

GEEK GUIDE  SLOW DOWN TO SPEED UP

2

Executive Summary �� 5

Process ��� 7

Documentation ��� 9

Configuration Management �� 11

	 Tools	��12

Configuration as Code �� 14

	 SCM	Systems	���14

Code Review ��� 15

	 Code	Review	Tools	��16

Staging Environments and Monitoring Systems ������������ 17

Example Workflows �� 19

	 Example—No	Quality	Assurance	���20

	 Example—With	Quality	Assurance	���21

	 Workflow	Summary	��22

Conclusion �� 23

Table of Contents

BILL CHILDERS is the Senior Development Operations Manager for MobileIron,
a mobile device management company. Bill has worked in IT and DevOps since before the
DevOps term was coined, and he has performed a variety of roles in software organizations:
systems administrator, technical support engineer, lab manager, IT Manager and Director
of Operations. He is the co-author of Ubuntu Hacks (O’Reilly and Associates, 2006), and
he has been Virtual Editor of Linux Journal since 2009. He has spoken at conferences,
such as Penguicon and LinuxWorld, and is enthusiastic about DevOps, IT and open source.
He blogs at http://wildbill.nulldevice.net and can be found on Twitter at @wildbill.

http://wildbill.nulldevice.net

GEEK GUIDE  SLOW DOWN TO SPEED UP

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2014 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE  SLOW DOWN TO SPEED UP

4

About the Sponsor
New Relic & DevOps

New Relic is a software analytics company that makes sense of
billions of data points about millions of applications in real time.
New Relic’s comprehensive SaaS-based solution provides one
powerful interface for Web and native mobile applications and
consolidates the performance monitoring data for any chosen
technology in your environment. More than 250,000 active users
employ our cloud solution, analyzing more than 200 billion data
points across more than 3 million applications every day.

The DevOps movement is focused on helping dev and ops teams
improve the odds of application success. New Relic provides the
data and accountability application teams need to measure and
monitor the impact of new features, prioritize fixes, ensure stability,
and keep costs in check. As a DevOps-driven SaaS company,
New Relic understands the specific challenges software teams are
facing, and has built specific features with agile app delivery in mind.

When your brand and customer experience depend on the
performance of modern software, New Relic provides insight into
your overall environment. Learn more at http://newrelic.com.

http://newrelic.com

GEEK GUIDE  SLOW DOWN TO SPEED UP

5

Executive Summary
DevOps is one of the newest and largest movements in

Information Technology in the past few years. The name

DevOps is a portmanteau of “Development” and “Operations”

and is meant to denote a fusion of these two functions in a

company. Whether or not your business actually does combine

the two functions, the lessons and tools learned from the

DevOps movement and attitude can be applied throughout

Slow Down
to Speed Up:
Continuous
Quality Assurance
in a DevOps
Environment
 BILL CHILDERS
 Senior Development Operations Manager for MobileIron
 and Virtual Editor of Linux Journal

GEEK GUIDE  SLOW DOWN TO SPEED UP

6

the entire Information Technology space. This eBook focuses

on one of the key attributes of the DevOps movement: Quality

Assurance. At any point, you should be able to release your

product, code or configuration—so long as you continue

keeping your deliverables in a deployable state. This is done

by “slowing down” to include a Quality Assurance step at

each point in your workflow. The sooner you catch an error

or trouble condition and fix it, the faster you can get back on

track. This will lower the amount of rework required and keep

your team’s momentum going in a forward direction, enabling

your group to move on to new projects and challenges.

FIGURE 1.
DevOps Venn Diagram
(from http://soapui.org)

http://soapui.org

GEEK GUIDE  SLOW DOWN TO SPEED UP

7

This eBook dives in to some topics that cross both

DevOps and Quality Assurance boundaries. Some of

them may apply to you and your organization, and

others may not. The goal here is to get you to start

thinking about how you can begin injecting Quality

Assurance steps into your daily workflow. This eBook

also covers some general best practices for a DevOps

(or traditional operations organization) and how a

Quality Assurance step in conjunction with those best

practices can help catch and eliminate errors earl ier.

