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I

IBM Enterprise X-ArchitectureTM Technology is a collec-

tion of articles that describe the chipsets and systems

that make up the ^ xSeries products. This book

is written by technical professionals to communicate

their ideas to other technical professionals. The main

focus is on the new, different and unique aspects of the

initial design and design methods of the referenced

products.

This book is not intended to be used as a product

specification reference or user’s guide. It does not

contain detailed descriptions of the product features,

nor does it explain how the products are to be used.

Rather it is an attempt to tell the reader something

about the new ideas and techniques used in the

current and future design of the products. Product 

features described in this publication may be different

when the products are announced.

Much work was put into trying to maintain consistency

throughout the book but because the articles were written

by many different authors, this was sometimes difficult

to achieve. Major revisions of the original articles are

minimized to preserve the authenticity and vitality of the

information.

This book demanded a significant amount of time from

the authors when they were busy developing a product.

It required repeated critiques of their writing and

caused frequent interruptions in their work. This editor

is grateful to the authors for their cooperation in this

effort. Special thanks are due to Paul Keeling,

Production Manager, InStudio, IBM Canada and his tal-

ented team. Also, special thanks are due to Sudhir

Dhawan, Senior Technical Staff Member, whose dedica-

tion and hard work allowed this project to complete in a

timely manner. Jennifer Vargus and Jim Hanna deserve

special thanks for their help in critiquing several arti-

cles. Also, this editor is grateful to Harry Schultze,

System Manager, xSeries Server Development for

“pulling” me out of retirement and providing me this

opportunity for an enjoyable and unusual experience.

George Mirabella, Editor

Foreward
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Over the last five years we have witnessed major

changes in the PC server environment, including the

need for high availability, scalability, performance and

overall reliability and operational costs. As business

leaders wrestle with the challenges of market globaliza-

tion, or attempt to improve Information Technology asset

management to continue growth, they are becoming

increasingly aware of the limitations posed by internal

infrastructure and boundaries. Against the backdrop of

growing e-business operations, the tradeoffs between

the low-cost advantages of PC based servers vs. the

robustness of mainframe systems come to the forefront.

Business and economic factors are driving the need to

bridge the gap between these high-end, high mainte-

nance systems and the low-cost systems.

Where once Intel® architecture server usage was limited

to providing only simple file-and-print services, we have

seen its role expand into providing business-critical

resources for e-business applications, Customer

Resource Management (CRM), Enterprise Resource

Planning (ERP), business intelligence, supply chain

management, collaboration and other traditional “big iron”

arenas.

To drive the design and development of server solutions

that address the growing market needs for mainframe

robustness and reliability, IBM assembled a team of

highly experienced and talented engineers and architects

and chartered them with exploiting upcoming techno-

logical advances to bring large systems advantages to

the PC based servers.

The team addressed these business needs through

Enterprise X-ArchitectureTM (EXA) Technology. The IBM

X-Architecture strategy embodies the team’s belief that

the capabilities IBM has delivered on larger systems can

be applied to industry-standard servers. EXA, building

on the IBM X-Architecture blueprint, paves the way for

unprecedented scalability, flexibility, availability, perform-

ance and operational efficiencies in deploying server

resources to meet dynamic e-business needs.

EXA Technology addresses both IA-32 and 64 bit systems

and provides a road map from single node to multiple

nodes (16-way) Symmetric Multiprocessor systems.

This innovative architecture enables customers to start

small and easily upgrade to a larger system by simply

connecting nodes with cables. Similar technology is

applied to provide expansion of Input/Output capabilities.

Enterprise X-Architecture provides users of Intel-based

server’s functionality not previously available on that

platform, including partitioning and serviceability (with-

out having to bring the system down) and mainframe-

like reliability — at a much lower cost.

These innovations demonstrate that evolutionary thinking

can lead to revolutionary advances in technology. It

brings to industry-standard servers the kinds of capa-

bilities formerly only available to users of mainframes

and other high-end systems. These new capabilities,

combined with existing X-Architecture technologies,

result in revolutionary “economies of scalability,”

unmatched flexibility and new levels of server availability

and performance.

The architecture and development of Enterprise 

X-Architecture has been a multi-location effort of hun-

dreds of individuals, both within and outside IBM. EXA

incorporates the architectural advances, technology

innovations, engineering and programming developments

from Watson Research, Burlington, Rochester, Raleigh,

Austin, Kirkland and Poughkeepsie. The IBM team part-

nered with Intel® to validate the chipset and the processor

together. The articles in this book describe some of

their contributions. My thanks to the entire team that

worked so hard to bring this technology to market.

Bill Colton

General Manager

^ xSeries Group

Raleigh, NC

Preface
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Introduction
IBM is revolutionizing the world of Intel® compatible sys-

tem development. With its recent announcement of the

Enterprise X-Architecture (EXA) Technology, the foundation

of the IBM ^ xSeries products, IBM has cap-

tured the opportunity to bring mainframe features to Intel-

based servers. This article provides an overview of the

innovative technology and focuses on the motivation

behind its conception and the unique value that systems

built from EXA bring to the Intel-based server market.

In 1998, a number of trends emerged that influenced the

direction of the server market. The operating systems of

choice were in transition. One to four-way Symmetric

MultiProcessor (SMP) servers using Windows NTTM and

UNIXTM were gaining market share. At that same time

Intel was promoting 64-bit processors and it was clear

that they would play a major role in changing the market.

There were several established chipset vendors whose

products were very niche-focused resulting in a chaotic

market and development environment. Vendors entered

and exited the market quickly. Mergers and buyouts were

common. Chipset features were diverse and no single

vendor provided a consistent set of features that could

be applied across the spectrum of products that the

market required.

As the Windows operating system was gaining popularity,

Microsoft® was pushing the use of its technology in

mission-critical Online Transaction Processing environ-

ments. Recognizing the need to provide this high-end

functionality at a low cost, IBM began to investigate how

to leverage its proven mainframe technology to bring the

scalability, reliability, and performance to Intel processor

based servers. Soon after, IBM designed a blueprint of

the Enterprise X-ArchitectureTM which leveraged existing,

innovative IBM technologies with the intent to build the

most powerful and robust Intel-based servers suitable for

businesses of all sizes. While the Intel® microprocessors

used in xSeries products provided industry-leading

processor performance and features, critical enhance-

ments to the performance, scalability, reliability, availability,

and serviceability of the overall system could only be

provided through the innovation of a new chipset.

Enterprise X-Architecture Conception
During the conception phase of EXA, one of the funda-

mental tasks was to balance schedule, development

expense and function. A steering committee was formed

to drive the definition of the Enterprise X-Architecture

Technology and to ensure high functionality, aggressive

time to market and low development cost.

Experts from xSeries (then Netfinity) product engineering

joined with members of IBM’s Research Division and IBM’s

Server Group, including experts from iSeries (AS/400),

pSeries (RS/6000), and zSeries (S/390). These experts

represented IBM’s significant inventory of server technol-

ogy and extensive experience in system design.

Given the competitive intensity and the emerging customer

demand, emphasis on “time-to-market” was as crucial for

success as the technology features and cost/performance

characteristics.

An important aspect of reducing development costs

was to focus on an optimum number of chips that were

flexible enough to support products across the entire

span of low to high end servers. After careful research,

the team of experts defined two chipsets - IBM XA-32TM

and the IBM XA-64TM. The IBM XA-32TM chipset was

designed to implement systems using the Intel XeonTM

Processor MP while the IBM XA-64TM chipset was designed

to implement systems using the Intel ItaniumTM family of

processors.

To achieve the economies of scale, two chips were

designed to work across both platforms with the third

being unique to either the 32-bit or the 64-bit architec-

tures. In total, four new chips were designed as part of

this undertaking.

1. The Memory and I/O Controller1 is the first common

chip that implements the system bus interface,

memory controller and RXE Expansion Port link that

provides remote I/O capability to the system.

2. The I/O Bridge2 is the other common chip that con-

nects to the Memory I/O Controller (MIOC) using the

RXE Expansion Port link and generates three PCI-X

busses. Multiple I/O Bridges (IOBs) may be connected

using cables to provide the system remote I/O

expansion capability.

Enterprise X-ArchitectureTM Technology Overview
— Jeffrey D. Brown, Sudhir Dhawan
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The third chip in each chipset is the Cache/Scalability

Controller (CSC32)3 which implements the XceL4TM

Server Accelerator Cache (L4 Cache) system coherency

logic and the SMP Expansion Port Link.

3. CSC32 enables the IA-32 systems to scale from 4-way

SMP to 16-way SMP.

4. CSC64 enables the 64 bit systems to scale from 4-way

SMP to 16-way SMP.

To meet the needs of the low end market, systems can

be designed with just the two common chips without

the additional cost of the CSC32 chip. A low end Basic

4-way SMP can be constructed using Intel’s XeonTM

Processor MP. However, to expand beyond the 4-way

configuration, and to implement what is known as an

Enhanced Node, the Cache/Scalability Controller is

required. For the high end Intel ItaniumTM processor

based 4-way SMP systems the CSC64 chip is required.

This innovative partitioning of functionality of the common

underlying technology resulted in high levels of develop-

ment effectiveness and enabled the construction of a

comprehensive line of systems.

Customer Value
IBM ^ xSeries systems support IBM’s X-Architecture

which introduces many innovative mission critical system

functions and attributes. These important features of the 

X-Architecture have roots in IBM’s mainframe and high

end server system architectures. The new Enterprise 

X-Architecture Technology continues to expand the higher

level X-Architecture by implementing support directly in the

hardware. Some examples of these capabilities are:

• XpandOnDemandTM Scalability

• The ability to expand to 16-way SMP by adding

other 4-way / 8-way systems

• The ability to expand the I/O capacity by adding

remote I/O which includes loops for fault tolerance

• Partitioning system resources for optimum per-

formance

• Active MemoryTM

• The ability to hot swap and hot add memory

• Memory ProteXionTM

• The ability to tolerate a DRAM chip failure using

redundant pathways within the controller. These

include chipkill™ tolerant Error Correcting Codes

(ECC), redundant bit steering, and dynamic

scrubbing.

The leadership in Intel-based servers enabled by the

Enterprise X-Architecture Technology is the result of the

functional and architectural innovation supporting the

chipset implementation, the speed-to-market availability

of the chipset, and the overall performance, scalability

and the price/performance obtained. EXA supports

leadership performance in TPCC and other benchmarks.

Leadership And Feature Overview
The Enterprise X-Architecture Technology embodies

“leadership” for Intel-based servers and brings main-

frame class features to the price/performance server

marketplace. The features define a new standard for

the Intel Xeon Processor MP and Itanium Processor

family based server offerings.

Scalability is the most obvious feature providing main-

frame class performance and high volume server cost

structures. Systems built from the IBM XA-32 and IBM

XA-64 chipsets support scalability up to 16-way SMP

systems for both Intel XeonTM MP and for Intel ItaniumTM

family processors. Built-in clustering hardware support

enables even larger systems.

Configurability and partitioning4 is another key main-

frame class capability. The Enterprise X-Architecture

Technology embodied in the IBM XA-32 and XA-64

chipsets support physical partitioning that allows a 

16-way system to have all the management advantages

of a 16-way system but functionally be configured as

four 4-ways, two 8-ways, a 4-way and a 12-way, etc.

Leadership performance is another key attribute of the

systems built from these chipsets. Incorporating an

innovative Level 4 Cache design, referred to as the

XceL4TM Server Accelerator Cache, enables these

systems to scale to 16-way and exhibit significant

performance advantages over competitor offerings.

When users hear “mainframe” features the primary

attribute considered is Reliability, Availability, and

Serviceability (RAS). IBM XA-32 and XA-64 chipsets

implement features designed to support enhanced

RAS. Error detection and correction is pervasive

throughout the XA-32 and XA-64 chipsets and covers

processor system bus, XceL4 Server Accelerator

Cache data and control directory, SMP Expansion

Port Link retry and fail over, Active MemoryTM and

Memory ProteXionTM, and finally RXE Expansion Port

link retry and fail over.
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The IBM XA-32 and XA-64 chipsets leverage IBM’s

CMOS 7SF foundry technology. CMOS 7SF brings inno-

vative technology features to the foundry ASIC market

including copper interconnects and embedded DRAM

(eDRAM) technology. It supports Single Data Rate (SDR)

DRAM and Double Data Rate (DDR) DRAM for system

flexibility. The data arrays for the XceL4 Server Accelerator

Cache are implemented using high performance DRAMs

initially offered as graphics memory.

System Architecture
The Enterprise X-Architecture Technology embodied in

the IBM XA-32 and XA-64 chipsets initially supports a

family of four possible rack-optimized products.

1. xSeries 360, IA-32 Basic Node5

— 3-EIA (1 EIA = 1.75 inches) Basic 4-way Intel Xeon

Processor MP server

2. xSeries 440, IA-32 Enhanced Node6

— 4-EIA 8-way Intel Xeon Processor MP server

3. IPF Enhanced Node Prototype (IPF Node)7

— 4-EIA 4-way Intel Itanium Processor Server

4. xSeries RXE-100TM Remote Expansion Enclosure8

— 3-EIA Remote Expansion Enclosure with up to 12

PCI-X slots.

Figure 1 shows the range of platforms that can be built

from the IBM XA-32 and IBM XA-64 chipsets. The most

basic of these systems is an IA-32 server, shown in the

lower left of the figure. Using this as a base, IA-32 and

IPF Enhanced Nodes can be built by adding CSC32

and CSC64 chips. The Enhanced Nodes can then be

connected to implement up to 16-way SMP systems.

This shows the degree of flexibility built into the 

chipsets such that a given chip is used in some, if not

all, of the platforms.

xSeries 360

The entry product of the Enterprise X-Architecture family,

as shown in Figure 2, is the xSeries 360 Platform. xSeries

360 is a 3-EIA rack-optimized product with price/perform-

ance as its main goal. The system includes

• 4 Intel XeonTM Processors MP

• 8 DIMM slots for system memory

• 6 PCI-X slots

• RXE Expansion Port for connection to IBM RXE-100

Remote Expansion Enclosures.
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Figure 1  Enterprise X-Architecture Implementation Overview
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xSeries 360 is a standalone system supporting between

one and four Intel XeonTM Processor MP family processors.

The chipset connects the processors with eight DIMMs

of DDR DRAM memory and a complete internal I/O

subsystem supporting six PCI-X slots.

To support building a system with more than six PCI-X

slots, xSeries 360 externalizes an RXE Expansion Port.

The RXE Expansion Port can be attached to an IBM

RXE-100 Remote Expansion Drawer containing up to 12

additional PCI-X slots. The architecture allows cascad-

ing RXE-100 drawers for a total of 48 PCI-X slots.

xSeries 360 uses the Memory and I/O Controller (MIOC)

and PCI-X I/O Bridge (IOB) chips to configure a basic

one to 4-way Intel XeonTM Processor MP SMP system.

Figure 2  xSeries 360 XA-32 System

The system bus supports four processors. The memory

bus bandwidth is matched to the system bus for data

and address transfers. The MIOC chip implements the

system bus as defined by Intel®.

The MIOC has two RXE Expansion Port interfaces. The

high speed RXE Port is IBM’s I/O expansion innovation

that allows customers to add separate I/O drawers filled

with PCI-X slots. In the xSeries 360 platform one of the

Remote I/O ports drives a PCI-X IOB chip in the same

drawer supporting six PCI-X slots. The second Remote

I/O port goes directly to a cable connection at the rear

of the xSeries 360 drawer for I/O expandability via a

IBM RXE-100 Remote Expansion Enclosure.

In xSeries 360, the MIOC chip supports an 8-DIMM

DDR DRAM system memory interface. This allows

xSeries 360 to configure up to 8GB of DDR DRAM

memory using eight, 1GB DIMMs, or up to 16GB

using 2GB DIMMs.

xSeries 440

The xSeries 440 system embodies the largest set of EXA

features in a highly-scalable platform. xSeries 440 is a

rack-optimized product with performance and scalability

as its main goals. The base xSeries 440 package is a

dense 4-EIA containing

• 8 Intel Xeon Processors MP

• Up to 32 DIMMs for system memory

• 6 PCI-X slots

• 64MB of XceL4 Server Accelerator Cache

• SMP Expansion Ports for interconnect to another

xSeries 440 supporting scaling up to 16-way SMP

• RXE Expansion ports allowing connection of IBM

RXE-100 Remote Expansion Enclosures.

The xSeries 440 system is a standalone system with up

to eight Intel Xeon MP processors. The processors are

internally arranged on two 4-way nodes referred to as

SMP Expansion Modules. Each SMP Expansion Module

contains four processors and several components of the

IBM XA-32 chipset. The chipset connects the four proces-

sors with 32MB of XceL4 Server Accelerator Cache for

optimal performance and 16 DIMMs of SDR DRAM.

Each SMP Expansion Module has SMP Expansion Port

connections to attach to other SMP Expansion Modules.

By interconnecting SMP Expansion Modules, the IBM

XA-32 chipset can scale from 4-way to 16-way. The

xSeries 440 package itself can hold two SMP

Expansion Modules, or eight processors.

The package externalizes SMP expansion port connec-

tions such that a xSeries 440 system can be connected

to another 8-way xSeries 440 system to form a 16-way.

The xSeries 440 system can also be configured with a

single SMP Expansion Module. In this case, up to four

xSeries 440 systems can be interconnected to form a

16-way.

Regardless of whether there are one or two SMP

Expansion Modules installed, there is a complete I/O

subsystem supporting six PCI-X slots in the xSeries 440

system drawer. The xSeries 440 system drawer also

externalizes two RXE Expansion Ports for attachment of

IBM RXE-100 Remote Expansion Enclosures. Each RXE

Expansion Port connection can be attached to a RXE-

100 drawer containing up to 12 more PCI-X slots per

drawer. For further expansion, any RXE-100 drawer can

cascade to other RXE-100 drawers.

Xeon MP

MIOC

DDR
DIMMs

RXE Expansion Port

PCI-X IOB
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To further take advantage of the XpandOnDemand

scalability of interconnected xSeries 440 systems, it is

possible to configure multiple xSeries 440 systems into

one SMP server or to configure them as unique SMP

servers. The IBM XA-32 chipset supports the concurrent

addition or removal of xSeries 440 SMP Expansion

Modules.

xSeries 440 builds upon the Memory and I/O Controller

(MIOC chip). However, instead of the eight DIMMs of

memory supported in xSeries 360, xSeries 440 supports

attaching up to 16 DIMMs of DRAM memory per MIOC.

Each xSeries 440 system contains two MIOC chips, as

shown in Figure 3, for a total of 32 DIMMs in the 8-way

xSeries 440. Also shown in the figure is the Cache /

Scalability Controller 32 (CSC32) chip connected to

MIOC. CSC32 connects to the QuadT bus interface of

MIOC.

CSC32 has a full system bus interface to connect to

four Intel XeonTM Processors MP, a XceL4 Server Accel-

erator Cache interface and three SMP Expansion Port

interfaces for connection of up to three SMP Expansion

Modules. Finally, the CSC32 interfaces to Memory and

I/O Controller through the MIOC’s QuadT bus.

The XceL4 Server Accelerator Cache on CSC32 sup-

ports a 32MB cache built from three DDR DRAM chips

and supports 3.2GB/s bandwidth of the Intel XeonTM MP

system bus.

The three SMP Expansion Ports can be connected to

three other CSC32’s. Each SMP Expansion Port can

transfer data at 1.6GB/s in each direction simultaneously.

A novel circuit driver technique, simultaneous bi-direc-

tional signaling, allows data to travel in both directions

on the same wire at the same time at very high speed.

The SMP Expansion Ports not only connect CSC32s to

form larger SMPs, but can also be used when multiple

xSeries 440s are interconnected and partitioned into

smaller systems. The SMP Expansion Ports support a

new messaging technique called Inter-Process

Communications (IPC).

Figure 3  xSeries 440 IBM XA-32 Chip System

IPF Enhanced Node Prototype

The IBM Enterprise X-Architecture family product which

supports the Intel ItaniumTM processor family is the IPF

Enhanced Node Prototype (IPF Node) platform.

IPF Node is a 4-EIA rack-optimized product with per-

formance and scalability as its main goal. The system

includes:

• 4 Intel ItaniumTM family processors

• 64MB of XceL4 Server Accelerator Cache

• Up to 28 DIMMs for system memory

• 6 PCI-X slots

• SMP Expansion Port connections to interconnect to

other IPF Node systems to scale to 16-way

• RXE Expansion Ports to connect to remote I/O

drawers (IBM RXE-100 Remote Expansion

Enclosure drawers)

Alone, the IPF Node is a complete system with up 

to four Intel ItaniumTM family processors. The XA-64

components in IPF Node connect the four Intel

ItaniumTM family processors with 64 MB of XceL4 Server

Accelerator Cache for optimal performance, and 28

DIMMs of DDR DRAM.

The IPF Node SMP Expansion Module has SMP

Expansion Port connections to attach to other IPF 

Node SMP Expansion Modules. By interconnecting SMP

Expansion Modules, the XA-64 chipset can scale from

a 4-way to a 16-way system. The IPF Node package

SMI

Xeon MP

L4 CSC32

MIOC RXE Expansion Port

SMP Expansion Ports

Memory
DIMMs

SMI

Memory
DIMMs

MIOC

CSC32 L4

Xeon MP

QuadT Bus
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externalizes the SMP Expansion Port connections such

that it can be connected up to three other IPF Node

systems.

There is a complete I/O subsystem supporting six PCI-X

slots in each IPF Node system drawer.To configure more

than six PCI-X slots, IPF Node also externalizes two

RXE Expansion Port connections. Each RXE Expansion

Port connection can be attached to an IBM RXE-100

Remote Expansion Enclosure drawer containing up to

12 PCI-X slots. For further expansion, any IBM RXE-100

Remote Expansion Enclosure drawer can cascade to

other IBM RXE-100 Remote Expansion Enclosure drawers.

To further take advantage of the XpandOnDemand

scalability of the interconnected IPF Node SMP

Expansion Modules, it is possible to configure multiple

IPF Node SMP Expansion Modules into one SMP

server or to configure them as unique SMP servers.

The XA-64 chipset supports the concurrent addition

or removal of the SMP Expansion Modules.

Like xSeries 440, IPF Node builds upon the MIOC chip.

Unlike xSeries 440, which supports 16 DIMMs on MIOC,

IPF Node configures up to 28 DIMMs for the increased

performance capability of Intel ItaniumTM processor family

systems. As shown in Figure 1 the Cache / Scalability

Controller 64 (CSC64) chip is connected to MIOC. CSC64

connects to the QuadT interface of MIOC.

In addition to the QuadT bus interface to MIOC, CSC64

has a full system bus interface to connect to four Intel

ItaniumTM family processors, a XceL4 Server Accelerator

Cache interface and three SMP expansion port inter-

faces.

The XceL4 cache on CSC64 supports a 64MB cache

built from five DDR DRAM chips and supports the full

6.4GB/s bandwidth of the processor system bus.

The three SMP expansion ports can be connected to

three other CSC64 chips. Each SMP expansion port

can transfer data at 1.6GB/s in each direction simulta-

neously. A novel circuit driver technique, simultaneous

bi-directional signaling, allows data to travel in both

directions on the same wire at the same time at very

high speed.

The SMP expansion ports not only interconnect

CSC64s to form larger SMPs, but can also be used

when multiple IPF Nodes are interconnected but 

partitioned into smaller systems. The SMP expansion

ports support a new messaging technique called

Inter-Process Communications (IPC).

RXE-100 Remote Expansion Enclosure

One of the most innovative features of the Enterprise 

X-Architecture XA-32 and XA-64 chipsets is Remote

Expansion Port based I/O. With this technology, PCI-X

adapters can be added to a system via a separate

drawer. Not only does this allow for a more cost-effective

system drawer, it further offers the capability to add more

PCI-X slots to a system than would normally be put in

the base system drawer.

IBM RXE-100 Remote Expansion Enclosure is a 3 EIA

rack-optimized product with I/O scalability and expan-

sion as its main goal. Each RXE-100 Remote Expansion

drawer contains:

• Up to 12 PCI-X slots, 6 slots standard

• Remote I/O connections to connect to system

drawers and to other IBM RXE-100 Remote

Expansion Drawers.

IBM RXE-100 Remote Expansion Enclosure takes advan-

tage of the flexibility designed into the PCI-X IOB chip

used in each of the XA-32 or XA-64 based systems.

The PCI-X IOB chip can be used (without a MIOC chip)

standalone in a drawer to create an I/O-only drawer.

Figure 4 shows a block diagram of the IBM RXE-100

Remote Expansion Enclosure drawer. The RXE

Expansion Port cables externalized by xSeries 360,

xSeries 440 and IPF Node are brought out for the 

purpose of expanding the I/O capability of each of

these systems.

Figure 4  RXE-100 Structure

IBM RXE-100 Remote Expansion Enclosure brings in one

Remote I/O cable and routes it first to one PCI-X IOB then

another PCI-X IOB, which then externalizes to a second

 PCI-X IOB

RXE Expansion PortRXE Expansion Port

PCI-X Card Slots

RXE Expansion Port

 PCI-X IOB
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Remote I/O cable for connection to more IBM RXE-100

Remote Expansion Enclosure drawers. The second cable

can be looped back to the system to provide redundancy

if a cable fault were to occur.

Each PCI-X IOB chip has two RXE I/O interfaces and

three PCI-X busses. In IBM RXE-100 Remote Expansion

Enclosure, each PCI-X IOB supports a “6-pack” of six

PCI-X slots. Each of the three PCI-X busses is dedicat-

ed to two PCI-X slots.

Conclusion
IBM has succeeded in bringing mainframe features to

the Intel® server marketplace. Several patent-pending,

revolutionary innovations propelled the XA-32 and XA-64

chipsets to provide groundbreaking scalability, partition-

ing, performance, and RAS features. These features are

offered on a line of products that support both the Intel

Xeon Processor MP and Itanium processors, thereby

enabling a smooth transition from 32-bit to 64-bit archi-

tectures.
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Introduction
The Memory/IO Controller (MIOC) is a key component

of the Enterprise X-ArchitectureTM building block structure,

enabling multiple system configurations, processor

scalability options, and enhanced memory reliability,

availability, and serviceability (RAS) features. By itself, the

MIOC enables a basic one to 4-way Intel XeonTM Processor

MP Family system. Enhanced one to 16-way Intel XeonTM

Processor MP Family and Intel ItaniumTM Processor

Family systems are enabled when MIOC is configured

with Cache/Scalability Controller 32 (CSC32) or

Cache/Scalability Controller 64 (CSC64) chips. System

I/O is attached via I/O Bridge1 (IOB) chips with up to two

high speed RXE Expansion Ports. Refer to the Enterprise

X-ArchitectureTM Technology Overview2 article for a sum-

mary of system configurations. MIOC supports both

single data rate (SDR) and double data rate (DDR)

SDRAM memory and integrates several enhanced main

memory RAS features, such as chipkill ECC, memory

scrubbing, memory mirroring, and redundant bit steering.

This paper describes MIOC’s functional characteristics

and provides detail on the specific implementation.

System Interfaces
MIOC has three main system interfaces, Processor,

Memory, and RXE Expansion Port, as shown in Figure 1.

Processor Interface

The Processor Interface provides a dual function

depending on the system topology. For Basic systems,

with MIOC directly connected to Intel XeonTM Processor

MP Family processors, this interface provides full support

for the system bus protocol as defined by Intel®. MIOC

provides full multiprocessor support for up to four Intel

XeonTM Processor MP Family processors.

MIOC performs the role of the central and responding

agents. The Intel XeonTM Processor MP Family system

address bus is a 36-bit double-pumped source syn-

chronous bus with parity protection. The maximum bus

rate is one transaction every two bus cycles. The Intel

XeonTM Processor MP Family system data bus is a 64-bit

quad-pumped source synchronous bus also with parity

protection. The cache line size is 64 bytes.

Figure 1  MIOC Interfaces

For Enhanced systems, with MIOC connected to CSC32

or CSC64 chips, this interface is referred to as the QuadT

bus. The QuadT bus interfaces to CSC32 or CSC64 chips.

In general, MIOC maintains the role of the central agent

and CSC32 or CSC64 act as a symmetric processor.

The QuadT bus extends the address bus to 44 bits and

provides support for both 64 and 128 byte cache lines.

Memory Interface

The memory interface provides a dual function depend-

ing on the system topology. DDR SDRAM DIMMs may be

directly connected to MIOC. Both SDR and DDR SDRAM

DIMMs may be connected to MIOC via Synchronous

Memory Interface (SMI) chips. For direct attached DDR

DIMMs, the control interface operates at 100MHz. The

16-byte wide data bus operates at a frequency of

200MHz. For configurations with SMI, the control bus

operates at 200MHz and the 8-byte data bus operates

at 400MHz. For SMI configurations, MIOC supports two

independent 8-byte data busses.

RXE Expansion Port Interface

The RXE Expansion Port is a scalable high speed point-

to-point interface intended for low latency high bandwidth

coupling of I/O buses. The RXE Expansion Port link

architecture operates to yield a maximum bandwidth of

2GB/s. Switching bridge nodes may be used to provide

connection to a larger number of bridges. The RXE

Expansion Port operates in two modes. The first consists
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of two unidirectional differential 10 bit busses. Each bus

consists of eight data bits,one clock bit and one flag

bit. The second mode operates as a 16-bit bidirectional

interface with 16 data bidirectional data bits, two unidirec-

tional clock bits and two unidirectional flag bits.

Technology
The MIOC chip is built with IBM’s CMOS 7SF SA27E

copper technology. Table 1 lists the technology attrib-

utes of MIOC.

Table 1  MIOC Technology Attributes

Attribute MIOC

Technology IBM CMOS7SF 0.18 micron

Chip Size 11.1mm x 11.1mm

# Signal I/O 692

# Transistors 25M

Substrate Ceramic

Substrate Size 42mm x 42mm

I/O Pitch 1.27mm

The MIOC chip is composed of four major logic com-

ponents: Memory, Coherency Unit (CU), RXE Expansion

Port, and Interrupt. The following sections provide detailed

descriptions of the function, RAS, configurability, and

scalability features of each of these components.

MIOC Memory Subsystem
Table 2 shows a summary of the memory features sup-

ported by the MIOC. MIOC’s memory control function

consists of several partitions within the chip. Two major

memory control logic components are the Memory

Command Buffer and the SDRAM Array Controller as

shown in Figure 2. The Command Buffer receives com-

mands from other logic units, reorders these commands

for efficiency, and dispatches them to the Array Controller.

The Array Controller, which consists of several state

machines per memory port, generates the control signals

to the SDRAMs and the interface to the data flow logic.

The Scrub logic generates and paces memory scrub

commands to the Command Buffer. The Refresh logic

controls the frequency and sequencing of the SDRAM

refresh. The memory data flow contains partitions respon-

sible for checking/generating ECC to/from memory, per-

forming redundant bit steering, and generating statistics

on memory scrubbing as shown in Figure 3. The data

flow is also responsible for reading/writing the data buffer.

10
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Table 2  Memory Features Summary

Command Queues • 16 Read and 32 Write entries per port

Data Lengths • 1-8, 16, 32, 64, and 128 bytes

System Topologies with SMI attached Memory

# of Memory Ports • 1 or 2-8 byte SDRAM ports

DIMM Type • Industry Standard DIMMs

DIMM Plug Rules (SDR SDRAM) • DIMMs plugged in groups of four

DIMM Plug Rules (DDR SDRAM) • DIMMs plugged in groups of two

MIOC Control Interface Frequency • 200MHz

MIOC Data Interface Frequency • 400MHz

Control/data frequency between SMI and SDR SDRAM • 100MHz

Control/data frequency between SMI and DDR SDRAM • 100/200MHz

Port Interleave method • cache line

System Topologies with Direct-Attach  DDR Memory

# of Memory Ports • 1-16B DDR SDRAM port

DIMM Type • Industry Standard DIMMs

DIMM Plug Rules • DIMMs plugged in groups of two

MIOC Control Interface Frequency • 100MHz

MIOC Data Interface Frequency • 200MHz

SDRAMs

Type • SDR or DDR

CAS Latency • 2 or 3(2.5 for DDR)

Trod • 2 or 3

Timing Modes Supported • 4/2, 5/2, or 6/3

Configuration • X4 planar or stack

Technology • 64, 128, and 256Mb

Technology con’t. • 512Mb and 1Gb based on availability

RAS Features • Single ECC matrix with a 2 bit packet mode for 

SMI with SDR SDRAM, 4 bit packet mode for 

Direct Attach DDR, and 8 bit packet mode for 

SMI with DDR SDRAM

• Single packet correct/double packet detect

(SPC/DPD) ECC

• RAS/CAS address parity embedded in ECC 

ChipKill coverage

• Dynamic bit scrubbing with statistic gathering

• Support for Memory Mirroring

• Support for Hardware Initialization and Diagnostics

Memory ECC 2 bit Packet Mode Summary • 144/132 — 2 bit packet ECC

• 64-2 bit data packets

• 6-2 bit check packets

• 2-2 bit packets free for sparing

Memory ECC 4 bit Packet Mode Summary • 144/132 — 4 bit packet ECC

• 32-4 bit data packets

• 4-4 bit check packets

Memory ECC 8 bit Packet Mode Summary • 288 — 8 bit packet ECC

• 32-8 bit data packets

• 3-8 bit check packets

• 1-8 bit packet free for sparing



Configurations and Modes of Operation

MIOC’s memory controller supports two different inter-

faces: Direct Attach and SMI (Synchronous Memory

Interface). In the Direct Attach topology, industry standard

Double Data Rate (DDR) DIMMs attach directly to MIOC,

plugged in groups of two. In the SMI topology, MIOC

drives command/data to and receives data from SMI

chips on a high speed Source Synchronous bus. Industry

standard Single Data Rate (SDR) DIMMs, which are

plugged in groups of four, or DDR DIMMs, which are

plugged in pairs, attach to the SMI chips.

SDRAM Technology and Configurability

MIOC supports 64Mb, 128Mb, 256Mb, 512Mb, and 1Gb

SDRAM technologies with x4 organization (i.e. four data

pins). Different SDRAM technologies may be installed

with the restriction that DIMMs within a plugging group

(pair or quad, depending upon topology) must be of the

same technology. When operating in mirrored mode,

the DIMM plug/technology configuration must match

identically between the two memory ports for the portion

of memory that is mirrored.

Direct Attach Topology and Configurations

In the Direct Attach topology, MIOC supports a single

16 Byte DDR SDRAM memory port with capability to

add up to 16 memory extents. The current system

implementation supports up to four DDR DIMM pairs

and, with stacked DRAM technology, utilizes eight of the

16 available memory extents. The minimum capacity is

256MB with 64Mb SDRAMs (2 DIMMs). With currently

available 256Mb stacked SDRAM technology, the maxi-

mum capacity is 8GB (8 stacked DIMMs) with the

capability to expand to 32GB when 1Gb SDRAM tech-

nology is available.

SMI Topology and Configurations

In the SMI topology, MIOC supports one or two 8 byte

memory ports with the capability to add up to sixteen

memory extents on each port. The current system

implementation that supports SDR SDRAM technology

supports up to two SDR DIMM quads per port. With

stacked DRAM technology, four of the 16 available memory

extents are used on each port. The minimum capacity

for this system is 512MB with 64Mb SDR SDRAMs 

(4 DIMMs). With currently available 256Mb stacked

SDRAM technology, the maximum capacity is 16GB 

(16 stacked DIMMs) with the capability to expand to

64GB when 1Gb SDRAM technology is available.

The current system implementation with SMI that sup-

ports up to sixteen DDR DIMM pairs per port. With

stacked DRAM technology, all 16 available memory

extents are used on each port. The minimum capacity

for this system is 256MB with 64Mb DDR SDRAMs 

(2 DIMMs). With currently available 256Mb stacked

SDRAM technology, the maximum capacity is 32GB 

(32 stacked DIMMs) with the capability to expand to

128GB when 1Gb SDRAM technology is available.

SDRAM Modes Supported

MIOC supports both Cas Latency 2 and 3 with SDR

SDRAMs and Cas Latency 2 and 2.5 with DDR SDRAMs.

It also supports registered DIMMs operating in either

registered or pass-through modes. Depending upon

cache line size, SDRAM type, and system topology,

MIOC supports data burst lengths of 2, 4, or 8.

Memory Hole

MIOC supports a single address hole in memory so as

to utilize main memory that is mapped to I/O. Both hole

ending address and hole size are configurable. The mem-

ory hole size is subtracted from any incoming address

that is above the hole ending address to normalize the

address to a contiguous DRAM memory address space.

Port Address Translation

With the countless combinations of plug configurations

and SDRAM technologies, there exists three general

scenarios. These scenarios are given below with a brief

description as to how they are handled by the address

translation logic.

• Single Port of Memory: The single port address maps

are defined in Figure 4. It shows the Row, Column,

and Internal Bank selects that are asserted. The chip

selects are comprised of the next four consecutive

address bits above the row address.

• Dual Port of Memory, Equal Port Sizes: The dual port

address maps are also defined in Figure 4. It shows

the Row, Column, and Internal Bank Selects that are

asserted. As in the single port case, the chip selects

are comprised of the next four consecutive address

bits above the row address.

• Dual Port of Memory, Unequal Port Sizes: This uses a

combination of both single and dual port addressing.

The dual port memory map is used in the address

space below the address boundary equal to two

13



times the amount of memory in the smaller port. The

single port memory map is used for the address

space above this boundary.

Memory Extent Configuration

The Port configuration register indicates the amount of

memory installed in each port. This is a count of the

number of 128MB units of memory for a 32-byte memory

bus. When memory is configured, the largest extents of

memory are configured to be located at the lowest

addresses, the next largest extents above those, etc. This

method guarantees that there will be no holes in the

memory address map due to usage of non-homoge-

neous combinations of memory technology.
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Figure 4  Memory Address Map Examples

Memory Mirroring

MIOC supports memory mirroring when configured

with two memory ports. When enabled, mirroring has

two modes of operation:

1. Full mirroring in which the entire memory space is

mirrored, or

2. Partial mirroring in which only a subset of memory is

mirrored.

In either case, the mirrored region starts at address zero

and extends upwards based on a programmable region

size (128MB, 256 MB, 512MB, 1024MB, 2048MB, 4096MB,

8192MB, or all of memory).

To operate in mirrored mode, all memory in the mirrored

region must be of equivalent SDRAM technology. The

memory hole, if any, is subtracted from the address first.

Mirroring is then performed on the translated address.

All stores are performed to both SDRAM ports for

addresses in the mirrored region. Reads from the mir-

rored region can be configured in one of three ways:

1. All reads from the mirror region will come from either

Port 0 or Port 1 as specified by a configuration bit

which may be set by hardware. This is the default for

mirrored mode and is used during a hot plug replace

of memory on a given port.

2. Reads interleave between ports, independent of

cache line. This improves performance by spreading

accesses across two independent memory ports and

minimizes command/data bus scheduling conflicts.

This mode can be enabled by software, but must be

disabled prior to doing a hot plug replace of memory

on a given port.

3. In the mirror fail over mode, reads are issued synchro-

nously to both ports. In this mode, if an uncorrectable



error occurs on one memory port, the valid data is

used from the other memory port and the uncor-

rectable error is reported to software as a recoverable

error. This mode can be enabled by software.

After performing a hot plug replace of memory on a

given memory port, MIOC implements a copy function

to copy data from the primary port to the replace port

concurrently with processor and I/O commands. The

interval between copy commands is configurable to

allow trade off between copy time and impact to system

performance during the copy.

When operating in partial mirrored mode, all operations

which are in the non-mirrored region interleave across

both ports.

Memory Command Buffering Logic

One of the major elements in the MIOC chip architecture

is the Command Buffer. This logic resides in the control

path for memory commands between the Memory

Control Multiplexor (MCMUX) and the Array Control

logic (ARCT). The Command Buffer uses the following

techniques to maximize system performance and

memory interface utilization:

• Dual Independent State Sequencers and

Command Flow

• Deep Queuing Structure with Dynamic Update

• High Speed Coherency Management

• Command FastPath

• Speculative Read and Cancel

• High Priority Store

• Command Reordering

• Arbitration Orders and Watermark Mode

Dual Independent State Sequencers And Command Flow

The Command Buffer is architected as two completely

independent State Sequencers and Command Flows

to take full advantage of the dual memory interface

capabilities of ARCT. Depending on memory addresses,

commands are reordered before entering the Command

Buffer. To increase efficiency the cache lines are inter-

leaved between the two memory ports.

The Command Buffer takes advantage of the address

mapping and provides a set of state sequencers and

command flow for even address memory commands for

port 0 and a separate set of sequencers and command

flow for odd address memory commands for port 1. This

reduces latency by allowing maximum overlap while

processing the command stream.

Deep Queuing Structure With Dynamic Update

The Command Buffer provides a deep queuing structure

to handle bursts of memory commands without throttling

incoming processor and I/O commands. The Read

Queue can accommodate up to 16 commands, while

the Store Queue can manage up to 32 commands.

The queue structure is architected to provide stream-

lined management of other functions such as Address

Dependency, Snoop Cancel, Store Data Availability, and

Command Reordering. The handling of these functions

within such a deep queue has been optimized to yield

minimum latency.

A technique called Dynamic Update was developed to

manage specialized function in logic separate from the

queue. The resultant information is then matched to the

associated queue entry and permitted to enter the queue

at that entry location. The data is dynamically updated

into the queue entry by being blended with the entry’s

feedback path, sometimes as the entry is being shifted

in the queue. By providing certain information within the

queue itself, management of the queue, in terms of

identifying valid arbitration candidates, can be made

with optimum performance.

High Speed Coherency Management

The Command Buffer maintains coherency by presenting

commands to ARCT in a certain order relative to how

they were received from MCMUX. The ordering require-

ment is required when an incoming command has an

address dependency between any of store commands

held in the 32-deep store queue. An address depend-

ency exists when two commands have the same cache

line address.

This address dependency is detected and managed

using a specially designed Contents Addressable

Memory (CAM) operating at 200MHz. This customized

CAM design is highly tuned for performance, which

allows the coherency to be managed while minimizing

latency of the command flow path. The Command Buffer

coherency logic is also architected to minimize the

strictness of ordering rules such that opportunities are

created to reorder memory commands. Reordering

memory commands allows efficient use of the memory

interface, increases memory throughput, and improves

system performance. The coherency management logic

implements the following reduced set of the Address

Dependency Rules to reorder commands:

• Two read commands to the same cache line can be
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presented to ARCT in any order relative to when they

were received.

• Two store commands to the same cache line must be

presented to ARCT in the order they were received

into Command Buffer.

• A read command to the same cache line as a pre-

viously received store command must be presented

to ARCT after that store command is presented.

• A store command to the same cache line as a pre-

viously received read command can be presented

to ARCT in any order relative to that read command.

No dependency exists between them.

Command Fastpath

The Command Buffer has a Command FastPath function

that allows a read command to be received from the

MCMUX and bypass the Command Buffer’s deep

queuing structure and coherency management logic and

be presented to the ARCT interface in the next cycle. For

example, if MCMUX presents a read to Command Buffer

during cycle #1, then during cycle #2, Command Buffer

will present this read to the Array Control logic.

The condition for allowing a FastPath case occurs when

the Command Buffer does not have any valid commands

(for that port) that need to be presented to ARCT. While

the deep queuing structure allows the handling of com-

mand bursts efficiently, the FastPath function reduces

read latency.

Speculative Read And Cancel

The Command Buffer receives, manages, and specula-

tively propagates processor reads to memory before a

response has been received from processors on the

system bus. If a response indicates that the read data 

is cached within a processor, the Command Buffer

searches and aborts the read command if found. This

cancel technique improves performance by reducing the

number of speculative reads and improving the SDRAM

bus utilization. By speculatively forwarding reads to

memory, the latency is improved.

High Priority Store

The Command Buffer implements a High Priority Store

function. This function is designed to improve the latency

of any read command that has an Address Dependency

on a previously received store command pending in

the Command Buffer. A dependency exists when both

commands have the same cache line address. When this

condition is detected, the Command Buffer promotes the

priority of the store to High Priority. The arbitration logic

within the Command Buffer selects the store command

from this virtual High Priority queue during any open

arbitration cycle. High Priority stores win arbitration over

any other class of memory command.

Any of the 32 store commands can be marked High

Priority, arbitrated for, and pulled from the queue. By

executing the High Priority store as soon as possible, the

dependency on that store is removed, and the subse-

quent read to that cache line can then be considered

valid as an arbitration candidate.

Command Reordering

When accessing an SDRAM, delay penalties can be

incurred based on the previous access. A RAS

precharge penalty can be incurred if the previous

access was to the same internal bank select of the

same SDRAM. A driver switching penalty can be

incurred if the previous access was to a different

SDRAM on the same data bus.

The Command Buffer analyzes the command addresses

(chip selects and internal bank selects) and then reorders

the commands to minimize these penalties. Reordering

improves the SDRAM data bus utilization and subse-

quently improves system performance.

Command reordering is performed on both the read and

store command queues. For a given command class, the

reordering is performed on the oldest eight commands.

If there is no advantage to reordering the commands,

then the oldest valid command is selected.

The Command Buffer compares the command being

presented (or the last presented) to the ARCT interface

with the list of valid candidates within each command

type. The following shows the order that is sought within

a command type:

1. Oldest command that has a different chip select on

a different data bus, or else has the same chip select

and a different internal bank select.

2. Oldest command that has a different chip select on

the same data bus.

3. Oldest command.

The Command Buffer reevaluates which command is the

best candidate for each queue every cycle to maximize

choices as commands are received.
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Arbitration Ordering And Watermark Mode

The Command Buffer decides which command is to be

presented next to the ARCT interface. The arbitration logic

inside of the Command Buffer selects which command

class will win the arbitration based on a priority order.

