
ISSUE 299 | JUNE 2019
www.linuxjournal.com

An Indepth Look
at Python’s Mypy

Time to
Embrace 5G

The Filesystem
Hierarchy Standard

The Story of a
Mac Developer’s
Switch to Linux

Hardware
and Software
Considerations When
Switching to Linux

HOW TO:
• Work with Mac Files on Linux

• Access Old Mac Volumes

• Port macOS Apps to Linux
 with GNUstep

From
Mac to
Linux

https://www.linuxjournal.com

CONTENTS JUNE 2019
ISSUE 299

2 | June 2019 | https://www.linuxjournal.com

81 Hello Again, Linux
 by Richard Mavis
 My first MacBook was the first computer I really
 loved, but I wasn’t happy about the idea of buying
 a new one. I decided it’s important to live your
 values and to support groups that value the
 things you do.

98 Accessing Those Old macOS Volumes
 by Petros Koutoupis
 How to mount and access the storage drive of an old Mac via Linux.

104 Working with Mac Files from Linux
 by Bryan Lunduke
 How to work with Mac-specific files, even ones from 20 years ago.

109 Porting macOS Applications to Linux with GNUstep
 by Petros Koutoupis
 An introduction to GNUstep and interview with Gregory Casamento, the
 project’s lead maintainer.

118 To Hell and Back: One Man’s Journey from Mac to Linux
 by Bryan Lunduke
 This is a simple story of one man and his strange, winding path that led him
 from being a Mac user to a Linux user.

80 DEEP DIVE:
 FROM MAC
 TO LINUX

https://www.linuxjournal.com

LINUX JOURNAL (ISSN 1075-3583) is published monthly by Linux Journal, LLC. Subscription-related correspondence may be sent to
9597 Jones Rd, #331, Houston, TX 77065 USA. Subscription rate is $34.50/year. Subscriptions start with the next issue.

CONTENTS

3 | June 2019 | https://www.linuxjournal.com

6 The “From Mac to Linux” Issue
by Bryan Lunduke

10 From the Editor
by Doc Searls

 Linux’s Broadening Foundation

21 Letters

 UPFRONT
30 Study the Elements with KDE’s Kalzium

by Joey Bernard

40 Patreon and Linux Journal

41 Reality 2.0: a Linux Journal Podcast

42 FOSS Project Spotlight: OpenNebula
by Michael Abdou

47 News Briefs

 COLUMNS
51 Kyle Rankin’s Hack and /
 Why Smart Cards Are Smart

55 Reuven M. Lerner’s At the Forge
 Python’s Mypy—Advanced Usage

64 Dave Taylor’s Work the Shell
 Finishing Up the Bash Mail Merge Script

70 Zack Brown’s diff -u
 What’s New in Kernel Development

148 Glyn Moody’s Open Sauce
 Facebook, Not Microsoft, Is the Main Threat to Open Source

https://www.linuxjournal.com

AT YOUR SERVICE
SUBSCRIPTIONS: Linux Journal is available as a digital
magazine, in PDF, EPUB and MOBI formats. Renewing
your subscription, changing your email address for issue
delivery, paying your invoice, viewing your account details
or other subscription inquiries can be done instantly
online: https://www.linuxjournal.com/subs. Email us at
subs@linuxjournal.com or reach us via postal mail at Linux Journal,
9597 Jones Rd #331, Houston, TX 77065 USA. Please remember to
include your complete name and address when contacting us.

ACCESSING THE DIGITAL ARCHIVE: Your monthly download
notifications will have links to the different formats and to the
digital archive. To access the digital archive at any time, log in
at https://www.linuxjournal.com/digital.

LETTERS TO THE EDITOR: We welcome your letters
and encourage you to submit them at
https://www.linuxjournal.com/contact or mail them to
Linux Journal, 9597 Jones Rd #331, Houston, TX 77065 USA.
Letters may be edited for space and clarity.

SPONSORSHIP: We take digital privacy and digital
responsibility seriously. We've wiped off all old advertising
from Linux Journal and are starting with a clean slate. Ads
we feature will no longer be of the spying kind you find
on most sites, generally called "adtech". The one form of
advertising we have brought back is sponsorship. That's where
advertisers support Linux Journal because they like what we
do and want to reach our readers in general. At their best,
ads in a publication and on a site like Linux Journal
provide useful information as well as financial support.
There is symbiosis there. For further information, email:
sponsorship@linuxjournal.com or call +1-360-890-6285.

WRITING FOR US: We always are looking for contributed
articles, tutorials and real-world stories for the magazine. An
author’s guide, a list of topics and due dates can be found
online: https://www.linuxjournal.com/author.

NEWSLETTERS: Receive late-breaking news, technical tips
and tricks, an inside look at upcoming issues and links to in-
depth stories featured on https://www.linuxjournal.com.
Subscribe for free today: https://www.linuxjournal.com/
enewsletters.

CONTENTS

4 | June 2019 | https://www.linuxjournal.com

 ARTICLES
127 Filesystem Hierarchy Standard
 by Kyle Rankin
 What are these weird directories, and why are they there?

133 Contributor Agreements Considered Harmful
 by Eric S. Raymond
 Why attempts to protect your project with legal voodoo are likely to backfire on you.

140 Data in a Flash, Part III: NVMe over Fabrics Using TCP
 by Petros Koutoupis
 A remote NVMe block device exported via ana NVMe over Fabrics network using TCP.

https://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
https://www.linuxjournal.com/digital
https://www.linuxjournal.com/contact
mailto:sponsorship@linuxjournal.com
https://www.linuxjournal.com/author
https://www.linuxjournal.com
https://www.linuxjournal.com/enewsletters
https://www.linuxjournal.com/enewsletters
https://www.linuxjournal.com

EDITOR IN CHIEF: Doc Searls, doc@linuxjournal.com

EXECUTIVE EDITOR: Jill Franklin, jill@linuxjournal.com

DEPUTY EDITOR: Bryan Lunduke, bryan@lunduke.com

TECH EDITOR: Kyle Rankin, lj@greenfly.net

ASSOCIATE EDITOR: Shawn Powers, shawn@linuxjournal.com

EDITOR AT LARGE: Petros Koutoupis, petros@linux.com

CONTRIBUTING EDITOR: Zack Brown, zacharyb@gmail.com

SENIOR COLUMNIST: Reuven Lerner, reuven@lerner.co.il

SENIOR COLUMNIST: Dave Taylor, taylor@linuxjournal.com

PUBLISHER: Carlie Fairchild, publisher@linuxjournal.com

ASSOCIATE PUBLISHER: Mark Irgang, mark@linuxjournal.com

DIRECTOR OF DIGITAL EXPERIENCE:
Katherine Druckman, webmistress@linuxjournal.com

DIRECTOR OF SALES: Danna Vedder, danna@linuxjournal.com

GRAPHIC DESIGNER: Garrick Antikajian, garrick@linuxjournal.com

COVER IMAGE: Bill Pridgen

ACCOUNTANT: Candy Beauchamp, acct@linuxjournal.com

COMMUNITY ADVISORY BOARD
John Abreau, Boston Linux & UNIX Group; John Alexander, Shropshire Linux User Group;

Robert Belnap, Classic Hackers UGA Users Group; Lawrence D’Oliveiro, Waikato Linux Users Group; Chris
Ebenezer, Silicon Corridor Linux User Group; David Egts, Akron Linux Users Group;

Michael Fox, Peterborough Linux User Group; Braddock Gaskill, San Gabriel Valley Linux Users’ Group;
Roy Lindauer, Reno Linux Users Group; James Mason, Bellingham Linux User Group;

Scott Murphy, Ottawa Canada Linux Users Group; Andrew Pam, Linux Users of Victoria;
Bob Proulx, Northern Colorado Linux User's Group; Ian Sacklow, Capital District Linux Users Group;
Ron Singh, Kitchener-Waterloo Linux User Group; Jeff Smith, Kitchener-Waterloo Linux User Group;

Matt Smith, North Bay Linux Users’ Group; James Snyder, Kent Linux User Group;
Paul Tansom, Portsmouth and South East Hampshire Linux User Group;

Gary Turner, Dayton Linux Users Group; Sam Williams, Rock River Linux Users Group;
Stephen Worley, Linux Users’ Group at North Carolina State University;

Lukas Yoder, Linux Users Group at Georgia Tech

Linux Journal is published by, and is a registered trade name of,
Linux Journal, LLC. 4643 S. Ulster St. Ste 1120 Denver, CO 80237

SUBSCRIPTIONS
E-MAIL: subs@inuxjournal.com

URL: www.linuxjournal.com/subscribe
Mail: 9597 Jones Rd, #331, Houston, TX 77065

SPONSORSHIPS
E-MAIL: sponsorship@linuxjournal.com
Contact: Director of Sales Danna Vedder

Phone: +1-360-890-6285

LINUX is a registered trademark of Linus Torvalds.

Private Internet Access is a proud sponsor of Linux Journal .

Join a
community
with a deep

appreciation
for open-source

philosophies,
digital

freedoms
and privacy.

Subscribe to
Linux Journal
Digital Edition

for only $2.88 an issue.

SUBSCRIBE
TODAY!

5 | June 2019 | https://www.linuxjournal.com

http://blu.org/
https://shropshirelug.wordpress.com/
http://chugalug.uga.edu/
http://www.wlug.org.nz/
http://sclug.org.uk/
https://plugintolinux.ca/
http://sgvlug.org/
http://www.rlug.org/
http://blug.org/
https://linux-ottawa.org/
https://luv.asn.au/
mailto:bob@proulx.com
http://www.nclug.org/
http://www.cdlug.net/
https://kwlug.org/
https://kwlug.org/
http://www.nblug.org/
http://kentlug.org/
http://portsmouth.lug.org.uk/
http://www.dma1.org/linux
http://www.rrlug.org/
https://lug.ncsu.edu/info
https://lugatgt.org/
mailto:doc@linuxjournal.com
mailto:jill@linuxjournal.com
mailto:bryan@lunduke.com
mailto:lj@greenfly.net
mailto:shawn@linuxjournal.com
mailto:petros@linux.com
mailto:zacharyb@gmail.com
mailto:reuven@lerner.co.il
mailto:taylor@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:danna@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:subs@inuxjournal.com
http://www.linuxjournal.com/subscribe
mailto:sponsorship@linuxjournal.com
https://www.linuxjournal.com
http://subscribe.linuxjournal.com

6 | June 2019 | https://www.linuxjournal.com

Bryan Lunduke is a former
Software Tester, former
Programmer, former VP of
Technology, former Linux
Marketing Guy (tm), former
openSUSE Board Member...
and current Deputy Editor
of Linux Journal, Marketing
Director for Purism, as
well as host of the popular
Lunduke Show. More details:
http://lunduke.com.

By Bryan Lunduke

What you are reading right now is a Linux magazine—with a
focus on Apple computers running macOS. (Or MacOS. Or
however Apple is doing the capitalization nowadays.)

I know, it’s weird. It’s extremely weird—like cats and dogs
living together weird.

But we’re not here to bash on Apple. Neither are we here to
sing praises to those down in Cupertino.

The reality is, many within the Open Source and Free
Software worlds do use Macintoshes—at least a portion of
the time—and there are some unique challenges that pop up
when you need to use both macOS and Linux on a regular
basis. Likewise, many people have moved from Mac to Linux
as part of their computing journey, and we’d like to offer
some tips and ideas to help them out.

(And if we help a few Mac users feel a bit more confident in
making the switch over to Linux? Well, that’s just gravy on top.)

Never used a Macintosh before? There’s some interesting
technical tidbits held within these pages that might come

THE “FROM
MAC TO LINUX”
ISSUE

http://lunduke.com/
https://www.linuxjournal.com

7 | June 2019 | https://www.linuxjournal.com

THE “FROM MAC TO LINUX” ISSUE

in handy when interacting with co-workers that utilize a number of Mac-specific file
types and programs. Or, at the very least, the various distinct differences between the
platforms are sure to provide a bit of amusement. Who doesn’t want to know how
Mac filesystems work? You’ll be the life of the party!

We kick everything off with a delightful tale we call “Hello Again, Linux” by a
gentleman named Richard Mavis who recounts his own story of how he switched from
Windows to Mac, then from Mac to Linux. He describes what hardware and software
he used, what prompted his change, and how the entire experience went.

Then we get into the meat and potatoes of some of the more “Macintosh-y” things
you can do from your Linux desktop.

We begin with “Accessing Those Old MacOS Volumes” by Linux Journal Editor at
Large, Petros Koutoupis. In it, Petros walks through the process of how to mount
(and read/write) Macintosh volumes (hard drives and so on) that were formatted
with “Hierarchical File System Plus” (usually called “HFS+”). This process can be a
royal pain in the posterior, so having it written down with step-by-step instructions is
simply too handy for words.

Then I cover the various software and packages that allow Linux (and, to a lesser
extent, some UNIX variants) to read and write some of the Mac-specific file types out
there: DMG files, SIT files, ClarisWorks files and so on. I cover how to open them all,
right on your Linux computer. No Mac required.

But let’s say you’re a Mac software developer. You’ve got a small mountain of
code written in Objective-C using the Cocoa framework. Don’t want to lose
that massive investment in time and knowledge when you make the move
to Linux? Petros Koutoupis provides an introduction to the free software
re-implementation of Apple’s closed-source frameworks in “Porting Mac OS
Applications to Linux with GNUstep”.

That’s right. You can, in many cases, bring a lot of that Mac-specific code with you to
Linux. How great is that? Plus, Petros sits down with the lead maintainer of GNUstep,
Gregory Casamento, for a quick interview on the project.

https://www.linuxjournal.com

8 | June 2019 | https://www.linuxjournal.com

THE “FROM MAC TO LINUX” ISSUE

We wrap up our Mac-focused articles with something a little different. It’s a personal
story—my story—titled “To Hell and Back: One Man’s Journey from Mac to Linux”.

Some of you will read my tale and recall where you were when some of those events
took place within the computing industry. For others, this will be a glimpse into
a portion of computer history that you may not have the good fortune (or bad
luck) of living through—including encounters (rather odd ones) with some of the
heavyweights of the industry. You can’t go wrong with that.

Regardless, I hope you finish the literary journey ahead of you with a renewed sense of
how truly spectacular Linux (and the broader Free and Open Source ecosystem) truly is.

And, if you just can’t leave your Mac behind just yet, no judgment. We still like you. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

12 monthly digital issues

Join the Open-Source Crusade

You subscription includes:

Fully searchable access to our
entire archive (nearly 300 issues)

Bonus ebook, Sys Admin Fundamentals
sent with your paid order

Subscr ibe .L inuxJourna l . com

https://subscribe.linuxjournal.com

10 | June 2019 | https://www.linuxjournal.com

Doc Searls is a veteran
journalist, author and part-time
academic who spent more than
two decades elsewhere on the
Linux Journal masthead before
becoming Editor in Chief when
the magazine was reborn in
January 2018. His two books
are The Cluetrain Manifesto,
which he co-wrote for Basic
Books in 2000 and updated
in 2010, and The Intention
Economy: When Customers
Take Charge, which he wrote
for Harvard Business Review
Press in 2012. On the academic
front, Doc runs ProjectVRM,
hosted at Harvard’s Berkman
Klein Center for Internet and
Society, where he served as a
fellow from 2006–2010. He was
also a visiting scholar at NYU’s
graduate school of journalism
from 2012–2014, and he has
been a fellow at UC Santa
Barbara’s Center for Information
Technology and Society since
2006, studying the internet as
a form of infrastructure.

FROM THE EDITOR

Linux’s
Broadening
Foundation
It’s time to embrace 5G, starting with the Edge in
our homes and hands.

By Doc Searls

In June 1997, David Isenberg, then of AT&T Labs Research,
wrote a landmark paper titled “Rise of the Stupid Network”.
You can still find it here. The paper argued against phone
companies’ intent to make their own systems smarter. He
said the internet, which already was subsuming all the world’s
phone and cable TV company networks, was succeeding not
by being smart, but by being stupid. By that, he meant the
internet “was built for intelligence at the end-user’s device,
not in the network”.

In a stupid network, he wrote, “the data is boss, bits are
essentially free, and there is no assumption that the data is of
a single data rate or data type.” That approach worked because
the internet’s base protocol, TCP/IP, was as general-purpose
as can be. It supported every possible use by not caring about
any particular use or purpose. That meant it didn’t care about
data rates or types, billing or other selfish concerns of the
smaller specialized networks it harnessed. Instead, the internet’s
only concern was connecting end points for any of those end

https://www.isen.com/
https://www.isen.com/stupid.html
http://www.hyperorg.com/misc/stupidnet.html
https://www.linuxjournal.com

11 | June 2019 | https://www.linuxjournal.com

FROM THE EDITOR

points’ purposes, over any intermediary networks, including all those specialized ones,
without prejudice. That lack of prejudice is what we later called neutrality.

The academic term for the internet’s content- and purpose-neutral design is
end-to-end. That design was informed by “End-to-End Arguments in System
Design”, a paper by Jerome Saltzer, David P. Reed and David D. Clark,
published in 1980. In 2003, David Weinberger and I later cited both papers
in “World of Ends: What the Internet Is and How to Stop Mistaking It for
Something Else”. In it, we explained:

When Craig Burton describes the Net’s stupid architecture as a hollow sphere
comprised entirely of ends, he’s painting a picture that gets at what’s most
remarkable about the Internet’s architecture: Take the value out of the center
and you enable an insane flowering of value among the connected end points.
Because, of course, when every end is connected, each to each and each to all,
the ends aren’t endpoints at all.

And what do we ends do? Anything that can be done by anyone who wants to

http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf
http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf
https://en.wikipedia.org/wiki/Jerry_Saltzer
https://en.wikipedia.org/wiki/David_P._Reed
https://en.wikipedia.org/wiki/David_D._Clark
http://weinberger.org/
http://worldofends.com/
http://worldofends.com/
http://worldofends.com/#BM7
https://www.craigburton.com/
http://www.searls.com/burton_interview.html
https://www.linuxjournal.com

12 | June 2019 | https://www.linuxjournal.com

FROM THE EDITOR

move bits around.

Notice the pride in our voice when we say “anything” and “anyone”? That comes
directly from the Internet’s simple, stupid technical architecture.

Because the Internet is an agreement, it doesn’t belong to any one person or
group. Not the incumbent companies that provide the backbone. Not the ISPs
that provide our connections. Not the hosting companies that rent us servers.
Not the industry associations that believe their existence is threatened by what
the rest of us do on the Net. Not any government, no matter how sincerely it
believes that it’s just trying to keep its people secure and complacent.

To connect to the Internet is to agree to grow value on its edges. And then
something really interesting happens. We are all connected equally. Distance
doesn’t matter. The obstacles fall away and for the first time the human need to
connect can be realized without artificial barriers.

The Internet gives us the means to become a world of ends for the first time.

Or the last. Because right now, the descendants of the phone companies David
Isenberg schooled on the virtues of the internet’s stupidity are working very hard
to make the internet of tomorrow as smart as can be. Their name for tomorrow’s
internet—or one big part of it—is 5G.

Simply put, 5G is an upgrade to the existing cellular data system. It will feature low
latencies (typically in the single digits), local clouds for high-demand purposes and
very high data speeds (typically 1GB/s down and 300MB/s up). So, rather than the
“last mile”, 5G is the last acre. Or less.

Here are some of the arguments I’ve heard for making the 5G internet smart:

1. Many purposes at end points require low latency, high reliability and minimum
data speeds. Gaming is a big one, but there are many others: telemedicine, traffic
control, autonomous driving, virtual reality, utility usage optimization, to name just
a few. The general-purpose stupid internet doesn’t support those things well, or

https://en.wikipedia.org/wiki/5G
https://www.linuxjournal.com

13 | June 2019 | https://www.linuxjournal.com

FROM THE EDITOR

at all. So adjustments need to be made. For more on this argument, see this draft
for the IETF by Ericsson. (Context: Ericsson plans to be even bigger in 5G than it
already is in 4G, which is huge.)

2. A purely stupid internet cannot deal with what’s going on in today’s internet
already, much less in the 5G future. There is too much data traffic moving between
too many end points, with too many specialized purposes at those end points, and
with too many build-out requirements for all the intermediary networks.

3. The internet’s innards never have been completely stupid anyway. To obey TCP/IP’s
end-to-end design, which requires finding the best available paths for data within
and between networks, routers need their own kinds of smarts. So do Content
Delivery Networks (CDNs), which operate near collections of ends, such as in
cities. Many big players distribute content through Akamai, Cloudflare and other
CDN companies, but some of those players have gone direct or are in the process.
Those include Amazon (through CloudFront), Apple, Disney and Netflix. CDNs are
a big reason why TV streamed over the internet looks better than the broadcast
kind—especially when shows and movies are in 4K HDR and at 60 frame per
second(fps), which are also the current ideal for gaming. When resolutions go to
8k and up, we’ll need what only the 5G players are planning for at scale. (The cable
and FTTH players are looking mostly at fixed service to homes, while the 5G players
are looking at all wireless devices.)

4. Some of the giant services at a few of the internet’s ends dominate usage by all the
rest of them and, therefore, require special treatment—for both their users and
themselves. These include Google, Facebook, Twitter, Apple, Amazon, Microsoft
and every other net-based service you can name. All of those are, technically and
functionally, peers on the internet’s “pipes”, owing just to their traffic volumes.

5. Non-human end points—things—on the internet will soon number in the trillions, if
they don’t already. Dealing with those things will require a great deal of intelligence
(artificial and otherwise). Security around those things also will need to be
managed and updated constantly. It’s easier to deal with those IoT eventualities
with localized approaches that are close to the end-thing population, and not just
at or in any of those things themselves.

https://tools.ietf.org/html/draft-arkko-arch-low-latency-01
https://tools.ietf.org/html/draft-arkko-arch-low-latency-01
https://www.ericsson.com/en
https://en.wikipedia.org/wiki/Ericsson
https://en.wikipedia.org/wiki/Ericsson
https://en.wikipedia.org/wiki/Peering
https://www.linuxjournal.com

14 | June 2019 | https://www.linuxjournal.com

FROM THE EDITOR

I am told by those making these arguments that they appreciate the internet’s base-
level stupidity and its general-purpose nature—and that they see 5G’s advantages as
additional to those virtues.

But what if 5G in a practical way gets built out only for the big players’ own special
purposes? Will that effectively lock out everything else, especially what can only come
from individuals doing original stuff at the internet’s ends?

Think about this: 5G networks will be optimised by lots of AI and ML by large companies
operating centrally, and will contain lots of services built around corporate APIs on
which apps at the ends will rely. Will all this augment or thwart human intelligence and
creativity? Or both, in ways unknown over which none of us have much if any control?

So you see my big concern. It’s almost too easy to imagine 5G ending up being nothing
but proprietary and closed services. Add to that the simple fact that it is easier to
build closed and proprietary stuff on top of the internet than it is to build closed and
proprietary stuff on top of Linux (which was a concern of my column last month).

In fact, 5G is already controversial in some ways. Paranoia about new wireless build-
out leads to stories such as Rienette Senum’s “The 5G Network: What You Don’t
Know May Kill You”. In “Enough of the 5G Hype”, Ernesto Falcon of EFF writes, “But
don’t be fooled. They are only trying to focus our attention on 5G to try to distract
us from their willful failure to invest in a proven ultrafast option for many Americans:
fiber to the home, or FTTH.” When I asked one FTTH company CEO for some
thoughts about 5G, he replied, “(Screw) 5G! People love fat pipe and all the 5G hype
just lets the smart money lay fiber. It is like watching a movie you know the ending to
and the plot is really slow!”

Other old internet hands give 5G a nearly unanimous thumbs-down. Some examples
from a list I’m on where many of those hands hang out:

• “We now have 5G because 5 comes after 4.”

• “‘5G’...is a manufacturer’s scheme to sell more kit to carriers who won’t make much
more money with it.”

https://www.linuxjournal.com/content/we-need-save-what-made-linux-and-foss-possible
https://www.thefoghornexpress.com/
https://www.thefoghornexpress.com/single-post/The-5G-Network-What-You-Dont-Know-Can-Kill-You
https://www.thefoghornexpress.com/single-post/The-5G-Network-What-You-Dont-Know-Can-Kill-You
https://www.eff.org/deeplinks/2019/02/enough-5g-hype
https://www.linuxjournal.com

15 | June 2019 | https://www.linuxjournal.com

FROM THE EDITOR

• “VZ’s new CEO came from Ericsson, so he’ll invest in 5G equipment, but that
doesn’t mean it’ll be profitable.”

• “The 5G bubble dwarfs the one for 3G, as there was real meat on those bones.”

Still, the investment in 5G is massive, and that warrants attention, whether it’s a
bubble or not. And, the most constructive attention 5G is getting right now happens
to come from The Linux Foundation. So, to learn more about what’s going on with
that, I went to the LF’s Open Networking Summit (ONS) North America in April of
this year. (Photos here.)

I went there thinking it would help that I already knew a fair amount about Linux, open
source and networks. What I didn’t expect was to find that the overlap between the
ONS and what I knew already would round to zero, or at least would feel that way.

