

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

2

About the Sponsor �� 4

Introduction �� 5

What Is Infrastructure Sprawl? ��������������������������������������� 6

Process ��� 8

	 Repeatability	���9

	 Scalability	���11

	 Quality	���13

Automation �� 14

Infrastructure as Code �� 16

Ownership and Delegation ��� 19

Conclusion �� 20

Resources ��� 21

Table of Contents

BILL CHILDERS is the Senior Development Operations Manager for MobileIron, a mobile
device management company. Bill has worked in IT and DevOps since before the DevOps
term was coined, and he has performed a variety of roles in software organizations:
systems administrator, technical support engineer, lab manager, IT Manager and
Director of Operations. Bill co-authored Ubuntu Hacks (O’Reilly and Associates, 2006),
and he has been Virtual Editor of Linux Journal since 2009. He’s spoken at conferences,
such as Penguicon and LinuxWorld, and is enthusiastic about DevOps, IT and open source.
He blogs at http://wildbill.nulldevice.net and can be found on Twitter at @wildbill.

http://wildbill.nulldevice.net

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2015 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

4

About the Sponsor
Puppet Labs

Puppet Labs, Inc. is the leader in IT automation. Puppet Labs

software provides system administrators the operational

agility, efficiency and insight they need to proactively manage

dynamic infrastructure, scaling from tens of servers to

thousands, both on premise and in the cloud. Thousands of

the world’s leading organizations use Puppet Labs software

to configure and manage their IT infrastructure, including

Bank of America, Cisco, NYSE, Salesforce and WebEx. To learn

more, please visit http://puppetlabs.com.

https://puppetlabs.com/?ls=content-syndication&ccn=GeekGuide-2015&cid=701G0000000F68e

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

5

Introduction
Do you have an environment in your company that

seems to be a time sink and management headache for

you? Does this environment have many machines, each

running a sl ightly different patch level or completely

different operating system? Do you find yourself and

your team stuck in a quagmire of varying point releases,

RPM conflicts and dependency hell? Your environment

may be suffering from infrastructure sprawl, but relief

Combating
Infrastructure
Sprawl
 BILL CHILDERS

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

6

is on the way. This guide wil l help you understand

infrastructure sprawl, how it occurs and steps you can

follow to eliminate (and ultimately prevent) it.

What Is Infrastructure Sprawl?
Merriam-Webster Dictionary gives one of the definitions

of “sprawl” as the following: “a group of things (such

as buildings) that cover an area in an uneven and ugly

way.” A common use of this word is in the phrase

“urban sprawl,” where a city’s expansion seems to grow

unplanned and unbounded (a great example of this is the

Los Angeles City Basin).

FIGURE 1. Don’t let this become your data center.

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

7

Applied to server infrastructure, the word “sprawl”

denotes an operational nightmare for the folks who are

tasked with the responsibility of keeping those systems

available and healthy. Sprawl happens organically, and in an

unplanned, disorganized environment, it can become the

natural state of the environment.

At one point in my career, I inherited an environment

that suffered from a bad case of infrastructure sprawl.

This environment spread across several hundred servers

from three different hardware vendors, two different

major versions of CentOS Linux and seven different minor

versions. There was no configuration management scheme,

no regular patching schedule, and all the servers had

unique and different configurations as they had all been

hand built by different people at different times, with no

documentation or process. The simplest tasks became a

very large pain point over time, due to the lack of ongoing

attention and organization.

As an example, I needed to install the net-snmp package

to each of the machines so I could collect monitoring

data from each system using SNMP (Simple Network

Management Protocol). Typically, you just install the net-

snmp package with a simple yum install net-snmp, and

then configure the package via a configuration file and

start the service. In this case though, some machines were

far out of date on updates, and due to a semi-broken yum

configuration, net-snmp refused to install on approximately

half of the servers. These machines were in such poor

shape, it cost a lot of time and effort, and completely

slowed down our team.

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

8

Through the use of process, automation and

infrastructure-as-code concepts — and by using

configuration management tools — my team and I were

able to bring order and sanity to this environment. Users

were pleased because the environment’s availability

improved, and my team was happier because the nightmare

had been tamed through our hard work.

Now that you know what infrastructure sprawl is and

have heard a story about it, let’s talk about tools and

techniques you can use to fight it. The best way to fight

sprawl is to keep it from occurring in the first place. That

environment I mentioned above was not particularly large or

complex, but it wound up being extremely time consuming

and difficult to keep going, simply because of a lack of

planning and appropriate processes and tools. If you stay

on top of your infrastructure and use tools and processes

appropriately, you limit the opportunity for sprawl to gain a

foothold in your environment.