Taking the extra time to do a Continuous Quality

Assurance check as a part of your workflow, while

it’s in fl ight, may indeed slow you down along the

way, but by keeping quality high and rework down to

an absolute minimum, you can avoid repeating steps

later on—and that’s how you speed up over the long

haul (see “DevOpsDays Sil icon Valley: Continuous

Quality” http://www.serena.com/blog/2013/07/

devopsdays-silicon-valley-continuous-quality).

Process
Let’s begin with a talk about the dreaded “P-Word”:

process. For some reason, engineers and other highly

technical people cringe when someone mentions the

word process (particularly if it comes out of a manager’s

mouth). Perhaps these people had a bad experience with

it in an entry-level job or once had a supervisor who

was so rigid about following a process that common

sense seemed to fly out the window. At any rate, these

engineers are among the first to write a program,

http://www.serena.com/blog/2013/07/devopsdays-silicon-valley-continuous-quality
http://www.serena.com/blog/2013/07/devopsdays-silicon-valley-continuous-quality

GEEK GUIDE  SLOW DOWN TO SPEED UP

8

script or build automation to ensure reliabil ity and

a continuous outcome for some operation or sets of

operations, but when asked to apply that same logic to

their daily workflow, they rebel. An engineer once said

“I don’t understand why people fight working through

a process—a process is nothing more than a script you

execute in meatspace.” This definition is precisely what

is meant by process: a documented, repeatable series

of steps that one follows to ensure the same outcome

and keep variables under control.

Your process doesn’t need to be a completely rigid,

fully automated, push-button, hands-off affair. It may

FIGURE 2. DevOps Process Model (from http://devcentral.f5.com)

http://devcentral.f5.com

GEEK GUIDE  SLOW DOWN TO SPEED UP

9

be though, depending on what’s required. On the other

hand, it could be something as simple as an internal

wiki page that details the steps one needs to follow

to perform a particular task. Tailor your process to

match the task at hand, as well as the people who will

be l iving within that process. The process wil l be only

as successful as the people executing it, so make sure

you’ve got their input and buy-in. Remember, some

people respond very poorly to the word process—so,

as a last-ditch effort, don’t forget that you can use the

word “workflow” as a substitute.

Once you’ve got your process (or workflow, if you

will) sketched out, try to imagine your staff working

through the steps. Look for places where errors could be

introduced, and then place Quality Assurance steps at

those checkpoints. You may be asking yourself, “What

kind of Quality Assurance steps could I use?” If you’ve

asked this question, good for you—you’re one step

ahead. This eBook covers some techniques and tools that

can be placed into workflows in the following sections,

starting with a frequently overlooked topic and one that’s

easy to remedy: documentation.

Documentation
Your process or workflow is useless if no one remembers

how to execute it. If you were to ask any IT manager if

documentation was important, most of them would agree

unequivocally. However, there are a lot of IT shops running

out there with little-to-no documentation, particularly in

smaller organizations, where all the knowledge lives in the

GEEK GUIDE  SLOW DOWN TO SPEED UP

10

brains of one or two people. Any reasonable person quickly

would find this to be unacceptable. How do you bring new

staff members on board without good documentation?

What do you do when an engineer gets sick and another

person has to step into that role temporarily?

Here’s another case where slowing down can help

your organization speed up over the long haul. From the

beginning, take the time to document how things work,

how to fix things when they go wrong, and what to do at

certain points in your process. You can write things down

in a wiki, maintain a hard-copy runbook or build in some

level of self-documentation to your system. Whatever you

do, make it consistent, and continually refer to it and revise

it. Here’s an opportunity for a Quality Assurance step:

keeping it up to date and revised is critical. Documentation

that’s out of date or incorrect actually may be worse than

no documentation, because it can lead you down a false

path of believing you’re following your process when you’re

actually not. That may be the worst kind of error, as you

generally find out you’ve executed your process incorrectly

at the very end, forcing you and your team to re-do

everything once more.

Once you have documented your process, you can begin

to document other pieces of your environment. A great next

step is to document the configurations of all your systems.

