Linux—what got them started on their Linux-y journeys, what they're interested in
using it for, and where they see Linux fitting into their lives in the
future. In our Upfront section, we also give a quick look at a computer club (known as the Asian
Penguins) that is doing some truly fantastic work for both the kids involved
and their community and tell the story of an eight-year-old girl's first pull
request.

On a personal note: I'd like to take a quick moment to thank every single
person who has worked on Linux Journal over the last two and a half
decades, as well as every subscriber who helped keep this ship sailing.
I've
joined the team only fairly recently, but this magazine had a huge impact on me
throughout the late 1990s and into the modern day. Back when it was rare to
find like-minded Linux nerds, Linux Journal was there, talking about the
things I cared about. In a sea of closed-source systems, LJ was a safe
harbor—a place to remind me (and others) of just how awesome computing can
be. Thank you. To all of you. And thank you for letting me be part of this
crazy, rag-tag crew of Linux-i-ness.

 About the Author

Bryan Lunduke is a former Software Tester, former Programmer, former VP of
Technology, former Linux Marketing Guy (tm), former openSUSE Board
Member...and current Deputy Editor of Linux Journal as well as host of the
(aptly named) Lunduke Show.

[image: Bryan Lunduke]

25 Years Later: Interview with Linus Torvalds

Linux Journal's very first issue featured an interview between
LJ's first Publisher, Robert Young (who went on to
found Red Hat among other things), and Linus Torvalds (author of the Linux
kernel). After 25 years, we thought it'd be
interesting to get the two of them together again. (Note: that first
interview directly follows this one.)

[image: Linus Torvalds]

Linus Torvalds (Image Courtesy of Peter Adams, The Faces of Open
Source Project)

Sidenote: the Faces of Open Source Project

The photo of
Linus is by Peter Adams, a photographer I met a few months ago
when he introduced me to a series he started in 2014 called Faces of Open
Source. On that site, Peter writes, "Despite its wide ranging impact, the
open source revolution remains all but unknown to most people who now, more
than ever before, depend on its survival. This project is an attempt to
change that." His purpose applies not only to the muggles who rely on open
source, but to the wizards who write their own code and put it to use.
Knowing who created the Open Source world we have now will surely help as
we code up a future that embodies the same good values.—Doc
Searls

Interview: Linus Torvalds and Robert Young

Robert Young: It is a great pleasure to have an excuse to reach out to you. How are
you and your family? Your kids must be through college by now. Nancy
and I and our three daughters are all doing well. Our eldest, Zoe, who
was 11 when Marc and I started Red Hat, is expecting her second
child—meaning I'm a grandparent.

Linus Torvalds: None of my kids are actually done with college yet, although
Patricia (oldest) will graduate this May. And Celeste (youngest) is in
her senior year of high school, so we'll be empty-nesters in about
six months.

All three are doing fine, and I suspect/hope it will be a few years
until the grandparent thing happens.

Bob: When I first interviewed you back in 1994, did you think that you'd
be still maintaining this thing in 2019?

Linus: I think that by 1994 I had already become surprised that my latest
project hadn't just been another "do something interesting until it
does everything I needed, and then find something else to do" project.
Sure, it was fairly early in the development, but it had already been
something that I had spent a few years on by then, and had already
become something with its own life.

So I guess what I'm trying to say is not that I necessarily expected
to do it for another few decades, but that it had already passed the
bump of becoming something fairly big in my life. I've never really
had a long-term plan for Linux, and I have taken things one day at a
time rather than worry about something five or ten years down the
line.

Bob: There is a famous old quote about the danger of achieving your
dreams—your running joke back in the day when asked about your
future goals for Linux was "world domination". Now that you and
the broader Open Source/Free Software community have achieved that,
what's next?

Linus: Well, I stopped doing the "world domination" joke long ago, because
it seemed to become less of a joke as time went on. But it always
was a joke, and it wasn't why I (or any of the other developers)
really did what we did anyway. It was always about just making better
technology and having interesting challenges.

And none of that has really changed on a core level. All the details
have changed—the hardware is very different, the problems we have
are very different, and my role is very different. But the whole "make
it better and have interesting challenges" is all the same.

For example, back in 1994, I was mostly a developer. Sure, I was the
lead maintainer, but while I spent a lot of time merging patches, I
was also mostly writing my own code. These days I seldom write much
code, and the code I write is often pseudo-code or example patches
that I send out in emails to the real developers. I'd hesitate to
call myself a "manager", because I don't really do things like yearly
reviews or budgets, etc. (thank God!), but I definitely am more of a
technical lead person than an actual programmer, and that's been true
for the last many years.

So the truly big-picture thing hasn't changed, but my role and all the
details obviously look very very different from 1994.

Bob: Where will you and this code base be in another quarter century?

Linus: Well, I'll be 75 by then, and I doubt I'll be involved day to day. But
considering that I've been doing this for almost 30 years, maybe I'd
still be following the project.

And the good news is that we really do have a pretty solid developer
base, and I'm not worried about "where will Linus be" kind of issues.
Sure, people have been talking about how kernel developers are getting
older for a long time now, but that's not really because we wouldn't
be getting any new people, it's literally because we still have a lot
of people around that have been around for a long time, and still
enjoy doing it.

I used to think that some radical new and exciting OS would come
around and supplant Linux some day (hey, back in 1994 I probably still
thought that maybe Hurd would do it!), but it's not just that we've
been doing this for a long time and are still doing very well, I've
also come to realize that making a new operating system is just way
harder than I ever thought. It really takes a lot of effort by a lot
of people, and the strength of Linux—and open source in general, of
course—is very much that you can build on top of the effort of all
those other people.

So unless there is some absolutely enormous shift in the computing
landscape, I think Linux will be doing quite well another quarter
century from now. Not because of any particular detail of the code
itself, but simply fundamentally, because of the development model and
the problem space.

I may not be active at that point, and a lot of the code will have
been updated and replaced, but I think the project will remain.

Bob: Have you and the kernel team been updating the kernel code to your
satisfaction through the years? Is there any need or pressure to
re-write any of the 25-year-old ever-expanding Linux code base?
Perhaps in a more "modern" language than C?

Linus: We've gone through many many big rewrites of most of the subsystems
over the years—not all at once, of course—and many pieces of code
end up being things that nobody really wants to modify any more (most
often because they are drivers for ancient hardware that very few
people really use, but that we still support). But one of the
advantages of a big unified source base for the whole kernel has been
that when we need to make some big change, we can do so. There may
be a few out-of-tree drivers, etc., around (both source and binary), but
we've always had a policy that if they are out of tree, they don't
matter for development. So we can make radical changes when necessary.

As to C, nothing better has come around. We've updated the kernel
sources for new and improved features (the C language itself has
changed during the years we've been doing this), and we've added various
extensions on top of C for extra type-checking and runtime
verification and hardening, etc., but on the whole, the language is
recognizably the same except for small details.

And honestly, it doesn't look likely to change. The kind of languages
people see under active development aren't for low-level system
programming. They are to make it easier to create user applications
with fancy UIs, etc. They explicitly don't want to do things a kernel
needs, like low-level manual memory management.

I could imagine that we'd have some "framework" language for
generating drivers or similar, and we internally actually have our own
simplified "language" just for doing configuration, and we do use a
few other languages for the build process, so it's not like C is the
only language we use. But it's the bulk of it by far, and it's what
the "kernel proper" is written in.

Bob: What's your hardware instrument of choice? Is there a Stradivarius
of Linux (or any) laptops out there? Or tablet or phone?

Linus: My main development machine is a very generic PC workstation. It's a
franken-machine with different parts cobbled together over the years.
It's nothing particularly special, and it's actually been two years since I
made any big changes to it, so it's not even anything bleeding-edge.
My main requirement at home is actually that it be basically entirely
silent. Outside a couple fans, there are no moving parts (so no
spinning disks anywhere), and the fans are not even running most of
the time.

On the road (which is happily not that often), my main requirement
is a good screen and being lightweight. My target weight is 1kg (with
charger), and honestly, I've not been able to hit that ideal target,
but right now, the best compromise for me is the XPS13.

Bob: It seems Linux on the desktop's success was not on the PC desktop but
on the device desktop via Android. What are your thoughts on this?

Linus: Well, the traditional PC is obviously no longer quite the dominant
thing it used to be. Even when you have one (and even when it's still
running Windows or OS X), lots of people mainly interact with it
through a web browser and a couple random apps. Of course, then
there are the "workstation" users, which is kind of the desktop I was
personally always envisioning. And while still important, it doesn't
seem to drive the market the way the PC did back when. Powerful
desktop machines seem to be mostly about development or gaming, or
media editing. The "casual" desktop seems to have become more of a
browser thing, and quite often it's just a tablet or a phone.

Chrome seems to be doing fine in some of that area too, of course. But
yes, in just numbers of people interacting daily with Linux, Android
is obviously the huge bulk of it.

[Note from Bob: In the strict sense of "dominant", this is probably fair. But
despite the recent fall in total numbers of PCs shipped in the last couple
years, the cumulative growth in the PC market between 1994 and, say, 2014 is
such that even in a slow PC market today, the world is still installing four or
five times as many PCs every year compared to 1994.]

Bob: If you had to fix one thing about the networked world, what would
it be?

Linus: Nothing technical. But, I absolutely detest modern
"social media"—Twitter, Facebook, Instagram. It's a disease. It seems to encourage
bad behavior.

I think part of it is something that email shares too, and that I've
said before: "On the internet, nobody can hear you being subtle". When
you're not talking to somebody face to face, and you miss all the
normal social cues, it's easy to miss humor and sarcasm, but it's also
very easy to overlook the reaction of the recipient, so you get things
like flame wars, etc., that might not happen as easily with face-to-face
interaction.

But email still works. You still have to put in the effort to write
it, and there's generally some actual content (technical or
otherwise). The whole "liking" and "sharing" model is just garbage.
There is no effort and no quality control. In fact, it's all geared
to the reverse of quality control, with lowest common denominator
targets, and click-bait, and things designed to generate an emotional
response, often one of moral outrage.

Add in anonymity, and it's just disgusting. When you don't even put
your real name on your garbage (or the garbage you share or like), it
really doesn't help.

I'm actually one of those people who thinks that anonymity is
overrated. Some people confuse privacy and anonymity and think they go
hand in hand, and that protecting privacy means that you need to
protect anonymity. I think that's wrong. Anonymity is important if
you're a whistle-blower, but if you cannot prove your identity, your
crazy rant on some social-media platform shouldn't be visible, and you
shouldn't be able to share it or like it.

Oh well. Rant over. I'm not on any social media (I tried G+ for a
while, because the people on it weren't the mindless usual stuff, but
it obviously never went anywhere), but it still annoys me.

Bob: This issue of Linux Journal focuses on Kids and Linux. Is there any
advice you'd like to give to young programmers/computer science
students?

Linus: I'm actually the worst person to ask. I knew I was interested in
math and computers since an early age, and I was largely self-taught
until university. And everything I did was fairly self-driven. So I
don't understand the problems people face when they say "what should I
do?" It's not where I came from at all.

Bob: The very first time you and I met was at a Digital Equipment
Company (DEC) tradeshow. It was on your very first trip to the US
that Jon "maddog" Hall and DEC financed.

Linus: I think actually that was my second trip to the US. The first was, I believe, a
trip for me to Provo, Utah, to talk with Novell about Linux (for a
project inside Novell that was then to become Caldera).

But yes, the DECUS tradeshow (in New Orleans? Maybe I misremember) was
certainly among my earliest trips to the US.

Bob: I asked how you were going
to catch up with all the emails you missed by the time you returned
to Helsinki. Your answer surprised me, and I've been quoting you
ever since. You simply said you would send the backlog of emails
to /dev/null. I expressed shock and asked you, "but what if there
were important emails in your inbox?" You shrugged and replied, "If
it was important, the writer would just send it again." Possibly
the most liberating piece of advice anyone had ever given me.
Do you still follow that philosophy of email handling?

Linus: It's still somewhat true, but at the same time, I've also changed my
workflow a lot so that travel wouldn't be as disruptive to my work as
it used to be. So these days I often strive to have people not even
notice when I'm on the road all that much. I will give people a
heads-up if I expect to be without much internet connectivity for more
than a day or two (which still happens in some places of the world—particularly if you're a scuba diver), but most of the time, I can do
my work from anywhere in the world. And I try (and sometimes fail)
to time my trips so that they're not in the merge window for me, which is
when I get the most pull requests.

So these days I keep all my email in the cloud, which makes it much
easier to switch between machines, and it means that when I travel and
use my laptop, it's not nearly as much of a pain as it used to be back
in the days when I downloaded all my email to my local machine.

And it's not just about my email—the fact that almost all the kernel
development ends up being distributed through git also means that it's
much less of an issue what machine I am at, and synchronization is
so much easier than it used to be back when I was working with
patches coming in individually through email.

Still, my "if it's really important, people will re-send" belief stands.
People know that I'm around pretty much 7/365, and if I don't react to
a pull request in a couple days, it still means that it might have
gotten lost in the chaos that is my email, and people send me a
follow-up email to ping me about it.

But it's actually much less common than it used to be. Back in 1994, I
wasn't all that overworked, and being gone a week wasn't a big deal,
but it got progressively worse during the next few years, to the point
where our old email-and-patches-based workflow really meant that I
would sometimes have to skip patches because I didn't have the time
for them, knowing that people would re-send.

Those times are all happily long gone. BitKeeper made a big difference
for me, even if not all maintainers liked it (or used it). And now
git means that I don't get thousands of patches by email any more,
and my inbox doesn't look as bad as it used to be. So it's easier to
stay on top of it.

By the way, perhaps even more important than the "If it was important the
writer would just send it again" rule is another rule I've had for the
longest time: if I don't have to reply, I don't. If I get a piece of
email and my reaction is that somebody else could have handled it, I
will just ignore it. Some busy email people have an automatic reply
saying "sorry, I'll try to get to your email eventually". Me, I just
ignore anything where I feel it doesn't absolutely concern me. I do
that simply because I feel like I can't afford to encourage people to
email me more.

So I get a lot of email, but I don't actually answer most of it at
all. In a very real sense, much of my job is to be on top of things
and know what's going on. So I see a lot of emails, but I don't usually
write a lot.

Bob: At a talk at the Washington DC Linux user group meeting back in May
1995, that Don Becker organized, you stopped halfway through and
asked the audience if anyone knew the score of the Finland-Sweden
men's world championship hockey game. As the token Canadian in the
room, I was able to assure you that Finland won that game. On that
topic: Finland's recent win of the World Junior Championship must
have been fun for you. Or were you cheering for the US?

Linus: Heh. Hockey may be the Finnish national sport (and playing against
Sweden makes it more personal—I speak Swedish as my mother
language, but I'm Finnish when it comes to nationality), but I'm not
a huge sports fan. And moving to the US didn't mean that I picked up
baseball and football, it just meant that ice hockey lost that "people
around me cared" part too.

Bob: Many of us admire your willingness to call a spade a spade in
public debates on Linux technology decisions. Others, um, dislike
your forthright style of arguing. Do you think you are becoming
more or less diplomatic as time has goes on?

Linus: If anything, I think I have become quieter. I wouldn't say "more
diplomatic", but perhaps more self-aware, and I'm trying to be less
forceful.

Part of it is that people read me a different way from how they used to.
It used to be a more free-wheeling environment, and we were a group of
geeks having fun and playing around. It's not quite the same
environment any more. It's not as personal, for one thing—we have
thousands of people involved with development now, and that's just
counting actual people sending patches, not all the people working
around it.

And part of the whole "read me in a different way" is that people take
me seriously in a way they didn't do back in 1994. And that's
absolutely not some kind of complaint about how I wasn't taken
seriously back then—quite the reverse. It's more me grumbling that
people take me much too seriously now, and I can't say silly stupid
cr*p any more.

So I'll still call out people (and particularly companies) for doing
dumb things, but now I have to do it knowing that it's news, and me
giving some company the finger will be remembered for a decade
afterwards. Whether deserved or not, it might not be worth it.

Bob: Anything else you want to comment on, either publicly or otherwise?

Linus: I've never had some "message" that I wanted to spread, so ...

About Robert Young and What He's Been Up to in the Past 25 Years

Graduating from the University of Toronto in 1976 after studying history, Young
took a job selling typewriters. In 1978, he founded his first company and then
spent 15 years in Canada at the helm of two computer-leasing companies. He
sold the second of these to a larger firm who moved him to Connecticut in 1992
to grow their small US subsidiary. Shortly after, the new parent company ran
into financial difficulties, otherwise known as bankruptcy, and Young found
himself working out of his wife's sewing closet.

[image: Robert Young]

Robert Young, LJ's First Publisher

Although that event led directly to, in 1993, co-founding Red Hat (NYSE: RHT)
with Marc Ewing, a young North Carolina-based software engineer. Both of them
had fallen in love with free software, now known as open source—Ewing
because he could innovate with software that came with source code and a
license that allowed him to innovate, and Young because he could see how
technology customers could be better served with open technology than the
closed proprietary alternatives the industry offered at the time. Serving as
CEO from founding through Red Hat's IPO in 1999, he then moved to the role
of Chairman, and the brilliant Matthew Szulik took over as CEO, building the
early Red Hat into a great business. Red Hat is now a member of the S&P 500
Index of the largest US public companies.

In 2000, Young and Ewing co-founded the Center for Public Domain, a non-profit
foundation created to bolster healthy conversation of intellectual property,
patent and copyright law, and the management of the public domain for the
common good. Grant recipients included the Electronic Frontier Foundation and
the Creative Commons.

In 2003, Young purchased the Hamilton Tiger-Cats of the Canadian Football
League, and he currently serves as the league's Vice-Chairman.

Working with a talented team led by Gart Davis, he helped launch Lulu.com in
2004 as the first online self-publishing services to use print-on-demand
technology to enable a new generation of authors to bring their works directly
to market, avoiding the delays, expense and limited profitability of publishing
through traditional channels. Under the direction of Kathy Hensgen, Lulu
continues to be a leading innovator helping authors bring their works to
market.

In 2012 Young invested in PrecisionHawk, a small drone company led by Ernie
Earon and Christopher Dean. PrecisionHawk, based in Raleigh, has become one of
the leading drone technology companies in the US. He continues to serve as
Chairman, with CEO Michael Chasen.

Since 2016, Young has been involved with Scott Mitchell and a team based in
Toronto, helping organize the Canadian Premier League, a professional soccer
league in Canada. He owns the Hamilton Forge franchise. The league will begin
play this month (April 2019).

His favorite current project is helping his wife Nancy run Raleigh-based
Elizabeth Bradley Design Ltd and its Needlepoint.com store, a leading
needlepoint supplier. Their mission is nothing less than to make the world a
more beautiful place, by growing the community of enthusiastic needlepointers
around the world.

His most beloved pastime is spending time with his growing family. He and his
wife Nancy welcomed their first grandchild a year ago. Young also enjoys
pursing a bunch of hobbies, always badly. These include fly fishing, kite
boarding, golf, and he collects the occasional antique typewriter—a nod to
his beginnings as a typewriter salesman.

Interview with Linus, the Author of Linux

From Issue #1, March/April 1994

Linus (rhymes with shyness) Torvalds (author of the Linux kernel) traded
email with us for several days in January giving us his views on the future
direction of Linux (rhymes with clinics) and his ongoing role in its
development.

Linux Journal: Ken Thompson was once asked, if he had the chance to do it all
again, what changes would he make in Unix. He said he would add an e to the
creat system call.

How about you and Linux?

Linus: Well, Considering how well it has turned out, I really can't say
something went wrong: I have done a few design mistakes, and most often those
have required re-writing code (sometimes only a bit, sometimes large chunks)
to correct for them, but that can't be avoided when you don't really know all
the problems.

If it's something I have problems with, it's usually the interface between
user-level programs and the kernel: kernel-kernel relations I can fix easily
in one place, but when I notice that the design of a system call is bad,
changing that is rather harder, and mostly involves adding a new system call
which has semantics that are the superset of the old and then leaving in a
compatibility-hack so that the old calls still work. Ugly, and I avoid it
unless it really has to be done.

Right now I'd actually prefer to change the semantics of the and write()
system calls subtly, but the gains aren't really worth the trouble.

Linux Journal: The most consistent compliment that Linux receives is its
stability on Intel PC computers. This is particularly true compared to
"real Unices" that have been ported to the Intel platform.

What do you see that was done right in Linux that is causing problems for
these other PC Unices?

Linus: There are probably a couple of reasons. One is simply the design,
which is rather simple, and naturally suits the PC architecture rather well.
That makes many things easier. I'd suspect that the other reason is due to
rather stable drivers: PC hardware is truly horrendous in that there are lots
of different manufacturers, and not all of them do things the same (or even
according to specs).

That results in major problems for anybody who needs to write a driver that
works on different systems, but in the case of linux this is at least
partially solved by reasonably direct access to a large number of different
machines. The development cycle of linux helps find these hardware problems:
with many small incremental releases, it's much easier to find out exactly
what piece of code breaks/fixes some hardware. Other distributions
(commercial or the BSD 386-project which uses a different release schedule)
have more problems in finding out why something doesn't work on a few
machines even though it seems to work on all the others.

Linux Journal: Have you heard of any problems running Linux on the Pentium
chip? Do you expect any?

Linus: I know from a number of reports that it works, and that the boot-up
detection routines even identify the chip as a Pentium ("uname -a"
will give "i586" with reasonably new kls, as I ignore Intel
guidelines about the name). The problems are not likely to occur due to the
actual processor itself, as much as with the surrounding hardware: with a
Pentium chip, manufacturers are much more likely to use more exotic hardware
controllers for better performance, and the drivers for them all won't
necessarily exist for linux yet. So I've had a few reports of a Pentium PCI
machine working fine, but that the kernel then doesn't recognize the SCSI
hard disk, for example.

From a performance viewpoint, the current gcc compiler isn't able to do
Pentium-specific optimizations, so sadly linux won't be able to take full
advantage of the processor right now. I don't know when gcc will have
Pentium-optimization support, but I expect it will come eventually (most of
the logic for it should already be there, as gcc can already handle similar
optimization problems for other complex processors).

One interesting thing is that the "bogo-mips" loop I use to calibrate
a kernel timing loop seems to actually be slower on a Pentium than on an i486
at the same clock frequency. The real-world performance is probably better
despite that (the timing loop is just a decrement operation followed by a
conditional jump: the Pentium won't be able to do any super scalar execution
optimizations).

Linux Journal: With the end of the road for Intel's 80XXX series chips in
sight (although at least a few years away), what chip or hardware platform
would you like to see Linux ported to?

Linus: The Amiga 680x0 (x>=3, MMU required) port is already underway and
reportedly mostly functional already. I haven't been in any close contact
with the developers, as they seem to know what they are doing, but I
understand they track the PC versions rather closely, and have most of the
features working. I'd expect something truly functional by the end of this
year, even though the installed machine base is much smaller.

As to other ports: I'd really enjoy some port to newer and more exotic
hardware like the DEC Alpha chips or the PowerPC, but as far as I know nobody
is really working on it. The main problem with non-i386 ports is simply lack
of momentum: in order to get this kind of port going, you'd need hacker-type
people with access to such hardware with "nothing better" to do on
it. DEC or IBM has yet to show enough interest that they'd donate hardware
and documentation to this worthwhile cause.

Linux Journal: What aspects of Linux are you taking responsibility for on an
on-going basis?

Linus: Everything that directly concerns the kernel: some of it I can't
actually fix myself (mostly drivers for hardware I don't own and have no idea
about), but in that case I still want to know about the problems and try to
act as a "router" to the person who actually handles that piece of
code. The areas I consider especially "mine" are memory management,
the VFS layer and the "kernel proper" (scheduling, interrupt handling
etc). Generally things that make up the very heart of the kernel, and on top
of which all the other stuff has to go.

Linux Journal: Do you see yourself earning a living from your work in Linux
in future?

Linus: Well, I do hope and expect to be able to find a job much more easily
due to linux, so yes, indirectly at least I hope to be able to make a living
off this, even though the work itself might be completely unrelated. As to
whether it would actually concern linux itself in some way, I don't know

Linux Journal: The use of Linux is growing exponentially around the world.
However, unlike commercial products, there is no central registry for Linux
users.

What is your "best guess" of the number of machines ruing Linux
worldwide today and what would you base an estimate on.

Linus: I actually have no good idea at all: I haven't really followed either
the CD-ROM sales or any ftp statistics, so it's rather hard to say. I
guesstimate a user base of about 50,000 active users: that may be way
off-base, but it doesn't sound too unlikely. The c.o.l. newsgroup had about
80,000 readers according to the network statistics back before the split (and
I haven't looked at the statistics since), and I saw a number like 10,000
CD-ROMs sold somewhere. Not all of those are active users, I'm sue, but that
would put some kind of lower limit on the number.

Linux Journal: Hindsight being 20/20, do you occasionally wish you had
patented, or otherwise retained rights to Linux?