There are three classes of commands: Read, Store, and

High Priority store. The default priority order is: 1) High

Priority Store, 2) Read, and 3) Store. When there are valid

arbitration candidates from two or three of these com-

mand types, the above priority order is used.

To maximize performance, reads are given priority over

stores unless a read has an address dependency on a

previously received store. The store is promoted to a

High Priority store. Since these cases are relatively rare,

and because there is significant opportunity to reduce

the latency of such reads, the Command Buffer offers

the ability to place High Priority stores at the beginning

of the priority order.

Besides the Default Priority Order, there is another Priority

Order that can be used. This second Order is provided to

allow performance tuning of the system. This tuning may

vary due to the command mix affected by the system

hardware configuration, the operating system, or the

application. This second Order is intended to bias arbitra-

tion in favor of store commands. The Secondary Priority

Order is: 1) High Priority Store, 2) Store, and 3) Read.

To provide the ability to tune performance of the memory

interface, the arbitration logic can be put in a mode

where it will alternate between the default Order and

the secondary Order. This allows the biasing of arbitra-

tion to favor reads for X number of wins, and then switch

the Order and favor stores for Y number of wins. This

type of alternating Order enables the tuning of the 

arbitration to better match the command mix and thus

improve system performance. The Command Buffer

provides both static and dynamic enables for controlling

the arbitration so that it alternates between the default

and the secondary Orders.

The static enable forces the biasing to alternate contin-

ually, biasing toward reads for X wins, then biasing

toward stores for Y wins, and repeating indefinitely.

The dynamic enable allows the arbitration Orders to

alternate while certain conditions are met and then return

to the default Order until the conditions are met to

return to alternating arbitration mode. The dynamic

enable is handled by using the Watermark function. This

function monitors the number of stores currently held

inside the Command Buffer for a given port. When this

level reaches a programmable value (High Watermark),

the alternating arbitration mode is entered. When the

number of stores drops to another programmable level

(Low Watermark), then the arbitration returns to the

default Order.

The dynamic enable can also be configured to activate

by the presence of any High Priority Store commands.

Together, the many ways of biasing the arbitration allows

the Command Buffer to be tuned to provide the best

system performance.

SDRAM Array Controller Logic

Another major element within the MIOC Chip architecture

is the Array Controller (ARCT). This logic resides in the

control path for memory commands between the

Memory Command Buffer and the external interface to

the SDRAMs. The Array Controller uses the following

techniques to maximize system performance and

memory interface utilization:

• Dual Independent Memory Ports (memory inter-

leaving)

• Multiple State Sequencers (memory command

overlap)

• Dynamic Array Command/Data bus scheduling

• Command FastPath

• Bursting Refreshes

• Fast Memory Initialization

• Fast Hardware Diagnostics

• Memory Display/Alter

Dual Independent Memory Ports

MIOC implements two independent memory ports to

support memory interleaving. Each port has its own set

of state sequencers that are sourced by commands

from port dedicated command buffering logic. Two ports

improve sustained latency by allowing overlap of even

and odd cache line address commands with no com-

mand or data bus scheduling conflicts.

Multiple State Sequencers

MIOC has also implemented five state sequencers for

each memory port. These sequencers allow overlapping

of commands on the same port by communicating state

information between them. They operate in a round robin

fashion. If a command is presented from the Command

Buffer to the Array Controller and the next sequencer is

available, the Array Controller immediately processes the
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command. The Array Controller then looks for the next

command from Command Buffer and assigns it to the

next sequencer, and so on.

An option exists to configure a single sequencer per port,

thus single threading all commands. This is useful for

laboratory debug as well as stress testing the command

queuing logic during hardware verification.

Dynamic Array Command /Data Bus Scheduling

After receipt of a command from Command Buffering

logic, the Array controller determines if there are any

DRAM bank address conflicts with up to four other

commands that are currently in progress. If such con-

flicts exist, the command must wait until the previous

conflicting command has completed. (Command Buffer

tries to minimize such penalties by command reordering

prior to presenting commands to the array controller). If

no conflict exists with a prior command in progress, the

array controller, knowing the state information from the

other four sequencers, determines when the command

bus is available to present the row address command

to the DRAMs to open the bank. Based upon the fixed

relationship between the column address command and

data for reads and writes and the state information from

the other four sequencers,ARCT determines when both the

command and data bus are available to issue the column

read or column write command. This is done dynamically

for any combination of commands currently in progress.

Command Fastpath

In the event that there are no commands queued within

the command buffering logic, then commands fast path

around the command buffer directly to the array controller

on a dedicated interface. This reduces latency to com-

mands that go through the command buffering logic.

This fast path can be enabled/disabled by software.

If there are no commands queued within the command

buffering logic and there are no commands pending

within the coherency unit, memory read commands fast

path directly from the system bus interface logic to the

array controller on a dedicated interface, bypassing both

the coherency unit logic and the command buffering

logic. This fast path can be enabled/disabled by software.

These two fast paths are mutually exclusive. Only one

can be enabled.

Bursting Refreshes

The DRAM refresh function is required to maintain charge

storage within the DRAM chips. All commands active to

a given SDRAM are completed and all banks closed

before refresh is issued. MIOC completes all commands

currently in progress before allowing a refresh command

to be issued. There are up to 16 memory extents per

port, all of which are refreshed back to back. MIOC

also supports bursting of up to 16 refreshes for a given

memory extent, thus refreshing on much greater intervals

and reducing the overhead of having to flush the Array

Control sequencers. The number of consecutive

refreshes performed is configurable by software. Most

DRAM manufacturers now support bursting of up to

eight consecutive refreshes.

Fast Memory Initialization

MIOC also provides a means for the hardware to initial-

ize the SDRAMs with a data pattern and good ECC.

Depending upon configuration, this function overlaps

commands in such a way as to keep the SDRAM data

busses as efficiently utilized as possible. Initialization

starts in memory extent zero and increments through all

memory extents until all addresses have been written.

After all addresses have been written, a special interrupt

is issued to software to indicate that the memory is ready

for use. Upon completion of the fast card initialization,

an option exists to perform a fast scrub which reads all

memory addresses and checks for good ECC. This

option is great for performing memory diagnostics

quickly during the initial program load procedure.

Fast Hardware Diagnostics

An enhanced mode for fast memory initialization exists

to allow isolation of Uncorrectable Errors. Instead of

writing a fixed pattern into memory, a pseudo random

shifting data pattern with good ECC is written into the

SDRAMs. The same registers used to specify the data

pattern for Fast Memory Initialization are used as a

starting seed. After having initialized the memory with

the pseudo random shifting pattern, the data pattern

registers are restored to the original starting seed. A

Fast Scrub is then performed. In this enhanced mode,

the hardware determines the expect data from the

pseudo random pattern generator and compares it with

data received from the SDRAMs bit by bit. This allows

better failure isolation than using ECC.
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Memory Display/alter

MIOC supports a register interface to display and alter

contents of a memory cache line. This feature is very

useful in the laboratory and a performance enhancement

for performing memory diagnostics. Current methods use

the processor to perform write/read/compares four bytes

at a time. With larger memory spaces, the length of time

to do this is not tolerable. Also, if ECC is reduced to parity

coverage on the system bus, the ECC bits do not get

checked with this method. With Display/Alter, memory can

be diagnosed cache line at a time using the hardware to

flag ECC errors. The processor streams a sequence of

register write commands, one for each address location.

Memory RAS Features

Advances in computer systems and memory technology

have resulted in very large main storage capacities.

Along with increased size, main storage must be more

reliable, operate for longer intervals between initial pro-

gram loads (IPLs), and take less time at IPL to test and

initialize. One of the key contributors to main storage sub-

system reliability is failing memory modules. To improve

reliability, the system needs to be designed to tolerate

these module failures. One method to improve main

storage reliability is to use an error correction code (ECC)

on the data in conjunction with a diagnostic process or

processes to remove failing memory modules from use

before the failure progresses to the point of an uncor-

rectable error (UE). An uncorrectable memory failure is

catastrophic and results in system down time and lost

data. Due to the increased interval between IPLs, the

memory diagnostic process must execute during run-

time and not interfere with normal activity. It must also

place as small a burden as possible on the system so

as to not interfere with the system’s main function,

executing user programs.

The comprehensive main storage diagnostic process

implemented by the MIOC chip consists of the following

major components:

• ECC

• Scrubbing

• Scrub Statistics Gathering

• Real Time Redundant Symbol Steering

• IPL Diagnostics

The following sections describe these techniques and

how they build upon one another and work together in

the MIOC chip to increase the main storage subsystem

reliability.

ECC

Error correction codes (ECC) are used to detect and/or

correct data errors. They are simply parity schemes where

the pattern of parity errors indicate an error and point to

the bit or bits that are incorrect. The simplest form of ECC

is parity. Parity is a single error detect (SED) ECC scheme.

As the requirements for the ECC algorithm increase to

double error detect (DED) or single error correct (SEC) or

further, the number of parity bits required also increases.

When the scheme is greater than parity, these bits are

called check bits. In general, these schemes correct and

detect a certain number of errors in an ECC word. An

example is a ‘single error correct/double error detect’

(SEC/DED) scheme. ECC schemes can be expanded to

cover groups of bits. This group or packet of bits is called

a symbol. This type of ECC is capable of correcting as

many errors as are in a symbol, but they must be con-

tained within only one symbol. An example is a ‘single

packet correct/double packet detect’ scheme. Another

way of looking at this is that the common SEC/DED

code has a symbol size of one.

The number of ECC algorithms and their complexity is

infinite. The MIOC chip design team made simplifying

assumptions to come up with a scheme that was prac-

tical. Tradeoffs were made in picking the ECC algorithm

best suited for the memory configurations to be sup-

ported. In general, the cost of ECC goes up with

increased symbol size and goes down with increased

ECC word data width. It is the most economical to

lower the number of bits required to be corrected in as

wide of an ECC word as possible.

In the discussion that follows, there are references to

the ability to correct a chipkill failure. This simply means

that if a DRAM fails, all the data received from that DRAM

can be corrected and the system continues to run with

no loss of data.

The MIOC chip supports several memory configurations

and has implemented multiple ECC schemes. The direct

attach interface, which is designed to interface with

Double Data Rate (DDR) Synchronous DRAMs, is a 16

byte interface. Each 64-byte cache line access 

consists of a burst of four 16-byte data transfers, each

flows through a 16 Byte wide Single Packet Correct/

Double Packet Detect ECC tree. Since x4 DRAMs are

used (i.e. four data bits per DRAM), the packet size for the

ECC code chosen is a 4-bit symbol. This allows for data

correction even in the event of a full DRAM chipkill. The

number of check bits needed for a 16-byte data width
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and 4-bit symbol size is 16. Two DDR DIMMs supplies

144 bits for 128 data plus 16 check bits, leaving no

extras for support of redundant bit steering.

The elastic memory interface, which is a source syn-

chronous interface for high speed data transfer between

MIOC and SMI re-power chips, is an 8-byte interface.

MIOC has implemented two such interfaces. The SMI

chips may receive a cache line of data (64 or 128 Bytes)

from either four Single Data Rate (SDR) DIMMs running at

100MHz (i.e. 32 Bytes every 10 nanoseconds) or two

Double Data Rate (DDR) DIMMs running at 200MHz

(i.e. 16 Bytes every five nanoseconds). The data is then

transferred back to MIOC on the elastic memory inter-

face at a rate of eight bytes every 2.5 nanoseconds.

If using SDR x4 DRAM technology, each 32-byte SDR

SDRAM access results in four 8-byte transfers on the

elastic memory interface. The first 8-byte transfer consists

of data from only one data (DQ) pin from each DRAM. The

second 8-byte transfer consists of data from another data

pin from each DRAM.The two transfers are stitched together

such that data originating from two pins of the same DRAM

and transferred across the same physical board wire

reside within the same two bit symbol. This allows for data

correction even in the event of a full DRAM chipkill or

defect in the board wire between MIOC and SMI. The

data flows through a 16-byte wide Single Packet Correct/

Double Packet Detect ECC tree. Each subsequent two

transfers get stitched together and flow through the

same ECC tree. The number of check bits needed for 

a 16-byte data width and 2-bit symbol size is only 12,

leaving four bits for support of redundant bit steering.

If using DDR x4 DRAM technology, each 16-byte DDR

SDRAM access results in two 8-byte transfers on the

elastic memory interface. Since all four data pins of every

DRAM end up in the same 16-byte ECC word, a 4-bit

symbol would be needed to cover the chipkill scenario.

As stated in the Direct Attach DDR scenario, this requires

16 check bits, leaving no additional bits for support of

redundant bit steering. Because this implementation is

directed at larger systems which would require higher

reliability, a 32-byte ECC tree was also implemented at

the expense of one additional cycle of latency. Every two

16-byte DDR SDRAM accesses now result in four 8-byte

transfers on the elastic memory interface. Within this 

32-bytes of data, each DRAM has sourced eight bits of

the data. The eight bits of data are grouped into the

same symbol and flow through the 32-byte ECC tree.

The number of check bits needed for a 32-byte data

width and 8-bit symbol size is only 24, leaving eight bits

(one symbol) for support of redundant bit steering.

MIOC also makes use of ‘virtual’ ECC bits to add cover-

age to control lines, such as in DRAM address parity. For

many ECC codes, the number of check bits required for

a power of two data width actually covers more bits.

Such is the case for the ECC codes implemented in

MIOC. For each store, the MIOC chip determines the

address parity of both the row and column addresses

of the DRAM address. Those addresses are treated as

data bits when generating ECC, but only the data and

ECC bits are stored to memory. For subsequent access

of the same address, the row and column address parity

is again calculated (address is known). Upon receipt of

the data, the calculated address parity bits are appended

to the data prior to being fed through the ECC tree. If

there is a stuck or open fault on one of the address

lines, there is 75% chance that the data returned will be

from an address with different address parity and the

error will be reported.

Scrubbing

Main storage scrubbing is a method to retain the integrity

of data in dynamic random access memory (DRAM)

modules. Alpha radiation or other failure mechanisms can

cause a DRAM cell to have a value different than that

which was originally written. Scrubbing consists of a read

to the DRAM, error correction if appropriate, and store

back to the DRAM. If an uncorrectable error is detected

by the scrub read, the data is written back unaltered.

Scrubbing is primarily used to fix intermittent or soft

errors. If the DRAM cell is permanently damaged or the

error is hard, the failure will always exist. Soft errors that

accumulate over time have the potential to line up with a

hard error in an ECC word to cause a uncorrectable error

(UE). Scrubbing provides a preventative function for UE’s.

The soft errors are fixed before they contribute to forming

multiple bit errors that cannot be corrected. The entire

memory space could be scrubbed once a day or as

seldom as once a week. The key is to scrub often enough

to fix the soft errors before they accumulate.

In MIOC, main storage scrubbing is implemented in the

hardware and enabled by software. In this implementa-

tion, two scrub controllers exist in the memory subsystem,

one per memory port. A counter within each scrub con-

troller counts internal clock cycles. When the software

defined interval is reached, the controller initiates a

request for a scrub. The scrub command is injected into
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the normal flow of commands such that it may utilize

command reordering to determine when the best pos-

sible time is to execute (i.e. minimize penalties due to

conflicts with normal commands and preserve priority

for read commands). The interval value is variable and

chosen such that the entire memory space is scrubbed

once a day for a given memory size. Once a scrub

request has been issued, the counter is reset to its initial

value and counting starts over.

The scrub operation itself is performed on a cache line.

The following procedure describes the general method-

ology of how scrubbing works:

1. Read a cache line from memory

2. Correct any correctable errors

3. Write the corrected data back to memory (if no UE)

4. If a UE is detected, write the data back unaltered

5. Increment the scrub address offset and wait for

defined scrub interval

6. Repeat the process until all addresses in the extent

are scrubbed

7. Continue scrubbing in next memory extent.

Several options exist in the scrub controller for flexibility

and debug/verification capability. These options allow for

more efficient testing of other implemented RAS features.

Scrubbing may be started at any cache line offset within

any memory extent. Options exist to scrub a single cache

line, scrub all cache lines up to the end of a memory

extent, or to continuously scrub all extents of memory in

a round robin fashion. An additional option exists to scrub

all of memory as fast as possible, throttled only by the

hardware ability to execute the scrub commands. The

option also exists to disable the store back of corrected

data. This is useful in testing other RAS features.

MIOC supports a low power mode. This means that the

DRAMs only have power and operate in a self refresh

mode. Because the DRAMs are in self refresh mode,

scrubbing does not resume until exit from low power

mode. Upon exit of low power mode, scrubbing can be

used to quickly remove any soft errors that have accu-

mulated while in low power mode. This function is a key

component of a system that has a low power mode and

provides an integrity check on the data. This process is

referred to as a “fast” scrub and is completed as rapidly

as possible before any reads or stores are sent from

the processor to MIOC.

Scrub Statistic Gathering

Scrubbing can be used as a stand-alone feature to

improve the reliability of the system’s main memory. It can

also be used to predict uncorrectable memory failures

before they happen. In general, uncorrectable errors are

created when a group of correctable errors are present

within the same ECC word. By keeping track of cor-

rectable errors, the ability exists to take action before

another error accumulates that may align with it.

In MIOC, scrub statistics gathering is implemented in

the hardware and enabled by software. While scrubbing

an extent of memory, all single symbol errors are logged

in an internal low power register array. This gives an

accurate representation of total errors within the extent.

If the error count for any symbol exceeds programmable

threshold, an interrupt is generated.

The hardware maintains the captured information about

the memory port, memory extent within the port, and

symbol within the extent that exceeded the threshold.

Software can access this information and take the appro-

priate action. If the error counts for all symbols remain

below the threshold, the counts within the array are

cleared and scrubbing continues in the next memory

extent.

MIOC keeps track of single symbol errors for scrub

commands only to ensure that the counts within an

extent are accurate. If statistics were gathered for all

memory accesses, misleading information could accrue

if the software gets into a tight loop that repeatedly reads

from a location that has an error.

A hardware block diagram of Scrub Statistics Gathering

is shown in Figure 5.
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Figure 5  Scrub Statistics Gathering Overview/Hardware

Real Time Redundant Symbol Steering

With scrubbing and scrub statistics working together, the

reliability is improved and situations can by identified

where an uncorrectable error is likely. The next question

is what action needs to be taken when an uncorrectable

error is likely. In some systems, a portion of the memory

address space can be marked by software so it is not

used by the operating system. For example, the address

space may be unallocated in units of 4K pages. A sec-

ond level threshold is usually enforced such that when

enough pages are unallocated, then the entire memory

extent is unallocated and called out for replacement. The

software sends the appropriate messages to the system

operator. The main objective of this action is to prevent

an uncorrectable error from occurring.

MIOC has implemented a method by which the logic

may switch in unused DRAM bits real time to replace

the symbol that has been flagged by scrub statistics

gathering. This function is enabled by software by writing

to a control register that specifies the symbol to be

switched/steered. There exists one control register for

each extent of memory in each port such that any symbol

of any extent, and any combination thereof, may be

steered. This action prolongs the need to unallocate or

replace a memory extent.

There are two major ways of implementing a redundant

symbol steering function. The first is a “split and shift”

scheme by which the ECC word is “split” at the defective

symbol position and, for writes, all bits to the right of

that symbol are shifted by the width of one symbol. The

rightmost symbol bits shift into the spare DRAM bits. For

reads, all data to the right of the defective symbol are

shifted left prior to forwarding to the ECC logic. This is

easier to implement in the hardware from a chip timing

perspective (uses “2 to 1” multiplexors), but is more dif-

ficult to transition to the steered state real time because

an address boundary must be maintained to know which

addresses have or have not already been steered.

MIOC has implemented a second scheme that provides

large multiplexors to allow the spare symbol to be sub-

stituted for any symbol rather than just the adjacent

symbol as done in the “split and shift” method. This is

more difficult to implement in the hardware from a chip

timing perspective, but lends itself to an easier, faster way

of steering. During the process of changing over to the

steered DRAMs (referred to as “Clean Up”), the scrub

function is used with the “clean up” option. During this

time frame, the memory controller will perform all reads

from the non steered location and perform all writes to

the steered location. By performing the reads from the

non steered location, unless there is a full chipkill, there

is a higher probability that the data for any given ECC

word will be correct and minimize exposure to alignment

to an error in a different symbol. Also, since only one

symbol is steered, the ECC logic can be used to correct

the data for stores to the steered location rather than

having to shift or move data for each access. Upon

completion of the “clean up”, all reads and writes for that

memory extent will be performed to the steered location.

This process is transparent to processor and I/O activity.

Hardware block diagrams for an example 80-bit data

width are provided in Figures 6-9 for the read and write

paths for each method described above.

IPL Diagnostics

Hardware-based Initial Program Load (IPL) Diagnostics

are another key factor to guarantee a reliable memory

subsystem and reduce boot time. Since there are con-

nectors between the memory DIMMs and the memory 
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control logic, testing is required to ensure that this path

is sound between IPLs. The scope of these tests is limited

to diagnose the most obvious failure mechanisms.

MIOC provides a methodology that uses unique data

patterns for each 16 bytes of data. Under software control,

the hardware writes, reads and compares these data

patterns to memory. This scheme covers failures in all

address and control bits and will detect most stuck or

open data lines. The hardware implementation detects

memory failures and is several orders of magnitude

faster than any software implementation.



Coherency Unit
The Coherency Unit (CU) in MIOC is responsible for

accepting commands from the system bus, the RXE

Expansion Port interface, and the internal interface

(Interrupts) and transferring the commands to the

appropriate unit to be processed. Commands received

by the CU can be transferred to the Memory Unit, the

RXE Expansion Port Interface, the Register Unit, the

system bus, or the Interrupt Unit. The destination of the

new command is determined by a set of registers

containing routing information.

The CU is comprised of the Request Handler, the

Pending Queue (PQ), the Request Generators, the

Response Generators, the Response Handlers, and the

Buffer Handler as shown in Figure 10.

The Request Handler accepts all new commands from

the system bus, the RXE Expansion Port interface, and

the internal Interrupt interface. System bus commands

have the highest priority and are always accepted by

the Request Handler as soon as they are presented. No

acknowledge is sent back to the system bus logic. RXE

Expansion Port commands and internal interrupts alter-

nate priority with each other. These commands do not

have to be accepted as soon as they are presented, so

the Request Handler sends an acknowledge when it has

accepted a command from one of these two interfaces.

Once a command has been accepted by the Request

Handler, it moves through a series of stages. The first

stage passes the command information to the PQ to

check for address collisions with commands already in

the PQ and to the I/O Directory to check for address

collisions with DMA Read data that is cached in IOB. The

second stage receives the address collision information

from the PQ and uses it along with its own internal

checking to determine if the command should be retried

back to the presenting interface. This stage also uses

the routing information registers to determine where the

command needs to be sent in the chip. The third stage

takes all the information from the original command and

the previous stages and determines the initial values for

all the fields in the PQ entry. This information is passed

to the PQ in this stage.
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Figure 10  Coherency Unit Transaction Flow
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The CU contains a 32-entry Pending Queue (PQ) that

will hold all the command information until MIOC has

finished execution of the command. Ordering rules are

maintained by the CU by doing address comparisons

between an incoming command in the Request Handler

and the commands already in the PQ.

The PQ follows the command through all the stages of

execution. It receives its initial command information

from the Request Handler. The PQ entry interfaces with

the Request Generators, Response Handlers, and the

Response Generators.

If the command is to be sent to another functional unit

on the chip, the PQ entry will inform the appropriate

Request Generator that a new request needs to be

sent. There is a unique Request Generator for each

functional unit that is to receive a command from the

PQ. These units include the Memory Unit, the RXE

Expansion Port Interface, the Register Unit, the System

Bus, and the Interrupt Unit. The Request Generator

arbitrates between the 32 PQ entries, picks a winner,

and sends the command information to the functional

unit. The functional unit will return an acknowledge

when it accepts the command.

When the functional unit is finished with the request,

a response from the functional unit is handled by a

Response Handler. There is a unique Response Handler

for each functional unit. There are also Response

Handlers that process information from the system bus

phases such as the Snoop phase and the Response

phase. The Response Handler accepts the response

information and forwards it to the appropriate PQ entry.

No acknowledge is returned for the response since

responses are always accepted on the cycle received.

Once the command has been executed by the functional

unit and the response has been received, the PQ entry

will inform the appropriate Response Generator that a

response can be sent back to the originating interface to

indicate that the command has been completed. There

is a unique Response Generator for each interface that

can send commands to the CU.

These Response Generators behave like the Request

Generators except that they do not require an acknowl-

edge to be returned since the responses are always

accepted by the originating interface.

The last chiplet in the CU is the Buffer Handler. The Buffer

Handler decides how to allocate PQ entries and Data

Buffers among the interfaces that send commands to the

CU: the system bus, the RXE Expansion Port interface,

and the Internal Interrupt interface. Each interface has a

low PQ entry number that is used in determining who

has priority for the next PQ entry to be handed out, and

a high PQ entry number that indicates the maximum

number allowed for that interface.

Performance

The CU contains a Fast path that allows memory read

commands to bypass the PQ and be sent directly to the

Memory Unit. This reduces latency for memory reads.

Memory reads received from the system bus can be

accepted in order by the CU, or deferred depending 

on a programmable bit in the CU. If the command is

deferred, it causes a deferred reply transaction to be sent

on the system bus to return the data. The deferred reply

uses up Address Bus bandwidth and increases the

latency for reads. An in-order command does not require

a deferred reply transaction. This also improves read

latency. Memory reads that collide with a command

already in the PQ are not able to execute in-order. These

commands are deferred.

RAS

The CU checks all incoming commands from the system

bus, the RXE Expansion Port interface, and the Internal

Interrupt interface to see if the address maps to a valid

destination. The three valid destinations for memory-type

commands are the Memory Unit, the RXE Expansion

Port interface, or the Register Unit. A set of registers that

contain routing information are used to determine if the

command maps to a valid destination. If the command

does not map to a valid destination, an error will occur.

The type of error and the action taken is programmable.

If the error is programmed to be a recoverable error, then

a recoverable error bit is set, the command information

is saved away in a register, and an interrupt is sent. If the

command was a read, ones will be returned to the origi-

nator. If it was a write command, it will be discarded.

If the error is programmed to be a machine check error,

then a machine check bit is set, the command informa-

tion is frozen in a PQ entry, and an attention is sent to the

service processor. If the command was a read, ones

will be returned to the originator. If a write command, it

will be discarded.

The PQ logic inside the CU has protocol checks that

make sure that undefined events that occur to a given 
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entry will result in a machine check error. These checks

include such things as a response from an interface to

an entry that is not valid, a response from an interface

that was not involved with a valid entry, or an invalid

response from an interface that was involved with a valid

entry. These errors set the machine check bit, the com-

mand information is frozen in the PQ entry, the specific

type of protocol error is frozen in the PQ entry, and an

attention is sent to the service processor. The PQ logic

will record which entry was the first to report a protocol

error so that the first error can be analyzed.

The CU contains logic that prevents a processor Bus

Read Invalidate Line (BRIL) command from not making

forward progress. A live lock condition may occur when

several processors want to own the same cache line.

Each processor sends a BRIL command on the system

bus to gain ownership of the cache line. It is possible

that one of the processors gets continually retried due

to bus timings. To prevent this from happening, the CU

logic will save away the first BRIL command that gets

retried along with the processor that sent it. All accesses

to that cache line will be retried until the original retried

processor sends the command again, and the command

is no longer retried. Once this happens, the BRIL live lock

information is discarded, and commands to that cache

line can flow again.

Configurability/Scalability

The CU can be set up to run in one of two main 

configurations.

The first configuration is called the Basic System. This

system has MIOC connected to 1-4 Intel XeonTM

Processor MP Family Processor(s) via the system bus.

In this mode, the CU handles all coherency and ordering

rules for commands received from the system bus, the

RXE Expansion Port interface, and the Internal Interrupt

interface. The I/O Directory in MIOC will handle

coherency for DMA Read data that is cached in IOB.

The second configuration is called the Enhanced

System. This system has MIOC connected to either the

CSC32 or CSC64 chip via the QuadT Bus. In this mode,

the CU does not handle coherency and ordering rules

for commands received from the QuadT Bus, the RXE

Expansion Port interface, and the Internal Interrupt inter-

face. The I/O Directory in MIOC does not handle

coherency for DMA Read data that is cached in the

IOB. These coherency functions are handled by either

CSC32 or CSC64.

The CU can be configured to handle cache line sizes of

64 or 128 bytes. A cache line size of 64 bytes is used

for the Basic System and the Enhanced System with

CSC32. These systems use the Intel XeonTM Processor

MP Family processor. A cache line size of 128 bytes is

used for the Enhanced System with CSC64. This system

uses the Intel ItaniumTM Processor Family processor.

There are three interfaces that send commands to the CU

and its internal PQ. These are the system bus/QuadT

bus, the RXE Expansion Port interface, and the Internal

Interrupt interface. There are 32 PQ entries that must be

shared by these three interfaces. The CU contains a

register that specifies the maximum number of PQ

entries that each interface can have. Each interface has

its own maximum value so that the distribution can be

tailored to get the best system performance. This register

also contains a minimum value for each interface which

is used in deciding which interface will be handed out

the next PQ entry.

RXE Expansion Port
The RXE Expansion Port Interface in MIOC is comprised

of two parts: the internal I/O logic specific to MIOC and

the I/O Macro logic1 that is common for all I/O inter-

faces. This section describes the internal I/O logic

specific to MIOC.

The I/O Interface supports two RXE Expansion ports.

The two ports may be connected in a ring fashion to

provide a redundant path, or they may be left as two

separate buses.

The I/O Interface is responsible for accepting I/O packets

sent from IOB. These packets include DMA Reads/Writes,

Register Reads/Writes, Interrupts, Ordered Responses,

and Responses. These packets are stored in the I/O In

Queue. Packets from the same I/O Node and PCI-X Bus

are ordered with each other to follow PCI-X ordering rules.

DMA Read/Write, Register Read/Write, and Interrupt

packets are sent by the I/O Interface to the Coherency

Unit over the command interface to be processed. DMA

Read/Write packets may be as large as 128 bytes. If the

system cache line size is 64 bytes, these DMA packets

will be broken up into two 64-byte DMA commands when

presented to the Coherency Unit. Ordered Response

and Response packets are sent by the I/O Interface 

to the Coherency Unit over the response interface to

indicate that a previous command sent by MIOC to IOB

has finished.
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The I/O Interface is also responsible for sending I/O

packets to IOB. These packets include MMIO Reads/

Writes, IO Reads/Writes, DKills, Ordered Responses, and

Responses. These packets are stored in the RXE Out

Queue. All packets in the I/O Out Queue are ordered

with each other in a FIFO fashion. MMIO read/write and

IO read/write packets are received by the I/O Interface

from the Coherency Unit over the command interface.

DKill packets are received from either the IO Directory in

a Basic System or the Coherency Unit in an Enhanced

System. Ordered Response and Response packets are

received by the I/O Interface from the Coherency Unit

over the response interface to indicate that a previous

command sent by IOB to MIOC has finished.

The IO Directory contained in the I/O Interface logic

maintains a record of all I/O bridges which may have pre

fetched any byte within a 4K byte block of the system

memory. IOBs do not own modified data or share data

with a processor. If a processor reads data that an IOB

has a copy of, then the IOB’s copy will be invalidated.

Therefore, no snoop responses (ie. HIT#) to the Intel

XeonTM Processor MP Family bus are necessary.

MIOC supports the IO Directory for Basic systems only.

CSC32/CSC64 support this function for Enhanced sys-

tems. The coherency block size used by MIOC and I/O

bridges is 4K bytes.

IOB read operations of any length are cached by the

IOB and create an entry in the IO Directory. The IO

Directory is 4-way set associative with 512 entries, and

supports 4K byte blocks. This is independent of the

system page size. IOB operations are the only requests

that cause an entry to be created in the I/O directory.

All writes to memory from a processor or from an IOB

are snooped against the IO Directory. If a Hit is detected

then a Cache Invalidate (DKILL) is sent to the IOB iden-

tified in the directory, and the directory entry is invalidated.

All processor reads to memory are snooped against the

IO Directory. If a Hit is detected then a Cache Invalidate

(DKILL) is sent to the IOB identified in the directory, and

the directory entry is invalidated. (Bridges do not share

data with processors).

Performance

The I/O Interface can support different link speeds.

Selectable link clock rates can obtain a peak bandwidth

in each direction of 1000/500/250MB/s.

DMA Write commands can pass DMA Read commands

and MMIO responses that are from the same PCI-X bus.

This allows DMA Writes to be sent to the Coherency Unit

faster, thus generating higher DMA write bandwidth.

The 128-byte packet received from the RXE Expansion

Port is split into two 64-byte operations on the system

bus. The second 64-byte DMA Write command can be

presented to the Coherency Unit as soon as the first has

been accepted by it. This performance enhancement

doubles the DMA Write bandwidth.

RAS

All packets sent across the I/O Interface contain CRC

bytes that are used by the receiving device to ensure

that the packet data has not been corrupted. If a CRC

error does occur, the Link Acknowledge packet will not

be returned to the originating chip. The originating chip

will time out waiting for the Link Acknowledge packet

and will send the original packet again.

The I/O Interface contains an Agent function that allows

packets to be sent down the other RXE expansion port

if the normal RXE Expansion port goes down. This allows

a redundant path between MIOC and all IOB chips when

they are all connected in a loop.

The I/O Out Queue will time all packets in its queue to

detect packets that do not complete within the time-out

period. The time-out period is programmable, and can

also be disabled. If a time-out does occur, it can be

programmed to set a recoverable error bit or a machine

check bit. The command information will be saved

away in a register.

Configurability and Scalability

The I/O Interface supports two RXE Expansion ports.

Only one port is required to be connected to an IOB. If

both ports are used, all the IOBs may be connected in

a loop to provide redundancy.

The I/O Interface supports Hot plug of a RXE Expansion

port. This allows the second RXE Expansion port to be

connected to an IOB(s) with the associated PCI-X

buses while the system is running.

There are several mode bits contained in the I/O Interface

that allow variations on how commands are handled.

Interrupts
The Interrupt Unit (IU) in MIOC handles routing and

redirecting interrupts to the processor, and generation

of interrupts for internal chip set functions. The Interrupt

unit supports Intel’s Extended Advanced Programmable

Interrupt Controller specification (xAPIC).
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The destination for an interrupt is always one or more

processors. There are several sources of interrupts. A

processor may send an interrupt to another processor,

called Inter-Processor Interrupt (IPI). Interrupts may be

sourced by IO devices supporting the IOAPIC specifi-

cation. In the Enterprise X-ArchitectureTM chipset, the IOB

chip implements support for IOAPIC. Interrupts from

IOB’s IOAPIC are sent to the IU via MIOC’s Coherency

Unit. The Interrupt Unit also includes an IOAPIC, which

is used to report recoverable error conditions and to

support the CSC32/CSC64 IPC functions.

Interrupts are either edge or level triggered. Edge trig-

gered interrupts do not require an acknowledge from

the processor before another interrupt from the same

source is sent. Level triggered interrupts require an End

of Interrupt (EOI) transaction before the source is

resampled and another interrupt sent. MIOC is respon-

sible for routing the EOI transaction from the processor

to all IOAPICs on the same node.

The EOI transaction is normally broadcast to all IOAPICs

in the system. In order to reduce IO traffic from MIOC to

IOB, the IU tracks up bound level triggered interrupts. The

source and vector of each interrupt is recorded. When

an EOI is received, its vector is used to determine which

IOAPICs should receive the EOI.

The Interrupt Unit includes features to improve reliability.

Parity coverage is used for the EOI routing array. If a

parity error is detected, the EOI transaction is broadcast

rather than routed. Input signals from CSC32 or CSC64

are also covered by parity. All interrupt transactions are

checked for valid destinations. For example, an interrupt

with a remote destination in a single node system will

cause a machine check.

Conclusion
MIOC’s several functional modes and multifunction

interfaces provide the basis for the Enterprise 

X-ArchitectureTM building block structure. This flexibility

enables a wide variety of system configurations and

processor scalability options. Supported Intel XeonTM

Processor MP Family and Intel ItaniumTM Processor MP

Family processor topologies range from a basic one to 

4-way to an enhanced high performance 16-way.

Additional system I/O, if needed, is supported via a

second RXE Expansion Port. Both SDR and DDR

SDRAM memory, from 256MB up to 256GB, are sup-

ported. Multiple state-of-the-art memory RAS features

make the memory subsystem extremely reliable.
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Introduction
The I/O Bridge (IOB) is a high performance, scalable and

reliable bridge that generates three PCI-X1,2 busses and

connects to the Memory IO Controller (MIOC) via a scala-

ble, high-speed, reliable, point-to-point, low-latency, high-

bandwidth link. This RXE link is intended for board-to-

board and box-to-box coupling of system busses and/or

I/O busses and scales to meters rather than centimeters.

It supports switched topologies for high connectivity

and incorporates a signaling methodology that scales

with technology. The PCI-X interfaces are composed of

three independent PCI-X Host Bridges (PHBs) each

generating a 64-bit PCI-X bus that is PCI2.2 compliant.

The IOB supports up to 133MHz PCI-X bus frequency. A

logical view of the IOB is shown in Figure 1.

Figure 1  A Logical View of the IOB

RXE Interface
IOB contains two high speed proprietary RXE links, each

with a maximum bidirectional bandwidth of 2GB/s. These

two interfaces can be configured to operate independent

of each other in a 500MB/s, 1GB/s, or 2GB/s modes.

The RXE physical interface is derived from the IEEE

1596-1992 (SCI) Standard. Significant enhancements

have been made to improve the performance, increase

fault tolerance, and provide the capability of runnng in

more hostile (ESD) environments.

The functional characteristics of RXE are summarized

below:

• Enhancement of the IEEE 1596-1992 (SCI) link pro-

tocol for data integrity

• 32-bit CRC

• Hardware packet retry on primary link

• Hardware alternate path retry on redundant link.

• Support of switch-based topologies

• Agent function that relays packets to adjacent IOBs

to support loop topologies

• Low latency

• Selectable 1000/500/250MB/s peak bandwidth in

each direction with a 500/250/125MHz link clock rate.

• Physical interface (similar to IEEE P1596.3 SCI LVDS

extension)

• 500/250MHz modes:

• 1-byte: 8-bit data, one flag bit and one clock bit

• All signals are unidirectional and differential

• 500MHz Simultaneous Bidirectional Mode:

• 2-byte: 16-bit data, one flag bit and one clock bit

• All data signals are bidirectional and differential,

flag and clock are unidirectional and differential.

An RXE subsystem consists of one or more IOBs con-

nected to a MIOC. For increased connectivity, switch

nodes or switching bridge nodes are used to provide

connection to additional IOBs. For example eight IOBs

can be connected to the MIOC for a total of 24 PCI-X

busses in a system.

Three distinct high-level layers exist within each RXE

device; an Application Specific Integrated Circuit (ASIC)

Interface Layer, an End-to-End Layer, and a Link Layer.

These layers make up the RXE macro which is common

to all RXE ASIC devices.

ASIC Interface Layer

The ASIC Interface Layer is the boundary between the

ASIC and the RXE interconnect. It operates at a trans-
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action level, mapping user requests and responses into

RXE commands, and vice versa. It is the application

layer which must be tailored to the particular external

bus or I/O adapter; the End-to-End and Link layer defi-

nitions remain common over all RXE designs.

End-to-End Layer

The End-to-End Layer of the interconnect is responsible

for ensuring reliable transmission and reception of

packets across multiple RXE links. It can optionally use

any available alternate paths and may initiate end-to-

end packet re-transmissions as necessary.

Link Layer

The Link Layer ensures that packets are delivered suc-

cessfully across a link. MIOC and IOBs with multiple

links also provide some switching function among the

links (e.g., switches).

PCI-X Interface
The IOB also contains three full 64-bit capable PCI

2.2/PCI-X 1.0 compatible buses. Each bus is independ-

ently configurable to operate in either mode with a

plethora of choices of bus speeds. A bus configured in

PCI mode supports operating frequencies of 33MHz or

66MHz; while in PCI-X mode, a bus supports operating

frequencies of 66MHz, 100 MHz, or 133MHz. Peak

bandwidth on these buses is ~1.1 GB/s.

Table 1 shows the combination of bus slots/bus speed

while the IOB is operating in PCI and PCIX mode.

Table 1  PCI-X Bus Speed vs. Slot Tradeoff

Bus Speeds PCI Mode PCI-X Mode

133 MHz — One Slot

100 MHz — Two Slots

66 MHz Two Slots Four Slots

33 MHz Four Slots —

Arbitration

Each bus contains arbitration support for up to four

slots and a Hot Plug Controller which can be used to

dynamically add devices during run time. Access to the

bus is controlled via a multilevel arbitration prioritization

scheme allowing certain slots to operate at a higher pri-

ority with regard to obtaining access to the bus. The

IOB supports legacy I/O on one PHB with inclusion of

ISA bridge arbitration, allowing ISA and up to four PCI

devices to be attached on a single PCI bus. An arbiter

fairness counter controls how long grant is held to an

individual device. Using the arbiter fairness counter in

conjunction with the PCI Configuration Space Latency

Timer provides flexibility to control bus accesses. If a

PHB device has high bandwidth devices attached, larg-

er values can be loaded into the arbiter fairness count-

er and latency timer to maximize bandwidth with large,

efficient PCI transfers. If latency sensitive devices are

attached, the arbiter fairness counter and latency timer

can be loaded with smaller values, minimizing the delay

between requests and grants.

The IOB parks the PCI-X bus on itself during periods of

bus inactivity. This minimizes the time delay between

when the IOB receives a command destined for the

PCI-X bus and when it is able to drive the command to

the target device.

Addressing Support

The IOB supports full 64-bit addressing. When attach-

ing 32-bit PCI devices, the IOB supports Dual Address

cycles on the PCI bus as both a master and a slave.

This allows access to above 4GB address space in

both directions, negating the need for address transla-

tion when attached devices are capable of addressing

above 4GB.

The IOB supports multiple memory ranges per PHB to

allow for maximum software configurability in communi-

cating with attached devices.

Bus Lock Support

The IOB supports exclusive access on the PCI bus as

a master via the PCI LOCK# signal. By asserting

LOCK#, the IOB can gain exclusive access to a target

device, preventing the device from accepting new

requests for either of its interfaces that are not originat-

ed by the IOB. Lock accesses are initiated by the

process via loads and stores to the PCI bus. To initiate a

lock, a load is issued from a processor to the IOB, des-

tined for the PCI bus with the lock bit active. The IOB

asserts LOCK#, performs the load and leaves LOCK#

active until the processor follows the load with a store to

the same PCI bus with the lock bit inactive.

PCI-X Support

The IOB can support up to three PCI-X busses. PCI-X

provides significant performance improvements over

PCI 2.2. Since each bus can operate at 133MHz, 8-byte

wide, the IOB has an input bandwidth capacity up to 3
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GB/s. PCI-X supports twice the bandwidth of PCI, just

based on the enhanced frequency.

Bus efficiency has also been improved with PCI-X. On a

PCI bus, a device requesting data would be retried by

a PHB until the PHB was able to gain access to the

data in main memory. In cases where the access time

to main memory is large, a PCI device would continue

to retry its operation on the PCI bus, consuming band-

width that could be used by other devices. In PCI-X, the

PHB is allowed to give a split response to the read

request and provide data after main memory has been

accessed via a split completion. Additionally, PCI-X

includes the length of the transfer with the read request,

allowing the target to fetch the entire byte count of an

operation. The IOB utilizes these performance enhance-

ments to improve PCI-X bandwidth. All reads on the

PCI-X bus are given split response by the IOB. The IOB

is capable of handling up to sixteen read requests per

PHB concurrently, allowing devices to have multiple

reads outstanding. The IOB fills all read requests

approximately in the order they were received, but does

allow out of order completion. The IOB monitors the six-

teen read requests outstanding and initiates split com-

pletions once the entire byte count, or 512B, whichever

is less, has been received from main memory.

For reads of greater than 512B, the IOB kicks off the

additional fetches as soon as it starts the split comple-

tion. If the latency to main memory is small enough and

the additional load data is returned before the IOB has

sent all 512B of the split completion, the IOB extends

the split completion to include the additional data. In

this manner, it is possible for the entire PCI-X read to be

returned in one burst, provided main memory band-

width can provide data and the IOB retains grant own-

ership of the PCI-X bus.

The IOB supports single data phase disconnect as

described in the PCI-X specification when mastering

commands. When IOB is a target it will not single phase

disconnect. It will accept operations at least up to the

next Allowable Disconnect Boundary (ADB) of 128 bytes.

Interrupt Controller
The IOB implements Intel’s I/O xAPIC interrupt con-

troller. The IOB also supports an external I/O xAPIC

interrupt controller. The choice of an internal or external

interrupt controller is system dependent. In either case

an interrupt is delivered to the processors by issuing a

Store to an address within the Interrupt Delivery Block.

An interrupt can be initiated by a PCI-X device or by an

internal condition within the IOB. PCI-X devices can be

wired to any of the 48 external interrupt pins on the IOB

independent of which PCI-X bus the device is resident on.

If an External Interrupt Controller is being used then the

IOB signals the External Interrupt Controller of an inter-

nal interrupt condition by driving an output pin low. This

in turn causes the External Interrupt Controller to issue

a Store on PHB0 to an address within the Interrupt

Delivery Block. External Interrupt Controllers must be

resident on PHB0.

The 48 external interrupt pins on the IOB can be pro-

grammed to be active high or low, as well as level or

edge triggered.

Technology

The IOB was one of the first ASICs developed that

incorporated IBM’s advanced SA27E technology. IBM’s

SA27E technology is a 0.18 micron foundry offering with

copper wiring.

Basics

Shown in Table 2 are some of the unique technological

aspects of the IOB design.

