

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

2

About the Sponsor ��4

Introduction ��5

A Bit of Sudo History ���7

Sudo Usage ��8

Sudo Defaults ��12

Aliases ��16

A More Complex Example ��16

Other Security Tools ��19

Sudo Shortcomings ���21

Next-Generation Tools ��22

Key Capabilities in Achieving Advanced Security and
Compliance Use Cases on UNIX and Linux Platforms ������24

Table of Contents

GREG BLEDSOE is a Managing Consultant with Accenture in the DevOps Architecture
Practice. He has more than 20 years of hard-fought experience in security and operations,
having been a developer, network engineer, sysadmin, techops manager, Vice President of
Operations and CISO. You can reach him at lj@bledsoehome.net or via Twitter: @geek_king.

mailto:lj@bledsoehome.net

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2017 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

4

About the Sponsor
BeyondTrust

BeyondTrust is a global information security software

company that helps organizations prevent cyber attacks and

unauthorized data access due to privilege abuse. Our solutions

give you the visibility to confidently reduce risks and the

control to take proactive, informed action against data

breach threats. BeyondTrust’s privileged access management

solutions are trusted by more than 4,000 customers

worldwide, including half of the Fortune 100. To learn more

about BeyondTrust, please visit www.beyondtrust.com.

http://www.beyondtrust.com

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

5

Introduction
“If you build it they will come.” Are freeways built to

travel between existing communities, or do communities

spring up around freeways? Is this a chicken-and-egg

problem, or is there a complex interaction where such

things shape each other?

The use of UNIX and Linux security tools raises similar

questions. Do people work the way they do because of

the tools they have, or do people have the tools they have

Beyond Sudo:
How to Know
You Have
Outgrown It
(and What to Do)
 GREG BLEDSOE

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

6

because of the way they work? New types of tools are built

when someone has an insight into how to improve the way

work is currently done—and the tool then shapes the way

work is done going forward. Tools are built to the work at

hand from the perspective of someone who feels a gap in

capability, and this is very important in deciding when a tool

is “fit for purpose”.

There is no question that a new tool can revolutionize

the way work happens, and this is a big part of the story of

the world’s technological progress. Better tools can mean

sizable competitive advantage, but that seldom lasts long.

What works is copied, and it comes back to the application

of the tool and the process around the how and why of

its usage—that’s what makes for lasting advantage. Value

determines longevity.

The need to enforce privilege layers in our digital systems

is a persistent one. In many ways, the advance of sudo

is the story of the advance of digital technology, and the

story of sudo in the age of DevOps and the scale enabled

by automation is this story in a microcosm. Our needs have

In many ways, the advance of sudo is the
story of the advance of digital technology,
and the story of sudo in the age of DevOps
and the scale enabled by automation is this
story in a microcosm.

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

7

shifted from bespoke configuration on a system-by-system

basis to the need to control, configure and audit swiftly and

repeatedly many ephemeral yet highly regulated systems at

once. Manual solutions are no longer an option. But what

makes for the right use cases for sudo? And, how do you

know if you’ve outgrown its use? That’s precisely what this

Geek Guide discusses.

A Bit of Sudo History
Once upon a time, there were only large, expensive

computers shared by many users with no fine-grained

permission controls that ran only one function at a time. All

commands ran with all rights to all the hardware, and all

the processes and memory upon it. Simple mistakes could

bring expensive machines like these to a halt for extended

periods or could compromise the careful work of other

users of the system.

This gradually began to change as the “operating system”

started taking over essential functions and controlling

other processes. Concepts like privilege separation began

to evolve, and user accounts became the norm. Still, if you

needed to execute one single command outside your level

of privilege, you would escalate to the privileged user, and

all those risks would come right back. This had several

consequences, including the fact that if you changed the

administrative account password, it had to be shared with

everyone who might need it, not to mention the fact that

accounting and auditing became nearly impossible.