Linus: Definitely not. Even with 20/20 hindsight, I consider the linux
copyright to be one of the very best design decisions I ever did, along with
accepting code that was copyrighted by other holders (under the same
copyright conditions, of course). I'm not fanatic about the GPL, but in the
case of linux it has certainly worked out well enough. As to patents, I
consider software patents a patently bad idea in the first place, and even if
I didn't, I would abhor the paperwork needed. Getting a trade-mark on the
name "linux" might be a good idea, and there was some talk about
that, but nobody really found the thing important enough to bother about
(especially as it does require both some funds and work).

Linux Journal: What is your field of study, and what do you plan to
specialize in upon graduation?

Linus: I'm studying mostly operating systems (surprise, surprise), and
compiler design: rather low-level stuff mostly. I expect I'll expand that to
communications and distributed systems for obvious reasons, but I haven't
really decided on anything yet. So far, my "field" has been any
courses that I find interesting, and I hope I won't have to specialize any
more than that in the future either.

Linux Journal: Linux is benefiting from a worldwide development effort. The
number and frequency of new releases of Linux, and drivers and utilities are
amazing to anyone familiar with traditional UNIX development cycles. This
seems to be giving Linux a huge "competitive advantage" over
alternate UNIX-on-the-pc products.

What do you see as the future of Linux?

Linus: I rather expect it to remain reasonably close to what it looks like
now: the releases may become a bit less frequent as it all stabilizes, but
that might just mean that I'll make my snapshots weekly instead of daily as I
do now during intense development, and that the "real" releases will
happen a couple of times a year instead of monthly or bi-monthly as now.

Similarly, there will probably remain several different "package
releases": some of them will be more or less commercial (currently the
Yggdrasil CD-ROM, for example, or the various disk copying services), while
others will continue to be mostly electronically distributed by ftp.

Linux Journal: What would you LIKE to see for the future of Linux?

Linus: Related to the question above, I do hope to see one change: support
and documentation. Some of this has actually already happened or is happening
now, but there is still room for growth. I know of a few book projects (one
of which went into print a couple of days ago), and a few support companies,
and I hope that will still grow.

Then there are various interesting projects going on that I'd be very
interested to see:

Windows emulation (being worked on, and the kernel support is already
there); i386 SysV binary compatibility (already in early stages of testing)
etc.; As well as the porting projects to various different hardware platforms,
of course.

I also have various general (and vague) plans about actual kernel
development, and some specifics I want to have implemented in the reasonably
near future (I think I'll work mostly on memory management and related areas
this spring, for example). Mostly, I just hope to have a stable and enjoyable
platform.

Linux Journal: Also, would you have a photo of yourself we could use to
accompany the article? This is by no means required, but a huge number of
Linux users are very curious about who you are, why you did Linux, etc... you
know, all the human interest side to the Linux story.

Linus: I'm "camera-shy", so I have no good photos for this purpose,
which has resulted in some rather weird photos being used in some places. A
magazine in Holland used one of the gifs that were put out long ago (bad
quality, and very much done in jest: I drink beer in most of them, including
the one they used), and one Finnish magazine used a photo from a party I was
at which also had lots of beer-cans in it.. I guess I should find some rather
more presentable photos somewhere. I'll see.

Linux Journal: We saw a photo that was distributed over the net. One that has
you smiling, with a beer bottle in front subtitled `Linus Torvalds - creator
of Linux'—In fact, for all the `official' format for photos requires a
tie and at least a semi-serious pose, I think that this was a VERY good
photo, as it showed you as a happy, friendly human being.

Linus: It's another of the `party photos', although the party was a much
smaller and more informal one. I don't know who has the originals anymore, so
I'm unlikely to find it in time with most of the concerned people still being
somewhere else as teaching at the university hasn't started yet. What the
magazine from Holland did was actually to have a screen-shot of linux running
X, and have the gif-picture in an xv window (with a few other windows like
xload to give it some more lf); that way the quality of the picture didn't
matter much, and it also looked like a clever idea. You could use some
similar trick. I don't mind looking like a human being instead of a tie+shirt
robot, so I don't mind the picture even though it was all done mostly in
jest.

Linux Journal: We'd like to send you a
complimentary subscription(s) to Linux
Journal.

Linus: I'd like a copy, please.

Linux Journal: Also, re your response on the `other platforms' question, if
you can find someone willing to do the work, we should be able to help find
someone at IBM or HP (maybe even DEC, but I doubt SUN) who would be able to
donate/loan some hardware.

Linus: It would be fun, but as I can't make any promises and would need lots
of technical documentation as well (and not under any non-disclosure), this
is probably not really something companies like to do.

Linux Journal: Where did you learn to write English this well?

Linus: I read more English than either Swedish (my mother tongue) or Finnish
(which is the majority language in Finland, of course), so I while I'm not
completely comfortable actually speaking the language (partly due to
pronunciation), I don't have any problems reading, writing or indeed thinking
in English.

The reason for reading English is simply that there are more interesting
books available in English, and that they are usually cheaper even over here
(larger printings, no translation costs, etc.). Besides, it's often the
original language, so even when the book is available as a translation, I
usually prefer to read it in English.

This interview was conducted by Robert Young, Publisher of the Linux
Journal,
NY Unix.

Letters

Commenting on Linux Journal Articles

One does not appear to be able to comment without "logging in". Here is
what I had intended to say as a comment about Doc's post titled "A Line in
the Sand". I do not use "social media". One consequence is that I cannot
login with any of the pretty icons (below "LOG IN WITH"). I also do not
want sites like DISQUS monitoring what I do or wanting to take away my
ownership of my comments. I run my computer using the Qubes OS ("OS"
for want of better terminology). So it should be fairly obvious which
side of the line I stand on.

—John

Doc Searls replies: Hi John, and thanks for writing. I appreciate your
comment. Glad to know what side of the line you stand on.

The reason we require a login for comments is that without one, we attract a
torrent of spam. It's like opening a door into hell, and I'm not
exaggerating.

The commenting system we use, Disqus, is the only choice on the publishing
market that is both widely used and makes commenting easy. By default, it
comes with exactly the kind of tracking we're fighting against, but it does
have options that allow us not to participate in the tracking. Of course,
you're still exposed through Disqus itself, although Disqus gives you the
option of posting using another identity, such as your Twitter handle.

We've looked long and hard at alternatives. The best of those we've seen is
Coral, an open-source commenting system developed originally by Mozilla.
Unfortunately, Coral requires an administrator on the case, and we're too
small to afford that.

The remaining choice is not to have comments at all. It's a possibility.
Meanwhile, we're holding our nose and using Disqus, adjusted to minimize
tracking. Disqus is widely used and easy, and also the only thing that has
worked for us for managing spam.

Hope that helps.

Security Podcast

I read the security-related articles in the February 2019 issue with great
interest. I found the various articles interesting. I would like to let
other readers of Linux Journal, who may not be as technically
advanced,
know that there is a podcast that I found extremely useful while learning
the more technical aspects of security. The podcast I am referring to is
"Security Now" with Steve Gibson and Leo Laporte on the TWIT network. All of
the podcasts can be accessed at https://twit.tv/sn, and full text
transcripts are available on Steve's site.

Thanks for the great magazine.

—William Main

Password Manager Roundup

I love your magazine, and although I have to admit I don't read it as
much as I would like, I always think about a good go when I have the
time.

I just stumbled upon Shawn Powers' article about password managers from the
the February 2019 issue, and I need to add a little bit of information that is
really important and might switch some users.

I did similar research a couple months ago (it would have been
great if this article was out before that!), and I arrived at similar
results.

The one little piece of information is that Bitwarden was my choice,
because it's a complete open-source project.
Being open-source, you get the code, and it's not only the code from
the clients, but also from the server.
So, you can host your own Bitwarden server, and use ALL clients and
browser plugins to connect to your own Bitwarden server.

That is a complete change for all "paranoid" users out there who don't
want to have their data out of their control.

The "licensed" features function on both the cloud and hosted version. If
you buy a license (that I did!), you can use it on their own cloud
servers and at the same time your own server.

That also will give you all the storage you have free on the server for
your vault, so you don't need to get extra storage on the license,
because it's only for the cloud version.

The installation on your own server can be very awkward, because you
have to get the source code and fiddle around with a lot of crap.
There is a quick option to use Docker and use their script to deploy
the solution on your Docker server without almost any issues.

Hope this helps some people out there.

—JB

Queen Bee with a Shell One-Liner

I enjoyed Reuven M. Lerner's article on cheating with Python ("Become
Queen Bee for a Day Using Python's Built-in Data Types"), but you can
solve the NY Times' Spelling Bee puzzle with one line in the shell:

egrep '^[eoncylt]{4,}$' /usr/share/dict/american-english
 ↪| grep y

Here "eoncylt" are the possible letters, and the final grep command makes
sure the words use the center letter "y".

Replace the {4,} to {7,} to see only words that are
at least seven letters
long—this finds the "pangrams" that use all the letters, but might also
find a few words that don't. No pangrams show up for Reuven's example, so
I'm guessing he didn't take it from an actual NY Times puzzle.

Reuven M. Lerner replies:
It's true—grep would be a fine solution to this puzzle. My point was
to show a few different ways to play with Python data structures, rather
than to give the most efficient solution, which might indeed be yours! As for
whether I used an actual puzzle for my examples, I promise you that I
did; I wish I were talented enough to come up with one on my own.

Send LJ a Letter

We'd love to hear your feedback on the magazine and specific articles.
Please write us here or
send email to ljeditor@linuxjournal.com.

Photos

Send your Linux-related photos to ljeditor@linuxjournal.com, and we'll
publish the best ones here.

A Big Thanks to Our Subscribers

We asked LJ subscribers to write in and tell us about
themselves, so we could feature them in this 25th Anniversary Issue as a
way to thank them for their loyalty through the years.
The response was so
overwhelming, we are able to include only a few of them here, but please
visit our website later this week to learn more about
your fellow readers. We truly enjoyed "meeting" all of you who
participated and are humbled by your words of support.

We asked readers to give their name, how long they've been subscribers
and why,
their favorite LJ memory and their first
distro. Note that submissions have been edited for length and clarity.

Guillermo Giménez de Castro (a.k.a. Guigue)

I've been a subscriber since February 1996,
regularly. I've never missed a renewal.
I subscribe because I don't find anywhere
else a place where Open Source, the Bazaar Philosophy, and Linux itself
are better advocated.
I have to say that every month I
receive the new issue is a joy, with the first quick read to see what is
new.
But probably my best memory is the picture included here. It was
taken during a session for the "Picture of the Month" LJ contest
in 2004.
My wife shot a few dozens of photos and I sent a different one (and
won!!). In one picture, my son Manuel appears with me on top of my printed
collection. Now he is in his 20s and is a Linux hacker.
My first distro was SLS with kernel version 0.99 patch level 12.
I hope to send a similar email 25 years from now. Happy Anniversary!

[image: Alt Tag Name]

David Barton

My first LJ was the last print issue published.
I subscribe because we all need a way to come up with new ideas.
Professionally written
articles are an excellent source of both ideas and well described ways to
implement them. A single good idea is worth far more than a year's
subscription. Also, I like to keep up with my favourite OS!
My favourite memory is when you came back, and also when my first article
came
out.
My first distribution was probably Slackware around 1997.

I manage hosting for 100s of custom software databases, and
Linux is secure, fast, robust and easy to administer. I also use Linux
because it gives me the same power I have on the server on my desktop.

Michelle Suddreth

I've been a subscriber for 25 years.
Reason for subscribing is to find out about open source software that I can
use and learn more about UNIX/Linux itself. At the time, I was setting up
the network and internet for a community college.
Favorite memory is the multi-part bash article.
First distribution used was Yggdrasil. I did experiment earlier with a
floppy-based system (maybe a precursor to slack), but it did not have an
English keyboard map.

[image: Alt Tag Name]

Greg Mader

I've been a subscriber since the mid-1990s.
I love the point of view of the
writers and the staff—there is a clear commitment to the open-source
approach. What Linux Journal really is about is connecting people
with
each other and allowing them to learn technology, but it's also to create
community and friendship.
My favorite thing about LJ is being asked by others about the
Linux
Journal magazines sitting around the house. If I leave LJ out
for others,
they will pick it up intuitively, and become engaged.
My first distro: SLACKWARE!

[image: Alt Tag Name]

Surya Saha

Thank you for all the wonderful content and for keeping LJ going!
I was
genuinely geek sad when you announced that LJ was going away. I'm
elated to
see that it's back and looking strong.
I've been a subscriber for 12 years.
It's the only tech journal I
subscribe to because of its long association with the Open Source and Linux
community.
I love reading the Letters and "diff -u"
sections. It's amazing to see the diverse community of Linux users and
LJ
readers out there.
My first distro was Red Hat 4 (before it was
commercial).

[image: Alt Tag Name]

Federico Kereki

Over the years (starting in 2007), Linux Journal helped me learn
more about
Linux, and gave me the possibility of sharing my knowledge and experience
through more than a dozen articles that I wrote and were published. I feel
most proud of these works I did, and I deeply thank the magazine for having
provided me this opportunity. I missed the first years of publication, but
I hope never to miss future issues!

[image: Alt Tag Name]

Johan Nyberg

I've subscribed since issue #1
to keep me updated with the progress of all aspects of Linux.
I think my nicest memory is from when I got the very first few issues of
LJ, with interviews of Linus and lots of useful information to get
the
most out of my new computer running Linux.
I did my first Linux installation in Jan-Feb 1994. It was a Slackware-based
distribution with kernel 0.99. I had to use diskettes and a very slow
Internet connection for the installation—very time consuming but fun.

I am an experimental nuclear physicist and professor in physics at Uppsala
University in Uppsala, Sweden. My research field is the structure of exotic
nuclei. Together with my research collaborators, we perform experiments at
different international accelerator laboratories. Our main instruments are
the gamma-ray spectrometer AGATA and the
neutron detector
array NEDA.

It has been very nice to see how Linux, during the last ~20 years, has
taken over all (or at least most) of the computer-related issues of my
research. We use Linux for example in the FPGAs of our electronics, in the
data acquistion and storage systems, for data analysis and simulations in
computer clusters and for writing and producing our research results.

I am also using Linux privately. I never had a computer with another OS.
Linux rocks!

[image: Alt Tag Name]

Neal W.

I've subscribed for a few months.
"Linux" encompasses a myriad of distributions and approaches to making
life better through open source software—so many in fact that it seems
impossible to follow completely unless it's your full time job. Having a
neatly wrapped, monthly curated journal of stories and explainers arrive at
your inbox is both a gift and the kick in the pants many of us
non-developers need to keep learning more about something that otherwise
can seem quite overwhelming.

Favorite memory: this is pure ego, but I once got my photo published in an issue! I won't tell anyone which one it was though.

My first distro:
I called in to Kim Commando as a teenager to ask about her thoughts on
open source, and she sent me a copy of Red Hat. Since then I'm using Tails
OS and Qubes OS primarily and am a fan of the Debian philosophy.

[image: Alt Tag Name]

Aleksandar MIlovac

I've subscribed for 15 years, becuase
it was fun to read. I love Linux.
My favorite LJL memory is reading LJ (printed issues) in WC 10+
years
ago.
My first distro was Red Hat 5.2 in April 1999.
My first installation "failed" because I had no idea who is "root".

[image: Alt Tag Name]

Georg Thoma

I've been a subscriber since May 2014.
I want to support the publication as I am convinced of the positive
effect the journal has on the Linux community.
My first distribution was Slackware around 1998. I bought a bunch of CDs in
a bookstore at the university.

[image: Alt Tag Name]

Jayson Helseth

I have been a subscriber for about 6 years,
and a developer for over 10 years. I subscribed to Linux Journal
because it
was my favorite of the Linux publications that existed. Even though they
say you should never judge a book by its cover, I was drawn to the covers
of the Linux Journal publications. My favorite article so far is
when Kyle
Rankin talked about using the Odroid for a home NAS solution. The first
distribution that I used was Mandrake 9.x. I received a copy from a friend,
and later decided to buy it with the Mandrake book as a guide.

Tom McNeely

I've been a subscriber since approximately 2006, because
I enjoy reading it, I learn useful things, and
to support Linux journalism.
In 1993, I wanted to go to a Grateful Dead concert
in Oregon. I lived a little north of Seattle at the time, and I saw on a
Usenet newsgroup that someone by the name of Phil Hughes in Seattle had
tickets for sale. Phil told me where his truck was parked and left the
tickets in the truck bed; on my way to Oregon, I picked them up and left
payment in their place. I'm pretty sure this was the Phil Hughes who a
short while later co-founded Linux Journal! Too bad I didn't meet him in
person. My first distro was Slackware, from late 1993 until 2010.
Thanks, and I'm so glad Linux Journal lives!

[image: Alt Tag Name]

Chester A. Wright, Jr.

I've subscribed since 1995 (that the earliest paper copy I can find at the
moment)
to support the community and to learn what things others are using. You
never know when the next inspiration will hit you!
My first distro was SLS, 1993 (not Slackware). I had to download and
convert
20 3.5" disk
images using an internet-connected MAC because I didn't have internet at
home.

These days, I teach a lab at a local university where freshman engineering
students learn to build and administer Linux virtual machines. This
exposure is a must-have for their career.

[image: Alt Tag Name]

Jim Peterson

I've subscribed 11-ish years,
because knowledge is power!
Favorite LJ memory is meeting Shawn Powers at LinuxCon 2009 in
Portland, Oregon.
My first distro was some weird Chinese-produced
version that came with the off-brand laptop I'd bought with no OS
installed. It didn't really work as there was no driver support, but it was
my first foray. I picked up Suse at Best Buy soon after that, with much
better results.

David A. Lane

I've subscribed for more than a decade to keep abreast of the comings and goings in Linux and FOSS software.
My favorite LJ memory is the January 2010 issue, which I got to guest
edit.
First distro was Slackware back in 1995.

[image: Alt Tag Name]

Pedro Fernandes

I've subscribed since 2002 (I have the CD-Rom archive all the way to 1994)
and have memories of magazines from 1998.
I subscribe because it is part of a
community that helps drive Linux adoption and improvements. Linux has been
key for my company operation and development.
My favorite LJ memory is an article that taught me how
to set up a Linux server with Samba so that my whole company could generate
PDFs by printing to a shared virtual post script printer. Saved us tons of
money in Acrobat licenses many years ago. Thank you!
First distro was Red Hat 5.2.

In the photo I'm wearing what is honestly one of my favorite t-shirts—a
Linux Journal t-shirt—"Geek by nature. Linux by choice."
I got it many years ago but still wear it regularly.

[image: Alt Tag Name]

The Asian Penguins

When I was young, Apple computers dominated the schools I attended. The
Apple II and, later, the Macintosh Plus were kings of the classroom in the
late 1980s.

This was a brilliant move by Apple Computer (this was back before Apple
dropped the word "Computer" from its company name). Get the kids used to
using Apple hardware and software, and then those kids will be more likely to use
it when they grow up. Plus, the parents of the kids will become at least a
little more likely to pick up Apple gear, so that any computer schoolwork
can also be done at home. And, the same goes for the teachers. It's just a fantastic
strategy to encourage adoption of a computer platform.

When it comes to Linux and, more generally, open-source software, there's
no singular company responsible for promoting the platform. Luckily, many
individuals and small organizations have taken up the charge of teaching
free and open-source software (like Linux) to the next generation of
computer users.

One such group is a computer club at a Hmong charter school in
Minnesota known as the Asian Penguins.

[image: Group photo]

Figure 1. The Penguins Posing for a Group Shot

Started by Stuart Keroff in 2012, the Asian Penguins is a club made up of
sixth, seventh and eighth graders—both boys and girls—all focused on
using Linux, as they put it, "for school, for fun, for communication, and
to help others".

Their Mission: "Changing the world, one computer at a time."

Their vision: "The Asian Penguins exist to have fun and experience freedom
through Linux and open source software, to share that fun and freedom with
others, and to use open source software to help as many people as
possible."

I love it.

In the seven years since they started, more than 200 kids have gone
through the program—200 young minds working with Linux and open source.
It warms my heart.

Even better? They take recycled and donated computers, load them up with
Linux and other free software, and donate them to the community (including
family members of students, an anti-poverty non-profit in Minneapolis, and to a St.
Paul recreation center).
To date, they've given away 241 computers loaded with Linux. On average,
that means nearly one computer every week!

[image: Linux Machine]

Figure 2. Hard at Work Building Computers for Those in Need

[image: Linux-Powered Computer]

Figure 3. Students Ready to Deliver a Newly Setup Linux-Powered Computer

I reached out to Stuart Keroff to ask him two questions: where does the
Asian Penguins go from here, and what advice does he have to others looking
to start similar clubs in their own communities.
Here's Stuart's response:

Hmm. "Where to from here?" I'm tempted to fall back on, "We'll just keep
making it up as we go along."

Well, our goal for the last few years is to convince other schools to do
what we're doing. We have had information tables at couple educational
conferences this year, giving out brochures and answering questions for
people. I will also be leading a team of students to speak at a workshop at
the Hmong National Development Conference 2019 in San Jose, California.
That is in April.

To further the idea of Linux clubs in schools, I wrote a website titled
(rather obviously) "The Linux Club
Guide". We will
probably be helping a couple other Hmong charter schools here in the
Twin Cities get their clubs started next year.

We will continue giving away computers to kids who need them, as they are
referred to us. It's just that going forward, we're not playing catch up
anymore. A kid might wait a few days or weeks to get a computer, rather
than months, because we've been able to successfully take care of our
referral list.

Our biggest focus is still going to be kids learning about what open-source
software is and how to install, configure, and use it.

One piece of advice for someone wanting to start such a program? Start small,
grow big. We do a lot of different things now, but we picked those up one
at a time. You don't have to do every activity all at once. From there,
experiment, use your imagination, try new things, and have fun."

[image: Asian Penguins Presenting]

Figure 4. Students from the Asian Penguins presenting
at the TIES 2018 Education Technology Conference

Truly spectacular. Well done to Stuart, the rest of the faculty, and all
of the kids involved with the Asian Penguins. Not only are you advancing
Linux and free software, but you're making the world a better place.

Keep on rockin' in the Free world, my penguin-y friends!

—Bryan Lunduke

Patreon and Linux Journal

 [image: Patreon Logo]

Together with the help of Linux Journal supporters and subscribers,
we can offer trusted reporting for
the world of open-source today, tomorrow and in the future. To our
subscribers, old and new,
we sincerely thank you for your continued support. In addition to magazine
subscriptions, we are now receiving
support from readers via Patreon on our website.
LJ community members
who pledge $20 per month or more will be featured each month in the
magazine. A
very special thank you this month goes to:

	
Appahost.com

	Chris Short

	Christel Dahlskjaer

	
David Breakey

	
Dr. Stuart Makowski

	Fred

	Henrik Halbritter (Albritter)

	James Mayes

	
Josh Simmons

	
Taz Brown

 [image: Linux Journal Logo]

FOSS Means Kids Can Have a Big Impact

An eight-year-old can contribute, and you can too.

Working at a company that creates free and open-source software (FOSS) and
hosts all of our code on GitHub, my team and I at UserLAnd Technologies are
used to seeing and reviewing contributions, which are called pull requests,
from users. Recently, however, we received a pull request that is very special
to me. It was from an eight-year-old, and not just any eight-year-old, but my
daughter.

[image: Hard at Work]

Figure 1. Addison Hard at Work

Now, I had many reasons for wanting my daughter to get involved with our
project, but before I pollute this story with what I think, let's hear
from her—this is the Kids + Linux issue after all.

[image: Pull Request]

Figure 2. My Daughter's First Pull Request

The following is a brief interview I conducted with her after she provided the
shown pull request.

Corbin: To start with, please tell us who you are and provide your
age?

Addison: I am Addison Champion, and I am eight years old.

Corbin: Now Addison, you have a skill that I don't have.
You may be eight,
and I am (gulp) 38, but you have a skill that neither I nor any of the
members of my team have. Can you share with us what that skill is and how
you posses it?

Addison: I am bilingual, as I speak both Spanish and English. I am
enrolled in a bilingual school, and in my class, we mostly speak and read
in Spanish.

[Note: She has been in a two-way immersion program at our local, public
school since kindergarten where some of the kids are native Spanish
speakers and some are native English speakers.]

Corbin: Can you describe the work you did for UserLAnd that used this
skill?

Addison: I provided a Spanish translation for UserLAnd's Android app,
because there wasn't one already.

Corbin: Can you describe what you had to do to make a Spanish translation?

Addison: There were a lot of phrases in English, and I had to provide the
phrase in Spanish that matched each one in English. I also had to make
sure the translation would sound right to a Spanish speaker.

Corbin: Was the task difficult?

Addison: Some of the phrases were hard, but some were pretty easy. There
were some technical words that we had to look up. We found a cool website,
like Google translate, but where you could type in a word or a sentence and
it would show you a real example of a translation that used something
similar.

[Note: We had to look up words like filesystem, client, server, user name and
password. The website she liked was https://context.reverso.net.]

