

TurboMON

Sam Coupé Monitor and Toolkit

256K or 512K

©1994 Simon Owen

Contents
INTRODUCTION...1

LOADING TURBOMON... 1

SCREEN LAYOUT...2

STATUS LINE ... 2
F REGISTER BITS.. 2
MAIN VIEWING SECTION .. 2
OTHER OPTIONS ... 3
LEAVING TURBOMON.. 3
SYSTEM STATE... 3
EXTRA SYSTEM STATUS INFORMATION: S... 3
EDITING REGISTERS.. 3
PUSH VALUE ONTO STACK: K... 4

EXECUTING CODE..4

EXECUTE 1 INSTRUCTION: F7... 4
EXECUTE 10 INSTRUCTIONS: F8... 4
EXECUTE 100 INSTRUCTIONS: F9... 4
EXECUTE (UNCONDITIONALLY): CTRL-F7.. 4
STOP EXECUTING: CTRL-F8... 4
CONDITIONAL EXECUTE: CTRL-F9... 4

CONDITIONAL EXECUTION...4

EXECUTE UNTIL PC = X: U... 5
EXECUTE UNTIL PC = X, WITH TRACE : CTRL-T .. 5
BOUNDARY EXECUTE, WITH TRACE : B.. 5
EXECUTE A GIVEN NUMBER OF INSTRUCTIONS: E.. 5
EXECUTE UNTIL A GIVEN (BASE) PORT IS WRITTEN TO: W... 5
EXECUTE UNTIL A GIVEN (BASE) PORT IS READ FROM: R... 5
EXECUTE UNTIL LOCATION VALUE CHANGES: X... 5
EXECUTE 1 INSTRUCTION COMPLETELY: F4 .. 5
EXECUTE UNTIL PC = TOP OF STACK: F5 ... 5
EXECUTE UNTIL THE CURRENT LOCATION: F6.. 6

CHANGING RAM/ROM PAGING..6

TOGGLE ROM 0 ON/OFF: F0... 6
TOGGLE ROM 1 ON/OFF: F1... 6
TOGGLE RAM WRITE-PROTECTION OF SECTION A: F2... 6
CHANGE LMPR PAGE: L... 6
CHANGE HMPR PAGE: H... 6
CHANGE VMPR PAGE: V.. 6
CHANGE SCREEN MODE: M.. 6

MONITOR SCREEN..6

TOGGLE BETWEEN MONITOR SCREEN AND PANEL SCREEN: F3... 6
TOGGLE MONITOR SCREEN ON/OFF: CTRL-F3.. 7
SET PALETTE COLOUR: P ... 7
RESET PALETTE: CTRL-P ... 7

INPUT / OUTPUT PORTS..7

READ VALUE FROM A PORT : CTRL-R... 7
WRITE VALUE TO A PORT : CTRL-W .. 7
SAM I/O PORT SUPPORT .. 7

Read Ports: ...7
Write Ports:...8

INTERRUPTS..8

CHANGING INTERRUPT DELAY/FREQUENCY: I ... 8
SET HOW MANY LINE INTERRUPTS OCCUR PER FRAME INTERRUPT: CTRL-L... 8
TOGGLE INTERRUPTS EI/DI: CTRL-I ... 8
GENERATE MASKABLE INTERRUPT: CTRL-M .. 8
GENERATE NON-MASKABLE INTERRUPT: CTRL-N.. 9
CHANGING INTERRUPT MODE: CTRL-F0, CTRL-F1, CTRL-F2.. 9

PREPARING TO RUN PROGRAMS..9

SET UP SYSTEM AS BASIC: CTRL-Z.. 9
MEMORY PAGING SET WHEN RUNNING FROM BASIC... 10
REGISTERS SET WHEN RUNNING CODE FROM BASIC... 10
RUNNING THE SAM OS.. 10
RUNNING SPECTRUM SOFTWARE ... 11

Spectrum Software Hints:...11

OTHER OPTIONS ...11

TEXT EDITING: T.. 11
NUMBER EDITING: N.. 12
DISASSEMBLER: D... 12
BLOCK FILL: CTRL-F ... 13
BLOCK COPY: C... 13
GRAPHS OF MEMORY AREAS: G.. 13
MEMORY SEARCH: F.. 14
EVALUATE EXPRESSION: CTRL-E.. 14

ADDITIONAL INFORMATION:...15

INPUT OF NUMBERS... 15
EXPRESSION FORMAT .. 15

Syntax Errors or Division by zero ..15
Useful expressions...15

DEBUGGING TIPS... 15
READING THE KEYBOARD .. 16

Reading keys using IN A,(n): ...17
SAM MEMORY SYSTEM... 17

The PAGING system...17
The ROMs..18
Page & Offset conversions...18

EXECUTION OPTIMISATIONS ...18

LIMITATIONS..19

AND FINALLY THE WEATHER... ..20

KEYBOARD SUMMARY..21

THE Z80 INSTRUCTION SET...23

TurboMON - page 1

Introduction

If you really hate debugging machine code programs and spend hours (or even days!) searching for the reason
why things don't work, TurboMON is here to make your life easier - maybe even easy!

TurboMON is 100% self-contained machine code that handles memory paging, screens, palette, border,
interrupts and the ENTIRE instruction set to allow virtually any program to be debugged using it (from simple
programs to full Spectrum/Sam games/utilities and the Sam OS itself). A variety of breakpoint and execution
options leave you in full control of your program at all times so you can move through your code at your own
pace. TurboMON (as the name suggests) has been optimised for unbeatable performance so you can set your
program running and use it as you would normally, just in slow motion. For added safety, TurboMON is write-
protected from within itself so it's impossible for your code to crash it!

TurboMON is intended for people with at least a basic knowledge of Z80 machine code, but can be used as a
valuable learning tool for people of all abilities. No programmer should be without the Sam Technical Manual,
it contains almost everything you'll want/need to know about the Sam... including ports, modes and some ROM
routines. Programming the Z80 (Rodnay Zaks) is also recommended for a better understanding of the Z80
itself, and contains a tremendous amount of detail on the instruction set as well as other features such as
interrupts. Together they will help you make the most of this wonderful machine.

Before getting stuck into the program itself, you are advised to read (or just skim) through the manual to give
you an idea about what the manual covers - don't worry if all of it doesn't make sense first time round. I have
included as much detail as I think will be of use to advanced users; beginners will begin to understand more as
they learn more.

Loading TurboMON

TurboMON needs a 48K (49152 bytes, 3 RAM pages) area to run in and must be loaded at the start of an
odd page number - a limitation that arises from the fact that the hardware insists mode 3&4 screens (as used
for the display panel screen) must start on an EVEN page.

On a 256K Sam this leaves the following addresses:

32768 (page 1), 65536 (page 3), 98304 (page 5), 131072 (page 7) or 163840 (page 9).

Page 11 cannot be used as it would overwrite the DOS (and MasterBASIC if you have it).
Pages 13 and 15 are unusable as there is no room before the screen and the end of memory.

On a 512K Sam the following locations may be used in addition to the addresses above:

196608 (page 11), 229376 (page 13), 262144 (page 15), 294912 (page 17), 327680 (page 19), 360448
(page 21), 393216 (page 23) or 425984 (page 25).

Page 27 cannot be used as it would overwrite the DOS (and MasterBASIC if you have it).
Pages 29 and 31 are unusable as there is no room before the screen and the end of memory.

You will obviously want to load TurboMON where it won't overwrite your program! If you are using the 512K
SC_ASSEMBLER, TurboMON can be loaded at 327680. This makes source banks 8 and 9 unusable
(attempting to use them will corrupt TurboMON and it will need reloading), but the special markers used by the
assembler are not disturbed to prevent the assembler from crashing. The last half of source bank 9 (16K
starting at address 376832 (page 22) is unused and may be used for your own programs/data if you wish.

TurboMON - page 2

Screen Layout

Status Line

The top line of the display is the status line and is always shown, regardless of where you are in the program:

TurboMON 1.0 ROM0 ROM1 WPROT L:31 H:01 V:30 M:4 CAPS ON

Some of the above text may differ, depending on what options are set:

ROM0 Shown if ROM 0 is paged in at section A (0 to 16383).
ROM1 Shown if ROM 1 is paged in at section D (49152 to 65535).
WPROT Shown if the RAM in section A is write-protected.

L:xx LMPR: Current RAM paged into block AB (0 to 32767).
H:xx HMPR: Current RAM paged into block CD (32768 to 65535).
V:xx VMPR: Page(s) holding monitor screen.
M:x Screen mode of monitor screen.

CAPS ON Current CAPS lock status. Shift gives upper case with CAPS off and lower case when on.

The right hand side of the screen always holds the register panel. Values of all registers are shown, along with
the top 8 values on the stack, indirect double register values and the flags in letters.

F register bits

The flags are shown as 8 characters, representing the 8 bits in F. Lower case letters are used if the bit is reset
and upper case for set bits. Bits 3 and 5 are unused and the values of these bits should not be relied upon.

Bit 7 (Sign) S for negative s for positive
Bit 6 (Zero) Z for zero z for not zero
Bit 5 (unused) + for set - for reset
Bit 4 (Half Carry) H for half carry h for no half carry
Bit 3 (unused) + for set - for reset
Bit 2 (Parity/Overflow) E for parity even/ overflow o for parity odd/no overflow
Bit 1 (Subtract) N after subtraction n after addition
Bit 0 (Carry) C for carry c for no carry

To the right of the interrupt status (EI or DI), extra characters are used to show extra interrupt information
(see the interrupts section for more information). A minus sign '-' is used to show if ALL interrupts have been
disabled, a plus sign '+' if interrupts only occur at HALTs and a capital L to show if line interrupts can occur.
This is also shown on the Status page.

Main Viewing Section

The main part of the screen is used for different things by different options. During the monitor mode this holds
the disassembly around the current Program Counter, with a bar highlighting the next instruction to be
executed. If the instruction refers to (IX+d) or (IY+d), the contents of that location are shown in square
brackets after the instruction (if there is room on the line) to allow you to see the value before it is
used/changed.

TurboMON - page 3

Other options

There are other options available to you when you are in the TurboMON's main mode, to allow you to view
and edit memory. The bottom line of the display shows some of them:

ctrl-Quit Status Txt Num Dis Find Graph Copy Eval Mode L/H/Vmpr

Options are selected by pressing the uppercase letter in the required option. Press Esc to return from any of
the options.

Leaving TurboMON

CTRL-Q: Quit TurboMON
Leave TurboMON and return to BASIC. On re-entering the system state will be exactly as you left it.