Table 2  IOB Key Technology Points

Die Size 8.5 mm

Package 32 mm x 32 mm

I/O Pitch 1.27 mm

Supply Voltages 1.8V, 2.5V, 3.3V

Signal I/O 518

Cell Count Total 14.5 million

% Cell Count I/Os ~20%

% Cell Count Arrays ~35%

% Cell Count Logic ~45%

In addition to the above, the IOB design also took

advantage of a couple of “new” features of the base

SA27E technology:

• Power Quadrants: The IOB design required support

for three different voltage domains (1.8V, 2.5V, & 3.3V).

In previous technologies this would have required a

custom image, but now was a part of the base

offering.

• Analog Ground for PLL: Allowed for higher PLL per-

formance over previous technology offerings.
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Image

Shown in Figure 2 is the full chip schematic view of the

IOB. An interesting point to take from this is that the IOB

is a very full ASIC. In fact, the IOB consumed ~80% of

all available cells. The black rectangles shown are data

buffers.

Figure 2  Chip Image

Transaction Flow
In the IOB, transactions flow between the RXE interface

and the three PCI-X busses. Processor initiated com-

mands are presented at the RXE interface and are tar-

geted to the PCI-X bus or to the IOB’s internal registers.

PCI-X initiated commands are presented at one of the

three PHBs and are targeted to the RXE interface,

bound for processor or memory. The logic handling the

transaction flow consists of Control Flow/Queuing logic

and Data flow logic.

Control Flow

Figure 3 shows the major IOB control partitions and

interface paths. Inbound queues are for holding com-

mands received from RXE, and outbound queues are

for holding commands to be sent to RXE.

Figure 3  IOB Control Flow

Inbound Store Request Queue

Each PCI-X Host Bridge (PHB) in the IOB contains a

Store Request Queue located in the RXE Slave parti-

tion. Each queue is capable of holding up to four store

commands received from RXE. These commands can

be Memory Mapped I/O (MMIO) stores to PCI memory

space or I/O stores to PCI I/O space.

Inbound Load Request Queue

Each PHB in the IOB contains a Load Request Queue

located in the RXE Slave partition. Each queue is capa-

ble of holding up to three load commands received from

RXE. These commands can be MMIO loads to PCI

memory space or I/O loads to PCI I/O space.

Inbound Internal Request Queue

The GreyBox partition contains an MMIO Request

Queue for holding MMIO Load and Store commands to

internal IOB registers. This queue is capable of holding

up to three commands.

Outbound DMA Write Engine/queue

Each PHB in the IOB contains a DMA Write Engine. The

DMA Write Engine accepts memory bound stores from

the PCI Slave partition. It then breaks them into valid

packet sizes for the RXE link and puts each individual

34

PCI I/F

PCI Master
& Arb

PCI Slave/
Transaction

Mgr.

DMA Read
engines

DMA Write/
MMIO load

engine

RXE Slave RXE Master
Access
GreyBox

Interrupts Registers
& I2C

RXE Macro

3x

Split
Comp
Que .



command onto a queue. This command queue can

hold up to 32 entries targeted for RXE comprising of

DMA writes, MMIO load replies, I/O load replies and

interrupts. Requests are sent from this queue to the

RXE Master partition.

Outbound DMA Read Engine

There is a DMA Read Engine for each DMA read chan-

nel in a PHB. The read engine does not contain a com-

mand queue. Instead, each engine contains a

sequencer which dispatches DMA read requests to the

RXE Master partition.

Outbound RXE Request Queue

The RXE Master partition contains an Outbound RXE

Request Queue capable of holding up to 32 com-

mands from any of the three PHBs. This queue is used

for sending requests and ordered responses to the

MIOC chip. This queue holds DMA writes, DMA reads,

ordered MMIO load replies, I/O load replies and inter-

rupts. A round robin arbitration scheme is used to place

commands from the three PHBs on this queue.

Commands are received from the DMA Write Queues,

DMA Read Engines and the GreyBox.

Outbound RXE Response Queue

The RXE Master partition also contains an Outbound

RXE Response Queue capable of holding up to eight

commands from any of the three PHBs. This queue is

used for sending responses that have no ordering

requirements with other requests. This queue holds

unordered MMIO load replies. A round robin arbitration

scheme is used to place commands from the three

PHBs on this queue. Commands are received from the

DMA Write Queues and GreyBox.

Data Flow Logic

The IOB has four different sets of data buffers as shown

in Figure 4. They are the DMA Read Reply Buffer, DMA

Write Buffer, MMIO/IO Load Reply Buffer and MMIO/IO

Store Buffer. Each PHB owns its data buffers.

Figure 4  IOB Data Buffering

DMA Read Reply Buffer

The IOB implements an 8KB buffer per PHB for storing

DMA Read Reply data. This buffer is divided into chan-

nels. The number of DMA read channels is configurable

per PHB as follows:

1. Fifteen channels of 512 bytes, each channel containing

four 128 byte sectors.

2. Seven channels of 1024 bytes, each channel con-

taining eight 128 byte sectors.

These options provide the capability to tune a PCI-X

bus for the type and number of devices on that bus.

Each channel is divided into four or eight sectors.

These sectors define the data regions within the buffer

where access control is passed back and forth

between the RXE and PCI clock domains. A channel

containing DMA read data is also considered a cache

from a coherency perspective due to the prefetching

that occurs on DMA reads.

DMA Write Buffer

The IOB implements a 2KB buffer per PHB for storing

DMA Write data. Each buffer is divided into sixteen

128 byte sectors. These sectors are used to manage

data access across the RXE and PCI clock domains.
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Each entry in the DMA Write queue owns one of these

128 byte sectors. Note that one DMA Memory Write

received from the PCI bus can occupy multiple 128

byte sectors. The DMA Write Engine breaks the PCI

write into separate commands for RXE. Each RXE com-

mand has a maximum data length of 128 bytes.

MMIO/IO Load Reply Buffer

MMIO load reply data and I/O load reply data normally

flow through two 8-byte registers. The dataflow sup-

ports two loads in progress of up to eight bytes in

length. Load replies that are greater than eight bytes

use the first sector of the DMA Write Buffer.

MMIO/IO Store Buffer

MMIO and I/O store data flows through four reserved

128-byte sectors in the DMA Read Buffer.

DMA Read Engine Operation

The DMA Read Engines are designed to prefetch data

from memory whenever a read multiple is received from

the PCI bus. A read channel is allocated and the engine

sends enough 128-byte DMA reads to RXE to fill all 

sectores of that channel. This could be four or eight

128-byte reads depending on the channel configura-

tion. Response packets to these DMA reads are later

received on RXE and fill the DMA Read Buffer from the

RXE domain. The first 128 byte sector becomes avail-

able for reading in the PCI clock domain after all 128

bytes has been received. The PCI device is now

allowed to begin the data transfer. When the full 128

bytes has been read from the sector, data transfer on

the PCI bus is allowed to continue if all the data has

been received for the next sector from the RXE. The first

128-byte sector is now free to receive data. Access is

transferred back to the RXE domain as a new DMA

read packet is generated to a free sector. Prefetching

continues as the engine tries to keep the entire channel

filled with data.

Prefetching stops at a 4K address boundary. Read

channels are allocated on 4K boundaries. If the device

crossed a 4K boundary, a new read channel is allocat-

ed. Prefetching greatly improves the performance of a

page out operation.

Reliability/Serviceability
The RXE macro contains hardware packet retry capabil-

ities in the case of a corrupted packet. It also contains

an alternate path retry mechanism if a redundant RXE

link is installed. The three PCI-X Host Bridges operate

independently so an error on one of the busses does

not affect operations on the other busses. If an error is

detected, the bus is put into a freeze state and subse-

quent operations on the bus are not allowed until the

error condition is cleared. Upon detection of a recover-

able or non-recoverable error, the IOB can be config-

ured to either send an interrupt to the processor or noti-

fy a service processor.

Debug
Debug of the IOB is accomplished through JTAG, I2C,

external debug outputs and two internal debug trace

arrays. All architected registers can be read or written

through JTAG or I2C. Sequencers and other internal

logic signals from the various IOB partitions can also

be routed to the 48 debug I/O pins for analysis.

Alternatively, these signals can be routed to an internal

trace array for easier analysis.

Conclusion
The IOB allows Enterprise X-Architecture to expand and

scale its I/O capabilities. By using an RXE Expansion

Port in the MIOC and by cascading multiple IOBs

together on a RXE link, I/O expansion is easily obtained.

The three PCI-X Host Bridges in the IOB allow a wide

range of configuration options for system designers.

They can be independently configured for PCI to sup-

port legacy hardware or for high speed PCI-X to sup-

port new high performance I/O adapters.
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Introduction
The Enterprise X-Architecture Cache/Scalability

Controllers deliver high performance and scalability to

xSeries Servers by enabling a large-scale, shared-

memory, multi-processor system with hardware cache

coherence. The Cache/Scalability Controller 32 (CSC32)

and Cache/Scalability Controller 64 (CSC64) chips

began as one design and both implement the same

fundamental set of features. The major distinction is

CSC32 supports the Intel XeonTM Processor MP Family

while CSC64 supports the Intel ItaniumTM Processor

Family. CSC32 and CSC64 each integrate a state of the

art 4-way Symmetric Multi-processor (SMP), XceL4TM

Server Accelerator Cache (L4 cache), three high band-

width SMP Expansion ports with a chipset expansion bus

into a fully scalable 16-way SMP. This paper describes

these high end server features and their basic operation.

Major architecture differences that lead to a unique

CSC32 and CSC64 implementation are noted.

System Interfaces
Each chip has four major system interfaces as shown

in Figure 1 and Figure 2. Internally, each chip runs at

200MHz or twice the system bus frequency.

Figure 1  CSC32 Interfaces

Figure 2  CSC64 Interfaces

System Bus Interface

Both CSC32 and CSC64 fully implement the system bus

as defined by their respective processors. The bus fea-

tures that are most critical to system performance are fully

leveraged such as split transactions, source synchronous

transfers, multiple outstanding transactions and pipelining

all transaction phases. All system bus transactions to the

L4 cache are completed in order to achieve the minimum

memory latency. Transfers of both address and data are

done source synchronously to increase bandwidth and

improve performance. The maximum data rate of 3.2GB/s

on CSC32 and 6.4GB/s on CSC64 can be realized from

the L4 cache to the system bus. The maximum number

of outstanding transactions and pipeline depth is limited

by the processors. Each chip fully supports the processor

bus MESI cache coherence protocol and integrates it into

a fully scalable shared memory multi-bus cache coherent

system. Parity protection is implemented for data integrity

as defined by the system bus specifications.
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XceL4 Cache Interface

The XceL4 cache (L4 cache) interface directly attaches

CSC32/CSC64 to industry standard, high performance

Double Data Rate (DDR) Synchronous Dynamic Random

Access Memory (SDRAM). The maximum data rate at this

interface equals the system bus interface at 3.2GB/s for

CSC32 and 6.4GB/s for CSC64. A higher degree of data

integrity protection is maintained with a single bit error

correction code (ECC) used on the data transferred, and

parity protection for address and control signals. Read

transaction latency is the primary focus and has been

optimized for minimum latency and maximum throughput.

An access can start immediately when a command is

received from the system bus. This speculative access

reduces latency and improves performance. If the access

is not needed it is terminated before throughput is

impacted. Multiple transactions to multiple banks are

interleaved and reordered to optimize both latency and

throughput. Data can be transferred from the L4 cache

interface directly to the system bus without buffering.

SMP Expansion Port Interface

The SMP Expansion Port is a scalable, high-speed,

point-to-point interface optimized for high bandwidth,

board-to-board and box-to-box coupling. Also referred

to as a scalability port, it scales to meters rather than

centimeters and incorporates the same signaling tech-

nology as the RXE Expansion Port. The physical interface

consists of a simultaneous, bidirectional 16-bit data path,

and unidirectional clock and flag bits. The clock rate is

up to 400MHz and data is transferred on every clock

edge leading to a maximum data transfer rate of

3.2GB/s per port. Data integrity is a primary focus and

features include a full 32-bit CRC, hardware packet retry

and alternate path retry. While the scalability port reuses

the End-to-End Layer and Link Layer from RXE

Expansion Port, the application layer is unique. This

layer operates at the transaction level, mapping bus

transactions into packets. The transaction set and packet

formats are similar to the system bus transactions but

include many optimizations for a directory-based, scalable

coherence protocol. The maximum data payload within

a packet is one cacheline and therefore is twice as

large in CSC64 than CSC32.

QuadT Interface

The interface between CSC32/CSC64 and the

Memory/IO Controller (MIOC) is optimized for perform-

ance. Arbitration is optimized for a point-to-point con-

nection to reduce latency for processor accesses. An

early data indication for memory data reads improves

latency. Data transfer size doubles for CSC64 while the

bus width remains the same.

Technology
The CSC32 and CSC64 chips are built with IBM’s

CMOS 7SF SA27E 0.18micron copper technology. Table

1 lists the technology characteristics of the CSC32 and

CSC64 chips.

Table 1  Technology Summary

Attribute CSC32 CSC64

Chip Size 13.8x13.8mm 14.7x14.7mm

# Signal I/O 670 872

# Transistors 59M 63M

On-Chip EDRAM 4 MByte 4 MByte

Substrate Ceramic Ceramic

Substrate Size 42 mm 42 mm

I/O pitch 1.27 mm 1.00 mm

Proc Bus BW 3.2 GB/s 6.4 GB/s

L4 Brandwidth 3.2 GB/s 6.4 GB/s

Scalability Port 9.6 GB/s 9.6 GB/s

Bandwidth

Scalability Memory 3.2 GB/s 3.2 GB/s

Bandwidth
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The die image of the CSC32 chip shown in Figure 3 is

superimposed with logic partition boundaries to show

the die area consumed by each function.
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System Configurations
CSC32 and CSC64 support a very flexible set of sys-

tem configurations. A node is the fundamental building

block around which many system configurations may

be built. A node is a self-contained, fully functional 4-

way SMP, capable of executing a single image operat-

ing system image. A partition is an aggregation of one

or more nodes, each containing a full complement of

processors, memory and I/O. A multiple node partition

is joined through a scalable shared memory architec-

ture. The dual node configuration requires a single scal-

ability port connection but the second scalability port

adds a redundant path as well as doubles the band-

width. The hardware balances the load across both

ports. A primary and a backup, or redundant, path can

be configured between any two nodes in all multi-node

configurations.

Figure 4 illustrate examples of multiple partition configu-

rations within a multi-node complex.
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L4 Cache
A key attribute of the Enterprise X-Architecture is that a

customer only pays for the hardware he needs. This is not

achievable with most SMP switch architectures because

the cost of the switch hardware is incorporated in the

smallest systems. The Enterprise X-Architecture is able to

achieve XpandOnDemandTM scalability by implementing

a building block approach for growing SMP size. When a

customer encounters the need to grow beyond a 4-way

SMP, he can retain his original SMP Expansion Module

and simply add additional SMP Expansion Modules.

The additional SMP Expansion Modules are connected

together with cables to create a larger SMP.

While the building block approach provides a great

growth path for customers, it results in additional main

memory access latency when one node is accessing

the main memory on another node. Incorporating an L4

cache in each node allows local storage of frequently

used memory locations physically on a different node.

The access latency of the L4 cache is almost 4X better

than a local system memory access and 9X better than

a remote system memory access. The reduced latency

of the combination of frequently used remote and local

system memory accesses results in an average system

memory access latency that is less than a switch topol-

ogy with no L4 cache. The L4 cache is key to both

enabling a building block architecture and providing a

performance advantage over systems with L4 cache.

L4 cache sizes are 32MB for CSC32 and 64MB for

CSC64. The L4 cache is 4-way set associative and

operates on a 64-byte cache line size on CSC32 and 

a 128-byte cache line size on CSC64. The L4 cache

holds both instructions and data. The L4 access latency

measured from request on processor bus to first data

returned on processor bus is 80ns on CSC32 and 70ns

on CSC64. The L4 interface was designed with generous

data bandwidth to ensure it did not become a bottleneck.

The L4 bandwidth matches the processor bus with

3.2GB/s on CSC32 and 6.4GB/s on CSC64.

L4 Cache Implementation Specifics

The L4 cache directory is physically implemented

together with the S-Directory (Scalability Directory) using

an on-chip EDRAM (Embedded Dynamic Random

Access Memory) shown in Figure 5. The reason for

pairing the two directories is that both the L4 cache

directory and S-Directory need to be accessed together

for each coherent access. The coherency functions of

the L4 cache directory and S-Directory are described

in the next section. The L4 cache directory is 4-way set

associative. The S-Directory is 7-way set associative.

The EDRAM is 256 bits wide, supporting a read of four

L4 cache directory classes with ECC/LRU (Least Recently

Used), in combination with seven S-Directory classes

with ECC/LRU on each access. To minimize the impact

of EDRAM precharge time, the directories were built with

four EDRAM macros to allow interleaving. The directory

logic has a snoop request queue to optimize EDRAM

bank interleaving. There is also a directory update buffer

to allow EDRAM updates to be held off during snoop

read activity, resulting in improved performance. The

EDRAM update buffer is snooped in parallel with the

EDRAM. The contents in the update buffer override the

EDRAM contents on an update buffer hit.

Figure 5  EDRAM usage

The L4 cache data and controller (Figure 6) consists of

on-chip load and store command buffers along with the

DRAM control logic used to control the external L4

cache data DDR SDRAMs. The load and store buffers

hold the address and control information for up to 32

commands each. The data is stored in the chip’s internal

buffer before being written to the SDRAMs. L4 cache

load data comes from the SDRAMs and goes either

directly to the system bus or is temporarily stored in the

chip’s internal buffer until the requester is ready for it.
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Figure 6  L4 Cache Data Control

The L4 cache data is stored in 4M X 32 bit wide DDR

SDRAMs. All load/store accesses to the SDRAMs are a

full cache line and require a data burst length of eight.

To achieve a full cache line transfer with a burst length

of eight, CSC32 uses 2-X32 SDRAMs for data and 1-X32

SDRAM for ECC for its 64-byte cache line size. CSC64

uses 4-X32 SDRAMs for data and 1-X32 SDRAM for

ECC for its 128-byte cache line size. The SDRAMs are

controlled in lockstep to provide a unified 72-bit interface

for CSC32 and a 144-bit interface for CSC64.

To optimize L4 cache access latency, load commands

default to higher priority than store commands. The L4

logic detects incoming load commands that have an

address match with a command in the store buffer. Any

store buffer entries with an address match are prioritized

ahead of the incoming load to maintain memory ordering.

The DDR SDRAMs have four banks that are controlled

with four on-chip bank sequencers. Central prioritization

logic keeps track of which banks are idle and what

commands are buffered for each bank. The central pri-

oritization logic schedules the bank sequencers to opti-

mize SDRAM data bus bandwidth. Commands are not

queued and the bank sequencers are not issued a

command until the exact time the SDRAMs can provide

data in an open data bus slot using absolute minimum

SDRAM timings. With this scheme, if a high priority

command arrives while other commands are waiting for

an open data bus slot or a bank sequencer to go idle,

the high priority command will execute ahead of any

lower priority commands that were waiting.

CSC32 and CSC64 use a standard SEC/DED (Single

Error Correct, Double Error Detect) ECC (Error Correction

Code) scheme for L4 data cache. In applications where

the processor bus also uses a SEC/DED ECC scheme,

data is sent to the processor without going through

correction to reduce L4 load latency by one cycle. L4

SDRAM address and command have their own unique

error protection logic.

Operating the DDR SDRAM interface at 400Mb/s per pin

required special logic for DQS read skew control. DDR

reads require incoming DQS clock strobes to be delayed

by 1/2 cycle relative to data. Process, temperature, and

voltage variations make it difficult to maintain the required

tolerances for the 1/2 cycle (1.25ns) delay. CSC32 and

CSC64 solved this problem with DQS delay calibration

circuitry that continuously compensates for process,

temperature, and voltage variations. The DQS calibration

is hidden under the SDRAM refreshes so that calibration

does not impact performance.

Another challenge at 400Mb/s is to ensure a glitch free,

source synchronous DQS clock. A DQS clock glitch will

corrupt data in the source synchronous latches used to

receive data. The DQS signal goes into tri-state when

neither the SDRAM nor the control chip are driving. The

standard methods to prevent DQS glitches are to have

the controller chip drive DQS low during inactivity or

use a pulldown resistor to keep DQS low when it is not

being driven. These methods interfere when trying to

achieve 400Mb/s operation. CSC32 and CSC64 solved

this problem with DQS clock gating. The DQS clock gate

logic generates the enable clock gate edge with latches

clocked by the synchronous internal clock. The disable

clock gate edge is generated with DQS edge counting

latches clocked by the source synchronous DQS.

L4 Cache Technology

The L4 cache directory needs to be large enough to

hold a tag for each cache line in the L4 data cache.

The L4 cache is too large to implement the cache

directory with on-chip SRAM. Implementing the cache

directory external to the CSC32/CSC64 chip and main-

taining associativity would significantly impact L4 cache

access latency and require additional chip signal pins.

CSC32/CSC64 leveraged IBM’s leading edge SA27E

EDRAM technology to implement an on-chip cache

directory. EDRAM technology provides the DRAM storage

cell style density that is required to fit the directory on

the ASIC chip.
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The L4 cache data was originally defined to be built with

RAMBUSTM DRAM technology. As high level definition

proceeded, the graphics card industry started pushing

the envelope of high end, wide I/O DDR SDRAM tech-

nology. The high end graphics cards were driving towards

400Mb/s X32 128Mb DDR SDRAM. The attributes of

RAMBUS DRAM were compared to the high end X32

DDR SDRAM. A decision was made to switch the L4

cache data technology to the X32 DDR SDRAM. The

biggest factor in making the switch was that the X32

DDR SDRAM reduced the L4 cache access latency by

six cycles. The six cycle improvement was achieved by

not going through the chip RAMBUS command logic on

the outbound path (one cycle), not going through the

chip RAMBUS data logic on the inbound path (one

cycle), not serializing the command on the command

bus (one cycle), not serializing the critical data and the

data bus (one cycle), and using the improved DRAM

timings of the X32 DDR SDRAM (two cycles).

Scalable Coherence Protocol
The coherence protocol used by CSC32/CSC64

between nodes is directory based. The Scalability

Directory or S-Directory is a type of limited partitioned

memory directory.

The Scalability Directory is limited because this structure

maintains a ‘cache’ of memory address tags which allows

only a portion of local memory to be cached remotely.

The goal is to provide enough entries in the cache to

facilitate an acceptable level of remote caching without

incurring the added cost of a fully allocated structure.

The Scalability Directory is partitioned because memory

is physically distributed (partitioned) into nodes. A node

maintains the portion of the S-Directory that corresponds

to the portion of system memory physically resident on

that node.

With other directory schemes, a transaction must be sent

to the home memory node of the requested line in order

to check the state. If the state of the line is not sufficient

to satisfy the request, a second request must be sent to

the node caching the line if it is different from the home

node. If the line is indeed modified, this causes the situ-

ation where the request for the modified data is delayed

by the time it takes to consult the home node. Processor

to processor cache transfer rates are high and increasing

with larger processor caches, especially for On-Line

Transaction Processing workloads. This extra delay has

a significant impact on performance.

CSC32/CSC64 Scalable Coherence Protocol eliminates

consulting the home node. All internode data transfers

are accomplished with direct transactions between the

requester and the data owner. The Scalable Coherence

Protocol separates the ‘point of coherency’ from the home

node. The point of coherency is known as the Serializer.

Within a partition the serializer is always a CSC32/CSC64

chip. Prior to any requests or responses being sent by

a CSC32/CSC64 chip, they must unanimously agree on

which chip is the serializer.

• The chip that is the serializer must know it is the

serializer.

• Chips that are not the serializer must know they are

not the serializer.

The chip that is the serializer is said to hold the serializer

“token”.

• A chip that has Exclusive ‘E’ access always has the

serializer token.

• A chip that has dirty data (with respect to memory)

always has the serializer token.

• A transfer or return of data is always accompanied

by the serializer token (the token always moves

from current serializer (responder) to the requester).

The serializer token is either:

• In exactly one CSC32/CSC64 chip.

• In exactly one packet (in transit) between

CSC32/CSC64 chips.

The scalability directory indicates whether or not the

Home Node is the serializer for this cache line.

In order to keep memory coherent at any point in time

for each cache line there must be exactly one piece of

hardware that is the serializer for operations to that

cache line. A transaction may not be allowed to com-

plete until it has been accepted by the serializer.

The scalability directory improves performance by:

• Reducing unnecessary reads to the memory

subsystem.

• Reducing unnecessary traffic on the scalability

ports.
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L4 Directory States

Figure 7 illustrates that the L4 Cache Directory (L4Dir) is

inclusive of all Processor caches on this node. The L4

directory contains the state of the data cached in the L4

itself and the state of the data cache in all the processors.

The cache state in the processors is called the Quad

State. In addition to the traditional MESI states the chipset

adds three new states: the T, U, and F states.

I: The L4 does not have a copy of the data for this

cache line.

S: The L4 has a copy, has Shared access, this chip

is not the serializer for this cache line1, and the L4

data is “not dirty”2 with respect to memory.

T:  The L4 has a copy, has Shared access, this chip is

the serializer for this cache line, and the L4 data is

not dirty with respect to memory.

U: The L4 has a copy, has Shared access, this chip

is the serializer for this cache line, and the L4 data

is dirty with respect to memory.

E: The L4 has a copy, has Exclusive access, this chip

is the serializer for this cache line, and the L4 data

is not dirty with respect to memory.

F: The L4 does not have a copy, has Exclusive

access, and this chip is the serializer for this

cache line3.

M: The L4 has a copy, has Exclusive access, this

chip is the serializer for this cache line, and the L4

data is dirty with respect to memory.
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Figure 7  L4 Directory coverage

1 If this is the home node for this cache line and the Scalability State is not R (see section “Scalability Directory States”) then this chip is the serializer for this cache line.
2 The data in the L4 may in fact be dirty with respect to memory but this chip is not responsible for remembering this fact. If the data is dirty then some other chip is in

the ‘U’ state and that chip is the one responsible for remembering to write the data to memory before the data is discarded
3 The ‘F’ state is mainly used to improve performance of DMA store processing. When a DMA store needs to allocate a L4 directory entry in order to bring the line into

the ‘F’ state the entry is allocated in a special “5th” class in the L4 directory that neither causes a L4 castout nor gets stored in the L4 directory EDRAMs (the entry

exists only in the Directory Buffer(s) and is held there until the line returns to the ‘I’ state).



Quad States (L4 Directory)

The L4 directory also keeps track of the “Quad” state. The

Quad state represents the maximum level of access to

the cacheline that the processors on the local processor

bus have. This state is used to filter commands coming

from remote nodes or local I/O devices onto the local

processor bus, reducing processor bus utilization.

I: No processors on this quad bus have a copy of

the cache line.

S: Processors on this quad bus may be in either the

S or I state. The processors cannot have a later

copy of the cache line than the L4.

E: Processors on this quad bus may be in M, E, S, or

I state. The Processor (if M) may have a later copy

of the cache line than either the L4 or memory.
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Figure 8  I/O (Page) Directory coverage

I/O Page Directory States

Figure 8 illustrates that the IO Page Directory (IO-Dir) is

inclusive of all IO device caches on this node. The IO

Page Directory states indicates the level of access the

IO devices below this CSC32/CSC64 have.

I: None of the I/O devices below this CSC32/CSC64

have any of this page cached.

S: Zero or more of the I/O devices below this

CSC32/CSC64 may have part of this page cached.



Scalability Directory States

Figure 9 illustrates that the first six associativity sets of

the Scalability Directory (S-Dir) are inclusive of all

remote L4 cache and remote Processor cache. When

this chip is the Home node (contains the memory for

this cache line) the Scalability directory indicates

whether or not a remote chip is currently the serializer

and/or whether or not remote chip(s) may have shared

copies of the line.

I: None of the remote chips are the serializer and no

remote chips have any access (all are I).

S: None of the remote chips are the serializer but

may have ‘S’ access.

R: One of the remote chips is the serializer and one

or more remote chips are not in the invalid (I) state.
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Figure 9  Scalability Directory (classes 1-6) coverage



Figure 10 illustrates that the 7th associativity set of the

Scalability Directory (S-Dir) is inclusive of all remote I/O

Directories and all remote I/O Device cache. The state

definitions for this special purpose associativity set are

the same as all other Scalability Directory entries.
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Figure 10  Scalability Directory (class 7) coverage



Example 1 - Data From Remote Processor Cache

Figures 11-13 show a processor on one node fetching 

a cache line which is initially modified in a processor

cache on another (remote) node.

Figure 11  Remote Processor Cache Read — Part 1

Figure 12  Remote Processor Cache Read — Part 2

Figure 13  Remote Processor Cache Read — Part 3
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Example 2 - Data From Remote Memory

Figures 14-16 show a processor on one node fetching a

cache line that is not currently in any cache and therefore

must be fetched from the memory on the “home” node.

Figure 14  Remote Memory Read — Part 1

Figure  15 Remote Memory Read — Part 2

Figure 16  Remote Memory Read — Part 3

Inter-process Communication
Inter-process communication (IPC) is a term used to

describe the communication between two or more

processes in independent address spaces. IPC can

also refer to inter-partition communication, which is a

low latency inter-node communication mechanism

used to provide support for a System Area Network.

CSC32 and CSC64 implement a set of features that

support high performance network functions. These

features are:

• User Level Remote DMA

• User Level Inter-partition Messaging

• Memory Mapped Remote Load/Store

User Level Remote DMA is provided to transfer the con-

tents of an arbitrary sized block of memory in Partition

A to or from memory in Partition B. This function is opti-

mized for large block data transfers between nodes.

User level Inter-partition Messaging provides the ability

to transport a short message to a remote partition fol-

lowed by an interrupt.
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Memory mapped remote load/store is used to address

memory on another partition but within a defined

address range. A portion of the local address space is

mapped via CSC32/CSC64 hardware translation onto 

a physical address in a remote partition.

All these features enable a low latency communication

path between two partitions enabling a high perform-

ance network.

Reliability And Serviceability
The CSC32/CSC64 chips were designed with main-

frame level RAS (Reliability and Serviceability) as a

primary focus from the bottom up. The CSC32/CSC64

engineering team’s background is in IBM mainframe

design, making focus on RAS a natural fit.

The on-chip EDRAM directories are protected by

SEC/DED (Single Error Detect, Double Error Detect) ECC

(Error Correction Code). The external SDRAMs used for

L4 data cache are also covered by SEC/DEC ECC.

Additionally, the L4 SDRAM address and command paths

are protected with a new error checking algorithm. The

SDRAM source synchronous strobes have checking to

detect missing or extra clock strobes.

The SMP Expansion port interface design incorporated

eLiza self-healing technology. Using this technology, the

SMP Expansion port data paths are continually checked.

If a transaction cannot complete when sent on a partic-

ular scalability port, the hardware automatically reroutes

the transaction on another port. The design supports

hot plugging of cables to allow on-the-fly repair and

expandability. The SMP Expansion port uses CRC (Cyclic

Redundancy Code) to protect against intermittent errors.

The processor and memory busses are covered by

either ECC or parity. Source synchronous busses have

strobe error checking. Parity is used throughout the

chip on both logic and arrays. ABIST (Array Built In Self

Test) and LBIST (Logic Built In Self Test) were designed

into the chips.

Whenever a recoverable or non-recoverable error is

detected, information pertaining to the error is recorded

by the hardware and made available to system diag-

nostics to isolate the failing circuits. If the number of

recoverable errors reaches a programmable threshold,

the operator is provided with a warning. This allows for

corrective action to be taken before a catastrophic 

error occurs.

Debug
Debug of the chipset presents a challenge due to the

number of interfaces and the complexity of these chips.

There are actually thousands of bits of signals that would

be useful to have available at the 64-bit debug port on

each chip. Bringing all these signals to a central point

where, under control of a configuration register, they

would be multiplexed out the 64-bit debug port is not

possible due to wiring problems. Two solutions are used

to solve this problem.

First, instead of bringing all signals to a central point

from each logical unit in the chip, a chain is constructed.

Each unit first multiplexes the signals internal to its logic

and then multiplexes either its own signals or the output

of the previous logical unit in the chain to the next logical

unit in the chain. In this way instead of hundreds or

thousands of signals being routed to the debug port,

only a 64-bit bus need be routed. The order of the

logical units in the chain is arranged to match the floor

plan of the chip.

Second, each interface will not be active on every single

cycle. For example, a new command can be driven on

the processor bus at most once every two bus cycles.

At the central queue in each chip that coordinates the

interaction between the various interfaces, a different

mechanism is used. Instead of simply multiplexing the

signals onto the debug chain, each interface to the

central queue is tagged with an interface ID, and events

from the interfaces are fed into a FIFO (First in First Out).

The output of the FIFO is then multiplexed onto the

debug chain. In this way, interfaces totaling over 320 bits

are able to be sent out the 64-bit debug port, giving a

much more detailed picture of what is happening inside

the chip during debug.

Conclusion
This article has described the CSC32 and CSC64

designs for high end xSeries servers, large-scale,

shared-memory multi-processor systems with hardware

cache coherence. The key means to this scalability are

a large, high performance XceL4 Server Accelerator

Cache, a partitioned memory directory cache coherence

protocol and a scalable interconnection network. First,

the design focused on reducing memory latency to

keep the system performance high. Second, the design

focused on providing a high degree of error detection

and correction to support server class RAS capabilities.
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Introduction
The continual increase in processor frequencies has

made memory access latencies a larger impact to

overall system performance. As a result, more focus has

been put on reducing memory access latencies. One

component of memory access latency is the access

delay through the “chipset” that connects the processor

to the memory DRAMs (Dynamic Random Access

Memory). The Enterprise X-ArchitectureTM (EXA) chipset

minimizes memory access latency with advanced silicon

technology, aggressive chip clock cycle times, and

design optimization of critical timing paths.

At the same time that chipset delay optimization is

becoming more important, on-chip wire delays are

becoming more of a problem. Physical dimensions of

transistors on silicon chips are getting smaller and smaller

each year. This is resulting in the number of transistors

on a chip doubling approximately every 18 months

(Moore’s law). The width of the wire used to interconnect

the transistors on chips is decreasing to support the

higher wire density required by increased transistor

density. The decreased wire width results in higher wire

resistance. Spacing between the wires is also being

decreased to increase wire density. The decreased wire

spacing results in higher wire capacitance.

Silicon design implementations have long on-chip con-

nections between groups of logic (partitions). These

interconnects are composed of lengths of wire driven

by repeaters. The repeaters are transistor circuits used

to maintain signal integrity and provide desired timing.

The delay value for the interconnect wire can be

approximated as RC/2, where R is the resistance of the

wire and C is the capacitance of the wire. As discussed

previously, both resistance and capacitance of silicon

chip wires is increasing. This means the RC wire delay

is increasing. In early technologies, large transistor

delays made wire delays almost negligible. In today’s

technologies, wire delay often dominates the delay in

critical paths. Therefore, management of wire delays is

critical to achieving high frequencies.

The EXA chipset was designed with an advanced IBM

chip technology called SA27E. SA27E is a 0.18 micron

technology that helps minimize interconnect delays by

using copper instead of traditional aluminum to reduce

resistance. SA27E also uses new insulator technology

with a low dielectric constant to reduce capacitance. Even

with this advanced technology, a new design methodol-

ogy was required to account for interconnect delays so

that the desired chipset delays could be achieved. The

importance of this new design methodology was propor-

tional to the chip size. The Cache/Scalability Controller 32

(13.9mm X 13.9mm) and Cache/Scalability Controller 64

(14.7mm X 14.7mm) chips were most dependent on it.

This paper describes a novel design methodology used

on the EXA chipset to minimize interconnect delays. The

design methodology reduced the XceL4TM Server

Accelerator Cache and main store memory access

latencies, resulting in improved system performance.

Floor Planning For A Flat Layout Methodology
The EXA chipset design can be broken into three phases.

The Pre-PD (Pre-Physical Design) phase involves coding

a design in VHDL (Very high speed integrated circuit

Hardware Description Language)1 and synthesizing the

language into a transistor level design. In the PD phase,

transistors are “placed” on the chip by assigning physi-

cal locations to each transistor. Routing of interconnect

wires is also done in the PD phase. In the Post-PD

phase, Post-PD timing is run to determine if timing

objectives are met. The Post-PD timing run output is

used to alter transistor placement and wire routing in

the Post-PD design.

Actual interconnect delay information is not available until

the Post-PD design phase. A chip design may appear to

meet timing objectives using average wire delays until

more accurate Post-PD delay information is available.

This standard design methodology results in identifying

global wire timing problems so late in the design cycle

that they may not be resolved without either slowing the

chip operating frequency or iterating on the design cycle

and delaying the design schedule.

One way to keep interconnect delays controlled between

Pre- and Post-PD is by floor planning which normally

requires doing PD hierarchically instead of flat. A flat

layout methodology provides many benefits. Generally

speaking, optimization tools are more effective when
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they see the full picture and have minimal arbitrary con-

straints. This is true for placement and routing tools which

must construct the puzzle of what gates and macros go

where on the silicon and how they are interconnected.

Unhindered by hard boundaries, the placer is free to

move objects into positions where wires may be more

easily routed. On large, complex chips with high cell

usage, this can make the difference between a design

which can be routed and one which cannot.

There are costs for using a flat methodology involving

both the layout tools and the logic design. The layout

tools must cope with a very large problem which drives

up the memory and run time consumed by the tools.

These costs are mitigated somewhat by the continuous

improvement in compute power available to run the tools.

The logic design cost consists mainly of performance

uncertainty.

In a hierarchical layout, partitions are floor planned to

specific, hard-bounded regions of the chip. Signals which

remain within a partition (local) can be assumed to fall

into a delay range depending on the size of the partition,

while interpartition (global) signals are identified early

and can be modeled fairly accurately. This information

is very important for high-speed designs; it becomes

increasingly important as feature sizes decrease and

wires account for a larger percentage of delay.

However, partitions in a flat layout are free to spread out.

In the extreme case, elements of one partition may span

the full chip. This behavior makes it difficult to determine

which signals can be considered local and which can

be considered global. Signals which remain entirely

within a partition may reach from one corner of the chip

to another, while signals interconnecting partitions might

be connecting adjacent gates. Thus, the delay character-

istics of the signals is unknown until placement is com-

plete, and the possible variation in delay is extreme.

The use of conservative wire delay estimates before

placement and logic optimization techniques such as

buffer insertion and deletion after placement can reduce

this effect, but it presents a difficult problem to designers

of high-speed logic. Designers often trade the improved

optimization and routability of a flat layout for the early

delay knowledge provided by a hierarchical layout.

Rather than make this tradeoff, the EXA chipset designers

chose a hybrid methodology in which floor planning was

used, but the layout tools operated on the full flat design

keeping important partitions within overlapping regions.

The placement tool had considerable freedom, yet the

partitions were left substantially intact and in regions

approximating the floor plan. The problem then shifted to

finding an efficient way to account for global wire delays,

especially during full, flat chip timing analysis prior to

placement. The solution to this problem will be detailed

in the next section, entitled “Automated Accounting for

Global Wire Delays”.

Pre-PD logic synthesis was done at the logic partition

level. The individually synthesized logic partitions were

then stitched together in preparation for entering the PD

stage. Synthesis was done using a standard cell library

augmented with custom macros for arrays and timing

critical function such as ECC (Error Correction Code)

logic. Chip floor planning was done to place chip I/Os

and large macros including arrays, EDRAM (Embedded

Dynamic Random Access Memory), CAMs (Content

Addressable Cache), PLL (Phase Locked Loop) circuitry,

and custom macros.

The chip micro architecture was designed to minimize

interconnect delays. For example, architected register

read/write logic was implemented with a daisy chain

approach. The daisy chain started in the partition that

controlled register read/writes and passed through each

partition using forwarding. The daisy chain approach

resulted in fewer global interconnect wires than the more

traditional approach of implementing the connections

as a star configuration. In a star configuration, each

partition has connections to and from the controlling

partition. The concept of minimizing interconnects was

carried through the mirco architecture phase into the high

level definition phase of the design. Before the start of

VHDL writing, logic partitions were manually defined in

the high level definition phase with a focus on minimizing

interconnects between partitions.

Partitions needed to be defined to fit within a specified

maximum area limit. A maximum partition area limit was

required to prevent large wire delays from occurring within

a partition. The design methodology did not provide a

way to account for long wire delays within a partition.

The maximum partition size limit was set at 3mm2. The

3mm2 value was somewhat arbitrary, but the 5ns chip

cycle time and the wire delay of SA27E technology were

taken into consideration to arrive at that value. Some logic

partitions exceeded the 3mm2 area limit. Those partitions

had the most difficulty with post PD timing closure.

Figure 1 shows an example of a floor plan that was used

to help guide physical design for the Cache/Scalability

Controller 32 chip.
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The typical method to design a hierarchy of partitions

uses what might be described as a block-based

methodology: each block is described along with its

ports, then the blocks are connected together, one-by-

one. However, this view of the design is not necessarily

natural for designers, especially at the higher levels of the

design. Designers, instead, tend to think in terms of the

signals. They communicate to one another about the

signals each is either providing or using. The attributes of

a partition someone else is designing are of less impor-

tance than the attributes of the signals that person is

providing to the subject partition.

A signal-based methodology was constructed in the

following way. Text files were created, called I/O files,

which each contain information about related signals.

The I/O files served two purposes. First, they were the

source used for automatic generation of VHDL entities

for each logic partition. A program reads the I/O files and

builds a VHDL entity for each partition by generating

VHDL port statements and timing attribute statements

(e.g. arrival times and required arrival times) for each of

the partitions connected by a signal. Secondly, the I/O

files were the holding place for the official logical defini-

tion of each inter-partition signal that the owners of
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Twister Partition to P artition Distances (Center to Center)

Technology delay per mm, including wire and redrive circuit

BH CD DA01 DA23 DB IPC L3 PQ QI QO QTI QTO REG RIO RH SPI SPO TIO

BH 0
CD 6 1
DA01 8 8 0
DA23 8 8 7 0
DB 8 8 6 8 0
IPC 6 11 12 5 10 1
L3 6 9 5 11 6 12 1
PQ 3 3 8 8 6 5 6 4
QI 6 9 10 7 8 6 6 6 0
QO 6 9 10 7 8 6 6 6 1 0
QTI 10 7 12 8 14 8 16 10 12 12 0
QTO 10 7 12 8 14 8 16 10 12 12 1 0
REG 3 7 9 7 6 5 6 6 4 4 12 12 0
RIO 12 10 8 14 8 14 12 10 16 16 16 16 14 1
RH 3 6 6 8 6 5 5 3 3 3 9 9 4 12 0
SPI 8 12 5 12 4 12 6 6 10 10 14 14 8 4 7 0
SPO 8 12 5 12 4 12 6 6 10 10 14 14 8 4 7 1 0
TIO 8 8 8 8 8 8 6 8 6 6 6 6 8 6 8 8 8 0

pS/mm 110

Figure 2  Distance Grid and ps/mm

Automated Accounting For Global Wire Delays
The partition to partition distance information from the

floor plan was documented as a distance grid in a text

file. The same text document was used to hold the

technology unit wire delay. This information was used in

the automatic generation of interpartition delays as

described later in this section. Figure 2 is an example of

a text file that held the partition interconnect distances

and unit wire delay for the Cache/Scalability Controller

32 chip.



each partition designed to. The connectivity of the design

was managed from these I/O files. If the characteristics of

a signal changed, such as its connectivity, size, or timing,

the change was made to the appropriate I/O file and

automatically propagated to the affected partitions.

Partition input and output timing attributes were included

in the I/O files. I/O file timing attributes were critical in

helping direct partition-level logic synthesis to appropri-

ately optimize paths with global wire delays. The timing

attributes were also used for performing timing analysis

at the partition level. Output timing assertions were coded

as a fixed time for the driving partition. The fixed output

times were determined by the designer of the driving

partition based on the amount of logic between a

clocked latch and the output. The base design conven-

tion was to drive all partition outputs directly from a latch,

but there were cases that did not follow this convention.

The input times to the receiving partitions were coded as

the output time along with special syntax to symbolically

represent inter-partition delay.

A script was used to extract the length table from the

documentation (Figure 2) and convert it to a text file. As

VHDL timing attributes were generated during automatic

entity creation using the I/O files, the text file was exam-

ined and used to replace the symbols in the I/O file timing

assertions with the actual partition to partition delays. The

script took the distance between the partitions (in mm)

and multiplied it by the unit wire delay (in ps/mm) found

in the same text file. The product of this multiplication was

the global interconnect delay. The global interconnect

delay was added to the output time of the signal to gen-

erate the input time at the receiving partition. Coding the

delay between partitions in this manner instead of using

a constant allowed floor plan changes to be updated in

the distance grid and automatically be reflected in the

VHDL without having to manually change the timing

assertions for each interpartition signal in the I/O files.

Figure 3 is an example of signal connection and timing

information coded in an I/O file. The timing information is

coded with the syntax “9.0+@CD_L3” for a signal named

“HITL3” that leaves the CD partition at time 9.0ns. “@” is

a keyword used by the entity generation code to create

an input arrival time to the L3 partition. The “@” symbol

tells the code to go the distance grid and ps/mm table

shown in Figure 2, find the distance in mm between CD 

and L3 partitions, multiply that distance by the ps/mm

value in the table, add the result to 9.0ns, and use the

final sum as the HITL3 arrival time to the L3 partition.

Figure 3  I/O File Attribute coding

Timing analysis of the full chip required an additional step.

Assertions at the partition boundaries were not used

during full chip timing analysis. Instead, the actual times

propagated through intrapartition logic were used since

they represent more accurate computed data rather than

the estimates used to generate the assertions. However,

the interpartition delay information is lost. Another script

was used to overcome this problem. The script read the

I/O files and the text file generated from the partition table,

as before. It output a file of timing adjusts for each global

signal which the timer uses to adjust propagated times

traversing those signals. These timing adjusts added

delay to the global signals corresponding to the inter-

partition distances.

