Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

Pentest-Report TOR Browser & OONI 02.-03.2023

Cured3, Dr.-Ing. M. Heiderich, J. Larsson, M. Elrod, M. Pedhapati, MSc. H. Moesl,
P. Einkemmer, Dipl.-Ing. D. Gstir, R. Weinberger

Index
Introduction

Scaope
Test Meth I

Scope of Work
WP1: Penetration tests & code audits against OONI Probe desktop Ul

WP2: Penetration tests & code audits against rdsys software
WP3: Penetration tests & code audits against BridgeDB software

WP4: Penetration test It inst Conjure implementation

WP5: Penetration tests & code audits against building infrastructure
WPG: Penetration tests & code audits against Tor Browser alterations
Identified Vulnerabilities
P-01-001 WPS: Privilege escalation from nobody to rdsys in deploy script (Medium)
P-01-008 WP2: Lack of resource reqistration authentication (High)
TTP-01-009 WP6: Bridge list lacks signature (High)
Miscellaneous Issues
P-01-002 WP1: Unsanitiz hell. nExternal
P-01-003 WP3: BridgeDB requires outdated packages with known CVEs (Low)
P-01-004 WP1: Electron application best-practice implementation (Info)

P-01-005 WP5: Priv esc from nobody to build in Tor browser build script (Info)
P-01-006 WP2: Rdsys depends on outdated packages with known CVEs (Low)

P-01-007 WP4: Conjure depends on outdated packages with known CVEs (Low)
P-01-010 WP3: Deprecated pycrypto module used by BridgeDB (Info

P-01-011 WP6: Lack of country cross-check during auto bootstrapping (Info)
P-01-012 WP6: TODQ's indicate FW & proxy m

P-01-013 WP6: Potential risk via QR code returned by /check API call (Info)
P-01-014 WP3: Potential risk via Python pickle (Info)

T1TP-01-015 WP3: HTTP X-Forwarded-For config used for HT TPS distributor (Low)

Cureb3, Berlin - 03/24/23 1/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin |
cures53.de - mario@cures3.de

P-01-016 WP4: Conjure client leaks SOCKS connection handles (Low)
P-01-017 WP6: Enhanced MitM protection recommendation (Info)
P-01-018 WP2: Out-of-memory DoS via buffered reader (Low)

TTP-01-019 WP4: DoS via unlimited concurrent connections (Info)
Conclusions

Cureb3, Berlin - 03/24/23 2/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

Introduction

“‘We believe everyone should be able to explore the internet with privacy. We are the Tor
Project, a 501(c)(3) US nonprofit. We advance human rights and defend your privacy

online through free software and open networks.”
From https://www.torproject.org/

This report offers a comprehensive overview of the coverage, findings, and conclusions
of a crystal-box penetration test and source code audit against a multitude of Tor Project
aspects and components relating to censorship bypasses. Specific target areas include
the OONI Probe desktop Ul; rdsys software; BridgeDB software; Conjure
Implementation; building infrastructure, and specific Tor Browser alterations.

This widespread audit was requested by The Tor Project in November 2022 and initiated
by Curebd3 in February and March 2023, namely between CWO07 to CW11. To fulfill this
engagement’s expected coverage levels, an seventy-two-day time frame was allocated
for testing.

All assessment items were grouped into six distinct work packages (WPs), which read
as follows:

« WP1: Crystal-box penetration tests & code audits against OONI Probe desktop Ul
« WP2: Crystal-box penetration tests & code audits against rdsys software

« WHP3: Crystal-box penetration tests & code audits against BridgeDB software

« WP4: Crystal-box penetration tests & code audits against Conjure implementation
« WRPS5: Crystal-box penetration tests & code audits against building infrastructure

« WP6: Crystal-box penetration tests & code audits against Tor Browser alterations

To conduct the preparation, assessment, and finalization phases for these WPs, a team
comprising eight skill matched senior testers was established. These efforts were
facilitated by the provision of sources, detailed documentation, URLSs, key focus areas,
and any other access item required. Preparatory measures were also implemented in
CWO06 February 2023 to enable a hindrance-free test period.

A dedicated, shared Signal group was created for communication between the Tor
Project and Cure53 teams, with all involved employees from both organizations invited
to participate. This platform, as well as the excellent preliminary scope handling, allowed
for smooth discussions and ensured no notable roadblocks were encountered during the
test.

Cureb3, Berlin - 03/24/23 3/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

Cureb3 gave frequent status updates about the review and connected findings. Live
reporting was offered and subsequently implemented for some pertinent issues.

Onto the findings, the test team's strong coverage across the six WPs raised a total of
nineteen. A low proportion of three were deemed security vulnerabilities; the remaining
sixteen incur little exploitation potential and were hence categorized as miscellaneous.

In context, the scope and predetermined time frame for this project was generous, which
raised the expectancy of an extensive volume of discoveries. However, Cured3
positively noted that, contrary to this initial expectation, only a minimal number of actual
security vulnerabilities were detected. The vast majority of issues rather pertain to
general weaknesses and hardening guidance; implementing these should be relatively
straightforward for the developer team.

Despite the low yield of exploitable vulnerabilities, Cure53 would like to underline the
pressing importance of two assigned a High severity rating. These describe a couple of
absent configurations: the first relating to authentication, and the second concerning a
signature within the bridge list, as stipulated in tickets 2-01-008 and TTP-01-009
respectively. Naturally, one can strongly advise mitigating these as soon as possible to
ensure the platform’s commendable resilience can be maintained.

All in all, Cure53 concludes this audit with a favorable impression of the inspected Tor
Project aspects and components, which proved sufficiently robust and hardened against
a multitude of common threats and attack vectors. Nevertheless, the number of tickets
attests to the abundant opportunities for security upgrades. The Tor Project team should
iInvest adequate resources into initiating follow-up actions and systematically resolving
each finding in priority order of severity.

The report will now offer concise information concerning the scope, and, available
materials, before extrapolating the Test Methodology. Here, Cured3 gives a detailed
overview of all test procedures initiated and the ensuing coverage achieved. Next, all
findings are listed in descending order of detection - first the Identified Vulnerabilities,
then the Miscellaneous Issues. These are accompanied with a technical explanation, a
Proof-of-Concept (PoC) where appropriate, and the recommended advice for mitigation.

Finally, the Conclusions section verifies Cured3's assessment of the myriad Tor Project

components in scope with a definitive overview of the perceived security posture offered
by the assessed features, in relation to censorship bypasses.

Cureb3, Berlin - 03/24/23 4/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

Scope

+ Pentests & code audits against multiple Tor Project software & components:
o WP1: Crystal-box pentests & code audits against OONI Probe desktop Ul
= Main repositories:
« https://github.com/ooni/probe-desktop/
« https://qithub.com/ooni/probe-engine
= Pull requests:
« https://qgithub.com/ooni/probe-desktop/pull/88
« htips://github.com/ooni/probe-desktop/pull/95
=  GitHub issues:
« htips://github.com/ooni/probe-engine
« htips://github.com/ooni/probe-engine/issues/89
« https://github.com/ooni/probe-engine/issues/90
« https://qithub.com/ooni/probe-engine/pull/179
« https://github.com/ooni/probe-engine/pull/180
« https://qgithub.com/ooni/probe-engine/pull/143
» Documentation:
« https://github.com/ooni/probe-desktop/wiki/Manual-Testing
o  WP2: Crystal-box penetration tests & code audits against rdsys software
= Sources:
« https://qgitlab.torproject.org/tpo/anti-censorship/rdsys
= Documentation:
« https://gitlab.torproject.org/t nti-censorship/r -/tree/main
o  WP3: Crystal-box penetration tests & code audits against BridgeDB software
= Main repository:
« https://qitlab.torproject.org/t nti-censorship/bri
= GitLab issues:

« htips://gitlab.torproject.org/tpo/anti-censorship/bridgedb/-/issues/34322
« https://qitlab.torproject.org/tpo/anti-censorship/bridgedb/-/issues/40051

« htips://gitlab.torproject.org/tpo/anti-censorship/bridgedb/-/issues/40057
« https://aitlab.torproject.org/t nti-censorship/bri -/l 4

« https://gitlab.torproject.org/tpo/anti-censorship/bridgedb/-/issues/40037
= Documentation:

= URL:

« htips://bridges.torproject.org/
= Scope:
* Only the management of bridges.torproject.org

Cureb3, Berlin - 03/24/23 5/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14

D 10709 Berlin

Fine penetration tests for fine websites

cures53.de - mario@cures3.de

o  WP4: Crystal-box pentests & code audits against Conjure implementation

Main repository:
 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/conjure
Branch:

*  main

Commit:

+ d64c96414427c27f8eae8bb6484ec0dccb5b710fd

Merge requests:

« https://qgitlab.torproject.org/tpo/applications/tor-browser-build/-/

merge_requests/618
« htitps://gitlab.torproject.org/tpo/applications/tor-browser-build/-/
merge_requests/632

« htips://gitlab.torproject.org/tpo/applications/tor-android-service/-/
merge_requests/2

GitLab issues:

« https://qitlab.torproject.org/tpo/applications/tor-browser/-/issues/41361

Documentation:

« htips://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/
conjure/-/wikis/How-it-Works

« https://qgitlab.torproject.org/tpo/anti-censorship/pluggable-transports/conjure/

o  WPS5: Crystal-box penetration tests & code audits against building infrastructure

Primary audit areas:

+ The software build tools and deployment modified during this project:
* The rdsys build and deployment.

* The Conjure infrastructure.

