BDS C User’s Guide Introduction

Chapter 1

| ntroduction

Leor Zolman
BD Software
74 Marblehead Street
North Reading, MA 01864
(978) 664-4178
|eor @bdsoft.com

1.1 HdloThere

Thank you for purchasing BDS C. This software package is one programmer’s personal

implementation of the systems programming language C, geared exclusively for microcomputers
running the CP/M-80 operating system. The primary design goal with BDS C was to createa C

development environment that would allow programmers to move forward at a rapid, efficient
pace as structured programs are developed—even on floppy-based systems. To this end, the
compiler and linker were designed to perform as much of their work as possible in memory, with
aminimum of disk activity. The result is a development cycle fast enough to support repetitive
program compilation, linkage and execution without inducing nervous disordersin its users.

1.2 Quick Start

If you have just opened up your package and would like to see the compiler “do something” as
quickly as possible, then follow these steps:

1. First, put write protect tabs on your master disk set. Make sure that the disks are
readable; if they aren’t, then check with your software vendor to make sure you got the
correct disk format for your computer system. Once you' ve determined that the disks
are OK, make copiesimmediately and set aside your original disks for safekeeping. It is
very easy for files (and even entire disks) to be accidentally erased during the process of
debugging certain typesof C programs. Don't take chances, make back-ups ofyour
work frequently!

2. Choose a convenient working area (either an applications drive, or a clean user area on

a hard disk system) having at least 100K free. Into this area, copy the following files
from the first distribution diskette: CC.COM, CC2.COM, CLINK.COM,

BD Software Page 1

November 1988 BDS C User’s Guide

C.CCC, DEFF.CRL, DEFF2.CRL, STDIO.H and TAIL.C. After copying thesefiles,
make sure there are at least 20K bytes free.

3. Make the work area chosen above be the currently logged drive/user area. Givethe
following sequence of commands:

cc tail

clink tail
type tail.c
tail tail.c -5

4. When you have completed the sequence of commands listed above, the fina command
should have caused the fina five lines of the file TAIL.C to be printed on the console
output. These five lines should be an identical match to the last five lines of output from
the previous TYPE command. If this is indeed what happened, then you are up and
running, and you’ ve also got yourself a new general purpose utility named TAIL.COM
that will instantly print out the last n lines of any text file, no matter how large thefile.

5. If the TAIL command did not work, or if you got any errors during any of the previous
commands, then check the checksums (using CRCK.COM and CRCKLIST.CRC) of all
files in the work area that were copied from the distribution disk. If the checksums do
not match, then the file(s) whose checksums didn’t match were incorrectly written;
contact your dealer to obtain replacement files. If the checksum values do indeed match
those listed in the CRCKLIST.CRC filefor all files being used, then there is something
really wrong and you should obtain help from either your dealer, alocal BDS C guru,
or from BD Software directly.

6. You are now ready to set up a permanent working environment for your BDS
C package. Read the section later in this chapter entitled Configuration inorder to
familiarize yourself with all the configuration options, especially the concept of the
Default Library Area. Note that the selection of an explicit default library area (separate
from your C source program work area) is optional, depending on how much disk
storage you have on your computer system. If you have less than 250K of storage per
floppy and no hard disk system, don't worry about selecting a default library area. If
you have over 500K per floppy and/or a hard disk, then it is definitely
recommended that you select a default library area. If you have no hard disk and a
data capacity somewhere between 250K and 500K per floppy, then whether or not
you choose to organize your support files in a default library area depends on your
own particular taste.

7. Now select adefault library areaif you wish, or elsejust pick a particular disk drive and
user area where you are going to be doing all your BDS C development work. Make
that area the currently logged drive/user area, and copy all the files listed in step 3
(except TAIL.C) here. If the file CCONFIG.COM s provided on your distribution disk
set (it would be the last file of the package), then copy it into your currently
logged drive/user area and skip the rest of this step. If CCONFIG.COM is not
provided, then copy in the files CCONFIG.H, CCONFIG.C, and CCONFIG2.C. Make
sure you have at least 50K of free disk space, then issue the commands:

Page 2 BD Software

BDS C User’s Guide Introduction

cc cconfig.c -e5000
cc cconfig2.c -e5000
clink cconfig cconfig2

8. Enter the command

cconfig

9. You should now be under the control of the CCONFIG utility. If you have chosen to
use a default library area, then pick options 0) and 1) to define that area. Then go
through as many of the other options as you wish to customize. When you are done,
give the “q” command to quit, and let CCONFIG write out the changes. Y ou now have
new versions of CC.COM and CLINK.COM that have been customized for your
system. (Note that in Chapter 1 of the User’s Guide, the sequence given for compiling
CCONFIG isincorrect. Be sure to use the sequence shown in the previous step, unless
you were provided with a pre-compiled CCONFIG.COM.)

10. If your CP/M system knows about command path searching (as, for example,
when running under ZCPR or MicroShell), then place copies of the CC.COM
and CLINK.COM commands just created, plus CLIB.COM from the distribution
package, into the system command directory. (Y ou may also wish to place TAIL.COM
there.)

11. If you have chosen to select a default library area separate from your BDS C work area,
then you can now test the default library areafeature. To do so, choose an empty
drive/user area combination. If your system does not support command path searching,
then place copies of only the two files CC.COM and CLINK.COM, as created above,
into this new empty area. Next, copy TAIL.C into this new area, and then issue the
same sequence of commands as shown in step 4 above. Things should happen
exactly as described in step 5.

12. Now finish reading the rest of the User’s Guide, because everything is
working perfectly.

1.3 Support

For emergency technical help with BDS C, the author is generally available for telephone
consultation free of charge. If you call and get the answering machine, please briefly describe
your problem and note the best time and place where you may be reached. | will do my best to
return your call as soon as possible.

It is often necessary for me to see the exact code you have written in order to determine the
nature of an obscure bug; i.e., isit a compiler bug or a coding error? If you have a program or
program fragment you would like to have me look at, please put it on adisk (if typing it in would
take longer than a minute) and include @) an example of what it does, and b) your idea of what it
should do. If what you have is indeed a compiler bug, | will fix it and get an update out to you
free of charge as soon as possible. If the problem isyours, you' |l be so informed.

BD Software Page 3

November 1988 BDS C User’s Guide

The C User’s Group is an organization that manages a library of contributed software, provides
compiler updates to registered BDS C users and publishes an excellent magazine to announce
library contributions and provide state-of-the-art C language news and articles. While not
affiliated with BD Software, the CUG has for several years been the central depository for user-
submitted applications written in BDS C. The group is now expanding to support other C
compilers and related applications. A membership application form for the CUG is included with
this BDS C package.

1.4 No Royalties, Of cour se!

There are no library usage licenses or royalty contracts connected with this package. Users are
free to develop softwarein BDS C and market the resulting object code, along with any functions
that may have been taken from the BDS C library, without paying any royalties to BD Software.
The whole idea behind this policy is to encourage potential software vendors to use C for their
development work. Note that this has always been the policy with BDS C, since the package first
went on salein 1979. Other vendors have had to learn the hard way ...

If software authors using BDS C for their product development would please mention that fact in
the documentation for their products, it would be highly appreciated. In the past, I’ ve been both
flattered and perturbed to find literal pieces of BDS C library source code in the libraries of other
C compiler packages; this probably wouldn't have bothered me had | at least been given some
credit for my code.

1.5 Objectivesand Limitations

The BDS C Compiler is the implementation of a healthy subset of the C Programming Language
originally developed at Bell Laboratories in conjunction with the Unix operating system!. The
compiler itself runs on 8080/Z80 microcomputer systems equipped with the CP/M-80 operating
system, and generates code to be run either under CP/M or in any kind of dedicated 8080/Z80
hardware environment containing at least a token amount of RAM for stack and scratch pad
memory.

The main objective of this product is to translate a bit of the powerful, structured programming
philosophy on which the Unix operating system is based from the minicomputer to the
microcomputer environment. BDS C provides an efficient and friendly environment in which to
develop CP/M utility applications or stand-alone system software, with emphasis on an elegant,
efficient human interface for both compiler and end-application usage.

1. See The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie (Prentice Hall, 1978) for a complete description
of the language. This guide deals only with details specific to the BDS C implementation; it does not attempt to teach the C
language.

Page 4 BD Software

BDS C User’s Guide Introduction

1.6 System Requirements

The practical minimum hardware configuration required by BDS C is a 40K CP/M 2.x system
with either two disk drives of at least 100K capacity each, or at least one drive of 200K capacity.
While it is possible to use the package on a system with only one low-capacity disk drive, such
use is not recommended.

BDS C loads an entire source file into memory at once (making use of the entire available
memory space) and performs the compilation directly in RAM, as opposed to passing the source
text “through a window” (operating on disk files). This allows a compilation to proceed quite
rapidly (in contrast to conventional compilers). A consequence of this scheme is that a sourcefile
must fit entirely into memory for the compilation. While this may sound restrictive at first,
consider: a program in C is actually a collection of many smaller functions, stemming from a
single main function at the top level. Each function is treated as an independent entity by the
compiler, and may be compiled separately from the other functions that make up a complete
program. Thus, a single program may be spread out over many source files, where each source
file contains a variable number of functions. Partitioning a program into several files actually
helps to minimize compilation time following minor changes, as well as keep the individual
source files from overflowing available memory restrictions.

1.7 Potential System Incompatibilities

This section warns of several potential compatibility problems and describes how to reconfigure
the package “around” those problems.

The BDS C “run-time package” is a 1.5K binary file named “C.CCC” that is always attached
onto the beginning of compiled programs during linkage. The source code to C.CCC, written in
assembly language compatible with ASM.COM, MAC.COM and M80.COM, is provided as
“CCC.ASM”. In the following discussion of system incompatibilities, the solution to a given
problem may involve making a change in the run-time package and “creating a new C.CCC”.
The exact sequence of commands necessary to create a new C.CCC from the CCC.ASM source
varies depending on whether you are using ASM/LOAD, MAC/LOAD or M80/L80. See the
comments at the beginning of CCC.ASM for detailed assembly instructions using each of these
different assembler packages.

1.7.1 Systemswith a Non-Standard User Number Range

The v1.6 run-time package file-I/O mechanism for BDS C presumes that the target programs are
being run on a standard CP/M system where the “user ared” numbers may range from user 0 to
user 31. Since only 5-bits are allocated for user-number memory within the internal file
descriptor routines, standard BDS C generated COM files may not run on certain “CP/M-like”
operating systems which support user numbers larger than 31. In order to fix this problem, the
symbol USAREA has been added to the configuration area at the start of the run-time package
source file (CCC.ASM). If you are experiencing problems opening files on your non-standard
CP/M system, try changing this symbol to FALSE, re-assembling CCC.ASM to yield a new
C.CCC, and re-linking your C program with this new version of C.CCC. Note that while this fix

BD Software Page 5

November 1988 BDS C User’s Guide

will alow your programs to run, you will no longer be able to make use of the user-number
prefix feature when specifying filenames at run-time. All files will be expected to reside in the
currently-logged user area. Drive prefixes may still be specified, of course.

1.7.2 CDB and Your System’sRestart Vectors

The CDB symbolic debugger system requires, for its standard operation, the availability of an
unused restart vector down in low system memory. Out of the eight physical restart vectors on
every system, two (RST 0 and RST 7) are always reserved for use by CP/M; the others may or
may not be used depending on your system implementation. By default, CDB comes pre-
configured to use RST 6 (location 0030h) for its debugging operation. If RST 6 is already used
by your system (this may be the case if your system uses interrupt-driven console 1/0), then you
will have to pick an alternate restart location. Consult your system documentation to find out
which restart vectors are unused.

The run-time package can be configured to initialize the CDB restart vector to act as a CDB
“no-op”, alowing C programs compiled using the CC option —k to execute properly whether or
not they are invoked under CDB. By default, the package does not initialize restart locations; this
prevents compiled programs from coming up and wiping out what might possibly be vital
interrupt handling vectors on your system. Once you have decided on a safe restart vector to
assign to CDB operation, then 1) change the equated symbol “USERST” in CCC.ASM to TRUE,
2) set the “RSTNUM” symbol to the value of the restart location you want to use, and 3) create a
new C.CCC. Remember that if you decide to use a restart other than RST 6, then you must
rebuild CDB as described in the CDB chapter.

1.7.3 BDOS and BIOS CallsOn Some CP/M “Look-Alike” Systems

The bios, bdos library functions are provided with BDS C as general-purpose hooks into the
low-level system interface of CP/M. These functions grant the C programmer access to all CP/M
2.x system calls, and most system calls on CP/M “look alike” and “extended” operating systems.

To achieve total generality, though, the bdos and bios functions make certain assumptions about
which registers CP/M’s BDOS and BIOS use to return results from system calls. These
assumptions are valid under all CP/M systems, but do not necessarily hold true under certain
CP/M “look-alike’ systems (such as SDOS or CDOS). If you are trying to use the bios or bdos
functions and things don’t seem to be working correctly, check to make sure your operating
system returns BDOS values in the HL register and BIOS values in the A register...if thisis not
the case, you must rewrite the bdos and/or bios functions to obtain operating system return
values from the proper registers.

The bios library function as supplied with BDS C makes the assumption that location 0000h of
your system (the first instruction of the CP/M base page) contains a direct jump to the second
entry (wboot) in the BIOS jump vector table. If thisis not the case, such as on the Xerox 820, the
bios function will not work correctly on your system and you must rewrite it to compute the
address of the BIOS vector table in whichever manner is appropriate for your particular system.

Page 6 BD Software

BDS C User’s Guide Introduction

1.8 How to Use The Compiler

1.8.1 The Commandsand Primary Data Files

The main BDS C package consists of four executable commands:

CC.COM C Compiler -- phase 1
CC2.COM

C Compiler -- phase 2
CLINK.COM C Linker
CLIB.COM C Librarian

and three data files that are usually required by the linker:

C.CCC Run-time initializor and subroutine module
DEFF.CRL Standard ("Default") function library
DEFF2.CRL More standard library functions

CC.COM and CC2.COM together comprise the actual compiler. CC reads in a given source file
from disk, processes it, leaves an intermediate file in memory, and automatically loadsin CC2 to
finish the compilation and produce a CRL (C relocatable object module€) file as output.2 The CRL
file contains the generated machine code in a special rel ocatable format.

The linker, CLINK, accepts a CRL file containing a “main” function and proceeds to conduct a
search through al given CRL files (then DEFF.CRL, DEFF2.CRL and DEFF3.CRL if present,
automatically) for needed subordinate functions. When al such functions have been linked, a
COM fileis produced.

For convenience, the CLIB librarian program is provided for the manipulation of CRL object
libraries.

1.8.2 Configuration

Make sure to have your master distribution disk safely tucked away somewhere
before attempting any of the modifications described in this section!

As distributed, BDS C commands should simply come up running under any CP/M system
(CP/M version 2 or above, that is). There are several user-configurable, system-dependent
features of the compiler and linker that may be controlled by the user to “custom-fit” the package
to specific systems. This subsection explains each of those options and how to select them. Note
that no specia configuration procedure should be needed in order to run the compiler “right out
of the box”.

2. If desired, the intermediate file produced by CC may be written to disk and processed by CC2 separately; in that case, the
intermediate file is given the extension .CCl

BD Software Page 7

November 1988 BDS C User’s Guide

1.8.2.1 Compiling CCONFIG.C

There are several user-configurable features in CC.COM and CLINK.COM controlled by
specific bytes of memory very close to the beginning of each command file. The program
CCONFIG.C has been provided to automate process of configuring these option bytes for
your specific system.

To compile CCONFIG.C, first copy the following seven files into a free work area on your
system: CC.COM, CC2.COM, DEFF.CRL, DEFF2.CRL, C.CCC, STDIO.H, CCONFIG.C. You
should have at least 40K freein order to perform the following compilation.

Now enter the command:

A>cc cconfig.c -e5000

The compiler should respond with something like:

BD Software C Compiler v1.60 (part 1)
3K el bowr oom

BD Software C Conpiler v1.60 (part I1)
14k | eft over

A>

There will be a delay of about 45 seconds after the first line is printed, and another delay of
about 10 seconds after the third line (assuming a4 MHz CPU clock rate). When control returns
to command level, enter the command:

A>clink cconfig

The Linker will respond with:

BD Software C Linker v1.6

Last code address: 4EAE
External s start at 5000, occupy 012C bytes, last byte at 512B
Top of menory: D305
Stack space: 81DA
Witing output...
24K 1'i nk space remaini ng
A>

Y ou should now find that the file CCONFIG.COM has been created. Don't erase it; you'll be
using it in the next section.

1.8.2.2 CC and CLINK configuration

Read this entire section first so that you understand what the function of each CC/CLINK options
is, then run CCONFIG.COM with copies of CC.COM and CLINK.COM being present in the
current directory in order to configure CC and CLINK for your own system.

Both CC.COM and CLINK.COM contain an identically structured ten-byte configuration block.3
The structure of the block is asfollows:

3. The starting address of the block for CC.COM is0155h, and for CLINK it is 0103h.

Page 8 BD Software

BDS C User’s Guide

Introduction

Addr. Function Default value [hex]
basetO Default library disk FF (current)
basetl Default library user area FF (current)
baset2 Disk where SUBMIT files are processed 00 (disk A)
base+3 Poll console for interrupts? 01 (yes)
baset4 Suppress warm boot when finished? 00 (yes)
baset5 Strip parity bits from source input? 01 (yes)
baset6 Recognize user area mechanism? 00 (yes)
baset+7 Write RED error file? 00 (don't)
baset+8 Optimization mode 80 (short code)
baset+9 Default CDB restart vector 06 (rst 6)

Each configuration item in the block is exactly one byte in length. Note that although all possible
numeric values for the options are explained in detail below, it is not necessary for the first-time
user to be concerned with those exact values as CCONFIG.COM will prompt with verbal
explanations and accept non-numerical responses.

The first two configuration bytes specify a default disk drive and user area to be treated as a
“default library area” by CC and CLINK. CC.COM searches this area to find the files named in
#include directives when the filename is enclosed in angle brackets , and also for CC2.COM (the
second phase of compilation). CLINK searches the default library area for the files DEFF.CRL,
DEFF2.CRL, DEFF3.CRL (if present), C.CCC, and other CRL files named on the CLINK
command line that cannot be found in the directory where the “main” CRL file resides.® For the
default library disk, a value of 0 specifies drive A, 1 specifies drive B, etc., and a value of FFh
(255 decimal) specifies that the currently-logged disk (at the moment CC or CLINK is invoked)
is to be used as the default library disk. For the default library user area, the values 0-31 denote
the corresponding user area, and a value of FFh (255 decimal) specifies that the current user area
(at the moment CC or CLINK isinvoked) is to be the default library user area. Both the library
disk and user area come configured to FFh; thus, the v1.5 (and later) distribution versions of
compiler and linker assume that the currently logged drive and user area contain al library files.

To summarize: the first two configuration bytes alow users with large-capacity disks to pick
some particular drive and user area in which to keep all standard header and library files. The
library disk and user area bytes should be considered together as a unit; if you change one, you'll
probably also want to change the other.

The third configuration byte designates the disk drive containing the 3.SUB file that exists
during “ Submit File” processing. The possible values are the same as for the default library disk
described above.

CLINK alwaystries to erase pending submit files when an error occurs, while CC only triesto do
so when the —x option is given. Since most systems aways place the $$3$.SUB file on drive A,
that is the way CC and CLINK are configured by default. But, if the user has customized his
system to put the $$$.SUB file on, say, the current drive instead of always on drive A, then this
byte should be changed from 01h to OFFh.

4. Filenames enclosed in double quotes always cause the #include directiveto search the current directory for the named file,
regardless of configuration.

5. the L2 linker may aso be configured to search a default drive/user area; to do so, it is necessary to customize the L2.C source file
and recompile L2 as per the compilation instructions specified in the comments at the start of L2.C

BD Software Page 9

November 1988 BDS C User’s Guide

The fourth configuration byte is a flag telling CC or CLINK whether or not the system console
should be polled for the interrupt character (control-C) during execution of the command. If
enabled (non-zero), then any input typed on the console by the user during execution of the
command will be ignored unless control-C is typed, in which case the command will be
immediately aborted and control will return to command level. If disabled (zero), then the
console will never be polled. This is useful under certain interrupt driven systems that can
recognize type-ahead and handle interruption on their own without requiring transient commands
to poll the console.

The fifth configuration byte controls whether CC and CLINK perform a “warm-boot” when
finished with their tasks, or return directly to the CCP without any disk activity. The commands
come configured to return directly to the CCP, but on certain “fake” CP/M systems (I’ ve been
told the CROMIX CP/M emulator is one example), directly returning to the CCP does not work
correctly. This is probably because the operating system doesn’t pass a valid stack pointer to
transient commands, and when CC or CLINK triesto return, it crashes the system. If you run the
compiler and it bombs after writing a correct output file, try setting the warm-boot byte to 01 to
force warm boots on program termination.

The sixth byte controls the stripping of bit 7, the parity bit, from each character of source file
input to the compiler. If true, as configured by default, all parity bits are stripped during
compilation. This avoids the problems caused by text editors that use parity bits to convey
formatting information. Certain applications, though, require parity to not be stripped. For
example, some foreign-language or dual-language computers use bit 7 to represent alternate
character sets in string operations. If you have such a system, change this configuration byte to
false (zero). Note: this byte has no effect in CLINK’ s configuration block.

The seventh configuration byte is intended for use only in those customized operating system
environments that perform transparent user area selection for transient programs. MICROSHEL L
is one system under which this option would be useful. If true (non-zero), then all user-area
selection (for source and library files) is inhibited during compilation and linkage, allowing your
operating system to select a user area as per its own particular algorithms. If this option is set to
true, then the default library user area configuration byte (the second byte of the configuration
blocks) has no effect.

The eighth configuration byte controls whether or not an error documentation file is
automatically written for the benefit of the RED text editor. If set to true (01), then whenever
there are errors in the source file, the RED error file PROGERRS.$$% is automatically written to
disk. Then the user may, by simply typing the command RED, invoke RED.COM upon the
buggy source file and have all errors pointed out automatically. If the RED error control byteis
set to false (00), then the compiler option —W must be specified to cause RED error file output.

The ninth configuration byte controls object code optimization for the current compilation:

* A value of 00 specifies optimization for speed only, so that the fastest possible code
sequences are used. Thiswill usually result in longer code than normal.

* A value of 80h (the default) specifies optimization for space, resulting in the compacting
of certain code sequencesinto callsto equivalent run-time package subroutines.

Page 10 BD Software

BDS C User’s Guide Introduction

» If any of the lower 7 bits of the configuration byte are true, then “restart optimization” is
to be performed by taking advantage of the corresponding restart vector on the target
computer. The mapping of bits is bO-rst 1, bl-rst2, ..., b6-rst7. In order for restart
optimization to work, a special version of the run-time package must be created with the
corresponding restart vector equates set TRUE so that proper initialization of the target
system’ srestart vectors is performed on application start-up.

The tenth (and final) configuration byte specifies the default restart vector to be used for CDB (C
Debugger) interfacing. The value specified becomes the default argument to the —-K compiler
option. The default value is 6 (use rst 6), and the distributed compiled version of CDB is
correspondingly set up to userst 6.

1.8.2.3 CC2 Configuration

CC2.COM requires no configuration; CC.COM passes all relevant information to CC2.COM
upon automatic transfer of control during compilation.

1.8.2.4 Run-Time Package Options

CCC.ASM, the source file of the BDS C run-time package, contains some equated symbols
which control options that may be customized by the user. If you decide to alter any of the
described options, you must re-assemble the run-time package object module according to the
directions given in the comments at the beginning of CCC.ASM, resulting in the creation of a
new run-time package object module, C.CCC.

The options described in this section may be altered in the run-time package without requiring
any modification to the standard library. For information on customizing the run-time package
and standard library for a drastically different environment (e.g., for a ROM-based application),
see the “Customized Environments” appendix.

* The USAREA symbol specifies whether or not the target system recognizes the “user
area’ mechanism of CP/M. Setting this to FALSE eliminates all calls to the get/set user
area BDOS function.

* The USERST symbol specifies whether or not a restart vector is reserved for use by the
CDB debugger. If TRUE, then the RSTNUM symbol specifies the restart vector used,
and causes an initialization of that restart vector so that programs compiled with K (the
CDB debugger option) run stand-alone (i.e., not under control of CDB) can still execute
correctly.

* The USERST and RSTNUM symbols in CCC.ASM control the mechanism whereby a
restart location in the CP/M base page (usually RST 6, at location 0030h) is set up allow
C programs compiled with the .k CC debugger option but executed independently of
CDB (the c debugger) to execute properly. As distributed, USERST is set to FALSE,
and programs compiled using —k will not run unless invoked by CDB. To alow these
programs to execute independently of CDB, first change the USERST symbol to TRUE.
If restart vector 6 is available on your system for use by BDS C, then everything is all
set. If the RST 6 location is used for 1/0 on your system, then you must find a restart

BD Software Page 11

November 1988 BDS C User’s Guide

vector that is not in use, alter RSTNUM accordingly, and make sure to customize and
recompile CDB to reflect the new restart vector assignment. CCC.ASM will then need
to be reassembled to create a new C.CCC run-time package object file.

» TheZOPT1, ZOPT2, ..., ZOPT7 symbols control the initialization of up to seven restart
vector optimization sequences. In conjunction with the —z compiler option, this
mechanism allows for the collapse of several common code sequences into one-byte
restart instructions in the compiled object code. To utilize this mechanism, first choose
which restart vectors are available on the target computer system. Then set the
corresponding ZOPTn symbols true in CCC.ASM, and follow the procedure for re-
creating the run-time package object module (C.CCC). The new C.CCC may then be
linked with CRL files created via compilations using the —z option (with the available rst
vectors specified as arguments to —z).

Note: object code produced under this procedure is extremely non-
portable, and thus should not be distributed except for use under known
hardware configurations where the restart vectors utilized in the code are
known to be available for use by application programs.

* TheNFCBS symbol specifies the maximum number of files that may be open at any one
time. This is set to 8 for the distribution version; if you need more files open at once,
change NFCBS to the desired value (each additional file makes the run-time package
about 38 byteslonger.)

IMPORTANT: If you change this value, you must re-assemble the entire assembly
language library (as described in Chapter 2) in order to align addresses

1.8.25 STDIO.H and HARDWARE.H Configuration

The standard /O header file stdio.h contains the defined constant NSECTS, which controls the
number of 128-byte sectors kept in memory for each file opened under the standard buffered I/0
library. NSECTS comes configured to 8, so that a full 1024 bytes of data are buffered during
buffered I/0O operations before disk activity occurs. If you are running a system that has 1K
sector blocking/de-blocking in the BIOS (Basic Input/Output System) portion of CP/M, then you
might want to change NSECTS from 8 to 1 in order to eliminate the redundant buffering and
gain 7/8 K bytes of free memory per open file (under buffered 1/0O only). If you do decide to
change NSECTS, afterwards don’t forget to recompile STDLIB1.C (the source file for the
functions in which the NSECTS symbol is referenced). Then, use CLIB.COM to combine
STDLIB1.CRL, STDLIB2.CRL and STDLIB3.CRL to create a new DEFF.CRL. See the
“Customized Environments” appendix for more details about recompiling/reassembling the BDS
C standard library.

The HARDWARE.H header file provides a generalized interface to system-dependent hardware
devices, such as direct 1/0 port control to both the console and modem devices. Before any
programs which include HARDWARE.H are compiled, HARDWARE.H should be customized
to reflect the hardware characteristics of the target computer system.®

6. As distributed, only the TELED.C sample program (with its associated files) actually uses HARDWARE.H. If you do not know the
port and mask values of your machine's I/O ports, everything will still work except for the TELED program.

Page 12 BD Software

BDS C User’s Guide Introduction

1.8.3 A Sample Compilation

As an example, here is the sequence for compiling and linking a simple source file named
TAIL.C:

The compiler isinvoked with the command:

A>cc tail.c <cr>

After printing its sign-on message, CC will read in the file TAIL.C from disk and crunch for a
while. If there are no errors, CC will then give a memory usage diagnostic and load in
CC2.COM. CC2 will do some more crunching and, if no errors occur, will write the file
TAIL.CRL to disk.

The next step bringsin the linker:

A>clink tail -n <cr>

This invocation of CLINK links TAIL.CRL with any needed library functions from DEFF.CRL
and DEFF2.CRL. The file TAIL.COM should be produced, ready for execution. The —n option
directs CLINK to make TAIL.COM do a “quick return” to CP/M without performing a warm-
boot. To test TAIL.COM, say:

A>tail -10 tail.c <cr>

If everything is OK, then the last 10 lines of the text file TAIL.C should appear on the console
and control should return (silently and instantly) to CP/M command level.

IMPORTANT: The command lines for all COM files in the package should be
typed in to CP/M without leading blanks. This also applies to COM files

generated by the compiler, where leading blanks on the command line will cause
argc and argv to be miscalcul ated.

Following are the detailed command syntax descriptions:
1.84 CC — TheParser

Command format:

A>cc nane. ext [options] <cr>

Any name and extension are acceptable, although the conventional extension for C programs is
“.C". CC will first try opening the file exactly as named; if no extension at al is given, and the
file cannot be opened exactly as specified, then CC will append a “.C” extension onto the
filename and try once more to open it with the newly constructed name.

If an explicit disk designator is given for the filename (e.g. “b:foo.c”) then the source file is
assumed to reside on the specified disk, and the compiler output also goes to that disk. Filenames

BD Software Page 13

November 1988 BDS C User’s Guide

given in double quotes to the #include directive, with no explicit user-area/drive specification
used, are obtained from the same disk as the master filename given on the command line.

Typing a control-C at any time after invoking CC will abort the compilation and return to
command level unless CC has been configured to ignore the console, as described in the
configuration section above.

Following the source filename may appear alist of compilation options, each preceded by a dash.
The currently supported options are:

—ad[n] Auto-loads CC2.COM from disk d, user area n, following successful
completion of CC’s processing. By default, CC2 is assumed to reside
either on the currently logged-in disk or on the default drive/user area as
defined in the configuration procedure. If the letter “z” is given for the
disk designator, then an intermediate “.CCl” file is written to disk for
later processing by an explicit invocation of CC2, and no attempt is
made to auto-load CC2.

— Disables the “comment nesting” feature, causing comments to be
processed in the same way as by UNIX C. |.e., when — is given, then
lines such as

/* printf("hello"); /* this prints hello */

are considered complete comments. If —c is not used, then the compiler
would expect another */ sequence before such a comment would be
considered terminated.

—d x Causes the CRL output of the compiler to be written to disk x if no
errors occur during CC or CC2. If the —a z option is also specified, then
—d specifies onto which disk the .CCI file is written. The default
destination disk is the same disk from which the source file was
obtained.

—€ XXXX Allows the specification of the exact starting address (in hex) for the
external data area at run time. Normally, the externals begin immediately
following the last byte of program code, and all external data are
accessed viaindirection off a specia pointer installed by CLINK into the
run-time package. When —e is used, the compiler can generate code to
access external data directly (using Ihld and shld instructions) instead of
using the external data pointer. This will shorten and enhance the
performance of programs having much external data. Suggestion: don't
use this option while debugging a program; once the program works
reasonably, then compile it once with —e, putting the externals at the
same place that they were before (since the code will get shorter the next
time around.) Observe the “Last code address’ value from CLINK’s
statistics printout to find out by how much the code size shrunk, and then
compile it all again using the appropriate lower address with the —e
option. Don’t cut it too close, though, since you'll probably make mods
to the program and cause the size to fluctuate, perhaps overlapping the

Page 14 BD Software

BDS C User’s Guide

—IM XXXX

BD Software

Introduction

explicitly specified external data area (a condition that CLINK will now
detect and report).

CC2 must be successfully auto-loaded by CC in order for —e to have any
effect.

See also the CLINK option —e for related details.

Note that CLINK will now print a warning message if the external data
area overlaps either part of the program or the operation system in the
final command file.

Specifies the starting location, in hex, of the run-time package (C.CCC)
when using the compiler to generate code for non-standard
environments.

The run-time package is expected to reside at the start of the CP/M TPA
by default. If an alternative address is given by use of this option, be
sure to reassemble the run-time package and machine language library
for the given location before linking, and give the -, —e and —t options
with appropriate address values when using CLINK. See Chapter 2 for
more details on customizing BDS C object code for non-standard
environments.

C.CCC, which always resides at the start of a generated COM file,
cannot be separated from main and other (if any) root segment functions.
CC2 must be successfully auto-loaded by CC in order for —m to have
any effect.

Causes the generated code to be optimized for speed. Normally, the code
generator replaces certain awkward code sequences with calls to
equivalent subroutines in the run-time package; while this reduces the
length of the code, it also slows execution down because of subroutine
linkage overhead. If —o is used, then many of those subroutine calls are
replaced by in-line code. This results in faster (but longer) object
programs.

For the fastest possible code, the —e option should be used in conjunction
with —o. For the shortest possible code, use —e (and —z if applicable) but
don’t use —o.

CC2 must be successfully auto-loaded by CC in order for —o to have any
effect.

Causes the source text to be displayed on the user’s console, with line

numbers automatically generated, after all #define and #include
substitutions have been completed. Note that this output may be directed

to the CP/M “list” device by typing control-P before invoking CC.

Reserves xK bytes for the symbol table. If an “Out of symbol table
space’ error occurs, this option may be used to increase the amount of
space alocated for the symbol table. Alternatively, if you draw an “Out
of memory” error then —+ may be used to decrease the symbol table size
and provide more room for source text. A better recourse after running
out of memory, though, would be to break the source file up into smaller
chunks. The default symbol table sizeis 10K (asif —+10 were specified).

Page 15

November 1988 BDS C User’s Guide

-w Causes an RED-compatible error file, named PROGERRS.$$$, to be
written to disk if there are any fatal compilation errors, so RED may then
be invoked to quickly peruse and correct the errors for the next pass
through the compiler.

Note: If you have already configured CC (with CCONFIG) to always
write the RED file upon error, then —w forces the RED file to not be
written.

—X Causes the deletion of pending CP/M “SUBMIT” batch activity
following a compilation in which any errors have occurred. Whenever
CC is used from a SUBMIT file, —x should appear on the CC command
line to erase the “$$$.SUB” temporary file before returning to command
level following an erroneous compilation. When CC is used stand-alone,
—x would just cause needless disk activity and should not be used.

—Z This option is used to specify a list of restart vectors that will be
available on the target system for use by the compiled object program to
shorten certain common code sequences. —z takes a list of digits,
separated by commas, corresponding to the restart vectors (from among
the seven vectors 1 through 7) to be used at run-time. For example, to
specify that rst 2, rst 3 and rst 5 are to be available, use:

-22,3,5

Note that the restartvector list specifies must correspondto a customized run-timepackage
object module (C.CCC) assembled with the correspondingZ OPTnsymbols set to TRUE. The
obj ect code gener atedusingthis—z option must then be linked with the customized C.CCC.
Code generated using—=zz willnobt workf linked with the standar ddistributionversion of the
run-time package object module!

A single C source file may not contain more than 63 function definitions; remember, though, that
a C program may be made up of any number of source files, each containing up to 63 functions.

If any errors are detected by CC, the compilation process will abort immediately instead of
proceeding to the second phase of compilation or writing the .CCI file to disk (depending on
which options were given).

Execution speed: about 20 lines text/second. After the source file is loaded into memory, no disk
accesses will take place until after the processing is finished. Don’t assume a crash has occurred
until at least (n/20) seconds, where n is the number of lines in the source file, have elapsed since
the last disk activity was noticed... Then worry.

Examples:
A>cc foobar.c -r12 -ab <cr>

invokes CC on thefile foobar.c, setting symbol table size to 12K bytes. CC2.COM is auto-loaded
from disk B.

A>cc c:belle.c -p -0 <cr>

Page 16 BD Software

BDS C User’s Guide Introduction

invokes CC on the file belle.c, from disk C. The text is printed on the console (with line
numbers) following #define and #include processing.Unless CC finds errors, CC2.COM is
auto-loaded from either the currently logged disk or the default drive/user area (configured as per
section 1.8.2). The resulting code is optimized for speed.

1.8.5 CC2 — The Code Gener ator

Command format:

cc2 name <cr>

Normally CC2.COM s loaded automatically by CC.COM and this command need not be used.
If given explicitly, then the file name.CCI will be loaded into memory and processed. If no
errors occur, an output file named name.CRL will be generated and name.CCl (if present) will be
deleted.

CC2 does not take any options.

As with CC, an explicit disk designator on the filename causes the specified disk to be used for
input and output.

When CC auto-loads CC2, several bytes within CC2 are set according to the options given on the
CC command line. If CC2 isinvoked explicitly (i.e., not auto-loaded by CC) then the user must
see to it that these values are set to the desired values before CC2 begins execution. Typically
this will not be necessary, but if you're very low on disk storage and need to invoke CC2
separately, here are the data values that need to be set:

Addr Default Option Function

0103 00 -a True i f CC2 has been auto-loaded, else 0O
0104 01 -0 Oif -0 used (optimze for speed), else 1
0105-6 0100h -m Base address of C.CCC at object run-tine.
0107-8 none Explicit external address (if -e used)
0109 00 -e True if -e used, else O

The 16-bit values must be in reverse-byte order (low order byte first, high last). Note that not all
CC command line options can be set up for a stand-alone run of CC2, only the ones shown
above.

This information is provided for completeness only; only very rarely should any user have to
think about going in and explicitly setting these values for a CC2 run.

CC2 execution speed: about 70 lines/second (based on original source text.)

If a control-C is typed on the console input at any time during execution, then compilation will
abort, control will return to command level, and any pending submit file activity will be halted.

Example:

A>cc2 foobar <cr>

BD Software Page 17

November 1988 BDS C User’s Guide

1.86 CLINK — TheC Linker

Command format:

A>CLI NK nane [ot her names and options] <cr>

The file name.CRL must contain a main function; name.CRL and all other CRL files named (up
to the appearance of a —f option) will have all their functions loaded into the linkage. If the —f
option appears on the command line, then all CRL files named following it are scanned for
needed functions; i.e, only those functions known to be needed by previously loaded functions
(either from previous CRL files or from the one currently being scanned) are loaded into the
linkage. When all explicitly named CRL files have been searched, the standard library files
DEFF*.CRL will be scanned automatically for needed library functions. The order in which the
library files are searched is aways the same: first DEFF.CRL, then DEFF2.CRL, and finally, if
supplied by the user, DEFF3.CRL. If the user writes functions having the same name as those in
any automatic library file, then such functions should aways be placed in one of the CRL files
named explicitly on the command line. If placed in DEFF3.CRL, they would not get used unless
the similarly named functionsin DEFF.CRL and DEFF2.CRL were deleted from those files.

By default, CLINK assumes all explicitly named CRL files reside on the currently logged disk,
and al library files (C.CCC and DEFF*.CRL) reside on the default drive and user area as defined
by the configuration block. If an explicit drive designator prefixes the main filename on the
command line, then the given drive becomes the default for all CRL files named on the command
line. Each additional CRL file may contain a disk designator of the form “d:”, and/or a user area
prefix of the form “nn/”, to specify an explicit place to find the file. If both prefixes are used, the
user area prefix must come first.

If a named CRL file cannot be found according to the search rules above, then the directory
specified by the default library drive and user areais also searched. This alows the user to place
commonly used library files in one default drive/user area and have them be accessible during
linkages performed in different drives and user areas.

If any unresolved references remain after al given CRL files have been searched, CLINK will
enter an “interactive mode”. Here the user will be shown the names of all missing functions and
be given the opportunity to specify other CRL filesto search.

Control-C may be typed during execution to abort the linkage and return to command level.

Intermixed with the list of file names to search may be certain linkage options, preceded by
dashes. Note that multiple single-letter options may be combined following a single dash. The
currently implemented options are:

—cd|[n] Instructs CLINK to obtain library files (DEFF.CRL, DEFF2.CRL,
C.CCC and possibly DEFF3.CRL) and any CRL files named on the
command line but not found in the current drive/user area (or on the
drive specified as prefix to the “main” CRL filename) from disk d and
user area n. This option is used to override the default drive/user area
specification hard-wired into the CLINK configuration block (see
section 1.8.2).

Page 18 BD Software

BDS C User’s Guide

—d["args’]

—€ XXXX

—f (filename...)

— xxxx

BD Software

Introduction

“Debug” mode: For quick testing, —d causes the COM file produced by
the linkage to be executed immediately instead of getting written to disk
asa COM file. If alist of argumentsis specified enclosed in quotes, then
the effect is just as if the program was invoked from the CCP with the
given command line parameters.

—d should not be used for segments having load addresses other than at
the base of the TPA (i.e., —d should only be used for root segments).

Due to internal conflicts, —d will be ignored if the —n option is also
given.

Forces the base of the external data areato be set to the value xxxx (hex).
Normally the external data area follows immediately after the end of the
generated code, but this option may be given to override that default.
This is necessary when chaining is performed (via exec, execl or execv)
to make sure that the new command’s notion of where the external data
begins is the same as the old command’s. To find out what value to use,
first CLINK all the CRL files involved with the —s option, but without
the —e option, noting the “Data starts at:” address printed out by CLINK
for each file. Then link them again, using the maximum of all those
addresses as the operand of the —e option for all files except the one that
had the largest “Data starting address’ during the first pass.

When generating code for ROM, this option should be used to place
externals at an appropriate location in r/'w memory.

If the main CRL file (name.CRL) was compiled with the —e CC option
specified, then CLINK will automatically know about the address then
specified on the CC command line; but if any of the other CRL files
specified in the linkage contain functions compiled by CC without use of
the —e option, or with the value given to —e being different from the
value used to compile the main function, the resulting COM file will not
work correctly. CRL files compiled without use of the CC —e option may
be included in a linkage only if —e is specified to CLINK with an
argument exactly equal to the CC —e argument used to compile the main
CRL file.

Causes adl following named CRL files to be scanned instead of loaded.
CLINK automatically loads all functions in each CRL file named on the
command line, until this option is encountered, at which point all
following CRL files are scanned. This means that only functions which
have been previously referenced by other functions, in some earlier file
or in the current file, are linked into the program. Note: This new —f
option works differently from the —f of pre-1.50 versions of BDS C. —f
now worksidentically to the L2 linker’'s“-L” option.

Causes the load address of the generated code to be xxxx (hex). This
option is only necessary when generating an overlay segment (in
conjunction with —v) or creating code to run in a non-standard
environment. In the latter case, CCC.ASM must have been reconfigured
for the appropriate location and assembled (and loaded) to create a new

Page 19

November 1988 BDS C User’s Guide

version of C.CCC having origin xxxx. In this case the —e and —t options
should aso be used to specify the appropriate r/w memory areas. —t Xxxx

Set start of reserved memory to xxxx (given in hexadecimal). The
instruction Ixi sp,xxxx is placed at the start of the generated COM fil€ .
Under CP/M, the value should be large enough to allow all program
code and local/external datato fit below it in memory at run-time. If you

are generating code to run in ROM, then the value given here should be
the highest address plus one of the read/write memory to be used for the
stack.

el Makes the resulting COM file preserve the CP/M CCP (Console
Command Processor) at run-time, instead of overlaying the CCP with
the run-time stack. This reduces the available run-time memory by 2K
bytes, but allows the program to return instantly to command level after
execution without having to perform a warm-boot from disk. Therefore,
—n is useful for programs that are used often and do not require every
last bit of memory in the system. Note that this option has exactly the
same effect as running the NOBOOT command on the resulting COM
file, NOBOQT is provided so that programs linked with other linkers,
such as L2, may also be made to return to the CCP without performing a
warm-boot.
—n isignored if the —t option is also used, because the mechanisms
conflict and —t is given priority.

—0 newname Causes the COM file output to be named newname.COM. If a disk
designator precedes the name, then the output is written to the specified
disk. By default, the output goes to the currently logged-in disk. If a
single-letter disk designator followed by a colon is given without a
filename, then the COM file is written to the specified disk without
affecting the name of thefile.

— XXXX Reserves xxxx (hex) bytes for the forward-reference table (defaults to
about 600h). This option may be used to allocate more table space when
a“ref table overflow” error occurs.

-V Specifies that an overlay segment is being created. The run-time package
is not included in the generated code, since it is assumed that an overlay
will be loaded into memory while a copy of the run-time package is
already resident either at the base of the TPA by default, or at the
address specified in the —m option to CC.

-w Writes a symbol table file with name name.SYM to disk, where name is
the same as that of the resulting COM file. This symbol file contains the
names and absolute addresses of all functions involved in the linkage. It
may be used with SID for debugging purposes, or by the —y option when
creating overlay segments (see below.)

7. Normally, when -t is not used, the generated COM file begins with the sequence:

Ihld baset6 ;get BDOS pointer from base page
sphl ;initialize stack pointer to BDOS base

Page 20 BD Software

BDS C User’s Guide Introduction

-y sname Reads in (“yanks’) the symbol file named sname.SYM from disk and
uses the addresses of all function names defined there for the current
linkage. The —w and —y options are designed to work together for
creating overlays, as follows: when linking the “root” segment (the part
of the program that loads in at the TPA, first receives control, and
contains the run-time utility package), the —w option should be given to
write out a symbol table file containing the addresses of all functions
present in the root. Then, when linking the overlay segments, the -y
option is used to read in the symbol table of the “parent” root segment
and thereby prevent multiple copies of common library functions from
being present at run-time. This procedure may extend down more than
one level: while linking an overlay segment, the —w option can be given
along with the —y option, causing an augmented symbol file to be written
containing everything defined in the read-in symbol file along with new
locally defined functions. Then the overlay segment can do some
overlays of its own, and so on down as many levels as is desired (or
practical.) Note that the position of the —y option on the CLINK
command line is significant; i.e, the symbol file named in the option will
be searched only after any CRL files specified to the left of the —y option
have been searched. Thus, for best results specify the —y option
immediately after the main CRL file name. If, upon reading in the
symbols from a SYM file, asymbol isfound having the same name as an
already defined symbol, then a message to that effect is printed on the
console and the old value of the symbol is retained.

For more information on using —y for generating overlay segments, see
the appendix on overlays.

-z Inhibits clearing of the external data area to zero during run-time
initialization. If —z is used, then all externals come up with random
values. Otherwise, externals come up all zeros.

Examples:
A>clink lisa -t 6000 -0 joyce <cr>

Here, CLINK expectsthe file LISA.CRL to contain amain function, which is then linked with all
functions from LISA.CRL and any needed functions from DEFF.CRL, DEFF2.CRL and, if it
exists, DEFF3.CRL. A statistics summary is printed out when finished, the run-time stack is set
to start at 6000h and grow down (leaving memory at 6000h and above untouched by the COM
file when running), and the COM file itself isto be named JOY CE.COM.

A>clink b:nola 6/c:liz -f kathy -s <cr>

In this example, CLINK loads al functions from NOLA.CRL (on drive B:) and LIZ.CRL (in
user area 6 on drive C:), links in any needed functions from KATHY.CRL (from disk B, since
the disk where NOLA.CRL was obtained is the default for this linkage), and DEFF.CRL,
DEFF2.CRL and perhaps DEFF3.CRL (from the default disk/user area configured as per section
1.8.2), and prints out a statistics summary when done. Since no —t option is given, CLINK

8. DEFF3.CRL is automatically scanned as a user-supplied library file if it exists and there are still unresolved references after
DEFF.CRL and DEFF2.CRL have been scanned. If DEFF3.CRL is not found, no complaint islodged by the linker.

BD Software Page 21

November 1988 BDS C User’s Guide

assumes all the TPA (Transient Program Area) is available for code and data. The COM file
generated is named NOLA.COM by default (since no —o option was given) and the file is written
to the currently logged in disk.

NOTE: When several files that share external variables are linked together, then the file
containing the main function must contain all declarations of external variables used in al other
files. Thisis because the linker obtains the size of the external area from the main source file, and
thisvalue is used to set up the appropriate parameter in the resulting COM file so that the library
function endext() returns the correct value. Also, because external variables in BDS C are
actually more like FORTRAN COMMON than UNIX C externals, the ordering of external
declarations should be identical within each individual source file of a program. Typicaly, a
single header file containing al externa declarations is included by each file of a program, to
insure compatibility.

1.8.7 CLIB—TheC Librarian

Command format:

A>CLI B <cr>

The CLIB program is provided to let you a) transfer functions between CRL files, b) rename,
delete, and inspect individual functions, c) create new CRL files, and d) inspect CRL file
contents.