Corbin: When I asked you about helping with this, you seemed really
excited. What was it about providing a Spanish translation for UserLAnd
that was so interesting?

Addison: I know a few kids in my class who speak only
Spanish, and they
would not be able to use the app unless it was translated. This is true
for many other people I don't know.

[Note: When I first asked her to help us, she scolded me and told me
Spanish had the second-highest number of native speakers, and that we should
already have a Spanish translation. Sorry Addison! Sorry world!]

Corbin: Now that your work is complete, and people are seeing the app in
Spanish, how does that make you feel?

Addison: It makes me feel proud to know that my work is published, that
people are seeing it and finding it useful.

Corbin: When working with me on this, I explained to you
what free and open-source software is, and that the UserLAnd app is free
and open-source
software. Why do you think it is valuable that someone make their work free
and open source?

Addison: Even though I have been learning Spanish since kindergarten, I
still don't know all the words that a completely fluent Spanish speaker
would know. There are people who have grown up only speaking Spanish, and
they might think that a phrase should sound different from how I translated
it. So, just like I contributed to UserLAnd, they could contribute an
improvement too.

[Note: I love how she was able to describe this benefit of a program being
FOSS and how it relates to the work she did. And,
this is in fact what actually happened. After Addison contributed to
UserLAnd, a native Spanish speaker suggested some changes, and I had Addison
be the one to review and approve those changes.]

Corbin: What did you learn by doing this work?

Addison: I learned some new English and Spanish words, like the technical
words. I also learned what you do at UserLAnd and what the app does.

Corbin: Great! Thank you very much for your contribution to UserLAnd!

Conclusion

What she did is so great! Now my goals for getting her involved with this
project were 1) demonstrate a real, practical example of where she could
use her Spanish language skills, 2) to have her learn what Daddy does at
work, 3) to have her learn what our product is and 4) to have her learn
what FOSS is. I think we succeed in all those goals, but she helped us
even beyond that. Her input ranged from critiquing our overly complex use
of English that might be hard for young users to understand (yep) to even
critiquing my use of pronouns (eek!). Now, we could end this story here and
congratulate her on getting involved and doing a good job, which she
deserves, but I want to use her work as an example and as a call to action.

Each one of us—kids, or people of any age—has certain skills
and gifts,
and I encourage you to share them through your efforts. Also, if you
don't know where to contribute, look around for any FOSS projects that
could use your talents. You don't have to be a programmer to
contribute. You can be talented in communication, art or,
as in Addison's case, linguistically. There is probably a place in FOSS
for everyone, and for you specifically, and I hope that you take it.

Resources

	
UserLAnd
App for Android

	
Linux
Journal's Early Review of the UserLAnd App

	
UserLAnd Github
Page

	
Addison's Pull
Request

—Corbin Champion, General Manager at UserLAnd Technologies, LLC

Reality 2.0: a Linux Journal Podcast

Join us each week as Doc Searls and Katherine Druckman navigate the realities
of the new digital world: https://www.linuxjournal.com/podcast.

[image: Alt Tag Name]

FOSS Project Spotlight: Drupal

[image: Framework Example]

Drupal is a content management framework, and
it's used to make many of the websites and applications you use every day.
Drupal has great standard features, easy content authoring, reliable
performance and excellent security. What sets Drupal apart is its flexibility;
modularity is one of its core principles. Its tools help you build the
versatile, structured content that ambitious web experiences need. With
Drupal, you can build almost any integrated experience you can imagine.

Drupal Is for Ambitious Digital Experiences

Dries Buytaert, founder of the project, provides
the vision for Drupal.
Managing content for ambitious projects that aim to transform digital
experiences for their organizations is what Drupal does best. Drupal goes
beyond browser-based websites and reaches all digital platforms to
provide a flexible, robust and innovative experience.

How to Get Started

	
Get started by downloading the
official Drupal core files and reading
the quick-start
installation guide.

	
Or you can try Drupal with
hosted solutions.

	
Or spin up the Umami
demonstration profile in Drupal core with a
service such as simplytest.me.

	
You can download many additional modules and themes from the
Drupal.org website.

[image: Umami Demo]

Figure 1. Umami Magazine Demo in Drupal Core

What's in Drupal Core

The base Drupal download, known as Drupal Core, contains the PHP scripts
needed to run the basic content management functionality, several optional
modules and themes, and many JavaScript, CSS and image assets.

Drupal 8's core platform has more than 200 features built in. For an
up-to-date list of features, see Drupal.com.

Drupal 8.6.0 was the
most significant update to Drupal 8. Expect Drupal 9
to release in June 2020, and if you're already using Drupal, it is expected
to be the easiest major version upgrade yet. For the most current
information on Drupal's latest version, visit Drupal.org.

Why Use Drupal?

Developers can build complex digital experiences with Drupal thanks to the
updates in version 8. You can integrate with other systems, bring your
content anywhere and display it as you wish, because Drupal is API-first.
Translate and localize any component of the software to any of more than 100
languages. Drupal has a robust migration system and deployment
configuration between environments for ease across all instances of your
complex project.

Marketing teams can publish complex content with ease using new content
editor features:

	
Improved video embed support.

	
A new media library.

	
A workspaces feature for enhanced workflow moderation.

	
In-place editing.

[image: Drupal Library]

Figure 2. The Media Library in Drupal 8.6

[image: Workspaces module]

Figure 3. The Workspaces Module in Drupal 8.6

How to Get Involved

Visit the Community Portal to find your place and meet people who share
your interests. We're working hard on media
management, layout
building,
content
workflows and a new
administration and authoring UI.

[image: Community Portal]

Figure 4. The Community Portal on Drupal.org

Anyone can get involved in Drupal. We're seeking marketing expertise for
the Promote Drupal
Initiative, where we're collaborating across the globe
to make materials that the community can use to show the power of Drupal to
evaluators.

There's always a place to grow your mentorship skills, to contribute to
documentation and to get involved in community governance, growing local
communities and event organizing. All are welcome—explore more at
Drupal.org.

—Lizz Troudeau

Plotting on Linux with KmPlot

This issue of Linux Journal marks the magazine's 25th anniversary.
So, I thought I'd look back to see when I wrote my first article,
and I was horrified to see that it was in 2000. I'm too young to have
been writing articles for more than 18 years! Here's to another 25 years for
Linux Journal and all of the authors who have made it what it is.

For this article, let's take a look at the KmPlot plotting program.
KmPlot is part of the EDU suite of programs from the KDE project, and it was
designed to plot functions and interact with them to learn
about their behavior. Since it is a part of the KDE project, it should
exist in most package management systems. For example, in Debian-based
systems, you can install it with the command:

sudo apt-get install kmplot

When you first start KmPlot, you'll see a blank workspace where you
can start to play with mathematical functions. On the
right-hand side, there's a main plot window where all of the graphical
display will happen. On the left-hand side, there's a function list
window where you can find all of the functions you've defined
and are planning on working with.

[image: Start up Screen]

Figure 1. Upon start up, you can begin entering functions and learning about their behavior.

The first thing to do is create some functions to use from
within KmPlot. Click the Create button at the bottom of the
function window to bring up a drop-down menu. Here you can select from
a number of plot types, such as Cartesian, polar or differential. As
an example, clicking the Cartesian option opens a new window
where you can create your function.

[image: Built-in palettes]

Figure 2. You can use the built-in palettes to select functions and constants to build up the functions that you are interested in.

You can use pre-defined
constants and simpler functions to build up the specific function
you want to study. Once you're finished, KmPlot will update
the main window, and you'll see your plot generated.

Several
defaults exist that you can assign in terms of its appearance. Click the
Advanced button at the bottom of the left-hand pane to open a new
dialog window where you can change some of the defaults.

[image: Advanced Button]

Figure 3. Click the Advanced button to set several options in the plot window.

Here, you can set the labels for the function name, as well as labels for
the maxima and minima. The same lower left-hand pane also has tabs
where you can get KmPlot to show the derivatives and integrals of the
selected function. For example, you could plot the first derivative of a
function.

[image: Plot Screen]

Figure 4. You can select to plot either the first or second derivatives of a
given function.

To highlight the new plot better, click
the color button and select a new color for the derivative curve. You also
can plot the integral of a given function.

[image: Alt Tag Name]

Figure 5. You can set several options for the integral, including the precision
that the numerical method must reach when calculating and plotting the
result.

You can create more complicated plots with combinations of functions. For
example, you could plot both a regular Cartesian plot alongside a
parametric plot.

[image: Multiple plots]

Figure 6. It sometimes helps to see multiple plots together to get
better insight into the underlying mathematics.

This can be really useful when you
want to gain a deeper understanding of a given function's underlying behavior.
Looking at it from another angle, literally
and figuratively, can be invaluable.

Several other
tools also are available for working with these plots. Click
Tools→Plot Area to open a new window where you can select one
of the Cartesian plots and calculate the area between said curve and the
x-axis. This is useful in physics and engineering contexts,
where the area below a curve can have a physical analogue.

[image: Calculate the area]

Figure 7. Sometimes you need to calculate the area below a curve,
especially to get physical insights in a scientific context.

You also can click
Tools→Calculator to open a new window where you can do quick
calculations.

[image: Quick Calculations]

Figure 8. Sometimes you may need to make quick calculations while you are
working on plots.

The last two items in the Tools menu are
Find Maximum and Find Minimum. With these two options, you can
ask KmPlot to find local maxima or minima. You just need to give it a range
to search over, so that it can constrain the search.

[image: Maxima and minima]

Figure 9. You can find the value of both maxima and minima for the functions that you
are plotting.

You could have functions, such as the tangent function, which have a
global maximum at plus infinity and a global minimum at negative infinity.

One of the most important parts of plotting a function is the coordinate
system being used. In KmPlot, you can tailor the coordinate system by
clicking View→Coordinate System.
Here,
you can change the x and y limits of the axes. As well, you can set the
axis grid spacing. You can even define custom grid spacing functions.

[image: Defined for the plots]

Figure 10. You can change several of the options of how the coordinate system is
defined for the plots.

Because KmPlot is a part of the KDE project, it inherits several of
that project's capabilities. One interesting ability is
being able to script KmPlot's behavior. This is done through D-Bus
commands. For example, you could tell KmPlot to plot a function with
the following command:

qdbus org.kde.kmplot-PID /parser
 ↪org.kde.kmplot.Parser.addFunction "f(x)=2sin x+3cos x" ""

You even can activate menu items and dialogs. You can use this
functionality in order to include KmPlot as a component in a larger
workbench or platform idea.

Once you have put some work into your analysis, you'll likely want
to be able to save it. Click File→Save or
File→Save As to save the work you have done in a proprietary
file format.
Another option for saving your work for other uses is to grab images of the
plots themselves. Click File→Export to save
the plot window in one of the usual image file formats. This way you
can import them into documents or presentations.

—Joey Bernard

News Briefs

	
Google rethinks its planned changes to Chrome's extension API that would
have broken many ad-blocking extensions. Ars
Technica reports that Google has made this revision to "ensure
that the current variety of content-blocking extensions is preserved". In
addition, "Google maintains that 'It is not, nor has it ever
been, our goal
to prevent or break content blocking' [emphasis Google's] and says that it
will work to update its proposal to address the capability gaps and pain
points."

	
Kali Linux
2019.1 was released recently. This is the first release of 2019,
bringing the kernel to version 4.19.13. This release fixes many bugs and
includes several
updated packages. The release announcement notes that "the big marquee
update of this release is the update of Metasploit to version 5.0, which is
their first major release since version 4.0 came out in 2011." You can
download Kali Linux from here.

	
digiKam
6.0.0 also was released recently. This major release follows two years of
intensive development and lots of work from students during the Summer of
Code. New features include full support of video file management, raw file
decoding engine supporting new cameras, simplified web service
authentication using OAuth, new export tools and much more. Go here to
download.

	
Redis Labs has changed its licensing for Redis Modules again. According to
TechCrunch,
the new license is called the Redis Source Available license, and as with
the previous Commons Clause license, applies only to certain Redis Modules
created by Redis Labs. With this license, "Users can still get the code,
modify it and integrate it into their applications—but that
application can't be a database product, caching engine, stream
processing engine, search engine, indexing engine or ML/DL/AI serving
engine." The TechCrunch post notes that by definition, an open-source
license can't enforce limitations, so this new license technically isn't
open source. It is, however, similar to other "permissive open-source
licenses", which "shouldn't really affect most developers who use the
company's modules".

	
The Windows 10 April Update will let you access Linux files from Windows.
ZDNet
quotes Craig Loewen, a Microsoft programming manager on the updates to
Windows Subsystem for Linux (WSL): "The next Windows update is coming
soon and we're bringing exciting new updates to WSL with it! These include
accessing the Linux file system from Windows, and improvements to how you
manage and configure your distros in the command line."

	
1-terabyte microSD cards are now available. The
Verge reports that Micron
and Western
Digital's SandDisk both
announced UHS-I microSDXC products at Mobile World Congress. The SanDisk
card will be available in April for $449.00. No information yet on the
pricing or availability of the Micron card.

	
Mozilla
has
released Common Voices, the "largest to-date public domain
transcribed voice
dataset". The dataset includes 18 languages and almost 1,400 hours of
recorded voice from more than 42,000 people. From the Mozilla blog: "With
this release, the continuously growing Common Voice dataset is now the
largest ever of its kind, with tens of thousands of people contributing
their voices and original written sentences to the public domain (CC0).
Moving forward, the full dataset will be available for download on the
Common Voice site."

	KStars
v3.1.0 was released, marking the first release of 2019.
This release focuses on stability and performance improvements—for
example, some bugs
in the Ekos Scheduler, Ring-Field Focusing was added to the Focus module,
and the LiveView window now enables zooming and panning for supported DSLR
cameras. See the Jasem's
Ekosphere blog for all the details, and go here for download links and other
resources.

	
Purism
announces that PureOS is now convergent, which means "being able to make
the same application code execute, and operate, both on mobile phones and
laptops—adapting the applications to screen size and input devices".
With
PureOS, Purism "has laid the foundation for all future applications to run on
both
the Librem 5 phone and Librem laptops, from the same PureOS release".

	
man-pages-5.00
was released recently.
Michael
Kerrisk, the man page maintainer, writes: "This release resulted from
patches, bug reports, reviews, and comments from around 130 contributors.
The release is rather larger than average, since it has been nearly a year
since the last release. The release includes more than 600 commits that
changed nearly 400 pages. In addition, 3 new manual pages were added."
The release tarball is available from kernel.org,
the browsable pages are at man7.org, and the Git
repo is available from kernel.org.

Hack and /: What Linux Journal's Resurrection Taught Me about the FOSS
Community

"Marley was dead, to begin with."—Charles Dickens, A Christmas
Story. By Kyle Rankin

As you surely know by now, Linux Journal started in 1994, which means
it has been around for most of the Linux story. A lot has changed since
then, and it's not surprising that Linux and the Free and Open Source
Software (FOSS) community are very different today from what they were for
Linux Journal's first issue 25 years ago. The changes within the
community during this time had a
direct impact on Linux Journal and contributed to its death,
making
Linux Journal's story a good lens through which to view the overall story
of the FOSS community. Although I haven't been with Linux Journal since the
beginning, I was there during the heyday, the stroke, the decline,
the death and the resurrection. This article is about that story and
what it says about how the FOSS community has changed.

It's also a pretty personal story.

A Bit about Me

Although it's true that I sometimes write about personal projects in
my articles and may disclose some personal details from time to time,
I generally try not to talk too much about my personal life, but as
it's useful to frame this story, here we go. I grew up in an era when
personal computers were quite expensive (even more so, now that I account
for inflation), and it wasn't very common to grow up with one in
your home.

In high school, I took my first computer class in BASIC programming. This
class fundamentally changed me. Early on in the class I knew that I
wanted to change any past career plans and work with computers instead. My
family noticed this change, and my grandparents and mother found the money
to buy my first computer: a Tandy 1000 RLX. Although there certainly
were flashier or more popular computers, it did come with a hard drive
(40MB!), which was still pretty novel at the time. Every time I learned
a new BASIC command in school, I would spend the following evenings at
home figuring out every way I could use that new-found knowledge in my
own software.

I never got internet access during high school (my mom saw the movie
WarGames and was worried if I had internet access, I might accidentally
trigger a house call from the FBI). This just made it all the more
exciting when I went to college and not only got a modern computer, but
also high-speed campus internet! Like most people, I was tempted to experiment
in college. In my case, in 1998 a neighbor in my dorm brought over a
series of Red Hat 5.1 floppies (the original 5.1, not RHEL) and set up
a dual-boot environment on my computer. The first install was free.

Desktop Linux in the Late 1990s

If you weren't around during the late 1990s, you may not realize just
how different Linux was back then, but hopefully a screenshot of my
desktop will help illustrate (Figure 1).

[image: Super-leet Desktop]

Figure 1. My Super-leet Desktop from 1999

I'd like to point out a few things in this image. First, check out that
leet green-on-black theme! Second, notice the GNOME foot in the top-left
corner. This was early GNOME 1, back when it used Enlightenment as its
window manager. Next, notice the top Netscape Navigator window open to
Slashdot. If you are new to the FOSS community, Slashdot was the Hacker News
of its time (or Reddit, or Digg, or Fark—depending on when you started
arguing about technology news on the internet). Check out the specs
on the server for sale in the banner ad: 266MHz processor,
32MB RAM, 2GB storage and 2GB of bandwidth.

The window below the top Netscape window is another Netscape window with
a full chat application implemented inside the browser with Java. I know
what you are thinking: that server in the ad only had 32MB of RAM, and you
need two or three gigabytes of RAM to run a JavaScript chat application
inside a browser, but I assure you, it was possible with Java.

Back in the 1990s, you would install Linux from a set of three or four
floppy disks (unless you used SUSE, which required about a dozen). The
user interface for the install was a curses terminal console that you
would navigate with a keyboard. This install assumed that you were well
familiar with disk partitioning, OS internals, networking and Linux
overall. When you completed the install, you normally would reboot into
a console. If you wanted to get a GUI, you then needed to configure
obscure X11 configuration files by hand—that is, if your graphics
hardware worked under Linux at all.

Because of how much deep Linux knowledge you needed to install and use
Linux back then, a number of Linux Users' Groups (LUGs) sprung up around
the country. These groups would meet and share tips and overall knowledge
about Linux, and they started a new phenomenon: Installfests. During
an Installfest, new Linux users would bring their computer to the LUG,
and the experts would try to get Linux installed and working on
it. Often experienced users also would bring their own computers to get help
with that one piece of stubborn hardware they couldn't get working.

Server Linux in the Late 1990s

I started using Linux professionally in 1999. Although Linux servers were
found in office networks in the late 1990s, they weren't too common
and often were used in secret. Linux was considered a hobbyist toy with most
IT departments, and you could get in a lot of trouble for setting up a
Linux server. The problem was that Windows file servers were notoriously
unreliable, so sysadmins would install Samba servers covertly on the
network. If anyone noticed the difference, it was only to comment on
how stable the file server was.

Initially, Linux servers were selected as an improvement over
the lower stability of Windows servers or the high cost of commercial
UNIX servers. The dotcom boom caused a huge demand for websites and web
servers. The Apache web server software and its ability to host more
than one website on a piece of hardware using its new "virtual hosts"
feature saw Linux spread rapidly in the data center.

Soon dynamic and interactive websites became important, and system
administrators
found that the combination of a Linux OS with an Apache web server,
MySQL database and Perl scripts (later PHP) for dynamic content was a
free, easy and stable platform for their dynamic sites. This LAMP stack
grew in popularity and continued Linux's spread beyond web servers into
the application and database tier.

Running a Linux server in the late 1990s required deep knowledge of Linux,
networking and programming. Although a few companies (such as Red Hat) were
starting to offer paid support, most of the time, support was a combination
of your own troubleshooting and research as well as reaching out to LUGs,
friends, IRC and forums.

FOSS Community in the Late 1990s

The FOSS community in the late 1990s was rooted in FOSS ideals. Just
about everyone could give you a brief history of the Free Software
movement, knew what the GNU project was, knew what the GPL was, and had strong
opinions on the difference between "Free Software" and "Open Source
Software". Most of the community also had strong opinions on whether
it should be called Linux or GNU/Linux. For many, joining the community
and using Linux and Free Software was about advancing those movements
against the threats of proprietary software.

When you consider how much technical knowledge one needed to install and
use Linux back then, it shouldn't be much of a surprise that the members
of the community reflected the state of the OS—hobbyist geeks, engineers, scientists and CS students. In short,
we were nerds. Because of the dotcom boom though, this community was
starting to expand, as people started wanting to use Linux professionally. All
of these professional newcomers created a strong demand for Linux support,
and many FOSS companies came into existence during that time to fill
the demand.

If you didn't happen to be in this community during the late 1990s,
check out the 2001 documentary called Revolution OS. It
does a good job of capturing the particular flavor of the community at
that time, has interviews with the luminaries of the day and describes
the beginnings of the Free Software movement from the initial work of
Richard Stallman to the creation of Linux and all the way to Red Hat's
IPO during the dotcom boom.

My Start at Linux Journal

The next part of the story begins almost a decade later in August 2007
during the Linux World Expo conference in San Francisco. Linux
Journal
had announced a writer's "happy hour" event during the conference. The
idea was to invite prospective writers to come meet the editor and pitch
article ideas.

I found out about the event and got really excited about the prospect of
writing for Linux Journal. I had published a couple books on Linux by
then that were full of different Linux tips and tricks, and my mind
was racing with all the ideas I could incorporate into articles. I
was so excited about the prospect—and so afraid that other people
would get there and somehow pitch all of the good ideas before I had a
chance—that I showed up to the event early and paced until it started.

I pitched way too many ideas. Somewhere after I pitched between six
and a dozen distinct articles and they all seemed well-received, I got a
little boost of confidence that caused me to dare pitch something more:
a monthly column. By the end of that session, all of those article ideas
turned into a column I started in January 2008: Hack and /.

FOSS Community in 2007

In many ways, this era was the golden age for Linux and FOSS. Just to set
a few historical placeholders, in 2007 Debian released version 4.0 (Etch),
and Red Hat released Red Hat Enterprise Linux (RHEL) 5.0 with the 2.6.18-8
kernel. All of the installs were influenced by some of the ease-of-use
breakthroughs in the Corel Linux installer, and the install process was
simple and featured nice graphics that guided users through a few
basic questions. After the install, the graphics hardware and most of the
rest of the hardware on the system tended to work pretty well unless you
were using cutting-edge hardware. The Linux install process was
much
simpler (and faster) than installing Windows from scratch.

Linux was now mainstream in corporate IT, and it was much rarer
to meet much resistance when you wanted to set up Linux servers,
unless your company was a 100% Windows shop. The main requirement for
some organizations was paid support, and at this point, that also
was mature and similar to support offerings from proprietary vendors. These FOSS
companies were making a lot of money, and developers were being paid to
work on Linux and FOSS full time.

While the FOSS community still had the original nerdy members and new
nerdy members continued to join, most of the growth in the community
was from professionals. Many different professional Linux and
FOSS conferences existed that were priced to attract people who could get their
company to pay for them. These new community members were more focused
on the practical benefits of Linux and FOSS (low cost, compatibility and
the ability to modify code from a FOSS project for company use). Unlike
the original community, these members were less focused on FOSS ideals.

The Stroke

In the aughts and early teens, the overall print publishing industry
went through a number of changes. During this time, there was a large
consolidation in the bookstore industry with companies like Barnes and
Noble and Borders crowding out indie bookstores. Later in this period,
more people started to get comfortable with the idea of using a credit
card online, and competition from Amazon started to threaten even the
large bookstores. Ultimately, this led to Borders closing all of its
stores, which in turn caused a significant drop in newsstand magazine sales.

Along with those difficulties, overall publishing and distribution
costs went up. Ultimately, this combination of lower newsstand sales and
higher costs caught up with Linux Journal, and it had to face a difficult
decision: either cancel print magazines and go with a digital-only model
or close the magazine completely. On August 19, 2011, Linux
Journal
announced it would cancel print magazines and be digital-only.

Suffice it to say, the response to this announcement was generally
negative. No one (especially Linux Journal) wanted to cancel print
magazines, but at least some of the readership didn't seem to understand
that the alternative was closing down altogether, and some subscribers responded with
quite a bit of anger. The responses fit into two main categories. The
print-or-die readers canceled their subscriptions with varying levels
of bitterness. The wait-and-see subscribers decided to try reading
the issues online or on their e-readers.

The Decline

For some time, things continued working. Now that Linux Journal was free of the
high costs of putting out a print magazine, belts were tightened, and over
time, finances started to stabilize. Although some people had canceled their
subscriptions, those that remained were loyal readers. We often would hear
statements from this core readership like "I have every print issue", and
"I regularly go back to my archive of issues as a reference." That kind of
support encouraged the team to focus on this core audience in our content.