This, in broad strokes, was the world of UNIX before 1980

when a quantum leap in fine-grained escalation control was

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

8

conceived by some gentlemen—namely Robert Coggeshall

and Cliff Spencer—working at the Department of Computer

Science at SUNY/Buffalo. It ran on a VAX-11/750 running

4.1BSD, and they named their software sudo, short for

“superuser do”. Originally its only function was to allow

temporary privilege escalation to the superuser (or root)

account, except using the user’s own password instead of

sharing the root account. The first update to this software

was not released for five years, and it has iterated in faster

and faster loops since, as software has tended to do as

versions multiply and functions accrue.

It wasn’t until 1994 that support for more UNIX

platforms was added, and in 2003, LDAP integration

became official. In 2005, a new parser was released,

and advances in capability began to come swiftly. An

ecosystem of supporting tools like “visudo” and various

GUIs and GUI tools emerged, as well as competitors like

“runas” on Microsoft platforms and “doas” in BSD. These

newer tools have their user base, but none have grown

as large as sudo, and none have developed the simplicity

in command language that sudo brings. If you have used

any modern *nix in the past 20 years and needed elevated

privileges, you almost certainly have at least a passing

familiarity with it.

Sudo Usage
The basic usage of sudo is both familiar and obscure.

Hidden in the obscurity is complexity that allows capability

that far exceeds common usage. Most casual users will

never really understand that complexity because the only

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

9

line they have ever seen, used or modified is:

Members of the admin group may gain root privileges

%admin ALL=(ALL) ALL

What they know is that the file /etc/sudoers, which they

generally know to edit through visudo (so as not to foul

themselves by opening the file more than once or saving it in

unreadable form and thus potentially locking themselves out

of the superuser account) contains parameters that define

who can run what as whom and under what conditions.

In administering your own local desktop, using sudo for

individual commands or using the following may be all you

ever need to do:

sudo su - root

If you need to use UNIX or Linux professionally, have

more than one user and the need to meet local, regional or

global audit and security requirements, things can become

complex quickly, because you will have to use the detailed

features of sudo to define policy for multiple users, for

multiple reasons, on multiple systems.

One of the keys to understanding why all this complicated

difficult-to-manage complexity exists is to understand how

it came to be. Sudo evolved through solving one problem

at a time, and sometimes implications and effects on the

amazingly functional and flexible systems we were building

into UNIX weren’t fully understood until after the problem

already had been exploited. Pipes, for example, allow for those

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

10

amazing one-line strings of commands that make UNIX experts

wizards, but if you start thinking through the various security

implications of piping to and from various system devices,

you’ll soon go mad. If we were rebuilding a tool from scratch

today, we would have all this accumulated knowledge in mind

before we began and potentially simplify things considerably.

As it is, there are many subtle differences in slight

divergences of sudo usage, like the difference between

sudo su, sudo su -, sudo su - root, sudo -i and

sudo -s, all of which can turn up slight but maddening

variations in the resulting shells in which you find yourself.

Combining these variations with different sudo defaults in

the configuration file can complicate matters further.

In most basic terms, sudo will run an executable with

the privileges of another user. The term executable is

important, because it means sudo won’t run any shell

built-ins. (It will, however, run the shell itself.)

It also is best to specify full paths to avoid a user setting

a Trojan executable in a custom $PATH variable and

executing random things with sudo. Also, remember that

any redirection is done before elevated commands are run,

so any redirection does not have elevated privileges and can

cause the command to fail. This is a good thing:

$ sudo date > /etc/shadow

bash: /etc/shadow: Permission denied

By default, you keep some of your own environment variables—

and this can cause various degrees of confusion and problems if,

for instance, one user’s .Xauthority file is overwritten by a process

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

11

running as another user. There are some tools that try to control

and/or simplify this, but they also add some complexity, as well

as force you to make some trade-offs between security, ease

of use and reliability. There is also a diminishing return on time

invested understanding every nuance of such tools.