Before delving into CLIB operation, it is helpful to understand the structure of CRL (C
Rel ocatable) files:

A CRL file consists of a set of independently compiled C functions, each a binary 8080 machine
code image having its origin set at 0000. Stored along with each function is a list of “relocation
parameters’ for use by CLINK to resolve relocatable addresses. Also stored with each function
are the names of all subordinate functions called by the given function. Collectively, the code,
relocation list, and needed functions list are termed a function module.

The first four sectors of a CRL file make up the directory for that file, containing a list of al
function modules appearing in the file and their positions within the file. The directory space
needed for any function in a CRL file is equal to the number of characters in that function's
name, plus two bytes for an address pointer into the CRL file. Thus, the total number of functions
that any given CRL file can hold is usually limited by the length of the names of those functions.
The total size of a CRL file cannot exceed 64K bytes (because function modules are located via
two byte addresses), but optimum efficiency is achieved by limiting a CRL file's size to that of a
single CP/M file extent (16K bytes).

For more detailed information about CRL files, see chapter 3.

When CLIB is invoked, it will respond with an initial message and a “function buffer size”
announcement. The buffer size tells you how much memory is available for intermediate storage
of functions during transfers. Attempts to transfer or extract functions of greater length will fail.

Following initialization, CLIB will prompt with an asterisk (*) and await a command.

Page 22 BD Software

BDS C User’s Guide Introduction

To open a CRL file for manipulation, use

*open file# [d:]filenane<cr>

where file# is asingle digit identifier (0-9) specifying the “file number” to be associated with the
file filename as long as that file remains open. Up to ten files, therefore, may be open
simultaneously.

Note that a disk designator may be specified for the filename, allowing CLIB to operate with
CRL fileson any physical disk.

To close afile (making permanent any changes that were made to it), say

*close file# <cr>

The given file number then becomes free to be assigned to a new file via open. A backup version
of the altered file is created having the name name.BRL. Note that the close operation may take
some time to perform, and will cause your disk drive to thrash annoyingly when large files are
involved.

It is not necessary to close afile unless either changes have been made to it or you need the extra
file number. For example, afile opened just to be copied from need not be closed.

When a CRL file is opened, a copy of the file's directory (first 4 sectors) is loaded into memory.
Any alterations made to the file (via the use of the append, transfer, renamand/or delete
commands) cause the in-core directory to be modified accordingly, but the file must be closed
before the updated directory gets written back onto the disk. Thus, if you do something you later
wish you hadn’t, and you haven't closed the file yet, you can abort al the changes made to the
file smply by making sure not to close it. Undoing appends and transfers requires a little bit of
extrawork; thiswill be explained later.

To seealist of al open files, along with some relevant statistics on each, say

*files <cr>

To list the contents of a specific CRL file and see the length of each function therein, say

*list file# <cr>

There are several ways to move functions around between CRL files. When all files concerned
have been opened, the most straightforward way to copy afunction (or set of functions) is

*transfer source-file# destination-file# function-nane <cr>

This copies the specified function[s] from the source file to the destination file, not deleting the
original from the source file. function-name may include the special characters * and ? if an
ambiguous name is desired. All functions matching the ambiguous name will be transferred.

BD Software Page 23

November 1988 BDS C User’s Guide

An alternative approach to shuffling files around is to use the “extract-append” method. The
extract command has the form

*extract file# function-nane <cr>

It is used to pull a single function out of the given file and place it in the function buffer (in
memory). To write the function out to afile, say

*append file# [nane] <cr>

where name is optional and should be given only to change the name under which the function is
to be saved,;

*append file# <cr>

is sufficient to write the function out to afile without changing its name.

Only one file# may be specified at a time with append; to write the function out to several CRL
files, a separate append must be done for each file.

To rename a function within a particular CRL file, say

*renane fil e# ol d- nane new nane <cr>

Note that this constitutes a change to the file, and a close must be done on the file to make the
change permanent.

To create anew (empty) CRL file, say

*make filenane <cr>

This creates a file on disk called filename.CRL and initializes the directory to empty. To write
functions onto it, first use open, and then use either transfer orthe extract/append method
described above. CLIB will not allow the creation a new CRL file having the same name as an
existing CRL filein the same directory.

To delete afunction (or set of functions) from afile, use

*del ete file# function-nane <cr>

Again, the function name may be specified ambiguously using the * and ? characters. The file
must be subsequently closed to finalize the deletion. Note that deleting a function does not free
up any directory space in the associated CRL file until that file is actually closed. Thusif a CRL
file directory is full and you wish to replace some of the functionsin it, you must first delete the
unneeded functions, then close and re-open the file to transfer new functionsinto it.

Page 24 BD Software

BDS C User’s Guide Introduction

A command syntax summary may be seen by typing the command

*hel p <cr>

To exit CLIB and return to command level, give the command

*quit <cr>

and respond positively to the confirmation message that CLIB then prints out.
Note: All CLIB commands may be abbreviated to a single letter.

Should you decide you really didn’t want to make certain changes to afile, but it is aready after
the fact, then the quit command may be used to get out of editing the file and abort any changes
made. Aslong as you haven't appended or transferred into the file, typing

*quit file# <cr>

is sufficient to abort all operations on that file, and frees up thefile# asif a close had been done.

If you have appended or transferred into a file and you wish to abort, then the quit command
should still be used, but in addition you should re-open the file directly after quitting and then

closeit immediately. The rationale behind this procedure is as follows. when you do an append
or atransfer, the function being appended gets written onto the end of the CRL file. Then, when
you abort the edit, the old directory is left intact, but the appended function is still there, hanging

on in the data area, even though it doesn’t appear in the directory. By opening and immediately

closing the file, only those functions appearing in the directory remain with the file, effectively

getting rid of those “phantom” functions.

Here is a sample session of CLIB, in which the user wants to create a new CRL file named
NEW.CRL on disk B: containing al the functions in DEFF.CRL beginning with the letter “p”:

A>clib
BD Software C Librarian v1.6
Function buffer size = xxxxx bytes

*open 0 deff

*make b: new

*open 1 b:new
transfer 0 1 p
*close 1

*quit

(Quit) Are you sure? vy

A>

BD Software Page 25

November 1988 BDS C User’s Guide

1.9 CP/M “Submit” Files

To smplify the process of compiling and linking a C program (after the initial bugs are out and
you feel reasonably confident that CC and CC2 will not find any errors in the source file), CP/M
“submit” files can be easily created to perform an entire compilation. The simplest form of
submit file, to simply compile, link and execute a C source program that is self contained
(doesn’t require other special CRL files for function linkages) would appear as follows:

cc $1.c
clink $1 -s
$1

Thus, if you want to compile a source file named, say, LIFE.C, you need only type

A>submt c life <cr>

(assuming the submit fileis named C.SUB.)

1.10 Operational Caveats

1. Wheninvoking any COM filein the BDS C package or any COM file generated by the
compiler, your command line (as typed in to CP/M) must never containany leading
blanks or tabs. It seems that the CCP (console command processor) does not parse the
command line in the proper manner if leading white space is introduced.

2. Theargc and argv values passed to the main function by the BDS C run-time package
will never include an entry for the command name itself (argv[0]) because CP/M does
not make that information available to transient programs on start-up. The argc value is
always positive, equal to the number of parameters passed to the command plus one,
and argv[0] is left undefined. For any given value of argc, therefore, the meaningful
entries in argv areargv[1] through argv[argc — 1]. If argc is equal to 1, then argv
contains no meaningful information.

3. If the STDIO.H header fileis required in a particular program, and it usually is, then it
must be included as the very first header in every source file of the program. It is crucial
that no data declarations be placed physically before STDIO.H in any program where
STDIO.H isused.

4. If you're running MP/M 11, you must re-assemble the run-time package (CCC.ASM —>
C.CCC) with the “MPM2” equate set to TRUE. This makes sure that the run-time
package actually closes all files opened during the course of execution of a C program,
so that the system doesn’t run out of file slots. Normally, under non-MPM2 systems, the
BDS C run-time package does not bother to close files that were open only for reading,
in order to save the time that would be required for the disk access.

Page 26 BD Software

BDS C User’s Guide Introduction

1.11 Last Words

This package is no longer being supported. The following is my current (2002) contact
information; feel free to contact me with feedback, but don’t expect bug fixes:

Leor Zolman

BD Software

74 Marblehead Street

North Reading, MA 01864-1527
(978) 664-4178
|eor@bdsoft.com

For the latest retro release information, check the BDS C section of the BD Software web site at:

http://www.bdsoft.com/resources.html#bdsc

| am grateful to the following individuals for their invaluable feedback and support over the
years of BDS C’s evolution:

Lauren Weinstein Sid Maxwell
Leo Kenen Bob Mathias
Rick Clemenzi Bob Radcliffe
Tom Bell The Real Cat
Jon Sieber Al Mok
Scott Layson Phillip Apley
Tony Gold Charles F. Douds
Ed Ziemba Robert Ward
Scott Guthery L es Hancock
Earl T. Cohen Ted Nelson
Sam Lipson Ward Christensen
Dan MacL ean Jerry Pournelle
Mike Bentley Will Colley
Carlos Christensen Richard Greenlaw
Perry Hutchinson Tim Pugh
Paul Gans Steve Ward
John Nall Tom Gibson
Mark Miller Roger Gregory
Jason Linhart Don Lucas
Calvin Teague Rev. Stephen L. de Plater
Bob Shapiro Nigel Harrison
Cal Thixton Gary Kildall
Stu Heiss Stefan Badsteubner
Jeff Prothero Dan Grayson
William A. Richards Steve Graves
Dave Roscoe Gene Mdllory
Rick Rump John Franks

BD Software Page 27

November 1988 BDS C User’s Guide

Special thanks to Dennis M. Ritchie, Ken Thompson and the entire staff of the Computing
Science Research Center at Bell Laboratories for developing UNIX and the original C. Good
work.

Page 28 BD Software

BDS C User’s Guide Low-Level Mechanisms

Chapter 2

The CRL Function Format and Other L ow-L evel M echanisms

2.1 Introduction

This Chapter is directed toward assembly/machine language programmers who need the ability
to link machine code subroutines in with normally compiled C functions. It describes the CRL
format in detail, as well as the procedure for making CRL format relocatable files out of
assembly language source functions. The parameter-passing and function-calling conventions
used for C functions are also described, as are some convenience routines present in the run-time
package relating to the function linkage, parameter passing and data-access mechanisms.

2.2 TheCRL Format in Detall

Included on the standard BDS C distribution disk is a program called CASM.C, for use with
Digital Research’s ASM assembler under CP/M. This program allows assembly language
functions to be written in a special “CSM” (“C aSseMbly”) format consisting basically of
ASM.COM’s instruction format, plus the addition of several special pseudo-ops for the purpose
of naming and delimiting individual functions. CASM.COM serves to converts the .CSM source
fileinto an “.ASM” source file for direct assembly by ASM.COM. Another utility supplied with
the package, CLOAD, is then used to convert the .HEX file output of ASM into a .CRL file
suitable for linkage by either of the two BDS C linkers (CLINK and L2). A CP/M “Submit” file
named CASM.SUB is provided to automate this entire procedure.

Although it is not absolutely necessary to know how a CRL file is organized in order to
effectively use CASM and ASM to produce CRL files, a detailed description of the CRL format
isnow provided here for completeness.

2.2.1 CRL Directories

The first four sectors of a CRL file? make up the CRL directory. Each function module in the file
has a corresponding entry in the directory, consisting of the module’s name (up to eight

9. If you areusing DDT or SID to examine the file, these sectors appear in memory locations 0100h — 02FFh.

BD Software Page 29

November 1988 BDS C User’s Guide

characters, with the high-order bit set only on the last character) and a two-byte value indicating
the modul €’ s byte address within the filetC.

After the last entry must be a null byte (0x80) followed by a word indicating the next available
address in the file. Padding may be inserted after the end of any physical function module to
make the next modul€’ s address line up on an even (say, 16 byte) boundary, but there must never
be any padding in the directory itself.

Example: if a CRL file contains the following modules,

Nane Lengt h

foo 0x137
yi pee 0x2C5
bl od 0x94A

then the directory for that file might appear as follows 1*

46 4F CF 05 02 59 49 50 45 c5
F (@] (@] nn nn Y | P E E

50 03 42 4C 4F C4 20 06 80 70 OF
nn nn B L @] D nn nn null-entry

2.2.2 External Data Area Origin and Size Specifications

The first five bytes of the fifth sector of a CRL file (locations 0x200-0x204 relative to the start of
the file) contain information that CLINK uses to determine the origin (if specified explicitly to
CC via the —e option) and size of the external data area for the executing program at run-time.
This information is valid only if the CRL file containing it is treated as the “main” CRL file on
the CLINK command line; otherwise, the information is not used.

The first byte of the fifth sector has the value OxBD if the —e option was used during compilation
to explicitly set the external data area; else, the value should be zero. The second and third bytes
contain the address given as the operand to the —e option, if used.

The fourth and fifth bytes of the fifth sector contain the size of the external data area declared
within that file (low byte first, high byte second.) CLINK aways obtains the size of the external
data area from these specia locations within the “main” CRL file (i.e., the CRL file containing
the “main” function for the program). In CRL files which do not contain a“main” function, these
bytes are unused.

2.2.3 Function Modules
Each function module within a CRL file is an independent entity, containing the binary

machine-code image of the function itself plus a set of relocation parameters for the function
and alist of names of any other functions that it may call.

10. The function module addresses within a CRL file are al relative to 0x0000, with the directory residing from 0x0000 to OxO1FF.
Locations 0x200 — 0x204 are reserved, so the lowest possible function module addressis 0x205.

11. Note that the last character of each name has bit 7 set high.

Page 30 BD Software

BDS C User’s Guide Low-Level Mechanisms

A function module is address-independent, meaning that it can be physically moved around to
any location within a CRL file (as it often must be when CLIB is used to shuffle modules
around.)

The format of afunction moduleis:

list of needed functions
length of body

body

relocation parameters

2.2.3.1 List of Needed Functions

If the function you are building calls other CRL functions, then a list of those function names
must be the first item in the module. The format is simply a contiguous list of upper-case-only
names, with the high-order bit (bit 7) high on the last character of each name. A zero byte
terminates the list. A null list (as when the function does not call any other functions) is just a
single zero byte.

For example, suppose a function foobar calls functions named putchar, getchar, and setmem.
Foobar’slist of needed functions would appear as follows:

47 45 54 43 48 41 D2 50 55 54 43

48 41 d2 53 45 54 4D 45 Ch 00

2.2.3.2 Length of Body

Next comes a 2-byte word value specifying the exact length (in bytes) of the body, to be defined
next. The length word is stored low-byte first, high-byte last.

2.2.3.3 Body

The body portion of a function module contains the actual 8080 code for the function, with the
origin of the code always at 0000.

If the list of needed functions was null, then the code starts on the first byte of the body. If the list
of needed functions specified n names, then a dummy jump vector table (consisting of n jmp
instructions) must be provided at the start of the body, preceded by ajump instruction around the
vector table.

For example, the beginning of the body for the hypothetical function foobar described above
would be:

j mp 000Ch
J] mp 0000
j mp 0000
j mp 0000
<rest of code>

BD Software Page 31

November 1988 BDS C User’s Guide

C3 0C 00 C3 00 00 C3 00 00 C3 00 00 <rest of function code>.

2.2.3.4 Relocation Parameters

Directly following the body come the relocation parameters, a collection of addresses (relative to
the start of the body) pointing to the operand fields of each instruction within the body that
references alocal address. CLINK takes every word being pointed to by an entry in thislist, and
addsto it the run-time base address of the function.

Thefirst word in the relocation list is a count of how many relocation parameters are given in the
list. Thus, if there are n relocation parameters, then the length of the relocation list (including the
length byte) would be 2n+2 bytes.

For example, a function which contains four local jump instructions whose opcodes are located
at, respectively, locations 0x22, 0x34, 0x4F and 0x61) would have the following relocation list:

04 00 23 00 35 00 50 00 62 00'?
2.3 Register Allocation and Function Calling Conventions

2.3.1 The Stack

All argument passing on function invocation, as well as al local (automatic) storage alocation,
take place on asingle stack at run time.

2.3.1.1 The Stack Pointer

The stack pointer is kept in the SP register, and is initialized to the top of user-accessible
memory area at run-time. Where the compiler thinks the end of available memory is depends on
which options are given during linkage; by default, the stack pointer is initialized to the base of
the CP/M BDOS, and grows down wiping out the CCP and requiring a warm-boot following
program execution (to bring the CCP back into memory). If the —t option is used at link time, the
value given as argument to —t is used to initialize the SP. If the —n option is used, then the SP is
initialized to the base of the CCP, yielding 2K less stack space than the default but allowing a
return to command level after execution without requiring a warm-boot to be performed.

2.3.1.2 How Much Space Doesthe Stack Take Up?

The single stack scheme has all local (automatic) data storage, formal parameters, return
addresses and intermediate expression values residing on one stack. This stack begins in high
memory and grows downward.

The maximum amount of space the stack can ever consume is roughly equal to the amount of
local data storage active during the worst case of function nesting, plus afew hundred bytes or so
(in the worst case) for miscellaneous intermediate expression values.

12. Note that the addresses of the instructions must be incremented by one to point to the actual address operands needing relocation.

Page 32 BD Software

BDS C User’s Guide Low-Level Mechanisms

If we call the amount of local storage in the worst case n, then the amount of free memory
availableto the user may be figured by the formula

topofmem() — endext() — (n + fudge)

where a fudge value of around 500 should be pretty safe. Topofmem and endext are library
functions which return, respectively, a pointer to the highest memory location used by the
running program (the top of the stack) and a pointer to the byte following the end of the external
data area. The value of endext() is thus a pointer to the first byte of memory available for storage
allocation and/or general purpose use.

2.3.2 External Data

External storage usually sits directly on top of the program code, leaving al of memory between
the end of the external data and the high-memory stack free for storage alocation.

2.3.3 Function Entry and Exit Protocols

When a C-generated function receives control, it will usually perform the following tasks in the
given order: push BC, allocate space for local data on the stack (decrement SP by the amount of
local storage needed), and copy the new SP value into the BC register for use as a constant base-
of-frame pointer. The reason for copying the SP into BC instead of just addressing everything
relative to SP is that the SP fluctuates madly as things are pushed and popped, making variable
address calculation rather confusing.

Note that the old value of BC must always be preserved for the calling routine.

Let’'s say the called function requires nlocl bytes of local stack frame space. After pushing the
old BC, decrementing SP by nlocl and copying SP to BC (in that order), the address of any
automatic variable having local offset loffset may be easily computed by the formula

(BC) + loffset

If the function takes formal parameters, then the address of the nth formal parameter may be
obtained by

(BC) + nlocl + 2+ 2n

where nis 1 for the first value specified in the calling parameter list, 2 for the second, etc. This
last formulais obtained by noting that parameters are always pushed on the stack in reverse order
by the calling routine, and that pushing the arguments is the last thing done by the caller before
the actual call. After the called function pushes the BC register, there will be four bytes of stuff

on the stack, composed of two 16-bit values, between the current SP and the first formal

parameter: a) the saved BC register and b) the return address to the calling routine. Note that this
scheme requires that each formal parameter takes exactly 2 bytes of storage. Thus, single byte
parameters (char variables) are aways converted into 16-bit values (by zero-ing the high order
byte, not sign-extending) before being passed as parameters.

BD Software Page 33

November 1988 BDS C User’s Guide

Upon completing its chore (but before returning), the called function de-allocates its local
storage by incrementing the SP by nlocl, restores the BC register pair by popping the saved BC
off the stack, and returnsto the caller.

The caller will then have the responsibility of restoring the SP value to that which it was before
the formal parameter values were pushed; the called function can’'t do this because there is no
way for it to determine how many parameters the caller had pushed (for example, consider the
printf function, which takes a variable number of parameters).

Formally, the responsibilities of the calling function are:

1
2.

Push formal parametersin reverse order (last arg first, first arg last)

Call the subordinate function, making sure not to have any important values in either the
HL or DE registers (since the subordinate function is allowed to bash DE and may
return avalue in HL). The BC register may be considered “safe” from alteration by the
subordinate function since, by convention, the function that is called should always
preserve the BC register value that was passed to it. All functions produced by the
compiler do this, as do all assembly-language-coded functions supplied in the BDS C
package.

Upon return from the function: restore SP to the value it had before the formal
parameters were pushed, taking care to preserve HL register pair (containing the
returned value from the subordinate function). The simplest way to restore the stack
pointer isjust to do apop d for each argument that was pushed.

The protocol required of the called, subordinate function is:

1.

S

Push the BC register if there is any chance it may be altered before returning to the
caler.

If there are any local storage requirements, allocate the appropriate space on the stack by
decrementing SP by the number of bytes needed.

If desired, copy the new value of SP into the BC register pair to use as a base-of-frame
pointer. Don’t do thisif BC wasn’t saved in step 1!

Perform the required computing.
When finished, de-allocate local storage by incrementing SP by the local frame size.
Pop old BC from the stack (if saved in step 1).

Return to caller with the returned value (if any) in the HL register.

Page 34 BD Software

BDS C User’s Guide Low-Level Mechanisms

2.4 Re-entrant Coding

Since BDS C was not explicitly designed with re-entrancy of functions in mind, specia steps
must be taken when this feature is desired. The most common application of re-entrant code with
BDS Cisfor the implementation of interrupt service routinesin C programs.

The problem with using C functions to perform the interrupt handling is that there are severa
mechanisms in the run-time package which maintain state variables within the run-time package
scratch pad RAM area. Specifically, the multiplicative arithmetic operators (multiply, divide and
mod) were optimized for speed and therefore do not bother to preserve the previous contents of
their scratch pad variables on the stack. To allow C programs to be re-entrant, the run-time
package must be modified so that the multiplicative operators take the appropriate re-entrancy
precautions. This can only be accomplished by patching each multiplicative routines to push its
local data before computation, and then restore it when finished. This must be done without
altering the starting address of any routine in the run-time package occurring before the init:
routine; i.e., patching is required.

2.5 Helpful Run-Time Subroutines Availablein C.CCC (See
CCC.ASM)

There are several useful subroutines in the run-time package available for use by assembly
language functions. The routines fall into three general categories: the local-and-external-fetches,
the formal-parameter fetches, and the arithmetic and logical routines.

2.5.1 Local and Exter nal Fetch Routines

The first group of six subroutines may be used for fetching either an 8- or 16-bit object, stored at
some given offset from either the BC register or the beginning of the externa data area, where
the offset is specified as either an 8- or 16-bit value. For example: the intuitive procedure for
fetching the 16-bit value of the external variable stored at an offset of eoffset bytes from the base
of the external data area (the pointer to which is stored at location extrns) would be

| hld extrns ;get base of external area into HL
I Xi d, eof fset ;1 oad offset into DE

dad d ;add offset to base pointer

nov a, m ;perform4-step

i nXx h ; indirection to

nov h, m ; fetch val ue at

nov l,a (HL) into HL.

Using the special call for retrieving an externa variable, the same result may be accomplished
with

cal | sdei ; 8-bit offset, 16-bit val ue externa
db eof f set ; indirection, with eoffset < 256

BD Software Page 35

November 1988 BDS C User’s Guide

The second sequence takes up much less memory; 4 bytes versus 11, to be exact. If the value of
eoffset were greater than 255, then the Idel routine would be used instead, with eoffset taking a
dw instead of adb to represent. See the CCC.ASM file for complete listings and documentation
on the entire repertoire of these value-fetching subroutines.

2.5.2 Formal Parameter Fetches

The second class of subroutines are used primarily for fetching the value of a function argument
off the stack into the HL and A registers (the low order byte is placed in both the A and L
registers, while the high byte is placed only in the H register). For example: say your assembly
function has just been called; a call to the subroutine maltoh would fetch the first argument into
HL and A. maltoh (mnemonic for “Move Argument 1 TO H”) always fetches the 16-bit value
present at location SP+2 (as your function sees the SP.) A call to the ma2toh (“Move Argument 2
to H”) routine would retrieve the second 16-bit argument off the stack in HL and A. If you push
the BC register before fetching a parameter off the stack, then all items on the stack will be offset
by another 2 bytes from the SP value and you'd have to call ma2toh in order to fetch the first
argument, ma3toh to fetch the second, and so on. Thus, it is important to keep track of stack
depth when using these subroutines.

A less confusing way to deal with function argumentsis to call the routine called arghak as the
very first thing you do in your function, especially before pushing BC or anything else on the
stack. Arghak copies the first seven function arguments off the stack to a 14-byte buffer in the
riw memory area (normally within C.CCC itself), making those values accessible viasimple |hid
operations for the duration of the function’s operation...that is, assuming your function doesn’t
call another function which also uses arghak to copy its arguments down there, overwriting those
of the calling function. After arghak has been called, the first argument will be stored at absolute
location argl, the second at arg2, etc. These symbols are defined in BDS.LIB, as described
below.

2.5.3 Arithmetic and L ogical Subroutines

The final category of subroutines is the arithmetic and logical group, all of which take arguments
passed in HL and DE and return a result in HL. | won't take up space with details on these
functions here; examine the run-time package source file (CCC.ASM) to see the subroutines that
are available.

2.5.4 System Source Files

The source code to the various modules which make up an integrated compilation environment
can be thought of as broken up into four separate categories:

1. The C source code to the application program to be compiled, plus any related CSM (“C
aSseMbly language”)-formatted assembly source code, are collectively the “source
program’;

2. STDLIB1.C, STDLIB2.C and STDLIB3.C (#including STDIO.H) contain the source
code to all C-coded portions of the standard BDS C library (compiled into DEFF.CRL);

Page 36 BD Software

BDS C User’s Guide Low-Level Mechanisms

3. DEFF2A.CSM, DEFF2B.CSM and DEFF2C.CSM (all #including BDS.LIB) contain
the source code to al CSM-coded portions of the standard BDS C library (assembled
into DEFF2.CRL, with a few functions placed into DEFF.CRL to eliminate backward-
references during linkage)

4. CCC.ASM contains the source code to the BDS C run-time package module, assembled
into C.CCC.

The run-time package source file, CCC.ASM, contains the code and documentation of all the
helpful run-time subroutines described above. The header file BDS.LIB contains definitions of
al entry points to the routines within C.CCC (assembled from CCC.ASM) as provided in the
distribution version of the package. All CSM-format source files should contain the directive

#i ncl ude <bds.li b>

so that the necessary subroutines may be referred to directly by name in CSM modules. If you
need to modify CCC.ASM in order to customize the run-time package, be sure to aso modify
BDS.LIB to reflect the new addresses, and check to make sure all named symbols assemble to
equal valuesin both CCC.ASM and BDS.LIB. For instructions on generating code for placement
into ROM, execution at arbitrary locations in memory, and with or without CP/M in residence,
see the appendix entitled “ Customized Run-Time Environments’.

2.6 Debugging Object Command Files Under CP/M

There are two general approaches to interactive debugging of an object file created using BDS C.
Thefirst is simply to use the CDB symbolic debugger provided with the package, as described in
the appendix devoted to CDB. CDB allows symbolic references to al functions and variables in
a program, making the tracing of execution fairly straightforward. But, problems may arise if
your object program is too big to fit in memory together with the large CDB module.

The other way to debug a program involves the use of SID.COM, the digital Research symbolic
debugger, or any symbolic debugger that accepts a standard “.SYM” symbol table file as written
out by CLINK.COM (when the —w option is used), L2.COM (-sym) or MAC.COM ($pn). A
.SYM file contains the names and starting addresses of each function in an object program. When
SID isinvoked with a command file and its companion .SYM file as arguments, then the starting
address of each function in the command file may be referred to directly by name under SID. If
SID.COM is not available, then DDT.COM may be used instead provided a printed .SYM fileis
available for visual cross-reference of symbol values.

2.6.1 Loading Programsand Setting Breakpoints

To debug a.COM file using SID, begin by invoking SID in the following manner:

sid <fil enane>. com <fil enane>. sym

BD Software Page 37

November 1988 BDS C User’s Guide

Thiswill load up the target program and its associated .SYM file. Next, enter the command line
that the target program will see upon startup by using the SID command i:

-iargl arg2 arg3..

Now, debugging may commence through careful setting of breakpoints at key function entry
points. For example, to begin execution at the start of thetarget program (run-time package
initialization) and stop as soon as the MAIN function is reached, use the command:

-g,.main

As soon as execution stops at the start of any particular function, it ispossible to look at the
arguments passed to that function by analyzing the memory locations pointed to by the SP
register. In general, the following command may be entered as soon as execution has stopped at
abreakpoint set at the start of afunction, where <sp> is the value contained in the SP register:

- d<sp>, +8

SID will respond with adump of the form:

<sp>: nn nn 11 1h 2| 2h 31 3h ..

where <sp> is the SP value you typed in to the d command, “nn nn” is the return address to the
calling function, “1l 1h” are the low-order and high-order bytes, respectively, of the first

function parameter passed to the current function, “2l 2h” is the second parameter, and so forth.

If this were being done for the MAIN function, then “nn nn” would be the return address to the

place in the run-time package from which MAIN was called, “1I” would be the value of argc,

“1h” would be zero (the high-order byte of argc), and “2l 2h” would be the address of the argv
vector table. To actually see the text of the command line parameters, you’ d then dump memory

at location “2| 2h” (by reversing the two bytes and entering the 4-digit address as the parameter

to the d command), yielding a sequential list of 16-bit pointers to the actual command line
parameters. Y ou’ d then dump the location of each parameter inturnto see the actual text.

Another useful tool when debugging with SID is the command “g,””, or “return to caller”. For
example, if you wish to see exactly what the printf function produces at the very next timeit is
called, first you'd set a breakpoint at the start of printf by saying:

-g,.printf

when execution halts at the start of printf, you'd then enter the command:

_g’/\

as soon as you hit return, the printf function will take off, and execution will halt upon return to
the memory location following the call to printf. This command, “g,””, says to SID that
execution should continue until the address that is currently at the top of the stack is reached.

Page 38 BD Software

BDS C User’s Guide Low-Level Mechanisms

Since the address at the top of the stack upon entry to the printf function is the address of the
instruction following the call instruction used to call printf, that is where SID will next halt
execution. Note that DDT does not recognize this shorthand; to perform the same operation
under DDT, you must dump the memory location pointed to by SP and use the g,nnnn command
to explicitly set a breakpoint at the memory location indicated by the top value on the stack.

2.6.2 Tracing Execution and Dumping the Values of Variables

If a C command is to be debugged using SID/DDT, then it should be compiled in aspecial

manner in order to make debugging as straightforward as possible. First of all, the CC option —e
xxxx should be used to fix the external data areaat some absolute memory location. This will

shorten/simplify the code generated to access external variables, as the LHLD and SHLD ops
can be used for this purpose by the compiler. Secondly, the CC option —0 should also be used,

to eliminate the space-saving calls to the run-time package for the purpose of loading the
addresses of automatic data. Since the form of the space-saving callsis

call <routine_nane>
db nn (or) dw nn

it becomes confusing to try and trace these calls, with the in-line data bytes immediately
following the call instructions creating confusion for the debugger. By specifying —o, all local
variable addresses are computed in-line, eliminating sequences such as the one above, and it
then becomes easier to follow execution with SID or DDT.

There are no symbolic references available for variable names, so it becomes necessary to
compute the absolute memory addresses of external variables, and the relative offset values of
local variables, by hand.

Local (automatic) datais stored, in the order declared, immediately following the end of formal

parameter storage on the stack. At the start of each C-generated function, the address of the
automatic local variable storage areais copied into the BC register and left there untouched for
the duration of that function’s execution. Therefore, after the initial sequence, the BC register

aways points to the start of the first automatic variable belonging to the currently executing
function. It makes debugging easier if you always declare the variable you'll need to watch the
most first, and then declare other automatic variables.

External data is stored sequentially beginning at the address specified as argument to the CC
option —e. Again, it makes life easier for you to declare the externals you need to watch the most
as the first things in the external data area. You may want to insert some printf statements at
the start of the program just to print out the addresses of the external data objects you need to

know the locations of. This will eliminate the need to recompute the addresses by hand each
time you may change the location of the external data area, or the order of the items declared
therein.

2.6.3 A Sample SID Debugging Session

Here is a sample session using SID and atrivial C program called TEST.C, which prints out the
command line parameters on the console:

BD Software Page 39

November 1988 BDS C User’s Guide

A>type test.c

/*
TEST.C: Echo command line arguments
*/

#include <stdio.h>

main(argc,argv)
char **argv;

inti;

for (i =1; 1 <argc; i++)
printf("Arg #%d = %s\n",argvl[i]);
}

A>cc test.c

BD Software C Compiler v1.60
xxXK elbowroom

BD Software C Compiler v1.60
xxK left over

A>clink test -w ;-W option causes TEST.SY M to be written
BD Software C Linker v1.60

. (link statistics printed here)

A>sid test.com test.sym ;invoke SID with object file and symbol file
SID VERS 14
SYMBOLS
NEXT PC END
OF80 0100 9AB1 ;(exact numbers may vary with release version)
#ithisisatest ;fill CP/M command line buffer
;disassemble start of program
0100 LHLD 0006
0103 SPHL
0104 NOP
0105 NOP
0106 JMP 010C
0109 JMP 0000
010C CALL 0362
010F CALL 08B8 .MAIN
0112 JMP 047B

0115 STAX D

0116 RRC
#g,.main ;execute until MAIN is entered
*08B8 .MAIN
#x ;display registers

Page 40 BD Software

BDS C User’s Guide Low-Level Mechanisms

-Z-E- A=00 B=0084 D=0F12 H=010F S=9AAC P=08B8 JMP 08BE

#d9aac,+5 ;look at stack upon entry to MAIN function
9AAC: 12010500.... ; 0112 = return addr, 0005 = argc, 087A = argv
9ABO: 7A 08 z.

#d87a,+f ;look at argv vectors

087A: 32 DO F9 07 FE 07 2..... ;argv[0] = D032, argv[1] = 07F9, etc.

0880: 01 08 0308 A529 CA E828CD)..(.

#d7f9,+5 ;dump argv[1]

07F9: 74 68 69 73 00 69 this.i ;this<null>

#d7fe+5 ;dump argv[2]

O7FE: 69 73 is ;i s<null>

0800: 00 61 00 74 .at

#d801,+5 ;dump argv[3]

0801: 61 00 74 65 73 74 a.test ; a<null>

#d803,+5 ;dump argv[4]

0803: 74 65 73 74 00 5E test.” ;test<null>

#g,.printf ;execute until PRINTF is entered first time

*0924 .PRINTF

#X ;display registers upon entry to PRINTF
--M-- A=01 B=9AA8 D=08F6 H=0916 S=9AA0 P=0924 JMP 092D
#d9aa0,+f ;display stack upon entry to PRINTF
9AA0: FE0816 0901 00F9070100840012010500.................
#d916,+f ;look at first argument (8FE is return addr)
0916: 41 72 67 20 23 25 64 20 3D 20 Arg #%d =
0920: 25 73 0A 00 C3 2D %s...- ;string is "Arg #%d = %s\n"
#d7f9,+5 ;second arg is 0001, third arg is this:
07F9: 74 68 69 73 00 69 this.i ;this<null>
#gN ;continue execution until return from PRINTF
Arg #1 = this ;thisis printed out by PRINTF
*08FE ;execution halts at 8FE, after call to PRINTF
#t ;trace one instruction
-Z-E- A=00 B=9AA8 D=0EE3 H=0000 S=9AA2 P=08FE POP D
*08FF
#9,.printf ;continue executing until next entry to PRINTF

*0924 .PRINTF

#gN ;continue executing until return from PRINTF

BD Software Page 41

November 1988 BDS C User’s Guide

Arg#2=is ;PRINTF prints this
*08FE
#t
-Z-E- A=00 B=9AA8 D=0EE3 H=0000 S=9AA2 P=08FE POP D
*08FF
#g,.printf ;do it again

*0924 .PRINTF

#g"
Arg#3=a

*08FE

#t
-Z-E- A=00 B=9AA8 D=0EE3 H=0000 S=9AA2 P=08FE POP D
*08FF

#g,.printf ;and again

*0924 .PRINTF
#g"
Arg #4 = test

*08FE

#x ;look at registers
-Z-E- A=00 B=9AA8 D=0EE3 H=0000 S=9AA2 P=08FE POP D

#1100 ;disassemble start of program again
0100 LHLD 0006
0103 SPHL
0104 NOP
0105 NOP
0106 JMP 010C
0109 JMP 0000
010C CALL 0362
010F CALL 08B8 .MAIN
0112 JMP 047B

0115 STAX D

0116 RRC
#0,112 :continue until return from MAIN
*0112 ;thisisit (nothing printed by program)
#g ;now continue with run-time cleanup
A> ;and we're back at command level

Page 42 BD Software

BDS C User’s Guide Function Summary

Chapter 3

The BDS C Standard Library on CP/M: A Function Summary

In the BDS C package, the files DEFF.CRL and DEFF2.CRL contain the object code of the
standard library. DEFF.CRL contains the compiled object code for all the C-coded functions
from STDLIB1.C, STDLIB2.C and STDLIB3.C, and DEFF2.CRL contains all the object code
for the assembly language functions from DEFF2A.CSM, DEFF2B.CSM and DEFF2C.CSM

(assembled using the CASM facility). CLINK automatically searches these .CRL library files'®

after al other CRL files explicitly named on the command line have been searched. Thus, any
functions you explicitly define in a source file that happen to have the same name as library

functions will take precedence over the library versions, as long as CLINK finds your version of
the function before getting around to scanning the library.

In the following summary of all the major functions in DEFF.CRL and DEFF2.CRL, each
function is described both in words and in a loose C-like notation intended to illustrate how a
definition of that function might appear in a C program. Such notation provides, at a glance,

information such as whether or not the function returns a value (and if so, of what type) and the
types of any parameters that the function may take. Here are some rules of thumb: if afunctionis
listed without atype, then it doesn’t return a value (for example, exit and poke return no values.)

Any formal parameters lacking an explicit declaration are implicitly of type int, although in
many cases only the low-order 8 bits of the parameter are used and a value of type char may be
passed to the function. Note that it isn’'t always easy to describe the exact type of a formal

parameter...is a memory pointer of type unsigned, or is it a character pointer? As long as you
don't try to pass achar variable in the position of a 16-bit memory address parameter, things will
probably work right no matter what the declared type of the parameter isin the calling program.

There are only afew cases where it is actually necessary to declare alibrary function beforeit is
used in a C program. One case is when the function returns a value having a type other than int,
and the function call is placed inside an expression where the type of the return value needs to be
other than int in order for the expression to work (as in pointer arithmetic, for example.) A bit of
experience will help to clarify when it is proper or unnecessary to declare certain functions;
many of these decisions are a matter of style and/or portability.

Hereisasummary of all magjor functions available in DEFF.CRL and DEFF2.CRL.:

3.1 General Purpose Functions

13. If desired, the user may configure CLINK to search for the library files in an arbitrary CP/M disk drive and user area, alowing
linkages to be performed in any drive and user area without needing to have al the library files there al so.

BD Software Page 43

November 1988 BDS C User’s Guide

char csw()

Returns the byte value (0-255) of the console switch
register (port OXFF on some mainframes).

exit()

Closes any open files and exits from an executing program, re-booting CP/M.
Does not
automatically call fflush on files opened for buffered output.

int bdos(c,de)

Callsthe standard BDOS system entry point (location 0005h on

most systems), first

setting CPU register C to the value ¢, and register pair

DE to the value de.

Return value is the 16-bit value returned by the BDOS in HL.. For CP/M
systems, the low-order byte is the value returned by the BDOS in A,

and the high-order byte is the value returned by the BDOS in B (or zero for
8-hit return values.) See the “Miscellaneous Notes’ appendix for some
details on incompatibilities with non-CP/M systems (e.g., SDOS).

char bios(n,c)

Callsthe nth entry in the BIOS jump vector table, wherenisO

for thefirst entry (BOOT), 1 for the second (WBOOT),

2 for the third (CONST), etc., first setting CPU registers BC to the

valuec.

Result isthe value returned in register A by the BIOS call.

Note that the cold-boot function (where n is 0) should never

actually be used, since the CCP will be bashed and probably crash the system
upon entry.

There are some BIOS calls that require a parameter to be passed in DE, and
that return their result in HL. Use the biosh function (described next)

for those calls.

WARNING: Both the bios and biosh functions assume that the

instruction at the start

of the base page of CP/M on your system isajmp directly to the
“warm-boot” entry point of your BIOS jump vector table. If thisis not the
case (e.g. on the Xerox 820), you must modify these functions

(in CSM format) to correctly compute the address of the BIOS jump

vector table in whichever manner is appropriate for your system,

then re-install the new versions of bios and biosh

in the DEFF2.CRL library file.

Page 44 BD Software

BDS C User’s Guide Function Summary

unsigned biosh(n,bc,de)

Callsthe nth entry in the BIOS jump vector table, as above,

first setting CPU registers BC to the value bc and setting CPU registers

DE to the value de. Result isthe value returned in registers HL by

the BIOS call.

See the WARNING above, about how this function computes the location of
the BIOS jump vector table on your system.

char peek(n)

Returns contents of memory location n. Note that in applications
where many consecutive locations need to be examined, it is
more efficient to use indirection on a character pointer than

it isto use peek.

This function is provided for the occasional

instance when it would be cumbersome

to declare a pointer, assign an address to it,

and use indirection just to access, say, asingle

memory location.

poke(n,b)

Deposits the low-order eight bits of b into memory
location n. This can
also be more efficiently accomplished using pointers, asin

*n = b;
(where nisapointer to characters.)
char inp(n)

Returns the eight-bit value present at input port n.

Both the inp and outp functions perform port I/O by constructing a
three-byte subroutine sequence (consisting of a two-byte 1/O operation and a
single-byte return operation) in the run-time package data area, and then
calling it as a subroutine to actually perform the 1/0O. This limits the port
number range to 8 bits, since the 8080 “in” and “out” ops are used for general
compatibility. Adapting inp and outp for 16-bit port number operation

can be accomplished without too much difficulty by modifying the functions to
execute Z80 input/output operations, and then reassembling them using the
CASM

processor and associated commands.

For memory-mapped input, use the peek function.

outp(n,b)
Outputs the eight-bit value b to output port n.
See inp above for a note about 16-bit port addressing.

For memory-mapped output, use the poke function.

BD Software Page 45

November 1988 BDS C User’s Guide

pause()

Sitsin aloop until CP/M console input interrogation indicates

that a character has been typed on the system console. The character
itself is not sampled; before pause can be used again,

agetchar call must be made to clear the status.

Thereis no return value.

sleep(n)
Sleeps (idles) for /20 seconds at 4 MHz, or n/10 seconds at 2 MHz.
The only way to abort out of this before completion
isto type control-C, which aborts the program and returns

to command level.
Thereisno return value.

int call(addr,a,h,b,d)

Calls a machine code subroutine at location addr, setting CPU
registers as follows:

H. <-- h;
A <-- a;
BC <-- b;
DE <-- d

Return value is whatever the subroutine returns in registers HL.
The subroutine must, of course, maintain stack discipline.

char calla(addr,a,h,b,d)

Just like the call function, except the result is the value returned
by the subroutine in register A (instead of HL.)

int abs(n)

Returns absolute value of n.
int max(n1,n2)

Returns the greater of two integer values.
int min(nl,n2)

Returns the lesser of two integer values.

Page 46

BD Software

BDS C User’s Guide Function Summary

srand(n)

If nisnon-zero, this function

initializes the pseudo-random number generator by setting the internal
seed to thevalue n.

If niszero, then

srand prints a message asking the user to type a carriage return,

then begins to count very fast internally.

When a key isfinaly hit by the user,

the current value of the

count is used to initialize the random seed. The character typed by the
user is gobbled up (lost), and statusiis cleared.

srand1(string)
char *string;

Like srand(0), except that instead of the

canned “Hit return after afew seconds.” message,

the provided string is used as a prompt.

Unlike srand, though, the character typed by the user in
response to the prompt is not

gobbled up; you must do a getchar call to sample the character
and/or clear the console status.

int rand()
Returns next value (ranging: 0 < rand() < 32768) in a pseudo-random
number sequence initialized by srand or srandl.
To get avalue between 0 and n-1 inclusive, use the subexpression:

rand() %n

BD Software Page 47

November 1988 BDS C User’s Guide

nrand(-1,s1,s2,s3)
nrand(0, prompt-string)
int nrand(1)

A “better quality” random number generator.

Thefirst form sets theinternal 48-bit seed equal to the 48 bits of

data specified by s1, s2 and s3 (ints or unsigneds.)

The second form actsjust like the srand1 function: the string

pointed to by prompt-string is printed on the console, and then

the machine

waits for the user to type a character while constantly incrementing

an internal 16-bit counter. As soon as a character is typed, the value of
the counter is plastered throughout the 48-bit seed. Note that the console
input is not cleared; a subsequent getchar call is required

to actually sample the character typed and clear the console status.
The final form simply returns the next value in the random sequence,
with the range being

0 < nrand(1l) < 32768.

Note that the internal seed maintained by nrand

is separate from the seed used by

srand, srandl and rand, which use thefirst 32

bits of the arealabeled rseed within the run-time package data
area. Nrand maintains its own distinct internal seed.

setmem(addr,count,byte)
char byte, *addr;

Sets count contiguous bytes of memory beginning at addr to
the value byte. Thisis efficient for quick initialization of arrays
and buffer areas.

movmem(source,dest,count)
char *source, * dest;

Moves ablock of memory count bytes in length from source

to dest. Thisfunction will handle any configuration of

source and destination areas correctly, knowing automatically whether
to perform the block move head-to-head or tail-to-tail. If run on aZ80
processor, the Z80 “block move” instructions are used. If run on an 8080
or 8085, the normal 8080 ops are used. This all happens automatically.

memcmp(blockl, block2, length)
char *block1, *block2;

Does a quick comparison of two blocks of memory having size length,

returning 1 (TRUE) if the blocks are exactly similar or O (FALSE) if
there are any differences.

Page 48 BD Software

BDS C User’s Guide Function Summary

gsort(base,nel ,width,compar)
char *base;
int (*compar)();

Does a“shell sort” on the data starting at base, consisting

of nel elements each width bytes in length. compar

must be a pointer to a function of two pointer arguments (e.g. X,y) which
returns

1 if *x > *y
-1 if *x < *y
0 if *x == *y,

Elements are sorted in ascending order.

int exec(prog)
char *prog;

Chainsto (loads and executes) the program prog.COM.

Prog must be a null-terminated string pointer specifying the

file to be chained (the “.COM” need not be present in the name).
A string constant (such as “fo0”) is perfectly

reasonable, since it evaluates to a pointer.

If the program to be execed was generated by the C compiler and
it needs to share external variables with the execing program,
then it should have been linked with the CLINK option —e

to locate common external data at the same address.

See the CLINK documentation for details on the

proper usage of the —e option.

There may be no transfer of open file ownership through an exec
call. The only possible shared resource under this scheme is external
data as described above.

Returns—1 on error...but then, if it returns at all there must have
been an error.

BD Software Page 49

November 1988 BDS C User’s Guide

int execl(prog,argl,arg2,...,0)
char *prog, *argl, *arg2, ...

Allows chaining from one C COM file to another with parameter passing
through the argc & argv mechanism. Prog must be

anull-terminated string pointing to the name of the COM fileto be
chained

(the “.COM” need not be present in the name),

and each argument

must also be a null-terminated string. The last argument must be zero.
Execl works by creating a command line out of the given

parameters, and proceeding just asif the user had typed that command
line in to the command processor of CP/M. For example,

execl ("foo", "bar", "zot", 0);
would have the same effect asif the CP/M command line

A>f oo bar zot <cr>

were directly typed. Unfortunately, the built-in CP/M

commands (such as “dir”, “erd’, etc.) cannot be invoked with execl.

The total length of the command line constructed from the given

argument strings must not exceed approximately 80 characters. If the
constructed command line exceeds this length, a message to that effect
will be printed on the console and the program will abort.

—1 returned on error (again, though, if it returns at all then there must have
been an error.)

execv(filename,argvector)
char *filename;
char *argvector(];

This function allows chaining with a variable number of arguments to be
performed, similarly to execl,

except that the parameter text is specified in

an array instead of in the calling sequence explicitly. The

argvector parameter must be a pointer to an array of string pointers,

where each string pointer points to the next argument and the last pointer has a
value of zero

(as opposed to being a pointer to anull string.)

Returns—1 on error, though any return at all implies an error.

