

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

2

About the Sponsor �� 4

Introduction �� 5

Two Steps Necessary for Security ��������������������������������� 7

Verify Configurations �� 9

Assume Security Has Been Compromised ������������������ 10

Tools to Scan for Malware �� 11

	 rkhunter	���12

	 chkrootkit	��13

	 LMD���14

	 lynis	���19

Checking for Stealth Ports ��� 22

	 lsof	��23

	 unhide	���24

Rootkits ��� 25

Conclusion �� 27

Table of Contents

GREG BLEDSOE is VP of Operations at Personal, Inc. (http://www.personal.com).
He is CEH and CPT certified and has 20 years of hard-fought experience in security and
operations. You can reach him at lj@bledsoehome.net, or via Twitter: @geek_king.

http://www.personal.com
mailto:lj@bledsoehome.net

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2016 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

4

About the Sponsor
HelpSystems

HelpSystems makes IT lives easier by meeting critical

needs like IT and business process automation, and system

security. Policy Minder is a robust, user-friendly security

monitoring solution that allows systems administrators

to spend less time developing compliance reports,

administering security, and managing scripts. Automating

these labor-intensive tasks doesn’t just improve efficiency—

it gives you control over settings and activities on your

system that put business-critical data at risk.

For more information on Policy Minder, see

http://www.helpsystems.com/policy-minder.

http://www.helpsystems.com/policy-minder

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

5

Introduction
One could argue that civilization’s material success arose

because the concept of experimental verification became

the foundation of the scientific method. By ruthlessly

applying the scientific method and experimental verification

to your assumptions, you can bridge the gap between

beliefs and reality. You learn to make decisions based on

data, experience, observation and tested principles. This

has worked quite well because, contrary to postmodernist

Self-Audit:
Checking
Assumptions
at the Door
 GREG BLEDSOE

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

6

philosophy, there is indeed a verifiable reality external to

perception and belief that, when ignored, will assert itself

in the form of bumps, bruises and harm. Much of this harm

can be avoided if you do the best job you can at validating

your assumptions before their falsehood costs more than

you wish to pay.

Applying this concept to modern technological

operations, and particularly to security operations, means

self-auditing early and often through the process of

delivering services to your clients, partners or business

units. Self-auditing is how you apply the scientific method

to your environments and come to know whether what

you believe to be true about your systems—that is, that

they comply with your policies, are secure and under your

exclusive control—actually is true.

Sysadmins, devops engineers and security personnel alike

often are kept awake at night by any number of paradoxical

questions when they sense that their assumptions are

untested. How should I monitor my monitoring to be

sure it will alert me when there is an issue that needs

my intervention? How can I be sure that the servers and

processes in the environment haven’t been rooted already?

Sysadmins, devops engineers and security
personnel alike often are kept awake at night by
any number of paradoxical questions when they
sense that their assumptions are untested.

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

7

What if I’m really just a brain in a jar connected to an

experience machine? Despite every automated precaution

and deductive reasoning based on assumptions about my

process and technology, am I really sure?

In the quest to get better sleep, it is a good idea to

give your systems a thorough self-audit every so often,

but this is where a sysadmin can get lost in the weeds.

Knowing what to check and how to be as sure as possible

that things are okay can be a moving target. Although

the basic principles can be enumerated easily (verify

configurations and inspect everything), the practical

reality of getting this done can be daunting.

In this ebook, I provide a jump-start and walk through

some of the checks to go through to self-audit a Linux

server. I use the basic and omnipresent commands most

likely to be available everywhere as much as possible and

give a pointer on how to secure the other tools to use for

the rest.

Two Steps Necessary for Security
Assumptions are insidious, and the one assumption you

don’t realize you are making may be the one check you

don’t make that invalidates the rest of your results. So as

far as possible, it is critically important to start the process

of a self-audit with no preconceptions. Although some

assumptions obviously are necessary (for instance, I assume

I’m not dreaming right now), or you’d never do anything,

you can shed your underlying beliefs about things only to

a certain degree. Nevertheless, every assumption you can

state and test explicitly brings you that much closer to

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

8

surety in the integrity of your systems.

Modern sysadmins/devops engineers/security personnel

really need to be sure of two things. First, be sure that

your systems are configured in the way you believe

they are configured—for example, making sure that the

intended firewall rules are applied and that the password

policy is enforced as you’ve committed to in your policies

and procedures, and so on. (Of course, whether those

are the appropriate controls, policies and procedures is a

question for another day.) After all, these are not things

you want pointed out in a forensic analysis after the fact.