Optimizing Technology Wire Delay
In order to achieve the lowest possible memory access

latencies on the EXA chips, it was very important to

achieve the optimal delay per unit distance on global

wires. Sample signals were analyzed for various lengths

to derive the delay/length value. Inverters were added

to the signals at intervals needed to keep the slew time

within desired limits. These delays were found to be

excessive due to the gate delays of the inverters. The

standard large inverters in the technology had been

designed to minimize input pin capacitance; they were

actually three stages rather than a single stage. Two new

single-stage inverters were designed specifically to serve

as long wire repeaters, one for standard width wires and

one for wide wires. Once the sample signals were rean-

alyzed, an acceptable delay/length was produced. Table 1

is a comparison of the ps/mm delays for between the

inverter offered in the standard technology library and

the inverters optimized for redrive.
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CD: ?Port HITL3 buffer;
L3: ?Port HITL3 in;

CD: ?timechk HITL3 out(9.0);
L3: ?timechk HITL3 in(9.0+@CD_L3);



Table 1  Redrive Inverter Delay Comparison

Inverter Wire Opt. Inv Delay with
Type Width Spacing Inv.

Library 1X 1.6mm 160ps/mm

offering

ROInv 60/30 1X 1mm 133ps/mm

ROInv 90/45 2X 1.3mm 105ps/mm

Physical Layout
Several methods were used to close timing during

physical layout of the chips. As stated earlier, placement

and routing were run on the flat chip design. This provides

these tools with the flexibility they need to find a workable

solution. The partition floor plan was used, though, to

guide placement which was restricted in some cases 

to keeping certain partitions within prescribed (but

overlapping) regions. This helped to ensure the global

signal delay estimates used before placement would be

reasonably close to the actual, post-placement delays.

Capacitance targets for placement were generated

from a full chip timing analysis. As stated earlier, global

signal delays were considered during timing analysis.

About 20% of the nets were given capacitance targets.

Placement was done using MCPLACE, a simulated

annealing placer2.

Finding an ideal floor plan is difficult for high performance

designs. In addition to the logic partitions, large memory

macros such as EDRAMs must be placed carefully to

keep connected wires short while allowing sufficient

space for other wires to cross. Various floor plans were

tried by running placement for each and comparing 

the results.

Timing correction during logic synthesis uses estimates

for wire delays since no physical information is yet avail-

able. Although the method used to account for global

wire delays and the floor plan-based region constraints

helped avoid making gross estimation errors for long

wires, many of the partitions were large and some were

permitted to spread over a large area. Also, adding

repeaters to the long global wires could not be done

properly prior to placing the chip.

Two IBM optimization tools were used to resolve these

problems by analyzing the timing after placement and

re-optimizing the design. TDCopt (Timing Driven Control

Optimization) has been used in this capacity since 1995.

It uses timing correction transforms from the BooleDozer

logic synthesis system3 (which is integrated with the

EinsTimer static timer) along with a special subsystem

to compute wire delays based on placement and to

incrementally place new logic cells. PDS (Placement

Driven Synthesis)4 is a newer tool using many of the

TDCopt components but integrating components of

ChipBench5 including the CPLACE placer. CPLACE,

unlike MCPLACE, uses a partition-based placement

method rather than simulated annealing. Partitioning

allows for closer integration and interaction with the

optimization functions. PDS enables a larger suite of

optimization techniques and generally has more physi-

cally-aware transformations.

An important optimization technique is buffer insertion

to reduce capacitance and slew and to repeat signals

on long wires6. A key optimization method used for the

EXA chips is BuffOpt7 which finds an optimal buffering

solution given a set of inverting and noninverting buffers,

a net, and a prescribed route. We found that BuffOpt

consistently met the predetermined delay/length value

used for all global signals. This was extremely important

in closing timing for these chips. BuffOpt was run in both

TDCopt and PDS.

Manual Optimizations
Some manual changes were used to complete timing

closure. These changes include buffering with wide wires

on selected critical nets as well as moving some latches

physically or temporally to balance slacks. Use of wide

wires has generally been specified manually to maintain

control over the potential routing problems the wide wires

may cause. BuffOpt and PDS will incorporate automatic

wire sizing in the near future.

There are several ways to balance timing around memory

elements in a latched design. Two were used for the EXA

chips. Some latches were physically moved to reduce

wire delay on one side of the latch while increasing it on

the other side. In other cases, the clock signals to the

latches were adjusted to arrive either before or after the

nominal clock arrival time.

Congestion And Other Problems
Wiring congestion became a problem in certain regions.

In some cases, this was related to the buffers inserted to

reduce slew and RC delay. Buffers inserted by BuffOpt

were sometimes at fault due to particular behavior which

became known as the L problem.

BuffOpt finds an optimal buffering solution along a given

path, usually a Steiner tree. Consider a large bus of
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two-pin nets crossing a large distance from one region

of the chip to another. Those wires may be routed any-

where within the rectangle enclosing the sources and

sinks with no change to the lengths of the wires. This

results in a good distribution of the routes and frees the

router to find viable paths. However, if those nets require

buffering, BuffOpt will be given a set of nearly identical

Steiner routes (in the shape of an L) upon which it will

add buffers. The existence of these buffers will force

routing to follow the L to route through the buffers. Thus

all wires are forced through the same small regions.

Local area congestion was also a concern. The areas

around large arrays, such as the EDRAMs, were densely

populated by buffers and inverters used to repeat signals

which are routed across or around the arrays. This con-

gestion prevented later insertion of cells needed to fix

hold violations or logic bugs.

Buffers were moved manually to avoid the wire conges-

tion caused by the L problem or to free up space around

arrays. Placement halos were added around large arrays

forcing placement to avoid those areas and leaving

space for the buffers added later by TDCopt and PDS.

Manual mitigation of congestion problems is time con-

suming. For the second pass of the Cache/Scalability

Controller 64 chip, it was decided that all changes would

be done using Engineering Change Orders (ECOs)

applied to the pass one net list rather than restarting from

scratch. The changes were fortunately contained enough

to allow this approach to work, saving a lot of effort and

time from the schedule. Meanwhile, enhancements have

been made to PDS to avoid many of these problems in

the future.

Clock Distribution
The physical layout of the EXA chipset required a unique

approach to implementing the clock tree. This was mainly

driven by the large EDRAMs which not only prevented

placement of an H tree, but also made it impossible to

route the clocks across them without causing slew

problems. High frequency and low skew requirements

further complicated the clock tree distribution. Floor

planning and preplacement had to be done on all of

the large macros.

Once this was done, a custom clock distribution was

placed around them. Several iterations were required to

determine how many stages of the clock tree were

required and where the optimal locations for the stages

would be. Once determined, the first n stages of the

clock tree were fixed in place and manually wired (due

to the nature of the large clock driver books) to produce

minimal skew. These stages were implemented with large

clock driver books tapered down in drive strength from

one stage to the next.

Strong books could drive fatter wires, and ultimately cover

larger distances. This ultimately enabled the clock tree to

be implemented with fewer stages, reducing the overall

latency of the tree. Use of inverting books also helped to

offset pulse-width distortion. The final stages of the clock

tree were repowered and placed automatically using

Clock Designer8 (a parallel clock repowering tool) and

then routed using Scorpion (a balance router). Many

iterations were required, and the process was repeated

for multiple clock domains. Ultimately a minimal latency,

low skew clock tree was obtained.

Figure 4  EXA Chip Design Methodology

57

Technology ps/mm

Manualy
generate
Distance Grid

I/O Fails
describing
Partition Connect

Manually enter
architecture VHDL
for each partition

Partition
VHDL
Architectures

Auto Entity
Generation

Individually
Synthesize
Partitions

Partitions Entities
w/Timing Attrib

Stitch Partitions
TogetherFloorplanning

Inter Partition
delay Adjusts

Flat pre-PD Timing

Manually generate
Partition Boundary
Guidelines

Place Chip, TDCOpt
Buff Opt, PDS, Clock
Opt

Iterate on previous
step(s) if required

Route Chip,
Retime

Iterate on previous
step(s) if required



Conclusion
In today’s technologies, management of global wire

delays is critical to achieving high frequencies. Global

wire delays need to be accounted throughout the

design methodology. The EXA chipset used a hybrid

methodology that combined both flat and hierarchical

attributes to manage global wire delays. In this method-

ology, global wire delays were managed from the very

start of the design all the way through the final stages of

the design. The end result was the EXA chipset achieving

desired memory access latencies on a compressed

schedule. Figure 4 is a flowchart of the EXA chip

design methodology.
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Introduction
The verification effort for the Enterprise X-Architecture

(EXA) chipset focused on four chips: PCI-X I/O Bridge

(IOB), Memory/IO Controller (MIOC), Cache/Scalability

Controller 32 (CSC32) and Cache/Scalability Controller 64

(CSC64). This paper explores pre-silicon verification and

post-silicon validation of these four chips.

Pre-silicon verification was completed in three different

phases: formal verification, partition verification and chip

verification. The first phase, formal verification, was used

to verify the high-level design of the system’s complex

coherency protocol design. This verification effort early in

the design cycle made it a useful aid in design decisions.

The next phase, partition verification, verified that each

of the various logic partitions in the chip would function

correctly in the chip as a whole. The final phase, chip

verification, included both single and multi-chip verifica-

tion environments. Cycle simulation engines were used

exclusively for this effort.

The chips in this chipset were designed to be modular,

flexible, and scalable. This paper shows how chip level

verification environments took advantage of the fore-

thought put into the EXA system.

The final verification effort is post-silicon lab validation.

The post-silicon validation effort tapped IBM’s ^

validation technologies that have been used to produce

many of the most reliable systems in the industry.

Formal Verification
For this project, formal methods were used primarily to

verify the high-level design of the system’s coherency

protocol due to the complex nature of its algorithms.

Maintaining coherency is a difficult task for a system in

which data can be cached simultaneously across multi-

ple nodes and at various levels in the memory hierarchy.

The coherency protocol must simultaneously process a

number of transactions over multiple interfaces. The goal

of formal verification at this high level of design was to

generate a complete and verified specification which

could be used as a basis for the Very high speed inte-

grated circuit Hardware Description Language (VHDL)

implementation.

Formal Methodology

The methodology consisted of three steps. First, the

specification was formally described in an algorithmic

manner. Next, the specification was modeled and formally

verified. Finally, the specification was automatically

translated into VHDL, yielding hardware correct by

construction. Each of these three steps is discussed in

detail below.

Algorithmic Specification Of The Hardware

Typically, hardware specifications inadequately describe

the algorithms the hardware intends to implement. The

functionality of the hardware is described in detail, but

the underlying algorithms are often oversimplified or

viewed as implementation details. This results in algo-

rithmic bugs being found much later in the design cycle

than necessary. Writing a hardware, or algorithmic,

specification that describes the underlying algorithms

with enough detail to enable formal modeling required a

new approach. In defining an algorithmic specification, a

methodology was developed for describing the specifi-

cation despite the inherent complexity associated with

coherency protocols.

The complexity of coherency protocols, and control code

in general, is due to the simultaneous processing of con-

current transactions across several interfaces. Moreover,

the processing of a given transaction often consists of

several intermediate steps which may be processed

concurrently. The methodology employed to define the

specification leveraged this insight and modeled the

hardware’s behavior as a set of communicating

processes (“sequencers”), each of which dealt with the

transactions at a particular interface. Each sequencer, in

turn, was comprised of smaller intermediate processes

which corresponded to the steps of the algorithm that the

design was to implement. Sequencers and processes

interacted with each other via shared variables on a

cycle-by-cycle basis. At the beginning of each cycle,

zero or more processes within an active sequencer

could be triggered.

As part of the modeling process, the control path and

data path are distinguished from each other. Repre-

senting data in an abstracted manner is a standard
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technique used in formal modeling to reduce model size.

The modeling process also distinguished between “core”

algorithmic function and “bookkeeping” function. Some

examples of bookkeeping function are queue entry selec-

tion, buffering, address matching, and buffer allocation.

Formal Verification Of The Specification

The first step in the verification process was to translate

the specification’s sequencers into Environment

Description Language (EDL), the language used by the

formal verification tool RuleBase. Translation was an

automated process made possible by the fact that the

specification was written in a structured language. Next,

the sequencers and their processes were tied together

to create a model of the complete system. This required

code that allowed the individual processes of the

sequencers to communicate with each other via shared

variables. Shared variables were also used to facilitate

communication between the sequencers. External signals

which triggered the processes were also defined. The

final step was to define the interface logic and the envi-

ronment.

The verification cycle started after the definition of the first

system model. The model was formally verified against

the expected functionality of the control code. Inconsis-

tencies resulted in either corrections to the specification

or the model. A new model was constructed and the

process repeated. The final result was a formally verified

algorithmic specification of the hardware.

Translating The Specification To VHDL

The translation of the specification to VHDL was similar

to the EDL translation process described above. This

resulted in VHDL that was, by construction, equivalent to

the high-level specification. The term “by construction” is

used loosely since the translation path was not proven

correct. This accounted for the algorithmic function of the

hardware. The bookkeeping function (address matching,

buffer allocation, and the external triggers) was manually

coded into VHDL.

Formal Verification Models

Formal models are typically heavily abstracted in order to

avoid size problems. From the above description of the

specification and the EDL model, it is evident that the

model is quite detailed. Indeed, it is cycle accurate and

the specification contains enough information for the

VHDL code to be derived directly and automatically

from the specification.

Despite the model’s detail, there are two important

abstractions which allow it to be model checked. First,

the specification does not deal with addresses explicitly.

Rather, the specification describes the behavior of the

algorithm, ignoring the address. Also, the specification

abstracts the data by completely ignoring the width of

the data bus. Thus, the abstractions are not obtained by

abstracting out the behavior of the control logic. Instead,

they are obtained by reducing to a minimum the size of

the address and the data. The abstraction level marks the

line between the specification and the implementation.

Despite the fact that the models were cycle accurate, it

was possible to create system models with multiple

processes in them. That is, these models were able to

process multiple commands across several different

interfaces. System models which were verified using the

model checker consisted of multiple instances of indi-

vidual processes along with a model of the system’s

environment. For the coherency protocol, the processes

which execute system bus commands, scalability port

commands, I/O commands, and castouts were modeled.

The environment modeled the processors, the system

bus, I/O units, and the system’s memory and L4 cache.

Execution of Formal Verification

The system models were verified with RuleBase, IBM’s

model checker. In model checking, system properties

are written and the model checker proves whether the

property holds. If the property does not hold, then a

counter example which demonstrates the failure is pro-

duced. Properties that were checked were safety rules

which verified:

• an unexpected state (an error state) was not

reached in any of the individual process models

• correct data was written and received

Cache coherency was not validated.This takes into account

the L3 state, the L4 states, and the scalability state.

Typically, hundreds of properties are checked, most of

them being simple checks for error states. The remainder

of the properties checked coherency and data rules.

Formal Verification Results

Over the course of the high-level design phase, 47 bugs

were found in the coherency protocol’s specification. Many

of these bugs were corner cases involving unusual inter-

actions between two or more of the processes. A majority

of the bugs were violations of data consistency, despite

the fact that cache coherency was properly maintained.
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The formal design methodology had a significant impact

on the design process. It drove rigor, completeness, and

correctness of the high-level design. It found many errors

and helped to direct changes early in the design process.

It facilitated and accelerated the design teams under-

standing of the coherency protocol. Using this method-

ology lengthened the high-level design process but

because the VHDL was derived from a complete algo-

rithmic oriented specification, this time was more than

made up in the VHDL coding process.

Partition Verification
Partition level verification takes on many forms since it is

left up to the partition designers to implement. The level

of sophistication found in this effort largely depends on

the complexity of the partition. Partition verification was

done with event simulators. Most efforts were basic

environments that exercised a single partition. In the

more complex cases several partitions were combined

and simulated as a whole.

Since partition verification environments are numerous

and vary greatly, only two of the more complex and

innovative efforts at this verification level are explored.

The first outlines the verification of the Coherence Unit

(CU) found in CSC32 and CSC64. The second effort

described is the QuadT bus, a critical interface between

MIOC and CSCS32 (or CSC64).

CU Partition Verification
Partition verification of the CU in CSC32/CSC64 chips

consisted of two stages:

1. High-level simulation of the coherence protocol

2. Simulation of the CU as a subset of the actual chip

hardware design.

Simulation of Coherence Protocol

During the architecture and high-level design phases of

the EXA project, a coherency protocol and coherence

tables were defined. The coherency protocol, which

defines how to process commands and use the

coherency tables, was written in Java. By the end of high

level design there were 23 tables with 3000 total rows

and the coherency protocol code contained 4500 lines

of code. A small portion of one of these tables is seen

in Table 1.

Table 1  Example of Coherence Table

# SB Command SB Directory
(Received) Facilities Next State

Command Variant Hit# HitM# Defer# L4 SB Scala-

Cache bility

1 BRL — 0 0 1 — I —

2 BRL — 0 0 1 — S —

3 BRL — — 1 — M E —
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The high level simulation model consists of a primary

processor (PRI, the only processor to “master” com-

mands), three snooper processors (SN1, SN2, SN3),

three system busses (Qa, Qb, Qc), three CSC32/CSC64

models (TTa, TTb, TTc which contain the coherency

model under test and glue code to interface the model

to the rest of the verification environment), three IO

devices (IOa, IOb, IOc), and a scalability model (Scal)

used to connect nodes together. Figure 1 shows a

graphic of the CU simulation structure just described.

For a single simulation scenario the simulation model is

loaded with a valid combination of cache states + cache

data + memory data and a single command is run from

PRI (processor commands), IOa (DMA loads & stores),

or TTa (L4 and S-Dir castouts). The command is run to

completion then the return data (for loads) is checked to

the expected data and the cache states + cache data

+ memory data are checked for a valid combination of

state + data.

The verification environment then cycles through the

following to verify the coherency protocol:

• All possible (valid) cache states for the system

• Memory “Home” location either A or B

• Memory type of WB, WT, UC (for processor

transaction)

• All possible memory transactions

When completed, the high level verification environment

ran 346,000 tests from the above combinations and

verified that the coherency protocol and coherence

tables were correct for single-command scenarios.
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Simulation of CU Partition

After low level design was completed, a simulation model

of the Request Handler (RH), Coherence Directory (CD),

Buffer Handler (BH), and Pending Queue (PQ) units

(collectively called the “CU”) was created and used to

verify the implemented coherency protocol for multiple

commands, including commands to the same cache

line and commands to the same directory row.

As shown in Figure 2, the CU partition verification envi-

ronment consists of:

• Processors (P) that model either Intel XeonTM

Processor MP Family or Intel ItaniumTM Processor

Family processors

• System Busses (SB) that model the processor

busses

• CU “Wrapper” code (CUWrap) that handles the

details of interfacing between the HW Model and

the rest of the verification environment

• The compiled HW model (HW Model) which contains

four instances of a “CU” container which itself contains

instances of the actual RH, CD, PQ, and BH partitions

• QuadT (QuadT) units that model the connection to

main memory and I/O

• L4 (L4) units that model the CSC32/CSC64 L4 cache

interface logic and external L4 DRAM chips

• Scalability (Scalability) units that model the connec-

tions between nodes.

Many of the models in CU partition verification are

models from the high level coherency simulation that

have been enhanced to handle multiple simultaneous

commands and the greater level of detail present in the

CU partition verification environment.

Coherence Protocol Checking

There are three main checks used to verify that a test

case passes.

1. Test case time limits — Each test case specifies a

limit on the # of cycles to run. Thus if the hardware

“hangs” and cannot complete all commands and

return to an idle state, the test case fails.

2. Hardware error checkers — The hardware has a

number of built-in checkers that detect incorrect

or inconsistent states. The test case fails if the

hardware error checkers go off.

3. Ideal Memory — The verification environment main-

tains a global “Ideal Memory” that is updated on

the completion of any store command and

checked on the completion of any load command.

If the current contents of Ideal Memory do not match

the data returned to a load command then the test

case fails.

High level coherency simulation verified that a testcase

ended with a valid combination of states + data. CU

partition verification did not perform this end-of-test-

case due to the complexity required to perform the

check. Any failure that would show up in end-of-test

case checking would eventually happen in the middle of

a test case and get caught by one of the three checks

listed above.

A typical test case would first generate a set of addresses

that were synonyms of each other and then generate

hundreds of random commands using these addresses.

CU Partition Verification Results

At the end of CU partition verification, 56 bugs were

found and corrected in the CU logic, preventing the bugs

from appearing in full chip verification.

QuadT Partition Verification
The QuadT Bus is the name given to the interface

between MIOC and CSC32 (or CSC64). In a multi-chip

verification environment, the QuadT Bus looks like an

“internal interface” of the EXA chipset. The ability to

extensively stress the QuadT Bus in a multi-chip verifi-

cation environment was limited. Because this interface

was “removed” from the other major interfaces (System

bus, I/O, etc.) a way was needed to validate (and stress)

not only the chip logic connected to the QuadT bus, but

also a way to validate the unique architectural functions

of the QuadT bus.

To solve this, a special partition verification environment

was created. This effort took into account four chip par-

titions. Two partitions from MIOC that constituted the

QuadT bus interface logic and the two complimentary

partitions from CSC32/CSC64. A “testbench” environment

was then created that called in these four partitions as

components. This testbench had no inputs/outputs and

was a self-contained entity. The testbench controlled all

of the internal chip interfaces that were exposed to these

four partitions, and it also emulated the boundary-scan

latches and drivers/receivers so that the virtual QuadT

Bus traffic could be monitored.
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QuadT Partition Verification Methodology

The only “input” to the verification environment was a

random seed. With that, the testbench sourced random

transactions on both ends (MIOC’s and CSC32/CSC64’s)

with random data. As transactions passed through to

the opposite side of the partition, all contents (address,

data, etc.) were checked for accuracy. These transactions

were “blasted” from both sides for approximately 1500

clock cycles, at which time all new transactions would

stop and all pending transactions which were queued

would be allowed to complete. Once the logic had settled

down, the various configuration/mode settings would be

randomly altered and the sequence would start over.

Other “irritators”, like retries and hold-off conditions, were

periodically inserted. With this random, self-checking,

self-transformation nature, this testbench could run

continuously as long as needed.

Execution

The labor to create this testbench and to perform the

desired testing was about 2-3 man-months of work,

spread out over four months.

Logic simulation tools were used to run this testbench.

Even though the testbench could run for a very long

time, for practical reasons, the longest run times were

for approximately 156,000 clock cycles (or about 100

iterations of the testing loop). This would take about 24

hours to run.

QuadT Partition Verification Results

There was a total of 42 hardware bugs found by this

effort, excluding the bugs found within the testbench

itself. More importantly, it was estimated that six (of the 42)

bugs were, or would have been, “escapes” from the

multi-chip verification work.

The QuadT partition verification produced a good “return

on investment”. With approximately three man-months of

effort, multiple bugs that would have otherwise escaped

into the laboratory were discovered. The robustness of the

QuadT bus has been strong since the time this special

verification effort was completed. These results validated

the initial concern that the “internal” nature of the QuadT

bus (with its new definition) posed a high risk of having

bugs escape the multi-chip verification.

Partition Verification Results

Combined with design reviews and VHDL code reviews,

30% of all known problems were discovered through

partition verification efforts.

Chip Verification
Chip level verification typically focuses on a single chip or

subset of chips which is referred to as the device under

test (DUT). The goal of chip verification is to verify that the

DUT as a whole functions correctly. For the EXA chipset

this would be the last level of pre-silicon verification.

The dynamic nature of the design was a challenge. The

verification environment needed to be flexible and scal-

able to keep up with design changes from IBM and Intel®.

The building block chip verification structure used took

into account the similar structure of the EXA chipset that

needed verification which saved on the number of envi-

ronments that needed to be created.

Changes to Chip Verification Methodology

Several major changes were undertaken to meet the

challenges presented by the EXA chipset. The first big

change was to move exclusively to a cycle simulation

engine. Cycle simulation was adopted over event simu-

lation due to its ability to take on larger models and

provide greater performance. The cycle simulator used

was IBM’s own multi-value simulator (MvlSim).

With the change to cycle simulation came the change

to coding the environments in C++. Before this point the

verification environments had been coded in sequential

VHDL. Object oriented code was a natural fit for the

scalable and modular design that was needed. To jump

start this effort, an internally developed set of C++ base

code, called USimBase, was picked up. USimBase pro-

vided the following benefits:

• A building block methodology that divided the envi-

ronments into reusable parts that could have multiple

instantiations. Strict rules for building block creation

and use kept dependencies to a minimum so that

each build block could be plugged in and out with

ease.

• The basics for a test case parser which allowed a

single text file to be contained in the test case. Syntax

checking and test case command routing were built

into this code.

• An optimized verification environment interaction with

MvlSim to minimize DUT evaluations.

• Various utility functions.
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While USimBase provided much of what was needed, it

lacked the ability to synchronize and coordinate drive

stimulus. To provide the level of control required to verify

the EXA chipset something else was needed. The solu-

tion was to design a set of base classes over USimBase

to create the verification framework needed. This verifi-

cation framework was called Touchstone and provided

the following capabilities.

Transaction Manager

Transaction packets are the basic communication unit

in Touchstone. Various classes of transactions exist for

control and configuration, instructions to drive an inter-

face and instructions to check an interface. This com-

munication was managed in Touchstone by a transac-

tion manager. Almost all test case commands resulted

in one or more transaction packets getting created.

Test Case Monitor

Touchstone provided a test case monitor that allowed the

execution of the test case to be monitored and controlled

centrally. It controlled test case delays, synchronization,

and test case flow. It provided the foundation to create

test case command and transaction packet interactions.

Two independent operations could be forced to interact,

overlap or collide with the control provided by the test

case monitor. This was critical for writing complex test

cases such as those needed by the CSC32 and CSC64

chips in a four node environment.

Programmable Clock Oscillators

Special clock building blocks were provided by

Touchstone for clock oscillators. These oscillators drove

both the clock tree in the DUT and were used to clock

the various building blocks.

Exception Handling

Touchstone provided a central controller for all building

blocks through which to feed exceptions. The central

controller could then determine if this error was to be

ignored and would need to halt the simulation. This was

important for bad machine path testing when exceptions

need to be ignored.

The Building Blocks

The basic building blocks included Touchstone,

environment behaviors (EBs) and physical interface

behaviors (PIBs). PIBs were further broken down into

unit drivers (UD) and interface monitors (IM). These

basic blocks were used to build the various environ-

ments required for EXA chip verification. Figure 3 shows

a generic example, including Touchstone, which was

previously explained. It also shows the flow of informa-

tion through the various communication channels that

exist in an environment.

Figure 3  Generic Environment showing building blocks.

The PIB

Each external interface is given a PIB. The PIB is com-

prised of two blocks, UB and IM, for flexibility and reuse.

The IM is used to gather information from the interface.

It will never stimulate the interface. The IM is also

responsible for performing all interface protocol checks.

The UD is the block that stimulates the interface. This

can be done directly through the test case or through

transaction packets from an EB. The UD also performs

checks that are not considered protocol checks. An

example is data returned on a read initiated by the UD.

All check data is contained in the test case command

or communicated from the EB in a transaction packet.

The EB

The environment behavior (EB) coordinates PIBs in the

environment to properly drive and check all interactions

during a test. Since the EB has a view of the entire system

contained in the DUT, testing can be abstracted to a

higher level. Complex commands involving multiple

interfaces can be coded up as a single command. The

EB breaks these commands into multiple transaction

packets that the PIBs must drive and check. Touchstone

allows these transaction packets to be properly routed and
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released to the various PIBs as appropriate. Touchstone

allows the EB to place very complex dependencies on

the transactions to create the needed interaction neces-

sary to complete a given test case.

The Test case

The final piece is the test case. This text file can be either

manually or randomly generated. It contains the com-

mands that will be used to accomplish a given test.

These commands are either targeted for the EB and/or

a PIB. Each environment used to verify the EXA chipset

had several thousand test cases that were run against

it. Several tools were created to randomly generate test

cases. Combined with continuous submission tools,

test cases could be run around the clock, keeping the

simulation machine farm continuously busy.

EXA PIBs

The EXA verification effort had nine interfaces requiring

PIBs. The nine interfaces were the Intel XeonTM Processor

MP Family system bus (Xeon SB), Intel ItaniumTM

Processor Family system bus (Itanium SB), QuadT bus,

I2C bus, PCI/PCI-X bus, RXE Expansion Port, JTAG bus,

SDRAM interface (Memory), and the XceL4 Cache

interface. Each PIB took two to three months to initially

develop and test independent of the environment in

which they would be used. Independent testing was an

important fact since it eliminated a majority of the bugs

in a PIB, allowing more focus on EB and DUT bugs.

The SB PIBs, which included the Intel XeonTM Processor

MP and Intel ItaniumTM Processor Family system bus,

required additional innovation to make up for the fact

that the processors they represented would not be part of

pre-silicon verification. Normally, a PIB is developed to be

independent of the chip to which its interface is attached,

allowing the PIB to be reused on any chip having that

interface. This model could not be followed thus, some of

the specific function of these two processors needed to

be placed into the PIBs.

A flexible solution was needed that could quickly

change as new information was learned about the

processors. One solution was to take advantage of the

coherence tables (see Table 1) that were done during

partition verification of the coherency unit. These tables

were used in conjunction with the L3 cache that was

modeled in each PIB for coherency purposes. Since

these details were not explicitly written into the C++ 

code, a quick table update was all that was required

when changes were needed.

Another time saver was the fact that two SBs were very

similar. This allowed sharing base classes that incorpo-

rated the common behavior of each PIB. Keeping com-

mon function in common files meant making only one

update when common functions changed.

These techniques helped, but there were still significant

differences and details that could not be abstracted

out. In the end, significant work was required to keep

these two PIBs working with the latest knowledge of the

processors.

EXA EBs

The EXA verification effort required the creation of four

EBs. These four EBs could handle more than four DUTs.

Simply stated, the four EBs were as follows:

• MIOC EB: Capable of handling any variant of a sin-

gle MIOC chip.

• PCI-X IOB EB: Capable of handling any variant of a

single IOB chip.

• MIOC/PCI-X IOB EB: Capable of handling a DUT

containing both a single MIOC and two PCI-X IOB

chips.

• CSC32/CSC64 EB: Capable of handling a DUT

containing any variant of MIOC matched up with a

CSC32 or CSC64. It could also scale up from one

node to multiple nodes (see Figure 4).

The Environments

Numerous environments had to be configured and sup-

ported to test the various DUTs. Figure 4 shows four of

the many possible configurations. It shows the four node,

16-way environment for verification of either the CSC32

or the CSC64 chips with MIOC chips. It also shows what

a single node case would look like if the other three

nodes were removed for both CSC32 & CSC64. A single

CSC32/CSC64 EB can handle all the environment con-

figurations for this case. Likewise, the other EBs can

handle numerous environment configurations. This is just

one example of how the environments building block

structure was designed to encompass the flexible, scal-

able, and modular nature of the EXA chipset.
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Chip Verification Results

Chip verification constituted the bulk of the pre-silicon

effort for EXA. Over 60% of all known problems were

discovered during this phase of testing. Combined 

with the other pre-silicon efforts, over 91% of all known

problems were removed from the system. The fact that

first pass hardware booted up in the laboratory and

made significant progress shows that the pre-silicon

effort was a success.

Post-silicon Validation
The EXA chipset represents a new foray of IBM technol-

ogy into the Intel-based server arena. One of the key

challenges in this arena was to improve system reliability

beyond industry expectations. EXA chipset based plat-

forms take advantage of IBM ^ validation tech-

nologies to ensure a robust and resilient platform. Many

of these validation tools and techniques have been

employed within IBM to produce many of the most reli-

able platforms in the industry.

IBM has invested a great deal in custom test environ-

ments to provide the most rugged and thorough valida-

tion environment possible. IBM also invests heavily in

multi-OS testing and fully tests every supported operating

system to ensure compatibility and robustness.

Development Tools and Exercisers

Many different development tools were utilized in the

validation of the EXA chipset. Many of these tools were

developed within IBM specifically for EXA-based plat-

forms.

Grub

Grub is a proprietary test case environment used to test

system cache coherency and multi-processor behavior.

Grub is run very early in the validation cycle to flush out

any potential coherency or multi-processor related

issues. Grub is a low-level environment and is used for

testing both 32-bit and 64-bit processor based systems.

NK32/64

NK32/64 is another proprietary test case environment that

is capable of testing a wide variety of system functions

including cache, spin locks, coherency and memory, as

well as I/O, such as RXE link, PCI and PCI-X. NK32/64

stands for Nano-Kernel 32-bit (or 64-bit) and is based on

a custom Minix-based operating system. NK32/64’s oper-

ating system is completely customizable to create target-

ed test cases to stress all aspects of EXA-based systems.

AE2000 Memory, Disk, Cache, And Lan Exercisers

AE2000 is an IBM proprietary test case environment

that runs under Microsoft® Windows 2000. AE2000

includes OS based exercisers that thoroughly test

memory, disk, cache and LAN functions. AE2000 allows

for platform stability testing and is used by the system

development and classical test teams to stress the

system in areas such as thermal, EMC, and power.

PCI/PCI-X Exercisers

IBM has a comprehensive test case environment for

validating PCI/PCI-X functions. This environment utilizes

advanced PCI/PCI-X adapters and test cases specifically

developed to test all functions. These test PCI/PCI-X

corner cases as well as stress the PCI/PCI-X bus. The

test cases are also utilized to test error handling and

recovery functions within the system.

Cronus

Cronus is at the heart of the validation tool suite for

EXA-based platforms. Cronus is a powerful low-level

validation environment that is capable of controlling and

monitoring every bit within the EXA chipset. Cronus

takes advantage of the Joint Test Access Group (JTAG)

ports on the EXA chipset. Cronus enabled the following

capabilities during the validation of the EXA chipset:

• Scripting to create powerful test cases and exercis-

ers. Test cases were written to validate the functional

behavior of the chipset and exercisers were written

to stress each of the interfaces.

• Tuning of processor, memory and I/O interface timings

• Debug trace arrays which allow for storing of, and

triggering on, internal logic conditions

• Clock and PLL tuning
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Test Environments

Building Block Functional Verification

The first test phase for EXA-based platforms is the

Building Block Functional Verification (BBFV). This testing

is done on initial prototypes of the system when develop-

ment engineers thoroughly evaluate the design and make

improvements to ensure a stable platform for the test

phases that follow. During this phase of testing all func-

tions of the design are verified and exercised. Ensuring the

quality of the design is paramount in this phase of testing.

The following are some of the tests that are performed

on EXA-based platforms during this phase of test.

— Custom Interface Tuning To Achieve Maximum System

Design Margins

Extensive tuning is done on all electrical interfaces of

the EXA chipset to provide a level of design margin

required in demanding environments. Tuning involves

I/O driver analysis to determine the optimum I/O driver

type for each electrical interface. Tuning also involves

setting receiver input voltage references to optimum

values which are unique for each interface such as

processor, memory and I/O.

— Full Parametric Sweeps — Voltage, Temperature, Frequency

EXA chipset-based platforms are fully characterized

using full parametric sweeps to ensure that they are

the most robust platforms in the industry. Parametric

sweeps include all AC/DC voltages, temperature,

frequency and voltage references.

— Signal Characterization

Part of the design validation activities for EXA-based

platforms includes full signal analysis and measurement

to evaluate and confirm specification adherence for all

signal parameters including quality, timings and noise.

— Printed Circuit Board Quality Characterization

Printed circuit boards are evaluated for adherence to

IBM specifications (e.g. impedance, cross talk, dielec-

tric), and measurements are made of all interfaces

using Time Domain Reflectometry (TDR) to ensure

design compliance.

System Design Verification and Integration Testing

System Design Verification (SDV) is the first phase of

formal testing for xSeries servers. SDV testing is done

on pre-production level hardware and firmware and is

used to flush out problems prior to production level

hardware and firmware.

System Integration Testing (SIT) is the production level

hardware and firmware formal test phase.

The following summarizes some of the tests performed

in SDV and SIT.

Integrated Functional Testing

Tests in this environment include network loading and

services, IP services, advanced system management

services, server subsystem stress, file services and data

integrity tests.

Platform Compliance Testing

Platform compliance testing includes guard band, ther-

mal, electromagnetic compatibility, susceptibility, elec-

trostatic discharge immunity, acoustics and vibration.

Configuration Testing

Platforms utilizing EXA chipset are subjected to vast

arrays of differing configurations to verify multi-vendor

compatibility as well as validate processor, memory and

PCI-X plug ordering.

Maintenance Testing

Extensive testing is done to verify error handling and

notification so that the failing system component can

be serviced.

Network Operating System Testing

This test certifies each supported operating system on

the platform and verifies system robustness under each

operating system.

Automated Tests

Automated AC and DC power cycling as well as reboot

tests are run for weeks.

Conclusion
The various levels of pre-silicon verification helped

minimize the number of bugs found during post-silicon

validation, decreasing development cost and accelerating

time to market. Post-silicon validation ensured error free

operation of the chipset and resulted in robust and

reliable systems with maximum margins.





Introduction
The xSeries 360 is a fault tolerant price performance

scalable server with high availability attributes that

meets the requirements of enterprise servers running

mission critical applications. The xSeries 360 is the first

of many systems to use recently announced Enterprise

X-ArchitectureTM 1 and the IBM XA-32TM chipset, bringing

mainframe technology, features and functions to the

Intel-based server environment.

The xSeries 360 supports up to four Intel XeonTM

Processor MPs in a Symmetric Multiprocessor (SMP)

configuration. It also supports up to 8GB (using 512Mb

memory technology) of industry standard PC1600 ECC

Double Data Rate (DDR) system memory. The system

incorporates six full length 64-bit ActivePCI-X slots, one

of which can support an ultra fast 133MHz adapter. The

xSeries 360 is packaged in a dense 3-EIA (total height

of 5.25") chassis, ideal for optimizing rack utilization.

Product Description
At the center of each xSeries 360 is the IBM XA-32 chip-

set, consisting of the Memory/IO Controller (MIOC)2 and

the PCI-X I/O Bridge (PCI-X IOB)3 chips. The MIOC

communicates with the processors via the system bus,

the memory via the memory bus and the PCI-X I/O

Bridge chip via the Remote Expansion Port. The PCI-X

I/O Bridge converts the Remote Expansion Link to three

PCI-X busses.

The memory used in the system is the industry standard

PC1600 ECC DDR memory modules in 256MB, 512MB

and 1GB sizes for a maximum system memory of 8GB.

The I/O subsystem of the xSeries 360 has six full length

industry standard 3.3 volt 64-bit PCI-X slots. ActivePCI-X

is the Enterprise X-Architecture extension to IBM’s

ActivePCI technology, bringing hot swap, hot add and

fail over capabilities to PCI-X. One bus has two full size

PCI-X slots that run up to 100MHz. If one slot on this bus

is not populated, then the bus can run up to 133MHz.

The second bus has four full size PCI-X slots that can

run up to 66MHz.

Integrated functions in the system are attached to a 

64-bit, 33MHz PCI bus. They consist of a single channel

Ultra160 SCSI controller that provides up to three hot

swap disk drives, a video controller and a 10/100

Ethernet chip. Three Universal Serial Bus (USB) ports

(one in front and two exiting from the rear of the system)

allow native attachment of low speed I/O devices. The

xSeries 360 also provides one slim 24x-10x CD-ROM

drive and one slim 1.44 MB diskette drive.

The xSeries 360 transitions to a reduced legacy I/O

system. In addition to USB ports, the system includes

legacy keyboard and mouse ports. An internal serial

port connector is available for software debug.

This server provides the capability to optionally attach one

RXE-100 Remote Expansion Enclosure4. The RXE-100

provides an additional 12 PCI-X slots, increasing the total

number of PCI-X slots to 18, thus greatly increasing the

I/O capabilities of the system.

The xSeries 360 is packaged in a 3-EIA (5.25") by 28"

deep drawer in a 19" rack. It is powered by three 370

watt hot swap power supplies. Two power supplies are

required for a fully loaded system, the third providing

redundancy.

Reliability, Availability and Serviceability (RAS) are key

features of the xSeries 360. These are provided through

ServerGuide, IBM Director, Remote Supervisor Adapter

(RSA), Drawer Management Controller (DMC), Lightpath,

and hot swap redundant cooling fans.

Several operating systems are supported by the xSeries

360 including, Windows® 2000 Advanced Server and

Server, Windows NT®4.0 Enterprise Edition, Novell

Netware®, Linux (RedHat, Caldera, SuSE) and SCO

Unixware®( trademarks, registered and content).
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System Architecture
The xSeries 360 system diagram is shown in Figure 1.

Figure 1  xSeries 360 Block Diagram

The Memory/IO Controller (MIOC) has three interfaces;

the system bus, the memory bus and two RXE Expansion

Ports. The MIOC communicates with the processors via

the system bus, with the memory via the memory bus

and with the PCI-X I/O Bridge (PCI-X IOB) via the Remote

Expansion Port.

The MIOC chip has full SMP support for up to four Intel®

XeonTM Processor MPs. The system bus control signals

run at 100MHz, the address signals at 200MHz and data

signals at 400MHz. The address bus is 36 bits, double

pumped source synchronous with a maximum transac-

tion rate of one every two 100MHz bus clocks. The data

bus is 64-bit quad pumped source synchronous, pro-

viding 3.2GB/s peak bandwidth. Both address and data

busses incorporate parity to insure data integrity.

The MIOC chip has a 16-byte memory interface that

provides 3.2GB/s bandwidth, matching the system bus.

The control signals to the direct attached DDR memory

modules operate at 100MHz and the data bus to and

from the memory modules at 200MHz. This interface

supports eight industry standard DDR memory modules.

These modules are populated in pairs of like sizes. The

maximum memory capacity is 8GB using 1GB memory

modules. The MIOC provides Chipkill Error Correcting

Codes (ECC), allowing system operation to continue even

when there is a multi-bit failure in a single memory chip.

The MIOC chip communicates with the PCI-X I/O Bridge

chip and the external RXE-100 Remote Expansion

Enclosure via the two Remote Expansion Ports. These

ports are bidirectional, differential, two byte wide links that

operate up to 500MHz resulting in up to 2GB/s peak

bandwidth.

The PCI-X IOB chip is attached to the MIOC via one of

the Remote Expansion Port. The IOB generates three

independent 3.3 volt, 64-bit PCI-X bus segments. It also

implements an I/O xAPIC interrupt controller. Peer to peer

data transfers are supported between devices connected

to the same PCI-X bus segment.

One of the three busses is dedicated to native I/O

devices and the Remote Supervisor Adapter. The other

two 64-bit PCI/PCI-X busses are exclusively for PCI or

PCI-X feature cards.

The integrated native I/O devices are accessed through

the PCI-X IOB PCI bus 0 which runs at 33MHz. Bus 0

supports ISA bus operations like the special PCI bus

arbitration signals PHOLD, PHOLDA for ISA DMA opera-

tions and PCI interrupt acknowledge transactions for

PIC mode interrupt operations.

A South Bridge chip attached to PCI bus 0 generates an

ISA bus, one IDE bus and four USB ports. The ISA bus

devices include a 4MB flash memory for POST/BIOS

and Diagnostics code and a Super I/O chip. The Super

I/O chip converts the ISA bus to a floppy drive bus, a

mouse port, a keyboard port and also a serial port for

internal use. The IDE bus supports both Programmed I/O

(PIO) and Ultra DMA (33MHz) mode for the slim CD-ROM

drive. Three of the four USB ports are available in the

system.

Three other PCI bus 0 devices are integrated on the

system planar. A SCSI controller with 64-bit PCI data bus

supports one Ultra160 SCSI bus allowing the attachment

of three internal hot-swap disk drives. A video controller

converts the PCI bus to the SVGA CRT port signals. An

ethernet controller supports 10BASE-T/100BASE-TX.

The two busses dedicated to feature cards are capable

of running in either PCI or PCI-X mode. In the past,

reconfiguring bus speed and mode required rebooting

the system. In the xSeries 360, these two busses are

dynamically reconfigurable for both speed and PCI/PCI-X

mode operation, improving the capabilities of hot plug

operations. With these new capabilities, the xSeries 360

begins a new generation of systems with enhanced I/O

performance and new ability to dynamically reconfigure

PCI/PCI-X busses.
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The system configures the I/O slots to make maximum

possible use of the installed feature cards. Since PCI-X

feature cards are also downward compatible to PCI, it is

not necessary to separate PCI-X and PCI feature cards

onto separate busses. Configuration of each of the two

busses is the lowest common denominator for all of the

feature cards installed on that bus. Care should be

taken when installing feature cards into slots so that the

performance of each bus is maximized.

The MIOC has a second Remote Expansion Port, which

is routed to a connector on the rear bulkhead of the

system. An RXE-100 Remote Expansion Enclosure may

be connected to this port, increasing system I/O capa-

bility by adding up to two additional PCI-X IOB chips, six

additional PCI/PCI-X bus segments and 12 additional

PCI/PCI-X feature card slots. The total of 18 available

feature card slots far exceeds the capabilities of com-

petitive systems.

Performance
System performance is established by the processor, the

processor bus bandwidth, the total bandwidth to memory

and I/O, as well as latency in the system. A major focus

was placed on these performance factors.

The goal of the IBM XA-32 chipset was to match the

processor requirements such that the processor would

not wait for the system. The Intel® XeonTM Processor MP

processor bus has an effective bandwidth of 3.2GB/s.

The interface from the MIOC to the DDR memory has a

data bandwidth of 3.2GB/s. Each Remote Expansion Port

from the MIOC has a bandwidth of up to 2GB/s for a total

available I/O bandwidth into the MIOC of up to 4GB/s.

Thus, from a system view, the bandwidth from the

processor to memory is matched and the I/O bandwidth

is sufficient to keep the processor data bus saturated.

