


GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

2

About the Sponsor �����������������������������������������������������������������4

Introduction ���������������������������������������������������������������������������5

Docker ������������������������������������������������������������������������������������6
     Process Management ����������������������������������������������������������������������������������������������� 9

     State Management���������������������������������������������������������������������������������������������������� 9

     Portability ����������������������������������������������������������������������������������������������������������������� 9

Orchestration ����������������������������������������������������������������������� 10
     Kubernetes ������������������������������������������������������������������������������������������������������������� 10

     Architecture ������������������������������������������������������������������������������������������������������������ 12

     Controllers �������������������������������������������������������������������������������������������������������������� 14

     Services ������������������������������������������������������������������������������������������������������������������ 15

     Pods ����������������������������������������������������������������������������������������������������������������������� 15

Finding the Missing Pieces to the Puzzle ��������������������������� 17

The Many Benefits of Using Twistlock �������������������������������� 17
     Runtime Protection ������������������������������������������������������������������������������������������������� 19

     Vulnerability Management �������������������������������������������������������������������������������������� 19

     Continuous Integration ������������������������������������������������������������������������������������������� 19

     Compliance ������������������������������������������������������������������������������������������������������������� 20

     Access Control ������������������������������������������������������������������������������������������������������� 20

     Analytics ����������������������������������������������������������������������������������������������������������������� 21

Summary ������������������������������������������������������������������������������ 21

Table of Contents

PETROS KOUTOUPIS is currently a senior software developer at IBM for its Cloud 
Object Storage division (formerly Cleversafe). He is also the creator and maintainer 
of the RapidDisk Project (http://www.rapiddisk.org). Petros has worked in the data 
storage industry for more than a decade and has helped pioneer the many technologies 
unleashed in the wild today.

http://www.rapiddisk.org


GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

3

GEEK GUIDES:  
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2017 Linux Journal. All rights reserved. 

This site/publication contains materials that have been created, developed  
or commissioned by, and published with the permission of, Linux Journal  
(the “Materials”), and this site and any such Materials are protected by  
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,  
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, 
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice 
and do not represent a commitment on the part of Linux Journal or its Web site 
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical 
or editorial errors or omissions contained in the Materials, including without limitation, 
for any direct, indirect, incidental, special, exemplary or consequential damages  
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio  
and/or video) may be copied, reproduced, republished, uploaded, posted,  
transmitted or distributed in any way, in whole or in part, except as permitted under 
Sections 107 & 108 of the 1976 United States Copyright Act, without the express 
written consent of the publisher.  One copy may be downloaded for your personal, 
noncommercial use on a single computer. In connection with such use, you may not 
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the  
property of third parties. You are not permitted to use these trademarks, services 
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &  
Trademark Office. All other product or service names are the property of their 
respective owners. If you have any questions about these terms, or if you would 
like information about licensing materials from Linux Journal, please contact us 
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com


GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

4

About the Sponsor
Twistlock

Twistlock protects today’s applications from tomorrow’s 

threats with advanced intelligence and machine learning 

capabilities. Automated policy creation and enforcement 

along with native integration to leading CI/CD tools provide 

security that enables innovation by not slowing development. 

Robust compliance checks and extensibility allow full control 

over your environment from developer workstations through 

to production. As the first end-to-end container security 

solution, Twistlock is purpose-built to deliver modern security.



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

5

Introduction
Often, when exciting new technologies gain momentum, 

many are quickly abandoned or forgotten due to a lack of 

orchestration or centralized management platform. I speak 

of a method by which one can manage multiple instances of 

that new technology and across multiple nodes or racks in 

a data center. This is always the desired result. Kubernetes 

is one such management framework, but before diving 

Deploying  
Kubernetes 
with Security 
and Compliance 
in Mind
 PETROS KOUTOUPIS



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

6

into this software platform, you need to understand the 

technology it is designed to manage: containers.

