
BDS C User’s Guide Introduction

Chapter 1

Introduction

Leor Zolman
BD Software

74 Marblehead Street
North Reading, MA 01864

(978) 664-4178
leor@bdsoft.com

1.1 Hello There

T h a n k y o u f o r p u r c h a s i n g B D S C . T h i s s o f t w a r e p a c k a g e i s o n e p r o g r a m m e r ’ s p e r s o n a l
implementation of the systems programming language C, geared exclusively for microcomputers
running the CP/M-80 operating system. The primary design goal with BDS C was to create a C
development environment that would allow programmers to move forward at a rapid, efficient
p a c e a s s t r u c t u r e d p r o g r a m s a r e d e v e l o p e d — e v e n o n fl o p p y - b a s e d s y s t e m s . T o t h i s e n d , t h e
compiler and linker were designed to perform as much of their work as possible in memory, with
a minimum of disk activity. The result is a development cycle fast enough to support repetitive
program compilation, linkage and execution without inducing nervous disorders in its users.

1.2 Quick Start

If you have just opened up your package and would like to see the compiler “do something” as
quickly as possible, then follow these steps:

1. F i r s t , p u t w r i t e p r o t e c t t a b s o n y o u r m a s t e r d i s k s e t . M a k e s u r e t h a t t h e d i s k s a r e
readable; if they aren’t, then check with your software vendor to make sure you got the
correct disk format for your computer system. Once you’ve determined that the disks
are OK, make copies immediately and set aside your original disks for safekeeping. It is
very easy for files (and even entire disks) to be accidentally erased during the process of
d e b u g g i n g c e r t a in types of C programs. Don’t take chances; make back-ups o fy o u r
workfrequently!

2. Choose a convenient working area (either an applications drive, or a clean user area on
a hard disk system) having at least 100K free. Into this area, copy the following files
f r o m t h e fi r s t d i s t r i b u t i o n d i s k e t t e : C C . C O M , C C 2 . C O M , C L I N K . C O M ,

BD Software Page 1

November 1988 BDS C User’s Guide

C . C C C , D E F F . C R L , D E F F 2 . C R L , S T D I O . H a n d T A I L . C . A f t e r c o p y i n g t h e s e fi l e s ,
make sure there are at least 20K bytes free.

3. M a k e t h e w o r k a r e a c h o s e n a b o v e b e t h e c u r r e n t l y l o g g e d d r i v e / u s e r a r e a . G i v e t h e
following sequence of commands:

cc tail
clink tail
type tail.c
tail tail.c -5

 4. When you have completed the sequence of commands listed above, the final command
should have caused the final five lines of the file TAIL.C to be printed on the console
output. These five lines should be an identical match to the last five lines of output from
t h e p r e v i o u s T Y P E c o m m a n d . I f t h i s i s i n d e e d w h a t h a p p e n e d , t h e n y o u a r e u p a n d
running, and you’ve also got yourself a new general purpose utility named TAIL.COM
that will instantly print out the last n lines of any text file, no matter how large the file.

5. If the TAIL command did not work, or if you got any errors during any of the previous
commands, then check the checksums (using CRCK.COM and CRCKLIST.CRC) of all
files in the work area that were copied from the distribution disk. If the checksums do
n o t m a t c h , t h e n t h e fi l e (s) w h o s e c h e c k s u m s d i d n ’ t m a t c h w e r e i n c o r r e c t l y w r i t t e n ;
contact your dealer to obtain replacement files. If the checksum values do indeed match
those listed in the CRCKLIST.CRC file for all files being used, then there is something
really wrong and you should obtain help from either your dealer, a local BDS C guru,
or from BD Software directly.

6. Y o u a r e n o w r e a d y t o s e t u p a p e r m a n e n t w o r k i n g e n v i r o n m e n t f o r y o u r B D S
C p a c k a g e . R e a d t h e s e c t i o n l a t e r i n t h i s c h a p t e r e n t i t l e d C o n fi g u r a t i o n i n o r d e r t o
f a m i l i a r i z e y o u r s e l f w i t h a l l t h e c o n fi g u r a t i o n o p t i o n s , e s p e c i a l l y t h e c o n c e p t o f t h e
Default Library Area. Note that the selection of an explicit default library area (separate
f r o m y o u r C s o u r c e p r o g r a m w o r k a r e a) i s o p t i o n a l , d e p e n d i n g o n h o w m u c h d i s k
storage you have on your computer system. If you have less than 250K of storage per
floppy and no hard disk system, don’t worry about selecting a default library area. If
y o u h a v e o v e r 5 0 0 K p e r fl o p p y a n d / o r a h a r d d i s k , t h e n i t i s d e fi n i t e l y
r e c o m m e n d e d t h a t y o u s e l e c t a d e f a u l t l i b r a r y a r e a . I f y o u h a v e n o h a r d d i s k a n d a
d a t a c a p a c i t y s o m e w h e r e b e t w e e n 2 5 0 K a n d 5 0 0 K p e r fl o p p y , t h e n w h e t h e r o r n o t
y o u c h o o s e t o o r g a n i z e y o u r support files in a d e f a u l t l i b r a r y a r e a d e p e n d s o n y o u r
own particular taste.

7. Now select a default library area if you wish, or else just pick a particular disk drive and
user area where you are going to be doing all your BDS C development work. Make
t h a t a r e a t h e c u r r e n t l y l o g g e d d r i v e / u s e r a r e a , a n d c o p y a l l t h e fi l e s l i s t e d i n s t e p 3
(except TAIL.C) here. If the file CCONFIG.COM is provided on your distribution disk
s e t (i t w o u l d b e t h e l a s t fi l e o f t h e p a c k a g e) , t h e n c o p y i t i n t o y o u r c u r r e n t l y
l o g g e d d r i v e / u s e r a r e a a n d s k i p t h e r e s t o f t h i s s t e p . I f C C O N F I G . C O M i s n o t
provided, then copy in the files CCONFIG.H, CCONFIG.C, and CCONFIG2.C. Make
sure you have at least 50K of free disk space, then issue the commands:

Page 2 BD Software

BDS C User’s Guide Introduction

cc cconfig.c -e5000
cc cconfig2.c -e5000
clink cconfig cconfig2

 8. Enter the command

cconfig

 9. You should now be under the control of the CCONFIG utility. If you have chosen to
u s e a d e f a u l t l i b r a r y a r e a , t h e n p i c k o p t i o n s 0) a n d 1) t o d e fi n e t h a t a r e a . T h e n g o
through as many of the other options as you wish to customize. When you are done,
give the “q” command to quit, and let CCONFIG write out the changes. You now have
n e w v e r s i o n s o f C C . C O M a n d C L I N K . C O M t h a t h a v e b e e n c u s t o m i z e d f o r y o u r
system. (Note that in Chapter 1 of the User’s Guide, the sequence given for compiling
CCONFIG is incorrect. Be sure to use the sequence shown in the previous step, unless
you were provided with a pre-compiled CCONFIG.COM.)

10. I f y o u r C P / M s y s t e m k n o w s a b o u t c o m m a n d p a t h s e a r c h i n g (a s , f o r e x a m p l e ,
w h e n r u n n i n g u n d e r Z C P R o r M i c r o S h e l l) , t h e n p l a c e c o p i e s o f t h e C C . C O M
a n d C L I N K . C O M c o m m a n d s j u s t c r e a t e d , p l u s C L I B . C O M f r o m t h e d i s t r i b u t i o n
package, into the system command directory. (You may also wish to place TAIL.COM
there.)

11. If you have chosen to select a default library area separate from your BDS C work area,
t h e n y o u c a n n o w t e s t t h e d e f a u l t l i b r a r y a r e a f e a t u r e . T o d o s o , c h o o s e a n e m p t y
drive/user area combination. If your system does not support command path searching,
then place copies of only the two files CC.COM and CLINK.COM, as created above,
i n t o t h i s n e w e m p t y a r e a . N e x t , c o p y T A I L . C i n t o t h i s n e w a r e a , a n d t h e n i s s u e t h e
s a m e s e q u e n c e o f c o m m a n d s a s s h o w n i n s t e p 4 a b o v e . T h i n g s s h o u l d h a p p e n
exactly as described in step 5.

12. N o w fi n i s h r e a d i n g t h e r e s t o f t h e U s e r ’ s G u i d e , b e c a u s e e v e r y t h i n g i s
working perfectly.

1.3 Support

F o r e m e r g e n c y t e c h n i c a l h e l p w i t h B D S C , t h e a u t h o r i s g e n e r a l l y a v a i l a b l e f o r t e l e p h o n e
consultation free of charge. If you call and get the answering machine, please briefly describe
your problem and note the best time and place where you may be reached. I will do my best to
return your call as soon as possible.

I t i s o f t e n n e c e s s a r y f o r m e t o s e e t h e e x a c t c o d e y o u h a v e w r i t t e n i n o r d e r t o d e t e r m i n e t h e
nature of an obscure bug; i.e., is it a compiler bug or a coding error? If you have a program or
program fragment you would like to have me look at, please put it on a disk (if typing it in would
take longer than a minute) and include a) an example of what it does, and b) your idea of what it
should do. If what you have is indeed a compiler bug, I will fix it and get an update out to you
free of charge as soon as possible. If the problem is yours, you’ll be so informed.

BD Software Page 3

November 1988 BDS C User’s Guide

The C User’s Group is an organization that manages a library of contributed software, provides
compiler updates to registered BDS C users and publishes an excellent magazine to announce
l i b r a r y c o n t r i b u t i o n s a n d p r o v i d e s t a t e - o f - t h e - a r t C l a n g u a g e n e w s a n d a r t i c l e s . W h i l e n o t
affiliated with BD Software, the CUG has for several years been the central depository for user-
s u b m i t t e d a p p l i c a t i o n s w r i t t e n i n B D S C . T h e g r o u p i s n o w e x p a n d i n g t o s u p p o r t o t h e r C
compilers and related applications. A membership application form for the CUG is included with
this BDS C package.

1.4 No Royalties, Of course!

There are no library usage licenses or royalty contracts connected with this package. Users are
free to develop software in BDS C and market the resulting object code, along with any functions
that may have been taken from the BDS C library, without paying any royalties to BD Software.
The whole idea behind this policy is to encourage potential software vendors to use C for their
development work. Note that this has always been the policy with BDS C, since the package first
went on sale in 1979. Other vendors have had to learn the hard way…

If software authors using BDS C for their product development would please mention that fact in
the documentation for their products, it would be highly appreciated. In the past, I’ve been both
flattered and perturbed to find literal pieces of BDS C library source code in the libraries of other
C compiler packages; this probably wouldn’t have bothered me had I at least been given some
credit for my code.

1.5 Objectives and Limitations

The BDS C Compiler is the implementation of a healthy subset of the C Programming Language
1originally developed at Bell Laboratories in conjunction with the Unix operating system . The

compiler itself runs on 8080/Z80 microcomputer systems equipped with the CP/M-80 operating
system, and generates code to be run either under CP/M or in any kind of dedicated 8080/Z80
h a r d w a r e e n v i r o n m e n t c o n t a i n i n g a t l e a s t a t o k e n a m o u n t o f R A M f o r s t a c k a n d s c r a t c h p a d
memory.

The main objective of this product is to translate a bit of the powerful, structured programming
p h i l o s o p h y o n w h i c h t h e U n i x o p e r a t i n g s y s t e m i s b a s e d f r o m t h e m i n i c o m p u t e r t o t h e
microcomputer environment. BDS C provides an efficient and friendly environment in which to
develop CP/M utility applications or stand-alone system software, with emphasis on an elegant,
efficient human interface for both compiler and end-application usage.

1. See The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie (Prentice Hall, 1978) for a complete description__________________________
of the language. This guide deals only with details specific to the BDS C implementation; it does not attempt to teach the C
language.

Page 4 BD Software

BDS C User’s Guide Introduction

1.6 System Requirements

The practical minimum hardware configuration required by BDS C is a 40K CP/M 2.x system
with either two disk drives of at least 100K capacity each, or at least one drive of 200K capacity.
While it is possible to use the package on a system with only one low-capacity disk drive, such
use is not recommended.

B D S C l o a d s a n e n t i r e s o u r c e fi l e i n t o m e m o r y a t o n c e (m a k i n g u s e o f t h e e n t i r e a v a i l a b l e
memory space) and performs the compilation directly in RAM, as opposed to passing the source
t e x t “ t h rough a window” (operating on disk files). This allows a compilation to proce e d q u i t e
rapidly (in contrast to conventional compilers). A consequence of this scheme is that a source file
m u s t fi t e n t i r e l y i n t o m e m o r y f o r t h e c o m p i l a t i o n . W h i l e t h i s m a y s o u n d r e s t r i c t i v e a t fi r s t ,
consider: a program in C is actually a collection of many smaller functions, stemming from a
single main function at the top level. Each function is treated as an independent entity by the

 c o m p i l e r , a n d m a y b e c o m p i l e d s e p a r a t e l y f r o m t h e o t h e r f u n c t i o n s t h a t m a k e u p a c o m p l e t e
program. Thus, a single program may be spread out over many source files, where each source
fi l e c o n t a i n s a v a r i a b l e n u m b e r o f f u n ctions. Partit i o n i n g a p r o g r a m i n t o s e v e r a l fi l e s a c t u a l l y
h e l p s t o m i n i m i z e c o m p i l a t i o n t i m e f o l l o w i n g m i n o r c h a n g e s , a s w e l l a s k e e p t h e i n d i v i d u a l
source files from overflowing available memory restrictions.

1.7 Potential System Incompatibilities

This section warns of several potential compatibility problems and describes how to reconfigure
the package “around” those problems.

The BDS C “run-time package” is a 1.5K binary file named “C.CCC” that is always attached
 onto the beginning of compiled programs during linkage. The source code to C.CCC, written in

a s s e m b l y l a n g u a g e c o m p a t i b l e w i t h A S M . C O M , M A C . C O M a n d M 8 0 . C O M , i s p r o v i d e d a s
“ C C C . A S M ” . I n t h e f o l l o w i n g d i s c u s s i o n o f s y s t e m i n c o m p a t i b i l i t i e s , t h e s o l u t i o n t o a g i v e n
problem may involve making a change in the run-time package and “creating a new C.CCC”.
The exact sequence of commands necessary to create a new C.CCC from the CCC.ASM source
v a r i e s d e p e n d i n g o n w h e t h e r y o u a r e u s i n g A S M / L O A D , M A C / L O A D o r M 8 0 / L 8 0 . S e e t h e
comments at the beginning of CCC.ASM for detailed assembly instructions using each of these
different assembler packages.

1.7.1 Systems with a Non-Standard User Number Range

The v1.6 run-time package file-I/O mechanism for BDS C presumes that the target programs are
being run on a standard CP/M system where the “user area” numbers may range from user 0 to
u s e r 3 1 . S i n c e o n l y 5 - b i t s a r e a l l o c a t e d f o r u s e r - n u m b e r m e m o r y w i t h i n t h e i n t e r n a l fi l e
descriptor routines, standard BDS C generated COM files may not run on certain “CP/M-like”
operating systems which support user numbers larger than 31. In order to fix this problem, the
symbol USAREA has been added to the configuration area at the start of the run-time package
source file (CCC. A S M) . I f y o u a r e e x p e r i e n c ing problems opening files on your non-standard
C P / M s y s t e m , t r y c h a n g i n g t h i s s y m b o l t o F A L S E , r e - a s s e m b l i n g C C C . A S M t o y i e l d a n e w
C.CCC, and re-linking your C program with this new version of C.CCC. Note that while this fix

BD Software Page 5

November 1988 BDS C User’s Guide

w i l l a l l o w y o u r p r o g r a m s t o r u n , y o u w i l l n o l o n g e r b e a b l e t o m a k e u s e o f t h e u s e r - n u m b e r
prefix feature when specifying filenames at run-time. All files will be expected to reside in the
currently-logged user area. Drive prefixes may still be specified, of course.

1.7.2 CDB and Your System’s Restart Vectors

The CDB symbolic debugger system requires, for its standard operation, the availability of an
unused restart vector down in low system memory. Out of the eight physical restart vectors on
every system, two (RST 0 and RST 7) are always reserved for use by CP/M; the others may or
m a y n o t b e u s e d d e p e n d i n g o n y o u r s y s t e m i m p l e m e n t a t i o n . B y d e f a u l t , C D B c o m e s p r e -
configured to use RST 6 (location 0030h) for its debugging operation. If RST 6 is already used
by your system (this may be the case if your system uses interrupt-driven console I/O), then you
w i l l h a v e t o p i ck an alternate restart l o c a t i o n . C o n s u l t y o u r s y s t e m d o c u m e n t a t i o n t o fi n d o u t
which restart vectors are unused.

T h e r u n - t i m e p a c k a g e c a n b e c o n fi g u r e d t o i n i t i a l i z e t h e C D B r e s t a r t v e c t o r t o a c t a s a C D B
“no-op”, allowing C programs compiled using the CC option –k to execute properly whether or
not they are invoked under CDB. By default, the package does not initialize restart locations; this
p r e v e n t s c o m p i l e d p r o g r a m s f r o m c o m i n g u p a n d w i p i n g o u t w h a t m i g h t p o s s i b l y b e v i t a l
i n t e r r u p t h a n d l i n g v e c t o r s o n y o u r s y s t e m . O n c e y o u h a v e dec i d e d o n a s a f e r e s t a r t v e c t o r t o
assign to CDB operation, then 1) change the equated symbol “USERST” in CCC.ASM to TRUE,
2) set the “RSTNUM” symbol to the value of the restart location you want to use, and 3) create a
n e w C . C C C . R e m e m b e r t h a t i f y o u d e c i d e t o u s e a r e s t a r t o t h e r t h a n R S T 6 , t h e n y o u m u s t
rebuild CDB as described in the CDB chapter.

1.7.3 BDOS and BIOS Calls On Some CP/M “Look-Alike” Systems

T h e b i o s , b d o s l i b r a r y f u n c t i o n s a r e p r o v i d e d w i t h B D S C a s g e n e r a l - p u r p o s e h o o k s i n t o t h e
low-level system interface of CP/M. These functions grant the C programmer access to all CP/M
2.x system calls, and most system calls on CP/M “look alike” and “extended” operating systems.

To achieve total generality, though, the bdos and bios functions make certain assumptions about
w h i c h r e g i s t e r s C P / M ’ s B D O S a n d B I O S u s e t o r e t u r n r e s u l t s f r o m s y s t e m c a l l s . T h e s e
a s s u m p t i o n s a r e v a l i d u n d e r a l l C P / M s y s t e m s, but do not necessarily h o l d t r u e u n d e r c e r t a i n
CP/M “look-alike” systems (such as SDOS or CDOS). If you are trying to use the bios or bdos
f u n c t i o n s a n d t h i n g s d o n ’ t s e e m t o b e w o r k i n g c o r r e c t l y , c h e c k t o m a k e s u r e y o u r o p e r a t i n g
system returns BDOS values in the HL register and BIOS values in the A register…if this is not
t h e c a s e , y o u m u s t r e w r i t e t h e b d o s a n d / o r b i o s f u n c t i o n s t o o b t a i n o p e r a t i n g s y s t e m r e t u r n
values from the proper registers.

The bios library function as supplied with BDS C makes the assumption that location 0000h of
your system (the first instruction of the CP/M base page) contains a direct jump to the second
entry (wboot) in the BIOS jump vector table. If this is not the case, such as on the Xerox 820, the
b i o s f u n c t i o n will no t w o r k c o r r e c t l y o n y o u r s y s t e m a n d y o u m u s t r e w r i t e i t t o c o m p u t e t h e
address of the BIOS vector table in whichever manner is appropriate for your particular system.

Page 6 BD Software

BDS C User’s Guide Introduction

1.8 How to Use The Compiler

1.8.1 The Commands and Primary Data Files

The main BDS C package consists of four executable commands:

CC.COM C Compiler -- phase 1
CC2.COM

C Compiler -- phase 2
CLINK.COM C Linker
CLIB.COM C Librarian

and three data files that are usually required by the linker:

C.CCC Run-time initializor and subroutine module
DEFF.CRL Standard ("Default") function library
DEFF2.CRL More standard library functions

CC.COM and CC2.COM together comprise the actual compiler. CC reads in a given source file
from disk, processes it, leaves an intermediate file in memory, and automatically loads in CC2 to

2finish the compilation and produce a CRL (C relocatable object module) file as output. The CRL
file contains the generated machine code in a special relocatable format.

The linker, CLINK, accepts a CRL file containing a “main” function and proceeds to conduct a
search through all given CRL files (then DEFF.CRL, DEFF2.CRL and DEFF3.CRL if present,
automatically) for needed subordinate functions. When all such functions have been linked, a
COM file is produced.

For convenience, th e C L I B l i b r a r i a n p r o g r a m i s p r o v i d e d f o r t h e manipulation of CRL object
libraries.

1.8.2 Configuration

Make sure to have your master distribution disk safely tucked away somewhere
before attempting any of the modifications described in this section!

A s d i s t r i b u t e d , B D S C c o m m a n d s s h o u l d s i m p l y c o m e u p r u n n i n g u n d e r a n y C P / M s y s t e m
(C P / M v e r s i o n 2 o r a b o v e , t h a t i s) . T h e r e a r e s e v e r a l u s e r - c o n fi g u r a b l e , s y s t e m - d e p e n d e n t
features of the compiler and linker that may be controlled by the user to “custom-fit” the package
to specific systems. This subsection explains each of those options and how to select them. Note
that no special configuration procedure should be needed in order to run the compiler “right out
of the box”.

2. I f d e s i r e d , t h e i n t e r m e d i a t e fi l e p r o d u c e d b y C C m a y b e w r i t t e n t o d i s k a n d p r o c e s s e d b y C C 2 s e p a r a t e l y ; i n t h a t c a s e , t h e
intermediate file is given the extension .CCI

BD Software Page 7

November 1988 BDS C User’s Guide

1.8.2.1 Compiling CCONFIG.C

T h e r e a r e s e v e r a l u s e r - c o n fi g u r a b l e f e a t u r e s i n C C . C O M a n d C L I N K . C O M c o n t r o l l e d b y
s p e c i fi c b y t e s o f m e m o r y v e r y c l o s e t o t h e b e g i n n i n g o f e a c h c o m m a n d fi l e . T h e p r o g r a m
C C O N F I G . C h a s b e e n p r o v i d e d t o a u t o m a t e p r o c e s s o f c o n fi g u r i n g t h e s e o p t i o n b y t e s f o r
your specific system.

T o c o m p i l e C C O N F I G . C , fi r s t c o p y t h e f o l l o w i n g s e v e n fi l e s i n t o a f r e e w o r k a r e a o n y o u r
system: CC.COM, CC2.COM, DEFF.CRL, DEFF2.CRL, C.CCC, STDIO.H, CCONFIG.C. You
should have at least 40K free in order to perform the following compilation.

Now enter the command:

A>cc cconfig.c -e5000

 The compiler should respond with something like:

BD Software C Compiler v1.60 (part I)
3K elbowroom

BD Software C Compiler v1.60 (part II)
14k left over

A>

 T h e r e w i l l b e a delay of about 45 seconds af t e r t h e fi r s t l i n e i s p r i n t e d , a n d a n o t h e r d e l a y o f
about 10 seconds after the third line (assuming a 4 MHz CPU clock rate). When control returns
to command level, enter the command:

A>clink cconfig

 The Linker will respond with:

BD Software C Linker v1.6

Last code address: 4EAE
Externals start at 5000, occupy 012C bytes, last byte at 512B
Top of memory: D305
Stack space: 81DA
Writing output...
24K link space remaining

A>

 You should now find that the file CCONFIG.COM has been created. Don’t erase it; you’ll be
using it in the next section.

1.8.2.2 CC and CLINK configuration

Read this entire section first so that you understand what the function of each CC/CLINK options
is, then run CCONFIG.COM with copies o f C C . C O M a n d C L I N K . C O M b e ing present in the
current directory in order to configure CC and CLINK for your own system.

3Both CC.COM and CLINK.COM contain an identically structured ten-byte configuration block.
The structure of the block is as follows:

3. The starting address of the block for CC.COM is 0155h, and for CLINK it is 0103h.

Page 8 BD Software

BDS C User’s Guide Introduction

Addr. Function Default_value [hex]___

base+0 Default library disk FF (current)
base+1 Default library user area FF (current)
base+2 Disk where SUBMIT files are processed 00 (disk A)
base+3 Poll console for interrupts? 01 (yes)
base+4 Suppress warm boot when finished? 00 (yes)
base+5 Strip parity bits from source input? 01 (yes)
base+6 Recognize user area mechanism? 00 (yes)
base+7 Write RED error file? 00 (don’t)
base+8 Optimization mode 80 (short code)
base+9 Default CDB restart vector 06 (rst 6)

Each configuration item in the block is exactly one byte in length. Note that although all possible
numeric values for the options are explained in detail below, it is not necessary for the first-time
u s e r t o b e c o n c e r n e d w i t h t h o s e e x a c t v a l u e s a s C C O N F I G . C O M w i l l p r o m p t w i t h v e r b a l
explanations and accept non-numerical responses.