The lack of a newsstand presence meant we lost one of our main avenues for
attracting new readers to the magazine. More important, our focus
on the core audience didn't factor in that the Linux community had changed
since 1994. It wasn't just that we weren't attracting the new members in
the community, many of the long-time members of the community also
had changed through the years to view Linux and FOSS much more pragmatically
and with less idealism. This meant that we not only failed to add new
readers, we also started losing some existing readers and writers.

Death

Ultimately, we couldn't keep the lights on. Linux Journal
announced that it was
shutting down on December 1, 2017. I followed up that announcement with an
emotional farewell of my own. If you read that farewell, you'll see that
somewhere in the middle it changed from a memoir into a manifesto. My
sadness at seeing something I had worked on for ten years going away
was replaced by anger that the Linux community had seemed to lose its
way. I lost my way. I took Linux and FOSS for granted. It became
clearer than ever to me that while Linux and FOSS had won the battle over
the tech giants a decade before, new ones had taken their place in the
meantime, and we were letting them win. Although I had written and spoken
about Linux and FOSS for years, and used it personally and professionally,
I felt like I hadn't done enough to support this thing I cared about
so much. The death of Linux Journal was a major factor in my decision
to put my money where my mouth was, quit my job, and join Purism so
I could work full-time helping to forward this cause.

So yeah, I took the news pretty hard. We all took the news pretty hard,
but where I had just lost a freelance writing gig, all of the core Linux
Journal team had just lost their full-time jobs. It was a difficult time,
yet we also were flooded with so much support from you, our readers. Some
people contacted us just to tell us how much they loved the magazine and
how sorry they were to see it go. Others offered to pay more for their
subscriptions if that would somehow help. Others still contacted us to
see if they could develop a fundraising program to keep the magazine
alive. I can't stress how much this incredible outpouring of support
helped all of us during this difficult time. Thank you.

Resurrection!

We really thought we were dead. It turns out we weren't quite
dead. Shortly after we made our public announcement, London Trust
Media—the folks behind Private Internet
Access (PIA), a security-focused VPN provider—reached out to us. In
a short time, they worked out a plan not only to save Linux
Journal,
but to put it on a good path for future success and growth.

While that happened, we set to work on our postmortem. We did not want
to come back to life only to make the same mistakes that put us in the
grave, so we set out to figure out what killed us, and how we could
prevent it from happening again. One major theme that continued to come
up from this soul-searching was the recognition that the FOSS community
had changed. Although the same core group was there, they accounted
for only one part of the overall community. The FOSS community of today was
different and more diverse. We needed to serve the whole community by
writing articles for our original loyal audience while also covering what
mattered to the rest of the community. To understand what the community
is like today though, you must look at what Linux and the tech industry
as a whole looks like currently.

Linux in 2019

Today, Linux has wide hardware support, and a number of vendors
offer hardware with Linux pre-installed and supported. The internet
itself is full of FOSS projects, and one of the first things people
do when they are about to start on a software project is to look on
GitHub to see if anything that meets their needs already exists. Linux
absolutely dominates the cloud in terms of numbers of VMs that run it,
and much cloud infrastructure also runs FOSS services. Linux also is in
many people's pockets and home appliances. Linux and FOSS
are more ubiquitous than ever.

Linux and FOSS also are more hidden than ever. So many of those FOSS
projects on GitHub ultimately are used as building blocks for proprietary
software. So many companies that seem to champion FOSS by helping
upstream projects they rely on also choose to keep the projects they
write themselves proprietary. Although Linux dominates the cloud, more and
more developers and system administrators who use the cloud do so via proprietary APIs
and proprietary services. New developers and sysadmins get less exposure to
Linux servers and FOSS services if they use the cloud how the providers
intended. And, while Linux runs in your pocket and in your home, it's hidden
underneath a huge layer of proprietary applications.

For the most part, the FOSS philosophy that defined Linux in its early
days is hidden as well. Many people in the community tout FOSS only
in terms of the ability to see code or as a way to avoid writing code
themselves. It has become rarer for people to tout the importance of
the freedoms that come along with FOSS and the problems that come from
proprietary software. Indeed, most Linux application development in the
cloud these days is done on Mac or Windows machines—something that
would have been considered unthinkable in the early days of Linux.

Tech Industry in 2019

It's not just Linux that has changed since 1994, the tech industry has
changed as well. Technology is ubiquitous. Everyone interacts with
computers in some form every day, and being able to use a computer in
itself is no longer considered a special skill. That said, technology
skills across the spectrum are in high demand, and tech employees are generally
well paid. Programming has become the new shop class as a way to provide
high-school graduates with a set of skills that hopefully will land them
well paying jobs.

Technology tools also have become much more accessible and less
obscure. You no longer need to isolate yourself in a basement in front of
a computer for years to get the skills to land a good technology job. The
industry overall is starting to become more diverse, and I don't just mean
in the sense of race, gender and ethnicity. The
technology industry is also becoming more diverse culturally.

In the past, technology was largely the domain of the nerds. These
days, you're just as likely to see popular kids, jocks and MBAs
using technology and writing software. There's even a "brogrammer"
designation given to software developers who culturally are more akin to
fraternity members. Many parents who traditionally would encourage
their children to go to Ivy League schools to become doctors or lawyers
are instead encouraging them to get an MBA with a minor in software
development and create their own software startup.

This change in cultural diversity has created a culture clash that I'm not
sure people on each side truly appreciates. From the nerd perspective,
it's as though they threw a party where their friends could come over
and play Dungeons and Dragons, and suddenly a bunch of popular kids heard
there was a great party at their house, barged in, said "this party sucks",
and turned it into a kegger. They find all of the new social pressures
from the popular kids to be difficult to navigate. The popular kids,
on the other hand, find the nerds in the group incredibly frustrating,
because they don't seem to pick up on social cues and have a hard time
adapting to norms that seem like second nature to them.

FOSS Community in 2019

The FOSS community today reflects these changes in Linux and the overall tech
industry. The original FOSS community is still here, but the professional
community surrounding it has changed a great deal. Many people within the
community use Linux only professionally and don't work on FOSS projects
or use Linux after they clock out for the day. FOSS advocates in many
circumstances don't use Linux themselves, and they often make presentations
on the benefits of FOSS from proprietary laptops running Windows or
macOS. Many if not most web application developers write their web
applications intended for Linux from Windows or macOS environments, and
if they use Linux at all, it's within a VM.

It's important to stress that all of these people are contributors
to and members of the FOSS community! It's a mistake to exclude members
of the community for not behaving like the original core or not devoting
their whole lives to FOSS. The fact is that as time has gone on and the
community has grown, it has added people who simply weren't around for
the original fight of Linux and FOSS against proprietary software. They
joined the community in a world where Linux and FOSS were ubiquitous. In
a world like that, it's easy to take the original principles behind FOSS
for granted, because you haven't experienced the harm that comes from the
alternative. In other cases, people who have been members of the community
for a long time have relaxed their principles over the years and become
much more pragmatic. Their focus is more on "the right tool for the job",
and in many cases, they feel that FOSS is the right tool for some jobs,
but proprietary software is the right tool for others.

What Does It All Mean?

There are lessons and work to be done for all members of the FOSS
community today. If you are part of the original community, realize that
we have an opportunity and an obligation to pass on the lessons we have
already learned from fighting the original tech giants. Not everyone in
our community knows these lessons, and if they did, they might rethink
some of the choices they've made that you disagree with. This will
work only if you are welcoming to newcomers from all walks of life—not
just people who are nerdy like you. If you alienate them when they make
early mistakes, they will be less motivated to learn more. This means
no computer knowledge litmus tests to see if someone knows enough technical
arcana to be worthy to join the community.

This also means continuing to work on empathy and social skills. Although
it might be a challenge, we are up to the task. I don't believe that someone
who can recite the TCP handshake protocol, get into flame wars on proper
mailing list etiquette and can quote the entire Klingon coming-of-age
ceremony (in Klingon!) finds human social protocols unknowable.

If you are a new member of the community, empathize with your nerdy
cohorts! You pride yourself on empathy and social awareness, so apply
that to the task at hand and attempt to see where your colleagues are
coming from. They come from a different culture from you with different
social norms. Show them patience as they learn the current social
norms. If you alienate them when they make early mistakes, they will be
less motivated to learn more.

I also encourage you to learn from your nerdy brothers and sisters about the
past fights with the old giants. The current tech giants are largely
playing from the same playbook, and it's incredibly valuable to know about
what can happen when a tech giant achieves complete vendor lock-in. In
addition, I encourage you to learn about all the social principles
underneath FOSS. There is much more to the FOSS movement than your ability
to see source code or even to use it in your own projects. Learn about
the "four freedoms" that form the foundation of Free Software licenses.

Finally, I encourage everyone from all corners of the community not
to take FOSS and Linux for granted. The world of readily available code
and mostly open protocols you enjoy today isn't a given. If current
trends continue, we could be back to a world of
proprietary software, vendor lock-in and closed protocols like the
world before 1994.

This new battle we find ourselves in is much more insidious. The ways
that proprietary software and protocols have spread, in particular on
mobile devices, has made it much more challenging for FOSS to win
compared to in the past. If we want to win this battle, we need the
whole community to work together toward a common goal.

Resources

	
Linux
Journal Goes 100% Digital

	
Linux
Journal Ceases Publication

	
"So
Long and Thanks for All the Bash" by Kyle Rankin

	
Linux
Journal Is Alive

 About the Author

 Kyle Rankin is a Tech Editor and columnist at Linux Journal and the Chief Security Officer at Purism. He is the author of Linux Hardening in Hostile Networks, DevOps Troubleshooting, The Official Ubuntu Server Book, Knoppix Hacks, Knoppix Pocket Reference, Linux Multimedia Hacks and Ubuntu Hacks, and also a contributor to a number of other O'Reilly books. Rankin speaks frequently on security and open-source software including at BsidesLV, O'Reilly Security Conference, OSCON, SCALE, CactusCon, Linux World Expo and Penguicon. You can follow him at @kylerankin.

[image: Kyle Rankin]

At the Forge: Open Source Is Winning, and Now It's Time for People to Win
Too

Teaching kids about open source? Don't forget to teach them ethics as well. By
Reuven M. Lerner

Back when I started college, in the fall of 1988, I was introduced to a
text editor called Emacs. Actually, it wasn't just called Emacs; it was
called "GNU Emacs". The "GNU" part, I soon learned, referred to
something called "free software", which was about far more than
the fact that it was free of charge. The GNU folks talked about software with
extreme intensity, as if the fate of the entire world rested on the
success of their software replacing its commercial competition.

Those of us who used such programs, either from GNU or from other,
similarly freely licensed software, knew that we were using high-quality
code. But to our colleagues at school and work, we were a bit weird,
trusting our work to software that wasn't backed by a large, commercial
company. (I still remember, as a college intern at HP, telling the
others in my group that I had compiled, installed and started to use a
new shell known as "bash", which was better than the "k shell" we
all were using. Their response was somewhere between bemusement and horror.)

As time went on, I started to use a growing number of programs that fit
into this "free software" definition—Linux, Perl and Python were the
stars, but plenty of others existed, from Emacs (which I
use to this day), sendmail (pretty much the only SMTP server at the
time), DNS libraries and the like. In 1998, Tim O'Reilly decided that
although the "free software" cause was good, it needed better coordination
and marketing. Thus, the term "open source" was popularized, stressing the
practical benefits over the philosophical and societal ones.

I was already consulting at the time, regularly fighting an uphill
battle with clients—small startups and large multinationals
alike—telling them that yes, I trusted code that didn't cost money, could be
modified by anyone and was developed by volunteers.

But marketing, believe it or not, really does work. And the term "open
source" did a great job of opening many people's minds. Slowly but
surely, things started to change: IBM announced that it would invest
huge amounts of money in Linux and open-source software. Apache, which
had started life as an httpd server, became a foundation that sponsored
a growing array of open-source projects. Netscape tumbled as quickly as
it had grown, releasing its Mozilla browser as open-source software
(and with its own foundation) before going bust. Red Hat proved that you
could have a successful open-source company based on selling
high-quality services and support. And these are just the most
prominent names.

With every announcement, the resistance to using open source in
commercial companies dropped bit more. As companies realized that
others were depending on open source, they agreed to use it too.

Fast-forward to today, and it's hard to avoid open-source software.
It's everywhere, from the smallest companies to the largest. There are
still commercial versions of UNIX, but Linux is really all anyone
expects or talks about. And Linux is indeed everywhere. My Python and
Git courses have never been in greater demand from companies that want
to teach their employees to improve their familiarity with these
technologies. Whereas it once was possible for one person to know, and to
know about, the majority of major open-source software titles, today
that's completely impossible.

Several years ago, while on a flight, my personal screen had some
problems. I asked the flight attendant for help, and she told me that
it's probably easiest just to restart the screen. Imagine my surprise
when I saw myself looking at the Linux boot sequence, in my seat at
30,000 feet! It was at this point that I realized that open source, by
virtue of being both inexpensive and open for people to examine and
modify, had indeed arrived.

What's amazing to me is how even the companies that were most against
open-source software have become advocates—not necessarily out of
love, but because that's where the market is heading. Microsoft is not
only using open source, it's also actively engaging with and supporting the
community, encouraging the use of open source, and even contributing.

So, have we made it? The answer, of course, is both yes and no.
There is no doubt that open-source software has arrived, succeeding
beyond my wildest dreams. I mostly earn my living teaching Python and
Git to companies around the world, and it's hard to exaggerate the
demand for such technologies. Companies are adopting open source as
quickly as they possibly can, simultaneously reducing costs and
increasing flexibility. Students are learning to use open-source
technologies and languages.

So yes, if measured by market penetration and the acceptance that
open-source software can compete, we have definitely won.
Sure, there's work to do on the desktop, but the achievements to date
are real, tangible and impressive.

But, it's no longer enough to be widespread or even dominant. As a few
people were prescient enough to foresee long ago, our world of
interconnected computers, phones and devices is generating enormous
quantities of data, stored beyond our reach, analyzed by algorithms we
cannot see or check, and being used to make decisions that can affect
careers, education and medical care, among other things.

Moreover, the business model that was both clever and profitable for so
long, namely advertising, has come with an enormous trade-off, in that a
number of corporations know more about us than we even know about
ourselves. What's amazing is that the advertising-supported services are
often so good and useful—and free of charge—that we ignore the
ramifications of sharing everything about ourselves with them.

From the perspective of today's young people, the internet always
has connected us, smartphones always have existed, and the apps we use on
our phones and computers always have been free of charge. And if you
have to share some of your data, then so what? People no
longer seem to be as concerned about privacy and about how much they're
sharing with these companies, as was once the case. Perhaps that's
because people are getting such obvious benefits from the services they
use. But perhaps it's because people are unaware of how their data is
being used.

The April 2019 issue of Linux Journal is all about kids, but it's also our
25th anniversary edition, so it's an appropriate time to ask "What should
we be teaching our children about open-source software?"

A few years ago, MIT changed its intro computer science course away
from the traditional (and brilliant) class that used Scheme to one that
used Python. This certainly made big waves and has influenced hundreds
of universities that now also use Python. When MIT changed the
curriculum, the professors who wrote the course indicated that for
today's software engineers, learning to code isn't enough. You also need
to learn topics such as ethics. Many programmers will be asked
to do things that are unethical, so it's important to think through
the issues before you encounter them at work. Heck, just determining
what is considered ethical is a knotty problem in and of itself—one
that many developers have probably never considered.

So yes, it's important for us to teach kids about Linux and open-source
software. But it's not enough for us to teach them about the technical
parts of things. We also need to inform them of the societal parts of
their work, and the huge influence and power that today's programmers
have. It's sometimes okay—and even preferable—for a company to
make less money deliberately, when the alternative would be to do things
that are inappropriate or illegal.

It's important to teach and discuss machine learning—not just as a
set of technologies, but also to understand how models work, how they
can be wrong, and what you need to do in order to get them right. It's
important to discuss how and when such algorithms should be shared with
the public and made available to public audit.

And, it's important to explain that no one has a perfect answer to these
issues. It's okay to have disagreements. But raising these questions and
problems is a major responsibility, and it's important that kids learn
from an early age that programming has real-world implications—some of
them potentially bad. We don't let people drive until they have
demonstrated at least the minimum understanding of how their actions can
affect others. I'm not suggesting we require programmers be
licensed, but that we raise these important points frequently.

Linux Journal has been at the forefront of the Open Source movement for
25 years now, pushing and encouraging us to imagine a world where
software is of high quality, available to all, at low or no cost, and
that invites us to experiment and tinker. I'm proud to have been writing for
this publication for much of that time—since 1996. And although this
column generally will continue to have a technical focus, I'm glad that
Linux Journal, as a publication, is focusing on the societal impacts of
our work.

About the Author

Reuven Lerner teaches Python, data science and Git to companies
around the world. You can subscribe to his free, weekly "better
developers" e-mail list, and learn from his books and courses at
http://lerner.co.il. Reuven lives with his wife and children in
Modi'in, Israel.

[image: Reuven M. Lerner]

Work the Shell: Back in the Day: UNIX, Minix and Linux

Columnist Dave Taylor reminisces about the early days of UNIX and how
Linux evolved and grew from that seed. By Dave Taylor

Twenty five years of Linux Journal. This also marks my 161st column with
the magazine too, which means I've been a part of this publication for
almost 14 years. Where does the time go?

In honor of the historical significance of this issue, I wanted to share
some of my memories of the very early days of UNIX, Minix and Linux. If
you're a regular reader of my column, you'll recall that I'm
in the middle of developing a mail merge Bash utility, but that'll just have
to wait until next time. I promise, the shell ain't going
anywhere in the meantime!

Back in the Day

I first stepped foot on campus at UC San Diego in late 1980, a declared
computer science major. At that point, a lot of our compsci program was
based on USCD Pascal on Apple II systems. I still have fond memories of
floppy drives and those dorky, pixelated—but oh so fun!—Apple II games
we'd play during lab time.

For more serious classes, however, we had some big iron—a mainframe with
accounts and remote computer lab terminals set up in designated rooms. The
operating system on those systems? UNIX—an early version of BSD UNIX is my
guess. It had networking using a modem-to-modem connection called
UNIX-to-UNIX Copy Protocol, or UUCP. If you wanted to send email to
someone, you used addresses where it was:

unique-hostname ! unique-hostname ! account

I don't remember my UCSD email address, but some years later, I was part
of the admin team on the major UUCP hub hplabs, and my email address was
simply hplabs!taylor.

Somewhere along the way, networking leaped forward with TCP/IP (we had
TCP/IP "Bake Offs" to test interoperability). Once we had
many-to-many connectivity, it was clear that the "bang" notation was
unusable and unnecessarily complicated. We didn't want to worry about
routing, just destination. Enter the "@" sign. I became
taylor@hplabs.com.

Meanwhile, UNIX kept growing, and the X Window System from MIT gained
popularity as a UI layer atop the UNIX command line. In fact, X is a public
domain implementation of the windowing system my colleagues and I first saw
at the Xerox Palo Alto Research Center. PARC had computers where multiple
programs were on the screen simultaneously in "windows", and there
was a pointer device used to control them—so cool. Doug Englebart was
inspired too; he went back to Stanford Research Institute and invented the
mouse to make control of those windows easier. At Apple, they also saw what
was being created at PARC and were inspired to create the Macintosh with
all its windowing goodness.

Still, who doesn't love the command line, as Ritchie and Kernighan had
originally designed it in the early days of UNIX? (UNIX, by the way, is a
wordplay on a prior multiuser operating system called Multics, but
that's another story.)

Who Owns the IP?

The problem with UNIX was that old software bugaboo of intellectual
property ownership. UNIX came out of AT&T's Bell Labs, so AT&T owned
UNIX. Us academics weren't too excited about that, and so pieces were
replaced by the UC Berkeley's Computer Science Research Group. They
released BSD UNIX. AT&T famously sued, so CSRG produced a complete and
total rewrite from the ground up. My proud contribution (other than my
popular Elm email program) to BSD 4.3 was to rewrite Hunt the
Wumpus. Yup,
I'm that guy.

While all this was going on, BSD re-implementing UNIX proved inspirational
for people all over the world, including Andrew S. Tanenbaum, who cobbled
together something called MINIX as a teaching tool for his Operating
Systems Design and Implementation book. One person who played around
with MINIX and was inspired further was a Finnish developer named, you
guessed it, Linus Torvalds.

Meanwhile, the world of intellectual property was continuing to muddy the
waters on the business side. Sun Microsystems and Digital Equipment
Corporation were two of the companies trying to straddle the line between
proprietary commercial development and public domain software for the good
of the industry. But software copyright still plagues us to this day, so
it's no surprise it was fuel on the fire—and occasionally the fire
itself—in the evolution of Linux.

Spinning out of the software copyright mess was another colorful fellow:
Richard Stallman. He hated the confusion between private corporate software
ownership and free software. With a lot of help from others in the digital
world, Stallman started building GNU (which literally stands for GNU is Not
UNIX), and along the way, he created the Free Software Foundation.

The Free Software Foundation ended up being responsible for a lot of the building
blocks of Linux and modern UNIX systems, notably the compilers. One result
is
GNU/Linux (that is, Linux with GNU utilities). At one point, that was
called Lignux, of all things. Yikes.

Since nowadays GNU without Linux isn't hugely helpful, it's
basically just been assimilated into core Linux and just about every distro
of Linux includes GNU utilities or GNU versions of common UNIX-born tools.
Check find, cc and grep on your system to see if you have the GNU versions,
if you're curious.

Hunt the Darn Wumpus

Me? Well, Hunt the Wumpus was fun, but everyone was interested in including
my Elm mail system in their version of UNIX/Linux, and I remember going to
some of the earliest FSF meetings at USENIX conferences. We basically just
argued about IP rights and the nuances of the GNU General Public License
(Copyleft). I was against it applying to my software, because if someone
else was going to sell or make a profit from my software, I felt it only
was fair that I would get a cut of that. That's why there never was a GNU
Elm, if you're curious.

And oh, those USENIX conferences. USENIX was the professional organization
for UNIX programmers and users (it pre-dated Linux for the most part), and
I'm pretty sure none of us had a clue what we were creating. I
remember hanging out with Larry Wall, Eric Allman, Bill Joy and most of
the other developers back in the day. We were just a bunch of
nerds—kind of
like Revenge of the Nerds without the revenge part, at least, not
at that point in time!

We UNIX folk kept hearing about this Linux thing, but honestly, the general
attitude was dismissal. UNIX was massive and incredibly hard to duplicate,
and a bunch of kids in a basement couldn't possibly do justice to the
extraordinary work of Bell Labs and UC Berkeley's CSRG. Oh, how wrong
we were.

Random historical note: Linus actually wanted to call his version of UNIX
"Freax", as a play on free and UNIX. Fortunately, after a few months,
it changed to the name we use today—a much better name, for
sure.

UNIX, meanwhile, was losing customers even as Linux grew and grew. A free
operating system that turned even junky old PCs into decent servers? Of
course it was popular. And with the advent of different window managers
within the X Window System and decent graphical applications, suddenly
Linux could compete with Windows and Mac OS too.

I still remember being at Hewlett-Packard and having discussions about the
expensive HP workstations with our proprietary version of UNIX (called
HP-UX) versus customers wanting to run the fast-evolving Linux. Like so
many big proprietary companies, HP was late to the Linux world, but the
company definitely has made up for it since—which is lucky, because a
number of those proprietary UNIX OS companies have since failed and
vanished.

Today there are a bewildering variety of different Linux distributions, all
of which are still UNIX at their heart. Heck, now both Windows and MacOS X
have UNIX cores of some flavor and even offer full command lines. That Bash
command line you use? Those commands with their cryptic "flags"?
You can thank AT&T Bell Labs, UC Berkeley's Computer Science Research
Group, MIT's Media Lab and a whole lot of us aficionados for creating
the system you know and love.

Caveat: I'm sure I've gotten a few things wrong in this
reminiscence. My apologies in advance for that, but hey, history ain't
what it used to be.

In my next article, I'll be back talking about shell scripts and coding, and
I'll wrap up that mail merge program. I hope you have enjoyed this column,
and I would love any and all feedback!

 About the Author

Dave Taylor has been hacking shell scripts on UNIX and Linux systems for a
really long time. He's the author of Learning Unix for Mac OS
X and Wicked Cool Shell Scripts. You can find him on Twitter
as @DaveTaylor, and you can reach him through his tech Q&A site: Ask Dave Taylor.

[image: Dave Taylor]

diff -u

What's New in Kernel Development. By Zack Brown

Power Savings with CPU Idling

The kernel already tries to recognize when a CPU goes idle and migrate it
to a power-saving state. In fact, several power-saving states
are available, depending on how quickly the system will need to wake the CPU up
again later. A deeper sleep means greater power savings but slower wakeup.

The menu governor uses various heuristics to guess how long a CPU is likely
to remain idle and, thus, how deep of an idle state to put it in. However, as
Rafael J. Wysocki pointed out recently, the existing menu governor was
poorly designed, with a somewhat irrational decision-making process, even
to the point of trying to trigger impossible actions.

