

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

2

Introduction �� 5
The Malware Menace �� 6
	 Rising	Risks	��6

	 Entry	points	���8

Traditional Defenses ��� 9
	 Attack	Surface	��9

	 Access	Controls	��11

	 Signature-Based	Detection	���13

Principles of Modern Defenses ������������������������������������ 13
	 Zero	Trust	��14

	 Least	Privilege	��16

	 Real-Time	Visibility	���18

	 Ensured	Compliance	���19

Modern Security Requirements ������������������������������������ 20
	 Real-Time	Risk	Management	��21

	 Antivirus	Software	���22

	 Separate	Workloads	��23

	 Network	Isolation	��24

	 Patching	Policies	��24

	 Application	Whitelisting	��25

Conclusion �� 26

Table of Contents

FEDERICO KEREKI is a Uruguayan systems engineer with more than 25 years
of experience doing consulting work, developing systems and teaching at universities.
He is currently working as an UI Architect at Globant, using a good mixture of
development frameworks, programming tools and operating systems—and FLOSS,
whenever possible! He has written several articles on security, software development
and other subjects for Linux Journal, IBM developerWorks, and other Web sites
and publications. He wrote the Essential GWT book, in which you can find some
security concerns for Web applications. You can reach Federico at fkereki@gmail.com.

mailto:fkereki@gmail.com

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2015 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

4

About Bit9 + Carbon Black

Bit9 + Carbon Black provides the most complete solution

against advanced threats that target organizations’ endpoints

and servers, making it easier to see—and immediately stop—

those threats. The company enables organizations to arm their

endpoints by combining continuous, real-time visibility into

what’s happening on every computer; real-time signature-less

threat detection; incident response that combines a recorded

history with live remediation; and prevention that is proactive

and customizable.

More than 1,000 organizations worldwide—from Fortune

100 companies to small enterprises—use Bit9 + Carbon Black

to increase security, reduce operational costs and improve

compliance. Leading managed security service providers (MSSP)

and incident response (IR) companies have made Bit9 + Carbon

Black a core component of their detection and response services.

Visit http://www.bit9.com for more information.

http://www.bit9.com

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

5

Introduction
The malware threat landscape is expanding continuously,

and in the past 30 years since the appearance of the first

virus, the number of security events (and their associated

financial losses) has continued to grow at an exponential

rate, with millions of such events per month. These numbers

support a somewhat fatalistic opinion that says there are

only two kinds of systems: those that already have been

attacked and those that will be attacked.

Linux in
the Time of
Malware
 FEDERICO KEREKI

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

6

The Malware Menace
Malware is software designed to gain access, gather

information, engage in illicit operations or disrupt normal

operations. The word itself, a portmanteau of “malicious”

and “software”, points to its goals. Malware takes many

forms, although most have an economic objective.

Custom malware directly targeted against a specific

system will be far more dangerous than “generic”

malware, so defending against that type of attack is

crit ical. Research confirms that more than 70% of all

malware is specifically tailored and used only once, so

the threat level stands high.

Rising Risks: It’s safe to say that many Linux users believe

their systems are “secure by design”, malware-safe or even

that there are no credible threats against their servers.

Getting actual numbers regarding concrete security

incidents is difficult, because many incidents are not

disclosed or made public, but some general statistics are

available that shed light on this growing problem. See,

for example, Verizon’s Data Breach Investigation Report at

http://www.verizonenterprise.com/DBIR/2015.

Some of these beliefs are at least partial ly true; for

example, the numbers suggest that a default Linux

system probably is more secure than other systems.

Additionally, Linux environments have seen few attacks,

such as are commonly reported for Windows. In any

case, assuming that attacks on Linux servers never

happen or have no chance of success is not only false,

but also dangerous.