Page 50 BD Software

BDS C User’s Guide Function Summary

int swapin(filename,addr)
char *filename;

Loads in the file whose name is the null-terminated string pointed

to by filename into location addr in memory. No check

ismadeto seeif thefileistoo long for memory; be careful where

you load it! This function may be used, for example, to load in an overlay
segment for later execution via an indirection on a pointer-to-function
variable.

Returns—1 if thereisan error in reading in the file. Control is not
transferred to the loaded file.

char * codend()

Returns a pointer to the first byte following the end of root segment
program code. Thiswill normally be the beginning of the external
data area unless the CLINK option —eis used to explicitly locate
the external data (see the externs function below.)

char *externs()

Returns a pointer to the start of the external data area. Unless the —e
option was used with CC and/or with CLINK, this value will be the same as
that returned by the codend function.

char *endext()

Returns a pointer to thefirst byte
following the end of the external data area. Thisis start of the
areafrom which the sbrk function obtains free memory.

char *topofmem()

Returns a pointer to the last byte of the user memory. Thisis normally the
top of the stack, which is either immediately below the BDOS (if

the — option is not given to CLINK at

linkage time) or immediately below the CCP (if —n isused at

linkage time).

The value returned by topofmem s not

affected by use of the -t option at linkage time.

BD Software Page 51

November 1988 BDS C User’s Guide

char *alloc(n)

Returns a pointer to afree block of memory n bytesin length, or O

if n bytes of memory are not available. Thisisroughly the storage
allocation function from chapter 8 of Kernighan & Ritchie, smplified due
to the lack of type-alignment restrictions. See the book for details.

The standard header file STDIO.H

must be #included in all files of a program that uses

alloc and free pair,

since external data used by alloc and free is declared therein.

The external variable _allocp, defined in STDIO.H, may be set to NULL in order
to reset the alloc/free storage allocation mechanism. In order to fully
re-initialize system storage allocation, though, it is also necessary to reset
the low-level sequential storage alocator;

thisis accomplished by calling the sbrk function with an argument of —1.
See the sbrk section below.

free(allocptr)
char *allocptr;

Frees up ablock of storage allocated by the alloc function, where
allocptr is avalue obtained by a previous call to alloc.

Free

need not be called in the reverse order of previous alloc calls, since
the linked-list data structure can

tolerate any order of allocation/de-allocation.

Never call free with an argument not previously obtained by acall to
alloc.

Page 52 BD Software

BDS C User’s Guide Function Summary

char * sbrk(n)

Thisisthe low-level storage allocation function, used by alloc

to obtain raw memory storage. It returns a pointer to n bytes of

memory, or =1 if n bytes aren’t available. Thefirst

call to sbrk returns a pointer to the location in memory

immediately following the end of the external data area; each subsequent call
returns a block contiguous with the last, until sbrk detects that the
locations being allocated are getting dangerously close to the current stack
pointer value. By default, “dangerously close” is defined as 1000 bytes. To
alter this default, see the next function.

If you plan to use the alloc and free functions in a program,

but would aso

like some memory immune from allocation to be available for scratch
space, use sbrk()

to request the desired

memory instead of alloc. Sork calls may be

made at any time (independent

of any alloc and free calls that may

have been made).

If sbrkiscalled with n equal to -1,

thisisaspecial case that causes a

complete reset of the internal memory allocation pointer to itsinitial value
(apointer to the memory location following the last byte of the external
data area).

rsvstk(n)

This function causes

the storage alocation functions to reject any allocation calls which would
leave less than n bytes between the end of the allocated area and

the current value of the stack pointer (remember that the stack grows
down from high memory.) Rsvstk, if needed, should be called before

any calls are made to either sbrk or alloc.

If rsvstk is never used, then storage alocation is automatically

prevented from approaching closer than 1000 bytes to the stack (just as

if an “rsvstk(1000)” call had been made).

int setjmp(buffer)
char buffer[BBUFSIZE];

BD Software Page 53

November 1988 BDS C User’s Guide

longjmp(buffer, val)
char buffer[JBUFSIZE];

When setjmp is called, the current processor state is saved in the

provided buffer (the symbolic constant BUFSIZE is defined in STDIO.H)
and avalue of Oisreturned.

When a subsequent longjmp call

is performed from anywhere in either the current or any lower level function,
then the CPU state is restored to

that which it had at the time the original setjmp call was performed

with the given buffer as parameter. The program resumes execution

by “returning” to the original setjmp

call, and the value val (as passed to longjmp) is returned.

To alow programs to distinguish

between setjmp initialization calls and

transfers of control,

the value of val passed to longjmp should be non-zero.

A typical use of setjmp/longjmp isto exit up through several

levels of function nesting without having to return through each

level in sequence; e.g., to insure that a particular exit routine (say,

dioflush from the DIO.C package) is aways performed.

3.2 Character I nput/Output

The console 1/0O mechanism for BDS C v1.6 provides a built-in ability to dynamically choose
whether or not certain special characters are detected and processed during routine low-level
input and output calls. In previous releases of BDS C, the standard versions the of getchar and
putchar functions always detected Control-C being typed on the console input and caused
an immediate return to CP/M command level when this happened. For v1.6, a new function
named iobreak has been added to control this interrupt detection mechanism. As described
below, calling iobreak with an argument of O will disable detection of Control-C during console
I/O calls. This prevents the end user from inadvertently (or purposely!) aborting the execution of
a program by typing Control-C during console I/O. Note that a side-effect of calling iobreak(0)
is that the use of *S/"Q for flow control during console output calls is also disabled. By default,
a program will come up with Control-C detection enabled (as if iobreak(1) had been called) for
compatibility with earlier source code.

Another new feature of the low-level console I/0 for v1.6 is the option of selecting between two
different modes of console input: “line buffered” mode or “normal single character” mode. This
choice is made through use of the new cmode function. In line buffered mode, console input is
always collected a line at a time (i.e.,, until the user either types a RETURN or runs out of
internal line buffer space), then doled out a byte at atime for each subsequent getchar call. This
mechanism allows the user to line-edit his input text before it isrecognized by the program,;
also, the usage of functions such as scanf is made more powerful by the fact that a single line of
console input may be processed by severa separate scanf calls (with each subsequent scanf call
picking up from where the previous one | eft off processing the input stream).

While substantially more flexible than the getchar/putchar mechanism of previous releases,
there are dtill some things that the standard functions provided here cannot do by themselves.

Page 54 BD Software

BDS C User’s Guide Function Summary

For example, it may be desirable to alloc *S/*Q flow control on console output while still not
allowing the option of terminating a program by typing Control-C. To achieve this type of
subtle control over the console I/O mechanism, you must create your own customized versions
of getchar/putchar using the techniques described in the Appendix entitted “BDS C Console
I/O: Some Tricks and Clarifications’.

int cmode(n)

Chooses between either line buffered console input mode (if nis 1) or single-
character console input mode (if nis0). Value returned is the previous value of
the character mode (1 or 0).

Default setting on start-up is cmode(0).

Calling cmode, regardless of the mode selected, clears both the line input buffer
and the single-character push-back buffer (used by ungetch).

iobreak(n)

As described in the introduction to this section, iobreak selects whether or not
Control-C is allowed to terminate program execution during console I/0O and
return control to CP/M command level. If nis 0, then Control-C (aswell as
ASMQ flow control) isignored. If nis 1, then Control-C and *"S/"Q are
recognized. Note that in buffered input mode (when cmode(1) has been called),
Control-C typed in at any position other than as the fir st character of the input
line will not abort the program until it is actually sampled by a subsequent
getchar() call. Thisis because the input buffering is done viaacall to the
operating system, and that is just how the BDOS does things.

int getchar()

Returns next character from standard input stream (CP/M console

input.)

Console input is either buffered up aline at atime or returned character

by character, depending on how the cmode function has been used. If cmode has
not been called, then the default mode is character by character.

If iobreak(1) has been used, then getchar detecting Control-C on the console
input

causes the immediate termination of the executing program and the return

of control to command level.

A “Carriage return” (CR, or RETURN) echoes CR-LF to the console output
and returnsanewline ('\n’, or LF) character.

A value of -1 isreturned for control-Z; note that the return value

from getchar must be treated as an integer (as opposed to a

character) if the —1 return value is to be recognized as such.

If instead you declare getchar as returning

acharacter value, or assign its return value to a character variable, then

the original —1 value will turn into a value of 255.

Note that in this case an actual data value of 255 would

be indiscernible from an EOF marker.

BD Software Page 55

November 1988 BDS C User’s Guide

char ungetch(c)

Causes the character ¢ to be returned by the next call to getchar.
Only one character may be “ungotten” between consecutive getchar
cals.

Normally, zero isreturned. If there was already a character
ungotten since the last getchar call, then the value of that

character isreturned.

int kbhit()

Returns true (non-zero) if input is present at the standard input

(keyboard character hit);

elsereturnsfalse (zero).

In no case isthe input actually sampled; to do

SO requires a subsequent getchar call.

Note that kbhit will also return trueif the ungetch

function was used to push back a character to the console since the

last getchar call, or if console input mode is line buffered and there are characters
remaining in the buffer.

putchar(c)
char c;

Writes the character ¢ to the standard output (CP/M console output).

The newline ("\n") character is expanded into a CR-LF combination on
output.

Unless iobreak(0) has been called,

acontrol-C detected on console input during a putchar

call will cause program execution to halt and control to return to command
level. This alows the end-user to abort any program in the process of performing
console output (via putchar calls) by typing a

control-C on the console keyboard.

Since the provided putchar function

uses BDOS calls to check

for input at the console (unless iobreak(0) has been called),

the special CP/M flow-control characters

(control-S, control-Q) are recognized and

may be used to freeze/unfreeze console output.

puts(str)
char *str;

Writes out the null-terminated string str to the standard output. No
automatic newline is appended.

Page 56 BD Software

BDS C User’s Guide Function Summary

int getline(strbuf, maxien)
char * strbuf;

Collects aline of text from the console input, up to a maximum line
length of maxlen characters. The return value is the length of

the entered line. On return, the input line is terminated by a null byte
only, so an empty line has length O (when the user types only a
carriage-return character). There is no newline character returned

in the buffer; thisis a deviation from the getline function

described in Kernighan & Ritchie.

If the number of characters entered reaches the given maximum minus one
(to dlow room for the terminating null),

then the line will be considered complete and control will
immediately return to the caller without waiting for a carriage-return
to be typed. This happens because BDOS

function 10 is used to read the console.

char * gets(str)
char *str;

Collects aline of input from the console and

placesit, null terminated, into memory at location str. The newline
typed by the user to terminate the input line is not copied into the
buffer; the character before the newline isimmediately followed by the
terminating null.

Thereturn value is a pointer to the

beginning of str.

The size of the

provided buffer must be at least 1 byte longer than the longest string
you ever expect entered, because of the terminating null.

Caution dictates making the buffer lar ge,

since an overflow here would most probably destroy neighboring data.
If the number of characters entered reaches 135,

the line will be considered terminated.

BD Software Page 57

November 1988 BDS C User’s Guide

printf(format,argl,arg2,...)
char *format;

Formatted print function. Output goes to the standard output. Conversion
characters supported in the standard version (must be lower case):

decimal integer format
unsigned integer format
single character

string (null-terminated)
octal format

binary format

hex format

xXgowmwoca

Each conversion is of the form:
% [-] [[0] W] [.n] <conv. char.>

where w specifies the width of the field, and n (if present)

specifies the maximum number of characters to be printed out of a string
conversion. Default value for wis 1.

The field will be right justified, unless the dash is specified following the
percent sign to force left justification.

If the value for w

is preceded by a zero, then zeros are used as padding on the |eft of the
field instead of spaces. This feature is useful for printing, say,
hexadecimal addresses.

The ‘%' character may be specified literally in aformat conversion by
typing it twicein arow (“%9%").

An enhanced version of _spr (the low-level formatting driver used

by printf, sprintf, fprintf and lprintf)

incorporating the e

and f format conversions for floating point values used in

the BCD floating point package, is available for compilation in the
fileBMATH.C

[printf(format,argl,arg2,...)
char *format;

Like printf, except the output is directed to the CP/M “LIST”
device (printer) instead of to the console.

Page 58 BD Software

BDS C User’s Guide Function Summary

int scanf(format,argl,arg2,...)
char *format;

Formatted input. Thisis analogous to printf,

but operates in the opposite direction.

The % u conversion is not recognized; use %d for both signed and
unsigned numerical input.

Note that input strings (denoted by a % s conversion specification

in the format string) are now terminated by any white space character

in the input stream, and that field width specifications are now supported
(both of these features are new for v1.6).

Returns the number of items successfully assigned. If consoleinput isin
line buffered mode (through use of the cmode(0) call), then asingle line of
input may be processed by as many successive calls to scanf as needed,;
to make sure there isn’t any stray extrainput text in the console input
buffer make a cmode(0) call (only in line buffered mode.)

For amore detailed description of scanf and printf, see

Kernighan & Ritchie, pages 145-150.

3.3 Character and String Processing

int isalpha(c)
char c;

Returns true (non-zero) if the character c is alphabetic,
false (zero) otherwise.

int isupper(c)
char c;

Returns true if the character c is an upper case letter,
false otherwise.

int islower(c)
char c;

Returnstrueif the character c is alower case letter,
false otherwise.

int isdigit(c)
char c;

Returns true if the character c isadecimal digit,
false otherwise.

BD Software Page 59

November 1988 BDS C User’s Guide

int toupper(c)
char c;

If cisalower case letter, then ¢'s upper case equivalent
isreturned. Otherwise c isreturned.

int tolower(c)
char c;

If cisan upper case letter, then ¢'slower case equivalent
isreturned. Otherwise c isreturned.

int isspace(c)
char c;

Returnstrue if the character c isa*“white space’ character
(blank, tab or newline). Otherwise returns false.

sprintf(string,format,argl,arg2,...)
char *string, *format;

Like printf, except that the output is written to the memory
location pointed to by string instead of to the console.

int sscanf(string,format,argl,arg2,...)
char *string, *format;

Like scanf, except the text is scanned from the string pointed

to by string instead of the console keyboard.

Returns the number of items successfully assigned. Remember that the
arguments must be pointer sto the objects requiring assignment.

char *strcat(sl,s2)
char *sl, *s2;

Concatenates s2 onto the tail end of the null terminated string
sl. There must, of course, be enough room at sl to hold the
combination.

int stremp(sl,s2)
char *sl, *s2;

Returns a positive value if (sl > s2), zero if (s1==s2), or

anegative value if (sl < s2). The standard ASCII collating sequenceis
used for comparisons; astring is “greater” if it comes

later in alphabetical order.

Page 60

BD Software

BDS C User’s Guide Function Summary

char *strcpy(sl,s2)
char *sl, *s2;

Copiesthe string s2 to location s1, returning a pointer to sl.
For example, to initialize a character array named foo
to the string “barzot”, say

strcpy(foo, "barzot");
Note that the statement
foo = "barzot";

would be incorrect since an array name should not be used as

an lvalue without proper subscripting. Also, the expression

“barzot”

has asits value a pointer to the string “barzot”, not

the string itself. So, for the latter construction to work,

foo must be declared as a pointer to characters instead of as an array.
This approach is dangerous, though, since the

natural method to append something onto the end of foo would be

strcat (f oo, "nmunbl e");
overwriting the six bytes following “barzot” (wherever “barzot”
happens to be stored within the code of the function),
probably with dire results.
There are two viable solutions. Y ou can figure out the largest number
of characters that can possibly be assigned at foo and pad the initial
assignment with the appropriate number of blanks, such asin

foo = "barzot
foo[6] = NULL;

or, you can declare a character array of sufficient size with
char wor k[200], *foo;

then have foo point to the array by saying
foo = work;

and assign to foo using
strcpy(foo, "munbl e-fraz");

For an additional tool for usein initializing strings and string tables,
see the initptr function below.

int strlen(string)
char *string;

Returns the length of string (the number of characters encountered
before aterminating null is detected).

BD Software Page 61

November 1988 BDS C User’s Guide

int index(string, substring)
char *string, * substring;

Returns position of substring in string, or —1 if not found.

int atoi(string)
char *string;

Convertsthe ASCII string to its corresponding integer (or unsigned)

value. Acceptable format: Any amount of white space (spaces, tabs and
newlines), followed by an optional minus sign, followed by a consecutive string
of decimal digits. First non-digit terminates the scan.

A value of zeroisreturned if no legal value isfound.

initw(array,string)
int *array;
char *string;

Thisisakludge to allow initialization of integer arrays. Array

should point to the array to be initialized, and string should point

to an ASCII string of integer values separated by commas. For example,
the UNIX C construct of

int values[5] = -23,0,1, 34, 99;
can be simulated by declaring values normally with
i nt val ues[5];
and then inserting the statement
ini tw(val ues, "-23,0,1,34,99");
somewhere appropriate.

initb(array,string)
char *array, *string;

The equivaent of the above initw function for single-byte numeric
values represented by elementsin a character array.

String is of the same format

asfor initw, but the low order 8 bits of each value are used

to assign to the consecutive bytes of array. Note that this function

may not be used to initialize arrays of character pointers; it’s not

really meant for “characters’, but for decimal integers all having values
within the range of “character” variables and thus stored as characters.
NOTE: Some C programs will sometimes assign negative values to character
variables, since standard C character variables are signed

8 bit quantities. In BDS C, character variables aways have unsigned
values and negative values can only be meaningfully

assigned to 16-hit int variables.

Page 62 BD Software

BDS C User’s Guide Function Summary

initptr(strtab, strl, str2, str3, ..., NULL)
char *strtab[], *strl, *str2, *str3, ...

Thisfunction is provided for the purpose of space-efficient initialization

of astring pointer table, in lieu of regular initializers. The first argument must be
apointer to an array of string pointer variables. Subsequent

arguments should be literal strings, except the final argument that must be 0
(symbolic constant NULL) to signal the end of the list of strings.

Hereis an example, to initialize alist of pointers to names of the months:

char *nmont hs[12];

initptr(nmonths, "January", "February", "March",
n Aprl I II’ n Nayn’ "June"’ "Jul yn’
"August", "September", "Cctober",
"Novenber", "Decenber"”, NULL);

3.4 Filel/O

3.4.1 Introduction to BDS C File /O Functions

There are two general categories of file I/O functions in the BDS C library. The raw (low-level)

functions are used to read and write data to and from disk in even sector-sized chunks. The

buffered 1/0 functions allow the user to deal with data in more manageable increments, such as
one byte at atime or one line of text at atime. The raw functions will be described first, and then

the buffered functions.

3.4.2 Filenames

Whenever a function takes a filename as an argument, that filename must be either aliteral string
or any expression whose value points to afilename. Legal filenames may be upper or lower case,
but there must be no white space within the text of the filename.

3.4.2.1 TheDisk Designator Prefix

The filename may contain an optional leading disk designator of the form “d:” to specify a
particular CP/M drive; the default is the currently-logged disk. The character d may be any
single-letter drive designator from A to Z (corresponding to some existing logical device on your
system).

3.4.2.2 TheUser Area Prefix

An optional user area designator of the form “#/” may also appear as prefix to the filename,
where # is a decimal number ranging from O to 31. If omitted, the current user areais assumed by
default. If both a drive designator and a user-area designator are given, then the user-area prefix
must be first. For example, to open the file named “foobar.zot” in user area 7 on drive C, you'd

say.

open("7/c:foobar.zot", node);

BD Software Page 63

November 1988 BDS C User’s Guide

If any unprintable or nonstandard characters (such as control-characters) are detected within a
filename, the filename will be rejected and an error value will be returned by the offended
function. This somewhat alleviates the problem caused by trying to open a file whose name
contains non-printing characters, but the mechanism still isn’t entirely foolproof. Be careful
when constructing filenames.

3.4.3 Error Handling

3.4.3.1 The Errno/Errmsg Functions

Whenever an error occurs, the usual —1 (ERROR) value is returned by the troubled function.
After this happens, but before any new file 1/O errors are drawn, the errno function may be
called to return a special error code number giving more detailed information about the error. 1f
you pass the value returned by errno to the errmsg function, then errmsg will return a pointer to
a string which describes in words exactly what kind of error occurred. Here is an example of the
use of this mechanism, in this case to diagnose errors which occur during awrite statement:

if (wite(fd, buffer, nsects) != nsects)

printf("Wite error: % n",errnmsg(errno()));
/* try to recover sonehow */

}

Note that the write function is the exception to the rule that a value of —1 (ERROR) is aways
returned on an error condition; write returns the number of sectors successfully written, which
should be considered an error if not equal to the number of sectors specified by the nsects
parameter.

3.4.3.2 Random-Record Overflow

The oflow function is provided to detect when an overflow has occurred in reading/writing a
large file. This only happens if you try to read/write past the 65535th sector of a file. Note that
thisonly applied to systems having the standard CP/M 2.2 8-megabyte file size limitation.

3.4.4 TheRaw Filel/O Functions

int open(filename, mode)
char *filename;

Opens the specified file for input if mode is zero, output if

mode is equal to 1, or both input and output if modeis equal to 2.
Returns a file descriptor, or —1 on error. The file descriptor isfor use
with read, write,

seek, tell, fabort and close calls.

Page 64 BD Software

BDS C User’s Guide Function Summary

int creat(filename)
char *filename;

Creates an empty file having the given name,

first deleting any existing file with that name.

The new fileis automatically opened for both reading and writing,
and afile descriptor is returned for use with

read, write, seek, tell, fabort, and close calls.

A return value of —1 indicates an error.

int close(fd)

Closes the file specified by the file descriptor fd, and frees

up fd for use with another file.

Unless running under MP/M 1, disk accesses

will only take place when afile that was opened for writing is closed,;
if the file was only open for reading,

then the fd is freed up but no actual CP/M call is performed

to close thefile.

Close should not be used for buffered 1/O files. Instead, use fclose.
Returns—1 on error.

Note that al open files are automatically closed upon return to the
run-time package from the main function, or when the exit
function isinvoked. To prevent an open file from being closed,
use the fabort function.

int read(fd, buf, nbl)
char *buf:

Reads nbl blocks (each 128 bytesin length)

into memory at buf

from the file having

descriptor fd.

The r/w pointer associated

with that file is positioned following the just-read data; each call to
read causes data to be read sequentially from where the last call

to read or write left

off. The seek function may be used to modify the r/w pointer.

Returns the number of blocks actually read, O for EOF, or —1 on error.

Note that if you ask for n blocks of data when there are only x
blocks actually

left in the file (where 0 < x < n), then x

would be returned on that call, 0 on the next call (provided seek
isn’t used), and then —1 on subsequent calls.

BD Software

Page 65

November 1988 BDS C User’s Guide

int write(fd, buf, nbl)
char *buf;

Writes nbl blocks from memory at buf to file fd. Each

call to write causes data to be written to disk sequentially from the
point at which the last call to read or write left off, unless

seek is used to modify the r/w pointer.

Returns—1 on hard error, or the number of records successfully written.
If the return value is non-negative but different from nbl, it probably
means you ran out of disk space; this should be regarded as an error.

int seek(fd, offset, code)

M odifies the next read/write record (sector)

pointer associated with file fd.

If codeis zero, then seek sets the r/w pointer to offset records.

If codeisequal to 1, then seek

sets the r/w pointer to its current value

plus offset (offset may be negative.)

If codeisequal to 2, then seek setsthe r/w pointer to the
end-of-file record number plus offset. Note that offset

must be negative in order for this type of seek to end up pointing to
an existing record in thefile. If codeis 2 and offset is zero,

the r/w pointer is made ready for appending to thefile.

A return value of —1 indicates that some kind of BDOS error was returned
during a seek relative to EOF (code equal to 2). The errno function
will give more details about the kind of error that occurred.

Seeks should not be performed on files open for buffered 1/0.

int hseek(fd, hoffset, offset, code)

This variation of the seek function isfor use on systems supporting an extra-large
(greater than 8 megabyte) file size. Since a 16-bit sector offset value only allows
addressing up to 8 megabytes, the hseek function actually takes a 24-bit sector
offset value, broken up into a high-order 8-bit portion (hoffset) and a low-order
16-bit word (offset). The two offset

parameters are combined to form a single, signed 24-hit offset value. In all other
aspects, this function works just like the seek function above. For

example, to seek to the 8 megabyte mark in afile, you' d say:

hseek(fd, 1, 0, 0); /* Seek to 65536th sector */
To seek to the last written sector of afile, you' d say:
hseek(fd, -1, -1, 2); [/* One sector before ECF */
int tell(fd)
Returns the value of the r/w pointer associated with file fd. This

number indicates the next sector to be written to or read from thefile,
starting from O.

Page 66 BD Software

BDS C User’s Guide Function Summary

int htell (fd)

This function returns only the high-order byte of the 24-bit random

record position value of afile. Thisisonly useful on systems supporting a
larger than 8 megabyte file size. To obtain the low-order 16 bits of the random
record position value, use the conventional tell function as above.

int unlink(filename)
char *filename;

Deletes the specified file from the file system.
Use with caution!

int rename(old, new)
char *old, *new;

Renames a file in the obvious manner.

The specified file must not be open while rename is being used

on it, nor should afile having the new name already exist. This function

simply performs the low-level BDOS rename operation, and is subject to all the
potential disasters of that low-level call. If thereis any possibility that

afile with the new name aready exists, then the unlink function should

be used before rename to insure the consistency of the file system.

Returns (ERROR) —1 on error.

int fabort(fd)

Frees up the file descriptor fd without bothering to close the
associated file. If the file was only open for reading, thiswill have
no effect on thefile. If the file was opened for writing, though,
then any changes made to the currently open extent since it was
last opened will be ignored, but changes made in other extents will
probably remain in effect. Don’'t fabort afile open for write,
unless you're willing to lose some of the data written to it.

unsigned cfsize(fd)

Computes the exact file size (in sectors) of the given open file, without

affecting the r/w pointer associated with the file. Note that the size

returned here will reflect data written to new extents before

they are closed, unlike raw BDOS function 35.

Thisfunction isNOT for use with files larger than 8 megabytes. To obtain

the size of such afile, use hseek to seek to the EOF, then use htell and tell to get
the high-order byte and low-order word, respectively, of the 24-bit record size of
thefile.

int oflow(fd)
Returns true (non-zero) if an overflow has occurred into the

high order (third) byte of the
random-record field of the FCB associated with the given open file.

BD Software

Page 67

November 1988 BDS C User’s Guide

int errno()

Returns the code number for the last error condition detected after a
file I/O operation. See below for alist of the error messages
associated with the codes.

char *errmsg(errnum)
Given an error code returned by errno, this function returns

apointer to an ASCII string describing the given error condition
in English. Hereisa summary of all possible error numbers and their

associated messages:

Error-code Text
0 No error has occurred yet
1 Reading unwritten data
2 Disk out of data space
3 Can't close current extent
4 Seek to unwritten extent
5 Can't create new extent
6 Seek past end of disk
7 Bad file descriptor given
8 File not open for read
9 File not open for write
10 No file descriptor slots | eft
11 File not found
12 Bad mode given to open
13 Can't createfile
14 Seek past 65535th record

int setfcb(fcbaddr, filename)
char fchaddr[36];
char *filename;

Initializes a 36-byte CP/M file control block located at address fchaddr

with the null-terminated name pointed to by filename. Lower-case
charactersin the filename string are converted to upper case, and

the appropriate number of ASCII blanks are generated to pad

both the filename and extension fields of the fcb.

The next-record and extent-number fields of the fcb are zeroed.

If any strange character (of the kind not usually desirable in the

name or extension fields of afile control block) are encountered within

the filename string, then the offending character and remainder of the filename
string will be ignored.

char *fcbaddr(fd)
Returns the address of the internal (usually invisible) file control

block associated with the open file having descriptor fd.
—lisreturned if fd is not the file descriptor of an open file.

Page 68 BD Software

BDS C User’s Guide Function Summary

3.45 TheBuffered File /O Functions

In order to ssimplify the programming of object-oriented file input and output applications, the
buffered 1/0O function library is provided. This set of routines, built upon the low-level 1/0
functions described above, conformsfairly well to the standard Kernighan and Ritchie 1/0
library.

A “File Pointer” (usually represented by the variable name fp in the function descriptions bel ow)
is the standard object used to identify a particular active buffered /O file. The fp value for afile
isassigned through a call to the fopen function, and should always be declared as a pointer to the
symbolic type FILE. For example,

FILE *fpl, *fp2, *fp3; /* Declare three file pointers */

The file pointer returned by fopen will point to a buffer structure dynamically allocated during
the fopen call. The technical structure of the I/O buffer is

struct _buf {
int _fd;
int nleft;
char *_nextp;
char _buf f[NSECTS * SECSI 7] ;
char _fl ags;

s

The NSECTS symbol, defined in the STDIO.H header file, determines the number of sectors of
in-memory buffering used by the buffered I/O functions. The BDS C distribution package comes
with NSECTS set to 8, so that all buffered I/O is performed using 1K byte memory buffers. If
you wish to alter this value, you must first change NSECTS in STDIO.H, then recompile the
STDLIB?.C source files and create a new DEFF.CRL object library containing the modified
buffered 1/0 functions.

Wherever a file pointer is called for in the parameter list to a buffered i/o function, it is
permissible to use one of six special symbolsin order to direct thei/o to or from a specia device
instead of afile. The recognized device symbols are:

stdin -- Standard i nput stream (consol e input)
st dout -- St andard out put stream (consol e out put)
st dl st -- Standard |ist device (printer)

stdrdr -- St andard reader device

st dpun -- St andard punch devi ce

stderr -- Standard error device (consol e out put)

IMPORTANT: All programs using buffered 1/0 must #include the standard header file,
STDIO.H, at the beginning of the source file. Here are the functions:

BD Software Page 69

November 1988 BDS C User’s Guide

FILE *fopen(filename, mode)
char *filename, *mode;

Opens the specified file for buffered input or output,

initializes the associated buffer, and returns afile pointer to be used in al
subsequent references to operations on the associated file.

Possible values of mode are as follows:

“r Text input, do CR-LF -->'\n' translations

"w' Text output, new file, translate '\n" to CR-LF

"a" Text output, append to existing file,
translate '\n’ to CRLF

"rb" Bi nary i nput
"wb" Bi nary output, create new file
"ab" Bi nary output, append to existing data

Returns NULL (0) on error.

int fgetc(fp)
FILE *fp;

Returns the next byte from the buffered input file specified by

file pointer fp.

Thisisthe same function as getc.

The symbolic values stdin and stdrdr may be used instead of afile pointer
argument with any buffered input function, to direct the input

from the console or the reader:

fgetc(stdin) is equivalent to "getchar()".
fgetc(stdrdr) reads a char fromthe "reader" device.

A value of =1 isreturned in physical EOF and on error conditions. If the file was
opened in text mode, the logical EOF character (Control-Z, or 0x1A) isalso
mapped into —1 by fgetc.

Since the ERROR value of —1 conflicts with a—1 indicating routine EOF, the way
to differentiate between aroutine EOF and an error condition is to test the value
of errno(), which returns NULL after an EOF has been encountered and non-zero
after errors.

ungetc(c, fp)
char c;
FILE *fp;

Pushes the character ¢ back onto the input stream fp.

The next call to fgetc

on the same stream will then return c. No more than one character
should be pushed back at atime.

int getw(fp)
FILE *fp;

Returns next 16 bit word from input stream fp.

viatwo consecutive calls to fgetc.
—1 returned on error.

Page 70 BD Software

BDS C User’s Guide Function Summary

int fputc(c, fp)
char c;
FILE *fp;

Writes the byte c to the output stream fp.

If the file was opened in the default text mode, then newline ('\n’) characters are
automatically tranglated into a CR-LF combination in the output file.

The symbolic values stdout, stdlst, stdpun and stderr

may be used in place of afile pointer with any buffered

output routine, to direct the output character to the standard output,

list device, punch device or standard error (console) device

instead of to afile:

putc(c,stdout) is equivalent to "putchar(c)".

putc(c,stdlst) wites the character to the CP/ M
"list" device.

putc(c,stdput) wites the character to the CP/ M
"punch" devi ce.

putc(c,stderr) wites the character to the
standard error stream which
is always the consol e out put device
under CP/M This may be used to
guarant ee that output goes to the
console in applications where the
directed I/ O package (DO is being
used and the standard out put
may be directed into a file.

Returns—1 (ERROR) on error.

int putw(w, fp)
FILE *fp;

Writes the 16 bit word w to buffered output stream fp,
viatwo consecutive calls to fputc.
Returns —1 on error.

int fread(buf, size, count, fp)
char *buf;

unsigned size, count;

FILE *fp;

Efficiently reads count objects, each of size size bytes,

from a buffered input file. Number of bytesto be read is exactly
(size* count).

NOTE: CR-LF—> ‘\n’ trandlation for text filesis not performed.
Returns number of items of size size

successfully read (up to count), or ERROR on error.

BD Software Page 71

November 1988 BDS C User’s Guide

int fwrite(buf, size, count, fp)
char *buf;

unsigned size, count;

FILE *fp;

Efficiently writes count objects, each of size size bytes,

to a buffered output file. Number of bytes to be written is equal to (size* count).
NOTE: ‘\n' —> CR-LF trandlation for text filesis not performed.

Returns number if items (up to size) successfully written (up to count), or
ERROR on error.

int fflush(fp)
FILE *fp;

Flushes output stream fp, i.e., makes sure that any

characters written to the output buffer sinceit last filled up

are written to the file on disk (provided the program isn’t prematurely aborted
before the exit routine closes all files).

Fflush is for use with buffered output files; attempting to

invoke it on an input file will have no effect.

Note that an automatic fflush occurs whenever an output buffer fills

up, aswell aswhen an output file is closed (via the fclose function).

int fclose(fp)
FILE *fp;

Closes the specified buffered 1/O file. If the

file was opened for writing, then an automatic fflush is performed
to flush the output buffer before the fileis closed.

When atext file opened for writing is closed,

then a Control-Z character is automatically appended

onto the end of thefile.

int ferror(fp)
FILE *fp;

Returns TRUE if an error has occurred on the specified buffered 1/0 stream.

int feof (fp)
FILE *fp;

Returns TRUE if an end-of-file (EOF) has been encountered on the
specified buffered input stream.

int clearerr(fp)
FILE *fp;

Clears any error condition that may have been previously set for the
specified buffered 1/0O stream.

Page 72 BD Software

BDS C User’s Guide Function Summary

int fprintf(fp, format, argl, arg2,...)
FILE *fp;
char *format;

Like printf, except that the formatted output is written to
the output stream fp.
Returns—1 on error.

int fscanf(fp, format, argl, arg2,...)
FILE *fp;
char *format;

Like scanf, except that the text input is scanned from the

input stream fp instead of from the console.

Remember that argl, arg2, etc., must be pointers!

Returns the number of items successfully assigned, or —1 if an error
occurred in reading thefile.

char *fgets(buf, maxlen, fp)
char *buf;

int maxlen;

FILE *fp;

Reads alinein from input stream specified by fp

(up to maxien characters), and placesit

in memory at the location pointed to by str.

NULL (zero) isreturned on end-of-file,

whether it is a physical end-of-file (attempting to read

past the last sector of afile) or acontrol-Z (CPMEQOF) character in thefile.
Otherwise, a pointer to the string (the same as the parameter str) is
returned.

int fputs(str, fp)
char *str;
FILE *fp;

Writes the null-terminated string from memory at str into the

output stream specified by fp.

If anull (zero byte) isfound

in the string before anewline ("\n’), then there will be no line terminator
at al appended to the line on output (allowing partial linesto be
written.)

BD Software Page 73

November 1988 BDS C User’s Guide

Page 74 BD Software

BDS C User’s Guide Notes to Appendix A

Chapter 4

Notesto APPENDI X A of “The C Programming L anguage”

4.1 Introduction

This chapter is a direct comparison between BDS C and the standard C definition outlined in
Appendix A of the Kernighan and Ritchie The C Programming Language textbook. BDS C is
designed to be a subset of UNIX C, and therefore most sections of the C Reference Manual apply
to BDS C directly. The purpose of this appendix is to annotate those sections in which BDS C
deviates from the definition appearing in the textbook.

After presenting a general summary of differences between the two implementations, 1’1l go into
detail by referring to appropriate section numbers from the book and describing how BDS C
differs from what is stated there. Any sections that are appropriate as they stand (with regard to
BDS C) will not be listed.

Hereisashort summary of BDS C’'s most significant deviations from UNIX C:
1. The entire source file is loaded into main memory at once, instead of being passed
through a window. This limits the maximum length of a single source function to the
Size of available memory.

2. Compilation is accomplished directly into 8080 machine code, with no intermediate
assembly language file produced.

3. BDS Ciswritten in 8080 assembler language, not in C itself. If BDS C were written in
itself, the compiler would be several times as large and run nowhere asfast as the
present speed. Remember that we're dealing with 8080 code here, not PDP-11 code as
in the original UNIX implementation.

4. Thevariabletypesshort int, longint, float and double are not supported.

5. There are no explicitly declarable storage classes. Static and register variables do not
exist; al variables are either external or automatic, depending on the context in which
they are declared.

6. Thecomplexity of declarationsisrestricted by certain rules.

7. Initializers are not supported.

BD Software Page 75

November 1988 BDS C User’s Guide

8. String space storage allocation must be handled explicitly (there is no automatic
all ocation/garbage collection mechanism).

4.2 Notesto Appendix A

The following is a section-by-section annotation to the C Reference Manuaf . For the sake of
brevity, some of the items mentioned above will not be pointed out again; any references to
floats, longs, statics, initializations, etc., found in the book should be ignored.

1. Introduction

BDS C is designed for 8080-based microcomputer systems equipped with the CP/M operating
system, and generates 8080 binary machine code (in a specia relocatable format) directly from
given C source programs. Naturally, BDS C will also run on any processor that is upward
compatible with the 8080, such as the Z-80 or 8085.

2.1 Comments

Comments nest by default; to make BDS C process comments the way Unix C does, the —
option must be given to CC during compilation.

2.2 ldentifiers (names)

Upper and lower case letters are distinct (different) for variable, structure, union and array
names, but not for function named® . Thus, function names should always be written in a single
case (either upper or lower, but not mixed) to avoid confusion. For example, the statement

char f oo, Foo, FoQ,

declares three character variables with different names, but the two expressions
printf("This is a test");

and

priNTf("This is a test");
are equivalent.

2.3 Keywords

BDS C keywords:

14. Appendix A of The C Programming Language, the Kernighan & Ritchie textbook

15. Function names are stored internally as upper-case-only.

Page 76 BD Software

BDS C User’s Guide Notes to Appendix A

i nt el se
char for
struct do

uni on whi | e
unsi gned switch
got o case
return defaul t
br eak si zeof
conti nue begin
i f end
register voi d
short

Upper and lower case are not distinguished for keywords, e.g., WHILE is equivalent to while.

Identifiers with the same name as a keyword are not allowed, although keywords may be
imbedded within identifiers (e.g. charflag).

On terminals which do not support the left and right curly-brace characters { and }, the keywords
begin and end may be substituted instead. Note that you cannot have any identifiers in your
programs named either “begin” or “end”, since these are recognized as keywords by the
compiler.

4. What'sin aname?

There are only two storage classes, exter nal and automatic, but they are not explicitly declarable.
The context in which an identifier is declared always provides sufficient information to determine
whether the identifier is external or automatic: declarations that appear outside the definition of
any function are implicitly external, and all declarations of variables within a function definition
are automatic.

Automatic variables have alexical scope that extends from their point of declaration until the end
of the current function definition. A single identifier may not normally appear in a declaration list
more than once in any given function, which means that a local structure member or structure tag
may not be given the same name as a local variable, and vice versa. See subsection 11.1 for a
special case.

In BDS C, there is no concept of blocks within a function. Although a local variable may be
declared at the start of a compound statement, it may not have the same name as a previously
declared local automatic variable. In addition, its lexical scope extends past theend of the
compound statement and all the way to the end of the function.

| strongly suggest that all automatic variable declarations be confined to the beginning of
function definitions, and that the practice of declaring variables at the head of other compound
statements be avoided.

If several files share a common set of external variables, then all external variable declarations
must be identically ordered within each of the files involved!®. The external variable mechanism
in BDS C is handled much like the unnamed COMMON facility of FORTRAN. For example: if

16. The recommended procedure for a case such as this is to prepare a single file (using your text editor) containing all common
external variable declarations. The file should have extension .H (for “header”), and be specified at the start of each source file via
use of the #include preprocessor directive.

BD Software Page 77

November 1988 BDS C User’s Guide

your main source file declares the external variables a,b,c,d and e, in that order, while another file
uses only a, b and c, then the second file need not declare d and e. On the other hand, if the
second file used d and e but not a, b or ¢, then all of the variables must be declared so that d and
e (from the second file) do not overlap with a and b (from the first file) and cause big trouble. As
an added inconvenience, all external variables used in a program (set of dependent source files)
must be declared within the source file containing the “main” function, regardless of whether or
not that source file uses them all.

To summarize: keep all external declarations common to several source files of a program in

“.H” files, and use #include within each source file of the program to read in the same “.H” file(s)
in the same order. This will insure that each source file sees the same external data declared in

exactly the same manner.

6.1 Charactersand integers

Sign extension is never performed by BDS C. Characters are interpreted as 8-bit unsigned
guantities in the range 0-255.

A CHAR VARIABLE CAN NEVER HAVE A NEGATIVE VALUE IN BDSC.

Be careful when, for example, you test the return value of functions such as getc, which return —1
on error but “characters’ normally. Actually, the return value is an int always, with the high byte
guaranteed to be zero when there’s no error. If you assign the return value of getc to a character
variable, then a value of —1 will turn into 255 as stored in the 8-hit character cell, and testing a
character for equality with —1 will never return true. Be careful in these kinds of situations.

Most arithmetic on characters is accomplished by converting the character to a 16-bit quantity
having a zero high-order byte. In some non-arithmetic operations, such as assignment
expressions, BDS C will optimize code generation by dealing with char values on a byte-only
basis. To take advantage of this, declare any variables you trust to remain within the 0-255 range
as char variables.

7. Expressions

Division-by-zero and mod-by-zero both result in a value of zero. No error of any kind is
generated in these cases.

7.1 Primary Expressions

The order of evaluation of the parametersin afunction call isreversed. |.e., the last parameter is
evaluated first and pushed on the stack, then the next-to-last is evaluated and pushed on the stack,
etc...this is done so that the parameters appear in ascending order to the function being called,

for the benefit of functions taking a variable number of parameters.

7.2 Unary Operators

The operators

Page 78 BD Software

BDS C User’s Guide Notes to Appendix A

(type-nane) expression
si zeof (type-nane)

are not implemented. The sizeof operator may be used in the form
si zeof expression

provided that expression is not an array. To take the sizeof an array, the array must be placed all
by itself into a structure, allowing the sizeof the structure to then be taken. Another possibility is
to take the sizeof a single element in the array, then multiply that by the number of elementsin
the array to yield the size of the overall array.

The sizeof operator may not appear within expressions used as dimensions for array declarations.
7.5 Shift operators

The operation » is always logical (O-fill).

7.11,7.12 Logical AND and OR operators

The two operators & & and || have equal precedence in BDS C, making parenthesization
necessary in certain cases where it wouldn’t be under Unix C. Any expressions involving
complex combinations of & & and || are basically confusing anyway, and should be parenthesized
just on general principles.

8. Declarations

Declarations have the form:

decl arati on:
t ype-desi gnator declaration-list ;

There are no “storage class’ specifiers.

8.1 Storage class specifiers

Not implemented.
8.2 Type specifiers
The type-specifiers are

t ype- desi gnat or:
char
i nt
unsi gned
register
struct-or-uni on-desi gnat or

The type register will be assumed synonymous with int, unless it is used as a modifier (e.g.
register unsigned foo;), in which case it will be ignored completely.

BD Software Page 79

November 1988 BDS C User’s Guide

The keyword void is treated as synonymous with int, and may be used to document the fact that a
function does not return avalue. There are no other “adjectives’ allowed;

unsi gned int foo;
must be written as

unsi gned f oo;

8.3 Declarators

Initializers are not allowed. Thus, the syntax for declarator listsis:

declarator-1ist:
decl ar at or
declarator , declarator-1list

8.4 Meaning of declarators

UNIX C alows arbitrarily complex typing combinations, making possible declarations such as

struct foo *(*(*bar[3][3][3]) ()) ():

which declares bar to be a 3x3x3 array of pointer to functions returning pointers to functions
returning pointers to structures of type foo. BDS C would not allow that particular declaration.

Hereisan informa summary of the declaration syntax BDS C will accept:
First, let asimple-type be defined by

si npl e-type:
char
i nt
unsi gned
struct
uni on

and a scalar-type by

scal ar-type:

si mpl e-type
poi nter-to-scal ar-type
poi nter-to-function

The final kind of scalar type, the pointer-to-function, is avariable which may have the address of
a function assigned to it and then be used (with the proper syntax) to call the function. Because
of the way BDS C handles these guys internally, pointers to pointer-to-function variables will
not work correctly, although pointers to functions returning any other scalar type (except struct,
union, and pointer-to-function) are OK.

Page 80 BD Software

BDS C User’s Guide Notes to Appendix A

So far, scalar-types cover declarations such as

int x,y;

char *x;

unsi gned *fraz;

char **argv;

struct foobar *zot, bar;
int *(*ihtfp)();

The last of the above examples declaresihtfp to be a pointer to a function which returns a pointer
to integer.

Building on the scalar-type idea, we define an array to be a one or two dimensional collection of
scalar-typed objects (including pointer-to-function variables). Now we can have constructs such
as

char *x[5][10];
int **foo[10];
struct steph bar[20][8
uni on j oyce *ohboy[747
int * (foobar[10]) ()

]
]_;

The last of the above examples declares foobar to be an array made up of ten pointers to
functions returning integers.

Next, we allow functions to return any scalar type except pointer-to-function, struct or union (but
not excluding pointersto structures and unions.)

Some more examples:
char *bar();

declares bar to be afunction returning a pointer to character;
char *(*bar)();

declares bar to be a pointer to a function returning a pointer to characters,
char *(*bar[3][2]) ();

declares bar to be a 3 by 2 array of individual pointers to functions returning pointers to
characters;

struct foo zot();

attempts to declare zot to be a function returning a structure of type foo. Since functions cannot
return structures, this would cause unpredictable results.

struct foo *zot();

isOK. Now zot is declared as returning a pointer to a structure of type foo.

BD Software Page 81

November 1988 BDS C User’s Guide

Note that explicit pointers-to-arrays cannot be declared. In other words, a declaration such as
char (*foo) [5];

would not succeed in declaring foo to be a pointer to an array. The preceding declaration ends up
having exactly the same effect as

char *foo[5];

Any formal function parameter declared as an array is handled internally as a “ pointer-to-array”,
causing an automatic indirection to be performed whenever the appropriate array identifier is
used in an expression. This makes passing arrays to functions as easy as pi. For an extensive
example of this mechanism, check out the Othello program included with some versions of the
BDS C package (but always available from the C User’s Group).

8.5 Structure and union declar ations

“Bit fields” are not implemented. Thus we have

struct-or-uni on-desi gnat or:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
uni on

struct-decl-1ist:
struct-decl aration
struct-declaration struct-decl-1Iist

struct-decl arati on:
type-desi gnator declarator-1|ist

declarator-1ist:

decl ar at or
decl arator, declarator-|ist

Names of members and tags in structure definitions must not be identical to any other local
identifier names. The only time more than one structure or union per function can use a given
identifier as a member is when all instances have the identical type and offset; see subsection
11.1.

8.6 Initializers

No initializers allowed. The library functions initb, initw and initptr have been provided to
facilitate the initialization of certain types of arrays.

All externa variables are now automatically initialized to zero unless the CLINK -z option is
given during linkage.

8.7, 8.8 Type names

Page 82 BD Software

BDS C User’s Guide Notes to Appendix A

Not applicable to BDS C. typedef is not implemented.
9.2 Blocks

There are no “blocks’ in BDS C. Variables cannot be declared as local to a block; declarations
appearing anywherein afunction remain in effect until the end of the function.

9.6 For statement

The for statement is not completely equivalent to the while statement as illustrated in K&R, for
this reason: should a continue statement be encountered while performing the statement portion
of the for loop, control would pass to expression-3. In the while version, though, a continue
would cause control to pass to the test portion of the loop directly, never executing expression-3
during that particular iteration. The representation given in section 9.9, on the other hand, is
correct since the increment isimplied (to occur at contin:) rather than written explicitly.