+ The GitLab Cl used for deploying bridges.torproject.org

« The infrastructure that builds and releases Tor Browser
Documentation:

« htips://gitlab.torproject.org/tpo/tpa/team

o  WP6: Crystal-box penetration tests & code audits against Tor Browser alterations

Sources:

« htips://gitlab.torproject.org/tpo/applications/tor-browser
Documentation:

https://gitlab.torpr t.org/t
Information/Tor-Browser/Building
GitLab milestones:

« https://qitlab.torproject.org/groups/tpo/-/milestones/29
GitLab issues:

« htips://gitlab.torproject.org/tpo/applications/tor-browser/-/issues/40477
« https://gitlab.torproject.org/tpo/applications/tor-browser/-/issues/27476

Cureb3, Berlin - 03/24/23 6/46



CUMN=-54

Fine penetration tests for fine websites

hitps://qit

ab.torproject.org/tpo/app

Dr.-Ing. Mario Heiderich, Cure53

Bielefelder Str. 14
D 10709 Berlin

cures53.de - mario@cures3.de

ications/tor-browser/-/issues/34345

hitps://qgit
hitps://qit
https://qit

ab.torproject.org/tpo/app
ab.torproject.org/tpo/app

ications/tor-browser/-/issues/40568

ications/tor-browser/-/issues/40597
ications/tor-browser/-/issues/40774

https://qit

ab.torproject.org/tpo/app

ications/tor-browser/-/issues/40448

https://qgitlab.torproject.org/tpo/applications/tor-browser/-/issues/40446

https://qgitlab.torproject.org/tpo/applications/tor-browser/-/issues/40445

https://qgit
https://qit
hitps://qgit
https://qit
https://qit

ab.torproject.org/tpo/app
ab.torproject.org/tpo/app

ications/tor-browser/-/issues/40444
ications/tor-browser/-/issues/404

ab.torproject.org/tpo/app
ab.torproject.org/tpo/app

ications/tor-browser/-/issues/40469

ications/tor-browser/-/issues/41058
ications/tor-browser/-/issues/40597

https://qgit

ab.torproject.org/tpo/app

ications/tor-browser/-/issues/40807

https://gitlab.torproject.org/tpo/applications/tor-browser/-/issues/31286

https://gitlab.torproject.org/tpo/applications/tor-browser/-/issues/27476
= Focus areas:
Examination of automatic censorship circumvention
Examination of automatic bootstrapping of bridge-list
Examination of new circumvention mechanisms

= Scope:
Only the censorship circumvention mechanisms.

Cureb3, Berlin - 03/24/23

7/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

Test Methodology

This section details the metrics and methodologies utilized to evaluate the security
characteristics of the TOR Browser project and codebase. The results achieved against
pertinent, individual areas of the project’s security properties are discussed, which were
either selected by Cureb53 or pinpointed by other participatory parties for closer
Inspection.

Further clarification concerning the characteristics that were deep-dive assessed during
this project is offered, particularly considering the small volume of flaws assigned a High
severity rating.

In this assessment, several components of the Tor browser ecosystem were designated
as key examination targets. Cured3 conducted an extensive source code analysis
across the varying components of the Tor Browser software stack, as well as the
individual projects declared in-scope. Whilst Cure53’'s overarching aim was to achieve
widespread coverage across the targets, extensive audits of this kind are always limited
by the budget allocation. As such, they require selectivity and isolated focal points,
particularly for the code areas deemed most sensitive. In response, the Tor team
provided a well-defined scope document with a list of focus areas, which helped Cure53
to outline a clear audit strategy. The following section pertains to the Scope of Work, as
defined by Tor.

Scope of Work

The Tor Browser is a web browser that is specifically designed to protect its users'
privacy and anonymity while browsing the internet. It is based on the Firefox browser
and offers pre-configured settings and additional add-ons that allow users to connect to
the Tor network, which routes their internet traffic through a series of relays or bridges.
This renders tracing the user's online activity back to their physical location or identity
significantly more difficult to achieve. In practice, the Tor Browser is often used to
circumvent censorship by connecting to Tor bridge relays (“bridges”), comprising Tor
relays that are not listed in the public Tor directory and are thus less susceptible to
censorship.

The primary focus of this review related to the following areas, as defined by Tor:

« Evaluation of improvements regarding the methods by which users connect to
bridges in the Tor Browser

This review comprised various components within the Tor Browser ecosystem, as
detailed below:

Cureb3, Berlin - 03/24/23 8/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14

D 10709 Berlin

Fine penetration tests for fine websites

cures53.de - mario@cures3.de

OONI Probe: OONI Probe is a technology used for identifying censorship events.
During this project, the OONI team integrated Tor tests into their measurement
Kit, expanded OONI's methodologies to test protocol-based blocking, and
measured the performance and blocking of other circumvention tools.

Rdsys: Rdsys, which stands for Resource Distribution System, is utilized to
distribute censorship circumvention proxies and related resources, such as
download links, to individuals that are experiencing censorship. These resources
are provided to censored users via various distribution methods and equip them
with circumvention proxies to ensure they can access the open internet.

BridgeDB: BridgeDB i1s a component that communicates with rdsys to retrieve
the list of bridges that are distributed.

Conjure: Conjure is a refraction networking system that routes traffic to
endpoints in an ISP's unused |IP address space. Conjure is integrated into Tor as
a pluggable transport.

Review of the building infrastructure: A review of the software’'s build tools
and deployment was initiated via the following actions:

o Rdsys build and deployment.
Conjure infrastructure.

o (GitLab CI.
o Infrastructure that builds and releases Tor Browser.

2

Tor Browser alterations and customizations: Here, Cured3 scrutinized a
curated list of pull / merge requests declared relevant for this audit.

From a technology perspective, the majority of the source code repositories examined
were written in JavaScript and Golang.

As communicated by the Tor team, the following components and attack vectors were
considered out-of-scope:

An examination of the Firefox codebase in general. For example, typical attack
scenarios for browsers focusing on memory corruption vulnerabilities present in
the code that renders web content, as well as those in the sandbox interfaces
and other relevant areas, were not subjected to review.

Cureb3, Berlin - 03/24/23 9/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

« Passive attackers were also deemed outside this project's scope. This includes
entities such as censors who simply observe the traffic during the bootstrapping
phase of their automatic censorship circumvention efforts.

WP1: Penetration tests & code audits against OONI Probe desktop Ul

The following section provides a list of tasks undertaken during this security project in
relation to the OONI Probe desktop application. All coverage achieved by the testing
team using white-box methods during the analysis of various endpoints, Electron
configurations, frontend code, ElectronJS code, the binaries, and alternative, security-
related aspects are subsequently offered below:

« For the frontend characteristics of the OONI Probe desktop application, the
testing team instigated a plethora of advanced approaches. Firstly, given that the
NextJS is currently utilized for the frontend (which uses React), the testing team
deemed it apt to focus on potential security issues related to this framework
during the initial stage of this assessment. The shared repositories were
subjected to deep-dive assessment to determine erroneous usage of
dangerouslySetinnerHTML, since this is often overused and introduces XSS
ISsues.

« Due to the fact that the ReactJS framework does not handle URLs assigned to
the href property of the HTML anchor tags, Cure53 probed the source code for
any instances of this nature. Ultimately, these efforts proved unfruitful.
Furthermore, since the NextJS next/router module allows navigation to
JavaScript protocol URL, the code was searched for any erroneous usage of the
router.

« Subsequently, the provided source code was audited for DOM XSS-related
iIssues, with reference to any potential usage of location.href, window.open, or
user-controlled URL parameters. The latter was subjected to further scrutiny to
determine the potential for prototype pollution or client-side path traversal.
Positively, Cureb3 could not unveil any notable findings in this area, despite
strenuous endeavors. Furthermore, the JSON prettifier module was audited,
though this similarly yielded a lack of outcomes.

« Next, Cureb53 concentrated its efforts on the OONI Probe desktop application’s
ElectrondS.

Cureb3, Berlin - 03/24/23 10/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

« |nitially, the application was investigated for typical ElectrondS security
recommendations’. These generally pertain to stricter BrowserWindow web
preferences, suboptimal use of security features, and a lack of incorporating the
Electron security features’ inherent benefits. In this respect, testing confirmed
that the OONI Probe desktop application fails to integrate some fundamental
recommended security features. Aside from an additional defense-in-depth
recommendation (see T1TP-01-004), no severe issues were identified in the
application.

« In addition, an explicit focus was placed on any features or function calls that
could facilitate arbitrary code execution on the client-side. The usage of
shell.openExternal and shell.openPath was thoroughly tested for any
misconfigurations, though the test team could not locate any exploitable issues
related to these misconfigurations. This primarily owes to the lack of sources
from user-controlled input. However, a beneficial measure was suggested to
prevent further exploitability of these issues, as stipulated in ticket TTP-01-002.

« Since deep links are often considered a prime vector for Electron vulnerabilities,
the deep link handlers were audited for any potential security flaws. Fortunately,
no usage of open-url was identified, which serves to remove the deep-link source
from the application.

« Furthermore, the IPC communication between the renderer and main processes
was evaluated from a security perspective, though the team confirmed that user

input is not reachable via these sinks.

« Finally, the OONI Probe desktop application’s specific code was scrutinized to
ensure coding best practices were adhered to, as well as identify any logical
weaknesses. For this purpose, the components related to the integration of OONI
probe-cli with the desktop application and the OONI probe-cli were estimated.
Similarly, these efforts yielded a lack of notable findings.

' https://github.com/electron/electron/blob/main/docs/tutorial/security. md

Cureb3, Berlin - 03/24/23 11/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

WP2: Penetration tests & code audits against rdsys software

The following passages provide an exhaustive list of actions undertaken against the
rdsys software during this security project. All coverage achieved by the testing team
using white-box methods during the analysis of various backend endpoints, frontend
distributor endpoints, core logic, ipc mechanism, and other security-related
configurations are discussed next:

« Firstly, the testing team reviewed the the rdsys software’'s available
documentation? to quickly grasp the attack surface and any likely attack vectors.