Malware authors have, for the most part, targeted

http://www.verizonenterprise.com/DBIR/2015

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

7

Windows machines, and the main reason is simply on

desktops, Windows presents a larger opportunity with the

huge number of workstations. But on servers, it’s a different

story, and we are increasingly seeing new and targeted

malware attacks on Linux, such as the 2014 Windigo attack

that infected 10,000 Linux systems and the more recent

“Mumblehard” malware that was discovered by ESET and

operated for at least five years. In both these examples,

the malware was targeted, allowing it to operate under the

radar and avoid detection.

Thus, when considering the server space, Linux’s

popularity becomes a big attraction for would-be

attackers. Due to the sheer numbers of Web servers and

database servers that run under Linux (some statistics say

approximately 70% of all servers connected to the Web

run Linux), a malware author who succeeded in targeting

Apache, MySQL or similar server software immediately

would have a “target-rich” environment, in military

terms. Given that many business have critical corporate

information and systems running on Linux servers, the

menace becomes even more serious; such an attack

vector could help target a specific company, with

a planned stealthy invasion.

Rather than taking a “shotgun” approach with malware

and trying to bag as many machines as possible, even if

low-valued, attackers usually prefer going sniper-like after

bigger, more attractive targets. It’s just like “Sutton’s Law”:

reputedly, bank robber Willie Sutton once was asked why

he robbed banks, and he simply answered “Because that’s

where the money is.” It is estimated that around two

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

8

thirds of all malware attacks are used only once and are

specifically directed against given companies or servers.

(And, of course, robbing a bank is likely better than

mugging 100 random people on the street!) So, even if

your servers are reasonably well protected against general,

run-of-the-mill, common attacks, it certainly will pay to

consider the possibility of a direct, well-tailored, malware

attempt against your specific company.

Finally, “zero-day” attacks should cause the most

worry. These attacks are based on undetected software

vulnerabilities that haven’t been patched. There is no

awareness of them and no knowledge of their invasion

methods, their effects or the best way to eradicate them.

Zero-day threats, despite their name, can be exploited

for longer durations if left undetected and unpatched.

For example, the Heartbleed bug affecting OpenSSL

originated in 2011, but it surfaced almost three years

later. As another example, in 2008, Microsoft confirmed

a specific vulnerabil ity in Internet Explorer that dated

back to 2001. Software for which support has ended

with no more available patches also are candidates for

zero-day exploits.

Entry Points: In “olden” times, a three-legged system

architecture based on the Internet + DMZ + Intranet trio

was enough for security purposes. However, the current

communications landscape, with VPNs, work-from-home

users, Wi-Fi connections, trusted partners, open ports,

cloud servers, service-oriented architectures (SOAs), remote

management, port hopping and more, certainly is much

more complicated and porous.

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

9

Passwords and a firewall may have been enough

previously, but this variety of possible entry points greatly

adds to the difficulty of protecting a server against malware.

In fact, you should assume that your network perimeter,

instead of being hard and solid, is soft and permeable, and

plan accordingly for the worst.

Of course, all of this doesn’t mean you should forget

about, say, SSH (secure shell) connections or about using

tunneling for remote access. Security is based on setting as

many obstacles as possible (“defense in depth”) in the way

of would-be intruders.

Traditional Defenses
Sysadmins are savvy about possible attacks—at least,

they are much more so than common users—and this,

coupled with the fact that Linux systems tend to be

viewed as more secure “from the get-go”, means that

servers often have some level of protection against

nuisance or common malware. Defenses often are set

up after the fact, and more advanced defenses are

not planned or put in place until a breach has been

discovered. Managing defenses depends on many

separate programs, processes and tools, and it isn’t a

simple job. It can take plenty of time, no matter what

levels of automation are achieved. And finally, if not

properly considered at the beginning, it can be difficult

to keep up with new threats and ensure that all security

methods are running properly.

Attack Surface: Intuitively, you can define the attack

surface of any system as the sum of all the ways (attack

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

10

vectors) that malware can invade the system. The larger the

surface, the more insecure your system proves to be. Table 1

shows the various aspects of an attack surface.