Latency to memory is the other significant factor in sys-

tem performance. Latency in the MIOC and the system

was modeled and simulated for the higher end systems

in the family of Enterprise X-Architecture systems. This

work factored into the xSeries 360 system to make the

overall system performance on initial offering better

than any of the previous systems in its class

The electrical characteristics of the memory bus5, PCI-X

busses6 and the RXE Expansion port7 were a major focus.

Each bus was modeled with several different tools.

HSPICE models were used as much as possible. Within

the custom tools, detailed circuit models were used to

do in depth analysis of the busses. Without these tools,

it would have been difficult to achieve the performance

without adding significant cost to the raw boards or

adding voltage levels to the system. Rules were gener-

ated from this modeling to be used during board layout.

Correlation between the model results and the initial

hardware was done when the hardware became avail-

able. The models were updated and the results com-

pared with the processor manufacturer for the processor

bus. All the results were fed into the final pass of the

board design, yielding a system performance that is not

gated by the board or overall system implementation.

Scalability
One of the major attributes in the Enterprise 

X-Architecture technology is the ability to increase

system capacity with XpandOnDemand scalability.

The xSeries 360 is the first Intel Architecture system to

provide optional, external I/O scalability. I/O scaling is

provided through the Remote Expansion Port to an

RXE-100 Remote Expansion Enclosure. The RXE-100

comes with six PCI-X slots and has the ability to grow to

12 slots in the same 3 EIA rack drawer. This provides

each xSeries 360 with the ability to scale to a maximum

of 18 PCI-X feature cards installed in the system.

POST/BIOS
POST/BIOS is stored in a programmable flash module in

the system. It is executed once the system is powered

up. POST/BIOS provides the following key features.

The first key function is to test and configure the compo-

nents of the system. The processor subsystem, memory

subsystem, host I/O subsystem and optional RXE-100

Remote Expansion Enclosure are optimally configured,

and the configuration information is made available for

use by the operating system or other software.

POST/BIOS also provides industry standard BIOS run

time interfaces to operating systems and applications.

Standard interfaces supported on the xSeries 360

include the standard INTx BIOS calls, SMBIOS 2.3, ACPI

BIOS 1.0b, and MP 1.4 BIOS.

Finally, POST/BIOS provides a boot time user setup

interface. This allows users to view or customize certain

system configuration parameters.

POST/BIOS can be easily updated locally by a flash

update diskette or remotely through LAN or Internet.
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Reliability/Availability/Serviceability
At a system level, xSeries 360 handles both recoverable

and unrecoverable errors. Recoverable errors are

detected and handled by the System Management

Interrupt (SMI) handler. These errors are single bit mem-

ory errors and other recoverable errors detected by the

MIOC and the PCI-X IOB.

The IBM xSeries 360 utilizes the extensive RAS features

of the XA-32 chipset to deliver a highly reliable and

easily serviceable system. Traditionally the SMI handler

dealt with all unrecoverable errors. In the xSeries 360,

unrecoverable MIOC detected errors are detected and

the error state logged out by the Remote Supervisor

Adapter. This allows accurate error logging even for cases

where the SMI handler is unable to run. Recoverable

MIOC detected errors are reported to and handled by

the SMI handler.

MIOC error handling includes Chipkill ECC on system

memory. Single bit memory error and multiple bit errors

where all failing bits are from a single memory chip are

corrected on the fly and reported as recoverable errors.

Multiple bit errors where the failing bits are not from a

single memory device are detected and reported as

unrecoverable errors. In order to further improve the

recoverability of system memory errors, the MIOC also

supports hardware memory scrubbing. The scrubbing

hardware in the MIOC continually accesses system

memory locations. When a correctable soft error is

detected, the location is rewritten to correct the error. This

prevents the buildup of correctable errors and reduces

the probability for unrecoverable errors. Chipkill ECC

along with scrubbing significantly improve the reliability

of the memory subsystem, reducing the instances of

unrecoverable system errors due to the memory.

The MIOC also detects and reports errors on the

processor system bus.

Error handling in the PCI-X IOB chip is built on enhance-

ments from previous generations of IBM Remote

Expansion Port Bridge chips and IBM PCI Bridge chips

used in IBM iSeries and pSeries systems. RXE Expansion

Ports are protected using a Cyclic Redundancy Check

(CRC) mechanism to identify errors in data movement

between the MIOC and PCI-X IOB.

Both recoverable and unrecoverable errors detected by

the PCI-X IOB chip generate a System Management

Interrupt and are logged by the SMI handler. For unre-

coverable errors, including PCI bus parity error (PERR)

or PCI bus system error (SERR), the SMI handler will

generate a non maskable interrupt (NMI) after logging

the error to the Remote Supervisor Adapter. The error log

can then be reviewed to pinpoint the failing component.

Another feature of the xSeries 360 is that if an Intel®

XeonTM Processor MP detects an internal error (IERR),

system logic will detect this condition, disable the failing

processor and reboot the system, permitting continued

operation in degraded mode.

Several major components in the xSeries 360 are hot

pluggable, allowing their removal/addition without the

need to halt system operation. These components

include power supplies, cooling fans, disk drives and

PCI feature cards.

Power/Packaging
Packaging the xSeries 360 was challenging due to the

requirements of supporting up to four Intel Xeon

Processor MP microprocessors, a memory card with 

eight DIMM slots, six full length PCI-X feature cards, a

Remote Supervisor adapter (service processor), on

board functions (SCSI, Video, Ethernet, PCI Hot Plug

Control, reduced IO legacy and flash EEPROM) in a 3-EIA

(5.25") by 28" rack drawer. The majority of this function is

placed on either the system motherboard or the memory

card with a minimal amount of function on ancillary cards.

The system motherboard (Figure 2) contains the vast

majority of the system components, including the XA-32

MIOC and PCI-X IOB chips. Up to four Intel Xeon

Processor MPs may be installed in the processor sock-

ets located in the front right quadrant of the mother-

board. The memory card connector is oriented front to

rear at the middle of the motherboard. The six 64-bit

PCI-X feature card slots are located at the left rear of

the motherboard, along with the connector for the

Remote Supervisor Adapter. Integrated I/O components

are populated across the remainder of the mother-

board, with the integrated I/O connectors exiting at the

right rear.
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Figure 2  System Motherboard

The memory card (Figure 3) contains eight sockets for

the PC1600 DDR Memory Modules.

Figure 3  Memory Card

The remaining cards are the Power Backplane, SCSI

Backplane, Operator Panel card, Level 2 Lightpath card,

Media Interposer card and PCI Hot Plug Switch card.

The mechanical package for the xSeries 360, shown in

Figure 4, is an industry standard 19" rack drawer, 3-EIA

units (5.25") high by 28" deep.
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System cooling consists of six redundant and hot

swappable fans. The processor area is cooled by two

mid system fans and two rear fans. The memory and I/O

area is cooled by two mid system fans. Fan redundancy

was designed so that if any one of the six fans fail, the

remaining five will operate at full speed to maintain the

proper cooling.

The xSeries 360 includes three hot swap 3.5" bays for

the up to three hot swap hardfiles. A hot swap backplane

is part of the drive bay assembly. This backplane uses

the industry standard 68-pin Single Connector Attach

(SCA) connector to attach to the Ultra Fast and Wide

SCSI hard drives.

The system is supplied by grounded, single-phase 

(3-wire), five output level power supplies with auto sensing

input voltage ability. The power supplies can provide up

to 370 watts each at 110V / 220V. Systems are shipped

with one to three power supplies. Redundant power

supply operation is supported with N+1=3 configurations.

A fully loaded system requires two power supplies to 

operate, with the third one being redundant. Hot plug is

supported by allowing a power supply to be inserted or

removed without affecting system function. Each power

supply provides 5V@20A, 12V@27A and -12V@ 0.6A.

The power supply also provides two standby voltages,

5VSB@2A and 3.3VSB@4A, which are available whenever

the power supply has AC power. Combined power for all

five outputs is limited to 370 watts.

In order to provide distributed power throughout the

system, DC to DC converters (VRMs) are used to provide

the on demand current when needed. A VRM 9.0 is

required to supply 1.5V core voltage to each Intel Xeon

Processor MP. A VRM40 is used to provide the 1.8V core

voltage for the XA-32 chipset. Another VRM40 provides

the 2.5V power required by the DDR memory modules.

Each of these VRMs is powered by the 12V level from

the power supply. Finally, two 3.3V VRMs are used to

provide PCI-X slot power. These VRMs are supplies from

the 5V power supply level.

Conclusion
The xSeries 360 use of IBM’s XA-32 chipset along with

the Intel Xeon Processor MP gives the user the latest

generation of price for performance PC Server. The

compactness allows the most performance available in

the smallest amount of space, optimizing the rack usage.
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Introduction
The xSeries 440 is IBM’s premier IA-32 Symmetric

Multiprocessor (SMP) system based on Enterprise 

X-ArchitectureTM (EXA) technology1. EXA scalability, per-

formance and Reliability, Availability and Serviceability

(RAS) features, along with unmatched package density,

make the x440 a unique industry standard server.

Product Description
The xSeries 440 comes standard with one SMP

Expansion Module containing one or two of Intel’s XeonTM

processors MP and 1GB of system memory. Four total

processors may be installed in the standard SMP

Expansion Module. The SMP Expansion Module also

provides 16 DIMM slots. 256MB, 512MB and 1GB

SDRAM DIMMs may be installed for a maximum of 16GB

system memory using 512Mb memory technology.

For larger configurations, a second SMP Expansion

Module may be installed, doubling capacity to eight

Intel Xeon processors MP and 32GB of system memory

in the 4-EIA (1-EIA=1.75 inches) unit enclosure.

I/O is provided by six full length ActivePCI-X slots.

Integrated I/O includes a dual Ultra160 SCSI controller

and a Gigabit Ethernet controller. Traditional legacy ports

such as keyboard and mouse are provided, along with

three Universal Serial Bus (USB) ports, to allow attach-

ment of either legacy or new I/O devices.

The 4-EIA unit enclosure supports two Hot Swap Hard

Drive Bays along with two ThinkPad Media Device bays.

Redundant power and cooling are standard.

XpandOnDemandTM scalability is a unique capability of

EXA implemented in the xSeries 440. It is the capability

to add additional system or I/O enclosures to increase

capacity as needed instead of having to purchase

unused headroom within each system unit enclosure.

Two 8-way or four 4-way xSeries 440 nodes may be

cabled together within a rack for a maximum 16-way

SMP configuration with up to 64GB of system memory.

Interconnected systems support physical partitioning2,

allowing multiple operating system images to run on the

interconnected system node enclosures if desired. As

on the xSeries 3603, XpandOnDemand also provides

I/O scalability. One 3-EIA Unit RXE-100 Remote Expansion

Enclosure4 may be cabled to each enhanced node in

either the same rack or an adjacent rack, providing up

to 12 additional full length ActivePCI-X slots each. This

provides a maximum capability of 72 full length PCI-X

slots for a maximum system incorporating four 4-EIA

Unit system node enclosures and four 3-EIA Unit RXE

100 enclosures.

The Remote Supervisor Adapter (RSA) is standard, pro-

viding advanced System Management capabilities with

IBM Director software. IBM Director now includes a

System Partition Manager to support XpandOnDemand

multinode configurations. Real Time diagnostics,

Lightpath diagnostics and traditional standalone diag-

nostics are also supported.

The xSeries 440 may be used with many standard

operating systems, including Microsoft® Windows, multiple

Linux distributions and Novell Netware.

Node Architecture & Performance
The xSeries 440 Enhanced Node system structure is

shown in Figure 1. As mentioned, the processor and

memory subsystem can consist of one or two SMP

Expansion Modules which are then connected to a

single I/O subsystem.

The processor subsystem is based on the IBM XA-32

Cache/Scalability Controller 32 (CSC32) chip5. This chip

interconnects the processors, XceL4TM Server Accelerator

Cache, SMP Expansion Ports for multinode interconnect

and the IBM XA-32 Memory/IO Controller (MIOC) chip6.

The processors are Intel’s most advanced Xeon

processors MP, including Hyper Threading technology.

They are attached to the CSC32 with an enhanced

system bus. The system bus meets all Intel architectural

and electrical requirements for attachment of up to four

Xeon processors MP. Address and Control signals oper-

ate in common clock mode at 100MHz. The data signals

are source synchronous quad pumped to 400MHz,

providing a peak data transfer capacity of 3.2GB/s.
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The CSC32 chip provides a large 32MB XceL4 Server

Accelerator Cache (L4 cache). This cache is 4-way set

associative and inclusive of the individual processor

caches. The cache directory is implemented internally to

the CSC32, while the data array is implemented externally

with 128Mb DDR SDRAM modules originally developed

for high performance graphics applications. These chips

are run at 200MHz for address/control with the data

double pumped to 400MHz. The wide bus width graphics

SDRAMs allow implementation of an 8-byte wide L4

cache data bus, matching the processor system bus

bandwidth at 3.2GB/s.

The CSC32 also provides three SMP Expansion Ports.

These allow the interconnection of up to two 8-way

xSeries 440 nodes or four 4-way nodes. These ports are

also used to connect together the two SMP Expansion

Modules in a single node for 8-way configurations.

Multiple xSeries 440 nodes located within a single rack

may be interconnected using external cables. The

CSC32 chip contains a directory that allows coherent

operation of multiple nodes by tracking cache lines from

local memory that are cached in another node. This

directory is 7-way set associative. A non-cache coherent

method of SMP Expansion Port data transfer, known as

Inter-Process Communications (IPC), is also supported by

the CSC32 to support multinode cluster configurations.

SMP Expansion Ports are 2 byte wide, simultaneous 

bidirectional, double pumped, source synchronous links

operating at a base frequency of up to 400MHz. This

provides a total bandwidth of up to 3.2GB/s per port for

a aggregate bandwidth of up to 9.6GB/s.

Finally, the CSC32 provides the path to the MIOC chip.

It operates at a 100MHz base frequency quad pumped

data, providing a bandwidth of 3.2GB/s.

The MIOC provides two independent memory ports to a

PC133 SDRAM memory array running at 100MHz. Each

memory port is eight bytes wide, operating at 400MHz.

This provides a memory bandwidth of 3.2GB/s per port,

or a total of 6.4GB/s. The Intel Xeon processors MP oper-

ate on a cache line of 64 bytes. Cache lines are usually

interleaved between memory ports for maximum per-

formance. However, if additional reliability is needed, the

memory ports may be mirrored to provide redundancy. In

this case, memory is read from one of the two memory

ports and written to both of the memory ports simulta-

neously to keep memory data in both ports consistent.

Each memory port is connected to two System Memory

Interface (SMI) chips. These are used to speed match

and multiplex an aggregate 32-byte wide bus, encom-

passing four industry standard PC133 SDRAM memory

modules operating at 100MHz, on to the 8-byte memory

port running at 400MHz. This bus structure allows a maxi-

mum of 16 memory modules to be installed on each of the
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two SMP Expansion modules, providing the large 16GB

per node memory capacity using 512Mb memory tech-

nology. The minimum supported memory configuration is

four memory modules attached to a single memory port.

Chipkill Error Correcting Codes (ECC) is included in the

MIOC, enhancing system availability compared to stan-

dard memory ECC schemes. Chipkill is an enhanced

ECC algorithm providing error correction not only for

single bit errors, but also for clusters of 4-bit errors where

the bits are all contained in a single memory chip. This

capability allows for continued system operation in the

presence of any single memory chip failure mechanism

instead of only the bit line failure mechanisms of standard

ECC algorithms. This advanced Chipkill design is used

with industry standard PC133 memory modules; special

‘Chipkill’ memory modules are not needed.

EXA Active Memory technology implemented in the

MIOC provides memory scrubbing, memory ProteXion,

memory mirroring and memory HotSwap/HotAdd

capabilities for the system.

Scrubbing hardware in the MIOC continually accesses

memory locations. Upon discovery of a correctable error,

the location is rewritten to correct the error and the error

is logged for Predictive Failure Analysis (PFA). This

prevents the buildup of correctable errors to the point

where random distribution of correctable errors could

result in an uncorrectable error.

Memory ProteXion is an EXA technology providing an

additional level of protection from memory subsystem

errors compared to ECC with Chipkill. Memory ProteXion

provides redundant memory data paths with an ability to

reroute memory data bits. When a significant number of

correctable memory errors are detected, the failing bits

are replaced by redundant bits, eliminating the errors. This

greatly reduces the probability of encountering uncor-

rectable errors, improving overall system availability.

Memory mirroring is the complete redundancy of the

memory arrays, providing the maximum level of system

availability. It allows system operation to continue even

when there are errors that are uncorrectable even with the

enhanced ECC algorithms. This is done by maintaining

a separate copy of the contents in memory attached to

each of the two memory ports. When one of the memory

ports starts to encounter an excessive number of cor-

rectable ECC errors, memory access are switched to the

alternate port, allowing continued operation with a healthy

memory array without needing to reboot the system.

Memory mirroring also provides the technical foundation

for the Memory Hot Swap and Memory Hot Add features

of Active Memory. Memory Hot Swap is the capability 

of replacing a failed memory DIMM while the system

remains operational. When the system detects an

excessive number of errors in mirrored mode, memory

accesses are switched to the non-failing memory port

and the failing memory module is identified with using

Lightpath Diagnostics. Service personnel may then locate

the failing memory module, disable and remove power to

memory modules on the failing port, replace the failing

memory module and re-enable mirroring without taking

the system down.

Memory Hot Add is the capability to add memory to the

memory subsystem without taking down the system. This

feature requires an operating system capable of recog-

nizing increased memory capability without requiring a

reboot, and can be accomplished in one of two ways

depending on whether mirroring is enabled. When mir-

rored mode is not enabled, Hot Add is supported if one

of the two memory ports is completely empty of memory

DIMMs. Memory DIMMs can be added to the empty port

and then enabled for use by the operating system. While

in mirrored mode, each memory port in turn is disabled

and powered off then memory module(s) added and

re-enabled. The final result is more memory in both ports

of the mirrored memory which can then be reported to

the operating system for its use.

The MIOC is also the connection point for the I/O sub-

system. Each MIOC provides two RXE Expansion ports.

These ports are routed to PCI-X I/O bridge (PCI-X IOB)

chips7 which can be attached locally (within the same

enclosure) or remotely via external RXE Expansion Ports

as shown in Figure 1. RXE Expansion Port technology is

similar to SMP Expansion Port technology, but operates

at a lower base frequency. The 250MHz base speed

yields a bandwidth of 2GB/s per locally attached RXE

Expansion Port segment for a maximum I/O bandwidth

of up to 4GB/s into the memory subsystem of each

SMP Expansion Module. Connection of the external

RXE Expansion Port yields a half bandwidth of 1GB/s

per remotely attached interface.

The I/O subsystem includes two PCI-X I/O bridge (PCI-X

IOB) chips. Each PCI-X IOB has two RXE Expansion Port

segments connected to MIOCs or external connectors

as shown in Figure 1. The external RXE Expansion Ports

are designed to attach to separate RXE-100 enclosures.

Additional PCI-X IOB chips located in the separate 

79



RXE-100 enclosures are connected to the RXE Expansion

Ports to expand the I/O subsystem capability if needed.

The RXE-100 may be physically located in a different rack

than the xSeries 440 system node that it is connected to,

providing a great deal of system configuration flexibility.

Each PCI-X IOB generates three PCI-X bus segments.

As shown in Figure 1, two of these chips are used in the

xSeries 440 node for a total of six 64-bit PCI-X bus

segments. These six segments are distributed to provide

two 133MHz ActivePCI-X slots, two 100MHz ActivePCI-X

slots and two 66MHz ActivePCI-X slots, along with con-

nections to Integrated I/O such as the SCSI controller

and gigabit ethernet controller.

Scalability
The xSeries 440 provides the standard hardware scala-

bility mechanisms for high performance servers, sup-

porting up to eight processors, 32GB of memory,

ServeRAID Adapters attached to external Storage

Enclosures and PCI-X based Network Adapters. In

addition to these standard forms of scalability, the

xSeries 440 supports XpandOnDemand capabilities for

both SMP and I/O scalability which are unique in the

industry. For example, one 8-way or two 4-ways can be

double connected for scalability port interleaving and

cable fail over.

XpandOnDemand SMP scalability is the ability to inter-

connect multiple enhanced nodes through high speed

SMP Expansion Ports. The xSeries 440 provides three

SMP Expansion Ports, allowing up to two 8-way or four

4-way enhanced nodes to be connected together. These

configurations enable scaling of up to 16 processors

and 64GB of system memory in a single SMP system

and are illustrated in Figures 2 and 3. Also, cable con-

figurations shown here, using six cables for the attach-

ment of the four SMP Expansion Modules, will provide

cable fail over.

Figure 2  Two 8-way Nodes, Single SMP System

Figure 3  Four 4-way Nodes, Single SMP System

Communications over SMP Expansion Ports can be

either cache coherent for SMP configurations or Inter-

Process Communications (IPC) for clustered configura-

tions. System partitioning provides the ability to run

independent operating systems on different nodes of a

server connected with SMP Expansion Ports. Partitions

can consist of one, two, three or four nodes, allowing as

many as four operating system images to be running

concurrently. Systems can be repartitioned using the

System Partition Manager, providing a great deal of

flexibility to manage system resources. Examples of

partitioned systems are shown in Figures 4 and 5.
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Figure 4  Two 8-way Partitions

Figure 5  One 8-way, Two 4-way Partitions

Nodes in separate partitions can use the SMP Expansion

Ports as a high speed cluster connection. The IPC facil-

ities built into IBM XA-32 chipset provide a very high

bandwidth (3.2GB/s) communications link using standard

communications protocols. The ability to provide both

cache coherent and non-cache coherent data transfer

over SMP Expansion Ports provides tremendous flexibility

to repartition systems without requiring manual hardware

reconfiguration.

XpandOnDemand I/O scalability resolves the traditional

problem with system I/O of insufficient PCI-X slots. It

allows optional connection of an IBM RXE-100 Remote

Expansion Enclosure to each xSeries 440, each one

providing up to twelve additional ActivePCI-X slots.

Figure 6 shows an example of an RXE-100 connected

to an xSeries 440. RXE Expansion Port connections can

be long enough to locate the IBM RXE-100 Remote

Expansion Enclosure in an adjacent rack to the one

containing the xSeries 440, providing tremendous rack

configuration flexibility. Redundant RXE Expansion Port

interconnect enhances availability for these multiple

enclosure configurations. With both SMP Expansion

Modules installed in an xSeries 440, a second external

cable can be added to a twelve slot RXE-100 for

improved performance and cable fail over.

Figure 6  8-way xSeries 440 with RXE-100

BIOS
BIOS is responsible for configuring and initializing the

hardware platform prior to loading an operating system

and for providing the low level hardware interfaces

required by the operating system. The BIOS implementa-

tion in the xSeries 440 Enhanced Node is compliant with

SMBIOS 2.3 and ACPI 1.0b architecture specifications.

In addition to traditional functions, BIOS supports multin-

ode capabilities of xSeries 440 Enhanced Nodes. When

the operating system is loaded, a multinode SMP system

will present a single image to the operating system,

including any associated system tables. One of the

system tables that the BIOS builds will describe static

resource affinity which provides processor and memory

locality information to the operating system to enable

improved Non-Uniform Memory Access (NUMA) per-

formance.
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System Management
System Management is a very important consideration

for the mission critical, multinode capable systems. IBM

Director has added two new capabilities to support

multinode configurations, the System Partition Manager

and the ActivePCI-X Slot Manager. Figure 7 illustrates a

managed, multinode system consisting of three partitions.

Figure 7  System Management & Partitioning

The xSeries 440 supports static physical partitioning

with currently available operating systems. Two to four

xSeries 440 Enhanced Nodes can be interconnected

through SMP Expansion Ports. Physical partitioning

allows the collection of these nodes into SMP systems

with a granularity of a single node. Static partitioning

provides the ability to reconfigure the nodes to any of the

supported configurations during a reboot without the

need for any physical reconfiguration. In addition to

partition configuration, the System Partition Manager

supports power on/off, boot and system shutdown control

on an individual partition basis.

The ActivePCI-X Slot manager provides a graphical,

hierarchical tool to manage I/O adapter configurations.

A system based on xSeries 440 Enhanced Nodes can

have four nodes, each attached to an RXE-100 Remote

Expansion Enclosure for a total of 72 ActivePCI-X slots.

The benefit of a tool to manage a system of this com-

plexity cannot be overestimated.

Each xSeries 440 Enhanced Node includes an IBM

Remote Supervisor Adapter (RSA) as standard equip-

ment. This adapter, available in many xSeries products,

provides system control and monitoring, system problem

alerts, the system error log and out of band communica-

tions resources enabling remote system management.

RSA operation is independent of system operational state

and is available for remote management operations even

when the system itself is powered off or inoperable.

In addition to the standard features provided by the

RSA, RSA is an integral component in the management

of multinode systems. In a multinode server configura-

tion, all nodes are connected through RSA to the IBM

Director Server and Console. The RSA maintains local

node partition configuration data and controls the state of

both the node and any attached RXE-100s. An important

standard feature of the RSA included with the xSeries 440

is that it supports graphics redirection and “headless”

operation, allowing complete remote management.

Reliability/Availability/Serviceability
The IBM XA-32 chipset has an extensive set of EXA RAS

features, such as memory scrubbing, memory mirroring,

Memory Hot Add/Hot Replace, memory chipkill, Memory

ProteXion and ActivePCI-X, which have been mentioned

previously.

IBM XA-32 also provides an exhaustive set of error

detection capabilities. ECC is used on the XceL4 Server

Accelerator Cache on both the data and directory arrays.

SMP Expansion Ports and RXE Expansion Ports have

robust error recovery capabilities based on CRC and

cable fail over. All major busses are protected with ECC

or parity as well as bus protocol checkers.

IBM XA-32 error reporting is based on the principle of

first error capture. First error capture is a method where

the platform collects sufficient information at the time an

error occurs to allow identification of the failing compo-

nent. This method reduces dependence on recreating

the error with diagnostic programs and reducing diag-

nostic escapes. IBM XA-32 supports first error capture

with an extensive set of run time error detection capa-

bilities and error logging registers, as well as an error

reporting methodology that ensures all applicable error

data is available for analysis.

Unrecoverable platform errors halt the system and report

the error to the Remote Supervisor Adapter. Halting the

system allows RSA to accurately log error information

from the IBM XA-32 chipset error registers into a non-

volatile error log. This ensures that error information is not

lost for severe errors while guaranteeing data integrity.

The xSeries 440 includes Lightpath Diagnostics which

quickly leads to the failing component. Enhancements

include a pop-out second level lightpath indicator that

is visible without moving the server, and indicators on
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the SMP Expansion Module that can indicate failed

components even when it is removed from the server.

Power/Packaging
The xSeries 440 enhanced node is packaged in a

compact 4-EIA Unit x 27.5" enclosure that is designed to

fit into a 19" rack. Service access is primarily from the

top, with power supplies and disk drives serviced from

the front. Media devices, operator panel and lightpath

indicators are also accessed from the front.

Layout for the major components is shown in Figure 8.

Figure 8  Mechanical Layout

At the left-front of the system are the two power supplies,

providing redundant power. Immediately underneath the

power supplies are the two Hot Swap Disk Drives and

below them are the CD-ROM and Diskette Drive devices.

Immediately to the rear of the power supplies are two

redundant fans that cool the power and I/O components.

Continuing to the rear are the six ActivePCI-X slots.

Integrated I/O devices are located beneath the PCI-X

slots at the rear of the system.

The two redundant fans for cooling the processors and

memory are at the right-front of the system. The SMP

Expansion Modules, each containing up to four proces-

sors, up to 16 memory modules, the CSC32 chip and the

MIOC chip, are located behind these fans. The standard

SMP Expansion Module is located in the bottom of the

system and the optional SMP Expansion Module is at

the top, providing incredible packaging density for an

8-way system.

Cooling is front to rear with independent airflow channels

on the left and right sides of the enclosure. The enclosure

was carefully designed to eliminate blockages in the

airflow path in the right side of the system in order to

adequately cool the high power processors and memory.

All fans are redundant and hot swap capable with service

access from the top.

The power supplies are 1050 watts each with a power

density that is greater than nine watts per cubic inch.

One power supply can power the system and the second

provides redundancy. The power supplies are hot swap

capable from the front. Two AC line cords are included

with the system. The power subsystem is implemented as

distributed 12V and the system’s power on/off control is

implemented on a power back plane. This allows for a

simplified design that supports robust continuous power

for the RSA and system management components.

Internal power distribution is by multiple 12 volt branch

lines, each with protection from hazardous energy

exposure. Voltage regulators are distributed throughout

the enclosure to convert 12 volts to the various voltages

required by the system electronics.

Conclusion
The xSeries 440’s implementation of EXA architecture and

IBM’s XA-32 chipset provides a powerful new platform

for high performance servers. The packaging of eight

processors and 32GB of memory in a single 4-EIA unit

enclosure is unmatched in industry standard servers.

Added to the system and I/O scalability capabilities of

EXA, the xSeries 440 is a very flexible and capable

mission critical industry standard server.
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Introduction
The IPF Enhanced Node Prototype (IPF Node) marries

IBM’s Enterprise X-ArchitectureTM (EXA) technology1 with

Intel’s new ItaniumTM Processor Family (IPF) processor

architecture. This unique combination leverages the

strengths of both technologies to provide a new class of

high performance, highly scalable, mission critical servers.

Product Description
Each IPF Node supports four IPF processors in a 

4-EIA (1-EIA=1.75inches) unit rack optimized enclosure.

Each comes standard with 1GB of system memory

based on industry standard DDR SDRAM memory

module technology. 256MB, 512MB, 1GB and 2GB

memory modules may be used. Up to 28 memory

modules may be installed for a maximum system mem-

ory configuration of 56GB per node.

I/O is provided by six full length ActivePCI-XTM slots.

Integrated I/O includes a RAID controller and dual

Gigabit Ethernet. Legacy ports such as serial and parallel

have been replaced with Universal Serial Bus (USB)

connections.

The 4-EIA enclosure supports two Hot Swap Hard Drive

Bays along with two ThinkPad Media Device bays.

Redundant power and cooling are standard.

XpandOnDemandTM scalability is a unique capability of

EXA implemented in the IPF Node. It is the capability 

to add additional system or I/O enclosures to increase

capacity as needed, instead of having to purchase

unused headroom within each system unit enclosure.

Up to four IPF Nodes may be cabled within a rack for a

maximum 16-way Symmetric Multiprocessor (SMP) 

configuration with up to 224GB of system memory.

Interconnected systems support physical partitioning2,

allowing multiple operating system (OS) images to run

on the interconnected IPF Nodes if desired.

XpandOnDemand also provides I/O scalability. One 3-EIA

unit RXE-100 Remote Expansion Enclosure may be

cabled to each IPF Node providing up to 12 additional

full length ActivePCI-X slots each.This provides a maximum

capability of 72 full length PCI-X slots for a maximum

system incorporating four 4-EIA IPF Node enclosures

and four 3-EIA RXE-100 enclosures.

The IBM Remote Supervisor Adapter is standard.

Software support includes standalone Lightpath

Diagnostics, Concurrent Diagnostics and IBM Director

software that includes an Active Partition Manager sup-

porting multinode configuration.

The IPF Node requires 64-bit operating systems. 64-bit

versions of Windows.NET and LinuxTM are planned.

Both 64-bit and 32-bit middle ware and applications are

supported, with 64-bit preferred for any performance

critical software.

Node Architecture & Performance
The IPF Node system structure is shown in Figure 1.

The top portion of the figure shows the

processor/memory subsystem and the bottom part

shows the I/O subsystem.

The processor subsystem is based on the IBM XA-64

Cache/Scalability Controller 64 (CSC64) chip3. This chip

interconnects the processors, XceL4TM Server Accelerator

Cache, SMP Expansion Ports for multinode interconnect

and the IBM XA-64TM Memory/IO Controller (MIOC) chip4.

The processors are Intel second generation IPF. These

processors have been significantly enhanced over

Intel’s first generation IPF.

The processor system bus meets all Intel architectural

and electrical requirements for attachment of up to four

IPF processors. Address and control signals operate in

common clock mode at 200MHz, double the frequency

of IA-32 systems. The data signals are source synchro-

nous double pumped, providing a transfer rate of 400M

transfers per second. The data bus width for IPF has

been doubled from IA-32 to 16 bytes, providing a peak

data transfer capacity of 6.4GB/s.
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Figure 1  System Structure

The CSC64 chip provides a large 64MB XceL4 Server

Accelerator Cache. This cache is 4-way set associative

and inclusive of the individual processor caches. The

cache directory is implemented internally to the CSC64,

while the data array is implemented externally with

128Mb DDR SDRAM modules originally developed for

high performance graphics applications. Again, these

chips operate at 200MHz for address/control with the

data double pumped for 400M transfers per second.

The wide bus width graphics SDRAMs allow implemen-

tation of a 16 byte wide cache data bus, matching the

processor system bus bandwidth at 6.4GB/s.

The CSC64 also provides three SMP Expansion Ports

that allow up to four identical IPF Nodes to be connect-

ed together using cables up to four meters long to

make larger systems. The chip includes a directory 

that allows coherent operation of multiple nodes by

tracking cache lines from local memory that are cached

in another node. This directory is 7-way set associative.

A non-cache coherent method of scalability port data

transfer, known as Inter-Process Communication (IPC),

is also supported by the CSC64 to support multinode

cluster configurations. SMP Expansion Ports are two bytes

wide, simultaneous bidirectional, double pumped, source

synchronous links operating at a base frequency up to

400MHz. This provides a total bandwidth up to 3.2GB/s

per port for a aggregate bandwidth up to 9.6GB/s.

Finally, the CSC64 provides the path to the MIOC chip.

Since the MIOC is common with IBM XA-32 chipset

based systems, the interface provided is the eight byte

wide QuadT bus. This bus has a 100MHz base frequency,

with double pumped address/control and quad

pumped data providing a bandwidth of 3.2GB/s.

The MIOC provides two independent memory ports to a

DDR SDRAM memory array. Each memory port is eight

bytes wide, operating at 400M transfers per second. This

provides a memory bandwidth of 3.2GB/s per port, or a

total of 6.4GB/s. Generally, the 128 byte cache lines are

interleaved between ports.

Each memory port is connected to two System Memory

Interface-Enhanced (SMI-E) chips, each of which pro-

vides two memory module busses each capable of

supporting four industry standard DDR SDRAM memory

modules. This bus structure allows a maximum of 

28 memory modules to be installed, allowing the large

56GB per node memory capacity using 2GB DIMMs.

The minimum supported memory configuration is two

memory modules attached to a single memory port.

Chipkill ECC is included in the MIOC, enhancing system

availability compared to standard memory ECC schemes.

Chipkill is an enhanced ECC algorithm providing error

correction not only for single bit errors, but also for clus-

ters of 4-bit errors where the bits are all contained in a

single memory chip. This capability allows for continued

system operation in the presence of any single memory

chip failure mechanism instead of only the bit line failure

mechanisms of standard ECC algorithms.

EXA Active Memory technology implemented in the

MIOC provides Memory Scrubbing, Memory ProteXionTM,

Memory Mirroring and Memory HotSwap/HotAdd capa-

bilities for the system.

Scrubbing hardware in the MIOC continually accesses

memory locations. Upon discovery of a correctable
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error, the location is rewritten to correct the error and the

error is logged for Predictive Failure Analysis (PFA). This

prevents the buildup of correctable errors to the point

where random distribution of correctable errors could

result in an uncorrectable error.

Memory ProteXion is an EXA technology providing an

additional level of protection from memory subsystem

errors compared to ECC with Chipkill. Memory ProteXion

provides redundant memory data paths with an ability to

reroute memory data bits. When a significant number of

correctable memory errors are detected, the failing bits

are replaced by redundant bits, eliminating the errors. This

greatly reduces the probability of encountering uncor-

rectable errors, improving overall system availability.

Memory mirroring is the complete redundancy of the

memory arrays, providing the maximum level of system

availability. It allows system operation to continue even

when there are errors that are uncorrectable even with the

enhanced ECC algorithms. This is done by maintaining

a separate copy of the memory contents in memory

attached to each of the two memory ports. When an

uncorrectable memory error is detected, the access

automatically switches to the alternate port to obtain a

correct copy of the memory data.

Memory mirroring also provides the technical founda-

tion for the Memory Hot Swap and Memory Hot Add

features of Active Memory. Memory Hot Swap is the

capability of replacing a failed memory DIMM while the

system remains operational. When the system detects

an uncorrectable error in mirrored mode, memory

accesses are switched to the non-failing memory port

and the failing memory module is identified. Service

personnel may then locate the failing memory module,

disable and remove power to memory modules on the

failing port, replace the failing memory module and re-

enable mirroring without taking the system down.

Memory Hot Add is the capability to add memory to the

memory subsystem without taking down the system.

This feature requires an operating system capable of

recognizing increased memory capability without

requiring a reboot, and is based on mirroring and the

memory port disable and power controls mentioned

previously. While in mirrored mode, each memory port

in turn is disabled and powered off, memory module(s)

added and re-enabled. The final result is more memory

in both ports of the mirrored memory, which can then

be reported to the operating system for its use.

The MIOC is also the connection point for the I/O sub-

system. It provides two RXE Expansion ports. Each of

these ports is routed to an IBM XA-64 PCI-X I/O Bridge

(PCI-X IOB) chip5. RXE Expansion Port technology is

similar to SMP Expansion Port technology, but operates at

a lower base frequency. The 250MHz base speed yields

a bandwidth of 2GB/s per RXE Expansion Port for a total

I/O bandwidth of up to 4GB/s into the memory subsystem.

The I/O subsystem has much in common with that of

the xSeries 440 Enhanced Node6. It includes two PCI-X

IOB chips. Each PCI-X IOB has two RXE Expansion Ports.

One of these connects to the MIOC while the other pro-

vides the external RXE Expansion Port connection to

additional PCI-X IOB chips located in separate RXE-100

enclosures.

Each PCI-X IOB generates three PCI-X bus segments.

Two of these chips are used in the enhanced node for

a total of six 64-bit PCI-X bus segments. These six

segments are distributed to provide two 133MHz

ActivePCI-X slots, two 100MHz ActivePCI-X slots and

two 66MHz ActivePCI-X slots, along with connections to

integrated I/O such as the RAID controller and Dual

Gigabit Ethernet.

Scalability
The IPF Node provides the standard hardware scalability

mechanisms for high performance servers, supporting

up to four processors, 56GB of memory, ServeRAID

Adapters attached to external Storage Enclosures and

PCI-X based Network Adapters. In addition to these

standard forms of scalability, the IPF Node supports

XpandOnDemand capabilities for both SMP and I/O

scalability which are unique in the industry.

XpandOnDemand SMP scalability is the ability to inter-

connect multiple IPF Nodes through high speed SMP

Expansion Ports. Each IPF Node provides three SMP

Expansion Ports, allowing up to four IPF Nodes to be

connected together. Communications over these links

can be either cache coherent for symmetric multipro-

cessing (SMP) configurations or Inter-Process

Communications (IPC) for clustered configurations.

Supported configurations of IPF Nodes are illustrated

in Figure 2.
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Figure 2  Multinode Configurations

These configurations enable scaling of up to 16 proces-

sors and 224GB of system memory in a single SMP

system.

System partitioning provides the ability to run inde-

pendent operating systems on different nodes of a

server connected with SMP Expansion Ports. Partitions

can consist of one, two, three or four nodes, allowing as

many as four operating system images to be running

concurrently. Systems can be re-partitioned using the

Active Partition Manager, providing a great deal of flexi-

bility to manage system resources.

IPF Nodes in separate partitions can use the SMP

Expansion Ports as a high speed cluster connection.

The IPC facilities built into IBM XA-64 chipset provide a

very high bandwidth (3.2GB/s) communications link

using standard communications protocols. The ability to

provide both cache coherent and non-cache coherent

data transfer over SMP Expansion Ports provides

tremendous flexibility to re-partition systems without

requiring manual hardware reconfiguration.

XpandOnDemand I/O Scalability resolves the traditional

problem with system I/O of insufficient PCI-X slots. It

allows optional connection of an IBM RXE-100 Remote

Expansion Enclosure7 to each IPF Node, each one 

providing up to twelve additional ActivePCI-X slots.

Redundant RXE Expansion Port interconnect enhances

availability for these multiple enclosure configurations.

BIOS
BIOS is responsible for configuring and initializing the

hardware platform prior to loading an operating system

and for providing the low level hardware interfaces

required by the operating system. The IPF Node

includes a new BIOS architecture developed for IPF

systems. The new architecture is based on the Processor

Abstraction Layer (PAL) & System Abstraction Layer

(SAL) abstractions defined by Intel for IPF based systems,

along with the Extensible Firmware Interface (EFI) 

specification. The BIOS implementation in the IPF Node

is compliant with SMBIOS 2.3, SAL 2.6, EFI 1.1 and ACPI

2.0 architecture specifications. This new architecture is

highly structured and provides an improved level of

independence between the operating systems and the

hardware platform.

The new IPF architecture BIOS introduces a new, more

robust error reporting architecture called Machine Check

Abort. This architecture abstracts error reporting through

the BIOS PAL and SAL firmware, isolating the operating

system from processor and platform hardware imple-

mentation differences. This architecture gives the oper-

ating system the ability to participate in error logging and

recovery to a much greater degree than IA-32 systems.

Depending on the severity of error, the operating system

may log the error, kill the failing task or reboot the system.

In addition to traditional functions, BIOS supports

multinode capabilities of IPF Nodes. When the 

operating system is loaded, a multinode SMP system

will present a single image to the operating system,

including a single instance of EFI & SAL abstractions

and any associated system tables. The memory map

created for these systems is slotted to allow the addition

of memory and I/O resources to any IPF Node. As

multinode configurations are non-uniform memory

access (NUMA) architecture, BIOS utilizes the capabilities

of the ACPI 2.0 specification to pass hardware topology

information to the operating system. The operating 

system may then use this information to optimize

resource allocation and task management for improved

performance.

The Extensible Firmware Interface (EFI) is another key

architectural element of BIOS. As a part of the EFI

implementation, an EFI partition for hardware platform

use of at least 100MB will be created. An EFI shell will

be created, allowing standalone diagnostics and utility

software previously running on DOS to work in an IPF

environment. EFI compliance is required of operating

systems to boot and function properly on the IPF Node.
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System Management
System Management is a very important consideration

for the mission critical, multinode capable systems. IBM

Director has added two new capabilities to support

multinode configurations, the Active Partition Manager

and the ActivePCI-X Slot Manager. Figure 3 illustrates a

managed, multinode system consisting of three partitions.

Figure 3  System Management & Partitioning Example

The IPF Node supports physical, static partitioning with

currently available operating systems. From two to four

IPF Nodes can be interconnected through SMP

Expansion Ports. Physical partitioning allows the collec-

tion of these nodes into SMP systems with a granularity

of a single node. A four node system, for example, can

be configured by the Active Partition Manager to pro-

vide 4 x 4-way SMP systems, 2 x 8-way SMP systems, 2

x 4-way & 1 x 8-way SMP systems or

1 x 16-way SMP system. Static partitioning provides the

ability to reconfigure the nodes to any of the supported

configurations during a reboot without the need for any

physical reconfiguration. In addition to partition configu-

ration, the Active Partition Manager supports power

on/off, boot and system shutdown control on an individ-

ual partition basis.

The Active PCI Slot manager provides a graphical, hier-

archical tool to manage I/O Adapter configurations. A

system based on IPF Nodes can have four nodes, each

attached to a RXE-100 Remote Expansion Enclosure for a

total of 72 ActivePCI-X Slots. The benefit of a tool to man-

age a system of this complexity cannot be overestimated.

Each IPF Node includes an IBM Remote Supervisor

Adapter (RSA) as standard equipment. This adapter,

available in many xSeries products, provides system

control and monitoring, system problem alerts, the system

error log and out of band communications resources

enabling remote system management. RSA operation is

independent of system operational state and is available

for remote management operations even when the 

system itself is powered off or inoperable.

In addition to the standard features provided by the

RSA, it is an integral component in the management of

multinode systems. In a multinode server configuration,

all nodes are connected through RSA to the IBM Director

Server and Console. The RSA maintains local node

partition configuration data and controls the state of

both the node and the attached RXE-100s.

Reliability/Availability/Serviceability
The IPF Node combines features of both the Intel IPF

processor architecture and Enterprise X-Architecture

technology implemented in the IBM XA-64 chipset to

provide a system with superior RAS features.

The IBM XA-64 chipset has an extensive set of EXA RAS

features, such as Memory Scrubbing, Memory Mirroring,

Memory Hot Add/Hot Replace, Memory Chipkill, Memory

ProteXion and ActivePCI-X, which have been mentioned

previously.

IBM XA-64 also provides an exhaustive set of error

detection capabilities. ECC is used on the XceL4 Server

Accelerator Cache on both the data and directory arrays.

SMP Expansion Ports and RXE Expansion Ports have

robust error recovery capabilities based on CRC. All

major busses are protected with ECC or parity as well

as bus protocol checkers.

IBM XA-64 error reporting is based on the principle of

first error capture, leveraging the IPF reporting structure

where appropriate. First error capture is a method where

the platform collects sufficient information at the time an

error occurs to allow identification of the failing compo-

nent. This method reduces dependence on recreating

the error with diagnostic programs and reducing diag-

nostic escapes. IBM XA-64 supports first error capture

with an extensive set of run time error detection capa-

bilities and error logging registers, as well as an error

reporting methodology that ensures all applicable error

data is available for analysis.
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Error reporting in the IPF Node takes advantage of both

IBM XA-64 chipset technology and IPF architecture

enhancements. Processor errors and I/O subsystem

errors are reported through the IPF Machine Check

Abort mechanism, as are recoverable memory 

subsystem errors. Unrecoverable memory subsystem

errors, which are likely to prevent execution of Machine

Check Abort software, halt the system and report the

error to the Remote Supervisor Adapter. Halting the system

allows RSA to accurately log error information from the

IBM XA-64 chipset error registers into a nonvolatile

error log. This combination of error reporting methods

maximizes the ability of an operating system to recover

and contain errors while insuring that error information

is not lost for the most severe errors.