« The rdsys is written in Golang; as such, particular scrutiny was placed on
unearthing any typical programming errors for Golang, including common attack
scenarios that may incur vulnerabilities such as Denial-of-Service (DoS)
situations, Remote Code Execution (RCE), usage of outdated Golang modules,
absent input validations, and privilege escalation.

« Subsequently, the backend APIls were inspected in an attempt to enumerate any
general web vulnerabilities. The implemented authentication and authorization
mechanisms were assessed for common bugs, vulnerabilities, and
misconfigurations. One issue was identified in this regard, as detailed in ticket
TTP-01-008.

 Furthermore, alternative endpoints - such as those related to resource, resource
stream, and target - were deemed adequately safeguarded against common web
security errors.

« Elsewhere, Cure53 rigorously analyzed the distributors, including the salmon,
gettor, telegram, and others.

« For salmon specifically, the access control and authentication processes
concerning invite, account, redeem, and proxies were thoroughly tested. The test
team also attempted to enumerate the methods by which one could affect the
Innocence calculation, though no notable issues were identified in this area.

« Next, the aforementioned moat, gettor, and telegram distributors were subjected
to in-depth investigation. Here, a minor issue was observed in relation to the lack
of authentication for the https distributor, though this facilitates negligible security
iImpact.

2 https://qitlab.torproject.org/tpo/anti-censorship/rdsys/-/tree/main/doc

Cureb3, Berlin - 03/24/23 12/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

« Additionally, all inspections against the backend and distributor web server
configurations, rdsys frontend apache configuration, and email client
configurations utilized for gettor proved unsuccessful in locating any security
vulnerabilities.

« Finally, following a comprehensive analysis of JSON parsing, Cure53 concluded
that any potential vulnerabilities or logical bugs in the rdsys software’'s JSON
parsing functionality had been effectively negated.

WP3: Penetration tests & code audits against BridgeDB software

The paragraphs offered below pertain to all BridgeDB source code repository coverage
areas assessed by Cureb53. This serves to provide a transparent overview of the
characteristics granted deep-dive analysis by the test team during this assessment.

« BridgeDB comprises a collection of backend servers utilized to distribute bridges
to clients. BridgeDB offers an HTTPS interface, email responder, SQLite
database, and MOAT interface for this purpose, all of which are written in Python.

« The BridgeDB dependencies benefited from a substantial manual code review,
Including a package dependency analysis. Here, a few outdated dependencies
were identified, as further explained in ticket TTP-01-003.

 During the code review, the test team noted that a crypto module leveraged by
BridgeDB was vulnerable and susceptible to well-known attack scenarios, due to
the fact that the module in question is no longer actively maintained.
Supplementary guidance on this area of concern is offered in ticket TTP-01-010.

« The code was analyzed in relation to commonly-encountered vulnerabilities such
as SQL injection, absent input validation, usage of insecure primitives, and
general misconfigurations. These efforts unearthed a couple of notable issues,
as stipulated in tickets TTP-01-014 and -01-015.

« Finally, the BridgeDB hashring implementation was heavily studied, though no
associated issues were identified in this regard.

Cureb3, Berlin - 03/24/23 13/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

WP4: Penetration tests & code audits against Conjure implementation

The advanced penetration techniques and ensuing coverage observed during testing
against the Conjure component and software compound specifically are discussed in
greater detail below.

« The available documentation was extensively studied to obtain a clear overview
of the software compound, architecture, and methods of application by the Tor
browser. This served to pinpoint any problematic areas and potential attack
surfaces ahead of the active review phase.

« The Conjure implementation’'s code base, written in Go, benefited from a
comprehensive manual code review and static code analysis using renowned
tools such as gosec®. These endeavors could only unveil one issue in this area,
which is described in ticket TTP-01-016. Generally speaking, Go’s facilitation of a
higher degree of memory safety in comparison with other languages that compile
to native code is irrefutable. One will rarely encounter direct memory safety
Issues concerning Go, which repels erroneous behaviors typically found in C and
C++. The myriad benefits offered by a language such as Go render it highly
recommendable for these purposes. As such, Cure53 was not surprised that it
was selected as the language of choice for implementing Conjure.

« Furthermore, the catalog of merge requests pertaining to Conjure were subjected
to meticulous review. Upon closer inspection, Cure53 confirmed that the majority
of the merge requests within the scope of this review were linked to build-related
modifications, which did not evoke any security concerns in this regard.

« A comprehensive inventory of outdated and vulnerable dependencies was
generated by scrutinizing the dependencies of the Conjure implementation with
the assistance of govulncheck. This in-depth process served to uncover any
potential security weaknesses or outdated components that may negatively
impact the system's stability and reliability. In light of this, a few outdated
dependencies were identified, as stipulated in ticket -01-007.

« The primary purpose of the implementation is to provide a connection between
gotapdance's Conjure package and goptlib's pluggable transport (PT)
functionality. Specifically, Conjure facilitates a phantom proxy registration
process that establishes PT proxies on both the client and server side.

* https://qithub.com/securego/gosec

Cureb3, Berlin - 03/24/23 14/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E ; E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

 For this assessment, the Tor team deliberately decided to exclude gopt/ib and
gotapdance from the scope, given that amendments were not required for these
repositories. However, to clearly understand the pluggable transport concept
employed by goptlib, a brief review of this component was conducted. Based on
this assessment, the test team verified that goptlib conforms to the PT
specification®, with no relevant issues identified in this respect.

WP35: Penetration tests & code audits against building infrastructure

This section aims to provide a comprehensive overview of the tasks completed by
Curebd3 during its WPS5 review against the building infrastructure. Coverage and findings
concerning the build process and infrastructure are extrapolated next.

« The Cureb3 team members commenced the WP5 review by familiarizing
themselves with the different components in question. The relevant build systems
and setup processes for the varying features were inspected, followed by
scrutiny of the continuous integration systems and deployed mechanisms.

« The key intention for this work package was to enumerate any build-system-
related vulnerabilities. Henceforth, each specific step of the building process was
checked for the presence of any undesired triggerable side effects.

« One particular attack scenario granted due consideration represented the ability
for malicious build loads to compromise the build systems and Cl systems, then
subsequently detect any means of altering and persisting inside the build system.

« Another potential vector referred to the potential for malicious builds to exfiltrate
secrets and access tokens from the build system. Here, Cure53 sought to
validate whether the attack surface could be reduced and associated risks
categorically mitigated. No significant findings were encountered in this respect.

 The next attack vector evaluated during this review pertained to a compromised
build system, consequential integrity compromisation, and whether any defensive
precautions had been taken to counteract this. Naturally, protecting against this
particular attack scenario remains challenging. However, Tor's effort to leverage
reproducible builds - as well as build signing and building on two machines in
parallel - had a significantly positive impact against this threat. With this in mind,
a minor vulnerability allowing for privilege escalation from nobody to builduser
was deemed exploitable during the building process; see ticket TTP-01-005 for
additional information.

* https://qgitweb.torproject.org/torspec.git/tree/pt-spec.txt

Cure53, Berlin - 03/24/23 15/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

« Deploy scripts were honed in on for all components that rendered deploy scripts
available, including rdsys, to unveil any side effects that could be exploited during
the deployment by either a local or remote attacker. Next, Cure53 strove to
validate whether any overly permissive configurations would persist after
deployment, for which the primary subsequent finding is detailed in ticket TTP-
01-001.

« To complement the build and deployment process reviews, several classic
supply chain issues were analyzed. In this process, the dependencies of the
differing components were inspected to verify whether the dependencies were up
to date or if the software relied on outdated libraries and components. This
examination raised the presence of two flaws, as detailed in TTP-01-003 and
TTP-01-006.

« Finally, the presence and effectiveness of any automated tooling to retain the
latest software dependencies was checked. The presence of the two tickets
above can be attributed to a lack of respective automatisation.

WP6: Penetration tests & code audits against Tor Browser alterations

The following items of description detail the tasks completed by the test team against
WP6 specifically, including an analysis of the Tor Browser code alterations and generic
assessment of the censorship circumvention feature. The ensuing degree of coverage
concerning the security offering exhibited by the integrations and surrounding
components is further elaborated.

« [he available documentation was extensively studied to obtain a clearer
overview of the software compound, architecture, and automatic censorship
circumvention feature comprising the Tor Browser. This area was pre-defined as
a primary scope item and was therefore examined with utmost scrutiny. This
preliminary perusal of all available documentation allowed the test team to
identify any problematic areas and potential attack surfaces. Cross-organization
discussions were also held to further evaluate the underlying threat model, which
helped the test team to gain an optimal understanding of viable threat actors that
should be taken into account during this review.

« The Tor team shared a list of merge requests, which involved incorporating a
censorship circumvention feature into Tor. Upon conducting a thorough analysis
of this list, the observation was made that the majority of the modifications
pertained to the user interface, rendering the review unproductive in identifying

Cureb3, Berlin - 03/24/23 16/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

the fundamental components that constituted the censorship circumvention
feature.

« A general audit of the relevant folders and files related to censorship
circumvention was undertaken to isolate potential security weaknesses such as
iInsecure input handling, general lack of input validations, and auxiliary attack
vectors instigatable from a censor perspective.

« A test setup was installed based on an official tutorial® provided by the Tor team.
The installation of the test setup provided a controlled environment to facilitate
Tor component modification and experimentation, allowing for greater flexibility in
testing the censorship circumvention feature. Furthermore, a Man-in-the-Middle
(MitM) environment was created that enabled inspection of the packets sent to
the rdsys / BridgeDB instance. This process offered valuable insight into the
underlying protocol used for domain fronting. Despite these actions, no notable
findings were reported.

