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Selecting a memory technology 

Executive Summary
   

In the ever-changing computer industry, server memory technology continues to grow as chip
designers strive to improve memory performance.  Over the past 20 years, memory chips have
evolved from expensive technological marvels to standardized, competitively-priced products
widely available in the market place.  For memory chip manufacturers to be successful in this
market, their chips needed to be interchangeable.  Chips from one manufacturer had to
interchange with those of another in a transparent fashion.  This allowed computer
manufacturers to buy memory chips from any supplier who met their requirements for price,
schedule and quantity.  The result was a reduction in the cost of memory chips, which meant
computers could be manufactured and sold at a lower price, directly benefiting consumers.  

But such standardization has brought with it a reluctance by chip manufacturers to change
memory chip architecture as they continually search for ways to extend the life of memory chips,
protect their own investments and try to maintain razor-thin profit margins.  Memory system
designers are also affected any time memory chip architecture undergoes substantial change.
The preferred architectural model so far has been one of continual but controlled evolution.  

With the planned introduction of Direct RambusTM memory technology later this year, many
industry claims are being made about its technological achievements and benefits to end users.
Indeed, Rambus memory represents something of a break with the memory technology that has
evolved over the past 20 years.  

Because of the large amounts of memory required in a typical server, memory cost is probably
the leading factor in making a technology choice.  In addition, computer manufacturers need to
consider potential impacts to reliability, availability and serviceability (RAS) as they implement
emerging memory technology into future systems.

This paper describes the evolution of memory technology.  It explores some attributes of server
memory systems and compares Rambus memory to synchronous DRAM (SDRAM).  Given the
current state of SDRAM and Rambus technologies and the marketplace conditions projected for
both, IBM's server system design teams believe that SDRAM is the best and logical choice for
server memory designs, at least for the next few years. Obviously, as technology changes and
marketplace dynamics occur, this design choice could change in the future. This paper
addresses the design choice for IBM server memory designs and is not a reflection of design and
manufacturing plans for IBM's embedded, desktop or mobile systems; nor does it have any
bearing on the present plans of IBM’s Microelectronics Division to manufacture memory chips
using the Direct Rambus DRAM interface.  Because of the dynamic nature of this industry,
changes may occur in IBM's actual implementation.  IBM reserves the right to change
specifications or other product information without notice.
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The Evolution of Memory

The earliest memory chips to achieve widespread use were page-mode chips.  Page-mode chips
used a multiplexed address bus that sent part of the memory address (the row address) to the
chip first, then the remainder of the address (the column address) a short time later.  Numerous
enhancements to memory chips have since emerged—such as nibble mode, Extended Data Out
(EDO), SDRAM and Direct Rambus.  Yet remarkably, the original multiplexed-address concept
still survives.  

Over the years, the internal organization of memory chips has become more complex as internal
banking structures emerged to support overlapping and interleaving of multiple memory
operations.  This complexity is a result of computer manufacturers trying to improve overall
memory performance.  

The current state of PC server memory technology can be summarized as follows:  

• EDO memory is reaching end-of-life.  Few, if any, new server systems will be provided with
EDO main memory in the future. 

• Because of its improved performance relative to EDO, 100MHz SDRAM memory (PC100®

memory) is being used by most servers today.  A 133MHz version of SDRAM (PC133
memory) is now available and is expected to begin showing up in servers before the end of
1999. 

• The evolutionary model used in the commodity DRAM market suggests that the next
generation of memory architecture will be Double Data Rate (DDR) SDRAM.  

− DDR architecture is similar to  Single Data Rate (SDR) PC100 and PC133 memory—the
main difference being that with DDR, data is transferred to and from memory on both
edges of the data clock, effectively doubling memory bandwidth.  With SDR architecture,
data is transferred on only one clock edge.