Power/Packaging
The IPF Node is packaged in a compact 

4-EIA x 19" x 27.5" enclosure. Service access is

primarily from the top with power supplies and hard

drives serviced from the front. Media devices, operator

panel and lightpath indicators are also accessed from

the front.

Layout for the major components is shown in Figure 4.

Figure 4  Mechanical Layout

At the left-front of the system are the two power supplies,

providing redundant power. Immediately underneath the

power supplies are the two hot swap disk drives and

below them are the CD-ROM and LS240 high capacity

diskette media devices. Immediately to the rear of the

power supplies are two redundant fans that cool the

power and I/O components. Continuing to the rear are

the six ActivePCI-X slots. Integrated I/O devices are

located beneath the PCI Slots at the rear of the system.

The two redundant fans for cooling the processors and

memory are at the right-front of the system. A single

memory card containing locations for the 28 DDR

SDRAM memory modules is to the rear of the fans and

located at the top of the system to provide convenient

access for memory Hot Add and Memory Hot Replace.

The IBM XA-64 MIOC is also located on the memory

card. The processor card containing the four Intel IPF

processors and the IBM XA-64 CSC64 chip is located

directly beneath the memory card. Two processors are

mounted on each side of this card to maximize the

electrical performance of the processor system bus.

The SMP Expansion Ports exit the enclosure at the rear

from the processor card.

Cooling is front to rear, with independent airflow channels

on the left and right sides of the enclosure. The enclosure

was carefully designed to eliminate blockages in the

airflow path in the right side of the system in order to

adequately cool the high power processors and memory.

All fans are redundant and hot swap capable with service

access from the top.

The power supplies are 1050 watts each. One power

supply can power the system and the second provides

redundancy. The power supplies are hot swap capable

from the front.

Internal power distribution is by multiple 12 volt branch

lines, each with protection from hazardous energy

exposure. Regulators are distributed throughout the

enclosure to convert 12 volts to the various voltages

required by the system electronics.

Conclusion
The IPF Node’s use of Intel’s IPF processor architecture

and IBM’s XA-64 chipset illustrates a powerful new 

platform for high performance servers. The large memory

space architected into IPF is fully realized with the

224GB capability available with a four node SMP con-

figuration. I/O is equally scalable using IBM RXE-100

Remote Expansion Enclosures to support the vast

amounts of storage and network connections required

with such a powerful system. This combination drives

industry standard servers well into markets previously

populated only with proprietary solutions.
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Introduction
The RXE-100 Remote Expansion Enclosure, when cou-

pled with xSeries 3601, xSeries 4402 or IPF Enhanced

Node Prototype (IPF Node)3 host systems, creates sys-

tems of unparalleled performance and I/O capability.

The RXE-100 enhances the ActivePCI-X capabilities of

Enterprise X-ArchitectureTM4 based systems by providing

up to twelve additional 64-bit PCI-X slots. The RXE-100

Remote Expansion Enclosure is packaged in a 3-EIA

unit rack drawer.

Product Description
The base RXE-100 includes one backplane providing

six 64-bit PCI-X slots on three busses. If both adapters

are populated, the PCI-X bus can run at 100MHz. With 

a single adapter, the bus can operate at 133MHz. An

optional second backplane may be added, yielding an

additional six 64-bit PCI-X slots.

The RXE-100 is cabled to the RXE Expansion Ports on the

host system with a cable. The cable length is in meters

and the RXE-100 may be located in either the same

rack as the host system or an adjacent rack, allowing

tremendous configuration flexibility.

The RXE-100 is packaged in a standard 19" rack drawer,

3-EIA units high and 26" deep. Redundant power and

cooling are standard.

System Management for the RXE-100 is provided by a

standard Drawer Management Controller (DMC). This

controller is attached to the host system using a RS-

485 cable. The RXE-100 is managed by the Remote

Supervisor Adapter (RSA) that is standard in the

Enterprise X-Architecture (EXA) host systems.

The RXE-100 can be attached to the EXA host systems

and run many standard operating systems, including

Microsoft® Windows, Novell Netware® and multiple

Linux® distributions.

System Architecture
The xSeries RXE-100 Remote Expansion Enclosure

system structure is shown in Figure 1.

Figure 1  RXE-100 Structure

The RXE-100 includes one standard backplane. A second

backplane is optional. Each backplane provides six 64-bit

PCI-X slots, one PCI-X I/O Bridge (PCI-X IOB) and a Hot

Plug Controller. The PCI-X IOB5 chip has two RXE

Expansion Ports. One of these is routed internally to the

optional PCI-X backplane, while the second is routed to

an external connector as shown in Figure 2. If a single

backplane is installed, the RXE-100 presents one external

RXE Expansion Port. When both standard and optional

backplanes are installed, the RXE-100 presents two

external RXE Expansion Ports out the back of the enclo-

sure. This routing enables host systems connected to

an RXE-100 to access PCI-X slots on both PCI-X back-

planes with one cable connection. Alternatively, a separate

host system may be attached to each PCI-X backplane

so that each host system uses six of the twelve PCI-X

slots in a single RXE-100 enclosure. This provides

tremendous system configuration flexibility.
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Figure 2  RXE Expansion Port Routing

Each PCI-X IOB chip generates three PCI-X busses 

(P0, P1, P2) as shown in Figure 3. Each PCI-X bus is

wired to two slots. If only one slot on each bus is popu-

lated with an adapter, the second slot is electrically

removed from the bus and the populated slot will sup-

port 133MHz operation. When both slots on a bus are

populated the slots will support a maximum of 100MHz

operation. Hot Plug Controller configures installed

adapters for maximum performance. It identifies the

adapter type, sets up the PCI/PCI-X bus mode and bus

speed, and powers the slot on.

Figure 3  PCI-X Bus Structure

On each PCI-X backplane there is a private I2C bus

which connects the PCI-X IOB chip to the Hot Plug

Controller. PCI hot plug control commands are passed

from the PCI-X IOB to the Hot Plug Controller over this

I2C bus. The Hot Plug Controller provides proper

sequencing for the bus switches and power controls to

each Hot Plug PCI-X slot. A PCI-X Hot Plug Switch Card

is cable attached to each PCI-X backplane. This card

communicates with the Hot Plug Controller that a slot is

being accessed for a hot plug operation.

Drawer management support is provided through the

Drawer Management Controller (DMC) located on the

DMC backplane. Connection to the host system Remote

Supervisor Adapter is via the host system’s DMC RS-485

port. The RXE-100 has two separate RS-485 DMC links.

Two links are provided so that a single RXE-100 can be

shared between two host systems. Each host system can

obtain drawer management status over its own RS-485

link. Four chassis fans dock to the DMC backplane. Fan

tachometer monitoring and speed control are main-

tained by the Hot Plug Controller. Lightpath diagnostics

capability for the RXE-100 is provided by the DMC.

Power is provided by two 370 watt power supplies. One

power supply is sufficient to operate a fully populated

RXE-100. The second power supply provides redundancy.

These power supplies are plugged into a power back-

plane which provides power controls, DC voltage distri-

bution and hazardous energy protection. Fuel gauge is

supported.
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Performance And Scalability
The RXE-100 Remote Expansion Enclosure interfaces

directly with a host system using the RXE Expansion

Port. The RXE Expansion Port consists of a 16-bit bidi-

rectional, differential link operating at 500MHz. This

interface provides a peak data transfer rate of 2GB/s

between the host system and the RXE-100.

Up to twelve additional PCI-X adapter slots can be

added to the EXA-based host system with the addition

of an RXE-100 Remote Expansion Enclosure. This

unprecedented I/O expansion capability can be used

to enable massive high speed data storage by adding

ServeRAID SCSI or high speed Fibre Channel adapters,

or to increase network bandwidth by adding multiple

Local Area Network adapters to obtain faster response

times and support more users.

Reliability/Availability/Serviceability
The RXE-100 Remote Expansion Enclosure is designed

for use in mission-critical applications. Redundant hot

swap power and cooling is standard with two auto

ranging 370watt power supplies and four cooling fans.

All PCI-X slots support hot swap and hot add operations,

allowing replacement of failed adapters or improved I/O

configurations without bringing down the host system

or the RXE-100.

The Drawer Management Controller (DMC) in the RXE-100

is attached directly to the standard Remote Supervisor

Adapter in an EXA host system for system management

monitoring of vital components, including power supplies,

fans, PCI-X backplanes and the Power Backplane. This

monitoring also includes Predictive Failure Analysis (PFA)

for these components, allowing identification of potential

problems before they actually cause the system to go

down. The DMC also enables Light Path Diagnostics

that simplify diagnosis of a failing component.

Power/Packaging
The xSeries RXE-100 is packaged in a compact 3 EIA unit

x 26" deep 19" rack drawer. Service access is primarily

from the top, with power supplies, operator panel and

lightpath indicators accessed from the front. Layout for

the major components is shown in Figure 4.
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At the left-front of the system are the two 370 watt power

supplies. The second power supply is redundant. The

power supplies are hot swap capable from the front.

Four fans are located above the DMC backplane to cool

the enclosure. Fan speed is controlled in pairs, with two

fans per six PCI-X slots. The cooling system is designed

to meet thermal specifications even when any single fan

fails. If a fan fails the speed on all remaining fans is set

to maximum. All fans are hot swap capable from the top.

The DMC backplane is located under the fans and is

assembled to the power shuttle assembly. The standard

and optional backplanes are located at the rear of the

enclosure and are attached to I/O shuttle assembly. The

two backplanes are connected using a shuttle latch

mechanism. Six PCI-X slots are located on each of the

backplanes.

The orange color on components and labels in the

enclosure identifies hot-swap components. Customers

can install or remove these components while the system

remains operational.

Configuration
Until recently, industry specifications for PCI and PCI-X

required that all adapter slots be contained in the main

system cabinet. This resulted in a tradeoff in server

implementation. On one hand, designers wanted to

maximize the number of adapter slots in a box, but at

the same time, they wanted to shrink the size of the

server as much as possible to minimize the rack space

required. However, reducing the size of the system

beyond a certain point meant sacrificing adapter slots.

One obvious solution was to limit the number of slots

inside the server chassis while extending additional 

bus segments to external I/O expansion units to hold

adapters. By moving adapter slots outside of the main

system cabinet, the base server can be made much

smaller. No industry-standard server vendor has had

this capability.

IBM Enterprise X-Architecture technology’s

XpandOnDemand™ scalability allows users to start out

small and inexpensively with a host EXA server such as

the xSeries 360. An IBM RXE-100 Remote Expansion

Enclosure may be added later when needed as shown

in Figure 5.

Figure 5  RXE-100 Configuration Examples

The xSeries 360 server is the first 4-way system offered

in a slim 3-EIA unit rack optimized form factor, and the

RXE-100 is an equally rack-dense 3-EIA unit. Because it

is possible to start small with just a single xSeries 360

server, there is the flexibility to expand considerably in a

single 42-EIA unit rack. For example, fourteen xSeries 360

servers providing up to 56 processors and 84 PCI-X slots

may be installed in a single 42-EIA unit rack. Alternatively,

if fewer systems are required, seven xSeries 360 systems

and seven RXE-100 Remote Expansion Enclosures pro-

viding up to 28 processors and 126PCI-X slots may be

installed in the same 42-EIA unit rack.

Topologies
A host system with two RXE Expansion Ports can be

looped as shown in Figure 6. This topology allows data

to be rerouted if an RXE Expansion Port cable is acci-

dentally disconnected or fails.

Figure 6  Dual Port System with RXE-100

Additionally, an RXE-100 can be shared between two host

systems. PCI-X slots on the standard PCI-X backplane

can be owned by one host system and PCI-X slots on

the optional PCI-X backplane can be owned by another

as shown in Figure 7.
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Figure 7  Two Host Systems with RXE-100

Conclusion
The RXE-100 provides and supports several configura-

tions within the EXA technology family. In its simplest

form, one drawer with six PCI-X slots can be added to

one host. The RXE-100 in turn can support numerous

I/O adapters, including RAID technology, that can sup-

port a large variety of storage configurations. Over the

life of this technology, numerous configurations will be

supported, driven by the users unique requirements,

fulfilled by the flexibility of the EXA technology.
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Introduction
This paper describes an electrical design optimization

methodology for a high-speed point-to-point source-

synchronous simultaneous bidirectional interface. These

physical links are used to interconnect Enterprise 

X-Architecture nodes to build symmetric multi-processor

(SMP) systems1, as well as to connect input/output (I/O)

subsystems2 across relative long distance. Major design

issues such as attenuation, crosstalk, delay skew,

impedance control and inter-symbol interference (ISI) are

discussed for long and parallel external interconnections.

Modern CMOS technologies have yielded FET devices

with less than 0.1 um gate length, allowing microprocessor

to operate at clock frequencies greater than 1 GHz.

Similarly, such increase in device density has resulted on

memory densities greater than 1 Gbit/chip. This creates

a huge amount of data processing capability, but system

memory latency and system interface bandwidths are

not keeping pace with processor speeds and memory

capacities. Furthermore, the I/O and memory capacities

required for servers continue to increase the physical

distance required between the processors, memory and

I/O subsystems. Effective cycles/instruction (CPI) rates

have not changed significantly in the past decade.

Most realized digital processing power has come from

processor frequency, wider busses, cache subsystems

and increased memory capacity. Advanced internet and

symmetric multi-processor switch systems are already

approaching an aggregate data bandwidth of 1Tbit/s.

Optimization of bandwidth, power, pin count or number of

wires and cost are the goals for high-speed interconnect

design. The electrical performance of the package, board

and cable interconnects are the major limiting factors for

high-speed and data transfer bandwidth. Today, increased

data rates can be achieved using circuit design tech-

niques, such as differential drivers/receivers, and system

timing techniques, such as source synchronous clock

signaling. Innovative signaling schemes, like simultaneous

bidirectional data transmission over one wire, double

the effective bandwidth per wire over a point-to-point

unidirectional scheme3.

This paper describes an optimization methodology where

circuit design techniques are coupled to board/cable

design schemes to minimize undesirable electrical

effects such as attenuation, crosstalk, signal/clock jitter

and inter-symbol interference.

System Architecture
A differential point-to-point 400MHz double-data rate

(DDR) I/O hub structure consisting of two bytes of data

is used to illustrate typical attenuation and jitter related

design issues for the scalability interface, giving a 3.2

GB/s throughput. The I/O node interface operates at

250MHz DDR simultaneous bidirectional to yield a

throughput of 2GB/s over much longer cables. The bi-

directional signaling scheme uses current source drivers

on both ends of the connecting cable and on-chip

termination resistors across the differential pin pairs. The

receiver located on either end of the net subtracts the

voltage due to the near driver from the total voltage

across the termination resistor to obtain the voltage due

to the far driver. In order to do the subtraction, an on-chip

replica driver creates a scaled copy of the line driver

output current. Figure 1 shows a block diagram for the

simultaneous bidirectional driver/receiver circuitry.

Figure 1  Block Diagram for I/O Circuit

This scheme results in increased overall performance at

lower cost since both terminations are on-chip and all

the wires can be used for sending and receiving data

simultaneously. These links are typically used to connect

processor subsystems to build symmetric multi-processor

systems, as well as to connect I/O subsystems which are

usually daisy-chained in a loop configuration to provide

path redundancy in case of a cable or connector failure.
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Design Issues
There are five basic electrical design issues for this

type of high-speed interface:

1. Skin-effect attenuation in cable and board inter-

connects and associated data-dependent jitter; 

2. Static skew between data and clock for long cable

lengths;

3. Dynamic skew due to jitter caused by process,

power supply and temperature variations, imped-

ance mismatches and interconnect discontinuities;

4. Near-end and far-end crosstalk and crosstalk

induced jitter caused by board, cable and con-

nector assemblies; and

5. Accurate testing and measurement of interface

performance. The impact of each issue is evaluated

and controlled through careful design guidelines

in order to achieve the overall budget and hence

timing closure. Simulations were carefully analyzed

to confirm the assumptions as well as to understand

the simultaneous bidirectional signaling sensitivities.

Design Optimization
Optimization of digital interconnect design is a balance

and tradeoff of various factors in order to meet timing.

Due to the different nature of challenges, gaussian and

non-gaussian, the design goals were specified sepa-

rately in terms of jitter and skew.

Skin Effect Attenuation Control

The most obvious limitation of copper interconnects is

loss4. Frequency dependent attenuation such as skin

effect, causes data dependent jitter when the frequency

of operation of the interface increases to the point where

the voltage at the receiver is no longer able to reach the

full swing value. This affects timing because the signal

will start transitions at different levels and hence cross

the threshold faster or slower depending on the previous

data pattern.

Precompensation/equalization is commonly used to

minimize attenuation data pattern dependent variations

in jitter through high pass filters, transmitter and/or

receiver equalization. An equalizer high-pass filter cas-

caded with the cable to reduce the pulse distortion is 

commonly used, however, this technique wastes board

space. The delay skew between different data paths as

well as static variations of the reference clock have to be

tracked and continuously adjusted. Discrete equalizers

work best for only particular cable/board trace lengths

and sizes4. Precompensation or transmitter equalization

circuit is used in this design to reduce ISI jitter. The driver

circuitry implements a discrete precompensation logic

where the driver current is a function of the present and

previous data bit. Additional current is sourced into the

channel to reduce the rise time degradation of the signal

which will counter the attenuation of the channel and

enable the signal to make the full transition at the receiver.

With a consistent starting point, the transitions are more

predictable and the inter-symbol interference is reduced.

Since frequency dependent attenuation is closely related

to length of the interconnect, the additional energy needs

to be tuned to a certain amount of loss and hence tuned

to a particular length of cable. Time domain simulations

are needed to quantify jitter due to signal loss for the

total interconnect network. This includes cable size,

length and type, and board trace width, spacing and

length. Given the attenuation guidelines, the designers

are free to balance the choices from the various combi-

nations of these factors using attenuation charts such

as Figure 2 to meet the budgets and stay within cost.

Figure 2  Attenuation vs. Length @ 400 MHz
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Static Skew in Long Cable Lengths

Controlling the static delay skew for both data and clock

in a source-synchronous bidirectional signaling technique

falls into two categories: skew among differential pairs

of the bus and skew within a signal’s differential pair. For

this technique, the design optimization problem reduces

to the minimization of skew between the data bits and

the link clock and data. Skew among differential pairs

can be corrected with the automatic deskew circuit.

The receiver circuitry implements deskew circuits to

compensate for static skew on the incoming data for up

to 2ns so that the link clock samples the data in the

middle of the data window, allowing for optimum timing

margin for both setup and hold timing requirements.

Programmable delay lines are used on-chip to add the

appropriate amount of correction delay to each bit. The

driver sends synchronization packets with unique patterns

to determine how much delay needs to be added to

each bit during initialization. The clock is then delayed to

the center of the aggregate data eye. A static delay skew

budget for each interconnect component in the link

(modules, boards, connectors and cable) is allocated

within the allowable delay skew correction in the design.

Skew within a pair cannot be corrected by the receiver

so every picosecond of in-pair skew seen at the receiver

results in a picosecond less in margin. To control the static

skew within a pair, strict routing rules were implemented.

Dynamic Skew

Dynamic skew and jitter due to process and power

supply are budgeted within the component and board

timing allocations while the skew variations due to tem-

perature are compensated by synchronization packets.

Periodically, they track delay changes due to temperature

changes and adjust the deskew circuitry accordingly.

Near-end and Far-end Crosstalk

Various simulations of board/cable impedance corners

and stackup/spacing crosstalk characterization indicate

that if crosstalk is kept within 5%, its impact will be within

the allocated budget of ± 50 ps. Although differential

signaling crosstalk should be minimal due to cancella-

tion of return currents, even-mode effect is present since

there is certain skew allowed within a pair. For simulta-

neous bidirectional interface, both near-end and far-end

of the line are being probed and decoded by the corre-

sponding receiver circuit at both ends of the link. Hence,

any near-end noise creates a difference voltage in the

receiver, as well as crosstalk induced jitter. Crosstalk

control can be maintained for different components of

the link by proper selection of board trace width/space,

cable construction and connector choice (see Table 1).

The use of Quad cable construction is very common

for parallel interfaces due to size savings, but Twinax

cable construction offers better performance and

reduced crosstalk.

Table 1  Connector Crostalk Comparison

Rise Time MDR LFH GignaCN VHDCI

Differential (S:G) (S:G) Gnd (S:G)

Xtk 2.5:1 3:1 Shield 2:1

500 ps

Near End 3.86% 8.05% 1.17% 13.16%

Far End 4.82% 2.20% 0.33% 4.89%

300 ps

Near End 4.44% 12.6% 1.72% 17.6%

Far End 5.55% 3.79% 0.39% 8.28%

Dynamic skew jitter is determined by accurate time-

domain simulations including process corners, power

supply and temperature variations, impedance mis-

match (modules, cards, connectors and cable) and

data-dependent effects (ISI). Table 2 summarizes a 

typical dynamic delay skew allocation for a data rate 

of 800 Mb/s.

Table 2  Summary of Typical Timing Allocation:

Parameter Skew(ps)

ISI (incl. replication error) 520

Crosstalk (boards+connectors) 100

Wiring tolerance 120

Clock jitter 100

Component noise induced delay 100

Receiver setup/hold 90

De-skewing circuit tollerance 200

Total 1250

Interface Testing and Measurement

Testing and measurement were taken at two levels: link

level and physical level tests. Link layer level testing is

helpful in determining the margin on all deskewed data

bits with respect to the automatic clock centering circuitry

and the error rate seen at the system level. The ping test

is a link level test feature of the macro in which packets
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with randomly generated payloads are transmitted along

with the cyclic redundancy check (CRC) and acknowl-

edgements are received for each error free packet. Using

counters on each port, the error rates can be measured.

The bit error rate (BER) is estimated by counting the

number of errors at the receiver output and dividing by

the total number of transmitted bits over a specified

period of transmission. An accurate BER at the link level

is not possible since errors are detected through CRC

validation which only indicates the presence of an error,

but not where or how many bits were the culprit. The error

free window (EFW) clock margin test is an extension of

the ping test where the automatically centered clock can

be manually skewed providing an insight to how well the

clock centering circuit is performing in both setup and

hold margins. Data deskew relies on synchronization

packets that are sent with specific data patterns used to

align the data at the receiver and automatically center

the clock. The error rate is plotted against deskew values

to measure the aggregate data eye (Figure 3).

Figure 3  EFW test “bathtub” curve

An oscilloscope was used to characterize the data eye

waveforms with the transmitter in unidirectional mode. The

advantage of time-domain measurement is its ease of

understanding and its coverage of voltage amplitude,

signal distortion and time eye closure. The pre-compen-

sation effects can be seen in Figure 4 where the signal

will have a larger swing when switching values to com-

pensate for the channel attenuation. In Figure 5, the

received signal does not display the different voltage

levels at each logic value because the high frequency

energy injected by the pre-compensation circuit is

attenuated by the interconnect.

Figure 4  Unidirectional Signal at driver output

Figure 5  Unidirectional signal at receiver input

In addition, time domain reflectometry (TDR) characteriza-

tion of channel impedance was used to verify simulation

models. Simulation and lab testing of this simultaneous

bidirectional interface has shown a BER dependency

on the clock phase of the outgoing and incoming data

stream. This is due to the noise susceptibility of the driver

replica and the summing circuit and, if not carefully taken

into consideration when performing simulation, can lead

to misleading conclusions. The clock phase effect has

been simulated and shown to increase the jitter as much

as +/- 80 ps. Due to the asynchronous nature of the

multi-system clocks, this jitter would be lower since the

phase would vary over time. Simulation can take this

effect into account by slightly increasing the period of

one transmitter which would then result in a change in

phase as the simulation progresses.
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Conclusion
A design, modeling and simulation methodology is pre-

sented that allows for optimization of the simultaneous

bidirectional source synchronous interface operating at

data rates of 1.0 - 1.6Gb/s. For system timing closure,

the critical design parameters are attenuation induced

jitter from inter-symbol interference, impedance mismatch

and connector crosstalk. Board and cable crosstalk can

be controlled by proper selection of trace spacing and

cable construction. The use of source synchronous

signaling techniques eliminates the need for a clock

recovery circuit and effectively reduces the clock jitter.

The usage of on-chip de-skewing circuitry and clock

centering to compensate for static skew allows ease of

design. EFW tests both clock centering circuitry accuracy

and aggregate data setup and hold margins. Finally,

an accurate modeling and simulation methodology is

essential to guarantee the system timings and hardware

functionality.
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Introduction
Continued advances in silicon technology have yielded

dramatic increases in both circuit speed and wiring

density. These advances are shifting the performance

challenges from the on-chip circuit-to-circuit intercon-

nections to the off-chip component-to-component inter-

connections. The goal of high-speed interconnect design

is to optimize bandwidth, power, pin count or number of

wires and cost. For digital computer systems, the board

level interconnect technology is lagging behind the on-

chip interconnect technology and the electrical per-

formance of the package, board and cable interconnects

are the major limiting factors for high speed and band-

width. As a result, system level performance is limited by

data transfer rates and memory bandwidths, including

multi-level caches and memory sub-system. Current

processors already operate beyond 1GHz speed leav-

ing a wide gap with the memory subsystem which uses

a conventional common-clock technique in the 100MHz

range. Innovative signaling schemes such as simultane-

ous data transmission in two directions over one wire

double the effective bandwidth per wire but it is still lim-

ited to point-to-point application. A more practical

approach is to use a source synchronous signaling

scheme to double the data rate without investing in new

process technology. The double data rate (DDR) is

achieved by a new bus protocol.

Strong PC and server demands for speedier devices

have forced leading semiconductor makers worldwide

to develop high-performance dynamic random access

memory (DRAM) chip technologies which can be used

for these new bus protocols such as RAMBUSTM and

DDR SDRAM. The initial offerings for DDR registered

DIMMs are targeted for the server, workstation, and

high-end desktop computer market segments. In addi-

tion, microprocessor designs and associated chip sets 

are fast emerging with similar DDR timing schemes for

their system bus, memory hub and I/O hub interfaces.

Two different subsystems are used to illustrate the design

issues and solutions. A multiple DIMM 100MHz DDR

main memory structure is used to illustrate typical multiple

load design issues. A simple point-to-point 200MHz

DDR L4 cache structure is used to illustrate typical inter

symbol interference (ISI) related design issues.

What is Source Synchronous DDR?
In a common-clock timing scheme, a single clock is shared

by driving and receiving agents on a bus. Figure 1 depicts

a common-clock bus similar to the standard PC100

DIMM memory bus. A complete data transfer requires

two clock pulses, one to latch the data into the driving

flip-flop and one to latch the data into the receiving flip-

flop. The data transfer occurs in the following sequences.

First, chipset receives the clock edge (Ck1) from the

system clock and makes it available at the buffer output

pin. Next, the data is transmitted through a transmission

line to the receiving buffer. On the second clock edge

(Ck2), the receiver agent latches the data into its flip-flop

and makes it available to its internal core. This bus protocol

limits itself to lower speeds, shorter trace lengths,

sensitivity to component delay, clock skew, and single

data capture per clock cycle.

In a source synchronous scheme, a strobe or clock is

sent from the driver chip instead of a separate clock

source. The data is transmitted to the receiver, and a

short time later, a strobe is sent to latch the data into the

receiver. The strobe is centered at the data valid window

as depicted in Figure 2. This bus protocol removes all the

limitations of the common-clock bus, and allows doubling

the data transferring rate for the same clock cycle. The

bus speed is only a function of the difference in delay

(skew) between data and strobe.
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Figure 1  Common and Source Synchronous Clock

Optimization Equation
For the source synchronous scheme, the timing design

equation reduces to the minimization of the differential

delays (or skews) between the signals and the associ-

ated strobe1. The basic source synchronous bus timing

optimization equations can be calculated using an eye

diagram such as Figure 2.

Tvbmin > TDSd + TSr + ▲▲▲▲fPCBmax (EQ 1)
Tvamin > TDSd + THr + ▲▲▲▲fPCBmin (EQ 2)
(Tvb + Tva) < 0.5 Tcycle (EQ 3)

Where,

Tvbmin, Tvamin is the minimum time the signal is

required to be valid at the receiving components

before/after the sampling edge of the strobe.

TDSd is the data to strobe delay skew for the driving

component, equivalent to valid time in common

clock scheme.

TSr,THr is the data to strobe delay skew for the

receiving components, equivalent to setup/hold

time in common clock scheme.

▲▲▲▲fPCBmax and ▲▲▲▲fPCBmin are the different between

data and strobe arrival time.

Tcycle is the bus transfer cycle time.

The ▲▲▲▲fPCB component is a lumped sum effect of many

undesirable events in the system. The system propagation

delay skew ▲▲▲▲fPCB is composed of the following elements:

▲▲▲▲fPCB = (Xtalk+▲▲▲▲Z0+▲▲▲▲length+ISI+Tvref+Trf)/2 (EQ 4)

Where,

Xtalk is the board and connector crosstalk

induced delay.

▲▲▲▲Z0 is the impedance mismatch effects in multiple

board systems.

▲▲▲▲length is the wiring length tolerances of data

lines with respect to the associated strobe.

ISI is the inter symbol interference effects.

Tvref is the Vref noise tolerance effects for single

ended differential receivers.

Trf is the signal rise/fall delay skew.

Figure 2  Eye Diagram Timing Allocation

Memory Architecture
The main memory is a 144-bit double width bus running

at 100MHz DDR speed. It consists of eight DIMM slots

arranged in pairs that can be populated in any order, a

pair of DIMMs at a time. The DIMM is the 184-pin, 2.5V,

PC200, 72-bit wide, and registered DDR SDRAM. The

SDRAM is configured as “x4” bit width with one bank

(mono) or two banks (stacked on top of each other)

SDRAMs. For 1GB DIMMs, 18 stacked 256Mb SDRAMs

mounted on both sides of the DIMM are used. The

system memory can be up to 16GB if 512Mb SDRAM

DIMMs are used2.

High performance microprocessors require the use of

L4 cache to buffer the processor bus from the slower

memory interface and to enhance coherency with other

processors in the system. Current microprocessors

include a large L3 cache to support a throughput of

3.2GB/s or higher. The system presented here uses 

64MB of L4 cache to sufficiently support the system

level performance requirement3. The L4 bus speed of

200MHz DDR was selected to bridge the processor bus
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to the memory 100MHz DDR bus for 3.2GB/s throughput.

A typical 4-way multiprocessor system is shown in

Figure 3 where five DDR SDRAM of 4Mx32 configuration

were used, including parity error bits. The x32 configu-

ration was selected to reduce the number of compo-

nents and to improve wireability.

Figure 3  Memory Architecture

Modeling Methodology
A modeling methodology is developed to effectively

address all the signal quality design issues for high-

frequency source synchronous system designs4. This

includes reflective noise, crosstalk noise, connector

crosstalk effects, overshoot/undershoot voltage, ring-back

voltage, settling time, inter-symbol interference, input

reference voltage offset, and ground bounce effects. A

complete electrical model is constructed for the pack-

aged components, the system boards, the connectors

and the add-in cards. Several system topologies are

completely modeled to cover a wide range of system-

level applications. A set of electrical simulation analyses is

then performed, based on a set of simulation and loading

conditions, until the noise margin allocations and timing

specifications are satisfied. Modeling assumptions are

made in order to reduce modeling complexity, and to

save on the computer resources needed for simulation.

Table 1 shows simulation conditions for typical system-

level fast and slow design corners. These simulation

conditions include power supply, temperature, and silicon

process, and board/card level electrical parameter varia-

tion. The fast cases usually address overshoot, under

shoot, ring-back and settling time specifications, while

the slow cases usually address bus timing and signal

slew rate specifications. The simulation cases are further

divided into:

1. Read/write cycles from any agent on the net.

2. Impedance mismatching from system board and

add-in cards to determine worst-case reflective

noise and ISI induced delays.

3. Lightly loaded cases with a single slot populated

to determine DC and AC voltage level violations.

4. Heavily loaded cases with fully populated slot

configurations to determine worst-case timings

and signal slew rates.

5. Wiring length ranges and component’s pin place-

ment to determine physical topology options and

design guidelines.

6. Cross talk induced delay from connector, board

traces and add-in card traces using three-line

coupling models.

7. Receiver Vref voltage variation caused by regulator

and simultaneous switching noise.

8. Output simultaneous switching noise (SSO) gener-

ated by data and strobe switching.

To include all ISI effects, the duration of the preamble is

selected to be at least as long as the settling time for

each case simulated. System topologies designed for

higher clock frequencies require longer preambles.

Furthermore, the simulation environment used for this

analysis directly includes the effect of reflective noise, and

it indirectly includes the effect of cross-talk noise by using

effective values for even- and odd-mode characteristic

impedance. The effect of input reference offset noise is

included as a guard band on the limit of the ring back

voltage measurements. Settling time ranges are defined

as a percentage of the supply voltage.

Table 1  System Simulation Conditions

Parameter Slow Fast

Voltage Sources Low High

Temperature High Low

Driver/Receiver Models Slow Fast

Connector RLC High Low

Zo/To (Board+Cards) Low/High High/Low
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Main Memory Design
Figure 4 shows a typical entry level server implementation

using direct attached DDR DIMMs. The riser card consists

of eight DIMM slots with the DIMM modules not shown.

Figure 4  Typical entry level server planar design.

Figure 5 shows a graphical representation of the modeled

net topology during a write cycle. Figure 6 summarizes

the electrical models for the controller package, the

DIMM connector, the riser card connector and the

DIMM package. Proper modeling of the DIMM package

is essential for accurate simulation results since the

inductance of the connector, the DIMM traces and the

SDRAM pins greatly affect the magnitude of the reflective

noise from the DIMM structure. The controller driver

design is optimized for the worst case net topology. In

the lightly loaded case, the fast signal slew rate tends to

create excessive reflections from the DIMM components,

causing a plateau region in the middle of the signal

transition. In the heavily loaded case, the slow signal slew

rate at the last DIMM location tends to create excessive

receiver delay and it is susceptible to Vref variation.

These effects reduce the timing margins for the SDRAM

components. The driver’s effective impedance of 15-20 Ω
is selected to satisfy both the slow slew rate and the

low impedance requirements.

Figure 5  Main Memory Subsystem Topology

Figure 6  Package and Connector Models

The daisy chain topology of Figure 5 is selected for the

data and strobe nets based on a net topology sensitivity

analysis. The major concern is a resonant point caused

by the DIMM connector and the SDRAM package para-

sitic, which creates AC signal level violations. A series

resistor is placed on the DIMM between these compo-

nents to dampen the resonance effect. The reflection from

the DIMM also creates an ISI effect, forcing the use of a

load-end termination technique. A resistor termination Rt

connected to Vref was placed near the last DIMM con-

nector to keep the ISI effect within a reasonable range.

The reflection also occurs in the read cycle, and it is pri-

marily caused by the impedance mismatch between the

lead-in trace and the clustered DIMMs. A series resistor

Rs is also inserted between the lead-in trace and the first

DIMM connector to reduce the impedance mismatch

between the lead-in trace and the trace segments con-

necting the DIMMs. Both heavy and light loaded cases

are simulated to investigate DC and AC level sensitivities

to resistor termination values, as well as ISI pattern effects.

Cross-talk effects on three-coupled line models and

connector effects are analyzed separately to speed up

the simulation effort. Figure 7 shows typical simulation

results for a write cycle using an eye diagram format for

the voltage waveforms at DIMM locations a and d.
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Figure 7  Write Eye Diagram

Table 2 summarizes typical timing allocation for the

write and read cycles for the data bus. A similar table for

the address and control bus can be constructed. This

spreadsheet is used to indicate timing closure for Tva

and Tvb, and it is useful to identify the design areas

where improvements can be made. The board and

card trace impedance is controlled using 50W±10%

triplate structures, while the cross talk induced delay

adder is minimized using a trace space-to-trace width

aspect ratio of greater than three. This corresponds to a

coupled voltage level of less than 5% of the aggressor’s

voltage swing. In order to achieve balanced trace

lengths, meander lines can be used to provide fine

control of delay skews5.

Table 2  Summary of Typical Timing Allocation

Parameter Write(ps) Read(ps)

0.5 Tcycle 5000 5000

TSr (Controller/SDRAM) 600 650

THr (Controller/SDRAM) 600 600

ISI+Trf+▲▲▲▲Z 360x2 360x2

Xtlk (boards+connectors) 100x2 100x2

Data/Strobe Wire Skew 20x2 20x2

TDSd (Controller/SDRAM) 1000 1600

Vref Tolerance 1340 800

Design Margin +500 +390

L4 Cache Design
The L4 cache subsystem consisting of three or five

SDRAM components where data bus is designed as a

point to point 200MHz DDR bus structure, is used to illu-

strate typical ISI related design issues. Each SDRAM has 

32 data bits and an associated strobe. Address and

control (Add/Cntl) signals are multiple-drop nets that

run at half the speed of the data bus. The 18-bit

Add/Cntl signals are wired in a star burst topology.

The reflection is controlled by balancing the branches

of the star. The Add/Cntl signals are associated to a

clock that is a point to point connection.

L4 Timing Allocation
The optimization equations form the basis for creating a

timing budget spreadsheet to ensure adequate timing,

and to capture opportunity for optimization. Table 3

summarizes a typical timing allocation for data bus write

and read cycle. A similar table for the Address/Control

bus can be constructed.

Table 3  Summary of Typical Timing Allocation

Parameter Write)ps) Read(ps)

0.5 Tcycle 2500 2500

TSr (Controller/SDRAM) 500 400

THr (Controller/SDRAM) 500 400

ISI+Trf+▲▲▲▲Z 250x2 250x2

Xtlk 20x2 20x2

Data/Strobe Wire Skew 20x2 20x2

TDSd (Controller/SDRAM) 600 900

Vref Tolerance 100x2 100x2

Design Margin +120 +20

The last four entries in Table 3 are the components of

the DfPCB in Equation 4 to account for the delay skew

effects of ISI, non-symmetrical rise and fall signal transi-

tion, the board impedance mismatch, wiring tolerance,

crosstalk, and noise on Vref signal.

L4 Cache Design Challenges
Given the typical physical constraints such as trace

length and net topology imposed on the system imple-

mentation, the electrical subsystem response has a

series of resonant points for a given clock frequency.

This effect increases the ISI delay skew significantly,

especially for classical I/O circuit design. Figure 8

shows a partial eye-diagram of a classical CMOS driver

design. The ISI delay skew of 720 psec was observed

for a net length of 2.5 inches. It violates the 250 psec

requirement in Table3.

109



Figure 8  Eye Diagram of Typical Driver Design

The resonant point occurs when the effective electrical

length of the signal trace is equal to one half the data

capture time. Figure 9 shows typical simulation results for

the simple point-to-point non-terminated net where the

driver is simply modeled as a time-dependent voltage

source in series with a constant resistor to match the

characteristic impedance of the trace. The increased 

ISI induced delay is primarily caused by the parasitic

capacitance of the driver’s output.

Figure 9  Delay Skew Caused by Parasitic Capacitance

Keeping the net below the resonant length reduces the

ISI effect. But, when package and real transistor models

are included, the actual PCB trace length is reduced. As

an example, with a PQFP and a BGA package on two

sides of the net, the PCB trace length reduces from six to

three inches. Wiring five SDRAM modules around the 

controller with net lengths of less than three inches is a

challenging task. Increasing the net length longer than

the resonant length does not improve the ISI delay skew

because the ISI skew curve actually stays constant after

maximum ISI has been reached. Therefore attempting to

design the net half way between the resonant points is

not feasible.

A direct approach to suppress the reflection is to use a

split termination scheme. This approach requires a pair

of resistors to be placed at each end of the net. Wiring

to escape the resistors under the dense module footprint

usually requires extra signal layers. Placing the resistor

termination on chip provides wire congestion relief but

DC power consumption, heat dissipation, silicon cost,

and design flexibility may be a concern6. Another termi-

nation scheme suggests inserting a series resistor in the

middle of the net that effectively modifies the resonance

and make the ISI skew slightly less on the first few inches.

This design also requires precise placement of the

resistor in the middle of the net and a strong driver

design which is not desirable for SDRAM.

Typical buffer design exhibits both variable source resist-

ance and source parasitic capacitance. The capacitance

is a source of ISI jitter but it is generally a fixed number

inherent from the CMOS planarization process. The

impedance is not a well controlled parameter and

changes a lot during the transition time which aggravates

the ISI even more. In this system, the driver is designed

with stable effective output impedance particularly during

the transition time7. This can be accomplished by grad-

ually turning off the pull-up (or pull-down) devices while

gradually turning on the pull-down (or pull-up) devices,

thereby providing continuous current flow through the

output stage of the off-chip driver, usually called shoot

through current (STC). This basically reduces the net

delay skew associated with ISI and it removes the need

for both near- and far-end termination. Figure 10 shows

the conceptual design of a STC driver where current

always has a shoot through path that prevents the driv-

er from ever going into high impedance during transi-

tion. Figure 11 shows the ISI induced delay skew of STC

and typical push-pull drivers in a typical net setup.
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Figure 10  Typical and STC driver design

Figure 11  ISI Delay Skew for Various Driver Designs

Conclusion
A design, modeling, and simulation methodology is

presented that allows for optimization of the bidirectional

source synchronous interface illustrated by point-to-point

L4 and multi-drop main memory net. The ISI delay skew

is identified as a critical parameter in the system timing

allocation budget. Net topology constraints such as total

length, balancing trace length within the associated

signal group, connector parasitic, and termination toler-

ance are more critical to the source synchronous bus

design. The driver parasitic capacitance has been largely

overlooked. It is the main cause of the ISI delay skew

for the point-to-point net. For a net with electrical length

equal to half the bit time, the reflection speeds up the

propagation delay causing delay skew. Design tech-

niques in both driver and net topology are explored to

reduce the delay skew. The split-termination scheme

reduces ISI skew drastically but it is hard to wire. The STC

driver, designed with constant output impedance during

the transition, offers the best choice for 400Mb/s source

synchronous no-termination net. Finally, an accurate

modeling and simulation methodology is essential to

guarantee system timings and hardware functionality.
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Introduction
The peripheral component interface (PCI) local bus is a

high performance 32-bit or 64-bit bus with multiplexed

address and data lines. The bus is intended to be used

as an interconnect mechanism between highly integrated

peripheral controller components, peripheral add-in

boards, and processor/memory subsystems. Graphics-

oriented operating systems have created a data bottle-

neck between processors and their peripheral devices.

Moving peripheral functions with high bandwidth require-

ments closer to the processor/memory bus can alleviate

this bottleneck. Substantial performance gains are

obtained with high bandwidth I/O interfaces (such as

GUI, SCSI, LAN, etc.) when a local bus design such as

PCI is used. Since the first release of the PCI specifica-

tions in 1992, this interface has become ubiquitous in

the consumer, workstation and server markets. Other

markets such as industrial controls, telecommunications,

and high-reliability systems have leveraged the specifi-

cations and the wide availability of devices into specialty

applications. In 1995 (and later revised in 1998), the PCI

specifications were enhanced to accommodate the

increased bandwidth requirements of peripheral devices1.

This allows for peak bandwidth capabilities up to 528

MB/s for 64-bit bus and 66MHz clock frequency.

Because of emerging faster I/O technologies (such as

Gigabit Ethernet, Ultra 3 SCSI and Fibre Channel), faster

system interconnect buses are needed. In 1999, the

PCI-X specification was introduced (later revised in 2000)

to further increase the I/O bandwidth capability to rates

in excess of 1GB/s for 64-bit bus and 133MHz clock

frequency2. PCI-X provides backward compatibility by

allowing devices to operate at conventional PCI modes

when installed in conventional systems. Furthermore,

PCI-X allows for I/O subsystems with clock frequencies

of 66 – 133MHz, and for extended system-loading con-

ditions with hot-plug capability.

The 33MHz PCI I/O bus has become one of the most

successful I/O buses ever. Introduced in 1992, we now

find PCI everywhere, from laptops to high-end servers. As

a result, there is a significant PCI design skill base in the

industry. In some respects, designing for PCI-X is actually

simpler compared to 33MHz (and 66MHz) conventional

PCI, due to the registered nature of the PCI-X definition.

However, added design considerations need to be taken

into account when creating designs for the higher fre-

quencies of 66MHz, 100MHz, and 133MHz PCI-X.

This paper describes an electrical design, modeling,

and simulation methodology for high frequency 

I/O subsystems3 utilizing PCI-X in the Enterprise 

X-Architecture systems. Actual system configurations and

timing specifications are used to describe the design

methodology, and to optimize the timing equations for

the system level interconnects. The timing budget and

noise margin allocation for the various components of the

optimization equations are discussed in conjunction with

their associated critical design parameters including

hot-plug requirements.

System Architecture
Architecturally, PCI-X is simply a register-to-register version

of the PCI specifications Rev. 2.2. It allows for bus speeds

of up to 133MHz while providing backward interoper-

ability with any 3.3V signaling systems or devices. It also

provides protocol enhancements for more efficient bus

utilization. The PCI-X protocol automatically configures

itself to the lowest speed device on the bus.