Docker
It all began with Linux Containers (LXC). LXC is about 

as close to bare metal that one can get when running 

applications in a sandboxed environment. It imposes 

very little to no overhead when hosting self-contained 

instances by decoupling software applications or 

services (often referred to as microservices) from the 

operating system, giving users a clean and minimal 

Linux environment while running everything else in 

one or more isolated “containers”. First introduced 

in 2008, LXC adopted much of its functionality from 

the Solaris Containers (or Solaris Zones) and FreeBSD 

FIGURE 1. A Comparison of Applications Running in a  

Traditional Environment to Containers



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

7

jails that preceded it. Instead of creating a full-fledged 

virtual machine, LXC enables a virtual environment with 

its own process and network space. LXC makes use of 

namespaces to enforce process isolation. The kernel’s very 

own cgroups (Control Groups) steps in to limit, account 

for and isolate the CPU, memory, disk I/O, network (and 

so on) usage of one or more processes. Think of this 

userspace framework as a very advanced form of chroot.

LXC brought with it some distinct advantages. For one, 

its method of isolation prevents processes running within 

a given container from monitoring or affecting processes 

running in another container. Second, these containerized 

services do not influence or disturb the host machine. 

This design added both security and stability to the Linux 

framework. As great as it was, LXC did come with a few 

limitations—limitations addressed by Docker.

Since its initial launch, Docker has taken the Linux 

computing world by storm. Docker is an Apache-licensed 

open-source containerization technology designed to 

automate the repetitive task of creating and deploying 

microservices inside containers. Docker treats containers 

as if they were extremely lightweight and modular 

virtual machines. Initially, Docker was built on top of 

LXC, but it has since moved away from that dependency, 

resulting in a better developer and user experience. Much 

like LXC, Docker continues to make use of the kernel 

cgroups subsystem. The technology is more than just 

running containers, it also eases the process of creating 

containers, building images, sharing those built images 

and versioning them.



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

8

Docker primarily focuses on the following:

n Portability: Docker provides an image-based deployment 

model. This type of portability allows for an easier way 

to share an application or set of services (with all of their 

dependencies) across multiple environments.

n Version control: a single Docker image is made up of 

a series of combined layers. A new layer is created 

whenever the image is altered. For instance, a new 

layer is created every time a user specifies a command, 

such as run or copy. Docker will reuse these layers for 

new container builds. Layering to Docker is its very own 

method of version control.

n Rollback: again, every Docker image has layers. If you do 

not wish to use the currently running layer, you can roll 

back to a previous version. This type of agility makes it 

easier for software developers to integrate and deploy 

their software technology continuously.

n Rapid deployment: provisioning new hardware often can 

take days. And, the amount of effort and overhead to 

get it installed and configured is quite burdensome. With 

Docker, you can avoid all of that by reducing the time 

it takes to get an image up and running to a matter of 

seconds. When you are done with a container, you can 

destroy it just as easily.

Fundamentally, both Docker and LXC are very similar. 



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

9

They both are userspace and lightweight virtualization 

platforms that utilize cgroups and namespaces to manage 

resource isolation. However, there are a number of distinct 

differences between the two.

Process Management  Docker restricts containers to run 

as a single process. If your application consists of X number 

of concurrent processes, Docker will want you to run X 

number of containers, each with its own distinct process. 

This is not the case with LXC, which runs a container with 

a conventional init process and, in turn, can host multiple 

processes inside that same container. For example, if you 

want to host a LAMP (Linux + Apache + MySQL + PHP) 

server, each process for each application will need to span 

across multiple Docker containers.

State Management  Docker is designed to be stateless, 

meaning it does not support persistent storage. There are 

ways around this but, again, only necessarily when the 

process requires it. When a Docker image is created, it will 

consist of read-only layers. This will not change. During 

runtime, if the process of the container makes any changes 

to its internal state, a diff between the internal state and 

the current state of the image will be maintained until 

either a commit is made to the Docker image (creating a 

new layer) or until the container is deleted, resulting in 

causing that diff to disappear.

Portability  This word tends to be overused when 

discussing Docker—that’s because it is the single most 

important advantage Docker has over LXC. Docker does 

a much better job of abstracting away the networking, 

storage and operating system details from the application. 



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

10

This results in a truly configuration-independent application, 

guaranteeing that the environment for the application 

always will remain the same, regardless of the machine on 

which it is enabled.

Docker is designed to benefit both developers and 

system administrators. It has made itself an integral part 

of many DevOps (developers + operations) toolchains. 