Process
Process has been defined as “a systematic series of actions

directed to some end.” I prefer to think of process with

a DevOps or system administrator’s mindset: “Process

is nothing more than a script or program that’s run in

meatspace rather than in software.” Process never should

be feared or fought against, as it’s a tool in your toolbox

that will make ongoing maintenance of a given environment

easier, more predictable and more methodical.

As you start to design your process, take care that you

are thinking of your business policies as well. Your process

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

9

is probably not going to last long if it bypasses corporate

security policies or provides a way for a developer to launch

an unlimited amount of cloud servers. Any process you create

should act as a blueprint for how you want your operations

to run, but it also should act as a guide for what not to

do. This way you can make sure that when you build your

automation on top of your process, you are thinking about

what you want to happen as well as what you want to avoid.

Repeatability: When you implement process into your

environment, you will bring consistency and repeatability to

your operations. I’ve met engineers who fear process and

fight it every step of the way. This is generally due to a lack

of understanding and a fear that the process will wind up

being inefficient or inflexible. Your process never should

get in the way of getting things done — it should be your

roadmap, illuminating the path toward your end goal. If the

process becomes inefficient, bloated or for some reason stops

being what your team needs, the process needs to be revised

or completely reworked. You can avoid this to some extent

by doing a lot of due diligence and planning before you

implement your process. If you do all the work up front, you

can ensure that your process is something your organization

can live with in the long term. When planning your process,

When you implement process into your
environment, you will bring consistency and
repeatability to your operations.

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

10

always do so with an eye toward embedding quality into

it — and doing quality assurance checks — throughout the

process, so errors are caught early, and you “fail fast.”

Once you get a particular task or workflow to be

repeatable — so that it’s on “autopilot” so to speak — that

task tends to take much less time to complete. The faster

you and your team can move work from the “to-do” pile

to the “done” pile, the more time you’ll have to work on

more awesome things that can help the business move

faster, as well as showcase your team’s abilities to the

larger organization. The key here is to get the mundane,

repeatable tasks out of the way so that you and your team

can concentrate on the really interesting (and fun) work

that moves the business forward.

Recently, my team completed a company-wide dashboard

display that rotates through various statistics around what

the business is doing. That dashboard has since been picked

up by other business units and is being displayed on TVs

throughout the company — and it resulted in a shout-out

for us at the company all-hands meeting. We were able to

take that on because we had the time to do it, thanks in

large part to our process, which makes sure that everyday

tasks are repeatable.

As an example of what can happen when you don’t

follow process, let me refer back to the environment I

mentioned earlier. Once we got the environment under

control and had it running smoothly for a little while,

a decision was made to hand off that environment to a

different team. We performed a handoff that included some

training and documentation, and we made sure that the

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

11

team taking stewardship of this environment knew how

the configuration management system worked and how

to maintain it going forward. However, the new owners of

the environment decided that the overhead of maintaining

the configuration management system “wasn’t worth their

time,” so they simply turned it all off. Not long after that,

unplanned configuration changes began to happen, and

each server slowly started varying from its neighbor servers

in small but significant ways. A year later, the environment

ended up in much the same state as when I first inherited

it — sprawl had taken a foothold and no one did anything

to stop it. As a result, my team and I got to straighten out

that environment a second time. The lesson learned here is

once you establish a process, stick to it. It’s okay to change

the process as your environment changes and grows — just

make sure you continue to follow it. Having nothing in

place is a sure-fire recipe for entropy (and sprawl) to take

hold and undo all of your hard work.

Scalability: Having a solid process is a key part of

being able to scale how many servers you can manage

effectively. Your process is what will allow you to start

thinking of servers as nearly disposable objects, rather

than custom-crafted computers. Some people say you

Your process is what will allow you to start
thinking of servers as nearly disposable
objects, rather than custom-crafted computers.

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

12

should think of servers as “cattle, not pets.” What is

meant by this is that instead of thinking of a server

as a single, unique entity with a name that your team

manages, it should be a member of a fleet of identical

machines where everything about those machines is the

same. The analogy boils down to this: Pets are loved.

Pets have names. Pets are unique. When pets get sick,

you nurse them back to health. Cattle are given numbers

and are considered identical to other cattle. They are not

unique. When a cow gets sick, it gets replaced.

This analogy really holds true if your operations are

in the public cloud. Servers in the cloud are capable of

being decommissioned by the cloud provider at any time.

A particular cloud server may wind up on a flaky piece of

hardware, or it may be on an over-provisioned physical

host. By thinking of these servers as part of a uniform,

identical fleet of machines — or cattle — you then can

start making intelligent decisions as to whether to replace

machines that aren’t performing well or auto-scale to add

more capacity. Having a solid process in place will allow

you to build the scalability the business needs.

Architecting your process for scalabil ity is important

too. Even if you don’t need scalabil ity today, it’s worth

thinking about and making sure you’ve planned for

it while you’re putting your process and workflow

together. By thinking about it up front, you’l l ensure

that you won’t have to go back and try to hack it in

later — or worse, totally scrap your process and begin

building a new one from scratch right when you need

it the most.