« Upon request, the Tor team provided directions on the critical source files that
were associated with censorship circumvention. These particular source files
were rigorously surveyed based on the most up-to-date revision available at the
time. This ensured that the source code adhered to best practices for maintaining
the integrity and security of the censorship circumvention feature, as well as its
resilience against censors. The source files considered most pertinent represent
the following:

o

browser/modules/Moat.jsm
browser/modules/TorConnect.jsm
o browser/modules/TorSettings.jsm
o browser/modules/BridgeDB.jsm

@]

« Last but not least, the code was probed in an attempt to identify and address any
common JavaScript vulnerabilities that could potentially be exploited by a censor
with access to a rdsys / BridgeDB instance. This may enable the censor to send
packets containing malicious content, such as a manipulated CAPTCHA image
or QR code, resulting in a Cross-Site Scripting (XSS) attack on the Tor client.
The potential for logic errors and API calls was stringently vetted, which raised
the presence of the issues documented in tickets TTP-01-009, TTP-01-012, and
11P-01-017.

> https://qitlab.torproject.org/tpo/applications/tor-browser/-/wikis/Hacking#building-just-firefox

Cureb3, Berlin - 03/24/23 17/46



Dr.-Ing. Mario Heiderich, Cure53
CLUUMNE2 54 siclefelder Sr. 1
D 10709 Berlin
cureS3.de - mario@cures3.de

Fine penetration tests for fine websites

Identified Vulnerabilities

The following section lists all vulnerabilities and implementation issues identified during
the testing period. Notably, findings are cited in chronological order rather than by
degree of impact, with the severity rank offered in brackets following the title heading for
each vulnerability. Furthermore, all tickets are given a unique identifier (e.qg., TTP-07-
001) to facilitate any future follow-up correspondence.

TTP-01-001 WPS5: Privilege escalation from nobody to rdsys in deploy script (Medium)

During the analysis of the rdsys project, a local privilege escalation vulnerability was
detected in a deploy script that allows an attacker with rdsys server write privileges to
gain the privileges of the rdsys daemon user. To retrieve these privileges, the attacker
would need to wait for a deploy process to initiate then hijack the deployment process,
which can be achieved by exploiting a narrow time frame (approximately a few seconds)

iIn which the binary is world writable. An attacker could overwrite and possibly backdoor
the latter via rdsys executed binary.

Affected code:
https://qgitlab.torproject.org/tpo/anti-censorship/team/-/wikis/Survival-Guides/Rdsys-

Survival-Guide#deploying-a-new-version

Affected code:

#! /bin/bash

SE—

path="51"

executable=5 (basename "Spath")

scp "Spath" POLYANTHUM:/tmp
ssh -t PCLYANTHUM \
"chmod 777 /tmp/${executable} a& "
"sudo -u rdsys bash -i -¢ '"
"systemctl --user stop rdsys-backend && "
"cp /tmp/${executable} /home/rdsys/bin/rdsys-backend && "
"systemctl --user start rdsys-backend' &L& "
"rm -f /tmp/S{executable}"

PoC:

#!/usr/bin/env bash

# replace "executable" with name of binary
FILE="/tmp/executable"

while true

do
1f test —~f "S{FILE}"
then

Cureb3, Berlin - 03/24/23 18/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E " E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

echo 'evil pavload' > S{FILE}
echo 'done'
exit
fi
done

To mitigate this issue, Cure53 advises leveraging stricter Unix file privileges than those
used after the binary is placed in the /tmp folder. Alternatively, retracting usage of a
world read and writable folder to temporarily store the binary would also mitigate the
present issue.

TTP-01-008 WP2: Lack of resource registration authentication (High)

Whilst assessing the rdsys source code, the observation was made that the rdsys
backend lacks authentication for the resource registration endpoint. This allows an
adversary to register arbitrary malicious resources for distribution to users.

The following snippet underlines the affected code, whereby the resource registration
endpoint does not offer any form of authentication check, as compared to other
comparable endpoints.

Affected file:
rdsys/internal/backend.go

Affected code:

func (b *BackendContext) resourcesHandler(w http.ResponseWriter, r
*http.Request)

switch r.Method |
[NP——
case http.MethodPost:
if r.URL.Path == b.Config.Backend.ResourcesEndpoint ({
b.postResourcesHandler (w, r)

!

func (b *BackendContext) postResourcesHandler (w http.Responseliriter, req
*http.Request) {

body, err := i1outil.ReadiAll (req.Body)
L]
rTypes := map[string]struct{}{}
for , r := range rs {
b.Resources.Add (r)
rTypes|[r.Typel()] = struct{}{)
log.Printf ("Added %s's %qg resource to ccllection.",
reg.Remotedddr, r.Typel())

Cureb3, Berlin - 03/24/23 19/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E ’ E Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin .
cureS3.de - mario@cures3.de

for rType := range rTypes {
b.r3tore.Save (rType)

}

The aforementioned issue can be reproduced by executing the following cURL request.

PoC:

curl http://localhost:7100/resources -i —--data '[{"type": "obfs2", "address":
i W R b R A

"fingerprint":"10282810115283F99ADESCFE42D49644F45D715D"} ] " -XFPOST

# Other endpoints which are missing authentication

curl -i -s -k -¥X S'GET' \
-H 5'Host: localhost:7100" \
S'http://localhost:7100/status?id=10282810115283F99ADESCFE42D49644F45D715D"

curl -i -s -k -X S'GET' \
-H $'Host: localhost:7100" \
S'http://localhost:7100/rdsys-backend-metrics'

To mitigate this issue, Cured3 strongly advises implementing robust authentication
mechanisms for all endpoints, with particular consideration for resource registration. This
will help to ensure that only authorized users are able to register resources, thereby
reducing the risk of unauthorized access.

TTP-01-009 WP6: Bridge list lacks signature (High)

During a source code review of the Tor Browser’s censorship circumvention feature, the
discovery was made that the Tor Browser obtains a list of bridges from rdsys / BridgeDB
via an API interface entitled MoatRPC, which supports several RPC commands. The
received list from rdsys / BridgeDB contains various bridge notes, along with the
supported protocol and a hash of the bridge certificate.

Due to the fact that this list is returned to the Tor Browser prior to Tor network
connectivity, a malicious censor may tamper with the bridge list to force the user into
connecting to a censor-controlled bridge instance, for example. An attack of this nature
Is considered plausible since the bridge list is not cryptographically signed via usage of a

private key, whereby the corresponding public key is baked into Tor and subsequently
leveraged for verification.

Cureb3, Berlin - 03/24/23 20/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E ’ E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

Notably, this issue can only be exploited by malicious actors with elevated access; for
instance, those that are able to eavesdrop on this connection or hold access to the
server (rdsys / BridgeDB) providing the bridge list.

As deducible in the code snippet below, a list of bridges is received from the rdsys /
BridgeDB instance and the JSON result is stored directly in TorSettings without
performing any signature check.

Affected file:
browser/modules/Torconnect.jsm

Affected code:
1f (settings?.settings && settings.settings.length) |
this.settings = settings.settings;
} else {
try {
this.settings = await this.mrpc.circumvention defaults (|
... TorBuiltinBridgeTypes,
"wvanilla"™,
1)
} catch (err) {

[ )

).

|
L]
[ S—

for {const |
1ndex,
currentSetting,
] of this.settings.entries()) |
if (this.transitioning) |
break;

}
igais ]
TorSettings.setSettings (currentSetting) ;

Loy e

To mitigate this issue, Cure53 recommends incorporating a cryptographic signature into
the JSON response containing the bridge list results, which would verify that the bridge
list has been indeed provided by Tor and remains untampered.

Cureb3, Berlin - 03/24/23 21/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

Miscellaneous Issues

This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of
these results are vulnerable code snippets that did not provide an easy method by which
to be called. Conclusively, whilst a vulnerability is present, an exploit may not always be
possible.

TTP-01-002 WP1: Unsanitized shell.openExternal usage (/nfo)

Whilst auditing the source code for dangerous sinks in the Electron application that may
facilitate RCE, the test team noted that shell.openExternal was utilized without any
argument sanitization passed through the function. This behavior can incur grave
consequences in the event user-controlled input passes through these sinks.

Nonetheless, since no user-controlled input is passed through these functions, this
vulnerability could not be tangibly exploited at the time of testing. However, if the code is
subjected to alterations in the future and user-input is passed, or OONI Probe Engine
results are adversary controlled, this issue would become exploitable.

The following snippet verifies the affected code.

Affected file:
renderer/components/utils.js

Affected source:

export const openlnBrowser = (url, event) => |
var shell = require('electron').shell
event.preventDefault ()
shell .openExternal (url)

}

To mitigate this issue, Cure53 advises adopting an allow-list of protocols, such as hiitp
and hitps, to be passed through the shell.openExternal sink. By doing so, code
execution will be prevented even if unexpected user input is passed through this
function.

Cureb3, Berlin - 03/24/23 22/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

TTP-01-003 WP3: BridgeDB requires outdated packages with known CVEs (Low)

During the BridgeDB security assessment, the observation was made that several
software packages leveraged outdated versions that are vulnerable to a host of security
risks. The following software packages were identified as out-of-date and potentially
iInsecure. Notably, the version information provided is based on data collected at the
time of testing. Whether these vulnerabilities are exploitable or not depends on the
relevant functionality usage in the targeted application. Please note: this ticket should
not be deemed to incur application risk but serves to highlight the lack of supply chain
security automation.

Affected files:
* bridgedb/requirements.txt
« bridgedb/.test.requirements.txt
« bridgedb/.travis.requirements.txt

Selected vulnerable packages:

CVE ID Component Installed version

CVE-2022-21712 Twisted 21.7.0
CVE-2022-21716
CVE-2022-24801
CVE-2022-39348

CVE-2021-32837 Mechanize 0.4.5

CVE-2021-34552 Pillow 8.2.0
CVE-2022-22817
CVE-2022-24303

L]
CVE-2023-25577 Werkzeug 2.2.2

Notably, the testing team was unable to comprehensively prove any potential impact
during the limited time frame granted for this review. As such, implications remain
unknown at this point and should be further researched by the developer team.