Developers can focus on writing code without having 

to worry about the system ultimately hosting it. With 

Docker, there is no need to install and configure complex 

databases or worry about switching between incompatible 

language toolchain versions. Docker gives the operations 

staff flexibility, often reducing the number of physical 

systems needed to host some of the smaller and more 

basic applications. Docker streamlines software delivery. 

New features and bug/security fixes reach the customer 

quickly without any hassle, surprises or downtime.

Orchestration
On its own, Docker is extremely simple to use, and running 

a few images simultaneously is also just as easy. Now, 

scale that out to hundreds, if not thousands, of images. 

How do you manage that? Eventually, you need to step 

back and rely on one of the few orchestration frameworks 

specifically designed to handle this problem. This is where 

Kubernetes truly shines.

Kubernetes  Kubernetes, or k8s (k + eight characters), 

originally was developed by Google. It is an open-source 

platform aiming to automate container operations: 

“deployment, scaling, and operations of application 



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

11

containers across clusters of hosts”. Google was an early 

adopter and contributor to the Linux Container technology. 

In fact, it is Linux Containers that power Google’s very own 

Cloud services. Anyway, Kubernetes eliminates all of the 

manual processes involved in the deployment and scaling 

of containerized applications. It is capable of clustering 

together groups of servers hosting Linux Containers while 

also allowing the administrator to manage those clusters 

easily and efficiently.

Kubernetes makes it possible to respond to consumer 

demands quickly by deploying your applications within 

a timely manner, scaling those same applications with 

ease, and seamlessly rolling out new features, all while 

limiting hardware resource consumption. Kubernetes can 

be configured to manage and monitor on-premises and 

public/private/hybrid deployments. It is extremely modular 

and easily can be hooked into by other applications 

or frameworks. It also provides additional self-healing 

services, including auto-placement, auto-restart, 

Kubernetes makes it possible to respond to 
consumer demands quickly by deploying your 
applications within a timely manner, scaling 
those same applications with ease, and 
seamlessly rolling out new features, all while 
limiting hardware resource consumption.



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

12

auto-replication and auto-restart of containers. The very 

best part of Kubernetes is that it supports Docker. Sure, 

other orchestration frameworks support Docker as well (for 

example, Swarm), but none are as flexible, extensible and 

widely adopted as Kubernetes.

Architecture  Kubernetes runs on top of an operating 

system (for example, Ubuntu Server, Red Hat Enterprise 

Linux, SUSE Linux Enterprise Server and others) and takes 

a master-slave approach to its functionality. The master 

signifies the machine (physical or virtual) that controls 

the Kubernetes nodes. This is where all tasks originate. 

It is the main controlling unit of the cluster and will take 

FIGURE 2. The Kubernetes Web UI Dashboard  

(from https://kubernetes.io)

https://kubernetes.io


GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

13

the commands issued by an administrator or DevOps team 

and, in turn, relay it to the underlying nodes. The master 

node can be configured to run on a single machine or 

across multiple machines in a high-availability cluster. 

This is to ensure fault-tolerance of the cluster and reduce 

the likelihood of downtime. The nodes are the machines 

that perform the tasks assigned by the master. The node 

is sometimes referred to as the Worker or Minion.

Kubernetes is broken down into a set of components, 

some of which manage individual nodes while the rest are 

part of the control plane.

 Control plane management:

n etcd — a lightweight and distributed cluster manager. 

It is persistent, and it reliably stores the configuration 

data of the cluster, providing a consistent and accurate 

representation of the cluster at any given point of time.

n API server — serves the Kubernetes API using JSON over 

HTTP. It provides both an internal and external interface 

to Kubernetes. The server processes and validates 

RESTful requests and enables communication between 

and across several tools and libraries.

n Scheduler — selects on which node an unscheduled 

pod should run. This logic is based on resource 

availability. The scheduler also tracks resource 

utilization of each node, ensuring that the assigned 

workload never exceeds what is available on the 

physical or virtual machine.



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

14

n Control Manager — is the process hosting the 

DaemonSet and Replication controllers. The controllers 

communicate with the API server to create, update or 

delete managed resources.