The second thing you need to do is look for evidence that

your security measures have been defeated. In fact, the

one assumption that will serve you well in this process is

to assume that every layer of security already has been

compromised and be determined to find the evidence.

Set a high bar for coming to the belief your system has

not been compromised. Believe that the evidence is there

somewhere, in hidden files, folders and processes, buried

somewhere in some log, and that it is your job to find it.

Dig in until you can conclude only that the system hasn’t

been compromised.

In fact, the one assumption that will serve you
well in this process is to assume that every layer
of security already has been compromised and
be determined to find the evidence.

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

9

Much of this process can be automated. I would submit

that you should automate as much as possible for several

reasons. For one thing, an automated process doesn’t

forget to do checks, doesn’t overlook things or miss an

item on the checklist, and it doesn’t make human errors.

The automation itself can have human errors, and that has

to be mitigated by adequate logging along with testing

your scripts thoroughly and periodically to maintain trust in

their effectiveness. Scripts that will do things like attempt

to set weak passwords and look for unexpected listening

ports are the first tools you need to have in your toolbox.

Now that I’ve identified these two necessary steps (verify

configurations and inspect for evidence of compromise),

let’s take a look at what that means in practice.

Verify Configurations
Verifying configurations isn’t something that any tool can

do automatically without your input. First, you need to have

the comprehensive list of requirements and policies that

your systems are subject to, and then step by step, line by

line, verify that these have been implemented correctly, not

just by looking at the configuration, but by testing those

assumptions in practical ways.

For example, verify firewall rules by both examining

startup configuration files however you manage them, and

verify the running configuration with iptables -L -vn

to verify the open ports. If you have a password policy set,

try a simple password that doesn’t meet the policy. If it

works, something is wrong and to /etc/pam.d you go! If

you have user- and group-level SSH permissions, verify them

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

10

both in the configuration and by attempting to log in as

unauthorized users. This practical testing often will expose

issues you didn’t anticipate, and this is the basic idea of

having a quality assurance program.

There are a lot of items to check, and going through

how to verify every possible configuration item would take

more space than I have here. As I mentioned previously,

this all depends completely on your environment and your

organization’s policies. Verifying large numbers of items on

large numbers of servers can become quite cumbersome,

so developing an automated and audit management

methodology along with the appropriate usage of tools

becomes key. Tools like HelpSystems Policy Minder come to

mind as good options to investigate.

Assume Security Has Been Compromised
After an exhaustive review of the configuration files and

running configurations, let’s move on to phase two: assume

all layers of defense have been circumvented. This phase

breaks down into the following sections: the network, the

Verifying large numbers of items on large
numbers of servers can become quite
cumbersome, so developing an automated
and audit management methodology along with
the appropriate usage of tools becomes key.

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

11

filesystem and the kernel.

A few tools exist that look over all three areas for signs

of badness, and you should make use of them. If you’ve

done some basic server hardening (as you should), you

likely have some scanning tools installed and performing

at least daily checks. If not, you really should make that

happen. Even if you do, it’s also likely that you have

some whitelists set up in your configurations to prevent

daily false positives on outbound ports or files that seem

suspicious to the scanner. For a self-audit, since you’re

abandoning all preconceptions and assuming you’ve been

compromised, you’ll run all checks without the whitelists

and investigate every warning, disregarding your instinct

to assume anything is a false positive and instead assume

that each one means the system is compromised—until

and unless you can prove otherwise.

Tools to Scan for Malware
I suggest you use at least the following tools for a self-

audit to scan for malware: rkhunter, chkrootkit, LMD

(Linux malware detect) and lynis. They do perform some

overlapping checks, but they are different enough that

there is value in running them all. If you are scripting these

either through your custom management system or through

a tool like Policy Minder, I suggest you have them e-mail

you the results, which means your systems need to be

configured to send e-mail. For the purposes of this ebook, I

assume you are going to investigate all results on the server

in question and e-mail those results to root@localhost or

view them on-screen or in logfiles.

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

12

It is important to note that these tools run file integrity

checkers, which means that they check many files for

unexpected changes. So, if a monitored file changes, you

have to inform the tool immediately, or you will get false

positives. From the time the server is deployed until it is

retired, you must be fastidious about this, or you open

yourself to the prospect of missing a malware infection.