Thisis merely an inconsistency in documentation; both the UNIX C compiler (asfar as| can tell)
and the BDS C compiler handle the for case correctly.

9.7 Switch statement
There may be no more than 200 case statements per switch construct.
Note that multiple cases each count as one, so the statement

case 'a’: case 'b’: case 'c’: printf("a or b or c");
counts for three cases.
9.12 L abeled statement

A label directly following a case or default is not allowed. The label should be written first, and
then be followed by the case or default keyword. For example,

case 'x': munble: zap = frotz;
isincorrect, and should be changed to

munbl e: case 'x’': zap = frotz;

10. External definitions
Type specifiers must be given explicitly in all cases except function definitions (where the

defaultisint.)
11.1 Lexical scope

Members and tags within structures and unions should not be given names that are identical to
other types of declared identifiers. BDS C does not allow any single identifier to be used for

BD Software Page 83

November 1988 BDS C User’s Guide

more than one thing at a time (except when a local identifier temporarily shadows a similarly
named external identifier). This means that you cannot write declarations such as:

struct foo { /* define struct of type "foo" */
int a
char b;

} foo[10]; /* define array naned "foo" made up

of structures of type "foo" */
which are basically confusing and shouldn’t be used anyway, even if UNIX C does allow them.

The one exception to this rule involves structure members. The compiler will tolerate the same
identifier being used as a member within the definition of different structures, as long as 1) the
type and 2) the storage offset (from the base of the structure) are identical for both instances. The
following sequence, for example, uses the identifier “cptr” in this allowable manner:

struct foo {

int a;

char b;

char *cptr; /* type: char *, offset: 3 */
b

struct bar {
unsi gned aa;
char xyz;
char *cptr; /* type: char *, offset: 3 */

11.2 Scope of externals

There is no extern keyword; all external variables must be declared in exactly the same order
within each file that uses any subset of them. Also, all external variables used in a program must
be declared within the source file that contains the “main” function.

Here is how externals are normally handled: location 0015h of the run-time package (usualy
memory location 0115h at run-time) contains a pointer to the base of the external variable area.
All external variables are accessed by indexing off this pointer.l” The external data area for the
entire program s assumed by CLINK to be equal to the space needed by all external data defined
in the “main” source file. Because no information is recorded within CRL files about external
storage or external names (other than the total number of bytes involved and, optionaly, the
explicit starting address of the externals), it is up to the user to make sure that each source file
contains an identical list of external declarations. Although the names need not necessarily be
identical for each corresponding external variable in separate files, the types and storage
requirements should certainly correspond to avoid overlap and mix-up.

It would not be far off the mark to consider BDS C external variables as just one big
FORTRAN-like COMMON block.

Reminder: if you use the library functions alloc and free, you must include the
header file STDIO.H in your program, since there are severa external data objects

17. The —e xxxx option to CC may be used to locate the external variable area at absolute |ocation xxxx, thereby considerably speeding
up and shortening the code produced by the compiler. Even so, all the declaration constraints must still be observed.

Page 84 BD Software

BDS C User’s Guide Notes to Appendix A

required by alloc and free declared in STDIO.H, and omission of these
declarations within any source file having external variables would cause an
undesirable data overlap.

12.1 Token replacement

All forms of the #define preprocessor directive are supported, including parameterized defines.
Note that recursive (mutually referential) parameterized #define operations are not detected, and
if attempted will cause a string overflow.

12.2 Filelnclusion

If double-quotes are used to delimit the filename (e.g. #include “filename”), and no explicit drive
or user-area designator appear preceding the filename, then the file is presumed to reside in the
current directory only and compilation will abort if the file isn’t there. If angle brackets (#include
<filename>) are used, then only the default disk drive/user area (as described in chapter 1) is
searched.

Note that #include directivesare processed on-the-fly as the source file is being read in from
disk, whereas conditional compilation directives are only processed on a later pass after included
files have already been loaded. Therefore, the compiler will attempt to process an #include
directive placed within a conditional compilation block even when the condition evaluates as
false. As long as the files named in all #include directivesare found, things will still work
correctly because the appropriate code will simply be ignored later when the conditionals are
processed...but, if the file named by any #include directive cannot be found, CC will print an
error and abort the compilation.

Although file inclusion may be nested to any reasonable depth, error reporting recognizes only
one level of nesting. Try experimenting with the “-p” option of CC, varying the level of inclusion
nesting, to see exactly what happens.

12.3 Conditional Compilation

All standard conditional compilation directives are now supported, but the expression taken by
the #if <expr> directiveislimited to the following syntax:

<expr> := <expr 2> or
<expr2> && <expr> or
<expr2> || <expr>

<expr2> := <deci mal - const ant > or
I <expr2> or
(<expr>)

The <decimal-constant> may be symbolic (yielding a plain decimal constant after #define
substitution is complete), but is always treated as alogical value by the #if processor. |.e., avalue
of Oisfalse, and any other value istrue.

Nesting of conditional compilation directivesis now fully supported.

12.4 Line Control

BD Software Page 85

November 1988 BDS C User’s Guide

Not implemented.

15. Constant expressions

BDS C will smplify constant expressions at compile-time only when the constant expressions
appear immediately after one of the following keywords: |eft square brackets, the case keyword,
assignment operators, commas, left parentheses, and the return keyword. Any constant
expression that doesn’t follow one of the aforementioned keywords is guaranteed to not be
simplified at compile-time.

The standard procedure for insuring the compile-time evaluation of constant expressions,
especially when contained within larger expressions involving elements other than constants, is
to place the constant expressions within parentheses. Thus, statements such as

X = x + vy + 15*10;

will not be smplified (i.e., will cause the compiler to generate code to multiply 15 and 10) and,
in general, will produce longer and slower code than the better form of:

X =X +vy + (15%10);

All multiplicative operations on constants and constant expressions are performed as unsigned
operations.

18.1 Expressions

The unary operators are:
* & - I~ ++ -- sjzeof

The binary operators & & and || have equal precedence. If the two operators are mixed at an equal
nesting level, evaluation proceeds left to right. As in any expression involving & & or ||, a zero
valued expression preceding an & & operator forces a value of zero for the entire expression and
terminates evaluation, and a non-zero valued expression preceding an || operator forces a value of
1 (or true) and similarly halts the evaluation of further terms at the same nesting level. A
sequence such as

a =5 b
|

5; 0;
f (b &&
S

c oIl

| a)
("tr
(

'fal se\n");

put ue\ n");

put s

el se

prints “false” under BDS C, but might print “true” under other C compilers. To avoid system
dependency in cases like this, explicit parentheses should be used to force order of evaluation.
The second line of the sequence above, when changed to

if ((b & a) || a)

would execute consistently on al systems.

Page 86 BD Software

BDS C User’s Guide Notes to Appendix A

The sizeof operator cannot correctly evaluate the size of an array, nor can it be used within an
array declaration as a constant expression. See section 7.2 for additional restrictions on the use of
the sizeof operator.

18.2 Declarations

The complete syntax for declarationsis

decl arati on:
type-desi gnator declarator-1list ;

t ype- desi gnat or:
char
i nt
regi ster (same as int)
unsi gned
st ruct - or-uni on- desi gnat or

decl arator-1ist:
decl ar at or
declarator , declarator-1ist

decl arator:
identifier
(declarator)
* decl arat or
decl arator ()
declarator [constant expression]

st ruct -or-uni on-desi gnat or:
struct { declarator-Iist
struct identifier { declarator-list }
struct identifier
uni on { declarator-Ii st
union identifier { declarator-list }
union identifier

18.4 External definitions

dat a-defi ni tion:
type-desi gnator declarator-1list ;

18.5 Preprocessor

The following preprocessor directives are now supported:

#define identifier token-string
#i nclude "fil enanme"

#i ncl ude <fil enane>

#i f expression

#i fdef identifier

#i f ndef i1dentifier

#el se

#endi f

#undef identifier

BD Software Page 87

November 1988 BDS C User’s Guide

#Defines may appear anywhere in the source file, their scope extending until the end of the file,
or until the identifier is re-#defined or #undefed.

The
#if <expr>

directive is supported, but legal expression elements are limited to constants (including symbolic

constants) and a small set of operators. The #if directive allows user to write system-dependent
conditional expressions without having to resort to using #ifdef/#ifndef and/or play games with
commenting and uncommenting #define directives. See section 12.3 above for the complete
syntax.

The #include directive should not appear inside any conditional compilation directives. This is
because the #include directives are all processed on-the-fly by the compiler as an input file is
read in from disk, and conditional compilation processing doesn’t take place until after the entire
file has been read in. Thus, an #include directive will always cause the compiler to try and read
the named file, even if the directive is placed within a false conditional compilation block. This
may be considered a design flaw, but there is no way to process all conditional directives on-the-

fly and still read the source file in at a reasonable speed from standard 8 single-density CP/M

disks.

When using conditional compilation, note that each and every #else directive must be followed
(eventually) by amatching #endif directive.

Fileinclusion may nest to any depth!®, but both the 4p CC option and error reporting for both CC
and CC2 become easier to deal with if fileinclusion islimited to asingle level.

18. Mutualy inclusive files, though, will certainly cause an overflow.

Page 88 BD Software

BDS C User’s Guide RED Text Editor

Chapter 5

The RED Screen Editor

by
Edward K. Ream

Edward K. Ream has modifed his RED screen editor to interact with the new
BDS C v1.6 error diagnostic mechanism. When the CC option “-w” is specified,
or if the RED output option has been chosen through use of the new BDS C
CCONFIG program, then a specia error file called PROGERRS.$$$ containing
compilation error messages is written by the compiler. If RED is then invoked, it
will see PROGERRS.$$$ and use it as a guide to pinpoint and diagnose errors in
the erroneous source file. See section 5.1.5 of this appendix for more detailed
information on these new features of RED.

5.1 How Tolnstall RED

This section tells you how to get RED up and running on your system, assuming you don’t
already have a functioning copy of RED available. Before you read on, though, make sure you
read the “read.me” file, which you will find on one of the distribution disks. This file contains
important information—additional details and clarifications as well as tips and warnings that are
unique to the BDS C implementation of RED.

5.1.1 Run the Configuration Program

If you have aversion of RED that is ready to run on your computer, you can safely skip the rest
of this section. Also, if you haven't yet read the READ.ME file, you should certainly do so right
now. Otherwise, you might well waste lots of time following inappropriate directions.

The next thing to do is to run the configuration program, RCONFIG. The executable version of
RCONFIG is on the file RCONFIG.COM. The purpose of RCONFIG is to create two source
files that describe your terminal and how you want RED to work.

While running RCONFIG you can use the normal CP/M line editing functions to correct

mistakes. In other words, use control-h (also known as backspace) to erase one character and use
control-Xx to erase an entire line. You can leave RCONFIG at any time by hitting control-c. By

BD Software Page 89

November 1988 BDS C User’s Guide

the way, if you see that you have answered any question incorrectly, don't worry. RCONFIG
aways lets you revise your answer to any question later on.

5.1.1.1 Setting Defaults

RCONFIG first asks some questions about how you want to use RED. The first question asks
whether the prompt line should tell what column the cursor is on. This column number changes
any time the cursor moves right or left, so some flicker might show up on some screens. |
recommend that you answer “yes’ (or “y”) to this question unless you find, after using RED a
while, that updating the column numbers creates a problem.

The second question asks whether line wrapping will be enabled or disabled when RED starts up.
What do | mean by line wrapping you ask? When line wrapping is ON, a new line is created
automatically whenever a character is inserted with the cursor at the end of the screen (aslong as
no characters appear to the right of the cursor). When line wrapping is OFF, no new line is
created and RED will not let you insert anything once the cursor bumps up against the right edge
of the screen.

The answer you give at this point just sets the way RED works by default initially. You can
always use the wrap or nowrap commands from within RED to change how RED works. |
recommend that you turn line wrapping on by default unless you find, after experimenting with
RED awhile, that you want line wrapping to be off most of the time.

The next set of questions asks you how you want RED’s modes to work. What mode or modes
do you wish RED to bein by default? When exactly do you want RED to change from one mode
to another? It turns out that people have very strong and persistent opinions on this subject.

RED can shift automatically from one mode to another in three different situations. 1) when a
command finishes, 2) when the cursor moves from one line to another and 3) when anew lineis
created. RCONFIG asks you about each of these three cases. Different answers will result in
different “styles’ of using RED. The next two paragraphs illustrate some possibilities.

Say you want RED always to be in overtype mode unless you explicitly indicate otherwise. You
should then have RED enter overtype mode in all three situations. Insert and edit modes will not
intrude on you work, but will be available if you decide you want them. On the other hand, if you
prefer insert mode to overtype mode, you can have RED switch to insert mode in all cases.

| myself use RED as follows: RED switches to edit mode after commands and when the cursor
moves from one line to another, but RED switches to insert mode when a new line is created.
Thus, RED isaways in edit mode unless | am inserting text, in which case RED will be in insert
mode. Thisis amore complicated style of using RED, but it works very well for me.

RCONFIG asks the following three questions. In each case, you answer ‘€ for edit, ‘0’ for
overtype or ‘i’ for insert. 1) What mode do you want RED to be in after commands finish? By
the way, this question also determines which mode RED starts in. 2) What mode do you want
RED to be when the cursor is moved up or down one line? 3) What mode do you want RED to
be when anew lineis created?

Please be clear that your answers to these three questions do not lock you in to a particular style
of using RED—they only set defaults which may be overridden easily while RED is running.

Page 90 BD Software

BDS C User’s Guide RED Text Editor

Thus, there is no need to agonize over them; just make an educated guess about what you might
prefer. After playing with RED you can always reset the defaults by rerunning RCONFIG and
recompiling RED.

5.1.1.2 Selecting Control Keys

RCONFIG then asks how you want to set up RED’s control keys. In other words, you will
indicate which control keys on your keyboard will do what functions. RCONFIG asks a series of
guestions—one for each function to be performed. Answer each question by typing either a
decima number or a carriage return. If you type a carriage return, RCONFIG will use a default
value indicated in parentheses. Otherwise, RCONFIG will use the key whose ascii code is the
same as the decimal number you typed. Control keys have decimal values between 1 and 32.
DEL, with decimal value of 127 can aso be used. Avoid values greater than 127 or less than
zero. Answering zero to any of these questions makes that function unavailable.

For example, some people like to have the carriage return key split the current line instead of just
creating a new line. | find that style of operation to be a nuisance, but Word Star acts this way
and some people prefer it. To make RED work this way just assign the split function key to be
carriage return. You should then pick some other key to be the insert down function key or
suppress that function altogether by assigning zero to it.

5.1.1.3 Describing Your Terminal

Next, RCONFIG finds out what your terminal can do—RCONFIG asks a series of questions
about what built-in functions your termina has. Answer each question with a yes or a no. You
may usetheletters‘y’ or ‘n’ for yes or no.

Next, RCONFIG determines just how your terminal works. You will supply the character
sequence for each of your terminal’s built-in functions. For example, let us consider the goto x,y
function, which is the only function that your terminal must have.

As a simple example, suppose that the way to move the cursor to ROW y and COLUMN x is
send the escape character (27) to your terminal, followed by an equal sign, followed by 32 plus
X, followed by 32 plusy. Y ou would type the following in response to RCONFIG’ s questions:

Enter byte 1. 27
Enter byte 2: '=
Enter byte 3: x+32
Enter byte 4: y+32
Enter byte 5: (return)

Note that you type a carriage return to stop entering bytes.

Be sure that you enter the row and column numbers in the order that your terminal expects.
Many terminals use a sequence in which the row and column numbers are reversed from the
sequence shown above. If you do make a mistake in the goto x y sequence the screen will not
look at al like it should when you run RED in step 4.

BD Software Page 91

November 1988 BDS C User’s Guide

ASCII terminals furnish a more complex example. Such terminals require that the x and y
coordinates be given in “ASCII” notation. For example, to move to column 5 and row 21
something like the following would have to be sent to the screen:

ESC ’ Cy ’ Oy ’ Oy ’ 51 ’ Ry ’ Oy ’ 21 ’ 11

The point is that the digits ‘0’ *'5 ‘2" and ‘1 must be ASCII, not binary. Here is the way to
generate such sequences.

Enter byte 1 27

Enter byte 2 "C

Enter byte 3 "0’ +(x/100)
Enter byte 4 "0’ +(x/10)
Enter byte 5: 0 +(x%0)
Enter byte 6: 'R

Enter byte 7: 0" +(y/100)
Enter byte 8 "0’ +(y/ 10)
Enter byte 9: 0 +(y%0)
Enter byte 10: (return)

As you can probably tell, you are in effect generating the ASCII digits using the arithmetic
operators of the C language. You may use any legal C expression containing only constants or
the variablesx and y.

Finally, RCONFIG asks you if you are ready to create two files, RED1.H and REDG6.C. If you
answer yes, RCONFIG creates new versions of both files, erasing previous versions of the files if
they exist. If you answer no, RCONFIG exits without changing the files or making any other
changes.

5.1.2 Compileand link RED

Now that RCONFIG has created the files RED6.C and RED1.H, all of RED’s source files are
ready. It's time to create RED! All source files must be compiled and the resulting object files
must be linked together to produce an executable version of RED. Compile RED using
RED.SUB and link RED using RLINK.SUB.

WARNING: check the submit files before you use them to make sure you will have enough
room on your disks for any temporary files that might be needed Change the submit files if
required so that temporary files will be written to scratch disks having enough free space on
them.

WARNING for BDS C users: be aware that RED is just on the verge of having too many
functions for the CLINK linker to handle. | recommend using the L2 linker if at all possible. Not
only can L2 handle alarge number of functions but L2 produces shorter code. Note that L2 uses
different command-line options than CLINK. Thus, you will have to modify the RLINK.SUB
fileto work with L2.

If you get an error during this step you may have made a mistake when you typed in the
sequences of bytes for your terminal’s built-in functions. Such an error will show up when
compiling RED6.C. Rerun RCONFIG or modify RED6.C directly. Something is wrong with the
files on your disk if you get any other error. Create a new working disk from your master disk
and start again with step 2.

Page 92 BD Software

BDS C User’s Guide RED Text Editor

5.1.3 Test and use RED

You are now ready to run RED. It should clear the screen, draw the prompt line at the top of the
screen and tell you what version you are using. If that doesn’'t happen, you probably made a
mistake during step 2. Go on to step 5 for help.

If the screen looks reasonable, you are ready to start learning about RED. Run RED while
reading the next chapter. Happy editing!

5.1.4 (Optional) Run STEST

You do not have to do this step, but it should help if RED doesn’t draw the screen properly.
Create a working version of STEST by compiling STEST.C and linking the resulting object file
with the object file created from RED6.C. Remember that you must recreate STEST every time
you change REDG6.C.

Compile STEST.C using STEST.SUB and link STEST.CRL with RED6.CDL using
SLINK.SUB.

Now run STEST. It prints test patterns on your screen and tells you what those test patterns
should look like. If and when atest pattern doesn’'t ook like it should, STEST tells you what part
of REDG6.C is suspect.

Armed with this information, go back to step 2 and rerun RCONFIG. Next, recompile just the
one file RED6.C using RED1.SUB and recreate and run STEST. When that works properly, link
RED asin step 3 and test RED again.

5.1.5 Additional Featuresfor RED Under BDSC v1.6

The additions to RED that the user will notice (above and beyond origina RED capabilities as
outlined in the .DOC files) are asfollows:

1. If the file PROGERRS.$$$ (generated by CC.COM under the appropriate conditions)
existswhen RED is entered, it will print a message on the prompt line. Hit any character
to continue.

2. If the file PROGERRS.$$$ exists and no file was specified on the command line, RED
will automatically load the file named on the first line of the PROGERRS.$$$ file.
Otherwise, the file named on the command line is loaded.

3. Pressing > in edit mode (or ESC > in other modes) displays the error message of the
next line of the error file on the command line. Hit any key to move to the offending
line.

4. Pressing < in edit mode (or ESC < in other modes) displays the previous error message
and move to that line after any key is pressed.

5. RED knows enough to ignore error lines in PROGERRS.$$$ that do not pertain to the
file being edited. However, you can fool RED if you change the current files name
using the “name” command.

BD Software Page 93

November 1988 BDS C User’s Guide

RED knows enough to adjust line numbers properly for inserting, deleting, moving and
copying lines.

The “cc” command has been added. This will automatically exit RED and will invoke
CC <filename> where <filename> is the name shown on the command line. At present
there are no provisions for additional argumentsto CC.

With ERR_CMND NOT defined, there are exactly 255 functions in the link. This makes
it possible to link red with CLINK.COM. If you add any more functions, or define
ERR_CMND, then RED will contain more than 255 functions and you can only use L2
to link it.

If enabled (which it is NOT at present to get under 255 functions, as stated above) the
“errors’ command will list the first 20 or so (depending on screen size) lines of the
PROGERRS.$$$ file.

5.2 Reference Manual

This section tells you how to use RED—it describes RED’s commands and functions, tells how
to use them and explains what to do about warning messages.

Each section discusses a particular activity or task that you do while creating, changing or saving
a document. The table of contents at the beginning of this book will help you locate the correct
section quickly. Consult the index at the end of this chapter to find complete information about a
particular command, function key, control key, mode or error message. Also, you will find a
summary of RED’s operations on the back cover of this manual.

Starting RED

It istime to begin using RED! When RED starts up it does the following:

1

RED clears the screen and prints a welcoming message. This sign-on message tells you
what version of RED you are using and how to print help messages. Help messages are
simply reminders of what you can do with RED.

RED draws the prompt line at the top of the screen. For now, just notice this top line;
we' Il discuss the information on it in a moment.

RED puts the cursor just below the prompt line. The cursor is a distinctive character on
the screen. (On most video terminals the cursor is shown as a box or underline which
blinks.)

RED draws the end-of-file marker on the third line of the screen. Thisline looks like:

------------ End of File., ------------

Page 94 BD Software

BDS C User’s Guide RED Text Editor

Initially, most of the screen is blank because RED’s buffer, or internal memory doesn’t contain
any information. You can think of the screen as a window into part of this buffer. As you make
additions, corrections and deletions to the buffer, those changes appear automatically on the
screen. The purpose of the end-of-file marker is to make absolutely clear what the buffer does
and does not contain.

Let’slook again at the prompt line. At the far left, you will see that the it says,

line: 1 colum: O

These two fields indicate which line in the buffer and column on the screen that the cursor is on.
The next field says,

..no file..
indicating that the buffer does not contain any information from afile.

Finally, the prompt line tells you what mode RED is in—either edit mode, insert mode or
overtype modes. In most respects, RED works exactly the same regardless of mode; that makes
RED simple to use. However, some details of how RED works change depending on mode; that
makes RED powerful. We'll see later that not only can you make RED change modes easily, but
you can have RED change modes automatically if you so desire. This feature is very
important—it allows you to make RED work exactly the way you think it should. We'll discuss
modes shortly in complete detail. For the moment, just notice what mode RED isnow in.

At your option, you may have RED automatically load a text file into RED’s internal memory
(the buffer) when RED initially starts up. For example, if you had invoked RED as follows:

A>red docunent. t xt

then RED would have loaded the file document.txt into the buffer already. In that case the screen
would not be blank but instead would show you the first several lines in the file and the prompt
line would “document.txt” instead of “..nofile..”

Using Function and Control Keys

The term function key refers to a key on your keyboard that does one and only one action or
function. Just about everything you do with RED involves using function keys—they are used to
change modes, to insert or delete lines and characters, to move the cursor, to split and join lines
and to start commands. There is aso a “repeat” function key that repeats the previous function.
All function keys can be used in insert, overtype and edit modes and al function keys do the
same thing, regardless of the current mode.

RED needs to be able to distinguish function keys from what you are typing into the buffer.
Thus, function keys must be assigned to control keys on your keyboard. A control key is typed
by holding down the key marked CTRL on your keyboard while typing another key. For
example, you type the “control ¢ key” (abbreviated control-c) by typing the letter ¢ while holding
down the CTRL key.

BD Software Page 95

November 1988 BDS C User’s Guide

A decision was made when RED was created (that is, when the CONFIG program was run)
which control key is assigned to each function key. For each function key, there is a default
assignment of a particular control key. This is the assignment that is assumed in this chapter.
Throughout this chapter, the name of each function key is followed in parenthesis by the control
key assigned to it by default. For example, this chapter refers to the split function key as split
(control-s). So in order to press the split function key you must actually press the control-s key
on your keyboard. Clear?

Changing M odes

| said earlier that RED has three modes: edit mode, insert mode and overtype mode and that all
function keys act the same regardless of mode. Thus, the only difference between the three
modes is what happens when you type a non-control character. Y ou use three different keys to
switch RED between modes—the enter iNsert (control-n), enter overType (control-t) and enter
edit (control-e) function keys.

Besides these three keys which explicitly change from one mode to another, RED can change
from one mode to another automatically in three situations:

1) after every command
2) after inserting new lines and
3) whenever the cursor moves up or down oneline.

What RED does initialy in these three cases was chosen back when RED was configured (see
Chapter 1), so | can’'t be specific about what your copy of RED will do. For the moment, just be
aware of what does happen in each case.

You can change how RED switches modes using three sets of commands:. defOedit, defOins,
defOover, defledit, deflins, deflover, def2edit, def2ins, and def2over. (We haven't discussed
commands yet, so if you are reading this for the first time just realize that how RED switches
between modesisn’t carved in stone.)

For example, to make RED into an “overtype mode editor” just issue the defOover, deflover and
def2over commands. You'll never see insert or edit modes again unless you switch to them
explicitly. As another example, | prefer to use a hybrid combination of edit mode and insert
mode—I configure RED so it acts as if | had issued defOedit, deflins and def2edit commands.
Try it. You may likeit.

Inserting Characters With Insert and Overtype M odes

In this section we'll ook at insert and overtype modes, leaving edit mode for much later. Let’s
discuss insert mode first, so if RED is not already in insert mode press the enter insert (control-n)
function key. Notice that the prompt line indicates that the mode has changed.

In insert mode, any plain (i.e., non-control) character you type is inserted into the buffer without
replacing any other information. Characters to the right of the cursor “move over” to allow room
for the new character. To jump the gun a bit, you can make the cursor move left without erasing
anything by hitting the left (control-I) function key. Try the following: insert a few characters,
move the cursor |eft once or twice and insert some more characters.

Page 96 BD Software

BDS C User’s Guide RED Text Editor

Overtype mode works just like insert mode except that a character directly under of the cursor is
replaced by what you type, instead of moving to the right. In other words, in overtype mode you
“type over” whatever is aready be on the line. Compare overtype mode to insert mode: enter
overtype mode, type some characters, move the cursor to the left and type some more characters.

Inserting New Lines

You can't edit much if you are confined to a single line. You end one line and begin another
using the insert down (carriage return or control-m) function key. Try it. The insert up (line feed
or control-j) function key is a companion key to the insert down key. The insert up key inserts a
blank line above the current line.

The insert up (line feed) and insert down (carriage return) function keys may also cause RED to
shift automatically to a different mode. Which mode RED shifts to after hitting these keys may
be changed at any time using the defledit, deflins and deflover commands. For example, the
defledit command causes RED to shift automatically to edit mode whenever the insert down or
insert up function key is pressed.

Notice that RED will split the line automatically if the cursor reaches the end of screen while you
are inserting characters. This feature is called line wrapping. Try it out. Notice aso that line
wrapping never happensif there are charactersto the right of the cursor.

Play around with RED right now. See what happens when you insert new lines. Does RED
switch modes? Don’'t worry about typos; in the next several sections we'll see how to deal with
them.

Moving The Cur sor

In order to change your text, you must position the cursor near the text to be changed. This
section tells you how to do that.

The right (control-r) and left (control-l) function keys move the cursor right or left one column.
However, these keys always leave the cursor on the same line. For example, nothing happens if
you hit the left key when the cursor is at the leftmost column of the screen.

The up (control-u) and down (control-d) function keys move the cursor up and down one line
respectively. The cursor will not move above thefirst line or below the last line of the file.

The up (control-u) and down (control-d) function keys may also cause RED to shift to a different
mode. Which mode RED will shift to may be changed at any time using the def2edit, def2ins and
def2over commands. For example, the def2ins command causes RED to shift to insert mode
whenever the up (control-u) or down (control-d) function key is pressed.

The page up (control-g) and page down (control-p) function keys move the cursor up or down
one page of the file. You need not wait for the screen to be completely redrawn before hitting
another character.

The scroll up (control-w) and scroll down (control-o0) function keys scroll the cursor up or down.
Hitting any key interrupts the scrolling.

BD Software Page 97

November 1988 BDS C User’s Guide

The word forward (control-f) and word backward (control-b) function keys move the cursor
forward or backward one word. A word is any sequence of characters separated by end-of-line,
blank or tabs.

Deleting Charactersand Lines

A large part of my writing involves deleting characters and lines: two words forward and one
word (taken) back—two sentences written and one erased. RED lets you do this without any
fuss.

To delete a single character you must first position the cursor either directly over the character or
just to itsright. The delete left (control-h or backspace) function key deletes the character to the
left of the cursor. Nothing happens if the cursor is up against the left edge of the screen. The
delete under (del) function key deletes the character directly under the cursor.

Use the delete line (control-z) function key to delete the entire line on which the cursor rests. The
screen is redrawn with the line squeezed out.

Undoing Mistakes

Sometimes RED lets us work faster than our thoughts—or maybe our fingers have a mind of
their own. In any case, there is occasionally a need for undoing the “improvements’ that have
just been visited upon aline.

The undo (control-x) function key restores a line to what it was when the cursor last moved to
the line. In other words, the undo function undoes whatever editing or inserting you have done
on the current line. Several words of warning: you can not use the undo (control-x) function key
to restore a line that has been erased with the erase line (control-z) function key. Also, you can
not use the undo (control-x) function key to undo a change once you have moved the cursor to
another line.

Splitting and Joining Lines

Being able to split a line into two pieces or make one line from two is often very handy. For
instance, to edit aline longer than will fit on the screen, you would first split the line, then make
your corrections and finally glue the line back together again.

The split (control-s) function key splits the current line into two pieces. Everything to the left of
the cursor stays right where it is. All other characters are moved to a new blank line created
below the original line. The split (control-s) function key acts just like the insert down (carriage
return) function key if the cursor is positioned at the right end of theline.

The glue (control-g) function key combines two lines into one. This key appends the current line

to the line above it and then deletes the lower line. The new line is alowed to be longer than the
width of the screen.

Page 98 BD Software

BDS C User’s Guide RED Text Editor

Inserting Control Characters

In rare cases, it is desirable to insert control characters into the buffer. This requires a special
function key. The verbatim (control-v) function key enters the next key pressed into the buffer,
no matter what it is. For example, to insert a control-s into a buffer, type control-v control-s.
After you press the verbatim (control-v) function key, but before you press the second key, the
prompt line says ‘verbatim’.

Repeating the Previous Function

The repeat (control-a) function key repeats the last function key, edit mode function or escape
sequence. For example, typing control-p control-a is the same as typing control-p twice. As we
will see, using the repeat key can sometimes save you typing.

The repeat key “amplifies’ the effect of several functions as shown in this table:

ori gi nal anplified
function function
begin |line hone

end |ine end page
hone page up
end page page down

For example, typing ESC b *a "*a is the same as typing ESC b ESC h *q because the first *a
amplifies the begin line function (*b) into the home function (ESC h) and the second ~a amplifies
the home function into the page up function (*q).

Using Commands

Up until now, we have been talking about functions, i.e., operations that can are done by pressing
a single function key. However, functions are not appropriate in all situations—they might
require additional information or they might potentially alter too much work to be safe.

Commands are RED’s way of performing complex or dangerous operations quickly and safely.
Y ou start each command with the enter command (control-c) function key. Try this key out now.
Notice that the cursor moves to the prompt line. All commands end with a carriage return, and if
you type nothing but a carriage return the command is terminated. You can also exit from a
command by hitting either the enter edit (control-€), the enter insert (control-n) or the enter
overtype (control-o) function key. OK, exit the command in one of the ways just mentioned.

If you make a mistake while entering a command, just hit control-h (also known as backspace) to
erase single characters. Y ou may use either upper or lower case for commands.

Depending on how RED was configured, RED may shift to a different mode after each
command. At any time, you may change which mode RED will shift to by using the defOedit,
defOins and defOover commands. For example, the defOover command causes RED to shift to
overtype mode after each command.

BD Software Page 99

November 1988 BDS C User’s Guide

The following several sections discuss RED’ s various commands in detail.

Creating, Saving and L oading Files

After you have finished working on your document you must save it on afile. Thisis atwo-step
process. you must name the file and you must actually save your work to that file.

Use the name command to name your file. Just type “name” (you don't type the double quotes)
followed by the name you want your file to have, followed (as aways) by a carriage return.
Notice that the prompt line changes to reflect the new file name.

Aside: Your file name can have no more than eight letters or digits, followed optionally by a
period and no more than three more letters. The question mark (?) and asterisk or star (*) are not
allowed in file names. Examples:

| egal illegal

names names

abc ??7?. abc

f 0o. bar f 0oo. *

| etter. doc |l etter.docl
12345678. doc 123456789. doc
Xy. z X.y.2z

Thelast step in creating a new file is writing your work to thefile. If you don’t do this your work
will be lost, but don’t worry, RED reminds you if you haven’t done so when you try to leave. To
save your work, use the save command. While the save command is in progress, the message
“—saving—" appears on the prompt line. The save command doesn’'t take any arguments; your
work is saved to the file named on the prompt line. If you issue the save command when the
prompt line indicates “..no file..” RED complains saying, “file not named”. Hit any key to clear
this message and continue.

If RED says “file exists’” instead of “—saving—" it means that afile already exists on the disk
with the name shown on the prompt line. Y ou now have two choices. you can pick another name
for your file and do the save command over again or you can use the resave command to replace
what is already on that file with your present work. (Watch out: the resave commands destroys
the previous contents of the file.) If you use the resave command and the file does not already
exist, RED gives you the “file not found” message. As with the save command, the resave
command never takes any arguments.

As mentioned earlier, you can load an already existing file (say memo) at the same time you start
RED by typing ‘red memo’. If RED finds the file on the disk, RED loads that file and updates the
prompt line to indicate the name of the file. This is the file name used by the save and resave
commands. (Of course, you can use the name command at any time to change this name.) If the
file is not found the prompt line says “file not found.” As always, hit a carriage return to clear
this warning message.

If you did not give afile name when you started RED, or if you got the “file not found” message,
you can use the |load command to load a file into the buffer. The load command takes one

Page 100 BD Software

BDS C User’s Guide RED Text Editor

argument—the name of the file to be loaded. As you would expect, the load command changes
the file name on the prompt line so that the save and resave commands will update the file you
just loaded. Purely as a convenience, RED treats the red command just like the load command.
Examples:

| oad abc. doc
red neno
save

resave

Unlike some other editors, RED’s load command does not create afileif it does not exist, so you
haven't created any unwanted file if you don’'t get the name right. Neither does the load
command change the file name on the prompt line if the file does not exist. This feature makes
the save and resave commands safe to use in almost al circumstances.

The load command replaces whatever isin the buffer by the contents of the file being loaded. For
your protection, the load command asks “Buffer not saved, proceed?’ if loading the file might
destroy unsaved work. If you answer 'y’ the load operation begins and whatever is in the buffer
islost. Otherwise, the load command terminates and you have an opportunity to save your work.

Leaving RED

There are two ways to leave RED. Thefirst isthe exit command, which takes no arguments. For
your protection, RED asks “Buffer not saved, proceed?’ if you issue this command before you
have saved your work. Type 'y’ to exit anyway or type anything else to cancel the command.

The quit command may or may not be available with your version of RED. If it is available, the
quit command works like the exit command (it takes no arguments), except that RED saves
information on your disk so RED can reload the file you were working on quickly and
automatically. When RED is next restarted, it looks for this information to resume editing right
where you |eft off.

The quit command is nice to have if you do alot of work with a single file because it saves 99%
of the time it takes to load a file with the load command. However, the quit command does have
some drawbacks. First, the saved information (the work file) takes up space on the disk when
RED is not being used. Second, if the work file is erased, some of your work may be lost. Third,
if you interrupt RED by hitting your computer’s reset key, the work file will not have the proper
file status line. The next time you start RED, RED will complain and you will have to erase the
work file by hand.

Sear ching for Patterns

As your file becomes longer and longer, it becomes harder and harder to find the parts of it that
you want to change. Instead of searching for words or phrases yourself, RED can do the
searching for you.

In order to do searching, you must specify patterns which tell RED what to look for. A patternis
simply any string of characters ended by a carriage return. Most letters in patterns just stand for
themselves. Examples:

BD Software Page 101

November 1988 BDS C User’s Guide

* The pattern ‘abc’ matchesthe threeletters‘a ‘b’ and ‘c’.
* The pattern ‘12-4' matches the four characters‘1’ ‘2" *-’ and ‘4'.

There are three characters which have special meanings within patterns and make patterns more
powerful. A guestion mark in a pattern matches any character at all. Examples:

» The pattern ‘ ?bc’ matches any ‘bc’ that is not the first character on aline.
» Thepattern ‘a?c’ matchesan ‘a and ‘c’ with exactly one character between them.
* The pattern * ??? matches any three characters on the same line.

A leading caret ('), i.e., a caret that appears at the start of a pattern, matches the start of aline.
Examples:

* The pattern ‘~abc’ matches any line that starts with ‘abc’.
* The pattern ‘*??abc’ matches any line with ‘abc’ starting in column 3.
A caret that does not start a pattern loses its special meaning. Examples:
* The pattern ‘*?a matches any linewith a‘~" in column 2 followed by an ‘a’.
* The pattern ‘v matches any ‘' which is not in column 1.

A trailing dollar sign, i.e., adollar sign that appears at the end of a pattern, matches the end of a
line. Examples:

* The pattern ‘abc$ matches any line that ends with ‘abc’.
* The pattern ‘abc??$’ matches any line with exactly two characters after *abc’.
A dollar sign that does not conclude a pattern loses its special meaning. Example:

* The pattern ‘A?$? matches any line with ‘$ in column 2 followed by some other
character.

A leading caret and trailing dollar sign may be used in the same pattern. Examples:

* The pattern ‘*abc$ matches any line that contains only ‘abc’.

* The pattern ‘2% matches any line with exactly one character.
The find command puts the cursor at the start of the pattern when the pattern is found. You
invoke the find command as you would expect: type the enter command (control-c) function key

followed by find <CR>. The prompt line will now ask you for a search mask. This means that
you should enter a pattern to search for. Typein the pattern and end it with a carriage return.

The find command will now search from the place where the cursor is, looking for the pattern. If
the find command reaches the end of the buffer without finding a match the search “wraps

Page 102 BD Software

BDS C User’s Guide RED Text Editor

around the buffer,” i.e., the search continues from the start of the buffer to the line where the
search originally commenced. If the find command eventually matches the pattern, RED will
place the cursor at the start of the pattern. If no match is found, RED will simply put the cursor
back where it was before the find command was invoked.

The findr command works just like the find command except that it searches backwards through
the buffer for a pattern.

The search command searches for a pattern just like the find command, but the search may be
continued after a pattern is found. When a match is found, the prompt line will say, “next, exit?’.
If you hit an ‘n’, the search will continue. The search will end if you hit any other key.

The change command searches for a pattern in a manner similar to the search command, but
when a match is found a substitution is made. When you invoke the change command, you will
be asked for a search mask, just as with the search command. Next, you will be asked for a
change mask. Whenever the pattern specified by the search mask is found, the pattern specified
by the change mask is substituted.

Carets and dollar signs have no special significance in a change mask. Question marks in a
change mask are replaced by the character that matched the corresponding question mark in the
search mask.

For example, suppose the search mask is ‘a?? and the change mask is‘A??2C’. If the characters
that match the search mask are ‘atb-’ then ‘at+b-" would be replaced by ‘A+-C’ because the two
guestion marks in the change mask would be replaced by ‘+" and ‘-’ respectively.

The change command does not make all changes in the buffer at once. When a match the
substitution is made on the screen and the prompt line asks,

"yes, no, all, exit?"

The substitution is undone if you reply ‘n’ or ‘€ and the change command terminates if you say
‘@. If youreply ‘y’, the change is made and the searching continues. If you say ‘&, the changeis
made and searching continues. However, when you say ‘&, al changes are made without further
prompting and no further changes are shown on the screen. Only the line number field on the
prompt line shows that changes are being made.

The find, findr, search and change commands may be stopped at any time by hitting any control
character. Thisis especially important when using the ‘a option of the change command.

The find and findr commands start searching from the current line, but you can change that by
invoking these commands with aline number. Examples:

conmand search starts at
find current |ine
find 1 line 1

findr 9999 end of buffer

The change and search commands look through the entire buffer for the pattern unless you
specify a portion of the buffer to search. Examples:

BD Software Page 103

November 1988 BDS C User’s Guide

conmand what is searched
search every line
search 1 9999 every line
change 70 90 lines 70--90
search 50 i nes 50--end
change 90 9999 [ines 90--end

Moving Blocks of Lines

One of the most common editing operations is cutting and pasting. RED has four commands that
make this easy.

The move command moves a block of lines from one place in the buffer to another. The move
command takes three arguments, the first line to move, the last line to move, and the line after
which the lines are to be moved. Only one line is moved if only two line numbers are given.
Examples:

line(s) wher e
conmmand noved noved
nove 1 2 3 1--2 after line 1
move 1 2 0 1--2 before line 1
move 2 10 2 after line 10

The copy command works just like the move command except that a copy of the lines is moved
so that the original lines stay where they were. Examples:

line(s) wher e
conmand copi ed copi ed
copy 1 2 3 1--3 after line 3
copy 1 20 1--2 before line 1
copy 1 8 1 after line 8

The extract command copies a block of lines to a file without erasing the block from the buffer.
Take care with this command: the file is erased if it already exists. Another caution: integers are
legal file names, so make sure you include the file name. Examples:

file- i nes
conmmand name witten
extract abc abc whole file
extract 1 2 1 line 2
extract abc 1 2 abc lines 1--2
extract f 1 9999 f whole file

The inject command is the companion to the extract command. The inject command adds afileto
the buffer. It does not replace the buffer as does the load command. Examples:

conmand where injected

i nject abc after current line
i nject abc O before line 1

i nj ect abc 9999 at end of file

i nject abc 50 after line 50

Page 104 BD Software

BDS C User’s Guide RED Text Editor

You can use the extract and inject commands to cut and paste between different files. Extract a
block of lines from thefirst file into atemporary file, load the second file and then inject the lines
from the temporary file into the second file.

Setting Tab Stops

Tab stops effect how tabs are shown on the screen and printed on the printer. RED sets tab stops
every 8 columns to begin with, but this can be changed with the tabs command. After this
command the screen is redrawn so you can see the results of the new tab setting. Examples:

conmand wi dth of tabs
t abs 8
tabs 8 8
tabs 4 4

Enabling and Disabling Line Wrapping
Initialy, line wrapping is enabled. Lines are split whenever:

a) the cursor isthe last character of the line and
b) the cursor is at the right edge of the screen and
C) acharacter isinserted.

The nowrap command disables line wrapping. When line wrapping is disabled, no further
insertions are alowed in a line when the cursor reaches the right margin of the screen. If you
want to enable line wrapping again after using the nowrap command, use the wrap command.

Listing the Buffer

The list command prints the buffer on your printer. Lines are formatted just as they are on the
screen, but the length of the print line, not the width of screen, determines where long lines are
truncated. Y ou can interrupt the listing at any time by hitting any control key. Examples:

conmmand what is |listed

l'ist the current line
list 15 line 15

list 1 9999 the entire buffer
list 400 500 |l i nes 400--500

Deleting Multiplelines

The clear command erases the whole buffer, while the delete command deletes one or more lines.
The clear command will caution you if erasing the buffer might cause work to be lost, but the
delete command does not, so be careful. Examples:

BD Software Page 105

November 1988 BDS C User’s Guide

command what i s del eted

cl ear the whole file
delete 1 9999 the whole file
del ete the current |ine
del ete 25 line 25

Choosing How RED Switches Modes

As mentioned before, RED will automatically switch from one mode to another in three
situations:

1) after every command
2) after inserting new lines and
3) whenever the cursor moves up or down oneline.

Y ou can choose exactly what RED will do in each case. This section tells how.

The defOedit, defOins and defOover commands determine which mode (edit, insert or overtype)
RED will be in after each command. For example, after the defOedit command is given, RED
will switch to edit mode after each command.

The defledit, deflins and deflover commands determine which mode RED will be in after the
insert up (line feed) or insert down (carriage return) function keys are pressed. For example, after
the deflins command is given, RED will switch to insert mode whenever a new blank line is
created.

The def2edit, def2ins and def2over commands determine which mode RED will be in after the
up (control-u) or down (control-d) function keys are pressed. For example, after the def2over
command is given, RED will switch to overtype mode whenever the up or down function keys
are pressed.

Edit Mode Functions And Escape Sequences

Edit mode lets you avoid typing so many control keys. In edit mode, typing regular (i.e., non-
control) keys makes RED act as though function keys were pressed. Some people find using
normal charactersin this way confusing, which is why this section has been left until now. Other
people, myself for instance, think that edit mode is a great convenience.

Escape sequences are an added frill; they are a way of executing edit mode functions without
switching to edit mode. Escape sequences consist of the escape (ESC) function key followed by
an edit mode function. For example, the ‘h’ edit mode function homes the cursor to the top left
corner of the screen. If RED werein insert mode | could home the cursor using the ESC h escape
sequence without having to switch RED to edit mode first. By the way, edit mode commands and
escape sequences may be typed either in upper case or in lower case.

Here is a list of the edit mode functions. For simplicity’s sake the functions are listed in
alphabetical order. Again, each function may be used outside of edit mode by using an escape
sequence.

Page 106 BD Software

BDS C User’s Guide RED Text Editor

The space bar moves the cursor right one column. Nothing happens if the cursor is up against the
right edge of the screen. In other words, the space bar works exactly the same as the right
(control-r) function key.

The '+ key moves the cursor down ahalf apage. The ‘- key moves the cursor up a half page.

The b key puts the cursor at the beginning (left hand edge) of the line. This key is amplified by
the repeat key into the home function. For example, typing b ~a in edit mode is the same as
typing b p. Similarly, typing ESC b *ain insert mode is the same as typing ESC b ESC p.

The d key causes the cursor to move down rapidly. Type any key to stop the scrolling.

The e key moves the cursor to the right end of the line. This key is amplified by the repeat key
into the end page function. For example, typing e “ain edit mode does the same thing astyping e
z. Similarly, typing ESC e "aisthe same astyping ESC e ESC z.

The g key moves the cursor to another line. After you type the g the cursor will move to the
prompt line. The prompt line will show ‘goto:” Now type a line number followed by a carriage
return. By the way, there is ag command that works the same way.

The h key homes the cursor to the top left corner of the screen. This key is amplified by the
repeat key into the page up function. Thus, typing h *a in edit mode is the same as typing h g.
Similarly, typing ESC h *aworks the same as typing ESC h ESC q.

Thek key deletes al characters from the cursor up to but not including the word that starts with a
“search character”. Everything from the cursor to the end of the line is deleted if no word starts
with the search character. After you hit the k the prompt line displays ‘kill’. Now type the search
character. If you wish to cancel the k command before specifying the search character, press any
control character. The k command will be stopped and no deletion will be made. If too much text
is deleted, use the undo key and try again. Example: Typing k <space> deletes the following
word.

The m key moves the cursor to the start of the line in the middle of the screen.

The p key moves the cursor down one page. You don’'t have to wait for the screen to be
completely redrawn before you hit another key. Thus, hitting several p keysis avery fast way to
move short distances. The g key is the companion to the p key. It moves the cursor up one page.

The s key moves the cursor to the next word that starts with a search character. If no word starts
with the search character the cursor is moved to the end of the current line. After you hit the s
key, the prompt line displays ‘search’. Now type the search character. Example: Typing s
<space> moves the cursor right one word.

The u key moves the cursor up rapidly. Y ou stop the scrolling by typing any key.
The x key replaces the character under the cursor. After you type the x command the prompt line

displays ‘eXchange’. Now type the new character. If you hit a control character no change is
made and the x command is canceled.

BD Software Page 107

November 1988 BDS C User’s Guide

The z key moves the cursor to the start of the last line on the screen. This key is amplified by the
repeat key into the screen down function. For example, typing z *a in edit mode is the same as
typing z p. Similarly, typing ESC z ais the same as typing ESC z ESC p.