 Node management:

n kubelet — is responsible for the running state of each 

node, making sure that all containers on the node are 

healthy. It handles the starting/stopping of application 

containers (see how this differs with Docker in the 

section below) within a Pod as directed by the manager 

in the control plane.

n kube-proxy — is a network proxy and load balancer. It is 

responsible for routing traffic to the appropriate container.

n cAdvisor — is an agent that monitors and collects 

system resource utilization and performance metrics 

(for example, CPU, memory, file and network) of each 

container on each node.

Controllers  A controller drives the state of the cluster by 

managing a set of pods. There is the Replication Controller 

that handles pod replication and scaling by running a specified 

number of copies of a given pod across the entire cluster of 

nodes. It also can handle the creation of replacement pods 

in the event of a failing node. The DaemonSet Controller 

is in charge of running exactly one pod per node. The Job 

Controller runs pods to completion (as part of a batch job).



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

15

Services  In Kubernetes terms, a service consists of a set of 

pods working together (a one-tier or multi-tier application). 

As Kubernetes provides service discovery and request routing 

(by assigning the appropriate static networking parameters), 

it ensures that all service requests get to the right pod, 

regardless of where it moves across the cluster. Some of this 

movement may be a result of pod or node failure. In the 

end, Kubernetes’ self-healing capabilities will get those ailing 

services back to a pristine state automatically.

Pods  When a Kubernetes master deploys a group of one 

or more containers to a single node, it does so by creating 

a pod. Pods abstract the networking and storage from the 

container, and all of the containers within a pod will share 

the same IP address, hostname and more, allowing it to be 

moved around in the cluster without complication.

The kubelet will monitor each and every pod. If it is 

not in a good state, it will redeploy that pod to the same 

node. Apart from this, a heartbeat messaging mechanism 

will relay the node status to the master every few 

seconds. As soon as the master detects a node failure, 

the Replication Controller will launch the now affected 

pods onto another healthy node.

So, how does Docker fit into all of this? Docker 

sti l l  functions as it was meant to function. When a 

So, how does Docker fit into all of this? Docker 
still functions as it was meant to function.



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

16

Kubernetes master schedules a pod to a node, the 

kubelet running on that node will direct Docker in 

launching the desired containers. The kubelet wil l 

continue by monitoring those containers while also 

collecting information for the master. Docker sti l l  wil l 

be in full control of the containers running on the node 

and also wil l be responsible for starting and stopping 

them. The only difference here is that you now have 

an automated system sending these requests to Docker 

instead of the systems administrator running the same 

tasks manually.

So, now that you have a good idea of how  

Kubernetes works, what comes next? The answer: 

security and compliance.

FIGURE 3. A General Model of Pod Creation/Management



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

17

Finding the Missing Pieces to the Puzzle
Twistlock develops and distributes a product of the same 

name focusing on nothing but Docker image security 

and compliance. The company is committed to providing 

enterprise security with DevOps agility. Twistlock also 

can be operated from and managed by orchestration 

platforms including Kubernetes.

The company offers the first end-to-end security 

solution built for containerized environments. It protects 

against software exploits, malware and active threats 

through its advanced intelligence and machine-learning 

capabilities. It automatically will profile expected 

container behavior, and create and enforce security 

models at runtime. It also will automatically build security 

models of expected behavior and enforces these via 

whitelisting. Because it is automated, security can be 

introduced much earlier in the lifecycle to identify and 

block threats from developer workstations through to 

production. And here’s the best part: when deployed as 

part of a Kubernetes cluster, that same security model 

will scale across all nodes in the cluster.

Twistlock sources more than 30 vulnerabil ity and 

threat intell igence feeds, combining it with its 

proprietary research. This ensures that Twistlock’s 

customers are kept updated, in real time, on all 

known application CVEs (Common Vulnerabil it ies and 

Exposures), exploits and threats.

The Many Benefits of Using Twistlock
Twistlock is a tool to both harden your images in 



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

18

development and protect them against runtime threats. 

Twistlock is built as a Docker image and runs as a privileged 

container image on top of the Docker Engine. The idea is 

to run a single instance of this Twistlock image on every 

physical or virtual machine hosting Docker containers.

Each instance of Twistlock can be managed from the 

Twistlock Console. Through this very same console, you can 

create/remove security policies, establish image compliance 

and also monitor the security state of each running 

container. If that container surpasses the defined threshold 

of vulnerabilities or does not comply to the parameters you 

have set, Twistlock either will prevent that container from 

running or disconnect it completely from the network.

