

GEEK GUIDE  Beyond Cron, Part II

2

About the Sponsor �� 4

Part I, Why Should You Upgrade? ���������������������������������� 6

 Times Have Changed—Cron Has Not ���6

 Ease of Use ���8

 Multi-Server ��10

 Dependency Management ��10

 Visualization ���12

 Change Management ��13

 Management by Exception ���14

 Flexibility ��15

Part II, Implementation ��� 17

 Planning ��17

 Budgeting ���19

 Funding ���20

 Installation ��21

 Importing ��23

Conclusion �� 25

Table of Contents

MIKE DIEHL has been using Linux since the days when Slackware came on 14 5.25”
floppy disks and installed kernel version 0.83. He has built and managed several servers.
Mike has written numerous articles for Linux Journal on a broad range of subjects, and
he has a Bachelor’s degree in Mathematics with a minor in Computer Science. He lives
in Blythewood, South Carolina, with his wife and four sons.

GEEK GUIDE  Beyond Cron, Part II

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2016 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE  Beyond Cron, Part II

4

About the Sponsor
Skybot, a Division of HelpSystems

HelpSystems has more than 30 years of experience in providing

enterprise scheduling and automation solutions. Part of the

HelpSystems family of brands, Skybot provides an affordable

solution for cross-platform enterprise job scheduling, allowing

businesses to integrate workflows across servers and critical business

applications and monitor them from a central interface. Skybot

Scheduler incorporates your disparate job schedules to help you build

a unified enterprise schedule based on cross-server dependencies.

For cron users, in particular, Skybot Scheduler allows you to import

existing UNIX crontab data and use the cron expression to schedule

new jobs using familiar cron syntax, helping to connect your UNIX

cron job scheduling to enterprise operations. Skybot Scheduler also

includes reporting, auditing and security capabilities to ensure that

your enterprise job schedule is well documented and reliable.

For more information on Skybot Scheduler,

see http://www.helpsystems.com/skybot.

http://www.helpsystems.com/skybot

GEEK GUIDE  Beyond Cron, Part II

5

One of the best things about the UNIX environment (aside

from being stable and efficient) is the vast array of software

tools available to help you do your job. Traditionally, a UNIX

tool does only one thing, but does that one thing very well.

For example, grep is very easy to use and can search vast

amounts of data quickly. The find tool can find a particular

file or files based on all kinds of criteria. It’s pretty easy to

string these tools together to build even more powerful

Beyond
Cron,
Part II:
 Deploying a Modern
 Scheduling Alternative
 MIKE DIEHL

GEEK GUIDE  Beyond Cron, Part II

6

tools, such as a tool that finds all of the .log files in the

/home directory and searches each one for a particular

entry. This erector-set mentality allows UNIX system

administrators to seem to always have the right tool for

the job. Cron traditionally has been considered such a tool

for job scheduling, but is it enough?

This ebook considers that very question. The first

part builds on my previous Geek Guide, Beyond Cron

(http://geekguide.linuxjournal.com/content/beyond-cron-how-

know-when-youve-outgrown-cron-scheduling-and-what-do-next),

and briefly describes how to know when it might be

time to consider upgrading your job scheduling

infrastructure. The second part presents a planning

and implementation framework.

Part I, Why Should You Upgrade?
Times Have Changed—Cron Has Not: The cron job

scheduling tool has been around since the early days of

UNIX, but oddly enough, it has maintained backward-

compatibility throughout its development. In fact, aside

from a few optimizations and some scheduling prefixes,

cron hasn’t changed much, but the average operating

environment certainly has.

An IT enterprise used to consist of an email server and

a file server or two—maybe a handful of each. Today’s

IT enterprises often add web servers, authentication

servers, database servers (sometimes with many different

databases), calendaring servers, business process

management servers, CMS servers, revision control servers,

backup servers and so on. Those servers may be located at

http://geekguide.linuxjournal.com/content/beyond-cron-how-know-when-youve-outgrown-cron-scheduling-and-what-do-next
http://geekguide.linuxjournal.com/content/beyond-cron-how-know-when-youve-outgrown-cron-scheduling-and-what-do-next
http://geekguide.linuxjournal.com/content/beyond-cron-how-know-when-youve-outgrown-cron-scheduling-and-what-do-next

GEEK GUIDE  Beyond Cron, Part II

7

the office or spread across the globe. Enterprises even have

servers to monitor other servers.

This is where automation comes in. Chances are you’ve

already built many of the software tools you need to

keep things running smoothly and just need to make sure

that they do, in fact, run when they are supposed to run.