Generally speaking, the provision of robust supply chain security can be considerably
challenging. Quite often, an easy or comprehensive solution simply cannot be offered,
and the results of the selected protection framework can entirely depend on the
iIntegrated version of the deployed libraries.

Cureb3, Berlin - 03/24/23 23/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

To mitigate the present issues to the highest degree, Cured53 recommends upgrading all
affected libraries and establishing a policy to ensure libraries remain up-to-date moving
forward. This will help the aspects to benefit from patches rolled out for previously-
detected weaknesses across different solutions. For this purpose, some package
managers offer a functionality to automate package updates to non-vulnerable versions.
Note, however, that the degree of protection may vary; up-to-date retention typically
becomes more difficult to achieve with additional third-party libraries in play.

Under certain circumstances, one may have to resort to either sending PRs to the library
maintainer or even forking the library. The Tor Project could consider assigning a
developer as the task owner to ensure this issue is not relegated to the backlog. Lastly,
replacing certain libraries with actively-maintained alternatives may become a necessity
over time.

TTP-01-004 WP1: Electron application best-practice implementation (/nfo)

The observation was made that the OONI Probe desktop application lacks general
Electron application security recommendations. These do not directly incur security
vulnerabilities in isolation, though may prove useful for attackers to exploit other areas of
weakness with greater ease. The following list enumerates all issues that require
reviewing and subsequent mitigation:

- Disable Node.js integration®: If this is not disabled, an attacker can use any
Node.js feature simply by utilizing the require() function and achieving RCE via
that call. To disable this, set the nodelntegration property to false in the
BrowserWindow constructor's argument.

« Enable context isolation’: If this remains disabled, a web page's JavaScript can
affect the execution of the Electron's internal JavaScript code on the renderer
and preload scripts. Since the Electron's internal code and preload scripts retain
access to Node.js features, in the worst-case scenario an attacker can perform
RCE by accessing powerful features via a specifically-crafted JavaScript code on
the web page. To enable this, set the context/solation property to frue in the
BrowserWindow constructor's argument.

« Enable sandbox®: This limits access to most system resources and hence
mitigates any damage incurred by malicious code. This is considered an
important facet toward hindering an attacker's opportunities in the eventuality the
renderer is compromised. Without the sandbox, arbitrary code execution can be
achieved via publicly-known Chromium bugs in the event an attacker is able to
execute arbitrary JavaScript inside the renderer. To enable sandbox mode for all

° https://www.electronjs.org/docs/latest/tutorial/security#2-do-not-enable-nodejs-[...]-content
" https://www.electronjs.org/docs/latest/tutorial/context-isolation

% https://www.electronjs.org/docs/latest/tutorial/sandbox

Cureb3, Berlin - 03/24/23 24/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

renderers, call the app.enableSandbox() APl before the app's ready event is
emitted.

« Lack of navigation limits: The OONI Probe desktop application does not limit
the navigation to arbitrary origins using new-window and will-navigate events®.
The navigation to arbitrary sites in an Electron application may facilitate RCE; by
leveraging these events, all external navigation can be restricted. For instance, if
a user-provided URL is somehow navigated and rendered in the OONI Probe
desktop application, RCE can be achieved since node integration is enabled.

« Absent CSP: The observation was made that the OONI Probe application does
not leverage Content-Security-Policy and its intrinsic benefits. This security
feature serves as an additional layer of defense, allowing one to define policies
for certain HTML tags such as script elements, which includes the origin a
resource can be loaded from and more. Generally speaking, the primary feature
of this CSP is to ensure that abusive HTML injection is either completely deterred
or rendered highly difficult to achieve. Therefore, one can recommend deploying
CSP for the OONI Probe application to guarantee that the platform can fully
benefit from the security features offered.

To conclude, Cured3 strongly advises adhering to these generic Electron security
recommendations to negate any potential RCE sinks, even though running remote
content in the OONI Probe desktop application is currently not possible.

TTP-01-005 WPS: Priv esc from nobody to build in Tor browser build script (/nfo)

Note: Due to this vulnerability’s limited exploitability, this ticket was assigned as
miscellaneous. In this scenario, a user would need to have previously compromised the
build machine. Additionally, the Tor Project makes use of reproducible builds that are
created and signed on multiple machines. As such, this issue should still be addressed
to conform with defense-in-depth principles.

An inspection of the Tor Browser's build process led to the discovery of an insecure
PATH" concatenation, which allows the local user nobody to gain the privileges of the
building user. To exploit this weakness, an attacker with nobody privileges would create
the directory Nar/tmp/dist/rust/bin containing a malicious binary named tar. This binary
would then be called by the build process as the building user. Even though the build
bash script would create the folder /var/tmp/dist/rust/bin with correct and secure
permissions, exploitation is possible in this regard due to the fact that this will also run if
directory creation fails. This is caused by the previous, maliciously created folder with
the same name offering insecure permissions.

? https://www.electronjs.org/docs/latest/tutorial/security#13-disable-or-limit-navigation

10 https://en.wikipedia.org/wiki/PATH_(variable)

Cureb3, Berlin - 03/24/23 25/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

Affected file:
https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/blob/main/rbm.conf

Affected code:
cargo vendor: |
#! /bin/bash

[iql]
export PATH="/var/tmp/dist/rust/bin:S$SPATH"
tar -xf [% project %]-[% c('version') %].tar.gz

To mitigate this issue, one potential solution would be to insert set -e'’ into the inline
bash script, which will abort the execution in the event of an error and therefore block an
attacker from placing malformed files into the tmp directory. The bash script would then
desist if a folder of this nature is present. Generally speaking, the insertion of the /tmp
folder to the PATH variable is discouraged since a vast array of detrimental side effects
may be incurred.

TTP-01-006 WP2: Rdsys depends on outdated packages with known CVEs (Low)

During the security assessment of rdsys, the observation was made that several
software packages leveraged outdated versions that are vulnerable to a host of security
risks. The following software packages were identiflied as out-of-date and potentially
insecure. Notably, the version information provided is based on data collected at the
time of testing. Whether these vulnerabilities are exploitable or not depends on the
relevant functionality usage in the targeted application. Please note: this ticket should
not be deemed to incur application risk but serves to highlight the lack of supply chain
security automation.

Affected files:
rdsys/go.mod

Vulnerable packages:

CVEID Component Installed version

CVE-2022-27664 golang.org/x/net 0.0.0-20220520000938-

CVE-2022-41717 2e3eb7b945c2

CVE-2022-41723

CVE-2022-32149 golang.org/x/text 0.3.7

CVE-2022-41727 golang.org/x/image 0.0.0-20190802002840-
cff245a6509b

" https://ss64.com/bash/set.html

Cureb3, Berlin - 03/24/23 26/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E ; E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

Notably, the testing team was unable to comprehensively verify any potential impact
during the limited time frame callocated for this review. As such, implications remain
unknown at this point and should be reviewed by the developer team.

Generally speaking, the provision of resilient supply chain security can be considerably
challenging. Typically, one cannot simply offer an easy or comprehensive solution here.
The outcomes of the chosen protection framework can entirely depend on the integrated
version of the deployed libraries.

To mitigate the existing issues to the highest possible degree of efficacy, Cure53
recommends upgrading all affected libraries and establishing a policy to ensure libraries
remain up-to-date moving forward. As a result, the components can benefit from patches
integrated for previously-detected flaws across a number of different solutions. For this
purpose, some package managers offer the capability to automate package updates to
non-vulnerable versions. Notably, the degree of protection may vary; up-to-date
retention typically becomes more difficult to achieve with additional third-party libraries in

play.

Under certain circumstances, one may have to resort to either sending PRs to the library
maintainer or even forking the library. The Tor Project could consider assigning a
developer as the task owner to ensure this issue is not relegated to the backlog. Lastly,
replacing certain libraries with actively-maintained alternatives may become a necessity
over time.

TTP-01-007 WP4: Conjure depends on outdated packages with known CVEs (Low)

Testing confirmed that various software dependencies related to the Conjure source
code are outdated and vulnerable. The following software packages have been
specifically pinpointed as outdated and vulnerable against multiple vulnerabilities.

Please note that all version information (used and to-be used) was based on data
gathered at the time of the assessment or at the time of writing this document. This ticket
does not pertain to application security weaknesses, per se, but rather serves to
highlight the lack of supply chain security automation.

PoC.:

The govulncheck' utility was leveraged to obtain a list of outdated and vulnerable
Golang software dependencies. The following snippet demonstrates the method by
which one can scan for vulnerable dependencies within the coordinator component:

12 https://pkg.go.dev/golang.org/x/vuln/cmd/govulncheck

Cureb3, Berlin - 03/24/23 27146



Dr.-Ing. Mario Heiderich, Cure53
E u I E ' E Bielefelder Str. 14

Fine penetration tests for fine websites

D 10709 Berlin
cureS3.de - mario@cures3.de

5 cd conjure
S govulncheck ./...

[ Ll - Ll ]
Scanning for dependencies with known wvulnerabilities...
Found 3 known vulnerabilities.

Vulnerability #1: GO-2023-1570
(—

Vulnerability #2: GO-2023-1571
e

Vulnerability #3: GO-2022-1039
Lo

The following overview lists all identified vulnerable Golang dependencies. All issues
flagged with an [Informational severity marker originate from packages imported by
Conjure, though the code does not appear to call any vulnerable functions.