A Look at Memory Architectures for Servers

Intel has announced it will move to Direct Rambus once 100MHz memory operation is achieved.
Initially, Direct Rambus memory is expected to appear in desktop PCs, but because of Intel’s
position in the server industry, system designers are investigating Direct Rambus and trying to
understand how to exploit its advantages in server memory systems in the future.  The
advantage most often attributed to Direct Rambus memory architecture is that it provides
extremely high bandwidth per pin between the system memory controller and the memory itself,
which allows the system designer a much wider latitude to increase memory bandwidth, or
desired, to reduce pin count at the memory controller for cost savings.  Server manufacturers
should analyze the impact of such improved bandwidth and other characteristic in terms of
performance, system reliability and cost.  

PC100 and PC133 SDRAM

The core of any server is made up of memory (DRAMs), one or more microprocessors
(sometimes called MPUs) and the chipset.  The following diagram illustrates the internal
structure of a typical server. 
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Server Structure
 

The chipset in this illustration consists of the memory controller and two I/O bus interface chips
that provide PCI buses.  The type of memory used in any PC server is determined by the
capabilities of the chipset that the manufacturer provides.  Most chipsets for servers currently
support PC100 SDRAM chips mounted on Dual Inline Memory Modules (DIMMs) and typically
have an 8-byte memory interface. The memory bus width and frequency of these chipsets are
usually intended to match the Frontside Bus (FSB) data rates of currently available Intel MPUs
used in servers.  Such a memory system provides data at a rate sufficient to keep up with the
processors on the FSB.

Chipset designers are familiar with the characteristics of PC100 SDRAM, and they have
optimized their chips to leverage the performance attributes of PC100 memory.  While clock
rates of MPUs have soared past 400MHz, the internal clock rates of the chipsets remain more
closely aligned with memory and FSB frequencies, providing adequate performance.  The
closely matched clock frequencies of the FSB, memory controller and memory allow the chipset
to access memory and return data to the processor efficiently.

Industry-standard PC133 SDRAM is an important bridge between PC100 SDRAM and future
DDR SDRAM.  With sample quantities available today, and with an architecture that is virtually
identical to PC100 SDRAM, PC133 is expected to be incorporated into PC servers that ship in
1999.  PC133 improves some specific memory timings and transfers data 33% faster between
memory and the microprocessor without fundamentally changing the architecture of the memory
bus.  PC133 can provide a one-to-one speed match with an FSB running at up to 133MHz. This
is another step in the evolution of memory technology for faster system performance.  The
internal architecture and clocking schemes of memory controller chips won’t require radical
change to take advantage of the extra performance.  Plus they will maintain the efficiency of
existing chipset architectures.  The result is extra memory performance for the end user. 
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DDR SDRAM

The next step beyond PC100 and PC133 SDRAM is DDR SDRAM.  From a memory-chip
manufacturer’s perspective, PC100 and DDR are two products derived from a single core
technology.  The internal chip architecture of both products is virtually identical, but DDR is able
to transfer two units of data per clock cycle compared to one unit for PC100 or PC133.  DDR
products operate at industry-standard 3.3v (initially) or 2.5v supply levels, and they employ the
same four-bank internal architecture as PC100.  A couple of differences in the interface facilitate
the higher memory data bus speeds:

� The signal levels change from LVTTL to SSTL 2.

� Bi-directional data strobe signals replace the memory clock to control data latching more
precisely.

Memory packaging and bus topologies won’t radically change with the introduction of DDR
SDRAM.  This will allow chipset manufacturers to incorporate DDR memory into their designs in
a reasonably straightforward fashion.  Because of increased memory bus frequency, however,
very careful card wiring analysis and layout will be required.  Compared to PC100 memory, DDR
memory moves data to the memory controller twice as quickly; and for an equivalent memory
bus width, it can support a processor FSB running up to twice the frequency.  DDR memory will
be available in 4-bit, 8-bit and 16-bit chip organizations.

DDR SDRAM is supported by many leading memory suppliers.  That means it is likely to be
widely available and competitively priced.  Because of the large amount of memory typically
present in servers, its price is a major component of the overall server’s price.