Almost all of you probably use cron for this purpose. Cron

doesn’t know how to do server backups, for example, but

it does know how to run the tool that does know how to

run the backups.

So modern system administrators are faced with a two-

fold problem. They have to manage a wider variety of servers

as well as a larger number of servers that may be scattered

all over the place. And, they have to do all of this with a

scheduling tool that hasn’t changed noticeably in 30 years.

But hey, it works, right? Sure, cron does what you ask it

to do. But you can ask cron to do only things that you know

it can do. You don’t ask cron to manage task dependencies,

because you know it can’t. You don’t ask cron to manage

tasks across servers, because you know that it runs only

on a given server. So, you typically use a lot of other tools

So modern system administrators are faced
with a two-fold problem. They have to
manage a wider variety of servers as well
as a larger number of servers that may be
scattered all over the place.

GEEK GUIDE  Beyond Cron, Part II

8

in your toolbox to work around the shortcomings in your

main, if not only, scheduling tool.

For example, you might write a script to check whether

a file actually exists before you attempt to process it. You

might ping a server before you attempt to back it up. There

are lots of other “pre-task” tests that you might perform,

but you get the idea.

The problem comes when one or more of those “pre-task”

checks fails. Should your scheduled job simply fail? Should

it try again? And if so, how do you arrange for that? Sure,

you can write a script to keep checking until all of the

“pre-task” tests return positive results, but most people

don’t. And those who do eventually realize they’re working

too hard. All of these checks simply add complexity to a

process that should “just work”.

The reality is that most sysadmins simply perform backups

with a script like this:

#/bin/bash

/usr/bin/rsync

root@remotehost:/home /backups

There’s not much error checking (actually none) going on,

but most of the time, it just works. And when it doesn’t,

hopefully someone notices. It would be nice if there were a

convenient way of not only knowing that a given job didn’t

run, but also why it didn’t run.

Ease of Use: Nobody ever said cron was difficult to use,

but let’s face it, it’s a point-and-click world now. Editing a

raw ASCII file with an editor like vi or nano is simple, but

GEEK GUIDE  Beyond Cron, Part II

9

it’s also an easy way to make a mistake that often is difficult

to spot. It’s really easy to press the wrong key on your

keyboard. It’s not hard to specify the schedule incorrectly.

Finally, cron doesn’t perform any validation on the actual

script that you request be run. For example, is your script

in /usr/bin/ or /usr/local/bin? Did you remember to check?

The editor surely didn’t check for you. These are all simple,

“only human” mistakes. It would be nice if your tools could

watch your back when you used them.

FIGURE 1. Skybot Enterprise Job Scheduler

GEEK GUIDE  Beyond Cron, Part II

10

Multi-Server: Life would be easy if you had only a handful

of servers to manage, but life usually isn’t that easy. From

a technical point of view, it’s not too difficult to replicate a

crontab file to any given number of servers—it’s just a bit

of scripting. But then it gets worse—not every server needs

the same crontab file. A web server requires different jobs to

run from what a database server would need to run. Some

departments in your organization may have jobs that need

to run on their servers before jobs in other departments can

run. However, all the servers in a given organization may

share a core set of jobs that run across the entire enterprise.

Managing something like this could prove to be painful.

In an ideal world, sysadmins would like to be able to

categorize servers based on things like operating system,

function, department or development stage. Cron won’t let

you do that easily.

Dependency Management: One area of job scheduling

that cron just doesn’t do well is job dependency

management. Some jobs simply can’t run until other jobs

have completed.

A classic example is the database server that requires

scheduled maintenance each night. It doesn’t do any good to

run a backup job on a database server that is still running its

maintenance. In fact, doing so can be devastating. At best,

both jobs conflict with each other and slow each other down,

causing them to run longer than needed. At worst, one job

corrupts the other; the backup job backs up a database that

is only partially repaired, or the repair job attempts to repair

a database that is locked by the backup job.

You might be tempted simply to combine both the repair

GEEK GUIDE  Beyond Cron, Part II

11

and backup functions into the same script. That approach

isn’t as flexible, however, and it simply results in large scripts

that do a lot of different things and no one knows why.

FIGURE 2. Stakeholders need to be able to visualize job
dependencies so they can make more informed change requests.

GEEK GUIDE  Beyond Cron, Part II

12

All too often sysadmins will work around the issue of

job dependencies by using clever, though perhaps sloppy,

job scheduling. For instance, you could schedule the

database maintenance right at 8:00pm. Then, knowing

that the maintenance typically takes only an hour to run,

you could consider running the backup job at 10:00pm,

giving yourself an hour of leeway in case the maintenance

job takes longer than normal (and you might want to

have a sysadmin be on call while they run in case there’s

a problem).