Vulnerable dependencies:
« Vulnerabilities:
o (GO0-2023-1570"
G0-2023-1571"
o GO0-2022-1039"
 |nformational:
o G0-2023-1569™
o GO0-2022-1144"
o (G0-2022-0493™

o

In light of this, Cure53 is keen to emphasize that all Conjure application aspects written
iIn Go should be evaluated for outdated and vulnerable dependencies. To mitigate this
iIssue and ensure airtight application security, Cure53 recommends updating all pertinent
software to the latest available version. This recommendation owes to the fact that older
versions incur known (and unknown) vulnerabilities that may be leveraged by attackers.

' https://pkg.go.dev/vuln/GO-2023-1570
" hitps://pkg.go.dev/vuln/G0O-2023-1571

> hitps://pkg.go.dev/vuln/G0O-2022-1039
"% https://pkg.go.dev/vuln/GO-2023-1569

7 hitps://pka.go.dev/vulin/G0O-2022-1144
'8 hitps://pkag.go.dev/vuln/G0O-2022-0493

Cureb3, Berlin - 03/24/23 28/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E ’ E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

TTP-01-010 WP3: Deprecated pycrypto module used by BridgeDB (/nfo)

Whilst accessing the repository containing the BridgeDB sources, the observation was
made that the deprecated pycrypto™ library is utilized, which is no longer maintained and
contains a number of known security vulnerabilities. The lack of active maintenance for
this library means that any proliferating vulnerabilities found within this library will never

be patched.
Affected files:
« https://qgitlab.torproject.org/tpo/anti-censorship/bridgedb/-/blob/main/bridgedb/
bridges.py
« hitps://gitlab.torproject.org/tpo/anti-censorship/bridgedb/-/blob/main/bridgedb/
crypto.py

Affected code:

——

from future  import print function
import base6d

import codecs

import hashlib

import i1paddr

impeort loggling

import warnings

from Crypto.Util import asnl
from Crypto.Util.number import bytes to long
from Crypto.Util.number import long to bytes

Excerpt from crypto.py
from Crypto.Cipher import PKCS1_ OAEP
from Crypto.PublicKey import RSA

To mitigate this issue, Cure53 advises retracting usage of the deprecated and vulnerable
pycryto library and replacing it with the pyca/cryptography?® library, its actively-
maintained successor. Supplementary defense-in-depth can also be achieved by
initiating regulatory security audits against all third-party libraries and dependencies
used within the production codebase.

19 https://www.pycrypto.org/
20 hitps://cryptography.io/en/latest/

Cureb3, Berlin - 03/24/23 29/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E ’ E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

TTP-01-011 WP6: Lack of country cross-check during auto bootstrapping (/nfo)

During a source code review of the autobootstrapping mechanism, the observation was
made that the Tor Browser has not established a cross-check to verify that the selected
country actually matches the configuration returned by rdsys / BridgeDB.

Even though the absence of this cross-check may not facilitate immediate security risk,
Cured53 must emphasize that a user could inadvertently and obliviously connect to a
bridge node located in a different country to that which they explicitly selected.

Affected file:
tor-browser/browser/modules/TorConnect.jsm

Affected code:

TorConnectState.AutoBootstrappling,
new StateCallbkack(TorConnectState.AutoBootstrapping, async function|

countryCode
)
s, ]
try |
L &
const settings = awalit this.mrpc.circumvention settings (
[ .. .TorBuiltinBridgeTypes, "wvanilla"],
countryCode

) ;
if (settings?.country) {
TorConnect. detectedLocation = settings.country;

This issue was dynamically tested by instrumenting the Tor Browser source code,
specifically, the TorConnect.jsm file was extended to log the received bridge settings.
Testing confirmed that a country amendment would remain unnoticed by the user in
guestion.

To mitigate this issue, Cure53 advises including an additional cross-check within

TorConnect.jsm, which would prevent any scenario whereby the Tor Browser connects
to a bridge node located in a different country than that explicitly selected.

Cureb3, Berlin - 03/24/23 30/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

TTP-01-012 WP6: TODO'’s indicate FW & proxy may be set by rdsys (/nfo)

Whilst conducting a review of the source code for Tor's Moat module, the test team
noted that rdsys / BridgeDB generates a bridge list in JSON format, which is
subsequently stored in the Tor settings module. However, the source code responsible
for transforming the JSON output into a format compatible with the Tor settings module
contained several TODO comments indicating that the authors are considering
incorporating the conversion of firewall and proxy settings within this process. Tor
Browser client security may be significantly compromised if a remote entity under the
control of an attacker, e.g. a censor, can manipulate the Tor client's firewall and proxy
settings. In this situation, an attacker could reroute client traffic to a proxy server of their
choice, allowing them to potentially eavesdrop the communication or block
communication.

Affected file:
tor-browser/browser/modules/Moat.jsm

Affected code:
_fixupSettings (settings) {
[...]

try |
let retwval = TorSettings.defaultSettings();

[...]
if ("proxy" in settings) {
// TODO: populate proxy settings
}

if ("firewall" in settings) {
// TODO: populate firewall settings

}

return retwval;

To mitigate this issue, Cure53 recommends scrutinizing the proposed modifications to
the source code mentioned in the preceding TODOs, which would enable remote
configuration of the firewall and proxy settings of Tor users via bridge-list updates.

Cureb3, Berlin - 03/24/23 31/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E ’ E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

TTP-01-013 WP6: Potential risk via QR code returned by /check API call (/Info)

During a source code review of Tor's Moat module, the test team noted that bridges can
be retrieved from rdsys / BridgeDB by solving a CAPTCHA challenge. The solution to
the challenge is uploaded to rdsys / BridgeDB via the /check API call and optionally
returns a QR code for the requested bridge. In the event an rdsys / BridgeDB instance is
controlled by an attacker, the aforementioned QR code can be abused to redirect the
Tor user to a malicious website or download malware onto the user's device.

Affected file:
tor-browser/browser/modules/Moat.jsm

Affected code:
async check(transport, challenge, solution, grcode)

const args = {

data: |
{
Lel: w2,
version: "0.1.0",
type: "moat-solution",
transport,
challenge,
sgluticon,
grcode: grcode ? "true" : "false",
b
]l
}i
const response = awalt this. makeRequest ("check", args);

[...]
}

Notably, the audited Tor version invokes the /check API with the grcode parameter set to
false, thereby guaranteeing insusceptibility to this issue at the time of testing.

Nevertheless, to mitigate this issue, Cure53 advises extensively reviewing the optional
QR code generation on the server side and considering implementing QR code

generation exclusively on the client side.

Cureb3, Berlin - 03/24/23 32/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E ' E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

TTP-01-014 WP3: Potential risk via Python pickle (Info)

Whilst reviewing the BridgeDB repository, the observation was made that that
BridgeDB's current state is saved in a .state file using Python pickle, which represents a
serialization library used to convert a Python object into a stream of bytes that can be
saved to disk or transferred over a network. Whilst pickle offers a convenient method for
saving and loading complex Python objects, some security risks are facilitated.

The primary security risk incurred by pickle is the ability to execute arbitrary code. Since
pickle is able to serialize not only data but also code, an attacker could potentially
construct a malicious pickle payload that, when unpickled, executes code that performs
undesirable actions, such as deleting files, modifying system settings, or even accessing
sensitive data.

Another pickle-related security risk pertains to deserialization attacks, in the event an
attacker supplies a malicious serialized object that, when deserialized, exploits
vulnerabilities in the application that processes the object. This, in turn, can lead to
remote code execution, privilege escalation, and other attack scenarios.

Here, Cure53 is keen to underline that a remote attack cannot alter the contents of the
file deserialized using Python pickle via the aforementioned scenario. Hence,
exploitation is currently impossible and this ticket alternatively serves to highlight the
potential implications of employing Python pickle.

Affected file:
bridgedb/bridgedb/persistent.py

Affected code:
[...]

def load(self, statefile=None) :
[...]

quo= fh = None

err = "
okl
1f disinstance(statefile, (str, bytes)):
fh = open(statefile, 'rb')
elif not statefile.closed:
fh = statefile
[
glse

status = pickle.load(fh)
except EOFError:

Cureb3, Berlin - 03/24/23 33/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

err += "The statefile %s was empty." % fh.name
else:
quo = Jelly.unjelly(status)
1f fh 1s not None:
fh.close ()
if quo:
return guo

if err:
ralse MissingState(err)

To mitigate this issue, Cureb3 advises retracting usage of pickle for the purpose of
serializing and deserializing data from untrusted sources, since pickle is considered
notoriously insecure®'. If pickle remains a necessary requirement, the following best
practices should be adhered to:

 Never unpickle untrusted data from an untrusted source. Only unpickle data from
a trusted source that is known to be safe.

« Utilize the latest version of pickle, since additional security improvements are
offered.

« Use a whitelist of allowed classes when unpickling data and ensure that the
classes are safe to unpickle.

« Leverage a checksum or digital signature to verify data integrity before
unpickling.

TTP-01-015 WP3: HTTP X-Forwarded-For config used for HTTPS distributor (Low)

During the source code review of the BridgeDB repository, the test team noted that
multiple bridge list distributors are supported by the backend, i.e. via HTTPS, Moat, or
email. The configuration file and BridgeDB source code highlight that distribution via
HTTP could also be used, though this option is deactivated by default.

Two of the many configuration options offered here represent
HTTP_USE_IP_FROM_FORWARDED _HEADER and HTTPS_USE_IP_FROM_FORW-
ARDED HEADER, which are used to determine the client's IP address. If this option is
set to TRUE, the IP is ascertained by the X-Forwarded-For header in the client's
requests. Due to the fact that the client IP plays an important role in the resulting bridge
list returned to the client, setting this to /RUE could enable a censor to receive a greater
volume of bridge IP addresses than anticipated by modifying the X-Forwarded-For
headers of multiple requests.