CTRL-Esc: NMI Exit
If you think you've corrupted the BASIC stack or some of the system variables from within TurboMON, you
can use this exit to try to return to BASIC via BASIC's NMI routine, hopefully giving the usual 15 BREAK
into program, 0:1 message. If nothing happens (he's dead Jim!) you'll probably have to reset and start again.
It is advisable to use this option after using TurboMON to monitor the Sam OS, as you will have altered the
BASIC stack.

System State

As well as the register panel showing the current system state, an extra page of information can be displayed:

Extra system status information: S

This option shows information not shown in the register panel and includes information that is normally stored
in write-only registers but is useful to see. The following information is shown: current palette colours, interrupt
handler, line interrupt port contents, full port values for LMPR/HMPR/VMPR/BORDER and current execute
condition (that will be used when CTRL-F9 is used to execute). Except for the execute options, most of the
main menu options are available from the status page.

Editing Registers

The registers can be edited by pressing EDIT along with the register to change. e.g. EDIT-B to edit the
contents of B.

Use EDIT-X for IX, EDIT-Y for IY, EDIT-P for PC and EDIT-S for SP.

16 bit numbers can be put in HL, DE and BC by putting the number in one of the 8 bit halves. e.g. putting
60000 in H or L will set HL to 60000. However, putting 30 in HL will require L to be set to 30 and H to 0.
Negative numbers are treated as 16 bit (2's complement) numbers so be careful putting negative numbers in
single registers as you may change BOTH parts of double registers. Use, for example: -7&255 to mask the
result to a single byte.

The following keys are used to switch to the alternate sets (remember to switch back afterwards if necessary):

CTRL-X: Perform EXX
CTRL-A : Perform EX AF,AF'
CTRL-D : Perform EX DE,HL

TurboMON - page 4

Quick changes to PC and SP:

Cursor_Right: Increment PC
Cursor_Left: Decrement PC

Cursor_Down: Instruction down
Cursor_Up: Instruction up

CTRL-Cursor_Up: SP = SP - 2
CTRL-Cursor_Down: SP = SP + 2

Push value onto stack: K

Push a 16 bit number onto the stack. Popping values off the stack is simply done by using CTRL-
Cursor_Down to advance it by two (perhaps copying it into a register pair first - see number input for details).
Pushing PC onto the stack and then giving PC a new value has the effect of CALLing a given address from
the current location.

Executing Code
Code that self-modifies instructions currently shown on the screen will not appear to have worked until the
instruction is highlighted (this is also the case when code pages itself out). You can force the screen to be
updated using CTRL-INV.

Execute 1 instruction: F7

Execute 10 instructions: F8

Execute 100 instructions: F9

Execute (unconditionally): CTRL-F7

Execute as fast as possible until CTRL-F8 is pressed. This is faster than the conditional executes since no
checks are made on whether to stop. The screen is automatically switched to the monitor screen before
execution.

Stop Executing: CTRL-F8

Stop executing and return to update panel with new register values. This facility may not respond immediately
if pressed when code is executing in ROM 0, as interrupts are disabled to fetch instructions from there. This is
particularly noticeable when using the command-history in MasterBASIC.

Conditional Execute: CTRL-F9

Execute until the current execute condition is met (see the section below for available conditions). If required,
use F3 to switch to the monitor screen before executing.

Conditional Execution
The following options allow execution to stop when a certain condition is met (the current condition is shown
on the status page). CTRL-F9 can be used to repeat with the same condition. At least one instruction is
executed before the condition is tested to allow you to repeat with the same condition to find the next case.
You may want to use F3 to switch to the monitor screen before you start executing - this can be done during
the number input, just before you press RETURN.

TurboMON - page 5

TurboMON has three automatic breakpoint conditions that are always obeyed to stop you doing silly things:
1) Stop if HALT is met with interrupts disabled (useful for setting up multiple breakpoints).
2) Stop if Program Counter reaches address zero in ROM 0 (to stop system resets).
3) Stop if LDIR about to execute with BC (block length) holding zero.

Other options available are:

Execute until PC = x: U

Execute until the Program Counter reaches a given address. The paging status is irrelevant since only the
address has to match.

Execute until PC = x, with trace: CTRL-T

Same as U option except when the program reaches the address this option will tell you the address of
instruction that diverted execution to there (usually a JP, JR, CALL or RET). Press any key to return to
monitor mode.

Boundary execute, with trace: B

Execute until the Program Counter is outside a given boundary. When execution stops you are told the address
of the instruction that caused control to be outside the boundary. Input the start and end addresses of the
boundary in the range [0 to 65535] - possibly the start and end address of your code.

Execute a given number of instructions: E

Input how many instructions to execute [1 to 65535]. Use CTRL-F9 to repeat same number of instructions.

Execute until a given (base) port is written to: W

Enter a value in the range [0 to 255], e.g. 250 for LMPR. Since the base port is used, trapping 248 will stop
when any changes are made to the palette, not just palette position 0. Execution terminates before the OUT
instruction is executed so you can see what the previous value of the port held (if applicable).

Execute until a given (base) port is read from: R

Details are as above option, just for reading instead.

Execute until location value changes: X

Execute until the contents of a given location change in value. This option notes which byte in Sam memory is
currently paged in at the given address (ignoring ROMs) so that the same location is watched even if the
paging status is altered. Unlike the other conditions, this option terminates after the location has changed and
the Program Counter points to the instruction after the one that changed the location. You are told the previous
and new value of the location.

Execute 1 instruction completely: F4

This option executes until the Program Counter reaches the instruction after the current one. This is
particularly useful if the current instruction is a CALL - the effect is to execute the subroutine at speed and
stop when the subroutine has completed and RETurns to the instruction after the one that invoked it. Most
instructions will behave as with F7 but beware of instructions that don't return control to after the current
instruction (like unconditional JP, JR and RET instructions), and instructions that pop the return address to
fetch data from it (some RST instructions expect data after them). This option is also very useful on the
conditional jump at the end of a loop, to execute until the loop finishes.

Execute until PC = Top Of Stack: F5

Execute until the Program Counter matches the value currently on the top of the stack. Useful if you have
started single-stepping a subroutine and you want to execute until it finishes. Be careful not to use this after
values have been pushed onto the stack since the start of the subroutine, as one of these will be used instead!

TurboMON - page 6

Execute until the current location: F6

Execute until the Program Counter returns to the current location. Useful for inside program loops - will
execute one more loop and stop at the same position.

Changing RAM/ROM paging

Toggle ROM 0 ON/OFF: F0

Toggle ROM 1 ON/OFF: F1

Toggle RAM Write-Protection of Section A: F2

When active, the above options appear in the status line as ROM0, ROM1 and WPROT respectively.

Change LMPR page: L

Selects the RAM pages to be used in sections A and B (0 to 32767).

Change HMPR page: H

Selects the RAM pages to be used in sections C and D (32768 to 65535).

Change VMPR page: V

Selects the page(s) holding the display. Remember that modes 3 and 4 require the page number to be even;
odd page numbers are rounded down by the hardware.

Note: The above 3 options only affect the page ONLY - other bits in the ports are unaffected. If you want to
change the whole port used CTRL-W to send a byte to the port.

Change Screen Mode: M

Enter new screen mode in range [1 to 4]. This option only affects bits 5 and 6 of the VMPR, and not the page
number.

Page values for LMPR, HMPR and VMPR should be in the range [0 to 15] on a 256K Sam and [0 to 31] on a
512K Sam. The current page values and screen mode are shown in the status line.

Monitor Screen
TurboMON has its own private screen for the panel to leave the normal screen free to be used by the program
being run. This screen (the monitor screen) has its own palette, border colour and screen mode. Use V to
change the page holding the screen and M to change screen mode. Unlike BASIC, when switching to mode 3
the colour of palette position 3 isn't changed to the pen colour which will make it appear magenta in colour.
The colour of the panel screen can be changed toggled between black on white and white on black using INV.

Toggle between monitor screen and panel screen: F3

This works anytime except when executing. All TurboMON options are still available; you just can't see what's
happening!

TurboMON - page 7

Toggle Monitor Screen ON/OFF: CTRL-F3

Bit 7 of the border port is set to disable the screen when in modes 3 and 4 (as well as removing RAM
contention to speed the processor up to close to 6 MHz, which may be useful for testing processor intensive
execution of programs).

Set palette colour: P

Input the position to change and then the colour for that position (the current palette is shown on the status
page). Position should be in the range [0 to 15] and colour in the range [0 to 127].

Reset Palette: CTRL-P

This resets the monitor screen palette to the default colours used when Sam is first switched on.

Input / Output Ports
As well as your code sending values to the ports, there are two options to allow you to read from and write to
them from the panel screen.

Read value from a port: CTRL-R

Write value to a port: CTRL-W

Both options expect a port value in the range [0 to 65535]. The value to send to a port is rounded to 8 bits [0 to
255]. The value read from the port is shown in the current base and in binary.

The following information shows how TurboMON deals with the Sam ports. With the exception of the
SAMbus, I'm unaware of any hardware that changes memory paging - if any are built they will have to be
locked out to prevent them crashing TurboMON if it pages them in.

Sam I/O port support

Read Ports:
0-223 MISC/UNUSED Fully supported, read as normal.
31 KEMPSTON Spectrum joystick port. Read as Sam joystick, useful for Spectrum games.
224-231 DISC 1 Fully supported.
232-239 PRINTL Fully supported (clock uses 239).
240-247 DISC 2 Fully supported.
248 PENs Fully supported except bit 1 (TXFMST) of LPEN always read as 0.
249 STATUS Fully supported.
250 LMPR Fully supported.
251 HMPR Fully supported except bit 7 (MCNTRL) always read as 0.
252 VMPR Fully supported except bit 7 (RXMIDI) always read as 0.
253 MIDI IN Not supported, always read as 0.
254 KEYBOARD Fully supported.
255 ATTRIBUTES Fully supported (read as 0 if viewing panel screen).

TurboMON - page 8

Write Ports:
0-223 UNUSED(?) Fully supported, written as normal.
224-231 DISC 1 Fully supported.
232-239 PRINTL Fully supported (clock uses 239).
240-247 DISC 2 Fully supported.
248 CLUT Fully supported.
249 LINE INT Supported except interrupt doesn't occur at given line.
250 LMPR Fully supported.
251 HMPR Fully supported except bit 7 (MCNTRL) always sent as 0.
252 VMPR Fully supported except bit 7 (TXMIDI) always sent as 0.
253 MIDI OUT Not supported, nothing sent to port.
254 BORDER Fully supported except bit 6 (THROM) always sent as 0.
255 SOUND Fully supported.

Interrupts
TurboMON can generate frame and line interrupts but ignores the MIDI and mouse interrupts. The interrupt
routine can use the status port (249) to determine which has occurred - interrupts are flagged in this port until
the next EI (normally at the end of the interrupt handler), instead of lasting about 20 ms.