TABLE 1. Attack Surfaces

ASPECT RISK

Human

Social-engineering attacks may dupe valid users into infiltrating

the system themselves, unwittingly but directly injecting

malware into your servers. Even an e-mail message, opened by

an unaware user, can become an attack vector.

Hardware

The workstations themselves—although attacks on these

usually require some inside help or internal proximity. (Google

the TEMPEST codename and learn about its spying methods.)

Network

Open ports and available services and interfaces on outward-facing

servers, or code listening on visible ports, provide possible entry

points to your system. In particular, technologies based on tunneling

or peer-to-peer connections are a threat, because they open direct

connections to systems. Depending on your architecture, you may

need to add cloud servers and systems to the network attack surface.

Software

All running code may include exploitable vulnerabilities. Even worse,

computer systems may secretly and deliberately include “backdoors”,

allowing remote access to parties in the know. In this context, Web

applications are the most worrisome problem, because they usually

depend on several pieces of software (Web servers, database

servers, content management systems, e-business packages and so

on), each of which may have vulnerabilities.

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

11

In today’s data center, firewalls are usually the main

defense against malware. But, recent breaches have shown

them to be increasingly ineffective, and they should be

supplemented with host-based defenses. For example, in

a Linux environment, brute-force attacks against an SSH

port can be detected with log analysis tools (DenyHosts or

Fail2Ban are a couple possibilities), and higher-level access

rules then can be implemented automatically to thwart the

would-be intruder. You also should consider host-based

detection and response tools that can provide real-time

detection of attackers or malware.

Directly reducing all these aspects—adding physical

security, having fewer services running or closing down

ports—minimizes exposure and lessens the risks of

attack, although obviously you can’t go too far without

enduring severe loss of functionality. Attack surface

reduction helps prevent malware entry into your system,

but it doesn’t help with actual damages in the case of

a security failure.

Access Controls: Access controls provide ways to

l imit access to systems and resources to reduce their

attack surface. Table 2 shows the different categories

of access control methods.

You also should consider host-based
detection and response tools that can provide
real-time detection of attackers or malware.

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

12

TABLE 2. Access Control Methods

ACCESS CONTROL TYPE DEFINITION

Mandatory Access
Control (MAC)

Restrictions on a user’s abil ity to access
some resource or perform some operation.
Users are not allowed to grant rights or
override the policy, which is centrally
managed by an administrator. SELinux
(Security Enhanced Linux) is a Linux kernel
security model that supports MAC for more
secure Linux systems.

Discretionary Access
Control (DAC)

A system that restricts access to features
based on the identity of users or the groups
to which they belong. The controls are said
to be discretionary, in that a subject may
pass his or her own permissions to other
subjects, unless restricted by a MAC rule.
The Linux fi lesystem, with user and group
permissions, is an example of a DAC.

Role-Based Access
Control (RBAC)

A more modern technology that grants
access to resources depending on roles,
which are assigned to users based on their
job functions. This is an application of the
“least privilege” principle (which I discuss
later in this eBook).

Rule-Based Access
Control (confusingly
called RBAC also)

A way to allow or deny access to resources
based on rules defined by an administrator.
When a particular user (member of certain
groups) wants to access some resource,
its rules are checked to see whether it can
grant access. A simple example of rule-
based access control is permitting access to
a database only at certain hours of the day,
from Monday to Friday. A potential problem
with this method hinges on the number of
events and resources that need rules.

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

13

Often one or more of these methods are active in a given

system, so they provide a first barrier against malware

exploits, but you need more defenses that that, as you’ll see.

Signature-Based Detection: Whenever suspicious

software is detected “out in the wild”, it’s analyzed by

researchers for antivirus companies. After confirming that

it’s actually malware, a “signature” (a recognizable sequence

of bytes) is taken from the code and added to the antiviral

database, so future recognition is assured. New or custom

malware attacks or zero-day exploits won’t be detected by

antivirus software, since the required signatures won’t yet

exist. Plus, according to FireEye research, more than 70% of

malware is highly targeted and used only once.