The following sequence is a conceptual description of

a hot-plug insertion case for multiple slot configurations

where FET switches are required on the bus signals:

• insert the card in the slot

• determine the capabilities of the card (using

M66EN and PCIXCAP)

• power up the card with reset asserted

• hot plug controller requests the bus and receives 

a grant (the bus is now idle)

• connect the inserted card to the bus with FET

switches

• signal the frequency to the inserted card (using

DEVSEL#, STOP#, and TRDY#)

• deassert reset and DEVSEL#, STOP#, and TRDY#

• hot plug controller deasserts its bus request and

the card is ready to be used
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For the single slot case with no FET switches on the

bus signals, the basic sequence is as follows:

• hot plug controller requests the bus and receives a

grant (the bus is now idle)

• hot plug controller signals the host bridge to ignore

bus signals that could change state as a result of

inserting and/or powering up the inserted card

• insert the card in the slot

• determine the capabilities of the card (using

M66EN and PCIXCAP)

• power up the card with reset asserted (to the card)

• signal the frequency to the inserted card (using

DEVSEL#, STOP#, and TRDY#)

• deassert reset and DEVSEL#, STOP#, and TRDY#

• hot plug controller deasserts its bus request

• hot plug controller deasserts signal to host bridge

that caused it to ignore bus signals and the card is

ready to be used

Design Optimization Equations
For I/O subsystems designed with the common clock

signaling scheme, a single clock is used to reference all

transactions on the bus. For this technique, the absolute

signal propagation delays (flight times) are the limiting

factor in system timing calculations, along with clock

distribution skew for all agents on the bus. Therefore, the

signal integrity and the electrical performance of the

package and board interconnects are the major limiting

factors to the bus speed. For the common clock scheme,

the design optimization problem reduces to the mini-

mization of the signal propagation delay spread across

the manufacturing process and the environmental con-

ditions. The basic timing optimization equations are:

Tcycle>Tval(max)+Tsu(min)+Tprop(max)+Tskew(max)

Th(min)<Tval (min)+Tprop (min)-Tskew (max)

Where,

Tval is the data valid time,

Tsu is the data setup time,

Th is the data hold time,

Tprop is the data flight time,

Tskew is the clock skew between agents,

Tcycle is the bus transfer cycle time.

The system propagation delay, Tprop is the lumped sum

effect of many undesirable events in the system. This

includes delay components such as the actual board

propagation delay, board and connector crosstalk

induced delay, board impedance mismatching effects in

multiple board systems, reflective noise induced delay

caused by electrical discontinuities, inter-symbol inter-

ference (ISI) effects, and signal rise/fall delay skew. The

ISI is the effect of residual signal settling noise on sub-

sequent transfer cycles.

The system timing budget for the standard PCI-X oper-

ating frequencies are shown in Table 1 for the setup

and hold timings.

Table 1  Setup and Hold Timing Budget

Parameter PCI-X PCI-X PCI-X PCI PCI Units

133 MHz 100 MHz 66MHz 66MHz 33 MHz

Setup Timing Budget

Tval (max) 3.8 3.8 3.8 6.0 11.0 ns

Tprop (max) 2.0 4.5 9.0 5.0 10.0 ns

Tskew (max) 0.5 0.5 0.5 1.0 2.0 ns

Tsu (min) 1.2 1.2 1.7 3.0 7.0 ns

Tcycle 7.5 10.0 15.0 15.0 30.0 ns

Hold Timing Budget

Tval (min) 0.7 0.7 0.7 2.0 2.0 ns

Tprop (min) 0.3 0.3 0.3 0.0 0.0 ns

Tskew (max) 0.5 0.5 0.5 1.0 2.0 ns

Th (min) 0.5 0.5 0.5 0.0 0.0 ns

In addition to system timing specifications, two other sets

of electrical specifications have to be satisfied. That is

system noise budget and signal integrity specifications.

The system noise budget is defined as the difference

between the worst case output voltage for the driving

agent and the worst case input voltage for the receiving

agent. That is, the low noise budget is VIL – VOL and

the high noise budget is VOH – VIH. This noise budget

is then allocated to the various types of noise in the

system such as reflective noise, crosstalk noise, and

receiver’s input reference offset. The system noise margin

allocation for the various sources of noise in the system

is shown in Table 2. The signal integrity specifications are

defined to guarantee signal quality and to reduce ISI

effects. They are overshoot, undershoot and ring-back

voltage limits, as well as ring-back settling time limits.

Table 2  PCI-X System Noise Budget

Noise Source High Noise Low Noise

Budget Budget

Reflective Noise 0.30VCC 0.15VCC

Crosstalk Noise 0.05VCC 0.05VCC

Input Reference 0.05VCC 0.05VCC

Offset

Total Noise 0.40VCC 0.25VCC

Budget

114



Electrical Design Considerations
Signal distribution integrity

For high-speed logic circuits, any signal path in the

module, card or board can be considered a form of

transmission line. These electrical interconnections of

components give rise to main lines in parallel with non

terminated lines (stubs) or discontinuities modeled as

resistor inductor capacitor (RLC) networks. These dis-

continuities send reflections that create overshoots or

undershoots on the main line that could impair the sys-

tem’s performance. Treating each discontinuity as a

lumped capacitor is helpful for understanding funda-

mental dependencies, but for actual design work more

accurate modeling is required. Once inductors and

resistors are added to the model, the analytical approach

is cumbersome and circuit simulation techniques are

required. For instance, including inductance and resist-

ance reduces the magnitude of the reflection and the

delay on the main line, but it increases the delay of the

on-module signal beyond what a lumped capacitance

would predict. The goal is to develop design rules that

will guarantee the noise margin and timing allocations

for all allowable PCI and PCI-X operating modes.

The usage of electrical design guidelines provides proper

signal quality to avoid false switching of receivers where

appropriate, to assure first incident or first reflected wave

switching of receivers at any point on the transmission

lines, and to assure the integrity of the timing equation

allocations used to predict the overall system perform-

ance. As mentioned in the previous section, the signal

integrity specifications are defined to assure signal quality

and to reduce ISI effects. They are overshoot, undershoot

and ring-back voltage limits, as well as ring-back settling

time limits. For every change of a signal state, ring-back

must not cross the valid input voltage limit when all

sources of system noise are included. These parameters

are a strong function of the impedance mismatch of the

interconnect network, the trace lengths, the signal tran-

sition rates, the termination network, and the time-space

relationship of the reflective waveforms4. Furthermore,

these parameters are a function of the system voltage-

signaling environment. Analytical techniques based on

data from a set of pre-determined simulation runs are

used to determine pass/fail conditions for a set of system-

level net topologies, and to develop system design

guidelines. In general, the procedure followed in the

development of the wiring rules is:

1. Classify the logical nets by their characteristics

and system design requirements.

2. Determine the electrical characteristics of the 

drivers and receivers on the net.

3. Determine maximum allowable loaded stub length

and load capacitance for each net type.

4. Restrict the line segment lengths, the load capaci-

tance and the number of loads for each net type.

Critical PCI/PCI-X nets are distributively loaded nets.

Distributively loaded nets are classified into two cate-

gories, depending on the relationship between the

electrical length of the line segments and the signal

transition time: tightly distributed where the load spacing

is electrically less than half the signal transition time,

and loosely distributed where the load spacing is elec-

trically greater than half the signal transition time. For all

distributed nets, the critical parameters are the load

spacing, the load capacitance, the number of loads, and

the signal transition time. The signal transition time for the

PCI/PCI-X drivers are controlled by the electrical speci-

fications to reduce ringing and simultaneous switching

noise. For tightly distributed capacitively loaded lines, the

minimum load spacing and the maximum load capaci-

tance are determined by the driver’s capability to drive

such a loaded transmission line. The characteristic

impedance of the line is actually lowered by the load

capacitance, while the associated propagation delay is

increased. This effective impedance causes an incom-

plete voltage transition on the line while the driver is

switching logical state. This initial voltage level could

cause extremely long switching delays for receivers on

the line, violating the timing allocation and imparing the

system performance. The PCI/PCI-X specifications for

the output buffer basically specify that the effective

impedance of the driver should be roughly 25 ohms

based on a first reflective wave switching assumption

for the worst case receiver on the line. For loosely dis-

tributed capacitively loaded lines, the noise amplitude

is determined by the fastest signal transition time and

the maximum load capacitance. For the fastest signal

transition, the maximum allowable load capacitance is

determined when the amplitude of the primary reflection

on the main line is equal to the worst-case threshold

voltage for the receivers on the net. For this type of net,

an output buffer designed to the PCI/PCI-X specifications

will drive the net stronger than if the loads are tightly

distributed, thereby providing an opportunity for a first

incident wave switching net design.
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Furthermore, the increase in bus speeds in today’s sys-

tem designs requires controlled impedance designs.

The proper choice of board impedances is essential to

properly controlled crosstalk noise, switching noise, noise

tolerances, reflections, and bus delays. Proper selection

of board stack-up is essential to minimize impedance

variations as the result of improper current return paths,

plane-to-plane process variations, and adjacent line

switching effects. A triplated stripline structure is recom-

mended since it provides the best controlled impedance

scenario when the proper power plane is assigned to

one of the voltage planes in the structure.

Power distribution integrity

Ideally, power or ground planes on a typical board

should be able to source or sink large amounts of current

instantaneously. But in reality, this is not the case since

these planes have finite non-ideal parasitic values. Any

significant amount of current drawn through the planes

will have a voltage drop associated with it due primarily

to the inductive effect associated with practical board

planes. This effect causes the voltage at the component

pins to be at a lower potential than at the actual supply

output pin. The network combination of the power supply,

the voltage regulator modules (VRM), bulk capacitors,

high-frequency decoupling capacitors, and the power

planes themselves is usually referred to as the power

distribution system (PDS). Typically, the power supplies

and the voltage regulators have a relatively slow

response time and they cannot service instantaneous

power requirements for devices switching at relatively

high frequencies5.

The power distribution design considerations outlined in

this section are targeted to provide a high quality platform

design with optimized signal integrity, timing margins,

and power distribution. In general, critical high-frequency

interfaces must be routed in a symmetrical stripline

stackup to provide clean return paths from component to

component through either ground (GND) or appropriate

power (VDD) planes. Use of adjacent power or ground

plane pairs are recommended to provide clean and equal

current return paths, and for additional board decoupling

capacitance. If the appropriate power plane is not avail-

able as an immediate current return path due to board

thickness limitations, additional high-frequency coupling

capacitors between the appropriate power planes are

needed in the area where these signal traces are located

to minimize inductive effects during the switching time,

and to reduce electromagnetic interference (EMI)

effects. All power planes should be decoupled to

ground in such manner as to provide for reasonable

management of the switching currents to which the

power plane and its supply path are subjected. This is

platform dependent and not detailed in this section. It is

the board/ system designers’ responsibility to ensure

that the platform meets all the component specifications.

It is strongly recommended that a comprehensive sim-

ulation analysis is performed to ensure all component

specifications are met. This is particularly important if 

a design deviates from the recommended design

considerations and guidelines.

While executing regular code or changing state, the

component’s core current experiences a load change

that has a ramp shape function with pulses superim-

posed on it. The pulses occur at multiples of the frequency

of operation. If the power distribution system (PDS) is

designed such that it has low impedance across similar

frequency range, the low noise will be ensured. A typical

power distribution circuit schematic for performing fre-

quency domain analyses to determine the appropriate

set of board decoupling capacitors for a particular

component on the board is shown in Figure 1. The

analysis is performed to guarantee power supply toler-

ance specifications at the component pins. The bulk,

ceramic, and inter-plane capacitors are selected in 

conjunction with package and component models to

ensure low effective impedance at the circuit level as

shown by the arrows in Figure 1. Electrolytic or tantalum

capacitors provide large reservoirs of charge but the

parasitic inductance associated with their core and leads

limit the maximum frequency at which current can be

delivered. Servicing relatively fast switching events is best

handled by high-frequency, low-inductance capacitors.

These capacitors should be placed close to the device

being decoupled to minimize the parasitic resistance

and inductance associated with board traces and vias.

Inter-plane capacitors between power and ground planes

also contribute to the reduction of impedance at high

frequency. Therefore, modeling a decoupling capacitor

at high frequencies requires accounting for the para-

sitic inductive and resistive components as well as

the bulk capacitor as shown on Figure 1.
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Figure 1  Typical Circuit Schematic for Power Distribution

The general guideline for placing capacitors is to place

high-frequency ceramic capacitors as close as possible

to the module. Tantalum capacitors can be placed any-

where. To maximize the efficiency of the high-frequency

decoupling capacitors, the loop area and loop induc-

tance must be minimized. Placing vias directly at the pad

is the best way to attach decoupling capacitors since it is

the smallest loop inductance. But for 603 size capacitors,

current manufacturing does not allow vias in the pad.

Mounting them in parallel of like value (with alternate VDD

and GND vias to reduce inductance) on the same side

of the card is best (Figure 2). The traces need to be as

short and as wide as possible. Otherwise, 603 capacitors

can be mounted in opposing pairs of like value power/

ground connections (Figure 3). In this case, there could

be two vias per pad to reduce inductance. If feasible,

make pairs into lines and then pack as close as possible.

Capacitor pairs should decouple the same supply, and

each capacitor in the pair (or line) should be the same

value (to keep currents equal). Top and bottom side pairs

may use the same vias. If backside ceramics are to be

used, then a pair of power and ground planes should

be placed as close to the backside surface as well (the

power planes need to cover the module and the back-

side ceramic footprint area thoroughly). Vias associated

with backside ceramic pairs can share those with front-

side ceramic pairs.

The board cost increases exponentially as a function of

board thickness. To keep the thickness under 100mil,

many power planes are partitioned within a layer to

supply different power to the components. This require-

ment creates two problems: Inter-plane capacitance

reduction, and signal current return path discontinuity.

The inter power plane capacitance can be increased

by copper filling all unused signal planes and using

generous number of vias to stitch the ground planes

together. Signals crossing the splits create power supply

noise. The wiring rule is strictly imposed to avoid this

crossing problem. Signals running parallel to the split

must be 50 mils away from the split. Signals of a bus

must be referenced to their bus power supply and

ground planes. This triplated structure ensures the

fastest and lowest power supply noise. In case of viola-

tion, a high number of high-frequency capacitors are

used to decouple the wrong reference plane to ground

near the component side.

Figure 2  Optimum Capacitor Placement

Figure 3  Alternate Capacitor Placement

Connector and add-on card effects

Connectors behave like multiple coupled RLC networks.

The number of sections is critical for proper modeling

and simulation, and it is a strong function of the frequen-

cy range of operation. When properly modeled, it basi-

cally reduces the magnitude of the reflection and the

delay adder on the main line as compared to a lumped

capacitance model, but it increases the propagation

delay of the signal path through the connector assem-

bly. Another important design parameter is connector

crosstalk. Proper signal to power/ground ratio is required

to reduce the crosstalk allocation for connectors on the

PCI subsystem to less than 5% of the signal voltage

swing. Properly selected signal integrity simulation

topologies should include fully coupled connector

models. Depending on connector pin arrangement,

extra ground pins are carefully assigned to shield signal

crosstalk. Usually, a rule of one ground pin for every four

signals is used. A signal must be referenced to its power

supply and ground planes on both sides of the connec-

tors. In case of violation, the wrong power plane is
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capacitor decoupled at both the component and

connector end of the plane, and the capacitors are

placed within 0.5" of the signal.

An add-on card behaves like a loaded stub on a main

line and it should be modeled properly. The maximum

allowable stub length is determined by the fastest signal

transition and the maximum required load capacitance

(as specified by the PCI/PCI-X specifications) when the

oscillatory reflections on the line are minimized. From

time domain considerations, an unterminated line could

cause severe reflections on the main line and on the stub

itself, yielding the condition known as “ringing.” This

implies that the input impedance of the stub is inductive

in the range of frequencies where most of the energy

content of the signal lies, causing severe oscillations on

the main line. Using a circuit simulation program and

time-domain analysis techniques, the maximum ampli-

tude of the reflections on the main line and the corre-

sponding decaying time of reflections on the main line

can be determined for various stub lengths and capac-

itive loads. It is found that if the electrical length of the

stub is less than or equal to one-quarter of the signal

transition, the reflection from the stub’s equivalent

capacitance reasonably matches the maximum reflection

from the actual loaded stub over a wide range of load

capacitance values. In addition, the decaying time of the

reflections is considerably reduced for this condition,

approaching the decaying time of the stub’s equivalent

lumped capacitance value.

The effect of removing the FET switch devices is to

somewhat reduce the maximum allowable lead-in trace

length (i.e., host controller to first slot). The effect of the

FET switch is basically to reduce the reflective signal

voltage on the main line, but it introduces some signal

attenuation due to the effective series resistance of the

FET switch devices. The effective series resistance of

the FET switch devices should be kept below five ohms.

Using single-input/ multiple-output controlled FET

structure devices tends to increase the maximum

allowable total net length since it effectively reduces the

magnitude of the reflective noise on the main line. The use

of a single-input/multiple-output controlled FET basically

removes the trace length between the switch devices.

An example for a 2-slot structure with FET switches is

shown in Figure 4.

The power island associated with each slot isolates the

hot-plug slot power from the main power. Critical signals

are not allowed to cross the power plane split interface,

which restricts wiring under the power island area.

Decoupling capacitors to ground planes are needed in

the area where the split plane occurs, but decoupling

capacitors between islands are not recommended.

Electrical Modeling Methodology
A modeling methodology is developed to effectively

address all the signal quality design issues for high-

frequency common-clock system designs. This

includes reflective noise, crosstalk noise, connector

crosstalk effects, overshoot/undershoot voltage, ring-back

voltage, settling time, inter-symbol interference, input

reference voltage offset, and ground bounce effects. A

complete electrical model is constructed for the pack-

aged components, the system board, and the add-in

cards (including hot-plug switches and add-in card

connectors). Several system topologies are completely

modeled to cover a wide range of system-level applica-

tions. This includes topologies from a single-connection

host bridge with a single add-in card slot to a single-

connection host bridge with multiple add-in card slots

(up to four slots). These configurations were analyzed

with and without hot-plug switches, and clock frequen-

cies of 66, 100 and 133MHz depending on system 

configuration and loading conditions. A set of electrical

simulation analysis is then performed based on a set of

simulation and loading conditions until the noise margin

allocations and timing specifications are satisfied.

Modeling assumptions are made in order to reduce

modeling complexity, and to save on the computer

resources needed for simulation. Table 3 shows simula-

tion conditions for typical system-level fast and slow

design corners. These simulation conditions include

power supply, temperature, and silicon process, as well

as board/card level electrical parameter variation with

process and temperature. The fast cases usually address

overshoot, undershoot, ring-back and settling time

specifications, while the slow cases usually address bus

timing and signal slew rate specifications. The simulation

cases are further divided into:

1. Read/write cycles between any agents on the net.

2. Impedance mismatching from system board and

add-in cards to determine worst-case reflective

noise and ISI induced delays.
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3. Lightly loaded cases with a single slot populated

to determine DC and AC voltage level violations.

4. Heavily loaded cases with fully populated slot

configurations to determine worst-case timings

and signal slew rates.

5. Wiring length ranges and component’s pin place-

ment to determine physical topology options and

design guidelines.

6. Crosstalk induced delay from connector, board

traces and add-in card traces using three-line

coupling models.

Table 3  System Simulation Conditions

Parameter Slow (w/c) Fast (b/c)

Voltage Sources Low High

Temperature High Low

Driver/Receiver Slow Fast

Models

Connector RLC High Low

Zo/To Low/High High/Low

(Board+Cards)

Figure 4 is a circuit schematic representation of the

selected topology for a two-slot system configuration

with hot-plug switches. Similar topologies are used for

other system configurations. The daisy chain topology

is selected based on a net topology sensitivity analysis.

To include all ISI effects, the duration of the preamble is

selected to be at least as long as the settling time for

each case simulated. System topologies designed for

higher clock frequencies require longer preambles. A

signal test pattern consisting of every possible combi-

nation of the 5-bit preamble is used for this analysis.

Furthermore, the simulation environment used for this

analysis directly includes the effect of reflective noise,

and it indirectly includes the effect of crosstalk by using

effective values for even- and odd-mode characteristic

impedance. The effect of input reference offset noise is

included as a guard band (5% of the supply voltage) on

the limit of the ring back voltage measurements. Settling

time ranges are also defined as 5% of the supply voltage.

The minimum device spacing in the system configura-

tions analyzed assures minimum Tprop.

Figure 4  Circuit Schematic for a 2-slot Configuration

The goal of the simulation methodology is to automati-

cally generate all the required simulation test cases and

associated net lists to step through all selected wire

length possibilities. This includes wire trace impedance

and velocity ranges for all traces on the net, power sup-

ply, temperature and process variations for all compo-

nents on the net, and impedance mismatch effects. The

graphical simulation results are transformed into a text

matrix format containing the specific simulation case, the

overshoot/undershoot voltage, the ring-back voltage, the

settling time and the net propagation time. All measure-

ments are automatically extracted from the corresponding

voltage waveforms in accordance to the PCI-X specifica-

tion2. The resulting database is then compacted, sorted,

and analyzed using standard database software algo-

rithms. Object-oriented scripts are used to properly

generate all the netlists required for the circuit simulator

programs. Data consistency is guaranteed through the

use of a naming convention associated with the data

files, data directories, agents, circuit nodes, simulation

conditions, and symbolic links6.

During the simulation and extraction process, some files

and directories are made permanent, while others are

made temporary in order to reduce the computer

resource requirements and speed-up the data prepara-

tion and simulation process. Examples of permanent

files are control and model files required by the simulator

programs. Examples of temporary files are signal, topol-

ogy and parameter statement files needed for construct-

ing all the required simulation test cases. A hierarchy

directory is then automatically generated for each system

configuration to assure data consistency and integrity.

This directory is used to generate all the appropriate

symbolic links to the corresponding data files. A top-level

script is then developed to launch all the required simu-

lations for a user-specified system topology and/or a

specific test case. An example of the data distribution for

the extracted measurement parameter, Tprop, in a two-slot

system configuration and 100MHz clock frequency is

shown in Figure 5.
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Figure 5  Tprop Distribution for a 2-slot Configuration

Conclusion
A design, modeling and simulation methodology is pre-

sented that allows for optimization of the common-clock

timing equations in practical I/O subsystem environ-

ments using PCI/PCI-X interface. For system timing clo-

sure, the critical design parameters are the host-bridge

lead-in trace length, the connector spacing, and the

stub length in the add-in cards. An accurate modeling

and simulation methodology is essential to guarantee

hardware functionality primarily due to the sensitivity of

the system timing parameters to reflective noise, inter-

symbol interference, signal coupling, and impedance

mismatch effects.
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Introduction
It is the mission of an enterprise computing center to

provide dependable, efficient, production-level services

for its users. To accomplish this, such installations must

provide services that offer:

• Reliability

• Availability

• Performance

In addition, to meet the demands of a growing user

community and changing support models, computing

resources must be re-configured, upgraded, expanded,

deployed, and replaced. Sustaining these activities

results in further demands:

• Scalability

• Serviceability

• Manageability

To maintain a competitive edge, computer vendors

endeavor to meet these objectives while delivering

products that are cost effective. At the same time,

increasing performance and decreasing cost has

strongly impacted competition in the Standard High

Volume (SHV) server market, while SHV server offerings

encroach upon a market traditionally occupied by

mainframe products.

One way in which IBM has attempted to realize cus-

tomer demands and maximize competitive features is

to design, build, and deliver computer systems based

upon a scalable Hardware (HW) platform using low-

cost commodity parts. An extension of this theme is to

provide Software (SW) support that exploits the re-con-

figurable — or partitionable — feature of this platform.

It is the intention of this paper to show how the IBM

Enterprise X-Architecture (EXA) addresses the require-

ments of an enterprise computing environment as stat-

ed above. Specifically, it describes the multi-node EXA

platform HW and shows how it differs from conventional

single-node SHV solutions in terms of its scalability. In

addition, the EXA partitioning model and an overview 

of partition configuration and management SW are

presented.

Background
Shared Memory Architectures

By far, at the current time, the most prevalent systems 

in the SHV server market are based upon Symmetric

Multiprocessor (SMP) architecture. The term Symmetric

refers to the fact that all CPUs have equal access to

shared memory in terms of latency. SMP architectures

are also referred to as Uniform Memory Architectures

(UMA). Current SMP architectures employ a memory

hierarchy that, in addition to main memory, is composed

of a structured set of cooperating memory buffers, or

caches, to reduce effective memory access latencies

and bus bandwidth requirements. Hence, these systems

are referred to as Cache-Coherent Uniform Memory

Architectures (CC-UMA).

Figure 1  CC-UMA Platform

A simple CC-UMA architecture is illustrated in Figure 1.

The principal components are: the Processor Bus,

which includes logical Interrupt and Cache Busses; the

CPUs; the chipset, which includes memory controller

and IO expansion (e.g., PCI) Host Bridge; system mem-

ory; and, EISA Bridge, which supports connection of

Native IO devices such as serial/parallel, mouse, and

keyboard ports. Typically, such systems are designed

and built with commodity components according to

standard specifications such as Server Design Guide1,

MPS2, ACPI3 and EFI4.

The CPUs, system bus, the chipset, and the EISA Bridge

are often of an Intel design, though CPU, chipset and
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host bridges are designed and manufactured by other

vendors (e.g., IBM, Motorola, MIPS, DEC, SUN, etc.).

The primary advantages of the SMP servers are the

relatively low cost, due to the use of commodity parts

and standards, software availability5, 6, standard device

availability7, 8, 9, 10, and the widespread expertise within the

user community.

A prominent disadvantage of the SMP architecture is its

inability to scale beyond a relatively small number of

processors due to bus bandwidth limitations. The Cache-

Coherent Non-Uniform Memory Architecture (CC-NUMA)

was developed in an effort to address this problem.

An example of a CC-NUMA implementation is shown in

Figure 2. In this design, the CC-NUMA system is com-

posed of multiple SMP building blocks or nodes. The

nodes are connected through a coherency agent that

interfaces to the FSB of the node on one side and pro-

vides a standardized memory interconnection on the

other side. This structure allows memory physically resi-

dent on each node to be shared globally, enabling

access to memory on one node by processors or

devices on another node using HW support.

Figure 2  2-node CC-NUMA Platform

Some CC-NUMA implementations extend the memory

hierarchy to include a Level 3 (L3) or, where an L3

cache is local to each CPU, a Level 4 (L4) cache.

Where extended caches are present (referred to here

as an L4 cache), a local L4 cache facilitates Intra-Node

caching. In conjunction with the L1, L2, and L3 caches

of the processors on the local processor bus, the local

L4 cache is intended to boost performance among the

CPUs on the local node by mitigating overall access

time to local memory. Remote cache performs essen-

tially the same function in the memory hierarchy, but in

relation to Inter-Node memory accesses, or accesses

to memory physically resident on another node. It is

widely accepted that adding the L4 cache results in a

performance gain in multi-processor platforms, though

not without associated complexity and cost. Figure 2

shows a system that includes a remote L4 cache.

Primary advantages of the CC-NUMA over conventional

mainframes are the relatively low cost, due to the use of

commodity parts and standards, software availability,

standard device availability, and the widespread expertise

within the user community. An advantage of CC-NUMA

over SMP is the potential to scale the system by adding

more nodes, thereby enabling expansion beyond the

conventional limit (e.g., tens of processors). For additional

information, refer to11, 12.

Partitioning

In this context, Partitioning is the process of combining

(composing), separating (decomposing), or re-configur-

ing platform HW resources into integral computing units.

A fundamental goal of partitioning is to provide the

computing center with the flexibility to control the man-

ner in which system resources are distributed, utilized,

serviced, protected, and managed.

Partitioning is discussed as being Logical or Physical,

and is further categorized as being Fixed, Static, or

Dynamic. The ability to segment and reconfigure multi-

processor systems has been available for several years

in the mainframe market. With these systems, a Logical

Partitioning model has been employed to enable the

customer to apply discrete system resources (e.g.,

physical memory, processors, IO channels) to tasks as

needed13, 14, 15. With the advent of commercially viable

multi-node systems based upon a high-speed inter-

connection of nodes built from self-contained, fully

functional SMP building blocks, the ability to provide cost

effective Physical Partitioning has become practicable.

Whereas Logical Partitioning (LPAR) allows re-configu-

ration of individual system resources on a hardware

platform specifically built to support it, Physical

Partitioning (PPAR) enables reconfiguration of multi-

node systems, or complexes, along boundaries based

upon building blocks referred to as nodes. LPAR

enables a fine-grained approach to partitioning, but

requires more complicated hardware and operating

system features. In contrast, PPAR requires less compli-

cated hardware and can operate under current com-

modity operating systems (e.g., Windows, Linux, or

Netware) — it is therefore less expensive.

PPAR is realized using the hardware technology specifi-

cally designed to implement it. Figure 3 illustrates the

key structural components related to PPAR. As shown, a

Node is a physical aggregation of packaged system

NUMA Node 0

SMP
(CC-UMA)

L4 Cache

NUMA Node 1

(CC-UMA)
SMP

L4 Cache

Cache Coherent 
Memory

InterconnectScalability 
Port

Scalability 
Port



resources and the smallest manageable unit of physical

partitioning. A single standalone node is capable of

sustaining one and only one partition. A Complex is a

formal and physical aggregation of multiple nodes —

the nodes in a multi-node complex are interconnected

through a Scalability Link. Each scalability link can be

programmed to support three modes of operation:

coherent, inter partition communication (IPC), or isolated.

An example of this is shown between selected nodes

in figure 3. A Partition is a formal organization consisting

of a single node (or multiple physical nodes intercon-

nected through a scalability link into a CC-NUMA con-

figuration) capable of executing a single image of an

operating system. Partitions may be comprised of

nodes in the same complex.

Figure 3  Structural Components of Physical Partitioning

Partitionable platforms based upon EXA are integrated

into an enterprise computing environment as illustrated

in Figure 4.

Figure 4  Idealized Enterprise Computing Environment

As defined here, Physical Partitioning is divided into

three types:

• Fixed

• Static

• Dynamic

Fixed Partitioning (FPAR) is a partitioning model that

enables re-configuration of a multi-node complex along

nodal boundaries. Typically, FPAR requires shutdown

and power-down of all partitions, physical re-cabling,

power-up, and reboot of an OS image on each parti-

tion. In terms of platform support, this is the least com-

plicated, but it is the most time consuming and least

flexible of the three types of partitioning. By and large,

FPAR facilitates manufacturing and delivery of scalable

multi-node systems. Though it represents a more effi-

cient and economical upgrade path to the customer,

FPAR does not address the regular, day to day work-

load management needs at customer sites outside

those supported by an operating system executing on

each partition. One approach to addressing these

needs is through Static Partitioning.

Static Partitioning (SPAR) is a model of partitioning that

enables reconfiguration of a multi-node complex after

(possible) shutdown and restart of an operating system

executing on the effected partitions and nodes. This

provides the customer with the ability to reconfigure an

EXA platform without forcing him to interrupt usage on

the entire complex. A similarity between FPAR and

SPAR is that the platform must be reconfigured while

the OS is not running (i.e., prior to booting the OS). The

key difference between FPAR and SPAR is that the lat-

ter offers the ability to independently configure and

service individual partitions (and nodes) through soft-

ware, without necessarily having to shutdown the OS,

physically power-down and power-up HW, and restart

the OS on unaffected partitions. SPAR is considered a

requirement for commercially competitive multi-node

products of today.

Dynamic Partitioning (DPAR) is a type of partitioning

that supports On-Line Insertion (OLI) or On-Line

Removal (OLR) of nodes within a multi-node complex.

Similar to SPAR, DPAR enables the ability to independ-

ently manage and service individual partitions through

software, without having to shutdown, physically power-

down, power-up, and restart unaffected partitions. The

key advantage of DPAR over SPAR is the ability to
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reconfigure the complex while a single OS, or multiple

operating systems on multiple partitions are executing,

thus maintaining availability during service, mainte-

nance, upgrade, or SW migration.

The EXA Platform Architecture
An EXA platform is constructed from an approach

based upon CC-NUMA. EXA employs two key features

that extend the CC-NUMA traits described earlier:

• L4 caching scheme that supports both local or

remote operation

• programmable memory interconnect

Exploiting the local or remote caching feature enables

an EXA platform to provide competitive performance in

both single-node and multi-node configurations. The

programmable interconnect enables the ability to con-

figure the EXA platform as a four through 16 CPU partition.

A four CPU IA32 EXA node is illustrated in Figure 5. The

illustrated node, based upon an IBM XA-32™ chipset,

includes a Memory/IO controller (MIOC) and the PCI-X

I/O Bridge (PCI-X IOB), and a cache/scalability Controller

32 (CSC32). On the IA32 platform, the CSC32 chip

provides the programmable memory-interconnect (in the

form of SMP Expansion Ports) and supports local or

remote use of the XceL4™ Server Accelerator Cache.

The primary differences between the 32-bit and the 

64-bit EXA platforms are the processors (IA32 vs. IPF)

and the scalability chips (CSC32 vs. CSC64), respectively.

Though an EXA node can contain up to 32 DIMMS, the

example in the figure illustrates a 16 DIMM implementation.

Figure 5  An EXA Node

Included in each node is an independently powered

service processor that provides an interface to a man-

agement network. The service processor is a small,

self-contained computer and real time operating system

(RTOS) that provides control, diagnostic, and manage-

ment functions prior to power-on of the host node and

during runtime.

With respect to a multi-node system containing more

than two nodes, an independent scalability link exists

between each node and each other node (as illustrated

in Figure 3). Using a point-to-point direct connection,

multiple scalability ports are employed to support a

system containing from one to four nodes.

The SMP Expansion Ports, which provide the end points

of a scalability link, are configured to support the same

mode (e.g., Isolated, IPC, or Coherent) and type of

operation (e.g., programmed IO, remote DMA, shared

memory). This is evident in the context of a 2-node

system. However, in the context of multi-node system

where each node is directly connected to each other

node, each node has an independent relationship with

each other node. A physical connection is used to join

the two nodes similar to that shown in Figure 2. With EXA,

the SMP Expansion ports connecting the pair of nodes

are programmable through the System Bus on each

node and configured to support one of three modes of

operation:

• Isolation Mode

• IPC Mode

• Coherency Mode

Isolation Mode

In Isolation Mode, a scalability port is prevented from

interaction with the neighboring node at each endpoint

of the link. This is accomplished by placing the scalabil-

ity port of each node in a state that inhibits signals from

passing through the scalability link. In this way, activities

on a neighboring node are physically prevented from

effecting the operation of the local node and accessing

its resources through the link.

Isolation Mode is used to prevent race conditions, tim-

ing, and electrical problems during the initialization and

boot process. It is also used to prevent undesirable

effects due to error or malicious intent and to provide

logical independence when the platform is partitioned

and where security or administrative policies dictate

such operation. Isolation mode is the default behavior
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of an EXA node when power is applied. This is illustrated

by the connection between Node 0 and Node 3 (or

Node 1 and Node 2) in Figure 3.

IPC Mode

In IPC Mode, the scalability link between two adjacent

nodes provides for a low-latency, message-based com-

munication mechanism between the interconnected

nodes. This mechanism may support more than one

type of data transfer (e.g., messages, remote DMA,

shared memory). In IPC mode, caching attributes of the

memory mapped or shared memory region are defined

as required by the OS and the system SW supporting

IPC. IPC connectivity is illustrated between Node 2 and

Node 3 in Figure 3.

Coherency Mode

In Coherency Mode, the L4 cache is incorporated with

scalability port features to form a fully cache-coherent

memory interconnection between adjacent nodes con-

nected through the scalability link. In this mode, multiple

nodes are integrated into a single set of resources and

a single global address space capable of executing a

single image of an operating system. A coherent config-

uration is illustrated between Node 0 and Node 1 in

Figure 3.

Partitioning a Multi-Node EXA Platform
A primary difference between a non-partitionable and a

physically partitionable platform is that the design and

manufacturing process determines the configuration and

scalability of a non-partitionable platform, whereas a

partitionable platform enables the customer to determine

configuration and scalability at the time of need. For

example, once delivered to the customer, a non-parti-

tionable system cannot be reconfigured to add more or

less processors, memory, or IO buses than the platform

was designed and manufactured to support. A physi-

cally partitionable platform is extensible and scalable —

it enables the customer to determine how the system

will be grown and configured according to need after

delivery of the product.

The methods used to configure and manage partitions

on an EXA platform are:

• Local Partition Configuration

• Remote Partition Management

A key difference between Local Partition Configuration,

also referred to as Manual Partitioning and Remote

Partition Management is that local partition configura-

tion is used to partition only a single local complex (i.e.,

those nodes that are interconnected through a scalabil-

ity link) by visiting each (local) node within the complex.

In contrast, Remote Partition Management allows man-

agement of multiple complexes and partitions without

being in close physical proximity to platforms under

management. Both are performed prior to executing the

OS on the platform when supporting static partitioning.

Local Partition Configuration

Local partition configuration, illustrated in Figure 6,

makes use of the BIOS setup menu on each node. This

method requires no other equipment other than the

components present in a standard configuration (e.g.,

keyboard, video, mouse). Service and support is the

primary application of local partition configuration.

Figure 6  Local Partition Configuration Using BIOS Setup Menu

Remote Partition Management

In contrast to local partition configuration, remote

partition management requires an additional external

system connected to the management network.

Employing a management tool with a graphic user

interface (GUI) running under an OS executing on the

external system (as shown at the top of Figure 4), a

user can manage multiple complexes connected to 

the management network.

Using the console, the user employs an interface that

offers an abstraction different than that provided by the

local partition configuration methods. In this case, the

user specifies or creates a complex or a partition, man-

ages nodes, associates them with partitions, activates

or deactivates partitions, and monitors events with a

networked user interface from a remote location. In
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addition, the console may be located at a geographi-

cally distant physical location from the actual platform

being partitioned. An example of the GUI is shown in

Figure 7.

Figure 7  Remote Partition Management Console

In support of Static Partitioning (SPAR), the service

processor on each node, communicating with the GUI

through the IBM Director infrastructure and the out of

band (OOB) management network, stores partition

information into nonvolatile storage on each node. Once

the configuration is defined, the user activates the parti-

tion, and the boot process on each node makes use of

the locally stored partition information.

Consistent with a Static Partitioning (SPAR) model, if an

OS is running on any node in the partition, that node

must be shutdown in order to activate a newly defined

partition. As discussed earlier, this is a primary differ-

ence between Dynamic Partitioning (DPAR) and SPAR:

DPAR allows reconfiguration without shutting down the

OS and while the platform remains available for use.

Because of this, DPAR requires significant support from

a DPAR enabled operating system, while FPAR and SPAR

typically require little or no specific functional changes to

an operating system1. When an OS is enabled to support

On-Line Insertion (OLI) and On-Line Removal (OLR) of

nodes, the same general user methodology is used to

re-partition the platform while the OS is executing.

An overview of remote management architecture is

illustrated in Figure 8. The shaded rectangle at the top

of the figure represents an IBM Director management

agent executing on an EXA partition using OS services

while the OS is executing. The Graphic User Interface,

based upon an extension to the IBM Director Console,

is pictured at the bottom right. The IBM Director Server,

along with a management extension, is pictured at the

bottom left. The GUI and Server can execute on separate

machines or the same machine, or they can execute on

the platform itself.

Figure 8  System Partition Manager

The shaded rectangle at the center of the figure repre-

sents the service processor (SP) that is contained within

each EXA node. The IBM Server extension executes on

a machine with a Network Interface Card (NIC) interface

to the management network in order to manage the

EXA platform prior to power on or OS boot. The network

shown along the left side of the figure enables the com-

munication that supports management with existing

tools once the OS is executing.

Summary and Conclusion
The Enterprise X-Architecture extends HW scalability

beyond that of conventional single-node SHV server

platforms. EXA further extends the feature set of current

multi-node platform architectures to enable static and

dynamic partitioning. Together, the combination of these

features endeavors to increase scalability, availability

and serviceablity in a cost-effective package.

The configuration and partition management model

used with EXA products is based upon existing IBM

Director tools, service processors, and infrastructure.

This model provides a consistent and seamless

approach to both pre-boot (OOB) and runtime man-

agement of EXA platforms.
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The integration of EXA HW and partition management

SW forms a product that focuses on and addresses the

needs of the high end server market. The Enterprise X-

Architecture product is well-suited to the requirements

and objectives of enterprise computing environments.
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Introduction
To accurately assess the performance implications of

design tradeoffs in future systems, one must be able to

accurately predict their performance. Measurements are

very useful for understanding the performance of current

systems. Unfortunately it is impractical to build hardware

prototypes of the design alternatives to measure their

performance. Instead, flexible software models are used

as prototypes of the design alternatives to determine their

performance. Two models, the EXA Spreadsheet Model

and the EXA Simulation Model, were used to determine

the performance of design alternatives. Each required

similar inputs: design timings and sizings and workload

statistics. Design timings and sizings come from the

system designers proposing the various design alterna-

tives. Workload statistics are derived from measurements,

trace analysis, cache simulation and predicted future

software characteristics.

The performance analysis process used is shown in

Figure 1. The inputs to the process are shown in ovals.

The various models and tools are shown in rectangles.

The model and tool outputs are shown in hexagons.

Design timings and sizings are direct inputs to both the

EXA Spreadsheet Model and the EXA Simulation Model.

Measurements and future software characteristics are

directly used to produce workload statistics. Traces are

the input to the trace analysis tools and the cache sim-

ulator which uses a patented methodology. Outputs

from the cache simulator and trace analysis tools along

with measurements and future software characteristics

produce the workload statistics. These along with the

design timings and sizings are the inputs to the models

which produce the system performance results. This

paper will go through this process in detail and show

the results produced by the models of some of the

design alternatives.

Figure 1  Performance Analysis Process

Tracing
Traces are a recording of the history of particular events

of interest. To study the EXA design alternatives, system

bus traces were used. These traces are a history of all

the transactions on the system bus over a period of

time. Most of these transactions were caused by cache

misses in the processor. Each trace record contains the

type of request that it is, the address of the request, the

snoop result, the response it received, and timing infor-

mation. These traces were used to determine the cache

statistics of the various proposed caches as well as to

determine the future system bus request rates which

differ from current rates due to different processors

being used in the future designs.

A tool called RTS (Real-time Tracing System) was

designed and built specifically for capturing system

bus traces. Some of the goals of the design of RTS were

to produce error free traces that were as long as possible

and not impact the system being traced. There was also

a need to have a short time between the capture of

traces in order to quickly produce as many traces as

possible in the short amount of time that the systems

being traced were available. Software-based tracing

techniques require that the system being traced be

slowed down or periodically stopped in order to record

the trace. This takes a lot of time and may alter the way

the system being traced functions. These types of

Performance Analysis of EXA Technology
— Dan Colglazier, Rick Harper, Larry Whitley

Measurements

Traces

Design
Timings  

and
Sizings

Cache
Simulation

Trace
Analysis

Tools

EXA
Spreadsheet

and
Simulation

Models

Work-
load

Statistics

System
Performance

Future 
Software

Characteristics



130

techniques did not meet the goals of not impacting the

system being traced and producing as many traces as

possible in a short amount of time. Therefore, hardware-

based tracing was used which was transparent to the

system being traced.

Figure 2  The RTS Tool

A diagram of the RTS tool is shown above in Figure 2.

Special hardware designed and built for RTS is shown

in ovals. Vendor produced hardware used for RTS is

shown in rectangles. The RTS tool is composed of a

number of different parts to get the needed signals,

reshape and rearrange them as necessary, and store

them. Two preprocessor interfaces are used to get the

needed system bus signals from two different processors.

Since the system bus is shared among up to four

processors, both processors, and thus both preprocessor

interfaces see the same signals. One of the preprocessor

interfaces, is attached to a logic analyzer which captures

as much of the first part of the trace as it has the capacity

to do. This copy of the first part of the trace is compared

to that captured by the RTS to verify the tool is working

properly and capturing accurate traces. The second

preprocessor interface sends the system bus signals to

the Probe Interface Card. The preprocessor interface

outputs the system bus signals in a format that conforms

to a proprietary format. The Probe Interface Card converts

these signals to transistor-transistor logic (TTL) signals

to be used by the next stage of the RTS, the Data

Monitoring Card.

The Data Monitoring Card performs a variety of functions.

The system bus upon which the traces were captured ran

at 100MHz. The traces are written to temporary storage

which can not record them that quickly in one stream.

Therefore, the Data Monitoring Card splits the 100MHz

stream of signals into two streams of 50MHz signals. The

Data Monitoring Card filters out unneeded signals to

reduce the amount of space each bus cycle needs in

storage. The smaller the amount of information stored for

each cycle, the larger the number of cycles that can be

captured since the size of the temporary storage is fixed.

The 50MHz signals are split again into address signals

and control signals with 32 bits in each. The address

signals are only valid on the system bus during the first

two cycles of a request, so only those two cycles are

stored in the temporary storage for each bus transaction.

The control signals can occur on any bus cycle. Two

methods are used to store these signals. The first is to

store the control signals for all bus cycles. This preserves

all the timing information in the trace but stores a lot of

unneeded cycles. The second method is to filter out the

unneeded cycles to produce traces longer in time. With

this method, time stamps are also recorded along with

the signals in order to know the number of bus cycles

between each bus transaction. The tradeoff is that some

information is lost.

The Memory Interface Board transfers the trace data

from the Data Monitoring Card to the temporary stor-

age. Its main function is to convert the TTL signals to

emitter coupled logic (ECL) signals. Two boxes are

used as the temporary storage for the traces. Each of

our boxes contains 24GB of memory providing a total

of 48GB for each trace. The interface board for the

boxes can store 32 bits at up to 90MHz. The RTS uses

two of these cards in each box, one for the address

signals and one for the control signals. Each box

captures one of the 50MHz streams. When a trace fills

up the 48GB of storage, the trace is complete. The

trace is then written to permanent storage and a new

trace is started. A number of traces are captured from

each trace system so that the most representative one

can be selected.

As mentioned above, the system bus traces are captured

into four files - two containing address bits and two con-

taining control bits. The tools that use these traces expect

them to be in a single file. In addition, the tools expect the

traces to contain records with all the signals pertaining to a

particular bus request in them.The system bus is pipelined.