Single-stepping HALTs does not generate an interrupt and will just skip the HALT (unless interrupts are
disabled).

Changing interrupt delay/frequency: I

The number you enter is used as the number of real 1/50ths of a second between interrupts, it should be in the
range [1 to 254].

Entering -1 will prevent all interrupts from occurring (even if they are enabled) and entering zero will mean
interrupts are only generated when a HALT is encountered (which is perfect for key routines that use HALT
to wait for interrupts to read the keyboard).

If you cannot use the zero option you will need to decide how frequent you want interrupts generating.
Generating interrupts too frequently can waste time and slow down the rest of your program. A value of 50
will be enough for most programs, but key inputs will require a smaller value, say 5, to speed up key responses
(you can change it back once the inputting is done). For values between 1 and 254 when HALT instructions
are reached the processor will wait for the next interrupt to be generated before the processor is freed; if the
delay is too large time will be wasted waiting for the interrupt. Remember, give the program a chance to react
in key routines, and when the same letter is required twice in succession, you may need to release the key for
a second or two before pressing it again (this seems to be the case for the Spectrum ROM).

Set how many line interrupts occur per frame interrupt: CTRL-L

Enter a value in the range [0 to 255]. Since the monitor cannot easily tell when/whether line interrupts should
occur, a set number of line interrupts occur for every frame interrupt (as long as the line interrupt port holds a
line number less than 192).

Toggle interrupts EI/DI: CTRL-I

Generate maskable interrupt: CTRL-M

Generate an interrupt, frame or line, depending on which is due. Only works if interrupts are enabled.

TurboMON - page 9

Generate non-maskable interrupt: CTRL-N

Only works when not executing. DO NOT use SAM’s own NMI button to generate NMI!

Changing interrupt mode: CTRL-F0, CTRL-F1, CTRL-F2

Selects interrupt mode 0, 1 and 2, respectively.

Note: Programs that use the stack to move data when interrupts are enabled (naughty!) should be run with a
delay of 0 (interrupt at HALT). If interrupts are generated at the wrong time the data the stack points to will
be corrupted and may cause a crash. Starquake and Wizards Lair print their sprites using a stack method and
have this problem. If you have Starquake try typing 'PALETTE 0,0 LINE 0' before running it with the normal
Sam Spectrum Emulator. This will generate a line interrupt on the top line of the display, when the game is
printing its sprites, corrupting the print data addresses and will cause the game to crash! Some Spectrum
Emulators on other machines are not aware of this.

Preparing to run programs
Before you can set your program running, the system must be set up as though BASIC was calling it. Most of
this can be done using:

Set up system as BASIC: CTRL-Z

Prepare the system to run a piece of code as though it was called from BASIC. This sets up the following:

• Sets LMPR page to 31 (page in system variables), HMPR page to 1, VMPR to the screen used by BASIC.
• Switches ROM 0 on, ROM 1 off and the section A write-protection off.
• Selects interrupt mode 1, sets interrupt vector register (I) to 0 and enables interrupts.
• Selects interrupts every half a second (25), without any line interrupts.
• Sets LINE_INT port to 192 (disable line interrupts).
• Set all registers to hold zero except PC to 32768 and SP to 17500.

This leaves you to set up the following:

The Stack Pointer uses an address in the system heap area which is normally unused. BEWARE! Some
commercial programs (including SC_ASSEMBLER) use this area so take care, and check the area is safe
before using it. It is safest for your program to save the stack pointer and use its own private stack whilst
running, and then restoring the BASIC stack. i.e.:

 LD (basic_stack),SP ; save the BASIC stack pointer
 LD SP,basic_stack ; set up the new stack at the end of 'new_stack'
 ...
 your code ; your code (or a call to it) goes here
 ...
save_stack: LD SP,(basic_stack) ; restore the BASIC stack pointer
 RET ; return to BASIC

new_stack: DS 50 ; 50 bytes of stack space should be plenty!
basic_stack: DW 0 ; store for BASIC stack

TurboMON - page 10

Memory paging set when running from BASIC

If your code is below 65536 the system doesn't have to change the paging to CALL your program and the
program is already at the address you specified (set PC to this). Code above 65535 is always paged into
Section C (32768 to 49151) and the paging is set up so this is true. See the Page & Offset Conversion section
for the page number to set HMPR to. Set PC to the offset into the page + 32768. Most people prefer to
assemble code to run at 32768 which keeps things simple!

Registers set when running code from BASIC

The BASIC system normally enters your code with HL and A holding certain values. If your code uses either
of the values you will need to set up the registers holding the correct values before running the code.

HL holds the address of the routine being called (useful for self-relocating code). Set this to the same value
used for the Program Counter (32768 + offset into page, if code is above 65536).

The BASIC CALL statement allows parameters to be passed to machine code programs. On entering the
code the A register normally holds the number of parameters following the CALL statement. If your code uses
parameters then CALL TurboMON with the parameters you want to use and set A to hold the number of
parameters.
e.g. CALL 32768,x,y,z,a$ then set A holding 4.

Note: Since your program has not been CALLed from anywhere, there isn't a return address on the stack to
allow it to return to BASIC. When your program tries to return to BASIC it could go anywhere, corrupt
programs in memory and even try to reset (albeit in slow motion!). There are a few ways to prevent this:

1) Use DI followed by HALT instead of a final RET in your program. This will force the monitor to stop at the
HALT statement but will cause the program to freeze if called from BASIC.

2) If running a program with a quit option, avoid using the option!!

3) Execute until PC reaches the RET of your program that would return to BASIC. This is fiddly since
reassembling may change the address.

5) (I tend to use this) PUSH zero onto the stack before executing. As long as you program (correctly) pages in
ROM 0 before returning, TurboMON will try to execute the reset code at zero. This will trigger the automatic
breakpoint at that address and will return to the panel screen.

Running the Sam OS

If you are interested, you can run the normal Sam system from within TurboMON! It is possible to run BASIC
programs but they are very slow. To exit to BASIC: Press CTRL-Z to prepare the TurboMON, set PC to 102
(NMI handler), interrupt delay to 10 (to give speed up the key response a little) and execute with CTRL-F7!
Hold the keys down until you see the response. If you directory discs, don't worry about the sector error -
TurboMON runs too slowly to read properly and the DOS assumes it's an error. As you have been monitoring
Sam BASIC you may have corrupted the stack so you can't return from TurboMON, so use CTRL-Esc
instead of CTRL-Q.

As TurboMON is write-protected, you can also run the reset code without crashing it! However the ROM
tests the RAM for faulty memory and only uses working pages ; in doing this test it thinks that TurboMON
memory is faulty and only uses the RAM below it. Unfortunately, the ROM also assumes this starts at an even
page, as with not having a memory expansion, and cannot cope when it fails at the odd page that TurboMON
was loaded. Just a comment in case you think TurboMON can't cope and causes the problem!

TurboMON - page 11

Running Spectrum Software

Spectrum software has played a large part in testing TurboMON and you can monitor snapshots to see how
your favourite games work or to hack them for infinite lives etc. TurboMON even runs some games that fail
with PC Spectrum Emulators! The snapshots must be in .SNA format (used by some PC Emulators) or can be
converted from SNP 48K by a program on the main disc (called "SNP_2_SNA") - although it currently
requires MasterDOS.

Ideally you should have a copy of the Spectrum ROM, but the skeleton ROM used by the Sam Spectrum
emulator should be enough for most games. If you are using the skeleton ROM and have problems running the
snapshots, don't blame TurboMON since it is more likely to be the ROM!

Load the (Spectrum) ROM at 65536 (page 3) using: LOAD "SpecROM"CODE 65536
Load the .SNA file using: LOAD "GAME.SNA"CODE 81893
Load TurboMON at 131072 (page 7) and enter it.

Loading the snapshot overwrites the last 27 bytes of the ROM image with the register values, but since this
area only contains the last few letters of the character set (including the copyright symbol) it shouldn't matter.

Press EDIT-Z to set up the system for the snapshot and load the registers from the snapshot image. The
register panel will now hold the snapshot register values. Pressing F3 should view the snapshot screen.

You are now free to execute it, hack or whatever... enjoy!

Spectrum Software Hints:
With the exception of 128K sound, the Spectrum produces sound by processor intensive toggling of the BEEP
bit in the border port (254/#FE), slowing execution down considerably. You hear the slow loops as fast clicking
sound. Eliminating the large delay loops between toggles will speed things up. Use the W option to watch
writes to port 254 and then use your own judgement on which instructions to delete (probably a JR NZ,d or
DJNZ e instruction but sound routines differ so this is only a guide). EDIT-DELETE will delete the
instruction highlighted in monitor mode.

You may need to hold keys down for a couple of seconds for the program to register them, maybe increasing
the interrupt frequency first. The hardest thing about running snapshots is deciding which interrupt option to
use!

If the screen remains blank for a while in games, it may be drawing the game screen under black on black
attributes or building screens/levels in memory so give the program a chance! It is fun to fill the attributes with
a value that enables you to watch it as it draws - try filling from 22528, length 768, with 71 with some games.

Other Options

Text Editing: T

Enter the address of the text to be edited or just press return for the Program Counter address.

Text is displayed in rows of 32 characters ; out of range characters are displayed as a dot. The bottom line of
the screen shows more information about the location of the cursor including the PEEK of the location in the
current base, binary, and its ASCII representation (or the BASIC keyword it represents, not including ones
added by MasterDOS etc.).

TurboMON - page 12

Keys:

A (command mode only): Input new address.
D (command mode only): Switch to disassembler at cursor's location.
N (command mode only): Switch to number mode at cursor's location.

Cursor Keys : Move cursor about text area of screen.
SHIFT-Cursor_UP Page up.
SHIFT-Cursor_DOWN Page down.
RETURN Toggle command/overtype mode.

Text mode starts in command mode allowing most of the normal options to be accessed.
Pressing RETURN you will enter overtype mode. In this mode any text typed will be poked into memory at
the cursor location. When you have finished your editing press RETURN to return to command mode (this
will stop you corrupting code by accidentally typing text over it). The current mode is shown on the bottom line
of the screen.

Typing text over the ROMs, write-protected RAM or TurboMON's private memory will have no effect and
the cursor will be advanced without making any changes. You can use F2 to remove the write-protection of
RAM section A.

Number Editing: N

Enter the address of the numbers to edit or press return for the Program Counter address.

8 numbers (in the current base) are displayed per row and the bottom line contains information about the
location of the cursor (as with the text option) ; the BASIC keyword is not shown to leave space for number
inputs.