Looking across the agenda and the show floor, all I saw at first was a mess of
two-, three-, four- and five-letter acronyms, all set like jewels in a display case
of dense arcana. Some samples:

• ONAP and OPNFV (OVP) “Compliance” and Verification Programs.

• 5G Mobile & Converged Multi-Access COMAC & OMEC.

• 3rd Party VNF Deployment in the Public Cloud.

• E2E Network Slicing with ONAP-based LCM.

• VPP acceleration.

• VNF to CNF transformation.

• Lean NFV.

• ONAP adoption with MANO components.

https://www.linuxfoundation.org/
https://events.linuxfoundation.org/events/open-networking-summit-north-america-2019
https://www.flickr.com/photos/linuxjournal/sets/72157704674737442
https://events.linuxfoundation.org/events/open-networking-summit-north-america-2019/program/schedule
https://www.linuxjournal.com

16 | June 2019 | https://www.linuxjournal.com

FROM THE EDITOR

• LFN MAC workshop.

• CI/CD, OPV—The Final Frontier.

• Edge Open Source Synergy to Deliver Value-added End-to-End ServicesVPP.

Once I dug into it, however, I found that all this stuff is more than interesting—it’s
exciting, but also scary, especially if you have problems (as I do) with giant companies
intermediating our networked lives even more than they do already. So here are my
take-aways.

First, 5G is real. Or it will be. The build-out is happening, right now, in real time, all
over the place. I also doubt it’s a bubble. But we’ll see.

Second, open source will enable it all. While Linux will support pretty much all of 5G’s
build-out at the base level, most open-source development within 5G networks is
happening at layers above Linux and below usage by you and me.

Third, it’s all happening below mainstream media radar. Stories need character and
conflict, and very little of either shows through all the acronymic camouflage. But
I’m holding our own radar gun here, and what I see is beyond huge. I can’t count the
number of open-source projects in those layers, or how many developers are involved
within each of them, but I at least can see that their number and variety are legion.

For a helpful view toward some of this work, go to the Cloud Native Computing
Foundation (CNCF)’s Interactive Landscape. Give it time to load. It’s huge. (If
possible, use a big screen.) A small block of text there explains:

This landscape is intended as a map through the previously uncharted
terrain of cloud native technologies. There are many routes to deploying
a cloud native application, with CNCF Projects representing a particularly
well-traveled path. So dig some paths down through the ‘cards’ there, each
of which looks like a square tile.

To make digging easier, knock out the non-open-source cards by clicking on the

https://www.cncf.io/
https://www.cncf.io/
https://landscape.cncf.io/
https://www.linuxjournal.com

17 | June 2019 | https://www.linuxjournal.com

FROM THE EDITOR

“Open source landscape” filter. When you do, at the top, it will say something like,
“You are viewing 317 cards with a total of 1,566,515 (GitHub) stars, market cap of
$6.01T and funding of $28.5B.” These numbers change dynamically as development
progresses and are sure to be larger when you read this. Also bear in mind that cloud
native computing is just one part of the Open Networking/5G picture.

Fourth, this is a cooperative thing. No one company, no matter how big and dominant,
is going to make 5G happen by itself. It’s too costly for companies to invent the same
or similar wheels and to risk market-slowing choices between products and services
based on deeply incompatible standards (such as the one we saw here in the US with
GSM vs. CDMA). Every player involved—carriers, services, software and hardware
providers, you name it—has to work together on the lower-level protocols and code
on which all of them will depend.

Fifth, there are table stakes required to play in collaborative 5G open-source development,
and they are not small. Large sums of geek power are required to create the standards,
run the orgs and write the code—and all of those cost money. But the expenses can
be rationalized by their large because effects, which are what happens when you make
money because of your investment, rather than with it. I’ve been talking up because
effects since forever it seems (and in fact co-coined the term with J.P. Rangaswami,
many years ago). It always has been a hard principle for big tech companies (or any
business) to grasp, but clearly The Linux Foundation has found a way to convince a
lot of large companies at once to embrace the principle. Hats off.

Sixth, the downsides are barely on the table yet. Everybody developing toward 5G is
clear about the good stuff it will enable. The bad is nowhere to be heard or seen at
shows like this one. (Except for the obvious security stuff, which is always a big focus
with any new technology.)

Seventh, it’s still early enough for others to get involved. I volunteer Linux Journal and
readers who can bring work and value to the 5G table.

Two weeks have passed since I flew back from the conference, with my mind still
blown by the volume and variety of work going on. In that time, nearly all my work
cycles have been devoted to putting that work on our radar, and thinking about what

https://www.pcmag.com/news/300986/cdma-vs-gsm-whats-the-difference
https://www.linuxjournal.com/content/wanted-more-open-source-research
https://www.linuxjournal.com

18 | June 2019 | https://www.linuxjournal.com

FROM THE EDITOR

it means for Linux Journal and its readers.

I see threats and opportunities, but not as distinct issues, because there are
opportunities within the threats.

The biggest threat I see is potentially losing the free and open internet—the goose
that laid all the golden eggs of today’s online world, including eggs that themselves
became golden egg-laying geese. Let’s call them GELGs. The biggest GELG of them all,
other than the mother goose—the internet—is Linux.

It should help to remember that Linux was hatched as a gosling on Linus Torvalds’
personal computer, starting with one email to one Usenet newsgroup, on the free
and open internet. Nearly everything that has happened for Linux since then is thanks
to an internet that was as stupid—in the Isenbergian sense—as it could be.

Will the smart new 5G space be as good a hatchery for GELGs as the stupid old
internet? More specifically, will a Linus of tomorrow be able to hatch on 5G the
kind of massively useful and world-making thing that the Linus of old did on the
internet in 1991?

One could point at GitHub and say “Look at the millions of new open-source code
bases being developed” and claim the answer is yes. Yet not all those open-source
code bases are built to preserve and embody the same kinds of freedoms their
creators enjoy. And, the telcos have a long and awful record of fighting the free, open
and stupid internet. Why would they change now?

Perhaps because The Linux Foundation makes damn sure they do. Or so I hope.

A confession I need to make here is that I’m still new to getting my head around The
Linux Foundation, which has massive scope. Half the Global 2000 belongs to The
Linux Foundation, and that’s a pretty damned amazing fact, just by itself. But I have a
long way to go before I fully grok what’s going on.

Yet so far, I’m very encouraged by the role I see The Linux Foundation playing with
big companies especially, and how it seems to perform as a kind of United Nations,

https://en.wikipedia.org/wiki/History_of_Linux#The_creation_of_Linux
https://www.linuxjournal.com

19 | June 2019 | https://www.linuxjournal.com

FROM THE EDITOR

where positive mutual interests are brought together, problems are worked out, and
wholes get more done than any parts or sums of parts. To my knowledge, no other
organization in the world is better at doing that kind of thing or at the same scale.

Years ago, when Dan Frye was running a corner of IBM that employed a number
of Linux kernel developers, he told me it took years before IBM discovered that it
couldn’t tell its those developers what to do—and that in fact, things worked the
other way around: it was the kernel developers who told IBM what to do. Put another
way, adaptation was by applications to the kernel, not by the kernel to applications.
True, uses naturally informed kernel development to some degree, but no company
was in charge of kernel development, regardless of how many kernel developers a
company employed or how well it paid them.

I like to think the same applies in The Linux Foundation’s relationship to its corporate
members. I suspect those members don’t tell the Linux Foundation what to do, and
that it’s really the other way around—whether those companies know it yet or not.

I was able to test that hypothesis at the ONS by attending its keynote
presentations. As is the custom at tradeshows, sponsors got time on the ONS
stage to give presentations of their own. Typically, these tend to be vanity efforts:
corporate brochures in the form of slide shows and videos. But I saw relatively
little of that at the ONS. Instead, I saw one company after another present their
thoughts and insights as parts of groups working on the same kind of thing, using
cooperatively developed open standards and open-source code. Yes, there was
plenty of corporate self-flattery, but most of it was secondary to reporting on work
shared by others toward common goals.

I should pause here to acknowledge complaints that some of us have had about The
Linux Foundation. (This Reddit thread includes most of them.) I also think those
complaints are irrelevant (or at least secondary) to the opportunities materializing in
the 5G build-out, which require engagement.

I see two opportunities here: one for our readers and one for us. The first is
to help where we can to make sure the internet’s original stupidity survives and
thrives as well over 5G as it does over wide-open fiber. The second is to expand

https://www.reddit.com/r/linux/comments/6zps39/linux_foundation_director_runsmac_os
https://www.linuxjournal.com

20 | June 2019 | https://www.linuxjournal.com

FROM THE EDITOR

Linux Journal ’s coverage to include more of what’s happening under The Linux
Foundation’s many umbrellas.

For the first opportunity, I think we can contribute best to what The Linux
Foundation calls the Edge. Its focus on that was announced in January 2019,
when it launched what it calls LF Edge (LFedge.org). If you go to that site, what
you’ll see today (or at least when I’m writing this, in late April 2019) looks like
pretty corporatized stuff. Try to ignore that. In the conversations I had with The
Linux Foundation and other people at the ONS, it was clear to me that Edge is
still a wide-open bucket of interests and possibilities.

Metaphorically, Edge is the side of the 5G table where each of us will sit. There are
also empty chairs there for the kinds of geeks who are reading these words right now.

“All the significant trends start with technologists”, Marc Andreessen told me,
way back when Netscape was open-sourcing the browser that became Firefox. I
think that’s still one of the most simple, true and challenging statements that has
ever been uttered.

If you’re a technologist who would like to start a significant trend where one is very
much needed, now is the time, 5G is the space, and LF Edge is the place. And so is
Linux Journal. If you’ve got one of those trends, talk to us about it. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.google.com/search?q=linux+foundation+umbrellas
https://www.linuxfoundation.org/press-release/2019/01/the-linux-foundation-launches-new-lf-edge-to-establish-a-unified-open-source-framework-for-the-edge
https://www.lfedge.org/
https://www.linuxjournal.com/article/2984
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

21 | June 2019 | https://www.linuxjournal.com

LETTERS

Query about an Older Article
I’ve found a very old article, but I was going through it to see if I can extract any value
out of it. I was also not sure who to ask as the comments section is closed. The article
is “Eleven SSH Tricks” by Daniel R. Allen from 2003.

There is a sentence that I believe is a mistake: “You should use authentication agent
forwarding only if you trust the administrators of the remote computer; you risk them
using your keys as if they were you.”

I thought that was the whole point of using ssh-agent, so as not to risk your
administrators running away with your keys. How would they be able to use my keys if
I use ssh-agent? If this is a valid concern, I would like to educate myself.

—Danie de Jager

Kyle Rankin replies: SSH agent forwards on your private keys in RAM to the target
machine. That’s how that remote machine is then able to use those keys to log in
to another machine using those credentials. If you enable SSH agent forwarding, a
malicious administrator could extract those keys from RAM while you are logged in.

Regarding Doc’s Editorial “We Need to Save What Made
Linux and FOSS Possible”
After reading Doc’s editorial on saving what made Linux and FOSS possible, I was so
depressed. Doc’s lamentations about how FOSS and Linux developers don’t model the
right behavior is true, but let’s not get lost in a purity spiral. I share his disappointment
that geeks use Linux only professionally, and that we regularly see leaders in the FOSS
community giving presentations from Macs/Windows machines, but I think this is of
minor concern to everybody but the Linux desktop developers. If you think about the
broader picture, we’re exactly where we always wanted to be, and what Doc is feeling
is what we deserve for a job well done.

We all started as rule-breakers a long time ago. Linux users and FOSS advocates,
myself included, relished in the fight with large companies. It was so satisfying to show

LETTERS

https://www.linuxjournal.com/article/6602
https://www.linuxjournal.com/content/we-need-save-what-made-linux-and-foss-possible
https://www.linuxjournal.com

22 | June 2019 | https://www.linuxjournal.com

LETTERS

people how they can run Linux servers with Apache, PHP, MySQL and Samba to avoid
paying huge fees for proprietary software. Equally enjoyable was setting up Linux
firewalls and configuring complicated networks for pennies when the only alternative
was to buy multi-thousand-dollar hardware solutions. I spent many years enjoying the
rule-breaking fun.

Then when large corporations began embracing FOSS, we suddenly found ourselves
as the rule-makers, and the fun went away. The adoption of Linux and FOSS and open
standards was so swift, that what we—and especially Doc—are feeling is a loss of
purpose. Our purpose was to fight closed systems and to write open standards. Well,
we won, and our purpose was no longer urgent or needed in many ways. I think Doc’s
editorial reflects the fading afterglow of victory.

To echo Doc’s sentiment, what should we do now?

I think the answer is clear; we regain our purpose by breaking more rules. The world
has embraced open standards, but corporations have built closed networks on top
of them. We need to crack those nuts. At the end of Doc’s editorial, he lists some
statements from attendees at Freenode.live to inspire people with ideas and a new
focus. I have a few to add myself:

• Can we use open-source licenses to prevent corporate censorship on the web?

• Where is the tool that will download all of my Facebook content and translate
it into a portable format so that I can upload it onto a Mastodon or GNU Social
instance? It’s time to leave Facebook.

• Where is the dæmon that proxies Twitter users as Secure Scuttlebutt so the rest of
us never have to touch Twitter? It’s time to leave Twitter.

• Where is the open hardware (for example, secure enclaves, CPUs, GPUs)?
Risc-V is exciting, but where do I place my order for a laptop? It’s time to leave
Intel and ARM.

https://www.linuxjournal.com

23 | June 2019 | https://www.linuxjournal.com

LETTERS

• Small, regional ISPs still exist, and we should do all we can to support them. A
major defense against corporate censorship is to keep ISP choice alive. It’s time to
leave the cable modem ISPs.

• Where is the MVNO that uses IPv6 privacy extensions and doesn’t sell tracking data?
It’s time to leave AT&T, Verizon, Deutsche Telekom, etc.

• Where is the open 5G mobile baseband radio and firmware? Let’s commoditize
wireless technology.

• And finally...email Todd at Purism, and tell him you’d like a laptop clamshell dock for
their Librem-5 phone. If the clamshell is all battery with the docked phone as the
touchpad, it would run for days and days. Ok, that’s my personal desire but I know
lots of you would buy one too.

Don’t let Doc get you down. In many ways, the fights we’re facing now are much
larger and more difficult than commoditizing operating systems and client/server
applications. I hope to see you all on the front lines again soon.

—Dave Huseby

Greg Kroah-Hartman Responds to Doc’s Editorial
Be very careful of not going down the path of “No true Scotsman” that I see lots
of people doing all the time. Linux was not “founded” on those values; they just
happened to be some values that some of us liked. Others could care less; they just
wanted to create an operating system to solve the need they had at the time. The
benefit being that our license allowed us to take those needs and pull them back in
and let everyone benefit.

You can say that for “Linux”, our only real unified value is “do whatever you want with
it, just show us your changes”.

So when someone bashes someone for not using a specific type of hardware, or

https://www.linuxjournal.com

24 | June 2019 | https://www.linuxjournal.com

LETTERS

specific userspace program that they somehow feel does not show the same “values”
that they themselves feel, that’s not acceptable in the slightest.

Who cares what hardware you use as your main operating system? We have
thousands of kernel developers that do not use Linux as their primary system
because they either are not allowed to do so, or can not use it for one reason
or another. Am I to somehow put a litmus test on them when they send me valid
changes to my project because of this? Of course not. I accept the contribution
at face value, I am not one to judge.

I used Microsoft hardware for decades (they made a great trackball). So what? I used
Apple’s hardware for my main desktop for 5+ years, running Linux, as did Linus himself
for many years. Is that a problem for some people? Sure, but does that somehow
invalidate the work I did using that hardware to make an open-source project better?
Of course not.

So with that, let’s go down your bullet points:

“We collaborate inside proprietary environments.” First off, who is “we”? Yes, Slack is a
mess, and hangouts is as well, but for some projects, that’s all they can afford to use
(free). There are open alternatives to some of these, and they are used (hint, IRC
is not dead yet), but who are you to tell someone else what tool they can and can
not use to create software for others? It’s a great goal to work on projects to keep
collaboration working well in an open way. We have those today; work to make them
better if you feel they are somehow lacking.

“Many Linux and FOSS geeks today only use Linux professionally.” Um, that’s always been
the case, for the past 20+ years, nothing new here. Yes, there are those of us who
did use it on their own, which brought Linux into those companies and professions
and caused it to grow. But who am I to say that you must also use it for all of your
systems, even on your home? If it is good enough, you will use it. Maybe it just is not
good enough for your specific use case, so you can not use it (hint, photo-editing
software, major Linux developers still use OS X because it has better solutions).

https://www.linuxjournal.com

25 | June 2019 | https://www.linuxjournal.com

LETTERS

Again, don’t fall into the “true Scotsman” fallacy.

“We’re not modeling our values.” That is, you are not modeling my values. You have
no idea what my values are, and I have no right to enforce my values on you, so why
should you enforce yours on me? Again, if you are contributing to an open project, all
I can do is accept it as a contribution where we are working together on it. I don’t care
what editor you used to create it, and you shouldn’t care what editor I used either.

“We’ve allowed foundational ideas to collapse.” What foundational ideas?
Collapse where? We “won”! Linux took over the world; open source has created
more jobs and helped more people out than was ever thought possible. It has
created companies that run the world (whether we like it or not, remember
Apple’s whole back end is Linux). Our whole “foundational idea” was “make the
best operating system possible that you can use to do whatever you want with
it.” That’s it. Yes, some of us are very liberal and love free software and buy into
all of that, but not everyone, which is fine. Again, as long as you are contributing
to the project, that’s all I can ever ask for.

“We are also forgetting (or perhaps never learned) how a reciprocal license such as the
GPL can keep a project alive and a community together.” Ok, I totally buy this. But note,
GPL software is a LOT bigger and represented more than anyone thinks. There is a lot
of research out there about open-source projects and one paper found that:

Previous research which analysed 200 widely used OSS projects found
that “licenses with strong copyleft are most widely used in the selected
OSS projects and the majority of OSS projects (55%) use such licenses”
(Gamalielsson and Lundell, 2017).

So people have not forgotten the fact that everyone is on a level playing ground when
contributing to a project with a reciprocal license (like the GPL). It’s not only fair to
individuals, but very fair to any company that wants to get involved in it.

Also, SMART companies know this already. IBM learned this way before everyone else

https://www.linuxjournal.com

26 | June 2019 | https://www.linuxjournal.com

LETTERS

and reaped the benefits. Intel eventually learned it. Microsoft now knows it and is also
reaping the benefits of it. Google always knew it.

Yes, with the “cloud”, the GPL doesn’t always make sense, hence AGPL, which one
can argue has other issues that make it not as popular as it might have been. And
for some instances, GPL makes no sense at all. Like for Zephyr (the tiny embedded
operating system), which uses the Apache license because the GPL would make no
sense at all in such a system.

But always remember, keeping a project alive and a community together is not the
job of the license. There are thousands of abandoned GPL projects as proof of that.
It takes much much more than that. Successful projects can be under any license, and
again, who am I to tell you what license to create your project under :)

—Greg Kroah-Hartman

Glad I Took Out a Subscription
As a new subscriber, I’m impressed with the Deep Dive on the Linux kernel. [See the
May 2019 issue.] In particular, I found it useful to follow Petros Koutoupis’ excellent
guide to creating a basic kernel. It was written in an easy-to-understand manner, with
good explanations of the steps and enough information, but not so much that it
would distract from the fundamental concepts. After correcting what seemed to be a
typo in kernel.c (lsshort => short), I was able to build the example kernel and boot
from the .iso in a virtual machine. I look forward to more practical “how-to” examples
like this.

—David Kennedy

Petros Koutoupis replies: David, I am glad that you enjoyed the piece, and
thank you for informing us about the typo. There is value in understanding the
entire operating system from the application all the way down to the machine
code, and it was my primary goal to reignite the conversation around that. What
happens when you execute that line of code, and how is it interpreted at the

https://www.linuxjournal.com

27 | June 2019 | https://www.linuxjournal.com

LETTERS

kernel level? I hope to expand on this tutorial and shed more light on the inner-
workings of the operating system. So, believe me when I say, you will get more of
these “practical how-to examples”.

Password Managers Article
I liked Shawn Powers’ “Password Manager Roundup” article, but I wonder if you have
heard of Enpass. It natively supports Linux, is free for desktop use, and you can store
the database on Owncloud/Nextcloud. You have to pay for the mobile version. I use it
on my Android phone, tablet, Windows desktop, and Mac laptop seamlessly.

If you have not heard of it, you ought to check it out.

—Mike Plemmons

More on the Password Manager Roundup
I am not a regular reader of Linux Journal, but somehow your password manager
article found its way into my consciousness today, and I found it to be informative
and fun to read. Your writing style is so comfortable I feel like we are hanging out in a
coffee shop. Keep up the good work.

—Jonathan Nystrom

Keeper
Keeper has a strong Linux desktop version of our Password Manager and over 14
million users (more than the mentioned apps combined), strong ratings and the
top grossing across iOS and Google Play platforms. Is there a reason you left us
out of this article?

—Craig

Sticker from Days Gone By
Rummaging through my stuff last night, I found this sticker. I don’t recall how I got it,
but it’s from days of yore when there was still a Linux Conference in San Francisco.

https://www.linuxjournal.com/content/password-manager-roundup
https://enpass.io/
https://www.linuxjournal.com/content/password-manager-roundup
https://www.linuxjournal.com/content/password-manager-roundup
https://www.linuxjournal.com

28 | June 2019 | https://www.linuxjournal.com

LETTERS

The “Vote” sticker above is a convenient bit of irony.

I have enjoyed Linux Journal back as far as the physical magazine days. Thank you for
your work.

—Allen Randall

From Social Media
Regarding Dave Taylor’s “Back in the Day: UNIX, Minix and Linux”
Nate Falk @natefalk922:

Brings back memories...I used Tanenbaum’s OS book in college in the 90s
and tweaked the task scheduler in MINIX. That class led me to working at

https://www.linuxjournal.com

29 | June 2019 | https://www.linuxjournal.com

LETTERS

IBM on systems software for AIX
and eventually Linux.

Dave Taylor replies: Ahh yes,
back when we at UCSD worked late
into the night on the timeshare
terminals so it’d be a bit faster.

In response to “Schools in the
Indian state of Kerala have chosen
Linux as their OS which will
save them roughly $428 million.”
Hardeep Asrani @HardeepAsrani:

We need to do this in all schools
and colleges across, not only India,
but around the world.

SEND LJ A LETTER We’d love to hear your feedback on the magazine and specific
articles. Please write us here or send email to ljeditor@linuxjournal.com.

PHOTOS Send your Linux-related photos to ljeditor@linuxjournal.com, and we’ll
publish the best ones here.

Photo from Hijo de Juana Chávez

https://www.linuxjournal.com
mailto:ljeditor@linuxjournal.com
mailto:ljeditor@linuxjournal.com

30 | June 2019 | https://www.linuxjournal.com

UPFRONT

Study the Elements
with KDE’s Kalzium
I’ve written about a number of chemistry packages in the past and all of the
computational chemistry that you can do in a Linux environment. But, what is
fundamental to chemistry? Why, the elements, of course. So in this article, I focus
on how you can learn more about the elements that make up everything around you
with Kalzium. KDE’s Kalzium is kind of like a periodic table on steroids. Not only does
it have information on each of the elements, it also has extra functionality to do other
types of calculations.

UPFRONT

Figure 1. The default view is of the classical ordering of the elements.

https://kde.org/applications/education/kalzium
https://www.linuxjournal.com

31 | June 2019 | https://www.linuxjournal.com

UPFRONT

Kalzium should be available within the package repositories for most distributions. In
Debian-based distributions, you can install it with the command:

sudo apt-get install kalzium

When you start it, you get a simplified view of the classical periodic table.

You can change this overall view either by clicking the drop-down menu in the
top-left side of the window or via the View→Tables menu item. You can select
from five different display formats. Clicking one of the elements pops open a new

Figure 2. Kalzium provides a large number of details for each element.

https://www.linuxjournal.com

32 | June 2019 | https://www.linuxjournal.com

UPFRONT

window with detailed information.

The default detail pane is an overview of the various physical characteristics of
the given element. This includes items like the melting point, electron affinity or
atomic mass. Five other information panes also are available. The atom model
provides a graphical representation of the electron orbitals around the nucleus
of the given atom. The isotopes pane shows a table of values for each of the
known isotopes for the selected element, ordered by neutron number. This
includes things like the atomic mass or the half-life for radioactive isotopes.

Figure 3. For those elements that are stable enough, you even can see the emission and
absorption spectra.

https://www.linuxjournal.com

33 | June 2019 | https://www.linuxjournal.com

UPFRONT

The miscellaneous detail pane includes some of the extra facts and trivia
that might be of interest. The spectrum detail pane shows the emission and
absorption spectra, both as a graphical display and a table of values. The last
detail pane provides a list of external links where you can learn more about the
selected element. This includes links to Wikipedia, the Jefferson Lab and the
Webelements sites.

Clicking Tools→Isotope Table pops up a new window with a display of all of the
known isotopes.