T h e fi r s t t w o c o n fi g u r a t i o n b y t e s s p e c i f y a d e f a u l t d i s k d r i v e a n d use r a r e a t o b e t r e a t e d a s a
“default library area” by CC and CLINK. CC.COM searches this area to find the files named in

4#include directives when the filename is enclosed in angle brackets , and also for CC2.COM (the
second phase of compilation). CLINK searches the default library area for the files DEFF.CRL,
D E F F 2 . C R L , D E F F 3 . C R L (i f p r e s e n t) , C . C C C , a n d o t h e r C R L fi l e s n a m e d o n t h e C L I N K

5command line that cannot be found in the directory where the “main” CRL file resides. For the
default library disk, a value of 0 specifies drive A, 1 specifies drive B, etc., and a value of FFh
(255 decimal) specifies that the currently-logged disk (at the moment CC or CLINK is invoked)
is to be used as the default library disk. For the default library user area, the values 0-31 denote
the corresponding user area, and a value of FFh (255 decimal) specifies that the current user area
(at the moment CC or CLINK is invoked) is to be the default library user area. Both the library
d i s k a n d u s e r a r e a c o m e c o n fi g u r e d t o F F h ; t h u s , t h e v 1 . 5 (a n d l a t e r) d i s t r i b u t i o n v e r s i o n s o f
compiler and linker assume that the currently logged drive and user area contain all library files.

T o s u m m a r i z e : t h e fi r s t t w o c o n fi g u r a t i o n b y t e s a l l o w u s e r s w i t h l a r g e - c a p a c i t y d i s k s t o p i c k
some particular drive and user area in which to keep all standard header and library files. The
library disk and user area bytes should be considered together as a unit; if you change one, you’ll
probably also want to change the other.

T h e t h i r d c o n fi g u r a t i o n b y t e d e s i g n a t e s t h e d i s k d r i v e c o n t a i n i n g t h e $ $ $. S U B fi l e t h a t e x i s t s
during “Submit File” processing. The possible values are the same as for the default library disk
described above.

CLINK always tries to erase pending submit files when an error occurs, while CC only tries to do
so when the –x option is given. Since most systems always place the $$$.SUB file on drive A,
that is the way CC and CLINK are configured by default. But, if the user has customized his
system to put the $$$.SUB file on, say, the current drive instead of always on drive A, then this
byte should be changed from 01h to 0FFh.

4. F i l e n a m e s e n c l o s e d i n d o u b l e q u o t e s a l w a y s c a u s e t h e # i n c l u d e d i r e c t i v e t o s e a r c h t h e c u r r e n t d i r e c t o r y f o r t h e n a m e d fi l e ,
regardless of configuration.

5. the L2 linker may also be configured to search a default drive/user area; to do so, it is necessary to customize the L2.C source file
and recompile L2 as per the compilation instructions specified in the comments at the start of L2.C

BD Software Page 9

November 1988 BDS C User’s Guide

The fourth configuration byte is a flag telling CC or CLINK whether or not the system console
s h o u l d b e p o l l e d f o r t h e i n t e r r u p t c h a r a c t e r (c o n t r o l - C) d u r i n g e x e c u t i o n o f t h e c o m m a n d . I f
e n a b l e d (n o n - z e r o) , t h e n a n y i n p u t t y p e d o n t h e c o n s o l e b y t h e u s e r d u r i n g e x e c u t i o n o f t h e
c o m m a n d w i l l b e i g n o r e d u n l e s s c o n t r o l - C i s t y p e d , i n w h i c h c a s e t h e c o m m a n d w i l l b e
i m m e d i a t e l y a b o r t e d a n d c o n t r o l w i l l r e t u r n t o c o m m a n d l e v e l . I f d i s a b l e d (z e r o) , t h e n t h e
c o n s o l e w i l l n e v e r b e p o l l e d . T h i s i s u s e f u l u n d e r c e r t a i n i n t e r r u p t d r i v e n s y s t e m s t h a t c a n
recognize type-ahead and handle interruption on their own without requiring transient commands
to poll the console.

T h e fi f t h c o n fi g u r a t i o n b y t e c o n t r o l s w h e t h e r C C a n d C L I N K p e r f o r m a “ w a r m - b o o t ” w h e n
finished with their tasks, or return directly to the CCP without any disk activity. The commands
come configured to return directly to the CCP, but on certain “fake” CP/M systems (I’ve been
told the CROMIX CP/M emulator is one example), directly returning to the CCP does not work
c o r r e c t l y . T h i s i s p r o b a b l y b e c a u s e t h e o p e r a t i n g s y s t e m d o e s n ’ t p a s s a v a l i d s t a c k pointer t o
transient commands, and when CC or CLINK tries to return, it crashes the system. If you run the
compiler and it bombs after writing a correct output file, try setting the warm-boot byte to 01 to
force warm boots on program termination.

The sixth byte controls the stripping of bit 7, the parity bit, from each character of source file
i n p u t t o t h e c o m p i l e r . I f t r u e , a s c o n fi g u r e d b y d e f a u l t , a l l p a r i t y b i t s a r e s t r i p p e d d u r i n g
c o m p i l a t i o n . T h i s a v o i d s t h e p r o b l e m s c a u s e d b y t e x t e d i t o r s t h a t u s e p a r i t y b i t s t o c o n v e y
f o r m a t t i n g i n f o r m a t i o n . C e r t a i n a p p l i c a t i o n s , t h o u g h , r e q u i r e p a r i t y t o n o t b e s t r i p p e d . F o r
e x a m p l e , s o m e f o r e i g n - l a n g u a g e o r d u a l - l a n g u a g e c o m p u t e r s u s e b i t 7 t o r e p r e s e n t a l t e r n a t e
character sets in string operations. If you have such a system, change this configuration byte to
false (zero). Note: this byte has no effect in CLINK’s configuration block.

The sevent h c o n fi g u r a t i o n b y t e i s i n t e n d e d f o r use only in those customized operating system
environments that perform transparent user area selection for transient programs. MICROSHELL
i s o n e s y s t e m u n d e r w h i c h t h i s o p t i o n w o u l d b e u s e f u l . I f t r u e (n o n - z e r o) , t h e n a l l u s e r - a r e a
selection (for source and library files) is inhibited during compilation and linkage, allowing your
operating system to select a user area as per its own particular algorithms. If this option is set to
true, then the default library user area configuration byte (the second byte of the configuration
blocks) has no effect.

T h e e i g h t h c o n fi g u r a t i o n b y t e c o n t r o l s w h e t h e r o r n o t a n e r r o r d o c u m e n t a t i o n fi l e i s
automatically written for the benefit of the RED text editor. If set to true (01), then whenever
there are errors in the source file, the RED error file PROGERRS.$$$ is automatically written to
d i s k . T h e n t h e u s e r m a y , b y s i m p l y t y p i n g t h e c o m m a n d R E D , i n v o k e R E D . C O M u p o n t h e
buggy source file and have all errors pointed out automatically. If the RED error control byte is
set to false (00), then the compiler option –W must be specified to cause RED error file output.

The ninth configuration byte controls object code optimization for the current compilation:

• A v a l u e o f 0 0 s p e c i fi e s o p t i m i z a t i o n f o r spe e d o n l y , s o t h a t t h e f a s t e s t p o s s i b l e c o d e
sequences are used. This will usually result in longer code than normal.

• A value of 80h (the default) specifies optimization for space, resulting in the compacting
of certain code sequences into calls to equivalent run-time package subroutines.

Page 10 BD Software

BDS C User’s Guide Introduction

• If any of the lower 7 bits of the configuration byte are true, then “restart optimization” is
to be performed by taking advantage of the corresponding restart vector on the target
c o m p u t e r . T h e m a p p i n g o f b i t s i s b 0 - r s t 1 , b 1 - r s t 2 , … , b 6 - r s t 7 . I n o r d e r f o r r e s t a r t
optimization to work, a special version of the run-time package must be created with the
corresponding restart vector equates set TRUE so that proper initialization of the target
system’s restart vectors is performed on application start-up.

The tenth (and final) configuration byte specifies the default restart vector to be used for CDB (C
D e b u g g e r) i n t e r f a c i n g . T h e v a l u e s p e c i fi e d b e c o m e s t h e d e f a u l t a r g u m e n t t o t h e – K c o m p i l e r
o p t i o n . T h e d e f a u l t v a l u e i s 6 (u s e r s t 6) , a n d t h e d i s t r i b u t e d c o m p i l e d v e r s i o n o f C D B i s
correspondingly set up to use rst 6.

1.8.2.3 CC2 Configuration

C C 2 . C O M r e q u i r e s n o c o n fi g u r a t i o n ; C C . C O M p a s s e s a l l r e l e v a n t i n f o r m a t i o n t o C C 2 . C O M
upon automatic transfer of control during compilation.

1.8.2.4 Run-Time Package Options

C C C . A S M , t h e s o u r c e fi l e o f t h e B D S C r u n - t i m e p a c k a g e , c o n t a i n s s o m e e q u a t e d s y m b o l s
w h i c h c o n t r o l o p t i o n s t h a t m a y b e c u s t o m i z e d b y t h e u s e r . I f y o u d e c i d e t o a l t e r a n y o f t h e
described options, you must re-assemble the run-time package object module according to the
directions given in the comments at the beginning of CCC.ASM, resulting in the creation of a
new run-time package object module, C.CCC.

The options described in this section may be altered in the run-time package without requiring
any modification to the standard library. For information on customizing the run-time package
and standard library for a drastically different environment (e.g., for a ROM-based application),
see the “Customized Environments” appendix.

• The USAREA symbol specifies whether or not the target system recognizes the “user
area” mechanism of CP/M. Setting this to FALSE eliminates all calls to the get/set user
area BDOS function.

• The USERST symbol specifies whether or not a restart vector is reserved for use by the
CDB debugger. If TRUE, then the RSTNUM symbol specifies the restart vector used,
and causes an initialization of that restart vector so that programs compiled with –K (the
CDB debugger option) run stand-alone (i.e., not under control of CDB) can still execute
correctly.

• The USERST and RSTNUM symbols in CCC.ASM control the mechanism whereby a
restart location in the CP/M base page (usually RST 6, at location 0030h) is set up allow
C programs compiled with the –k CC debugger option but executed independently of

 CDB (the c debugger) to execute properly. As distributed, USERST is set to FALSE,
and programs compiled using –k will not run unless invoked by CDB. To allow these
programs to execute independently of CDB, first change the USERST symbol to TRUE.
If restart vector 6 is available on your system for use by BDS C, then everything is all
set. If the RST 6 location is used for I/O on your system, then you must find a restart

BD Software Page 11

November 1988 BDS C User’s Guide

vector that is not in use, alter RSTNUM accordingly, and make sure to customize and
recompile CDB to reflect the new restart vector assignment. CCC.ASM will then need
to be reassembled to create a new C.CCC run-time package object file.

• The ZOPT1, ZOPT2, …, ZOPT7 symbols control the initialization of up to seven restart
v e c t o r o p t i m i z a t i o n s e q u e n c e s . I n c o n j u n c t i o n w i t h t h e – z c o m p i l e r o p t i o n , t h i s
m e c h a n i s m a l l o w s f o r t h e c o l l a p s e o f s e v e r a l c o m m o n c o d e s e q u e n c e s i n t o o n e - b y t e
restart instructions in the compiled object code. To utilize this mechanism, first choose
w h i c h r e s t a r t v e c t o r s a r e a v a i l a b l e o n t h e t a r g e t c o m p u t e r s y s t e m . T h e n s e t t h e
c o r r e s p o n d i n g Z O P T n s y m b o l s t r u e i n C C C . A S M , a n d f o l l o w t h e p r o c e d u r e f o r r e -
crea t i n g t h e r u n - t i m e p a c k a ge object module (C.CCC). The new C.CCC may then be
linked with CRL files created via compilations using the –z option (with the available rst
vectors specified as arguments to –z).

N o t e : o b j e c t c o d e p r o d u c e d u n d e r t h i s p r o c e d u r e i s e x t r e m e l y n o n -
portable, and thus should not be distributed except for use under known
hardware configurations where the restart vectors utilized in the code are
known to be available for use by application programs.

• The NFCBS symbol specifies the maximum number of files that may be open at any one
time. This is set to 8 for the distribution version; if you need more files open at once,
c h a n g e N F C B S t o the desired value (each additional file makes the run-time packag e
about 38 bytes longer.)
I M P O R T A N T : I f y o u c h a n g e t h i s v a l u e , y o u m u s t r e - a s s e m b l e t h e e n t i r e a s s e m b l y
language library (as described in Chapter 2) in order to align addresses

1.8.2.5 STDIO.H and HARDWARE.H Configuration

The standard I/O header file stdio.h contains the defined constant NSECTS, which controls the
number of 128-byte sectors kept in memory for each file opened under the standard buffered I/O
library. NSECTS comes configured to 8, so that a full 1024 bytes of data are buffered during
b u f f e r e d I / O o p e r a t i o n s b e f o r e d i s k a c t i v i t y o c c u r s . I f y o u a r e r u n n i n g a s y s t e m t h a t h a s 1 K
sector blocking/de-blocking in the BIOS (Basic Input/Output System) portion of CP/M, then you
might want to change NSECTS from 8 to 1 in order to eliminate the redundant buffering and
gain 7/8 K bytes of free memory per open file (under buffered I/O only). If you do decide to
c h a n g e N S E C T S , a f t e r w a r d s d o n ’ t f o r g e t t o r e c o m p i l e S T D L I B 1 . C (t h e s o u r c e fi l e f o r t h e
f u n c t i o n s i n w h i c h t h e N S E C T S s y m b o l i s r e f e r e n c e d) . T h e n , u s e C L I B . C O M t o c o m b i n e
S T D L I B 1 . C R L , S T D L I B 2 . C R L a n d S T D L I B 3 . C R L t o c r e a t e a n e w D E F F . C R L . S e e t h e
“Customized Environments” appendix for more details about recompiling/reassembling the BDS
C standard library.

The HARDWARE.H header file provides a generalized interface to system-dependent hardware
d e v i c e s , s u c h a s d i r e c t I / O p o r t c o n t r o l t o b o t h t h e c o n s o l e a n d m o d e m d e v i c e s . B e f o r e a n y
programs which include HARDWARE.H are compiled, HARDWARE.H should be customized

6to reflect the hardware characteristics of the target computer system.

6. As distributed, only the TELED.C sample program (with its associated files) actually uses HARDWARE.H. If you do not know the
port and mask values of your machine’s I/O ports, everything will still work except for the TELED program.

Page 12 BD Software

BDS C User’s Guide Introduction

1.8.3 A Sample Compilation

A s a n e x a m p l e , h e r e i s t h e s e q u e n c e f o r c o m p i l i n g a n d l i n k i n g a s i m p l e s o u r c e fi l e n a m e d
TAIL.C:

The compiler is invoked with the command:

A>cc tail.c <cr>

 After printing its sign-on message, CC will read in the file TAIL.C from disk and crunch for a
w h i l e . I f t h e r e a r e n o e r r o r s , C C w i l l t h e n g i v e a m e m o r y u s a g e d i a g n o s t i c a n d l o a d i n
C C 2 . C O M . C C 2 w i l l d o s o m e m o r e c r u n c h i n g a n d , i f n o e r r o r s o c c u r , w i l l w r i t e t h e fi l e
TAIL.CRL to disk.

The next step brings in the linker:

A>clink tail -n <cr>

 This invocation of CLINK links TAIL.CRL with any needed library functions from DEFF.CRL
and DEFF2.CRL. The file TAIL.COM should be produced, ready for execution. The –n option
directs CLINK to make TAIL.COM do a “quick return” to CP/M without performing a warm-
boot. To test TAIL.COM, say:

A>tail -10 tail.c <cr>

 If everything is OK, then the last 10 lines of the text file TAIL.C should appear on the console
and control should return (silently and instantly) to CP/M command level.

IMPORTANT: The command lines for all COM files in the package should be
t y p e d i n t o C P / M w i t h o u t l e a d i n g b l a n k s . T h i s a l s o a p p l i e s t o C O M fi l e s
generated by the compiler, where leading blanks on the command line will cause
argc and argv to be miscalculated.

Following are the detailed command syntax descriptions:

1.8.4 CC — The Parser

Command format:

A>cc name.ext [options] <cr>

 Any name and extension are acceptable, although the conventional extension for C programs is
“.C”. CC will first try opening the file exactly as named; if no extension at all is given, and the
fi l e c a n n o t b e o p e n e d e x a c t l y a s s p e c i fi e d , t h e n C C w i l l a p p e n d a “ . C ” e x t e n s i o n o n t o t h e
filename and try once more to open it with the newly constructed name.

I f a n e x p l i c i t d i s k d e s i g n a t o r i s g i v e n f o r t h e fi l e n a m e (e . g . “ b : f o o . c ”) t h e n t h e s o u r c e fi l e i s
assumed to reside on the specified disk, and the compiler output also goes to that disk. Filenames

BD Software Page 13

November 1988 BDS C User’s Guide

g i v e n i n d o u b l e q u o tes to the #include directive, with n o e x p l i c i t u s e r - a r e a / d r i v e s p e c i fi c a t i o n
used, are obtained from the same disk as the master filename given on the command line.

T y p i n g a c o n t r o l - C a t a n y t i m e a f t e r i n v o k i n g C C w i l l a b o r t t h e c o m p i l a t i o n a n d r e t u r n t o
c o m m a n d l e v e l u n l e s s C C h a s b e e n c o n fi g u r e d t o i g n o r e t h e c o n s o l e , a s d e s c r i b e d i n t h e
configuration section above.

Following the source filename may appear a list of compilation options, each preceded by a dash.
The currently supported options are:

– a d [n] A u t o - l o a d s C C 2 . C O M f r o m d i s k d , u s e r a r e a n , f o l l o w i n g s u c c e s s f u l– a
c o m p l e t i o n o f C C ’ s p r o c e s s i n g . B y d e f a u l t , C C 2 i s a s s u m e d t o r e s i d e
either on the currently logged-in disk or on the default drive/user area as
defined in the configuration procedure. If the letter “z” is given for the
d i s k d e s i g n a t o r , t h e n a n i n t e r m e d i a t e “ . C C I ” fi l e i s w r i t t e n t o d i s k f o r
l a t e r p r o c e s s i n g b y a n e x p l i c i t i n v o c a t i o n o f C C 2 , a n d n o a t t e m p t i s
made to auto-load CC2.

– c D i s a b l e s t h e “ c o m m e n t n e s t i n g ” f e a t u r e , c a u s i n g c o m m e n t s t o b e– c
processed in the same way as by UNIX C. I.e., when –c is given, then
lines such as

/* printf("hello"); /* this prints hello */

are considered complete comments. If –c is not used, then the compiler
w o u l d e x p e c t a n o t h e r * / s e q u e n c e b e f o r e s u c h a c o m m e n t w o u l d b e
considered terminated.

– d x C a u s e s t h e C R L o u t p u t o f t h e c o m p i l e r t o b e w r i t t e n t o d i s k x i f n o– d
errors occur during CC or CC2. If the –a z option is also specified, then
– d s p e c i fi e s o n t o w h i c h d i s k t h e . C C I fi l e i s w r i t t e n . T h e d e f a u l t
d e s t i n a t i o n d i s k i s t h e s a m e d i s k f r o m w h i c h t h e s o u r c e fi l e w a s
obtained.

– e xxxx A l l o w s t h e s p e c i fi c a t i o n o f t h e e x a c t s t a r t i n g a d d r e s s (i n h e x) f o r t h e– e
external data area at run time. Normally, the externals begin immediately
f o l l o w i n g t h e l a s t b y t e o f p r o g r a m c o d e , a n d a l l e x t e r n a l d a t a a r e
accessed via indirection off a special pointer installed by CLINK into the
run-time package. When –e is used, the compiler can generate code to
access external data directly (using lhld and shld instructions) instead of
u s i n g t h e e x t e r n a l d a t a p o i n t e r . T h i s w i l l s h o r t e n a n d e n h a n c e t h e
performance of programs having much external data. Suggestion: don’t
u s e t h i s o p t i o n w h i l e d e b u g g i n g a p r o g r a m ; o n c e t h e p r o g r a m w o r k s
r e a s o n a b l y , t h e n c o m p i l e i t o n c e w i t h – e , p u t t i n g t h e e x t e r n a l s a t t h e
same place that they were before (since the code will get shorter the next
t i m e a r o u n d .) O b s e r v e t h e “ L a s t c o d e a d d r e s s ” v a l u e f r o m C L I N K ’ s
statistics printout to find out by how much the code size shrunk, and then
c o m p i l e i t a l l a g a i n u s i n g t h e a p p r o p r i a t e l o w e r a d d r e s s w i t h t h e – e
option. Don’t cut it too close, though, since you’ll probably make mods
to the program and cause the size to fluctuate, perhaps overlapping the

Page 14 BD Software

BDS C User’s Guide Introduction

explicitly specified external data area (a condition that CLINK will now
detect and report).
CC2 must be successfully auto-loaded by CC in order for –e to have any
effect.
See also the CLINK option –e for related details.
Note that CLINK will now print a warning message if the external data
area overlaps either part of the program or the operation system in the
final command file.

– m xxxx Specifies the starting location, in hex, of the run-time package (C.CCC)– m
w h e n u s i n g t h e c o m p i l e r t o g e n e r a t e c o d e f o r n o n - s t a n d a r d
environments.
The run-time package is expected to reside at the start of the CP/M TPA
b y d e f a u l t . I f a n a l t e r n a t i v e a d d r e s s i s g i v e n b y u s e o f t h i s o p t i o n , b e
sure to reassemble the run-time package and machine language library
for the given location before linking, and give the –l, –e and –t options
with appropriate address values when using CLINK. See Chapter 2 for
m o r e d e t a i l s o n c u s t o m i z i n g B D S C o b j e c t c o d e f o r n o n - s t a n d a r d
environments.
C . C C C , w h i c h a l w a y s r e s i d e s a t t h e s t a r t o f a g e n e r a t e d C O M fi l e ,
cannot be separated from main and other (if any) root segment functions.
CC2 must be s u c c e s s f u l l y a u t o - l o a d e d b y C C i n o r d er for –m to have
any effect.

– o Causes the generated code to be optimized for speed. Normally, the code– o
g e n e r a t o r r e p l a c e s c e r t a i n a w k w a r d c o d e s e q u e n c e s w i t h c a l l s t o
e q u i v a l e n t s u b r o u t i n e s i n t h e r u n - t i m e p a c k a g e ; w h i le this re d u c e s t h e
length of the code, it also slows execution down because of subroutine
linkage overhead. If –o is used, then many of those subroutine calls are
r e p l a c e d b y i n - l i n e c o d e . T h i s r e s u l t s i n f a s t e r (b u t l o n g e r) o b j e c t
programs.
For the fastest possible code, the –e option should be used in conjunction
with –o. For the shortest possible code, use –e (and –z if applicable) but
don’t use –o.
CC2 must be successfully auto-loaded by CC in order for –o to have any
effect.

– p Causes the source text to be displayed on the user’s console, with line– p
n u m b e r s a u t o m a t i c a l l y g e n e r a t e d , a f t e r a l l # d e fi n e a n d # i n c l u d e
substitutions have been completed. Note that this output may be directed
to the CP/M “list” device by typing control-P before invoking CC.

– r x R e s e r v e s x K b y t e s f o r t h e s y m b o l t a b l e . I f a n “ O u t o f s y m b o l t a b l e– r
space” error occurs, this option may be used to increase the amount of
space allocated for the symbol table. Alternatively, if you draw an “Out
of memory” error then –r may be used to decrease the symbol table size
and provide more room for source text. A better recourse after running
out of memory, though, would be to break the source file up into smaller
chunks. The default symbol table size is 10K (as if –r10 were specified).

BD Software Page 15

November 1988 BDS C User’s Guide

– w C a u s e s a n R E D - c o m p a t i b l e e r r o r fi l e , n a m e d P R O G E R R S . $ $ $, t o b e– w
written to disk if there are any fatal compilation errors, so RED may then
b e i n v o k e d t o q u i c k l y p e r u s e a n d c o r r e c t t h e e r r o r s f o r t h e n e x t p a s s
through the compiler.
N o t e : I f y o u h a v e a l r e a d y c o n fi g u r e d C C (w i t h C C O N F I G) t o a l w a y s
w r i t e t h e R E D fi l e u p o n e r r o r , t h e n – w f o r c e s t h e R E D fi l e t o n o t b e
written.

– x C a u s e s t h e d e l e t i o n o f p e n d i n g C P / M “ S U B M I T ” b a t c h a c t i v i t y– x
f o l l o w i ng a compilation in which any errors have occurred . W h e n e v e r
CC is used from a SUBMIT file, –x should appear on the CC command
line to erase the “$$$.SUB” temporary file before returning to command
level following an erroneous compilation. When CC is used stand-alone,
–x would just cause needless disk activity and should not be used.

– z T h i s o p t i o n i s u s e d t o s p e c i f y a l i s t o f r e s t a r t v e c t o r s t h a t w i l l b e– z
available on the target system for use by the compiled object program to
s h o r t e n c e r t a i n c o m m o n c o d e s e q u e n c e s . – z t a k e s a l i s t o f d i g i t s ,
separated by commas, corresponding to the restart vectors (from among
the seven vectors 1 through 7) to be used at run-time. For example, to
specify that rst 2, rst 3 and rst 5 are to be available, use:

-z2,3,5

 N o t e t h a t t h e r e s t a r tv e c t o r l i s t s p e c i fi e s m u s t c o r r e s p o n dt o a c u s t o m i z e d r u n - t i m ep a c k a g e
object module (C.CCC) assembled with the correspondingZOPTnsymbols set to TRUE. The
objectcode generatedusing this – z option must then be linked with the customized C.CCC.– z
Code generated using – z will n o t w o r ki f l i n k e d with the standarddistributionversion of the– z n o t
run-time package object module!