Keys:

A: Input new address.
D: Switch to disassembler at cursor's location.
T: Switch to text mode at cursor's location.
Cursor Keys : Move cursor about numbers area of screen.
SHIFT-Cursor_UP Page up.
SHIFT-Cursor_DOWN Page down.
RETURN Input number(s) at cursor location / finish inputting numbers.

Pressing RETURN gives an input prompt. Numbers entered will be poked into the location of the cursor and
the cursor will be advanced. 16 bit numbers can also be input and will be poked into 2 locations. An empty
input or pressing Esc will return to the number mode.

As with the text option, write-protected areas cannot be changed.

Disassembler: D

Enter address of code to disassemble or press return for the Program Counter address.

Almost the same as normal monitor disassembly except you can disassemble other areas of memory without
changing the Program Counter value - it is the easy way to browse through code.

Keys:

TurboMON - page 13

A: Input new address.
N: Switch to number mode at cursor's location.
T: Switch to text mode at cursor's location.
SPACE: Save current address.
SHIFT-SPACE: Restore saved address.
Cursor_UP: Up 1 instruction (approximate, but usually right.).
Cursor_DOWN: Down 1 instruction.
SHIFT-Cursor_UP: Page up (approx.).
SHIFT-Cursor_DOWN: Page down.

Pressing SPACE will save the current address so you can look at another address (possibly following CALL
addresses) without having to remember the original address. Press SHIFT-SPACE to return to the saved
address.

Block Fill: CTRL-F

This option allows you to fill areas of (paged in) memory with a given byte. It is useful for clearing the screen
or memory areas and can be used to change the screen attributes of Spectrum games so you can see game
screens being drawn.

Enter the start address of the block to fill, the length of the block and the byte to fill with. The option is aborted
if any of the inputs are blank or the block length is input as zero.

Useful block lengths are:
24576 (24K) Mode 3 and 4 screen length.
6144 (6K) Modes 1 (Spectrum mode) and 2 data length.
768 (0.75K) Mode 1 attributes length.

If running Spectrum software as described earlier, the screen data starts at 16384 and the attributes start at
22528.

Block Copy: C

This option allows you to copy areas of monitor memory to another location in monitor memory. By changing
the LMPR and HMPR values you can copy 32K blocks from anywhere to anywhere in Sam memory - larger
blocks will have to be done in sections. The copy is intelligent to allow the source and target areas to overlap,
but copying large areas between 32K sections when Block AB and Block CD hold a common page will cause
problems! i.e. LMPR=1 and HMPR=2 will mean page 2 exists at 16384 as well as 32768 ... TurboMON
assumes the 64K address range holds unique locations.

Enter the source address, the target address and the length of block to copy. The option is aborted if any of the
inputs are blank or the block length is input as zero.

Graphs of memory areas: G

This option allows you to see where programs are and how big they are ; it is useful to see which areas of
memory are being used and how much space you have left.

Enter the page number to display in the range [0 to 15] for a 256K Sam or [0 to 31] for a 512K Sam.

When viewing a single page, each vertical line represents 47 bytes in that page. The length of the line depends
how many of the 47 bytes are not zero. The striped scale below the graph allows you to guess how big

TurboMON - page 14

programs or free areas are, the amount of memory each scale unit represents is shown on the bottom line of
the screen along with the number of bytes that were zero.

There are 3 other ranges you can show as a graph. An empty input will give a graph covering the 64K address
range currently paged in (including ROMs if paged in). Entering 256 will show pages [0 to 15] and entering
512 will show [0 to 31]. Any other values will be rounded to 5 bits (0 to 31) and that page will be shown.
Pages 16 to 31 on a 256K Sam are meaningless.

As a general rule, you can usually spot the difference between machine code and data just by looking at the
graph! Machine code contains few zeros and most of the peaks will be close to the top of the screen.
Graphical data (except compressed data) normally contains many zeros and most peaks will only reach about
half way up. All graphs show enough detail to be able to spot a single byte in the middle of a clear area!

Memory Search: F

Search a given page or range for sets of numbers (or characters by using " - see Input of Numbers section
for details).
Input the page number to search or, 256 to search pages [0 to 15], 512 to search pages [0 to 31] or give an
empty input to search the 64K address range currently paged in (including ROMs if paged in).

Input up to 10 separate numbers/characters (16 bit values count as 2 numbers) to search for and give an empty
input to start the search. The search will start automatically on inputting the 10th value. The search also allows
wildcard values which match any byte; input an asterisk (*) instead of a number. e.g. 33, *, *, 53 will search
for LD HL,x DEC (HL), where x matches any address. This facility can be particularly useful for finding
'pokes' for games (the above example may be a method used to decrement the number of lives/shots etc.).

If you were searching the 64K currently paged in and a match is found, you are given the address in memory
where it was found. If you were searching a page (or a range), you are given the page number [0 to 31] and
the offset into the page [0 to 16383] where the match was found.

When matches are found you are shown 3 bytes before the matching location (in green/red), and 6 bytes after
the location (in black/white).

Evaluate Expression: CTRL-E

This option will show you all the different things a number can represent: Decimal, Hex, Binary, ASCII and 2's
complement (signed). These variations are shown for the whole number as well as the High and Low parts.
The number input allows you to input expressions so you can use it instead of having a calculator handy.

TurboMON - page 15

ADDITIONAL INFORMATION:

Input of Numbers

Although the base in which numbers are displayed on the screen can be altered, the format for the input of
numbers remains the same, regardless of the base settings.

If an empty input is given, the default value for that particular input is used ; if there is no default, the option is
aborted (Escape can be used at any time to abort the input).

Expression Format

Hex numbers need to be prefixed with a hash (#), binary numbers with a percentage sign (%) and ASCII
characters with a double quote ("), but don't use a quote after the character.

PEEK of a memory location can be obtained by surrounding a number or expression with square brackets ([
and]), and DPEEK by using curly brackets ({ and }). Round brackets are used to force priority (as normal) in
expressions.

Registers can be referred to like variables, valid ones are: A, B, C, D, E, H, L, BC, DE, HL, IX, IY, SP, PC,
I, R and TOS (value on top of stack). They are only recognised if typed in upper-case.

The following operators may also be used: + (add), - (subtract and negate), * (multiply), / (divide or DIV), !
(arithmetic OR), & (arithmetic AND), @ (arithmetic XOR), ? (MOD).

Since we are using integer arithmetic, multiply has slightly higher priority than divide. This helps to avoid
rounding errors by multiplying before dividing. When using brackets, try to ensure you get it right!

Syntax Errors or Division by zero
If the input line contains syntax errors or you are trying to divide by zero, the screen will flash red and leave
the input line to be corrected.

Useful expressions
(IX+d) can be obtained by: [IX+d] where d is a specified.
IXh and IXl can be obtained by: IX/256 and IX?256 respectively.
Address of Interrupt mode 2 handler: {I*256}
Form address from MSB and LSB: MSB*256+LSB where MSB & LSB are specified.

Debugging Tips

So, your latest masterpiece crashes when you run it... what next?
This section contains a few suggestions on how to tackle your buggy programs using TurboMON.

Check your code before you use TurboMON to debug it - prevention of bugs is better than using TurboMON
to cure them afterwards. Make full use of single -stepping programs - you'll be surprised at the number of
things you can overlook... even with a relatively simple piece of code.

TurboMON is fully write-protected from within itself, but your program may destroy the BASIC system so you
can't return to BASIC; in which case you are safe until you try to return... use CTRL-Esc to try to exit.

It is possible that your program never starts running - code that moves itself around (possibly paging itself in at
zero) should be single-stepped to see that it is works correctly. One mistake that people often make is to forget
that bit 5 of LMPR is reset to page ROM 0 in - so writing 5 to LMPR will page in the ROM as well as

TurboMON - page 16

changing the RAM underneath to page 5. You will also need to check that your code restores the system
paging/stack after execution - execute until the final RET of your code and check the page values, ROM 0/1
status and interrupt mode etc.

If you are using interrupts, try running with all interrupts disabled (interrupt delay of -1). If the program no
longer crashes the problem may be in the interrupt handler. If you are running in mode 2 interrupts check the
vector table is 257 bytes long and that it points to a valid location (holding the interrupt code or a JP to it).
Execute until the start of the handler and single -step through it. If this still doesn't help, check you have enough
stack space to push the registers at the start of the interrupt handler, bearing in mind an interrupt could occur
when other things may have already been pushed onto the stack. This is a bitch to track down!

If your code resets without (apparently) corrupting any memory it usually arises from executing code at zero
(or around zero) in ROM 0. TurboMON has an automatic breakpoint at that location so try executing your
program without setting any breakpoints. If execution stops at this point you can then re-run using the CTRL-
T trace option to find the address of the instruction that caused the Program Counter to hold zero ; you may
have RETurned when data was on the stack or paged out the stack before RETurning! Check your PUSHes
and POPs to make sure they are balanced and you are not over/under POPping the stack.

If your code is corrupting memory and you know which area of memory is being corrupted use the X option to
watch the location so you can see which instruction changed the location. If this forms part of your code you
can re-run the program and execute until the start of that section of code. At this point you can single -step
through it and see if it's doing what it should be! If the subroutine is called multiple times you can use CTRL-
F9 to execute until the next time it is called etc.

If your code freezes when run normally, run with TurboMON and use CTRL-F8 to stop execution when you
think the program is 'stuck'. Hopefully the reason why it is stuck (infinite loop?) should be easy to see. As well
as endless loops you may be encountering a HALT with interrupts disabled - TurboMON automatically stops if
it happens when executing.

If your code is completely self-contained (making no CALLs to the ROMs or code not part of itself) but the
program resets when run, use the B option and input the start and end addresses of your code as the boundary.
As soon as anything outside the boundary is about to be executed, PC will hold the address where it went to
and you are told the address of where it came from.

Reading the Keyboard

This section is contains a useful table on how to read individual keys on the Sam keyboard. It is not shown in
the technical manual and most people (myself included) end up drawing their own table - I thought it would be
nice to have one in print for a change:

 Base Port
 249/F9 (status) 254/FE (keyboard)

254 #FE %11111110 F3 F2 F1 V C X Z Shift
253 #FD %11111101 F6 F5 F4 G F D S A
251 #FB %11111011 F9 F8 F7 T R E W Q
247 #F7 %11110111 Caps Tab Esc 5 4 3 2 1
239 #EF %11101111 DEL + - 6 7 8 9 0
223 #DF %11011111 F0 " = Y U I O P
191 #BF %10111111 Edit : ; H J K L Return
127 #7F %01111111 Inv . , B N M Sym Space
255 #FF %11111111 - - - Right Left Down Up Cntrl
Key bit positions: 7 6 5 4 3 2 1 0

TurboMON - page 17

Two ports hold the keyboard information: 254/FE holds 5 bits of information (bits 0 to 4) and 249/F9 holds 3
bits (bits 5 to 7, mainly for new keys the Spectrum didn't have). The address line is used to select which row of
keys to read.