Visualization: So over time, you may have managed

to build up a complex hierarchy of jobs (and the servers

on which they run) that automate much of the day-to-day

operations of your enterprise. And everything probably

works perfectly—until the day someone asks you how

it all works.

Usually, this someone is another system administrator—

maybe a new, or junior, system administrator—or a

manager who wants to understand better how it all “fits

together”. Printing out the crontab files for all of your

servers obviously isn’t going to provide anyone with

the big picture. You might be able to explain when the

various jobs on a given server run, but that doesn’t even

begin to explain why they run when they do. Perhaps

you have some job dependency issues, like I discussed

earlier, and you’ve had to schedule jobs with that in

mind. Essentially, is job A scheduled after job B because

it’s convenient, or is it because job B actually depends

on job A completing first? Just looking at when a job is

scheduled doesn’t capture that distinction.

GEEK GUIDE  Beyond Cron, Part II

13

You also might find yourself in the situation where the

web development team members want to understand

how their stuff works, but they really don’t care how the

DBAs’ stuff works. To put a perverse twist on things,

the DBAs may ask to have their backup jobs scheduled

earlier in the day, but they don’t understand that their

backups can’t run until the accounting department

completes its processing.

Nobody knows how it all works but you, and you don’t

want to spend the rest of your life in meetings trying to

explain it all. A true enterprise job scheduler would make

it easy to visualize the “big picture”.

Change Management: Most system administrators are

extremely busy. Scheduling, documenting and monitoring

jobs often should be delegated to other staff, if possible.

Perhaps the web developers want to be able to manage

the jobs that run on their servers, while the DBAs

certainly don’t want web developers breaking things on

their servers. Maybe the help-desk staff members want to

be able to see what jobs are scheduled and determine if

they ran correctly; maybe they don’t need the ability to

change job schedules. Managers always are curious, and

rightly so, but no one wants them doing anything but

looking at what’s scheduled and where.

The other side of the equation is knowing who

made what changes and when. Change logging and

accountability is important. If something is found to

be broken, it’s often helpful to know exactly what was

changed. Also, if changes are made incorrectly, this might

reveal an opportunity for additional training for the

GEEK GUIDE  Beyond Cron, Part II

14

employee who made the change.

Management by Exception: Most system

administrators are used to checking their email in the

morning and seeing several messages triggered by the

various jobs that ran the night before, and usually,

perusing those messages is part of their morning work

flow. At first, they actually may read every line of every

email message. Over time, they get used to not finding

anything untoward in those messages, so they begin to

skim over them, looking for log entries that “stick out”.

Logs are important, but no one actually has time to read

them all, unless they’re important, but you can’t tell if

they’re important unless you read them—all of them.

FIGURE 3. Instead of being inundated with job status reports,
sysadmins should have a convenient dashboard that summarizes
the current state of the enterprise.

GEEK GUIDE  Beyond Cron, Part II

15

As odd as it sounds, it would be so much easier if

system administrators received only the bad news.

This is where “management by exception” comes into

play. Sysadmins never need to react when things run

as expected, so why even get the message? In this

case, “no news is good news”. When there actually

is a problem, it should be indicated unambiguously by

a clear error indication. A job scheduling tool that is

worthy of running an entire enterprise should be smart

enough to tell administrators only when something goes

wrong instead of drowning them in a flood of messages.

Flexibility: The cron scheduling system is pretty

good at scheduling simple recurring jobs. It’s easy

to schedule a job to run at midnight every night.

Scheduling a job to run every 15 minutes, but only

during the business week is something you wouldn’t

spend more than ten minutes doing. Let’s face it,

cron is good at what it does and is easy to use, but

its scheduling capabil it ies are l imited. For example,

sometimes you actually want to run a job on the very

last day of the month, instead of merely running it

very early on the first day of the month.

As odd as it sounds, it would be so much
easier if system administrators received only
the bad news. This is where “management by
exception” comes into play.

GEEK GUIDE  Beyond Cron, Part II

16

Enterprise job scheduling isn’t just about making sure

jobs run at particular times. Sometimes you want a job to

run based on an external trigger. For example, a network

intrusion detection system might create a log file when

it detects suspicious activity. Although many network

intrusion detection systems can run scripts in response to

various triggers, it might make sense to consolidate that

type of job under the control of the scheduling system.

On the other hand, you might want a job to run when

a particular host is no longer reachable via ICMP. Once

again, your network management tools may be able

to perform the same function, but an enterprise job

scheduler may be able to do it in a more flexible fashion.