Signature-based approaches and network defenses

have some other problems as well. Malware writers

can encrypt their code so the actual malware wil l be

decrypted and executed afterward, but it wil l be harder

to recognize. In effect, there can be uncountable

versions of the same malware, each one encoded with

different keys, making it harder to detect.

Antivirus software is quite common on Windows

machines, but Linux users tend to dismiss it out of hand,

assuming that kind of malware is not relevant, and this

makes sense when you consider that companies often

are slow to develop signatures for Linux machines. But,

this is a rather shortsighted point of view.

Principles of Modern Defenses
As cyber attacks evolve and attacks on Linux systems

become more common, defenses against malware must

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

14

evolve from a reactive process to a proactive one. The usual

cycle in companies is Prevention→Detection→Solution, but

the evolution of modern threats has tempted some people

into believing that prevention is nearly impossible and that

“detection is the new prevention”. This sort of misses the

point, because a more profound look at your systems and

at modern defense methods can provide a high level of

“first-line” stopping power, and the addition of continuous,

real-time, monitoring can add extra capabilities to deal with

the sheer volume of sophisticated, often targeted malware

as well as the diverse and multiple attack vectors (users,

mobile devices, the cloud and so on). Let’s look at some

principles that are mandatory in modern security planning.

Zero Trust: The classic model for network security was

like a medieval castle: a great guarded wall (possibly with

a moat) that supposedly no one would be able to get

through, with an open space inside where life could go

on safely in a normal way, even during sieges and wars.

However, for a modern computer center, this analogy breaks

down, because you can’t ensure that nobody will be able

to get inside where all the internal company resources will

become available for pillaging.

The zero trust principle, developed by Forrester Research,

drops the idea of an untrusted external network and a

trusted internal network, and instead assumes that all

traffic is untrusted and that all resources may have been

compromised, so everything in your network must be

protected individually. The idea is similar to secure office

buildings that have gate security to enter the building,

security controls to access each floor, closed-circuit cameras

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

15

in all hallways, card locks on all doors, keys or access codes

to safes, computers or even lockers, and so on, never

assuming that previous security measures were successful.

The zero trust principle also can be expressed as

“never trust, always verify”, meaning you always must

assume the worst in regard to security and, particularly,

to internal threats. (For an extreme case of risks

involving trust, see the “Trust No One” sidebar.) It al l

boils down to these three rules:

1. All access to internal or external resources must be

secured regardless of resource location or traffic origin.

All connections are to be treated as if they were external

to the data center. Normally, internal users’ connections

are subject to fewer restrictions and controls. This usually

can be done with encrypted tunnels—a well known, fairly

standard and widely available security measure, which

should prove easy (in principle) to apply to any network.

2. All users are subject to “need-to-know” restrictive access

strategies, so they are allowed usage only of specific

resources, depending upon their functions within the

company. This is an application of the “least privilege

principle” (which I describe later).

3. All network traffic must be logged and inspected.

Logging (a passive solution, good for later forensic

analysis) is usually done in systems, but real-time

inspection (an active watch guard that prevents problems

in the present) is more rare.

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

16

Least Privilege: This is probably the oldest principle

that I cover here. It originated in the 1970s in the

Department of Defense (DOD). Despite its age, it sti l l

is a basic and important design consideration, not

only from a security point of view but also in terms

of fault tolerance (dealing with failures in components

or systems).

The principle of least privilege (or “least authority”),

basically implies that a process or user should have only

the authority (privileges, clearance) it needs to do its job

without hindrances and nothing more—in other words,

“barely there” permissions.

There are two corollaries to this rule:

n Default privilege: the default access rule should be

“zero access”—total lack of access.

n Privilege bracketing: if temporary access is needed and

granted, it should be rescinded immediately after usage.

Restrictions against system-wide actions make it

harder to exploit vulnerabilities. Deployment (the

fewer privileges an application needs, the simpler its

deployment) and stability (if a program is limited as to

the changes it can produce on a system, the possibility of

negative side effects on other programs is lower) also are

positively affected by this principle.