Reading keys using IN A,(n):
- Load A with the address line value for the row containing the key.
- Read from the port managing the key.
- Test the bit containing the key (the bit is reset if the key is being pressed).

 Example, reading 'U': Example, reading 'Esc':
 LD A,223 LD A,247
 IN A,(254) IN A,(249)
 AND %00001000 AND %00100000
 JP Z,U_pressed JP Z,Esc_pressed

When reading keys using IN r,(C), load B with the address line value and C with the port.

Example, waiting for any key to be pressed:
wait_for_key: XOR A ; all key lines are to be read
 IN A,(254) ; read from KEYBOARD port
 AND %00011111 ; strip off the 5 bits containing key information
 LD B,A ; save for later
 XOR A ; all key lines to be read
 IN A,(249) ; read from STATUS port
 AND %11100000 ; mask off the 3 bits containing key information
 OR B ; combine with the keys read earlier giving 255 if nothing pressed
 INC A ; increment 255 round to zero (setting zero flag) if that was the case
 JR Z,wait_for_key ; jump back to re-read keys if nothing was pressed.

I'll stop there, before it turns into a full Z80 lesson!

Sam Memory System

Understanding how the memory works on the Sam is fairly fundamental when programming in machine code,
so if you are at all unsure read on!

The addressing system used by BASIC is just a convenient way of handling lots of memory. The Z80 can only
address 64K of memory at a time and the Sam has to swap sections of it in order to access more. All
addresses have a value from 0 to 65535. The position in Sam memory that this represents is dependant on the
LMPR (Low Memory Page Register) and HMPR (High Memory Page Register) values, which are altered
using the L and H options respectively.

The PAGING system
To picture the Sam's paging system it's best to visualise the 64k addressing range as 2 blocks of 2 sections of
16k (1 page = 16384 bytes), represented by the letters AB and CD:

 0 16384 32768 49152 65535

Section A Section B Section C Section D
Block AB Block CD

TurboMON - page 18

Block AB is managed by the LMPR (port 250/#FA).
Block CD is managed by the HMPR (port 251/#FB).

If, using the L option, we change LMPR to 1 - Section A of the memory will hold page 1. Section B is always
allocated 1 page above Section A, in this case to page 2.
If, using the H option, we change HMPR to 31 then Section C of the memory will hold page 31. Section D is
allocated 1 page above Section C, in this case to page 0.

Since 5 bits are used to store the page number, 32 cannot be stored. This causes page 0 to come after page 31.
On a 256K only pages 0 to 15 (inclusive) hold available memory ; 16 to 31 are unusable even though you can
page them in. 256K. LMPR is 31 in BASIC to allow the system variables (page 0) to be in Section B.

Note: Remember that the other bits in LMPR and HMPR are used for other things and they may need
combining with the page number before writing them to the ports.

The ROMs
When ROM 0 is paged in, it covers Section A, without affecting Section B.
When ROM 1 is paged in, it covers Section D, without affecting Section D.

Page & Offset conversions
In machine code, memory locations are normally referred to using the RAM page [0 to 15, or 0 to 31 for 512K
Sams] and the offset into the page [0 to 16383]. You may need to convert from a BASIC address to this
format; use the list below and look for the largest address below the BASIC address - this will give you the
page number. Subtract this address from the original address to give you the offset (you can use the number
input for this since the result is less than 65536).

Page 0: 16384 Page 8: 147456 Page 16: 278528 Page 24: 409600
Page 1: 32768 Page 9: 163840 Page 17: 294912 Page 25: 425984
Page 2: 49152 Page 10: 180224 Page 18: 311296 Page 26: 442368
Page 3: 65536 Page 11: 196608 Page 19: 327680 Page 27: 458752
Page 4: 81920 Page 12: 212992 Page 20: 344064 Page 28: 475136
Page 5: 98304 Page 13: 229376 Page 21: 360448 Page 29: 491520
Page 6: 114688 Page 14: 245760 Page 22: 376832 Page 30: 507904
Page 7: 131072 Page 15: 262144 Page 23: 393216 Page 31: 524288

e.g. converting 123456 to page & offset:
 114688 is the largest address below 123456 giving RAM page 6.
 Subtract this from the original address: 123456 - 114688 gives use the offset as 8768.

Execution Optimisations
On top of the highly optimised self-modifying code that forms the core of TurboMON, further speed is
achieved by some instructions watching for repeated instructions or recognising patterns of instructions:

LDI watches for repeated LDIs and will perform up to a block of 4 at a time, as long as the block's source and
target areas do not overlap. Multiple LDIs are used for copying data (many games use it and the ROM uses it
for scrolling the screen). In reality a stack method is the fastest way to move data (about 2 T-states per byte
faster than other methods), then using LDIs and then with LDIR. With TurboMON LDIR is the fastest due to
its low fetch/decode overhead compared to both of the other methods.

TurboMON - page 19

LDIR has had special attention as it's used for copying and filling. If DE=HL+1 it is being used for filling and
will be dealt with separately and quickly. Execution is also fast if the source and target blocks do not overlap -
if they do the data is copied byte by byte which can be slow but is necessary to perform the same operation as
the real LDIR would. LDIR is used extensively in Spectrum Manic Miner and Jet Set Willy, which both benefit
greatly from the speed-up, allowing them to run at about 2 frames per second. LDDR has no such optimisation
(yet?) so is slower, but is not so frequently used.

PUSH HL/DE look for repeated instructions up to a block of 3 at a time. Multiple PUSHes are used for
clearing (or filling) areas of memory and this method is the fastest possible (in reality).
PUSH BC checks for PUSH DE (and then PUSH HL). Most people seem to PUSH registers in that order so
we may as well make use of it! This will speed up stack copying methods that push registers in that order.
POP HL checks for POP DE (and then POP BC). This complements the PUSH checks.
PUSH AF checks for PUSH DE and then maybe PUSH BC (these 3 are used by a few games), and also
POP BC checks for POP DE and then maybe POP AF, to complement the PUSH checks.
The best speed up is gained when the 3 instructions follow each-other but some time is saved if only 2 of them
are present.

TurboMON recognises some delays (mainly used in Spectrum sound/tape routines) and will short-circuit them
and fool the program to think they were executed fully. The following delay methods are recognised:

 delay1: DJNZ delay1
 and
 delay2: DEC r where r = B,C,D,E,H,L,A (not (HL) or index register halves)
 JR NZ,delay2 or JP NZ,delay2

Bigger delays using double registers are normally present for a reason and are executed in full (this is the case
for the delay in the Sam ROM reset code, which is useful to delay the memory being cleared). They are
slightly speeded up because the OR instruction checks for a trailing JR NZ or JP NZ. You can always skip the
loops using Cursor_DOWN or delete the looping instruction using EDIT-DELETE (if in RAM).

There are 2 optimisations which speed up the Spectrum ROM reset code so a reset takes 34 seconds (not bad
considering the amount of work it has to do!). There is another optimisation which shortens the BEEP routine,
as used by the key-click, so you may use the ROM as normal. These are all present without needing to alter
the Spectrum ROM image.

Note: The above optimisations are not performed when single-stepping or executing 10 & 100 instructions (to
avoid confusion). The execute condition (if any) is not checked in the middle of a block of LDIs,
PUSHes/POPs or directly after a DEC r, for speed reasons. This is unlikely to cause problems but you should
be aware of it.

Limitations
The main limitations arise from real time interaction. TurboMON obviously can't be used to run time critical
code (e.g. loading and saving) and expect it to work as normal! Neither can it expect to trigger line interrupts
at the correct lines, but the options provided will cater for most testing needs. Programs relying on the
HPEN/LPEN values (for screen refresh position) are unlikely to work as planned, but since the values are
read from the normal ports, they will work when the screen refresh happens to be in the right place.

At present, the refresh register is not changed after every instruction - this would require quite a big overhead
to each instruction, slowing down execution considerably. The value is changed whenever it is read from, and
is set from the real refresh register. Some (mainly Spectrum) games use the refresh register to decrypt
program code (mainly just the loading code) and TurboMON will not do this correctly. The refresh register on

TurboMON - page 20

the Sam is handled differently from the Spectrum, so the Sam may have the same problems when running
them normally!

Other limitations arise from me not being able to afford the hardware to test with:
The mouse interrupt is unlikely to be featured in future versions (even if I do get one) because of the number
of interrupts it would need to generate...

With the SAMbus, the clock port will work as normal but the extra memory expansion cannot be accessed
from within TurboMON. This may be implemented if I get one.

MIDI may be implemented when I get more details on the requirements (especially since interrupts are
involved).

And Finally the Weather...
TurboMON started life as an interesting idea in my final year at University (not part of my degree though!)
and has developed into something bigger and better than I ever imagined! I hope it reflects the amount of time
and effort I have put into it, and takes some of the pain out of your debugging.

Thanks must go to my fiancée, Alyson, for enduring me talking about TurboMON quite a lot!

Greetings to Paul 'Peebs' Wardle (you can have the source now!), Frode 'The President' Tennebø (hope the
HHGTTG tapes were good) and Matthew 'utter genius' Collier.

Comments, ideas etc. (positive and negative) are more than welcome…

Simon Owen, January 1994

TurboMON - page 21

Keyboard Summary
All the options below are available in the main monitor mode but some (mainly execution related) are not
available from other options.

Esc: Leave current option/input. CTRL-Esc: NMI Exit from TurboMON.
INV: Invert panel screen colours. CTRL-INV: Refresh screen.

A: - CTRL-A: Perform EX AF,AF'.
B: Boundary execute, with trace. CTRL-B: Toggle base Decimal/Hex.
C: Copy memory block. CTRL-C: -
D: Disassembler. CTRL-D: Perform EX DE,HL.
E: Execute a set number instructions. CTRL-E: Evaluate expressions to different formats.
F: Find numbers/characters. CTRL-F: Fill memory with a given byte.
G: Graph of memory pages. CTRL-G: -
H: Change HMPR page. CTRL-H: -
I: Change interrupt delay. CTRL-I: Toggle interrupts EI/DI.
J: - CTRL-J: -
K: Push value onto stack. CTRL-K: -
L: Change LMPR page. CTRL-L: Change line interrupts per frame interrupt.
M: Change monitor screen mode. CTRL-M: Generate maskable interrupt.
N: View and edit memory as numbers. CTRL-N: Generate non-maskable interrupt.
O: - CTRL-O: -
P: Set palette colours. CTRL-P: Reset monitor palette.
Q: - CTRL-Q: Quit monitor.
R: Execute until a port is read from. CTRL-R: Read a value from a port.
S: Status page. CTRL-S: Toggle sound chip ON/OFF.
T: View and edit memory as ASCII text. CTRL-T: Execute until PC = x, with trace.
U: Execute until PC = x. CTRL-U: -
V: Change VMPR page. CTRL-V: -
W: Execute until a port is written to. CTRL-W: Send a value to a port.
X: Execute until a location changes. CTRL-X: Perform EXX.
Y: - CTRL-Y: -
Z: Execute until instruction reached. CTRL-Z: Prepare system as used by BASIC.
 EDIT-Z: Prepare system and load snapshot.