When you make changes or when you install software, you

should run these checks beforehand, then these integrity

checkers must be updated immediately after the change.

rkhunter: First, let’s look at rkhunter. Immediately on

server deploy, run it with these options:

rkhunter --propupd --update --versioncheck

This makes sure you are on the latest malware signatures

and version of the software, and it establishes a baseline

configuration to check against. It will produce warnings

when files change between runs of --propupd. As stated,

the --propupd option must be executed every time

software is installed or system configurations are updated.

If you never have run any of these scanners before, the

value is reduced but not eliminated. Much Linux malware

still can be detected. If you have whitelisted any scripts,

ports and files in rkhunter, create a new configuration file

that lacks those configuration options, and run rkhunter

with these options:

rkhunter -c --vl --configfile /path/to/newconfig

 ➥-l /path/to/logfile

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

13

This will perform all the checks, log verbosely, use

your custom config and log to a file of your choosing. If

you are running these sequentially with a tool for later

inspection, you can have these e-mailed via the config

file. The key here is to investigate every anomaly that you

might otherwise be tempted to skip—for instance, if you

get a message like the following:

[22:09:02] Warning: Hidden directory found:

 ➥’/etc/.java: directory ‘

Just because you think you remember something about

this, don’t assume that it’s normal and a false positive!

Investigate thoroughly. Start by performing an Internet

search on the message. In my case, when I investigated, I

found that this is a normal warning on Ubuntu when you

run Sun-Oracle’s Java Virtual Machine, but it’s something

that is handled differently on other distributions like RHEL,

so rkhunter doesn’t expect hidden files under /dev/, and

you get a warning.

chkrootkit: Next, run chkrootkit. chkrootkit is generally

more of a standalone tool run without a configuration

file that checks for signs of infection. I usually capture all

chkrootkit is generally more of a standalone
tool run without a configuration file that
checks for signs of infection.

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

14

output to a log file like this:

chkrootkit &> file.log

On a server I run at home, I got two alarming results:

Searching for Adore Worm...

/usr/lib/plexmediaserver/start.sh

Searching for Suckit rootkit... Warning:

/sbin/init INFECTED

Again, I am going to assume that these are real infections

unless I can definitively prove otherwise. Upon inspection

and after a lot of research, I eventually found that the

signature of the Adore Worm is start.sh somewhere in

the path under /usr/lib. Evidently, plexmediaserver (which

I use to send music to various devices around the house)

just happens to match the signature. So, I inspected the

plex script against the version installed by the package and

found it unchanged.

For the Suckit rootkit, I eventually found this bug in the

chkrootkit package for Ubuntu (the distribution of my home

server): https://bugs.launchpad.net/cyborg/+bug/454566.

This verifies a false positive and points me to a URL that

tells me how to see if I actually am infected with the Suckit

rootkit. I follow the link and verify that I am not.

LMD: Next, I recommend running LMD. LMD is a less

common tool and not generally in distribution repositories,

so let’s look at how to install it. LMD can use the clamav

https://bugs.launchpad.net/cyborg/+bug/454566

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

15

detection engine with LMD’s signatures, which gives about

4x better performance, so even though it isn’t necessary,

you might first install clamav from your distribution’s

repositories (either as root or with sudo):

apt-get install clamav

Then, download and install the LMD tarball:

wget http://www.rfxn.com/downloads/maldetect-current.tar.gz

tar -xvf maldetect-current.tar.gz ; cd maldetect

./install.sh

This puts everything in /usr/local/maldetect, so issue:

cd /usr/local/maldetect

LMD needs a basic configuration file:

echo ‘’’email_alert=1

email_addr=root@localhost

email_subj=”Malware alerts for $HOSTNAME - $(date +%Y-%m-%d)”

quar_hits=0

quar_clean=0

quar_susp=0

clam_av=1’’’ >> conf.maldet

Here are the options:

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

16

n email_alert=1 — get e-mail alerts, which can be sent

outside the local system.

n email_subj and email_addr — self-explanatory.

n quar_hits — set default quarantine action: 0 is alert

only, 1 is quarantine.

n quar_clean — set whether you want to clean string-

based malware injections.

n quar_susp — for users with hits, 1 is disable the account.

n clamav_scan=1 — detect the presence of the ClamAV

binary and use as engine.