Various DDR speed sorts are expected to be available, initially at 200 and 266Mbps per pin,
eventually leading to bit rates as high as 400Mbps per pin.  Such an increase in speed will
support a substantial increase in overall system performance as the faster chips become
available.

Direct Rambus Channel

Rambus, Inc. has developed a 30-signal memory interface called the Direct Rambus Channel
memory which provides up to 800Mbps per pin data transfer rates between memory chips and
the memory controller.  Each Direct Rambus Channel is 16 or 18 bits wide and can transfer data
at up to 1.6GBps (800Mbps x 2 bytes).  This data rate is 8 times as fast as standard PC100
SDRAM.  Multiple Direct Rambus Channels can be used in parallel to aggregate memory
bandwidth.   A Direct Rambus DRAM is also called Direct RDRAM™, or simply RDRAM.  Up to
32 RDRAMs can be supported on a channel, and repeater chips are added to extend memory
capacity if more memory is needed.  

The RDRAM equivalent of the well-known DIMM is the RIMM™.  A RIMM is similar in size to a
DIMM, but not physically or functionally interchangeable.  Up to 16 RDRAMs can be packaged
on a RIMM, the width of the data bus is fixed at 16 or 18 bits, and each RDRAM on the RIMM is
connected in parallel.  To help achieve 800Mbps, the data bus daisy-chains through the RIMM
(as shown in the following diagram) and is terminated at the end of the channel farthest from the
memory controller.  If fewer than the maximum number of RIMMs is present in the system,
feed-through devices must be plugged into the unused sockets to maintain continuity. 
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RIMM Signal Routing

Data transfers are organized into packets of 16 bytes.  Consequently eight data transfers occur
for each packet over a period of four clock cycles. (This takes 10 nanoseconds at the 800Mbps
bit rate.)  Internally the RDRAM chip is organized as a 128-bit wide data flow, allowing the entire
16-byte transfer to be generated from a single access.

Signals used to address and control operation of RDRAM memory are packetized and
transmitted to the chips at the same frequency as data.  Address and control packets consist of
eight units of information spread across four clock cycles.  Separate ROW and COL buses allow
independent control of row and column functions.

Both SDRAM and RDRAM are designed with multiple internal banks to allow for pipelining of
some memory operations.  When a memory chip is accessed, a range of addresses becomes
available for immediate accessing of data.  If it is necessary to access data outside the active
range, the memory requires a precharge operation before the next access can begin.  Because
the memory controller must wait for the precharge to complete before accessing part of its
memory, latency is increased and bandwidth is reduced—which in turn reduces system
performance.  By organizing memory into multiple banks, the probability of accessing data from
an already precharged section of memory is improved, and the precharge time can often be
hidden while alternate banks are being accessed.  Internally RDRAMs are organized into 16
quasi-independent banks, compared to four fully independent banks for SDRAM.  The increased

number of banks in the RDRAM chip is an advantage of RDRAM over SDRAM1. 

RDRAM versus SDRAM Considerations

With PC100 SDRAM firmly established as today’s memory of choice for servers, PC133 SDRAM
emerging, and DDR SDRAM as the next logical step in memory evolution, server manufacturers
should consider  four major factors in determining whether to switch to Direct RDRAM.  They
are:

� Memory bandwidth

� Memory latency
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The advantage is somewhat mitigated because the RDRAM banks share some internal circuitry between adjacent banks—the result of

which is that a precharge penalty might be incurred on certain back-to-back operations involving adjacent banks.



� Reliability, availability and serviceability (RAS)

� Memory cost

Memory Bandwidth

Memory bandwidth is one key component of memory performance.  At 800Mbps per pin at the
memory chip, Direct RDRAM is clearly the leader.  It can claim up to four times the per-pin
bandwidth of  first-generation DDR SDRAM and six times the bandwidth of PC133 SDRAM.
This advantage can lead to a reduction in the number of pins required on the memory controller,
which could result in cost savings for that component.  For desktop systems that have relatively
small amounts of memory compared to that of servers, a few RIMMs can be placed near the
memory controller to satisfy total memory capacity requirements. In a server application,
memory capacity beyond 4GB is now the norm.  With each Direct Rambus Channel having a
limit of 32 RDRAMs on a bus, it is necessary to include additional components called repeater
chips to extend memory capacity into the realm of the server.  The following diagram illustrates
the use of repeater chips.