This is just a matter of being able to use the tool that

does the job best, and it seems reasonable to expect that

FIGURE 4. An enterprise-at-a-glance view, complete with job
descriptions, helps to show how everything fits together.

GEEK GUIDE  Beyond Cron, Part II

17

a job scheduling tool can manage various jobs no matter

what triggered them to run.

Now that I’ve discussed a few compelling reasons

why you might consider migrating to an enterprise-class

scheduling system, let’s take a look at how to do it.

Part II, Implementation
Planning: If your organization is growing enough to need

an enterprise scheduling system, it’s also growing enough

that such a migration isn’t going to be trivial. You’re going

to need to do some planning in advance.

Having a detailed inventory of all of your servers is a great

way to start. You’ll want to enumerate carefully each job that

runs on each server, and you can save some time by making

a few blanket statements like “all servers need to be backed

up”. You also may discover you have servers that aren’t

running jobs they should be, such as log analysis and rotation.

You also could approach this task from the other direction

and make a careful list of all of the processes that run and

then identify the server, or servers, on which they run. The

benefit of this approach is that various departments in

your enterprise can make their own separate lists. The IT

department would, of course, have to perform some quality

assurance checks on each list. For example, the accounting

department may neglect to put backups on its list because it

might not consider backups to be “accounting”.

No matter how you approach it, you still should end up

at the same destination—with a solid list of everything your

servers do. You even may find a few discrepancies. Consider

that a bonus.

GEEK GUIDE  Beyond Cron, Part II

18

Now comes the tricky part. You need to take a close look

at each of the tasks you’ve identified, and for each task, ask

yourself these questions:

n On which servers should this task run? Is there a common

category of servers that need to run this, such as web

servers, database servers and file servers?

n Are there any prerequisites that need to be in place

before this job can run? What are they?

n Have tests for any prerequisites been embedded in

the job?

n Could these tests be factored out and treated like any

other tool?

n Is there any way this job could fail?

n Are you checking to see that the job didn’t fail?

n What do you want to do if it does fail? Try again?

Send an email?

n Who needs to know if this job fails?

n Does anyone particularly need to know that it

ran successfully?

n Does this job block any other jobs from running?

GEEK GUIDE  Beyond Cron, Part II

19

n Do any other jobs require this one to complete before

they can start?

n Who should be able to manage this job? For instance,

web developers shouldn’t be managing database

backups, but DBAs might want to be able to schedule

database maintenance.

This is also where you might start thinking of

optimizations you could make. For example, instead of

looking for a new inventory transaction file every ten

minutes, wouldn’t it be nice to have a job start as soon as

the transaction file is created? Try to think about how you

would like to have a job run if you weren’t constrained by

the known limitations of cron.

At this point, you should have a complete picture of all

of the processes in your enterprise. You should know how

many servers you have and what should run on each of

them. You probably also will realize that you never want to

have to go through this exercise again. When you’re done,

you won’t have to.

Budgeting: Now it’s time to set (and get) a budget. First,

you need to identify the software you intend to migrate to.

For budgeting purposes, you’ll need to know all the costs.

Does the package require a central management console?

Does it require an agent on each server, and if so, how

much does each agent cost? Do you need to factor in an

additional server?

Time is the other side of the equation. How much time is

it going to take to install the software? Can you automate

GEEK GUIDE  Beyond Cron, Part II

20

the installation of any agents that may be required? Since,

as I’ll discuss shortly, you don’t have to do it all at once,

how many hours each week can you devote to this effort?

How much of it can be delegated to lower-level staff

members or other departments entirely?

Once you know what software you intend to use, how

much it will cost and how long it will take to deploy, you

can set some realistic goals for the project. The following

are some suggestions (in no particular order):

n Improve error detection and recovery.

n Delegate select operations to lower-level staff members.

n Delegate responsibility (and cost?) to other departments.

n Improve change management.

n Reduce on-call staffing needs.

n Improve operations visibility.

n Improve just-in-time order and inventory processing.

Funding: When you approach your managers to get

funding for this project, they may ask why they should

spend money to fix something that isn’t broken. After all,

it’s been running fine as is for some time. Be prepared

to make the argument that the new system will reduce

IT’s level of effort in managing daily operations. These

GEEK GUIDE  Beyond Cron, Part II

21

reductions could result in reduced staffing requirements

or increased time to devote to more pressing operational

issues. You could suggest that other departments might be

willing to contribute staffing or funding in order to make

the project successful, and make sure to set goals that

would benefit those other departments.