You always can check your sudo setup with sudo -V. For

reference, here’s a list of variables on one of my systems

and how they are handled by default:

sudo -V

Sudo version 1.8.16

[snip]

Environment variables to check for sanity:

 LANGUAGE

 LANG

 LC_*

Environment variables to remove:

 BASH_ENV

 ENV

 TERMCAP

 TERMPATH

 TERMINFO_DIRS

 TERMINFO

 _RLD*

 LD_*

 PATH_LOCALE

 NLSPATH

 HOSTALIASES

 RES_OPTIONS

 LOCALDOMAIN

 IFS

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

12

Sudo Defaults
When you want to make adjustments, you need to change

sudo’s defaults. You set the defaults at the top of your

sudoers configuration file like so:

/etc/sudoers

This file MUST be edited with the ‘visudo’ command as root.

See the man page for details on how to write a sudoers file.

Defaults env_reset

Defaults env_keep += “SSH_AUTH_SOCK”

This tells the system that you want to reset all

environment variables, except for the bare-bones few, but

keep the variable SSH_AUTH_SOCK. env_reset usually is

on by default, but it helps to remember that by making

it explicit, you’ll also need to define any environment

variables you want to keep explicitly. These are almost

always variables that one individual wants or needs to be

present on a single individual system due to system role

changes, and this can cause the need to start maintaining

multiple individual versions of your configurations, which

can quickly and exponentially increase your management

overhead, so you’ll want to avoid this if at all possible.

These parameters that affect the resulting executable matter

a lot when you are starting a shell. There are a lot of ways to do

that, from sudo /bin/bash to sudo su, and there are many

ways built in to sudo to do it. What it boils down to is that

you keep progressively decreasing amounts of the originating

user’s environment as you move through sudo $SHELL →

sudo su → sudo -s → sudo su - $user → sudo -i.

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

13

Doing sudo -i and sudo su - root are functionally

equivalent. The hyphen in su - $user means to simulate an

actual login; thus, you get the same environment as the user

you are becoming. As you are working with system defaults,

it is important to remember that some features of sudo can

conflict with your directives or help you out. For instance, sudo

-i adds a level of safety, because this is the way specifically

designed to give you the root user shell safely. Since this is the

design goal, it contains some additional protections to make

sure you carry nothing that might compromise your system

over from the originating shell and user—for instance, if you

are paranoid, you might think to run sudo itself with the full

path, /usr/bin/sudo /bin/bash, to avoid the possibility of using

a fake sudo, but on a system-by-system basis, do you have

control over every user environment variable? Situations like

this, on a system-by system-basis, can derail even the most

security-conscious people, because they may start to choose

convenience over pain of individual system management.

The man page for the sudoers configuration file (type

man sudoers) has an exhaustive list of possibilities, and

it’s important to have some understanding of them. Some

Situations like this, on a system-by-system
basis, can derail even the most security-
conscious people, because they may
start to choose convenience over pain
of individual system management.

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

14

are fairly trivial and for convenience only. For instance, the

following provides feedback as you type in your password

upon launching sudo - (asterisks instead of the usual null

output), which can cause confusion if you lose track of how

many characters you’ve entered already:

Defaults p wfeedback

Others, like this:

Defaults visiblepw

will cause sudo to refuse to run if the echo can’t be

disabled on the terminal, resulting in the password being

visible. These configurations can have great significance

and are priceless under the right circumstances.

Other useful default is:

Defaults syslog=auth

By default, sudo logs to syslog, which is disabled by

setting a logfile. This option will set the syslog facility to

be logged to, and it can be customized. If you already are

doing common logging and using a remote syslog server

to aggregate logs, this can help make sudo activity more

easily searchable. If you don’t have this, you’ll need to find

and manage unique log files on every machine you have.

Managing log files is simple with a few systems, but it’s

increasingly difficult as the number of machines scales.

When attempting to determine activity, whether benign or

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

15

an attack on multiple systems, ensuring that timestamps,

logging level and logging efficacy haven’t been tampered

with are all things that are required for sudo to be useful,

but are not included with sudo.