What To Do About Error M essages

RED will print a message on the prompt line should anything go amiss. You clear the message
by hitting any key. Usually the message will be a reminder about how to enter a command. For
example, if you forget how to use the move command, just do the move command anyway. RED

will say,

usage: nove <bl ock> <n>
This may jog your memory enough so you won’'t have to look up the command in this chapter.

The only serious error you might seeis:

wite error: disk or directory full??

This error usually means that RED could not complete a save or resave command because there
was not enough room on the disk. This error is not too serious; you should be able to recover
from this error if you do a save or resave to another disk. But you should never remove the disk
invoked RED! (That disk contains the work file, which iswhat you are trying to save.)

More rarely you can see this error when you are making insertions into the buffer. When this
happens, try to save the buffer to a new file on another disk. Once again, do not remove the disk
from which you invoked RED! This may or may not work, depending on whether another disk is
available. Thus, you may lose the work you have done since your last save or resave. Obviously
thisis not a pleasant occurrence. You can avoid this problem by making sure that your disk has
enough room to hold your work and by frequently saving your work.

Page 108 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

Chapter 6

CDB: A Debugger for BDSC

Version 1.60
1 October 1986

David Kirkland
3766 Purdue
Houston, Texas 77005
(713) 660-9151 (home)
(713) 229-1101 (office)

Copyright (c) 1982-1986 by David Kirkland

6.1 An Explanation of CDB Components

CDB is an interactive symbolic debugger for programs written for the BD Software C Compiler.
CDB enables a user to set breakpoints in a program, to trace the flow of program execution, and
symbolically to display and set variables. It thus provides the developer of an application
program with what | hope is a useful environment for program devel opment and testing.

The debugging package consists of three executable files. The first of these three, L2.COM, isa
linker for object code files in the C relocatable (.CRL) format. L2 prepares a .COM file to be
loaded and executed under the control of the other parts of the debugging package and also
prepares a symbol table for the package’s use.

The second element of the package, CDB.COM, is used by the program developer (the “user”) to
invoke the debugger. CDB interprets the command-line arguments entered by the user, prepares
various in-memory data tables, and invokes CDB2.OVL.

CDB2.0OVL (CDB2 for short) is the third and final element of the CDB package. CDB2 resides
in high memory immediately below the CP/M BDOS. It loads the program to be debugged (the
“target program”) at the base of the TPA (the CP/M “transient program area,” normally at 0100
hex) and remains co-resident in memory with the target program throughout the debugging
session. Once CDB2 has loaded the target program, it passes control to the main routine in the
target, and execution begins. Whenever the target program (i) enters a function, (ii) returns from
a function, or (iii) encounters the beginning of the compiled code for a C statement, the target
passes control to CDB2, which either returns control to the target or stops target execution and
prompts the user for a debugger command.

BD Software Page 109

November 1988 BDS C User’s Guide

In this document, square brackets [] are used to signify optional elements.

6.2 Constructing the Debugger

Because of various changes that might need to be made to the code of the severa components of
the debugger, the package is distributed as source code. This part of the documentation describes
the steps that must be taken to transform the source code into the three executable files L2.COM,
CDB.COM, and CDB2.OVL.

6.2.1 Constructing L2

Because L2 needs no customization, there is no need for each user to prepare his own version.
The standard version of L2 supplied with BDS C obtains C.CCC and DEFF*.CRL from the
currently logged disk during a linkage operation; to change this, modify the #define for the
DEF_DRIVE macro as described in L2.C. If you make changes (or correct bugs) in L2, the
procedure for creating L2.COM is described in the appendix entitled “The L2 Linker for BDS
C.

6.2.2 Constructing CDB2

The distribution disk contains aversion of CDB.COM and CDB2.OVL set up for asystem with a
BDOS at or above DO00. Almost al systems with over 60K of RAM should be able to use this
version asis. However, this version leaves only 31K for the target program and symbol tables; if
your system has its BDOS substantially above D000, you may wish to customize the debugger to
give you more memory for the target program; and if your system has its BDOS below DOOQO,
you must customize to get aworking debugger.

6.2.2.1 The CDBCONFG Utility

To simplify the customization process, a configuration program called CDBCONFG is now
provided. If CDBCONFG.COM is not on the distribution diskette, you must first compile and
link CDBCONFG.C using cc and either clink or |2 asfollows:

cc cdbconfg.c
clink cdbconfg (or) | 2 cdbconfg

Once you have a CDBCONFG.COM, all you need do istype
cdbconfg [bdos]

submt makecdb

CDBCONFG creates a submit file called MAKECDB.SUB in the current user number on the
currently logged disk that, when submitted, will compile and link CDB.COM and CDB2.OVL.
CDBCONFG also edits the CDB.H file to set the #define for CDB2ADDR to the appropriate
address for the target system.

Page 110 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

If the bdos option is given to CDBCONFG (as a hex number with no leading 0x), CDB is
configured for a system with a BDOS beginning at the specified address. If no parameter is
given, CDBCONFG uses the current BDOS location of the system on which CDBCONFG is
being run.

6.2.2.2 CDB System Description

CDB2 sits in high memory, above the target program and its stack but below both CP/M’s
BDOS and CDB2's own stack. The code that makes up CDB2 is a little less than 0x4900 bytes
long; the externals are about 0x0980 bytes. | have decided, a bit arbitrarily but after some
analysis, that the CDB2 stack (which starts immediately below the BDOS) should be allocated
about 0x0480 bytes. | hope this is cautious, but because it is possible to create complex
expressions that must be recursively parsed to dump symbolically variable contents, | think
discretion is wise. Adding the numbers up, we get a total of 0x5700 bytes for the code, globals,
and stack for CDBZ2; thus, CDB2 must start 0x5700 bytes below the start of the BDOS. Because
my BDOS starts at 0xE406, my CDB2 sits at 0x8d00 (and | will use this value in the examples
that follow).

Once you have decided where to put CDB2, you must edit CDB.H and change the #define for
CDB2ADDR to the value you have determined. Below, | will use “CDB2ADDR” to refer to this
value.

Constructing CDB

After changing CDB2ADDR in CDB.H, you are ready to compile the two source files for CDB:

cc cdb.c -e3c00
cc build.c -e3c00
|2 cdb build

Constructing CDB2

To compile the source files for CDB2, we need to know the address of the CDB2 externals.
Since the externals are placed right after the CDB2 code, we merely add 0x4900 (the size of the
code, given above) to CBD2ADDR. In my case, the result is 0xd600; thus, to compile CDB2 for
my system, | must specify “-ed600” as an option.

CDB2 is composed of seven C source files; to compile them, you must enter:

cc cdb2.c -exxxx

cc atbreak.c -exxxx
cc break.c -exxxx
cc conmand. ¢ - eXXXX
CC print.c -exxxx
CC parse.cC -exxxx
cc util.c -exxxx

Once the C files are compiled, you need to assemble the one assembler source file, DASM.CSM
(see the CASM Appendix for details on the .CSM assembly language format). The sequence for
creating DASM.CRL from DASM.CSM isasfollows:

BD Software Page 111

November 1988 BDS C User’s Guide

casm dasm
asm dasm
cl oad dasm

To save you this step (especiadly if you don’'t have a compiled version of CASM.COM handy)
the distribution disk contains a pre-assembled DASM.CRL.

The final file to be created is an empty file called NULL.SYM, which L2 will try to use to
determine the location of all the functions used in the root segment for which CDB2.OVL will be
the overlay segment. Because there is no such root segment, there are no functions, either; but
L2 requires aroot name if the —ovl option is used, so we create an empty file to please the linker
by issuing

save 0 null.sym

Now that al the .CRL files are ready, we are ready to link them. The proper command is

| 2 cdb2 dasm at break command break
print parse util -ovl null yyyy -wa

where yyyy should be replaced with the value computed for CDB2ADDR, in hex.

Before configuring the debugger, you may want to edit CDB.H and change the #define for
CDB2_DRIVE; this specifies the drive from which CDB2.OVL will be loaded if the user does
not override the default with the —d option to CDB. Y ou may specify either adrive letter (with or
without the colon), such as“A” or “B:”, a user number prefix, such as “10/”, or a drive letter
with a user number prefix, such as “0/A”. As distributed, the default is no drive designator,
which will cause CDB2 to be loaded from the currently logged drive and user area.

One note: It isvital that CDB.COM, CDB2.0VL, and the target .COM file al be linked using the
same C.CCC (the run-time package) and DEFF?.CRL libraries. This need arises because
CDB2.0VL uses the runtime package of CDB.COM when CDB2 initializes itself, and then uses
the runtimes from the target once the target is swapped in. If there is a mismatch, at some point
in the startup process the debugger will fail miserably.

Changing therestart number

As distributed, the debugger package uses the RST 6 (restart 6) instruction to generate
breakpoints. Whenever the RST 6 instruction is encountered, control is transferred to location
0x0030. In some systems, this area of memory (or the RST 6 instruction itself) may be reserved
for other use. If so, it is necessary to assign some other restart number to the breakpoint
function. Any restart number from one to seven (inclusive) may be used; restart zero is not
allowed. To change the restart number, changes must be made to L2.C, CDB.H, and
DASM.CSM.

In both L2.C and CDB.H, the #define for RST_NUM should be changed to the restart slot the

user has assigned to the debugger. In DASM.CSM, the “EQU” for RstNum should be changed
to the same value. Note that the value should be specified as a number from 1to 7.

Page 112 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

Finally, when the target program is compiled (with the —k option) it is necessary to specify the
new restart number. Type —kn, where n isthe new restart number, instead of the usual —K.

6.3 How to Invoke the Debugger

In order to use the debugger, the user must first compile and link the target program, and then
invoke the debugger itself. This part describes that process. As an aid to the understanding of
parts Il and IV of this document, part VI below is an example of a debugging session.

6.3.1 Compilation: The—K Option of CC

As documented in the BDS C User’s Guide, the —k option is used to cause the compiler to (i)
generate a symbol table with the extension .CDB and (ii) generate restart instructions in the
compiled code. The user issues the cc command as with any other compile, and adds the —k
option. For example:

cc target.c -k

6.3.2 Linkage: The-D and —-S Optionsof L2

To link the target program, the user must use the L2 provided with the package instead of
CLINK. Thefollowing L2 options apply to use with CDB:

—d Create an output module that is compatible with CDB. This option
causes L2 to put a restart instruction at the beginning of most functions.
Unless overriden by the —s option, arestart is placed at the beginning of
every function.
except those functions from DEFF*.CRL that are referenced only by
functions that are themselves from DEFF*.CRL.

-S CRL files after the —s will be treated as “system” library files. A function
in a system library file that is referenced only by a function from a
system library file will not have an initial restart added by L2, and the
debugger will not trace execution into such afunction. If the —s option is
not specified, no fileswill be treated as system libraries.

— Specifies that the command line entered is “Incomplete’; this option
causes L2 to prompt the user to enter more command line arguments.
Each line entered by the user may end with another “-i”, in which case
the user will again be prompted for more options. Note: the “-i” option

must be the LAST option on the command line to work.

-n Just like the CLINK “-n" option. This option makes the resulting COM
file preserve the CP/M CCP at run-time, instead of overwriting the CCP
with the run-time stack. Programs linked with this option return to the
CCP command level without performing a (time-consuming) warm boot.

BD Software Page 113

November 1988 BDS C User’s Guide

For example:

|2 target -d

Invoking CDB

To invoke the debugger, the user enters the CDB command. The command line is of the form:

cdb target-name [-1 [local _cdbs]] [-g [gl obal _cdbs]]
[-d [user/][drive[:]]] [%[target operands]]

The - (letter ell) and —g options allow the user to specify the .CDB files from which CDB will
read symbol tables containing information about the variables used in the target program.
target-name.CDB isused if -l or —g is not specified; although this default is normally adequate, if
the target source code is contained in more than one file, the user must provide the names of the
.CDB files produced from each of the source files if he wishes to access symbols defined in
these files. Often, al the globals are defined in a header (.H) file which is included in each
source file; in such a case, there is no need to use the —g option, only the - option. With either of
these options, if the user enters a zero instead of the file name CDB will not load any symbol
files for the specified type of symbol (either local or global). If the user enters no argument at all
for either option, CDB will prompt the user to enter file names, one per line, for the symbol files.
A null line terminates the prompt.

The “%” operand allows the user to specify arguments to the target program. If the “%” is
followed by any operands, these additional operands will be passed directly to the target
program,; if nothing follows the “%", the user will be prompted for a command line. (Note to
hackers. CDB does not pass the arguments that follow the “%” by accessing the “argv” passed
to CDB; rather, CDB changes the arguments as they appear in memory at 0x0080, and lets the
target program, via C.CCC, parse this command line.)

The —d option specifies the drive or user number or both from which CDB2.OVL will be |oaded;
the default as the package is supplied is the CP/M default drive, but the user can modify this
default.

A standard invocation of CDB is:

cdb target

6.3.3 Summary

To sum this section up, the standard procedure for debugging a program named target.c is as
follows:

cc target.c -k
|2 target -d
cdb target

Page 114 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

For a more complex example, assume that FOO.C contains the source for the “MAIN” routine
and other functions, and that BAR.C and L1B.C contain source for other needed functions. Both
FOO.C and BAR.C contain the same declarations for global variables (both source files #include
the header file GLOBALS.H), while LIB.C contains the user’s library functions that do not
access the global variables. Finally, assume that the user has certain other (already debugged)
functionsin STDLIB.CRL. To compile this mess, the user enters

cc foo.c -k
cc bar.c —k cc lib.c K]

To compile this, the user enters

cc foo.c -k
cc bar.c -k
cc lib.c -k

Tolink it al together to obtain FOO.COM, the user types

|2 foo bar -l |lib -s stdlib

The —s operand tells L2 not to generate function traces into routines included in FOO.COM that
were called only by routinesin STDLIB.CRL. To invoke the debugger, the user enters

cdb foo -1 foo bar lib

The - operand tells CDB that the files FOO.CDB, BAR.CDB, and LIB.CDB contain symbol
table information put out by CC, and that all local symbol information on these files should be
loaded. Global symbol information from FOO.CDB is |oaded.

6.4 Debugging Commands. How to Use the Debugger

This part of the document will discuss various CDB commands, grouped by function.

When the debugger isinvoked, it displays the location of CDB2 (i.e., CDB2ADDR), the amount
of space taken up by the local and global symbol tables, and the top of the target stack (i.e., the
highest byte not taken up by CDB2 or its tables). The debugger then passes control to the target
program, which, after executing the initialization code from C.CCC, invokes the “MAIN”
function of the target program. Because a breakpoint is set at the entry to MAIN, control is then
passed back to the user, who is prompted for a command.

6.4.1 Breakpoints

CDB normally allows the target program to execute one statement after another without
interruption. There are two ways the user can stop target execution; the breakpoint and the
keyboard interrupt. By setting breakpoints the user tells CDB to stop immediately before the
target executes a given C statement; by generating a keyboard interrupt, the user tells CDB to
stop target execution before executing any more C statements. To generate a keyboard interrupt,

BD Software Page 115

November 1988 BDS C User’s Guide

the user merely types any character; when CDB sees this character, it will stop execution (note,
however, that if the target program is waiting for input the character types by the user will go to
the target and NOT cause an interrupt).

To set abreakpoint, the user enters the “break” command:

b[reak] [function_nane] [statenment_nunber [count]]

(recall that bracketed characters can be omitted; thus, the “break” command can be entered by
typing “b”, “br”, “bre”, etc., and both function_name and statement_number can be omitted). If
function_name is omitted, the breakpoint is set at the specified statement number of the current
function (that is, the function which is currently being debugged; this function name is shown by
cdb when target execution is stopped, and can be listed by the “list” command).
statement_number tells cdb exactly where in the specified function to set the breakpoint.
Statements are numbered by line, with the first line of a function (that is, the function definition
definition line on which the open parenthesis is found) being numbered line 1. If multiple
statements appear on one line, a decimal notation is used. The first statement in line n is
numbered n.0, the next n.1, etc. For example, consider the line

a =5; putchar('x’); while (*s) s++;

If this line were the fifth line in afunction, then “a=5;" is numbered 5.0; “putchar(’x’);” is 5.1;
“while (*s)” is 5.2, and “s++;” is5.3). Whenever no decimal is given, “.0” is assumed. Thus, a
statement number can be defined as

sn = |line_nunber[.statenent_nunber_within_|ine]

To complicate matters a bit, sometimes CC rearranges the source code or generates its own
statements. When this happens, it becomes difficult for the user to set a breakpoint at the desired
statement. The most important cases in which CC generates these “hidden statements’ are: (i) in
the looping constructs (“while”, “for”, “do”), the compiler generates branch instructions from
the bottom of the loop back to the head of the loop; (ii) in the “for” statement, CC moves the
“increment” portion of the statement (i.e., the last of the three statements imbedded in the “for”
statement) to the end of the loop; thus, this statement is not numbered with the rest of the “for”
statement, but with the statement number following the last line of the loop.

Aside from the numbering listed above, there are two special statement numbers, 0 and —1.
Statement number O is the entrance to a function, and is encountered before any of the code of
the function is executed. Statement number —1 is the return from a function, wherever the return
happens to be, and is encountered after the return is executed (and thus the return value of the
function is available for display). Breakpoints can be set at statement numbers 0 and —1 just as
any other statements.

The count operand allows the user to defer the recognition of a breakpoint. The breakpoint set by
the “break” command does not actually cause cdb to stop executing the target program until the
breakpoint has be encountered count times. The default is 1, which causes a stop the first time
the statement is encountered. Note that count cannot be entered unless a statement number is
given.

Page 116 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

Up to forty breakpoints can be set at one time.
The “reset” command is used to remove a breakpoint. The syntax is
r[eset] [function_nane] [statenment_ nunber]

and the defaults are the same as for the “break” command. It is, of course, an error to try to
“reset” anon-breakpoint. The “clear” command can be used to reset AL L breakpoints; the syntax
is

cl ear
(no brackets are given; the “clear” command must be typed in full).

The “list breakpoints” command can be used to give alisting of all breakpoints currently set.

6.4.2 Executing code

There are several commands that are used actually to execute the compiled C code. The first of
these, the “go” command, simply starts execution (from wherever it was last stopped) and
continues until a breakpoint is encountered or the user types a keyboard interrupt. The command
has no operands.

To see which statements are executed by the target program, the user can use the “trace”
command. The command

t[race] [nunber_of _statenents]

causes the debugger to execute number_of statements statements, each time printing the
function name and statement number of the statement before execution. Execution ends after
number_of _statements have been executed, when a breakpoint is encountered, or at a keyboard
interrupt. The default for number_of _statementsis 1.

The “untrace” (also know as “walk”) is similar to the “trace” command, except that the function
names and statement numbers are not displayed as each statement is executed. In other words,

u[ntrace] [nunber_of statenents]

causes the debugger to execute number_of statement statements. As with trace, execution ends
after number_of _statements are executed, when a breakpoint is encountered, or at a keyboard
interrupt; the default for number_of statementsis 1.

The final command causing target execution isthe “run” statement, which cannot be abbreviated.

This statement causes cdb to pass control to the target, and deactivates the debugger altogether;
once “run” is entered, thereis no way to get back to the debugger.

6.4.3 Dumping variables

The “dump” command is used to dump the contents of memory. The syntax of the command is

dlunp] [&] expression [multiple] [format]

BD Software Page 117

November 1988 BDS C User’s Guide

Synonyms for “dump” are “p[rint]” and “,” (a comma).

The “dump” command dumps memory starting at the address specified by expression. Although
the full definition of an expression is given below, the two most common forms of an expression
are a single variable name (such as “i”, “foo”, or “filename”) and an integer in either
hexadecimal or decimal notation (such as 0x0100, 43000, or 12). If a variable name or other
symbolic expression is given for expression, cdb will dump the variable in the format
corresponding to the declaration of that variable; if the variable is a structure, cdb will
symbolically dump each element of the structure. However, the user can specify another format
to use, and often does so specify when expression is not a symbolic expression but an integer
address. The allowable formats are

char act er
poi nt er
or w Integer/word
string (null termnated array of char)

nw "o o

and “w” isthe default if no format is specified for a non-symbolic expression.

The multiple option specifies how much memory is dumped. The “dump” command dumps
multiple occurrences of the specified format; thus

dunp 0x0100 10 c

would dump ten characters, from 0x0100 to 0x010A, while

dunp 0x0100 10

would dump ten words (twenty bytes), from 0x0100 to 0x0114, since “w” isthe default format.

The syntax for an expression is as follows:

expr essi on *expressi on

primary

primary i nt eger

identifier
(expression)

pri mary[expr essi on]
primary.identifier
primary->identifier

This basically means that any C expression that does not contain alogical or arithmetic operator
isacdb expression; the expressions can be fairly complex, asin

table[table[1,i],j].nane[10]

To stop an excessively long “dump” command, type any character.
Normally, C scope rules are used for symbolic references. This means that when the debugger

has stopped at a breakpoint in routine “foo”, areference to a variable “bar” refers to the variable
local to routine “foo” named “bar” if such a variable exists; if no such local variable exists, the

Page 118 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

reference is to the global symbol “bar”. This scope rule makes it impossible for a C function with
alocal variable of the same name as a global variable to access the global variable. cdb allows
the user to override the standard scope rule and to specify the global variable by prefixing the
variable name with a backslash (“\"). In the example above, to access the global variable “bar”
from within the function “foo”, the user could type:

dunp \foo
One final use for the “dump” command is finding the address, but not the value, of asymbol. To

do this, the expression is prefixed with “&”, an ampersand, the C “address of” operator. For
example, to determine the address of a variable named table, enter

dunp &t able

Complex symbolic expressions can aso be used, such as

dunp &t ablef[i,j]

6.4.4 Setting variables

The “set” command is used to store datainto memory. The command

s[et] expression value [c]
will store value into the memory location referred to by expression. Normally, a 16-bit value is
stored; however, if (i) expression is a symbolic expression that refers to a char variable, or (ii)

value is within single quotes, such as ‘#', or (iii) the “c” option is given, then only an 8-bit value
is stored.

6.4.5 Thelist command — variousitems of infor mation

The“list” command is used to access various items of information.

[[ist] List the current function
and statenment numnber

[[ist] a[rgunents] Li st argunments to current
function

[[ist] b[reakpoints] Li st all breakpoints

[[ist] g[lobals] List all global variables

I[ist] I[ocals] List local variables for
current function

[[ist] nfap] List |inker map of target
program

[[ist] t[raceback] Li st function trace from

MAIN to current function

To stop the “list globals’ or “list locals” listing of variables, the user can type any character
(except carriage return). To stop the listing of alarge array and skip forward to the next variable,
type carriage return.

BD Software Page 119

November 1988 BDS C User’s Guide

The quit command

To end the debug session and return to CP/M, the “quit” command is used. This command
cannot be abbreviated.

6.5 Alphabetical Listing of Debugger Commands

A statement number is defined as

sn := line_nunber[.statenment_nunber_w thin_|ine]

An expression is defined as

expression := *expression
primary

primary .= integer
identifier

(expression)

pri mary[expr essi on]
primary.identifier
primary->identifier

b[reak] [function_name] [statement_number [count]]
Set a breakpoint. Defaults:

functi on_nane: current function
st at enment _nunber: 0
count : 1

clear Remove all breakpoints.

d[ump] [&]expression [multiple] [format]
Dump “multiple” itemsin “format” format. Defaults:

mul tiple: 1
format: i or format associated with synbol
Synonyns: p[rint] and , (comm).

The all owabl e formats are:

c character
p poi nt er
i or w integer/word
S string
g[o] Begin execution.
I[ist] List the current function and statement

Page 120 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

[[ist] a[rgumentsg] List arguments to current function

[[ist] b[reakpoints] List all breakpoints

[[ist] g[lobals] List all global variables

[[ist] I[ocals] List local variablesfor current function
[[ist] m[ap] List linker map of target program

I[ist] t[raceback] List function trace

quit Return to CP/M.

r[eset] [function_name] [statement_number]
Remove a breakpoint. Defaults:

functi on_nane: current function
st at enent _nunber 0
run Begin execution, disengage debugger.

get] expression value [C]
Store data into memory. Normally, a 16-bit value is stored; however,
if expression is a symbolic expression that refers to a char variable,
value iswithin single quotes (such as‘#) or the “c” option is given, then
only an 8-bit valueis stored.

t[race] [number_of statementsg]
Trace execution, listing statements executed. Default: one statement.

u[ntrace] [number_of statements]
Execute number_of statement statements. Default: one statement.
Synonym: wlalk]

6.6 An Example— A CDB Debugging Session

This section contains a transcript of a debugging session to demonstrate the use of CDB. The
target program, which is contained in the file TARGET.C, is as follows:

/*
* [.C David Kirkland, 20 October 1982

Thisisashort submit program. It is designed to be used
when the user wants to batch afew commands, but it’s too
much trouble to edit a SUB file to do the work. It can be
used in two forms;

¥ Ok X ¥ X X

BD Software Page 121

November 1988 BDS C User’s Guide

B>/ command line 1; command line 2; ... command line n
or

B>/
}command 1
}command 2

}command n

}

*

*

*

*

*

*

*

*

*

*

*

*

* |nthefirst form, the/ command is entered with arguments.
* group of characters delimited by a semicolon (or the end of
* theline) istreated as a separate command.

*
*
*
*
*
*
*
*
*
*

In the second form, / is entered without arguments.

/ then prompts with a"}", and the user enters commands, one
per line. A null line terminates command entry.

(To enter anull line, enter asinge ” on the line.)

In either form, control characters can be entered either
directly or via a sequence beginning with a"~" and followed
by aletter or one of the characters: [\] * _

*/
#include <stdio.h>
#define OPEN 15 /* BDOS function codes */
#define CLOSE 16
#define DELETE 19
#define CREATE 22
#define SET DMA 26

#define RAND_WRITE 34
#define COMPUTE_SIZE 35

struct fcb { [* define fcb format */
char drivecode;
char fnamel[8];
char ftype[3];
char extent;
char pad[2];
char rc;
int blk[8];
char cr;
int rand_rec;
char overflow;
};

#define CPMEOF Ox1a

#define MAXBLK 256
#define SUBNAME "A:$$$.SUB"

Page 122 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

struct fcb ffcb;

/* the way arecord from the $$$.SUB */

struct subrec { [* filelooks:
char reclen; /* number of charactersin command */
char aling[127]; [* command line

struct subrec out[128];
storeling(block,line) int block; char *line; {

[* storeline takes the line pointed to by "line" and
* convertsit to $3%$.SUB representation and stores
* it in out[block].
* This routine handles control characters (the *
* escape sequence).
*

*/

char *p;
struct subrec *b;
inti, len;

b = out[block];

[* copy lineinto out.aline, processing control chars */
for (p = b->dine; *p = *ling; p++, linet++)
if (*line==""")
if (@ <=toupper(*++line) &&
toupper(*line) <="_")
*p = Ox1f&*ling;
elseif (*p =*line)
break;

[* set up length byte */
b->reclen = len = strlen(b->aline);
if (len>127) {

printf("Line %d is too long (%d > %d)\n",block,len,127);

bdos(DELETE,ffch);
exit();

[* pad block with CPMEOFs (not needed?) */
for (i=len+2;i<128;i++)
*++p = CPMEOF;

}
main (argc, argv) int argc; char *argv[]; {
char *p, [* pointsto ; that ended
current command */
b, [current character in
command */
done; * loop control */
char ling[256], * gets();
BD Software

*/
*/

Page 123

November 1988 BDS C User’s Guide

int block; [* index into out array */
block = 0;
if (argc<2) [* prompt user format */
while (2) {
putchar('}’);
if (I*gets(line))
break;
storeline(block++, line);
else{
[* scan command linein low memory */
b =p = 0x80;
for (done=0; !done; p=b) {
[* skip leading whitespace */
while (isspace(* ++b)) p = b;
while (*b && *b!=";") bt++;
done = I*D;
*b=0;
storeling(block++, p+1);
}
}
setfcb(ffcb, SUBNAME);

if (255==bdos(OPEN,ffcb) & & 255==bdos(CREATE,ffcb)) {
printf("Can't create %s\n",SUBNAME);
exit();

/* find end of $$$.SUB so submits can nest */
bdos(COMPUTE_SIZE,ffch);

* write blocks in REVERSE order for CCP */

for(--block; block >= 0; block--) {
bdos(SET_DMA, out[block]);
bdos(RAND_WRITE, ffch);
ffch.rand_rec++;

}

[* al done! */
if (255==bdos(CL OSE,ffch))
printf("Could not close %s\n",SUBNAME);

The debugging session follows. Text typed by the user isin boldface.
Note that specific addresses will vary from the numbers appearing here, as
this session was recorded using an eariler release of the compiler package.

Page 124 BD Software

BDS C User’s Guide

B>cc target.c -k

BD Software C Compiler v1.xx (partl)
35K Unused

BD Software C Compiler v1.xx (part I1)
32K to spare

B>|2 target -d

L2 Linker ver. xxx

Loading TARGET.CRL

Scanning DEFF.CRL

Scanning DEFF2.CRL

Link statistics:
Number of functions; 17
Code ends at: 0x133B
Externals begin at: 0x133B
Externals end at: Ox535F
End of current TPA: 0xE406
Jump table bytes saved: Ox5D
Link space remaining: 26K

B>cdb target

¢ debugger ver 1.21

top of target stack is 8C94, cdb2 is at 9000
globals use 0160 bytes, locals use 00D9 bytes

break at MAIN 0 [0A54]

>list map
STORELIN 08A1 MAIN O0A51 TOUPPER
OCDA
PRINTF 0D51 ISSPACE
0D79 ISLOWER
ODAF
PUTS 113E _USPR 116A ISDIGIT 120C
BDOS 1298 EXIT 12AC GETS 12B2
SETFCB 1318
>list args
argc [8C90] =0001= 1.
argv [8C92] = 0863
>break storeline
>| breaks
MAIN -1
STORELIN 0
>go
Hdir a:
break at STORELIN 0 [08A4]
>list args
block [8B81] = 0000 = 0.

line [8B83] = 8BBA
>d *linestring

8B8A (len 6): "dir a"
>trace 5

BD Software

STRLEN 0D11

_SPR2 ODDE

“GV2 123B

PUTCHAR
12E6

The CDB Symbolic C Debugger

Page 125

November 1988

trace: STORELIN 15 [08AF]
trace: STORELIN 18 [08CE]
trace: STORELIN 18.1[08DC]
trace: STORELIN 19 [08F1]

break at STORELIN 27 [096D]

>pbreak 28

>gO

break at STORELIN 28 [09A6]

>dump *b

astruct subrec

reclen [135F] =06=""

aine a 127 element array of char

1360 [0] 64 69 72 20 61 3a00 00 00 00 00 00 00 00 00 00 'dir &.......... ’

1370 16] 00000000 00000000 0CO0OO00V00000000000 '
1380 32] 0000 000000000000 0CO0OO0O00000000000 '
1390 48] 0000 000000000000 0CO0OO0O00000000000 '
13A0[64] 000000 0000000000 OO0O00O00O00V0000000 '
13BO[80] 0000 000000000000 0OOO0OO00O000000000 ’
13CO[96] 0000 000000000000 0000000000 000000 ’
13D0[112] 0000 000000000000 000000000000 00coc.cee '
>d len

[8B7B] = 0006 = 6.

> b->reclen

[135F] =06 =""

>p setfcb

>go

break at SETFCB 0 [131B]

>list args

first argument addressis 8B81

[1] = 133B = 4923, [2] = 0C97 = 3223, [3] =01FE =510
[4] = 22Ca = 8906, [5] = 0030 = 48, [6] = 7269 = 29289
>t

break at MAIN 33 [0BA1]

>dump ffcb

astruct fcb

drivecod [133B] =01=""

fname a8 element array of char

133C[01 2424242020202020'$%$
ftype a3 eement array of char

1344 0] 535542 'SUB’

extent [1347]=00=""

pad a2 element array of char
1348[0] 0000 .’

rc [134A] =00=""

blk a8 element array of int

134B [0] 0000 0000 0000 0000 =
1353 [4] 0000 0000 0000 0000 =
cr [135B] =00=""

rand rec [135C] =0000= O '.

0
0

S o
Oo
S o

Page 126

BDS C User’s Guide

BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

overflow [135E] =00=""
>t 5
trace: BDOS 0 [129B]
trace: BDOS returning OOFF = 255 ="."
trace: BDOS 0 [129B]
trace: BDOSreturning0001=1="."

bresk at MAIN 39 [OBES]
>t

break at BDOS 0 [129B]
>t

BDOS returning O0FF = 255 ="..
>t

break at MAIN 42 [OBF6]
>gO

MAIN returning FFO2 = -254 ="’
>quit

B>

BD Software Page 127

November 1988 BDS C User’s Guide

Page 128 BD Software

BDS C User’s Guide Tutorials and Tips

Chapter 7

Tutorialsand Tips

This chapter contains tutorial material to introduce the BDS C file I/O library (both buffered and
low-level), teach some console I/O interface procedures, and provide some additional operational
notes for the compiler.

7.1 BDSC Filel/O Tutorial

7.1.1 Introduction

The library functions provided with BDS C for performing file input/output fall into two major
categories: the raw or low-level I/O functions, and the buffered 1/0O functions.

The raw functions, typically coded in assembly language for best performance, are an extended
interface to the low-level CP/M BDOS calls that actually perform all file I/O. The quantity of
data transferred during raw 1/O calls is always a multiple of one full CP/M logical sector (128
bytes).

The buffered functions, written in C, provide a byte-oriented, sequentia file 1/0 system geared
especially for filter-type applications. They allow the user to read and write data in whatever
sized quantities are most convenient, while invisible mechanisms handle all sector buffering and
actual disk transfers. Thus the buffered 1/0 functions are usually more convenient to deal with
than the raw functions, but they generate considerable overhead in terms of speed of execution
and consumption of memory space for code and buffer areas.

Since the raw 1/O functions form the building blocks from which the buffered functions are
constructed, I'll present the raw 1/0 in detail first and then go on to the buffered functions.

7.1.2 TheRaw Filel/O Functions

All raw 1/O functions are characterized by their use of file descriptors to identify the files which
are being operated on. A file descriptor, or fd, is a small integer value that is assigned to a file
when that file is opened or created, and remains associated with the file until it is closed. Anfdis
obtained by calling either the open or the creat function. The usage of these functionsis:

open(fil enane, node) ;
I

fd fi
fd = creat(fil enane);

BD Software Page 129

November 1988 BDS C User’s Guide

“Filename’ is either a literal string or any expression that evaluates to apointer to characters.
Open is used to open an aready existing file (usually, afile that has some datain it) for reading,
writing or both. creat is used to create a new file and open it for reading and writing. In both
cases, the fd is returned by the call when successful. If some kind of error occurs and the
specified file cannot be opened or created, a value of ERROR (-1) is returned instead and the
errno function may be called to find out exactly why the file could not be opened.

All other raw functions require an fd to specify the file to be operated on (except unlink and
rename, which take filename pointers). Two very important raw 1/0O functions, read and write,
transfer datato and from disk in multiples of 128-byte logical sectors. Their typical usageis:

]
j

read(fd, buffer, nsects);
wite(fd2, buffer2, nsects2);

The first call tries to read nsects sectors of data, from the file whose fd is specified, into memory
at location buffer. The second call tries to write nsects2 sectors of data, from memory at location
buffer2, to the disk file whose fd is fd2. Unless an error occurs (as when an illegal fd is given or
an attempt is made to read past the end of afile), read and write should cause an immediate disk
operation to take place. This is one of the main differences between raw and buffered 1/0: raw
functions always cause immediate file 1/0O activityl®, provided the requested operation is
possible, while buffered functions only access the disk when a buffer either fills up (during
writes) or becomes exhausted (during reads).

There is an invisible “r/w pointer” associated with each file opened for raw I/O. This pointer
keeps track of the next sequential sector to be read from or written to the file. Immediately after a
file is opened, the r/w pointer is initialized to O (the first sector of the file). It is automatically
incremented, following read and write calls, by the number of successfully transferred sectors.
So, by default, each data transfer picks up from where the previous one left off. The value of a
file'sr/w pointer isreturned by the tell function, and may be modified by using the seek function.

To illustrate the use of raw 1/O in a program, let’s build a ssmple utility to make a copy of afile.
The command format for this utility (which we'll call “copy”) shall be:

A>copy fil enane newnane <cr>

“Copy” will take the file named by “filename” and create a copy of it named “newname”. Since
thisisto be aclassy utility, we want full error diagnostics in case something goes wrong (such as
running out of disk space, not being able to find the master file, etc.) This includes checking to
make sure that the correct number of parameters were typed on the command line. It is
sometimes convenient to summarize a program in a half-C/half-English pseudo code form,
something like a flowchart but not as boxy. Here is such a summary of the copy program:

19. On most CP/M systems, raw file I/O calls cause the disk drive hardware to go immediately into action. Some systems perform
BIOS sector buffering, though, and may not need to go to the physical disk for each and every raw 1/0 call.

Page 130 BD Software

BDS C User’s Guide

copy(filel,file2)

if (exactly 2 args

Tutorials and Tips

weren’'t given)
conpl ai n and abort

if (can’t open filel)

conpl ai n and abort

if (can’t create file2)

conpl ai n and abort

while (not end of filel)

{

close all files;

}

Read a chunk fromfilel and wite it
if (any error has occurred)

conpl ai n and abort

And hereisthe actual C program to perform the copy operation:

#i ncl ude <stdio.h> /*
#defi ne BUFSECTS 64 /*

int fdi, fdz; /*
char buffer[BUFSECTS *

mai n(argc, ar gv)

int argc; /* Arg

char **argv; /*
i nt oksects; /*

if (argc '=3) [/*

if ((fdl

if ((fd2

The standard header file */

Buf fer up to 64 sectors in nmenory */
File descriptors for the two files */
SECSI 7] ; /[* The transfer buffer */
count */

Arg vector */
A tenporary variable */

make sure exactly 2 args were given */
perror ("Usage: A>copy

/* try to open 1st

open(argv[1],0)) == ERROR)

filel file2 <c

file; abort o

perror("Can't open: %\n",argv[1]);

/* create 2nd file, abort on err

creat (argv[2])) == ERROR

perror("Can't create:

%\ n",argv[2])

/* Now we're ready to nove the d

whil e (oksects = read(fdl, buffer, BUFSECTS)) {

}

cl ose(fdl);
if (close(fd2) ==

if (oksects == ERROR)
if (wite(fd2, buffer

perror("Error reading: %\n",a
£

perror ("Error; probably out o

/* Copy is conplet

ERROR)

perror("Error closing

printf("Copy conplete\n");

}
perror(format,arg) /* print error nmessage and abort */
printf(format, arg); /* print message */
fabort (fd2); [* abort file operations */
exit(); /* return to CP/M */
}
BD Software

, arg
oksects) !'= o0

d
e. Now close t

%\ n",argv[2])

Page 131

November 1988 BDS C User’s Guide

Now let's take a look at the program. First come the declarations: we need a file descriptor for
each file involved in the copying process, and a large array to buffer up the data as chunks of
disk files are shuffled through memory. The size of the buffer is computed as the sector size
(SECSIZ, defined in STDIO.H) multiplied by the number of sectors of buffering desired
(BUFSECTS, defined at the top of the program).

In the main function, we first make sure that the correct number of parameters were typed on the
command line. Since the “argc” parameter is provided free by the run-time package to every
main program, and is always equal to the number of parameters given PLUS ONE, we test to
make sure it is equal to three (i.e, that two parameters were given). If argc is not equal to three,
we call perror to lodge a complaint and abort the program. Perror interprets its arguments as if
they were the first two parameters to a printf call, performs the required printf call, aborts
operations on the output file?%, and exits back to command level.

If we make it past the argc test, it is time to try opening files. The next statement opens the
master file for reading, assigns the file descriptor returned by open to the variable “fd1”, and
causes the program to be aborted if open returned an error. This can all be done at one time
thanks to the power of the C expression evaluator; if you aren’t used to seeing this much happen
in one statement, take a moment to follow the parenthesization carefully. First the call to open is
performed, then the return value from open is assigned to the variable “fd1”, and then a test is
done to see if that value was ERROR. If the value was not equal to ERROR, then the file had
opened correctly and control will pass on to the next if statement; otherwise, the appropriate call
to perror diagnoses the problem and terminates the program. Creation of the output file follows a
similar pattern, again with perror getting caled if the attempted file creation returns an ERROR
value.

Having made it through all the preliminaries, it istime to start copying some data (finally!). Each
time through the while loop, we read as much data as we can get (up to BUFSECTS sectors) into
memory from the master file. The read function returns the number of sectors successfully read;
this may range from 0 (indicating an end-of-file condition) up to the number of sectors requested
(in this case, BUFSECTS), with a value of ERROR being returned on disaster (when the disk
drive door pops open or something). Whatever this value may be, it is assigned to “oksects’ for
later examination. In the special case when it is equal to zero, indicating EOF, the while loop will
be exited. Otherwise, we enter the loop and attempt to write out the data that was just read in.
First, though, we want to make sure no gross error has occurred; so, a check is performed to see
if ERROR was returned by the read call. If so, it's Abortsville. Having safely circumnavigated
Abortsville, we call write to dump the data into the output file. If we don’t succeed in writing
exactly the number of sectors we wanted to write, it's back to Abortsville with an appropriate
error message (most write errors are caused by running out of disk space.) If the write succeeds,
we go back to the top of the loop and try to read some more data. This process continues until all
of the data has been read and written, at which point the read function returns zero and control
falls out of the while loop.

The last thing to do, once the while loop has been left, isto mop up by closing the files; just to be
complete, we check to make sure the output file has closed correctly. And that’siit.

20. This has no effect if called before the file has been opened, as in the case where the wrong number of parameters have been given
and the“argc |= 3" test succeeds.

Page 132 BD Software

BDS C User’s Guide Tutorials and Tips

7.1.3 TheBuffered File /O Functions

The raw file 1/0O functions presented in the last section are most useful when large amounts of
data, preferably in even sector-sized chunks, need to be manipulated. The preceding file-copy
program is a typical application. Raw file 1/0 requires you to always think in terms of
sector s—while this poses no particular problem in, say, the file-copy example, it does add quite a
bit of complexity to shuffling bits and pieces of randomly-sized data.

Consider, for example, the unit known as the text line: aline's worth of ASCII data may vary in
size anywhere from 1 byte (in the case of a null string, represented by the terminating null only)

up to somewhere around 130 bytes or maybe even more. Some convenient method of reading

and writing these text lines to and from disk files would be a very useful thing for text processing

applications. Ideally we'd like to call a single function, passing it some kind of file descriptor

along with a text line pointer, and have the function write the line of text to the file sequentially

following the last line written. Also, to prevent a time-consuming disk access every time alineis
written, it would be nice to have our function buffer up a number of lines and write them all to
disk at once when the buffer fills up. Analogously there would have to be a function to read a
text-line from afile into memory; here, also, it would greatly improve performanceif an invisible
buffer were managed by the text-line grabbing function so that disk activity is kept to a
minimum. The functions just described are, in fact, fputs and fgets from the standard library.

These are two examples of buffered 1/0 functions.

The spotlight in the world of buffered I/O is a structure named, appropriately, an 1/0O buffer.
Within this structure is a large buffer array to store the data being transferred, and several
assorted pointers and descriptors to keep track of “what’s happening” in the data array portion of
the buffer. These include a file descriptor to identify the file for raw 1/0O operations, a pointer into
the data array to tell where the next byte shall be read from or written to, a counter to tell how
many bytes of either data or space (depending on whether you're reading or writing) are left
before it becomes necessary to reload or dump the buffer, and finally a set of bits that remember
things like whether the buffer is being used for input or output (so that the right things happen
when the file is closed). Buffered 1/0 functions use pointers to these I/0O buffers as identification
for the file being operated on, just as the raw file 1/O functions use file descriptors.

There are six functions that perform all actual buffered I/O for single bytes of data (characters).
The other buffered I/0O functions (such as fputs and fgets) do their jobs in terms of these six
“backbone” functions.

For reading files, there are the functions fopen, fgetc, and fclose. Fopen is called to open an
existing disk file, identify it by a file pointer variable, and initialize the buffer for receiving data
from the file. i(Fgetc) grabs a single byte (character) from the buffer, making sure to refill the
data array from the disk file whenever the array is found to be empty, and returns a special EOF
value (-1) when the physical end-of-file is reached. Fclose closes the file associated with an 1/O
buffer and frees the buffer for use with another file.

For writing files, the functions fopen and fclose mentioned above are used, plus the functions
fputc and fflush. Fopen creates a new file and prepares an associated 1/0O buffer structure for
receiving output. The data is written to the buffer via calls to fputc, one byte at a time; whenever
an fputc call causes a buffer to fill up, then the buffer is dumped to disk and reset to accept
another batch of data. When al the data has been written to a file, fclose wraps things up by

BD Software Page 133

November 1988 BDS C User’s Guide

closing the associated file. For output files, fclose automatically calls fflush first to dump out
(“flush”) the contents of the not-yet-full 1/0 buffer to the disk file before the file is closed.

The functions that actually read and write data directly to a file are fgetc and fputc; functions
such as fgets, fputs, fprintf, etc. do their reading and writing in terms of getc and putc.

Careful examination of the STDIO.H header file will reveal that the number of 128-byte sectors
used for buffering is 8, by default, and that this value may be changed by the user for optimal
performance on different systems. If, for example, you're using BDS C on a CP/M system
having a 1024-byte physical sector disk format, then the 1024 bytes of buffering performed by
the buffered 1/0 functions is probably unnecessary, and changing the buffering from 8 sectors to
1 sector would save quite a bit of memory without causing any significant loss in execution
speed. On CP/M systems running 8* standard 128-byte physical sectors, though, the default 1K
buffering scheme really speeds things up.

Let's look at a smple first example. The following program prints a given text file out on the
console, generating line numbers along the left margin:

/*
PNUM C. Programto print out a text file with
automatic generation of |ine nunbers
*/

#i ncl ude <stdi o. h>

mai n(argc, ar gv)
char **argv;

{
FI LE *fp; /* declare I/O pointer */
char |inbuf[MAXLI NE] ; /* tenporary |ine buffer */
int Iineno; /* line nunber variable */
if (argc !'= 2) { /* make sure file was given */
printf("Usage: A>pnum fil enane <cr>
exit();
}
if ((fp = fopen(argv[1],"r")) == NULL) {
printf("Can't open %\n",argv[1]);
exit();
}
lineno = 1; /* initialize |ine nunber */
whil e (fgets(linbuf, MAXLINE, fp))
printf("98d: %",!|ineno++, |inbuf);
fcl ose(fp);
}

The declaration of fp provides the I/O buffer pointer for use with fopen, fgets and fclose.

After checking the argument count and opening the specified file for buffered input (and making
sure the file exists), al the real work takes place in one simple while statement. First the fgets
function reads a line of text from the file and places it into the linbuf character array. Aslong as
the end of file isn't encountered, fgets will return a non-zero (true) value and the body of the
while statement will be executed. The body consists of asingle cal to printf, in which the current

Page 134 BD Software

BDS C User’s Guide Tutorials and Tips

line number is printed out followed by a colon, space, and the current text line. After the value of
lineno is used, it is incremented (by the ++ operator) in preparation for the next iteration. The
reading and printing cycle continues until fgets returns zero; at that point the while loop is
abandoned and fclose wraps things up.

For our final example we have the kind of program known as a filter. Generally, a filter reads an
input file, performs some kind of transformation on it, and writes the result out into a new output
file. The transformation might be quite complex (like a C compilation) or it might be as trivial as
the conversion of an input text file to upper case. Since printing costs are pretty high these days,
let's skip the C compiler example for the time being and take a look at a To-Upper-Case filter
program:

/*
UCASE. C. Programto convert an arbitrary input text
file to upper-case-only.
*/

#i ncl ude <stdi o. h>

mai n(argc, ar gv)

char **argv;

{
FILE *ifp, *ofp;
int c;

if (argc !'= 3) {
printf("Usage: A>ucase <file> <newfi
exit();

i% ((ifp fopen(argv[1],"r")) == NULL) {
printf("Can't open %\n",argv[1]);

exit();

i% ((ofp fopen(argv[2],"w')) == NULL) {
prinE;("Can’t create %\ n",argv[2]);
exit(),;

}
while ((c = fgetc(ifp)) !'= EOF)
if (fputc(toupper(c),ofp) == ERROR)
printf("Wite error; disk probab
exit()

} L
fclose(ifp);
fcl ose(of p);

}

This time there are two buffered 1/0 streams to be dealt with: the input file and the output file.
The first task is to check whether the correct number of parameters were given on the command
line. In this case, we expect two parameters: the name of an existing input file, and the name of
the output file to be created. Then fopen is used to open and create the two files for buffered 1/0.
If that much succeeds, the main loop is entered and the fun begins.