To run it, use:

maldet --scan-all /path

You probably don’t want to scan network filesystems

unless they are very fast to avoid this taking an

extraordinarily long time, so you may need to script

a progression of paths for it. But, you’l l get results

l ike this:

sudo /usr/local/maldetect/maldet -u -d

Linux Malware Detect v1.5

 (C) 2002-2015, R-<remark role=”fix-me”> Networks

 ➥<proj@rfxn.com>

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

17

 (C) 2015, Ryan MacDonald <ryan@rfxn.com>

This program may be freely redistributed under the terms

of the GNU GPL v2

maldet(28656): {sigup} performing signature update check...

maldet(28656): {sigup} local signature set is version

 ➥2015121610247

maldet(28656): {sigup} latest signature set already installed

sudo maldet --scan-all /home

Linux Malware Detect v1.5

 (C) 2002-2015, R-<remark role=”fix-me”> Networks

 ➥<proj@rfxn.com>

 (C) 2015, Ryan MacDonald <ryan@rfxn.com>

This program may be freely redistributed under the terms

of the GNU GPL v2

maldet(27592): {scan} signatures loaded: 10822

 ➥(8908 MD5 / 1914 HEX / 0 USER)

maldet(27592): {scan} building file list for /home,

 ➥this might take a while...

maldet(27592): {scan} setting nice scheduler priorities for

 ➥all operations: cpunice 19 , ionice 6

maldet(27592): {scan} file list completed in 77s, found

 ➥143698 files...

maldet(27592): {scan} found clamav binary at

 ➥/usr/bin/clamscan, using clamav scanner engine...

maldet(27592): {scan} scan of /home (143698 files)

 ➥in progress...

maldet(27592): {scan} processing scan results for hits:

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

18

 ➥3 hits 0 cleaned

maldet(27592): {scan} scan completed on /home: files

 ➥143698, malware hits 3, cleaned hits 0, time 539s

maldet(27592): {scan} scan report saved, to view run:

 ➥maldet --report 160111-2203.27592

maldet(27592): {scan} quarantine is disabled! set

 ➥quarantine_hits=1 in conf.maldet or to quarantine

 ➥results run: maldet -q 160111-2203.27592

In my case, it found three hits!

Looking further, I find:

/usr/local/maldetect/maldet --report

HOST: greg-Linuxbox

SCAN ID: 160111-2203.27592

STARTED: Jan 11 2016 22:03:43 -0500

COMPLETED: Jan 11 2016 22:12:42 -0500

ELAPSED: 539s [find: 77s]

PATH: /home

TOTAL FILES: 143698

TOTAL HITS: 3

TOTAL CLEANED: 0

WARNING: Automatic quarantine is currently disabled,

detected threats are still accessible to users!

To enable, set quarantine_hits=1 and/or to quarantine

hits from this scan run:

/usr/local/sbin/maldet -q 160111-2203.27592

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

19

FILE HIT LIST:

{HEX}gzbase64.inject.unclassed.15 :

/home/user/maldetect-1.5/files/clean/gzbase64.inject.unclassed

{HEX}php.exe.globals.399 : /home/user/Downloads/

➥DVWA-1.9.zip

{HEX}gzbase64.inject.unclassed.15 : /home/user/

➥maldetect-current.tar.gz

===

Linux Malware Detect v1.5 < proj@rfxn.com >

It found its own installation directory and the

compressed tar file, because both contain the signatures

that it is searching for, which makes sense. It also finds

Damn Vulnerable Web Application, an intentionally

malware-riddled test setup for pen testers, which I have

downloaded—nothing here I didn’t expect.

lynis: The final stop among the scanners is lynis, a very

capable open-source auditing tool. Not only will it scan

for problems, it also will make suggestions for how you

can improve your system security—very valuable feedback

indeed! You will get a lot of output like this:

lynis -Q

... snip

[+] Accounting

 - Checking accounting information... [NOT FOUND]

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

20

 - Checking sysstat accounting data [ENABLED]

 - Checking auditd [ENABLED]

 - Checking audit rules [SUGGESTION]

 - Checking audit configuration file [OK]

 - Checking auditd log file [FOUND]

[+] Time and Synchronization

 - Checking running NTP daemon (ntpd)... [NOT FOUND]