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

13

Quality: Your process needs to achieve two things in

the end. It should achieve your desired outcome, with the

highest quality possible. Your process should have quality

assurance tests along the way, so that anything that

happens to go wrong will be caught as early as possible.

One vital tool that can be used as part of your process is

code review. When you deploy a configuration management

tool, the actual configuration management code is just like

any other software deliverable. As such, you can do a code

review process on it, and you should. Having another person

(or group of people) check work before it is committed and

pushed into production is an easy and inexpensive step to

implement in any workflow, and it can help ensure that the

configuration management code is free of errors and does

what you want it to do.

An equally vital concept to engineer into your process

is test driven development (TDD). If you can write a

small test for your configuration management code first

— before you write the configuration management code

itself — then actually write the code and put it through

that test, you’l l have a way to check the code as it

continues to evolve and grow.

Using the same example environment from the scenarios

I mentioned earlier, one of the best things we implemented

as part of our process was a code review step. Our source

code management system (Atlassian’s Stash product) allows

for in-line code reviews and makes collaborating extremely

easy. Having another person take a look at something before

it goes live has kept us from rolling out inefficient (or flat-out

incorrect) infrastructure code more than a couple of times.

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

14

Automation
Once you have a process sorted out and running

successfully, you can start to think about how to automate

steps of that process — or ideally, even automate the whole

process, end to end.

Automation doesn’t mean that you can eliminate portions

of your team or that you’re out of a job. Automation, done

reliably, is an incredibly important part of increasing your

team’s capacity to get stuff done. Again, if you have a task

that’s being done manually (but this time, your process

describes how that task is being done), you seriously should

consider automating that task. If you do a task once, that’s

either a fluke or the first time you’ll ever do it. If you’re

doing it a second time, you should be thinking about how

you’ll automate it (not if, but how), because by the third

time you have to do that task, you already should have

turned it into something that’s automated that you or your

staff no longer needs to worry about.

Automation doesn’t have to be a super-complicated set

of programs and triggers. Automating something can be

as simple as a one-line cron job that’s then controlled by

your configuration management system and pushed to all

the servers in your environment that need it. Don’t forget

about other types of hooks that some software packages

Automation doesn’t have to be a super-
complicated set of programs and triggers.

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

15

have either. For example, it’s possible to trigger Jenkins jobs

by hitting a URL and presenting a token, which means you

could have a script reach out to your continuous integration

server and automatically build or deploy something with

one line of code.

Once you automate a task, it can fade into the background

as part of the machinery, allowing your team to move on to

other things — like learning new technologies and building

skills in other areas — and this makes your team even more

valuable to the larger organization. This upleveling over time

is a huge effectiveness multiplier in the long term.

Automation can seem like a daunting task if you are

managing an environment that has none. The best bit of

advice here is to start small. Identify one irritating pain point

that’s very visible but relatively small in scope. Automate

that one pain point so that it simply disappears, and people

rapidly will buy in to the concept of further automation.

Configuration management systems can be very important

tools for automating your team’s work. These tools provide

ways to manage a fleet of machines and not only automate

the provisioning of those machines, but also allow for

ongoing maintenance of those machines in an automated

fashion as they proceed through their life cycle.

Referring back to my anecdotal environment example:

When I inherited that messy environment, the second

thing I did (after establishing an easy-to-follow consistent

process) was to implement Puppet. We started off small

by automating just the configuration of the NTP time sync

dæmon. By doing this, we found that approximately half

the deployment was referring to the corporate NTP server,

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

16

and the other half was referring to the publicly available

NTP servers on the Internet. This slight difference in

time sync was enough to cause issues with a couple

time-sensitive applications. Once we got NTP squared

away, we moved on to automating and controlling our

SSH configuration, and then we started getting more

advanced with Apache configurations.

Automation doesn’t have to be a big switch that you

switch on all of a sudden. It can be rolled out in a small

fashion at first, and gradually added to as time goes

on and you and your team gain more confidence with

automation tools and techniques.

Infrastructure as Code
“Infrastructure as code” is a DevOps term that’s been

used quite a bit in the DevOps community. It sounds fairly

complex, but what infrastructure as code means is that the

system configurations, automation and other things needed

to run your environment are treated exactly like source code.

This can be a little baffling if you and your team never

have worked with a source code management (SCM)

system like Git, Perforce or SVN. At its simplest, an SCM

will give you a centralized place to put your team’s code.

All scripts, configuration management code and almost

anything else that is required to deploy servers, software

or code should live in the SCM. (A good exception to this

is anything requiring security credentials. Because an SCM

is by nature a place for sharing, you probably don’t want

to put security credentials in your SCM.)