Within this window, you can use your mouse to navigate around. The mouse wheel
zooms you in and out to a section of the display. You can click and drag the view
port to different sections of the isotope display. Once you find the isotope you’re
interested in, right-click on the given square to see more details on the left-hand side
of the window. Here, you can find out about the number of nucleons, the half-life if

Figure 4. You can get information about all of the known isotopes through an intuitive interface.

https://www.linuxjournal.com

34 | June 2019 | https://www.linuxjournal.com

UPFRONT

the isotope is unstable, as well as the relative abundance. For those isotopes that are
unstable, the display is color-coded based on the type of radiation that the radioactive
element emits.

Clicking Tools→Plot Data opens yet another new window where you can select
various characteristics of the elements and plot them. This is helpful for those
who process information better visually. You can select from atomic number,
atomic mass, electro negativity, melting point, boiling point, atomic radius or
covalent radius as the potential data sources. You then can select which elements

Figure 5. For those who are more visual, you easily can plot relationships between various
characteristics of the elements.

https://www.linuxjournal.com

35 | June 2019 | https://www.linuxjournal.com

UPFRONT

you want to be plotted.

Kalzium is also handy for new chemistry students. It includes a glossary and a table
of definitions. The glossary explains terms relevant to both knowledge and tools.

One slightly odd thing I noticed was that I had to double-click the label in the left-hand
pane in order to have the contents actually be displayed in the right-hand pane. If
you are particularly new to science, you may not know Greek symbols or size prefixes
for numbers. If that’s is the case, click Tools→Tables. This way, you easily can get
reminders about what a hectometer, for instance, works out to be.

The last section I want to look at is the group of calculators Kalzium provides. Click

Figure 6. If you are new to chemistry, you can use the glossary to learn more about the
domain-specific jargon you’re likely to encounter.

https://www.linuxjournal.com

36 | June 2019 | https://www.linuxjournal.com

UPFRONT

Tools→Perform Calculations to open a new window. You can do calculations on
molecular mass, concentration, nuclear information, gas information, titration or
equation balancing. In the molecular mass calculator, you can enter a chemical
formula and have it calculate the total molecular mass.

In some cases, you’ll have larger units of molecules, especially in organic chemistry.
In those situations, you can create aliases of these units, such as alcohols or benzene
rings, making it easier to create your molecular formula. The second calculator figures
out concentrations, in moles, for given amounts of solute and solvent. Here, you
can adjust the various amounts of both the solvent and the solute to figure out what
concentration you end up with.

Figure 7. Kalzium can figure out the mass of a given molecular formula.

https://www.linuxjournal.com

37 | June 2019 | https://www.linuxjournal.com

UPFRONT

The third calculator is the nuclear calculator. With this, you can select an isotope,
with its isotope mass and its half-life. You then can solve for either an initial amount, a
final amount or the time to get between an initial and a final amount.

Figure 8.
Kalzium
provides a
calculator
to help you
figure out the
molarity for a
given solution.

Figure 9. You
can figure
out how long
a given piece
of radioactive
material will
hang around.

https://www.linuxjournal.com

38 | June 2019 | https://www.linuxjournal.com

UPFRONT

The fourth calculator takes the gas law and dynamically calculates the other values
when you change one of the values. Kalzium lets you play with the temperature,
pressure and volume, given the set of gas parameters molar mass and number

Figure 10.
Kalzium
provides a
calculator
that
simplifies the
calculations
defined by
the gas law.

Figure 11.
If you are
studying
acids and
bases,
Kalzium
provides
a titration
calculator.

https://www.linuxjournal.com

39 | June 2019 | https://www.linuxjournal.com

UPFRONT

of moles. This can be useful when you first start to study how gases respond to
temperature and pressure changes.

The fifth calculator provides titration calculations. You can enter experimental values
of pH and volume, and then Kalzium will try to plot the inputs and figure out a
theoretical equation.

The last calculator is the equation-solver. You can provide a chemical equation, where
you enter unknowns as lower-case letters placed in front of the element symbols.
When you click the calculate button, Kalzium will figure out what value those lower-
case variables should have.

I hope Kalzium comes in handy for you. I think it would be especially helpful for
students just getting started in chemistry.

—Joey Bernard

Figure 12.
Kalzium can
take a given
chemical
equation
and figure
out missing
values to
make the
equation
balance.

https://www.linuxjournal.com

40 | June 2019 | https://www.linuxjournal.com

UPFRONT

Patreon and
Linux Journal

Together with the help of Linux Journal
supporters and subscribers, we can
offer trusted reporting for the world
of open-source today, tomorrow and
in the future. To our subscribers, old

and new, we sincerely thank you for your continued support. In addition to magazine
subscriptions, we are now receiving support from readers via Patreon on our website.
LJ community members who pledge $20 per month or more will be featured each
month in the magazine. A very special thank you this month goes to:

• Appahost.com
• Brian Goodrich
• Chris Short
• Christel Dahlskjaer
• David Breakey
• Dr. Stuart Makowski
• Fred

• Henrik Halbritter (Albritter)
• James Mayes
• Joe
• Josh Simmons
• LinuxMagic Inc.
• Lorin Ricker
• Taz Brown

Now also find @linuxjournal on Liberapay. Thank you to our very first
Liberapay supporter and the person who gave us this great suggestion:
Mostly_Linux.

https://www.patreon.com/linuxjournal
https://www.patreon.com/linuxjournal
https://www.linuxjournal.com

41 | June 2019 | https://www.linuxjournal.com

UPFRONT

Reality 2.0: a Linux
Journal Podcast
Join us each week as Doc Searls and Katherine Druckman navigate the realities of the
new digital world: https://www.linuxjournal.com/podcast.

https://www.linuxjournal.com/podcast
https://www.linuxjournal.com

42 | June 2019 | https://www.linuxjournal.com

UPFRONT

FOSS Project
Spotlight: OpenNebula
OpenNebula recently released its latest version, 5.8 “Edge”, which
now offers pivotal capabilities to allow users to extend their cloud
infrastructure to the Edge easily and effectively.

Why OpenNebula?
For anyone looking for an open-source, enterprise solution to orchestrate data-center
virtualization and cloud management with ease and flexibility, OpenNebula is a fine
candidate that includes:

• On-demand provisioning of virtual data centers.

• Features like capacity management, resource optimization, high availability and
business continuity.

https://www.linuxjournal.com

43 | June 2019 | https://www.linuxjournal.com

UPFRONT

• The ability to create a multi-tenant cloud layer on various types of newly built or
existing infrastructure management solutions (such as VMware vCenter).

• The flexibility to create federated clouds across disparate geographies, as well
as hybrid cloud solutions integrating with public cloud providers like AWS and
Microsoft Azure.

And, it’s lightweight, easy to install, infrastructure-agnostic and thoroughly extensible.

Check here for a more detailed look at OpenNebula features.

New Features in 5.8 “Edge”
With the current conversation shifting away from centralized cloud infrastructure and
refocusing toward bringing the computing power closer to the users in a concerted
effort to reduce latency, OpenNebula’s 5.8 “Edge” release is a direct response to the
evolving computing and infrastructure needs, and it offers fresh capabilities to extend
one’s cloud functionality to the edge. Gaming companies, among others, who have

Figure 1. High-Level Features

https://opennebula.org/key-features
https://www.linuxjournal.com

44 | June 2019 | https://www.linuxjournal.com

UPFRONT

been using OpenNebula were of the first to push for these features (yet they don’t
have the be the only ones to benefit from them).

LXD Container Support In addition to supporting KVM hypervisors, as well as
offering a cloud management platform for VMware vCenter server components,
OpenNebula now provides native support for LXD containers as well. The virtues
offered by LXD container support allow users and organizations to benefit from:

• A smaller space footprint and smaller memory.

• Lack of virtualized hardware.

Figure 2. Configured LXD marketplace in the OpenNebula Front End

https://www.linuxjournal.com

45 | June 2019 | https://www.linuxjournal.com

UPFRONT

• Faster workloads.

• Faster deployment times.

From a compatibility perspective, OpenNebula 5.8 and LXD provide the following:

• Storage back-end support for filesystems with raw and qcow2 devices, and Ceph
with rbd images. As a result, LXD drivers can use regular KVM images.

Figure 3. OpenNebula Edge Cloud

https://www.linuxjournal.com

46 | June 2019 | https://www.linuxjournal.com

UPFRONT

• The native network stack is fully compatible.

• The LXD drivers support scenarios with installations both from apt and snap
packages. There is also a dedicated marketplace for LXD that is backed by the
public image server on https://images.linuxcontainers.org where you have access
to every officially supported containerized distribution.

Disaggregated Data Center (DDC) provisioning With the evolution of a more
diverse network of infrastructure to handle our growing needs for compute power,
and global bare-metal public cloud providers offering physical resources along the
“edge of the network”, OpenNebula 5.8 offers the native provisioning capability of
bare-metal resources (like Packet and AWS) to swiftly enhance one’s private cloud
infrastructure and have the flexibility to take advantage of these public resources
along the edge. So for a gaming company who needs to augment its cloud resources
in edge locations quickly, or any other organization with the need to accelerate its
migration to the cloud, OpenNebula 5.8 provides—within a single command—the
ability to provision, deploy and configure bare-metal resources as integral clusters
within one’s private cloud.

Regarding edge computing, you can learn more about OpenNebula’s partnership
with Packet or how Telefónica is using OpenNebula in its edge solution.

—Michael Abdou

Resources
• Check https://opennebula.org for detailed release notes and guidance on

how to download the code.

• Check https://opennebula.systems for information on commercial services
offered by OpenNebula Systems.

• vOneCloud (VMware-Specific Appliance)

https://images.linuxcontainers.org/
https://www.packet.com/about/customers/open-nebula
https://www.packet.com/about/customers/open-nebula
https://www.telefonica.com/documents/737979/144981357/whitepaper-telefonica-opa-mec-feb-2019.pdf/b011b66e-982f-6163-9409-c3c9fddc6c89
https://opennebula.org/
https://opennebula.systems/
http://vonecloud.today/
https://www.linuxjournal.com

47 | June 2019 | https://www.linuxjournal.com

UPFRONT

News Briefs
• The Mozilla IoT team announces that its Project Things is moving on from

its experimental phase and now will be known as Mozilla WebThings.
The team’s mission is to create a “Web of Things” implementation that
helps “drive IoT standards for security, privacy and interoperability”. Mozilla
WebThings is “an open platform for monitoring and controlling devices over
the web” and includes WebThings Gateway (“a software distribution for
smart home gateways focused on privacy, security and interoperability”) and
WebThings Framework (“a collection of reusable software components to
help developers build their own web things”).

• Congrats to Sam Hartman, new Debian Project Leader! You can read more
details about the election here, and read Sam’s DPL 2019 Platform here.

• Kdenlive 19.04 has been released. From the release announcement: “more
than 60% of the code base was changed with +144,000 lines of code added
and +74,000 lines of code removed. This is our biggest release ever bringing
new features, improved stability, greater speed and last but not least
maintainability (making it easier to fix bugs and add new features).” Go here
to download.

• After 12 years in the making, SuperTuxKart 1.0 is here. This release adds
support for networking races, so you can now play with others online instead
of split-screen. It also has various new game modes, such as “normal race,
time trial, soccer mode, battle mode and the new Capture-The-Flag mode”.
You can download the new release here.

• A new music player and music collection organizer called Strawberry is now
available for Sparky Linux users. Strawberry is a fork of Clementine, aimed
at music collectors, audio enthusiasts and audiophiles. Jonas Kvinge is the
project developer, and it’s licensed under the GNU Public License v3.0. The

Visit LinuxJournal.com for
daily news briefs.

https://hacks.mozilla.org/2019/04/introducing-mozilla-webthings
https://hacks.mozilla.org/2019/04/introducing-mozilla-webthings
https://en.wikipedia.org/wiki/Web_of_Things
https://iot.mozilla.org/gateway
https://iot.mozilla.org/framework
https://lists.debian.org/debian-devel-announce/2019/04/msg00007.html
https://www.debian.org/vote/2019/vote_001
https://www.debian.org/vote/2019/platforms/hartmans
https://kdenlive.org/en/2019/04/kdenlive-19-04-released
https://kdenlive.org/en/download
http://blog.supertuxkart.net/2019/04/supertuxkart-10-release.html
https://supertuxkart.net/Download
https://sparkylinux.org/strawberry
https://sparkylinux.org/strawberry
http://linuxjournal.com
https://www.linuxjournal.com

UPFRONT

48 | June 2019 | https://www.linuxjournal.com

Strawberry GitHub page is here.

• Mozilla has released its 2019 Internet Health Report. This year’s report
focuses on three main issues: the need for better machine decision making,
rethinking digital ads and the rise of smart cities. See the Mozilla blog
for a summary.

• Pop!_OS 19.04 is now available from System76. This release is updated to
use version 5.0 of the Linux kernel and version 3.32 of GNOME. In addition,
this version brings a new Dark Mode, Slim Mode and refreshed icon designs.
Go here to download, or see the instructions on the System76 blog to
upgrade from 18.04.

• Nextcloud 16 was released. From the press release: “Nextcloud 16 is
smarter than ever, with machine learning to detect suspicious logins and
offering clever recommendations. Group Folders now sport access control
lists so system administrators can easily manage who has access to what in
organization-wide shares. We also introduce Projects, a way to easily relate
and find related information like files, chats or tasks.” You can download it
from here.

• Scientific Linux is being discontinued. According to BetaNews, the RHEL-
based distro maintained by the scientific community at The Fermi National
Laboratory and CERN will no longer be developed, and the organizations will
switch to CentOS. James Amundson, Head of Scientific Computing Division,
Fermi National Accelerator Laboratory, says the change is driven by the need
to unify their computing platform with collaborating labs and institutions:
“Toward that end, we will deploy CentOS 8 in our scientific computing
environments rather than develop Scientific Linux 8. We will collaborate with
CERN and other labs to help make CentOS an even better platform for high-
energy physics computing. Fermilab will continue to support Scientific Linux
6 and 7 through the remainder of their respective lifecycles. Thank you to all
who have contributed to Scientific Linux and who continue to do so.”

https://github.com/jonaski/strawberry
https://internethealthreport.org/2019
https://internethealthreport.org/2019/lets-ask-more-of-ai
https://internethealthreport.org/2019/rethinking-digital-ads
https://internethealthreport.org/2019/the-power-of-cities
https://blog.mozilla.org/blog/2019/04/23/its-complicated-mozillas-2019-internet-health-report
https://blog.system76.com/post/184281497363/popos-1904-is-here
https://system76.com/pop
https://nextcloud.com/blog/nextcloud-16-introduces-machine-learning-based-security-and-usability-features-acl-permissions-and-cross-app-projects
https://nextcloud.com/install/#instructions-server
https://betanews.com/2019/04/24/scientific-linux-dead
https://www.linuxjournal.com

UPFRONT

49 | June 2019 | https://www.linuxjournal.com

• Fedora 30 was released. TechRepublic reports that this version brings some
“quality-of-life improvements”, such as the flicker-free boot process. It includes
GNOME 3.32 with all new app icons, but it also includes Fedora spins for KDE,
XFCE, LXQT, MATE-Compiz, Cinnamon and LXDE. In addition, “New to Fedora
30 include packages for DeepinDE and Pantheon, the desktop environments
used in Deepin Linux, called ‘the single most beautiful desktop on the market’
by TechRepublic’s Jack Wallen, as well as elementaryOS, which Wallen lauded as
‘spectacularly subtle.’ While these are only packages—requiring simple, though
manual, installation—packaging these desktops is the first step to building a full
independent spin.” Go here to download, and see the full changelog here.

• Red Hat Enterprise 8 is now available. From the press release: “Red Hat
Enterprise Linux 8 is the operating system redesigned for the hybrid cloud
era and built to support the workloads and operations that stretch from
enterprise datacenters to multiple public clouds. Red Hat understands that
the operating system should do more than simply exist as part of a technology
stack; it should be the catalyst for innovation. From Linux containers and
hybrid cloud to DevOps and artificial intelligence (AI), Red Hat Enterprise
Linux 8 is built to not just support enterprise IT in the hybrid cloud, but to
help these new technology strategies thrive.”

• Microsoft announced a new Windows 10 Terminal app for command-line
users. From Microsoft’s blog post: “Windows Terminal [is] a new application
for Windows command-line users [that] will offer a user interface with
emoji-rich fonts and graphics-processing-unit-accelerated text rendering. It
also will provide multiple tb support as well as theming and customization,
allowing users to personalize their Terminal.” Windows Terminal will be
available for Windows 10 systems sometime in June.

• All Chromebooks that launch this year will support Linux apps. According
to Android Police, “Google announced that all Chromebooks launched in
2019 will be Linux-ready right out of the box, which is great for developers,
enthusiasts, and newbies alike. These announcements have been quick and

https://www.techrepublic.com/article/fedora-30-brings-immense-quality-of-life-improvements-to-linux-on-the-desktop
https://getfedora.org/
https://fedoraproject.org/wiki/Releases/30/ChangeSet
https://www.redhat.com/en/about/press-releases/red-hat-enterprise-linux-8-every-enterprise-every-cloud-every-workload
https://www.windowscentral.com/microsoft-building-new-terminal-app-windows-10-tab-support-and-more
https://www.androidpolice.com/2019/05/07/all-chromebooks-launched-this-year-will-be-linux-ready
https://www.linuxjournal.com

50 | June 2019 | https://www.linuxjournal.com

UPFRONT

brief, but at least this news is straight to the point, though every Chromebook
I’ve tested recently had Linux support....Oh, and they mentioned that Android
Studio is also a one-click install, too. That’s neat.”

• OASIS announced the launch of Open Projects. The press release
describes Open Projects as “the first-of-its-kind program that creates a
more transparent and collaborative future for open source and standards
development. Open Projects gives communities the power to develop
what they choose—APIs, code, specifications, reference implementations,
guidelines—in one place, under open source licenses, with a path to
recognition in global policy and procurement.”

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.oasis-open.org/
https://oasis-open-projects.org/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com
http://www.storix.com/linux

51 | June 2019 | https://www.linuxjournal.com

UPFRONT
AT THE FORGE

Why Smart
Cards Are
Smart
If you use GPG keys, learn about the benefits to
storing them on a smart card.

By Kyle Rankin

GPG has been around for a long time and is used to secure
everything from your email to your software. If you want to
send an email to someone and be sure that no one else can read
or modify it, GPG signing and encryption are the main method
you’d use. Distributions use GPG to sign their packages, so you
can feel confident that the ones you download and install from a
package mirror have not been modified from their original state.
Developers in many organizations follow the best practice of
GPG-signing any code they commit to a repository. By signing
their commits, other people can confirm that the changes that
claim to come from a particular developer truly did. Web-based
Git front ends like GitHub and GitLab let users upload their GPG
public keys, so when they do commit signed code, the interface
can display to everyone else that it has been verified.

Yet, all of the security ultimately comes down to the security
of your private key. Once others have access to your private
key, they can perform all of the same GPG tasks as though they
were you. This is why you are prompted to enter a passphrase

Kyle Rankin is a Tech Editor
and columnist at Linux
Journal and the Chief Security
Officer at Purism. He is the
author of Linux Hardening
in Hostile Networks, DevOps
Troubleshooting, The Official
Ubuntu Server Book, Knoppix
Hacks, Knoppix Pocket
Reference, Linux Multimedia
Hacks and Ubuntu Hacks, and
also a contributor to a number
of other O’Reilly books.
Rankin speaks frequently
on security and open-
source software including at
BsidesLV, O’Reilly Security
Conference, OSCON, SCALE,
CactusCon, Linux World Expo
and Penguicon. You can follow
him at @kylerankin.

HACK AND /

https://www.linuxjournal.com

52 | June 2019 | https://www.linuxjournal.com

HACK AND /

when you first set up a GPG key. The idea is that if attackers are able to copy your key,
they still would need to guess your password before they could use the key. For all of
the importance of GPG key security, many people still just leave their keys in ~/.gnupg
directories on their filesystem and copy that directory over to any systems where they
need to use GPG.

There is a better way. With OpenPGP smart cards, you can store your keys on a secure
device that’s protected with a PIN and not only store your keys more securely, but also use
them more conveniently. Although some laptops come with integrated smart card readers,
most don’t. Thankfully, these devices are available as part of multi-function USB security
token devices from a number of different vendors, and Linux Journal has published
reviews of such products in the past. In this article, I discuss all the reasons OpenPGP
smart cards are a better choice for storing your keys than your local filesystem.

Reason 1: Tamper-proof Key Storage
One of the main benefits of a smart card is that it stores your GPG keys securely.
When you store your keys on a filesystem, anyone who can access that filesystem
can copy off the keys. On a smart card, once keys go in, they never leave, neither
accidentally nor from tampering. The smart card chips themselves are designed to be
tamper-proof and resist attempts to extract key data even when someone has physical
access. By putting keys on a smart card, you can have a reasonable assurance that
your keys are safe, even from a determined attacker.

Reason 2: GPG Operations Happen on the Card
The next benefit to smart cards is related to the tamper-proof nature of the key
storage. Because the private keys never can leave the smart card, all of your GPG
operations happen on the smart card itself! When your GPG keys are on your
filesystem, each time you encrypt, decrypt or sign something, your keys are unlocked
and are copied to RAM so the CPU can perform the GPG operations. With a smart
card, the keys never leave the device, and the smart card itself performs the GPG
operations. GPG is smart card-aware, so it sends the payload over USB to the smart
card, the smart card encrypts, decrypts or signs it, and then it sends the output back
over USB to the computer.

https://www.linuxjournal.com

53 | June 2019 | https://www.linuxjournal.com

HACK AND /

The fact that operations happen on the card is important, because it’s further
assurance that your private keys aren’t exposed, even if you use your smart card
on an untrusted machine. Even if attackers had remote access to the untrusted
machine and could guess your PIN, they could, at best, temporarily use your keys
to encrypt, decrypt or sign something. They still could not extract your keys or
use them indefinitely—the moment you unplug your smart card, the keys fall out
of their grasp.

Reason 3: Portability
One of the other benefits of smart cards is portability. It’s true that laptops are
pretty portable, and you could, in theory, take one with you everywhere you go (if
you are a site reliability engineer that’s on call, this might be the case). The reality is
that most people leave their computers unattended at least some of the time. If you
travel somewhere, you might bring a laptop, but in many cases, you’ll probably also
leave it in a hotel.

If you have more than one computer, you are faced with having to copy GPG keys
around to each one on which you intend to use those keys. In that case, these
limitations on portability become a problem, because you aren’t going to have each
of those laptops in your possession at all times. Laptops get lost and stolen, and an
attacker with physical access to the laptop might be able to get access to your GPG
keys. Even if the laptop has disk encryption, a savvy attacker could use a cold boot
attack to get copies of disk unlock keys still present in RAM on a suspended machine.

When your GPG keys are on a smart card, you can put the USB security token in your
purse or pocket (I’ve found the watch pocket in jeans to be a great place) and have
it with you at all times. This portability means you don’t have to worry about copying
your GPG keys to each of your machines. Instead, you can just insert your smart card
when you need to use the keys and then remove it when you are done. Even if you
want to leave your smart card attached to your computer while you use it, you can
(and should) still remove it when you step away from the computer so it’s always
with you. Some USB security tokens even offer an NFC interface so you can use your
keys on your smart phone.

https://www.linuxjournal.com

54 | June 2019 | https://www.linuxjournal.com

HACK AND /

Reason 4: Multi-factor Authentication
The final benefit to smart cards is that it enforces multi-factor authentication on your
GPG keys. Ideally, GPG keys are protected by two different factors: something you
have (the key itself) and something you know (the password to unlock the key).
When you store your keys on a filesystem, multi-factor authentication is optional.
When you first generate your keys, you are prompted to generate a password to
protect them, but you are allowed to skip that step and generate keys without
password protection.

If you are in an organization that wants to enforce multi-factor authentication on GPG
keys, a smart card is a simple way to do it. Smart cards require users to enter a PIN to
unlock the key, and GPG will automatically prompt users to enter their smart card and
then type in the PIN whenever that particular key is being used.

Conclusion
I hope you’ve found this discussion of the benefits of OpenPGP smart cards useful.
With the large market of USB security tokens out there (which has grown even larger
with the interest in secure cryptocurrency storage), you have a lot of options to
choose from in a number of price ranges. Be sure to check which GPG key sizes and
algorithms a smart card supports before you buy it, especially if you use newer elliptic
curve algorithms or larger (3072- or 4096-bit) RSA keys. ◾

Resources
• “WebAuthn Web Authentication with YubiKey 5” by Todd A. Jacobs, LJ,

February 2019

• “The Purism Librem Key” by Todd Jacobs, LJ, February 2019

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.linuxjournal.com/content/webauthn-web-authentication-yubikey-5
https://www.linuxjournal.com/content/purism-librem-key
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

55 | June 2019 | https://www.linuxjournal.com

UPFRONT
AT THE FORGE

Python’s Mypy—
Advanced Usage
Mypy can check more than simple Python types.

By Reuven M. Lerner

In my last article, I introduced Mypy, a package that
enforces type checking in Python programs. Python itself
is, and always will remain, a dynamically typed language.
However, Python 3 supports “annotations”, a feature
that allows you to attach an object to variables, function
parameters and function return values. These annotations
are ignored by Python itself, but they can be used by
external tools.