A single C source file may not contain more than 63 function definitions; remember, though, that
a C program may be made up of any number of source files, each containing up to 63 functions.

I f a n y e r r o r s a r e d e t e c t e d b y C C , t h e c o m p i l a t i o n p r o c e s s w i l l a b o r t i m m e d i a t e l y i n s t e a d o f
p r o c e e d i n g t o t h e s e c o n d p h a s e o f c o m p i l a tion or writing the . C C I fi l e t o d i s k (d e p e n d i n g o n
which options were given).

Execution speed: about 20 lines text/second. After the source file is loaded into memory, no disk
accesses will take place until after the processing is finished. Don’t assume a crash has occurred
until at least (n/20) seconds, where n is the number of lines in the source file, have elapsed since
the last disk activity was noticed… Then worry.

Examples:

A>cc foobar.c -r12 -ab <cr>

 invokes CC on the file foobar.c, setting symbol table size to 12K bytes. CC2.COM is auto-loaded_______
from disk B.

A>cc c:belle.c -p -o <cr>

 Page 16 BD Software

BDS C User’s Guide Introduction

i n v o k e s C C o n t h e fi l e b e l l e . c , f r o m d i s k C . T h e t e x t i s p r i n t e d o n t h e c o n s o l e (w i t h l i n e______
n u m b e r s) f o l l o w i n g # d e fi n e a n d # i n c l u d e p r o c e s s i n g .U n l e s s C C fi n d s e r r o r s , C C 2 . C O M i s
auto-loaded from either the currently logged disk or the default drive/user area (configured as per
section 1.8.2). The resulting code is optimized for speed.

1.8.5 CC2 — The Code Generator

Command format:

cc2 name <cr>

 Normally CC2.COM is loaded automatically by CC.COM and this command need not be used.
I f g i v e n e x p l i c i t l y , t h e n t h e fi l e n a m e . C C I w i l l b e l o a d e d i n t o m e m o r y a n d p r o c e s s e d . I f n o
errors occur, an output file named name.CRL will be generated and name.CCI (if present) will be
deleted.

CC2 does not take any options.

As with CC, an explicit disk designator on the filename causes the specified disk to be used for
input and output.

When CC auto-loads CC2, several bytes within CC2 are set according to the options given on the
CC command line. If CC2 is invoked explicitly (i.e., not auto-loaded by CC) then the user must
see to it that these values are set to the desired values before CC2 begins execution. Typically
t h i s w i l l n o t b e n e c e s s a r y , b u t i f y o u ’ r e v e r y l o w o n d i s k s t o r a g e a n d n e e d t o i n v o k e C C 2
separately, here are the data values that need to be set:

Addr Default Option Function________________________________
0103 00 -a True if CC2 has been auto-loaded, else 0
0104 01 -o 0 if -o used (optimize for speed), else 1
0105-6 0100h -m Base address of C.CCC at object run-time.
0107-8 none Explicit external address (if -e used)
0109 00 -e True if -e used, else 0

 The 16-bit values must be in reverse-byte order (low order byte first, high last). Note that not all
C C c o m m a n d l i n e o p t i o n s c a n b e s e t u p f o r a s t a n d - a l o n e r u n o f C C 2 , o n l y t h e o n e s s h o w n
above.
This information is provided for complet e n e s s o n l y ; o n l y v e r y r a r e l y s h o u l d a n y user have to
think about going in and explicitly setting these values for a CC2 run.

CC2 execution speed: about 70 lines/second (based on original source text.)

If a control-C is typed on the console input at any time during execution, then compilation will
abort, control will return to command level, and any pending submit file activity will be halted.

Example:

A>cc2 foobar <cr>

 BD Software Page 17

November 1988 BDS C User’s Guide

1.8.6 CLINK — The C Linker

Command format:

A>CLINK name [other names and options] <cr>____

 The file name.CRL must contain a main function; name.CRL and all other CRL files named (up
to the appearance of a –f option) will have all their functions loaded into the linkage. If the –f
o p t i o n a p p e a r s o n t h e c o m m a n d l i n e , t h e n a l l C R L fi l e s n a m e d f o l l o w i n g i t a r e s c a n n e d f o r
needed functions; i.e, only those functions known to be needed by previously loaded functions
(e i t h e r f r o m p r e v i o u s C R L fi l e s o r f r o m t h e o n e c u r r e n t l y b e i n g s c a n n e d) a r e l o a d e d i n t o t h e
l i n k a g e . W h e n a l l e x p l i c i t l y n a m e d C R L fi l e s h a v e b e e n s e a r c h e d , t h e s t a n d a r d l i b r a r y fi l e s
DEFF*.CRL will be scanned automatically for needed library functions. The order in which the
library files are searched is always the same: first DEFF.CRL, then DEFF2.CRL, and finally, if
supplied by the user, DEFF3.CRL. If the user writes functions having the same name as those in
any automatic library file, then such functions should always be placed in one of the CRL files
named explicitly on the command line. If placed in DEFF3.CRL, they would not get used unless
the similarly named functions in DEFF.CRL and DEFF2.CRL were deleted from those files.

By default, CLINK assumes all explicitly named CRL files reside on the currently logged disk,
and all library files (C.CCC and DEFF*.CRL) reside on the default drive and user area as defined
b y t h e c o n fi g u r a t i o n b l o c k . I f a n e x p l i c i t d r i v e d e s i g n a t o r p r e fi x e s t h e m a i n fi l e n a m e o n t h e
command line, then the given drive becomes the default for all CRL files named on the command
line. Each additional CRL file may contain a disk designator of the form “d:”, and/or a user area
prefix of the form “nn/”, to specify an explicit place to find the file. If both prefixes are used, the
user area prefix must come first.

I f a n a m e d C R L fi l e c a n n o t b e f o u n d a c c o r d i n g t o t h e s e a r c h r u l e s a b o v e , t h e n t h e d i r e c t o r y
specified by the default library drive and user area is also searched. This allows the user to place
commonly used library files in one default drive/user area and have them be accessible during
linkages performed in different drives and user areas.

If any unresolved references remain after all given CRL files have been searched, CLINK will
enter an “interactive mode”. Here the user will be shown the names of all missing functions and
be given the opportunity to specify other CRL files to search.

Control-C may be typed during execution to abort the linkage and return to command level.

I n t e r m i x e d w i t h t h e l i s t o f fi l e n a m e s t o s e a r c h m a y b e c e r t a i n l i n k a g e o p t i o n s , p r e c e d e d b y
dashes. Note that multiple single-letter options may be combined following a single dash. The
currently implemented options are:

– c d [n] I n s t r u c t s C L I N K t o o b t a i n l i b r a r y fi l e s (D E F F . C R L , D E F F 2 . C R L ,– c
C . C C C a n d p o s s i b l y D E F F 3 . C R L) a n d a n y C R L fi l e s n a m e d o n t h e
c o m m a n d l i n e b u t n o t f o u n d i n t h e c u r r e n t d r i v e / u s e r a r e a (o r o n t h e
drive specified as prefix to the “main” CRL filename) from disk d and
u s e r a r e a n . T h i s o p t ion is used to override the default drive / u s e r a r e a
s p e c i fi c a t i o n h a r d - w i r e d i n t o t h e C L I N K c o n fi g u r a t i o n b l o c k (s e e
section 1.8.2).

Page 18 BD Software

BDS C User’s Guide Introduction

– d [“args”] “Debug” mode: For quick testing, –d causes the COM file produced by– d
the linkage to be executed immediately instead of getting written to disk
as a COM file. If a list of arguments is specified enclosed in quotes, then
the effect is just as if the program was invoked from the CCP with the
given command line parameters.
–d should not be used for segments having load addresses other than at
the base of the TPA (i.e., –d should only be used for root segments).
D u e t o i n t e r n a l c o n fl i c t s , – d w i l l b e i g n o r e d i f t h e – n o p t i o n i s a l s o
given.

– e xxxx Forces the base of the external data area to be set to the value xxxx (hex).– e
Normally the external data area follows immediately after the end of the
g e n e r a t e d c o d e , b u t t h i s o p t i o n m a y b e g i v e n t o o v e r r i d e t h a t d e f a u l t .
This is necessary when chaining is performed (via exec, execl or execv)
to make sure that the new command’s notion of where the external data
begins is the same as the old command’s. To find out what value to use,
first CLINK all the CRL files involved with the –s option, but without
the –e option, noting the “Data starts at:” address printed out by CLINK
f o r e a c h fi l e . T h e n l i n k t h e m a g a i n , u s i n g t h e m a x i m u m o fa l l t h o s e
addresses as the operand of the –e option for all files except the one that
had the largest “Data starting address” during the first pass.
W h e n g e n e r a t i n g c o d e f o r R O M , t h i s o p t i o n s h o u l d b e u s e d t o p l a c e
externals at an appropriate location in r/w memory.
If the main CRL file (name.CRL) was compiled with the –e CC option
specified, then CLINK will automatically know about the address then
s p e c i fi e d o n t h e C C c o m m a n d l i n e ; b u t i f a n y o f t h e o t h e r C R L fi l e s
specified in the linkage contain functions compiled by CC without use of
t h e – e o p t i o n , o r w i t h t h e v a l u e g i v e n t o – e b e i n g d i f f e r e n t f r o m t h e
value used to compile the main function, the resulting COM file will not
work correctly. CRL files compiled without use of the CC –e option may
b e i n c l u d e d i n a l i n k a g e o n l y i f – e i s s p e c i fi e d t o C L I N K w i t h a n
argument exactly equal to the CC –e argument used to compile the main
CRL file.

– f (filename…) Causes all following named CRL files to be scanned instead of loaded.– f
CLINK automatically loads all functions in each CRL file named on the
c o m m a n d l i n e , u n t i l t h i s o p t i o n i s e n c o u n t e r e d , a t w h i c h p o i n t a l l
following CRL files are scanned. This means that only functions which
have been previously referenced by other functions, in some earlier file
o r i n t h e c u r r e n t fi l e , a r e l i n k e d i n t o t h e p r o g r a m . N o t e : T h i s n e w – f
option works differently from the –f of pre-1.50 versions of BDS C. –f
now works identically to the L2 linker’s “-L” option.

– l xxxx C a u s e s t h e l o a d a d d r e s s o f t h e g e n e r a t e d c o d e t o b e x x x x (h e x) . T h i s– l
o p t i o n i s o n l y n e c e s s a r y w h e n g e n e r a t i n g a n o v e r l a y s e g m e n t (i n
c o n j u n c t i o n w i t h – v) o r c r e a t i n g c o d e t o r u n i n a n o n - s t a n d a r d
environment. In the latter case, CCC.ASM must have been reconfigured
for the appropriate location and assembled (and loaded) to create a new

BD Software Page 19

November 1988 BDS C User’s Guide

version of C.CCC having origin xxxx. In this case the –e and –t options
should also be used to specify the appropriate r/w memory areas. –t xxxx
S e t s t a r t o f r e s e r v e d m e m o r y t o x x x x (g i v e n i n h e x a d e c i m a l) . T h e

7instruction lxi sp,x x x x is placed at the start of the generated COM file .x x x x
U n d e r C P / M , t h e v a l u e s h o u l d b e l a r g e e n o u g h t o a l l o w a l l p r o g r a m
code and local/external data to fit below it in memory at run-time. If you
are generating code to run in ROM, then the value given here should be
the highest address plus one of the read/write memory to be used for the
stack.

– n M a k e s t h e r e s u l t i n g C O M fi l e p r e s e r v e t h e C P / M C C P (C o n s o l e– n
C o m m a n d P r o c e s s o r) a t r u n - t i m e , i n s t e a d o f o v e r l a y i n g t h e C C P w i t h
the run-time stack. This reduces the available run-time memory by 2K
bytes, but allows the program to return instantly to command level after
execution without having to perform a warm-boot from disk. Therefore,
–n is useful for programs that are used often and do not require every
last bit of memory in the system. Note that this option has exactly the
same effect as running the NOBOOT command on the resulting COM
file; NOBOOT is p r o v i d e d s o t h a t p r o g r a m s l i n k e d w ith other linkers,
such as L2, may also be made to return to the CCP without performing a
warm-boot.
– n i s i g n o r e d i f t h e – t o p t i o n i s a l s o u s e d , b e c a u s e t h e m e c h a n i s m s
conflict and –t is given priority.

– o newname C a u s e s t h e C O M fi l e o u t p u t t o b e n a m e d n e w n a m e . C O M . I f a d i s k– o
designator precedes the name, then the output is written to the specified
d i s k . B y d e f a u l t , t h e o u t p u t g o e s t o t h e c u r r e n t l y l o g g e d - i n d i s k . I f a
s i n g l e - l e t t e r d i s k d e s i g n a t o r f o l l o w e d b y a c o l o n i s g i v e n w i t h o u t a
fi l e n a m e , t h e n t h e C O M fi l e i s w r i t t e n t o t h e s p e c i fi e d d i s k w i t h o u t
affecting the name of the file.

– r xxxx R e s e r v e s x x x x (h e x) b y t e s f o r t h e f o r w a r d - r e f e r e n c e t a b l e (d e f a u l t s t o– r
about 600h). This option may be used to allocate more table space when
a “ref table overflow” error occurs.

– v Specifies that an overlay segment is being created. The run-time package– v
is not included in the generated code, since it is assumed that an overlay
w i l l b e l o a d e d i n t o m e m o r y w h i l e a c o p y o f t h e r u n - t i m e p a c k a g e i s
a l r e a d y r e s i d e n t e i t h e r a t t h e b a s e o f t h e T P A b y d e f a u l t , o r a t t h e
address specified in the –m option to CC.

– w Writes a symbol table file with name name.SYM to disk, where name is– w
the same as that of the resulting COM file. This symbol file contains the
names and absolute addresses of all functions involved in the linkage. It
may be used with SID for debugging purposes, or by the –y option when
creating overlay segments (see below.)

7. Normally, when –t is not used, the generated COM file begins with the sequence:

lhld base+6 ;get BDOS pointer from base page
sphl ;initialize stack pointer to BDOS base

Page 20 BD Software

BDS C User’s Guide Introduction

– y sname R e a d s i n (“ y a n k s ”) t h e s y m b o l fi l e n a m e d s n a m e . S Y M f r o m d i s k a n d– y
u s e s t h e a d d r e s s e s o f a l l f u n c t i o n n a m e s d e fi n e d t h e r e f o r t h e c u r r e n t
l i n k a g e . T h e – w a n d – y o p t i o n s a r e d e s i g n e d t o w o r k t o g e t h e r f o r
creating overlays, as follows: when linking the “root” segment (the part
o f t h e p r o g r a m t h a t l o a d s i n a t t h e T P A , fi r s t r e c e i v e s c o n t r o l , a n d
contains the run-time utility package), the –w option should be given to
w r i t e o u t a s y m b o l t a b l e fi l e c o n t a i n i n g t h e a d d r e s s e s o f a l l f u n c t i o n s
p r e s e n t i n t h e r o o t . T h e n , w h e n l i n k i n g t h e o v e r l a y s e g m e n t s , t h e – y
option is used to read in the symbol table of the “parent” root segment
and thereby prevent multiple copies of common library functions from
being present at run-time. This procedure may extend down more than
one level: while linking an overlay segment, the –w option can be given
along with the –y option, causing an augmented symbol file to be written
containing everything defined in the read-in symbol file along with new
l o c a l l y d e fi n e d f u n c t i o n s . T h e n t h e o v e r l a y s e g m e n t c a n d o s o m e
o v e r l a y s o f i t s o w n , a n d s o o n d o w n a s m a n y l e v e l s a s i s d e s i r e d (o r
p r a c t i c a l .) N o t e t h a t t h e p o s i t i o n o f t h e – y o p t i o n o n t h e C L I N K
command line is significant; i.e, the symbol file named in the option will
be searched only after any CRL files specified to the left of the –y option
h a v e b e e n s e a r c h e d . T h u s , f o r b e s t r e s u l t s s p e c i f y t h e – y o p t i o n
i m m e d i a t e l y a f t e r t h e m a i n C R L fi l e n a m e . I f , u p o n r e a d i n g i n t h e
symbols from a SYM file, a symbol is found having the same name as an
already defined symbol, then a message to that effect is printed on the
console and the old value of the symbol is retained.
For more information on using –y for generating overlay segments, see
the appendix on overlays.

– z I n h i b i t s c l e a r i n g o f t h e e x t e r n a l d a t a a r e a t o z e r o d u r i n g r u n - t i m e– z
i n i t i a l i z a t i o n . I f – z i s u s e d , t h e n a l l e x t e r n a l s c o m e u p w i t h r a n d o m
values. Otherwise, externals come up all zeros.

Examples:

A>clink lisa -t 6000 -o joyce <cr>

 Here, CLINK expects the file LISA.CRL to contain a main function, which is then linked with all
f u n c t i o n s f r o m L I S A . C R L a n d a n y n e e d e d f u n c t i o n s from DEFF.CRL, DEFF2.CRL and, i f i t

8exists, DEFF3.CRL . A statistics summary is printed out when finished, the run-time stack is set
to start at 6000h and grow down (leaving memory at 6000h and above untouched by the COM
file when running), and the COM file itself is to be named JOYCE.COM.

A>clink b:nola 6/c:liz -f kathy -s <cr>

 In this example, CLINK load s a l l f u n c t i o n s f r o m N O L A . C R L (on drive B:) and LIZ.CRL (in
user area 6 on drive C:), links in any needed functions from KATHY.CRL (from disk B, since
t h e d i s k w h e r e N O L A . C R L w a s o b t a i n e d i s t h e d e f a u l t f o r t h i s l i n k a g e) , a n d D E F F . C R L ,
DEFF2.CRL and perhaps DEFF3.CRL (from the default disk/user area configured as per section
1 . 8 . 2) , a n d p r i n t s o u t a s t a t i s t i c s s u m m a r y w h e n d o n e . S i n c e n o – t o p t i o n i s g i v e n , C L I N K

8. D E F F 3 . C R L i s a u t o m a t i c a l l y s c a n n e d a s a u s e r - s u p p l i e d l i b r a r y fi l e i f i t e x i s t s a n d ther e a r e s t i l l u n r e s o l v e d r e f e r e n c e s a f t e r
DEFF.CRL and DEFF2.CRL have been scanned. If DEFF3.CRL is not found, no complaint is lodged by the linker.

BD Software Page 21

November 1988 BDS C User’s Guide

a s s u m e s a l l t h e T P A (T r a n s i e n t P r o g r a m A r e a) i s a v a i l a b l e f o r c o d e a n d d a t a . T h e C O M fi l e
generated is named NOLA.COM by default (since no –o option was given) and the file is written
to the currently logged in disk.

N O T E : W h e n s e v e r a l fi l e s t h a t s h a r e e x t e r n a l v a r i a b l e s a r e l i n k e d t o g e t h e r , t h e n t h e fi l e
containing the main function must contain all declarations of external variables used in all other
files. This is because the linker obtains the size of the external area from the main source file, and
this value is used to set up the appropriate parameter in the resulting COM file so that the library
f u n c t i o n e n d e x t () r e t u r n s t h e c o r r e c t v a l u e . A l s o , b e c a u s e e x t e r n a l v a r i a b l e s i n B D S C a r e
a c t u a l l y m o r e l i k e F O R T R A N C O M M O N t h a n U N I X C e x t e r n a l s , t h e o r d e r i n g o f e x t e r n a l
d e c l a r a t i o n s s h o u l d b e i d e n t i c a l w i t h i n e a c h i n d i v i d u a l s o u r c e fi l e o f a p r o g r a m . T y p i c a l l y , a
single header file containing all external declarations is included by each file of a program, to
insure compatibility.

1.8.7 CLIB — The C Librarian

Command format:

A>CLIB <cr>

 The CLIB program is provided to let you a) transfer functions between CRL files, b) rename,
d e l e t e , a n d i n s p e c t i n d i v i d u a l f u n c t i o n s , c) c r e a t e n e w C R L fi l e s , a n d d) i n s p e c t C R L fi l e
contents.

B e f o r e d e l v i n g i n t o C L I B o p e r a t i o n , i t i s h e l p f u l t o u n d e r s t a n d t h e s t r u c t u r e o f C R L (C
ReLocatable) files:

A CRL file consists of a set of independently compiled C functions, each a binary 8080 machine
code image having its origin set at 0000. Stored along with each function is a list of “relocation
parameters” for use by CLINK to resolve relocatable addresses. Also stored with each function
are the names of all subordinate functions called by the given function. Collectively, the code,
relocation list, and needed functions list are termed a function module.

The first four sectors of a CRL file make up the directory for that file, containing a list of all
f u n c t i o n m o d u l e s a p p e a r i n g i n t he file and their positions w i t h i n t h e fi l e . T h e d i r e c t o r y s p a c e
n e e d e d f o r a n y f u n c t i o n i n a C R L fi l e i s e q u a l t o t h e n u m b e r o f c h a r a c t e r s i n t h a t f u n c t i o n ’ s
name, plus two bytes for an address pointer into the CRL file. Thus, the total number of functions
that any given CRL file can hold is usually limited by the length of the names of those functions.
The total size of a CRL file cannot exceed 64K bytes (because function modules are located via
two byte addresses), but optimum efficiency is achieved by limiting a CRL file’s size to that of a
single CP/M file extent (16K bytes).

For more detailed information about CRL files, see chapter 3.

W h e n C L I B i s i n v o k e d , i t w i l l r e s p o n d w i t h a n i n i t i a l m e s s a g e a n d a “ f u n c t i o n b u f f e r s i z e ”
announcement. The buffer size tells you how much memory is available for intermediate storage
of functions during transfers. Attempts to transfer or extract functions of greater length will fail.

Following initialization, CLIB will prompt with an asterisk (*) and await a command.

Page 22 BD Software

BDS C User’s Guide Introduction

To open a CRL file for manipulation, use

*open file# [d:]filename<cr>

 where file# is a single digit identifier (0-9) specifying the “file number” to be associated with the
fi l e fi l e n a m e a s l o n g a s t h a t fi l e r e m a i n s o p e n . U p t o t e n fi l e s , t h e r e f o r e , m a y b e o p e n
simultaneously.

N o t e t h a t a d i sk designator may be specified for the filename, allow i n g C L I B t o o p e r a t e w i t h
CRL files on any physical disk.

To close a file (making permanent any changes that were made to it), say

*close file# <cr>

 The given file number then becomes free to be assigned to a new file via open. A backup version
of the altered file is created having the name name.BRL. Note that the close operation may take
some time to perform, and will cause your disk drive to thrash annoyingly when large files are
involved.

It is not necessary to close a file unless either changes have been made to it or you need the extra
file number. For example, a file opened just to be copied from need not be closed.

When a CRL file is opened, a copy of the file’s directory (first 4 sectors) is loaded into memory.
A n y a l t e r a t i o n s m a d e t o t h e fi l e (v i a t h e u s e o f t h e a p p e n d , t r a n s f e r , r e n a m e ,a n d / o r d e l e t e
commands) cause the in-core directory to be modified accordingly, but the file must be closed
before the updated directory gets written back onto the disk. Thus, if you do something you later
wish you hadn’t, and you haven’t closed the file yet, you can abort all the changes made to the
file simply by making sure not to close it. Undoing appends and transfers requires a little bit of
extra work; this will be explained later.

To see a list of all open files, along with some relevant statistics on each, say

*files <cr>

 To list the contents of a specific CRL file and see the length of each function therein, say

*list file# <cr>

 There are several ways to move functions around between CRL files. When all files concerned
have been opened, the most straightforward way to copy a function (or set of functions) is

*transfer source-file# destination-file# function-name <cr>_____________

 This copies the specified function[s] from the source file to the destination file, not deleting the
o r i g i n a l f r o m t h e s o u r c e fi l e . f u n c t i o n - n a m e m a y i n c l u d e t h e s p e c i a l c h a r a c t e r s * a n d ? i f a n____________
ambiguous name is desired. All functions matching the ambiguous name will be transferred.

BD Software Page 23

November 1988 BDS C User’s Guide

A n a l t e r n a t i v e a p p r o a c h t o s h u f fl i n g fi l e s a r o u n d i s t o u s e t h e “ e x t r a c t - a p p e n d ” m e t h o d . T h e
extract command has the form

*extract file# function-name <cr>_____________

 It is used to pull a single function out of the given file a n d p l a c e i t i n t h e f u n c t i o n b u f f e r (in
memory). To write the function out to a file, say

*append file# [name] <cr>

 where name is optional and should be given only to change the name under which the function is
to be saved;

*append file# <cr>

 is sufficient to write the function out to a file without changing its name.

Only one file# may be specified at a time with append; to write the function out to several CRL
files, a separate append must be done for each file.

To rename a function within a particular CRL file, say

*rename file# old-name new-name <cr>________ ________

 Note that this constitutes a change to the file, and a close must be done on the file to make the
change permanent.

To create a new (empty) CRL file, say

*make filename <cr>

 This creates a file on disk called filename.CRL and initializes the directory to empty. To write
f u n c t i o n s o n t o i t , fi r s t u s e o p e n , a n d t h e n u s e e i t h e r t r a n s f e r o rt h e e x t r a c t / a p p e n d m e t h o d
described above. CLIB will not allow the creation a new CRL file having the same name as an
existing CRL file in the same directory.