This could be done initially by placing the configuration files

in a Software Configuration Management (SCM) system

(more on that later). There are configuration management

systems that excel at describing families and groups of

systems, which is covered in the next section.

GEEK GUIDE  SLOW DOWN TO SPEED UP

11

Configuration Management
For a person new to DevOps, it’s easy to confuse the large

subject of configuration management with DevOps. Most

DevOps resources spend a fair amount of time discussing

the merits of Puppet versus Chef, or Salt versus Ansible,

and it seems like new configuration management systems

pop out of the woodwork fairly regularly. Configuration

management systems, no matter which you use, simply

are tools that describe a system or sets of systems, and

they let you reproduce an identically configured system at

will. If you’ve not been exposed to these systems before,

each one works by describing a set of attributes that a

system or set of systems can have, then they associate

those attributes with a system.

All types of system configuration can be described

here, from network configuration, to user and SSH key

management, to service configuration. This can ensure

that all your Web servers run and behave identically

or that your mail servers all have SpamAssassin and

antivirus services installed and running. Perhaps one of

the nicest side benefits of these types of systems is that

they check in periodically with a centralized catalog

and ensure that the system is continuing to comply and

run with the approved configuration. If the system’s

configuration varies from what’s in the catalog, the

configuration engine will bring the system back into

compliance automatically.

As great as these configuration management systems

can be, they’re also a place where things can go horribly

wrong. What if one of your administrators pushes out a

GEEK GUIDE  SLOW DOWN TO SPEED UP

12

manifest change to your DNS servers that has a typo in it,

causing the DNS service to crash? That really does happen,

and it’s a great place for a Quality Assurance step. Many

of these systems have a way to test or validate a set of

configurations before pushing them to a machine. For

instance, on Puppet, the command is puppet parser

validate <filename.pp>. That could be run by an

engineer as a part of your process before continuing on

and making that configuration set live. Another possible

option is to have a test or “canary” system—something

that would run a typical set of services and act as a first

line of defense for catching errors in your configuration

management system before the error has a chance to

make its way out to the larger population of machines.

Tools: From a tools standpoint, there are a lot of different

configuration management systems. The current leaders in

the space are:

n Puppet from Puppet Labs: http://puppetlabs.com

As great as these configuration management
systems can be, they’re also a place where
things can go horribly wrong. What if one of
your administrators pushes out a manifest
change to your DNS servers that has a typo
in it, causing the DNS service to crash?

http://puppetlabs.com

GEEK GUIDE  SLOW DOWN TO SPEED UP

13

n Chef from Chef Software: http://www.getchef.com/chef

n Salt from SaltStack: http://www.saltstack.com

n Ansible from Ansible, Inc.: http://www.ansible.com/home

Each of these systems has its own unique strengths.

If you haven’t deployed one of these tools already

and are considering doing so, you should do your own

research and determine what wil l work best in your

environment. If you’re a Ruby shop, Puppet or Chef

may be a good fit. If you’re proficient in Python, Salt

may be more your speed. Like most tools, even the

best choice won’t automatically ensure you of higher

uptimes, better quality or more consistency. Any tool

is only as good as the person who wields it.

Proper deployment of a configuration management

system can help your operation scale dramatically.

Ensuring that what goes into the configuration

management system is of the highest quality wil l help

maintain high quality of service, translating into better

uptime. Configuration management systems also allow

you to scale dramatically—for instance, Facebook uses

Chef to manage thousands of servers while keeping its

DevOps team relatively small and agile (see “Facebook

Uses a Seasoned Chef to Keep Servers Simmering”:

http://www.pcworld.com/article/2084900/facebook-

uses-a-seasoned-chef-to-keep-servers-simmering.html).