 - Checking running NTP daemon (timed)... [NOT FOUND]

 - Checking running NTP daemon (dntpd)... [NOT FOUND]

 - Checking NTP client in crontab file

 ➥(/etc/anacrontab)... [NOT FOUND]

 - Checking NTP client in crontab file

 ➥(/etc/crontab)... [NOT FOUND]

 - Checking NTP client in cron.d files... [NOT FOUND]

 - Checking event based ntpdate (if-up)... [FOUND]

 - Checking for a running NTP daemon or client... [OK]

[+] Cryptography

 - Checking SSL certificate expiration... [WARNING]

... snip

At the end, you also get a summary and suggestions,

like so:

-[Lynis 1.3.9 Results]-

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

21

 Tests performed: 167

 Warnings:

 - Found mail_name in SMTP banner, and/or mail_name contains

 ‘Postfix’ [test:MAIL-8818]

 - Found SSL certificate expiration

(/etc/ssl/certs/ca-certificates.crt) [test:CRYP-7902]

 Suggestions:

 - update to the latest stable release.

 - Install a PAM module for password strength testing

 like pam_cracklib or pam_passwdqc [test:AUTH-9262]

 - Configure password aging limits to enforce password

 changing on a regular basis [test:AUTH-9286]

 - Default umask in /etc/login.defs could be more strict

 like 027 [test:AUTH-9328]

 - Default umask in /etc/init.d/rc could be more strict

 like 027 [test:AUTH-9328]

 - To decrease the impact of a full /tmp file system,

 place /tmp on a separated partition [test:FILE-6310]

 - Purge old/removed packages (30 found) with aptitude

 purge or dpkg --purge command. This will cleanup old

 configuration files, cron jobs and startup scripts.

 [test:PKGS-7346]

 - Check what deleted files are still in use and why.

 [test:LOGG-2190]

 - Add a legal banner to /etc/issue, to warn unauthorized

 users [test:BANN-7126]

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

22

 - Add legal banner to /etc/issue.net, to warn unauthorized

 users [test:BANN-7130]

 - Renew SSL expired certificates. [test:CRYP-7902]

 - One or more sysctl values differ from the scan profile

 and could be tweaked [test:KRNL-6000]

 - Harden the system by removing unneeded compilers. This can

 decrease the chance of customized trojans, backdoors

 and rootkits to be compiled and installed [test:HRDN-7220]

 - Harden compilers and restrict access to world [test:HRDN-7222]

Evaluate and change policy implementation accordingly.

Checking for Stealth Ports
More can be done depending on the server type—things like

running Nessus against running applications—but let’s move

along now to a very valuable secret that I’ll share with you. On

a number of occasions when nothing else has returned results,

I’ve found that a server was compromised by directly checking

for ports that are opened in stealth mode. This often will turn

up hidden malware phoning home that nothing else finds. To

check for these stealth ports, first find out what ports are not

hidden from you and what processes have them open.

On a number of occasions when nothing else
has returned results, I’ve found that a server
was compromised by directly checking for
ports that are opened in stealth mode.

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

23

lsof: You may not have lsof installed by default, but I

suggest installing it, as it’s an invaluable tool:

lsof -ni

Once you know what ports should be available to you,

you can run nmap on the local system and see if any

unexpected ports are listening for control signaling, which

means you probably are pwned and part of a botnet.

Install nmap via apt-get install nmap or similar, and

then point it at your interfaces, one at a time, to scan every

TCP and UDP port (run as root or via sudo):

nmap -n -PN -sT -sU -p- 192.168.1.x #internal network

nmap -n -PN -sT -sU -p- 24.24.7.x #external network

If anything responds that doesn’t show up in lsof or

netstat -plunt, you need to look very very closely, as you

probably have a rootkit in action.