To delete a function (or set of functions) from a file, use

*delete file# function-name <cr>_____________

 Again, the function name may be specified ambiguously using the * and ? characters. The file
must be subsequently closed to finalize the deletion. Note that deleting a function does not free
up any directory space in the associated CRL file until that file is actually closed. Thus if a CRL
file directory is full and you wish to replace some of the functions in it, you must first delete the
unneeded functions, then close and re-open the file to transfer new functions into it.

Page 24 BD Software

BDS C User’s Guide Introduction

A command syntax summary may be seen by typing the command

*help <cr>

 To exit CLIB and return to command level, give the command

*quit <cr>

 and respond positively to the confirmation message that CLIB then prints out.

Note: All CLIB commands may be abbreviated to a single letter.

Should you decide you really didn’t want to make certain changes to a file, but it is already after
the fact, then the quit command may be used to get out of editing the file and abort any changes
made. As long as you haven’t appended or transferred into the file, typing

*quit file# <cr>

 is sufficient to abort all operations on that file, and frees up the file# as if a close had been done.

If you have appended or transferred into a file and you wish to abort, then the quit command
 should still be used, but in addition you should re-open the file directly after quitting and then

close it immediately. The rationale behind this procedure is as follows: when you do an append
or a transfer, the function being appended gets written onto the end of the CRL file. Then, when
you abort the edit, the old directory is left intact, but the appended function is still there, hanging
on in the data area, even though it doesn’t appear in the directory. By opening and immediately
closing the file, only those functions appearing in the directory remain with the file, effectively
getting rid of those “phantom” functions.

H e r e i s a s a m p l e s e s s i o n o f C L I B , i n w h i c h t h e u s e r w a n t s t o c r e a t e a n e w C R L fi l e n a m e d
NEW.CRL on disk B: containing all the functions in DEFF.CRL beginning with the letter “p”:

A>clib
BD Software C Librarian v1.6
Function buffer size = xxxxx bytes

*open 0 deff
*make b:new
*open 1 b:new
transfer 0 1 p
*close 1
*quit
(Quit) Are you sure? y

A>

 BD Software Page 25

November 1988 BDS C User’s Guide

1.9 CP/M “Submit” Files

To simplify the process of compiling and linking a C program (after the initial bugs are out and
you feel reasonably confident that CC and CC2 will not find any errors in the source file), CP/M
“ s u b m i t ” fi l e s c a n b e e a s i l y c r e a t e d t o p e r f o r m a n e n t i r e c o m p i l a t i o n . T h e s i m p l e s t f o r m o f
s u b m i t fi l e , t o s i m p l y c o m p i l e , l i n k a n d e x e c u t e a C s o u r c e p r o g r a m t h a t i s s e l f c o n t a i n e d
(doesn’t require other special CRL files for function linkages) would appear as follows:

cc $1.c
clink $1 -s
$1

 Thus, if you want to compile a source file named, say, LIFE.C, you need only type

A>submit c life <cr>

 (assuming the submit file is named C.SUB.)

1.10 Operational Caveats

1. When invoking any COM file in the BDS C package or any COM file generated by the
c o m p i l e r , y o u r c o m m a n d l i n e (a s t y p e d i n t o C P / M) m u s t n e v e r c o n t a i n a n y l e a d i n g
blanks or tabs. It seems that the CCP (console command processor) does not parse the
command line in the proper manner if leading white space is introduced.

2. The argc and argv values passed to the main function by the BDS C run-time package
will never include an entry for the command name itself (argv[0]) because CP/M does
not make that information available to transient programs on start-up. The argc value is
always positive, equal to the n u m b e r o f p a r a m e t ers passed to the command plus one,
a n d a r g v [0] i s l e f t u n d e fi n e d . F o r a n y g i v e n v a l u e o f a r g c , t h e r e f o r e , t h e m e a n i n g f u l
e n t r i e s i n a r g v a r e a r g v [1] t h r o u g h a r g v [a r g c – 1] . I f a r g c i s e q u a l t o 1 , t h e n a r g v
contains no meaningful information.

3. If the STDIO.H header file is required in a particular program, and it usually is, then it
must be included as the very first header in every source file of the program. It is crucial
that no data declarations be placed physically before STDIO.H in any program where
STDIO.H is used.

4. If you’re running MP/M II, you must re-assemble the run-time package (CCC.ASM —>
C . C C C) w i t h t h e “ M P M 2 ” e q u a t e s e t t o T R U E . T h i s m a k e s s u r e t h a t t h e r u n - t i m e
package actually closes all files opened during the course of execution of a C program,
so that the system doesn’t run out of file slots. Normally, under non-MPM2 systems, the
BDS C run-time package does not bother to close files that were open only for reading,
in order to save the time that would be required for the disk access.

Page 26 BD Software

BDS C User’s Guide Introduction

1.11 Last Words

T h i s p a c k a g e i s n o l o n g e r b e i n g s u p p o r t e d . T h e f o l l o w i n g i s m y c u r r e n t (2 0 0 2) c o n t a c t
information; feel free to contact me with feedback, but don’t expect bug fixes:

Leor Zolman
BD Software
74 Marblehead Street
North Reading, MA 01864-1527
(978) 664-4178
leor@bdsoft.com

For the latest retro release information, check the BDS C section of the BD Software web site at:

http://www.bdsoft.com/resources.html#bdsc

I a m g r a t e f u l t o t h e f o l l o w i n g i n d i v i d u a l s f o r t h e i r i n v a l u a b l e f e e d b a c k a n d s u p p o r t o v e r t h e
years of BDS C’s evolution:

Lauren Weinstein Sid Maxwell
Leo Kenen Bob Mathias
Rick Clemenzi Bob Radcliffe
Tom Bell The Real Cat
Jon Sieber Al Mok
Scott Layson Phillip Apley
Tony Gold Charles F. Douds
Ed Ziemba Robert Ward
Scott Guthery Les Hancock
Earl T. Cohen Ted Nelson
Sam Lipson Ward Christensen
Dan MacLean Jerry Pournelle
Mike Bentley Will Colley
Carlos Christensen Richard Greenlaw
Perry Hutchinson Tim Pugh
Paul Gans Steve Ward
John Nall Tom Gibson
Mark Miller Roger Gregory
Jason Linhart Don Lucas
Calvin Teague Rev. Stephen L. de Plater
Bob Shapiro Nigel Harrison
Cal Thixton Gary Kildall
Stu Heiss Stefan Badsteubner
Jeff Prothero Dan Grayson
William A. Richards Steve Graves
Dave Roscoe Gene Mallory
Rick Rump John Franks

BD Software Page 27

November 1988 BDS C User’s Guide

S p e c i a l t h a n k s t o D e n n i s M . R i t c h i e , K e n T h o m p s o n a n d t h e e n t i r e s t a f f o f t h e C o m p u t i n g
Science Re s e a r c h C e n t e r a t B e l l L a b o r a t o r i e s f o r d e v e l o p i n g U N I X a n d t h e o r i g i n a l C . G o od
work.

Page 28 BD Software

BDS C User’s Guide Low-Level Mechanisms

Chapter 2

The CRL Function Format and Other Low-Level Mechanisms

2.1 Introduction

This Chapter is directed toward assembly/machine language programmers who need the ability
to link machine code subroutines in with normally compiled C functions. It describes the CRL
f o r m a t i n d e t a i l , a s w e l l a s t h e p r o c e d u r e f o r m a k i n g C R L f o r m a t r e l o c a t a b l e fi l e s o u t o f
a s s e m b l y l a n g u a g e s o u r c e f u n c t i o n s . T h e p a r a m e t e r - p a s s i n g a n d f u n c t i o n - c a l l i n g c o n v e n t i o n s
used for C functions are also described, as are some convenience routines present in the run-time
package relating to the function linkage, parameter passing and data-access mechanisms.

2.2 The CRL Format in Detail

I n c l u d e d o n t h e s t a n d a r d B D S C d i s t r i b u t i o n d i s k is a program c a l l e d C A S M . C , f o r u s e w i t h
D i g i t a l R e s e a r c h ’ s A S M a s s e m b l e r u n d e r C P / M . T h i s p r o g r a m a l l o w s a s s e m b l y l a n g u a g e
f u n c t i o n s t o b e w r i t t e n i n a s p e c i a l “ C S M ” (“ C a S s e M b l y ”) f o r m a t c o n s i s t i n g b a s i c a l l y o f
ASM.COM’s instruction format, plus the addition of several special pseudo-ops for the purpose
of naming and delimiting individual functions. CASM.COM serves to converts the .CSM source
file into an “.ASM” source file for direct assembly by ASM.COM. Another utility supplied with
t h e p a c k a g e , C L O A D , i s t h e n u s e d t o c o n v e r t t h e . H E X fi l e o u t p u t o f A S M i n t o a . C R L fi l e
suitable for linkage by either of the two BDS C linkers (CLINK and L2). A CP/M “Submit” file
named CASM.SUB is provided to automate this entire procedure.

A l t h o u g h i t i s n o t a b s o l u t e l y n e c e s s a r y t o k n o w h o w a C R L fi l e i s o r g a n i z e d i n o r d e r t o
effectively use CASM and ASM to produce CRL files, a detailed description of the CRL format
is now provided here for completeness.

2.2.1 CRL Directories

9The first four sectors of a CRL file make up the CRL directory. Each function module in the file
h a s a c o r r e s p o n d i n g e n t r y i n t h e d i r e c t o r y , c o n s i s t i n g o f t h e m o d u l e ’ s n a m e (u p t o e i g h t

9. If you are using DDT or SID to examine the file, these sectors appear in memory locations 0100h – 02FFh.

BD Software Page 29

November 1988 BDS C User’s Guide

characters, with the high-order bit set only on the last character) and a two-byte value indicating
10the module’s byte address within the file .

 After the last entry must be a null byte (0x80) followed by a word indicating the next available
address in the file. Padding may be inserted after the end of any physical function module to
make the next module’s address line up on an even (say, 16 byte) boundary, but there must never
be any padding in the directory itself.

Example: if a CRL file contains the following modules,

Name Length____ ______
foo 0x137
yipee 0x2C5
blod 0x94A

11then the directory for that file might appear as follows :

 46 4F CF 05 02 59 49 50 45 C5
F O O’ nn nn Y I P E E’

50 03 42 4C 4F C4 20 06 80 70 0F
nn nn B L O D’ nn nn null-entry

 2.2.2 External Data Area Origin and Size Specifications

The first five bytes of the fifth sector of a CRL file (locations 0x200-0x204 relative to the start of
the file) contain information that CLINK uses to determine the origin (if specified explicitly to
CC via the –e option) and size of the external data area for the executing program at run-time.
This information is valid only if the CRL file containing it is treated as the “main” CRL file on
the CLINK command line; otherwise, the information is not used.

The first byte of the fifth sector has the value 0xBD if the –e option was used during compilation
to explicitly set the external data area; else, the value should be zero. The second and third bytes
contain the address given as the operand to the –e option, if used.

The fourth and fifth bytes of the fifth sector contain the size of the external data area declared
within that file (low byte first, high byte second.) CLINK always obtains the size of the external
data area from these special locations within the “main” CRL file (i.e., the CRL file containing
the “main” function for the program). In CRL files which do not contain a “main” function, these
bytes are unused.

2.2.3 Function Modules

E a c h f u n c t i o n m o d u l e w i t h i n a C R L fi l e i s a n i n d e p e n d e n t e n t i t y , c o n t a i n i n g t h e b i n a r y_______________
machine-code image of the function itself plus a set of relocation parameters for the function
and a list of names of any other functions that it may call.

10. The function module addresses within a CRL file are all relative to 0x0000, with the directory residing from 0x0000 to 0x01FF.
Locations 0x200 – 0x204 are reserved, so the lowest possible function module address is 0x205.

11. Note that the last character of each name has bit 7 set high.

Page 30 BD Software

BDS C User’s Guide Low-Level Mechanisms

A function module is address-independent, meaning that it can be physically moved around to
a n y l o c a t i o n w i t h i n a C R L fi l e (a s i t o f t e n m u s t b e w h e n C L I B i s u s e d t o s h u f fl e m o d u l e s
around.)

The format of a function module is:

list of needed functions
length of body
body
relocation parameters

2.2.3.1 List of Needed Functions

If the function you are building calls other CRL functions, then a list of those function names
must be the first item in the module. The format is simply a contiguous list of upper-case-only
n a m e s , w i t h t h e h i g h - o r d e r b i t (b i t 7) h i g h o n t h e l a s t c h a r a c t e r o f e a c h n a m e . A z e r o b y t e
terminates the list. A null list (as when the function does not call any other functions) is just a
single zero byte.

F o r e x a m p l e , s u p p o s e a f u n c t i o n f o o b a r c a l l s f u n c t i o n s n a m e d p u t c h a r , getchar, an d s e t m e m .
Foobar’s list of needed functions would appear as follows:

47 45 54 43 48 41 D2 50 55 54 43
g e t c h a r’ p u t c

48 41 d2 53 45 54 4D 45 CD 00
h a r’ s e t m e m’ (end)

 2.2.3.2 Length of Body

Next comes a 2-byte word value specifying the exact length (in bytes) of the body, to be defined
next. The length word is stored low-byte first, high-byte last.

2.2.3.3 Body

The body portion of a function module contains the actual 8080 code for the function, with the
origin of the code always at 0000.

If the list of needed functions was null, then the code starts on the first byte of the body. If the list
o f n e e d e d f u n c t i o n s s p e c i fi e d n names, then a dummy jump vector tab l e (c o n s i s t i n g o f n j m p
instructions) must be provided at the start of the body, preceded by a jump instruction around the
vector table.

F o r e x a m p l e , t h e b e g i n n i n g o f t h e b o d y f o r t h e h y p o t h e t i c a l f u n c t i o n f o o b a r d e s c r i b e d a b o v e
would be:

jmp 000Ch
jmp 0000
jmp 0000
jmp 0000
<rest of code>

 BD Software Page 31

November 1988 BDS C User’s Guide

C3 0C 00 C3 00 00 C3 00 00 C3 00 00 <rest of function code>.

 2.2.3.4 Relocation Parameters

Directly following the body come the relocation parameters, a collection of addresses (relative to__________________
t h e s t a r t o f t h e b o d y) p o i n t i n g t o t h e o p e r a n d fi e l d s o f e a c h i n s t r u c t i o n w i t h i n t h e b o d y t h a t
references a local address. CLINK takes every word being pointed to by an entry in this list, and
adds to it the run-time base address of the function.

The first word in the relocation list is a count of how many relocation parameters are given in the
list. Thus, if there are n relocation parameters, then the length of the relocation list (including the
length byte) would be 2n+2 bytes.

For example, a function which contains four local jump instructions whose opcodes are located
at, respectively, locations 0x22, 0x34, 0x4F and 0x61) would have the following relocation list:

1204 00 23 00 35 00 50 00 62 00

 2.3 Register Allocation and Function Calling Conventions

2.3.1 The Stack

All argument passing on function invocation, as well as all local (automatic) storage allocation,
take place on a single stack at run time.

2.3.1.1 The Stack Pointer

T h e s t a c k p o i n t e r i s k e p t i n t h e S P r e g i s t e r , a n d i s i n i t i a l i z e d t o t h e t o p o f u s e r - a c c e s s i b l e
memory area at run-time. Where the compiler thinks the end of available memory is depends on
which options are given during linkage; by default, the stack pointer is initialized to the base of
t h e C P / M B D O S , a n d g r o w s down wiping out the CCP and requiring a w a r m - b o o t f o l l o w i n g
program execution (to bring the CCP back into memory). If the –t option is used at link time, the
value given as argument to –t is used to initialize the SP. If the –n option is used, then the SP is
initialized to the base of the CCP, yielding 2K less stack space than the default but allowing a
return to command level after execution without requiring a warm-boot to be performed.
2.3.1.2 How Much Space Does the Stack Take Up?

T h e s i n g l e s t a c k s c h e m e h a s a l l l o c a l (a u t o m a t i c) d a t a s t o r a g e , f o r m a l p a r a m e t e r s , r e t u r n
a d d r e s s e s a n d i n t e r m e d i a t e expression values residing on one stack. This stack begins in high
memory and grows downward.

The maximum amount of space the stack can ever consume is roughly equal to the amount of
local data storage active during the worst case of function nesting, plus a few hundred bytes or so
(in the worst case) for miscellaneous intermediate expression values.

12. Note that the addresses of the instructions must be incremented by one to point to the actual address operands needing relocation.

Page 32 BD Software

BDS C User’s Guide Low-Level Mechanisms

I f w e c a l l t h e a m o u n t o f l o c a l s t o r a g e i n t h e w o r s t c a s e n , t h e n t h e a m o u n t o f f r e e m e m o r y
available to the user may be figured by the formula

topofmem() – endext() – (n + fudge)

w h e r e a f u d g e v a l u e o f a r o u n d 5 0 0 s h o u l d b e p r e t t y s a f e . T o p o f m e m a n d e n d e x t a r e l i b r a r y
f u n c t i o n s w h i c h r e t u r n , r e s p e c t i v e l y , a p o i n t e r t o t h e h i g h e s t m e m o r y l o c a t i o n u s e d b y t h e
running program (the top of the stack) and a pointer to the byte following the end of the external
data area. The value of endext() is thus a pointer to the first byte of memory available for storage
allocation and/or general purpose use.

2.3.2 External Data

External storage usually sits directly on top of the program code, leaving all of memory between
the end of the external data and the high-memory stack free for storage allocation.

2.3.3 Function Entry and Exit Protocols

When a C-generated function receives control, it will usually perform the following tasks in the
given order: push BC, allocate space for local data on the stack (decrement SP by the amount of
local storage needed), and copy the new SP value into the BC register for use as a constant base-
of-frame pointer. The reason for copying the SP into BC instead of just addressing everything
relative to SP is that the SP fluctuates madly as things are pushed and popped, making variable
address calculation rather confusing.

Note that the old value of BC must always be preserved for the calling routine.

Let’s say the called function requires nlocl bytes of local stack frame space. After pushing the
o l d B C , d e c r e m e n t i n g S P b y n l o c l a n d c o p y i n g S P t o B C (i n t h a t o r d e r) , t h e a d d r e s s o f a n y
automatic variable having local offset loffset may be easily computed by the formula

(BC) + loffset

I f t h e function takes for m a l p a r a m e t e r s , t h e n t h e a d d r e s s o f t h e n t h f o r m a l p a r a m e t e r m a y b e
obtained by

(BC) + nlocl + 2 + 2n

where n is 1 for the first value specified in the calling parameter list, 2 for the second, etc. This
last formula is obtained by noting that parameters are always pushed on the stack in reverse order
by the calling routine, and that pushing the arguments is the last thing done by the caller before
the actual call. After the called function pushes the BC register, there will be four bytes of stuff
o n t h e s t a c k , c o m p o s e d o f t w o 1 6 - b i t v a l u e s , b e t w e e n t h e c u r r e n t S P a n d t h e fi r s t f o r m a l
parameter: a) the saved BC register and b) the return address to the calling routine. Note that this
scheme requires that each formal parameter takes exactly 2 bytes of storage. Thus, single byte
parameters (char variables) are always converted into 16-bit values (by zero-ing the high order
byte, not sign-extending) before being passed as parameters.

BD Software Page 33

November 1988 BDS C User’s Guide

U p o n c o m p l e t i n g i t s c h o r e (b u t b e f o r e r e t u r n i n g) , t h e c a l l e d f u n c t i o n d e - a l l o c a t e s i t s l o c a l
storage by incrementing the SP by nlocl, restores the BC register pair by popping the saved BC
off the stack, and returns to the caller.

The caller will then have the responsibility of restoring the SP value to that which it was before
the formal parameter values were pushed; the called function can’t do this because there is no
way for it to determine how many parameters the caller had pushed (for example, consider the
printf function, which takes a variable number of parameters).

Formally, the responsibilities of the calling function are:

1. Push formal parameters in reverse order (last arg first, first arg last)

2. Call the subordinate function, making sure not to have any important values in either the
H L o r D E r e g i s t e r s (s i n c e t h e s u b o r d i n a t e f u n c t i o n i s a l l o w e d t o b a s h D E a n d m a y
return a value in HL). The BC register may be considered “safe” from alteration by the
s u b o r d i n a t e f u n c t i o n s i n c e , b y c o n v e n t i o n , t h e f u n c t i o n t h a t i s c a l l e d s h o u l d a l w a y s
p r e s e r v e t h e B C r e g i s t e r v a l u e t h a t w a s p a s s e d t o i t . A l l f u n c t i o n s p r o d u c e d b y t h e
compiler do this, as do all assembly-language-coded functions supplied in the BDS C
package.

3. U p o n r e t u r n f r o m t h e f u n c t i o n : r e s t o r e S P t o t h e v a l u e i t h a d b e f o r e t h e f o r m a l
p a r a m e t e r s w e r e p u s h e d , t a k i n g c a r e t o p r e s e r v e H L r e g i s t e r p a i r (c o n t a i n i n g t h e
r e t u r n e d v a l u e f r o m t h e s u b o r d i n a t e f u n c t i o n) . T h e s i m p l e s t w a y t o r e s t o r e t h e s t a c k
pointer is just to do a pop d for each argument that was pushed.

The protocol required of the called, subordinate function is:

1. P u s h t h e B C r e g i s t e r i f t h e r e i s a n y c h a n c e i t m a y b e a l t e r e d b e f o r e r e t u r n i n g t o t h e
caller.

2. If there are any local storage requirements, allocate the appropriate space on the stack by
decrementing SP by the number of bytes needed.

3. If desired, copy the new value of SP into the BC register pair to use as a base-of-frame
pointer. Don’t do this if BC wasn’t saved in step 1!

4. Perform the required computing.

5. When finished, de-allocate local storage by incrementing SP by the local frame size.

6. Pop old BC from the stack (if saved in step 1).

7. Return to caller with the returned value (if any) in the HL register.

Page 34 BD Software

BDS C User’s Guide Low-Level Mechanisms

2.4 Re-entrant Coding

Since BDS C w a s n o t e x p l icitly designed with re-entrancy of functions in mind, special steps
must be taken when this feature is desired. The most common application of re-entrant code with
BDS C is for the implementation of interrupt service routines in C programs.

The problem with using C functions to perform the interrupt handling is that there are several
mechanisms in the run-time package which maintain state variables within the run-time package
scratch pad RAM area. Specifically, the multiplicative arithmetic operators (multiply, divide and
mod) were optimized for speed and therefore do not bother to preserve the previous contents of
t h e i r s c r a t c h p a d v a r i a b l e s o n t h e s t a c k . T o a l l o w C p r o g r a m s t o b e r e - e n t r a n t , t h e r u n - t i m e
package must be modified so that the multiplicative operators take the appropriate re-entrancy
precautions. This can only be accomplished by patching each multiplicative routines to push its
l o c a l d a t a b e f o r e c o m p u t a t i o n , a n d t h e n r e s t o r e i t w h e n fi n i s h e d . T h i s m u s t b e d o n e w i t h o u t
a l t e r i n g t h e s t a r t i n g a d d r e s s o f a n y r o u t i n e i n t h e r u n - t i m e p a c k a g e o c c u r r i n g b e f o r e t h e i n i t :
routine; i.e., patching is required.

2.5 Helpful Run-Time Subroutines Available in C.CCC (See
CCC.ASM)

T h e r e a r e s e v e r a l u s e f u l s u b r o u t i n e s i n t h e r u n - t i m e p a c k a g e a v a i l a b l e f o r u s e b y a s s e m b l y
language functions. The routines fall into three general categories: the local-and-external-fetches,
the formal-parameter fetches, and the arithmetic and logical routines.

2.5.1 Local and External Fetch Routines

The first group of six subroutines may be used for fetching either an 8- or 16-bit object, stored at
some given offset from either the BC register or the beginning of the external data area, where
the offset is specified as either an 8- or 16-bit value. For example: the intuitive procedure for

 fetching the 16-bit value of the external variable stored at an offset of eoffset bytes from the base
of the external data area (the pointer to which is stored at location extrns) would be

lhld extrns ;get base of external area into HL
lxi d,eoffset ;load offset into DE
dad d ;add offset to base pointer
mov a,m ;perform 4-step
inx h ; indirection to
mov h,m ; fetch value at
mov l,a ; (HL) into HL.

 Using the special call for retrieving an external variable, the same result may be accomplished
with

call sdei ; 8-bit offset, 16-bit value external
db eoffset ; indirection, with eoffset < 256

 BD Software Page 35

November 1988 BDS C User’s Guide

The second sequence takes up much less memory; 4 bytes versus 11, to be exact. If the value of
eoffset were greater than 255, then the ldei routine would be used instead, with eoffset taking a
dw instead of a db to represent. See the CCC.ASM file for complete listings and documentation
on the entire repertoire of these value-fetching subroutines.

2.5.2 Formal Parameter Fetches

The second class of subroutines are used primarily for fetching the value of a function argument
o f f t h e s t a c k i n t o t h e H L a n d A r e g i s t e r s (t h e l o w o r d e r b y t e i s p l a c e d i n b o t h t h e A a n d L
registers, while the high byte is placed only in the H register). For example: say your assembly
function has just been called; a call to the subroutine ma1toh would fetch the first argument into
HL and A. ma1toh (mnemonic for “Move Argument 1 TO H”) always fetches the 16-bit value
present at location SP+2 (as your function sees the SP.) A call to the ma2toh (“Move Argument 2
to H”) routine would retrieve the second 16-bit argument off the stack in HL and A. If you push
the BC register before fetching a parameter off the stack, then all items on the stack will be offset
by another 2 bytes from the SP value and you’d have to call ma2toh in order to fetch the first
a r g u m e n t , m a 3 t o h t o f e t c h t h e s e c o n d, and so on. Thus, it is important to keep track of st a c k
depth when using these subroutines.