Some defaults are fairly arcane and require deep

knowledge of the underlying UNIX/Linux architecture,

for instance:

Defaults umask=0777

The man page for the umask sudo option goes like this:

umask Umask to use when running the command. Negate this

option or set it to 0777 to preserve the user’s umask. The

actual umask that is used will be the union of the user’s

umask and the value of the umask option, which defaults to

0022. This guarantees that sudo never lowers the umask when

running a command. Note: on systems that use PAM, the default

PAM configuration may specify its own umask which will override

the value set in sudoers.

umask, in case you didn’t know offhand, is the default

permissions used when new files and folders are created.

Some defaults can help with management overhead and

monitoring of the running systems:

Defaults syslog_goodpri=notice

Defaults syslog_badpri=alert

These tell the system to what syslog facility to log

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

16

unsuccessful attempts and successful usages of sudo.

A fun one to turn on is this:

Defaults insults

Try it and see what happens.

Aliases
Standard best practice is to have users execute commands

as themselves, so tools should implement this by restricting

users from switching accounts. To achieve the “least

privilege” principle, individual commands should be

authorized independently, per host, per user. This can

become unwieldy at scale quickly with sudo.

As you become more and more secure, your concerns will

become more and more complex, and complexity increases

the odds of mistakes and unintended consequences. Keeping

everything simple must be an overarching goal to keep in mind,

and with sudo, balancing simplicity and security is not easy.

A More Complex Example
Let’s look at a more complex example. Say you need to allow

To achieve the “least privilege” principle,
individual commands should be authorized
independently, per host, per user. This can
become unwieldy at scale quickly with sudo.

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

17

an operator to shut down your server for maintenance. You

want the operator to be able to shut down the system, and

that’s all. The first thing to do might be to type man sudo,

but the manual pages for sudo and sudoers are sterling

examples of comprehensive yet impenetrable documentation.

Now is when you need to understand what actually is

happening in that /etc/sudoers file.

The most basic syntax of a line in the sudoers file is this:

USER PLACES=(AS_USER) [NOPASSWD:] COMMAND

Let’s break that down:

n USER can be any existing user(s), user ID or User_Alias. It

also can be a group, specifying the group by preceding it

with the special character %. Groups also can be included

in user aliases.

n PLACES can be any combinations of hostname,

domain_name, IP addresses or wild cards.

n (AS_USER) can be any existing user(s), user ID or Runas_Alias.

n COMMAND can be any existing command(s) or

COMMAND_ALIASES.

n [NOPASSWD:] is used to specify that the following commands

can be run without being prompted for a password. Use it

with caution and advisedly. Understand the risks and have

compensating controls for those risks.

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

18

You could allow the operator to do the job simply with:

operator ALL= /sbin/shutdown

But, what if you need more flexibility than that? What if

you need multiple users from multiple places to be able to

do a more complex combination of things?

Aliases increase both complexity and flexibility. Using them

either can increase or obliterate readability and, thus, the

maintainability of the file. Here are the types of aliases available:

n User_Alias

n Cmnd_Alias

n Host_Alias

n Runas_Alias

I find user aliases to be a bit redundant, as you can use

regular groups:

User_Alias USERS = tom, dick, harry

#OR

User_Alias ADMINS = %admin

#OR EVEN

User_Alias ADMINS = +admin

#USING “+” indicates this isn’t a local group defined in

/etc/group but a network group

#There are special operators available like negation “!”

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

19

and you can combine Aliases with them

User_Alias LIMITED_USERS = NET_USERS, !WEBMASTERS, !ADMINS

You also can include local and network groups in your

basic line syntax, so I’ve rarely needed to use user aliases.

Command aliases, on the other hand, are a different

story, but I’ll get to that in a bit. For the example above,

you could create a user alias for operators:

User_Alias OPERATORS = tom, dick, harry

Maybe your operators need to do a few more things, like

use local printers:

Cmnd_Alias PRINTING = /usr/sbin/lpc, /usr/bin/lprm

Cmnd_Alias OPERATIONS = /bin/shutdown, /bin/kill

And now you have a string of aliases to use and combine (and

recombine), so you can replace the operators line above like so:

OPERATORS localhost = PRINTING, OPERATIONS

Now your operators can perform select functions only when

logged in locally. With this single simple example in mind, now

think about how to scale this across a large organization with

hundreds of servers, tens of groups and hundreds of people

who all may need different privileges across each host.