FIGURE 4. The Twistlock Management Console



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

19

Runtime Protection  Twistlock runtime defense protects 

your containers against detected exploits, compromises, 

application flaws and configuration errors. It actively 

monitors container activities and detects policy violations. 

Twistlock will report all anomalous behaviors while also 

taking the appropriate actions to disconnect or isolate 

them, preventing disruption to any and all other containers 

across the Kubernetes cluster. Twistlock can identify when 

a container does something that it shouldn’t be doing. For 

instance, if a container running nginx suddenly invokes 

netstat and netstat isn’t a whitelisted process for that 

image, Twistlock will detect it.

Vulnerability Management  Twistlock is constantly 

scanning container images in registries, workstations and 

servers for known vulnerabilities and misconfigurations. 

All detected vulnerabilities are reported and extend 

across Linux distributions (Debian, Ubuntu, Fedora), 

application frameworks (Node.js, Python, Java) and even 

your custom application packages. Twistlock breaks the 

Docker image apart and parses each individual layer, 

specifically searching for these threats. Twistlock can 

and will take remediation actions based on the severity 

of the vulnerability during runtime. Twistlock provides 

users with granular control when managing the types 

of vulnerabilities beyond their severity ratings. You can 

block individual CVEs explicitly while ignoring others.

Continuous Integration  Twistlock was written to 

integrate directly into your Continuous Integration (CI) 

process (such as Jenkins). This way, it can find and report 

problems before they ever make it out into production. 



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

20

In some cases, when a package with an open CVE is 

reported, Twistlock also will report the package version 

that has the fix. Developers are given clear insight into 

the vulnerabilities present in every build. These plugins 

allow you to define and enforce your vulnerability policies 

at build time. For instance, you can set a policy requiring 

that one build job must not have any vulnerability, or you 

can flag specific CVEs while ignoring the rest.

Compliance  The Center for Internet Security (CIS) 

Docker and CIS Kubernetes Benchmarks provide 

guidance for establishing a secure configuration of a 

Docker container. In short, this benchmark provides the 

best security practices for deploying Docker. Twistlock 

has developed 150+ built-in checks to validate the 

recommended practices from this benchmark. In 

parallel to this, Twistlock includes an extensive list of 

configuration checks for the host machine, Docker 

dæmon, Docker files and directories. Organizations 

using Twistlock will be able to enforce Trusted Registries 

(containing images approved by Twistlock) and Trusted 

Images. When configured, Twistlock can enforce that 

the images from these trusted lists are the only ones 

deployed onto production servers.

Twistlock has developed 150+ built-in checks 
to validate the recommended practices from 
this benchmark. 



GEEK GUIDE  Deploying Kubernetes with Security and Compliance in Mind

21

Access Control  Using Twistlock, you can define and 

enforce policies governing user access to both Docker 

and Kubernetes resources, limiting specific users to 

individual functions or APIs. Out of the box, Twistlock 

supports enterprise identity directories that include Active 

Directory, OpenLDAP and SAML providers. This way, you 

can specify access policies to container resources without 

the need to create new identities and groups. You can 

monitor detailed user access audit trails, action types, 

services requested and more from the console.

Analytics  Twistlock’s built-in analytics allow you to 

visualize all relevant data and enable you to enforce standard 

configurations, container best practices and recommend 

deployment templates. This way, your containers will remain 

compliant to industry or company policies.

Summary
More often than not, production applications will span 

across multiple containers, and those containers may 

be deployed across multiple physical server machines. 

Kubernetes gives you the orchestration and management 

capabilities required to deploy and scale those containers to 

accommodate the always changing workload requirements. 

Kubernetes also provides the proper facilities to deploy 

Twistlock for a more stable and secure containerized 

operating environment.n


	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Deploying Kubernetes with Security and Compliance in Mind
	Introduction
	Docker
	Process Management
	State Management
	Portability

	Orchestration
	Kubernetes
	Architecture
	Controllers
	Services
	Pods

	Finding the Missing Pieces to the Puzzle
	The Many Benefits of Using Twistlock
	Runtime Protection
	Vulnerability Management
	Continuous Integration
	Compliance
	Access Control
	Analytics

	Summary