F0: Toggle ROM 0 ON/OFF. CTRL-F0: Select interrupt mode 0.
F1: Toggle ROM 1 ON/OFF. CTRL-F1: Select interrupt mode 1.
F2: Toggle section A write-protection CTRL-F2: Select interrupt mode 2.
F3: Toggle to monitor screen. CTRL-F3: Toggle screen ON/OFF (modes 3&4).
F4: Execute 1 instruction completely. CTRL-F4: -
F5: Execute until PC = Top Of Stack CTRL-F5: -
F6: Execute until the current position. CTRL-F6: -
F7: Execute 1 instruction. CTRL-F7: Execute unconditionally.
F8: Execute 10 instructions. CTRL-F8: Stop executing.
F9: Execute 100 instructions. CTRL-F9: Execute with current condition.

Cursor_UP: Instruction up. SHIFT-Cursor_UP: SP = SP - 2
Cursor_DOWN: Instruction down. SHIFT-Cursor_DOWN: SP = SP + 2
Cursor_LEFT: PC = PC - 1 SHIFT-Cursor_LEFT: -
Cursor_RIGHT: PC = PC + 1 SHIFT-Cursor_RIGHT: -

TurboMON - page 22

DELETE: Delete character in inputs. EDIT-DELETE: Delete highlighted instruction.

EDIT-B/C/D/E/H/L/A/F/I/R/X/Y/P/S: Edit B/C/D/E/H/L/A/Flags/I/R/IX/IY/PC/SP

Text editing keys:
A (command mode): Enter new address (command mode only).
D (command mode): Switch to disassembler at cursor's location.
N (command mode): Switch to number mode at cursor's location.
Cursor_Keys : Move cursor around text area.
SHIFT-Cursor_UP: Page up.
SHIFT-Cursor_DOWN: Page down.
RETURN: Toggle command/overtype mode.
Normal keys in overtype mode will poke text at the cursor location.

Number editing keys:
A: Enter new address.
D: Switch to disassembler at cursor's location.
T: Switch to text mode at cursor's location.
Cursor_Keys : Move cursor around text area.
SHIFT-Cursor_UP: Page up.
SHIFT-Cursor_DOWN: Page down.
RETURN: Input number(s) at cursor location / finish inputting numbers.

Disassembler keys (not monitor mode):
A: Input new address.
N: Switch to number mode at cursor's location.
T: Switch to text mode at cursor's location.
SPACE: Save current address.
SHIFT-SPACE: Restore saved address.
Cursor_UP: Up 1 instruction (approx.).
Cursor_DOWN: Down 1 instruction.
SHIFT-Cursor_UP: Page up (approx.).
SHIFT-Cursor_DOWN: Page down.

TurboMON - page 23

The Z80 Instruction Set
TurboMON is unique in offering the ENTIRE instruction set without ANY gaps for 'bad opcodes'. Other
programs may claim to include undocumented instructions, but they don't normally cover all possibilities. The
table at the end of this manual shows all possible combinations of instructions. Instructions in bold text are the
normal documented ones.

The TurboMON disassembler knows which instructions can have an index prefix and separates out ones that
are not used. They appear in the disassembly as [Unused IX/IY prefix] and have no effect when executed.
The Z80 only uses them to signal to use IX/IY instead of HL (in most cases), so LD IX,12345 is really [Signal
use IX] LD HL,12345. If you have 2 index prefixes following each other, using the previous example you
should understand that the second one will over-ride the first one. i.e. [IX prefix] [IY prefix] LD HL,0 will
perform LD IY,0 (TurboMON will show the IX prefix as unused, followed by the LD IY,0). Instructions with
an ED prefix cannot have an index prefix but ones with a CB prefix can.

102 undocumented instructions that are now widely accepted mainly involve the manipulation of the index
registers (blue in the table) as though they were separate 8 bit registers. They were used for a while in
Spectrum 'tape loader' security as most people didn't know about them or their disassembler didn't recognise
them. The instructions are formed by prefixing instructions involving the H and L registers with an index prefix
(DD for IX, FD for IY). The index halves are displayed as IXl, IXh, IYl, IYh. for example: LD A,IXh
(formed from LD A,H)

10 of the undocumented instructions are the SLL (shift left logical) instruction that was omitted because it
doesn't work properly. Bit 0 of the result is always set after the shift operation.

Other instructions are formed by using an index prefix with CB prefixed instructions that don't use (HL) (hope
that was clear!). e.g. Using an IX prefix with SRL B transforms it into: LD B,SRL(IX+d). The instruction
performs SRL (IX+d) and loads B with the result. The result is stored back in (IX+d) as well as B, giving 2
instructions for the price of one! Note that the length of the new instructions is always 4 since an index
displacement is now required and forms the 3rd byte in the instruction (as with all index instructions).

Because normal BIT instructions only test bits and don't store a result (like SET would), adding a prefix to
BIT b,r would transform it into: BIT b,(IX+d) and NOT LD r,BIT b,(IX+d). The fact that the BIT instruction
is faster than a SET/RES instruction shows us that the Z80 doesn't try to store a result.

Some instructions come from patterns in the instruction set: NEG, RETN, RETI, IM 0/1/2 are all repeated 8 or
16 bytes after the normal ones.

IN r,(C), with r as (HL), reads a byte from the port in BC but junks the result. It is displayed as IN X,(C).
Note: The flags are still affected, as with other IN r,(C) instructions.

OUT (C),r, with r as (HL) sends zero to the port in BC. It is displayed as OUT (C),0 to show its effect.

There are spaces for 4 interrupt modes but the Z80 has only 3 (0, 1 and 2). There is a gap between mode 0
and 1 in the instruction set. The missing interrupt mode is another mode 0.

The rest of the instruction set behaves as NOPs, the ones with an ED prefix are obviously 2 byte instructions
and will take 8 T-states in reality.

TurboMON - page 24

Hex Dec Normal DD/FD Prefix CB Prefix ED Prefix DDCB/FDCB Prefix

00 000 NOP NOP RLC B NOP LD B,RLC (IX+d)
01 001 LD BC,nn LD BC,nn RLC C NOP LD C,RLC (IX+d)
02 002 LD (BC),A LD (BC),A RLC D NOP LD D,RLC (IX+d)
03 003 INC BC INC BC RLC E NOP LD E,RLC (IX+d)
04 004 INC B INC B RLC H NOP LD H,RLC (IX+d)
05 005 DEC B DEC B RLC L NOP LD L,RLC (IX+d)
06 006 LD B,n LD B,n RLC (HL) NOP RLC (IX+d)
07 007 RLCA RLCA RLC A NOP LD A,RLC (IX+d)
08 008 EX AF,AF' EX AF,AF' RRC B NOP LD B,RRC (IX+d)
09 009 ADD HL,BC ADD IX,BC RRC C NOP LD C,RRC (IX+d)
0a 010 LD A,(BC) LD A,(BC) RRC D NOP LD D,RRC (IX+d)
0b 011 DEC BC DEC BC RRC E NOP LD E,RRC (IX+d)
0c 012 INC C INC C RRC H NOP LD H,RRC (IX+d)
0d 013 DEC C DEC C RRC L NOP LD L,RRC (IX+d)
0e 014 LD C,n LD C,n RRC (HL) NOP RRC (IX+d)
0f 015 RRCA RRCA RRC A NOP LD A,RRC (IX+d)
10 016 DJNZ d DJNZ d RL B NOP LD B,RL (IX+d)
11 017 LD DE,nn LD DE,nn RL C NOP LD C,RL (IX+d)
12 018 LD (DE),A LD (DE),A RL D NOP LD D,RL (IX+d)
13 019 INC DE INC DE RL E NOP LD E,RL (IX+d)
14 020 INC D INC D RL H NOP LD H,RL (IX+d)
15 021 DEC D DEC D RL L NOP LD L,RL (IX+d)
16 022 LD D,n LD D,n RL (HL) NOP RL (IX+d)
17 023 RLA RLA RL A NOP LD A,RL (IX+d)
18 024 JR d JR d RR B NOP LD B,RR (IX+d)
19 025 ADD HL,DE ADD IX,DE RR C NOP LD C,RR (IX+d)
1a 026 LD A,(DE) LD A,(DE) RR D NOP LD D,RR (IX+d)
1b 027 DEC DE DEC DE RR E NOP LD E,RR (IX+d)
1c 028 INC E INC E RR H NOP LD H,RR (IX+d)
1d 029 DEC E DEC E RR L NOP LD L,RR (IX+d)
1e 030 LD E,n LD E,n RR (HL) NOP RR (IX+d)
1f 031 RRA RRA RR A NOP LD A,RR (IX+d)

20 032 JR NZ,d JR NZ,d SLA B NOP LD B,SLA (IX+d)
21 033 LD HL,nn LD IX,nn SLA C NOP LD C,SLA (IX+d)
22 034 LD (nn),HL LD (nn),IX SLA D NOP LD D,SLA (IX+d)
23 035 INC HL INC IX SLA E NOP LD E,SLA (IX+d)
24 036 INC H INC IXh SLA H NOP LD H,SLA (IX+d)
25 037 DEC H DEC IXh SLA L NOP LD L,SLA (IX+d)
26 038 LD H,n LD IXh,n SLA (HL) NOP SLA (IX+d)
27 039 DAA DAA SLA A NOP LD A,SLA (IX+d)
28 040 JR Z,d JR Z,d SRA B NOP LD B,SRA (IX+d)
29 041 ADD HL,HL ADD IX,IX SRA C NOP LD C,SRA (IX+d)
2a 042 LD HL,(nn) LD IX,(nn) SRA D NOP LD D,SRA (IX+d)
2b 043 DEC HL DEC IX SRA E NOP LD E,SRA (IX+d)
2c 044 INC L INC IXl SRA H NOP LD H,SRA (IX+d)
2d 045 DEC L DEC IXl SRA L NOP LD L,SRA (IX+d)
2e 046 LD L,n LD IXl,n SRA (HL) NOP SRA (IX+d)
2f 047 CPL CPL SRA A NOP LD A,SRA (IX+d)
30 048 JR NC,d JR NC,d SLL B NOP LD B,SLL (IX+d)
31 049 LD SP,nn LD SP,nn SLL C NOP LD C,SLL (IX+d)
32 050 LD (nn),A LD (nn),A SLL D NOP LD D,SLL (IX+d)
33 051 INC SP INC SP SLL E NOP LD E,SLL (IX+d)
34 052 INC (HL) INC (IX+d) SLL H NOP LD H,SLL (IX+d)
35 053 DEC (HL) DEC (IX+d) SLL L NOP LD L,SLL (IX+d)
36 054 LD (HL),n LD (IX+d),n SLL (HL) NOP SLL (IX+d)
37 055 SCF SCF SLL A NOP LD A,SLL (IX+d)
38 056 JR C,d JR C,d SRL B NOP LD B,SRL (IX+d)
39 057 ADD HL,SP ADD IX,SP SRL C NOP LD C,SRL (IX+d)
3a 058 LD A,(nn) LD A,(nn) SRL D NOP LD D,SRL (IX+d)
3b 059 DEC SP DEC SP SRL E NOP LD E,SRL (IX+d)
3c 060 INC A INC A SRL H NOP LD H,SRL (IX+d)
3d 061 DEC A DEC A SRL L NOP LD L,SRL (IX+d)
3e 062 LD A,n LD A,n SRL (HL) NOP SRL (IX+d)
3f 063 CCF CCF SRL A NOP LD A,SRL (IX+d)