The last thing to do to make sure you don’t have a rootkit

that is waiting on a packet “port knock” sequence to open

up is actually to attempt to bind to ports and look for

“in-use” errors. In the past, I’ve always run a quick script to

brute-force the entire TCP space of the following variety:

for i in [1..65535]

 do

 nc -l -p $i

 done

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

24

Then, I manually check against lsof and netstat output.

unhide: Thankfully, most distributions now are shipping

with a very handy utility called unhide that does all this

for you automatically. After the installing via apt-get

install unhide or similar, you simply can run:

unhide-tcp

Unhide-tcp 20121229

Copyright C 2012 Yago Jesus & Patrick Gouin

License GPLv3+ : GNU GPL version 3 or later

http://www.unhide-forensics.info

Used options:

[*]Starting TCP checking

[*]Starting UDP checking

If you get no warnings about hidden ports, you are

probably good.

unhide also comes with a utility to perform a variety of

checks including brute-forcing the entire PID space (which

can take a long time but is pretty reliable) that allows you to

audit your running kernel to see if you have processes hidden

from your normal commands, like ps. You can run it like this:

unhide brute

Unhide 20121229

Copyright C 2012 Yago Jesus & Patrick Gouin

License GPLv3+ : GNU GPL version 3 or later

http://www.unhide-forensics.info

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

25

NOTE : This version of unhide is for systems using Linux >= 2.6

Used options:

[*]Starting scanning using brute force against PIDS with fork()

Found HIDDEN PID: 28353

Cmdline: “<none>”

Executable: “<no link>”

“<none> ... maybe a transitory process”

[*]Starting scanning using brute force against PIDS with

pthread functions

If, as I did above, you get a result, you should run it

again to make sure you didn’t just catch a process coming

or going (as I did here). If the results come up clean a

second or third time, you probably aren’t compromised.

Rootkits
This brings me to a very important point and another

of those insomnia-inducing paradoxes. If your kernel is

rooted with malware, you can’t trust anything that comes

out of it, and all the tests you’ve done depend on the

accuracy of what comes from the kernel to be reliable. A

sufficiently sophisticated polymorphic polyphasic rootkit

still could potentially hide from all of these measures. It is

unlikely, but possible.

At the end of the day, if you have any doubt

whatsoever, you should use a bootable media and scan

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

26

the system again running from a “known good” kernel.

A number of forensically oriented live CD/DVD/USB-type

systems are available, notably CAINE (Computer Aided

Investigative Environment) and a new up-and-comer in

release-candidate stage called DEFT (Digital Evidence and

Forensics Toolkit).

If, after performing this process again using verified

safe bootable media, you still don’t have confidence

in the system’s integrity, destroying and redeploying

from scratch without reusing any data, files or

configurations that ever touched the suspect system

may be your only recourse.

This is where a strong devops orientation in your

environment can save you. If you have a strong

management/deployment automation process,

suspecting your server of being rooted doesn’t have to

be the worst thing in the world, as it can be trivial to

replace. If you are sure your server is rooted, depending

on your legal jurisdiction and company policy, you

may be required to preserve the affected server for

investigation, so be sure you know your responsibil ity in

this regard before destroying it.

At the end of the day, if you have any doubt
whatsoever, you should use a bootable
media and scan the system again running
from a “known good” kernel.

GEEK GUIDE  SELF-AUDIT: CHECKING ASSUMPTIONS AT THE DOOR

27

Conclusion
If you manage an environment of more than a few

servers, you will be well served to develop an auditing

regime using appropriate tools to allow you to keep

auditing your servers regularly without taking away from

the time you need to meet the other requirements of your

sysadmin/devops/security engineer job, and I recommend

looking into multiplatform tools like HelpSystems Policy

Minder, which can manage your systems and schedule

your audit scripts.

So to recap quickly, self-auditing your servers is an

important practice to verify that you are following your

own policies and that your security measures have not

been overcome. You need to verify experimentally that

your policies are implemented correctly in the system’s

configuration and that your system is still under your

exclusive control. This requires an in-depth knowledge

of your own technology stack—from the policies

themselves to the reasons for those policies to the actual

implementation of each and every policy in configuration,

and a possibly tedious comparison and testing of

the intention of those policies to the actual working

configuration of the systems themselves. This is where

the rubber of theoretical security meets the road of reality

and where the good operations organization is separated

from the excellent. Apply these concepts that allow you to

deduce principles, and by the diligent application of those

principles, produce results—the results culminating in your

self-audit and giving you a reasonable confidence that

your environment is secure.n

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Self-Audit: Checking Assumptions at the Door
	Introduction
	Two Steps Necessary for Security
	Verify Configurations
	Assume Security Has Been Compromised
	Tools to Scan for Malware
	rkhunter
	chkrootkit
	LMD
	lynis

	Checking for Stealth Ports
	lsof
	unhide

	Rootkits
	Conclusion