A less confusing way to deal with function arguments is to call the routine called arghak as the
very first thing you do in your function, especially before pushing BC or anything else on the
stack. Arghak copies the first seven function arguments off the stack to a 14-byte buffer in the
r/w memory area (normally within C.CCC itself), making those values accessible via simple lhld
operations for the duration of the function’s operation…that is, assuming your function doesn’t
call another function which also uses arghak to copy its arguments down there, overwriting those
of the calling function. After arghak has been called, the first argument will be stored at absolute
l o c a t i o n a r g 1 , t h e s e c o n d a t a r g 2 , e t c . T h e s e s y m b o l s a r e d e fi n e d i n B D S . L I B , a s d e s c r i b e d
below.

2.5.3 Arithmetic and Logical Subroutines

The final category of subroutines is the arithmetic and logical group, all of which take arguments
p a s s e d i n H L a n d D E a n d r e t u r n a r e s u l t i n H L . I w o n ’ t t a k e u p s p a c e w i t h d e t a i l s o n t h e s e
functions here; examine the run-time package source file (CCC.ASM) to see the subroutines that
are available.

2.5.4 System Source Files

The source code to the various modules which make up an integrated compilation environment
can be thought of as broken up into four separate categories:

1. The C source code to the application program to be compiled, plus any related CSM (“C
a S s e M b l y l a n g u a g e ”) - f o r m a t t e d a s s e m b l y s o u r c e c o d e , a r e c o l l e c t i v e l y t h e “ s o u r c e
program”;

2. S T D L I B 1 . C , S T D L I B 2 . C and STDLIB3.C (#including STDIO.H) contain the sourc e
code to all C-coded portions of the standard BDS C library (compiled into DEFF.CRL);

Page 36 BD Software

BDS C User’s Guide Low-Level Mechanisms

3. D E F F 2 A . C S M , D E F F 2 B . C S M a n d D E F F 2 C . C S M (a l l # i n c l u d i n g B D S . L I B) c o n t a i n
the source code to all CSM-coded portions of the standard BDS C library (assembled
into DEFF2.CRL, with a few functions placed into DEFF.CRL to eliminate backward-
references during linkage)

4. CCC.ASM contains the source code to the BDS C run-time package module, assembled
into C.CCC.

T h e run-time package source fil e , C C C . A S M , c o n t a i n s t h e c o d e a n d d o c u m e n t a t i o n o f a l l t h e
helpful run-time subroutines described above. The header file BDS.LIB contains definitions of
all entry points to the routines within C.CCC (assembled from CCC.ASM) as provided in the
distribution version of the package. All CSM-format source files should contain the directive

#include <bds.lib>

 so that the necessary subroutines may be referred to directly by name in CSM modules. If you
need to modify CCC.ASM in order to customize the run-time package, be sure to also modify
BDS.LIB to reflect the new addresses, and check to make sure all named symbols assemble to
equal values in both CCC.ASM and BDS.LIB. For instructions on generating code for placement
into ROM, execution at arbitrary locations in memory, and with or without CP/M in residence,
see the appendix entitled “Customized Run-Time Environments”.

2.6 Debugging Object Command Files Under CP/M

There are two general approaches to interactive debugging of an object file created using BDS C.
The first is simply to use the CDB symbolic debugger provided with the package, as described in
the appendix devoted to CDB. CDB allows symbolic references to all functions and variables in
a program, making the tracing of execution fai r l y s t r a i g h t f o r w a r d . B u t , p r o b l e m s m a y a r i s e if
your object program is too big to fit in memory together with the large CDB module.

The other way to debug a program involves the use of SID.COM, the digital Research symbolic
debugger, or any symbolic debugger that accepts a standard “.SYM” symbol table file as written
out by C L I N K . C O M (w h e n t h e – w o p t i o n i s u s e d) , L 2 . C O M (- s y m) o r M A C . C O M ($ p n) . A
.SYM file contains the names and starting addresses of each function in an object program. When
SID is invoked with a command file and its companion .SYM file as arguments, then the starting
address of each function in the command file may be referred to directly by name under SID. If
SID.COM is not available, then DDT.COM may be used instead provided a printed .SYM file is
available for visual cross-reference of symbol values.

2.6.1 Loading Programs and Setting Breakpoints

To debug a .COM file using SID, begin by invoking SID in the following manner:

sid <filename>.com <filename>.sym

 BD Software Page 37

November 1988 BDS C User’s Guide

This will load up the target program and its associated .SYM file. Next, enter the command line
that the target program will see upon startup by using the SID command i:

-iarg1 arg2 arg3...

 N o w , d e b u g g i n g m a y c o m m e n c e t h r o u g h c a r e f u l s e t t i n g o f b r e a k p o i n t s a t k e y f u n c t i o n e n t r y
p o i n t s . F o r e x a m p l e , t o b e g i n e x e c u t i o n a t t h e s t a r t o f t h e t a r g e t p r o g r a m (r u n - t i m e p a c k a g e
initialization) and stop as soon as the MAIN function is reached, use the command:

-g,.main

 As soon as execution stops at the start of any particular function, it is possible to look at the
 a r g u m e n t s p a s s e d t o t h a t f u n c t i o n b y a n a l y z i n g t h e m e m o r y l o c a t i o n s p o i n t e d t o b y t h e S P

register. In general, the following command may be entered as soon as execution has stopped at
a breakpoint set at the start of a function, where <sp> is the value contained in the SP register:

-d<sp>,+8

 SID will respond with a dump of the form:

<sp>: nn nn 1l 1h 2l 2h 3l 3h ...

 where <sp> is the SP value you typed in to the d command, “nn nn” is the return address to the
c a l l i n g f u n c t i o n , “ 1 l 1 h ” a r e t h e l o w - o r d e r a n d h i g h - o r d e r b y t e s , r e s p e c t i v e l y , o f t h e fi r s t
function parameter passed to the current function, “2l 2h” is the second parameter, and so forth.
If this were being done for the MAIN function, then “nn nn” would be the return address to the
place in the run-time package from which MAIN was called, “1l” would be the value of argc,
“1h” would be zero (the high-order byte of argc), and “2l 2h” would be the address of the argv
vector table. To actually see the text of the command line parameters, you’d then dump memory
at location “2l 2h” (by reversing the two bytes and entering the 4-digit address as the parameter
t o t h e d c o m m a n d) , y i e l d i n g a s e q u e n t i a l l i s t o f 1 6 - b i t p o i n t e r s t o t h e a c t u a l c o m m a n d l i n e
parameters. You’d then dump the location of each parameter in turn to see the actual text.

Another useful tool when debugging with SID is the command “g,^”, or “return to caller”. For
example, if you wish to see exactly what the printf function produces at the very next time it is
called, first you’d set a breakpoint at the start of printf by saying:

-g,.printf

 when execution halts at the start of printf, you’d then enter the command:

-g,^

 as soon as you hit return, the printf function will take off, and execution will halt upon return to
t h e m e m o r y l o c a t i o n f o l l o w i n g t h e c a l l t o p r i n t f . T h i s c o m m a n d , “ g , ̂ ” , s a y s t o S I D t h a t
execution should continue until the address that is currently at the top of the stack is reached.

Page 38 BD Software

BDS C User’s Guide Low-Level Mechanisms

Since the address at the top of the stack upon entry to the printf function is the address of the
i n s t r u c t i o n f o l l o w i n g t h e c a l l i n s t r u c t i o n u s e d t o c a l l p r i n t f , t h a t i s w h e r e S I D w i l l n e x t h a l t
e x e c u t i o n . N o t e t h a t D D T d o e s n o t r e c o g n i z e t h i s s h o r t h a n d ; t o p e r f o r m t h e s a m e o p e r a t i o n
under DDT, you must dump the memory location pointed to by SP and use the g,nnnn command
to explicitly set a breakpoint at the memory location indicated by the top value on the stack.

2.6.2 Tracing Execution and Dumping the Values of Variables

I f a C c o m m a n d i s t o b e d e b u g g e d u s i n g S I D / D D T , t h e n i t s h o u l d b e c o m p i l e d i n a s p e c i a l
manner in order to make debugging as straightforward as possible. First of all, the CC option –e
xxxx should be used to fix the external data area at some absolute memory location. This will
shorten/simplify the code generated to access external variables, as the LHLD and SHLD ops
can be used for this purpose by the compiler. Secondly, the CC option –o should also be used,
t o e l i m i n a t e t h e s p a c e - s a v i n g c a l l s t o t h e r u n - t i m e p a c k a g e f o r t h e p u r p o s e o f l o a d i n g t h e
addresses of automatic data. Since the form of the space-saving calls is

call <routine_name>
db nn (or) dw nn

 i t b e c o m e s c o n f u s i n g t o t r y a n d t r a c e t h e s e c a l l s , w i t h t h e i n - l i n e d a t a b y t e s i m m e d i a t e l y
following the call instructions creating confusion for the debugger. By specifying –o, all local
v a r i a b l e a d d r e s s e s a r e c o m p u t e d i n - l i n e , e l i m i n a t i n g s e q u e n c e s s u c h a s t h e o n e a b o v e , a n d i t
then becomes easier to follow execution with SID or DDT.

T h e r e a r e n o s y m b o l i c r e f e r e n c e s a v a i l a b l e f o r v a r i a b l e n a m e s , s o i t b e c o m e s n e c e s s a r y t o
compute the absolute memory addresses of external variables, and the relative offset values of
local variables, by hand.

Local (automatic) data is stored, in the order declared, immediately following the end of formal
p a r a m e t e r s t o r a g e o n t h e s t a c k . A t t h e s t a r t o f e a c h C - g e n e r a t e d f u n c t i o n , t h e a d d r e s s o f t h e
automatic local variable storage area is copied into the BC register and left there untouched for
the duration of that function’s execution. Therefore, after the initial sequence, the BC register
a l w a y s p o i n t s t o t h e s t a r t o f t h e fi r s t a u t o m a t i c v a r i a b l e b e l o n g i n g t o t h e c u r r e n t l y e x e c u t i n g
function. It makes debugging easier if you always declare the variable you’ll need to watch the
most first, and then declare other automatic variables.

E x t e r n a l d a t a i s s t o r e d s e q u e n t i a l l y b eginning at the addre s s s p e c i fi e d a s a r g u m e n t t o t h e C C
option –e. Again, it makes life easier for you to declare the externals you need to watch the most
as the first things in the external data area. You may want to insert some printf statements at

 the start of the program just to print out the addresses of the external data objects you need to
know the locations of. Th i s w i l l e l i m i n a t e t h e n e e d t o r e c o m p u t e t h e a d d r e s ses by hand each
time you may change the location of the external data area, or the order of the items declared
therein.

2.6.3 A Sample SID Debugging Session

Here is a sample session using SID and a trivial C program called TEST.C, which prints out the
command line parameters on the console:

BD Software Page 39

November 1988 BDS C User’s Guide

--
A>type test.c

/*
TEST.C: Echo command line arguments

*/

#include <stdio.h>

main(argc,argv)
char **argv;
{

int i;

for (i = 1; i < argc; i++)
printf("Arg #%d = %s\n",argv[i]);

}

A>cc test.c
BD Software C Compiler v1.60
xxK elbowroom
BD Software C Compiler v1.60
xxK left over

A>clink test -w ;-w option causes TEST.SYM to be written
BD Software C Linker v1.60
.
. (link statistics printed here)
.

A>sid test.com test.sym ;invoke SID with object file and symbol file
SID VERS 1.4
SYMBOLS
NEXT PC END
0F80 0100 9AB1 ;(exact numbers may vary with release version)
#ithis is a test ;fill CP/M command line buffer
#l ;disassemble start of program

0100 LHLD 0006
0103 SPHL
0104 NOP
0105 NOP
0106 JMP 010C
0109 JMP 0000
010C CALL 0362
010F CALL 08B8 .MAIN
0112 JMP 047B
0115 STAX D
0116 RRC

#g,.main ;execute until MAIN is entered

*08B8 .MAIN

#x ;display registers

Page 40 BD Software

BDS C User’s Guide Low-Level Mechanisms

-Z-E- A=00 B=0084 D=0F12 H=010F S=9AAC P=08B8 JMP 08BE

#d9aac,+5 ;look at stack upon entry to MAIN function
9AAC: 12 01 05 00 ; 0112 = return addr, 0005 = argc, 087A = argv
9AB0: 7A 08 z.

#d87a,+f ;look at argv vectors
087A: 32 D0 F9 07 FE 07 2..... ;argv[0] = D032, argv[1] = 07F9, etc.
0880: 01 08 03 08 A5 29 CA E8 28 CD)..(.

#d7f9,+5 ;dump argv[1]
07F9: 74 68 69 73 00 69 this.i ; t h i s <null>

#d7fe,+5 ;dump argv[2]
07FE: 69 73 is ; i s <null>
0800: 00 61 00 74 .a.t

#d801,+5 ;dump argv[3]
0801: 61 00 74 65 73 74 a.test ; a <null>

#d803,+5 ;dump argv[4]
0803: 74 65 73 74 00 5E test.^ ; t e s t <null>

#g,.printf ;execute until PRINTF is entered first time

*0924 .PRINTF

#x ;display registers upon entry to PRINTF
--M-- A=01 B=9AA8 D=08F6 H=0916 S=9AA0 P=0924 JMP 092D

#d9aa0,+f ;display stack upon entry to PRINTF
9AA0: FE 08 16 09 01 00 F9 07 01 00 84 00 12 01 05 00

#d916,+f ;look at first argument (8FE is return addr)
0916: 41 72 67 20 23 25 64 20 3D 20 Arg #%d =
0920: 25 73 0A 00 C3 2D %s...- ;string is "Arg #%d = %s\n"

#d7f9,+5 ;second arg is 0001, third arg is this:
07F9: 74 68 69 73 00 69 this.i ; t h i s <null>

#g,^ ;continue execution until return from PRINTF
Arg #1 = this ;this is printed out by PRINTF

*08FE ;execution halts at 8FE, after call to PRINTF

#t ;trace one instruction
-Z-E- A=00 B=9AA8 D=0EE3 H=0000 S=9AA2 P=08FE POP D

*08FF

#g,.printf ;continue executing until next entry to PRINTF

*0924 .PRINTF

#g,^ ;continue executing until return from PRINTF

BD Software Page 41

November 1988 BDS C User’s Guide

Arg #2 = is ;PRINTF prints this

*08FE

#t
-Z-E- A=00 B=9AA8 D=0EE3 H=0000 S=9AA2 P=08FE POP D

*08FF

#g,.printf ;do it again

*0924 .PRINTF

#g,^
Arg #3 = a

*08FE

#t
-Z-E- A=00 B=9AA8 D=0EE3 H=0000 S=9AA2 P=08FE POP D

*08FF

#g,.printf ;and again

*0924 .PRINTF
#g,^
Arg #4 = test

*08FE

#x ;look at registers
-Z-E- A=00 B=9AA8 D=0EE3 H=0000 S=9AA2 P=08FE POP D

#l100 ;disassemble start of program again
0100 LHLD 0006
0103 SPHL
0104 NOP
0105 NOP
0106 JMP 010C
0109 JMP 0000
010C CALL 0362
010F CALL 08B8 .MAIN
0112 JMP 047B
0115 STAX D
0116 RRC

#g,112 ;continue until return from MAIN

*0112 ;this is it (nothing printed by program)

#g ;now continue with run-time cleanup

A> ;and we’re back at command level

--

Page 42 BD Software

BDS C User’s Guide Function Summary

Chapter 3

The BDS C Standard Library on CP/M: A Function Summary

I n t h e B D S C p a c k a g e , t h e fi l e s D E F F . C R L a n d D E F F 2 . C R L c o n t a i n t h e o b j e c t c o d e o f t h e
s t a n d a r d l i b r a r y . D E F F . C R L c o n t a i n s t h e c o m p i l e d o b j e c t c o d e f o r a l l t h e C - c o d e d f u n c t i o n s
from STDLIB1.C, STDLIB2.C and STDLIB3.C, and DEFF2.CRL contains all the object code
f o r t h e a s s e m b l y l a n g u a g e f u n c t i o n s f r o m D E F F 2 A . C S M , D E F F 2 B . C S M a n d D E F F 2 C . C S M

13(assembled using the CASM facility). CLINK automatically searches these .CRL library files
after all other CRL files explicitly named on the command line have been searched. Thus, any
f u n c t i o n s y o u e x p l i c i t l y d e fi n e i n a s o u r c e fi l e t h a t h a p p e n t o h a v e t h e s a m e n a m e a s l i b r a r y
functions will take precedence over the library versions, as long as CLINK finds your version of
the function before getting around to scanning the library.

I n t h e f o l l o w i n g s u m m a r y o f a l l t h e m a j o r f u n c t i o n s i n D E F F . C R L a n d D E F F 2 . C R L , e a c h
function is described both in words and in a loose C-like notation intended to illustrate how a
d e fi n i t i o n o f t h a t f u n c t i o n m i g h t a p p e a r i n a C p r o g r a m . S u c h n o t a t i o n p r o v i d e s , a t a g l a n c e ,
information such as whether or not the function returns a value (and if so, of what type) and the
types of any parameters that the function may take. Here are some rules of thumb: if a function is
listed without a type, then it doesn’t return a value (for example, exit and poke return no values.)
A n y f o r m a l p a r a m e t e r s l a c k i n g a n e x p l i c i t d e c l a r a t i o n a r e i m p l i c i t l y o f t y p e i n t , a l t h o u g h i n
many cases only the low-order 8 bits of the parameter are used and a value of type char may be
p a s s e d t o t h e f u n c t i o n . N o t e t h a t i t i s n ’ t a l w a y s e a s y t o d e s c r i b e t h e e x a c t t y p e o f a f o r m a l
parameter…is a memory pointer of type unsigned, or is it a character pointer? As long as you
don’t try to pass a char variable in the position of a 16-bit memory address parameter, things will
probably work right no matter what the declared type of the parameter is in the calling program.

There are only a few cases where it is actually necessary to declare a library function before it is
used in a C program. One case is when the function returns a value having a type other than int,
and the function call is placed inside an expression where the type of the return value needs to be
other than int in order for the expression to work (as in pointer arithmetic, for example.) A bit of
e x p e r i e n c e w i l l h e l p t o c l a r i f y w h e n i t i s p r o p e r o r u n n e c e s s a r y t o d e c l a r e c e r t a i n f u n c t i o n s ;
many of these decisions are a matter of style and/or portability.

Here is a summary of all major functions available in DEFF.CRL and DEFF2.CRL:

3.1 General Purpose Functions

13. If desired, the user may configure CLINK to search for the library files in an arbitrary CP/M disk drive and user area, allowing
linkages to be performed in any drive and user area without needing to have all the library files there also.

BD Software Page 43

November 1988 BDS C User’s Guide

char csw()

Returns the byte value (0-255) of the console switch
register (port 0xFF on some mainframes).

exit()

Closes any open files and exits from an executing program, re-booting CP/M.
Does not
automatically call fflush on files opened for buffered output.

int bdos(c,de)

Calls the standard BDOS system entry point (location 0005h on
most systems), first
setting CPU register C to the value c, and register pair
DE to the value de.
Return value is the 16-bit value returned by the BDOS in HL. For CP/M
systems, the low-order byte is the value returned by the BDOS in A,
and the high-order byte is the value returned by the BDOS in B (or zero for
8-bit return values.) See the “Miscellaneous Notes” appendix for some
details on incompatibilities with non-CP/M systems (e.g., SDOS).

char bios(n,c)

Calls the nth entry in the BIOS jump vector table, where n is 0
for the first entry (BOOT), 1 for the second (WBOOT),
2 for the third (CONST), etc., first setting CPU registers BC to the
value c.
Result is the value returned in register A by the BIOS call.
Note that the cold-boot function (where n is 0) should never
actually be used, since the CCP will be bashed and probably crash the system
upon entry.
There are some BIOS calls that require a parameter to be passed in DE, and
that return their result in HL. Use the biosh function (described next)
for those calls.
WARNING: Both the bios and biosh functions assume that the
instruction at the start
of the base page of CP/M on your system is a jmp directly to the
“warm-boot” entry point of your BIOS jump vector table. If this is not the
case (e.g. on the Xerox 820), you must modify these functions
(in CSM format) to correctly compute the address of the BIOS jump
vector table in whichever manner is appropriate for your system,
then re-install the new versions of bios and biosh
in the DEFF2.CRL library file.

Page 44 BD Software

BDS C User’s Guide Function Summary

unsigned biosh(n,bc,de)

Calls the nth entry in the BIOS jump vector table, as above,
first setting CPU registers BC to the value bc and setting CPU registers
DE to the value de. Result is the value returned in registers HL by
the BIOS call.
See the WARNING above, about how this function computes the location of
the BIOS jump vector table on your system.

char peek(n)

Returns contents of memory location n. Note that in applications
where many consecutive locations need to be examined, it is
more efficient to use indirection on a character pointer than
it is to use peek.
This function is provided for the occasional
instance when it would be cumbersome
to declare a pointer, assign an address to it,
and use indirection just to access, say, a single
memory location.

poke(n,b)

Deposits the low-order eight bits of b into memory
location n. This can
also be more efficiently accomplished using pointers, as in

*n = b;

(where n is a pointer to characters.)

char inp(n)

Returns the eight-bit value present at input port n.
Both the inp and outp functions perform port I/O by constructing a
three-byte subroutine sequence (consisting of a two-byte I/O operation and a
single-byte return operation) in the run-time package data area, and then
calling it as a subroutine to actually perform the I/O. This limits the port
number range to 8 bits, since the 8080 “in” and “out” ops are used for general
compatibility. Adapting inp and outp for 16-bit port number operation
can be accomplished without too much difficulty by modifying the functions to
execute Z80 input/output operations, and then reassembling them using the
CASM
processor and associated commands.
For memory-mapped input, use the peek function.

outp(n,b)

Outputs the eight-bit value b to output port n.

See inp above for a note about 16-bit port addressing.

For memory-mapped output, use the poke function.

BD Software Page 45

November 1988 BDS C User’s Guide

pause()

Sits in a loop until CP/M console input interrogation indicates
that a character has been typed on the system console. The character
itself is not sampled; before pause can be used again,
a getchar call must be made to clear the status.
There is no return value.

sleep(n)

Sleeps (idles) for n/20 seconds at 4 MHz, or n/10 seconds at 2 MHz.
The only way to abort out of this before completion
is to type control-C, which aborts the program and returns
to command level.
There is no return value.

int call(addr,a,h,b,d)

Calls a machine code subroutine at location addr, setting CPU
registers as follows:

HL <-- h;
A <-- a;
BC <-- b;
DE <-- d

Return value is whatever the subroutine returns in registers HL.
The subroutine must, of course, maintain stack discipline.

char calla(addr,a,h,b,d)

Just like the call function, except the result is the value returned
by the subroutine in register A (instead of HL.)

int abs(n)

Returns absolute value of n.

int max(n1,n2)

Returns the greater of two integer values.

int min(n1,n2)

Returns the lesser of two integer values.

Page 46 BD Software

BDS C User’s Guide Function Summary

srand(n)

If n is non-zero, this function
initializes the pseudo-random number generator by setting the internal
seed to the value n.
If n is zero, then
srand prints a message asking the user to type a carriage return,
then begins to count very fast internally.
When a key is finally hit by the user,
the current value of the
count is used to initialize the random seed. The character typed by the
user is gobbled up (lost), and status is cleared.

srand1(string)
char *string;

Like srand(0), except that instead of the
canned “Hit return after a few seconds:” message,
the provided string is used as a prompt.
Unlike srand, though, the character typed by the user in
response to the prompt is not
gobbled up; you must do a getchar call to sample the character
and/or clear the console status.

int rand()

Returns next value (ranging: 0 < rand() < 32768) in a pseudo-random
number sequence initialized by srand or srand1.
To get a value between 0 and n-1 inclusive, use the subexpression:

rand() % n

 BD Software Page 47

November 1988 BDS C User’s Guide

nrand(-1,s1,s2,s3)
nrand(0, prompt-string)
int nrand(1)

A “better quality” random number generator.
The first form sets the internal 48-bit seed equal to the 48 bits of
data specified by s1, s2 and s3 (ints or unsigneds.)
The second form acts just like the srand1 function: the string
pointed to by prompt-string is printed on the console, and then
the machine
waits for the user to type a character while constantly incrementing
an internal 16-bit counter. As soon as a character is typed, the value of
the counter is plastered throughout the 48-bit seed. Note that the console
input is not cleared; a subsequent getchar call is required
to actually sample the character typed and clear the console status.
The final form simply returns the next value in the random sequence,
with the range being

0 < nrand(1) < 32768.