Rambus Repeater Chips

Using 128Mb memory technology, the effective memory capacity of a single RDRAM chip is
16MB.  Thirty-two such chips yield 512MB of memory per Direct Rambus Channel before a
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repeater chip is required.  Using two Rambus channels, four repeaters are required to arrive at a
4GB memory capacity.  

Another type of support chip can be used with DDR SDRAM to improve the bandwidth per pin at
the memory controller by using higher frequencies between the external support chips and the
memory controller.  This technique has been practiced for years in large servers and is called
interleaving.  Multiple memory banks are accessed in parallel, and data is combined into
appropriate bus widths by the support chips and delivered to the memory controller at the
desired frequency.  The following diagram illustrates external support chips being used with DDR
SDRAM.

DDR SDRAM Memory System

DDR SDRAM operating at 100MHz (200Mbps per pin) can be interleaved four ways to provide
data at 800Mbps per pin at the memory controller, the same as Direct RDRAM.  Extremely
careful signal analysis, very restrictive layout rules and tightly controlled transmission line
impedances must be employed to achieve robust operation.  In the case of Direct RDRAM, the
entire memory structure needs to be designed to operate at maximum frequency.  In the
interleaved DDR SDRAM example, only the wires between the memory controller and the
support chips need to operate at maximum frequency.  Additionally, the Direct RDRAM wires are
multidropped, up to 32 memory chips can be on the bus, while the wires between the memory
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controller and DDR SDRAM support chips can be point-to-point, making the job of achieving
maximum frequency operation somewhat easier.  Thus the bandwidth of Direct RDRAM can, in
theory, also be achieved in server memory controllers using interleaved SDRAM and
high-performance support chips.  As a practical matter, the pin count for the interface between
the memory controller and the SDRAM support chips is likely to be somewhat higher than for the
Direct Rambus architecture due to the typical need for multiple copies of clocks and control
signals. 

Memory Latency

Another key component of memory performance is latency.  Several factors determine the
latency of the memory chip, including the internal organization of the memory chip itself and the
intrinsic speed of the underlying memory technology.  The two major latency categories are initial
latency and turnaround latency.  Initial latency measures the amount of time it takes to initiate
access to the memory and read (or write) the first data.  Turnaround latency is the amount of
time needed to switch between different memory operations.

Initial latency of RDRAM and SDRAM is similar at the chip level, in part because the core
storage area of the Direct RDRAM chip uses the same technology as SDRAM.  Because of
numerous speed sorts and technology variations, direct comparison of initial latency at the chip
level is complex, and beyond the scope of this paper.  However, one characteristic intrinsic to
the Direct RDRAM design imposes an additional latency not present in SDRAM—packetization
of ROW and COL address information.  In SDRAM architecture, as with its predecessors, the
ROW address, for example, is launched broadside at the memory chip.  For Direct RDRAM
memory, the ROW address requires four separate transfers to transmit the equivalent
information.  Although parameters such as overall wire length and electrical-signal swing levels
do affect total propagation delay between the memory controller and the memory chip, the four
separate transfers required by the Direct Rambus architecture could introduce some additional
latency compared to the single transfer method for SDRAM.

As memory capacity is increased in the Direct Rambus system, the cascading of repeaters
introduces more initial latency as the timings of all memory chips are programmed to match the
latency of the farthest memory chip in the system.   An  analogous latency increase occurs for
SDRAM memory used in systems which employ support chips such as were previously
described.  Signals must propagate through the support chips to reach the SDRAMs, which
increases overall memory latency.  