Other Security Tools
With these basic examples, you should be able to see how

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

20

you can combine simple abstractions to lock down a system

to any desired degree, at least as far as execution privileges

go. There are other layers of security to consider, but sudo

doesn’t give you file protection or tampering notification,

which are also essential to a holistic security approach. For

that, you need other tools. All of this layering of tools and

protections does come at a cost—a cost you have to work

hard to mitigate before the environment becomes unstable,

unusable and unpredictable.

With sudo, enterprise control is limited, which means

the tool is not designed for nor does it easily lend itself to

centralized command and control with easy configuration.

Because of this, commercial tools have arisen to fill those

gaps. As mentioned previously, the time when sudo had a

competitive advantage for modern environments is gone.

Commercial solutions now can provide a wealth of

capabilities that sudo doesn’t. Foremost among them are

full session and event logging, centralized policy controls,

and file integrity monitoring. Products such as PowerBroker

for Unix & Linux by BeyondTrust provide the ability for

corporations to meet even the most strenuous audits related

to privileged access and compliance-related activity.

With sudo, enterprise control is limited, which
means the tool is not designed for nor does it
easily lend itself to centralized command and
control with easy configuration.

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

21

Sudo Shortcomings
Sudo was designed and built when IT organizations put a

lot of effort into securing each independent and expensive

server separately, per its purpose. Given the expense of

compute resources, this made a lot of sense. The 50-

year deflationary boom in that cost has allowed digital

technology to become ubiquitous, with new capabilities

layered on top of what was nearly miraculous yesterday.

Spending the management time to achieve security per

server is no longer viable, as in the age of DevOps, you

don’t manage servers anymore. In fact, when you get

good at this, you hardly even manage environments. The

world has moved on, and admins are moving on with it to

managing “Platforms as a Service”.

When you are operating at scale and speed, sudo’s

shortcomings become all too apparent. You must not only

understand how to secure your systems using sudo, you

also must understand how to automate that and do it to

hundreds or thousands of servers at once. What’s more,

those servers are increasingly ephemeral—like virtual

quantum particles, they are popping in and out of existence

rapidly. Legacy management techniques no longer will work

as newer and larger sets of capability are stacked on top

of the old. IT is being re-invented continually, and security

must be re-invented continually as well to go along with it.

A big problem is that those of us graybeards who

have expertise in utilizing sudo gained it by exhaustively

securing those big expensive immortal servers of yore.

This is a world many young engineers will only hear of

in legend. Most executives don’t know this is an area in

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

22

which young engineers need training and experience. All

too often, instead of doing the work to layer in security

and permissions control, because people don’t have

the time, tools or underlying expertise to evolve it, they

drop it or at least stop caring so much about it. This is

a terrible mistake given the high-profile data breaches

that keep dominating the headlines. You can’t afford to

get this wrong. CEOs and CIOs increasingly are being

held accountable for failing to ask the questions about

how they are accounting for advancing security even

as capabilities in the rest of technology are advancing.

Security must be a partner in this advance.

Next-Generation Tools
Security used to be a highly manual process. It simply

cannot be any longer. The application of security must be

automated, no matter the platform. For this, you need next-

generation tools. You need solid configuration management,

starting with tools like Puppet and Chef. You need strategies

for distributing solid fine-grained application and user

permissions across platforms, as you create and re-create

servers and services. In this new world, you need to define

less about individual users, as you may have management

tools doing most of that work. Until this transition is fully

implemented, a day that may never come, you always will

have these permission administration concerns—and even

then, you’ll have to define the permissions and privileges

your tools themselves need, lest they themselves be hijacked.

Admins are dealing more and more with administrating

services and less with servers. The concept of a server

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

23

becomes less defined as you start using containers and

unikernels. You need to update your tools and strategies

for the times, and they should be able to do a lot of the

work for you. To do this, there are several basic strategies.

One strategy is to augment sudo, and another is to replace

it with a set of tools that is designed to be centrally

managed, fully automated and that can hold up to the most

stringent of audits.