So, he wanted to rewrite it. Unfortunately, this didn't seem entirely feasible.
For certain workloads, optimizing the interactions with the menu governor
is a first-class way to speed things up. And for any projects that need
that, any replacement might slow things down until new optimizations could
be figured out.

Rafael's idea, in light of this, was—at least for a while—to have two
menu governors available side by side. The original and a new one, called
the Timer Events Oriented (TEO) governor. For users who either didn't care
or didn't generally need to optimize CPU idling, the TEO governor
hopefully would provide a better and more predictable experience. And for users
who needed a slower transition, they still could rely on the existing menu
governor.

Rafael described the TEO governor's new heuristics, saying, "it tries to
correlate the measured idle duration values with the available idle states
and use that information to pick up the idle state that is most likely to
'match' the upcoming CPU idle interval." He added that the new code avoided
using several data points, like the number of processes waiting for input,
because those data points simply weren't relevant to the problem.

Several folks like Doug Smythies and Giovanni
Gherdovich eagerly replied
with benchmarks comparing the menu governor with the TEO governor. In some
cases, these showed similar speeds between the two, although in some cases, the
TEO governor appeared to perform much better than the menu governor.

In fact, maybe it was too much better! Some of the speed increases seemed to
indicate to Rafael that the heuristics were perhaps too aggressive. The
goal, after all, wasn't speed alone, but also power conservation. After
seeing some of the benchmark results, Rafael said he'd tweak the code to be
more energy efficient and see how much that would slow things down.

And so, development continued. Something like the menu governor always
will be somewhat astrological, like many other aspects of resource allocation,
simply because different workloads have different needs, and no one really
knows what workloads are the common case. But at least for the TEO
governor,
there seems to be no real controversy, and Rafael's planned dual-governor
situation seems like it has a good chance of adoption.

Rewriting printk()

The printk() function is a subject of much ongoing consternation among
kernel developers. Ostensibly, it's just an output routine for sending text
to the console. But unlike a regular print routine, printk() has to be able
to work even under extreme conditions, like when something horrible is
going on and the system needs to utter a few last clues as it breathes its
final breath.

It's a heroic function. And like most heroes, it has a lot of inner
problems that need to be worked out over the course of many adventures. One
of the entities sent down to battle those inner demons has been John
Ogness, who posted a bunch of patches.

One of the problems with printk() is that it uses a global lock to protect
its buffer. But this means any parts of the kernel that can't tolerate
locks can't use printk(). Nonmasking interrupts and recursive contexts are
two areas that have to defer printk() usage until execution context returns
to normal space. If the kernel dies before that happens, it simply won't be
able to say anything about what went wrong.

There were other problems—lots! Because of deferred execution, sometimes
the buffer could grow really big and take a long time to empty out, making
execution time hard to predict for any code that disliked uncertainty.
Also,
the timestamps could be wildly inaccurate for the same reason, making
debugging efforts more annoying.

John wanted to address all this by re-implementing printk() to no longer
require a lock. With analysis help from people like Peter
Zijlstra, John
had come up with an implementation that even could work deep in
NMI context
and anywhere else that couldn't tolerate waiting.

Additionally, instead of having timestamps arrive at the end of the
process, John's code captured them at execution time, for a much more
accurate debugging process.

His code also introduced a new idea—the possibility of an emergency
situation, so that a given printk() invocation could bypass the entire
buffer and write its message to the console immediately. Thus, hopefully,
even the shortest of final breaths could be used to reveal the villain's
identity.

Sergey Senozhatsky had an existential question: if the new printk() was
going to be preemptible in order to tolerate execution in any context, then
what would stop a crash from interrupting printk() in order to die?

John offered a technical explanation, which seemed to indicate that
"panic() can write immediately to the guaranteed NMI-safe write_atomic
console without having to first do anything with other CPUs (IPIs, NMIs,
waiting, whatever) and without ignoring locks."

Specifically, John felt that his introduction of emergency printk()
messages would handle the problem of messages failing to get out in time.
And as he put it, "As long as all critical messages are printed directly and
immediately to an emergency console, why is it a problem if the
informational messages to consoles are sometimes delayed or lost?"

At some point, it came out that although John's reimplementation was intended
to improve printk() in general, he said, "Really the big design change I
make with my printk-kthread is that it is only for non-critical messages.
For anything critical, users should rely on an emergency console."

The conversation did not go on very long, but it does seem as though John's
new printk() implementation may end up being controversial. It eliminates
some of the delays associated with the existing implementation, but only by
relegating those delays to messages it regards as less important. I would
guess it'll turn out to be hard to tell which messages are really more
important than others.

Support for Persistent Memory

Persistent memory is still sort of a specialty item in Linux—RAM that
retains its state across boots. Dave Hansen recently remarked that it was a
sorry state of affairs that user applications couldn't simply use
persistent memory by default. They had to be specially coded to recognize
and take advantage of it. Dave wanted the system to treat persistent memory
as just regular old memory.

His solution was to write a new driver that would act as a conduit between
the kernel and any available persistent memory devices, managing them like
any other RAM chip on the system.

Jeff Moyer was skeptical. He pointed out that in 2018,
Intel had announced
memory modes for its Optane non-volatile memory. Memory modes would allow
the system to access persistent memory as regular memory—apparently
exactly what Dave was talking about.

But Keith Busch pointed out that Optane memory modes were
architecture-specific, for Intel's Optane hardware, while Dave's code was
generic, for any devices containing persistent memory.

Jeff accepted the correction, but he still pointed out that persistent
memory was necessarily slower than regular RAM. If the goal of Dave's patch
was to make persistent memory available to user code without modifying that
code, then how would the kernel decide to give fast RAM or slow persistent
memory to the user software? That would seem to be a crucial question, he
said.

Keith replied that faster RAM would generally be given preference over the
slower persistent memory. The goal was to have the slower memory available
if needed.

Dave also remarked that Intel's memory mode was wonderful! He had no
criticism of it, and he said there were plenty of advantages to using memory
mode instead of his patches. But he, also felt that the patches were
essentially complementary, and they could be used side by side on systems that
supported memory mode.

He also added:

Here are a few reasons you might want this instead of memory mode:

1. Memory mode is all-or-nothing. Either 100% of your persistent memory is
used for memory mode, or nothing is. With this set, you can
(theoretically) have very granular (128MB) assignment of PMEM to either
volatile or persistent uses. We have a few practical matters to fix to get
us down to that 128MB value, but we can get there.

2. The capacity of memory mode is the size of your persistent memory. DRAM
capacity is "lost" because it is used for cache. With this, you get
PMEM+DRAM capacity for memory.

3. DRAM acts as a cache with memory mode, and caches can lead to
unpredictable latencies. Since memory mode is all-or-nothing, your entire
memory space is exposed to these unpredictable latencies. This solution
lets you guarantee DRAM latencies if you need them.

4. The new "tier" of memory is exposed to software. That means that you
can build tiered applications or infrastructure. A cloud provider could
sell cheaper VMs that use more PMEM and more expensive ones that use DRAM.
That's impossible with memory mode.

The discussion petered out inconclusively, but something like this patch
inevitably will go into the kernel. System resources are becoming very
diverse these days. The idea of hooking up a bunch of wonky hardware and
expecting reasonable behavior is starting to be more and more of a serious
idea. It all seems to be leading toward a more open-sourcey idea of the
Internet of Things—a world where your phone and your laptop and your car
and the chip in your head are all parts of a single general-purpose Linux
system that hotplugs and unplugs elements based on availability in the
moment, rather than the specific proprietary concepts of the companies
selling the products.

Exporting Kernel Headers

Joel Fernandes submitted a module to export kernel headers through the
/proc directory to make it easier for users to extend the kernel without
necessarily having the source tree available. He said:

On Android and
embedded systems, it is common to switch kernels but not have kernel
headers available on the filesystem. Raw kernel headers also cannot be
copied into the filesystem like they can be on other distros, due to
licensing and other issues. There's no linux-headers package on Android.
Further, once a different kernel is booted, any headers stored on the filesystem will no longer be useful. By storing the headers as a compressed
archive within the kernel, we can avoid these issues that have been a
hindrance for a long time.

Christoph Hellwig was unequivocal, saying, "This seems like a pretty
horrible idea and waste of kernel memory. Just add support to kbuild to
store a compressed archive in initramfs and unpack it in the right place."

But Greg Kroah-Hartman replied, "It's only a waste if you want it to be a
waste—i.e., if you load the kernel module." And he pointed out that there
was precedent for doing something like Joel's idea in the /proc/config.gz
availability of the kernel configuration.

Meanwhile, Daniel Colascione was doing a little jig, saying that Joel's
feature would make it much easier for him to play around with Berkeley
Packet Filter. He suggested exporting the entire source tree, instead of
just the kernel headers. But Joel said this would be too large to store in
memory.

H. Peter Anvin, while affirming the value of exporting the kernel headers,
had some issues about the right way to go about it. In particular, he said,
"I see literally *no* problem, social or technical, you are solving by
actually making it a kernel ELF object."

Instead, H. Peter though the whole project could be simplified into a
simple mountable filesystem containing the header files.

There was a bit of a technical back and forth before the discussion petered
out. It's clear that something along the lines of Joel's idea would be
useful to various people, although the exact scope and implementation seem to
be completely up in the air.

Happy 25th Anniversary to Linux Journal

I'm very happy to celebrate Linux Journal's 25th anniversary. 1994 was a
great year for Linux, with friends trading Slackware disks, developers
experimenting with windowing systems and the new Mosaic graphics-based web
browser, and everyone speculating on what Microsoft might do to try to
bring the whole thing down. I had recently bought a book called UNIX
System V, for lack of any Linux-specific books on the market, and I
remember
debating with myself over which tool to learn: perl or
awk.

Amid all of that, an actual print magazine seemed to come out of nowhere
that was all about Linux—filled with advice, analysis and even an
interview with Linus Torvalds. My eyes were very big as I went over it page
by page. It was like discovering someone who loved Linux and open source
the way I did. Someone who had a lot to say and didn't mind if anyone
listened.

A few years later, I was one of the people writing articles for Linux
Journal, and I've been very proud to help out and contribute ever since. I
always remembered how I felt opening that first issue, way back when.

So, happy anniversary, Linux Journal!

Note: if you're mentioned in this article and want to send a
response,
please send a message with your response text to ljeditor@linuxjournal.com
and we'll run it in the next Letters section and post it on the website as
an addendum to the original article.

 About the Author

Zack Brown is a tech journalist at Linux Journal and Linux
Magazine, and is a former author of the "Kernel Traffic" weekly
newsletter and the "Learn Plover" stenographic typing tutorials. He
first installed Slackware Linux in 1993 on his 386 with 8 megs of RAM
and had his mind permanently blown by the Open Source community. He
is the inventor of the Crumble pure strategy board game,
which you can make yourself with a few pieces of cardboard. He also
enjoys writing fiction, attempting animation, reforming Labanotation,
designing and sewing his own clothes, learning French and spending time
with friends'n'family.

[image: Zack Brown]

[image: LJ297-April2019-PDF-DeepDive]The Kids Take Over

As with Linux, these kids are all about making things—and then making them
better. They're also up against incumbent top-down systems they will reform
or defeat. Those are the only choices. By Doc Searls

[image: Kids]

It starts here, in the heart of Long Island, a couple dozen exits east of
Queens. I saw it with my own eyes in Mineola's Public Schools, where kids,
led by a nonprofit called kidOYO ("kid-oh-yo"), are learning to program in
different languages on different devices and operating systems, creating
and re-creating software and hardware, with fun and at speed. Their esteem
in themselves and in the eyes of their peers derives from their actual work
and their helpfulness to others. They are also moving ahead through levels
of productivity and confidence that are sure to create real-world results
and strip the gears of any system meant to contain them. Mineola's schools
are not one of those systems.

OYO means Own Your Own, and that's what these kids are learning to do. In
geekier terms, they are rooting their own lives online. They're doing it by
learning to program in languages that start with Scratch and progress
through Python, Java, C# and beyond. They're doing it on every hardware and
software platform they can, while staying anchored to Linux, because Linux
is where the roots of personal freedom and agency go deepest. And they're
doing in all in the spirit of Linus' book
title: just for fun.

With kidOYO, the heuristics go both ways: kidOYO teaches the kids, and the
kids teach kidOYO. Iteration is constant. What works gets improved, and
what doesn't gets tossed. The measures of success are how enthused the kids
stay, how much they give and get energy from each other, and how much they
learn and teach. Nowhere are they sorted into bell curves or given
caste-producing labels, such as "gifted" or "challenged". Nor are they
captive to the old report-card system. When they do take standardized
tests, for example the college AP (advanced placement) ones for computer
science, they tend to
kick ass.

kidOYO is the creation of the
Loffreto family: Devon and Melora, and their son
Zhen, who is now 13. What started as a way to teach computing to Zhen
turned into ways to teach computer science to every kid, everywhere.
kidOYO's methods resemble how the Linux kernel constantly improves, with
code contributors and maintainers stamping out bugs and iterating toward
ever-expanding completeness, guided by an equal mix of purpose and fun.

[image: Melora, Zhen and Devon Loffreto]

Figure 1. Melora, Zhen and Devon Loffreto

Before we met, I had assumed, from Devon's writing style and deep knowledge
of stuff, that he was a gentleman perhaps of my own age, or even older. So
I was surprised to find that he was not only a youngish guy, but also a New York
state high school champion baseball and basketball player who went to
college on a sports scholarship—also that he looked a stunt double for
George Clooney.

I've also known for a long time that what kidOYO does is important. But my
mind wasn't blown by it until I obeyed Devon's invitation to see their
approach at work. That happened on Groundhog Day in February of this year.
(An album of pictures I took on that visit is available on the Linux Journal Flickr
site here.
Many of the links in this article go to captioned photos in that album.)

Mineola is about as prototypical as a middle-class New York suburban town
can get. It's a two-square mile village of about 20,000 in the heart of
Nassau County, located between Long Island's north and south shore and
home to about 1.5 million people. The Mineola Free Union School
District, however, is anything but typical. I've never seen a
public—or
any—school system with its feet equally planted in the digital and the
physical worlds, or as determined to help kids master both. For example,
all three schools I visited had created social and hacker spaces, called
Coding Centers, within their libraries. The books and the stacks still
mattered, but so did the ability of kids to research, learn and teach
together using computing and related gear, such as 3D printers and
programmable robots.

Standing in the Coding Center at the Mineola Middle School, surrounded by
kids doing amazing stuff on their Chromebooks, Dr. Michael Nagler
(@naglersnotions), superintendent for the district, gave me the backstory
on how kidOYO got involved:

Three years ago, my wife signed our son up for a coding class these guys
were putting on. So I drive my son out there, and I'm watching
what they're doing, and I'm impressed. I ask Dev, "Why aren't you in
schools?" He says, "The schools won't talk to us." So I say, "Well, you're
talking to one now." We worked to help adapt their platform for schools,
starting with ours. And I mean all of ours. We jumped in the deep end,
starting with the little kids and pushing it up through high school. And
now we're on this three-year journey, so far, during which everything
changes. Constantly. The little ones get the skills, and they roll up. Now
I have to adjust my next level, and do it waaay faster than I have to with
any other curriculum. Right now, for example, for the AP Computer
Principles course in high school, they're doing the learning path for Hatch
1 and Hatch 2.

Later, when I asked Melora in an email what Hatch was, she replied, "Hatch
is an app within OYOclass that uses the Scratch programming language. Here
are two projects made in Hatch: one
by 10-year-old kidOYO Student 'Lucy' and
one
by me."

Dr. Nagler continued:

Meanwhile, my sixth graders are already finished
with it. So by the time these sixth and seventh graders get to ninth grade,
my expectation is that every student in the district is taking AP Computer
Principles. That's going to replace our Exploring Computer Science class.
And then we build in connections. So we're doing Arduinos here in the
Middle School's sixth grade, and simultaneously in ninth grade in the high
school. Then, as the younger kids move forward, we'll change the ninth
grade setup.

Since Maker Faire New York is a great place for kids from everywhere to
show off their maker chops (and where I first met the whole Loffreto
family), I asked Dr. Nagler if they had plans for that.
He responded, "We merge CS and computational thinking with making. We have a whole design
and creative thinking framework tied to our mascot, the mustang. We make
ways for the kids to conceptualize, design, iterate, prototype, test,
refine, go, back, and build things."

I asked, "How do you deal with the variety of kids who are already on this
path, plus other kids who want to come in and need to catch up, and
eventually have everybody in the school doing AP-level work on computers?

He replied:

A couple ways. First, it's not an elective. Here in Mineola, every kid
has to do it. They also have to do it in their subject classes. So we tie a
coding project to a curriculum project. Every grade has to do three a year.
We also teach it both independently the OYO way, and in the existing the
formal way, cycling kids through CS classes, for example here in this room.
I think we're unique in that we don't want it to be a formal class. I want
CS to be ingrained in everything we do.

I asked, "How do you see this scaling and spreading?" And Dr. Nagler said:

We constantly refine what we do so we can share it in ways that can be
adopted by other districts. I'm a big open-source guy. Sharing is key. So,
for example, I'm taking the kidOYO platform and building an open computer
science curriculum in social space. The beauty of their platform is that it
lets me build OER—Open Educational Resources—using their concept of
learning paths, which we also work on together. Dev also built me a
community that I can share with an organization I belong to called the
League
of Innovative Schools, which is a national organization. We can
crowd-source content there. I built a sample curriculum unit I can push
outside New York to other states. By crowdsourcing we already have a ton of
content on there.

(Later, Melora clarified what's
happening here: "Dr. Nagler is building a repository of open curriculum of
all subjects currently taught in school. The CS curriculum comes from
kidOYO.")

[image: Dr. Nagler]

Figure 2. Dr. Nagler and His Brain

At this point, Devon
joined the conversation. "Tell Doc about MC2."

"Right. It stands for Mineola Creative Content, and it's a video production
studio. We do fun learning videos, which are a basis for the learning
pathway here."

The opening text on the MC2 site
explains,
"This community showcases open educational content and other materials from
the Mineola School District....Our school district is dedicated to the
#GoOpen movement, which supports sharing educational resources."

"It's all about #OER—Open Educational Resources—and open
source",
Dr. Nagler explained. "We use the videos here in the district, and we throw
them out to the world where everybody can use them."

Look
up "Dr. Nagler" on YouTube, and you'll find lots of them. He's the
star, as both a mentor and an animated character. There's even one video
where he talks with his own disembodied brain, which speaks through his
signature goatee. He explained further:

An important context is that there is no central repository of educational
materials in this country, because they're all locked up by proprietary
publishers. What we're doing here is a way to get around that. And I have a
lot of flexibility. I can market MC2 as a school district entity, and not
worry about all the copyright restrictions. It's all made to share.

I asked him, "What happens after these kids graduate?"

They're going to change the world. That's clear. We're also all dealing
with astronomical change in the technical environment along the way.
Constantly. This makes everything very hard to predict. Look at my 2019
high school graduates. They started Kindergarten in 2006. Even from just
2006 to 2009, the technology advances were astronomical. And then look what
happened in the next ten years. Huge. So if I start planning now for where
Kindergarten kids will come out at the end of the next 12 years, I'm
already lost. But if I trust the process we have in place already, I'll be
fine. We're driving it, and the kids are driving it too. It's a constant
cycle.

I replied, "We also live in a world where giant companies are working to
contain those kids' agency inside corporate silos. Some of those silos also
spy on everyone constantly. How do you deal with that?"

The common denominator is CS, and the flexibility within it. There's
freedom in that. I'm not going to force you to master, say, just one
language. I'm going to get you on a platform where you can play with any
and all of them, learn quickly and well, and apply whatever language you
like toward building something. And because we're merging the making and
the coding, your next question will be, "What will this code do?" The
answer is, computational thinking will always push you toward solving
problems. If you look at the big picture, content already is readily
available to every kid. And content has always been our specialty, as a
school. But with CS, the kids learn to master that content in many ways.
That's key. Kids need to know and feel they're on top of things, that they
Own their Own. You can't lock up that kind of confidence and competence.

I asked, "What about curricular necessities? The mandates that come down from the
federal and state level?"

Dr Nagler replied, "We're still a public school, and we do have formalities. For
example, here in New York every kid has to pass the state Regents
Exam. We teach to that, but we also make sure there's no way a kid
graduates without exposure to computer science."

My next question to him was "And you trust that's going to equip them, once
they're out?"

It's more than that. Working with kidOYO, we've developed something that
not only should be replicated everywhere, but needs to be. Here's the
important thing: there aren't enough people who know computer science who
can also teach it. So when you figure out a way to virtually do it, to
scale the knowledge outward for everybody, it's a big deal. The investment
I make here probably cost me one teacher's salary. But it scales to the
whole district. In fact it's the only way to scale up computer science
through schools, because the current credentialing system is too slow, too
top-down, and formal training is too far behind the curve. The kids and
their mentors are moving too fast for that.

Watching the kids, and listening to this, made me wish I could show it all
to John Taylor
Gatto, possibly the most highly regarded (and often awarded)
teacher in the history of New York. Gatto famously quit his job after 25
years in protest against what he listed as called the seven lessons he was
actually paid to teach:

	
Confusion

	
Class position

	
Indifference

	
Emotional dependency

	
Intellectual dependency

	
Provisional self esteem

	
That you can't hide

What I saw in both kidOYO's and Mineola's approaches were well crafted ways
to fight all of that. Their systems are rigged so every kid progresses and
every kid succeeds.

John Taylor Gatto died last October, but I hope his ghost was listening a
few minutes earlier when Melora explained to me:

We have no lowest common
denominator, because everyone succeeds. There are 12-year olds in this
program that a 7th-grade teacher wouldn't look twice at in an ordinary
classroom, but in fact are outstanding programmers. And choice is key.
When Dr. Nagler brought this program to his schools, it wasn't just for a
select few kids. He wanted it to be open to everybody. And everybody has
the ability to choose anything they want. It's a totally different ecosystem
from what you'll find anywhere else. And he's gracious enough to reach out to
other school systems to help them break down their own classroom walls. One
of the things he preaches is that you have to believe. That's a requirement
of being on the cutting edge. The failing forward principle works for
everybody too. It's a model that works.

[image: Co-hacking]

Figure 3. Jordan Chaver and Connor Scott, Co-hacking in the Coding Center at Mineola
Middle School

The spirit of helpfulness and failing forward also fosters kids' confidence
that they can weigh in with solutions of all kinds. To show me how that
works, Devon took me over to a table where Jordan Chaver and Connor Scott,
a sixth-grader and seventh-grader, were working together on something.
Devon said:

These two guys are your app builders. They came with us out to
Stony Brook University for some of our software program there. Jordan
pitched them on building an app on iOS, which he already knew how to do.
But there was not a single mentor in the room who knew what Jordan was
trying to do, because in university CS, they don't want to work in a closed
environment. So we transitioned the challenge over to the web, because what
we really needed was a web-based app with database functionality. So that's
what these kids are building here. And there isn't just one app. There's a
set of them. There's one they call Social Emotional. There's another called
Class Dash.

Then Devon asked the boys to demo Class Dash. Connor pulled up a
Chromebook, angled it toward me and said, "Let's say you have a research
paper. One that's big and complicated. And you press Submit. Behind this
you have something kind of like Dropbox, where you can share documents."

Devon explained, "They're sharing all their class assignments in a
firewalled white-spaced environment where they don't have access to their
emails. So this is a simple way of sharing inside that environment."

Connor continued:

 You also have this five-character ID code. Jordan can
type in the code, and he gets the same exact document. So can anyone else
with the code. The idea is to share something with the class in a way that
avoids complications. We're also in a class play, Once Upon a
Mattress,
which is based on the Princess and the Pea. I'm the Prince and Jordan is
the Wizard. So Jordan made this schedule for all the performances, where
you can buy tickets, and so on.

On his Chromebook, Jordan showed me his
page with the schedule next to a graphic of the play's title. He then gave
Connor the five-digit code for access to the schedule, which then came up
on Connor's Chromebook. (A picture of that is here.)

Connor again: "Right now, I'm adding a way to lock a document. Let's say
that Jordan is the teacher and he finds a spelling error in my document.
I'll add a button you can click on to see if anybody has updated the
document."

Jordan said:

Let me tell you more about Class Dash, which I did for Stony
Brook. It's a student-teacher companion app. It has multiple uses, but the
one that's currently available is called Schedule. It covers notes,
teacher, room, and supplies. I play drums, so drumsticks are an example of
supplies. I also have Instant Messaging Teacher. The idea is, if you have a
homework question, instead of emailing the teacher and getting a response
the morning after, the teacher gets a push notification on their phone.

Class Dash will first hit the market in April as an iOS app, because that's
Jordan's plan. Other versions will come after that.

Joseph
Malone, also 12, is at the same table, hacking AI algorithms.
Devon said, "Joseph here is spinning up his own virtual machine and
generating algorithms to train his AI to run his scripts. He's going into
OpenAI, playing with AI algorithms, modifying them, and putting them to
use. It's neat stuff, and it's also huge."