On each iteration of the loop, a single byte is grabbed from the input file and compared with the

end-of-file value EOF. Note that the EOF value returned by fgetc is —1, which can only be
represented as a 16-bit value because char variables in BDS C cannot take on negative values.

BD Software Page 135

November 1988 BDS C User’s Guide

This is why the variable “c” is declared as an int instead of a char in the above program; if it
were declared as a char, then the sub-expression

(c = fgetc(ifp))

would result in a value having the type char, and thus could never possibly equal EOF (-1) as
tested for in the program. When fgetc returned EOF in such a case, “c” would end up being equal
to 255 (the char representation of the low order 8 bits of the value EOF). Thus, “c” is declared as
an int so the EOF comparison can make sense.

This is awkward because “c” is used here for holding characters, and it would be nice to have it
declared as a character variable. There's actually a way to do it, at the price of complete
generality: if the EOF in the comparison were changed to 255, then “c” would have to be
declared as a char and the program would work...except when an actual hex FF (decimal 255)
byte is encountered in the input file! Now, while it is a pretty safe bet to assume there aren’t any
hex FF bytes in your average text file, there may be exceptions. Also, there's no law saying
filters can only be written for text files. Consider a program to take a binary file and “unload” it,
creating an Intel-format HEX file. Would we want it to halt when the first hex FF is encountered?
No, the original method is clearly the most general.

After determining that the end-of-file has not been encountered, the body of the while statement
is executed. Here we use toupper to convert the character obtained from fgetc to upper case, and
then we use fputc to write the resulting byte out to the output file. To be neat, errors are checked
for: the program terminates if fputc returns ERROR.

As soon as an end-of-file condition is detected, we use fclose to close the input and output files.
Note that fclose automatically calls fflush for the output file, and fflush makes surethat the
output file is terminated by a CP/M end-of-text-file (Ox1A, or Control-Z) character.

For a large-scale example of buffered 1/0 usage, see CASM.C. Also, take some time to inspect
the files STDIO.H, STDLIB1.C and STDLIB2.C, which contain the sources of al the buffered
1/O functions. STDLIB1.C contains the general byte-oriented portion of the buffered 1/0 library,
and STDLIB2.C contains the line-oriented and format-conversion functions.

7.2 BDSC Consolel/O:
Some Tricks, Clarifications and Examples

7.2.1 Introduction

In this document | will attempt to remove some of the mystery behind the CP/M console
input/output mechanism, and show how to take best advantage of that mechanism from BDS C
programs.

The accent here will be on how to use the bios and bdos library functions for performing console
input and output directly via CP/M’s BIOS and BDOS, respectively. One reason for going
directly to CP/M’s BIOS for console /O, instead of using the getchar/putchar functions supplied
in the standard library, is to avoid the frustrating unsolicited interception of certain ASCII

Page 136 BD Software

BDS C User’s Guide Tutorials and Tips

characters by both the CP/M BDOS and the getchar/putchar functions (which use BDOS calls to
perform their tasks). Some suitable applications are telecommunication programs, games, or any
programs requiring more direct control over the console than the standard getchar and putchar
functions provide.

7.2.2 Elementary Console Interfacing
Let’stake alook at what really happens during console 1/0, and how to contral it...

The lowest (simplest) level of console-controlling software is in the BIOS (Basic Input/Output
System) section of CP/M. There are three subroutines in the BIOS that deal with reading and
writing raw characters to the console: CONST (check CONsole STatus), CONIN (wait for a
character to be typed on the CONsole, then read it IN), and CONOUT (send the CONsole an
OUTput character to be typed). The way to locate these subroutines from the assembly language
level is rather complicated, so the BDS C library contains the bios function to make it easy to
access the BIOS subroutines from C programs.

BIOS vectors 2, 3 and 4 are used to communicate directly with the console device. The
expression bios(2) specifies acall to the CONST subroutine in the bios, which returns a non-zero
(“true”) value when a character is available at the console, or zero otherwise. To actually read the
character after bios(2) indicates oneis ready, or to wait until a character is ready and then read it,
use bios(3) to call the CONIN subroutine and return a character from the console. To directly
write a character ¢ to the console, say bios(4,c) to call CONOUT. Note, though, that the BIOS
subroutines are not aware that C programs represent a carriage-return/linefeed combination by a
single “newline” character ('\n’)...the call bios(4,\n’) will cause only a single linefeed character
(ASCII decimal value 10) to be printed on the console without a leading carriage-return. When
using direct console 1/0 you must send both a carriage-return ('\r') and a newline ('\n’) to the
CONOUT subroutine in order to go to the beginning of a new line on the console output.

Such a sequence would appear as follows:

bios(4,’\r"); /* send carriage-return to CONOUT */
bios(4,’\n"); /* send |inefeed to CONOUT */

Making sure that all console 1/0 is eventually performed by way of the three BIOS subroutinesis
the only way to approach portability of programs between different CP/M systems when total
control is required over the console device?™.

7.2.3 TheBDOSand How It Complicates Things

The next higher interface level (above the BIOS) on which console I/0O may be performed is the
BDOS (Basic Disk Operating System). Just as there are the three basic BIOS subroutines for
interfacing with the console, there are three similar but “higher level” BDOS operations for
performing similar tasks. These BDOS functions, each of which has its own code number
distinct from its BIOS counterpart, are: Console I nput to get a single character from the console

21. Even so there’s no way to know what kind of terminal is being used by another system— so “truly portable” software either makes
some assumptions about the kind of display terminal being used (whether or not it is cursor addressable, how to address the cursor,
etc.) or includes provisions for self-modification to fit whatever type of terminal the end-user happens to have connected to the
system.

BD Software Page 137

November 1988 BDS C User’s Guide

(BDOS function 1), Console Output to write a single character to the console (BDOS function
2), and Get Console Status to determine if there is a character available from the console input
(BDOS function 11). There is also BDOS function 6, named “direct console 1/0”, provided as a

direct link to the BIOS console I/O functions. This functionsis “yet another way to get not quite

complete control over console I/O”, and has only one dlight advantage over using BIOS calls

(which I’'ll describe later).

Whenever the standard C library functions getchar and putchar are called, they perform their
tasks in terms of BDOS calls...which in turn perform their operationsthrough BIOS calls,
leading to some nasty confusion. The BDOS operations do all kinds of things for you that you
may not even be fully aware of. For instance, if the BDOS detects that a control-S character is
present on the console input during a console output call, then everything will stop dead until
another character is typed on the console input, before control is returned from the original
output call. This may be fine if you want the ability to stop and start a long printout without
having to code that feature into your C programs, but it causes big trouble if you need to see
every character typed on the console, including control-S. A little bit of thought as to how the
BDOS does its stuff reveals some interesting facts: since the BDOS must be able to detect
control-S on the console input, it must read the console whenever it sees that a character has been
typed. If the character is not among those requiring specia processing, such as control-S, then it
must be saved somewhere internal to the BDOS so that the next “Console Input” call returns the
character as if nothing happened. Also, the BDOS must make sure that any subsequent calls
made by the user to “Get Console Status’ (before any are made to “ Console Input”) indicate that
acharacter isavailable. Thisleads to a condition in which aBDOS call might say that a character
is available, but the corresponding BIOS call would NOT, since, physically, the character has
already been gobbled up by the BDOS during a prior interaction with the BIOS.

If this al sounds confusing, bear in mind that it took me several long months of playing with
CP/M and early versions of the compiler before | was able to comprehend what goes on in there.
The library versions of getchar and putchar were designed for an environment where the user
does not need absolute direct control over the console. Since the BDOS aready does some nice
things (like control-S processing), | threw in some additional features. automatic conversion of
the ‘\n’ character to a CR-LF combination on output, automatic program termination when
control-C is detected on input or output (so that programs having long or infinite unwanted
printouts may be stopped without resetting the machine, even when no console input operations
are performed), automatic conversion of the carriage-return character to a“\n’ on input, etc.

For BDS C v1.6, the new functions iobreak and cmode were added to provide some flexibility to
the getchar and putchar functions. Specifically, the iobreak function alows the selection (under
program control) of whether or not Control-C is detected during getchar and putchar calls.

Calling iobreak(0) causes Control-C’s to be ignored (except when typed as the first character of

a line under line-buffered input mode, due to the way the BDOS operates). Calling iobreak(1)

(or not calling iobreak at al, as iobreak(l) is the default on start-up) causes any Control-C’'s

typed on the console during either character input or character output to terminate program
execution and return to CP/M command level.

| promised some examples earlier, so let’s get to them. First of all, hereis avery rudimentary set

of functions to perform the three basic console operations in terms of the bios function, with no
special conversions or interceptions at all...i.e., nothing like the ‘\n’ —> CR-LF trangdlations:

Page 138 BD Software

BDS C User’s Guide Tutorials and Tips

/*
Utra-raw console 1/0O functions:
*/

get char () /* get a char fromthe console */
{

return bios(3);

}
kbhi t () /* return true (non-zero) if a char is ready */
{
return bios(2);
}
put char (c) /* wite the char ¢ to the console */
char c;

bi os(4, c);

These ultra-raw functions do nothing more than provide direct access to the BIOS console
subroutines. To use them instead of the standard versions provided in DEFF2.CRL (which,
incidentally, are written in assembly language and available in source form within
DEFF2A.CSM), simply create a C source file containing them (or any variation you please),
compilethefile, and link your programs with the resulting CRL file.

Now let’s consider some more sophisticated games that can be played with customized versions
of the console 1/0O functions. For starters, let’s design a set of direct console I/O functions that
perform newline conversions just like the library versions described earlier, abort execution on
control-C, but ignore control-S/control-Q protocol and throw away any characters typed during
output except control-C, which should cause a return to command level. What we need here are
the skeletal functions given above, plus some extra code to handle the following conditions. @)
conversion of single ‘\n’ characters into two characters, CR and LF, on output; b) conversion of
CR to newline ("\n") and control-Z to —1 on input; ¢) automatic echoing of input to the console
output; and d) re-booting on control-C during both input and output. Here are the beasts:

/*
Vanilla console I/0O functions w thout going through BDOS:
Note that ' kbhit’ woul d be the same as the preceding
raw versi on)

*/

#define CTRL_C 0x03
#defi ne CPVMEOF Ox1la

/* control -C */

/* End of File signal (control-2) */

get char () /* get a character, hairy version */
{
char c;
if ((c =bios(3)) == CIRL_C) exit(); [/* abort on ~C */
if (c == CPMEOF) return -1; /[* turn Ctl-Zto -1 */
if (c =="\r") { /* if CRtyped, then */
putchar(’\r’); /* echo a CR and set */
c ='\n"; /* up to echo a LF also */
} /* and return a '\n’ */
put char(c); /* echo the char */
return c; /* and return it */
}
BD Software Page 139

November 1988 BDS C User’s Guide

put char (c) /* output a character, hairy version */
char c;
{
bi os(4, c); /[* first output the given char */
if (c =="\n") [* if it is a newine, */
bios(4,'\r"); /* then output a CR also */
if (kbhit() & bios(3) == CTRL_C) /* if Cl-C typed, */
exit(); /* then reboot */

/* else ignore the input */

Now, if you want to add control-S processing and a push-back feature (the two are actually quite
related, since you must be able to push back anything except control-S that might be detected
during output), you could add some externa “state” to the latest set of functions and keep track
of what you see at the console input. Once this is done, though, what you'd have is much the
same functionality asthe original standard library versions of getchar and putchar (which use the
BDOS), and you might as well just use those.

So far, everything I’ve talked about has been in terms of the BIOS, and applies equally to all
CP/M systems. Unfortunately, there is one console operation often needed when writing real-
time interactive operations that is not supported by the BIOS, and thus there is no portable way
to implement it under CP/M. What’s missing is a way to ask the BIOS if the console terminal is
ready to accept a character for output. An example of the trouble this omission causes is visible
in the sample utility CMODEM.C. There, the program must be able to read input from the
keyboard at any instant, and cannot afford to become tied up waiting for the terminal when the
amount of data being sent to it has caused it to refuse more characters and thereby to lock up the
program until a character can be sent. Given that the only “kosher” way to send a character to the
console is through the CONOUT BIOS call, and that such a call might at any time tie up the
program for longer than is tolerable, the only recourse is to bypass CONOUT completely and
construct a customized output routine in C that can be more sophisticated. This is done in
CMODEM.C, at the expense of non-portability for the object code; each user must individually
configure his HARDWARE.H header file to define the unique port numbers, bit positions and
polarities of the 1/O hardware controlling his console and modem devices. It would have been
much easier if the BIOS contained just one more itty bitty subroutine to test console output status
and modem output status, but life is rough sometimes.

The last several examples have all used the bios function for direct interface to the BIOS console
subroutines. Note that BDOS function number 6 was provided in CP/M 2.x as an aternative to
direct BIOS access, and it can indeed be used in most cases instead of bios calls. | know of both
one advantage and one disadvantage to using BDOS function 6, though. The disadvantage is that
you cannot send a hexadecimal FF byte to the console output using BDOS function 6. The
advantage, on the other hand, involves an incompatibility problem between different
implementations of CP/M. On some systems, the bios function provided with BDS C will not
work correctly because the jmp instruction at the start of the CP/M base page does not point
directly to the warm-boot entry in the BIOS jump-vector table. The bios function assumes that
this is the case, and computes the address of the base of the BIOS vector table on this
assumption. The significance of all thisis that C programs written using the bios function, and
distributed in binary form to other systems which do not conform to the bios function’s
assumptions about j mp instruction targets, will not work correctly on those systems.

Page 140 BD Software

BDS C User’s Guide Tutorials and Tips

Oh well...l hope this has helped to demystify some of the obscure behavior of the CP/M console
I/O interface. For the low-down on how the library versions of getchar, putchar, etc. realy work,
see their source listings in DEFF2A.CSM.

7.3 Some Mistakes Commonly Made By Beginning C Programmers
and Other Things Deserving Clarification

There are several aspects of the C language that tend to cause a great deal of brow-beating when
encountered for the first time. In this section | will try to summarize those sensitive “features’ of
C that are constantly being brought to my attention by confused users in their phone calls and
letters.

7.3.1 ‘=" versus‘="

The = operator is used for assignment only, while the == operator is used for testing a relational
condition of equality. The two operators have nothing in common except the character used to
represent them, and can cause very frustrating debugging sessions when confused.

A common construct in C is to have an assignment operation imbedded within a larger
expression, perhaps involving conditionals. This can lead to statements such as:

if ((c =getchar()) == "\n")
printf("You typed a newine!\n");

Here, the beginning C user might interpret the = operation as a conditional test instead of the
assignment expression it actually is. Note also that the precedence of the == operator is higher
than that of the = operator. This fact makes it essential that the assignment operation be explicitly
parenthesized in an expression such as the one above. If the statement were mistakenly written
as:

if (c = getchar() =='\n")

then the compiler would treat that expression exactly the same asif it were written:

if (c = (getchar() =="'\n"))

Now consider the following code fragment:

{
n

if ('(c = getnext()))
([do

printf("
br eak;

e\n");
}

The if expression in this statement assigns the return value from the getnext function to the
variable c, then asks whether or not that return value is zero...if it is zero, it prints “All done!”
and breaks out of whatever control structure encloses the fragment. Of course, if a tired
programmer looks at this very quickly, it might seem as if ¢ were being compared to the return
value of getnext...you get the idea.

BD Software Page 141

November 1988 BDS C User’s Guide

7.3.2 Character Constantswithin Literal Strings

Often it is necessary to imbed non-standard characters inside literal strings. All ASCII characters
and most useful control characters (e.g. newline, carriage-return, formfeed, etc.) are easy enough
to represent in a string, but the more obscure control characters (and all 8-bit characters having
the high-order bit set) must be represented in the following form: a backslash (the *\" character)
followed by the octal form of the value of the character. While C allows the representation of
hexadecimal values by a special prefix notation (e.g., Ox1f) in general expressions, note that this
notation is not allowed for single-quoted character constants or within double-quoted literal
strings. Anytime the backslash-prefix notation is used the digits are presumed to be octal, and
therefore the first non-octal digit encountered will not be considered part of the value. As an
example of the confusion this can cause, consider the following statement:

printf("This is a test. Here is a bell: \08\n");

What actually is printed for output? If you think a bell (or beep) will sound, look again...the digit
‘8 is not legal in octal, so the compiler considers the sequence ‘\O' a complete octal constant
(having the value zero), and leaves the ‘8 aone to print out on the console. The result of the
above statement would be:

This is a test. Here is a bell: 8

and an invisible null would be “printed” immediately before the ‘8. The correct way to get the
desired effect is:

printf("This is a test. Here is a bell: \10\n");

7.3.3 The Precedence of Assignment Operators

Because there are so many binary operatorsin C, it is easy to confuse the relative precedence of
the different operators and get very incorrect results when explicit parenthesization is lacking. By
far the most common example involves assignment operators used in conjunction with other
binary expression operators. For example, the correct way to assign the return value of function
getc to the variable ¢, and then compare that value to the symbol CPMEOF, is as follows:

if ((c = getc(fp)) == EOF)
put s(" Found EOF\n");
el se
puts("No EOF yet...\n");

When the first line is mistakenly written as follows:
if (c = getc(fp) == EOF)

the effect is entirely different; because the precedence of the == operator is higher than that of
the = operator, the comparison for equality between the return value of getc and the symbol EOF
will be performed befor e the assignment to ¢, and thus c will end up with alogical value of either
0 or 1 depending on the result of the comparison. This, obviously, is not the desired effect. A rule
of thumb in these kinds of cases is: if an assignment expression is placed within a larger

Page 142 BD Software

BDS C User’s Guide Tutorials and Tips

expression involving other binary operators, isolate the assignment expression in parentheses or
it will probably not do what you want it to.

7.3.4 Array Subscripting

Arrays of length nin C have elements numbered from O to n-1. If you declare an array of length
n and attempt to reference an element with a subscript of value n, you'll actualy be referencing
data past the end of that array. This happens most often when a user is thinking in terms of the
BASIC language, where arrays of length x may have both an element number 0 and and element
number x. Note that in C, the most common for-loop construct neatly iterates through n items
numbered O through n-1 as follows:

for (i =0; i < n; i++)

and such loops are ideal for iterating through an array. If you really need to have an array
numbered 1 through n for n items, then you must declare the array to have one more item than
required, leaving the 0-th element unused.

7.3.5 How NOT To Usea Pointer

When a pointer variable is declared in a program, either externally or within a function, it is not
given a value automatically. A pointer is simply a 16-bit variable that is typicaly used to hold
the address of some other piece of data (to point to it), and must be initialized before being used,
just like any variable. The particular mistake | see most often involves assigning a value
indirectly through an uninitialized pointer; e.g, the declaration

char *foo;

would be later followed by a statement such as
*foo ='a

before foo is ever assigned any specific value, and unpredictable things would begin to happen.
What the assignment statement above says is “ place the character ‘a’ into memory at the location
whose address is specified by the value of variable foo.” If foo has never been initialized to
anything, then the ‘a character gets stored in some totally random location in memory. The
correct procedure here would have been to declare a buffer area, assign foo the address of that
area, and then begin assigning data indirectly through foo. For example, the following sequence
places the character ‘a at location buffer[0]:

char buffer[50], *foo;
foo = &buffer[0];

*foo = ' &
7.3.6 Functions Shouldn’t Return Pointersto Their Automatic Data
As soon as a function returns to its caller, storage that was local to that function (i.e., where all

declared local variables were stored) is de-allocated and made ready for use by the next called
function. A common mistake is to have some function (call it foo) create a piece of text in alocal

BD Software Page 143

November 1988 BDS C User’s Guide

buffer and return a pointer to that text... Immediately upon return from foo the text appears
intact, but later on in the course of the program (as the space in which the string resides is
allocated for other functions' local data frames), the string turns into garbage. There are two
viable solutions to this kind of problem: a) Have foo take a parameter telling it where to put the
string result (in which case the caller must provide a working buffer for foo), or b) Make the
destination string area external. Each method has its own advantages; passing a destination area
on each call allows many such returned strings to be saved separately in different areas of
memory, while an external destination area shortens the calling sequence by requiring one less
parameter to be passed. But whatever you do, do not expect any data that was locally allocated
by acalled function to remain valid after that function has returned!!

7.3.7 Understanding Formal Parameters

What is a“formal parameter”, anyway? A formal parameter is one of the arguments (if any) that
afunction expects to have passed to it whenever caled. All formal parameters are specified at the
beginning of a function’s definition in a parenthesized list immediately following the function
name. The declarations of a function’s formal parameters must be made immediately after the
parenthesized list, before the first open-curly brace that marks the beginning of the function
body. Any formal parameters not explicitly declared are assumed to be simple int values. If a
formal parameter is accidentally declared within the actual function body (inside the curly-
braces), the compiler will correctly diagnose a “redeclaration” error... since after the formal
declarations are passed and the compiler begins processing the function body without having
seen a declaration for a formal parameter, that formal parameter will have been automatically
declared asanint.

Whenever afunction call takes place, copies of the values of any formal parameters are passed to
the function. All such values are 16 bits in length with BDS C version 1. This means that
structures, arrays, or any data type not inherently 16 bits in size cannot be directly passed to a
function; pointers to such data types, though, can. Now...what happens when an array name is
passed to a function? There is a special magic mechanism for passing pointers to arrays that can
be confusing, because it is not intuitively obvious from the declaration syntax that a pointer is
actually being passed. For example, consider the following function:

i nt arraysun(array)
int array[3];

return array[0] + array[1l] + array[2];

}

While arraysum may appear to take an array of 3 elements as a formal parameter, in reality only
apointer to that array is passed. The declaration looks asif an entire array were being passed, but
if you change any element in the array here you'll be changing that element for the calling
program aso. Thereisonly one copy of the array in existence.

Another tricky point about formal array parameters is that you can actually treat the array hame
as a simple pointer variable within the called function (i.e., assign to it the address of another
array and voilal it then becomes the base of that other array...) while such things would not
work (and indeed, cause unpredictable results) when the array is an actual (non-formal-
parameter) array. The Kernighan & Ritchie book contains an entire chapter on the “duality” of

Page 144 BD Software

BDS C User’s Guide Tutorials and Tips

pointers and arrays; in this mechanism are the most powerful and the most confusing aspects of
C.

7.3.8 Dependence on Parameter Evaluation Order

Function calls should never be written such that varying the order of evaluation of the parameters
in asingle call could have an effect on the values of the parameters. An example of such a badly
written call is as follows:

X = 1;
f oobar (x++, x++, X);

The three values passed to the function foobar in this example would end up being 2, 1, 1, not 1,
2, 3 as might be expected. Most C compilers evaluate function parameters in rever se order,
including BDS C, so that they will end up on the stack in “forward” order and allow functions
like printf to process a variable number of parameters in an efficient manner. Thus, function
parameters should never have side effects which change the values of other parameters in the
same list, or in fact even in the same expression.

The lesson here is to be careful not to rely on the order of evaluation when dealing with severad
parametersin afunction call. If the order is critical and side effects cannot be avoided, then each
parameter should be made into a separate statement with values assigned to temporary variables,
so that the values can be placed in afunction call later when all ordered computation is complete.

7.3.9 Function CallsMUST Have Parentheses

If the name of afunction is used without an argument list, then the resulting expression evaluates

to the address of the named function...no cal is ever made to the function unless the name is
followed by a parenthesized list of parameters, even if the list is null. For example, the following

expression assigns the address of the end of the external data areato the variablei:

i = endext();

while the following expression assigns the address of the function endext to variablei, but only if
endext has been previously declared:

i = endext;

Note that if endext has not been previously declared when the latter expression is encountered,
then the compiler will correctly diagnose the “undeclared variable” endext. In the first example,
though, endext isimplicitly declared (in context) as a function returning an int.

7.4 Miscellaneous Notes

This section contains a collection of tips and clarifications about both the C language in general
and some of the BDS C Compiler’s quirks.

BD Software Page 145

November 1988 BDS C User’s Guide

* The “Constant expression” evaluation mechanism, as described in section 4.15,
indicates how BDS C simplifies certain expressions involving constant values at
compilation time. Because constant expressions are often used for calculating the
dimensions of arrays and structures, it was decided to have BDS C perform all constant
expression simplification in unsigned arithmetic mode. Because of this, certain
innocent-looking arithmetic expressions written in terms of constant values may yield
unexpected results when the unary minus (negation) operator is used. For example, the
Statement

printf("%l\n",-12/5);

» causes the value “13104” to be printed as the value of “-12/5". This is because the
division is performed in unsigned arithmetic mode; the “-12” is actually treated as a
value of 65524, which when divided by 5 yields 13104.

* Thekeywords begin and end may be substituted for left and right curly-braces ({ and }).
This feature is provided so that users not having the curly-brace characters on their
terminals can still use the compiler. Aestheticaly, at least in this hacker’s opinion, the
curly-braces produce listings far more readable than begin and end, and should be used
whenever possible.

» Error recovery during compiler operation may not appear especially intelligent in certain
cases. If either CC or CC2 spews out a set of error messages clustered around the same
line or set of lines, then only the first error message in the cluster should be believed.
Chances are that after that error isfixed, the rest will go away.

* Theline number given by CC2 in error reports is not always guaranteed to be accurate.
CC does some rearranging of code once in a while; for instance, the increment portion
of afor statement is physically moved down past the statement portion. Thus, if thereis
an error in the increment portion that CC is not equipped to detect, then CC2 will detect
it...and report the line number erroneously. Try not to mess up the increment portion of
for statements.

* Certain types of errors will cause the compiler to cease execution and immediately
return to the operating system without scanning the rest of the source. This occurs when,
for example, mismatched parentheses or a missing semicolon manage to confuse the
compiler to the point where it cannot recover. Instead of guessing about where the
proper punctuation should be, it abortsto let you fix the error quickly and try again.

* Note that the argc value passed to a C main function is, by convention, always positive,
and equal to the number of arguments specified plus one.

* Thefirst string in argv, argv[0], is undefined due to CP/M’s not providing the name of
the executing program to transient programs.

* Arguments on the command line are character stringsin all cases, not values. To convert

a numeric command line parameter into a value appropriate for assigning to a variable,
something like the atoi function must be used.

Page 146 BD Software

BDS C User’s Guide Tutorials and Tips

* A problem with the “bdos’ library function has come up that is rather tricky, since it is
system-dependent: A program that runs correctly under a normal Digital Research CP/M
system might not run under MP/M or SDOS (or who knows how many other systems) if
the bdos function is used. A typical symptom of this problem is that upon character
output, a character on the keyboard needs to be hit once in order to make each character
of output appear.

To understand the problem, we must first understand exactly how the CPU registers are
supposed to be set after an operating system BDOS call. Normal CP/M behavior (which
the library function bdos had always assumed) is for registers A and L to contain the
low-order byte of the return value, and for registers B and H to contain the high order
byte of a return value (which is zero if the return value is only one byte). The CP/M
interface guide explicitly statesthat “A ==L and B == H upon returnin all cases’, and |
figured that just in case CP/M 1.4 or some other system didn’t put the valuesin H and L
from B and A, I'd have the bdos function copy register A into register L and copy
register B into register H, to make sure the value is in HL (where the return value must
always be placed by a C library function.)

Not all systems actualy follow this convention, though. Under MP/M, H and L always
contain the correct value but B does not! So when B is copied into H, the wrong value
results. Therefore, the way to make bdos work under both CP/M 2.2 and MP/M was to
discontinue copying B and A into H and L, and just assume the value will always be
correctly left in HL by the system. This was done for v1.45, so at least CP/M and MP/M
are taken care of, but...

Under SDOS (and perhaps other systems), register A is sometimes the only register to
contain a meaningful return value. For example, upon return from a function 11 call
(interrogate console status), the B, H and L registers were all found to contain garbage.
So if no copying is done in this case, the return value never gets from A to L and the
result iswrong; but if B is copied into H along with A getting copied into L, theresult is
still wrong because B contains garbage. Evidently the only way to get function 11 to
work right under SDOS is to have the bdos function copy register A into L and zer o out
the H register before returning...but then many other system calls which return values in
H wouldn’'t work anymore. And that is the problem: You can please some systems all
the time, but not all systems all the time with only one standard bdos function.

The way | left bdos for v1.5 is so that it works with CP/M and MP/M (i.e., no register
copying is done at all...HL is assumed to contain the correct value). This, of course,
won’t work in all cases under SDOS and perhaps other systems...in those cases, you
need to either use the call and calla functions to perform the BDOS call, or create your
own assembly-coded version(s) of the bdos function (using CASM) to perform the
correct register manipulation sequences for your system. Note that it may take more
than one such function to cover all possible return value register configurations.

* A well-designed C program should always diagnose a command line error by displaying
the command line syntax to the user and aborting. Thisis generally known as a“Usage”
message; it reminds the user of what is expected on the command line and often saves
everyone who uses the program a lot of time. If there are command line options, they

BD Software Page 147

November 1988 BDS C User’s Guide

should be shown in square brackets. A good practice is to include detailed explanations
of all the options along with the sample command line.

» Although external initializations are not supported by the compiler, some convenience
functions have been provided to alow initialization of simple integer and character
arrays. To set any contiguous set of words to integer values, use the function initw. For
characters (single-byte integers in the range 0-255), but not strings, use initb. For
example, to ssmulate the UNIX C construct of

int foobar[10] = { 3,0,-2,-5,3,6,9,-23,-14,0 };

* you can first declare foobar normally by saying

i nt foobar[10];

¢ and then, in the main function, insert the statement

i nitw(foobar,"3,0,-2,-5,3,6,9,-23,-14,0");

» Thefollowing tidbits should be kept in mind when striving for optimum efficiency:

1

Page 148

Comments are stripped off a source file dynamically as the file is being read in
from disk; thus, there is no excuse (except maybe laziness) for not documenting
aprogram adequately.

The switch statement is most efficient when the switch variable (e.g. xx in
“switch (xx)...”) is declared as a char. Integer variables are often used to hold
character values in text processing applications involving file 1/0O; assigning
such a value to a character variable before large switch constructs could save
memory and speed up execution.

The casesin a switch statement are tested in the order of their appearance; thus,
the most common cases (or the ones requiring fastest response time) should
appear first.

For the fastest execution speed possible, CC should be given the —0 and —e xxxx
options for compilation. For the shortest possible code length, only the —e xxxx
option should be used with CC.

Logical expressions in C evaluate to a numerical value of O (if false) or 1 (if
true) whenever their value is actually needed, but may not evaluate to any value
at all when used in flow-of-control tests. This means that you can take
advantage of the numerical results of logical expressions in many situations.
Consider the following code fragment, whose purpose is to set the variable x to
lif a<b,ortoO0if a>=h:

if (a<b) x =1,
else x = 0;

The same operation can be written as

BD Software

BDS C User’s Guide Tutorials and Tips

10.

BD Software

X = (a < b);

This takes advantage of how the subexpression “(a < b)” evaluates to the
desired value automatically, and thus avoids the use of two separate assignment
expressions, their associated control structure, and the considerable overhead
that all entails.

A related opportunity for brevity comes up whenever any variable needs to be
tested for equality or inequality with zero; since any expression may be
considered logically “true” if it evaluates to a non-zero value, the “!=0" portion
of an expression such as“a!= 0" is practically redundant. Statements such as

if (a!l= ntf ("Ais non-zero");
or if (a==0) printf ("Ais zero");

may just as well be written as

Ea prin (on-zero");
|

i f) tf ("Aisn
if (ta) printf ("Ais zero");

and
Of course, such an abbreviation may not always be appropriate to a given
situation. If the variable in question is used as a counter of some sort, and is
expected to take on many different values, then saying “a!= 0" might be clearer
to the logic of the program. But in cases where the variable is used as a Boolean
flag, or where a value of zero is considered special in some sense, then the
shorter forms are clearer and may in fact lead to shorter object code in some
Ccases.

Page 149

November 1988 BDS C User’s Guide

Page 150 BD Software

BDS C User’s Guide Auxiliary Programs

Chapter 8

Auxiliary BDS C Package Programs

This chapter describes several of the larger utility programs included with the BDS C package:
the CASM assembly language preprocessor, the L2 linker, and the CMODEM
telecommuni cations package.

8.1 The CASM Assembly-language-to-CRL -Format Preprocessor
For BDSC

This section describes the “CASM” assembly language preprocessor system, supplied to allow
the combination of C functions with assembly language functions within final object (.COM)
files.?

CASM is a preprocessor that takes, as input, an assembly language source file of type “.CSM”
(mnemonic for C aSseMbly language) in a format very close to the standard assembly language
accepted by the standard CP/M ASM.COM assembler, and writes out an “.ASM” file as output.
This .ASM file must be assembled by ASM.COM, yielding a .HEX file, and this .HEX file is
finally converted into a.CRL file by using the CLOAD.COM utility.?3

CASM operates by automatically recognizing which assembly language instructions require
relocation parameters, and inserting the appropriate pseudo-operations and extra opcodes into the
“.ASM” output file so it properly assembles directly into CRL format. In addition, some
rudimentary logic checks are performed: doubly-defined and/or undefined |abels are detected and
reported, and similarly-named labels in different functions are ALLOWED and converted into
unique names so ASM won’'t complain.

The .CSM files prepared as input to CASM.COM must consist of individual assembly language
functions delimited by the FUNCTION and ENFUNC pseudo-ops (described below). Each
functions must conform to the calling convention and register allocation rules detailed in Chapter
2.

22. The means provided with pre-1.46 versions of BDS C for creating relocatable object modules (CRL files) from assembly language
programs was the macro package CMAC.LIB that operated in conjunction with Digital Research’s macro assembler
(MAC.COM). That system was inadequate for two reasons: @) MAC.COM, if not aready owned, cost about as much as the entire
BDS C package to purchase, and b) the macros in CMAC.LIB were difficult to use. This CASM procedure replaces the
CMAC.LIB method.

23. CASM restricts mnemonics in the source file to only 8080 operations recognized by ASM.COM. An aternative package named

ZCASM.COM, contributed to the C User’s Group and available to all members for a nominal media cost, accepts Z80 mnemonics
and works in conjunction with the Microsoft M80 assembler.

BD Software Page 151

November 1988 BDS C User’s Guide

8.1.1 Creating CASM.COM

CASM is supplied in source form only (as CASM.C) on the BDS C distribution disk. Before
compiling CASM.C to make an executable version, customize the beginning of the file by setting
the default library drive and/or user area definitions to conform to your system configuration.
Instructions for compilation and linkage of CASM are given in the comments at the head of the
file.

8.1.2 Command Line Options

—C Enables comment retention on both input and output. By default, CASM
strips off all comments from the input file when reading it in, and does
not put any comments into the assembly code added to form the fina
ASM file. If —c is specified, the original comments are preserved and
CASM adds its own comments to new sections of code.

—f Flags old CMAC.LIB macro library operators, to help users convert old
assembly language source files to the CSM format.

—0 name Calls the output file name.ASM. Normally, the output file is named by
tacking an .ASM extension onto the filename of the CSM input file.

The files making up the CASM package are as follows:
CASM.C Source file for CASM program.

CLOAD.C Replaces CP/M’s LOAD.COM, to be used for converting the .HEX
output of ASM.COM directly into .CRL format. This program properly
handles out-of-sequence .HEX data that would draw an “INVERTED
LOAD ADDRESS’ error from the LOAD.COM utility provided with
CP/M. Note that with the addition of CLOAD.C, it is no longer
necessary to enter an explicit SAVE comment to CP/M at the conclusion
of the CASM seguence, as was the case with most pre-v1.51 releases.

CASM.SUB Submit file for performing the entire conversion of a CSM file into CRL
format. For afile named FOO.CSM, you would type:

submt casm foo

ASM.COM (or MAC.COM)
Standard CP/M uitility, for assembling the output of CASM.

There are several pseudo-operations that CASM recognizes as specia control commands within
a .CSM file. Each pseudo-ops should be indented at least one character away from the left
margin, or else CASM will think it isalabel. Recognized pseudo-ops are as follows:

FUNCTION <name> Each function must begin with a FUNCTION pseudo-op, where <name>
is the name that will be used for the function in the .CRL file directory.
No other information should appear on this line. Note that there is no

Page 152 BD Software

BDS C User’s Guide Auxiliary Programs

need to specify a complete list of contained functions at the start of a
.CSM file, as was the case with the old CMAC.LIB method of CRL file
generation.

EXTERNAL <list> If afunction calls other C or assembly-coded functions, an EXTERNAL
pseudo-op naming these other functions must follow immediately after
the FUNCTION op. One or more names may appear in the list, and the
list may be spread over as many EXTERNAL lines as necessary. Only
function names may appear in EXTERNAL lines; data names (such as
“external” variables defined in C programs) cannot be placed in
“external” statements.

ENDFUNC

ENDFUNCTION This op (both forms are equivalent) must appear after the end of the code
for a particular function. The name of the function need not be given as
an operand. The three pseudo-ops just listed are the ONLY pseudo-ops
that need to appear among the assembly language instructions of a
“.CSM” file, and at no time do the assembly instruction themselves need
to be atered for relocation, as was the case with CMAC.LIB.

INCL UDE <filename>

INCLUDE “filename” Thiop causes the named file to be inserted at the current line of the
output file. If the filename is enclosed in angle brackets (i.e.,
<filename>) then adefault CP/M logical driveis presumed to contain the
named file (the specific default for your system may be customized by
changing the appropriate #define in CASM.C). If the nameisenclosed in
guotes, than the current drive is searched. Note that you'll usually want
to include the file BDS.LIB at the start of your .CSM file, so that names
of routines in the run-time package are recognized by CASM and not
interpreted as undefined local forward references...since CASM is a
one-pass preprocessor, that would cause it to generate undesired
relocation parameters for instructions having run-time package routine
names as operands. Note that the pseudo-op MACLIB is equivaent to
INCL UDE and may be used instead.

Theformat for a“.CSM” fileis asfollows:

BD Software Page 153

November 1988 BDS C User’s Guide

- Make sure to indent pseudo-ops!
; (Anything starting in column 1 is presumed to be alabel)

[

[

INCLUDE bds.lib

FUNCTION functionl

EXTERNAL needed funcl [,needed func?] [,...]]
code for functionl
ENDFUNC

FUNCTION function2

EXTERNAL needed funcl [,needed func?] [,...]]
code for function2
ENDFUNC

Additional notes and bugs:

1

If alabel appears on an instruction, it must begin in column 1 of the line. If alabel does
not begin in column 1, CASM will not recognize it as a label and relocation will not be
handled correctly.

Pseudo-ops must not begin in column one, or else they will be mistaken for labels.

Forward references to EQUated symbols in executable instructions are not allowed,
although forward references to relocatable symbols are OK. The reason for this is that
CASM is a one-pass preprocessor, and any time a previously unknown symbol is
encountered in an instruction, CASM assumes that symbol is relocatable and generates a
relocation parameter for the instruction.

When arel ocatable value needs to be specified in adw op, then it must be the only value
given in that particular DW statement, or else relocation will not be properly handled. In
other words, only one 16-bit relocatable item is allowed per dw statement.

Characters used in symbol names should be restricted to alphanumeric characters; the
dollar sign ($) is also alowed, but might lead to a conflict with labels generated by
CASM.

8.2 TheL2Linker

L2, and this documentation, was originaly written by Scott W. Layson for Mark
of the Unicorn, Inc. Thanks go to Scott and Mark of the Unicorn, Inc. for placing
L2 in the public domain and thus allowing all BDS C users access to this
extremely useful tool. L2 was then modified by David Kirkland, mainly for
integration with the CDB debugging package. Scott’s original documentation has
been modified by Leor Zolman to reflect the CDB-related extensions.

Page 154 BD Software

BDS C User’s Guide Auxiliary Programs

L2 isan aternative to CLINK for linking BDS C programs. A program linked with CLINK will
have a jump table at the beginning of each function; calls to other functions are made indirectly
through the table. L2 eliminates these jump tables, and adjusts indirect calls through them to go
directly to the target function. Besides making the code imperceptibly faster, this has two real
advantages: one, it makes the code smaller by 4% to 10% (the latter has been observed in a
program containing many small functions which do little besides call a few other functions), and
it allows SID to display the name of the target function of acall, ssmplifying debugging.

L2 seems to be complete enough to replace CLINK entirely. Its biggest advantage is that it's
written in C, so that if you need some feature it doesn’t have, you can just hack it in. However,
its user interface is somewhat different.

A typical command lineis

|2 foo bar -1 bletch grotz -wa

Given this command, L2 will load all the functions in FOO.CRL and BAR.CRL (the program
files). Then it will scan the libraries BLETCH.CRL, GROTZ.CRL, DEFF.CRL, and
DEFF2.CRL (in that order) for functions that have been referenced but not linked. If there
remain unsatisfied references, L2 will display a list of the needed functions and prompt for the
name of a CRL file to scan; it will repeat this process until all references are satisfied (just like
CLINK). Then it will write the resulting code to FOO.COM, display the link statistics, and write
asymbol table (with the link stats appended) to FOO.SY M.

Note the following differences in the option-specification mechanism between L2 and CLINK:

1. L2 option names have varying lengths, while CLINK options all have single-character
names.

2. When L2 options require arguments, a space must separate an option name and its
argument. With CLINK, the spaces are optional. For example, “-m fubar” may not be
written “-mfubar”.

3. L2 soptions may not be combined; “-1 -w”, for example, may not be abbreviated “-Iw”.
Here is a complete description of available command line options:

—f <funcs> Reserves enough table size for <funcs> functions. (<funcs> isin
decimal.) The default is200. If you often link programs with more than
200 functions, you may wish to change the default — it’s in setup() in
L2.C.

— CRL file names before the first “-I” on the command line will be treated
as program files; CRL files after the first “-I” are treated as libraries.
Subsequent “-I” s have no effect.

—m <name> <name> becomes the top-level function. This is the function initialy

called when the .COM file is run; by default, of course, it is “main”.
Note that, unlike with CLINK, the top-level function need not be the first

BD Software Page 155

November 1988 BDS C User’s Guide

function in the first CRL file; it can be anywhere. —m also works with
—ovl (see below).

—ovl <name><addr> An overlay segment will be built instead of a root segment; the overlay
will be linked to run at base address <addr> (entered in hex). <name> is
the name of the root segment for which the overlay is being built;
<name>.SYM, a symbol table produced with either L2 or CLINK, will
be read in *before* the CRL files, to allow overlay functions to call root
functions. The name of the top-level function in the overlay — i.e., the
one that gets invoked by a call to the overlay base address — is by
default not “main”, but rather <firstcrl>, the name of thefirst CRL filein
the L2 command line. The overlay segment is written to <firstcr|>.OVL.
(See example below.)

—org <addr> This option is used to produce a root segment with base address <addr>,
e.g., for use in generating code for ROM-ing. <addr> is entered in hex,
and is the starting address of the code, not of RAM; the default is, of
course, 0x100. (To link a program for a nonstandard CP/M, you need a
C.CCC, DEFF.CRL, and DEFF2.CRL which have been assembled for
that address. If you are running L2 on a nonstandard CP/M, you should
change the default origin in setup() to 0x4300.) If you are using this
option to generate code for ROM, be sure to use the “-t” option also (see
below).

— <addr> Works just like the CLINK “-t” option: sets the stack pointer to the
given address at the start of the run-time package. This option MUST
ALWAYS BE USED when “-org” is used to generate code for ROM.
IF“-t” isNOT used, then the first two instructions of the resulting COM
file will be:

I hld origin-100h+6
sphl

(where*®origin” isnormally 0x100 or 0x4300) while using “-t” causesthefirst two instructionsto
be:

I xi sp, <addr >
nop

—W A SID-compatible symbol table is written to <firstcr|>.SYM, where
<firstcrl> is the name of the first CRL file listed in the command line.
This table is normally produced in address order, not alphabetical order
like CLINK’s; see below for how to change this.

-wa A variation on —w. The link statistics, which are always displayed on
the console at the end of linking, are aso appended to the .SYM file. If
the resulting .SYM fileisread into SID, SID will complain by issuing its
typical verbose error message “?’, but then will work correctly. The big
advantage of putting the stats at the end of the .SYM file is that one can

Page 156 BD Software

BDS C User’s Guide Auxiliary Programs

subsequently look at that file to see exactly how long the code was and
where the external s started.

-Ws Another variation on —w. This one writes the symbol table to
<firstcr|>.SYM and the link statistics to <firstcrl>.LNK.

Because L2 is so large, it cannot aways link large programs in a single pass. If it runs out of
memory during linking, it will switch automatically to (very slow) two-pass mode. (If it says
“Module won't fit in memory at al”, you probably have a very large program file. Split it up or
make it alibrary. If thisdoesn’'t work, you don’t have enough memory to use L2.)

L2 isbuilt from the source files L2.C and CHARIO.C. A typical compilationis

cc 2. ¢ -e5500
cc chario.c

(followed by either)
clink 12 chario (or) 12 12 chario

If you want a shorter version of L2.COM, see the definitions of symbolic constants SHORTL2
and OVERLAY S immediately after the initial comments at the start of L2.C. These constants
may be changed to yield several shorter configurations of L2, depending on which features you
want to sacrifice.

8.3 The CMODEM Telecommunications Program

CMODEM is a communications program for transmitting files and connecting to other systems
or networks as an ASCII terminal. The file transmission modes allow sending/receiving either
binary or text filesin either MODEM?7 or straight-ASCII modes.

Author’s note: “CMODEM” is a cross between the original BDS TELNET
program, Ward Christensen’s MODEM program, its MODEM?7 derivative, and a
C version called XMODEM. It is also the result of taking the TELEDIT package
as distributed with previous versions of BDS C and removing the text editing
capabilities, since the RED package is now included for that purpose. %4

I nstallation

Both the STDIO.H and HARDWARE.H header files should be properly configured for the target
computer configuration before CMODEM is compiled.

The modes selected from the menu are:

24. The author wishes to thank Nigel Harrison for hiswork on the TELEDIT package

BD Software Page 157

November 1988 BDS C User’s Guide

T: Terminal mode —no text collection
CMODEM behaves like an ASCII terminal. Eight-bit characters are
sent and received; no parity bits are checked, inserted or removed.
To return to the selection menu the SPECIAL character is typed. The
SPECIAL character of <ctrl>shift uparrow was chosen because it is
unlikely to be struck accidentally. To change the SPECIAL character,
recompile it with the desired #define SPECIAL ...

X: terminal mode with teXt collection

Same as terminal mode above, except that any text characters received
on the communication link are saved in a text buffer. The tab, newline
and formfeed characters are also placed into the buffer; any other
characters are discarded. When the internal text buffer is within 1000
characters of being filled, the console bell (alarm) sounds on every 16th
character. When this happens the user should find a convenient time to
suspend communication with the remote station so that the accumulated
text can be saved (flushed) onto disk, as described below, before the
buffer fills up completely and datais lost.

G: toGgle echo mode (currently set to echo)
Should not be toggled if the user is communicating in full duplex mode
and receiving an echo from the remote station, or the user is in half
duplex mode. Use this option to talk to another person running
CMODEM, typicaly in between file transfers to inform the person of
the next file to be transmitted.

F: Flush text collection buffer to text collection file
Flushes the text collection buffer accumulated in text collection mode.
Does not close thefile.

U: select CP/M User area
For users who have user areas, others should ignore this command.

V: select CP/M logical driVe
Select any of the disk drives available. The drive selected becomes the

currently logged disk.

D: print Directory for current drive and user area
The current directory may be selected by using the U and V commands.

S: Send afile, MODEM protocol
Prompts for the name of the file to send, then waits for the receiver to
“synch up”.
The receiver must be using this program or one which uses the same
MODEM protocol.
Returns to menu after completion, successful or not.

Page 158 BD Software

BDS C User’s Guide Auxiliary Programs

R: Receive afile, MODEM protocol
Prompts for the name of the file to be received, then waits for the sender
to begin transmission. The sender must be using CMODEM or a
program that employs the same MODEM protocol.

Q: Quit Quits and returns to command level. If a text file has been accumulated
in X mode, the user is asked whether or not he wants it saved.

SPECIAL.: Sends the SPECIAL character to the communication line, should that
ever be necessary. The SPECIAL character is defined at compilation
time by a #define statement at the top of the CMODEM.C sourcefile.