Mypy is one such tool, and it’s an increasingly popular one.
The idea is that you run Mypy on your code before running
it. Mypy looks at your code and makes sure that your
annotations correspond with actual usage. In that sense, it’s
far stricter than Python itself, but that’s the whole point.

In my last article, I covered some basic uses for Mypy.
Here, I want to expand upon those basics and show how
Mypy really digs deeply into type definitions, allowing you to
describe your code in a way that lets you be more confident
of its stability.

Type Inference
Consider the following code:

AT THE FORGE

Reuven Lerner teaches
Python, data science and Git
to companies around the
world. You can subscribe
to his free, weekly “better
developers” e-mail list, and
learn from his books and
courses at http://lerner.co.il.
Reuven lives with his wife and
children in Modi’in, Israel.

https://www.linuxjournal.com/content/introducing-mypy-experimental-optional-static-type-checker-python
https://www.linuxjournal.com/content/introducing-mypy-experimental-optional-static-type-checker-python
http://lerner.co.il/
https://www.linuxjournal.com

56 | June 2019 | https://www.linuxjournal.com

AT THE FORGE

x: int = 5
x = 'abc'
print(x)

This first defines the variable x, giving it a type annotation of int. It also assigns it
to the integer 5. On the next line, it assigns x the string abc. And on the third line, it
prints the value of x.

The Python language itself has no problems with the above code. But if you run mypy
against it, you’ll get an error message:

mytest.py:5: error: Incompatible types in assignment
 (expression has type "str", variable has type "int")

As the message says, the code declared the variable to have type int, but then
assigned a string to it. Mypy can figure this out because, despite what many people
believe, Python is a strongly typed language. That is, every object has one clearly
defined type. Mypy notices this and then warns that the code is assigning values that
are contrary to what the declarations said.

In the above code, you can see that I declared x to be of type int at definition
time, but then assigned it to a string, and then I got an error. What if I don’t add the
annotation at all? That is, what if I run the following code via Mypy:

x = 5
x = 'abc'
print(x)

You might think that Mypy would ignore it, because I didn’t add any annotation. But
actually, Mypy infers the type of value a variable should contain from the first value
assigned to it. Because I assigned an integer to x in the first line, Mypy assumed that x
should always contain an integer.

https://www.linuxjournal.com

57 | June 2019 | https://www.linuxjournal.com

AT THE FORGE

This means that although you can annotate variables, you typically don’t have to do
so unless you’re declaring one type and then might want to use another, and you want
Mypy to accept both.

Defining Dictionaries
Python’s dict (“dictionary”) type is probably the most important in the entire
language. It would seem, at first glance, that name-value pairs aren’t very exciting
or important. But when you think about how often programs use name-value
pairs—for variables, namespaces, user name-ID associations—it becomes clear
just how necessary this can be.

Dictionaries also are used as small databases, or structures, for keeping track
of data. For many people new to Python, it seems natural to define a new class
whenever they need a new data type. But for many Python users, it’s more
natural to use a dictionary. Or if you need a collection of them, a list of dicts.

For example, assume that I want to keep track of prices on various items in a
store. I can define the store’s price list as a dictionary, in which the keys are the
item names and the values are the item prices. For example:

menu = {'coffee': 5, 'sandwich': 7, 'soup': 8}

What happens if I accidentally try to add a new item to the menu, but mix up the
name and value? For example:

menu[5] = 'muffin'

Python doesn’t care; as far as it’s concerned, you can have any hashable type as a key
and absolutely any type as as value. But of course, you do care, and it might be nice
to tighten up the code to ensure you don’t make this mistake.

Here’s a great thing about Mypy: it’ll do this for you automatically, without you saying
anything else. If I take the above two lines, put them into a Python file, and then check

https://www.linuxjournal.com

58 | June 2019 | https://www.linuxjournal.com

AT THE FORGE

the program with Mypy, I get the following:

mytest.py:4: error: Invalid index type "int" for
 ↪"Dict[str, int]"; expected type "str"
mytest.py:4: error: Incompatible types in assignment
 ↪(expression has type "str", target has type "int")

In other words, Mypy noticed that the dictionary was (implicitly) set to have strings
as keys and ints and values, simply because the initial definition was set that way. It
then noticed that it was trying to assign a new key-value pair with different types and
pointed to the problem.

Let’s say, however, that you want to be explicit. You can do that by using the typing
module, which defines annotation-friendly versions of many built-in types, as well as
many new types designed for this purpose. Thus, I can say:

from typing import Dict

menu: Dict[str, int] = {'coffee': 5, 'sandwich': 7, 'soup': 8}
menu[5] = 'muffin'

In other words, when I define my menu variable, I also give it a type annotation. This
type annotation makes explicit what Mypy implied from the dict’s definition—namely
that keys should be strings and values should be ints. So, I got the following error
message from Mypy:

mytest.py:6: error: Invalid index type "int" for
 ↪"Dict[str, int]"; expected type "str"
mytest.py:6: error: Incompatible types in assignment
 ↪(expression has type "str", target has type "int")

What if I want to raise the price of the soup by 0.5? Then the code looks like this:

https://www.linuxjournal.com

59 | June 2019 | https://www.linuxjournal.com

AT THE FORGE

menu: Dict[str, int] = {'coffee': 5, 'sandwich': 7,
 ↪'soup': 8.5}

And I end up getting an additional warning:

mytest.py:5: error: Dict entry 2 has incompatible type "str":
 ↪"float"; expected "str": "int"

As I explained in my last article, you can use a Union to define several different
options:

from typing import Dict, Union

menu: Dict[str, Union[int, float]] = {'coffee': 5,
 ↪'sandwich': 7, 'soup': 8.5}
menu[5] = 'muffin'

With this in place, Mypy knows that the keys must be strings, but the values can be
either ints or floats. So, this silences the complaint about the soup’s price being 8.5,
but retains the warning about the reversed assignment regarding muffins.

Optional Values
In my last article, I showed how when you define a function, you can annotate
not only the parameters, but also the return type. For example, let’s say I want to
implement a function, doubleget, that takes two arguments: a dictionary and a key. It
returns the value associated with the key, but doubled. For example:

from typing import Dict

def doubleget(d: Dict[str, int], k) -> int:
 return d[k] * 2

menu: Dict[str, int] = {'coffee': 5, 'sandwich': 7,

https://www.linuxjournal.com

60 | June 2019 | https://www.linuxjournal.com

AT THE FORGE

 ↪'soup': 8}
print(doubleget(menu, 'sandwich'))

This is fine, but what happens if the user passes a key that isn’t in the dict? This
will end up raising a KeyError exception. I’d like to do what the dict.get
method does—namely return None if the key is unknown. So, my implementation
will look like this:

from typing import Dict

def doubleget(d: Dict[str, int], k) -> int:
 if k in d:
 return d[k] * 2
 else:
 return None

menu: Dict[str, int] = {'coffee': 5, 'sandwich': 7, 'soup': 8}
print(doubleget(menu, 'sandwich'))
print(doubleget(menu, 'elephant'))

From Python’s perspective, this is totally fine; it’ll get 14 back from the first
call and None back from the second. But from Mypy’s perspective, there is a
problem: this indicated that the function will always return an integer, and now
it’s returning None:

mytest.py:10: error: Incompatible return value type
 ↪(got "None", expected "int")

I should note that Mypy doesn’t flag this problem when you call the function. Rather,
it notices that you’re allowing the function to return a None value in the function
definition itself.

One solution is to use a Union type, as I showed earlier, allowing an integer or

https://www.linuxjournal.com

61 | June 2019 | https://www.linuxjournal.com

AT THE FORGE

None to be returned. But that doesn’t quite express what the goal is here. What I
would like to do is say that it might return an integer, but it might not—meaning,
more or less, that the returned integer is optional.

Sure enough, Mypy provides for this with its Optional type:

from typing import Dict, Optional

def doubleget(d: Dict[str, int], k) -> Optional[int]:
 if k in d:
 return d[k] * 2
 else:
 return None

By annotating the function’s return type with Optional[int], this is saying that
if something is returned, it will be an integer. But, it’s also okay to return None.

Optional is useful not only when you’re returning values from a function, but
also when you’re defining variables or object attributes. It’s pretty common,
for example, for the __init__ method in a class to define all of an object’s
attributes, even those that aren’t defined in __init__ itself. Since you don’t yet
know what values you want to set, you use the None value. But of course, that
then means the attribute might be equal to None, or it might be equal to (for
example) an integer. By using Optional when setting the attribute, you signal
that it can be either an integer or a None value.

For example, consider the following code:

class Foo():
 def __init__(self, x):
 self.x = x
 self.y = None

https://www.linuxjournal.com

62 | June 2019 | https://www.linuxjournal.com

AT THE FORGE

f = Foo(10)
f.y = 'abcd'
print(vars(f))

From Python’s perspective, there isn’t any issue. But you might like to say that both
x and y must be integers, except for when y is initialized and set to None. You can do
that as follows:

from typing import Optional

class Foo():
 def __init__(self, x: int):
 self.x: int = x
 self.y: Optional[int] = None

Notice that there are three type annotations here: on the parameter x (int), on the
attribute self.x (also int) and on the attribute self.y (which is Optional[int]).
Python won’t complain if you break these rules, but if you still have the code that was
run before:

f = Foo(10)
f.y = 'abcd'
print(vars(f))

Mypy will complain:

mytest.py:13: error: Incompatible types in assignment
 ↪(expression has type "str", variable has type
 ↪"Optional[int]")

Sure enough, you now can assign either None or an integer to f.y. But if you try to
set any other type, you’ll get a warning from Mypy.

https://www.linuxjournal.com

63 | June 2019 | https://www.linuxjournal.com

AT THE FORGE

Conclusion
Mypy is a huge step forward for large-scale Python applications. It promises to keep
Python the way you’ve known it for years, but with added reliability. If your team is
working on a large Python project, it might well make sense to start incorporating
Mypy into your integration tests. The fact that it runs outside the language means you
can add Mypy slowly over time, making your code increasingly robust. ◾

Resources
You can read more about Mypy here. That site has documentation, tutorials
and even information for people using Python 2 who want to introduce mypy
via comments (rather than annotations).

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://mypy-lang.org/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

64 | June 2019 | https://www.linuxjournal.com

UPFRONT

Finishing Up
the Bash Mail
Merge Script
Finally, I’m going to finish the mail merge script, just
in time for Replicant Day.

By Dave Taylor

Remember the mail merge script I started writing a while back?
Yeah, that was quite some time ago. I got sidetracked with the
Linux Journal Anniversary special issue (see my article “Back
in the Day: UNIX, Minix and Linux”), and then I spun off on a
completely different tangent for my last article (“Breaking Up
Apache Log Files for Analysis”). I blame it on...

SQUIRREL!

Oh, sorry, back to topic here. I was developing a shell script
that would let you specify a text document with embedded
field names that could be substituted iteratively across a file
containing lots of field values.

Each field was denoted by #fieldname#, and I identified two
categories of fieldnames: fixed and dynamic. A fixed value might
be #name#, which would come directly out of the data file,
while a dynamic value could be #date#, which would be the
current date.

Dave Taylor has been hacking
shell scripts on Unix and Linux
systems for a really long time.
He’s the author of Learning
Unix for Mac OS X and
Wicked Cool Shell Scripts.
You can find him on Twitter
as @DaveTaylor, and you can
reach him through his tech
Q&A site Ask Dave Taylor.

WORK THE SHELL

https://www.linuxjournal.com/content/fun-mail-merge-and-cool-bash-arrays
https://www.linuxjournal.com/content/back-day-unix-minix-and-linux
https://www.linuxjournal.com/content/back-day-unix-minix-and-linux
https://www.linuxjournal.com/content/breaking-apache-log-files-analysis
https://www.linuxjournal.com/content/breaking-apache-log-files-analysis
https://www.askdavetaylor.com/
https://www.linuxjournal.com

65 | June 2019 | https://www.linuxjournal.com

WORK THE SHELL

More interesting, I also proposed calculated values, specifically #suggested#, which
would be a value calculated based on #donation#, and #date#, which would be
replaced by the current date. The super-fancy version would have a simple language
where you could define the relationship between variables, but let’s get real. Mail
merge. It’s just mail merge.

Reading and Assigning Values
It turns out that the additions needed for this script aren’t too difficult. The basic
data file has comma-separated field names, then subsequent lines have the values
associated with those fields.

Here’s that core code:

if [$lines -eq 1] ; then # field names
grab variable names
declare -a varname=($f1 $f2 $f3 $f4 $f5 $f6 $f7)
else # process fields

grab values for this line (can contain spaces)
declare -a value=("$f1" "$f2" "$f3" "$f4" "$f5" "$f6" "$f7")

The declare function turns out to be ideal for this, allowing you to create an array
varname based on the contents of the first line, then keep replacing the values of the
array value, so that varname[1] = value[1], and so on.

To add the additional variables #date# and #suggested#, you simply can append
them to the varname and value arrays. The first one is easy, but it did highlight a
weakness in the original code that I had to fix by adding quotes as shown:

declare -a varname=("$f1" "$f2" "$f3" "$f4" "$f5"
 "$f6" "$f7" "date" "suggested")

The f1–f7 values needed to be quoted to ensure that there always are the same

https://www.linuxjournal.com

66 | June 2019 | https://www.linuxjournal.com

WORK THE SHELL

number of values in the varname array regardless of actual value (if any).

Adding the values to the value array is a smidge more tricky because you actually
need to calculate values. Date is easy; it can be calculated once:

thedate=$(date "+%b %d, %Y")

Calculating the suggested value—donation/2—is also fairly easy to accomplish, but
must be done within the main loop so that it changes for each letter being sent. The
original donation amount in the demo is field 3, so the necessary code is:

amount=f3, so suggested=(f3/2)
suggested="$(($f3 / 2))"

The main block of code doesn’t require any changes at all, fortunately, so with just
those few tweaks, you now can use the mail merge script to generate, yes, a fully
customized email message:

$ subs.sh

Apr 13, 2019

Dear Eldon Tyrell, I wanted to start by again thanking you
for your generous donation of $500 in July. We couldn't do
our work without support from humans like you, Eldon.
This year we're looking at some unexpected expenses,
particularly in Sector 5, which encompasses California, as
you know. I'm hoping you can start the year with an
additional contribution? Even $250 would be tremendously
helpful.
Thanks for your ongoing support.
Rick Deckard
Society for the Prevention of Cruelty to Replicants

https://www.linuxjournal.com

67 | June 2019 | https://www.linuxjournal.com

WORK THE SHELL

Notice that date and suggested are both replaced with logical values, the former
showing the current date in a pleasant format (the date format string, above), and
the suggested value as 50% of the donation.

Looping More Than Once
The biggest bug that’s still in the script at this point is that although the donors
source list has more than one donor listed, the script actually only ever shows results
for that first donor and then quits.

To debug this part, let’s look at just the key lines in the main loop:

while IFS=',' read -r f1 f2 f3 f4 f5 f6 f7
do
if [$lines -eq 1] ; then # field names
grab variable names
declare -a varname=("$f1" "$f2" "$f3" "$f4" "$f5"
 "$f6" "$f7" "date" "suggested")
else # process fields
. . .
echo "------------------------"
exec $sed "$SUBS" $inputfile

fi
done < "$datafile"

Can you see the problem here? In a burst of enthusiasm for efficient coding and fast
execution, the script actually commits a sort of digital seppuku with an exec call
instead of just running the sed and continuing the loop.

Oops. My bad!

The solution is simply to remove the word exec from the loop, and it suddenly works
exactly as desired. The problem then is how do you split out all the individual letters?

https://www.linuxjournal.com

68 | June 2019 | https://www.linuxjournal.com

WORK THE SHELL

Having it all stream out as one long sequence of text is rather useless.

Creating Separate Output Files
There are a number of possible solutions, but I’m going to create individual
files based on the donor’s name. Since that value is $f1 once the data has been
parsed, this is easy:

outfile="$(echo $f1 | sed 's/ /-/g')-letter.txt"
echo "Letter for $f1. Output = $outfile"
$sed "$SUBS" $inputfile > $outfile

You can see that the outfile value is composed by replacing all spaces with
dashes, and the subsequent echo statement offers a status output. Finally, the
actual sed invocation now eschews the evil exec call (okay, it’s not evil) and
adds an output redirect.

Here’s the source donor file:

$ cat donors.txt
name,first,amount,month,state
Eldon Tyrell,Eldon,500,July,California
Rachel,Rachel,100,March,New York
Roy Batty,Roy,50,January,Washington

And, here’s what happens when the script is run:

$ sh bulkmail-subs.sh
Letter for Eldon Tyrell. Output = Eldon-Tyrell-letter.txt
Letter for Rachel. Output = Rachel-letter.txt
Letter for Roy Batty. Output = Roy-Batty-letter.txt

Great. Now, what about one of those letters? Let’s see what you’d be sending that rich
head of industry, Eldon Tyrell:

https://www.linuxjournal.com

69 | June 2019 | https://www.linuxjournal.com

WORK THE SHELL

$ cat Eldon-Tyrell-letter.txt
Apr 13, 2019
Dear Eldon Tyrell, I wanted to start by again thanking you
for your generous donation of $500 in July. We couldn't do
our work without support from humans like you, Eldon.
This year we're looking at some unexpected expenses,
particularly in Sector 5, which encompasses California, as
you know. I'm hoping you can start the year with an
additional contribution? Even $250 would be tremendously
helpful.
Thanks for your ongoing support.
Rick Deckard
Society for the Prevention of Cruelty to Replicants

Solved—and neatly too. Now, what would you do differently or add to make this
script more useful? Without vast overkill, of course.

In my next article, I plan to take an entirely different direction. I’m not sure what, but
I’ll come up with something. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

70 | June 2019 | https://www.linuxjournal.com

diff -u

What’s New
in Kernel
Development
By Zack Brown

Android Low-Memory Killer—In or Out?
One of the jobs of the Linux kernel—and all operating system
kernels—is to manage the resources available to the system.
When those resources get used up, what should it do? If the
resource is RAM, there’s not much choice. It’s not feasible
to take over the behavior of any piece of user software,
understand what that software does, and make it more
memory-efficient. Instead, the kernel has very little choice but
to try to identify the software that is most responsible for using
up the system’s RAM and kill that process.

The official kernel does this with its OOM (out-of-memory)
killer. But, Linux descendants like Android want a little more—
they want to perform a similar form of garbage collection,
but while the system is still fully responsive. They want a low-
memory killer that doesn’t wait until the last possible moment
to terminate an app. The unspoken assumption is that phone
apps are not so likely to run crucial systems like heart-lung
machines or nuclear fusion reactors, so one running process
(more or less) doesn’t really matter on an Android machine.

A low-memory killer did exist in the Linux source tree until

diff -u

Zack Brown is a tech
journalist at Linux Journal
and Linux Magazine, and is a
former author of the “Kernel
Traffic” weekly newsletter
and the “Learn Plover”
stenographic typing tutorials.
He first installed Slackware
Linux in 1993 on his 386 with
8 megs of RAM and had his
mind permanently blown by
the Open Source community.
He is the inventor of the
Crumble pure strategy board
game, which you can make
yourself with a few pieces
of cardboard. He also enjoys
writing fiction, attempting
animation, reforming
Labanotation, designing
and sewing his own clothes,
learning French and spending
time with friends‘n’family.

https://www.linuxjournal.com

71 | June 2019 | https://www.linuxjournal.com

diff -u

recently. It was removed, partly because of the overlap with the existing OOM code,
and partly because the same functionality could be provided by a userspace process.
And, one element of Linux kernel development is that if something can be done just
as well in userspace, it should be done there.

Sultan Alsawaf recently threw open his window, thrust his head out, and shouted,
“I’m mad as hell, and I’m not gonna take this anymore!” And, he re-implemented a
low-memory killer for the Android kernel. He felt the userspace version was terrible
and needed to be ditched. Among other things, he said, it killed too many processes
and was too slow. He felt that the technical justification of migrating to the userspace
dæmon had not been made clear, and an in-kernel solution was really the way to go.

In Sultan’s implementation, the algorithm was simple—if a memory request failed,
then the process was killed—no fuss, no muss and no rough stuff.

There was a unified wall of opposition to this patch. So much so that it became clear
that Sultan’s main purpose was not to submit the patch successfully, but to light a fire
under the asses of the people maintaining the userspace version, in hopes that they
might implement some of the improvements he wanted.

Michal Hocko articulated his opposition to Sultan’s patch very clearly—the Linux
kernel would not have two separate OOM killers sitting side by side. The proper OOM
killer would be implemented as well as could be, and any low-memory killers and other
memory finaglers would have to exist in userspace for particular projects like Android.

Suren Baghdasaryan also was certain that multiple OOM killers in the kernel source
tree would be a non-starter. He invited Sultan to approach the problem from the
standpoint of improving the user-space low-memory killer instead.

There also were technical problems with Sultan’s code. Michal felt it didn’t have a
broad enough scope and was really good only for a single very specific use case. And,
Joel Fernandes agreed that Sultan’s approach was too simple. Joel pointed out that
“a transient temporary memory spike should not be a signal to kill _any_ process. The

https://www.linuxjournal.com

72 | June 2019 | https://www.linuxjournal.com

diff -u

reaction to kill shouldn’t be so spontaneous that unwanted tasks are killed because
the system went into panic mode.” Instead, he said, memory usage statistics needed
to be averaged out so that a proper judgment of which process to kill could be made.
So, the userspace version was indeed slow, but the slowness was by design, so the
code could make subtle judgments about how to proceed.

But Suren, on the other hand, agreed that the userspace code could be faster, and
that the developers were working on ways to speed it up.

In this way, the discussion gradually transitioned to addressing the deficiencies in
the userspace implementation and finding ways to address them. To that extent,
Sultan’s code provided a benchmark for where the user code would like to be at
some point in the future.

It’s not unheard of for a developer to implement a whole feature, just to make the
point that an existing feature gets it wrong. And in this case, it does seem like that
point has been heard.

Securing the Kernel Stack
The Linux kernel stack is a tempting target for attack. This is because the kernel
needs to keep track of where it is. If a function gets called, which then calls
another, which then calls another, the kernel needs to remember the order they
were all called, so that each function can return to the function that called it.
To do that, the kernel keeps a “stack” of values representing the history of its
current context.

If an attacker manages to trick the kernel into thinking it should transfer
execution to the wrong location, it’s possible the attacker could run arbitrary
code with root-level privileges. Once that happens, the attacker has won, and
the computer is fully compromised. And, one way to trick the kernel this way is
to modify the stack somehow, or make predictions about the stack, or take over
programs that are located where the stack is pointing.

https://www.linuxjournal.com

73 | June 2019 | https://www.linuxjournal.com

diff -u

Protecting the kernel stack is crucial, and it’s the subject of a lot of ongoing
work. There are many approaches to making it difficult for attackers to do this or
that little thing that would expose the kernel to being compromised.

Elena Reshetova is working on one such approach. She wants to randomize the
kernel stack offset after every system call. Essentially, she wants to obscure the
trail left by the stack, so attackers can’t follow it or predict it. And, she recently
posted some patches to accomplish this.

At the time of her post, no specific attacks were known to take advantage of
the lack of randomness in the stack. So Elena was not trying to fix any particular
security hole. Rather, she said, she wanted to eliminate any possible vector of
attack that depended on knowing the order and locations of stack elements.

This is often how it goes—it’s fine to cover up holes as they appear, but even
better is to cover a whole region so that no further holes can be dug.

There was a lot of interest in Elena’s patch, and various developers made
suggestions about how much randomness she would need, and where she should
find entropy for that randomness, and so on.

In general, Linus Torvalds prefers security patches to fix specific security
problems. He’s less enthusiastic about adding security to an area where there
are no exploits. But in this case, he may feel that Elena’s patch adds a level of
security that wasn’t there before.

Security is always such a nightmare. Often, a perfectly desirable feature may
have to be abandoned, not because it’s not useful, but because it creates
an inherent insecurity. Microsoft ’s operating system and applications often
have suffered from making the wrong decisions in those cases—choosing to
implement a cool feature in spite of the fact that it could not be done securely.
Linux, on the other hand, and the other open-source systems like FreeBSD,
never make that mistake.

https://www.linuxjournal.com

74 | June 2019 | https://www.linuxjournal.com

diff -u

Line Length Limits
Periodically, the kernel developers debate something everyone generally takes for
granted, such as the length of a line of text. Personally, I like lines of text to reach
both sides of my screen—it’s just a question of not wasting space.

Alastair D’Silva recently agreed with me. He felt that monitor sizes and screen
resolution had gotten so big in recent years, that the kernel should start allowing
more data onto a single line of text. It was simple pragmatism—more visible text
means more opportunity to spot the bug in a data dump.

Alastair posted a patch to allow 64-byte line lengths, instead of the existing
options of 16 bytes and 32 bytes. It was met with shock and dismay from
Petr Mladek, who said that 64 bytes added up to more than 256 characters
per line, which he doubted any human would find easy to read. He pointed out
that the resolution needed to fit such long lines on the screen would be greater
than standard hi-def. He also pointed out that there were probably many people
without high-definition screens who worked on kernel development.