[image: Joseph Malone]

Figure 4. Joseph Malone

Melora told me Joseph is also helping out by volunteering a stream of
challenges, solutions and badges for kidOYO courseware. "He does all the
work himself, and makes it open and available to everybody."

"We're fully networked here," Devon added. "No need for back-end support."
Meaning no external corporate dependencies. kidOYO and its
participants—learners (they aren't called students), mentors (they
aren't called teachers), parents, schools—all work together and for
each other, as a "community of communities".

They're also not moving at the speed of anybody's clock or anybody's
class. Although they're sure to change the world, that's not the goal. In
fact, there is no long-term goal. The journey is truly the reward, and the
journey is called the learning path. That's what matters. It's not seen, or
built, as a way to plow through the status quo, even though that's one of
the things it does. Neither Mineola nor kidOYO want to burden kids with
anything other than the need to master their digital worlds and to
advance their mastery constantly.

The Middle School was the second one we visited in Mineola. The first was
Hampton Street School, which is Pre-K to 2nd grade. There we saw clusters
of five- and six-year-old girls
and boys
in the library's Coding
Center,
hacking away on school-issued tablets using Scratch, which is free (as in
both liberty and cost), open source and runs on anything. They were doing
this both by
themselves and collaboratively.

With kidOYO, all the kids know they are working to expand both their own
skills and those of other kids. There also are rewards along the way, such
as on-screen fireworks and badges. After a bit of working on their own, the
kids' work is shown on a screen for review by each other and Melora, their
mentor. (The learner/mentor relationship is central to the kidOYO system
and practiced in the Mineola school system as well.) Devon later explained
what was going on: "Melora was reviewing the process of getting challenge
submission feedback from mentors, as well as introducing them to a new app
called Sprite Editor that we recently released for kids to create art they
may want add to their Scratch, Python or Web-based projects. Often it's
their own video game character art."

When one
boy failed a particular challenge, he embraced it, knowing that
FAIL means "First Attempt In Learning". Three
girls came over to help the
boy out. It was interesting to watch how they knew their job wasn't to jump
in with the right answer, but to help the boy learn what he didn't know
yet, so he would have the satisfaction of succeeding for himself. This was
far more sophisticated and mature than I normally would expect of
2nd-grade kids. Instead, I would have expected kids that age to show off what
they knew or one-up each other. But that's not how the kidOYO approach
works.

[image: Kids Helping Each Other]

Figure 5. Kids Helping Each Other "Fail Forward"

Have you ever played the red/black
game? It tends to be taught in
self-improvement retreats and workshops to show there's more to be gained
from cooperation than from competition. My point in bringing it up is that
it's damned hard to teach adults how to deal with each other in ways that
are as empathetic, helpful and vanity-free as what I saw as normal behavior
among these little kids.

At Hampton Street, Devon spent most of his time working with a 2nd-grader
named William Ponce, who clearly was grooving on what he was doing.
Later, Devon wrote to explain what was going on:

Here is
William Ponce's portfolio. Every kid has one. You can see
badges he has earned. If you click on one of his "Mastery Badges", you will
see the "Learning Pathway" that he navigated in earning it, displayed as
evidence in the badge. Clicking on the micro badges will also show you the
badges earned on his way to the mastery badge.

In
this photo, you see William earning his first Mastery Badge. Since we
left that class, you can see he has earned two more already!

[image: Devon Loffreto Mentors William Ponce]

Figure 6. Devon Loffreto Mentors William Ponce

Our third stop was Mineola High School, which has a Fab
Lab and
manufacturing facility. "We actually source product from them", Devon told
us on the way over. "For our
store. Coding is the underlying
infrastructure, but it's applied everywhere."

The Fab Lab is beyond impressive. It's as big as a lumber yard and has lots
of machinery, materials and students making stuff. Ken Coy, one of the
five teachers who collaborate to run the lab, explained:

We do it all.
Welding, electronics, coding, Arduino, hand tools, computer tools. We bring
it all together here. We have all the old traditional tools that were
around in wood shop days—drill press, band saw, lathe, tools for
sanding—plus all the new stuff that's both manual and computer
controlled. Large format printers, laser cutters...

When I asked him about Linux, he brought me over to the shop's Linux CNC
(Computer Numerical Control) computer, running
Ubuntu and attached to a
Probotix controller and a router
(not a network router, but a powered
woodworking tool that cuts with bits or blades). In the design class space,
Andrew Woolsey (@WoolseyDesigns) showed me a CNC controlled laser cutter
where the students were tracing, carving and printing out parts for art
projects, signs and much more (which occupied students working on adjacent
tables). He also showed me a printer as wide as a piano churning out
student portraits and posters of amazing quality, including ones for the
Mineola Robotics Team (@mineolarobotics), which is
always competitive (or
so it appeared, given the awards and posters hanging on the shop wall).

[image: Fab Lab]

Figure 7. Linux in the Fab Lab

I don't often see stuff that makes me wish I was 14 again, but
Mineola High School did the job. Walking around the Fab Lab, the library
and the halls, I didn't see a kid who wasn't upbeat and engaged, or a
teacher who wasn't the same.

To me, however, this isn't just about education. Or learning. It's about a
sea change in the world, caused by digital technology in general and Linux
in particular. And it's not a small one. As sea changes go, this one is on the
scale of Snowball
Earth or maybe larger.

Not long ago, I was talking with Joi Ito, who runs the MIT Media Lab, about
historic precedents for what we might call our species' digital transition:
the one by which we become digital as well as physical animals. Was it as
big as the Industrial Revolution? Movable type? Writing? Speech? Walking on
two feet? Joi said, "I think it's the biggest thing since oxygenation."

Oxygenation caused life as we've known it since then. What is the digital
transformation causing now?

Marshall McLuhan taught that our tools are extensions of our selves, and
that they shape us after we shape them. He also said every useful new
technology "works us over completely". That's what's happening in our new
digital age, and it's still just beginning.

At this early stage, it's easy to take a dystopian view of what becoming
digital does to kids. It is also easy to take a utopian one. Both are
extreme outcomes that surely won't happen. But what will?

Aristotle said there were four causes: material (what something is made
of), efficient (what makes it happen), final (the purpose) and formal (the
form or design of the result).

These kids' learning paths are full of material, efficient and final
causes. To them, those are computer programs (material), programming
(efficient) and rewards at every step (final). But the formal cause I saw
behind them, the design of OYO itself, is a great leap forward and outward
in the useful work of individuals and the societies they make.

There will be downsides. One of the ways new technologies work us over,
McLuhan said, is with bad outcomes. We already can see some, such as the social
isolation that comes from staring at glowing rectangles all the time. Every
parent I know laments the degrees to which their children are lost in the
phones and tablets they carry everywhere, and how they can so easily hurt
each other through unkind things said at safe distances in the physical
world and zero distance in the networked one.

But the OYO approach maximizes positive social interaction by making it
constructive for everybody. OYO doesn't work unless people are good to each
other and good to themselves—and by making stuff constantly and being
creative.

[image: Our Future]

Figure 8. Our Future's in Good Hands

If this approach spreads, and I expect it will (mostly because the old
industrial education system is better off adopting than competing with it),
the hands in which we are leaving the world will be good ones.

Linux...Do It for the Children

A rundown of some fun and educational Linux software for kids. By Marcel
Gagné

I'm probably going to regret that title. I've been making fun of those
words, "do it for the children" for years. It's one of those "reasons"
people turn to when all else has failed in terms of getting you to sign on
to whatever lifestyle, agenda, law, changes to food—you name it. Hearing
those words draws the Spock eyebrow lift out of me faster than you can say,
"fascinating".

Okay, pretend that I didn't start this article with that comment. Let's try
this instead.

As I write this, my youngest son is 11 years old. He has grown up in a
magical world of electronics that delivers what he wants to watch when he
wants to watch it. Access to the web is something he always has known. Until
very recently, he never had seen television with commercials. A couple
years ago, my wife and I thought it was something he should at least
understand, so we turned to a live TV program for the first time in I don't
know how long. He was not impressed with the interruptions. Now, with
multiple Google Home units in the house, including one in his bedroom, the
on-demand magic is pretty much complete.

He started playing video games when he was three and was scary good on my
PS3 by the time he turned four. He started using a laptop when he was five,
and that laptop ran Linux. I'm pretty sure he was using Kubuntu, but it
might have been Linux Mint. Either way, it was a KDE Plasma desktop. In
short, the world of tech is nothing new for him, and Linux is just what
people run. His school has Chromebooks, and the few run-ins he's had with
Windows left him cold.

Kids and Linux? Absolutely.

GCompris

Much earlier on, however, I took advantage of some of the simpler
educational games available on Linux. One of my favorites is GCompris, an
all-in-one collection of educational games for children, geared for ages
two to ten (Figure 1). By the way, GCompris is pronounced like the
French words, J'ai compris, and it literally means, "I have
understood", paying homage to its educational focus. I've mentioned
this one in the past, but GCompris is a living, breathing project, actively
developed by the KDE community with a new release just this past month.

[image: GCompris Screen]

Figure 1. GCompris is a suite of educational games for kids.

When you start GCompris for the first time, it asks you for the
language in which you wish to work. Along the top, an icon bar with animal
characters provides a list of categories, such as reading, math, amusements,
puzzles, computer skills, discovery activities and more. Clicking on any of
those choices causes a list of related games or activities, also with
colorful icons, to be displayed below. There can be quite a few activities
per category, so you may need to scroll up and down to see them all. GCompris comes with more than 100 different activities,
making it a must for your young penguinista.

Along the bottom is a smaller menu with some large icons related to the
program itself including shutdown, information, help and settings. You can
hide this by clicking on the bars at bottom left. By default, GCompris
starts full screen. To force a resizable window view, use this command:

gcompris-qt -w

KTurtle

Once your kids are past their early years, they might find themselves
wondering how to make their own games. This is when you introduce them to
programming, of course. Not far beyond the basic computer skills training
in GCompris, you might introduce them to KTurtle, a simple programming game
based on Logo. I call it a game, but this is a real programming environment
and a great place to start (Figure 2).

[image: KTurtle Start Screen]

Figure 2. KTurtle Start Screen

On the left of the interface is the editor pane, where you type
your Logo code. The language is simple and flexible, and it's able to work in
the student's native language. In the middle is the canvas where the
results of your code take place. The turtle icon drags a virtual pen that
you can pick up and put down. When it's down and you tell it to move in one
direction or another, it draws lines. For instance, look at the code below:

reset

repeat 3 {

forward 100

turnleft 120

}

The reset clears the canvas, assuming something already is there.
Then, you enter a loop that repeats three times. Go forward 100, turn left
120 degrees, and repeat. The result is a triangle (Figure 3).

[image: Turtle Triangle]

Figure 3. A Turtle Triangle

KTurtle comes with its own manual, which you can access from the Help menu
along the top. To get started, several examples are included, and you
can get to those by clicking File→Examples. If you want to
get really fancy and see just how cool a turtle icon drawing lines can get,
click File→"Get more examples" to download code from the internet
(Figure 4). You can sort the list by rating or number of downloads. You
also can search by name if you know what you're looking for. The "Sierpinski
Triangle" and the "Fractal Tree" are both educational and fun to watch when
you click "Run".

[image: KTurtle Programs]

Figure 4. Installing other KTurtle programs. Under the main window, you can
see the included instruction manual.

Scratch

Another great introduction to programming is the Scratch language,
developed by the "Lifelong Kindergarten Group" at MIT, the Massachusetts
Institute of Technology. You can find this one in your distribution's
repository. I installed it with a simple sudo apt install
scratch.

Scratch is a graphical programming language where you drag program blocks
into an editor window. The blocks click into each other like digital LEGO
blocks, and from those blocks, you can create wondrous things, like my son's
"Cat Simulator" (Figure 5).

[image: Cat simulator]

Figure 5. The cat simulator—it's like the real thing, only not

The cat simulator includes background artwork that he created, sound clips
(such as my son saying, "Down!" when the cat jumps up on things) and other
silliness. When you start Scratch, you see a multi-paned window. On the
far right and top is the "stage" or canvas on which your program
visually executes. Below that is a window that shows the active "sprites"
(or "costumes") in use on the stage. You can bring in additional sprites
from several categories, many of which are included with the program (Figure 6).

[image: Scratch Sprites]

Figure 6. Scratch Sprites, or Costumes

In the middle of the program is the editor window, into which you will drag
blocks that will tell what backgrounds to load, what sprites to interact
with, and what sounds to make. In all cases, you can create your own with
the included editor—a simple but highly flexible paint program. You
also can record sound clips, although again some are included with the
package.

To the left of the editor window, the various command blocks are arranged
in eight different categories, such as motion, looks, sound, variables and
so on (Figure 7). The cool thing about Scratch is that you can
experiment with making things happen by just dragging blocks and creating
"scripts" for your "sprites"—for example, when you press the m key,
play the "meow.wav" sound file. When you press another key, you can have
the sprite move to a particular place, turn in a specific direction and
move. When sprites collide or touch the edge of the screen (look in the
"sensing" category), you drag other blocks into place to make other things
happen. Everything that
you'd expect in a programming language is here, including logical constructs
like "if then else".

[image: Scratch Command Screen]

Figure 7. Scratch Command Block Categories and Sprite Scripts

OLPC and Sugar Labs' Sugar

Open-source proponents have long believed that free software can be a
boon to children at every stage of development—both in terms of age
and
also financially. Not far from where I live, there's the "Computer
Recycling Centre", where volunteers take old computers, fix them up, load
up Linux (usually), and make them available to people who otherwise could
not afford them.

One of the more interesting child-oriented open-source projects was OLPC,
or "One Laptop Per Child". Much has been written about this bold and grand
plan to create a small, insanely durable laptop, and to put untold numbers
of these laptops into the hands of disadvantaged children around the world
for $100 per laptop (Figure 8). The project never achieved its lofty
goals for reasons that would fill a book, but it did leave some interesting
DNA behind in the form of free software.

[image: OLPC XO-1 Laptop]

Figure 8. The OLPC XO-1 Laptop
(Credit, Wikipedia "Fuse-Project"; upload to OLPC-Wiki: OLPC user "Walter" -
http://wiki.laptop.org/go/Image:Green_and_white_machine.jpg

Sugar is not an operating system; it's a simple and feather-light desktop
environment, designed to be the interface to a Linux distribution that
powered the OLPC computers. Under the surface of the current Sugar live
distribution is Fedora. You can download and install the Sugar Labs ISO onto
a USB stick and boot from it. If you want to get a feel for the lightness
of being that is Sugar, it works like a charm when booted from a Raspberry Pi.

When SOAS (Sugar on a Stick) boots up, it asks for your name and takes you through a process
of selecting a colorful icon to use to identify yourself. It then asks for your gender
(you can pass if you so choose), and finally, it asks for your grade. That
final choice starts at preschool, works its way through high school and
(somewhat anticlimactically) ends at adult. I told it that I was in Grade 2.

Sugar is meant to be simple and unobtrusive. There are no stacking windows
or objects to move around—what you might call the classic desktop
metaphor. This does, strangely enough, add a level of confusion to working
with the interface when you've grown up with what is thought of as a classic
desktop (for example a Start menu, panels, status bars and so on). Instead, the Sugar
desktop uses the concept of "Community". Press F1 to access your
neighborhood (local network), F2 to jump to group activities (for example, classmates) and F3 to open your personal home screen. This is a circular
palette from which you can choose whatever activity you desire (Figure
9). Hover over one of the icons, and a pop-up will tell you what it does.

[image: Sugar Interface Menu]

Figure 9. The Sugar Interface Menu

Tons of activities are built in to Sugar: programming
environments like Python and Logo, personal finance, journals, games,
communications and more. There's even an ebook reader that ties in to the
public domain collection at Feedbooks and the Internet Archive, from which
you can download from a networked catalog of choices, such as action,
science fiction, or juvenile.

Remember that this layout was designed to take maximum advantage of small,
low-resolution screens, hence this no window design. To find out what
you've got open and to switch between users, places or applications, press
the F6 key to pull in a frame that surrounds the central activity (Figure 10). Along the top are places and activities, to the right are the
people in your current group, to the left are places, and along the
bottom, you'll see notifications and controls for network, volume and a
handy way to take screenshots.

[image: Sugar Desktop]

Figure 10. The Sugar "Desktop" Frame View

Look again, near the top on the right-hand side. Click the little stick
figure there, and a drop-down menu will appear from which you can log out,
shut down the computer, or change your personal preferences (Figure 11).
What I'd like you to take from this particular screen is that Sugar,
although
designed with kids in mind—it was, after all, designed for the "One
Laptop Per Child" initiative—isn't just for kids. Under the simple
interface, there's a real operating system.

[image: Sugar Settings Menu]

Figure 11. The Sugar User Settings Menu

As you can probably tell from the screenshots, I ran Sugar on a Stick
from a virtual window using the ISO I downloaded. It was as simple as doing
this:

qemu-system-x86_64 -enable-kvm -accel kvm -vga qxl -m 2048
↪-cdrom ./Fedora-SoaS-Live-x86_64-29-1.2.iso

Note that the above is all on one line. Since Sugar is a desktop
environment, you also can just install it to your PC. As I am currently
running Kubuntu (that might change by the time you read this), it was as
simple as typing:

sudo apt install rdesktop xrdp sucrose

Yes, I know it's called Sugar, but the package name is sucrose. The first
two packages are there because I want you to be able to run it in a virtual
window, with your child's user name. Okay, now that you've got that
installed, you can create a user for your child. Let's pretend you
have a kid named Francois (hey, it could happen):

sudo adduser francois

Now, set up a default environment, in this case, "sugar", like
this:

sudo su - francois -c 'echo sugar >> .xsession'

If you created your child's account using the adduser command, as above,
the system will have asked you for some bits of information including a
password. You'll need that for the next step:

rdesktop -g 1200x900 -u francois -p the_password 0

Obviously, the_password is the password you chose. This command will
create a session on your current desktop using a 1200 by 900 geometry,
logged in as your child. From here, you can experiment with the Sugar
environment before you turn it over to your child. It's not complicated,
but it's definitely different. The downside to this approach, running the
Sugar environment as "just a desktop" versus actually downloading the
Fedora Sugar spin, is that you aren't necessarily going to have all the
apps loaded. You'll certainly get a feel for Sugar, but your main menu
"wheel" will likely contain far fewer apps than what you see in the Sugar on a
Stick distribution.

Oh, and remember the Scratch programming language from earlier in this
article? Remember KTurtle before that? You can access an interesting hybrid version of the
two called "Turtle Blocks" via Sugar (Figure 12).

[image: Turtle Blocks]

Figure 12. Turtle Blocks, a Kind of Cross between Scratch and KTurtle
(Logo).

Conclusion

There really is no downside to getting your kids started with a Linux
system or desktop. The staggering amount of free software (gratis, not just
libre) will keep them occupied and learning for many years to come. Oh, and
there also are tons of games; you may have missed that with me
concentrating on the whole learning aspect of things.

Speaking of years, Happy 25th Birthday, Linux Journal, and a great many more!
I first started writing for the magazine back in 1999, and I am thrilled to
have been part of the journey. I don't know whatever possessed you to let
me into the writing room, but hey...party on, dudes!

Resources

	
GCompris

	
KTurtle

	
Logo
Programming Language (Wikipedia)

	
Scratch
Programming Language

	
Sugar

 About the Author

Marcel Gagné is Writer and Free Thinker at Large. The Cooking With Linux guy. Ruggedly
handsome! Science, Linux and technology geek. Occasionally opinionated.
Always confused. Loves wine, food, music and the occasional single malt
Scotch.

Thoughts from the Future of Linux

By technology standards, I'm an old man. I remember when 3.5" floppies
became common ("Wow! 1.44MB! These little things hold so much data!").
My childhood hero was Matthew Broderick war-dialing local numbers with his
300-baud modem. I dreamed of, one day, owning a 386 with more than 640k of
RAM. At the pace that computing moves forward, I'm practically a fossil.
So, if you were to ask me, "What is the best way to encourage kids, today,
to get into open source?" Well, I honestly haven't a clue. By Bryan
Lunduke

So, "What do kids want to do with Linux?"
And, "Where will the next generation take open-source computing?"

I don't have good answers to those questions either. I'm just too stinkin' old.
No, to get answers to those questions, we need to talk to the people that
actually know the answers—the kids themselves.

Specifically, I mean people still young enough to be "the next generation" while
old enough, with sufficient experience, to understand Linux (and open
source) and create well founded opinions, goals and dreams of where Linux
goes from here—perhaps young adults nearing the end of high school or
just beginning their college (or work) lives.

Those are the people that will be running open source in 20 or 30 years.

After Linus Torvalds officially retires, these kids will take over Linux
kernel development. When Richard Stallman finally calls it quits, these
kids will push the ideals of the Free Software movement forward. And, eventually, I
(and the rest of the Linux Journal team) will retire—hopefully to
somewhere with a nice beach. And these kids (and the rest of their generation)
will be the ones reporting on and writing about Linux.

So, we found three kids (young adults, really) who are eating and breathing
Linux and open source in the United Kingdom: Josh Page, Samadi van Koten
and Matthew Lugg.

Gentlemen, introduce yourselves to the world, and give us the quick
overview of what you're currently doing with Linux and open source.

Matthew Lugg:
Hi, my name's Matthew. I'm a year 11 student living in Devon, and I tend to
spend most of my free time either coding or playing games. I've been using
Linux—specifically Debian—as my main desktop OS, as well as on my VPS,
for around a year now (both for dev and for gaming), and I've never looked
back!

Josh Page:
My name is Josh. I'm in year 11, and I use Linux for networking mainly, VMs,
routing and the like.

Samadi van Koten:
I'm Samadi van Koten, known online as vktec. I've recently finished my A
levels and am currently taking a gap year before going to study Computer
Science at Bath University this September. I'm currently in a software
development contract at a multinational company that makes GNSS test
equipment.

Though I do occasionally help out coworkers with Linux issues, most of my
Linux use is at home. Right now I'm running Linux on both my laptop and my
desktop. My distribution of choice at the moment is Void Linux, though I've
used many others including Debian, Arch and Ubuntu.

In the past, I've performed significant customization to my whole
environment, from shell to text editor to window manager; however, I now
prefer to keep my configuration files as small as possible. I'm using the
Cinnamon desktop environment, Vim and Bash, all without much customization.

Bryan Lunduke:
Here's a deceptively simple question for the three of you: Why Linux? What
brings three young whippersnappers (saying that word makes me feel like I
need a big, grey beard) to open source?
How about you, Matthew?

Matthew:
So, essentially, what I like about Linux is that it doesn't hide what it's
doing from you. On Windows, the system is constantly doing stuff in the
background that it doesn't tell you about—for instance, while I don't really
consider myself that concerned about privacy (I accept that the NSA knows
everything about me, and while I'd rather they didn't, I can deal with it),
I don't like knowing that Cortana is sitting in the background, eating up
resources by sending everything I do to M$. Another thing it does in the
background is updating, which, while it's become a bit (lot) of a meme, is
genuinely, to me, one of the worst experiences I've had with OSes in
general. But on Linux, that issue isn't there at all. So long as I apt
update && apt upgrade every once in a while, everything's fine. It happens
when I tell it to, and never any more.

Bryan:
"When I tell it to, and never any more." That's a very "UNIX"-y idea.
I love it.

Matthew:
Also, just a minor thing, but as opposed to Windows updates, I don't have
to wait for hours on end with an unusable machine—in fact, you only
really have to reboot for kernel upgrades, and it saves hours. We have a
Windows PC in the house, and the constant reboots and crashes whilst
updating are unbearable!

I'm also very much a fan of the ability to customize Linux. I'm currently
using a tiling WM (impossible on Windows), with custom keybinds (impossible
on Windows), with custom scripts to control my GPU fan just to the point I
like them (very difficult on Windows). Plus, I find Linux to be more
performant than Windows for desktop use (for example, explorer.exe is very slow and
clunky nowadays), including, ironically, running Windows-only software
through Wine—even 3D games, for which I use Valve's Proton.

Of course, I've not even mentioned the entire FOSS nature of Linux yet. I
think free software truly is the way to go. In fact, it's been directly
helpful to me—I've been playing with OS development in my spare time, and
the Linux kernel source code being open is ridiculously helpful. I also
love how efficient it makes patching and such—I'm nowhere near smart
enough to contribute to the kernel, but I love the fact that I
theoretically could, and that other people can and do!

Bryan:
That was...an astoundingly well put set of reasons for using Linux and
free software! I'm having one of those "the future is in good hands"
moments. Over to you, Samadi. Why Linux?

Samadi:
The simplest answer is that I use Linux because it's easy to use. That may
seem strange to some people, but for me, it's the truth. When something goes
wrong with a Windows machine, your best shot is restarting things until it
works, just like the IT Crowd joke: "have you tried turning it off and on
again?"