Compared with SDRAM, Direct RDRAM provides better turnaround latency between reads and
writes at the memory bus level.  That is, fewer cycles are lost between read and write operations.
This can result in a performance increase, especially in lower cost memory controllers likely to
be used in desktop systems. However, read-write turnaround latency penalties can be mitigated.
High-performance server memory controllers sometimes provide buffer space to accumulate
data which is to be written to memory, and memory writes are delayed until the memory system
is not performing read accesses (or the buffers fill up). 

The advantage of this system is that read requests received by the memory controller can be
performed ahead of write operations, as long as the correct order of reads and writes appears to
be maintained by the memory controller.  If the write activity is correctly sequenced, the reads
will be batched separately from the writes—resulting in fewer read-write turnaround latency
penalties.  This requires additional logic complexity, of course, and there will always be some
turnaround penalty to be paid. 

The latency of the memory chip and its associated interface is only part of the overall memory
latency.  In symmetric multiprocessing (SMP) servers, data is frequently provided to one
processor from the cache of another processor.  When that happens, the effective memory
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latency is at least partially a function of processor cache design and FSB protocol.  As processor
cache sizes and the number of processors in the system increase, the probability of getting data
from another MPU increases.  Servers tend to have very large caches, and the effect is
significant in 4-way and 8-way SMPs.

As very-high-speed memory interfaces like the Direct Rambus Channel are implemented,
memory controllers must be carefully designed to avoid latency penalties for serialization and
deserialization of data as it crosses frequency domains.  Although companies that build
microprocessors expend enormous custom-circuit-design effort to enable microprocessors to
operate at 400MHz and above, some chipset developers cannot afford such investment for
memory controllers.  Consequently chipsets often operate at frequencies more in line with FSB
frequencies, currently in the range of 100MHz.  With the Direct Rambus Channel operating at
essentially an 800MHz data rate that enables a relatively narrow data-width between the memory
controller and memory, some serialization and deserialization of data occurs. For example, four
data transfers from the Direct Rambus Channel might be accumulated to provide an 8-byte
memory word, moving about inside the memory controller chip at one-quarter the frequency of
the Rambus channel.  Assembling that word from the individual subunits transferred across the
Rambus channel incurs a latency penalty often referred to as a trailing-edge effect, which means
the memory controller is waiting for the last piece of data to arrive.  A good design minimizes
this penalty, but it is almost impossible to eliminate completely.

To summarize, effective memory latency for DDR SDRAM and RDRAM is very system
dependent.  At the chip level, RDRAM is better than SDRAM in some aspects but not in others.
The effective latency is a function not only of the memory chip, but also of the memory controller
and the intervening wires.  In SMPs, even the caches in other processors can significantly affect
apparent memory latency.  Users should be wary of performance claims based on minor
differences at the memory chip level. As of today, the difference in memory latency between
RDRAM and SDRAM chips is not a strong reason to choose one over the other.  What matters
most is how effectively the server vendor has optimized the overall performance of the memory
system, and IBM is applying its extensive experience in server design to its family of Netfinity
servers.

Reliability, Availability and Serviceability

Reliability, availability and serviceability (RAS) are cornerstones of a server memory system.
Although a powerful microprocessor can be implemented in a single chip, memory often requires
dozens of chips, and brings with it a correspondingly greater potential for failure.  Fortunately
memory can be made extremely reliable through Error Checking and Correction (ECC) codes,
built-in redundancy or sparing techniques and concurrent repair (hot plug).  The key to high
memory availability is a robust ECC algorithm capable of detecting and correcting nearly all
possible memory failures.  Early mainframes and high-end servers provided Single Bit Error
(SBE) correcting codes, but recently some servers have begun using codes that provide multibit
error detection and correction.  In ECC terminology, the technical name for the correctable entity
is a symbol.  A symbol can be any width.  Current symbol sizes are up to 4 bits, and larger
symbols are possible.  