BD Software Page 159

November 1988 BDS C User’s Guide

Page 160 BD Software

BDS C User’s Guide Auxiliary Libraries

Chapter 9

Auxiliary BDSC Libraries

This chapter describes several utility function libraries provided with the BDS C package.

9.1 BDS C v1.5 Compatibility Library

In order to compile programs written under earlier releases of BDS C (i.e., programs using the
old buffered 1/0 library) without requiring that the programs be modified to conform to the new
I/O library, the following two files have been provided:

BDSCIO.H
DEFF15.CRL

BDSCIO.H is the old standard header file (replace by STDIO.H), and DEFF15.CRL is the
v1.50a DEFF.CRL file containing the compiled object code for the C-coded portions of the
v1.50a library (the DEFF2.CRL functions are functionally equivalent, so the old version has not
been provided.)

To compile and link a v1.50a source program “TEST.C” with the v1.6 compiler package, place

the two files named above into the current directory with the source file and use the following
procedure (in this example, we' re compiling a source file named test.c):

cc test.c
clink test -f deff15

9.2 A BCD Function Package For BDSC

Copyright 1983, 1986
By Robert Ward

9.2.1 Description of Files

The bcd floating point package consists of thesefiles:

BD Software Page 161

November 1988

MCONFIG.H

BCD1.CSM
BCD2.CSM

BMATH.C

DEMO1.C
TSTINV.C
LMATH.C

BCD.CRL

MATH.DOC
MATH.TXT

BDS C User’s Guide

Thisisa“header” file which serves the same function for al c files. Any
time the package is changed, this file must be examined and modified as
described in the section on package configuration.

These are the source files for the assembly portion of the package. The
first is the single function FH. All the real work is done in FH. The
second file is the interface routines which provide the different calls to
FH. Thisfile includes source for FPADD, FPSUB, etc., but each of these
functions in turn calls FH. BCD2 also contains Icnst, an encapsulating
function which “knows’ several constants useful to the transcendental
functions.

Source code for all functions and routines written in c. Simple functions
(abs, neg, assign) are included here as are input and output formatting
functions.

Source code for demonstration programs. A COM file is provided for
DEMOL1.

The complete library of float functions in relocatable form, ready to be
linked to an application program. This file was compiled with precision
set at 14. You may make an alternate version with more or less
precision by following the instructions in the “configuration” section.

This documentation in machine readable form. The first is in a form
compatible with the C Users Group formatter NRO. The second is the
formatted output from NRO. More information on NRO is available
through the C Users' Group.

9.2.2 Data Representation

In this package numbers are represented by a normalized fraction of PREC digits (where PREC
may be adjusted by the user) stored as packed binary-coded decimal, an exponent in excess 64
notation and a sign bit. Each number requires PREC/2 + 1 bytes of storage. The fraction will be
stored in the low address PREC/2 bytes, the exponent as the high order seven bits of the high
address byte. The sign is stored as the least significant bit of the high address byte.

The fraction is stored with the least significant two digits in the low address byte. Within each
byte of the fraction the least significant digit is in the right nibble. Thus with six digits of
precision the number 1.23456e2 would be stored thus:

Page 162

BD Software

BDS C User’s Guide Auxiliary Libraries

R +
n | 5 6
. +
ntl | 3 4
e +
n+2 | 1 2
R +
n+3 | 1000010 O | <-- sign bit
. +
N
exponent

Under BDS C, space for such numbers may be declared simply as an array of char:
char nunber[PREC/ 2 +1];

Because the fractions are maintained in normalized form, the smallest number that can be
represented is 1.0 e-64, regardless of the precision available. The largest number is a normalized
fraction of al ninesraised to the 63th power of 10. For twelve digits of precision thisis:

9. 99999999999 e 63

Only positive zeros are alowed; zero always has the exponent —1 (7E). Thus you should think of
zero as always being normalized to .0. Several numbers and their hex representation in RAM are
given below.

1.0 00 00 00 00 OO 10 80

0.1-- 00 00 00 00 OO0 10 7E

normal 0.0 -- 00 00 00 00 OO0 00 7E
-.1 -- 00 00 00 00 OO 10 7F

01 - 00 00 00 00 OO 10 7D

9.2.3 Testing For Zero

Since the normalized fractions are never zero in the most significant position unless the entire
number is zero, the quickest way to test for num for zero is:

if (!'nun{PREC/ 2-1]) printf("\nNumis zero");

9.2.4 Rounding and Accuracy

Accuracy and predictable rounding have been primary design objectives during the creation of
this package. All single computations should produce results accurate to one ulp (afive in the
digit just to the right of the least significant digit). Thus the result of a single computation is
alwayswithin 5* 10~ (x-PREC) of being exact (where x is the exponent of the result) unless an
error condition has occurred. To avoid loss of accuracy in the rightmost significant digits during
divide, add and subtract operations, results with at least PREC + 2 digits are computed and
THEN rounded. Rounding is always delayed until all other steps in the computation have been
completed. Multiply uses all PREC digits of both operands in forming its result, maintaining all
resulting digits until the resulting fraction has been normalized and rounded. The primitive
functions “round up”, the kind of rounding most persons consider “natural”.

BD Software Page 163

November 1988 BDS C User’s Guide

In addition to being rounded by the arithmetic functions, results will be rounded by printf if the
precision specified is less than that available in the bcd number. This particular rounding may be
disabled by changing three lines of the function _spr. The lines appear near the labels doe and
dof. There are more complete instructions there.

9.2.5 Error Handling

Overflow, underflow and divide by zero errors are detectable through status flags maintained by
fpadd, fpdiv, fpmult and fpdiv. Testing for errors is the programmer’s responsibility. The
program demol illustrates an approach using errm(). The programmer may construct more
sophisticated mechanisms using fstat and fpstr. Error status is cleared when the status is checked
by fstat, but not if checked by fpstr.

None of the routines validate inputs; they assume they have been given valid bcd numbers.
Fprint is particularly sensitive to invalid data.

Underflow and Overflow always result in the least and greatest representable value respectively.
The substituted result will always match the exact result in sign. Divide by zero similarly
produces the greatest representable value.

The location ERRF in BCD2.CSM s used to store error status. Thus, this location’s value will
change during execution even though it is within the code block. Fstat and related functions
locate ERRF by “dead reckoning” — they are hardwired with an offset from the entry point to
FH. Any changes to the first few instructions of FH must be accompanied by appropriate
adjustments to the status functions in BCD1.CSM. BCD2.CSM generates an error message
during assembly as a reminder. Y ou needn’t attempt to correct the error (the code generated is
correct), just remember to make the necessary adjustments.

9.2.6 TheReturn Values

All arithmetic functions in this package take pointers as their input arguments and return a
pointer to their result. This allows the programmer to treat each function as if its value were the
value of its result, at least when combining it with other functions. This allows nesting of
computations for an effect similar to polish notation. For example, 2 + 4* a* c¢ could be written
thus:

f padd(
fpmul t(
fpmult(a,c,result),
atof (tenp, "4"),result),
atof (tenp, "2"),result);

This arrangement calls for a programming style very similar to that used in three address
assembly languages. In particular you will often find long sequences of calculations referring to
the same “scratch pad” variable, e.g. result in the sequence above.

Page 164 BD Software

BDS C User’s Guide Auxiliary Libraries

9.2.7 Transportability

Certain practices in drafting code will enhance the ease with which programs may be transported
to other compilers. The primary concern isto somehow “flag” all floating point data structures so
that they may be easily redefined under the new compiler (we will assume you are porting up to a
machine with full C).

The parameterized #define preprocessor directive allows a *poorman’ s typedef” which not only
enhances portability, but also improves readability. We suggest you include these definitions:

#defi ne FLOAT(nane) char name[PREC/ 2 + 1]

Pointers need to be provided separately, e.g.:

#defi ne FLTPT(nane) char *nane

With these defines, one would declare space for a number and for a pointer to a number like this:

FLOAT(nunber) ;
FLTPT(poi nter);

To transport the resulting code to a compiler with built in floats, the declarations may be
corrected by changing the defines to:

#defi ne FLOAT(nane) float nane
#define FLTPT(pointer) float *pointer

If data types have been declared consistently, using this technique, then all that remains is to
create a set of functions (under the new compiler) which look like those in this package. The new
fpadd, for instance, would look like this:

float *fpadd(op, op2, ans)
float *op, *op2, *ans;
{

*ans = *op + *op2
return ans,

}

9.2.8 Configuration

Y ou should be warned that ERRF in the function FH is a magic location. If any code changes are
made preceding the appearance of ERRF (changes which would affect its location relative to the
function entry point) then the appropriate equates must be changed in BCD1.CSM. See the
section on Error Handling for more information.

BD Software Page 165

November 1988 BDS C User’s Guide

9.2.9 Changing Precision

This is a simple change, so long as your target precision is 4-20 digits. You need to change the
PREC equate in BCD1.CSM, BCD2.CSM and the PREC define in MCONFIG.H. Then
reassemble the .csm files, recompile math.c and build a new CRL file as detailed below. C
programs using the math package will also need to be recompiled, so the change in
MCONFIG.H can be reflected in their CRL image.

9.2.10 Rebuilding BCD.CRL

1. Compile BMATH using

cc bmath

2. ProcessBCD1.CSM and BCD2.CSM following the instructions supplied with CASM.

3. You should now have new versions of BMATH.CRL, BCD1.CRL and BCD2.CRL, 4l
that remains is to merge them into a single relocatable library. Begin by copying
BMATH.CRL to BCD.CRL, thereby creating the base of your new library.

4. Using clib, open BCD, BCD1 and BCD2 and transfer al the filesin BCD1 and BCD2,
one at atime, to BCD.

5. List the contents of BCD. In particular, check that each of the functions you meant to
add to it actually appears. Be certain to close BCD before exiting clib or your work will
not be recorded on the disk.

9.2.11 Linkingtothe BCD Functions

We have deliberately avoided the use of external data in order to make the package’ s operation
more transparent to the user. The demonstration programs are good illustrations of the coding
requirements. These must be the first code lines of any program using the package:

#i ncl ude "stdio. h"
#i ncl ude "nctonfig. h"

The math package has no other impact on the compilation process. When you link you must use
this form (to force the loading of the bcd versions of printf and scanf):

clink program bcd <other files and options>

For example, demol is produced by:

cc denpl
clink denmpl bcd

Page 166 BD Software

BDS C User’s Guide Auxiliary Libraries

9.2.12 BCD Package Function Summary:

int abs(num)
int num; Returns the absolute value of the integer num. Included because some
of the bcd functions requireit.

char *assign(dest, sour ce)
char *dest, *source; Copies the floating point number * source to * dest.

char *atof(result, string)

char *result, *string; Accepts a wide variety of numeric representations in *string and
converts them to a floating point number stored at *result. Returns
pointer result. The representation at * string must be null terminated.
Roughly equivalent to a call to scanf with a %f format string, but easier
to use (and somewhat less expensive). MAXLINE in BMATH.C sets the
upper length of the string atof will scan. MAXLINE may be made
arbitrarily large, but larger values will normally just let bugs hide longer.

char *errm() Returns a pointer to an appropriate error message if any error flags have
been set since the last call to errm. The error message is a null-
terminated string of the following form:

<type> {<type>} ERROR

wher e <type> isone or mor e of the following:

Dz -- Attenpt to divide by zero
U -- Exponent underfl ow
o -- Exponent overfl ow

Errm checkserror statusflags through afstat call, thusit also clearsthe flags, implying that if the
program needs access to error status it should first do an fpstr call and then call errm to print
war ningsfor the user.

char *exp(x,y,result)
char *x,*y,*result; Computes x"y for floating point x and y. Stores answer at *result,
returns result. Neither x nor y may point at result. Usesthe relation:
x"y = lginv(y*log(x))
SeeIninv for comments about accuracy.

char *fneg(num,out)
char *num,*out; Performs the operation

*out = *num* (-1)
by manipulating the sign bit of *out.

char *fpabs(num,result)

BD Software Page 167

November 1988 BDS C User’s Guide

char *num,*result; Constructs the absolute value of *num at *result. Works correctly if num
== result, allowing the call:

abs(num nun

to change num to its absolute value. Returnsa pointer to result.

char *fpadd(opl, op2, result)

char *opl, *op2, *result;
Expects floating point numbers in strings *opl and *op2. Inserts the
sum of *opl and *op2 into the string space at result (result MUST point
to available space). Returnsthe pointer result. Performs the operation:

*result = *opl + *op2

On underflow sets *result to the smallest representable value with the same sign as the actual
result. On overflow, setsresult to the largest representable value with the same sign asthe actual
result. When the result has more than PREC digits of precision, it isrounded at the right as
described in the section on rounding.

All arguments ar e copied to wor kspace within the function, allowing the same variable to appear
as both operands or as an operand and the result. You are guaranteed that the operands will be
copied beforethe value at result is changed. Thus

f padd(op, op, op)

performsthe implicit assgnment *op = 2 * (*op). More useful, running totals may be computed
using theform:

f padd(next, subtotal, subtotal)

int fpcmp(opl, op2)
char *opl, *op2; Compares the absolute value of the floating point number * op2 to that of
the floating point number *opl. Returns:

1if opl < op2
O0if opl = op2
-1 if opl > op

char *fpdiv(dividend, divisor, quotient)
char *dividend, *divisor, *quotient;
Performs the operation:

*quotient = *dividend / *divisor

Similar in behavior to fpadd (see). Returns the pointer to quotient asits value. Setsthe divide by
zero flag and returns the maximum representable value if *divisor==0. Responds to overflow
and underflow conditions in same fashion as does fpadd. Always computes PREC + 2 digits
internally.Allowing for a possible lead zero, this guaranteesPREC + 1 meaningful digits,
yielding enough information for predictable rounding to PREC digits.

Page 168 BD Software

BDS C User’s Guide Auxiliary Libraries

char *fpmult(opl, op2, product)
char *opl, *op2, *product;
Performs the operation:

*product = *opl * *op2

Similar in behavior to fpadd(see). Returns the pointer product as its value. Sets the overflow or
under flowflags as appropriate. MaintainsPREC + 2 digitsinternally,guaranteeingPREC
meaningful digits after rounding.

int fpstr() Identical to fstat except it does not clear the current error flags. (See fstat
for details.)

char *fpsub(opl, op2, result)

char *opl, *op2, *result;
Identical to fpadd except that the sign of FH’s internal copy of op2 is
changed before the operation proceeds. Performs:

*result = *opl - *op2
Affectsunderflow and overflow flags as described for fpadd. Returnsthe pointer result.

char *frnd(num, pos, result)

char *num, *result;

int pos; Rounds *num so that the result has pos digits of rounded fractional
information. For example:

at of (opl, "123. 555555555") ;
frnd(opil, 4, opl);

will produce 123.555600000 in *opl.

If poslies outside the precision of therepresentation, thefunction triesto behave intelligently. If
posisto theright of therightmost significant digit, *result will equal *num. If posisto the left of
the leftmost significant digit, *result will be zero.

Performs correctly if result == num.

WARNING!! Do not confuse this with the function fprnd which is used internally by printf. For
detailson fprnd, seethecodein BMATH.C.

int fscmp(num1, num2)
char *numl, *num2; Compareshe floating point numbers *numl and *num2, returning an
integer indicating the following relations:

1if numl < nun®
Oif numl = nun®
-1 if nunml > nun?

Thisisthe signed version of fpcmp (see).

int fstat() Returns an integer whose lower byte contains the current error flags.
Clearsthe flagsin the process. The error assignments are:

BD Software Page 169

November 1988 BDS C User’s Guide

bit 2: exponent underfl ow
bit 1. exponent overflow
bit 0: divide by zero

int ftoi(num)

char *num; Converts the floating point number *num to an integer and returns the
resulting integer. On overflow, returns the least significant sixteen bits
of the true value. Always truncates fractional portions (as opposed to
rounding prior to conversion). Overflow errors are not detected.

char *ftrunc(num,result)
char *num,*result; Constructs a number in result which represents only the whole number
portion of num. Returns resullt.

char *itof(result, source)

char *result;

int source; Converts the integer source to floating point representation and stores at
*result. Returns result.

char **lcnst() Does nothing more than return a pointer to atable of constants. To print

pi to precision places, usethis:

char **const;
const = lcnst();
printf("\n%", const[17]);

Theother constants and their relative positions:

const[0] = log(2)
for i=1to 7
const[i] = log(1+(107(-i)))
const[8] =0
const[9] = 2/1n(10)
const[10]= 1
const[11]= 5
const[12] = 10
const[13] = 20
const[14] = 1 n(10)
const[15]= 2
const[16] = | og(e)
const[17] = pi

char *Iginv(x,result)

char *x,*result; Constructs the common antilog of x in result (result = 10°x). With 14
digits of precision, accurate to 12 places. May never terminate if true
result would be larger or smaller than the largest or smallest
representable values.

char *In(x, result)
char *x, *result; Computeghe natural log of the absolute value of x. Stores value in
*result, returns result. Usesthe relation:

In(x) = 1n(10)*l og(x)

Page 170 BD Software

BDS C User’s Guide Auxiliary Libraries

With fourteen digits of precision, twelvearereliable.

char *Ininv(x,result)

char *x,*result; Computes*x where e is Napier's constant, 2.7182818... Returns a
pointer to result, where the answer is stored. Both x and result are
assumed to be floating point numbers. X must point to a different space
than result.
WARNING!!! If e’x > MAX where MAX is the largest representable
number then the routine may never finish.
This function uses the relation

ex = lginv(log(e)*x)
With fourteen digits of precision, twelve arereliable.

char *log(x,result)
char *x,*result; Computes the common (base 10) logarithm of x. Puts value in *resullt,
returns result. With fourteen digits of precision, 12 arereliable.

int mag(x)
char *x; Returns an integer corresponding to the magnitude (exponent) of the
floating point number Xx.

int printf(format, arglist)

int sprintf(string,format,arglist)

int fprintf(stream,format,arglist)
Versions of the standard formatted output function which support
f,F,eE,qQ,G, formats in addition to those explained elsewhere. See the
demonstration programs for examples. In general, %f formats bcd
numbers as

ddd. pppp

where ddd isthewhole portion of the number and thereare precision digitsp.
% e formats bcd numbers as

d. ppppe+xx

where there is always one digit d before the decimal point and precision digits p after it. The
exponent will always be printed with a sign and two digits.

% g causes the shortest representation (e or f) to be used and trailing zeros are suppressed. The
upper case forms of each merely cause the ein the exponential form to be printed upper case.

char *_restlg(x,result)
char *x,*result; This function computes the common log of x for restricted values of x
such that 0 < x < 10. With fourteen digits of precision, 12 arereliable.

char *scale(num, k, result)

char *num, *result;
int k; Performs the operation:

BD Software Page 171

November 1988 BDS C User’s Guide

*result = *num * 1. 0ek

by manipulatingthe exponent portionof *num. Does NOT check for out of rangeerrors.
Performs correctly when called with num == result.

int scanf(format, arglist)

int sscanf(string,format,ar glist)

int fscanf(stream,for mat,ar glist)
Versions of the standard formatted input routine with %f,%g,and %e
conversion specifications added. In these routines %f,%g, and %e are
equivalent.
Returns the number of assignments made. Acceptable formsinclude:

n (where n is an arbitrarily
long string of digits)

+n

+n.n

+.n

.n

-n

-n.n

-.n

f ex (where 64>x>0 and f is one
of the fornms above)

fe-x

f e+x

f Ex

f E+x

fE-x

Also acceptablearethe above formswith leading blanks. Theremay NOT be any blanks
embedded in the number.

char *zfl(num,pos)

char *num;

int pos, Used internally by frnd to zero all digits right of the pos'th in the
mantissa of *num. Does nothing if called with pos <0 or pos > PREC —
1. Returns num, but unlike other functions it modifies the input * num.

9.3 A Long Integer Package for BDS-C
Rob Shostak
August, 1982
9.3.1 Introduction
This package adds long (32-bit) signed integer capability to BDS C much in the same spirit as
Bob Mathias's floating point package. Addition, subtraction, multiplication, division, and

modulus routines are provided as well as comparison, assignment, and various kinds of
conversion.

Page 172 BD Software

BDS C User’s Guide Auxiliary Libraries

Each long integer is stored as an array of four characters. A long integer x is thus declared by:
char x[4];

The internal representation istwo’s complement form, with the sign (most significant) byte as the
first byte of the array. For most purposes, however, you needn’t be concerned with the internal
representation.

Most of the routines that operate on longs take three arguments, the first of which pointsto where
the result is to be stored, and the other two of which give the operands. For example, given longs
X, Y, and z (all declared as char[4]),

| add(z, x, y)

computes the sum of x and y and stores it into z, which isreturned as the value of the call. Note
that the result argument may legitimately be the same as one (or both) of the operand arguments
(for instance, ladd(x,x,x) does “the right thing™).

The package is written partly in C and partly (for speed and compactness) in 8080 assembly
language. To useit, smply link LONG.CRL into your program. A description is given below
for each routine.

itol(l,)
char 1[4];
inti;

Stores the long representation of the 16-bit
integer i into |, and returns|.

atol(l,s)
char 1[4];
char *s;

Stores the long representation of the Ascii

string sinto |, and returns|.

The general form of sisastring of decimal digits,
possibly preceded by a minus sign, and terminated
by any non-digit.

Itoa(s,l)
char *s;
char I[4];

Stores the Ascii representation of long | into
string s, and returns s. The representation
consists of a null-terminated string of Ascii
digits preceded by aminus sign if

| is negative. smust be large enough to receive
the conversion.

BD Software Page 173

November 1988

ladd(r,op1,0p2)
char r[4];

Stores the sum of longs opl and op2 intor,
and returnsr.
opl or op2 may be used for r.

Isub(r,opl,0p2)
char r[4];
char op1[4],o0p2[4];

Similar to ladd, but computes opl — op2.

Imul(r,op1,0p2)
char r[4];
char op1[4],0p2[4];

Similar to ladd, but computes opl * op2.

Idiv(r, opl, op2)
char r[4];
char op1[4], op2[4];

Similar to ladd but computes the integer quotient
opl/op2. If op2iszero, zero is computed as the
result.

Imod(r, opl, op2)
char r[4];
char op1[4], op2[4];

Similar to ladd but computes opl mod op2. If op2
IS zero, zero is computed as the result.

Icomp(opl,0p2)
char op1[4], op2[4];

Compares longs opl and op2, and returns one of
(the ordinary integers) 1, 0, —1, depending on
whether (opl > op2), (opl == op2), or (opl < op2),
respectively.

|assign(dest,source)
char source[4],dest[4];

Assigns long source to long dest, and returns pointer to dest.

[tou(l)
char I[4];

Convertslong | to unsigned (by truncation).

Page 174

BDS C User’s Guide

BD Software

BDS C User’s Guide Auxiliary Libraries

utol (I,u)
char 1[4];
unsigned u;

Stores the long representation of unsigned uinto | and returnsl.
9.3.2 Implementation Details

Most of the work in the routines above is done by a single 8080 assembly-language function
called long, the source for which is found in the file LONG.CSM (available from the C User’s
Group). The remainder of the package resides in LONG.C. Note that most of the primitives
described above simply call long, passing it a function code (that tells it what operation is to be
performed) together with the arguments to be manipulated.

The library object file DEFF2.CRL contains the workhorse function long, the source for which is
in DEFF2D.CSM. The source file LONG.C needs to be compiled, yielding LONG.CRL. When
linking programs that use the long integer package, the long library should be included on the
linker command line.

BD Software Page 175

November 1988 BDS C User’s Guide

Page 176 BD Software

BDS C User’s Guide Overlay Management

Appendix A

Dynamic Overlaysin C Programs

In order to allow C programs to be longer than physica memory without resorting to the exec
and execl! library functions (which may indeed get the job done, but resemble “chain” operations

more than true segmentation tools), a set of capabilities has been built into the CLINK program
to make program segmentation possible. The general ideais to have one copy of aroot segment
always remain in memory (at the base of the TPA) containing the C run-time package, the
“main” C function, and any other functions that more than one overlay segment might need. The
root segment controls the loading of overlay segments in higher memory, and each overlay
segment, when loaded into memory somewhere above the root segment, can take advantage of

run-time package entry points within the root segment as well as function entry points in any
lower-level overlay segments (aswell as the root segment).

Normally (i.e., when overlays are not being used), the run-time environment of an executing C
program looks something like this:

| ow menmory: base+100h: C.CCC run-time utility package (csiz bytes)

ramtcsi z: start of program code
... (program code)
xxxx-1: end of program code

XXXx: external variable area (y bytes |ong)
(external data)

xxXxx+y: free nenory,
avai l abl e for
st or age
al l ocation

????: as low as the machine stack ever gets
| ocal data, function paraneters,

machi ne stack: i nternedi ate expression results,
etc. etc.
hi gh nenory: bdos: nmachine stack top (grows down)
Menmory Map 1

Note that xxxx is the first location following the program code and y is the amount of memory
needed for external variables.

To incorporate overlays, it must first be decided just where the swapped-in overlay code is to
reside in memory. One possibility is to locate the overlay swapping area between the end of

BD Software Page 177

November 1988

BDS C User’s Guide

root segment code and the start of the external data area. Here is the modified memory map,
accommodating this method of handling overlays:

| ow menory base+100h: C.CCC run-time package (csiz bytes)
ramtcsi z: start of root segnent code
... (root segnent code)
zzzz-1: end of root segment code
zzzz: start of overlay area
(overl ay area)
xxxx-1: end of overlay area
xxxX: external variable area (y bytes |ong)
(external data)
xxxx+y: free nenory,
avai |l abl e for
st or age
al | ocati on
???7?. as low as the machi ne stack ever gets

| ocal data, function paraneters,
machi ne st ack: i nternedi ate expression results,
etc. etc.
hi gh nenory: bdos machi ne stack top (grows down)
Menmory Map 2

Note that zzzz is where overlay segments get swapped in, guaranteed that the longest segment
doesn’t reach xxxx.

It is aso possible (but not as secure) to put the overlay area after theexternal data area. The
memory map for this alternative configuration is as follows:

| ow menory: base+100h: C.CCC run-time utility package (csiz bytes)
ramtcsi z: start of root segnent code
... (root segnent code)
xxxx-1: end of root segnent code
XXxx: external variable area (y bytes |ong)
(external data)

xxxx+y-1: end of external data area

xxxx+y: start of overlay area (ssss bytes |ong)

XXXX+y+SSSs- 1:

XXXX+Y+SSSS:

???7?:

(overlay area)
end of overlay area

<unused menory>

as |low as the nmachi ne stack ever gets

| ocal data, function paraneters,
machi ne st ack: i nternedi ate expression results,
etc. etc.
hi gh nenory: bdos machi ne stack top (grows down)
Menmory Map 3

Note that the storage allocation functions (alloc and sbrk) always start obtaining memory from
the area immediately following the end of the externals. If you plan to use the storage allocation

Page 178 BD Software

BDS C User’s Guide Overlay Management

functions (alloc, free, sbrk, rsvstk) in your program under this scheme, remember to initially call
the sbrk function with argument ssss, the size of the overlay area. Otherwise the storage allocator
will begin to allocate memory within the overlay area.

In an attempt to limit diversion for the remainder of this document, | will assume that the original
overlay scheme is being implemented as shown in Memory Map 2.

OK, with the generalities out of the way, let me say something about just how to create “root”
segments and “overlay” segments with BDS C. First of all, we would like all functions defined
within the root segment to be accessible by the overlay segment(s)...this is accomplished by
causing CLINK to write out a symbol table file containing all function addresses to disk when
the root segment is linked. The —w option to CLINK will do the trick; this symbol table will be
used later when linking the swap-able segments.

When linking the root segment, use the —e option to set the external data area location. Keep in
mind that there must be enough room below? the externals to hold the largest overlay segment at
run time. If the —e option is omitted, CLINK will assume the external data starts immediately
after the end of the root segment code and conflict with the overlay area (thus, —e may only be
omitted when using the second overlay scheme as shown in Memory Map 3).

Within the code of the root segment, then, a swap-able segment is loaded into memory from disk
by saying:

swapi n(nane, addr); /* read in a segnent; don't run it */

where addr is the location following the last byte of root segment code. Y ou can find this value
by linking the root once without giving the —e option and reading the —s statistics written to the
console after the linkage.

NOTE: Because CP/M is a sector-oriented operating system, the length of the file loaded into
memory by swapin is aways an integral number of 128-byte sectors long. That means that you
should always allow for alittle extra space at the end of the overlay segment memory area, up to
127 bytes more than the length of the actual overlay segment code (as displayed by the CLINK
statistics summary).

To actually execute code within the overlay segment, you have to call the appropriate memory
address indirectly using a pointer-to-function variable.

Here is an example. We'll declare a pointer-to-function variable called ptrfn, swap in a segment
named ovl1 at |ocation 3000h, and call the segment. The sequence would look like this:

int (*ptrfn)(); /* can be whatever type you |like */
ptrfn = 0x3000;

if'(smapin("ovll",0x3000) = ERROR) /* check for load error */
(*ptrfn)(args...); [/* if none, call the segnent */

25. I’'m using the term “below” in the sense that low memory is “below” high memory; graphically, at least in the preceding memory
maps, “below” means toward the top of the page.

BD Software Page 179

November 1988 BDS C User’s Guide

Note that the overlay code might not return any value after being called, but the pointer-to-
function must be declared with SOME kind of type. Useint if nothing else comes to mind. When
a segment is invoked, as above, control passes to the segment’s “main” function. There is no
reason at al to require parameters to be of the “argc” and “argv” form; there is nothing special
about a“main” function other than the property it has of getting called first. The “main” function
within the swapped-in segment is the only entry point allowed for the segment.

A simple swapin function is given in the standard library. It can be expanded to detect an
attempted load over the external data area by comparing the last address loaded with the contents
of location 0115h...if you've never done any low-level hackery, you get the value of the 16-bit
address at location 0115h by using indirection on a pointer-to-integer (or —unsigned.) Note that
location 0115h always contains a pointer to the start of the external data area.

Now we know how to do everything except actually create an overlay segment. OK, an overlay
segment is basically just a normal C program, having a “main” function just like the root
segment, except that the C.CCC run-time utility package is NOT tacked on to the front of an
overlay segment (the C.CCC run-time package in the root segment will be shared by everyone.)
The other difference between an overlay segment and the root segment is the load address; while
the root segment always loads at the base of the TPA, an overlay segment may be made to load
anywhere. Once you’'ve compiled the overlay segment, you give a specia form of the CLINK
command to link it:

A>clink segnent-nane -v -1 xxxx -y synbol-file [-s ...] <cr>

segment-name is the name of the CRL file containing the segment, —v indicates to CLINK that an
overlay segment is to be created (so that C.CCC is not attached), and - xxxx (letter ell followed
by a hex address) indicates the load address for the segment. The —y option yanks in the symbol
file created by the root segment. If thisis omitted, then CLINK yanks in fresh copies of functions
like “PRINTF” and “FOPEN", etc., even if they have already been linked into the root segment.
By reading in the symbol table from the root segment, it is insured that any routines already
linked in the root will be made available to the overlay segment. The root segment, though,
cannot know about functions belonging to overlay segments through the use of a symbol table.
That would require some kind of mutually referential linking system beyond the scope of this
package. Oh well.

When linking an overlay segment, you might also specify —s to generate a statistics map on the
console, and —w to write out an augmented symbol table containing not only the symbols read in
from the root segment’s symbol file, but also the swap-able segment’s own symbols. This new
symbol file may then be used on another level of swapping, should that be desired.

Time for an example: Let’'s say you've got a program ROOT.C, which will swap in and execute
SEGL1.C and then overlay SEG1.C with SEG2.C. ROOT.COM loads at 100h and ends, say,
before 3000h. We'll load in the segments at 3000h, and set the base of the external data area to
5000h (this assumes neither segment is longer than 2000h.)

The linkage of ROOT would be:

A>clink root -e 5000 -w -s <cr>

Page 180 BD Software

BDS C User’s Guide Overlay Management

This tells CLINK that ROOT.COM is to be aroot segment (since no —v option was given), the
externals start at 5000h, a symbol file called ROOT.SYM is to be written, and a statistics
summary isto be printed to the console.

The linkage of each overlay segment would appear as follows:
A>clink segl -v -1 3000 -y root -s -0 segl. <cr>

Thistells CLINK that SEG1.COM isto be an overlay segment (because of —v) to load at location
3000h, the symbol file named ROOT.SY M should be scanned for pre-defined function addresses,
a statistics summary should be printed after the linkage, and the object file is to be written out as
SEGL1 (as opposed to SEG1.COM, to avoid accidentally invoking it asa CP/M command.)

BD Software Page 181

November 1988 BDS C User’s Guide

Page 182 BD Software

BDS C User’s Guide Customized Environments

Appendix B

Customizing The Run-Time Environment

B.1 Standard vs. Customized Environments

In its most common and simple usage, BDS C produces a transient command file ready to
execute in response to a command typed at the Console Command Processor (CCP) under CP/M.
Such a command file always executes in read/write memory located at the base of the TPA
(transient program area) at address 100h. Under these normal circumstances, the run-time
package (C.CCC) and its private read/write memory area occupy the first 1500-or-so (decimal)
bytes of the command file, and the compiled code (beginning with the “main” function) follows
immediately thereafter. This scenario may be termed, for the purposes of this appendix, as the
standard run-time environment of a C program.

B.2 Simple Run-Time Package Customization

Most of this appendix describes how to alter the run-time environment for totally arbitrary
system configurations, a procedure that requires the modification of both the run-time package
and much of the machine-coded portions of the library.

There are certain aspects of the standard run-time environment, such as control over whether or
not user areas are recognized at run time, that only require modification of C.CCC run-time
package module options (not any of the library functions). To make one of these kinds of
changes, just follow these steps:

1. Modify CCC.ASM as required by changing the EQU statements at the top of the file.
Do not make any changes except for those well documented as customi zable options.

2. Assemble CCC.ASM with whatever assembler you have handy, yielding CCC.HEX as
the result of the assembly. If you know how to generate a binary image, go ahead and do
so, naming it C.CCC, and skip to the last step.

3. If your assembler outputs a .HEX file, either use LOAD.COM or CLOAD.COM (source
in CLOAD.C) to create a binary image. If you used LOAD, rename CCC.COM to
C.CCC. If you used CLOAD, rename CCC.CRL to C.CCC.

4. Replace your old C.CCC with the new version. Y ou are done.

BD Software Page 183

November 1988 BDS C User’s Guide

B.3 Creating New Customized Environments

In order to generate code that runs at a different location in memory or in ROM (or both), it is

necessary to customize the run-timeenvironment and then to follow special compilation and

linkage rules to insure consistency between separately compiled and/or assembled modules of a

program. If any change involving either the insertion, deletion or rearrangement of code is made

to the run-time package, that change then constitutes a customization of the run-time
environment. Most assembly-language-coded library functions? reference the absol ute addresses

of code and data in the run-time package; therefore, any customizations made to the run-time

package must be reflected in al the CSM library functions which are to be invoked in the new

customized run-time environment.

The general procedure can be outlined as follows (don’t actually try anything from just this
outline; detailed instructions will follow later):

1. Customize the CCC.ASM run-time source module as necessary. Change the BDS.LIB
header file to accurately reflect those changes made to CCC.ASM.

2. Re-assemble al needed portions of the CSM function library, using the new BDS.LIB
created above.

3. Recompile the C-coded portions of the library, making sure to use appropriate CC
command-line options to reflect the customized environment.

4. Be careful when assembling and linking modules for the new environment; watch out
especially for mix-ups between standard and customized object files.

Here is a tip for creating customized run-time environments: do it al in a “user area’ that is
different than the one where your standard environment files are kept. A good starting point is to
copy all needed source and command files to a new user area, and work in that area exclusively
to both create the customized environment and to develop applications under it. The following
files are all needed at some point for the following procedures. Your favorite text editor,
CC.COM, CC2.COM, CLINK.COM (or L2.COM), CASM.COM, CASM.SUB, ASM.COM (or
MAC.COM), DDT.COM (or SID.COM), CLOAD.COM, CLIB.COM, CCC.ASM, *.CSM,
BDS.LIB, STDIO.H, STDLIB*.C.

IMPORTANT: If you have configured your CC.COM, CLINK.COM,
CASM.COM or L2.COM command files to search a “default” library disk and/or
user areafor common library files, you should “un-do” those configurations when
working with customized run-time environments. The best way to do that is to
have a resident copy of each such command file in your work area configured to
search only the current drive and user areafor everything.

A target program may need to run under CP/M or stand alone, in ROM or in RAM, at a different
location in memory, or with a different set of initializations. Changing any one of these
characteristics, or in fact making just about any kind of change at al in the run-time package,

26. The CSM files contain the source code, DEFF2.CRL is the assembled object library

Page 184 BD Software

BDS C User’s Guide Customized Environments

produces a new customized environment and requires the re-creation of both the function library
and run-time package object module, collectively to be known as the “run-time library”.

By definition, the term “customized environment” implies unique variations from
implementation to implementation. This makes it difficult to describe all the possible variations;
therefore, a general procedure for making a new run-time library will be presented.

Here is the more detailed procedure for customizing the run-time library:

1

Starting with fresh copies of al the files listed above, find CCC.ASM and go to work on
it with your favorite text editor. Alter all the appropriate EQU statements at the
beginning of the file to reflect your desired run-time environment. See later sections in
this appendix for details on this step.

Using ASM.COM or MAC.COM, assemble CCC.ASM vyielding CCC.HEX and
CCC.PRN.

Examine CCC.PRN to find out what value was assigned to the label “RAM”, at the start
of the read/write data area declarations near the end of the file. If you've chosen the
“CPM” symbol to be TRUE then the value you are looking for appears in hex along the
left margin of the line which reads “RAM equ $’ near the end of the file. Otherwise,
you've made “CPM” false and you had to enter the value of “RAM” explicitly in an
EQU statement near the beginning of the sourcefile.

Having determined the value of RAM, edit BDS.LIB and give the symbol similarly
named “RAM?” in that file the same exact value. Make sure all equated symbols in
BDS.LIB match changes you may have made to CCC.ASM.

Temporarily rename BDS.LIB to be BDS.ASM, and assemble it to yield BDS.PRN.
Compare BDS.PRN to CCC.PRN, to make sure all addresses and symbols match
perfectly between the two files. If you find a discrepancy, track it down and fix it by
altering either CCC.ASM or BDS.ASM accordingly. When all the values match, rename
BDS.ASM back to BDS.LIB.

Convert the CCC.HEX file created back in step 2. into a binary image named C.CCC. If
you know how to do this already, do it and proceed to the next step. Otherwise the
following sub-procedure is presented:

a. Compute the ddt <offset> for CCC.HEX by subtracting the origin address of
the run-time package from 100h. For example, if you' ve set the origin symbol
in CCC.ASM to 1000h, the <offset> would be the value of (100h — 1000h),
which is F100h.

b. Compute the <size> in 256-byte sectors of the run-time package object code.
Given CCC.PRN, use whichever method for this step you feel comfortable
with. If you are not sure of your result, round up. A <size> value too high will
still work correctly, but a value too low will bomb either the linker or the target
program at run time.

c. Perform the following sequence:

BD Software Page 185

November 1988 BDS C User’s Guide

A>ddt

-iccc.hex

r<offset>

"C

A>save <size> c.ccc
A>

where <offset> and <size> are the values computed in steps 1. and 2. Y ou now
have a C.CCC run-time package object module ready for linkage.

7. Create aCSM library source module (or set of modules) containing all the functions you
expect you might use in target programs for the customized environment. Note that
some CSM functions may not be useful for all environments; for example, most
functions in DEFF2C.CSM would be useless when running under a non-CP/M
environment. Making sure to use the modified BDS.LIB, put each new CSM source file
through the CASM procedure, yielding a new CRL file or set of CRL files. Thisfile (or
set of files) is now ready to be linked with the new C.CCC and target programs.

8. Compile STDLIB1.C and STDLIB2.C with the “-M <origin>" option to CC.COM. The
value of <origin> must be the same as that used in the previous steps of this procedure:
the starting address of the run-time package. Y ou may want to combine STDLIB1.CRL
and STDLIB2.CRL into a new DEFF.CRL, using CLIB.COM. Make sure not to ever
confuse this new DEFF.CRL with the one used in standard environment compilations.

9. The run-time library environment is now ready to use. When compiling C source
programs, use the CC.COM —-M option to inform the compiler of the new run-time
package <origin> address (if different from 100h).

10. With CLINK, Use the —-L, =T and —E options to specify <origin> address, top of r/w
memory and base of external data area, respectively, for the target program. The L2
linker uses different option names (-ORG, —T and —E) to specify these same the same
things.

B.4 Making Code Run Without CP/M

When programs are to be placed into read-only memory (ROM), that usualy means not under
CP/M and often not at memory address 100h. The technical procedures described above for
building a new run-time package and library all apply here, and afew new rules come into play.

In CCC.ASM, the “CPM” symbol should be equated to FALSE and any other symbols in that
cluster should be altered as needed. The effect of making the “CPM” symbol falseisto eliminate
al the CP/M-specific support routines from the run-time package. This will significantly reduce
the size of the run-time package and, therefore, the size of the resulting compiled program (every
byte counts, especially when the target system is ROM-based). Certain categories of library
functions (such as the file I/O ones) will cease to have any meaning under this new configuration,
so be sure to put together your new CSM source libraries carefully.

Page 186 BD Software

BDS C User’s Guide Customized Environments

There are three important address attributes of the run-time environment that merit close
examination. They are: 1) the origin address of the program, 2) the origin of the run-time
package scratch pad RAM area, and 3) the exit address where control is passed following
program termination (if ever). The symbol names for these three addresses are, respectively,
“ORIGIN”, “CPM” and “EXITAD”. When the “CPM” symbol is TRUE, these values are all
computed automatically in the run-time package source because of the known nature of the
CP/M environment. Once “CPM” has been made FALSE, however, these values must be
explicitly set by the user. The section of code in CCC.ASM where these values are entered
appears as follows:

IFNOT CPM ;fill in the appropriate values...
ORIGIN: EQU NEWBASE

;Address at which programs are to run

RAM: EQU WHATEVER ;run-time package scratch pad RAM area
EXITAD:

EQU WHENDONE :where to go when done executing

ENDIF

All three of these equates should be configured to reflect the desired run-time environment. Note
that the value of “ORIGIN” must be used as the argument to the “-M” option of CC.COM when
compiling C source code for this environment, and also used as argument to the “-L” option of
CLINK.COM (or “-ORG” of L2.COM) during linkage.

A Note About RAM ar eas:

There are two distinct RAM areas occupying any particular BDS C run-time environment. They
arethe “stack area” and the “run-time package scratch pad area’”.

The stack area is where all local (“automatic”) data storage is allocated and where intermediate
values and function parameters are pushed/popped. The address of the stack area must be
specified by use of the -t CLINK option for non-CP/M environments. The standard value to
supply for the stack area is the address of the byte following the last (highest) byte of the run-
time environment’s RAM area (since the stack grows down, never using itsinitial location).

The “other” RAM area is the run-time package scratch pad area, as specified by the “RAM”
symbol in the discussion above. This refers to a relatively small area of memory needed by the
run-time routines for temporary storage and miscellaneous dirty hacks requiring RAM. This
value should be set to the first (lowest) location in the run-time environment’s RAM area. After
you assemble the run-time package, examine the PRN file for the address where the scratch pad
area ends, and make sure there is enough room between that address and the end of the RAM
area to accommodate the stack in its “worst” case of nested storage allocation. See Chapter 2 for
adiscussion of how much space the stack can take up.

This concludes our nitty-gritty discussion on customizing BDS C for non-standard environments.
While it may take you severa iterations of the procedure to become completely familiarized with
it, the resulting compactness of code and high degree of environmenta control should make for
efficient, well-tailored applications.

BD Software Page 187

November 1988 BDS C User’s Guide

Page 188 BD Software

BDS C User’s Guide

Update History

Appendix C

BDS C Evolution: A Version-By-Version Update Summary

C.1 Changesfor BDSC v1.6

Library Changes

Now buffered 1/0 is K&R compatible, basically. No doubt there will be more tweaking

necessary.

The following functions have been changed forv1.6. That is, they have the same name as
functions in previous releases, but their operation and/or parameter specifications have changed.
Be very careful with any programs that use these functions!

FIL E *fopen(filename,mode)
char *filename, *mode; Old format: fopen(filename, buffer)

Note: fcreat is GONE.

Returns NULL on error, not —1 !

modes: “r”, “w”, “a’, “rb”, “wb”, “ab” (b means binary; default is text
mode)

int fgets(buf, maxlenth, fp)

char *buf;
int maxlength;
FILE *fp;

int getchar ()

int getc(fp)
FILE *fp;

int putc(c, fp)
char c;

BD Software

Old format: fgets(buf, fp)
Note: not changing from the old format can be HAZARDOUS!

Now works in either single-char or line-buffered mode (see cmode()
below). Default is single-char mode for compatibility with previous
versions.

Must NOT be used if the compiled program is going into ROM!!

Now differentiates between text mode and binary mode. In text mode,
CR’s are ignored on input; all text files are presumed to have LF's
following CR’s.

See also fgetc below.

Page 189

November 1988 BDS C User’s Guide

FILE *fp; Now differentiates between text mode and binary mode. In text mode,
CR’s are ignored (nothing written), and LF's ("\n’) automatically write
both CR and LF to the output file.

See also fputc below.

The following functions are new for v1.6:

int cmode(mode)
int mode; Sets getchar() character mode as follows:

node 0: line buffered chars
node 1. single chars (default)

Callingwith mode O clearsthe inter nalbuffer of any unsampledcharacter §rom previously
activelinebufferedinput.

int fgetc(fp)
Same as getc() (renamed for compatibility) int fputc(c, fp)
Same as putc() (renamed for compatibility)

int fread(buf, size, count, fp)

char *buf;

unsigned size, count;

FILE *fp; Read (size * count) bytes from buffered input file.

int fwrite(buf, size, count, fp)
Write size* count bytes to buffered output file.

VOID clearerr(fp) Clear errorsin buffered 1/0O stream.

int feof(fp) TRUE if eof encountered on buffered 1/0 stream.

int ferror(fp) TRUE if error occurred on buffered 1/0 stream.

int hseek(fd, hoffset, offset, origin)

BYTE hoffset;
unsigned offset;
Allows 24-bit random record number for MP/M, TURBO-DOS, etc;
hoffset is high-order byte of 24-bit random record number. Otherwise,
like seek().
Note: Do not use origin value of 2 (relative to EOF) if file has been
WRITTEN to since being opened.

int htell(fd) Returns high-order byte of random record number associated with file.

Use tell(fd) to get low-order word.
initptr(str_tab, strl, str2, ... , NULL)

char *str_tab[], stri, str2, ...
Initialize string table

Page 190 BD Software

BDS C User’s Guide Update History

int memcmp(ptr1, ptr2, length)
char *ptr1, *ptr2;
unsigned length; Returns TRUE if the two sections of memory match perfectly. FAST.

putdec(n) Prints decimal value on console. Saves space if printf isn’t needed
for anything else.

The Standard header file is now STDIO.H, which should always be included in all programs,
period. The storage allocation data (for alloc/free) is always declared, because the new /0
library usesit to obtain buffer storage for standard file I/O.

IMPORTANT: Since the new buffered 1/0 uses alloc/free to obtain storage, it is imperative that
all applications obtain memory by using either sbrk or alloc/free. Do NOT use the endext()
function to obtain a scratch workspace address! The best way to get the largest possible chuck of
memory is to call alloc() with decreasing size parameters until it doesn’t return NULL. For an
example on how to do this, see what I’ ve done with L2.C.

FOPEN takes the standard parameters “r”, “w” and “a’. Text mode is assumed by default, so
~Z's are understood and written appropriately. For binary mode, “rb”, “wb” and “ab” must be
used. The value returned by FOPEN upon error is now NULL, not ERROR! *** Watch out for
thisonel ***

PRINTF/SCANF have been beefed up. SCANF is supposed to do everything right, including
partial lines. Mods to printf/scanf were contributed by Dan Grayson, Urbana, Ill., (217)
367-6384.

STDLIB1.C, STDLIB2.C and STDLIB3.C contain new C-coded library sources. These three
files now comprise DEFF.CRL. STDLIB1.C contains buffered I/O; STDLIB2.C contains the

printf/scanf families and some other assorted disk 1/O stuff; STDLIB3.C contains the piddly
remaining stuff.

Run-Time Package
The C.CCC run-time package has been generalized so that M80/L80 may be also used to
reassemble the source file (CCC.ASM). See comments in CCC.ASM for instructions on how to

use M80/L80 instead of ASM or MAC.