I have similar issues with modern versions of macOS: Apple "simplifies"
things to try and make them easier to use, but at the expense of making
more complex tasks cumbersome or simply impossible. One example of this is
Apple's Disk Utility: it used to be a fantastic partition manager—one of
the best graphical ones I've used—but now it's so oversimplified you can
barely do anything with it.

Linux, on the other hand, provides nice graphical user-friendly front ends,
but it doesn't hide the underlying systems from you. If you want to configure
your networks manually using /etc/interfaces you can, but if you don't,
there's NetworkManager. If you want to run the system without graphics, you
can, but X11 and Wayland are easy to set up and use.

Bryan:
Yes! That is so, absolutely true! In ye olden times, Linux was
flexible and configurable, but the user interface wasn't exactly the most
easy to use or pretty. Nowadays, Linux has some of the most visually
stunning and easy-to-use interfaces, but it still retains those amazing
underpinnings that let you tweak (and even recompile) absolutely
everything. 100% with you. Please, continue!

Samadi:
Everything about Linux is customizable to the way you want it, and while I
don't tweak my system to the extent I used to, I find it invaluable to know
(or be able to easily find out) exactly what my system is doing and how to
change or fix it.

As for the reason I use Linux for servers, well, it's the only operating
system I'm familiar with that I believe is suited to that environment.
Windows or macOS have graphical interfaces, even on their server versions,
which I find unnecessary. There are reasons for that of course—those
systems are not geared towards command-line use and almost every program
that runs on them is graphical—but it imposes a huge overhead in terms of
resources, which could be better spent on the software you actually need
and want to run. Of course, BSDs are also an option, but I'm not very
familiar with them, so I wouldn't be able to run one on a server.

Bryan:
I think you are very much not alone in your reasoning, Samadi. Over to
you, Josh. Why do you use Linux?

Josh:
I use Linux on my servers because it is really simple to set up something
quick, and it doesn't need as many resources as a Windows Server, and it's
far more powerful. I can run 5–10 Debian VMs for the same resource cost as
one Windows VM. This makes my limited server resources go further, while
still allowing me to run what I want/need to keep my services intact and
running smoothly. I also like FLOSS software, and I try to use it where
possible (though it is not always due to school systems being in place),
and I can know that I am not being tracked by Google or other agencies
(which is why I self-host as much as possible).

Bryan:
I've got to ask, what sort of things are you using Linux virtual machines
for?

Josh:
My Linux VMs include a basic internal web server, Jellyfin (an Emby fork
that is staying FLOSS, even after Emby has gone closed-source), game
servers, internal web servers for various things. My hypervisor is Proxmox,
which is of course Debian-based, and even my router is VyOS, another
Debian-derived OS. (It may be evident that Debian is my distro of choice.) I aim
to set up more monitoring for my network soon, using FLOSS as much as
possible, naturally, and trying as much as I can to move away from
externally hosted services, for cloud storage, email, and my online social
needs.

Bryan:
Oh, man. I can relate to so much of that. You're striving for many of the
same goals as many grizzled veterans of my generation—moving away from
hosted silo services, toward more free software, and self-hosted and
distributed services.

Ok, so I'm very curious. What got you started with Linux?

Samadi:
I first learned about Linux when I was 9 years old, from a guy who lived
across the road. I was just getting into programming at that time, and he
was your typical grey-beard: he ran Linux and open source everywhere he
possibly could, though he especially seemed to like old Macs.

I didn't actually start using Linux until a few years later though, when my
grandmother gave me a Raspberry Pi for my 13th birthday. My first
experience of desktop Linux was Lubuntu, which I ran on a 700MHz machine
that I'd rescued from my old primary school when they were throwing out
some old PCs.

Bryan:
That's incredibly cool to hear about people getting started with Linux
using a Raspberry Pi. I know that was one of the goals of that project,
and it's great to see it work! How about you, Matthew?

Matthew:
I got started with Linux on Raspbian probably around five years ago, and I went
on to full-blown x86 Linux probably about a year later. At first, I just
used it for servers, but over time, I began to look at it for desktop use. I
was stubborn at first, but I finally made the full switch about a year ago.

Bryan: Wow. Both of you got started on Raspberry Pis? That little thing really
does the job!

Now that you've been eating and breathing Linux for a while, if you could
change just one thing, what would it be?

Samadi:
Picking just one is hard! I'll be the first to admit that Linux and open
source are a long way from perfect. Some fields, such as gaming, audio
production, video editing, etc., still rely heavily on proprietary software
that only runs on other platforms. Taking that into account, one thing I'd
definitely want improved is Wine. It's come a long way and is fantastic,
but it's still not perfect. Of course, in the long term, I'd rather the
software that was needed ran natively.

I'm a hobbyist music producer, so improvements to software such as Ardour
and LMMS would definitely be on my list. I also think the Open Source
community is a bit lacking in art software; GIMP and Inkscape are
fantastic, but they're still not on the level of offerings by Adobe or Affinity.

Bryan:
One final question: when you look ahead to whatever comes next for
you—work, school, Intergalactic Space Piracy, life in general—do you see
Linux fitting in to that?

Matthew:
In the rest of my education, definitely. Most schools use Windows, which to
be honest, I don't massively mind in general, but Linux is definitely my dev
platform of choice (and I'm studying computer science, maths, etc.). After
that, ideally, yes! It might not be specifically Linux, it depends where I end
up, but wherever I work in future, I'd love to use FOSS and UNIX-like
systems,
because I find them so much simpler and more logical to use than
their counterparts. Even macOS, although made by one of the greediest companies
on the planet and being very limiting, is still very rich in its
command-line interface, but, of course, ideally it'd be a Linux system. Intergalactic
Space Piracy sounds fun though. I'd be up for that.

Samadi:
Absolutely. I'm planning to start a Computer Science degree in September
and will be using Linux heavily throughout that. Past that point, I'm
hoping I'll get the chance to use it in my work as well. The only thing
that would stop me is employers that require the use of company-mandated
Windows machines, but hopefully I'll be able to find a job that lets me
use Linux!

Bryan:
Ha! The company-mandated Windows machine is the bane of many Linux and
free software enthusiasts' existences! I swear, the USB thumb-drive industry
makes a pretty penny off Linux users smuggling in live versions of their
favorite distros to boot on work computers.

Matthew, Josh and Samadi, thank you for taking some time to talk Linux with
me, and best of luck in making the world a little more Linux-y in the years to
come.

 About the Author

Bryan Lunduke is a former Software Tester, former Programmer, former VP of
Technology, former Linux Marketing Guy (tm), former openSUSE Board
Member...and current Deputy Editor of Linux Journal as well as host of the
(aptly named) Lunduke Show.

[image: Bryan Lunduke]

Kubernetes Identity Management: Authentication

You've deployed Kubernetes, but now how are you going to get it into the hands of
your developers and admins securely?
By Marc Boorshtein

Kubernetes has taken the world by storm. In just a few years, Kubernetes
(aka k8s) has gone from an interesting project to a driver for technology
and innovation. One of the easiest ways to illustrate this point is
the difference in attendance in the two times KubeCon North America has
been in Seattle. Two years ago, it was in a hotel with less than 20
vendor booths. This year, it was at the Seattle Convention Center with
8,000 attendees and more than 100 vendors!

Just as with any other complex system, k8s has its own security model and
needs to interact with both users and other systems. In this article,
I walk through the various authentication options and
provide examples and implementation advice as to how you should manage
access to your cluster.

What Does Identity Mean to Kubernetes?

The first thing to ask is "what is an identity?" in k8s. K8s is very
different from most other systems and applications. It's a set of APIs.
There's no "web interface" (I discuss the dashboard later in this article).
There's no point to "log in". There is no "session" or "timeout".
Every API request is unique and distinct, and it must contain everything
k8s needs to authenticate and authorize the request.

That said, the main thing to remember about users in k8s is that they don't
exist in any persistent state. You don't connect k8s to an LDAP directory
or Active Directory. Every request must ASSERT an identity to k8s in one
of multiple possible methods. I capitalize ASSERT because it will become
important later. The key is to remember that k8s doesn't authenticate
users; it validates assertions.

Service Accounts

Service accounts are where this rule bends a bit. It's true that k8s
doesn't store information about users. It does store service accounts,
which are not meant to represent people. They're meant to represent
anything that isn't a person. Everything that interacts with something
else in k8s runs as a service account. As an example, if you were to
submit a very basic pod:

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
 labels:
 app: myapp
spec:
 containers:
 - name: myapp-container
 image: busybox
 command: ['sh', '-c', 'echo Hello Kubernetes!
 ↪&& sleep 3600']

And then look at it in k8s after deployment by running kubectl get pod
myapp-pod -o yaml:

apiVersion: v1
kind: Pod
metadata:
 creationTimestamp: 2018-12-25T19:17:53Z
 labels:
 app: myapp
 name: myapp-pod
 namespace: default
 resourceVersion: "12499217"
 selfLink: /api/v1/namespaces/default/pods/myapp-pod
 uid: c6dd5181-0879-11e9-a289-525400616039
spec:
 containers:
 - command:
 - sh
 - -c
 - echo Hello Kubernetes! && sleep 3600
 image: busybox
 imagePullPolicy: Always
 name: myapp-container
.
.
.
 volumeMounts:
 - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 name: default-token-bjzd4
 readOnly: true
.
.
.
 serviceAccount: default
 serviceAccountName: default
 .
 .
 .

You'll notice that there's a serviceAccount and
serviceAccountName attribute,
both of which are default. This service account is injected for
you by the admission controller chain. You can set your own service
account on pods, but that's for a later article on authorization in k8s.
For now, I want to cover what a service account is to distinguish it
from a user account.

It's tempting to use service accounts to represent people. They're simple
to create and easy to use. They suffer from multiple drawbacks, however:

	
A service account's token is a long string that no human can remember,
so it likely will be written down, which may be exploited if not done
properly.

	
The only way to authorize service accounts is via RBAC bindings
directly. (I plan to go into the details of this in a future article,
but imagine having 2,000 developers to track across dozens of
namespaces all with their own policies. Auditing will be a nightmare.)

	
Service accounts have no expiration, so if one is leaked and no one
knows, it can be abused continuously until discovered.

If your application runs in a pod and needs to talk to the API server,
you can retrieve the pod's service account via a secret that is mounted
to your pod. If you look at the above yaml, you'll see a volume mount
was added to /var/run/secrets/kubernetes.io/serviceaccount where
there's a token file that contains the pod's service account token.
Do not embed service account tokens as secrets or configuration for a
pod running in the cluster, as it makes it more difficult to use rotating
tokens and generally is harder to manage.

User Accounts

I mentioned before that k8s doesn't connect to any kind of user store (not
directly at least). This means that on each request, you must provide
enough information for k8s to validate the caller. K8s doesn't care how
you establish the identity, it cares only how it can prove the identity is valid.
Multiple mechanisms exist for doing this; I cover the
most popular here.

How Kubernetes Knows Who You Are

OpenID Connect

This is the option you should be using (with the exception of a cloud
provider-based solution for a managed distribution) to authenticate users.

	
OpenID Connect tokens can be very short-lived, so if intercepted
and exfiltrated, by the time attackers know what they have, the token
is useless.

	
Using OpenID Connect, k8s never has the user's credentials, so it's
impossible to leak something it doesn't have.

	
A user identity presented by OpenID Connect can provide not just
user name information, but also group information. This makes it much
easier to manage access via an LDAP directory or external database
without having to create RBAC bindings for individual users.

	
By adding a "proxy" between k8s and the identity layer, it makes
it easier to add multiple types of authentication, such as multi-factor
authentication.

	
A plethora of open-source OpenID Connect implementations
will work with k8s.

OpenID Connect Primer

Before diving into how to work with OpenID Connect, let me explain
the protocol. There are two core concepts to understand with
OpenID Connect:

	
OpenID Connect is an assertion generation protocol built on top
of OAuth2.

	
OAuth2 is an authorization protocol for transferring bearer tokens.

There's a word in those two points that seems to be missing:
authentication! That's because OpenID Connect is not an authentication
protocol. It doesn't care how you authenticate. It doesn't matter if
the user logged in with a user name and password, a smart card or just
looked really trustworthy. OpenID Connect is a protocol for generating,
retrieving and refreshing assertions about a user. There are also
some standards about what the assertion looks like, but how the user
authenticates is ultimately up to the OpenID Connect implementation.

The second point about OAuth2 is important because these two protocols
often are confused with one another or misrepresented. OAuth2 is a
protocol for transferring tokens. It doesn't define what the token is
or how it should be used. It simply defines how the token is passed
between bearers and relying parties.

How Does Kubernetes Work with OpenID Connect?

Figure 1 shows the graphic from the k8s' authentication
page.

[image: OpenID Connect]

Figure 1. k8s OpenID Connect Flow

I won't repeat the exact words from the site, but here's the
basics:

	
The user logs in to the user's identity provider.

	
The identity provider generates an id_token and a
refresh_token.

	
The id_token is used to assert the user's identity to k8s.

	
When the id_token has expired, the refresh_token is used to
generate a new id_token.

An id_token is a JSON Web Token (JWT) that says:

	
Who the user is.

	
What groups the user is a member of (optionally).

	
How long the token is valid.

	
And, it contains a digital signature to validate that the JWT hasn't been
tampered with.

The user's id attribute, sub, is typically the user's unique identifier.
It's common to use Active Directory's login ID (aka samAccountName), or
many implementers prefer to use an email address. In general, this isn't
the best practice. A user's ID should be both unique and immutable.
Although an email address is unique, it isn't always immutable (for instance, sometimes
names
change).

The JWT is passed on every request from kubectl to k8s. The
id_token
is referred to as a "Bearer Token", because it grants the bearer access
without any additional checks. This means if a system in the
flow of an API call—such as a service mesh proxy, validating webhook
or mutating webhook—were to leak this token, it could be abused by an
attacker. Because these tokens are so easily abused, they should have
very short life spans. I recommend one minute. That way, if a token
is exfiltrated by the time someone sees it, knows what it is and is
able to use it, the token has expired and so is useless. When using
such short-lived tokens, it's important to configure a
refresh_token
to update your id_token after it expires.

kubectl knows how to refresh the id_token token by using the
refresh_token to call the identity provider's authorization service URL.
The refresh_token is a token that the k8s' API server never uses and
should be treated as a secret by the user. This token is used to get a
new JWT, at which point a new refresh_token is available. Where the
id_token should have a very short life time, the
refresh_token
timeout should be similar to an inactivity timeout, usually 15–20
minutes. That way, your k8s implementation will comply with
policies in your enterprise focused on inactivity timeouts. Using a
refresh_token to get a new id_token is more secure
than a longer-lived
id_token because the refresh_token means the
following:

	
It can be used only once; once it's used, a new one is generated.

	
It's only ever passed between the user and the identity provider,
so there are much fewer actors who could potentially leak it.

	
It does not identify you; if exfiltrated on its own, it can't be used
to identify you since it's opaque, so an attacker wouldn't know what to
do with it without additional information.

The Kubernetes Dashboard

The dashboard doesn't have its own login system. All it can do it use an
existing token acting on the user's behalf. This often means putting a
reverse proxy in front of the dashboard that will inject the
id_tokenL
on each request. The reverse proxy is then responsible for refreshing
the token as needed.

Which Identity Provider Should I Use?

When choosing an identity provider, k8s really has only two requirements:

	
It must support OpenID Connect discovery.

	
It provides a mechanism to generate tokens and inject them into your
~/.kube/config.

That's pretty much it! The discovery is important, because it keeps you
from having to tell k8s where different URLs are manually, what keys
are used for signing and so on. It's much easier to point k8s to a discovery
URL that has all that information. This is a common standard, and most
identity providers support it out of the box.

Point #2 is where things get interesting. There are different schools
of thought as to how to get your token information from your login point
(usually a web browser) into your ~/.kube/config.

Web Browser Injection

In this model, everything is focused on your web browser. You
authenticate via your browser and then are provided commands to
set up your kubectl client properly. As an example, OpenUnison (our own project)
provides you with a single command to set your cluster configuration
once authenticated (Figure 2).

[image: Browser Token]

Figure 2. Browser Token

You use kubectl's built-in ability to configure the config file from
the command line to complete the setup.

This method has several advantages:

	
Browsers have the most options for authentication. In addition to
user name and password, you can integrate Kerberos, multi-factor and so on.

	
You don't need to manage complex k8s configurations; they're managed
for you.

	
This works with stock kubectl commands, so there's nothing more to deploy to
workstations.

The kubectl Plugin

You can extend the kubectl command using plugins.
Using a plugin, you can collect a user's credentials and then generate
a token. I've seen plugins that will collect your credentials from
the CLI, and other plugins that will launch a browser to prompt you for
a login. This method is good from a CLI perspective as it lets your CLI
drive your user experience. The major drawback to this approach is it
requires installing the plugin on each workstation.

Download Config

With this method, the identity provider (or a custom-built application)
provides you with a fully generated configuration file you can download.
This can create a support issue if something isn't saved to
the right place.

Once you've chosen an identity provider, follow its instructions for
integration. The key items of importance are the discovery URL, the
identifier "claim" and the group's "claim".

X509 Certificates

Certificate authentication leverages the TLS handshake between the
client (generally the kubectl command) and the the k8s API server
to assert an identity by presenting a certificate to the API server.
With the exception of one use case, this method is not a "best practice"
and should be discouraged for several reasons:

	
Certificates can't be revoked in k8s. You either need to wait until
the certificate is expired or rekey the entire cluster.

	
A certificate's private key should never leave the secure medium
where it was
generated. Usually you're "given" a keypair and certificate to use.

	
It's difficult to use groups with certificates. You need to embed them
into the subject, and if those groups need to change, well, see #1 above.

The only situation where you should use X509 certificates for
authentication is when you are bootstrapping your cluster or in case of
emergency and your identity provider isn't available. Most distributions
deploy a keypair to each master, so if you ssh into that master, you can
use kubectl to manage the cluster. This means that you need to lockdown
access to the master (I plan to cover this in a future article).

Webhooks

This method lets you integrate a third-party login or token system via
a webhook. Instead of telling k8s how to validate an identity, k8s
calls a webhook and asks "who is this?"

Don't do this unless you are a cloud provider and have your own identity
solution. Just about every implementation I've seen of this turns into
"let's pass passwords" or a poorly thought out OpenID Connect.

Reverse Proxy with Impersonation

Here the client (kubectl or otherwise) doesn't communicate with the API
server directly. It instead communicates with a reverse proxy, which then
injects headers into the request to represent the user. This is often
pointed to as a way to handle advanced authentication scenarios, since
it requires the least amount of work from the API server's perspective.
The steps for implementation are:

	
Create a service account.

	
Authorize the service account to do impersonation.

	
Configure a reverse proxy to inject the service account and
impersonation headers into each request.

This solution provides these issue plus the same pitfalls as Webhooks.
Chances are existing standards will suit your needs and be easier to
manage and maintain.

Pulling It Together

To integrate identity into k8s, follow this basic checklist:

	
Use service accounts only for systems, not people.

	
Use OpenID Connect for people; it's well vetted and supported by
multiple systems, both open-source and proprietary.

	
Use certificate authentication only for "break glass in case of
emergency" situations.

Follow these rules, and you'll find that your developers are happy to
have one less password to remember, and your security team will be happy
you're following best practices and compliance requirements.

Resources

	

Kubernetes Authentication

	
OpenID Connect

	
OpenID Connect Discovery

	
Debug JSON Web Tokens

 About the Author

Marc Boorshtein is the CTO of Tremolo Security, which builds open-source
identity management software. Marc has been working in the open-source
community for 15 years. In recent years, Marc has focused on cloud native
identity, including rewriting much of the Kubernetes documentation for
OpenID Connect. You can reach Marc on Twitter at @mlbiam.

Build Your Own Internet Radio Receiver

Tune in to communities around the world with the push of a button. By
Nick Tufillaro

When I get home at night, I like to tune into the world with the push
of a button. I've lived in lots of different places—from Dunedin,
New Zealand, to Santa Fe, New Mexico—and in each town, I've come to love
a radio station (usually a community radio station) that embodies
the spirit of the place. With the push of a button, I can get a bit back
in sync with each of these places and also visit new communities, thanks
to internet radio.

Why build your own internet radio receiver? One option, of course, is
simply to use an app for a receiver. However, I've found that the most common
apps don't keep their focus on the task at hand, and are increasingly
distracted by offering additional social-networking services. And besides,
I want to listen now. I don't want to check into my computer or phone,
log in yet again, and endure the stress of recalling YAPW (Yet Another
PassWord). I've also found that the current offering of internet radio
boxes falls short of my expectations. Like I said, I've lived in a lot
of places—more than two or four or eight. I want a lot of buttons, so I can
tune in to a radio station with just one gesture. Finally, I've noticed
that streams are increasingly problematic if I don't go directly to
the source. Often, streams chosen through a "middle man" start with
an ad or blurb that is tacked on as a preamble. Or sometimes the "middle man" might
tie me to a stream of lower audio quality than the best being served up.

So, I turned to building my own internet radio receiver—one with lots
of buttons that allow me to "tune in" without being too pushy. In this
article,
I share my experience. In principle, it should be easy—you just need a Linux distro, a ship to sail her on and an external
key pad for a rudder. In practice, it's not too hard, but there are a
few obstacles along the course that I hope to help you navigate.

My recipe list included the following:

	
A used notebook with an ultra low voltage
(Core 2 Duo) processor.

	
An audio interface with an optical TOSLINK.

	
pyradio: an open-source Python radio program.

	
An external keypad.

[image: Hardware Setup]

Figure 1. My Hardware Setup

Why a notebook and not a Raspberry Pi or ship of a similar ilk? Mostly
due to time—my time in particular. It's not too hard to find a high quality
notebook about ten years old for about $50, so the cost is really not
that different, and I find the development platform to be much
quicker.

In particular, I used the site ThinkWiki to research the
Linux support of Thinkpads. On eBay, I found that the least expensive units
often were sold without HDD—which is just fine with me, since I
wanted a small SSD to keep the computer (whose main tasks is audio) quiet. I settled on a Thinkpad X61, but any notebook from that era
will have more than enough oomph, and generally much more than any low-cost single-board computer option.

I wanted an optical audio link, a
TOSLINK, and again, ThinkWiki is an excellent resource for looking into issues
like driver support. I went with a used Soundblaster Audigy Cardbus
sound card (because the system also doubles as an audio server for my
FLAC recordings), which was a bit more pricey, but to save a few bucks,
you can pick up a USB to TOSLINK converter on eBay for ~$10. My fondness
for TOSLINK is due to its inherent electrical isolation that minimizes
the chance of any audio hums from ground loops. And heck, I just think
communicating by light is cool.

The other big piece of hardware is the keypad. To prototype, I just grabbed
a wireless numeric pad with 22 keys, but for the final project, I spent a
little more for a dedicated 48 key pad (Figure 2). The wireless keypad,
of course, has the advantage that it can act as a remote control I can
carry around the room when switching stations.

[image: 48 Key Pad]

Figure 2. Dedicated 48 Key Pad

After getting all the pieces together, the next step is to install your
favorite distro. I went with Linux Mint, but I'll probably try elementary
for the next iteration.

The main piece of code is pyradio, which
is a Python-based internet radio turner. The install is simple with snap:

$ sudo apt install snapd
$ sudo snap install pyradio

You'll also need a media player, such as VLC or MPlayer.

I always need
to look for where stuff gets dropped, for that I use:

$ cd /
$ sudo find . -name pyradio

In this case, I found the executable at /snap/bin/pyradio.

Like Music on Console (MOC), pyradio is a
curses-based player. I
find myself reverting to curses interfaces these days for a few
reasons: nostalgia, simplicity of programming and an attempt to shake
free of the ever-more clogged browser control interfaces that once held
the promise of a universal portal, but have since become bogged down
with push "services"—that is, advertising.

If you have not done
any previous curses programming, check out the recent example provided
by Jim Hall of using the ncurses library in Linux Journal. Take
a look at the pyradio GitHub
repository if you run into any installation issues. You also can build pyradio from source after cloning the repository
with the commands:

$ python setup.py build
$ python setup.py install

You don't really need to know much, if any, Python beyond the two simple
commands above to get running from source. Also, depending on your setup,
you may need to use sudo with the commands above.

If all goes well, and after adding /snap/bin to your path, issuing
the command:

$ pyradio

will bring up a screen like that shown in Figure 3.

[image: pyradio Screenshot]

Figure 3. pyradio Screenshot

You drive pyradio
with a few keyboard-based commands like the following:

	
Up/Down/j/k/PgUp/PgDown — change station selection.

	
g — jump to first station.

	
<n>G — jump to nth/last station.

	
Enter/Right/l — play selected station.

	
r — select and play a random station.

	
Space/Left/h — stop/start playing selected station.

	
-/+ or ,/. — change volume.

	
m — mute.

	
v — save volume (not applicable for vlc).

	
o s R — open/save/reload playlist.

	
DEL,x — delete selected station.