Alastair noted that regular users never would see this data anyway, and he added that
putting the choice in the hands of the calling routine couldn’t possibly be a bad thing.
In fact, instead of 16-, 32- and 64-bytes, Alastair felt the true option should be any
multiple of the groupsize variable.

There’s very little chance that Alastair ’s patch will make it into the kernel.
Linus Torvalds is very strict about making sure Linux development does not
favor wealthy people. He wants developers working on ancient hardware to
have the same benefits and capabilities as those working with the benefit of
the latest gadgets.

Linus commented about seven years ago on the possibility of changing the
maximum patch line length from 80 to 100 characters. At that time he said:

I think we should still keep it at 80 columns.

https://www.linuxjournal.com

75 | June 2019 | https://www.linuxjournal.com

diff -u

The problem is not the 80 columns, it’s that damn patch-check script that warns
about people *occasionally* going over 80 columns.

But usually it’s better to have the *occasional* 80+ column line, than try to split
it up. So we do have lines that are longer than 80 columns, but that’s not because
100 columns is ok - it’s because 80+ columns is better than the alternative.

So it’s a trade-off. Thinking that there is a hard limit is the problem. And extending
that hard limit (and thinking that it’s ‘ok’ to be over 80 columns) is *also* a problem.

So no, 100-char columns are not ok.

Deprecating a.out Binaries
Remember a.out binaries? They were the file format of the Linux kernel till around
1995 when ELF took over. ELF is better. It allows you to load shared libraries
anywhere in memory, while a.out binaries need you to register shared library
locations. That’s fine at small scales, but it gets to be more and more of a headache
as you have more and more shared libraries to deal with. But a.out is still supported in
the Linux source tree, 25 years after ELF became the standard default format.

Recently, Borislav Petkov recommended deprecating it in the source tree, with the
idea of removing it if it turned out there were no remaining users. He posted a patch
to implement the deprecation. Alan Cox also remarked that “in the unlikely event that
someone actually has an a.out binary they can’t live with, they can also just write an
a.out loader as an ELF program entirely in userspace.”

Richard Weinberger had no problem deprecating a.out and gave his official approval
of Borislav’s patch.

In fact, there’s a reason the issue happens to be coming up now, 25 years after the
fact. Linus Torvalds pointed out:

I’d prefer to try to deprecate a.out core dumping first....That’s the part that is actually

https://www.linuxjournal.com

76 | June 2019 | https://www.linuxjournal.com

diff -u

broken, no?

In fact, I’d be happy to deprecate a.out entirely, but if somebody _does_ complain, I’d
like to be able to bring it back without the core dumping.

Because I think the likelihood that anybody cares about a.out core dumps is basically
zero. While the likelihood that we have some odd old binary that is still a.out is slightly
above zero.

So I’d be much happier with this if it was a two-stage thing where we just delete a.out
core dumping entirely first, and then deprecate even running a.out binaries separately.

Because I think all the known *bugs* we had were with the core dumping code,
weren’t they?

Removing it looks trivial. Untested patch attached.

Then I’d be much happier with your “let’s deprecate a.out entirely” as a second patch,
because I think it’s an unrelated issue and much more likely to have somebody pipe up
and say “hey, I have this sequence that generates executables dynamically, and I use
a.out because it’s much simpler than ELF, and now it’s broken”. Or something.

Jann Horn looked over Linus’ patch and suggested additional elements of a.out
that would no longer be used by anything, if core dumping was coming out. He
suggested those things also could be removed with the same git commit, without
risking anyone complaining.

Borislav was a little doubtful about Linus’ approach—as he put it, “who knows what
else has bitrotten out there through the years”. But, he wasn’t so doubtful as to
suggest an alternative. Instead, he said to Linus, “the easiest would be if you apply
your patch directly now and add the a.out phase-out strategy we’re going for in its
commit message so that people are aware of what we’re doing.” Then, he added, the
architecture maintainers could each remove a.out core dump support from their

https://www.linuxjournal.com

77 | June 2019 | https://www.linuxjournal.com

diff -u

architectures on a case by case basis, and then Borislav could continue to deprecate
a.out in its entirety later on.

Linus said he’d be fine with that, but he also said he’d be happy to apply Borislav’s
a.out deprecation patch immediately on top of Linus’ core-dump removal patch.
He didn’t care to have a time delay, so long as the two patches could be reverted
independently if anyone squawked about one of them.

At this point, various architecture maintainers started commenting on a.out on their
particular architectures.

Geert Uytterhoeven said, “I think it’s safe to assume no one still runs a.out
binaries on m68k.”

And, Matt Turner said, “I’m not aware of a reason to keep a.out support on alpha.”

The alpha architecture, however, proved more difficult than Matt initially thought.
Linus looked into the port and found a lot of a.out support still remaining. And
certain parts of the port, he said, didn’t even make sense without a.out support. So
there would actually be a lot more gutting to do, in the alpha code, as opposed to a
simple amputation.

Måns Rullgård also remarked, “Anyone running an Alpha machine likely also has some
old OSF/1 binaries they may wish to use. It would be a shame to remove this feature.”

This actually made Linus stop dead in his tracks. He replied to Måns:

If that’s the case, then we’d have to keep a.out alive for alpha, since that’s the
OSF/1 binary format (at least the only one we support - I’m not sure if later
versions of OSF/1 ended up getting ELF).

Which I guess we could do, but the question is whether people really do have
OSF/1 binaries. It was really useful early on as a source of known-good binaries

https://www.linuxjournal.com

78 | June 2019 | https://www.linuxjournal.com

diff -u

to test with, but I’m not convinced it’s still in use.

It’s not like there were OSF/1 binaries that we didn’t have access to natively
(well, there _were_ special ones that didn’t have open source versions,
but most of them required more system-side support than Linux ever
implemented, afaik).

And Måns replied, “I can well imagine people keeping an Alpha machine for no other
reason than the ability to run some (old) application only available (to them) for
OSF/1. Running them on Linux rather than Tru64 brings the advantage of being a
modern system in other regards.”

Matt said he hadn’t been aware of this situation on alpha and agreed that it might be
necessary to continue to support a.out on that architecture, just for the remaining
users who needed it.

As a practical example, Arnd Bergmann recounted, “The main historic use case I’ve
heard of was running Netscape Navigator on Alpha Linux, before there was an open-
source version. Doing this today to connect to the open internet is probably a bit
pointless, but there may be other use cases.”

He also added that:

Looking at the system call table in the kernel...we seem to support a specific
subset that was required for a set of applications, and not much more. Old
system calls...are listed but not implemented, and the same is true for most of the
later calls...just the ones in the middle are there. This would also indicate that it
never really worked as a general-purpose emulation layer but was only there for a
specific set of applications.

And in terms of anyone potentially complaining about the loss of a.out support, Arnd
also pointed out that “osf1 emulation was broken between linux-4.13 and linux-4.16
without anyone noticing.”

https://www.linuxjournal.com

79 | June 2019 | https://www.linuxjournal.com

diff -u

Linus replied:

Yeah, it never supported arbitrary binaries, particularly since there’s often lots of
other issues too with running things like that (ie filesystem layout etc). It worked for
normal fairly well behaved stuff, but wasn’t ever a full OSF/1 emulation environment.

I _suspect_ nobody actually runs any OSF/1 binaries any more, but it would
obviously be good to verify that. Your argument that timeval handling was broken
may be an indication of that (or may just mean very few apps care).

And based on these reassuring considerations, Linus said, “I think we should try the
a.out removal and see if anybody notices.”

The discussion continued briefly, but it seems like a.out will finally be removed in the
relatively near future.

The thing that fascinates me about this is the insistence on continuing to support
ancient features if even a single user is found who still relies on it. If even one person
came forward with a valid use case for a.out, Linus would leave it in the kernel. At the
same time, if no users step forward, Linus won’t assume they may be lurking secretly
out in the wild somewhere—he’ll kill the feature. It’s not enough simply to use an
ancient feature, the user needs to be an active part of the community—or at least,
active enough to report his or her desire to continue to use the feature. And in that
case, Linus probably would invite that user to maintain the feature in question.

Note: if you’re mentioned in this article and want to send a response, please send a
message with your response text to ljeditor@linuxjournal.com and we’ll run it in the
next Letters section and post it on the website as an addendum to the original article. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com
mailto:ljeditor@linuxjournal.com

80 | June 2019 | https://www.linuxjournal.com

DEEP DIVE
FROM MAC TO LINUX

https://www.linuxjournal.com

DEEP
DIVE

81 | June 2019 | https://www.linuxjournal.com

Hello Again, Linux
My first MacBook was the first computer I really loved, but I wasn’t
happy about the idea of buying a new one. I decided it’s important to
live your values and to support groups that value the things you do.

By Richard Mavis

After ten years of faithful service, last year the time finally came to retire my
MacBook. Not many laptops last ten years—not many companies produce a
machine as durable and beautiful as Apple does—but, if one was available, I was
willing to invest in a machine that might last me through the next ten years. A
lot has changed in ten years—for Apple, for Linux and for myself—so I started
looking around.

The Situation
Prior to 2006, I had used only Windows. Around that time, there was a lot of
anxiety about its upcoming successor to Windows XP, which at the time was
code-named Project Longhorn. My colleagues and I all were dreading it. So,
rather than go through all that trouble, I switched to Linux.

However, my first experience with Linux was not great. Although 2006 was The
Year of the Linux Desktop (I saw headlines on Digg proclaiming it almost every
day), I quickly learned, right after wiping my brand-new laptop’s hard drive to
make way for Fedora, that maybe it wasn’t quite The Year of the Linux Laptop.
After a desperate and miserable weekend, I finally got my wireless card working,
but that initial trauma left me leery. So, about a year later, when I decided to
quit my job and try the digital nomad freelance thing, I bought a MacBook. A day
spent hunting down driver files or recompiling my kernel was a day not making
money. I needed the assurance and convenience Apple was selling. And it proved
a great investment.

https://www.linuxjournal.com

During the next decade, I dabbled with Linux. Every year seemed to be The Year of the
Linux Desktop—the real one, at last—so on my desktop at work (freelancing wasn’t
fun for long), I installed Ubuntu, then Debian, then FreeBSD. An article in this journal
introduced me to tiling window managers in general and DWM in particular. The first
time I felt something like disappointment with my MacBook was after using DWM on
Debian for the first time.

Through the years, as my MacBook’s hardware failures became increasingly
inconvenient, and as my personal preference in software shifted from big beautiful
graphical applications to small command-line programs, Linux started to look much
more appealing. And, Linux’s hardware compatibility had expanded—companies had
even started selling laptops with Linux already installed—so I felt reasonably sure I
wouldn’t need to waste another weekend struggling with a broken wireless connection
or risk frying my monitor with a misconfigured Xorg.conf.

So I looked at Dells and ThinkPads, but Apple’s hardware had spoiled me. I wanted
a machine that felt sturdy, that worked reliably, that looked elegant and cool, that
maybe I could service and upgrade myself, and that might last me another decade.
Nothing I found quite hit that sweet spot. System76 came the closest, and I almost
bought one, but then a colleague suggested I look into Purism. I fell in love and
bought a Librem 13. It’s been so great.

So, here’s what I’m using now.

The Hardware
I get the impression that inspiring assurance—both in the stability and reliability of the
machine and in its handling of your data and respect for your privacy—was Purism’s
driving design directive.

It’s hands-down the nicest-feeling laptop I’ve ever held. Some laptops are so thin and
light, they feel flimsy. The Librem does not. It’s thinner and much lighter than my old
MacBook, but it feels satisfyingly substantial and sturdy. Even the hinge on the screen
is tight enough that, when I move the machine, it barely wobbles.

DEEP
DIVE

82 | June 2019 | https://www.linuxjournal.com

https://www.linuxjournal.com/content/going-fast-dwm
https://puri.sm/
https://puri.sm/products/librem-13
https://www.linuxjournal.com

83 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

The keys press and bounce as you type and are lit from behind. The trackpad, by
default, recognizes one- and two-finger clicks, and, as I’m using it now, recognizes
clicks in the lower right and middle regions as right- and middle-clicks, which is quite
useful in certain situations.

And, the screen has a matte finish. I wonder how I lasted for so long with a glossy screen.

Plus, it’s beautiful. There are no logos on the top and no stickers on the body. The
key that on other machines might show the Windows logo instead shows a thick-ish
outline of a rectangle (which happens to be Purism’s brand). The part of me that falls
for modernist, minimalist design is very pleased with the Librem’s black-box aesthetics.

Is it perfect, or even better than a MacBook in every way? Of course not. For example,
along the screen’s frame there are six little rubber feet that touch the base when the
laptop is closed. On the MacBook, there is a thin line of rubber that runs all the way
around the frame which both makes it less noticeable and, presumably, permits less
dust and such when closed. Apple’s MagSafe power adapter is nicer than the standard
plug. And, Apple’s trackpad driver seems more refined—at least it never stalls and
resumes tracking only after I move my fingers in a certain way. Also, finger grease
appears much more easily on the keys. On the other hand, I now clean my keyboard
more often than I used to, so you could consider that more a feature than a bug.
But these are small complaints. Overall, it’s a superior experience. When I use my
company’s MacBook Air now, it feels like a regression.

It’s also nice to know that when I need to service or repair it, I’ll be able to manage that
myself. About halfway into its life, my MacBook’s hard drive died. The Apple Store told
me recovery and replacement would cost more than $1,000 and take about two weeks.
So I found a local data recovery specialist who did the job for half that cost in three days.
I’m not sure whether Apple allows owners of their newer laptops to do that anymore.

The Software
PureOS, PureBrowser The Librem ships with PureOS. It’s based on Debian, uses GNOME
3 by default, and comes with its own custom version of Firefox called PureBrowser.

https://www.pureos.net/
https://www.gnome.org/gnome-3
https://www.gnome.org/gnome-3
https://puri.sm/posts/the-four-browser-freedoms
https://www.linuxjournal.com

84 | June 2019 | https://www.linuxjournal.com

Apparently other distributions can run on the hardware, but I’ve found no reason to
switch. Neither have I needed to install a different browser.

i3, st, Dunst I have, however, switched from GNOME to i3. In the same way that my
MacBook spoiled me with hardware, DWM spoiled me with window managers. And,
as great as it is, I didn’t switch to Linux for GNOME. A big part of the appeal was an
environment that was fast and uncluttered, with less images and animations, but more
keyboard- and command-line-driven, something more customizable and convenient.
Something I could make my own.

You might not be impressed with the look of my environment—I mostly just copied the
Acme colors—but some people have put a lot of work into making theirs look sexy.

If you’re not familiar with i3 or tiling window managers in general, there are a lot of
videos out there. But the general idea is that, when you open a new window, the window

DEEP
DIVE

Figure 1. PureBrowser Running on PureOS on a Librem 13

https://i3wm.org/
http://acme.cat-v.org/
https://www.reddit.com/r/unixporn
https://www.youtube.com/watch?v=GKviflL9XeI
https://www.youtube.com/watch?v=j1I63wGcvU4
https://www.linuxjournal.com

85 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

manager both places and sizes it to optimize the space on your screen. So one window
will occupy the full screen, two will be split evenly, and so on. There are no fancy window
borders or drop shadows, no title bars or buttons to minimize or close it. Instead, there
are keyboard shortcuts for opening and closing windows, collapsing them into stacked or
tabbed groups, for floating and resizing them, calling custom scripts, and so on. And, you
get to determine what those shortcuts are. If you want to add a hotkey to open your web
browser or text editor or to lock your screen, you can do that.

Unless you specify some other program, new windows will open with your terminal
emulator. For that, I’m currently using st, which is nice and fits well with this model
since it doesn’t contain built-in functionality for tabs and such. (Since switching back
to Linux, I’ve learned that the Suckless group receives a lot of shade on the internet.
But I respect them and their goals even if I don’t use all of their products.)

One thing I wanted to see much fewer of on my machine was notifications. For

Figure 2. i3 Showing One Floating Window

https://st.suckless.org/
https://www.linuxjournal.com

86 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

the past few years, the number of notifications I’d been seeing daily seems to have
accelerated wildly—notifications for upgrading, notifications offering a tour of new
features, notifications I couldn’t dismiss without invoking some action. I now see hardly
any, and because Dunst is easy to customize, they now look great in my environment.

The switch to i3 was not completely painless. For one, the trackpad’s scroll direction
reverted (Apple was right to reverse it all those years ago). But fixing that was just a
matter of adding one line to my ~/.Xmodmap file. And, the keys to change the screen
brightness and speaker volume stopped working, but those were pretty easy to fix as well.

The experience was rewarding. It’s no monumental achievement in programming,
but after fixing my brightness keys, I felt like I had both learned and accomplished
something. Too many issues like that would not be fun, but those were all I had. And

Figure 3. Dunst Showing Three Notifications

https://dunst-project.org/
https://slate.com/technology/2011/09/apple-s-mousetrap-why-did-apple-reverse-the-way-we-scroll-up-and-down.html
https://www.linuxjournal.com

87 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

the cost was well worth the benefit. Especially if you’re any sort of developer, these
kinds of small problems with easy solutions can provide valuable exposure to new
ideas and unfamiliar things maybe outside your domain.

Plus, it reminds me a little bit of playing with LEGOs. If you like to tinker, Linux is
great. Given all these pieces that fit together, you can adjust so many more aspects
of your experience, from the aesthetics through the workflow, than you can in other
systems. And if some piece you want is missing, you can make it.

dmenu (and Scripts) Aside from Emacs, dmenu is the most versatile tool I’m using,
and it’s the one I miss the most when I use other systems.

dmenu is a simple program: it opens a window containing a text input area (with

Figure 4. A Few Keyboard Fixes for i3

https://www.linuxjournal.com

88 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

an optional prompt) and a list. You can filter the list by typing; you can move the
selection indicator with the arrow keys, and you can select an item by pressing
Enter. The selected item is returned to the process that opened dmenu. And, that’s
it. But its simplicity is what makes it so useful. It’s an excellent example of The UNIX
Philosophy in practice—it does one thing well, it works with text streams, and it works
well with other programs—and it’s my favorite Suckless project.

If you’ve never used it, here’s a good video of dmenu in action.

The program dmenu_run will create a dmenu listing the executable items in your $PATH
and run the one you select. This might be why dmenu is often thought of as a program
launcher, but that’s only one thing it can do. For example, you could use it to exit i3.

You could use it to mount and unmount drives. You could use it in a custom chain of
commands, reading and filtering and piping values from a database through scripts to
arbitrary applications. Or, if you’d rather just use it as a launcher but don’t see yourself
using it to run, say, test in that way, you could write a script limiting the options to
your favorite graphical applications.

clipmenu On my MacBook, I used Flycut, and I didn’t want to be without a
clipboard manager.

Figure 5. A Script to Exit i3 Using dmenu

https://www.youtube.com/watch?v=R9m723tAurA
https://github.com/LukeSmithxyz/voidrice/blob/master/.scripts/i3cmds/dmenumount
https://github.com/LukeSmithxyz/voidrice/blob/master/.scripts/i3cmds/dmenuumount
http://richardmavis.info/star-plumber
http://richardmavis.info/star-plumber
https://github.com/TermiT/Flycut
https://www.linuxjournal.com

89 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

clipmenu is a clipboard manager that uses dmenu. To use it, you invoke the program,
select the item you want to paste, then paste it using the standard method(s).

Linux offers more methods for copying and pasting than macOS. At first, I
thought this was too complicated, but I just didn’t know how to use them right.
macOS provides one clipboard buffer; Linux provides three. One behaves as
you’d expect, but there’s another (called the primary selection) that allows
you to copy and paste without replacing the content in the clipboard buffer.
(Apparently, there’s also a secondary selection, but I have no idea how to use it
yet.) The primary selection buffer stores the most recent text you’ve selected,
and you copy it by clicking the middle-mouse button where you want to paste it.
It’s so convenient.

Figure 6. A Script for Launching Your Favorite GUI Applications via dmenu

https://github.com/cdown/clipmenu
https://www.linuxjournal.com

90 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

One other pain point I discovered shortly after switching back is that Linux’s
graphical programs use Microsoft key conventions for copying and pasting
(Ctrl-C to copy, Ctrl-X to cut and Ctrl-V to paste). This is unfortunate, because
the Control key is used to send signals in the shell—Ctrl-C sends the interrupt
signal, which usually will either kill the program you’re running or cancel the
command you’ve typed—so there’s a conflict. This means that those copy-and-
paste keys can’t be used consistently across the system. macOS uses C, X and
V in those ways, but in combination with the Command key instead of Control,
thereby avoiding this issue and enabling consistent copy-and-paste behavior in
the shell and everywhere.

However, I also discovered that pressing Shift-Insert will paste the content of the
clipboard buffer, and it will do so both in the GUI and the shell. So now I mostly use
that. And I’ve bound clipmenu to Super-Insert, so it’s nice and mnemonic.

But in practice, I use the clipboard much less often now thanks both to the primary
selection and a little tool I wrote: Something Like The Plumber.

Often I’ll copy and paste some text, not because I want to move it around a
document, but because I want to act on it—like when copying a URL from an email
into the browser. This isn’t always ideal. For example, to look up a word in the
Oxford English Dictionary, that requires selecting the word, copying it, switching to
my browser, going to the OED’s site, scanning the UI for the search bar, pasting in

Figure 7. clipmenu Showing Items Filtered on “Suck”

https://www.linuxjournal.com

91 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

the word, submitting the form, and finally, landing on the page that contains the
definition. That’s too many steps. It’d be better if I could just pipe the word to the
website and see the result page.

So, taking inspiration from Plan 9’s Plumber, I wrote a loose and simple system that
enables a cheap imitation. It enables you to select some text, invoke the plumber,
select the script that should receive the text, and then do whatever you want with it—
like pipe a word straight to your favorite dictionary.

cmus For music, I’m using cmus. It’s a big change from iTunes and in mostly good
ways. For one, it’s fast and isn’t also a store. On the other hand, I miss seeing album
art sometimes. And, I still haven’t found a metadata editor I love. Maybe I’ll write one.

sxiv, mupdf For viewing images and PDFs, I’m using sxiv and mupdf. Both are simple,
keyboard-controlled, fast and easy to use.

Figure 8. A Cheap Imitation of Plan 9’s Plumber

https://9p.io/wiki/plan9/Using_plumbing/index.html
https://github.com/rmavis/something-like-the-plumber
https://cmus.github.io/
https://github.com/muennich/sxiv
https://mupdf.com/
https://www.linuxjournal.com

92 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

sxiv has a cool feature: you can call custom external commands via custom keyboard
shortcuts. So, for example, if you have scripts for resizing or rotating images, in sxiv’s
thumbnail mode, you can select the images on which you want to act, call the script via
a hotkey you define, reload the images (by pressing R), and see the results right away.

Emacs Emacs is to text editing what a web browser is to viewing HTML. I’ve been
using it for about 12 years. The more I learn about it, the more I love it.

One thing that initially struck me as strange about the Librem’s keyboard is an
asymmetry: there’s only one Super key, on the left side, and in what might be its
partner’s place on the right is a Menu key. To my knowledge, I’ve never had a keyboard
with this key, but Emacs interprets it as M-x, which it uses to prefix many commands.
This a very handy convenience.

isync and Notmuch isync is a program for syncing mailboxes. It’s easy to configure

Figure 9. cmus

https://github.com/muennich/sxiv/blob/master/exec/key-handler
http://isync.sourceforge.net/
https://www.linuxjournal.com

93 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

Figure 10. sxiv and mupdf

Figure 11. Emacs

https://www.linuxjournal.com

94 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

and quick to run, but that’s all it does. For organizing, searching, viewing and writing
email, I’m using Notmuch in Emacs. The pleasure of writing, sending and viewing email
in a text editor instead of a web browser really can’t be overstated. And to coordinate
isync and Notmuch, I run a script.

A Few Utilities:

• For taking screenshots, scrot is great. You can select a region, a window, specify a
filename and type, a number of seconds to delay and so on.

• grabc is great for picking colors. It turns the pointer into crosshairs, and when you
click, it prints the color in hex and RGB formats.

• xbanish hides the cursor when you start typing.

https://notmuchmail.org/
https://github.com/rmavis/mail-sync/blob/master/mail-sync
https://github.com/resurrecting-open-source-projects/scrot
https://github.com/muquit/grabc
https://github.com/jcs/xbanish
https://www.linuxjournal.com
https://www.linuxjournal.com/twistlock

95 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

• While writing this article, I accidentally deleted my home directory. I’m not going
to discuss the nightmare that followed, but after the panic, the first thing I installed
was trash-cli, which I’ve aliased to rm. This security is well worth the inconvenience
of needing to clear my trash every once in a while.

Conclusion
The adjustment period definitely involved some work, but it was absolutely worth it. I

Resources
• Librem 13

• i3, improved tiling wm

• st—simple terminal

• Dunst, a lightweight replacement for the notification dæmons

• clipmenu, clipboard management using dmenu

• cmus, a small, fast and powerful console music player for Unix-like
operating systems

• sxiv, Simple X Image Viewer

• mupdf, a lightweight PDF, XPS, and E-book viewer.