One standard technology, supported by network access

control and infrastructure software, is role-based access

control (which I mentioned earlier). To recap, first roles

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

17

are defined for different job functions, and required

permissions are assigned to them.

RBAC goes beyond classic ACLs (access control lists)

insofar as it allows for a finer-grained approach. For

example, an ACL might allow or disable access to a given

system file, but it won’t limit the ways that file could

be changed by the user. On the one hand, with RBAC

you can define operations, such as “create account” or

“change address”, and users would be more constrained

as to what they actually can do. On the other hand,

finer-grained also means more roles to manage—so

you win some, and you lose some.

Implementing true least privilege policies isn’t that

simple, however. Defining fine-grained policies (so

processes will get the most minimum privileges they

require) is complicated, because some needs may be

defined dynamically, so more lax policies may end up

being implemented. A complete implementation plan

includes the following steps:

n Compile information on all resources, including

software (systems, databases) and hardware

(computer equipment, communications equipment)

to define appropriate levels of security.

n Define a list of roles and sub-roles, based upon job

functions and specify needed access rules for each

role. This task should involve all stakeholders to

articulate what’s needed; trying to do it centrally from

your IT department usually ends in failure.

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

18

n Incorporate RBAC across all systems, including internally

developed ones, commercial applications, legacy systems

and so on, and test it.

n Do periodic reviews of all of the above. An annual

review is appropriate, and all jobs, functions, roles and

permissions should be checked.

Real-Time Visibility: Attacks always happen in real

time, and that makes real-time security a basic need. Your

tools must be proactive and help stop incidents, rather

than be reactive and just let you know after the fact.

The longer it takes your security team to detect a

breach, the longer the malware has to take advantage of

it, so it pays to notice red flags quickly and have enough

information to be able to act appropriately. You must be

alerted to suspicious events on the spot and monitor all

kinds of events, including these among others:

n System resources and indicators, such as RAM usage,

CPU load or running processes, that can let you know

about intruder malware at work.

n Network-related events, such as failed access

attempts, DNS queries and unusual end-point

connections, that can point to malware infection or

breach attempts.

n Critical (possibly system) files and other configuration

changes, as unexpected changes may signal a rootkit.

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

19

n Arrival (and execution) of executable files, paying

particular attention to illogical extensions: computer

graphics files shouldn’t be executable, and office suites

shouldn’t be spawning external processes.

n Sensitive data (files, databases) “in motion”, possibly

signaling a running data theft attack.

n USB devices, which can be used as entry points, as key

loggers or as a vector for many other malware types.

To complicate things further, not every anomaly

means an actual security threat or breach. As a simple

example, a rash of uncommon logins may be related to

salespeople using CRM software to plan their monthly

schedule, according to a particular company sales cycle.

Thus, continuous logging analysis must be flexible

enough and allow fine-tuning, so you won’t be swamped

with false positives.

Ensured Compliance: This principle entai ls being

able to prove you are complying with any and al l

relevant regulations. It can be quite costly if not

fulf i l led appropriately, for it can cause f ines or legal

costs, separate and apart from any damages malware

might cause.

Companies must comply with several mandatory

regulations (legis lat ion, federal and local standards,

contracts and so forth), which inevitably imply

producing appropriate trai ls for internal and external

audits; see Table 3.

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

20

No matter what anti-malware tools you deploy, you

must be able to ensure that adequate logs are produced

and that they satisfy the different external entities’

requirements. (This is also a point in favor of automated

tools, rather than human-dependent measures, which

aren’t likely to produce sufficient documentation.)

Modern Security Requirements
There is no single “silver bullet” for security, and all you

can do is put a series of obstacles in you attackers’ way

to make entrance as complicated as possible and, should

that fail, to make it hard for them to exploit the results

of the break in. This multilayered approach is a good

thing. If you depend on a single defense, attackers can

TABLE 3. Common Security Recommendations/Regulations

TITLE DESCRIPTION

BASEL III and GLBA
For financial institutions, related to matters like
confidentiality and integrity of personal information,
integrity of transmitted information and more.