One way to keep the configurations going into the

configuration management system at the optimum

http://www.getchef.com/chef
http://www.saltstack.com
http://www.ansible.com/home
http://www.pcworld.com/article/2084900/facebook-uses-a-seasoned-chef-to-keep-servers-simmering.html
http://www.pcworld.com/article/2084900/facebook-uses-a-seasoned-chef-to-keep-servers-simmering.html
http://www.pcworld.com/article/2084900/facebook-uses-a-seasoned-chef-to-keep-servers-simmering.html

GEEK GUIDE  SLOW DOWN TO SPEED UP

14

quality is to treat the configurations just l ike source

code. System/service configuration and source code

have a lot in common, and many good software

development practices can be applied successfully

to system configurations too. One of the most basic

ways is to check in your configurations to an SCM

system or revision control system.

Configuration as Code
Developers have been using SCM systems for ages,

and a plethora of them exist. If your business develops

any kind of software, you’re probably running one of

these already, so it may make sense to use whatever

SCM your organization has. A possible exception to

this may be GitHub or another hosted solution, or you

may want to control your sensitive and secure data by

having the code hosted locally. The bottom line is that

you want to treat the system configurations that go

into your configuration management system just l ike

source code. In a way, it is source code. It can be

“compiled” from a set of fi les into a running system that

performs a desired function, just l ike source code can

be compiled into a running program. This can help keep

changes in the environment from being any riskier than

they need to be (see “Two DevOps Approaches”:

http://architects.dzone.com/articles/two-devops-approaches).

SCM Systems: If you’re not running any kind of

SCM internally, here’s a short list of some of the most

common ones:

http://architects.dzone.com/articles/two-devops-approaches

GEEK GUIDE  SLOW DOWN TO SPEED UP

15

n Subversion (open source): http://subversion.apache.org

n Perforce (proprietary): http://www.perforce.com

n Git (open source): http://git-scm.com

n Mercurial (open source): http://mercurial.selenic.com

There is a considerable learning curve to using any

of these, but the benefits make the time spent well

worth it. Any of these tools can allow multiple people

to contribute to a particular project or set of fi les

at once, allowing them to merge their contributions

without overwriting one another’s work. They also

allow you to pinpoint and roll back changes easily—

something very useful in the event that an error makes

its way into the configuration management tool via

the SCM. However, you probably want to try to avoid

that error making its way into the SCM at all. How

can you do that? This is another great place to slow

down and insert a Quality Assurance step, this time

in the form of code review.

Code Review
Code review is a fairly simple concept: it boils down to

having another person check your work. There are many

methods to institute a code review step, from simply

passing the proposed configuration change around via

e-mail to implementing a code review tool that can

enforce a more rigid set of criteria. Whether you decide

http://subversion.apache.org
http://www.perforce.com
http://git-scm.com
http://mercurial.selenic.com

GEEK GUIDE  SLOW DOWN TO SPEED UP

16

to go with a more formal code review or put a more

lightweight review step in place, you should make it

part of your process that another team member checks

all changes before they get committed to the SCM,

which then would move them into the configuration

management system. Studies show that quick,

lightweight code reviews found nearly as many bugs

as more formal code reviews did, but were more cost-

effective and quicker to perform (see “Best Kept Secrets

of Code Review”: http://smartbear.com/SmartBear/

media/pdfs/best-kept-secrets-of-peer-code-review.pdf).

The message is the same as for process: tailor the tool

to fit your needs, as well as your people. A code review

tool and step in your process is useless if your personnel

bypass it because it’s too cumbersome.

Code Review Tools: Unlike SCM tools, there aren’t

nearly as many code review tools available, and nearly all

of them are open source. Here’s a brief list of some of the

most common tools:

n Gerrit (open source): http://code.google.com/p/gerrit

n Review Board (open source): http://www.reviewboard.org

A code review tool and step in your process
is useless if your personnel bypass it
because it’s too cumbersome.

http://smartbear.com/SmartBear/media/pdfs/best-kept-secrets-of-peer-code-review.pdf
http://code.google.com/p/gerrit
http://www.reviewboard.org
http://smartbear.com/SmartBear/media/pdfs/best-kept-secrets-of-peer-code-review.pdf

GEEK GUIDE  SLOW DOWN TO SPEED UP

17

n Crucible: (proprietary, usually bundled with the Fisheye code

browser): http://www.atlassian.com/software/crucible

All of the tools listed above support a “pre-commit”

method of code review, which is desired for this

application. What this means is the review occurs before

the code/configuration is committed to the SCM, and not

after, as in a post-commit model. By doing the review with

a pre-commit type of workflow, you can ensure that any

errors the review Quality Assurance step catches do not

make it into your server environment.