Note that the internal seed maintained by nrand
is separate from the seed used by
srand, srand1 and rand, which use the first 32
bits of the area labeled rseed within the run-time package data
area. Nrand maintains its own distinct internal seed.

setmem(addr,count,byte)
char byte, *addr;

Sets count contiguous bytes of memory beginning at addr to
the value byte. This is efficient for quick initialization of arrays
and buffer areas.

movmem(source,dest,count)
char *source, *dest;

Moves a block of memory count bytes in length from source
to dest. This function will handle any configuration of
source and destination areas correctly, knowing automatically whether
to perform the block move head-to-head or tail-to-tail. If run on a Z80
processor, the Z80 “block move” instructions are used. If run on an 8080
or 8085, the normal 8080 ops are used. This all happens automatically.

memcmp(block1, block2, length)
char *block1, *block2;

Does a quick comparison of two blocks of memory having size length,
returning 1 (TRUE) if the blocks are exactly similar or 0 (FALSE) if
there are any differences.

Page 48 BD Software

BDS C User’s Guide Function Summary

qsort(base,nel,width,compar)
char *base;
int (*compar)();

Does a “shell sort” on the data starting at base, consisting
of nel elements each width bytes in length. compar
must be a pointer to a function of two pointer arguments (e.g. x,y) which
returns

1 if *x > *y
-1 if *x < *y
0 if *x == *y.

Elements are sorted in ascending order.

int exec(prog)
char *prog;

Chains to (loads and executes) the program prog.COM.
Prog must be a null-terminated string pointer specifying the
file to be chained (the “.COM” need not be present in the name).
A string constant (such as “foo”) is perfectly
reasonable, since it evaluates to a pointer.
If the program to be execed was generated by the C compiler and
it needs to share external variables with the execing program,
then it should have been linked with the CLINK option –e
to locate common external data at the same address.
See the CLINK documentation for details on the
proper usage of the –e option.
There may be no transfer of open file ownership through an exec
call. The only possible shared resource under this scheme is external
data as described above.
Returns –1 on error…but then, if it returns at all there must have
been an error.

BD Software Page 49

November 1988 BDS C User’s Guide

int execl(prog,arg1,arg2,…,0)
char *prog, *arg1, *arg2, …

Allows chaining from one C COM file to another with parameter passing
through the argc & argv mechanism. Prog must be
a null-terminated string pointing to the name of the COM file to be
chained
(the “.COM” need not be present in the name),
and each argument
must also be a null-terminated string. The last argument must be zero.
Execl works by creating a command line out of the given
parameters, and proceeding just as if the user had typed that command
line in to the command processor of CP/M. For example,

execl("foo", "bar", "zot", 0);

would have the same effect as if the CP/M command line

A>foo bar zot <cr>

were directly typed. Unfortunately, the built-in CP/M
commands (such as “dir”, “era”, etc.) cannot be invoked with execl.
The total length of the command line constructed from the given
argument strings must not exceed approximately 80 characters. If the
constructed command line exceeds this length, a message to that effect
will be printed on the console and the program will abort.
–1 returned on error (again, though, if it returns at all then there must have
been an error.)

execv(filename,argvector)
char *filename;
char *argvector[];

This function allows chaining with a variable number of arguments to be
performed, similarly to execl,
except that the parameter text is specified in
an array instead of in the calling sequence explicitly. The
argvector parameter must be a pointer to an array of string pointers,
where each string pointer points to the next argument and the last pointer has a
value of zero
(as opposed to being a pointer to a null string.)
Returns –1 on error, though any return at all implies an error.

Page 50 BD Software

BDS C User’s Guide Function Summary

int swapin(filename,addr)
char *filename;

Loads in the file whose name is the null-terminated string pointed
to by filename into location addr in memory. No check
is made to see if the file is too long for memory; be careful where
you load it! This function may be used, for example, to load in an overlay
segment for later execution via an indirection on a pointer-to-function
variable.
Returns –1 if there is an error in reading in the file. Control is not
transferred to the loaded file.

char *codend()

Returns a pointer to the first byte following the end of root segment
program code. This will normally be the beginning of the external
data area unless the CLINK option –e is used to explicitly locate
the external data (see the externs function below.)

char *externs()

Returns a pointer to the start of the external data area. Unless the –e
option was used with CC and/or with CLINK, this value will be the same as
that returned by the codend function.

char *endext()

Returns a pointer to the first byte
following the end of the external data area. This is start of the
area from which the sbrk function obtains free memory.

char *topofmem()

Returns a pointer to the last byte of the user memory. This is normally the
top of the stack, which is either immediately below the BDOS (if
the –n option is not given to CLINK at
linkage time) or immediately below the CCP (if –n is used at
linkage time).
The value returned by topofmem is not
affected by use of the –t option at linkage time.

BD Software Page 51

November 1988 BDS C User’s Guide

char *alloc(n)

Returns a pointer to a free block of memory n bytes in length, or 0
if n bytes of memory are not available. This is roughly the storage
allocation function from chapter 8 of Kernighan & Ritchie, simplified due
to the lack of type-alignment restrictions. See the book for details.
The standard header file STDIO.H
must be #included in all files of a program that uses
alloc and free pair,
since external data used by alloc and free is declared therein.
The external variable _allocp, defined in STDIO.H, may be set to NULL in order
to reset the alloc/free storage allocation mechanism. In order to fully
re-initialize system storage allocation, though, it is also necessary to reset
the low-level sequential storage allocator;
this is accomplished by calling the sbrk function with an argument of –1.
See the sbrk section below.

free(allocptr)
char *allocptr;

Frees up a block of storage allocated by the alloc function, where
allocptr is a value obtained by a previous call to alloc.
Free
need not be called in the reverse order of previous alloc calls, since
the linked-list data structure can
tolerate any order of allocation/de-allocation.
Never call free with an argument not previously obtained by a call to
alloc.

Page 52 BD Software

BDS C User’s Guide Function Summary

char *sbrk(n)

This is the low-level storage allocation function, used by alloc
to obtain raw memory storage. It returns a pointer to n bytes of
memory, or –1 if n bytes aren’t available. The first
call to sbrk returns a pointer to the location in memory
immediately following the end of the external data area; each subsequent call
returns a block contiguous with the last, until sbrk detects that the
locations being allocated are getting dangerously close to the current stack
pointer value. By default, “dangerously close” is defined as 1000 bytes. To
alter this default, see the next function.
If you plan to use the alloc and free functions in a program,
but would also
like some memory immune from allocation to be available for scratch
space, use sbrk()
to request the desired
memory instead of alloc. Sbrk calls may be
made at any time (independent
of any alloc and free calls that may
have been made).
If sbrk is called with n equal to –1,
this is a special case that causes a
complete reset of the internal memory allocation pointer to its initial value
(a pointer to the memory location following the last byte of the external
data area).

rsvstk(n)

This function causes
the storage allocation functions to reject any allocation calls which would
leave less than n bytes between the end of the allocated area and
the current value of the stack pointer (remember that the stack grows
down from high memory.) Rsvstk, if needed, should be called before
any calls are made to either sbrk or alloc.
If rsvstk is never used, then storage allocation is automatically
prevented from approaching closer than 1000 bytes to the stack (just as
if an “rsvstk(1000)” call had been made).

int setjmp(buffer)
char buffer[JBUFSIZE];

BD Software Page 53

November 1988 BDS C User’s Guide

longjmp(buffer, val)
char buffer[JBUFSIZE];

When setjmp is called, the current processor state is saved in the
provided buffer (the symbolic constant JBUFSIZE is defined in STDIO.H)
and a value of 0 is returned.
When a subsequent longjmp call
is performed from anywhere in either the current or any lower level function,
then the CPU state is restored to
that which it had at the time the original setjmp call was performed
with the given buffer as parameter. The program resumes execution
by “returning” to the original setjmp
call, and the value val (as passed to longjmp) is returned.
To allow programs to distinguish
between setjmp initialization calls and
transfers of control,
the value of val passed to longjmp should be non-zero.
A typical use of setjmp/longjmp is to exit up through several
levels of function nesting without having to return through each
level in sequence; e.g., to insure that a particular exit routine (say,
dioflush from the DIO.C package) is always performed.

3.2 Character Input/Output

The console I/O mechanism for BDS C v1.6 provides a built-in ability to dynamically choose
w h e t h e r o r n o t c e r t a i n s p e c i a l c h a r a c t e r s a r e d e t e c t e d a n d p r o c e s s e d d u r i n g r o u t i n e l o w - l e v e l
input and output calls. In previous releases of BDS C, the standard versions the of getchar and
p u t c h a r f u n c t i o n s a l w a y s d e t e c t e d C o n t r o l - C b e i n g t y p e d o n t h e c o n s o l e i n p u t a n d c a u s e d
a n i m m e d i a t e r e t u r n t o C P / M c o m m a n d l e v e l w h e n t h i s h a p p e n e d . F o r v 1 . 6 , a n e w f u n c t i o n
n a m e d i o b r e a k h a s b e e n a d d e d t o c o n t r o l t h i s i n t e r r u p t d e t e c t i o n m e c h a n i s m . A s d e s c r i b e d
below, calling iobreak with an argument of 0 will disable detection of Control-C during console
I/O calls. This prevents the end user from inadvertently (or purposely!) aborting the execution of
a program by typing Control-C during console I/O. Note that a side-effect of calling iobreak(0)
is that the use of ^S/^Q for flow control during console output calls is also disabled. By default,
a program will come up with Control-C detection enabled (as if iobreak(1) had been called) for
compatibility with earlier source code.

Another new feature of the low-level console I/O for v1.6 is the option of selecting between two
different modes of console input: “line buffered” mode or “normal single character” mode. This
choice is made through use of the new cmode function. In line buffered mode, console input is
a l w a y s c o l l e c t e d a l i n e a t a t i m e (i . e . , u n t i l t h e u s e r e i t h e r t y p e s a R E T U R N o r r u n s o u t o f
internal line buffer space), then doled out a byte at a time for each subsequent getchar call. This
m e c h a n i s m a l l o w s t h e u s e r t o l i n e - e d i t h i s i n p u t t e x t b e f o r e i t i s r e c o g n i z e d b y t h e p r o g r a m ;
also, the usage of functions such as scanf is made more powerful by the fact that a single line of
console input may be processed by several separate scanf calls (with each subsequent scanf call
picking up from where the previous one left off processing the input stream).

W h i l e s u b s t a n t i a l l y m o r e fl e x i b l e t h a n t h e g e t c h a r / p u t c h a r m e c h a n i s m o f p r e v i o u s r e l e a s e s ,
there are still some things that the standard functions provided here cannot do by themselves.

Page 54 BD Software

BDS C User’s Guide Function Summary

For example, it may be desirable to alloc ^S/^Q flow control on console output while still not
a l l o w i n g t h e o p t i o n o f t e r m i n a t i n g a p r o g r a m b y t y p i n g C o n t r o l - C . T o a c h i e v e t h i s t y p e o f
subtle control over the console I/O mechanism, you must create your own customized versions
o f g e t c h a r / p u t c h a r u s i n g t h e t e c h n i q u e s d e s c r i b e d i n t h e A p p e n d i x e n t i t l e d “ B D S C C o n s o l e
I/O: Some Tricks and Clarifications”.

int cmode(n)

Chooses between either line buffered console input mode (if n is 1) or single-
character console input mode (if n is 0). Value returned is the previous value of
the character mode (1 or 0).
Default setting on start-up is cmode(0).
Calling cmode, regardless of the mode selected, clears both the line input buffer
and the single-character push-back buffer (used by ungetch).

iobreak(n)

As described in the introduction to this section, iobreak selects whether or not
Control-C is allowed to terminate program execution during console I/O and
return control to CP/M command level. If n is 0, then Control-C (as well as
^S/^Q flow control) is ignored. If n is 1, then Control-C and ^S/^Q are
recognized. Note that in buffered input mode (when cmode(1) has been called),
Control-C typed in at any position other than as the first character of the input
line will not abort the program until it is actually sampled by a subsequent
getchar() call. This is because the input buffering is done via a call to the
operating system, and that is just how the BDOS does things.

int getchar()

Returns next character from standard input stream (CP/M console
input.)
Console input is either buffered up a line at a time or returned character
by character, depending on how the cmode function has been used. If cmode has
not been called, then the default mode is character by character.
If iobreak(1) has been used, then getchar detecting Control-C on the console
input
causes the immediate termination of the executing program and the return
of control to command level.
A “Carriage return” (CR, or RETURN) echoes CR-LF to the console output
and returns a newline (’\n’, or LF) character.
A value of –1 is returned for control-Z; note that the return value
from getchar must be treated as an integer (as opposed to a
character) if the –1 return value is to be recognized as such.
If instead you declare getchar as returning
a character value, or assign its return value to a character variable, then
the original –1 value will turn into a value of 255.
Note that in this case an actual data value of 255 would
be indiscernible from an EOF marker.

BD Software Page 55

November 1988 BDS C User’s Guide

char ungetch(c)

Causes the character c to be returned by the next call to getchar.
Only one character may be “ungotten” between consecutive getchar
calls.
Normally, zero is returned. If there was already a character
ungotten since the last getchar call, then the value of that
character is returned.

int kbhit()

Returns true (non-zero) if input is present at the standard input
(keyboard character hit);
else returns false (zero).
In no case is the input actually sampled; to do
so requires a subsequent getchar call.
Note that kbhit will also return true if the ungetch
function was used to push back a character to the console since the
last getchar call, or if console input mode is line buffered and there are characters
remaining in the buffer.

putchar(c)
char c;

Writes the character c to the standard output (CP/M console output).
The newline (’\n’) character is expanded into a CR-LF combination on
output.
Unless iobreak(0) has been called,
a control-C detected on console input during a putchar
call will cause program execution to halt and control to return to command
level. This allows the end-user to abort any program in the process of performing
console output (via putchar calls) by typing a
control-C on the console keyboard.
Since the provided putchar function
uses BDOS calls to check
for input at the console (unless iobreak(0) has been called),
the special CP/M flow-control characters
(control-S, control-Q) are recognized and
may be used to freeze/unfreeze console output.

puts(str)
char *str;

Writes out the null-terminated string str to the standard output. No
automatic newline is appended.

Page 56 BD Software

BDS C User’s Guide Function Summary

int getline(strbuf, maxlen)
char *strbuf;

Collects a line of text from the console input, up to a maximum line
length of maxlen characters. The return value is the length of
the entered line. On return, the input line is terminated by a null byte
only, so an empty line has length 0 (when the user types only a
carriage-return character). There is no newline character returned
in the buffer; this is a deviation from the getline function
described in Kernighan & Ritchie.
If the number of characters entered reaches the given maximum minus one
(to allow room for the terminating null),
then the line will be considered complete and control will
immediately return to the caller without waiting for a carriage-return
to be typed. This happens because BDOS
function 10 is used to read the console.

char *gets(str)
char *str;

Collects a line of input from the console and
places it, null terminated, into memory at location str. The newline
typed by the user to terminate the input line is not copied into the
buffer; the character before the newline is immediately followed by the
terminating null.
The return value is a pointer to the
beginning of str.
The size of the
provided buffer must be at least 1 byte longer than the longest string
you ever expect entered, because of the terminating null.
Caution dictates making the buffer large,
since an overflow here would most probably destroy neighboring data.
If the number of characters entered reaches 135,
the line will be considered terminated.

BD Software Page 57

November 1988 BDS C User’s Guide

printf(format,arg1,arg2,…)
char *format;

Formatted print function. Output goes to the standard output. Conversion
characters supported in the standard version (must be lower case):

d decimal integer formatd
u unsigned integer formatu
c single characterc
s string (null-terminated)s
o octal formato
b binary formatb
x hex formatx

Each conversion is of the form:

% [-] [[0] w] [.n] <conv. char.>

where w specifies the width of the field, and n (if present)
specifies the maximum number of characters to be printed out of a string
conversion. Default value for w is 1.
The field will be right justified, unless the dash is specified following the
percent sign to force left justification.
If the value for w
is preceded by a zero, then zeros are used as padding on the left of the
field instead of spaces. This feature is useful for printing, say,
hexadecimal addresses.
The ‘%’ character may be specified literally in a format conversion by
typing it twice in a row (“%%”).
An enhanced version of _spr (the low-level formatting driver used
by printf, sprintf, fprintf and lprintf)
incorporating the e
and f format conversions for floating point values used in
the BCD floating point package, is available for compilation in the
file BMATH.C

lprintf(format,arg1,arg2,…)
char *format;

Like printf, except the output is directed to the CP/M “LIST”
device (printer) instead of to the console.

Page 58 BD Software

BDS C User’s Guide Function Summary

int scanf(format,arg1,arg2,…)
char *format;

Formatted input. This is analogous to printf,
but operates in the opposite direction.
The %u conversion is not recognized; use %d for both signed and
unsigned numerical input.
The arguments to scanf must be pointers!!!!!.
Note that input strings (denoted by a %s conversion specification
in the format string) are now terminated by any white space character
in the input stream, and that field width specifications are now supported
(both of these features are new for v1.6).
Returns the number of items successfully assigned. If console input is in
line buffered mode (through use of the cmode(0) call), then a single line of
input may be processed by as many successive calls to scanf as needed;
to make sure there isn’t any stray extra input text in the console input
buffer make a cmode(0) call (only in line buffered mode.)
For a more detailed description of scanf and printf, see
Kernighan & Ritchie, pages 145-150.

3.3 Character and String Processing

int isalpha(c)
char c;

Returns true (non-zero) if the character c is alphabetic,
false (zero) otherwise.

int isupper(c)
char c;

Returns true if the character c is an upper case letter,
false otherwise.

int islower(c)
char c;

Returns true if the character c is a lower case letter,
false otherwise.

int isdigit(c)
char c;

Returns true if the character c is a decimal digit,
false otherwise.

BD Software Page 59

November 1988 BDS C User’s Guide

int toupper(c)
char c;

If c is a lower case letter, then c’s upper case equivalent
is returned. Otherwise c is returned.

int tolower(c)
char c;

If c is an upper case letter, then c’s lower case equivalent
is returned. Otherwise c is returned.

int isspace(c)
char c;

Returns true if the character c is a “white space” character
(blank, tab or newline). Otherwise returns false.

sprintf(string,format,arg1,arg2,…)
char *string, *format;

Like printf, except that the output is written to the memory
location pointed to by string instead of to the console.

int sscanf(string,format,arg1,arg2,…)
char *string, *format;

Like scanf, except the text is scanned from the string pointed
to by string instead of the console keyboard.
Returns the number of items successfully assigned. Remember that the
arguments must be pointers to the objects requiring assignment.

char *strcat(s1,s2)
char *s1, *s2;

Concatenates s2 onto the tail end of the null terminated string
s1. There must, of course, be enough room at s1 to hold the
combination.

int strcmp(s1,s2)
char *s1, *s2;

Returns a positive value if (s1 > s2), zero if (s1==s2), or
a negative value if (s1 < s2). The standard ASCII collating sequence is
used for comparisons; a string is “greater” if it comes
later in alphabetical order.

Page 60 BD Software

BDS C User’s Guide Function Summary

char *strcpy(s1,s2)
char *s1, *s2;

Copies the string s2 to location s1, returning a pointer to s1.
For example, to initialize a character array named foo
to the string “barzot”, say

strcpy(foo,"barzot");

Note that the statement

foo = "barzot";

would be incorrect since an array name should not be used as
an lvalue without proper subscripting. Also, the expression
“barzot”
has as its value a pointer to the string “barzot”, not
the string itself. So, for the latter construction to work,
foo must be declared as a pointer to characters instead of as an array.
This approach is dangerous, though, since the
natural method to append something onto the end of foo would be

strcat(foo,"mumble");

overwriting the six bytes following “barzot” (wherever “barzot”
happens to be stored within the code of the function),
probably with dire results.
There are two viable solutions. You can figure out the largest number
of characters that can possibly be assigned at foo and pad the initial
assignment with the appropriate number of blanks, such as in

foo = "barzot ";
foo[6] = NULL;

or, you can declare a character array of sufficient size with

char work[200], *foo;

then have foo point to the array by saying

foo = work;

and assign to foo using

strcpy(foo,"mumble-fraz");

For an additional tool for use in initializing strings and string tables,
see the initptr function below.

int strlen(string)
char *string;

Returns the length of string (the number of characters encountered
before a terminating null is detected).

BD Software Page 61

November 1988 BDS C User’s Guide

int index(string, substring)
char *string, *substring;

Returns position of substring in string, or –1 if not found.

int atoi(string)
char *string;

Converts the ASCII string to its corresponding integer (or unsigned)
value. Acceptable format: Any amount of white space (spaces, tabs and
newlines), followed by an optional minus sign, followed by a consecutive string
of decimal digits. First non-digit terminates the scan.
A value of zero is returned if no legal value is found.

initw(array,string)
int *array;
char *string;

This is a kludge to allow initialization of integer arrays. Array
should point to the array to be initialized, and string should point
to an ASCII string of integer values separated by commas. For example,
the UNIX C construct of

int values[5] = -23,0,1,34,99;

can be simulated by declaring values normally with

int values[5];

and then inserting the statement

initw(values, "-23,0,1,34,99");

somewhere appropriate.

initb(array,string)
char *array, *string;

The equivalent of the above initw function for single-byte numeric
values represented by elements in a character array.
String is of the same format
as for initw, but the low order 8 bits of each value are used
to assign to the consecutive bytes of array. Note that this function
may not be used to initialize arrays of character pointers; it’s not
really meant for “characters”, but for decimal integers all having values
within the range of “character” variables and thus stored as characters.
NOTE: Some C programs will sometimes assign negative values to character
variables, since standard C character variables are signed
8 bit quantities. In BDS C, character variables always have unsigned
values and negative values can only be meaningfully
assigned to 16-bit int variables.

Page 62 BD Software

BDS C User’s Guide Function Summary

initptr(strtab, str1, str2, str3, …, NULL)
char *strtab[], *str1, *str2, *str3 , …

This function is provided for the purpose of space-efficient initialization
of a string pointer table, in lieu of regular initializers. The first argument must be
a pointer to an array of string pointer variables. Subsequent
arguments should be literal strings, except the final argument that must be 0
(symbolic constant NULL) to signal the end of the list of strings.
Here is an example, to initialize a list of pointers to names of the months:

char *months[12];
...
initptr(months, "January", "February", "March",

"April", "May", "June", "July",
"August", "September", "October",
"November", "December", NULL);

 3.4 File I/O

3.4.1 Introduction to BDS C File I/O Functions

There are two general categories of file I/O functions in the BDS C library. The raw (low-level)
f u n c t i o n s a r e u s e d t o r e a d a n d w r i t e d a t a t o a n d f r o m d i s k i n e v e n s e c t o r - s i z e d c h u n k s . T h e
buffered I/O functions allow the user to deal with data in more manageable increments, such as
one byte at a time or one line of text at a time. The raw functions will be described first, and then
the buffered functions.

3.4.2 Filenames

Whenever a function takes a filename as an argument, that filename must be either a literal string
or any expression whose value points to a filename. Legal filenames may be upper or lower case,
but there must be no white space within the text of the filename.

3.4.2.1 The Disk Designator Prefix

T h e fi l e n a m e m a y c o n t a i n a n o p t i o n a l l e a d i n g d i s k d e s i g n a t o r o f t h e f o r m “ d : ” t o s p e c i f y a
p a r t i c u l a r C P / M d r i v e ; t h e d e f a u l t i s t h e c u r r e n t l y - l o g g e d d i s k . T h e c h a r a c t e r d m a y b e a n y
single-letter drive designator from A to Z (corresponding to some existing logical device on your
system).

3.4.2.2 The User Area Prefix

A n o p t i o n a l u s e r a r e a d e s i g n a t o r o f t h e f o r m “ # / ” m a y a l s o a p p e a r a s p r e fi x t o t h e fi l e n a m e ,
where # is a decimal number ranging from 0 to 31. If omitted, the current user area is assumed by
default. If both a drive designator and a user-area designator are given, then the user-area prefix
must be first. For example, to open the file named “foobar.zot” in user area 7 on drive C, you’d
say:

open("7/c:foobar.zot", mode);

 BD Software Page 63

November 1988 BDS C User’s Guide

If any unprintable or nonstandard characters (such as control-characters) are detected within a
 fi l e n a m e , t h e fi l e n a m e w i l l b e r e j e c t e d a n d a n e r r o r v a l u e w i l l b e r e t u r n e d b y t h e o f f e n d e d

f u n c t i o n . T h i s s o m e w h a t a l l e v i a t e s t h e p r o b l e m c a u s e d b y t r y i n g t o o p e n a fi l e w h o s e n a m e
c o n t a i n s n o n - p r i n t i n g c h a r a c t e r s , b u t t h e m e c h a n i s m s t i l l i s n ’ t e n t i r e l y f o o l p r o o f . B e c a r e f u l
when constructing filenames.

3.4.3 Error Handling

3.4.3.1 The Errno/Errmsg Functions

W h e n e v e r a n e r r o r o c c u r s , t h e u s u a l – 1 (E R R O R) v a l u e i s r e t u r n e d b y t h e t r o u b l e d f u n c t i o n .
A f t e r t h i s h a p p e n s , b u t b e f o r e a n y n e w fi l e I / O e r r o r s a r e d r a w n , t h e e r r n o f u n c t i o n m a y b e
called to return a special error code number giving more detailed information about the error. If
you pass the value returned by errno to the errmsg function, then errmsg will return a pointer to
a string which describes in words exactly what kind of error occurred. Here is an example of the
use of this mechanism, in this case to diagnose errors which occur during a write statement:

if (write(fd, buffer, nsects) != nsects)
{

printf("Write error: %s n",errmsg(errno()));
... /* try to recover somehow */

}

 Note that the write function is the exception to the rule that a value of –1 (ERROR) is always
returned on an error condition; write returns the number of sectors successfully written, which
s h o u l d b e c o n s i d e r e d a n e r r o r i f n o t e q u a l t o t h e n u m b e r o f s e c t o r s s p e c i fi e d b y t h e n s e c t s
parameter.