• isync, free IMAP and MailDir mailbox synchronizer

• Notmuch, just an email system

• scrot, SCReenshOT—command-line screen capture utility

• grabc, a command-line tool to identify a pixel color of an X Window
System screen

• xbanish, banish the mouse cursor when typing, show it again when the
mouse moves

• trash-cli, command-line interface to the freedesktop.org trashcan

https://github.com/andreafrancia/trash-cli
https://puri.sm/products/librem-13
https://i3wm.org/
https://st.suckless.org/
https://dunst-project.org/
https://github.com/cdown/clipmenu
https://cmus.github.io/
https://cmus.github.io/
https://github.com/muennich/sxiv
https://mupdf.com/
http://isync.sourceforge.net/
https://notmuchmail.org/
https://github.com/resurrecting-open-source-projects/scrot
https://github.com/muquit/grabc
https://github.com/muquit/grabc
https://github.com/jcs/xbanish
https://github.com/jcs/xbanish
https://github.com/andreafrancia/trash-cli
https://www.linuxjournal.com

96 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

love my laptop. I haven’t been able to say that in a while.

On a superficial level, of course, it’s nice that my system looks the way I want it to. But
more important is that I feel good about my investment. I no longer feel compunctions
when I see headlines about Apple fighting users’ rights to repair their products. It’s
important to live your values and to support groups that value the things you do. Purism
clearly values user rights and privacy. System76 is manufacturing its Thelio desktops in
the USA and planting trees to offset the environmental impact. These companies are
doing good work. I’m happy to benefit from it. ◾

Richard Mavis spends most of his day writing code and other things. He once literally put his wife to sleep explaining what he does. You
can find him via his website or Twitter.

Decentralized
Certificate Authority

and Naming

Free and open source contributors only:

handshake.org/signup

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://system76.com/desktops
http://richardmavis.info/
https://twitter.com/rmavis
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

97 | June 2019 | https://www.linuxjournal.com

Decentralized
Certificate Authority

and Naming

Free and open source contributors only:

handshake.org/signup

https://handshake.org/signup

DEEP
DIVE

Accessing Those
Old macOS Volumes
How to mount and access the storage drive of an old Mac via Linux.

By Petros Koutoupis

Nowadays, all newly installed versions of the Macintosh OS pre-format the local
storage drive with the Apple File System (APFS). Before APFS, there was the
Hierarchical File System Plus (HFS+). For quite a long time (since at least 1998),
this has been the default filesystem for all that was and continues to be Macintosh.
If you are like many others transitioning from older Macintosh devices and looking
to move toward a Linux-based one, you may find yourself circling back to that old
set of storage volumes containing many years worth of data. Fortunately, the Linux
environment contains such tools to be able to accomplish this.

The Tools for the Job
In this scenario, let’s say this storage device, be it a Hard Disk Drive (HDD) or Solid
State Drive (SSD) is connected either externally or installed internally as a secondary
device to your new and current Linux platform. You’ll first need to install a base set of
packages. On Debian or Ubuntu, it would look something like this:

$ sudo apt install hfsplus hfsprogs

Seeing how HFS+ is a very dated and very feature-limited filesystem, I doubt anyone
will be formatting a new volume with that filesystem. But let’s say you’re using an
external volume that needs to hop from Linux to a Mac and back. You can format it
with the following mkfs command:

98 | June 2019 | https://www.linuxjournal.com

https://www.linuxjournal.com

DEEP
DIVE

99 | June 2019 | https://www.linuxjournal.com

$ sudo /sbin/mkfs.hfs /dev/sdb1
Initialized /dev/sdb1 as a 131072 MB HFS Plus volume

To mount it:

$ sudo mount -t hfsplus /dev/sdb1 /mnt

But, what if your volume was the main operating system storage drive of that old
Macintosh or MacBook? How do you mount it and access it via Linux?

In the following example, a dump of the partition layout on the macOS reveals that
the main operating system partition is set to disk0s2:

$ diskutil list
/dev/disk0 (internal):
 #: TYPE NAME SIZE IDENTIFIER
 0: GUID_partition_scheme 121.3 GB disk0
 1: EFI EFI 314.6 MB disk0s1
 2: Apple_HFS Macintosh HD 96.5 GB disk1s2
 3: Apple_Boot Recovery 522.7 MB disk1s3

Moving that same volume to Linux, the “Macintosh HD” label would read “Apple Core
Storage” (visible via an fdisk or parted partition table dump), and assuming that the
device identifies as /dev/sdb when connected, the above partition will map to /dev/sdb2.

You should be able to mount the filesystem with read-only access using the
above mount command, but if you need to enable write access, you can do it in
one of two ways.

The Brute-Force Method
Mount the HFS+ drive with the following command:

$ sudo mount -t hfsplus -o force,rw /dev/sdb2 /mnt

https://www.linuxjournal.com

100 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

Or remount:

$ sudo mount -t hfsplus -o remount,force,rw /mnt

This approach is not necessarily considered safe, and it’s strongly advised to run
a filesystem check quite regularly either before mounting the volume or after
unmounting it:

$ sudo fsck.hfsplus -f /dev/sdb2

Disabling the Journal
Now, this too is not a recommended approach, as filesystem journaling plays a very
important role in the filesystem and is intended to improve filesystem reliability
(and data consistency), but with this method, to mount the HFS+ filesystem in a
Linux environment successfully, you’ll need to do just this. First, in macOS, identify
both the device and the partition. If you were to use the same device as in the
example above, the command would look something like this:

$ sudo diskutil disableJournal disk0s2

Note: there is a known issue with some versions of OS X that doesn’t properly register the
disableJournal command unless you run the enableJournal command before it.

After disabling the journal from a macOS environment, take the drive to a Linux
environment and identify its partition.

Note: again, disabling the journal is not considered safe, and it is strongly advised to run
filesystem checks quite regularly either before mounting the volume or after unmounting it.

Home Directory Shenanigans
For the purpose of this article, let’s use the same partition as above (/dev/
sdb2). Mount the device. If this once hosted your macOS home directory, you’ll
immediately notice that you’re unable to read or write from/to the volume at that

https://www.linuxjournal.com

101 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

destination, unless you are running as root. You’ll be able to enable read/write
access to this home directory by changing your User ID (UID) to match the UID
used by your user under the macOS environment. The cleanest way to do this is
by creating a new (and maybe temporary) user in your Linux environment.

Typically, the UID used by the first user under macOS is 501. If you still have the
storage device connected to your Macintosh, open a terminal and type id. The
user UID will be displayed:

$ id
uid=501(petros) gid=20(staff) groups=20(staff),12(everyone),
↪61(localaccounts),79(_appserverusr),80(admin),
↪81(_appserveradm),98(_lpadmin),701(com.apple.sharepoint
↪.group.1),33(_appstore),100(_lpoperator),204
↪(_developer),250(_analyticsusers),395(com.apple.
↪access_ftp),398(com.apple.access_screensharing),
↪399(com.apple.access_ssh)

Remember this number.

Create the new (or temporary) user:

$ sudo useradd -d /home/osxuser -m -s /bin/bash -G
 ↪adm,sudo osxuser

Create the password for this new user:

$ sudo passwd osxuser

Log in as the new user:

$ su osxuser

https://www.linuxjournal.com

102 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

Change your Linux user’s UID to 501:

$ sudo usermod --uid 501 osxuser

And, fix your home directory permission to reflect this change:

$ sudo chown -R 501:osxuser /home/osxuser

Now you should be able to read/write to both your Mac and Linux user’s home
directory, regardless of the operating system you are using and logged in to. ◾

Petros Koutoupis, LJ Editor at Large, is currently a senior performance software engineer at Cray for its Lustre
High Performance File System division. He is also the creator and maintainer of the RapidDisk Project. Petros
has worked in the data storage industry for well over a decade and has helped pioneer the many technologies
unleashed in the wild today.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

Thanks to Sponsor
PULSEWAY

for Supporting Linux Journal

Want to see your company's logo here?
Find out more, https://www.linuxjournal.com/sponsors.

System Management
at Your Fingertips.

www.pulseway.com

https://www.linuxjournal.com/sponsors
http://www.pulseway.com
https://www.linuxjournal.com/sponsors
https://www.linuxjournal.com/sponsors
https://www.linuxjournal.com/sponsors
https://www.linuxjournal.com/sponsors

104 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

Working with Mac
Files from Linux
How to work with Mac-specific files, even ones from 20 years ago.

By Bryan Lunduke

If you’ve got a Macintosh and a Linux PC, eventually you’re going to want to move
files between them. (See Petros Koutoupis’ guide to “Accessing Those Old macOS
Volumes” in this issue for a great primer on how to read/write Mac volumes.)

But, what about when you actually want to work with those Mac-specific files?
Perhaps you’d like to extract an archive originally made on a Macintosh 20 years
ago. Or maybe you need to read a document file created in some Mac-specific
office suite.

Luckily, this is usually not too difficult (emphasis on the “usually”).

Let’s walk through some of the more common file types and how to read/write them
on Linux machines.

DMG
Apple has a few “Disk Image” file types that have been popular through the years:
.SMI, .IMG and .DMG, with DMG being the most common these days.

On a modern Macintosh, .DMG files are a pretty typical way to distribute software.
Each individual DMG is mounted with a double-click, and applications (plus supporting
files) typically are contained within. Think of these as, essentially, .ISO files.

https://www.linuxjournal.com

105 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

Luckily, there are a few easy ways to get at the contents of a DMG. The simplest is
to use 7zip (which tends to be in just about every repository on the planet for every
distro) to extract the .DMG, exactly like you would extract the contents of any old
archive (like a .zip file). Usage is simple:

7z x AnyRandomDMGFile.dmg

This will dump the contents into a folder for your non-Mac enjoyment.

But, if you’d prefer to mount the DMG, that’s pretty straightforward as well (although
I have encountered some errors with a few DMG files, but those errors are rare). Run
the following from your terminal:

sudo mount -t hfsplus AnyRandomDMGFile.dmg /mnt

Most Linux distributions shipping in the past few years have the HFS+ filesystem (the
commonly used one on modern Macintoshes) support, and a simple mount command
works surprisingly often.

However, if you use this on more than a handful of DMG files, you will encounter
errors. Sometimes the DMG file is protected (which mount can’t handle).
Sometimes there are partition details that make mount choke. But, when it
works, it works fairly well.

Worst-case scenario, go with the 7zip option. It seems to be a bit more reliable.

HQX and SIT
Let’s say you’ve got an older Macintosh (of the pre-OS X variety). You’ll often come
across two common archive formats: HQX and SIT.

HQX (also known as “BinHex”) isn’t actually a compression format at all. It’s simply
a mechanism for encoding the files so they can be transferred without losing
any data—such as sent via email. In fact, often an HQX file will be larger than the

https://www.linuxjournal.com

106 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

original file it contains.

Then there is SIT (aka “StuffIt”), which was the de facto compression format on Macs
from the late 1980s up until the release of Mac OS X. If you, or anyone you know,
had a Mac during that period of time, odds are you’ve got at least a couple .SIT files
hanging around.

Decoding HQX files is actually pretty straightforward, thanks to a little package
called macutils. You can install it easily enough on just about any Linux distro
(a simple sudo apt install macutils).

To decode an HQX file into a folder (preserving the Macintosh resource forks as
separate directories), use the following:

hexbin -3 AnyRandomHQXFile.hqx

macutils also contains functions for encoding BinHex and decoding MacBinary (an
even older archive format), which is very handy and works great.

Now, Stuffit (.SIT) files are a different story—as the format, itself, is proprietary.

Luckily, the unar command works well—most of the time, like when the moon is in
the right part of the sky, and the tea leaves are arranged just so.

It’s in almost every repository, and a simple apt install unar (not to be confused
with unrar, which extracts .RAR files) will get it installed, and it is invoked with the
incredibly complex:

unar AnyRandomSitFile.sit

If it works, you’re all set. If it doesn’t, you’re plum out of luck. The best bet then
is to find a Macintosh, install the proprietary “Stuffit Expander”, expand the
archive, re-compress it into a .zip file, then transfer the file to your Linux system.

https://www.linuxjournal.com

107 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

Yeah, it’s a pain. Hopefully, unar works for you.

ClarisWorks, AppleWorks and iWork
Depending on the age of the Macintosh in question, the popular office suite is
going to be ClarisWorks, AppleWorks (which are really the same thing, kinda,
sorta) or iWork. And, of course, none of them are available for Linux.

Luckily, LibreOffice does contain some support for reading (but not writing)
to these file formats. The page layout formatting can be a bit garbled, and
sometimes various parts can be corrupted (leading to significant bang-head-
against-wall-time), but it mostly works. Okay, maybe “mostly” was a strong way
to word it. It sometimes works, especially on less-complex documents.

The iWork formats, Pages and Numbers, are supported. As is Apple Keynote (the
presentation application) version 5. Although I wouldn’t rely on the formatting
being preserved properly.

AppleWorks, ClarisWorks and (to some extent) even older Mac-specific word
processing formats (like MacWrite) also are supported. The formatting is
preserved better in those than with the newer formats of iWork—most likely
simply due to the fact that the file formats have been around longer and there
has been more time to work out kinks on the import process.

Again, though there is no ability to save into those formats. This is a one-way
journey here, folks. But, at least you’ll be able to read that old document you
wrote (or that your annoying friend, who pretends like Macintoshes are the only
computers on the planet, sent you) and save it into another format.

In fact, I highly recommend getting that document to a Mac and exporting it to
Microsoft Word or Excel. I know that’s a crazy recommendation, but LibreOffice
does a far better job of supporting .Docx files than .Pages.

https://www.linuxjournal.com

108 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

It Could Be Worse
That covers the basic, most common files types. None of the options are
totally perfect, but with these tools, you’ll at least be able to recover critical
data and archives.

If Apple were to allow the ability to run Mac OS X inside a virtual machine, this
all would be a lot easier, as you could quickly fire up a VM to convert a file.
Unfortunately, Apple doesn’t allow it. I assume Apple made that decision just to
make me sad. ◾

Bryan Lunduke is a former Software Tester, former Programmer, former VP of Technology, former Linux Marketing
Guy (tm), former openSUSE Board Member... and current Deputy Editor of Linux Journal, Marketing Director for
Purism, as well as host of the popular Lunduke Show. More details: http://lunduke.com.

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://lunduke.com/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

109 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

Porting macOS
Applications to
Linux with GNUstep
An introduction to GNUstep and interview with Gregory Casamento,
the project’s lead maintainer.

By Petros Koutoupis

In the field of software development, people often find themselves writing code
across multiple platforms. When the time comes to port that code and compile
it, they keep their fingers crossed and hope for the best. For those who are either
coming from an Apple ecosystem or need to develop code for Apple devices, a set of
open-source libraries exists that are fully capable of developing or maintaining such
code, even when not doing so within macOS.

History Lesson
Once upon a time in the 1980s, after founding the then successful Apple Computer
company, Steve Jobs was driven out and went on to find a new one. NeXT, Inc., was
born in 1985 and was building computers to cater to the growing higher-education
market. The foundation of the NeXTSTEP operating system was built entirely on top
of UNIX. Its core was a hybrid Mach and 4.3BSD Unix kernel (labeled as the XNU or
X is not Unix), and everything above it was entirely object-oriented and written in the
Objective-C language.

In 1996, Apple announced the acquisition of NeXT, Steve Jobs came back to Apple
and the NeXTSTEP ecosystem formed the basis for the newly developed Mac OS X

https://www.linuxjournal.com

110 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

operating system. This same NeXTSTEP code base would continue to be used in later
Apple technologies including the iOS, watchOS, tvOS and more.

Fun fact: some of the applications bundled into macOS are descendants of
NeXTSTEP applications. Those include TextEdit, Mail and Chess and more.

The Open-Source Effort
Since the days preceding the Apple acquisition, there have been attempts to
open-source the NeXTSTEP application programming interface (API). The
earliest example was OpenStep. That later would be rebranded as the Cocoa API
(post Apple acquisition), and it separated the underlying operating system from
the higher-level object libraries. Its primary goal was to offer a NeXTSTEP-like
environment for non-NeXSTEP operating systems. The most important thing to

Figure 1. The TextEdit application on both the macOS and in Linux as it was ported
with GNUstep.

https://www.linuxjournal.com

111 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

note here is that while NeXTSTEP offers an entire operating system, OpenStep
was nothing more than an API and was ported to operating systems that included
Sun Microsystem’s Solaris and Microsoft’s Windows NT.

Early on, a free software implementation of this API was developed. It was called
GNUstep, and to this day, it continues to maintain compatibility with the latest
Cocoa (OpenStep) libraries. GNUstep is not an operating system, a desktop
environment or a window manager. It is only a set of libraries (with development
tools to enable a cross-platform development environment) that adhere to the
Cocoa API and is licensed under the GNU Lesser General Public License (LGPL)
version 3, while the standalone utilities are licensed under the GNU General
Public License (GPL) version 3.

Drilling into the Details—an Interview with GNUstep’s
Lead Maintainer
But, what exactly is GNUstep? I took the opportunity to reach out to the project’s lead
maintainer, Gregory Casamento.

Petros Koutoupis: Please introduce yourself to our readers and explain your role with
the GNUstep project.

Gregory Casamento: I joined GNUstep in 1999 and made some contributions to
the gui/AppKit framework on GNUstep. I am the main author of the Gorm (Interface
Builder Equivalent) for GNUstep. I became lead maintainer in 2012 and have been
since then. My role as maintainer is to encourage people to use GNUstep and to be
the main face of the project to the public.

Petros: Is it pronounced “ga-new-step” or “new-step”?

Greg: Pronounced phonetically, it’s Ga-new-step.

Petros: So, what exactly is GNUstep?

https://www.linuxjournal.com

112 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

Greg: GNUstep is a cross-platform framework that can be used on Windows or any
POSIX-compliant platform to build your own applications, or alternatively, to port
applications from Cocoa on macOS to those platforms.

Petros: Why use GNUstep?

Greg: If you’re writing a macOS/Cocoa-based application, GNUstep allows you to
maintain one codebase instead of multiple ones, and it allows you to use the native
environment rather than some other non-Mac-specific platform, which might not
allow you to do everything you might want.

Petros: Can you provide our readers with some common examples? Maybe even
mention some of the applications that have been ported over?

Greg: Sure. One such application is called EggPlant, which is made by the nice people
at https://eggplant.io. Also there are a number of applications that use GNUstep
that are in common use on macOS. Another is PikoPixel. There was, for a while, a
company known as Apportable, which was using GNUstep’s foundation layer to help
port apps over to Android. Their framework is now used by another company known
as PocketGems to do much the same thing.

Petros: It’s funny that you mention Android. Many folks coming from the world of
Apple also are interested in iOS development, and somewhere I read that there may
exist some overlap.

Greg: GNUstep’s Foundation does have many of the classes and methods from iOS.
We also are trying to build our own UIKit implementation. There are currently a
number of companies using the Foundation layer of GNUstep to build their apps on
non-iOS devices, such as Android.

Petros: Which version of the Cocoa API is it compatible with?

Greg: This is a complicated question. Some of the more used portions of the API

https://eggplant.io/
https://www.linuxjournal.com

113 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

are up to spec with about 10.12 or so, but others may have functionality only
up to 10.6. It depends on how heavily those classes are used by the companies
and people who use GNUstep. You can always help us and join the project and
help it get more complete. It’s important to remember that we have only about
six or seven active developers, and we are building an API that is maintained by a
multibillion dollar company.

Petros: Where can our readers learn more about GNUstep?

Greg: You can learn more by following me on Twitter (@bheron), or visit
http://www.gnustep.org, http://wiki.gnustep.org or our project page at
https://github.com/gnustep.

Drilling into the Details—the Tools of the Trade
How does one begin working with GNUstep on Linux? As with most packages on
modern distributions, using that distro’s package manager should suffice. For
instance, on Debian or Ubuntu, it would look something like this:

$ sudo apt install gnustep gnustep-devel

This alone will install the libraries, related environmental scripts, development tools
(see below) and even some of the ported applications.

You next need to make sure that everything works. Copy the following simple and
internet-common piece of code into a file named hello.m:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 NSLog (@"hello world");

http://www.gnustep.org/
http://wiki.gnustep.org/
https://github.com/gnustep
https://www.linuxjournal.com

114 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

 [pool drain];
 return 0;
}

Note that Objective-C filenames use a .m extension.

Before you compile this simple piece of Objective-C code, you’ll need to set up the
GNUstep environment:

$. /usr/share/GNUstep/Makefiles/GNUstep.sh

Compile the file into an executable binary (and yes, that is a long compilation
command):

$ gcc hello.m 'gnustep-config --objc-flags'
 ↪-I/usr/include/GNUstep/ -L/lib64/ -lobjc
 ↪-L/usr/lib64/GNUstep/ -lgnustep-base
 ↪-fconstant-string-class=NSConstantString -o hello

Executing the binary yields the following output:

$./hello
2019-04-07 15:55:55.029 hello[6796:6796] hello world

To simplify the development process, the GNUstep project features an object-
oriented IDE (Integrated Development Environment) called Project Center. Using
it, developers are able to write all sorts of applications, tools, libraries and more.

The IDE integrates with Gorm, a nice and easy-to-use graphical utility that allows
developers to create graphical applications quickly. It reminds me a lot of my
days working with Borland C++ Builder (yes, I have been doing this for quite
a while). Using a mouse, Gorm relies on drag-and-drop to position and resize
objects, such as menus, buttons, lists, tables and so on. You then can connect

https://www.linuxjournal.com

115 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

those objects to functions that you write for enhanced functionality.

I know what you’re thinking, and no, you don’t need to install a special desktop
environment to run these graphical applications. Anything you write will work
with GNOME, KDE or any other X11-based window manager. To learn more about
ProjectCenter, visit its official project page, and go here to learn more about
Gorm. Detailed guides and tutorials are available on the project site.

Summary
Your macOS code does not have to die after you switch to Linux. It can live on

Figure 2. The ProjectCenter IDE

http://www.gnustep.org/experience/ProjectCenter.html
http://www.gnustep.org/experience/Gorm.html
https://www.linuxjournal.com

116 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

and continue to be supported in both ecosystems. And, even if you don’t have
the experience to port it to Linux yourself, a small community of dedicated and
talented individuals exists in the GNUstep project, who are more than willing to
make that happen. ◾

Petros Koutoupis, LJ Editor at Large, is currently a senior performance software engineer at Cray for its Lustre
High Performance File System division. He is also the creator and maintainer of the RapidDisk Project. Petros
has worked in the data storage industry for well over a decade and has helped pioneer the many technologies
unleashed in the wild today.

Figure 3. The Gorm Graphical Utility

https://www.linuxjournal.com

117 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

Resources
• GNUstep.org

• GNUstep Wiki

• GNUstep Project Page on GitHub

• Gorm

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.gnustep.org/
http://wiki.gnustep.org/
https://github.com/gnustep
http://www.gnustep.org/experience/Gorm.html
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

118 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

To Hell and Back:
One Man’s Journey
from Mac to Linux
What you’re about to read is a bit odd. This isn’t a tutorial on how
to migrate from Mac to Linux. There’s no breaking news to be found
here. No, this is simply a story—a story of one man and his strange,
winding path that led him from being a Mac user to a Linux user.
With that disclaimer out of the way, let us begin.

By Bryan Lunduke

Now, this is a story all about how my life got flipped—turned upside down. And,
I’d like to take a minute—just sit right there—to tell you how I stopped being a
Macintosh user and became a Linux person.

Yeah. I know. That was pretty...fresh.

To be honest, that Fresh Prince of Bel Air reference doesn’t even make sense.
There is almost no thematic relationship between Will Smith’s masterpiece and
this tale. Plus, by the time this story really gets going, Fresh Prince already had
been off the air for a year or two. But, whatever! It’s too late! I’m sticking with it!

Really, Lunduke? That’s how you’re going to start this article?

Yes. Yes, I am, Mister Negative Pants.

https://www.linuxjournal.com

119 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

Ahem.

Now, where was I? Right—my story of converting from a Macintosh user to a
Linux user.

“User” really isn’t even the right word. My whole world, for a time, was very Mac-
centric. I developed Macintosh software. I went to Apple conventions (including the
now-dead Macworld and Apple’s not-yet-dead World Wide Developer Conference).
Most of my computers had big, shiny Apple logos on them.

On the Playground Is Where I Spent Most of My Days
To say I was invested in the Apple ecosystem would have been a profound
understatement. From 1998 through until early 2006, I was a “Mac guy”.

Sure, all throughout that time, I dabbled in other operating systems—a Linux box
here, an OS/2 or BeOS rig there, and a DOS/Windows machine hiding somewhere out
of sight—but macOS was my jam.

I can tell you exactly where and when I became said “Mac guy”. It was the summer of
1998 and the release of the original iMac, equipped with a PowerPC G3 processor
clocking in at a blistering 233MHZ, a 4-gig hard drive (four gig), and a 13.something
inch CRT monitor—all in that adorable little, sorta see-through, “bondi blue” case.

Steve Jobs took the stage to announce these bad-mama-jamas back in 1998, and I was
instantly hooked. Maybe it was the fabled Reality Distortion Field (tm) that causes
every announcement made by Jobs to appear as if handed down from the divine.
Maybe it was the fact that these computers looked legitimately different from almost
anything else at the time. Or, heck, maybe I was just bored with Windows (I was
working at Microsoft at the time) and wanted a new toy to play with.