Once you start using an SCM in your process and

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

17

treating your infrastructure as code, you can do a lot of

interesting things with it. As an example, you can branch

off your code and make modifications to the branch

without affecting the mainline (or released versions

that may be running). This can allow a team member to

experiment in a sandbox with a different way of doing

something, or it can enable your team to create a new

type of test environment quickly and on the fly. Those

branches can have a life cycle of their own, where they

can branch off, live for a bit and die — or they can be

merged back into the mainline, and those changes can

live on in future versions of your infrastructure code.

FIGURE 2. Example Git Workflow

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

18

A great advantage of treating infrastructure as code

is that you no longer need to maintain a separate

document repository (unless you wish). Your team’s

infrastructure code is a l iving, breathing example

of “executable documentation.” So long as the

configuration management tool and its code exist, you

can re-create a given server or sets of servers reliably, as

well as describe how they are built and maintained. This

is excellent for auditing and compliance purposes, as

well as for disaster recovery.

SCM packages have a great feature that is designed

for developer use, but it can be put to advantage in an

operations environment too. Every check-in to the SCM

is logged, and the code can be rolled back to any check-

in, at any point in time. This means that it’s possible to

roll back an environment to a known good state in the

event that a change triggers something going wrong.

If you have a directive to operate in a transparent

fashion within your company, adopting infrastructure

code concepts wil l make it easy to do that. If others

want to collaborate or view how your team operates,

you simply can grant them read-only or read-write

access to the SCM repository that contains your

infrastructure as code. Developers have been doing this

kind of thing for a long time, but only recently has this

concept been used in operations teams.

The example environment I’ve been describing here

was a place where we managed our infrastructure

as code. Because we had a baseline of what the

environment was when we handed it off to the other

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

19

team, we were able to pull that old configuration

out of the SCM, update it for new system updates

and packages, test that configuration on a sample of

machines, and then roll out the new configuration

management code to all the servers in a much shorter

time than it originally took.

Ownership and Delegation
Once you develop a solid process, get your automation

squared away and adopt infrastructure as code, an

interesting thing can happen. You’ll notice clear

ownership of certain areas of your environment by

various team members, thanks to the fact that their

contributions can be identified easily by the SCM. This

wil l become clear to your team’s members as well, and

they’l l start identifying the subject-matter experts in a

given space and asking them for advice and help when

needed, without management’s intervention.

Delegation is an interesting phenomenon you may

encounter as well. Team members wil l begin to

offload work they can’t do effectively to other team

members, creating a load-balancing effect within your

team that may increase efficiency overall. In some cases,

if your SCM repos are open to other teams, it’s possible

to engage other people in the larger organization for

help, without needing to have a lengthy training and

on-boarding process. Once other teams understand

the use of the configuration management and

automation tools you’re using, you’l l be able to

collaborate with them and solve problems more quickly.

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

20

Having a solid, documented process with automation

in place and infrastructure managed as code will make

delegating (or in some cases, flat-out transferring

ownership) easy.

Using the processes and tools l isted throughout this

ebook, my team was able to hand off a documented,

functioning, reliable environment to another team —

and put it back to that known good state without too

much hassle. Those tasks simply would not have been

possible otherwise. Putting the environment back to a

known good, sustainable and supportable configuration

would have been prohibitive without those tools.

Conclusion
Infrastructure sprawl is a very real thing, particularly in

a heterogeneous environment or a cloud deployment.

Sprawl can be l ike a tidal wave too — if you’re not

on top of it, you’re under it, and it’s sweeping away

your abil ity to invent and innovate along with your

team’s valuable time and sanity. Like most things,

there’s no single silver bullet that can be used to combat

sprawl. But if you take the time to understand your

environment and business objectives, you can create

your own custom process and automation that works

for you and your team — and then you can start to

develop your infrastructure as code. Over time, you’l l

start to slay the multi-headed hydra that is infrastructure

sprawl, and your team will reap the benefits in terms

of increased productivity, higher quality and more time

to work on other more strategic projects.n

GEEK GUIDE  COMBATING INFRASTRUCTURE SPRAWL

21

Puppet Blog: https://puppetlabs.com/blog

Puppet Forge: https://forge.puppetlabs.com/

Infrastructure as Code:

https://puppetlabs.com/solutions/infrastructure-as-code

2015 State of DevOps Report:

https://puppetlabs.com/2015-devops-report

Resources

https://puppetlabs.com/blog
https://forge.puppetlabs.com/
https://puppetlabs.com/solutions/infrastructure-as-code
https://puppetlabs.com/2015-devops-report

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Combating Infrastructure Sprawl
	Introduction
	What Is Infrastructure Sprawl?
	Process
	Repeatability
	Scalability
	Quality

	Automation
	Infrastructure as Code
	Ownership and Delegation
	Conclusion
	Resources