3.4.3.2 Random-Record Overflow

T h e o fl o w f u n c t i o n i s p r o v i d e d t o d e t e c t w h e n a n o v e r fl o w h a s o c c u r r e d i n r e a d i n g / w r i t i n g a
large file. This only happens if you try to read/write past the 65535th sector of a file. Note that
this only applied to systems having the standard CP/M 2.2 8-megabyte file size limitation.

3.4.4 The Raw File I/O Functions

int open(filename, mode)
char *filename;

Opens the specified file for input if mode is zero, output if
mode is equal to 1, or both input and output if mode is equal to 2.
Returns a file descriptor, or –1 on error. The file descriptor is for use
with read, write,
seek, tell, fabort and close calls.

Page 64 BD Software

BDS C User’s Guide Function Summary

int creat(filename)
char *filename;

Creates an empty file having the given name,
first deleting any existing file with that name.
The new file is automatically opened for both reading and writing,
and a file descriptor is returned for use with
read, write, seek, tell, fabort, and close calls.
A return value of –1 indicates an error.

int close(fd)

Closes the file specified by the file descriptor fd, and frees
up fd for use with another file.
Unless running under MP/M II, disk accesses
will only take place when a file that was opened for writing is closed;
if the file was only open for reading,
then the fd is freed up but no actual CP/M call is performed
to close the file.
Close should not be used for buffered I/O files. Instead, use fclose.
Returns –1 on error.
Note that all open files are automatically closed upon return to the
run-time package from the main function, or when the exit
function is invoked. To prevent an open file from being closed,
use the fabort function.

int read(fd, buf, nbl)
char *buf;

Reads nbl blocks (each 128 bytes in length)
into memory at buf
from the file having
descriptor fd.
The r/w pointer associated
with that file is positioned following the just-read data; each call to
read causes data to be read sequentially from where the last call
to read or write left
off. The seek function may be used to modify the r/w pointer.
Returns the number of blocks actually read, 0 for EOF, or –1 on error.
Note that if you ask for n blocks of data when there are only x
blocks actually
left in the file (where 0 < x < n), then x
would be returned on that call, 0 on the next call (provided seek
isn’t used), and then –1 on subsequent calls.

BD Software Page 65

November 1988 BDS C User’s Guide

int write(fd, buf, nbl)
char *buf;

Writes nbl blocks from memory at buf to file fd. Each
call to write causes data to be written to disk sequentially from the
point at which the last call to read or write left off, unless
seek is used to modify the r/w pointer.
Returns –1 on hard error, or the number of records successfully written.
If the return value is non-negative but different from nbl, it probably
means you ran out of disk space; this should be regarded as an error.

int seek(fd, offset, code)

Modifies the next read/write record (sector)
pointer associated with file fd.
If code is zero, then seek sets the r/w pointer to offset records.
If code is equal to 1, then seek
sets the r/w pointer to its current value
plus offset (offset may be negative.)
If code is equal to 2, then seek sets the r/w pointer to the
end-of-file record number plus offset. Note that offset
must be negative in order for this type of seek to end up pointing to
an existing record in the file. If code is 2 and offset is zero,
the r/w pointer is made ready for appending to the file.
A return value of –1 indicates that some kind of BDOS error was returned
during a seek relative to EOF (code equal to 2). The errno function
will give more details about the kind of error that occurred.
Seeks should not be performed on files open for buffered I/O.

int hseek(fd, hoffset, offset, code)

This variation of the seek function is for use on systems supporting an extra-large
(greater than 8 megabyte) file size. Since a 16-bit sector offset value only allows
addressing up to 8 megabytes, the hseek function actually takes a 24-bit sector
offset value, broken up into a high-order 8-bit portion (hoffset) and a low-order
16-bit word (offset). The two offset
parameters are combined to form a single, signed 24-bit offset value. In all other
aspects, this function works just like the seek function above. For
example, to seek to the 8 megabyte mark in a file, you’d say:

hseek(fd, 1, 0, 0); /* Seek to 65536th sector */

To seek to the last written sector of a file, you’d say:

hseek(fd, -1, -1, 2); /* One sector before EOF */

 int tell(fd)

Returns the value of the r/w pointer associated with file fd. This
number indicates the next sector to be written to or read from the file,
starting from 0.

Page 66 BD Software

BDS C User’s Guide Function Summary

int htell(fd)

This function returns only the high-order byte of the 24-bit random
record position value of a file. This is only useful on systems supporting a
larger than 8 megabyte file size. To obtain the low-order 16 bits of the random
record position value, use the conventional tell function as above.

int unlink(filename)
char *filename;

Deletes the specified file from the file system.
Use with caution!

int rename(old, new)
char *old, *new;

Renames a file in the obvious manner.
The specified file must not be open while rename is being used
on it, nor should a file having the new name already exist. This function
simply performs the low-level BDOS rename operation, and is subject to all the
potential disasters of that low-level call. If there is any possibility that
a file with the new name already exists, then the unlink function should
be used before rename to insure the consistency of the file system.
Returns (ERROR) –1 on error.

int fabort(fd)

Frees up the file descriptor fd without bothering to close the
associated file. If the file was only open for reading, this will have
no effect on the file. If the file was opened for writing, though,
then any changes made to the currently open extent since it was
last opened will be ignored, but changes made in other extents will
probably remain in effect. Don’t fabort a file open for write,
unless you’re willing to lose some of the data written to it.

unsigned cfsize(fd)

Computes the exact file size (in sectors) of the given open file, without
affecting the r/w pointer associated with the file. Note that the size
returned here will reflect data written to new extents before
they are closed, unlike raw BDOS function 35.
This function is NOT for use with files larger than 8 megabytes. To obtain
the size of such a file, use hseek to seek to the EOF, then use htell and tell to get
the high-order byte and low-order word, respectively, of the 24-bit record size of
the file.

int oflow(fd)

Returns true (non-zero) if an overflow has occurred into the
high order (third) byte of the
random-record field of the FCB associated with the given open file.

BD Software Page 67

November 1988 BDS C User’s Guide

int errno()

Returns the code number for the last error condition detected after a
file I/O operation. See below for a list of the error messages
associated with the codes.

char *errmsg(errnum)

Given an error code returned by errno, this function returns
a pointer to an ASCII string describing the given error condition
in English. Here is a summary of all possible error numbers and their
associated messages:

Error-code Text________ ____ _
0 No error has occurred yet
1 Reading unwritten data
2 Disk out of data space
3 Can’t close current extent
4 Seek to unwritten extent
5 Can’t create new extent
6 Seek past end of disk
7 Bad file descriptor given
8 File not open for read
9 File not open for write
10 No file descriptor slots left
11 File not found
12 Bad mode given to open
13 Can’t create file
14 Seek past 65535th record

int setfcb(fcbaddr, filename)
char fcbaddr[36];
char *filename;

Initializes a 36-byte CP/M file control block located at address fcbaddr
with the null-terminated name pointed to by filename. Lower-case
characters in the filename string are converted to upper case, and
the appropriate number of ASCII blanks are generated to pad
both the filename and extension fields of the fcb.
The next-record and extent-number fields of the fcb are zeroed.
If any strange character (of the kind not usually desirable in the
name or extension fields of a file control block) are encountered within
the filename string, then the offending character and remainder of the filename
string will be ignored.

char *fcbaddr(fd)

Returns the address of the internal (usually invisible) file control
block associated with the open file having descriptor fd.
–1 is returned if fd is not the file descriptor of an open file.

Page 68 BD Software

BDS C User’s Guide Function Summary

3.4.5 The Buffered File I/O Functions

In order to simplify the programming of object-oriented file input and output applications, the
b u f f e r e d I / O f u n c t i o n l i b r a r y i s p r o v i d e d . T h i s s e t o f r o u t i n e s , b u i l t u p o n t h e l o w - l e v e l I / O
f u n c t i o n s d e s c r i b e d a b o v e , c o n f o r m s f a i r l y w e l l t o t h e s t a n d a r d K e r n i g h a n a n d R i t c h i e I / O
library.

A “File Pointer” (usually represented by the variable name fp in the function descriptions below)
is the standard object used to identify a particular active buffered I/O file. The fp value for a file
is assigned through a call to the fopen function, and should always be declared as a pointer to the
symbolic type FILE. For example,

FILE *fp1, *fp2, *fp3; /* Declare three file pointers */

 The file pointer returned by fopen will point to a buffer structure dynamically allocated during
the fopen call. The technical structure of the I/O buffer is

struct _buf {
int _fd;
int _nleft;
char *_nextp;
char _buff[NSECTS * SECSIZ];
char _flags;

};

 The NSECTS symbol, defined in the STDIO.H header file, determines the number of sectors of
in-memory buffering used by the buffered I/O functions. The BDS C distribution package comes
with NSECTS set to 8, so that all buffered I/O is performed using 1K byte memory buffers. If
you wish to alter this value, you must first change NSECTS in STDIO.H, then recompile the

 S T D L I B ? . C s o u r c e fi l e s a n d c r e a t e a n e w D E F F . C R L o b j e c t l i b r a r y c o n t a i n i n g t h e m o d i fi e d
buffered I/O functions.

W h e r e v e r a fi l e p o i n t e r i s c a l l e d f o r i n t h e p a r a m e t e r l i s t t o a b u f f e r e d i / o f u n c t i o n , i t i s
permissible to use one of six special symbols in order to direct the i/o to or from a special device
instead of a file. The recognized device symbols are:

stdin -- Standard input stream (console input)
stdout -- Standard output stream (console output)
stdlst -- Standard list device (printer)
stdrdr -- Standard reader device
stdpun -- Standard punch device
stderr -- Standard error device (console output)

 I M P O R T A N T : A l l p r o g r a m s u s i n g b u f f e r e d I / O m u s t # i n c l u d e t h e s t a n d a r d h e a d e r fi l e ,
STDIO.H, at the beginning of the source file. Here are the functions:

BD Software Page 69

November 1988 BDS C User’s Guide

FILE *fopen(filename, mode)
char *filename, *mode;

Opens the specified file for buffered input or output,
initializes the associated buffer, and returns a file pointer to be used in all
subsequent references to operations on the associated file.
Possible values of mode are as follows:

"r" Text input, do CR-LF --> ’\n’ translations
"w" Text output, new file, translate ’\n’ to CR-LF
"a" Text output, append to existing file,

translate ’\n’ to CR-LF
"rb" Binary input
"wb" Binary output, create new file
"ab" Binary output, append to existing data

Returns NULL (0) on error.

int fgetc(fp)
FILE *fp;

Returns the next byte from the buffered input file specified by
file pointer fp.
This is the same function as getc.
The symbolic values stdin and stdrdr may be used instead of a file pointer
argument with any buffered input function, to direct the input
from the console or the reader:

fgetc(stdin) is equivalent to "getchar()".
fgetc(stdrdr) reads a char from the "reader" device.

A value of –1 is returned in physical EOF and on error conditions. If the file was
opened in text mode, the logical EOF character (Control-Z, or 0x1A) is also
mapped into –1 by fgetc.
Since the ERROR value of –1 conflicts with a –1 indicating routine EOF, the way
to differentiate between a routine EOF and an error condition is to test the value
of errno(), which returns NULL after an EOF has been encountered and non-zero
after errors.

ungetc(c, fp)
char c;
FILE *fp;

Pushes the character c back onto the input stream fp.
The next call to fgetc
on the same stream will then return c. No more than one character
should be pushed back at a time.

int getw(fp)
FILE *fp;

Returns next 16 bit word from input stream fp.
via two consecutive calls to fgetc.
–1 returned on error.

Page 70 BD Software

BDS C User’s Guide Function Summary

int fputc(c, fp)
char c;
FILE *fp;

Writes the byte c to the output stream fp.
If the file was opened in the default text mode, then newline (’\n’) characters are
automatically translated into a CR-LF combination in the output file.
The symbolic values stdout, stdlst, stdpun and stderr
may be used in place of a file pointer with any buffered
output routine, to direct the output character to the standard output,
list device, punch device or standard error (console) device
instead of to a file:

putc(c,stdout) is equivalent to "putchar(c)".
putc(c,stdlst) writes the character to the CP/M

"list" device.
putc(c,stdput) writes the character to the CP/M

"punch" device.
putc(c,stderr) writes the character to the

standard error stream, which
is always the console output device
under CP/M. This may be used to
guarantee that output goes to the
console in applications where the
directed I/O package (DIO) is being
used and the standard output
may be directed into a file.

Returns –1 (ERROR) on error.

int putw(w, fp)
FILE *fp;

Writes the 16 bit word w to buffered output stream fp,
via two consecutive calls to fputc.
Returns –1 on error.

int fread(buf, size, count, fp)
char *buf;
unsigned size, count;
FILE *fp;

Efficiently reads count objects, each of size size bytes,
from a buffered input file. Number of bytes to be read is exactly
(size * count).
NOTE: CR-LF —> ‘\n’ translation for text files is not performed.
Returns number of items of size size
successfully read (up to count), or ERROR on error.

BD Software Page 71

November 1988 BDS C User’s Guide

int fwrite(buf, size, count, fp)
char *buf;
unsigned size, count;
FILE *fp;

Efficiently writes count objects, each of size size bytes,
to a buffered output file. Number of bytes to be written is equal to (size * count).
NOTE: ‘\n’ —> CR-LF translation for text files is not performed.
Returns number if items (up to size) successfully written (up to count), or
ERROR on error.

int fflush(fp)
FILE *fp;

Flushes output stream fp, i.e., makes sure that any
characters written to the output buffer since it last filled up
are written to the file on disk (provided the program isn’t prematurely aborted
before the exit routine closes all files).
Fflush is for use with buffered output files; attempting to
invoke it on an input file will have no effect.
Note that an automatic fflush occurs whenever an output buffer fills
up, as well as when an output file is closed (via the fclose function).

int fclose(fp)
FILE *fp;

Closes the specified buffered I/O file. If the
file was opened for writing, then an automatic fflush is performed
to flush the output buffer before the file is closed.
When a text file opened for writing is closed,
then a Control-Z character is automatically appended
onto the end of the file.

int ferror(fp)
FILE *fp;

Returns TRUE if an error has occurred on the specified buffered I/O stream.

int feof(fp)
FILE *fp;

Returns TRUE if an end-of-file (EOF) has been encountered on the
specified buffered input stream.

int clearerr(fp)
FILE *fp;

Clears any error condition that may have been previously set for the
specified buffered I/O stream.

Page 72 BD Software

BDS C User’s Guide Function Summary

int fprintf(fp, format, arg1, arg2,…)
FILE *fp;
char *format;

Like printf, except that the formatted output is written to
the output stream fp.
Returns –1 on error.

int fscanf(fp, format, arg1, arg2,…)
FILE *fp;
char *format;

Like scanf, except that the text input is scanned from the
input stream fp instead of from the console.
Remember that arg1, arg2, etc., must be pointers!
Returns the number of items successfully assigned, or –1 if an error
occurred in reading the file.

char *fgets(buf, maxlen, fp)
char *buf;
int maxlen;
FILE *fp;

Reads a line in from input stream specified by fp
(up to maxlen characters), and places it
in memory at the location pointed to by str.
NULL (zero) is returned on end-of-file,
whether it is a physical end-of-file (attempting to read
past the last sector of a file) or a control-Z (CPMEOF) character in the file.
Otherwise, a pointer to the string (the same as the parameter str) is
returned.

int fputs(str, fp)
char *str;
FILE *fp;

Writes the null-terminated string from memory at str into the
output stream specified by fp.
If a null (zero byte) is found
in the string before a newline (’\n’), then there will be no line terminator
at all appended to the line on output (allowing partial lines to be
written.)

BD Software Page 73

November 1988 BDS C User’s Guide

Page 74 BD Software

BDS C User’s Guide Notes to Appendix A

Chapter 4

Notes to APPENDIX A of “The C Programming Language”

4.1 Introduction

This chapter is a direct comparison betwe e n B D S C a n d t h e s t a n d a r d C definition outlined in
Appendix A of the Kernighan and Ritchie The C Programming Language textbook. BDS C is__________________________
designed to be a subset of UNIX C, and therefore most sections of the C Reference Manual apply
to BDS C directly. The purpose of this appendix is to annotate those sections in which BDS C
deviates from the definition appearing in the textbook.

After presenting a general summary of differences between the two implementations, I’ll go into
d e t a i l b y r e f e r r i n g t o a p p r o p r i a t e s e c t i o n n u m b e r s f r o m t h e b o o k a n d d e s c r i b i n g h o w B D S C
differs from what is stated there. Any sections that are appropriate as they stand (with regard to
BDS C) will not be listed.

Here is a short summary of BDS C’s most significant deviations from UNIX C:

1. T h e e n t i r e s o u r c e fi l e i s l o a d e d i n t o m a i n m e m o r y a t o n c e , i n s t e a d o f b e i n g p a s s e d
through a window. This limits the maximum length of a single source function to the
size of available memory.

2. C o m p i l a t i o n i s a c c o m p l i s h e d d i r e c t l y i n t o 8 0 8 0 m a c h i n e c o d e , w i t h n o i n t e r m e d i a t e
assembly language file produced.

3. BDS C is written in 8080 assembler language, not in C itself. If BDS C were written in
i t s e l f , t h e c o m p i l e r w o u l d b e s e v e r a l t i m e s a s l a r g e a n d r u n n o w h e r e a s f a s t a s t h e
present speed. Remember that we’re dealing with 8080 code here, not PDP-11 code as
in the original UNIX implementation.

4. The variable types short int, long int, float and double are not supported.

5. There are no explicitly declarabl e s t o r a g e c l a s s e s . S t a t i c and register variables do not
exist; all variables are either external or automatic, depending on the context in which
they are declared.

6. The complexity of declarations is restricted by certain rules.

7. Initializers are not supported.

BD Software Page 75

November 1988 BDS C User’s Guide

8. S t r i n g s p a c e s t o r a g e a l l o c a t i o n m u s t b e h a n d l e d e x p l i c i t l y (t h e r e i s n o a u t o m a t i c
allocation/garbage collection mechanism).

4.2 Notes to Appendix A

14The following is a section-by-section annotation to the C Reference Manual . For the sake of
b r e v i t y , s o m e o f t h e i t e m s m e n t i o n e d a b o v e w i l l n o t b e p o i n t e d o u t a g a i n ; a n y r e f e r e n c e s t o
floats, longs, statics, initializations, etc., found in the book should be ignored.

1. Introduction

BDS C is designed for 8080-based microcomputer systems equipped with the CP/M operating
system, and generates 8080 binary machine code (in a special relocatable format) directly from
g i v e n C s o u r c e p r o g r a m s . N a t u r a l l y , B D S C w i l l a l s o r u n o n a n y p r o c e s s o r t h a t i s u p w a r d
compatible with the 8080, such as the Z-80 or 8085.

2.1 Comments

C o m m e n t s n e s t b y d e f a u l t ; t o m a k e B D S C p r o c e s s c o m m e n t s t h e w a y U n i x C d o e s , t h e – c
option must be given to CC during compilation.

2.2 Identifiers (names)

U p p e r a n d l o w e r c a s e l e t t e r s a r e d i s t i n c t (d i f f e r e n t) f o r v a r i a b l e , s t r u c t u r e , u n i o n a n d a r r a y
15names, but not for function names . Thus, function names should always be written in a single

case (either upper or lower, but not mixed) to avoid confusion. For example, the statement

char foo,Foo,FoO;

 declares three character variables with different names, but the two expressions

printf("This is a test");

 and

prINTf("This is a test");

 are equivalent.

2.3 Keywords

BDS C keywords:

14. Appendix A of The C Programming Language, the Kernighan & Ritchie textbook_________________________

15. Function names are stored internally as upper-case-only.

Page 76 BD Software

BDS C User’s Guide Notes to Appendix A

int else
char for
struct do
union while
unsigned switch
goto case
return default
break sizeof
continue begin
if end
register void
short

 Upper and lower case are not distinguished for keywords, e.g., WHILE is equivalent to while.

I d e n t i fi e r s w i t h t h e s a m e n a m e a s a k e y w o r d a r e n o t a l l o w e d , a l t h o u g h k e y w o r d s m a y b e
imbedded within identifiers (e.g. charflag).

On terminals which do not support the left and right curly-brace characters { and }, the keywords
b e g i n a n d e n d m a y b e s u b s t i t u t e d i n s t e a d . N o t e t h a t y o u c a n n o t h a v e a n y i d e n t i fi e r s i n y o u r
p r o g r a m s n a m e d e i t h e r “ b e g i n ” o r “ e n d ” , s i n c e t h e s e a r e r e c o g n i z e d a s k e y w o r d s b y t h e
compiler.

4. What’s in a name?

There are only two storage classes, external and automatic, but they are not explicitly declarable.
The context in which an identifier is declared always provides sufficient information to determine
whether the identifier is external or automatic: declarations that appear outside the definition of
any function are implicitly external, and all declarations of variables within a function definition
are automatic.

Automatic variables have a lexical scope that extends from their point of declaration until the end
of the current function definition. A single identifier may not normally appear in a declaration list
more than once in any given function, which means that a local structure member or structure tag
may not be given the same name as a local variable, and vice versa. See subsection 11.1 for a
special case.

I n B D S C , t h e re is no concept of blocks within a function. Althoug h a l o c a l v a r i a b l e m a y b e
declared at the start of a compound statement, it may not have the same name as a previously
d e c l a r e d l o c a l a u t o m a t i c v a r i a b l e . I n a d d i t i o n , i t s l e x i c a l s c o p e e x t e n d s p a s t t h e e n d o f t h e
compound statement and all the way to the end of the function.

I s t r o n g l y s u g g e s t t h a t a l l a u t o m a t i c v a r i a b l e d e c l a r a t i o n s b e c o n fi n e d t o t h e b e g i n n i n g o f
function definitions, and that the practice of declaring variables at the head of other compound
statements be avoided.

If several files share a common set of external variables, then all external variable declarations
16must be identically ordered within each of the files involved . The external variable mechanism

in BDS C is handled much like the unnamed COMMON facility of FORTRAN. For example: if

16. The recommended procedure for a case such as this is to prepare a single file (using your text editor) containing all common
external variable declarations. The file should have extension .H (for “header”), and be specified at the start of each source file via
use of the #include preprocessor directive.

BD Software Page 77

November 1988 BDS C User’s Guide

your main source file declares the external variables a,b,c,d and e, in that order, while another file
u s e s only a, b and c, then the second file need not decla r e d a n d e . O n t h e o t h e r h a n d , i f t h e
second file used d and e but not a, b or c, then all of the variables must be declared so that d and
e (from the second file) do not overlap with a and b (from the first file) and cause big trouble. As
an added inconvenience, all external variables used in a program (set of dependent source files)
must be declared within the source file containing the “main” function, regardless of whether or
not that source file uses them all.

To summarize: keep all external declarations comm o n t o s e v e r a l s o u r c e fi l e s o f a p r o g r a m in
“.H” files, and use #include within each source file of the program to read in the same “.H” file(s)
in the same order. This will insure that each source file sees the same external data declared in
exactly the same manner.

6.1 Characters and integers

S i g n e x t e n s i o n i s n e v e r p e r f o r m e d b y B D S C . C h a r a c t e r s a r e i n t e r p r e t e d a s 8 - b i t u n s i g n e d
quantities in the range 0-255.

A CHAR VARIABLE CAN NEVER HAVE A NEGATIVE VALUE IN BDS C.

Be careful when, for example, you test the return value of functions such as getc, which return –1
on error but “characters” normally. Actually, the return value is an int always, with the high byte
guaranteed to be zero when there’s no error. If you assign the return value of getc to a character
variable, then a value of –1 will turn into 255 as stored in the 8-bit character cell, and testing a
character for equality with –1 will never return true. Be careful in these kinds of situations.

Most arithmetic on characters is accomplished by converting the character to a 16-bit quantity
h a v i n g a z e r o h i g h - o r d e r b y t e . I n s o m e n o n - a r i t h m e t i c o p e r a t i o n s , s u c h a s a s s i g n m e n t
expressions, BDS C will optimize code generation by dealing with char values on a byte-only
basis. To take advantage of this, declare any variables you trust to remain within the 0-255 range
as char variables.

7. Expressions

D i v i s i o n - b y - z e r o a n d m o d - b y - z e r o b o t h r e s u l t i n a v a l u e o f z e r o . N o e r r o r o f a n y k i n d i s
generated in these cases.

7.1 Primary Expressions

The order of evaluation of the parameters in a function call is reversed. I.e., the last parameter is
evaluated first and pushed on the stack, then the next-to-last is evaluated and pushed on the stack,
etc…this is done so that the parameters appear in ascending order to the function being called,
for the benefit of functions taking a variable number of parameters.

7.2 Unary Operators

The operators

Page 78 BD Software

BDS C User’s Guide Notes to Appendix A

(type-name) expression
sizeof (type-name)

 are not implemented. The sizeof operator may be used in the form

sizeof expression

 provided that expression is not an array. To take the sizeof an array, the array must be placed all
by itself into a structure, allowing the sizeof the structure to then be taken. Another possibility is
to take the sizeof a single element in the array, then multiply that by the number of elements in
the array to yield the size of the overall array.