TurboMON - page 25

Hex Dec Normal DD/FD Prefix CB Prefix ED Prefix DDCB/FDCB Prefix

40 064 LD B,B LD B,B BIT 0,B IN B,(C) BIT 0,(IX+d)
41 065 LD B,C LD B,C BIT 0,C OUT (C),B BIT 0,(IX+d)
42 066 LD B,D LD B,D BIT 0,D SBC HL,BC BIT 0,(IX+d)
43 067 LD B,E LD B,E BIT 0,E LD (nn),BC BIT 0,(IX+d)
44 068 LD B,H LD B,IXh BIT 0,H NEG BIT 0,(IX+d)
45 069 LD B,L LD B,IXl BIT 0,L RETN BIT 0,(IX+d)
46 070 LD B,(HL) LD B,(IX+d) BIT 0,(HL) IM 0 BIT 0,(IX+d)
47 071 LD B,A LD B,A BIT 0,A LD I,A BIT 0,(IX+d)
48 072 LD C,B LD C,B BIT 1,B IN C,(C) BIT 1,(IX+d)
49 073 LD C,C LD C,C BIT 1,C OUT (C),C BIT 1,(IX+d)
4a 074 LD C,D LD C,D BIT 1,D ADC HL,BC BIT 1,(IX+d)
4b 075 LD C,E LD C,E BIT 1,E LD BC,(nn) BIT 1,(IX+d)
4c 076 LD C,H LD C,IXh BIT 1,H NEG BIT 1,(IX+d)
4d 077 LD C,L LD C,IXl BIT 1,L RETI BIT 1,(IX+d)
4e 078 LD C,(HL) LD C,(IX+d) BIT 1,(HL) IM 0 BIT 1,(IX+d)
4f 079 LD C,A LD C,A BIT 1,A LD R,A BIT 1,(IX+d)
50 080 LD D,B LD D,B BIT 2,B IN D,(C) BIT 2,(IX+d)
51 081 LD D,C LD D,C BIT 2,C OUT (C),D BIT 2,(IX+d)
52 082 LD D,D LD D,D BIT 2,D SBC HL,DE BIT 2,(IX+d)
53 083 LD D,E LD D,E BIT 2,E LD (nn),DE BIT 2,(IX+d)
54 084 LD D,H LD D,IXh BIT 2,H NEG BIT 2,(IX+d)
55 085 LD D,L LD D,IXl BIT 2,L RETN BIT 2,(IX+d)
56 086 LD D,(HL) LD D,(IX+d) BIT 2,(HL) IM 1 BIT 2,(IX+d)
57 087 LD D,A LD D,A BIT 2,A LD A,I BIT 2,(IX+d)
58 088 LD E,B LD E,B BIT 3,B IN E,(C) BIT 3,(IX+d)
59 089 LD E,C LD E,C BIT 3,C OUT (C),E BIT 3,(IX+d)
5a 090 LD E,D LD E,D BIT 3,D ADC HL,DE BIT 3,(IX+d)
5b 091 LD E,E LD E,E BIT 3,E LD DE,(nn) BIT 3,(IX+d)
5c 092 LD E,H LD E,IXh BIT 3,H NEG BIT 3,(IX+d)
5d 093 LD E,L LD E,IXl BIT 3,L RETI BIT 3,(IX+d)
5e 094 LD E,(HL) LD E,(IX+d) BIT 3,(HL) IM 2 BIT 3,(IX+d)
5f 095 LD E,A LD E,A BIT 3,A LD A,R BIT 3,(IX+d)

60 096 LD H,B LD IXh,B BIT 4,B IN H,(C) BIT 4,(IX+d)
61 097 LD H,C LD IXh,C BIT 4,C OUT (C),H BIT 4,(IX+d)
62 098 LD H,D LD IXh,D BIT 4,D SBC HL,HL BIT 4,(IX+d)
63 099 LD H,E LD IXh,E BIT 4,E LD (nn),HL BIT 4,(IX+d)
64 100 LD H,H LD IXh,IXh BIT 4,H NEG BIT 4,(IX+d)
65 101 LD H,L LD IXh,IXl BIT 4,L RETN BIT 4,(IX+d)
66 102 LD H,(HL) LD H,(IX+d) BIT 4,(HL) IM 0 BIT 4,(IX+d)
67 103 LD H,A LD IXh,A BIT 4,A RRD BIT 4,(IX+d)
68 104 LD L,B LD IXl,B BIT 5,B IN L,(C) BIT 5,(IX+d)
69 105 LD L,C LD IXl,C BIT 5,C OUT (C),L BIT 5,(IX+d)
6a 106 LD L,D LD IXl,D BIT 5,D ADC HL,HL BIT 5,(IX+d)
6b 107 LD L,E LD IXl,E BIT 5,E LD HL,(nn) BIT 5,(IX+d)
6c 108 LD L,H LD IXl,IXh BIT 5,H NEG BIT 5,(IX+d)
6d 109 LD L,L LD IXl,IXl BIT 5,L RETI BIT 5,(IX+d)
6e 110 LD L,(HL) LD L,(IX+d) BIT 5,(HL) IM 0 BIT 5,(IX+d)
6f 111 LD L,A LD IXl,A BIT 5,A RLD BIT 5,(IX+d)
70 112 LD (HL),B LD (IX+d),B BIT 6,B IN X,(C) BIT 6,(IX+d)
71 113 LD (HL),C LD (IX+d),C BIT 6,C OUT (C),0 BIT 6,(IX+d)
72 114 LD (HL),D LD (IX+d),D BIT 6,D SBC HL,SP BIT 6,(IX+d)
73 115 LD (HL),E LD (IX+d),E BIT 6,E LD (nn),SP BIT 6,(IX+d)
74 116 LD (HL),H LD (IX+d),H BIT 6,H NEG BIT 6,(IX+d)
75 117 LD (HL),L LD (IX+d),L BIT 6,L RETN BIT 6,(IX+d)
76 118 HALT HALT BIT 6,(HL) IM 1 BIT 6,(IX+d)
77 119 LD (HL),A LD (IX+d),A BIT 6,A NOP BIT 6,(IX+d)
78 120 LD A,B LD A,B BIT 7,B IN A,(C) BIT 7,(IX+d)
79 121 LD A,C LD A,C BIT 7,C OUT (C),A BIT 7,(IX+d)
7a 122 LD A,D LD A,D BIT 7,D ADC HL,SP BIT 7,(IX+d)
7b 123 LD A,E LD A,E BIT 7,E LD SP,(nn) BIT 7,(IX+d)
7c 124 LD A,H LD A,IXh BIT 7,H NEG BIT 7,(IX+d)
7d 125 LD A,L LD A,IXl BIT 7,L RETI BIT 7,(IX+d)
7e 126 LD A,(HL) LD A,(IX+d) BIT 7,(HL) IM 2 BIT 7,(IX+d)
7f 127 LD A,A LD A,A BIT 7,A NOP BIT 7,(IX+d)

TurboMON - page 26

Hex Dec Normal DD/FD Prefix CB Prefix ED Prefix DDCB/FDCB Prefix

80 128 ADD A,B ADD A,B RES 0,B NOP LD B,RES 0,(IX+d)
81 129 ADD A,C ADD A,C RES 0,C NOP LD C,RES 0,(IX+d)
82 130 ADD A,D ADD A,D RES 0,D NOP LD D,RES 0,(IX+d)
83 131 ADD A,E ADD A,E RES 0,E NOP LD E,RES 0,(IX+d)
84 132 ADD A,H ADD A,IXh RES 0,H NOP LD H,RES 0,(IX+d)
85 133 ADD A,L ADD A,IXl RES 0,L NOP LD L,RES 0,(IX+d)
86 134 ADD A,(HL) ADD A,(IX+d) RES 0,(HL) NOP RES 0,(IX+d)
87 135 ADD A,A ADD A,A RES 0,A NOP LD A,RES 0,(IX+d)
88 136 ADC A,B ADC A,B RES 1,B NOP LD B,RES 1,(IX+d)
89 137 ADC A,C ADC A,C RES 1,C NOP LD C,RES 1,(IX+d)
8a 138 ADC A,D ADC A,D RES 1,D NOP LD D,RES 1,(IX+d)
8b 139 ADC A,E ADC A,E RES 1,E NOP LD E,RES 1,(IX+d)
8c 140 ADC A,H ADC A,IXh RES 1,H NOP LD H,RES 1,(IX+d)
8d 141 ADC A,L ADC A,IXl RES 1,L NOP LD L,RES 1,(IX+d)
8e 142 ADC A,(HL) ADC A,(IX+d) RES 1,(HL) NOP RES 1,(IX+d)
8f 143 ADC A,A ADC A,A RES 1,A NOP LD A,RES 1,(IX+d)
90 144 SUB B SUB B RES 2,B NOP LD B,RES 2,(IX+d)
91 145 SUB C SUB C RES 2,C NOP LD C,RES 2,(IX+d)
92 146 SUB D SUB D RES 2,D NOP LD D,RES 2,(IX+d)
93 147 SUB E SUB E RES 2,E NOP LD E,RES 2,(IX+d)
94 148 SUB H SUB IXh RES 2,H NOP LD H,RES 2,(IX+d)
95 149 SUB L SUB IXl RES 2,L NOP LD L,RES 2,(IX+d)
96 150 SUB (HL) SUB (IX+d) RES 2,(HL) NOP RES 2,(IX+d)
97 151 SUB A SUB A RES 2,A NOP LD A,RES 2,(IX+d)
98 152 SBC A,B SBC A,B RES 3,B NOP LD B,RES 3,(IX+d)
99 153 SBC A,C SBC A,C RES 3,C NOP LD C,RES 3,(IX+d)
9a 154 SBC A,D SBC A,D RES 3,D NOP LD D,RES 3,(IX+d)
9b 155 SBC A,E SBC A,E RES 3,E NOP LD E,RES 3,(IX+d)
9c 156 SBC A,H SBC A,IXh RES 3,H NOP LD H,RES 3,(IX+d)
9d 157 SBC A,L SBC A,IXl RES 3,L NOP LD L,RES 3,(IX+d)
9e 158 SBC A,(HL) SBC A,(IX+d) RES 3,(HL) NOP RES 3,(IX+d)
9f 159 SBC A,A SBC A,A RES 3,A NOP LD A,RES 3,(IX+d)