Typically, codes can correct a single-symbol error and detect all double-symbol errors.  It is
advantageous to be able to correct symbols that are as wide as the memory chip, because the
system can remain fully operational should the entire memory chip fail.  However, as the symbol
size increases, the number of extra memory bits necessary for containing the ECC code
increases dramatically.  For example a server with a typical 8-byte-wide memory data path
requires 8 checkbits to provide Single Symbol Correct/Double Symbol Detect (SSC/DSD) for a
1-bit symbol, 10 checkbits for a 2-bit symbol, 14 checkbits for a 4-bit symbol, 24 checkbits for an
8-bit symbol and 48 checkbits for a 16-bit symbol.  
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Conversely, as the overall size of the data in the ECC word increases, the overhead is reduced
accordingly for a given symbol size.  A 16-byte ECC word requires 16 checkbits for 4-bit symbol
SSC/DSD (12.5% overhead), compared to 14 checkbits for 4-bit symbol SSC/DSD (21.9%
overhead) on an 8-byte-wide data path, a 43% reduction in checkbit overhead per byte of data.   
The ideal combination to minimize the overhead for ECC is a small symbol and a large ECC
word.

A basic 1-bit SSC/DSD ECC code can handle the occasional soft memory error or single-cell
hard fail, but a significant portion of the overall memory failure rate can consist of multiple bit
failures—the most catastrophic occurrence being when the entire memory chip ceases to
function.  Although 8-bit-wide memory chips are dominant in consumer PC systems, the vast
majority of SDRAMs used in servers today are 4-bit-wide chips, for which it is entirely practical to
provide ECC coverage for a total chip failure with modest checkbit overhead.  In fact, the IBM
Netfinity 7000 M10 was the first Intel processor-based server to offer Chipkill™ Memory.  For
more information see the white paper "IBM Chipkill Memory," available from our Web site at
www.ibm.com/netfinity.

Desktop systems will typically not provide Chipkill memory error-correcting capabilities.  But
high-end, business-critical servers are driven to make memory extremely reliable and, although
still not common in today’s servers, Chipkill ECC is likely to become a strong requirement.  The
current Direct Rambus RDRAM implementation, with its 16-bit-wide format makes Chipkill
error-correcting capabilities more difficult to provide, compared to 4-bit-wide or 8-bit-wide
SDRAM chips.  

Recognizing this, Rambus recently announced that their 256Mb memory chips will support a
feature called Interleaved Data Mode (IDM) when these chips eventually become available.
(IDM will not be available for 128Mb chips.)  IDM will enable each RDRAM to read and write its
data on two of the 16-bit positions in the Rambus channel, compared to the normal mode of
operation where a single chip drives all 16 data wires.  Rather than a single chip providing 16
bytes of data per packet, 8 chips per channel are selected simultaneously.  Each chip is
programmed to bring out only two bytes of data and uses two of the 16 available data wires in
the Rambus channel.  Thus, 8 chips must be selected, where previously only a single chip
needed to be accessed.  This new feature will reduce the number of RDRAMs required to
implement chipkill correction compared to the current RDRAM design and providing similar
overhead to SDRAM.

This approach can be used with different numbers of Rambus channels by trading the number of
channels for access latency.  For example, a system with three Rambus channels will
experience a greater access latency than a system with nine channels, because the
three-channel system will take longer to accumulate enough data to comprise a complete ECC
word and data cannot be forwarded to the processor until that data can be checked for errors and
corrected, if necessary.  Due to the nature of the IDM design, where multiple ECC words are
simultaneously (but serially)  accumulated, data will not be available for use until the entire
memory block transfer has been completed.  

In contrast, SDRAM-based systems with external support chips can access the critical data for
an entire ECC word in a single data transfer, permitting the processor to resume operation more
quickly.

Memory Cost 

Among the factors that influence the decision to use a particular memory, cost is usually the first.
In the past few could have predicted how rapidly and how far memory prices would decrease.
Even so memory constitutes a significant portion of the cost of a PC server.  Servers simply  
need large amounts of memory to function efficiently.  As more customers move their
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business-critical applications to Intel-based servers, the amounts of memory they need will
continue to expand.