Restart vector optimization hacks incorporated. See below.

Compiler
Error detection and diagnosis beefed up. Standard error reporting format is now

Fil enanme: line_no: Error message

l.e., no more “include @xxxx: yyyy: Error message”.

BD Software Page 191

November 1988 BDS C User’s Guide

The compiler can be configured to write errors to a disk file recognized by the companion RED
screen editor. RED is now included in source form with BDS C. If RED isinvoked whileaBDS
C error file is present in the current working directory, RED will automatically call up the
appropriate source files as named in the error file, and allow editing of the source file at the point
at which the errors occurred.

A new code optimization scheme has been introduced. If the target system has any interrupt
vectors available for use by the object program at run time, then any such interrupt vectors may
be “given” to the object program and thus make it shorter. This is accomplished by generating a
customized run-time package module with the appropriate initializations for each interrupt vector
that is to be used, then using the new compiler option “-z” followed by the numbers of each
interrupt vector to be used (e.g., “-z12345” to use rstl through rst5). If the compiled code is then
linked with the special version of the run-time package, substantial code reduction is achieved
once overall program size passes the break-even point set by the additional run-time package
initialization overhead. This might typically be at about the 3-4K point. Note that the run-time
package is set up to allow the easy selection of up to seven restart vectors (rst1-rst7) by toggling
the associated EQU statements. Since rst6 is often used by CDB, and rst7 is often used by
DDT/SID, it is not recommended that these vectors be used unless the code reduction is needed
very badly. OF COURSE, IF A TARGET SYSTEM USES INTERRUPT-DRIVEN 1/O OF
ANY KIND, THOSE INTERRUPT VECTORS NEEDED FOR 1/0O MUST NOT BE USED BY
AN OBJECT PROGRAM. BE CAREFUL!

Utilities

The RED Screen Editor has been added to the package. Provided in source form, this editor
interfaces with the compiler for convenient program syntax correction. CC can be configured (or
told on the command line) to write out an error file (PROGERRS.$$$) containing a record of all
syntax errors found in the recent compilation. When RED is invoked, it looks immediately for
this specia error file. If found, then RED loads up the C source file in which the errors were
found, along with the error file itself, and the user may walk through the errors by single
keystroke commands, making corrections on the fly. Many thanks to Edward K. Ream for
making RED available for inclusion with BDS C, and for enhancing the editor to interface so
nicely with the compiler.

A BDS C Configuration program, CCONFIG.C, has been included to walk the user through the
various compiler/linker configuration options. In previous releases, these options could only be
changed by explicitly altering bytes of data within the CC.COM and CLINK.COM command
files, using DDT or SID. The new CCONFIG program also tries to be as explanatory as possible
about the various configuration options. Note that there are several new configuration options for
v1.6, including RED error-file output control, CDB restart vector selection and other useful
customizing features.

A nice BCD floating point package, written by Robert Ward, replaces “simple 4-banger” floating
point library as a standard part of the BDS C package. This new package is evolved from
“Money Math”.

L2 has been updated to work with the new buffered file I/O. Since BDS C's buffered file 1/O is
only used for writing out the .SYM file, | made that entire mechanism conditionally compiled.
The #define SY MFILE definition may be made FAL SE to create a shorter version of L2.COM.

Page 192 BD Software

BDS C User’s Guide Update History

CASM has been improved to handle n-level nested includes, and it has been updated to work
with the new buffered 1/0. Note: The buggy NCASM.C is no longer. | just couldn’t figure out
what Kevin Kenny was trying to do with his conditional assembly processing, so | gutted all that
out of the program. I'd still like to find the guy, though, so if ANYBODY KNOWSHOW | CAN

The CDB debugger package now includes a configuration utility, CDOBCONFG, to aidin
customizing the CDB utility for individual systems.

The CP.C file copying utility, supplied as a sample source program, has been given a new
“verify” option. CP now aso allows wild-card user area prefixes, due to enhancements in the
WILDEXP.C utility. See CP.C for detailed usage.

The WILDEXP.C wild-card expansion utility has been expanded to allow disk drive and user
area specifiers on wild card designations. A wild-card user area specifiers searches through all
user areas between 0 and 15 (you can make it search 0-31 by modifying the source), but this
takes alittle while to do.

A new sample program called DI.C has been provided. Thisisasimple file comparator utility for
quick verification of the equality of (or minor disparity between) two versions of afile.

C.2 Changesfor BDSCv1.5

This appendix describes the most significant changes made to each mgjor update of BDS C, in
reverse order of release. First the features new to v1.5 are described, then the features added to
v1.4. Unless you have just updated from a pre-1.50 version of the package, you probably don’t
need to read this appendix.

NOTE: Versions 1.5 and later of the BDS C Compiler require version 2.x (or
higher) of the CP/M operating system. In order to take full advantage of CP/M 2.x
I/O mechanisms without introducing really painful configuration complications,
compatibility with CP/M 1.4 (or earlier versions) has been sacrificed. Users who
cannot upgrade their CP/M’s to version 2.x must go on using v1.46 of the
compiler.

New Command Line Options:

* CC (formerly named CC1) now takes the option —k, to activate the Kirkland debugger
mechanism. This makes CC write out a special symbol table file for later use by David
Kirkland's C debugger package, and causes the compiler to generate special code
sequences to alow the debugger to monitor program execution and handle breakpoints
at arbitrary points in the code. The debugger package is not included on the standard
distribution disk, but is available for nominal cost-of-media from the BDS C User’'s
Group .

* If CCisgiven afilename without an extension, and the file as named does not exist, CC
now will try adding “.C” to the filename and opening it that way.

BD Software Page 193

November 1988 BDS C User’s Guide

* CLINK now takes a new option —n, which causes the resulting COM file to not perform
a warm-boot after it is finished executing. This option has the same effect as v1.46's
NOBOOQOT.C program (which is no longer needed when using CLINK, but is provided
for use with the optional L2 linker available from the BDS C User’s Group). Note that
when — is used, there is approximately 2K less user memory available during object
code execution because the CCP is not overwritten.

* Another new CLINK option, —z, inhibits the clearing of all external data to zero during
run-time initialization. If —z is not used, then al external data in programs linked under
v1.50 is automatically zeroed before control is passed to the “main” function at run-
time.

New Library File Searching Capabilities:

Both the compiler and linker (CC and CLINK) now have the ability to search for library filesin a
default CP/M drive and user area, sometimes in addition to the currently-logged drive and user
area. If the user configures CC and CLINK as described in the configuration section below, then
CC will know to search a default directory for included files named in angle brackets, and
CLINK will know to search a default directory for the run-time package module and library
object files. Also, if a CRL file is named on the CLINK command line and CLINK cannot find
that file in the current drive and user area, then the default area (as configured) will be searched
for that file.

Other New CC Features:

The filename given as argument to the #include preprocessor directive may contain an optional
user-area prefix in addition to the optional logical disk-drive designator. The format for the
filename is the same as the format of C library function filename parameters, as described below
inthe“Low-Level Filel/O” subsection.

Other New CLINK Features:

* CLINK now accepts user area prefixes on CRL filenames given on the command line
(except for the main CRL file, which must be in the current user area.) If an explicit disk
drive and/or user area specification is given on the CRL filename to CLINK, then the
default drive and user area (as configured by the user) will not be searched
automatically. Application: if an explicit user area is given for a new test version of a
CRL file, and a similarly named CRL file exists in the default library area, then the
version in the default areawill not be used if the explicitly named one cannot be found.

* CLINK now automatically loads all functions, by default, from each CRL file named on
the command line in a linkage. The —f option is now reversed in sense from previous
versions; i.e., when —f appears on a CLINK command line, then al subsequently named
CRL files are scanned (only previously referenced functions are linked) while all CRL
files named before the —f flag are loaded (every function in the file, whether it has been
previously referenced or not, is linked). This makes the general format of a CLINK
command line be:

Page 194 BD Software

BDS C User’s Guide Update History

A>clink <main file> [<other prog files>] [-f <lib files>] <cr>
* Other options may be interspersed in the command line, of course.

* CLINK will now automatically print out warning messages when the code and external
data areas overlap and when the external data area ends above the base of the BDOS on
the development system. These conditions usually indicate an error of some kind;
nevertheless, the linkage will be completed and the user may decide whether or not to
reconfigure the external data area for future compilations/linkages.

New Low-Levd File |/O Features;

* All the low-level file 1/O now uses the CP/M 2.2x random-record read and write calls.
Therefore, files may be up to 8 megabytes in length instead of only up to 256K bytes as
with pre-1.50 releases. The explicit random-record file 1/0 functions supplied in
previous versions (rread, rwrite, rseek, rtell, rsrec and rcfsiz) are no longer included,
since their functionality has been incorporated into the new versions of the standard
library functions read, write, seek and tell.

* The “seek” function may be given an origin code of 2, meaning to seek relative to the
end of the file. Note that the offset must be negative to make sense in this case, since the
origin is at the end of the file and the offset value is added tothe origin value. For
example, the following call seeks to the next-to-last sector in the file:

seek(fd, -2, 2); [/* seek to 2nd sector from EOF */

* User number prefixes are now accepted wherever a filename argument is called for.
Such a prefix consists of a decimal number between 0 and 31, followed immediately by
adlash (/) character and then the filename (with or without an optional disk designator).
This causes the file 1/0 mechanism to switch into the user area associated with each file
for the duration of any 1/0 operation involving that file, then switch back to the current
user area when done. Any filename may now take either an explicit disk designator, an
explicit user area, or both. If both are given, then the user area specification must
precede the disk designator. Hereis an example:

i f (open("0/A: DATABASE. DAT", 2) == ERROR)
exit(puts("Can’t open the database, turkey."));

* Note that this allows programs in separate user areas to access a common data file kept
on one particular drive and user area, instead of having a separate copy of the data file
for each user area that requires it. If you are running the “ZCPR” public-domain CCP
replacement program for CP/M, or any shell (such as “MicroShell”) that searches
specia drives and user areas for command files, then that feature combined with the
user-area enhancements to the file 1/0 library allow a very efficient utilization of the
CP/M filesystem.

* There are some new functions that provide better diagnosis of errors caused by low-

level file 1/0O calls. Whenever a call such as open, read or write returns a value of —1
(ERROR), the errno function may be called to return a more detailed error description

BD Software Page 195

November 1988 BDS C User’s Guide

code explaining exactly what went wrong. The errmsg function may be used to return a
pointer to a string corresponding to the error value returned by errno. A typical usage of
these functionsis as follows:

i = read(fd, buffer, 20); /* try to read 20 sectors */
if (i == ERROR) /* if an error occurred...*/
printf("Read error: % ", errnsg(errno()));

Miscellaneous New Features:

* The entire external data area is now cleared to zero by the run-time initializor before
control is transferred to the main function for program execution. This means that
programs which use the storage allocator need no longer explicitly clear the _allocp
variable before using the alocator.

* The external data declarations for the storage allocation functions alloc and free have
been permanently enabled, so that it is no longer necessary to go into the STDIO.H
header file and bother with commenting/uncommenting the variable declarations in
order to get alloc and free to work.

Incompatibilities With Earlier Versions:

1. When the #include preprocessor directive is given a filename enclosed in angle brackets
(#include <filename>), then the default drive and user area (as described in the
configuration section below) is presumed to contain the named file. A filename enclosed
in double quotes (#include*“filename”) is presumed to reside on the currently-logged
drive and user area, asin previous versions, unless the filename contains an explicit user
areaand/or disk designator.

2. BDS C v1.5 may only be used with version 2.0 or later of the CP/M operating system;
CP/M 1.4 isno longer supported.

3. The run-time package has been modified, causing incompatibility with CRL files
generated by previous versions of the compiler. In order to be used with version 1.5
components, a CRL file must have been generated by version 1.5 of the compiler. Old
CRL files should be discarded.

4. CLINK now loads all functions from all named CRL files by default, regardless of
whether or not they have been referenced by previously loaded functions in a linkage.
The CLINK option —f now operates identically to the L2 linker’s— option.

5. The hardware related defined constants from previous versions of the STDIO.H header
file have been removed from that file and placed into a new header file named
HARDWARE.H, so that system-dependent parameters are kept separate from general
ones. The console and modem port definition sections have been changed into a more
general form to alow for both status-driven and memory-mapped 1/0 ports.

Page 196 BD Software

BDS C User’s Guide Update History

6. The getline function no longer includes a trailing newline character as part of the
collected line of input text. Like gets, lines input through getline are terminated by only
asingle NULL character.

C.3 ChangesFor BDSC v1.4

There has been a hefty amount of revision, expansion and clean-up applied to the package since
v1.3. A good portion of the changes were made in response to user feedback, while others
(mainly internal code generation optimizations) resulted from the author’s dissatisfaction with
the early version’s performance.

Library Sources Included:

The assembly language sources for the BDS C run-time package (CCC.ASM —> C.CCC) and
all non-C-coded library functions (DEFF2?.CSM —> DEFF2.CRL) are now included with the
package, so that they may be customized by the user for non-CP/M environments. The new
compiler and linker each accept an expanded command line option repertoire alowing both the
code origin and r/w memory data area to be specified explicitly, so that generated code can be
placed into ROM. The run-time package may be configured for non-CP/M environments by
customizing a simple series of EQU statements, and new special-purpose assembly language
library functions may be easily generated with the help of the CASM assembly-language
preprocessor program included with BDS C as standard equipment.

Better Buffered 1/0:

The buffered /O library can now be easily customized to use any number of sectors for internal

disk buffering. A general purpose standard header file, STDIO.H, controls the buffering

mechanism and also provides a standard nomenclature for some of the constant values most

commonly used in C programs. All users should carefully examine STDIO.H, become intimate
with its contents, and use the symbols defined there in place of many of the numeric constants
previously abundant in early sample programs. For example, the symbol ERROR is more
illuminating than when it iswritten as—1.

Directed 1/0 and Pipes:

For Unix enthusiasts, an auxiliary function package (written in C) named “DIO.C” has been
included to permit 1/0 redirection and pipes ala Unix. If you do not need this capability, then it
isn't there to take up space; if you do need it, then you simply add a few special statements to
your program and specify DIO to CLINK at linkage time, then use a subset of the standard Unix
redirection syntax on the CP/M command line.

One Stack is Better Than Two:

A single run-time stack configuration has replaced the two-stack horror used in the earliest
releases. Function parameters are now passed on the stack, and local storage allocation also takes
place on the stack. This leaves all of memory between the end of the externals (which still sit
right on top of the program code) and the stack (in high memory) free for generalized storage

BD Software Page 197

November 1988 BDS C User’s Guide

allocation; several new library functions (alloc, free, rsvstk, and sbrk) have been provided for
that purpose.

Better Code Quiality:

Last but not least, the code generator has been taught some optimization tricks. The length of
generated code has shrunk by 25% (on average) and execution time has been cut by about 20%
over version 1.32. Part of this cut in code bulk is due to the new CC option —e, which allows an
absolute address for the external data area to be specified at compile time. This enables the
compiler to generate absolute load and store instructions (using the Ihld and shld 8080/Z80 ops)
for external variables.

Incompatibilities With Pre-v1.4 Versions:

Because the run-time package has been totally reorganized for release v1.4, CRL files produced
by earlier versions of the compiler will not run when linked in with modules produced by the
new package. Therefore all programs should be recompiled with the current version, and old
CRL files should be thrown away. There are also a few source incompatibilities that require a bit
of massaging to be done to old source files. These are:

1. The statement

#i ncl ude <stdi o. h>

2. must be inserted into al programs that use buffered file I/O, and should be inserted into
all other programs so that the symbolic constants defined in STDIO.H can be used.

3. Comments now nest; i.e., for each and every “begin comment” sequence (/*) there must
appear a matching “close comment” sequence (*/) before the comment will be
considered terminated by the compiler. This means that you can no longer comment out
aline of code that aready contains a comment by inserting /* at the start of the line;
instead, a good practice would be to insert /* above the line to be commented out, and
to insert */ following the line. Although complete comment nesting is something that
UNIX C doesn’t support, | feel it isimportant to have the ability to comment out large
sections of code by simply inserting comment delimiters above and below the section.
Otherwise, any comments within such a block of code have to be removed first.

For v1.4, the run-time package comes configured to support up to eight open files at any one
time, but previous versions have accepted up to sixteen. To alow more than eight open files, the
“NFCBS EQU 8" statement in the run-time package source (CCC.ASM) must be appropriately
changed and the file re-assembled. See Chapter 2 for details on customizing the run-time
package.

Page 198 BD Software

BDS C User’s Guide

Error Messages

Appendix D

Error Messages Explained

D.1 CC Error Messages

For the duration of this document, the term directory will be used to denote some
arbitrary CP/M logical drive and user area combination.

Filel/O Errors

Closeerror

Disk drive door open? If not, you’ ve got some strange kind of hardware
problem.

Error on file output...disk full?

Can’'t find CC2.COM;

If not, check the hardware.

writing CClI fileto disk

Disk read error

There are two directories where CC searches to try and find CC2.COM.
One of them is aways the current directory, and the other depends on
whether or not the —a option is used with CC. If so, then the directory
specified in the option is searched; otherwise, the default directory (as
defined in the configuration section of Chapter 1) is searched. This
message is printed if CC2.COM cannot be found in the two directories
searched.

Time to format some new floppies?

Cannot open: <filename>

BD Software

The specified file cannot be found. If the user has configured CC to
search a specific directory for #include files enclosed in angle brackets,
then a user number, slash, and disk designator will be printed preceding
the filename in this error message. If CC has not been configured, then
only a disk designator will appear. Since a user number prefix is not
allowed on the CC command line, the top level source file must always
be in the current user area when CC is invoked, although it may be on a
different logical drive.

Page 199

November 1988 BDS C User’s Guide

Overflow Conditions

Sorry; out of memory The source fileistoo big to fit into memory. Either get more memory, in
case that is possible, or break the source file into smaller pieces.

Out of symbol table space; specify more...
Use the —+ option to reserve symbol table space for CC. Or, break the
source file into smaller pieces.

T oo many functions (63 max)
A single BDS C source file may only contain up to 63 function
definitions. Programs having more than this many functions must be
split into separate source files.

String too long (or missing quote)
Usualy, this error is caused by missing double-quotes around character
strings. If a string looks properly delimited, check to make sure you
haven't tried to include a double quote character within the string
without escaping the double quote (preceding it with a backslash).

Too many cases (200 max per switch)
Self-explanatory.

#includefiles nested too deep
This can happen if you try to have recursive includes.

String overflow; call BDS
This is a preprocessor string table overflow caused by having too many
very long identifier names in #define directives. It should only happen
for VERY big programs. A special version of the compiler with larger
string space allocations may be obtained by sending a SASD (self-
addressed stamped disk) to BD Software along with some kind of
proof-of -purchase of the BDS C package.

Preprocessor Errors

Warning: Ignoring unknown preprocessor dir ective
If an unsupported preprocessor directive is encountered, this warning is
printed. Currently, thisisthe only non-fatal diagnostic message.

EOF found when expecting #endif
Conditional compilation improperly delimited.

Not in a conditional block
This appears when something like #endif is encountered, when there was
no previous #if, #ifdef or #ifndef.

Conditional expr bad or beyond implemented subset
CC only allows a subset of operators to be used in the #if preprocessor
directive. See chapter 4 for asummary of the #if expression syntax.

Page 200 BD Software

BDS C User’s Guide Error Messages

Bad parameter list element
Bad identifier present in the formal parameter list of a function
definition.

Missing parameter list The identifier froma parameterized #define appears without its
parameters.

Parameter mismatch Thedentifier from a parameterized #define is used with a different
number of parameters than in its definition.

Missing legal identifier An identifier is expected in an expression but none appears.

Syntax Errors

Unclosed comment in: <filename>

Usually an accurate diagnostic. If you get this message and have no clue
to where the unclosed comment begins, try giving the —p option to CC
and check the text immediately preceding the point where the code just
seemsto “cut off” at the end of the printout. That’s probably the location
of an unclosed comment, since all the subsequent text (that disappeared)
would have been considered part of the comment and stripped from the
source file before the printout.

Encountered EOF unexpectedly (check curly-brace balance)
Check for unclosed comments, and unclosed curly-braces. The User’'s
Group program LCHECK.C may be used to check curly-brace nesting
levels.

Unmatched right brace Either aleft brace ismissing, or thereis an extraneous right brace.

lllegal external statement
Thisis usualy caused by too many right braces in a function, causing
the compiler to detect the end of a function definition prematurely.

Function definition not external
This happens when something that 1ooks like a function definition is
encountered within another active function definition. Probably it is just
amissing semicolon after afunction call, or asimilar typo.

Missing semicolon

Y ou can usually believe this message; keep in mind, though, that the line
number given here always points to the beginning of the statement that
the compiler thinks is unterminated. In a multi-level nested control

structure (such as if...else or if...if), the missing semicolon might be
several physical lines lower in the code than claimed by the line number

appearing in the error report.

Expecting((
Typically encountered after the while, if or switch keywords.

BD Software Page 201

November 1988 BDS C User’s Guide

Unmatched left parenthesis
This is another type of error that is usually detected, but might generate
other less useful messagesin certain cases.

|’'m totally confused. Check your control structurel
This might be caused by extraneous characters or very erroneous curly-
brace nesting.

[llegal { encountered externally
Possibly caused by mismatched curly braces.

Mismatched control structure
Another variation on the unequal curly brace nesting theme.

Expectingwthiille

Isado...while statement missing its while?

|llegal break orcoonimnmuige
break statementsare only allowed inside loops and switch constructs.
continue statements are only allowed inside loops.

Bad for syntax

Self-explanatory; check for the correct number (2) of semicolons and
their placement.

Expectingf inswiitath statement
The expression portion of a switch statement must be followed by
compound statement in curly-braces.

Bad case constant Each case constantmust be either an absolute constant or a simple
constant expression (symbolic constants are acceptable, of course).

[llegal statement Thiserror is drawn when, for example, a case or default statementis
found outside of a switch construct.

Syntax error
It takes something totally unintelligible to draw this error, such as a
missing left double quote before a character string. An extraneous
character in the file may also do it.

Bad constant Some expressions must be constant expressions, such as switch

expressions and the values used for case constants.

Bad octal digit
If anumeric octal constant beginning with a zero contains the digits 8 or

9, thiserror is drawn.

Bad decimal digit This happens when a decimal constant contains bad characters, or else
the user forgot to precede a hex constant with the sequence Ox.

Page 202 BD Software

BDS C User’s Guide Error Messages

Curly-braces mismatched somewherein this definition
Thisis arather useful feature of the compiler: if the source text has too
many left curly-braces, this error will point to the beginning of the
function or data definition in which the first detected mismatch occurred.

Declaration Errors

Undeclared identifier: <name>
This might be a real identifier that just wasn't declared, or a misspelling
of an identifier.

Bad declaration syntax Usually the compiler thinks it’'s processing a data declaration as soon as
it sees a type designator (such as char or int). This error is drawn if the
rest of the statement containing that keyword does not resemble a
declaration.

Need explicit dimension size
An omitted dimension size in array declarations is only permitted when
the array is a formal parameter to a function. If such an array is two
dimensional, then only the first dimension may be omitted.

Too many dimensions BDS C alows only up to two dimensions per array variable.

Bad dimension value Dimensions in array declarations must be given as constants or constant
expressions.

Redeclaration of: <name>

Aside from actually writing multiple conflicting declarations for a single
variable, another way to draw this error is to declare a formal parameter
of a function inside the body of the function instead of immediately
before the body. Note that formal parameters are automatically given
type int if not declared before the body of the function; therefore, a
subsequent declaration of the formal parameter identifier as a local
variable in the body of the function constitutes a redeclaration.

Expecting{ in struct or union def
Self-explanatory.

lllegal structureor union id
This error is drawn when the identifier appearing in the structure tag
position of a structure declaration was previously declared as something
other than a structure tag.

Attribute mismatch from previous declar ation
The elements in a structure declaration may be reused within other
structures providing their major attributes (type and offset) are identical
within each structure type. This error appears when a structure element
nameis re-used with different attributes.

BD Software Page 203

November 1988 BDS C User’s Guide

Declar ation too complex
This error is caused by too many levels of indirection, or too many
parentheses for the compiler to handle.

Missing from formal parameter list: <name>
This happens when a declaration of aformal parameter appears before a
function body, but no such parameter is present in the parameter list
following the function name.

Bad parameter list syntax
Something other than a comma-delimited list of identifiers in the
parameter list of afunction definition drawsthis error.

Miscellaneouserrors

<text>: option error

If CC detects some badly formed command line option, it will print the
text it couldn’'t understand along with this message. Check the command
line option descriptions in Chapter 1 to make sure you’'re giving the
correct forms.

Compilation aborted by control-C
If the user types control-C on the console during a compilation, then this
message gets printed and control is returned to command level. Note that
console polling may be disabled by special configuration of CC.COM as
described in the configuration section of Chapter 1. This may be required
for certain interrupt-driven systems to allow type-ahead during compiler
execution.

Can’t have mor e than one default:
This is printed if more than one default: clauseexists within a single
switch construct.

|llegal colon Colons (other than in literal strings) are only allowed as part of the
ternary operator, or following alabel, case or default.

Undefined label used

Label references (alowed only in goto statements) must refer to a label
local to the current function definition.

Duplicate |label

A particular identifier may only be used for one label per function.

D.2 CC2Error Messages

Note: some of the file I/O errors printed by CC2 are the same or very similar to
the messages listed above for CC, so they will not be repeated in this section.

Page 204 BD Software

BDS C User’s Guide Error Messages

Filel/O, Syntax, Overflow and Other MiscellaneousErrors

Can't create CRL file No more directory slots on the output drive?

CRL Dir overflow: break up sourcefile
There are only 512 bytes of directory space alocated for each CRL file.
It is possible to overflow the directory space for a single source file by
having too many functions defined that contain 8 or more characters in
their names (only the first 8 characters of each name are actually stored
in the directory.) Either shorten your function names, or reduce the
number of functions per sourcefile.

Internal error: garbagein fileor bugin C
If this happens during CC2, it is probably a compiler bug. Please contact
BD Software for assistance.

Illegal statement Something totally weird was encountered.

Missing{ in function def.
Usually, whatever draws this error is not really the start of a function
definition, but for some reason the compiler thinks that the previous (or
current) function has been terminated and another is beginning. Check
for too many right curly-bracesin the program.

Missing semicolon Missing semicolons after expression statements will usually be detected
and diagnosed correctly.

Sorry, out of memory. Break it up!
The file is too large. Usually, if a file gets through CC then it will also
make it through CC2, although there are exceptions.

Thefunction <foo> istoo complex; break it up a bit
There are certain internal tables that cannot handle too big a function.
Rather than require the user to set a bunch of confusing parameters
telling the compiler how much space to reserve for various tables and
lists, | decided to set most table sizes constant and allow for fairly hefty
functions...but only up to a point. Properly structured C programs
shouldn’t draw this message.

Sub-expression too deeply nested
The most common cause of this error is a multiple assignment statement
that goes on forever. The solution is simply to break the line up into
smaller chunks.

Compilation aborted by control-C
Unless the appropriate CC configuration byte is customized to zero by
the user (see the Configuration section in Chapter 1), typing control-C
on the system console device will terminate a compilation, print this
message and immediately return to command level.

BD Software Page 205

November 1988 BDS C User’s Guide

Errorsin Expressions

Lvaluerequired Arobject is required that can have its address taken, or that must be
legal on the left of an assignment operator.

L value needed with ++ or —— operator
Only simple variables can be auto-incremented or auto-decremented.

Bad left operand in assignment expression
If the expression on the left of an assignment operator cannot have a
value assigned to it, this error is drawn. For example, a character array is
not an Ivalue, although it may be subscripted to produce alegal Ivalue.

Mismatched parenthesisAn expression following a left parenthesis is terminated by a matching
right parenthesis.

Mismatched squar e brackets
A subscript following a left square bracket is not immediately followed
by a matching right square bracket.

Bad expression This is the general “I give up” message printed when an expression (or
what is supposed to be an expression) does not make any sense to the
compiler. That does not necessarily mean that the error is obvious, but
usualy itis.

Bad function name

This is printed when the compiler sees an identifier followed
immediately by a left parenthesis, and the identifier has been previously
declared as something other than a function name.

Bad arg to unary operator
The operand of a unary operator is not of appropriate type for that

operator.

Expecting:: Did you intend to write a?: expression and forget to include the colon?

Bad subscript Is an array subscript of the proper type for a pointer arithmetic
operation? For example, a subscript in an array expression cannot be a
pointer.

Bad array base Y ouare attempting to subscript something that cannot be subscripted.

One possibility: are you attempting to subscript the argv formal
parameter in your main function without having declared ar gv correctly?

Bad structure or union specification
The expression to the left of the . (period) operator is not a legal
structure or union base.

Page 206 BD Software

BDS C User’s Guide Error Messages

Bad typein binary operation
Certain types of variables cannot appear together in a binary operation;
for example, you cannot add two pointers (although you may subtract
them, yielding aresult scaled by the size of the objects begin pointed to),
or perform most bit-wise and obscure operations on non-simple-variable
objects.

Bad structure or union member
The expression to the right of a. (period) or —> operator is not a valid
structure or union element.

Bad use of member name
The identifiers declared as members of a structure or union cannot be
used outside of a structure or union operation.

[llegal indirection Atattempt is being made to operate on some object as if it were a
pointer, when the object is not a pointer.

Encountered EOF unexpectedly
Thisis either a bad syntax error or asign of file damage. Badly matched
curly-braces might also be responsible, although the present version of
the compiler will usually be more specific about those kinds of errors.

Bad argument list Somethingllegal was found in the parameter list for a function call,
such as a semicolon or other keyword not legal in an expression.

Missing or misplaced((An expression in parentheses was expected, such as following the while
keyword, and no |eft parenthesis was found.

Missing or misplaced)) An expression which began with aleft parenthesis was not followed by a
closing right parenthesis. This might be due to an extraneous character in
the middle of the expression.

D.3 CLINK Error Messages

Note: many of the possible file 1/O errors printed by CLINK are self-explanatory;
only the ones requiring some comment are shown here.

No user area prefix allowed on main filename
User area prefixes are allowed on all filenames except thefirst onthe
CLINK command line.

Dir full No more directory space in which to create a new output file.

Error writing: <filename>
Probably out of data space on the disk.

BD Software Page 207

November 1988 BDS C User’s Guide

Can't close: <filename>Hardware error?

No main function in <filename>
The first CRL file named on the CLINK command line must contain the
main function for the program you are linking. Note that the L2 linker
(available from the User’ s Group) does not have this restriction.

Missing function(s): <list-of-names>
The named functions were not found in the files listed on the command
line or in the standard library files. If you used the —f option to cause
files to be scanned instead of loaded, it's possible some of the named
functions were present but not loaded because no previous functions had
referenced them. In this case, simply re-scan the files containing the
missing functions.

Warning! Externals extend into the BDOS!
This is printed when the ending address of the external data area is
greater than the base of the BDOS on the system being used for
compilation. If the code is to be run in another environment where there
won't be any conflict, this message may be ignored. But don’t try to run
the program on the system where linkage drew this message...

Warning! Externals overlap code!
This is printed when the starting address of the external data areais less
or equal to the last code address of the program. Usually it means the
externals were placed too low with the —e option. If you are creating
code for a customized environment where the code resides above the
externals, just ignore the message.

Out of memory Notenough memory to perform the linkage. Try using the L2 linker,
which can link programs up to about 8K larger than CLINK can.

Bad symbols A symbol file being read in via use of the —y option contains badly
formatted entries.

Ref table overflow The forward-reference table ran out of space. Use the —r option to
reserve more space. Usage is “-r xxxx”, where xXxxx is given in
hexadecimal. 600 is the default; try 800 or AQQ, etc., until the error goes

away.

SYM file symbol already defined: <symbol>
A symbol being read in via use of the —y option isidentical to afunction
already loaded and defined. The original value is kept, since that
function has already been loaded and/or defined, and the new one is
thrown away.

Ignoring duplicate function: <name>
A function in a CRL file being loaded has a name identical to a function
already loaded from a previous file. The origina is kept, and the new
version isignored.

Page 208 BD Software

Sorry; 255 funcs maximum
CLINK can only handle up to 255 functions in a single linkage. If you
need to link a larger number of functions, obtain the L2 linker from the
BDS C Usar’s Group.

& & operator 86

|| operator 86

_alocp 196

.CCl file 14

.CCl files 16, 17

#define 85, 87

#if 85

#include 9, 13, 85, 88, 196, 198

A

aborting compilation 14, 17
aborting linkage 18

abs 46

alloc 51, 84, 196
append to string 60
argc 26, 146

argc & argv 13

arghak 36

argv 26

ASM assembler 151
atoi 62

auto-loading CC2 14
auto-loading of CC2 17

B

BCD Function Package 161
BCD package 161

BD Software’ s address 1, 27
bdos 44, 146

BDS C User’s Group 193
BDS.LIB 37, 184
BDSCIO.H 161

begin 77

bios 44

biosh 44

block memory assignment 48
block memory comparison 48
block move 48

blocks 77, 83

Buffered 1/0 197

buffered I/0O 63, 69

C
C.CCC 15, 183, 197

| ndex

C Reference Manual 75

C User'sGroup 3

cal 46

cdla 46

case conversion 60

CASM 29

CASM.SUB batch file 152

CASM Utility 151

CC 7,13, 193

cc27, 17

CC.COM 186

CCC.ASM 11, 36, 184, 197

CCl files 7

CCONFIG.COM 8

CCP 10

cdb debugger 193

CDB restart vector control 11

cfsize 67

chaining 49

chaining with parameter passing
50

character processing 59
clearerr 72

CLIB 22

CLIB commands 22
CLINK 18, 43, 193, 194
CLINK.COM 186

CLINK debug mode 18
CLINK interactive mode 18
CLOAD utility 152

close 65

closing files 72

cmode 55

CMODEM 157

codend 51

command line parameters 26
Comment nesting 14
comment nesting 76
comments 198
concatenation 60
conditional compilation 85, 88
configuration 7

Console polling 9

console switch register 44

constant expressions 86, 145
control-Z 55, 70

CP/M 4, 196

creat 64

creating CRL files 24

CRL directory 22, 29

CRL Files22

CRL files151

CRL format 29

CSM files43, 184

csw 44

curly-brace substitutes 77
customized environments 183

D

DDT 185

debugger 109
debugging 37
declarations 79, 87
Default Library Area9
default library area 18
DEFF15.CRL 161
DEFF.CRL 12
DEFF.CRL and DEFF2.CRL 43
DEFF files 9, 18, 197
deletefile 67

DIO.C 197

Directed 1/0 197

disk buffering 12

disk designator 18, 63
division by zero 78

E

end 77

endext 33, 51

EOF 55, 70

errmsg 68, 196

errno 68, 195

error handling 64, 68

error messages 199

error recovery 146

exec 49

exec functions 19

execl 49

execution speed 16, 17

execv 50

exit 44

external data 33

Externa dataarea 30

external dataarea 19, 30, 77, 84

external data boundary locations
51

external datainitialization 21

external data starting location 14

external definitions 83
externs 51

F

fabort 67

fcb 68

fcbaddr 68

fclose 72

feof 72

ferror 72

fetch routines 35

fflush 72

fgetc 70

fgets 73

file control block 68

Filel/O 195

file /O 63

Filenames 63

floating point (BCD)function
package 161

floating point package 161

fopen 69

for statement 83, 146

formatted output 58

forward reference table 20

fprintf 73

fputc 70

fputs 73

fread 71

free 52, 84, 196

fscanf 73

function entry protocol 33

function modules 30

fwrite 71

G

get filesize 67
getc 70
getchar 55
getline 56
gets 57

getw 70

H

HARDWARE.H 12, 157, 196
hardware.h 12

hseek 66

htell 67

identifier name restrictions 76
index 62

initb 62, 148

initialization 62

initializers 82
initptr 63
initw 62, 148
inp 45
iobreak 55
isalpha 59
isdigit 59
islower 59
isspace 60
isupper 59

K

kbhit 56
keywords 76

L

L2110

labels 83

language restrictions 75
library file searching 43
library source organization 36
list of needed functions 31
listing CRL file contents 23
load address 19

loading library files 19
loading library functions 18
loading overlays 51

logical connective operators 79
long integer package 172
longjmp 53

[printf 58

M

M80 assembler 151
maltoh 36

machine code subroutines 46
main function 30

max 46

max no. of open files 198
maximum CRL file size 22
memcmp 48

MicroShell 195

min 46

movmem 48

MP/M 26, 65

N

NFCBS run-time package option
12

NOBOOQOT 194

nrand 47

NSECTS 12

@)

oflow 67

open 64

opening files 64, 70
Optimization 15
Optimization control byte 10
order of evaluation 86

outp 45

overflow 64, 67

overlap of code and data 15
overlay loading 51
overlays 20, 21, 177

P

parity bits 10

pause 46

peek 45

pipes 197

pointersto arrays 81
poke 45

port-driven I/O 45
preprocessor directives 87
printf 57

printing source file 15
putc 70

putchar 56

puts 56

putw 71

Q

gsort 49

R

rand 47

random number generation 47,
48

raw 1/O 63, 64

re-entrant code 35

read 65

RED editor 89

RED error file control 10

RED error file output 15

ref table overflow 20

register designator 79

relocation parameters 32

rename 67

reserving symbol table space 15

Restart optimization 16

ROM -based applications 184

ROM-ing code 19

ROM preparations 183

royalties 4

RSTNUM 11

RSTNUM run-time package
option 11
rsvstk 53

run-time package origin address
15

run-time package RST
optimization 12

S

sbrk 52

scanf 58

scanning library files 19
seek 66, 195

setfcb 68

setjmp 53

setmem 48

shift operators 79

sign extension 78

sizeof 79, 86

sleep 46

sorting function 49
source function limits 16
source text 13

sprintf 60

srand 46

srandl 47

sscanf 60

stack 32, 197

stack initialization 20
stack safety margin size 53
stack utilization 32
STDIO.H 196, 197
stdio.h 12, 26

STDIO.H" 198
STDLIB*.C 186

storage allocation 52, 196, 197
storage classes 75, 77, 79
strcat 60

stremp 60

strcpy 60

string comparison 60
string copy 61

string length 61

string processing 59
stripping parity 10

strlen 61

structure and union declarations

82
Submit Files 9, 16, 26

swapin 50, 179

switch statement 83
symbol tablefile 20
system requirements 5

T

TELED 12

tell 66

time delays (sleep) 46

tolower 60

topofmem 33, 51

toupper 60

transferring functions between
CRL files23

type specifiers 79

U

unary operators 86

ungetc 70

ungetch 56

Unix 4

unlink 67

USAREA run-time package
option 11

user areaprefix 18, 63

User arearecognition 11

User Areas 9, 195

user areas 10

USERST 11

USERST run-time package
option 11

\Y

variable scope 77

W

warm boot 32

warm boot inhibition 20
Warm boots 10

write 65

Y
yank symbols 20

Z

ZCASM utility 151

ZCPR 195

ZOPTn run-time package option
12

Contents

Chapter 1 Introduction 1
11 HelloThere ... e 1
1.2 QUiCK Start 1
1.3 SUPPOIt .« . e 3
1.4 NoRoyalties, Of coursel 4
1.5 Objectivesand Limitationscoouiiiiiiiinnnann.n. 4
16 SystemRequirements.t 5
1.7 Potential System Incompatibilities 5

1.7.1 Systemswith aNon-Standard User Number Range 5
1.7.2 CDB and Your System'sRestart Vectors 6
1.7.3 BDOS and BIOS Calls On Some CP/M “Look-Alike” Systems .. 6
1.8 HowtoUseTheCompiler ... 7
1.8.1 The Commandsand Primary DataFiles 7
1.8.2 Configurationc i 7
1.8.2.1 CompilingCCONFIG.C i, 8
1.8.2.2 CCand CLINK configuration 8
1.8.23 CC2Configuration, 11
1.8.2.4 Run-TimePackageOptionscov... 11

1.8.2.5 STDIO.H and HARDWARE.H Configuration 12

1.8.3 A SampleCompilation 13
184 CC—TheParserviii e 13
1.85 CC2—TheCodeGeneratorcviiiiiinnnnen.. 17
186 CLINK —TheCLinker, 18
187 CLIB—TheClLibrarianciiiiiiiian.. 22

1.9 CPIM“Submit” Files 26
1.10 Operational CavealSov it 26
111 LastWords . ..o 27

Chapter 2 The CRL Function Format and Other Low-Level Mechanisms 29
2.1 IntrodUCtiont 29
22 TheCRL FormatinDetail 29

221 CRL DITECtONES . oot 29
2.2.2 External Data Area Origin and Size Specifications 30
223 FunctionModules 30
2231 Listof Needed Functions 31
2232 Lengthof Body i, 31
2233 BOOY ... e 31
2.2.34 RelocationParameters 32

2.3 Register Allocation and Function Calling Conventions 32

231 TheStack 32

2311 TheStack Pointer, 32
2.3.1.2 How Much Space Doesthe Stack TakeUp? 32

232 External Data 33
2.3.3 Function Entry and Exit Protocols 33
24 Reentrant Coding ...t e 35
2.5 Helpful Run-Time Subroutines Availablein C.CCC (See CCC.ASM) . 35
25.1 Loca and External Fetch Routines 35
25.2 Formal Parameter Fetches. i, 36
2.5.3 Arithmeticand Logical Subroutines 36
254 System SourceFiles 36
2.6 Debugging Object Command FilesUnder CP/IM 37
2.6.1 Loading Programs and Setting Breakpoints 37
2.6.2 Tracing Execution and Dumping the Values of Variables 39
2.6.3 A Sample SID DebuggingSessioncocvvun... 39
Chapter 3 The BDS C Standard Library on CP/M: A Function Summary 43
3.1 General PUurpose FUNCLIONS 43
3.2 Character Input/Output e 54
3.3 Character and String ProCessiNgo v vt 59
B4 FIlel O . 63
3.4.1 Introductionto BDSCFilel/O Functions 63
342 Flenamest e 63
3.4.2.1 TheDisk Designator Prefix 63
3422 TheUser AreaPrefix 63

343 ErrorHandling ... 64
3.4.3.1 TheErmo/Errmsg Functions 64
3.4.3.2 Random-Record Overflow 64

344 TheRaw Filel/OFunctions 64
3.4.5 TheBuffered Filel/OFunctions 69
Chapter 4 Notesto APPENDIX A of “The C Programming Language” 75
4.1 IntroduCtion o 75
4.2 Notesto AppendixXx A i e 76
Chapter 5 The RED Screen Editor 89
51 HowTolnstall RED i 89
5.1.1 Runthe Configuration Program 89
51.1.1 SettingDefaults 90
5.1.1.2 Selecting Control Keys, 91
5.1.1.3 Describing Your Terminal 91

5.1.2 Compileandlink RED, 92
513 TestandUse REDco it 93
514 (Optiona) RUNSTEST i, 93
5.1.5 Additional Featuresfor RED Under BDSCvV16............. 93
52 ReferenceManual i 9
Sarting RED 94
Using Functionand Control Keys.coiiiin.. 95
Changing Modes 96

Inserting Characters With Insert and OvertypeModes 96

Inserting New Linest 97
Moving The CUrSOrot e e e e e 97
Deleting CharactersandLinescciiiiinnn.. 98
Undoing Mistakeso e 98
Splittingand JoiningLinesc. ... 98
Inserting Control CharaCters 99
Repeating the Previous Function 99
Using Commandsouiriiii et 99
Creating, Savingand Loading Files 100
Leavin RED 101
SearchingforPatterns 101
Moving BlocKSOf Lineso 104
Setting Tab SIOPS . .. oo 105
Enabling and Disabling LineWrapping 105
ListingtheBuffer i 105
Deleting Multiplelines i 105
Choosing How RED SwitchesModes 106
Edit Mode FunctionsAnd Escape Sequences. 106
What ToDo About Error Messages, 108
Chapter 6 CDB: A Debugger for BDSC 109
6.1 An Explanation of CDB Componentsc.c.ouvon.. 109
6.2 ConstructingtheDebugger i 110
6.2.1 Constructing L2ot 110
6.2.2 ConstructingCDB2 110
6.2.2.1 TheCDBCONFG Utility, 110
6.2.2.2 CDB System Descriptioncccovuin.... 111
ConstructingCDB o 111
Constructing CDB2 111
Changingtherestartnumber 112

6.3 How toInvoketheDebugger i 113
6.3.1 Compilation: The—K Optionof CC 113
6.3.2 Linkage: The-D and—-SOptionsof L2 113
INVOKINGCDB 114
6.3.3 SUMMaAIY . ..ttt e e 114
6.4 Debugging Commands. How to UsetheDebugger 115
6.4.1 Breakpointst 115
6.4.2 Executingcode i 117
6.4.3 Dumpingvariables 117
6.4.4 Settingvariables 119
6.4.5 Thelist command — variousitems of information 119
Thequitcommand i, 120
6.5 Alphabetical Listing of Debugger Commands 120
6.6 An Example— A CDB DebuggingSession 121
Chapter 7 Tutorialsand Tips 129
7.1 BDSCFilel/OTutorialcccoiiiii .. 129
711 INtroduCtiono 129

7.1.2 TheRaw Filel/OFunctions 129

7.1.3 TheBuffered Filel/OFunctions 133
7.2 BDS C Console I/0O: Some Tricks, Clarifications and Examples 136
7.2 INtroduCtionot 136
7.2.2 Elementary ConsoleInterfacing 137
7.2.3 TheBDOS and How It ComplicatesThings................ 137
7.3 Some Mistakes Commonly Made By Beginning C Programmers and
Other Things Deserving Clarification 141
7.3 = VEISUS == e 141
7.3.2 Character Constants within Literal Strings 142
7.3.3 The Precedence of Assignment Operators 142
7.3.4 Array Subscripting 143
7.3.5 How NOT ToUsealPointerc.ccoivuvunan.. 143
7.3.6 Functions Shouldn’t Return Pointersto Their Automatic Data . 143
7.3.7 Understanding Formal Parameters 144
7.3.8 Dependence on Parameter Evaluation Order 145
7.3.9 Function CallsMUST Have Parentheses 145
7.4 MiscellaneOUSNOteS 145
Chapter 8 Auxiliary BDS C Package Programs 151
8.1 The CASM Assembly-language-to-CRL-Format Preprocessor For BDS
C o 151
8.1.1 Creating CASM.COM 152
8.1.2 Command LineOptionso, 152
8.2 The L2 Linker o e 154
8.3 The CMODEM TelecommunicationsProgram 157
Installation 157
Chapter 9 Auxiliary BDS C Libraries 161
9.1 BDS Cv1.5 Compatibility Library 161
9.2 A BCD Function PackageForBDSC 161
9.2.1 Descriptionof Files.......... i, 161
0.2.2 DataRepresentation, 162
023 TestingFor Zero ... e 163
9.24 Rounding and ACCUIBCY vvviv e eieeaen 163
925 ErrorHandling ... 164
9.26 TheReturnValues, 164
9.2.7 Transportability 165
0.2.8 Configurationiuiiii 165
9.29 Changing Precision 166
9.2.10 RebuildingBCD.CRLoiii e 166
9.2.11 LinkingtotheBCD Functions 166
9.2.12 BCD Package Function Summary: 167
9.3 A Long Integer PackageforBDS-C 172
9.3.1 INtroductionot 172
9.3.2 ImplementationDetails, 175
Appendix A Dynamic Overlaysin C Programs 177

Appendix B Customizing The Run-Time Environment
B.1 Standard vs. Customized Environments
B.2 Simple Run-Time Package Customization
B.3 Creating New Customized Environments
B.4 Making Code Run Without CP/M iiin..

Appendix C BDS C Evolution: A Version-By-Version Update Summary
C.1 Changesfor BDSCVLGo
Library Changesot e
Run-TimePackage
Compiler ..
UtIties ...
C.2 ChangesforBDSCVLS5 e
C.3 ChangesFor BDSC V14 e

Appendix D Error Messages Explained

D.1 CCEIMOrMESSagES . . oot i it e
FIlel/O ErrorS ..o e e
Overflow Conditionst
Preprocessor Errors
SYNtaX Errors
Declaration Errors
MisCEllanEoUS B TOrSot e

D.2 CC2EIMor MESSAOES . . . v v vt et et e
Filel1/O, Syntax, Overflow and Other MiscellaneousErrors
Errorsin EXpressionst

D.3 CLINK EIOor MeSsagescvirinii i

Index