Installation: Next, it’s time to install the hardware and

software. You’ll probably find that you need a central

management server and that each server in your enterprise

needs some sort of software agent installed on it. If you

have change management software, such as Puppet or

CFEngine, this software deployment should be almost

effortless. If you don’t, this is the perfect time to add such

a tool to your software toolbox.

Rather than jumping in and starting your enterprise-wide

deployment, perhaps a different approach is in order. The

temptation is to go ahead and start deploying. After all,

you’ve already done the planning, right?

By going a bit slowly though, you actually can save some

effort; here’s how. Deploy a few innocuous jobs to a few

internal servers. Let the IT department become familiar with

how the job scheduling system works. Finally, have senior

staff train junior staff in the scheduling system’s day-to-day

If you have change management software,
such as Puppet or CFEngine, this software
deployment should be almost effortless.

GEEK GUIDE  Beyond Cron, Part II

22

operations. Let the system mature under IT’s watch before

you move on. Most lower-level staff members likely are

anxious to learn a new skill, especially if it allows them to

carve a new niche for themselves.

And, it gets better. Eventually, your lower-level

staff members can cross-train employees from other

departments. Finally, other departments, such as web

development, DBAs and accounting, ultimately can become

responsible for managing their own jobs. If things run as

expected, you’ll never hear from them. If they don’t, they’ll

let you know, and that’s how you want things to operate.

That’s the final goal.

In the meantime, you have to make a decision. When you

did your planning, you either took a server-centric approach

or a process-centric approach. That approach allowed you

to enumerate your servers and to understand fully which

jobs ran where.

Just as there were two different approaches to planning,

there are two different approaches to deployment:

process-centric and department-centric. In process-centric

deployment, you migrate a particular process at once, no

matter which servers it runs on or which departments it

affects. For example, you might migrate the backups for all

of your servers first. Then, you would choose another process

to deploy next, trying to do the low-risk processes first.

On the other hand, you might consider a department-

centric approach if you discover resistance to the project

by one or more departments. Perhaps the accounting

department is more risk-averse than you had anticipated.

If that’s the case, try to identify a more sympathetic

GEEK GUIDE  Beyond Cron, Part II

23

department to migrate first and use them as an example

to show the other departments that you can perform the

migration smoothly and that there are benefits to be had by

getting on board.

Importing: Importing your existing crontabs should

be a fairly automated process. With Skybot Scheduler

from HelpSystems, for example, you simply run an import

command, and then you have the opportunity to edit each

imported job. At this point, you should be answering some

of the questions I listed earlier. For example, is there logic

embedded in the script that is simply meant to check for

prerequisites? If so, perhaps factoring them out and using

the job scheduler’s dependency management functionality

makes more sense. That way, all of those dependencies will

be well documented and error messages can be provided

when those assertions fail. Given the ease with which job

FIGURE 5. Importing existing crontabs should be simple
and error-free.

GEEK GUIDE  Beyond Cron, Part II

24

dependencies can be created, perhaps you will find that

other dependencies make sense but never were checked

because it was too much effort. This is also an opportune

time to eliminate the “sloppy scheduling” I discussed

FIGURE 6. Imported jobs can be held pending further
modification and validation. You don’t have to activate the
whole crontab at once.

GEEK GUIDE  Beyond Cron, Part II

25

earlier. Simply create job dependencies where one job can

run only after one or more other jobs complete.

As you finish migrating each process or department to

the new scheduler, try to delegate the task of monitoring

that job (and the jobs to come) to a less senior member of

your staff or to the other department’s employees. Finally,

decide who needs to be notified when a job fails. The point

of all this, of course, is to free up time so that senior staff

members can take care of more pressing matters.

Conclusion
No one makes sweeping operational changes like the

ones I’ve discussed here without a good reason. In all

likelihood, your scheduling infrastructure isn’t broken,

but that doesn’t mean it can’t be improved. These days,

system administrators’ lives are pretty hectic; they’re

always busy and usually under-funded. In this ebook, I’ve

demonstrated that a true enterprise-class job scheduling

system can lead to a more efficiently run operation.

I’ve also described how an enterprise job scheduler can

reduce staffing costs by reducing on-call time, delegating

operations to lower-level staff and delegating day-to-day

operations directly to various stakeholders. I hope I’ve

given you a thought-provoking framework from which

you can build your own implementation plan.n

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Beyond Cron, Part II: Deploying a Modern Scheduling Alternative
	Part I, Why Should You Upgrade?
	Times Have Changed—Cron Has Not
	Ease of Use
	Multi-Server
	Dependency Management
	Visualization
	Change Management
	Management by Exception
	Flexibility

	Part II, Implementation
	Planning
	Budgeting
	Funding
	Installation
	Importing

	Conclusion