a0 160 AND B AND B RES 4,B LDI LD B,RES 4,(IX+d)
a1 161 AND C AND C RES 4,C CPI LD C,RES 4,(IX+d)
a2 162 AND D AND D RES 4,D INI LD D,RES 4,(IX+d)
a3 163 AND E AND E RES 4,E OUTI LD E,RES 4,(IX+d)
a4 164 AND H AND IXh RES 4,H NOP LD H,RES 4,(IX+d)
a5 165 AND L AND IXl RES 4,L NOP LD L,RES 4,(IX+d)
a6 166 AND (HL) AND (IX+d) RES 4,(HL) NOP RES 4,(IX+d)
a7 167 AND A AND A RES 4,A NOP LD A,RES 4,(IX+d)
a8 168 XOR B XOR B RES 5,B LDD LD B,RES 5,(IX+d)
a9 169 XOR C XOR C RES 5,C CPD LD C,RES 5,(IX+d)
aa 170 XOR D XOR D RES 5,D IND LD D,RES 5,(IX+d)
ab 171 XOR E XOR E RES 5,E OUTD LD E,RES 5,(IX+d)
ac 172 XOR H XOR IXh RES 5,H NOP LD H,RES 5,(IX+d)
ad 173 XOR L XOR IXl RES 5,L NOP LD L,RES 5,(IX+d)
ae 174 XOR (HL) XOR (IX+d) RES 5,(HL) NOP RES 5,(IX+d)
af 175 XOR A XOR A RES 5,A NOP LD A,RES 5,(IX+d)
b0 176 OR B OR B RES 6,B LDIR LD B,RES 6,(IX+d)
b1 177 OR C OR C RES 6,C CPIR LD C,RES 6,(IX+d)
b2 178 OR D OR D RES 6,D INIR LD D,RES 6,(IX+d)
b3 179 OR E OR E RES 6,E OTIR LD E,RES 6,(IX+d)
b4 180 OR H OR IXh RES 6,H NOP LD H,RES 6,(IX+d)
b5 181 OR L OR IXl RES 6,L NOP LD L,RES 6,(IX+d)
b6 182 OR (HL) OR (IX+d) RES 6,(HL) NOP RES 6,(IX+d)
b7 183 OR A OR A RES 6,A NOP LD A,RES 6,(IX+d)
b8 184 CP B CP B RES 7,B LDDR LD B,RES 7,(IX+d)
b9 185 CP C CP C RES 7,C CPDR LD C,RES 7,(IX+d)
ba 186 CP D CP D RES 7,D INDR LD D,RES 7,(IX+d)
bb 187 CP E CP E RES 7,E OTDR LD E,RES 7,(IX+d)
bc 188 CP H CP IXh RES 7,H NOP LD H,RES 7,(IX+d)
bd 189 CP L CP IXl RES 7,L NOP LD L,RES 7,(IX+d)
be 190 CP (HL) CP (IX+d) RES 7,(HL) NOP RES 7,(IX+d)
bf 191 CP A CP A RES 7,A NOP LD A,RES 7,(IX+d)

TurboMON - page 27

Hex Dec Normal DD/FD Prefix CB Prefix ED Prefix DDCB/FDCB Prefix

c0 192 RET NZ RET NZ SET 0,B NOP LD B,SET 0,(IX+d)
c1 193 POP BC POP BC SET 0,C NOP LD C,SET 0,(IX+d)
c2 194 JP NZ,nn JP NZ,nn SET 0,D NOP LD D,SET 0,(IX+d)
c3 195 JP nn JP nn SET 0,E NOP LD E,SET 0,(IX+d)
c4 196 CALL NZ,nn CALL NZ,nn SET 0,H NOP LD H,SET 0,(IX+d)
c5 197 PUSH BC PUSH BC SET 0,L NOP LD L,SET 0,(IX+d)
c6 198 ADD A,n ADD A,n SET 0,(HL) NOP SET 0,(IX+d)
c7 199 RST 0 RST 0 SET 0,A NOP LD A,SET 0,(IX+d)
c8 100 RET Z RET Z SET 1,B NOP LD B,SET 1,(IX+d)
c9 201 RET RET SET 1,C NOP LD C,SET 1,(IX+d)
ca 202 JP Z,nn JP Z,nn SET 1,D NOP LD D,SET 1,(IX+d)
cb 203 [See CB Prefix] [See DDCB/FDCB] SET 1,E NOP LD E,SET 1,(IX+d)
cc 204 CALL Z,nn CALL Z,nn SET 1,H NOP LD H,SET 1,(IX+d)
cd 205 CALL nn CALL nn SET 1,L NOP LD L,SET 1,(IX+d)
ce 206 ADC A,n ADC A,n SET 1,(HL) NOP SET 1,(IX+d)
cf 207 RST 8 RST 8 SET 1,A NOP LD A,SET 1,(IX+d)
d0 208 RET NC RET NC SET 2,B NOP LD B,SET 2,(IX+d)
d1 209 POP DE POP DE SET 2,C NOP LD C,SET 2,(IX+d)
d2 210 JP NC,nn JP NC,nn SET 2,D NOP LD D,SET 2,(IX+d)
d3 211 OUT (n),A OUT (n),A SET 2,E NOP LD E,SET 2,(IX+d)
d4 212 CALL NC,nn CALL NC,nn SET 2,H NOP LD H,SET 2,(IX+d)
d5 213 PUSH DE PUSH DE SET 2,L NOP LD L,SET 2,(IX+d)
d6 214 SUB n SUB n SET 2,(HL) NOP SET 2,(IX+d)
d7 215 RST 10H RST 10H SET 2,A NOP LD A,SET 2,(IX+d)
d8 216 RET C RET C SET 3,B NOP LD B,SET 3,(IX+d)
d9 217 EXX EXX SET 3,C NOP LD C,SET 3,(IX+d)
da 218 JP C,nn JP C,nn SET 3,D NOP LD D,SET 3,(IX+d)
db 219 IN A,(n) IN A,(n) SET 3,E NOP LD E,SET 3,(IX+d)
dc 220 CALL C,nn CALL C,nn SET 3,H NOP LD H,SET 3,(IX+d)
dd 221 [IX Prefix] [IX Prefix] SET 3,L NOP LD L,SET 3,(IX+d)
de 222 SBC A,n SBC A,n SET 3,(HL) NOP SET 3,(IX+d)
df 223 RST 18H RST 18H SET 3,A NOP LD A,SET 3,(IX+d)

e0 224 RET PO RET PO SET 4,B NOP LD B,SET 4,(IX+d)
e1 225 POP HL POP IX SET 4,C NOP LD C,SET 4,(IX+d)
e2 226 JP PO,nn JP PO,nn SET 4,D NOP LD D,SET 4,(IX+d)
e3 227 EX (SP),HL EX (SP),IX SET 4,E NOP LD E,SET 4,(IX+d)
e4 228 CALL PO,nn CALL PO,nn SET 4,H NOP LD H,SET 4,(IX+d)
e5 229 PUSH HL PUSH IX SET 4,L NOP LD L,SET 4,(IX+d)
e6 230 AND n AND n SET 4,(HL) NOP SET 4,(IX+d)
e7 231 RST 20H RST 20H SET 4,A NOP LD A,SET 4,(IX+d)
e8 232 RET PE RET PE SET 5,B NOP LD B,SET 5,(IX+d)
e9 233 JP (HL) JP (IX) SET 5,C NOP LD C,SET 5,(IX+d)
ea 234 JP PE,nn JP PE,nn SET 5,D NOP LD D,SET 5,(IX+d)
eb 235 EX DE,HL EX DE,HL SET 5,E NOP LD E,SET 5,(IX+d)
ec 236 CALL PE,nn CALL PE,nn SET 5,H NOP LD H,SET 5,(IX+d)
ed 237 [See ED Prefix] [Ignore DD/FD] SET 5,L NOP LD L,SET 5,(IX+d)
ee 238 XOR n XOR n SET 5,(HL) NOP SET 5,(IX+d)
ef 239 RST 28H RST 28H SET 5,A NOP LD A,SET 5,(IX+d)
f0 240 RET P RET P SET 6,B NOP LD B,SET 6,(IX+d)
f1 241 POP AF POP AF SET 6,C NOP LD C,SET 6,(IX+d)
f2 242 JP P,nn JP P,nn SET 6,D NOP LD D,SET 6,(IX+d)
f3 243 DI DI SET 6,E NOP LD E,SET 6,(IX+d)
f4 244 CALL P,nn CALL P,nn SET 6,H NOP LD H,SET 6,(IX+d)
f5 245 PUSH AF PUSH AF SET 6,L NOP LD L,SET 6,(IX+d)
f6 246 OR n OR n SET 6,(HL) NOP SET 6,(IX+d)
f7 247 RST 30H RST 30H SET 6,A NOP LD A,SET 6,(IX+d)
f8 248 RET M RET M SET 7,B NOP LD B,SET 7,(IX+d)
f9 249 LD SP,HL LD SP,IX SET 7,C NOP LD C,SET 7,(IX+d)
fa 250 JP M,nn JP M,nn SET 7,D NOP LD D,SET 7,(IX+d)
fb 251 EI EI SET 7,E NOP LD E,SET 7,(IX+d)
fc 252 CALL M,nn CALL M,nn SET 7,H NOP LD H,SET 7,(IX+d)
fd 253 [IY Prefix] [IY Prefix] SET 7,L NOP LD L,SET 7,(IX+d)
fe 254 CP n CP n SET 7,(HL) NOP SET 7,(IX+d)
ff 255 RST 38H RST 38H SET 7,A NOP LD A,SET 7,(IX+d)