HIPAA
For the health-care industry, related to
confidentiality, integrity and availability of health-
care information.

PCI For merchants, regarding credit-card information.

Sarbanes-Oxley For all publicly traded corporations, regarding
integrity and privacy of financial data.

California S�B� 1386 For all organizations doing business in California,
regarding confidentiality of customers’ data.

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

21

concentrate on it, and after gaining access, everything in

your servers will be wide open.

For the most solid protection, you need to consider

both defense and monitoring, in case your defense

didn’t work.

Real-Time Risk Management: As I’ve mentioned,

the security-threat landscape is changing and evolving

constantly, so your security practices should be able

to deal with such changes. Enterprise systems also are

changing rapidly, impelled by many drivers: mobil ity,

cloud computing, services, virtualization and containers,

the Web and more. New environments plus new threats

Trust No One
Open-source software usual ly is assumed to be better in security terms,

because of the “many eyes” concept—that given enough people examining

a piece of software, al l bugs are tr ivial, and al l problems can be detected

and corrected.

Ken Thompson, one of the creators of UNIX, in his “Trusting Trust” address

given upon receiving the ACM’s Turing Award, explained how to write a compiler

that would be able to plant any specific, desired trojan horse code in any or

all compiled programs (for example, the “login” tool) and showed how the

compiler itself could be hacked so no users ever would become aware of the

modification, even having access to the original source code—neat and evil!

Check out Thompson’s talk at http://cm.bell-labs.com/who/ken/trust.html;

it’s certainly worth a read.

http://cm.bell-labs.com/who/ken/trust.html

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

22

make a volati le mixture. The ESG (Enterprise Strategy

Group, http://www.esg-global.com) defined real-time

risk management (RTRM) as a practice based on these

three principles:

n Instantaneous knowledge: real-time information

on asset changes, vulnerabil ity assessments and

threat data is required, so you can act as soon

as possible.

n Comprehensive visibil ity: information should

be wide in coverage and take into account all

existing vulnerabil it ies.

n Constant assessment and adjustment of controls:

security isn’t a “set-and-forget” feature; rather,

controls need periodic revision in order to ensure

that they work adequately.

Achieving these goals requires event recognition

capabilities able to detect sophisticated threats, high-level

network monitoring that goes beyond specific hot-spot

detection, threat monitoring intelligence to keep up

with all changes in the security and malware landscape,

and a high level of automation to ensure full, consistent,

24/7 monitoring.

Antivirus Software: As I mentioned earlier, this

is essentially an after-the-fact tool that works only

after a given threat has been found and analyzed. This

automatically imposes two restrictions: first, only malware

http://www.esg-global.com

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

23

that has appeared already (and in enough places) will

fall under the purview of the antivirus companies, and

second, as Windows is more prone to infections, it’s

possible that said companies will focus less on Linux

servers, delaying possible solutions.

But, there is an even worse problem. If you are

considering zero-day threats or attacks specifically

geared at your servers, you’l l be completely out of luck.

Malware may succeed because common tools won’t have

a chance of recognizing it, as they aren’t aware of the

proper “signatures” they should look for.

Separate Workloads: “Workload isolat ion” is a

concept that requires separating the different tasks

on your system, each in its own server (compartment),

which runs a software stack appropriate only for its

(l imited) objectives. Doing this with actual, physical

servers would be highly cost- ineffective, so virtual

machines and containers (VMware and VirtualBox, or

Docker) are usual ly chosen to share physical hardware.

Because each compartment is geared to a s ingle task,

it ’s more l ikely that you’l l be able to lock it down more

than a general-purpose server—fewer users, fewer

priv i leges, fewer connections, fewer open ports and

fewer running services imply a smaller attack surface

and fewer vectors of attack.

Security advantages for this are obvious. If an attack

succeeds, malware wil l manage to infect a virtual

server (or container) but wil l have problems spreading

to other servers, either within or without the same

physical hardware.