	
? — show keys help.

	
Esc/q — quit.

Some of those commands will change after you do the keypad mapping.

Next, you'll want to add your own station list to the mix. For that,
I search for the file stations.csv with the command:

$ sudo find . -name stations.csv

And see that snap put the file at:

$ /home/[user_id]/snap/pyradio/145/.config/pyradio/stations.csv

Open stations.csv with an editor and replace the default stations there
with your own selection. For instance, some of my entries look like this:

KMUZ, http://70.38.12.44:8010/
KVMR, http://live.kvmr.org:8000/aac96.m3u
RNZ1, http://radionz-ice.streamguys.com:80/national.mp3 etc ...

The syntax is as straightforward as it looks. The field separator is a
comma, and the first field is any text you want, presumably describing
the station. I just use the call sign. The second field is a link to
the stream. And this is where you face the first obstacle. Finding all
the streams you want can be a bit tedious, particularly if you want to
go directly to the source and not a secondary link from an aggregator
website. Also, once upon a time, there were just a few encoding formats
(remember .ram?), but now there are a multitude of formats and proprietary
services. So identifying a good URL for the stream can be a bit of
a challenge.

I start by going directly to the station's website, and if you are lucky,
it will provide the URL for the given stream. If not, you need to do a bit
of hunting. Using the Google Chrome browser, pull up the page
View→Developer→Developer Tools.
On the left part of the screen is the web page and on the right are a
few windows for Developers. Click the menu labeled Network,
and then start the audio stream. Under the "Network" window, step
through the column labeled "Name". You should see the "Request
URL" appear on the right, and you want to take notice of any link that
could lead to the audio stream. It will be the one with a lot of packets
bouncing to and fro. Copy the URL (and the IP number at "Request IP"), and
then test it out by pasting the URL or IP:PORT number into the address
box in the a browser. The URL might cause the start of the audio stream,
or it might lead to a file that contains information—like a Play LiSt
File (.pls file)—used to identify the stream.

For a specific example, consider the KMUZ (a community radio station
in Turner, Oregon). I first go to KMUZ's home page at the URL,
KMUZ.org. I note the "Listen Live" button on the home page,
but before running the stream, I open the "Network" window in
"Developers Tools". When that window is open, I click the "Listen
Live" button, and search through the names in Requested URLs and see
http://sc7.shoutcaststreaming.us:8010/ with IP number and port,
70.38.12.44:8010.

Pasting either of those identifiers into the URL box of the browser, I
find the stream is from (a proprietary service) Shoutcast, which provides
a Play LiSt file (.pls). I then open the playlist file with an editor
(.pls are ascii files) to confirm that the IP/Port is the stream for
listening to KMUZ.

Note two things. First, there are a lot formats/protocols in use to
create a stream. You might find an MP3 (.mp3) file during your hunting,
a multimedia playlist file (.m3u), an advanced audio encoding (.aac) or
just a vanilla URL. So, getting a link to the stream you want requires some
hunting and pecking.
Second, if there is a preamble to the stream,
you can usually avoid that by waiting for the stream to pass to the live
broadcast, and then grab the live stream. That way, you won't need to
listen to the preamble the next time you start the station. Your choice
of audio player (VLC, MPlayer or similar) needs to be able to decode whatever
formats you end up with for your particular group of radio stations.

The other place you might run into difficulties is mapping the keys on
the keypad. That, of course, depends on the specific keypad you use. If
you are lucky, the keypad is documented. If not, or to double-check the
map, use a program to capture the keycodes as you press each key. Here
is a Python program to find the keycodes:

from msvcrt import getch
while True:
 print(ord(getch()))

The other small piece of coding you need to do is point each keypress to
a station. Locate the radio.py program in the same directory as the
stations.csv. Edit the Python script so that each keypress causes
the desired action. For instance, the streams in the station.csv
are indexed by pyradio from 1 to N. If the first station in the list is
KMUZ, and the keycode for the key you want to use is "h", then add
or modify the radio.py script to include the snippet:

if char == ord('h'):
 self.setStation(1)
 self.playSelection()
 self.refreshBody()
 self.setupAndDrawScreen()

The functions/methods you will use are clearly labeled, such as
the playSelection method above. So you really don't need any
detailed knowledge of Python to make these changes. Make sure though that any
changes do not conflict with other assignments of the keycode within the
script. Functions, such as "mute", can be reassigned with the snippet:

if char == ord('m'):
 self.player.mute()
 return

Whatever changes you make though, try to keep the program usable from
the notebook keyboard, so you still can do basic operations without the
external keypad.

And that's just about it. Every good program, however, should have one
kludge so as not to offend the gods. I wanted the pyradio program
to run automatically after booting, and for that, I put a ghost in the
machine. There are more natural ways to run pyradio at boot, but I like
a rather spooky way using a shell script at login with xdotool:

sleep 0.2
xdotool mousemove 100 100 click 1
xdotool type "pyradio"
xdotool key KP_Enter

xdotool lets you script keyboard and mouse inputs to run as if you
were actually typing from the keyboard. It comes in quite handy for
curses programs.

Finally, I would be remiss if I didn't recommend a good radio show. My
favorite at the moment is Matinee Idle on Radio New Zealand National,
which plays a few times a year during holidays. It's like College
Radio for the over 50 set.

Resources

	ThinkWiki

	MPlayer

	VLC

	Music on Console

	"Getting
Started with ncurses" by Jim Hall

	
pyradio

	
Matinee
Idle on Radio New
Zealand National

 About the Author

Nick Tufillaro started programming on a vt52 in the terminal ward at
Reed College in Portland, Oregon. These days, he monitors water quality
around the globe using the science of ocean color and remote sensing.
See aquahue.net, dynamicpenguin.com and http://ceoas.oregonstate.edu/profile/tufillaro
for more info about the author.

Open Sauce: Open Source Is Eternal

Open source has won the present, but what about the future? By Glyn Moody

In the March 2018 issue of Linux Journal, I wrote an article taking
a look
back over the previous decade. An astonishing amount has changed in
such a short time. But as I pointed out, perhaps that's not surprising,
as ten years represents an appreciable portion of the entire history
of Linux and (to a lesser extent) of the GNU project, which began in August
1991 and September
1983, respectively. Those dates makes the launch of Linux
Journal in
April 1994 an extremely bold and far-sighted move, and something worth
celebrating on its 25th anniversary.

For me, the year 1994 was also memorable for other reasons. It marked
the start of a weekly column that I wrote about the internet in
business—one of the first to do so. In total, I produced 413 "Getting Wired"
columns, the last one appearing in April 2003. I first mentioned Linux
in February 1995. Thereafter, free software and (later) open source become
an increasingly important thread running through the columns—the word
"Linux" appeared 663 times in total. Reflecting on the dotcom meltdown
that recently had taken place, which wiped out thousands of companies and
billions of dollars, here's what I wrote in my last Getting Wired column:

The true internet did not die: it simply moved back into
the labs and bedrooms where it had first arisen. For the real internet
revolution was driven not by share options, but by sharing—specifically,
the sharing of free software.

...

The ideas behind free software—and hence those that powered the heady
early days of the internet—are so ineluctable, that even as powerful
a company as Microsoft is being forced to adopt them. Indeed, I predict
that within the next five years Microsoft will follow in the footsteps of
IBM to become a fervent supporter of open source, and hence the ultimate
symbol of the triumph of the internet spirit.

You
can read that final column online on the Computer
Weekly site, where it originally appeared. It's one of several hundred
Getting Wired columns still available there. But the archive for some
years is incomplete, and in any case, it goes back only to 2000. That means
five years' worth—around 250 columns—are no longer accessible to
the general public (I naturally still have my own original files).

Even if all my Getting Wired columns were available on the Computer
Weekly
site, there's no guarantee they would always be available. In the
future, the site might be redesigned and links to the files removed.
The files themselves might be deleted as ancient history, no longer of
interest. The title might be closed down, and its articles simply dumped.
So whatever is available today is not certain to exist tomorrow.

The Internet Archive was set up in
part to address the problem of older web pages being lost. It aims
to take snapshots of the internet as it evolves, to record and store
the fleeting moments of our digital culture. Already it preserves
billions of web pages that no longer are available, acting as a
bulwark against time and forgetting. It's an incredible, irreplaceable
resource, which receives no official funding from governments, so I urge you to donate what you
can—you never know when you will need it.

The Internet Archive's Wayback
Machine, with its 347 billion web pages already saved,
is a marvel. But it's not perfect. In particular, it does
not seem to have any backup copies of my Getting Wired column.
No great loss, perhaps, but it is indicative of the partial nature
of its holdings. More generally, it raises two important questions.
First: who should be preserving our digital heritage? And second:
what should be kept? Although some digital artefacts are being
preserved in the US, UK
and elsewhere, the
resources are piecemeal, reactive and generally without
any proper strategy for long-term preservation. Contrast that with what
is happening in Norway, as described in this ZDNet story last year:

In the far north of Norway, near the Arctic Circle, experts
at the National Library of Norway's (NLN) secure storage facility are
in the process of implementing an astonishing plan.

They aim to digitize everything ever published in Norway: books,
newspapers, manuscripts, posters, photos, movies, broadcasts, and maps,
as well as all websites on the Norwegian .no domain.

Their work has been going on for the past 12 years and will take 30
years to complete by current estimations.

The article reports that 540,000 books and more than two million newspapers
already have been digitized. The collection at the end of last year
stood at around eight petabytes of data, growing by between five
and ten terabytes a day. The headline speaks of "a 1,000-year
archive". Although that may sound like a long time, in historical
terms, it's not. We have more than a million tablets containing
cuneiform
inscriptions dating back two or even three millennia. Egyptian
hieroglyphs have survived just as long, as have the oracle bone
scripts in China. At this stage in our civilization, we should
be thinking about how to preserve today's information for tens or
even hundreds of thousands of years. One project is already tackling that challenge:

The Long Now Foundation was established in 01996 to develop
the Clock and Library projects, as well as to become the seed of a very
long-term cultural institution. The Long Now Foundation hopes to provide
a counterpoint to today's accelerating culture and help make long-term
thinking more common. We hope to foster responsibility in the framework
of the next 10,000 years.

The Long Now's Library project is "of the deep future,
for the deep future". There are already three tools: the Rosetta Disk, the Long Viewer and the Long Server. The Long Viewer is
"an open source Timeline tool", while the Long Server is "the over-arching
program for Long Now's digital continuity software projects". Sadly,
there are no details yet about what form the Long Server will take.
However, the Long Server website does mention that the team is "now
working on a file format conversion project called The Format Exchange".

File format conversion is one of the central challenges of storing
digital material for thousands of years. Our own short experience shows
how quickly formats are replaced, resulting in old files that are hard
to read. Now imagine the difficulty of reading a digital file whose
bits are perfectly preserved but written using a file format from ten
thousand years ago.

Fortunately, it's obvious what form the solution to this central problem
must take. The only hope of reading ancient file formats is if they
are completely open. That way, readers and file conversion tools can be
built with relative ease. Similarly, any programs that are created for
projects looking at very long-term preservation of digital material must
be open source, so that they too can be examined in detail, modified and
built upon. Even after just 25 years, we know that free software has won.
But it is also highly likely that its success will be very long term,
assuming human culture survives with any continuity. Open source—and
only open source—is eternal.

 About the Author

Glyn Moody has been writing about the internet since 1994, and about free
software since 1995. In 1997, he wrote the first mainstream feature about
GNU/Linux and free software, which appeared in Wired. In 2001, his
book
Rebel Code: Linux And The Open Source Revolution was published.
Since
then,
he has written widely about free software and digital rights. He has a blog,
and he is active on social media: @glynmoody on Twitter or identi.ca, and
+glynmoody on Google+.

[image: Glyn Moody]

OEBPS/Images/12725c.jpg

OEBPS/Images/12726f2.jpg

OEBPS/Images/12736f2.jpg
'@ BECOME A PATRON

cover.jpeg
DIY Internet The kid0 Kubernetes and
Radio Receiver Project Authentication

OEBPS/Images/12729f4.jpg
e ok View ool setings. Help
shew (Gaopen. Bswe () zoomin (- zomou - Resetview
Funcions D

Spelete
Functon | Derivatives | integral =235 y= 0500
¥ show 15t dervative
15t dervative
olor: [advanced..
‘Show 20d dervative

0596 y=+2247

20

“s

0 =500 -cos)

(290785 y= +0500)

(x=72356 y=-0500

OEBPS/Images/12634f1.jpg

OEBPS/Images/ljlogo_masthd_fmt.png
Vlllll')fi

OEBPS/Images/12731f4.jpg
3

e B3 open Bowers | pn v 0 e e
e °

pecr °

Klurtle Add-0n Insaller

f s o tyuing s opsen RRATLITY 2 b
STl i oy L Qi | P >
g e oo ot h
-7 eeevia e reinn or
e et KIRLy | O oo ot
1 ¢ i mtes 5 © you e the Turtescrpt
s i ot 5 5 funclons of the sator can
R e eeo s ot 5 2l and Edit menus. The editor
3, e o B e b of the man
i £ S 1 : o e cetanes and plsced
R i i fon et ” oo aeseon
£ 12 woys to get same code in he
s s St iy 10 30 example
) e | s e i ens i
W e coample you thoose
o Pine e catr you o then
oo 5" o the menabr or the R
= e the <ot 'y he.
e e o . o Sl b hacing Fl

P The tird way i to direcl type your own code
8 o i n'the et o 0 copypase some code

[T p——

oe®

W@ '®:ame«1047AMEN 010

OEBPS/Images/12701f8.jpg

OEBPS/Images/12731f8.jpg

OEBPS/Images/12729f10.jpg
Coordinate System — KmPlot

Coordinate System
Horizontal axis Range
Min: | -3.213776137761383
Max: 3.186223862238624
Vertical axis Range
Min: | -3.148545176110261
Max: 3.251454823889741
Horizontal axis Grid Spacing
®) Automatic
Custom: 1
Vertical axis Grid Spacing

°) Automatic

Custom: 1

Restore Defaults «/Apply || % Cancel JoK

OEBPS/Images/12726f4.jpg

OEBPS/Images/12727aa.jpg

OEBPS/Images/12713f2.jpg

OEBPS/Images/12725f1.jpg
Home Features

Chicken, garlic and mushroom tagliatelle
viw R >

Vegan double “Tips for growing and
chocolate brownies storing herbs
vewseare > vewsenToRe >

u O“(;WL'J In this month's issue

erisque ni ur et

er Puddings * Inroductorito celandic

15 Hearty Meais Under 500 Caloies » Winter

Ave all Sugars the Same? + Profie on Head
nMore

Dinners to impress Learn to cook Baked up Quick and easy

OEBPS/Images/12726c.jpg

OEBPS/Images/12701f11.jpg

OEBPS/Images/12701f2.jpg

OEBPS/Images/12729f6.jpg
Fle Edt View Tools Setungs Help

4new Gaopen.. Bisne () 200min

Functon | Derivatives | Inegral

60 o)

custom plot range.

=/200mout - Reset view

Spelete

s

(x=s1571 y=+1000

(160 =sint%)

s 22 -ts o -0

x=-t571 y=-1000)

04

fo a1s s 28 X
9.X0 =50 9.y = cost)

OEBPS/Images/12731f6.jpg
scripts \ Costumes Y Sounds

usr
share
scratch
Media
Costumes.
Animals

OEBPS/Images/12734f2.jpg

OEBPS/Images/12726f6.jpg

OEBPS/Images/12731f1.jpg
GCompris

\\m/
”ln\\~ ! @

Operate a
canal lock

OEBPS/Images/12729f7.jpg
Fle £dt yew Toos setngs Hep
tew Gaoven. Bswe @ 200min (5 eomon -+ Rsview

Jr— 1

Colclate the areabetween: EYR
Min: -3213776137761383
Mo 3186223062238624

reais 000160828
screste- T ——
oefintion
x| g.x)=sin)
¥ 00 =cost)
Plotrange

i

porameters s

st
Sider: 2P
Aoperance 25

Color: Advanced..

OEBPS/Images/12729f9.jpg
Find Maximum Point

Search between:
Min: | -3.213776137761383

Max: 3.186223862238624

Maximum is at x = 1.5708, f(x) = 1
f(x) = sin(x

¥ Close

OEBPS/Images/12734f4.jpg

OEBPS/Images/12724aa.jpg

OEBPS/Images/12726f8.jpg

OEBPS/Images/12731f3.jpg
Fle Edt Comas Run Toos

setings elp
Divew Popen. | Bse Bsovers. | b v console: > Bt
edtor ° Inspector °0
sheset les [Funcions | Tree ¢
Zrepest 3
3 Forara o reset
@ (g
i s
s
< fonard
© turntett

English buiktin] Line: 1 Column: 1 INS _ triangle

OEBPS/Images/33429.png

OEBPS/Images/12731f11.jpg
QEMU

(= []

About my Computer Background

™ =]

Keyboard

Date & Time

g @

Modem

Network Software Update

Q

L

Language

®

Wieb Services

OEBPS/Images/12737aa.jpg

OEBPS/Images/12693f2.jpg
Turner
Community

Toledo
Community

Eugene
Community/
Music

Corvallis
osu/
Student

Eugene
uo
Student

Eugene

L{ powoz

KyAQ

[kavn

el

Portiand
Community
Progressive

Portiand
Jazz

Eugene
Classical

Portland
Classical

Portiand
Music

d

Eugene
NOAA
Weather

ors

Bend
Community

Jefferson
Public Radio
News

Jefferson
Public Radio
Music

Jefferson
Public Radio

Nevada City
Community.

Nevada City
Community

Pt. Reyes
Community

Berkeley
Progressive

Berkeley
CAL
Student

San Francisco

Public Radio

Atherton
Oid Time.

Foothill-
De Anza CC
‘Student

San Mateo
Jazz

Philadelphia
U of Penn
Music

Boston
Folk

0065

el

RANZ 1
National
R R
i 1}
ANZ2 Bec2
intomational Music anloft
- b
ANZ3 saca.f
Classical Classical
T T
Australia
1 BBC4
Broadcast up
Corporation SPoken Word
BBC4X
Canada 1 5 n Word enter
BBC
Canada2 | World Service down
B

OEBPS/Images/12701f5.jpg

OEBPS/Images/12725f3.jpg
Manage Shortcuts admin Edie

Comtent ¢y Structure wpearance o Extend X, Config

o 3y peole i Reporis @ Help

Mysccount Logout

Drupal 8.6.0 is available

[+ s e

OEBPS/Images/12726f1.jpg

OEBPS/Images/12729f2.jpg
Equation Editor

Expression: | (x) = sin(x) - cos(x)|

Edit Constants... Insert constant... ~ | Insert function... ~
2 S S al|B||O[|A Vo||Yo||Ya||lYs||%
2|1 [|V]|£] |p|(n|le||lw| Y| 2| %] %] %

¥ Close

OEBPS/Images/12736f1.jpg
PATREON

OEBPS/Images/12634f2.jpg
Kubernetes kubectl command

First instll the certiicates for Kubernetes and OpenUnison info your systes trust stre, then use this kubect command to set your user in kubecticonfig

@ € Run the kubectl command to set your user-context and server connection

@ kubectl Command ort THP CFRT=S(mktenn) §& echn —

OEBPS/Images/12731f5.jpg

OEBPS/Images/12729f3.jpg
Fle 50t view Toob sewngs e
atew Gaopen. Bme (o zoomi (2 oomouk - nestview

Fancions e .
m

w20+

st

w0t

Create- Spelete

Functon | Derivatives | Inegral

0
“16
custom plot range.
Mz [o
Max: (2 a0t
Parameters
st
st
Stder: 20t
Appesrance s
Color: advanced..
0}

e T

OEBPS/Images/12701f7.jpg
Y\
S S

OEBPS/Images/12693f3.jpg
KMUZ
KYAQ

KRVM

KBVR

KWVA

KLCC

KBOO

KMHD

KWAX

10. KQAC

11. KXRY

12. KFFD

13. NOAA

14. OPB

15. KPOV

16. JPRL

17. JPR2

18. JPR3

19, KVWMR |

20. KVMRx

NV ONOOIPWN P

OEBPS/Images/12731f7.jpg
File Edit Share Help

ﬁ Spritel

 Control

Sensing

Operators

 variables

switch to costume nathan

next costume

costume #

say (] for @) secs switch to costume costumel
point in direction (IR

say
think [T for €) secs

OEBPS/Images/12726f3.jpg

OEBPS/Images/12731f12.jpg

OEBPS/Images/PIA_logo.jpg
prlvatemternetaccess

always use protection

OEBPS/Images/12735f2.jpg
[CypherpunkArmory / UserLAnd

Code

Issues 100 11 Pull requests 2 Projects 0 Wiki Insights Settings

| made a Spanish translation for your app #494

[RYEETEY MatthewTighe merged 1 commitinto CypherpunkArmory:staging from dragonsilverstring:staging 27 days ago

I Conversation 0 --Commits 1 B/ Checks 0 [DFileschanged 1

b

dragonSilverString commented 29 days ago Contrbutor +(@)

Describe the pull request
I made the translation so that people who only speak Spanish or prefer Spanish could use my Daddy's app.
Link to relevant issues

#430

made a Spanish translation for your app Veried | 3ddeed2

OEBPS/Images/12729f5.jpg
Fle Edt View Tools Setungs Help
GNew open.. Bisave (5 zoomin (o) Zoomout - Resetview

Functions @ v
s
20
(60 =50 - costo)
Opelete (=235 y=+0500 e g
Function | Derivatives | Integral
¥ showintegral
il point
[0
vt
precision
step: 005
Appearance
0}
Color: advanced..
s
0}

e

OEBPS/Images/12701f12.jpg

OEBPS/Images/12701f3.jpg

OEBPS/Images/12701f9.jpg

OEBPS/Images/12723aa.jpg

OEBPS/Images/12726f5.jpg

OEBPS/Images/12713f1.jpg

OEBPS/Images/12701f10.jpg

OEBPS/Images/12701f1.jpg

OEBPS/Images/12729f8.jpg
Calculator

48 - sin(23) = -40.61857940040819

Expression: 48 - sin(23) [:]
[Edit Constants... Insert constant... ¥ | Insert function... ~
2o s S al|lB[|O]A YVo||Va||Ya||Ys||%
s z2|[I[{V[lx] [B]|in]|@||w]| Y| 2| %] %] %

% Close

OEBPS/Images/12726f7.jpg
ubuntu®

OEBPS/Images/12734f1.jpg
{

!

OEBPS/Images/12701f13.jpg

OEBPS/Images/12725f2.jpg
Media library

Published Media type Sort by
- Any - v| [Newest first v| (" Apply Filters

DrupalEurope \

mstadt,Germany

2021 Calendar Drupal Europe DrupaiCon Nashville 2. Druplicon

Select media

OEBPS/Images/12701f4.jpg
.

OEBPS/Images/12735f1.jpg

OEBPS/Images/12722aa.jpg

OEBPS/Images/12729f1.jpg
Fle. £t View Toots Setngs e

atew Gaopen. Bme (o zoomi (2 oomout - nestview

Fancions .
o |

wo

w50t

o

Create- o 20 |

70 0 - 10 0 30 50 70
ot

OEBPS/Images/12731f9.jpg

OEBPS/Images/12731f10.jpg
Get Books
Get Books Activity

© resume
F Viow Source ShifteAltiv

@ viewnelp shitralsn

OEBPS/Images/12731f2.jpg
Fle &t Gmas fn Toos Seings Hep
DNew Plopen. Bswe Bsweas. | b rn v 1l Console: > execute

° inspecor @
B aritis < >

edior

English buiktin] Line: 1 Column: 1 INS _ untitied

OEBPS/Images/LJ297-April2019-PDF-DeepDive.jpg
DEEP DIVE

KIDS AND LINUX

OEBPS/Images/12734f3.jpg

OEBPS/Images/12728aa.jpg

OEBPS/Images/12723f1.jpg
[

| soomans 4 @t s

Sepin

tashaorp rg

VS Aempt ton Firated Sofbeae ol issrab
oty o Sty October 16,

OEBPS/Images/12725f4.jpg
.

Q®

Come for the Software, Stay for the Community.
Drupal is used, built, taught, documented, and marketed by the Drupal Community, which is made up
of people from around the world, with a shared set of values, collaborating together ina respectful

manner.

You are welcome to use the software and read the documentation as a visitor, but the hope of the
Drupal Community is that you willjoin in, find people who share your interests, and grow your skills!

Image courtesy Gabor Hojtsy

Find your place
There are many ways that you can participate in the Drupal Community. Expand one or more of the

sections below, to learn about how you can get involved.

I want help installing and using Drupal

1 want to connect with members of the Drupal community who live or work nearby

OEBPS/Images/12701f6.jpg

OEBPS/Images/12584c.jpg
B, A

Reallty 2 O

ooooooooo

OEBPS/Images/12693f1.jpg
command line radio

another dynamic penguin project

Type

help' f

082 /D2ul

=