Who can say? Whatever the reason, I jumped into the world of the Macintosh with
both feet. I didn’t even bother to change into my swim trunks—just wore jeans.
Mistakes probably were made.

https://www.linuxjournal.com

120 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

Of course, this wasn’t my first foray into Macintoshes entirely. I’d spent quite a few
years tinkering with them back in my school days during the 1980s and early 1990s.
But, this definitely was the first time I was going to have one of my own.

And I tell you, I was excited.

I immediately started tinkering with developing software for that Mac OS 8.1-powered
beast (this was many years before the decidedly more UNIX-y Mac OS X was
released). It was Pascal and C, working with the Macintosh Programmer’s Workshop
(MPW was the development environment most Mac developers used back then).

Fun side note: MPW actually had a built-in shell based on csh. So if you wanted a
UNIX-like shell on a “classic” Macintosh, this was one way to do it. You could run only
one shell process at a time, but hey, it was something!

When a Couple Guys Who Were Up to No Good...
Not long after that, I started working on Macs professionally. Specifically, I was
working at Microsoft on (I kid you not) Windows Media Player for Macintosh.
Yeah, that was a real thing.

Technically, I did have a Linux box at that job. It was a little Red Hat server
that I used to test streaming Windows Media video files (Remember .wmv?
Does anyone use that anymore?) from a web server to Windows Media Player
on a Mac. But, in truth, that’s about all I used that Linux machine for—as an
Apache server.

During this time, I was a contractor at Microsoft—not a full-time, direct
employee (a “blue badge” as they called it—contractors were designated by a
lesser “orange badge”). To give you an idea of just how committed I was to the
Macintosh as a computing platform, I was offered one of those “blue badge”
jobs. All I had to do was go through an interview process that was more of a
formality than anything (as my managers thought I was rather nifty).

https://www.linuxjournal.com

121 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

Now, it was well known among everyone on the Windows Media Player team that
I was one of the few “Mac People”. So, during that formality of an interview, I was
asked a simple question: “If you become a full-time Microsoft employee, would
you ever consider working on Windows in another group?”

Of course, my response was a delightfully incorrect, “Oh, heck no! I’ll be using a
Macintosh thank you very much. None of that Windows nonsense for me!”

Yeah, woops. I didn’t get that Microsoft blue badge.

During the years that followed, my immersion in the Apple world only
intensified. I worked on Mac software at a few start-ups (on device drivers
here, photo-editing software there). And eventually, I ended up back at
Microsoft. This time it was with one of those fancy blue badges (I learned how
to answer that one question “correctly”). I spent a few years working on
Microsoft Office...for Macintosh.

During my time working on Mac software for Microsoft, I had some truly
fascinating experiences.

I got to attend a few World Wide Developer Conferences (WWDC) back when
it when it was sort of a small affair. I was around for the rocky transition from
“Classic” Mac OS to the new Mac OS X—and for the controversies and infighting
that went on during that time. It was a crazy, brutal period in the Mac developer
world. Many felt that Apple was moving the Mac platform in a decidedly non-Mac
way. There was much gnashing of teeth.

I had the chance to hang out at the old Apple campus (1 Infinite Loop) a bit. I
even briefly talked to Jobs on a couple occasions (spoiler: he never remembered
my name, and our conversations were short and, well, pointless), and I got
yelled at by Avie Tevanian (the guy behind the Mach kernel and the software
development bigwig at Apple back then) on a conference call. Alhough, to be
fair, I think he was just grumpy and feeling a bit yell-y that particular day. Like

https://www.linuxjournal.com

122 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

Jobs, I’m pretty sure Tevenian never actually knew my name.

Unrelated side note: being yelled at by industry heavyweights who don’t know my
name (or even, necessarily, why they’re yelling at me) is kind of my jam. I’ve been
ripped a new one by Bill Gates for a project I didn’t even know about, and I’ve been
(accidentally) spit on by Steve Ballmer while he was yelling about someone else
(ironically, he was yelling about Linus Torvalds, but that’s another story). Technically,
Steve Jobs never yelled at me—he simply was super bored to be talking to me. That,
right there, is a missed opportunity to get yelled at. Ah well, que será, será.

All of this is to say that I was personally invested, rather heavily, in continuing to use
a Mac. I knew the platform inside and out; I was connected to people throughout the
Mac world. The Mac parts of my résumé were becoming increasingly awesome.

Which begs the question: why make a change? Why move away from a platform I was
familiar with (and earning a good living working on) to something new? To Linux?

I’d like to say it was for the Freedom. That I grew tired of the closed nature of Apple
and yearned for the openness of Linux. To run free in the green fields of GNU-land.
But, alas, no. It wasn’t that.

To be sure, as time went on, the ideals of both free software and open-source
software became increasingly important to me. Back then though? That was only a
tiny side note in the margins of my priority list. As much as I’d love to say I switched to
Linux for ethical reasons—nope, it was purely selfish and practical ones.

I Got in One Little Fight and My Mom Got Scared...
Remember that brutal time I mentioned earlier—during the transition from “Classic”
Mac OS to OS X? I wasn’t kidding. Most of the developers that lived through that
period still have the scars to prove it.

First, I had to throw out most of my old code. The new OS X had a stop-gap
compatibility Application Programming Interface (called “Carbon”) that contained

https://www.linuxjournal.com

123 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

a subset of the original Mac API. But, for the things I built, the changes were so
dramatic as to render my existing code bases all but useless.

Then, after I made the transition to Mac OS X (and the new API set, dubbed
“Cocoa”), the problems only increased.

With every major OS release (and some minor ones) critical functions would
change in significant, application-breaking ways. Sometimes those changes were
good for the operating system as a whole—just ridiculously inconvenient for me.
It got so bad, and so predictable, that whenever a new OS update was about to be
released, I knew I often had weeks of work ahead of me simply to get my software
building and functional again.

If I wasn’t quick enough—and didn’t get those updates to software I worked on
released before the OS update publicly was released by Apple—boy, would I hear
about it from the users of my software!

It was a regular pattern. Apple releases OS update. My software gets broken. Users get
mad at me. Apple refuses to help in any way at all. I work around the clock (often 80
to 100 hours per week, or more) to get things fixed. All simply to maintain the status
quo and keep existing software running.

It really stunk.

Plus, if I needed changes, additions or fixes to the programming libraries shipped with
Mac OS X, I was mostly out of luck.

The only time I ever had any success in getting Apple to be responsive to the
bugs in its system was during my time at Microsoft. Apple was so reliant on
Microsoft back then (for Office and Microsoft’s financial investment in Apple),
that they would have regular conference calls to talk through problems. Those
calls were cantankerous—with representatives from both companies blaming the
other for bugs, and often neither were willing to make changes.

https://www.linuxjournal.com

124 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

Of course, if OS X had been open source, none of that would have been a
problem. I simply could have made the necessary fixes myself (or worked with
someone else who could)—ah, the glory of FOSS.

So, we had technical issues, huge amounts of lost code investment, an
increasingly buggy platform and a company (the sole gatekeeper of fixing issues)
that just wasn’t responsive or helpful.

All of that pushed me to the edge of jumping ship—almost, but not quite. The
final straw that broke the camel’s back was the change in the community.

By around 2005/2006, the Macintosh world had changed in dramatic ways. Not
just technologically (new CPU platform, new OS and so on), but the people
were different. The “old guard” Mac programmers who had been keeping the
platform alive (barely) since the 1980s mostly had already left. Only a select few
remained—and they were grumpy now.

All the while, people were switching from Windows to Mac in droves—and
the result was not unlike that of Eternal September—except for the Mac
communities. Nothing against Windows users, mind you, but the impact on
the existing Mac community was profound (both because of the attitudes of
incoming people as well as the reactions of the existing Mac users, which was less
than pleasant).

Note: Eternal September (noun) — describes the period of time, starting in
September 1993, when America Online (AOL) first gave its customers access to
Usenet Newsgroups. The result was untold numbers of confused, often grumpy,
AOL users posting messages incorrectly, generally being rude, and otherwise
quickly making Usenet almost unusable for everyone.

In response to all of this, I did what any nerd would do. I installed another
operating system—in this case, Linux.

https://www.linuxjournal.com

125 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

I Looked at My Kingdom. I Was Finally There.
Focusing on an entirely open-source system made sense on a purely practical level.
It solved the majority of the issues I had with Apple at that time (being closed down,
unable to fix issues myself, no ability to influence development direction and so on)
with a very low level of initial investment from me.

I began by loading most of my existing Macs with Linux—typically Fedora, which did a
great job of working on most of the Mac hardware at the time (at least as well as any
Linux distribution did, some hardware support was still a bit spotty).

That was early spring of 2006, if memory serves. By the end of that year, I had
migrated the majority of my regular workflow to Linux—keeping around Mac OS X and
Windows purely for testing purposes (I was still releasing software for both platforms,
in addition to Linux).

Flash-forward to today. It’s spring of 2019 (13 years later), and my workflow is now
100% Linux, top to bottom, with no Windows or Mac OS X in sight. And it is glorious.
It’s been that way for years.

You know what? Looking back on it, that transition was one of the best decisions (if
not the best decision) I’ve ever made in my career. Not only did focusing on a free
and open platform solve all of the issues that plagued my time as a Mac programmer,
but it gave me an opportunity to help shape and influence that platform in ways I
never thought possible. It connected me to like-minded nerds, across the world, with
similar thoughts and priorities.

It gave me a computing home.

Nowadays, I still have a few older Macintoshes in my “man cave”—all older machines.
The newest being a G4 iMac running “Classic” Mac OS 9 and a handful of much
(much) older rigs. These provide me with great reminders of computing history—and
my own past in computers—sitting next to my other non-Mac “retro” computing gear.

https://www.linuxjournal.com

126 | June 2019 | https://www.linuxjournal.com

DEEP
DIVE

One odd quirk that this adventure has left me with is a general grumpiness when I see
fellow Linux nerds at Linux conferences...using Macintoshes. I don’t get grumpy at
them personally. It’s more of a general grumpiness at Apple—a residual cussedness at
a company that caused so much difficulty for me and for so many others.

I doubt many will have walked the same weird, winding road to Linux-town that I took.
And, quite frankly, I’m not sure what the take-away or moral is for this story—other
than, perhaps, I wish Steve Jobs would have yelled at me, just, you know, to complete
the collection. ◾

Bryan Lunduke is a former Software Tester, former Programmer, former VP of Technology, former Linux Marketing
Guy (tm), former openSUSE Board Member... and current Deputy Editor of Linux Journal, Marketing Director for
Purism, as well as host of the popular Lunduke Show. More details: http://lunduke.com.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://lunduke.com/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

127 | June 2019 | https://www.linuxjournal.com

FILESYSTEM HIERARCHY STANDARD

Filesystem Hierarchy
Standard
What are these weird directories, and why are they there?

By Kyle Rankin

If you are new to the Linux command line, you may find yourself wondering why
there are so many unusual directories, what they are there for, and why things are
organized the way they are. In fact, if you aren’t accustomed to how Linux organizes
files, the directories can seem downright arbitrary with odd truncated names and, in
many cases, redundant names. It turns out there’s a method to this madness based on
decades of UNIX convention, and in this article, I provide an introduction to the Linux
directory structure.

Although each Linux distribution has its own quirks, the majority conform (for the
most part) with the Filesystem Hierarchy Standard (FHS). The FHS project began
in 1993, and the goal was to come to a consensus on how directories should be
organized and which files should be stored where, so that distributions could have
a single reference point from which to work. A lot of decisions about directory
structure were based on traditional UNIX directory structures with a focus on servers
and with an assumption that disk space was at a premium, so machines likely would
have multiple hard drives.

/bin and /sbin
The /bin and /sbin directories are intended for storing binary executable files. Both
directories store executables that are considered essential for booting the system
(such as the mount command). The main difference between these directories is that
the /sbin directory is intended for system binaries, or binaries that administrators will
use to manage the system.

https://www.linuxjournal.com

128 | June 2019 | https://www.linuxjournal.com

FILESYSTEM HIERARCHY STANDARD

/boot
This directory stores all the bootloader files (these days, this is typically GRUB),
kernel files and initrd files. It’s often treated as a separate, small partition, so that
the bootloader can read it more easily. With /boot on a separate partition, your root
filesystem can use more sophisticated features that require kernel support whether
that’s an exotic filesystem, disk encryption or logical volume management.

/etc
The /etc directory is intended for storing system configuration files. If you need to
configure a service on a Linux system, or change networking or other core settings,
this is the first place to look. This is also a small and easy-to-back-up directory that
contains most of the customizations you might make to your computer at the system
level.

/home
The /home directory is the location on Linux systems where users are given
directories for storing their own files. Each directory under /home is named
after a particular user’s user name and is owned by that user. On a server, these
directories might store users’ email, their SSH keys, or sometimes even local
services users are running on high ports.

On desktop systems, the /home directory is probably the main directory with which
users interact. Any desktop settings, pictures, media, documents or other files
users need end up being stored in their /home directories. On a desktop, this is the
most important directory to back up, and it’s often a directory that’s given its own
partition. By giving /home its own partition, you can experiment with different Linux
distributions and re-install the complete system on a separate / partition, and then
when you mount this /home partition, all of your files and settings are right there
where you left them.

/lib
The /lib directory stores essential shared libraries that the essential binaries in /bin and
/sbin need to run. This is also the directory where kernel modules are stored.

https://www.linuxjournal.com

129 | June 2019 | https://www.linuxjournal.com

FILESYSTEM HIERARCHY STANDARD

/usr, /usr/bin, /usr/lib and /usr/sbin
The /usr directory (which has stood both for UNIX source repository and UNIX
system resources) is intended to be a read-only directory that stores files
that aren’t required to boot the system. In general, when you install additional
software from your distribution, its binaries, libraries and supporting files go
here in their corresponding /usr/bin, /usr/sbin or /usr/ lib directories, among some
others. When storage was at a premium, you often would mount this directory
separately on its own larger disk, so it could grow independently as you added
new software.

These days, there is less of a need to have this kind of logical separation—
in particular because systems tend to have everything in a single large root
partition, and the initrd file tends to have the tools necessary to mount that
filesystem. Some distributions are starting to merge /bin, /sbin and / lib with their
corresponding /usr directories via symlinks.

/usr/local
The /usr/local directory is a special version of /usr that has its own internal
structure of bin, lib and sbin directories, but /usr/local is designed to be a place
where users can install their own software outside the distribution’s provided
software without worrying about overwriting any distribution files.

/opt
The debates between /usr/local and /opt are legendary, and Bill Childers and I even
participated in our own debate in a Linux Journal Point/Counterpoint article.
Essentially, both directories serve the same purpose—providing a place for users
to install software outside their distributions—but the /opt directory organizes it
differently. Instead of storing binaries and libraries for different pieces of software
together in a shared directory, like with /usr and /usr/local, the /opt directory grants
each piece of software its own subdirectory, and it organizes its files underneath how
it pleases. The idea here is that, in theory, you could uninstall software in /opt just by
removing that software’s directory. For more details on the relative pros and cons of
this approach, check out the Point/Counterpoint article.

https://www.linuxjournal.com/magazine/pointcounterpoint-opt-vs-usrlocal
https://www.linuxjournal.com/magazine/pointcounterpoint-opt-vs-usrlocal
https://www.linuxjournal.com

130 | June 2019 | https://www.linuxjournal.com

FILESYSTEM HIERARCHY STANDARD

/root
The /root directory is a special home directory for the root user on the system. It’s
owned and readable only by the root user, and it’s designed otherwise to function
much like a /home directory but for files and settings the root user needs. These days,
many systems disable the root user in favor of using sudo to get superuser privileges,
so this directory isn’t used nearly as much.

/var
As I’ve mentioned, classic UNIX servers held disk space at a premium, and the /var
directory was designed for storing files that might vary wildly in size or might get
written to frequently. Unlike with /usr, which is read-only, the /var directory most
definitely needs to be writeable, because within it you will find log files, mail server
spools, and other files that might come and go or otherwise might grow in size in
unpredictable ways.

Even these days, at least on servers, if you had to pick a root-level directory to put
on its own large disk, the /var directory would be the first one on the list—not just
because it might grow rather large in size, but also because you might want to put
/var on a disk that’s better-optimized for heavy writes. Also, if you have all of your
directories inside one large root partition, and you run out of disk space, the /var
directory is a great place to start your search for files to remove.

/dev
You will find device files here. UNIX systems have an “everything is a file” principle that
means even your hardware ends up with a file. This directory contains files for devices
on your system from disks and partitions to mice and keyboards.

/proc and /sys
In addition to /dev, two other directories end up with dynamic files that represent
something other than a file. The /proc directory stores files that represent information
about all of the running processes on the system. You can actually use tools like ls
and cat to read about the status of different processes running on your system. This
directory also often contains files in /proc/sys that interact with the kernel and allow

https://www.linuxjournal.com

131 | June 2019 | https://www.linuxjournal.com

FILESYSTEM HIERARCHY STANDARD

you to tweak particular kernel parameters and poll settings.

While some kernel state files have shown up in /proc (in particular /proc/sys), these
days, they are supposed to be stored in /sys instead. The /sys directory is designed
to contain all of these files that let you interact with the kernel, and this directory
gets dynamically populated with files that often show up as nested series of recursive
symlinks—be careful when running commands like find in here!

/srv
Compared to some of the directories, /srv is a bit of a newcomer. This directory is
designed for storing files that a server might share externally. For instance, this is
considered the proper place to store web server files (/srv/www is popular).

/mnt and /media
When you add extra filesystems to your computer, whether it’s from a USB drive, an
NFS mount or other sources, you need some standard place to mount them. This
is where /mnt and /media come in. The /mnt directory used to be a catch-all for any
mounted disk that didn’t have any other place to go, but these days, you should
use this directory for various NFS mountpoints and other disks that are intended to
be mounted all the time. The /media directory is designed for those disks that are
mounted temporarily, such as CD-ROMs and USB disks.

/tmp, /var/tmp and /dev/shm
Even Linux needs a junk drawer, and it provides a number of directories that are
designed to store temporary files, based on how long you want to keep them. These
directories are ideal for programs that need to store some data in a file temporarily
but may not need the data to stick around forever, such as cached data that a process
can re-create. What makes these directories ideal for this purpose is that they are
created with permissions such that any user can write to them.

The /tmp directory is aimed at storing temporary files that don’t need to stick around
after a reboot. When a Linux system boots, one of the initial boot processes cleans out
all of the files in the /tmp directory. The /var/tmp directory, on the other hand, does

https://www.linuxjournal.com

132 | June 2019 | https://www.linuxjournal.com

FILESYSTEM HIERARCHY STANDARD

not get cleaned out between reboots, so this is a good place to store files, such as
caches that you’d appreciate sticking, even if you don’t absolutely need them. Finally,
the /dev/shm directory is a small ramdisk, and any files that are stored there reside only
in RAM, and after the system is turned off, these files are erased. Hackers love to store
files in /dev/shm for this reason. The /dev/shm directory is the best of the three if you
have temporary files that store sensitive information like passwords or secrets, as they
never will touch the disk—just be sure to give the files appropriate permissions (like
0600) before you put your secrets there so no one else can read them.

Conclusion
I hope this tour through the Linux FHS has helped make sense of all of the various
directories on your disk. I covered only some of the directories defined in the standard.
If you are curious about some of the other directories on your system—in particular,
if you are a developer and want to ensure that you are storing files in the right place—
please refer to the official Filesystem Hierarchy Standard for a lot more detail. ◾

Kyle Rankin is a Tech Editor and columnist at Linux Journal and the Chief Security Officer at Purism. He is the author of Linux
Hardening in Hostile Networks, DevOps Troubleshooting, The Official Ubuntu Server Book, Knoppix Hacks, Knoppix Pocket Reference,
Linux Multimedia Hacks and Ubuntu Hacks, and also a contributor to a number of other O’Reilly books. Rankin speaks frequently on
security and open-source software including at BsidesLV, O’Reilly Security Conference, OSCON, SCALE, CactusCon, Linux World Expo and
Penguicon. You can follow him at @kylerankin.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

Resources
• The Filesystem Hierarchy Standard

• “Point/Counterpoint: /opt vs. /usr/local” by Kyle Rankin and Bill Childers, LJ,
March 2010

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.pathname.com/fhs/
https://www.linuxjournal.com/magazine/pointcounterpoint-opt-vs-usrlocal
https://www.linuxjournal.com

133 | June 2019 | https://www.linuxjournal.com

CONTRIBUTOR AGREEMENTS CONSIDERED HARMFUL

Contributor
Agreements
Considered Harmful
Why attempts to protect your project with legal voodoo are likely to
backfire on you.

By Eric S. Raymond

I have a little list (they never will be missed) of stupid things that open-source
projects should stop doing. High on this list are CLAs (Contributor License
Agreements) and their cousin the mandatory CA (Copyright Assignment).

In this article, I explain why CLAs and CAs are bad ideas and what we ought to be
doing instead. In obedience to custom, at this point I issue the ritual disclaimer “I
am not a lawyer”, but one does not have to be a lawyer to understand the law and
game out the ways CLAs and CAs fail to achieve their intended purpose. And, I have
researched these failure modes with both lawyers and executives that have literally
billions of dollars at stake around IP violations.

I’ve made a distinction between CAs and CLAs; we can make a further one between
ICLAs (Individual Contributor License Agreements) and CCLAs (Corporate
Contributor License Agreements). While all are about equally useless, they have
slightly differing failure modes.

First, let’s consider the ICLA. Some projects require that you sign one before being
allowed to submit changes to their repository. Typically, it requires you to assert that
(a) you affirmatively choose to license your contributions to the project, and (b)

https://www.linuxjournal.com

134 | June 2019 | https://www.linuxjournal.com

CONTRIBUTOR AGREEMENTS CONSIDERED HARMFUL

you have the right to do that.

Here’s the problem. If you are employed, you almost certainly cannot make claim
(b), and the project you are probably trying to help is only setting itself up for
trouble if it behaves as though you can. The problem is that most employment
contracts define any software you write on working hours or even off hours in
connection with your job as “work for hire”, and you don’t own the rights to work
for hire—your employer does.

CAs, such as the Free Software Foundation requires, have exactly the same problem.
You don’t own the copyright on a work for hire either. Therefore, you can’t assign it.
I’ll get to the case of individual developers not in a work-for-hire situation in a bit.

The CCLA exists as an attempt to address the problems with ICLAs. It’s not
an agreement that you sign, it’s an agreement your employer has to have pre-
negotiated with the project to which you want to contribute. You then have to
offer the project an identity that it can associate with that CCLA so it knows your
contributions are covered.

That at least sounds like it might be useful. Why isn’t it? To understand this, we need
to do a bit more threat modeling. What is it that open-source projects hope to
prevent using CCLAs?

Let’s start with the one people tend to think of first: revocation. Say a code owner
attempts to withdraw a contribution, either by claiming it was never made or by
revoking the permission on the contribution. It’s pretty obvious that a CCLA cannot
prevent the claim that a contribution was never made; only tracking and attributing
inbound contributions—which a version-control system does for you—can do that.

But a CCLA doesn’t really help with the second case either. No CCLA is ever drafted
in a way that makes it irrevocable, because corporate counsels rightly think it’s their
job to avoid that extreme of a commitment to any relationship; thus, a company that
wants to defect can find a way to cancel the CCLA.

https://www.linuxjournal.com

135 | June 2019 | https://www.linuxjournal.com

CONTRIBUTOR AGREEMENTS CONSIDERED HARMFUL

Anybody who thinks contributions made in good faith while the CCLA was in
force aren’t in jeopardy after such a defection has never witnessed what a big IP
lawsuit looks like. I have been on the inside of one, and I can tell you that if the
defecting EvilCorp wants to find a theory that implicates every line of code its
employees—or an innocent third party—ever shipped to GoodProject under a
CCLA, such a theory is going to be manufactured. And then GoodProject is in
court, with the process as punishment.

(We should now all pause for a moment to spit in the direction of SCO.)

Another thing that people sometimes think CCLAs prevent is well-poisoning—that is,
a malicious contributor from EvilCorp pushes patented code into GoodProject, and
then EvilCorp sues to shut down the project or own it. Again, the existence of a CCLA
between GoodProject and EvilCorp changes nothing; the obvious next move is for
EvilCorp to fire the contributing employer and then loudly proclaim that while he/she
was authorized to contribute code, nobody below Executive VP was authorized to sign
away patent rights—a claim that has the advantage of generally being true.

The underlying reality here is that a CCLA can’t protect GoodProject against EvilCorp
defection from it because nothing can protect against EvilCorp defections. That’s just the
way it is, and performing ritual gestures like requiring that contributors come in under a
CCLA is about as useful as pointing a hex sign on your house to ward off fires and floods.

A friend who manages IP risks for one of the FANGs says, from the inside:

If any player tries to take CCLAs seriously, they cause an N-squared-times-M
combinatoric explosion where N is the number of companies in the world and
M is the number of open-source projects in the world. Nobody actually keeps
track of that; it is just kabuki theater that everyone hopes won’t explode in
everyone’s face someday.