Although code review can catch many bugs or

errors, it won’t catch them all. Humans are notoriously

undependable in that respect, but between good

process with appropriate documentation, a configuration

management system where you treat the configuration

as code and a good code review process, you should

be all set, right? Not exactly, as mistakes sti l l can l

eak into your production environment. What’s another

Quality Assurance step you can take to keep this

from happening? You can create a miniature mirror

of your production environment—a staging environment,

or testbed.

Staging Environments and
Monitoring Systems
This may seem like common sense, but it bears saying:

if you’re making changes directly to your production

environment without testing them somewhere, you’re

risking mistakes making their way there as well, harming

http://www.atlassian.com/software/crucible

GEEK GUIDE  SLOW DOWN TO SPEED UP

18

your ability to deliver a solid service. The fairly evident

answer to this is a mirror of the production environment:

a staging environment (see “Continuous Testing and

Continuous Monitoring”: http://sdarchitect.wordpress.com/

2012/10/30/understanding-devops-part-4-continuous-

testing-and-continuous-monitoring).

Your staging environment doesn’t need to be a

full mirror of production—it simply needs to have

similar characteristics. That’s where the beauty of the

configuration management system and other pieces of

this can help. Just create a new entry in the configuration

management system and provision a new machine

that looks like production, but with lesser hardware

specifications. It even can be as tiny as a single-core

virtual machine. It doesn’t need a lot of performance;

it’s simply got to accept and run code.

Once you have a staging environment, you can insert a

final Quality Assurance check into your process: require

that all changes go into the staging environment first.

Ideally, you’d monitor your staging environment with the

same monitoring system that you use in production, so

you can use all your monitoring checks to ensure that

your change didn’t break anything. If you don’t have

Your staging environment doesn’t need to be
a full mirror of production—it simply needs to
have similar characteristics.

http://sdarchitect.wordpress.com/2012/10/30/understanding-devops-part-4-continuous-testing-and-continuous-monitoring
http://sdarchitect.wordpress.com/2012/10/30/understanding-devops-part-4-continuous-testing-and-continuous-monitoring

GEEK GUIDE  SLOW DOWN TO SPEED UP

19

a monitor for that particular change, you should come

up with a quick test to check that the change behaves

as expected. (This could be an automated unit test, but

that’s not always practical.) Then, and only then, can that

change be promoted to production. Of course, production

would be monitored continuously to ensure that all

systems are operating optimally.

Example Workflows
So, what would these workflows look like? Here’s

an example scenario. Let’s say you and your team

are responsible for a production e-mail service for

awesomecompany.com. This service is configured rather

simply, by having a single “mydestination” directive in the

/etc/postfix/main.cf file. New top-level domains have been

released, and your company wants to receive e-mail at a

new domain (awesomecompany.global). Your team has

been tasked with configuring the mail servers to accept

mail at the new domain in addition to the existing domain

(awesomecompany.com). Let’s run through the process

FIGURE 3. Staging Environments and Monitoring
(from http://sdarchitect.files.wordpress.com)

http://sdarchitect.files.wordpress.com

GEEK GUIDE  SLOW DOWN TO SPEED UP

20

twice, first without Quality Assurance steps along the way,

and then with the QA steps included—and simulate an error

in the mail server configuration in both cases.

The engineer making the change simply needs to make

one change to the /etc/postfix/main.cf file.

Original line:

mydestination = $myhostname localhost.$mydomain awesomecompany.com

The correct, newly edited line should be:

mydestination = $myhostname localhost.$mydomain awesomecompany.com

 ➥awesomecompany.global

The engineer actually makes a typo in his change though:

mydestination = $myhostname localhost.$mydomain awesomecompany.co

 ➥awesomecompany.global

Note that he accidentally deleted the “m” in .com in the

current domain name. Let’s see what happens!