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

24

Network Isolation: Someone once said that the only

way to secure a server was to disconnect it from the

network, turn it off and lock it in a safebox. Without

going to such extremes, if your network is made up

of separate, independent, mutually exclusive subnets,

all possible malware attacks wil l be l imited to a single

portion of your network, leaving most of of your

infrastructure unscathed.

Patching Policies: Given that most weaknesses derive

from vulnerabil it ies in system software, you could argue

that keeping your system up to date, with all needed

software updates, is possibly the most necessary security

measure to apply. Of course, you can’t just blindly install

updates from any kind of site, or you may end up doing

even more harm. Also, you should have a careful policy

as to which packages to update. Most Linux distributions

recognize two kinds of upgrades: security updates

(which may be downloaded and applied automatically)

and everything else (requiring specific approval before

installation). This means you could miss meaningful (to

you) patches if they aren’t considered a serious security

threat (for most users), so you need to be alert for all

possible required updates.

On the other hand, sometimes you need cutting-edge

packages and may want to work with the latest possible

code, directly downloaded from the developer’s own

site. This can be good in some ways (such as quickly

getting rid of certain defects), but it also multiplies

security risks. With an “accept everything as soon as

possible” policy, you may be getting packages with new,

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

25

undetected problems. On production servers, you have

to walk a thin l ine between heavily tested, older versions

(which may have old bugs that attackers could take

advantage of) and brand-new, latest-version packages

(which could have new undiscovered bugs).

To sum it all up, a good patch management policy

should include:

n A general hardware and software inventory, including

version numbers for all software packages in use,

that is kept up to date. This inventory can be

correlated with discovered vulnerabilities to help

program patching activities.

n The usage of standardized configurations to simplify

testing patches and updating software.

n A process for testing patches, before general application,

to check whether they will affect normal operations.

n A process for deployment and verification of

patches, which may include specific backups to

allow restoring systems to a previous state if the

patches produce unexpected effects.

Application Whitelisting: The general idea for

application whitelisting is related to the zero trust principle.

Instead of trying to block suspicious software but letting

everything else run by default, you opt for blocking all

software by default and just allow specific programs to run.

GEEK GUIDE  LINUX IN THE TIME OF MALWARE

26

Of course, this isn’t quite so simple. Users, as it often

happens, can be a challenge, because they are used to

controlling their own PCs. Limiting their ability to make

changes or run new software can be a cultural problem,

but for more tightly controlled systems, such as servers,

and fixed-function devices, like point-of-sale, implementing

an application can be a much simpler process. Given the

sensitive information often contained on these systems,

having a highly effective prevention mechanism, such as

application whitelisting, can make a lot of sense.

Taking all of this into account, even if an organization

can’t opt for a full lockdown policy, it still can benefit

from the less rigid prevention and detection capabilities

and real-time monitoring of file inventory, file executions

and registry changes provided by most modern application

whitelisting solutions.

Conclusion
The malware threat is growing with no signs of abating,

and it’s a given that all servers eventually will come

under attack. Classic, outdated defenses aren’t enough

to deal with this threat, but several tools and methods

can alleviate the problems and mitigate their impact.

What really matters is taking them into consideration,

implementing them as part of your security plans, and

periodically re-evaluating them in order to test their

behavior and incorporate possible enhancements.

The bottom line is security is a 24/7 job. Your servers

quite likely already are or soon will be under attack. You

need to implement malware defenses now.n

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Linux in the Time of Malware
	Introduction
	The Malware Menace
	Rising Risks
	Entry Points

	Traditional Defenses
	Attack Surface
	Access Controls
	Signature-Based Detection

	Principles of Modern Defenses
	Zero Trust
	Least Privilege
	Real-Time Visibility
	Ensured Compliance

	Modern Security Requirements
	Real-Time Risk Management
	Antivirus Software
	Separate Workloads
	Network Isolation
	Patching Policies
	Application Whitelisting

	Conclusion