This is where next-generation cross-platform tools that

drain some of the complexity can help. You need a new

methodology for privilege management that makes it simpler

at scale. While you are reconsidering legacy practices, you

have an opportunity to explore new kinds of benefits:

n What if you could use one tool for several of your

security use cases, like centralized policy management,

automatic service discovery, vulnerability management,

centralized audit logging and single sign-on between

*nix, Mac and Windows operating systems?

n What if you need to automate not only the dynamic

provisioning of users, but also the assignment of

permissions, at scale, for various roles? This is difficult to

accomplish with text-based, distributed sudoer files.

n What if you could integrate with sudo where it makes

sense and replace sudo in other cases?

n What if you could apply your Active Directory policies

across your *nix environments?

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

24

n What if you could augment your container isolation,

provide centralized audit logging and do file-level

monitoring inside them as well?

n What if you could have one go-to place for your

centralized approach to holistic security?

n Does it make sense never to re-think your use of

20-year-old tools with only incremental improvements

while your methodology has moved on to manage entire

platforms as code?

BeyondTrust has just such a toolset that can help with

all the weaknesses and complexity stemming from the

legacy design of sudo and provide additional benefits as

well. This is certainly worth a look as an alternative to

de-prioritizing security due to lack of expertise or time

to administer labor-intensive tools. Sudo is a venerable

tool with a long history in privilege management,

but you need to move beyond it into next-generation

methodologies so security and compliance can keep up

with the pace of the IT revolution.

Key Capabilities in Achieving Advanced
Security and Compliance Use Cases on
UNIX and Linux Platforms
Consider the following checklist when determining whether

sudo is meeting your security and compliance needs. If sudo

can’t help address these use cases, it’s time to think about a

commercial UNIX/Linux privilege management solution.n

GEEK GUIDE  Beyond Sudo: How to Know You Have Outgrown It (and What to Do)

25

Table 1. Checklist: Does Sudo Meet Your Needs?

Capability Function Benefits

Auditing and
Governance

Analyzes user behavior by collecting,
securely storing and indexing
keystroke logs, session recordings
and other privileged events.

Speeds forensics and simplifies compliance
by providing an unimpeachable audit trail of
all user activity.

Fine-Grained
Least Privilege

Elevates privileges for standard
users on UNIX and Linux through
fine-grained policy-based controls.

• Enables compliance through the
compartmentalization of IT tasks that
require privileged accounts.

• Limits attack surfaces by providing just
enough access to complete a task.

• Eliminates admin rights from managed systems.

Dynamic Access
Policy

Utilizes factors such as time,
day, location and application/
asset vulnerability status to make
privilege-elevation decisions.

Reduces attack surfaces by helping IT make
privilege decisions based on context and risk.

Remote System
and Application
Control

Enables users to run specific
commands and conduct remote
sessions based on rules without
having to log on as admin or root.
When combined with integrated
privileged password management,
elevated applications can be launched
without exposing the password.

• Enhances user productivity by simplifying
processes that are complex with native
tools or sudo.

• Limits attack surfaces by preventing the use
of the root and admin account.

• Keeps systems safe by only allowing approved
applications and commands to be executed.

File and Policy
Integrity
Monitoring

Audits and reports on changes to
critical policy, system, application
and data files.

• Reduces risk of tampering by ensuring that
critical files have not been altered.

• Protects critical files from malware and
privilege misuse.

• Eliminates unauthorized software installs,
workarounds or gaps that could lead to exploits.

Privileged Threat
Analytics

Correlates user behavior against
asset vulnerability data and
security intelligence from best-of-
breed security solutions.

Reduces risks in user activity that can lead to
data breaches.

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Beyond Sudo: How to Know You Have Outgrown It (and What to Do)
	Introduction
	A Bit of Sudo History
	Sudo Usage
	Sudo Defaults
	Aliases
	A More Complex Example
	Other Security Tools
	Sudo Shortcomings
	Next-Generation Tools
	Key Capabilities in Achieving Advanced Security and Compliance Use Cases on UNIX and Linux Platforms