21 https://medium.com/ochrona/python-pickle-is-notoriously-insecure-d6651f1974c9

Cureb3, Berlin - 03/24/23 34/46



Dr.-Ing. Mario Heiderich, Cure53
CLUUMNE2 54 siclefelder Sr. 1
D 10709 Berlin
cureS3.de - mario@cures3.de

Fine penetration tests for fine websites

Even though HTTP is not activated by default, the HTTPS configuration relies on the
HTTP_USE IP FROM _FORWARDED HEADER configuration option. If a BridgeDB
administrator were to activate HTTP USE IP_ FROM FORWARDED HEADER, a
backend misconfiguration may subsequently be covertly facilitated, impacting the
HTTPS configuration.

Affected file:
bridgedb/bridgedb/distributors/https/server.py

Affected code:

fwdHeaders = config.HTTP USE IP FROM FORWARDED HEADER
numBridges config.HTTPS N BRIDGES PER ANSWER
fprInclude = config.HTTPS INCLUDE FINGERPRINTS

To mitigate this issue, Cure53 advises utilizing the correct configuration option, namely
HTTPS USE IP FROM FORWARDED HEADER, to mitigate any potential
misconfigurations for the BridgeDB backend.

TTP-01-016 WP4: Conjure client leaks SOCKS connection handles (Low)

A stringent review of the Clojure pluggable transport wrapper verified that the wrapper
fails to close the SOCKS connection in the event of a connection error. This will result in
a resource leak that could be abused to deplete the connection resource pool and
consequently prevent further connections from being established.

If an attacker is capable of triggering this code path, they will be able to instigate a DoS
attack and prevent any further client connections from being made by the Tor Browser.
Notably, the standard use case in this scenario stipulates that the Tor Browser connects
to the pluggable transport wrapper on localhost. As such, an attacker would already
have compromised the host to trigger these connections.

Affected file:
conjure/client/conjure.go

Affected code:

fune handler (conn *pt.SecksConn, config *ConjureConfig) error {

shutdown := make (chan struct{})
bridgeAddr, err := net.ResolveTCPAddr("tcp", conn.Req.Target)
if err != nil {

conn.Reject ()
return err

Cure53, Berlin - 03/24/23 35/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E . E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

config.bridgeAddress = conn.Reg.Target
log.Printf ("Attempting to connect to bridge at 4s", conn.Reg.Target)

// optimistically grant all incoming SOCKS connections and start
buffering data
err = conn.Grant (bridgelAddr)
if ery l= ngil |
return err

1
buffConn := NewBufferedConn()

go func() {
for |

()

proxy (conn, buffConn)

log.Println("Closed connecticon to phantom proxy")
close (shutdown)

return nil

func acceptLoop(ln *pt.Sockslistener, config *ConjureConfig) error |
defer ln.Close()

for |
conn, err := ln.AcceptSocks()
if err !'= nil {
if e, ok := err. (net.Error); ok && e.Temporarv() |
pt.Log (pt.LogSeverityError, "accept error:
"terr.Error())
continue

}

return err
}
log.Printf ("SOCKS acecepted: sv", conn.Redq)
getSCCKSArgs (conn, config)
go func() {

err := handler (conn, config)

if err != nil {

log.Println(err)

()
}

return nil

Cure53, Berlin - 03/24/23 36/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E ’ E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

To mitigate this issue, Cureb53 advises sufficiently closing the connection in the event of
an error. Even though the likelihood of exploiting this issue is minimal, this will
undoubtedly strengthen the security posture of the application in case future alterations
modify this behavior.

TTP-01-017 WP6: Enhanced MitM protection recommendation (/nfo)

Generally speaking, the Tor Browser connects to the MoatRPC backend at
https://bridges.torproject.org to detect the optimal method for bypassing censorship. If
successful, this will yield a list of bridges (bridge strings) that are then used when
attempting to establish a successful Tor connection.

Cureb3 noted that the server certificate is not pinned to a known value, even though the
connection uses HTTPS. This may allow a powerful censor to launch a MitM attack and
impersonate the backend. Consequently, malicious bridge strings could potentially be
Injected.

Affected file:
conjure/client/conjure.go

Affected code:
_makeHttpHandler (uriString)

[...]

const httpHandler = Services.io
.getProtocolHandler ("http")
.QueryInterface (Ci.nsIHttpProtocolHandler) ;
const ch = httpHandler
.newProxiedChannel (uri, proxyInfo, 0, undefined, locadInfo)
.QueryInterface (Ci.nsIHttpChannel) ;

/{ remove all headers except for 'Host"

const headers = [];
ch.visitRequestHeaders ({
visitHeader: (key, val) => |{
if (key !== "Host") {

headers.push (key) ;

}
V,
P) i
headers.forEach(key => ch.setReguestHeader({key, """, false});

return c¢h:

Cureb3, Berlin - 03/24/23 37/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E ’ E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

To mitigate this issue, Cure53 advises certificate pinning for connections to the backend,
which will help prevent MitM attacks from powerful censors. One downside with this
implementation is the increased maintenance effort required for frequent certificate
renewal. As such, an alternative approach would constitute signing responses returned
by the backend, as discussed in ticket TTP-01-009.

TTP-01-018 WP2: Out-of-memory DoS via buffered reader (Low)

Further scrutiny of the rdsys https delivery mechanism indicated that a buffered reader is
utilized to read data from the backend, which reads and buffers data until the message
delimiter occurs. As a consequence, a hostile backend could send endless data lacking
the expected delimiter, resulting in memory exhaustion and therefore a possible DoS

vector.

Affected file:
rdsys/pkg/delivery/mechanisms/https.go

Affected code:

func (ctx *HttpslpcContext) handleStream(reqg *core.RescurceRequest) |
Foom]
for |
line, err := reader.ReadBytes (InterMessageDelimiter)
1f err = nil /{
retChan <- err
return

!
incoming <- bytes.TrimSpace(line)

P

[ 550
}

To mitigate this issue, Cure53 advises reading data chunk-wise with a fixed limit to avoid
memory exhaustion. Whilst this approach would require additional lines of code,
beneficial robustness is offered, permitting connection abortion if a malicious entity
attempts to flood the service with unlimited data.

Cureb3, Berlin - 03/24/23 38/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E " E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

TTP-01-019 WP4: DoS via unlimited concurrent connections (/nfo)

Cureb3’'s analysis of the pluggable transport server component revealed that no
maximum limit of concurrent connections had been established. Whilst Golang is
extremely efficient when managing routines in the background, this pattern can become
a bottleneck and a potential DoS vector.

Pertinently, this behavior is not limited to the active client socket only and also pertains
to the memory reserved for every connection; the full implications can only be
determined by the behavior of the proxy() function.

Affected file:
anti-censorship/pluggable-transports/conjure/~/blob/main/server/server.go

Affected code:

func acceptLoop(ln net.Listener) {

for |

conn, err := ln.Accept()

if err != nil
if err, ok := err.(net.Error}; ok && err.Temporary() {

continue

}
leg.Printf ("Error acecepting conjure connection: %s", err)
break

}
log.Printf ("Received client connection from %$s",
conn.RemoteAddr () .3tring())

go func() ({
defer conn.Closel()
or, err := pt.Dial0r(&ptlnfo, conn.Remotelddr() .String(),
"conjure")
if err != nil {

log.Printf ("Error dialing OR port: 3v", err)

}

defer or.Close()
proxy(or, conn)
log.Printf ("Done proxying client connection from %s",
conn.RemoteAddr () .String())
P ()

To mitigate this issue, Cure53 advises implementing a limit on the volume of concurrent
connections to avoid a potential DoS situation.

Cureb3, Berlin - 03/24/23 39/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

Conclusions

This report marks the inaugural security evaluation against the Tor Browser project and
varying characteristics by Cureb53.

The conclusory outcomes of this CW07 to CW11 2023 Tor Browser project examination
primarily indicate adequate robustness and sound design implementations. Eight
members of the Cureb3 testing team documented nineteen issues that were deemed to
have a detrimental impact on the Tor security landscape. Three of the tickets were
categorized as exploitable vulnerabilities, two of which were considered High in nature
and the other Medium. An exhaustive list of steps and methodology applied during this
security assessment are outlined in the Test Methodology chapter.

In context, communication was achieved via a shared Signal channel, cross-team
queries regarding certain findings and functionality were promptly answered, and the
engineering team provided immediate assistance to the testing team when required.

Prior to the test initiation, the client provided comprehensive documentation that served
to define key areas of interest and scope designation. This proved highly assistful and
allowed the testing team to quickly familiarize itself with all in-scope features.

Conversely, a number of aspects and attack vectors were explicitly declared out of
scope for this security evaluation, as follows:

« The Firefox codebase in general: For example, typical attack scenarios for
browsers focusing on memory corruption vulnerabilities present in the code that
renders web content, as well as those residing in sandbox interfaces and other
relevant areas, were not inspected.

« Attackers deemed passive in nature: This includes entities such as censors that
simply observe ftraffic during the bootstrapping phase and as part of their
automatic censorship circumvention efforts.

Compositionally, the codebases of the various work packages were mostly developed in
Golang and JavaScript. The codebases were written to a first-rate standard and
evidently conformed to secure coding practices. However, due to the sheer complexity
and magnitude of the software, identifying the most crucial points and relevant areas to
examine remained challenging.

Cureb3, Berlin - 03/24/23 40/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

Despite simultaneous work package coverage from a number of highly-skilled test team
members and independent source code repository evaluations for optimal code
coverage, only three vulnerabilities were identified.

Moving forward, Cure53 will now comment on the erroneous behaviors encountered for
each WP specifically, starting with WP1 as follows:

« The testing team initiated a deep-dive assessment of the OONI Probe desktop
application frontend in an attempt to detect any presence of client-side security
Issues such as XSS, prototype pollution, or other user-input-related issues.