Intrinsically, the cost advantage lies with SDRAM for several reasons.  The first is that for
equivalent capacity, the die size of a Direct Rambus memory chip is somewhat larger than for
SDRAM.  Larger die size means fewer chips per wafer and lower yields.  The end result is higher
manufacturing cost. Increased costs might be attributed to fees manufacturers have in using the
RDRAM specifications.  The SDRAM specifications are an open standard.  Beyond the memory
chip itself, sophisticated module and card packages are required to maintain electrical signal
integrity, along with thermal enhancements (such as heat spreaders) to dissipate increased
power.  Finally, chip manufacturers will likely have to invest in new test equipment to support
RDRAM manufacturing.

Another major factor in memory cost is the size of the marketplace.  The more chips the memory
manufacturers can produce, the lower their unit costs.  Direct RDRAM might well capture a major
share of the desktop memory component marketplace, but market projections for SDRAM
volumes driven by server requirements and other uses should be sufficient to keep SDRAMs
cost competitive.

Conclusion

Direct Rambus RDRAM is receiving significant publicity as Intel continues to invest in
manufacturing capability for it and moves to introduce it into desktop systems in the near future.
The question of whether or not server manufacturers will adopt Direct Rambus RDRAM naturally
follows from these activities. 

From a server RAS perspective, RDRAM introduces new challenges that need to be addressed
to provide enhanced ECC features like chipkill correction. The 16-bit or 18-bit width of the
current devices makes chipkill ECC coverage more costly and difficult than for the 4-bit or 8-bit
wide SDRAM chips.  The new Interleave Data Mode reduces this chip overhead, but at the cost
of access latency.

Because of the large amounts of memory required in a typical server, memory cost is a
significant factor in making a technology choice.  Direct RDRAM memory chips are intrinsically
larger than comparable SDRAM chips, and vendors may need to factor in additional fees and
manufacturing costs.  

Today’s PC100 and PC133 SDRAM have the edge in server memory volumes, and with the
emergence of DDR, SDRAM  appears to be well-suited to provide the performance, RAS and
cost attributes needed for servers.
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Additional Information 

For more information on IBM Netfinity direction, products and services, refer to the following
white papers, available from our Web site at www.ibm.com/netfinity.

Achieving Remote Access using Microsoft Virtual Private Networking
At your service...Differentiation beyond technology
Capacity Planning for IBM Netfinity Servers Running Microsoft Windows NT Server 4.0, Terminal
Server Edition
Examples Implementing IBM Netfinity Server Management: Air Conditioning Failure
IBM Chipkill Memory
IBM Netfinity 5500 Server Family
IBM Netfinity 5500 Server Family
IBM Netfinity 7000 M10 Server
IBM Netfinity 8500R Overview
IBM Netfinity Advanced Systems Management
IBM Netfinity Availability Extensions for Microsoft Cluster Server
IBM Netfinity Backup Automation
IBM Netfinity Cluster Directions
IBM Netfinity ClusterProven Program
IBM Netfinity Enterprise Storage Solutions
IBM Netfinity ESCON Adapter
IBM Netfinity Fibre Channel Solutions for Enterprise Storage
IBM Netfinity Manager 5.2 
IBM Netfinity Manager Plus for Tivoli Enterprise Overview
IBM Netfinity OnForever Initiative 
IBM Netfinity PCI Hot-Plug Solutions
IBM Netfinity Predictive Failure Analysis
IBM Netfinity RAID Technology
IBM Netfinity Server Quality
IBM Netfinity Server Ultra2 SCSI Directions
IBM Netfinity Storage Area Networks
IBM Netfinity Storage Management Using Tape Subsystems
IBM Netfinity Systems Management for Servers
IBM Netfinity Web Server Accelerator
IBM Netfinity X-architecture
IBM ServerGuide for Netfinity and PC Server Systems
Implementing Microsoft IIS on Netfinity 5500 M10
Integrating IBM Netfinity Manager with Intel LANDesk Server Manager
Integrating IBM Netfinity Manager with Microsoft Systems Management Server
Lotus Domino Clusters Installation Primer
Lotus Domino Clusters Overview
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