Are matters any better when there’s no work-for-hire clause in the picture? No,
not really. In that case, your contributors indeed have the right to license or assign

https://www.linuxjournal.com

136 | June 2019 | https://www.linuxjournal.com

CONTRIBUTOR AGREEMENTS CONSIDERED HARMFUL

something...but you have no practical way to audit their claim that they do in fact own
what they submit, and in some cases (such as patented algorithms), they may not
know themselves.

If someone with lawyers and money wants to use code nominally covered by an ICLA
to damage GoodProject or (say) extort money from one of its sponsors, the ICLA is
not going to stop that from happening. A well-intentioned contributor won’t be able
to stop it either.

The only case where an ICLA can help you is when an individual contributor wants to
revoke a grant without EvilCorp backing, thinks it’s valuable enough to go to court on,
and can nevertheless be deterred from going to court by the agreement.

If you think this is an even remotely plausible scenario, can I interest you in a sure-
fire bank transfer from a Nigerian prince? Because with individuals, as with EvilCorp,
if they’re capable of suing and think there’s enough payoff on the line to sue, that
ICLA is not going to keep you out of court. And, once again, the process would be
punishment even if GoodProject actually won in the end.

Now let’s back away from all these hypotheticals for a moment and consider reality. As
I write this in April 2019, there is neither statute nor case law establishing that a CLA
protects you from any kind of legal risk at all. A case of first impression could sweep
away all these ritualistic gestures in a heartbeat.

That said, it’s not quite true that the set of hypotheticals in which a CLA might be
useful is empty. You could hit that narrow window where the expected payoff to
the bad guy is little enough more than the cost of suing, that the CLA is an effective
deterrent without having to test your CLA in court. So now let’s consider how much
you’re paying to cover that unlikely case. What does a CLA cost your project?

First, a CLA costs your project contributions. Some potential contributors will be
barred from signing CLAs by their employers. A much larger set (including me) are
highly allergic to paperwork and process friction and have to get very invested in using

https://www.linuxjournal.com

137 | June 2019 | https://www.linuxjournal.com

CONTRIBUTOR AGREEMENTS CONSIDERED HARMFUL

a project with a CLA before they’ll sign one.

In effect, whatever you think you’re getting from a CLA, you’re paying for in lost
patches. Especially drive-by patches. Lots of people who might become casual
contributors won’t. Your many-eyeballs benefits will be lost to an extent that’s difficult
even to estimate.

Unfortunately, there’s a more pernicious cost. CLAs might create the very ills they
intend to prevent.

Every time a project says “we need you to sign a release before we’ll take your code”,
it helps create a presumption that such releases are necessary—as opposed to the
opposite theory, which is that the act of donating code to an open-source project
constitutes in itself a voluntary cession of the project’s right to use it under terms
implied by the open-source license of the project.

Obviously one of those theories is better for open source—no prize for guessing which.

If it ever comes to a court case, one of the first things the judge is going to look at
is community expectations and practice around our licenses. A jurist is supposed
to do this in contract and license cases; there’s some famous case law about the
interpretation of handshake contracts among Hasidic Jewish diamond merchants in
New York City that makes this very clear and explicit. Where there is doubt about
interpretation and no overriding problem of of equity, the norms of the community
within which the license/contract was arrived at should govern.

So, if the judge thinks that CLAs are best practice because we expect contribution
permissions to fail closed unless explicitly granted, he/she is more likely to make that
happen. On the other hand, if he/she thinks that community norms treat contribution
as an implied cession of certain rights in exchange for the benefits of participating in
the project, that is more likely to be how the ruling will come out.

CLAs are is yet another case of “Be careful what reality you assume. You might create it.”

https://www.linuxjournal.com

138 | June 2019 | https://www.linuxjournal.com

CONTRIBUTOR AGREEMENTS CONSIDERED HARMFUL

Turning to our penultimate topic, if CLAs are such a bad idea, why do any projects
require them at all? Surely all those high-powered corporate lawyers can’t be that
wrong, can they?

That depends on what utility function you think they’re maximizing. There is a
common variety of lawyer who, under the banner of risk mitigation, advises his/her
clients to perform legalistic gestures that are essentially voodoo invocations—not
responses to reality but to weird, hypertrophied theories of future legal risk that all
have one common factor. They make the lawyers important. Gee, what a surprise!

If your project takes its cue from one of these lawyers, it may very well develop an
institutional habit of requiring a CLA/CA that is hard to shake, because doing so would
mean admitting that all the costs sunk into that poor decision have been wasted. The
voodoo can also be locked in place by a tacit assumption that Having a Process means
you are Serious—bureaucratic behavior as a kind of status-seeking.

Okay, so what to do instead?

I have two recommendations. Both of them are also voodoo—at the present
unformed state of the law they can’t really be anything else. But they are, at least, low-
cost voodoo that won’t tend to drive away contributors and create presumptions that
might steer a judge in a bad direction.

The first is a simple contract of adhesion. The NTPsec project has this language at the
top of its guide for contributors:

By submitting patches to this project you agree to allow them to be redistributed
under the project’s license, according to the normal forms and usages of the
open-source community.

If you know what a clickwrap agreement is, you may not be happy that they’re
enforceable and ubiquitous; I’m not, myself. But as long as they are, the good guys

https://www.linuxjournal.com

139 | June 2019 | https://www.linuxjournal.com

CONTRIBUTOR AGREEMENTS CONSIDERED HARMFUL

might as well get some use out of that. This language depends on the fact that
contributions leave a signed record in your repository, and uses the same mechanism
as clickwrap to turn contribution into an affirmative act that has no worse a chance of
actually protecting your project than a CLA.

(How dare I make that last claim despite not being a lawyer? Remember, this is all
voodoo; given the absence of governing law, nobody actually knows anything. Distrust
any lawyers who try to tell you differently; if they are not trying to fool you, it’s
because they have already fooled themselves.)

The last bit, “according to the normal forms and usages of the open-source
community”, is important battlespace preparation. Remember those Hasidic diamond
merchants? If this language ever comes up in litigation, probably the best defense we
can have is for the judge to know up-front that there are normal forms and usages.

If NTPsec’s clickwrap widget (full disclosure: I wrote it) is not heavyweight enough for
you, you can do what the Linux kernel does with the Developer Certificate of Origin
and “Signed-off-by” lines. Again, a contract of adhesion using the project repository
to document affirmative consent.

Again, these are not magic bullets, because nothing is. But they have one virtue CLAs
and CAs do not: they do no harm. ◾

Eric S. Raymond is a wandering anthropologist and trouble-making philosopher. He’s been known to write a few lines of code too.
Actually, if the tag “ESR” means nothing to you, what are you doing reading this magazine?

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

140 | June 2019 | https://www.linuxjournal.com

DATA IN A FLASH, PART III: NVMe OVER FABRICS USING TCP

Data in a Flash, Part
III: NVMe over Fabrics
Using TCP
A remote NVMe block device exported via an NVMe over Fabrics
network using TCP.

By Petros Koutoupis

Version 5.0 of the Linux kernel brought with it many wonderful features, one of
which was the introduction of NVMe over Fabrics (NVMeoF) across native TCP.
If you recall, in the previous part to this series (“Data in a Flash, Part II: Using
NVMe Drives and Creating an NVMe over Fabrics Network”, I explained how
to enable your NVMe network across RDMA (an Infiniband protocol) through
a little method referred to as RDMA over Converged Ethernet (RoCE). As the
name implies, it allows for the transfer of RDMA across a traditional Ethernet
network. And although this works well, it introduces a bit of overhead (along
with latencies). So when the 5.0 kernel introduced native TCP support for NVMe
targets, it simplifies the method or procedure one needs to take to configure the
same network, as shown in my last article, and it also makes accessing the remote
NVMe drive faster.

Software Requirements
To continue with this tutorial, you’ll need to have a 5.0 Linux kernel or later
installed, with the following modules built and inserted into the operating systems
of both your initiator (the server importing the remote NVMe volume) and the
target (the server exporting its local NVMe volume):

https://www.linuxjournal.com/content/data-flash-part-ii-using-nvme-drives-and-creating-nvme-over-fabrics-network
https://www.linuxjournal.com/content/data-flash-part-ii-using-nvme-drives-and-creating-nvme-over-fabrics-network
https://www.linuxjournal.com

141 | June 2019 | https://www.linuxjournal.com

DATA IN A FLASH, PART III: NVMe OVER FABRICS USING TCP

NVME Support
CONFIG_NVME_CORE=y
CONFIG_BLK_DEV_NVME=y
CONFIG_NVME_MULTIPATH is not set
CONFIG_NVME_FABRICS=m
CONFIG_NVME_RDMA=m
CONFIG_NVME_FC is not set
CONFIG_NVME_TCP=m
CONFIG_NVME_TARGET=m
CONFIG_NVME_TARGET_LOOP=m
CONFIG_NVME_TARGET_RDMA=m
CONFIG_NVME_TARGET_FC is not set
CONFIG_NVME_TARGET_TCP=m

More specifically, you need the module to import the remote NVMe volume:

CONFIG_NVME_TCP=m

And the module to export a local NVMe volume:

CONFIG_NVME_TARGET_TCP=m

Before continuing, make sure your physical (or virtual) machine is up to date.
And once you verify that to be the case, make sure you are able to see all locally
connected NVMe devices (which you’ll export across your network):

$ cat /proc/partitions |grep -e nvme -e major
major minor #blocks name
 259 0 3907018584 nvme2n1
 259 1 3907018584 nvme3n1
 259 2 3907018584 nvme0n1
 259 3 3907018584 nvme1n1

https://www.linuxjournal.com

142 | June 2019 | https://www.linuxjournal.com

DATA IN A FLASH, PART III: NVMe OVER FABRICS USING TCP

If you don’t see any connected NVMe devices, make sure the kernel module is loaded:

petros@ubu-nvme1:~$ lsmod|grep nvme
nvme 32768 0
nvme_core 61440 1 nvme

The following modules need to be loaded on the initiator:

$ sudo modprobe nvme
$ sudo modprobe nvme-tcp

And, the following modules need to be loaded on the target:

$ sudo modprobe nvmet
$ sudo modprobe nvmet-tcp

Next, you’ll install the drive management utility called nvme-cli. This utility is defined
and maintained by the very same NVM Express committee that has defined the NVMe
specification. You can find the GitHub repository hosting the source code here. A
recent build is needed. Clone the source code from the GitHub repository. Build and
install it:

$ make
$ make install

Accessing the Drive across a Network over TCP
The purpose of this section is to leverage the high-speed SSD technology and expand
it beyond the local server. An NVMe does not have to be limited to the server it is
physically plugged in to. In this example, and for the sake of convenience, I’m using
two virtual machines to create this network. There is absolutely no advantage in
doing this, and I wouldn’t recommend you do the same unless you just want to follow
the exercise. Realistically, you should enable the following only on physical machines
with high-speed network cards connected. Anyway, in the target virtual machine, I

https://github.com/linux-nvme/nvme-cl
https://www.linuxjournal.com

143 | June 2019 | https://www.linuxjournal.com

DATA IN A FLASH, PART III: NVMe OVER FABRICS USING TCP

attached a couple of low-capacity virtual NVMe drives (2GB each):

$ sudo nvme list
Node SN Model Namespace
-------------- -------------- ---------------------- ---------
/dev/nvme0n1 VB1234-56789 ORCL-VBOX-NVME-VER12 1
/dev/nvme0n2 VB1234-56789 ORCL-VBOX-NVME-VER12 2

Usage Format FW Rev
-------------------------- ---------------- --------
2.15 GB / 2.15 GB 512 B + 0 B 1.0
2.15 GB / 2.15 GB 512 B + 0 B 1.0

[Note: the tabular output above has been modified for readability.]

The following instructions rely heavily on the sysfs virtual filesystem. In theory, you
could export NVMe targets with the open-source utility, nvmet-cli, which does all of
that complex heavy lifting. But, where is the fun in that?

Exporting a Target Mount the kernel user configuration filesystem. This is a
requirement. All of the NVMe Target instructions require the NVMe Target tree made
available in this filesystem:

$ sudo /bin/mount -t configfs none /sys/kernel/config/

Create an NVMe Target subsystem to host your devices (to export) and change into
its directory:

$ sudo mkdir /sys/kernel/config/nvmet/subsystems/nvmet-test
$ cd /sys/kernel/config/nvmet/subsystems/nvmet-test

This example will simplify host connections by leaving the newly created
subsystem accessible to any and every host attempting to connect to it. In a

https://www.linuxjournal.com

144 | June 2019 | https://www.linuxjournal.com

DATA IN A FLASH, PART III: NVMe OVER FABRICS USING TCP

production environment, you definitely should lock this down to specific host
machines by their NQN:

$ echo 1 |sudo tee -a attr_allow_any_host > /dev/null

When a target is exported, it is done so with a “unique” NVMe Qualified Name
(NQN). The concept is very similar to the iSCSI Qualified Name (IQN). This NQN is
what enables other operating systems to import and use the remote NVMe device
across a network potentially hosting multiple NVMe devices.

Define a subsystem namespace and change into its directory:

$ sudo mkdir namespaces/1
$ cd namespaces/1/

Set a local NVMe device to the newly created namespace:

$ echo -n /dev/nvme0n1 |sudo tee -a device_path > /dev/null

And enable the namespace:

$ echo 1|sudo tee -a enable > /dev/null

Now, you’ll create an NVMe Target port to export the newly created subsystem and
change into its directory path:

$ sudo mkdir /sys/kernel/config/nvmet/ports/1
$ cd /sys/kernel/config/nvmet/ports/1

Well, you’ll use the IP address of your preferred Ethernet interface port when
exporting your subsystem (for example, eth0):

$ echo 192.168.1.92 |sudo tee -a addr_traddr > /dev/null

https://www.linuxjournal.com

145 | June 2019 | https://www.linuxjournal.com

DATA IN A FLASH, PART III: NVMe OVER FABRICS USING TCP

Then, you’ll set a few other parameters:

$ echo tcp|sudo tee -a addr_trtype > /dev/null
$ echo 4420|sudo tee -a addr_trsvcid > /dev/null
$ echo ipv4|sudo tee -a addr_adrfam > /dev/null

And create a softlink to point to the subsystem from your newly created port:

$ sudo ln -s /sys/kernel/config/nvmet/subsystems/nvmet-test/
 ↪/sys/kernel/config/nvmet/ports/1/subsystems/nvmet-test

You now should see the following message captured in dmesg:

$ dmesg |grep "nvmet_tcp"
[24457.458325] nvmet_tcp: enabling port 1 (192.168.1.92:4420)

Importing a Target The host machine is currently without an NVMe device:

$ nvme list
Node SN Model Namespace
--------- ------------ ------------------------ ---------

Usage Format FW Rev
-------------- ---------------- --------

[Note: the tabular output above has been modified for readability.]

Scan your target machine for any exported NVMe volumes:

$ sudo nvme discover -t tcp -a 192.168.1.92 -s 4420

Discovery Log Number of Records 1, Generation counter 1
=====Discovery Log Entry 0======

https://www.linuxjournal.com

146 | June 2019 | https://www.linuxjournal.com

DATA IN A FLASH, PART III: NVMe OVER FABRICS USING TCP

trtype: tcp
adrfam: ipv4
subtype: nvme subsystem
treq: not specified, sq flow control disable supported
portid: 1
trsvcid: 4420
subnqn: nvmet-test
traddr: 192.168.1.92
sectype: none

It must be your lucky day. It looks as if the target machine is exporting one or
more volumes. You’ll need to remember its subnqn field: nvmet-test. Now
connect to the subnqn:

$ sudo nvme connect -t tcp -n nvmet-test -a 192.168.1.92 -s 4420

If you go back to list all NVMe devices, you now should see all those exported by
that one subnqn:

$ sudo nvme list
Node SN Model
---------------- -------------------- ------------------------
/dev/nvme1n1 8e0999a558e17818 Linux

Namespace Usage Format FW Rev
--------- ----------------------- ---------------- --------
1 2.15 GB / 2.15 GB 512 B + 0 B 4.15.0-3

[Note: the tabular output above has been modified for readability.]

Verify that it also shows up like your other block device:

https://www.linuxjournal.com

147 | June 2019 | https://www.linuxjournal.com

DATA IN A FLASH, PART III: NVMe OVER FABRICS USING TCP

$ cat /proc/partitions |grep nvme
 259 1 2097152 nvme1n1

You can disconnect from the target device by typing:

$ sudo nvme disconnect -d /dev/nvme1n1

Summary
There you have it—a remote NVMe block device exported via an NVMe over Fabrics
network using TCP. Now you can write to and read from it like any other locally
attached high-performance block device. The fact that you now can map the block
device over TCP without the additional overhead should and will accelerate adoption
of the technology. ◾

Petros Koutoupis, LJ Editor at Large, is currently a senior performance software engineer at Cray for its Lustre High Performance File
System division. He is also the creator and maintainer of the RapidDisk Project. Petros has worked in the data storage industry for well
over a decade and has helped pioneer the many technologies unleashed in the wild today.

Resources
• “Data in a Flash, Part I: the Evolution of Disk Storage and an Introduction

to NVMe” by Petros Koutoupis, LJ, December 2018

• “Data in a Flash, Part II: Using NVMe Drives and Creating an NVMe over
Fabrics Network” by Petros Koutoupis, LJ, December 2018

• nvme-cl GitHub Repository

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.linuxjournal.com/content/data-flash-part-i-evolution-disk-storage-and-introduction-nvme
https://www.linuxjournal.com/content/data-flash-part-i-evolution-disk-storage-and-introduction-nvme
https://www.linuxjournal.com/content/data-flash-part-ii-using-nvme-drives-and-creating-nvme-over-fabrics-network
https://www.linuxjournal.com/content/data-flash-part-ii-using-nvme-drives-and-creating-nvme-over-fabrics-network
https://github.com/linux-nvme/nvme-cl
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

Glyn Moody has been writing
about the internet since 1994,
and about free software since
1995. In 1997, he wrote the first
mainstream feature about
GNU/Linux and free software,
which appeared in Wired. In
2001, his book Rebel Code:
Linux And The Open Source
Revolution was published.
Since then, he has written
widely about free software
and digital rights. He has
a blog, and he is active on
social media: @glynmoody
on Twitter or identi.ca, and
+glynmoody on Google+.

OPEN SAUCE

Facebook, Not
Microsoft, Is
the Main Threat
to Open Source
In the future, Facebook won’t be a social-media site.

By Glyn Moody

Facebook is under a lot of scrutiny and pressure at the
moment. It’s accused of helping foreign actors to subvert
elections by using ads and fake accounts to spread lies—in the
US, for example—and of acting as a conduit for terrorism in
New Zealand and elsewhere. There are calls to break up the
company or at least to rein it in.

In an evident attempt to head off those moves, and to limit
the damage that recent events have caused to Facebook’s
reputation, Mark Zuckerberg has been publishing some long,
philosophical posts that attempt to address some of the main
criticisms. In his most recent one, he calls for new regulation
of the online world in four areas: harmful content, election
integrity, privacy and data portability. The call for data
portability mentions Facebook’s support for the Data Transfer
Project. That’s clearly an attempt to counter accusations
that Facebook is monopolistic and closed, and to burnish

148 | June 2019 | https://www.linuxjournal.com

https://www.wired.com/1997/08/linux-5
http://opendotdotdot.blogspot.com/
https://twitter.com/glynmoody
https://identi.ca/glynmoody
https://plus.google.com/+glynmoody
https://www.newyorker.com/magazine/2018/10/01/how-russia-helped-to-swing-the-election-for-trump
https://www.newyorker.com/magazine/2018/10/01/how-russia-helped-to-swing-the-election-for-trump
https://www.nbcnews.com/tech/tech-news/streamed-facebook-spread-youtube-new-zealand-shooting-video-circulates-online-n983726
https://www.theverge.com/2018/9/4/17816572/tim-wu-facebook-regulation-interview-curse-of-bigness-antitrust
https://www.nbcnews.com/tech/tech-news/elizabeth-warren-calls-break-facebook-google-amazon-n980911
https://www.nbcnews.com/tech/tech-news/elizabeth-warren-calls-break-facebook-google-amazon-n980911
https://www.facebook.com/4/posts/10107013839885441?sfns=mo
https://www.facebook.com/4/posts/10107013839885441?sfns=mo
https://datatransferproject.dev/
https://datatransferproject.dev/
https://www.linuxjournal.com

149 | June 2019 | https://www.linuxjournal.com

OPEN SAUCE

Facebook’s reputation for supporting openness. Facebook does indeed use and
support a large number of open-source programs, so to that extent, it’s a fair claim.

Zuckerberg’ previous post, from the beginning of March 2019, is much longer, and
it outlines an important shift in how Facebook will work to what he calls “A Privacy-
Focused Vision for Social Networking”. Greater protection for privacy is certainly
welcome. But, it would be naïve to think that Zuckerberg’s post is simply about that.
Once more, it is an attempt to head off a growing chorus of criticism—in this case,
that Facebook undermines data protection. This is the key idea:

I believe the future of communication will increasingly shift to private, encrypted
services where people can be confident what they say to each other stays secure
and their messages and content won’t stick around forever.

Although that may sound like unalloyed good news for Facebook users, it’s also a big
plus for Facebook. Since end-to-end encryption will be employed, the company won’t
be able to see what people are sharing in their private chats. That being the case, it
can’t be required to police that content. If Facebook can bring about that “shift” to
private messaging, it will reduce the public and political pressure on the company to
try to check what its users are up to. The big problem with this approach is that it
will not be possible to monitor who is sending what, and so the authorities and other
observers will lose valuable insights about what kind of disinformation is circulating.
There’s another key driver of this much-vaunted emphasis on privacy and encryption.
As Zuckerberg writes:

We plan to build this the way we’ve developed WhatsApp: focus on the most
fundamental and private use case—messaging—make it as secure as possible,
and then build more ways for people to interact on top of that, including calls,
video chats, groups, stories, businesses, payments, commerce, and ultimately a
platform for many other kinds of private services.

Zuckerberg needs to make his services “as secure as possible” not so much to protect
users’ privacy, as to engender enough confidence in them that people will be willing

https://opensource.facebook.com/
https://www.facebook.com/notes/mark-zuckerberg/a-privacy-focused-vision-for-social-networking/10156700570096634/
https://www.facebook.com/notes/mark-zuckerberg/a-privacy-focused-vision-for-social-networking/10156700570096634/
https://www.linuxjournal.com

150 | June 2019 | https://www.linuxjournal.com

OPEN SAUCE

to trust Facebook for everyday financial activities. That is, he wants to turn Facebook
from a social-media site to a platform running every kind of app. Facebook is running
out of people it can easily add to its network, so it needs to find new ways to generate
profits. Taking a cut of every e-commerce transaction conducted on its new secure
service is a great way of doing that.

Although a bold vision, it’s hardly an original one. It’s precisely what the Chinese
internet giant Tencent did with WeChat. Initially, this was just a way to exchange
messages with small groups of friends and colleagues. In 2017, Tencent made it
possible to run “Mini Programs” on its platform. Wikipedia explains:

Business owners can create mini apps in the WeChat system, implemented using
JavaScript plus a proprietary API. Users may install these inside the WeChat app. In
January 2018, WeChat announced a record of 580,000 mini-programs. With one
mini program, consumers could scan the Quick Response [QR] code using their
mobile phone at a supermarket counter and pay the bill through the user’s WeChat
mobile wallet. WeChat Games have received huge popularity, with its “Jump Jump”
game attracting 400 million players in less than 3 days and attaining 100 million
daily active users in just two weeks after its launch, as of January 2018.

Today, WeChat has more than one billion monthly active users, and it’s effectively
the operating system of Chinese society. With his shift to a “Privacy-Focused Vision
for Social Networking”, Zuckerberg evidently aspires to turning Facebook into the
operating system for everywhere else.

That is a huge problem for open source. Even though Linux underlies the billions of
Android phones in use today, there is precious little sign of free software running on
them. As people start to install Facebook Mini Programs—or whatever Zuckerberg
decides to call them—on Facebook, running on Android, the fact that everything
depends on Linux becomes even more irrelevant. Whether the new Mini Programs
are open source or not, Facebook’s platform certainly won’t be, no matter how much
Zuckerberg loves free software. Facebook will become the new Windows, with the
difference that swapping in GNU/Linux instead of Windows is straightforward; doing

https://en.wikipedia.org/wiki/Tencent
https://en.wikipedia.org/wiki/Tencent
https://en.wikipedia.org/wiki/WeChat
https://www.linuxjournal.com

151 | June 2019 | https://www.linuxjournal.com

OPEN SAUCE

the same with Facebook’s new platform, will not be.

The community could doubtless come up with a better Facebook than Facebook—
after all, the open-source world has some of the best coders around, and they love
a challenge. It probably would be a distributed, federated system with privacy and
security built in. But the technical details really don’t matter here. The hard part is
not crafting a better Facebook, but convincing people to use it. Network effects
make breaking Facebook’s grip on social media incredibly hard. Once Zuckerberg
has established Facebook as a complete platform, and people use it routinely and
reflexively all the time they are awake, it will be even harder. What role will open
source have then? ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