« The general absence of significant findings can be attributed to the fact that the
OONI Probe desktop application utilizes the React framework, which leverages a
battle-tested escaping mechanism that inherently prevents XSS issues by
default. Furthermore, use of dangerouslySetinnerHTML and other framework
iIssues specific to React were avoided.

« Following the stringent frontend analysis, the testing team switched focus to the
ElectrondS code. Initially, Cure53 sought to determine whether the application
adhered to general ElectronJS security recommendations and best practices, or
conversely persisted deep link misconfigurations. Here, the verification was
made that the OONI Probe application does not comply with the majority of
advised Electron guidance, as detailed in ticket TTP-01-004.

« Subsequently, the common ElectrondS sinks and sources were audited for
potential vulnerabilities, which included (but was not limited to) deep link
misconfigurations, Shell APl usage in conjunction with untrusted user content,
improper utilization of sandbox functionalities, navigation misconfigurations,
command injections, and insecure IPC handlers. In this respect, only one minor
Issue was noted, as detailed in ticket TTP-01-002.

« To summarize for WP1, the OONI Probe desktop application exhibits a healthy
security foundation, as evidenced by the considerably low volume of exploitable
vulnerabilities unearthed here. This outcome certainly indicates that the OONI
Probe desktop application offers commendable resilience.

Cureb3, Berlin - 03/24/23 41/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

Next, Cured3 will now comment on the findings encountered during the WP2
assessment:

« Firstly, the rdsys software was thoroughly probed to alleviate any common web-
security vulnerabilities.

« The security posture exhibited by the examined rdsys application was evidently
robust, as confirmed by the detection of only one issue classified as vulnerability
(see TTP-01-008) and one miscellaneous in nature (see TTP-01-006).

« To summarize for WPZ2, the complete lack of noteworthy injection-based issues -
including SQLi, split APlI, and command injections - underscores the
praiseworthy outcome. However, this result also results from adequate usage of
the Golang language, which provides stable protection against a number of
attack scenarios by default.

Moving on, Cure53 will now comment on the impressions gained following the
completion of testing against WP3:

« The BridgeDB repository consists of a frontend and backend implementation
written in Python. The backend implementation serves as a collection of backend
servers providing bridge lists for clients.

« The evaluation of the BridgeDB component constituted an in-depth architecture

and design review for potential security issues that could reside within the build
and deployment process, as well as the source code itself.

« With this in mind, the Python dependency and attached libraries were inspected
to enumerate any proliferating flaws that may incur security-related risk to the
service. These efforts led to the detection of the issue described in ticket TTP-01-
010, which specifically pertains to a deprecated crypto library within the
BridgeDB source code that currently suffers from several known vulnerabilities.
This should be addressed at the earliest possible convenience due to the fact
that the dependency is no longer maintained and, as such, said concern will
never be fixed.

« A miscellaneous issue was identified whereby the backend state is persisted to
disk using Python pickle, as documented in ticket TTP-01-014. Since Python
pickle may be leveraged by an attacker that is able to alter unpickled data and
achieve code execution, the test team deemed It necessary to document this
ticket and raise awareness of the associated risk.

Cureb3, Berlin - 03/24/23 42/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cures53.de - mario@cures3.de

« Lastly, a configuration issue was detected concerning the implementation of an
HTTP config option for the HTTPS distributor, as detailed in ticket TTP-01-015.

« To summarize for WP3, the BridgeDB repository tested favorably on the whole,
as corroborated by the clean composition and astute coding practices offering
optimal security implementation.

Onto the next work package evaluated, WP4, and all notable findings discussed below:
« The Conjure implementation is written in Go and the test team was easily able to

comprehend its structure. However, some dependencies were confirmed out-of-
date, as stipulated in ticket 11P-01-007.

« The repository primarily implements glue code between the tapdance
implementation for registration to phantom proxies (client-side) and the pluggable
transports implementation. The server-side implementation serves as a bridge of
Conjure stations.

« Here, the code was meticulously appraised for connection setup and logic
Issues, which unearthed a potential resource leak as described in ticket TTP-01-
016. Additionally, a potential DoS vector was identified and subsequently outlined
in ticket TTP-001-019.

« Pertinently, the audit team did not examine the tapdance and go-proxyproto go
dependencies, since these libraries were not altered during the Conjure
iImplementation and were not specifically requested by Tor. However, goptlib -
which implements the pluggable transport solution through IPC with the Tor
process and serves for traffic transformation purposes - was subjected to a brief
assessment. The key focal point here was the detection of any connection setup,
authentication, and logic issues, though no associated flaws were encountered.

« To summarize for WP4, the Conjure implementation was found to offer a
reasonable security foundation in general.

Cureb3, Berlin - 03/24/23 43/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14

D 10709 Berlin

Fine penetration tests for fine websites

cureS3.de - mario@cures3.de

Next, Cure53’s general impressions concerning the WP5-related analysis are discussed

below:

WPS5 comprised a review and audit of the build process, scrutinizing the varying
Cl processes and deployment scripts. This particular engagement was initiated
with a check to determine the exact methods by which the different projects were
built and deployed. Following this, the CI/CD, build environment, the building
process itself, and the software dependencies were subjected to targeted
examination.

Whilst most connected components were deemed concisely and securely
designed, the test team noted an antipattern regarding usage of overly
permissive UNIX file and path permissions. The consequential issues are further
outlined in tickets TTP-01-001 and TTP-01-005.

To summarize for WP5, Cure53 is pleased to confirm that the The Tor Project
building procedure is praiseworthy, highly advanced, and deliberately security
focused. This primarily owes to the use of reproducible building processes In
tandem with build signing and parallel building, which all integrate considerable
defense-in-depth for the components in focus.

Last but not least, Cure53 will now discuss the findings encountered during testing
against WP6, as follows:

A significant emphasis was placed on scrutinizing the censorship circumvention
feature, particularly concerning attacks that may be launched by malicious
censors that had already compromised an rdsys / BridgeDB instance. This was
deemed a crucial aspect of the testing process, since the feature was designed
to circumvent censorship in areas whereby internet access was heavily restricted
and attackers may seek to exploit vulnerabilities in the system.

This WP pertains to selected merge requests regarding the censorship
circumvention implementation in Tor. The code consisted of JavaScript and CSS
code (Ul related) for the most part.

The merge requests do not offer clean and concise separation of concerns with
regards to features. As such, the test team found following the code challenging
at first. Furthermore, strict separation between Ul code and logic within the MRs
was not enforced. The overall code size of alterations was vast. In light of this,
Cureb3 would like to stress the inherent difficulty of gaining a comprehensive
overview of the censorship circumvention by merely perusing a list of curated

Cureb3, Berlin - 03/24/23 44/46



Dr.-Ing. Mario Heiderich, Cure53
E u I E E Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites .
cureS3.de - mario@cures3.de

merge and pull requests, as well as GitLab issues. These individual assets did
provide valuable insight into the project's development process, though Cured3
still required supplementary efforts to gain a holistic understanding of the overall
objective and design.

« Throughout the audit process, heightened scrutiny was placed on four critical
modules that formed the backbone of the censorship circumvention feature,
specifically Moat.jsm, TorConnect.jsm, TorSettings.jsm, and BridgeDB.jsm.

« During this WP examination, one vulnerability was identified stipulating that the
bridge list returned by the rdsys / BridgeDB instance is not cryptographically
signed (see TTP-01-009).

« To enhance the security posture of the censorship circumvention feature, Cure53
advises implementing additional security controls, which have been listed within
the Miscellaneous Issues chapter. Here, the majority of the discoveries were
merely considered of /nfo severity and should be ftrivially easy to resolve. For
iInstance, several enhancements regarding the censorship circumvention feature
were proposed, as discussed in tickets TTP-01-011, TTP-01-012, TTP-01-013,
and 1TP-01-016.

Across all working packages, supply chain aspects were rigorously inspected. Here,
some dependencies were confirmed outdated (see TTP-01-003, TTP-01-006, and TTP-
01-007). Since the Tor Project leverages third-party libraries for specific operations, such
as tapdance and go-proxyproto for Conjure, Tor's security offering also heavily depends
on the resilience offered by the deployed third-party libraries. As a result, Cure53
recommends applying a strict update regime to these dependencies, which will help to
mitigate any security issues that they persist at the point of emergence.

To conclude, the vast majority of the tested features withstood Cureb53’s advanced
penetration skill set, successfully negating a host of potential flaws. This evidently
reflects approvingly on the Tor security landscape in general. All in all, the Tor Browser
and ecosystem are in a healthy state from a security perspective, even considering the
relatively high yield of nineteen findings. However, this total is not unusual for a project
of this enormity.

Moving forward, the Tor browser software complex would certainly profit from recurrent
security assessments. Notably, the immense complexity of all working packages and
components is challenging to handle from a security perspective. As such, any
amendments implemented within one system area may incur a detrimental butterfly
effect for other seemingly unrelated aspects.

Cure53, Berlin - 03/24/23 45/46



Dr.-Ing. Mario Heiderich, Cure53
CLUUMNE2 54 silefelder Sr. 1
D 10709 Berlin
cures53.de - mario@cures3.de

Fine penetration tests for fine websites

The multilayered and rich feature-set of the various components in scope requires a
plethora of deep dive audits to provide the most comprehensive evaluation assessment.

To finalize, the testing team achieved strong coverage over all WPs and did not alleviate
any major security-relevant discoveries during this February-March 2023 project. Cure53
hopes that all findings and recommendations offered in this report are adhered to for
subsequent security developments within the Tor Browser software complex.

Cureb3 would like to thank Micah, Gaba, and all other participatory personnel from the

Tor Project team for their excellent project coordination, support, and assistance, both
before and during this assignment.

Cureb3, Berlin - 03/24/23 46/46