This means multiple requests can be on the system bus at

the same time in various phases. A program called XLATE

is used to read the four files, find and put together all the bits

pertaining to a particular bus request, and output these
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records in order as a translated trace. XLATE also performs

error and parity checking on the traces and produces

statistics on the correctness of them.

Once the traces have been translated, the most repre-

sentative one from a set of similar traces is selected.

This is done by using each trace as input to a cache

simulator (IMPACT which is described later) run with a

number of cache configurations. The output of each run

is analyzed along with counter data captured with the

trace, and output from a trace statistics gathering tool

(FP which is described later) for each trace. The key

statistics from all the traces are averaged and each key

statistic from each trace is looked at to see how close it

is to the average. A trace can be selected as represen-

tative if all of its key statistics are close to the average

and it tracks the average well when things like the

cache size are changed. The trace that most closely

matches and tracks the averages of the key statistics is

chosen as the trace to use from that set of traces.

Just as important as selecting representative traces is

selecting representative workloads to trace. Three com-

monly used and publicly available workloads were

traced. Each was traced on systems set up and tuned

specifically to run these workloads. The first was TPC-C

which is an on-line transaction processing benchmark.

It was produced by the Transaction Processing

Performance Council (TPC). This benchmark is repre-

sentative of a typical large server system. The second

was the SAP, Standard Applications Benchmarks pro-

duced by the SAP Benchmark Council. This benchmark

reflects standard business scenarios and tests the

hardware and database performance of SAP software.

The third was Lotus Notesbench produced by the

Notesbench Consortium. This benchmark is represen-

tative of mail and database usage and is for evaluating

the performance of mail and database servers. These

three workloads provide a good representation of real

applications running on Intel-based servers.

Most of these traces were captured on systems with four

processors. One TPC-C trace was captured on a system

with eight processors. This particular system has two sys-

tem busses each requiring an RTS tool. Special consider-

ation had to be taken to keep the two halves of this trace

synchronized. Our earliest traces were captured before

the size of the memory array was increased. These traces

captured between fifteen and twenty seconds of system

bus activity during which seventy to ninety million bus

requests took place. Our later traces using 48GB of

memory captured over two minutes of system bus activity

during which over one billion bus requests took place.

Studies done on these traces found them sufficiently long

to produce accurate performance statistics for the EXA

design alternatives.

Cache Simulation
The cache simulator is called IMPACT — Input-driven

MultiProcessor Analysis Cache Tool. It is written in C.

The basic approach of IMPACT is to model the target

cache directories and keep counts of the occurrences

of the events of interest. The target cache directories

are represented by three-dimensional array structures.

The three dimensions are: 1) to identify a particular

cache, 2) to identify a particular congruence class, and

3) to identify a particular row in a congruence class.

Each directory entry contains the address of the cache

line, timing information used for cache line replacements,

and the state of the cache line (i.e. exclusive, shared,

etc.). IMPACT reads the input trace, one bus request at 

a time, performs whatever actions would take place on

the target cache(s) for that request, and increments the

counts of whatever events occur. IMPACT also has a

special optional mode in which a bus request can

generate additional requests to simulate situations such

as prefetching.

In addition to the input trace, IMPACT reads in a param-

eter file which it uses to configure the target caches

and how they operate. Three of these parameters are

the cache size, the line size, and the set-associativity.

A wide variety of cache sizes can be simulated, limited

only by the amount of storage required to hold the

directory structures. Any reasonable line size can be

specified keeping in mind that the smaller the line size,

the more cache directory entries there are. The set-

associativity determines the size of each congruence

class and can be any reasonable size. These three

parameters determine two of the three dimensions in

the target cache directory array structures: number of

congruence classes and number of rows. Sectored

caches can also be simulated by IMPACT using the

input parameter specifying the number of caches lines

per sector. In addition, these sectors can be loaded by

line or by the entire sector by specifying the load size

parameter.



132

IMPACT is quite flexible in the system configurations it

can model. The caches of up to 32 processors can be

simulated. IMPACT can simulate private caches (one

cache per processor), shared caches (one cache for all

processors), and semi-shared caches (more than one

processor sharing a cache with multiple caches existing).

IMPACT can model one or two levels of caches. With

two levels of caches, the following combinations can be

modeled: private first-level caches with private, semi-

shared or shared second-level caches and semi-shared

first-level caches with semi-shared or shared second-

level caches. The two levels of caches interact in both

directions. The first-level caches send their misses and

writebacks to the second-level caches. If the second-

level caches are enforcing inclusion in the first-level

caches, then invalidate requests are sent to the appro-

priate first-level caches when cache lines are removed

from the second-level cache. An input parameter speci-

fies the number of first-level caches attached to a par-

ticular bus. Other input parameters specify how many

processors share each first-level and second-level cache.

Each level of cache can use a variety of replacement

algorithms including true and pseudo least-recently-used

replacement and random replacement. The two cache

levels can implement different coherency algorithms

which determine where lines are kept and in what states

they end up.

Besides specifying the cache and system configurations

and policies, the input parameters specify a number of

options for running the simulation. The maximum number

of transactions simulated during a run is specified in an

input parameter. Another parameter specifies the number

of transactions used to prime the cache without statistics

being collected on them. Transactions can be limited to a

specific address range in two input parameters. A number

of model outputs are optionally requested by input

parameters. Among these are traces of the target cache

activity which start at a specified transaction number and

are a specified number of transactions long. Another

useful optional output is the number of cache lines in each

state at a specified interval throughout the simulation run.

Memory maps of the transactions and cache misses can

also be optionally produced.

IMPACT produces an output file containing the counts

of the interesting events that occurred during the simu-

lation run. Most counts are broken out by requester 

and transaction type and are produced for each cache

if appropriate. The most generally useful statistics pro-

duced are total trace requests, cache references, cache

misses, replacement writebacks, and snoop writebacks.

In addition, other less generally useful statistics are 

kept such as the number of cache hits not to the most

recently used line. This helps determine how often the

cache directory must be updated. Another of these 

is cache hits which act likes cache misses due to

coherency requirements. If two levels of caches are

being simulated, statistics are kept on their interaction.

Among these are the number of back invalidations and

the number of writebacks that these cause. Other inter-

esting statistics that are included in the output are line

state and state transition counts, snoop results, and the

count of lines replaced without being referenced when

doing prefetching. The IMPACT output file is typically

brought into a spreadsheet where various counts are

combined to produce needed statistics such as cache

miss rates.

Workload Statistics
Characteristic statistics of each workload can be

obtained through measurements. Current Intel proces-

sors contain two performance counters which can be

programmed to count a number of events. These coun-

ters are used to obtain the processor cache request

rates and miss rates on each workload. In addition, the

writeback transaction rate can be determined using the

counters, and the percentage of replaced lines causing

writebacks can be calculated. Another useful count is

the number of snoops found modified which cause

snoop writebacks. The counters are also used during

tracing to count the number of instructions completed

and the number of processor cache references during

the trace.

In addition to the information from the counters, the

traces provide a number of useful workload statistics.

While translating the traces from bus event traces to bus

transaction traces using the XLATE tool, statistics on the

trace are counted. Among the most interesting are the

total number of bus cycles of a trace, the average num-

ber of requests on the bus awaiting responses, and the

number of times snoops are stalled before completing.

A program called FP was written to produce additional

statistics directly from the traces. Its original purpose

was to determine the number of unique cache lines

referenced in a trace by each requester over time. FP

also counts the number of each request type from each
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requester. This is used along with the timing information

from the trace to calculate the rates of each type 

of request by requester. In addition, FP counts the

responses, snoop responses and cache attributes by

request type for each requester. FP also keeps a count

of the response times for each requester and provides

a map of where in memory each requester is making

references.

By tracing the system bus, a record is made of all the

requests on the bus over a period of time. These statistics

provide a good picture of how the workloads perform

on current hardware. Future processors will perform

differently resulting in different request rates on the system

bus. Future memory hierarchies must be designed for

these future request rates. If the highest-level cache in

the processor changes, the request rate on the system

bus is directly affected. Since future processors will have

a wide variety of caches, a methodology was needed

to account for these different caches. Traditional cache

simulation requires a trace of the inputs to a cache. A

bus trace is the outputs of the highest-level cache in

the processor. The inputs of this cache are not available

to trace without turning off the cache and greatly affect-

ing the system being traced. Therefore, a new method

of cache simulation was needed and developed that

uses the outputs of the highest-level cache in the

processor as the inputs to the simulation of another

cache that will be the highest-level cache in a future

processor. This methodology was issued a United

States Patent.

A trace of cache outputs does not contain everything

needed for cache simulation as does a trace of cache

inputs. Information from the cache hits is lost. The

cache hits are needed to determine the total number of

references to the cache, but this information is collected

using the counters while the cache output trace is being

captured. With the same references, a larger cache will

contain the vast majority of the entries of a smaller cache.

Cache hits in a smaller cache will almost always be

cache hits in a larger cache. The cache hits to a smaller

cache are then not needed to simulate a larger cache.

Because of this, the cache misses of a smaller cache

can be used as input to a cache simulation of a larger

cache. Because the cache hits to the smaller cache are

not seen in the simulation of the larger cache, the cache

replacement algorithm is affected. Cache hits usually

cause the hit line to be replaced later than the other lines

referenced earlier. This information is lost to the cache

simulator of the larger cache, but this lost information

has only a small effect on the number of misses and is

not a significant problem.

Most caches keep track of the state of their lines, for

example whether they have been modified. In writeback

caches, lines that have been modified must be written

back to memory when they are removed from the

cache. A cache simulator must keep track of these line

states accurately in order to produce correct statistics

concerning writeback activity. Once a cache line has

been designated as the only copy, it can be modified

internally with a future reference. This reference will be 

a cache hit and will not appear in the cache output

trace. Therefore the cache simulator will not know when

these lines have been modified. This lost information is

significant and has a very large effect on the writebacks

in the cache simulator, but this difficulty can also 

be handled using the technique described in the

following paragraph.

Besides cache misses, writebacks are also captured in

the cache output trace. Writebacks occur when a modi-

fied line is replaced or another cache wants a copy of

the modified line. All modified lines are eventually written

back to memory. Therefore, the writeback references

are a record of which lines have been modified.

Sometime before the writeback occurred, the line was

modified. This occurred most likely between the last

reference to this line in the miss trace before the write-

back and the writeback itself. For each writeback, this

last reference before it is found and marked using a

program called WBMARKS. The cache simulator reads

these marks and keeps track of the lines that have

been marked. When a line is to be replaced or wanted

by another cache, it is the only copy, and it has been

marked, the simulator treats it as if it had been modi-

fied. This method has been used quite successfully to

simulate caches larger than the ones in the processors

in the systems that were traced. If statistics were needed

on caches too small to accurately simulate directly, a

number of larger caches with similar configurations

except for cache size were simulated and the results

were used to predict the statistics of the desired cache

using curve-fitting.

Once cache statistics are determined on the highest-

level cache in the target processor, it is quite easy to



134

calculate the target system bus request rates. Through

measurements and trace analysis, the miss rates and

bus request rates of the tracing system are known. Bus

requests are mostly the misses of the highest-level

cache in the processor. Therefore, the bus request rates

of the target system are pretty much the bus request

rates of the tracing system multiplied by the ratio of the

miss rates between the target system and the tracing

system. Writeback rates can be calculated similarly.

The XceL4 Server Accelerator Cache (XceL4 Cache) is

large enough to contain the contents of the caches in

the processors. In the processor chip, requests that are

hits in a larger cache and are misses in a smaller

cache are almost always hits in the XceL4 Cache (L4).

Therefore, the number of cache misses in the L4 stays

basically the same for any reasonable cache size in the

processors, and the L4 can be simulated directly using

the system bus traces to produce miss rates. Another

vital statistic for studying the design alternatives for EXA

was the probability of where each request type would

be found: local processor cache, local L4, local memory,

remote memory, remote L4, or remote processor cache.

These probabilities are determined using two levels of

cache simulation: 1) the processor caches and 2) the

L4s. It is important to have the proper interaction between

the two levels of simulated caches and among the

caches at the same level. IMPACT has the capability to

do this and the flexibility to perform different algorithms

to simulate different coherency schemes and different

policies between the two cache levels. These probabilities

are an important input to the EXA Spreadsheet Model

which will be described below.

The techniques described above are very useful for

determining the statistics of current workloads on the

future target systems. In addition to the hardware

changing in the future, the software will also change.

This must also be accounted for. EXA systems with

more than four processors will use a Non-Uniform

Memory Access (NUMA) architecture. Most of today’s

software is written for Uniform Memory Access archi-

tectures. The workload statistics from the measurements

and cache simulation show this to be the case for the

benchmarks that were traced. Because of the emergence

of systems using NUMA architecture, software is being

enhanced to increase the percentage of local memory

references which increases system performance in

NUMA architecture systems. The statistics have been

adjusted for this to produce statistics of future software

running workloads on the future target systems. These

are the workload statistics used in the EXA perform-

ance models.

EXA Spreadsheet Model Methodology For
Estimating System Performance
For the purposes of supporting design and workload

variation studies, a linear spreadsheet model is used to

project system-level performance in terms of TPC-C

transactions per minute (tpmC).

Abstracted System Structure
This model uses an abstracted view of an 8-way EXA

configuration shown in Figure 3. The 8-way configuration

consists of two “nodes”, each of which contains four

processors connected to a system bus. These nodes

will be referred to as quads. Each processor contains a

cache. Also connected to the system bus is a memory

controller providing access to the local L4, the local

memory, and the SMP Expansion Port which provides

access to remote caches and memories.

Figure 3  8-way EXA Configuration
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Table 1 below shows the parameters of the configuration

that are relevant to this analytical method.

Table 1  Configuration Parameters

Processor 1.6 GHz Intel Xeon

Processor MP Family

Processor Cache 1 MB, 64B line, 8-way Set

Associative

L4 32 MB, 64B line, 4-way 

Set Associative

Local Processor Cache 80 ns

Latency

Remote Processor Cache 625 ns

Latency

Local L4 Latency 85 ns

Remote L4 Latency 565 ns

Local Memory Latency 315 ns

Remote Memory Latency 715 ns

Overview of Calculation Methodology
The overall equation for calculating tpmC is:

tpmC = 

instructions per second / transaction path length * 60

The transaction path length is the average number of

instructions per new order transaction and is obtained by

measurements taken on benchmark systems. For a given

set of studies, it is held constant for all configurations

being analyzed. With ongoing optimization, the path

length decreases over time (and thus the absolute tpmC

changes over time, all other factors being held constant),

but the method still yields useful relative comparisons.

The instructions per second delivered by a certain

number of processors with a given memory hierarchy 

is calculated as:

Instructions per second =

number of processors * processor clock rate /

processor cycles per instruction

The number of processors and processor clock rate are

fixed for a given design point, while the processor cycles

per instruction (CPI) is a reasonably complex function of

a number of parameters. It is broken into two components:

Core CPI and External CPI. The Core CPI is the number

of cycles per instruction of the processor core, assuming

an infinite processor cache size, and is to a first approxi-

mation a function of the workload characteristics and

internal processor and cache architecture. It is obtained

from a variety of mutually corroborative sources, such as

empirical measurements, the microprocessor vendor,

and comparison with known designs.

The External CPI is the contribution to overall CPI that

arises due to nonzero latencies of the external cache

and memory hierarchy and is a function of the number

of processor cache misses per instruction (MPI), the

latencies of the various elements of the memory hierarchy

beyond the processor cache, and the distribution of

accesses to those elements. Assuming the average

processor cache miss latency and the processor clock

rate are in compatible units (e.g., microseconds and

Megahertz), then:

External CPI = 

processor cache MPI * average processor cache

miss latency / processor clock rate

The processor cache MPI is given by the cache simula-

tion described above. For a single-node EXA system

having four processors on a single system bus, a shared

L4, and a shared local memory, the average latency of a

processor cache miss generated by a given processor is:

Average processor cache miss latency =

Probability of hitting in another processor’s cache on

that system bus * local processor cache latency +

Probability of hitting in local L4 * local L4 latency +

Probability of hitting local memory * local memory

latency

To calculate the average processor cache miss latency

for multinode EXA configurations, it is necessary to know

the proportion of accesses that are fulfilled in local versus

remote processor caches, L4s, and memories. These

quantities are collectively referred to as the locality of

reference. They are a strong function of the workload

and can range from uniform for non-NUMA optimized

workloads to highly localized for NUMA workloads.

Thus the formulation for average latency of a processor

cache miss is:

Average processor cache miss latency = 

Probability of hitting in another processor’s cache on

the local system bus * local processor cache latency +

Probability of hitting in another processor’s cache on

a remote system bus * remote processor cache

latency +
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Probability of hitting in local L4 * local L4 latency +

Probability of hitting in remote L4 * remote L4 latency +

Probability of hitting local memory * local memory

latency +

Probability of hitting remote memory * remote

memory latency

The probability of hitting in various local and remote

locations is given by the cache simulator and workload

analysis tool described above, and the various latencies

are provided by the system designers.

Exa Simulation Model
The EXA Simulation Model is implemented in C++ using

CSIM. The inputs to the model are similar to the EXA

Spreadsheet Model described above. The simulation

model is cycle accurate and is intended to answer

questions of performance that rely on queuing information.

Specifically, the model was used to explore the design of

several components of the EXA chip set: notably the L4

design, memory design, and SMP Expansion Port design.

The approach to the design of the model goes through

3 steps:

1. Class Definition

2. High level class implementation (for all classes)

3. Low level class implementation (for a subset of the

classes)

The class definition and high level model implementation

will be described followed by a description of the low

level model implementation for one of the components

of the chip set, the L4.

C++ Class Definition
When implementing a large model in C++ using the

CSIM class library, it is advisable to first put together

a class diagram that will serve as a guide for future

implementation. This class diagram can serve as the

basis for organizing the model and organizing a team of

people that will implement different parts of the model.

Generally, the classes follow the physical partitions of the

chip set. For EXA, there are three modules: Memory/IO

Controller (MIOC), Cache/Scalability Controller 32

(CSC32), and Cache/Scalability Controller 64 (CSC64).

Likewise, there will be three major classes in the model

named, appropriately, MIOC, CSC32 and CSC64. In the

chip set, CSC64 was planned to be derived from the

CSC32 design. Therefore, the CSC64 class was derived

from (inherits from) the CSC32 class in the C++ model.

Each of these major classes contains objects built on

smaller classes within them. For example, the CSC32

class will contain an L4 object that is created from an

L4 class. Likewise it contains three SMP Expansion Port

objects that are each derived from a ScalabilityPort

class. As can be seen in the class diagram in Figure 4,

there are several inheritance relationships in the model.

Beyond the CSC32/CSC64 relationship there is a rela-

tionship in the processor buses and another between

the I/O ports and the SMP Expansion Ports.

The Bus class is an abstract class that factors out the

common elements between the Intel ItaniumTM Processor

Family bus and the Intel XeonTM Processor MP Family

bus. MIOC implements the Xeon bus and may either

attach several Xeon processors or may attach a CSC32

or a CSC64. CSC32 also implements a Xeon bus, while

CSC64 implements an Itanium bus. While CSC32 and

CSC64 implement different processor buses, they use

the same Directory and L4 classes. The necessary

differences in the use of these classes did not justify

separate classes for each and was instead handled

with parameters.

Figure 4  Class Diagram
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Another inheritance relationship can be seen in the

relationship between the I/O ports on the MIOC and the

SMP Expansion Ports on CSC32 and CSC64. The I/O

ports are updated implementations of I/O ports on

pSeries and iSeries systems. The SMP Expansion Ports

are higher speed and more powerful. One would at first

think that the SPort should inherit from RPort, but looking

into the details of the modifications, it turned out that it

was easier to do the reverse.

Building And Running The Model
The class diagram represents the structure of the C++

code, but an object diagram is needed to fully appreci-

ate the structure of the model. The object diagram in

Figure 5 shows a fully configured Intel Itanium Processor

Family based system, interconnected with SMP

Expansion Ports.

When the model is run, it goes through three phases:

1. Build model objects

2. Interconnect model objects

3. Run model

The model contains run-time controls that describe

various configuration parameters: number of nodes

(CSC64/MIOC pairs), number of processors, size of

memory, size of L4, etc. Each of these objects are

instantiated by the model without any knowledge of

where the other objects that make up the model are

located. After all objects are built, the model intercon-

nects each object with the other objects it needs to

know about (using methods built into the object for this

purpose). The arrows with dots on one end indicate

pointers within an object pointing to another object in
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the model. The purpose of the interconnect phase of

building the model is to define these pointers.

Finally, once the model is built and interconnected, it is

run by providing stimulus from both the processors and

the I/O subsystem. Special care is taken to coordinate

the model inputs with that of the EXA Spreadsheet Model

so that the two will produce similar results in lightly

loaded test cases.

High Level Class Implementation
The weakest point of any simulation model that attempts

to deal with a high degree of detail is the length of time

it takes to write the model. This length of time delays the

point at which useful information can be gleaned from the

model, and this delay is in conflict with the goal of provid-

ing performance feedback to the designers in the early

architectural design phase. With the EXA Simulation

Model, an iterative approach was adopted to implement-

ing the model. The model was first implemented at a

higher level of abstraction. As the behavior of the model at

that level of abstraction was understood, certain classes

were re-implemented at lower levels of abstraction (higher

levels of detail), often iteratively, until the detailed under-

standing that was sought was achieved. The advantage of

this sort of approach is that the entire model did not need

to be implemented at a high level of detail. Only those parts

that deserved special attention received this treatment.

Looking back on the EXA simulation model experience,

this approach was only partially successful. The model

was available sooner than it might have been if a full

detailed approach had been pursued. However, it was not

available in as timely a manner as desired largely due to

unnecessary levels of detail creeping into the supposed

high level implementation. In future models experimen-

tation with this method will continue, perhaps restricting

the use of classes to force higher levels of abstraction.

L4 Example
One class that went through the iterative process was the

L4 class. The addition of an L4 was one of the more inter-

esting aspects of the EXA chip set. The L4 data storage is

off-chip double data rate DRAM (Dynamic Random Access

Memory) controlled by an on-chip directory, queues and

sequencers.

The L4 does provide improved performance over a

non-L4 design for most commercial workloads, but the

focus here will not be on that performance improvement.

Rather, the focus will be on the design of the L4 queues

that help achieve that performance.

One of the primary purposes of a simulation model is to

assist the designers in exploring alternative queuing

algorithms for various parts of the system. The goal is to

achieve maximum throughput at a minimum latency and

minimum chip area. These goals are in apparent conflict,

but with clever queuing algorithms surprising results

can be achieved.

It is in this area where C++ with the CSIM class library

shows its strength. Other modeling tools are adequate

when standard queuing algorithms are in use (First

Come First Served, Priority, Processor Shared, Round

Robin, etc.), but when there is a need to explore non-

standard queuing algorithms, C++ provides the level of

control necessary, and CSIM the fundamental constructs

to implement it.

The goals of the L4 design are to provide the lowest

possible latency and highest possible throughput to

processor fetches. The goal for L4 stores is primarily

to stay out of the way of the fetches. Given these

goals, the queuing algorithm for the L4 starts out as 

a straightforward priority scheme where processor

fetches get higher priority than processor stores.

To complicate matters, the double data rate DRAMs have

good performance when presented with a sequence of

fetches or a sequence of stores, but their performance

degrades significantly when they switch from fetch to

store or from store to fetch. It actually does not take a

simulation model to understand that a simple priority

scheme, combined with this behavior of the double data

rate DRAMs, will lead the DRAMs to commonly exhibit a

fetch-store-fetch-store-fetch pattern of access. The only

time two fetches will be done in sequence is when they

arrive at the cache close together. Since stores are likely to

be delayed, any holes that open up in the fetch sequence

are likely to be filled by stores.This yields the worst possible

performance for the processor fetches.

One solution for this, explored by using the simulation

model, is to introduce a more complex queuing disci-

pline to the control of the L4. The store queue receives

three additional controls, called “high water mark”, “low

water mark”, and “number of writes”. The low water mark

provides a threshold above which the store queue will
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behave as above and below which it will do nothing at

all. (For the purpose of this discussion, address conflicts

between the fetch and store queue will be ignored.) The

high water mark provides a second threshold that moves

the priority of the store queue above the priority of the

read queue. The “number of writes” control determines

the number of writes that will be performed in sequence

or until the queue falls below the low water mark,

whichever comes first. This is a sensible queuing algo-

rithm given the goals and the limitations of the double

data rate DRAM. However, simulation shows that the end

result is that the queue length of the store queue is most

probably in the neighborhood of the low water mark

leading to a behavior very similar to the one the design

is trying to avoid in the first place.

Other explorations are also possible. The normal opera-

tion of the L4 is not speculative. When an access enters

the L4 read queue, it must wait for a signal from the

directory indicating that it may proceed when there is

data in the cache for this request. (If the directory indi-

cates that it should not proceed, the entry is deleted

from the queue.) It is natural to wonder if it would be

better to just let the access to the L4 go ahead and

throw away the result if it turns out to be invalid.

Using the Object Oriented (OO) capabilities of C++, a new

L4Speculative class is created that inherits from the L4

class and modifies the behavior appropriately.The changes

are guaranteed to be isolated to the new class and, as the

methods accessing that class are unchanged, the rest of

the model is unaffected.The results for the workloads run

gave the advantage to the non-speculative L4. It turned 

out that when doing speculative accesses, the additional

utilization of the L4 sequencers and buses introduced

additional delays which negatively impacted system per-

formance.

The speculation described above was being done in

the context of processor fetches. There is also a form of

speculation that can be done in controlling the store

queue that will benefit the read queue. Recall that the

main problem with the double data rate DRAMs is the

switch time from fetch to store or from store to fetch.

As mentioned above, processor fetches enter the L4 fetch

queue and are held there awaiting release or cancellation by

the directory. Again using C++’s OO capabilities, we create

a new L4ReadMaybe class that speculatively stops writes

when there is one or more unreleased operations stored in

the L4 fetch queue. If the directory releases the fetch to the

L4, the writes have been stopped or are already in the

process of stopping and the fetch’s queuing time behind the

writes is significantly reduced. If the directory cancels the

fetch, the operation disappears and the writes will start up

again after missing a few beats. Analysis of this showed a

significant improvement over the normal non-speculative

store queue and the feature was included in the EXA design.

Workload And System Design Impact On
Performance Using The EXA Spreadsheet Model
This section shows the use of the EXA Spreadsheet

Model to assess the performance impact of certain

design modifications and potential variations in work-

load. For simplicity, normalized curves will be presented

for 4-way and 8-way systems where the performance

of a 4-way is defined to be equal to one. Also, only a

few of the myriad design possibilities that have been

analyzed with this methodology are being shown.

Locality Of Reference
The locality of reference that is assumed for the analysis

of the EXA system is based on anticipated changes to 

a NUMA-unaware workload which was obtained by

driving the 8-way EXA cache simulation with the 8-way

trace taken at Raleigh. This workload had the conditional

localities of reference shown in Table 2 averaged over all

latency-incurring transaction types.

Table 2  Workload Localities of Reference

Local Remote

Processor Cache 43 57

L4 70 30

Memory 50 50

The processor cache locality (the conditional probability

that a processor’s cache miss hits in the cache of another

processor on the same 4-way node, assuming that it hits

in a processor cache somewhere) appears to closely

approximate a uniform distribution of 3/7, while the

memory locality (i.e., the probability that an L4 miss

hits in local memory) is 50%, also implying a uniform

distribution of such accesses across the entire system.

Interestingly, the L4 provides a locality that is noticeably

better than 50%.
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The characteristics of a NUMA-aware workload were not

empirically available for the anticipated EXA operating

system, database, and workload, so they were extrapo-

lated via discussion with various groups within IBM such

as Beaverton, Rochester, Raleigh, and Research. These

characteristics were what was believed might be rea-

sonably obtained with diligent use of emerging NUMA

APIs (Application Programming Interfaces) and are

shown in the Table 3 below.

Table 3  NUMA-aware Workload Localities of Reference

Local Remote

Processor Cache 51 49

L4 88 12

Memory 89 11

Note that the processor cache locality is only slightly

improved, because even with the use of memory locality

APIs, it is expected that a given line that is found in another

processor’s cache is probably a frequently used line such

as a lock, and all processors are accessing that lock

regardless of where they are. Memory locality has sub-

stantially improved, and this is believed to be the main

impact of utilizing the anticipated NUMA memory locality

APIs. L4 locality has improved somewhat, largely as a

collateral result of the improvement in memory locality. This

NUMA workload will be the baseline for the evaluations

shown in this section.

Figure 6 shows the effect of varying memory locality

from 0% (memory references are distributed 50-50

between the local and the remote node in the 8-way)

to 100% (all memory references are fulfilled on the

local node.) Note that because of its L4, the EXA

design is not particularly sensitive to memory locality

because most processor cache misses either hit in

another processor’s cache, or in an L4.

However, a dramatic result is achieved when processor

cache locality is increased from 0% (a hit to a same node

processor’s cache has 3/7 probability and a hit to a different

node processor’s cache is 4/7) to 100% (the probability

of a hit to a same node processor’s cache is 100% and

the probability of a hit to a different node processor’s

cache is 0%). This is shown in Figure 7. Admittedly,

achieving processor cache locality is a harder program-

ming problem than achieving memory locality because
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it implies confining sharing to a small set of processors

via lock breakup and other techniques, and shared data

structures tend to be uniformly shared by all processors

in a system. However, the large potential performance

impact could motivate pursuing this optimization.

Latency
The next two studies show the effect of changing local

and remote latencies. In the first example, local L4 and

memory latencies are reduced and augmented by 10%.

The sensitivity study shows that a 2% change in 4-way

performance is obtained for a 10% change in local L4

and local memory latency as shown in Table 4.

Table 4  Local L4 and Memory Latency Sensitivity Study

4-way Baseline 1.00

Local Latencies Reduced by 10% 1.02

Local Latencies Increased by 10% 0.98

The effects of reducing and increasing remote latencies

by 10% are shown in Figure 8. Note that in this study,

remote processor cache, remote L4, and remote memory

latencies were all changed by +/- 10%. The results show

that, all other things being equal, a 2.4% change in 8-way

system performance is obtained for a 10% change in

remote latency.

Cache Configuration
The final study presented shows the effect of doubling

the L4 size from 32MB to 64MB. Because of limited

directory space in the cache controller chip, to achieve

this the line size of the cache was doubled from 64 to

128 bytes.

Figure 9 shows the performance projections. At the 4-way

point, the larger cache provides a small improvement in

performance. At the 8-way point, however, a slight per-

formance degradation is seen. This interesting conclusion

is obtained because even though the absolute L4 hit rate

has increased, the relative probability that a hit in another

processor’s cache or in L4 must access a remote cache

has increased. This can be seen in Table 5 which shows

the localities of reference for the two cache designs. The

performance degradation at the 8-way point may not

occur in the future with the anticipated NUMA memory

locality APIs.
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Table 5  Localities of Reference For Two Designs

32 MB L4, 64B Line, non 

sectored

Local Remote

Processor Cache Hit 10.59% 13.79%

L4 Hit 44.68% 19.79%

Memory Hit 10.03% 1.11%

64 MB L4, 128B Line,

2 Sectors

Local Remote

Processor Cache Hit 11.97% 15.62%

L4 Hit 39.61% 23.08%

Memory Hit 8.75% 0.97%

Data Reads Only

Conclusion
The performance analysis process used in the design of

the Enterprise X-Architecture has been described. This

included the collection of measurements and traces,

trace analysis, and cache simulation which were all

used along with future cache characteristics to produce

workload statistics. The workload statistics and design

timings and sizings were used as the inputs to the two

models: the EXA Simulation Model and the EXA

Spreadsheet Model. How the models were used to

guide the design for peak performance has also been

shown. An example of the use of the EXA Simulation

Model was to look at various queuing algorithms for the

L4. An algorithm was found that showed a significant

performance improvement and was included in the EXA

design. The EXA Spreadsheet Model showed that the EXA

design is not particularly sensitive to memory locality,

but is quite sensitive to processor cache locality. It also

showed a 2% change in 4-way performance for a 10%

change in local latency and a 2.4% change in 8-way

performance for a 10% change in remote latency. Finally,

the EXA Spreadsheet Model showed that a larger cache

is not always better as an increase in the relative proba-

bility of accessing a remote cache produced a slight

performance degradation in an 8-way system.
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cuits for the Enterprise X-ArchitectureTM Chipset used

in the NetFinity Intel based server systems. Since join-

ing IBM Burlington in 1985, he has worked in the areas

of I/O circuit design, embedded SRAM design, mixed-

signal chip PD and custom image design. Mr. Guertin

has two patent issues and one patent file related to

performance compensation and di/dt control of off-chip

driver circuits. He received his BS in Chemical

Engineering in 1977 and BS in Electrical Engineering in

1984 both from the University of Minnesota..

Jim Haidinyak
^ xSeries Group

Mr. Haidinyak joined IBM in September 1980. He has

worked in product development and test his entire

career with IBM. He has held positions as a test and

simulation manager in DASD controllers and numerous

product development management positions in the

RS/6000 division. He is currently a product development

manager in the ^ xSeries group, responsible 

for the development of the xSeries RXE-100 Remote

Expansion Enclosure. Mr. Haidinyak received his MBA

from the University of Phoenix in 1984, his BS in

Electronic Systems from Southern Illinois University in

1982 and his AA in Electronics Technology from

Southern Illinois University in 1980.

Jim Hanna
^ xSeries Group

Mr. Hanna is a Senior Technical Staff Member currently

working on system design and development for xSeries

servers. He joined IBM in Boca Raton, Florida in 1973

after receiving a BS in Electrical Engineering from Texas

A&M University. Since moving to Austin in 1976, he has

worked in product development on word processing

systems, laptop PCs, desktop PCs and RS/6000s as well

as his most recent work on high end xSeries servers.

Richard E. Harper
Mr. Harper has been a Research Staff Member at the IBM

T. J. Watson Research Center since 1998. Previously, he

was a Senior Technical Consultant at Stratus Computer in

Marlboro, MA from 1995 to 1998, and a Principle Member

of the Technical Staff at the Charles Stark Draper

Laboratory from 1987 to 1995. He received his PhD in

Computer Systems Engineering from the Massachusetts

Institute of Technology in 1987, his Masters of Science in

Aeronautical Engineering from Mississippi State University

in 1978, and his Bachelors of Science in Physics from

Mississippi State University in 1977. His interests are in the

design, analysis, and implementation of highly reliable

high-performance computing systems.
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Russell D. Hoover
Server Group

Mr. Hoover is a Senior Engineer working in the area of

Intel Chipset Development. His primary interest is in

SMP memory subsystem micro-architecture. Mr. Hoover

has received two Outstanding Technical Achievement

awards for his work on RIO I/O link development and

pSeries S80 chip development. He has 11 US patents

and 18 disclosures published. He joined IBM in 1982

after receiving a BSEE degree from the University of

Nebraska, Lincoln, NE.

Dan Hurlimann
^ xSeries Group

Mr. Hurlimann is a Senior Engineer in the System

Development group responsible for the IBM xSeries 360.

He joined IBM Corporation in 1984 after receiving a 

BS in Electrical Engineering from Georgia Institute of

Technology. He is the lead in implementing the

Enterprise X-Architecture and IBM XA-32 chipset into

the IBM xSeries 360. Previously, Mr. Hurlimann was 

the development manager for the IBM Netfinity 8500R 

8-way server. He has developed and managed various

RS/6000 systems in addition to adapter development.

He has a patent and numerous technical disclosures.

Joe Kirscht
Server Group

Mr. Kirscht is an Advisory Engineer working in the area

of Intel Chipset Development. Prior to working on the

Enterprise X-ArchitectureTM chipset, he worked on the

memory controller design and was also responsible for

the mainstore memory card design for the iSeries and

pSeries S80 servers. He was also responsible for the

mainstore card designs for two previous generations 

of the iSeries. Mr. Kirscht has one patent issued and

one filed and two invention disclosures published. He

joined IBM in 1989 after receiving a BSEE from the

University of Minnesota. He received an MSEE degree

from the University of Minnesota in 1996.

Randy S. Kolvick
Server Group

Mr. Kolvick is a Senior Engineer working in the xSeries

High End Server Development, and is the x440 lead

engineer. He was also the lead engineer on the x350

and 7000 M10 servers. His IBM career includes work on

network adapters, switches, routers, printers, security, and

banking products. His job roles included management,

chip/card/system development, tools, card/box testing,

and software. He has two patents issued. Mr. Kolvick

joined IBM in 1982 after receiving a BSEE degree with

honors from Georgia Tech in Atlanta, GA.

Jim Marcella
Server Group

Mr. Marcella is a Senior Engineer working in the area 

of Intel Chipset Development. His primary interest is in

SMP memory subsystem design. He joined IBM in 1980

after receiving his BSEE degree from the University of

Minnesota, Minneapolis, MN. Mr. Marcella has received

two Outstanding Technical Achievement awards for

work on memory controller designs for the iSeries

and pSeries servers. He has four issued US patents

and 28 disclosures published.

Timothy Moe
Server Group

Mr. Moe is a Staff Engineer working in the area of I/O

ASIC Development. He joined IBM after receiving his

Bachelor of Science in Electrical Engineering from the

University of Minnesota in 1992. As an ASIC designer,

he has worked on several I/O Hub and Bridge designs.

Prior to his ASIC design work he was involved with

system simulation and verification.

Kyle L. Nelson
Server Group

Dr. Nelson is a Staff Engineer working in the area of

System Verification. He joined IBM in 1988 and has

designed and tested processor microcode and worked

in the system integration and test area prior to working in

system verification. Currently he is responsible for apply-

ing formal methods to system verification. Dr. Nelson

received a BA in Physics from Bethel College in 1988,

a BS EE from Washington University in 1988, a MS EE 

in 1993 from the University of Minnesota, and a Ph.D. in

ECE from Carnegie Mellon University in 1999.
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Calvin Paynton
Server Group

Mr. Paynton is an Advisory Engineer working in the area

of I/O ASIC Development. He joined IBM after receiving

his Bachelor of Science in Electrical Engineering from

the University of Missouri-Rolla in 1988. He has been 

an I/O ASIC logic designer and verfication specialist for

several I/O hubs, bridges and memory controllers used

in AS/400, iSeries, RS/6000, pSeries, and now xSeries

with the Enterprise X-Architecture. He also served as

team leader for the initial release of the IOB.

Nam Pham
^ xSeries Group

Mr. Pham received a BSEE from Michigan Technological

University in 1988 and a MSEE from Syracuse University,

NY in 1991. He joined IBM Microelectronics in 1988 as 

a semiconductor reliability engineer. In 1993, he joined

the IBM Motorola Somerset Design Center in Austin 

as a PowerPCTM application engineer, and later joined

the packaging and interconnect development for

PowerPCTM microprocessor designs. Since 1999, he has

been doing the package and system electrical design

for the xSeries workstation development group.

Harry M. Schultze
^ xSeries Group

Mr. Schultze earned a BS degree in Electrical

Engineering in 1972 and a MS degree in Electrical and

Communications Engineering in 1973 from Clarkson

College of Technology. In September of 1973, he joined

IBM Kingston working in the communications network

hardware area. He later moved on to workstation devel-

opment, communications adapter development, and

graphics development. In December of 1998, Mr. Schultze

joined the xSeries group, managing the Enterprise 

X-ArchitectureTM Technology architecture area.

Robert Shearer
Server Group

Mr. Shearer is a Staff Engineer working in the area of

I/O ASIC Development. He joined IBM after receiving

his Bachelor of Science in Computer Engineering from

Iowa State University in 1997. He also received a Master

of Science in Computer Engineering from the University

of Minnesota in 2001. He has one Outstanding

Technical Achievement Award.

Dave Shedivy
Server Group

Mr. Shedivy is a Staff Engineer working in the area of

Intel Chipset Development. Prior to working on the

coherence logic of the Enterprise X-ArchitectureTM

chipset, he worked on logic design and simulation

model development of IO Subsystem chips for the

iSeries and pSeries. He has received one US patent.

He joined IBM in 1991 after receiving a BSEE degree

from the University of Wisconsin, Madison, WI.

Nusrat Sherali
^ xSeries Group

Mr. Sherali is an Advisory Engineer in the System

Development group responsible for the IBM xSeries

product RXE-100 Remote Expansion Enclosure. He

joined IBM Corporation in 1985 after receiving an 

MS in Mechanical Engineering from University of

Pennsylvania. He received a MBA degree from SUNY,

Binghamton in 1992. Mr. Sherali received many awards

for his work on printed circuit technology development.

In his prior position Mr. Sherali was a manager in the 

p-Series new product introduction development area.

He also held several technical program management

positions in ^ manufacturing and development.

Tommy Tam
Server Group

Dr. Tam is a Senior Engineer working in the area of

firmware development. He joined IBM in 1990 and has

been POST/BIOS team lead for more than 10 Intel-based

personal or server systems. His familar areas are multi-

processor, memory and I/O subsystems. Dr. Tam received

a B.S. in Mechanical Engineering from National Taiwan

University in 1982, a M.S in Mechanical Engineering

from Louisiana State University in 1985 and a Ph.D. in

Computer Science from the University of Texas at Dallas

in 1990.

Pete M. Thomsen
Server Group

Mr. Thomsen is an Advisory Engineer working in system

development for xSeries servers. He joined IBM in 1991

and has been designing symmetrical multi-processor

based systems since 1993. His area of concentration

has been in processor and memory subsystem design

and validation. He currently holds six patents with six

additional patents pending. He received his BS EE in

1991 from the University of Minnesota.
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Kenneth M. Valk
Server Group

Mr. Valk is an Advisory Engineer working in the area of

Intel Chipset Development. He joined IBM in 1992 and

prior to working on the coherence logic of the EXA

chipset was responsible for designing the link protocol

logic of the HSL I/O links of the iSeries and pSeries

servers, and the clustering logic in the iSeries servers.

Mr. Valk has received one Outstanding Technical

Achievement award and three issued patents. Five

more patent applications have been filed. He

received a BS CSE in 1991 and a ME CSE in 1992 from

Rensselaer Polytechnic Institute.

Cindy Walter 
Server Group

Ms. Walter is an Advisory Engineer, in the IBM Server

Group, at the Austin, Texas facility. She joined IBM in 1984

as a Manufacturing Test Engineer. She received an

Excellence Award from the Personal Systems Group for

her work in re-engineering the Assembly and Test

process. In the Server Group, she has been responsible

for managing the bring-up process of the first

components in the EXA Chipset. She currently holds

three patents, with four additional patent applications

filed. Ms. Walter received a BSEE degree from Purdue

University in 1983.

Scott Willenborg
Server Group

Mr. Willenborg is a Staff Engineer working in the area of

I/O ASIC Development. He joined IBM after receiving his

Bachelor of Science degree from Iowa State University

in 1993. His career started in System Simulation and

Verification moving to ASIC chip design in 1995. As an

ASIC design engineer, he has worked on several I/O

hubs and bridge chip designs, focusing primarily on bus

interface and interrupt handling logic. Mr. Willenborg

worked with the industry work group in development 

of the PCI-X local bus specification. He has two filed

patent applications, both related to his work on the 

PCI-X bus interface.

Lawrence Whitley
Server Group

Mr. Whitley is a Senior Engineer, in the IBM Server Group,

at the Rochester, Minnesota facility. He is currently

working on hardware performance projects. After

receiving a B.S. degree in electrical engineering from

the University of Missouri at Columbia in 1969, he

joined IBM and has worked on the design of processors,

I/O, and system control programming for several IBM

systems, including the System/32, System/34, and

System/36. More recently, as a part of the design

process, he has created performance models of

processor memory subsystems, I/O subsystems, and

I/O interconnection fabrics for the AS/400, RS/6000, and

Netfinity servers. Mr. Whitley has received Outstanding

Technical Contribution awards and holds three patents.

Curt Wollbrink
Server Group

Mr. Wollbrink is an Advisory Engineer working in the area

of I/O ASIC Development. He joined IBM after receiving

his Bachelor of Science in Electrical Engineering from

Iowa State University in 1992. He has been an I/O ASIC

logic designer for several I/O hubs and bridges used in

AS/400, iSeries, RS/6000, pSeries, and now xSeries with

the Enterprise X-Architecture. He also served as team

leader for the IOB. He has one filed patent application.

David E. Wood
Server Group

Mr. Wood is an Advisory Engineer working in the area of

Verification. He joined IBM in 1992 and has been a

member of the verification team his entire career. He is

now a verification team leader heading the verification

efforts on various iSeries, pSeries, xSeries, and zSeries

chips. He received a BS EE in 1992 from the University

of Minnesota.
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The following terms are trademarks of the IBM

Corporation in the United States and/or other countries:

Active memory

AS/400

IBM

IBM (logo)

IBM Enterprise X-Architecture

IBM XA-32

IBM XA-64

Memory ProteXion

RS/6000

S/390

ServerGuide

XpandOnDemand Scalability

The following terms are trademarks of other companies:

Intel Intel Corporation

Intel Itanium Intel Corporation

Intel Xeon Intel Corporation

Java Sun Microsystems, Inc.

Linux Linus Torvalds

Linux RedHat RedHat, Inc.

Microsoft Windows Microsoft Corporation

Novell Novell, Inc.

Novell Netware Novell, Inc.

OpenLinux Caldera International, Inc.

SuSE Linux SuSE, Inc.

Unix X/Open Consortiium

Unixware Santa Cruz Operations (SCO)

WindowsNT Microsoft Corporation

WindowsNT Enterprise Microsoft Corporation

Windows 2000 AS&S Microsoft Corporation

Trademarks



© IBM Corp. 2002

International Business Machines Corporation

11400 Burnet Road

Austin, Texas 78758

Printed in the

United States of America

All Rights Reserved

For additional quantities contact 

pkeeling@ca.ibm.com

59P6495

Summittechnology Book  6/17/02  3:50 PM  Page 1