Example—No Quality Assurance: The engineer

receives the request to add a new domain to the

mailserver. The engineer then logs in to the production

server, makes the change, saves the /etc/postfix/main.cf

file, then reloads the postfix configuration. Now the

server is set to receive mail for awesomecompany.global,

but due to the typo, the previous domain being

accidentally altered, mail that’s meant for the main

domain gets blocked with a postfix “relay access

denied” error, and there’s a mail outage in production.

All inbound e-mail for awesomecompany.com starts

bouncing, and users are no longer getting mail. Since

GEEK GUIDE  SLOW DOWN TO SPEED UP

21

the mailserver is still up, basic monitoring doesn’t

report a problem, and the engineer doesn’t get word

that there’s an issue until a user complains. By that

time, the engineer’s got to spend a fair amount of time

troubleshooting the issue until the engineer notices

there’s a typo.

In summary, awesomecompany.com suffered a mail

outage where any inbound e-mail messages were

bounced back to their senders—causing several clients to

lose confidence in the company and for vital information

to be delayed or lost.

Example—With Quality Assurance: The engineer gets

the request to add support for the new domain, and the

first thing the engineer does is look at the internal wiki

to make sure he’s going to follow his process for this.

Awesomecompany uses Git for its SCM, so the first step

in the process is for the engineer to update the local

copy of the configuration management system’s files.

The engineer runs git pull to do this. Then, following

the process, the engineer makes the change to the

/etc/postfix/main.cf file, saving it to his local repository

and instituting a code review for the change.

Another engineer in the cubicle next door sees the review

request and looks over the configuration line. The second

engineer usually is good at spotting typos and ordinarily

would catch this, but that engineer’s running low on

caffeine and the change is not caught.

Now that the code review has been passed erroneously,

the engineer who is responsible for the change commits the

change to the main Git repository, where the configuration

GEEK GUIDE  SLOW DOWN TO SPEED UP

22

management system picks up the change and pushes it to

the staging environment.

The configuration management system executes

the change, and just l ike in the previous example,

mail to awesomecompany.com is bounced. However,

the engineer sent an e-mail from his machine to

“test@staging.awesomecompany.com”, as well as

“test@staging.awesomecompany.global”, and noticed

that the mail to awesomecompany.com was returned

as a bounced e-mail.

The engineer then looks over the configuration change

and realizes there was a typo. The typo is fixed in short

order, and another code review is launched, where the

second engineer realizes his mistake as well, and that

review is passed. The first engineer commits his change to

the repository again, where the configuration management

system pushes it to the staging environment. The first

engineer then sends another two e-mail messages, and

both are received in the test mailbox. The engineer then

looks at the process document on the wiki again and runs

the script to promote the change into production, where it

works flawlessly.

Workflow Summary: As you can see, there’s quite a

few more steps in the workflow that contains the Quality

Assurance steps. Each step takes slightly more time to

execute, and in the case of the code review step, it requires

another engineer’s time. However, the fatal production

outage is avoided completely, despite the fact that both

engineers made at least one mistake.

This is what “slowing down to speed up” means—the

GEEK GUIDE  SLOW DOWN TO SPEED UP

23

company’s overall productivity has not suffered in spite

of the fact that two mistakes were made. The accuracy

achieved is well worth the extra few minutes those steps

required to run.

Conclusion
There isn’t a hard and fast way to implement the Quality

Assurance concepts outlined in this eBook. Rather, it’s

left to you and your staff to decide what’s appropriate

and effective. If you continually “close the loop” and

continue to refine and improve your process—including

each Quality Assurance step you inject into the process—

you’ll wind up with a much more stable system overall,

and you’ll notice your team isn’t running around fixing

self-inflicted emergencies.n

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Slow Down to Speed Up: Continuous Quality Assurance in a DevOps Environment
	Executive Summary
	Process
	Documentation
	Configuration Management
	Tools

	Configuration as Code
	SCM Systems

	Code Review
	Code Review Tools

	Staging Environments and Monitoring Systems
	Example Workflows
	Example—No Quality Assurance
	Example—With Quality Assurance
	Workflow Summary

	Conclusion