The sizeof operator may not appear within expressions used as dimensions for array declarations.

7.5 Shift operators

The operation » is always logical (0-fill).

7.11, 7.12 Logical AND and OR operators

T h e t w o o p e r a t o r s & & a n d | | h a v e e q u a l p r e c e d e n c e i n B D S C , m a k i n g p a r e n t h e s i z a t i o n
n e c e s s a r y i n c e r t a i n c a s e s w h e r e i t w o u l d n ’ t b e u n d e r U n i x C . A n y e x p r e s s i o n s i n v o l v i n g
complex combinations of && and || are basically confusing anyway, and should be parenthesized
just on general principles.

8. Declarations

Declarations have the form:

declaration:
type-designator declaration-list ;

 There are no “storage class” specifiers.

8.1 Storage class specifiers

Not implemented.

8.2 Type specifiers

The type-specifiers are

type-designator:
char
int
unsigned
register
struct-or-union-designator

 T h e t y p e r e g i s t e r w i l lb e a s s u m e d s y n o n y m o u s w i t h i n t , u n l e s s i t i s u s e d a s a m o d i fi e r (e . g .
register unsigned foo;), in which case it will be ignored completely.

BD Software Page 79

November 1988 BDS C User’s Guide

The keyword void is treated as synonymous with int, and may be used to document the fact that a
function does not return a value. There are no other “adjectives” allowed;

unsigned int foo;

 must be written as

unsigned foo;

 8.3 Declarators

Initializers are not allowed. Thus, the syntax for declarator lists is:

declarator-list:
declarator
declarator , declarator-list

 8.4 Meaning of declarators

UNIX C allows arbitrarily complex typing combinations, making possible declarations such as

struct foo *(*(*bar[3][3][3]) ()) ();

 w h i c h d e c l a r e s b a r t o b e a 3 x 3 x 3 a r r a y of pointer to functions returning pointers to fun c t i o n s
returning pointers to structures of type foo. BDS C would not allow that particular declaration.

Here is an informal summary of the declaration syntax BDS C will accept:

First, let a simple-type be defined by

simple-type:
char
int
unsigned
struct
union

 and a scalar-type by

scalar-type:
simple-type
pointer-to-scalar-type
pointer-to-function

 The final kind of scalar type, the pointer-to-function, is a variable which may have the address of
a function assigned to it and then be used (with the proper syntax) to call the function. Because
of the way BDS C handles these guys internally, pointers to pointer-to-function variables will
not work correctly, although pointers to functions returning any other scalar type (except struct,
union, and pointer-to-function) are OK.

Page 80 BD Software

BDS C User’s Guide Notes to Appendix A

So far, scalar-types cover declarations such as

int x,y;
char *x;
unsigned *fraz;
char **argv;
struct foobar *zot, bar;
int *(*ihtfp)();

 The last of the above examples declares ihtfp to be a pointer to a function which returns a pointer
to integer.

Building on the scalar-type idea, we define an array to be a one or two dimensional collection of
scalar-typed objects (including pointer-to-function variables). Now we can have constructs such
as

char *x[5][10];
int **foo[10];
struct steph bar[20][8];
union joyce *ohboy[747];
int * (foobar[10]) ();

 T h e l a s t o f t h e a b o v e e x a m p l e s d e c l a r e s f o o b a r t o b e a n a r r a y m a d e u p o f t e n p o i n t e r s t o
functions returning integers.

Next, we allow functions to return any scalar type except pointer-to-function, struct or union (but
not excluding pointers to structures and unions.)

Some more examples:

char *bar();

 declares bar to be a function returning a pointer to character;

char *(*bar)();

 declares bar to be a pointer to a function returning a pointer to characters;

char *(*bar[3][2]) ();

 d e c l a r e s b a r t o b e a 3 b y 2 a r r a y o f i n d i v i d u a l p o i n t e r s t o f u n c t i o n s r e t u r n i n g p o i n t e r s t o
characters;

struct foo zot();

 attempts to declare zot to be a function returning a structure of type foo. Since functions cannot
return structures, this would cause unpredictable results.

struct foo *zot();

 is OK. Now zot is declared as returning a pointer to a structure of type foo.

BD Software Page 81

November 1988 BDS C User’s Guide

Note that explicit pointers-to-arrays cannot be declared. In other words, a declaration such as

char (*foo) [5];

 would not succeed in declaring foo to be a pointer to an array. The preceding declaration ends up
having exactly the same effect as

char *foo[5];

 Any formal function parameter declared as an array is handled internally as a “pointer-to-array”,
c a u s i n g a n a u t o m a t i c i n d i r e c t i o n t o b e p e r f o r m e d w h e n e v e r t h e a p p r o p r i a t e a r r a y i d e n t i fi e r i s
used in an expression. This makes passing a r r a y s t o f u n c t i o n s a s e a s y a s pi. For an extensive
example of this mechanism, check out the Othello program included with some versions of the
BDS C package (but always available from the C User’s Group).

8.5 Structure and union declarations

“Bit fields” are not implemented. Thus we have

struct-or-union-designator:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
union

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-designator declarator-list ;

declarator-list:
declarator
declarator, declarator-list

 N a m e s o f m e m b e r s a n d t a g s i n s t r u c t u r e d e fi n i t i o n s m u s t n o t b e i d e n t i c a l t o a n y o t h e r l o c a l
identifier names. The only time more than one structure or union per function can use a given
identifier as a member is when all instances have the identical type and offset; see subsection
11.1.

8.6 Initializers

N o i n i t i a l i z e r s a l l o w e d . T h e l i b r a r y f u n c t i o n s i n i t b , i n i t w a n d i n i t p t r h a v e b e e n p r o v i d e d t o
facilitate the initialization of certain types of arrays.

All external variables are now automatically initialized to zero unless the CLINK –z option is
given during linkage.

8.7, 8.8 Type names

Page 82 BD Software

BDS C User’s Guide Notes to Appendix A

Not applicable to BDS C. typedef is not implemented.

9.2 Blocks

There are no “blocks” in BDS C. Variables cannot be declared as local to a block; declarations
appearing anywhere in a function remain in effect until the end of the function.

9.6 For statement

The for statement is not completely equivalent to the while statement as illustrated in K&R, for
this reason: should a continue statement be encountered while performing the statement portion
o f t h e f o r l o o p , c o n t r o l w o u l d p a s s t o e x p r e s s i o n - 3 . I n t h e w h i l e v e r s i o n , t h o u g h , a c o n t i n u e
would cause control to pass to the test portion of the loop directly, never executing expression-3
d u r i n g t h a t p a r t i c u l a r i t e r a t i o n . T h e r e p r e s e n t a t i o n g i v e n i n s e c t i o n 9 . 9 , o n t h e o t h e r h a n d , i s
correct since the increment is implied (to occur at contin:) rather than written explicitly.

This is merely an inconsistency in documentation; both the UNIX C compiler (as far as I can tell)
and the BDS C compiler handle the for case correctly.

9.7 Switch statement

There may be no more than 200 case statements per switch construct.

Note that multiple cases each count as one, so the statement

case ’a’: case ’b’: case ’c’: printf("a or b or c");

 counts for three cases.

9.12 Labeled statement

A label directly following a case or default is not allowed. The label should be written first, and
then be followed by the case or default keyword. For example,

case ’x’: mumble: zap = frotz;

 is incorrect, and should be changed to

mumble: case ’x’: zap = frotz;

 10. External definitions

T y p e s p e c i fi e r s m u s t b e g i v e n e x p l i c i t l y i n a l l c a s e s e x c e p t f u n c t i o n d e fi n i t i o n s (w h e r e t h e
default is int.)
11.1 Lexical scope

Members and tags within structures and unions should not be given names that are identical to
o t h e r t yp e s o f d e c l a r e d i d e n t i fi e r s . B D S C d o e s n o t a l l o w a n y s i n g l e i d e n t i fi e r t o b e u s e d f o r

BD Software Page 83

November 1988 BDS C User’s Guide

more than one thing at a time (except when a local identifier temporarily shadows a similarly
 named external identifier). This means that you cannot write declarations such as:

struct foo { /* define struct of type "foo" */
int a;
char b;

} foo[10]; /* define array named "foo" made up
of structures of type "foo" */

 which are basically confusing and shouldn’t be used anyway, even if UNIX C does allow them.

The one exception to this rule involves structure members. The compiler will tolerate the same
identifier being used as a member within the definition of different structures, as long as 1) the
type and 2) the storage offset (from the base of the structure) are identical for both instances. The
following sequence, for example, uses the identifier “cptr” in this allowable manner:

struct foo {
int a;
char b;
char *cptr; /* type: char *, offset: 3 */

};

struct bar {
unsigned aa;
char xyz;
char *cptr; /* type: char *, offset: 3 */

};

 11.2 Scope of externals

There is no extern keyword; all external variables must be declared in exactly the same order
within each file that uses any subset of them. Also, all external variables used in a program must
be declared within the source file that contains the “main” function.

Here is how externals are normally handled: location 0015h of the run-time package (usually
memory location 0115h at run-time) contains a pointer to the base of the external variable area.

17All external variables are accessed by indexing off this pointer. The external data area for the
entire program is assumed by CLINK to be equal to the space needed by all external data defined
in the “main” source file. Because no information is recorded within CRL files about external
s t o r a g e o r e x t e r n a l n a m e s (o t h e r t h a n t h e t o t a l n u m b e r o f b y t e s i n v o l v e d a n d , o p t i o n a l l y , t h e
explicit starting address of the externals), it is up to the user to make sure that each source file
contains an identical list of external declarations. Although the names need not necessarily be
i d e n t i c a l f o r e a c h c o r r e s p o n d i n g e x t e r n a l v a r i a b l e i n s e p a r a t e fi l e s , t h e t y p e s a n d s t o r a g e
requirements should certainly correspond to avoid overlap and mix-up.

I t w o u l d n o t b e f a r o f f t h e m a r k t o c o n s i d e r B D S C e x t e r n a l v a r i a b l e s a s j u s t o n e b i g
FORTRAN-like COMMON block.

Reminder: if you use the library functions alloc and free, you must include the
header file STDIO.H in your program, since there are several external data objects

17. The –e xxxx option to CC may be used to locate the external variable area at absolute location xxxx, thereby considerably speeding
up and shortening the code produced by the compiler. Even so, all the declaration constraints must still be observed.

Page 84 BD Software

BDS C User’s Guide Notes to Appendix A

r e q u i r e d b y a l l o c a n d f r e e d e c l a r e d i n S T D I O . H , a n d o m i s s i o n o f t h e s e
d e c l a r a t i o n s w i t h i n a n y s o u r c e fi l e h a v i n g e x t e r n a l v a r i a b l e s w o u l d c a u s e a n
undesirable data overlap.

12.1 Token replacement

All forms of the #define preprocessor directive are supported, including parameterized defines.
Note that recursive (mutually referential) parameterized #define operations are not detected, and
if attempted will cause a string overflow.

12.2 File Inclusion

If double-quotes are used to delimit the filename (e.g. #include “filename”), and no explicit drive
or user-area designator appear preceding the filename, then the file is presumed to reside in the
current directory only and compilation will abort if the file isn’t there. If angle brackets (#include
<fil e n a m e >) a r e u s e d , t h e n o n l y t h e d e f a u l t d i s k d r i v e/user area (as described in chapter 1) is
searched.

N o t e t h a t # i n c l u d e d i r e ctives are pro c e s s e d o n - t h e - fl y a s t h e s o u r c e fi l e i s b e i n g r e a d i n f r o m
disk, whereas conditional compilation directives are only processed on a later pass after included
fi l e s h a v e a l r e a d y b e e n l o a d e d . T h e r e f o r e , t h e c o m p i l e r w i l l a t t e m p t t o p r o c e s s a n # i n c l u d e
d i r e c t i v e p l a c e d w i t h i n a c o n d i t i o n a l c o m p i l a t i o n b l o c k e v e n w h e n t h e c o n d i t i o n e v a l u a t e s a s
f a l s e . A s l o n g a s t h e fi l e s n a m e d i n a l l # i n c l u d e d i r e c t i v e s a r e f o u n d , t h i n g s w i l l s t i l l w o r k
c o r r e c t l y b e c a u s e t h e a p p r o priate code will sim p l y b e i g n o r e d l a t e r w h e n t h e c o n d i t i o n a l s a r e
processed…but, if the file named by any #include directive cannot be found, CC will print an
error and abort the compilation.

Although file inclusion may be nested to any reasonable depth, error reporting recognizes only
one level of nesting. Try experimenting with the “-p” option of CC, varying the level of inclusion
nesting, to see exactly what happens.

12.3 Conditional Compilation

All standard conditional compilation directives are now supported, but the expression taken by
the #if <expr> directive is limited to the following syntax:

<expr> := <expr2> or
<expr2> && <expr> or
<expr2> || <expr>

<expr2> := <decimal-constant> or
!<expr2> or
(<expr>)

 T h e < d e c i m a l - c o n s t a n t > m a y b e s y m b o l i c (y i e l d i n g a p l a i n d e c i m a l c o n s t a n t a f t e r # d e fi n e
substitution is complete), but is always treated as a logical value by the #if processor. I.e., a value
of 0 is false, and any other value is true.

Nesting of conditional compilation directives is now fully supported.

12.4 Line Control

BD Software Page 85

November 1988 BDS C User’s Guide

Not implemented.

15. Constant expressions

BDS C will simplify constant expressions at compile-time only when the constant expressions
appear immediately after one of the following keywords: left square brackets, the case keyword,
a s s i g n m e n t o p e r a t o r s , c o m m a s , l e f t p a r e n t h e s e s , a n d t h e r e t u r n k e y w o r d . A n y c o n s t a n t
e x p r e s s i o n t h a t d o e s n ’ t f o l l o w o n e o f t h e a f o r e m e n t i o n e d k e y w o r d s i s g u a r a n t e e d t o n o t b e
simplified at compile-time.

T h e s t a n d a r d p r o c e d u r e f o r i n s u r i n g t h e c o m p i l e - t i m e e v a l u a t i o n o f c o n s t a n t e x p r e s s i o n s ,
especially when contained within larger expressions involving elements other than constants, is
to place the constant expressions within parentheses. Thus, statements such as

x = x + y + 15*10;

 will not be simplified (i.e., will cause the compiler to generate code to multiply 15 and 10) and,
in general, will produce longer and slower code than the better form of:

x = x + y + (15*10);

 All multiplicative operations on constants and constant expressions are performed as unsigned
operations.

18.1 Expressions

The unary operators are:

* & - ! ~ ++ -- sizeof

 The binary operators && and || have equal precedence. If the two operators are mixed at an equal
nesting level, evaluation proceeds left to right. As in any expression involving && or ||, a zero
valued expression preceding an && operator forces a value of zero for the entire expression and
terminates evaluation, and a non-zero valued expression preceding an || operator forces a value of
1 (o r t r u e) a n d s i m i l a r l y h a l t s t h e e v a l u a t i o n o f f u r t h e r t e r m s a t t h e s a m e n e s t i n g l e v e l . A
sequence such as

a = 5; b = 0;
if (b && a || a)

puts("true\n");
else

puts("false\n");

 prints “false” under BDS C, but might print “true” under other C compilers. To avoid system
dependency in cases like this, explicit parentheses should be used to force order of evaluation.
The second line of the sequence above, when changed to

if ((b && a) || a)

 would execute consistently on all systems.

Page 86 BD Software

BDS C User’s Guide Notes to Appendix A

The sizeof operator cannot correctly evaluate the size of an array, nor can it be used within an
array declaration as a constant expression. See section 7.2 for additional restrictions on the use of
the sizeof operator.

18.2 Declarations

The complete syntax for declarations is

declaration:
type-designator declarator-list ;

type-designator:
char
int
register (same as int)
unsigned
struct-or-union-designator

declarator-list:
declarator
declarator , declarator-list

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant expression]

struct-or-union-designator:
struct { declarator-list }
struct identifier { declarator-list }
struct identifier
union { declarator-list }
union identifier { declarator-list }
union identifier

 18.4 External definitions

data-definition:
type-designator declarator-list ;

 18.5 Preprocessor

The following preprocessor directives are now supported:

#define identifier token-string
#include "filename"
#include <filename>
#if expression
#ifdef identifier
#ifndef identifier
#else
#endif
#undef identifier

 BD Software Page 87

November 1988 BDS C User’s Guide

#Defines may appear anywhere in the source file, their scope extending until the end of the file,
or until the identifier is re-#defined or #undefed.

The

#if <expr>

 directive is supported, but legal expression elements are limited to constants (including symbolic
constants) and a small set of operators. The #if directive allows user to write system-dependent
conditional expressions without having to resort to using #ifdef/#ifndef and/or play games with
c o m m e n t i n g a n d u n c o m m e n t i n g # d e fi n e d i r e c t i v e s . S e e s e c t i o n 1 2 . 3 a b o v e f o r t h e c o m p l e t e
syntax.

The #include directive should not appear inside any conditional compilation directives. This is
because the #include directives are all processed on-the-fly by the compiler as an input file is

 read in from disk, and conditional compilation processing doesn’t take place until after the entire
file has been read in. Thus, an #include directive will always cause the compiler to try and read
the named file, even if the directive is placed within a false conditional compilation block. This
may be considered a design flaw, but there is no way to process all conditional directives on-the-
fly and still read the source file in at a reasonable speed from standard 8“ single-density CP/M
disks.

When using conditional compilation, note that each and every #else directive must be followed
(eventually) by a matching #endif directive.

18File inclusion may nest to any depth , but both the –p CC option and error reporting for both CC
and CC2 become easier to deal with if file inclusion is limited to a single level.

18. Mutually inclusive files, though, will certainly cause an overflow.

Page 88 BD Software

BDS C User’s Guide RED Text Editor

Chapter 5

The RED Screen Editor

by
Edward K. Ream

E d w a r d K . R e a m h a s m o d i f e d h i s R E D s c r e e n e d i t o r t o i n t e r a c t w i t h t h e n e w
BDS C v1.6 error diagnostic mechanism. When the CC option “-w” is specified,
o r i f t h e R E D o u t p u t o p t i o n h a s b e e n c h o s e n t h r o u g h u s e o f t h e n e w B D S C
CCONFIG program, then a special error file called PROGERRS.$$$ containing
compilation error messages is written by the compiler. If RED is then invoked, it
will see PROGERRS.$$$ and use it as a guide to pinpoint and diagnose errors in
t h e e r r o n e o u s s o u r c e fi l e . S e e s e c t i o n 5 . 1 . 5 o f t h i s a p p e n d i x f o r m o r e d e t a i l e d
information on these new features of RED.

5.1 How To Install RED

T h i s s e c t i o n t e l l s y o u h o w t o g e t R E D u p a n d r u n n i n g o n y o u r s y s t e m , a s s u m i n g y o u d o n ’ t
already have a functioning copy of RED available. Before you read on, though, make sure you_________
read the “read.me” file, which you will find on one of the distribution disks. This file contains
important information—additional details and clarifications as well as tips and warnings that are
unique to the BDS C implementation of RED.

5.1.1 Run the Configuration Program

If you have a version of RED that is ready to run on your computer, you can safely skip the rest
of this section. Also, if you haven’t yet read the READ.ME file, you should certainly do so right
now. Otherwise, you might well waste lots of time following inappropriate directions.

The next thing to do is to run the configuration program, RCONFIG. The executable version of
RCONFIG is on th e fi l e R C O N F I G . C O M . T h e p u r p o s e o f R C O N F I G i s t o create two source
files that describe your terminal and how you want RED to work.

W h i l e r u n n i n g R C O N F I G y o u c a n u s e t h e n o r m a l C P / M l i n e e d i t i n g f u n c t i o n s t o c o r r e c t
mistakes. In other words, use control-h (also known as backspace) to erase one character and use
control-x to erase an entire line. You can leave RCONFIG at any time by hitting control-c. By

BD Software Page 89

November 1988 BDS C User’s Guide

the way, if you see that you have answered any question incorrectly, don’t worry. RCONFIG
always lets you revise your answer to any question later on.

5.1.1.1 Setting Defaults

RCONFIG first asks some questions about how you want to use RED. The first question asks
whether the prompt line should tell what column the cursor is on. This column number changes
a n y t i m e t h e c u r s o r m o v e s r i g h t o r l e f t , s o s o m e fl i c k e r m i g h t s h o w u p o n s o m e s c r e e n s . I
recommend that you answer “yes” (or “y”) to this question unless you find, after using RED a
while, that updating the column numbers creates a problem.

The second question asks whether line wrapping will be enabled or disabled when RED starts up.
What do I mean by line wrapping you ask? When line wrapping is ON, a new line is created
automatically whenever a character is inserted with the cursor at the end of the screen (as long as
n o c h a r a c t e r s a p p e a r t o t h e r i g h t o f t h e c u r s o r) . W h e n l i n e w r a p p i n g i s O F F , n o n e w l i n e i s
created and RED will not let you insert anything once the cursor bumps up against the right edge
of the screen.

The answer you give at this point just sets the way RED works by default initially. You can
a l w a y s u s e t h e w r a p o r n o w r a p c o m m a n d s f r o m w i t h i n R E D t o c h a n g e h o w R E D w o r k s . I
recommend that you turn line wrapping on by default unless you find, after experimenting with
RED a while, that you want line wrapping to be off most of the time.

The next set of questions asks you how you want RED’s modes to work. What mode or modes
do you wish RED to be in by default? When exactly do you want RED to change from one mode
to another? It turns out that people have very strong and persistent opinions on this subject.

RED can shift automatically from one mode to another in three different situations: 1) when a___________
command finishes, 2) when the cursor moves from one line to another and 3) when a new line is
c r e a t e d . R C O N F I G a s k s y ou a b o u t e a c h o f t h e s e t h r e e c a s e s . D i f f e r e n t a n s w e r s w i l l r e s u l t i n
different “styles” of using RED. The next two paragraphs illustrate some possibilities.

Say you want RED always to be in overtype mode unless you explicitly indicate otherwise. You
should then have RED enter overtype mode in all three situations. Insert and edit modes will not
intrude on you work, but will be available if you decide you want them. On the other hand, if you
prefer insert mode to overtype mode, you can have RED switch to insert mode in all cases.

I myself use RED as follows: RED switches to edit mode after commands and when the cursor
moves from one line to another, but RED switches to insert mode when a new line is created.
Thus, RED is always in edit mode unless I am inserting text, in which case RED will be in insert
mode. This is a more complicated style of using RED, but it works very well for me.

R C O N F I G a s k s t h e f o l l o w i n g t h r e e q u e s t i o n s . I n e a c h c a s e , y o u a n s w e r ‘ e ’ f o r e d i t , ‘ o ’ f o r
overtype or ‘i’ for insert. 1) What mode do you want RED to be in after commands finish? By
the way, this question also determines which mode RED starts in. 2) What mode do you want
RED to be when the cursor is moved up or down one line? 3) What mode do you want RED to
be when a new line is created?

Please be clear that your answers to these three questions do not lock you in to a particular style
of using RED—they only set defaults which may be overridden easily while RED is running.

Page 90 BD Software

BDS C User’s Guide RED Text Editor

Thus, there is no need to agonize over them; just make an educated guess about what you might
prefer. After playing with RED you can always reset the defaults by rerunning RCONFIG and
recompiling RED.

5.1.1.2 Selecting Control Keys

R C O N F I G t h e n a s k s h o w y o u w a n t t o s e t u p R E D ’ s c o n t r o l k e y s . I n o t h e r w o r d s , y o u w i l l
indicate which control keys on your keyboard will do what functions. RCONFIG asks a series of
q u e s t i o n s — o n e f o r e a c h f u n c t i o n t o b e p e r f o r m e d . A n s w e r e a c h q u e s t i o n b y t y p i n g e i t h e r a
decimal number or a carriage return. If you type a carriage return, RCONFIG will use a default
value indicated in parentheses. Otherwise, RCONFIG will use the key whose ascii code is the
same as the decimal number you typed. Control keys h a v e d e c i m a l v a l u e s b e t w e e n 1 and 32.
DEL, with decimal value of 127 can also be used. Avoid values greater than 127 or less than
zero. Answering zero to any of these questions makes that function unavailable.

For example, some people like to have the carriage return key split the current line instead of just
creating a new line. I find that style of operation to be a nuisance, but Word Star acts this way
and some people prefer it. To make RED work this way just assign the split function key to be
c a r r i a g e r e t u r n . Y o u s h o u l d t h e n p i c k s o m e o t h e r k e y t o b e t h e i n s e r t d o w n f u n c t i o n k e y o r
suppress that function altogether by assigning zero to it.

5.1.1.3 Describing Your Terminal

N e x t , R C O N F I G fi n d s o u t w h a t y o u r t e r m i n a l c a n d o — R C O N F I G a s k s a s e r i e s o f q u e s t i o n s
about what built-in functions your terminal has. Answer each question with a yes or a no. You
may use the letters ‘y’ or ‘n’ for yes or no.

N e x t , R C O N F I G d e t e r m i n e s j u s t h o w y o u r t e r m i n a l w o r k s . Y o u w i l l s u p p l y t h e c h a r a c t e r
sequence for each of your terminal’s built-in functions. For example, let us consider the goto x,y
function, which is the only function that your terminal must have.____

As a simple example, suppose that the way to move the cursor to ROW y and COLUMN x is
send the escape character (27) to your terminal, followed by an equal sign, followed by 32 plus
x, followed by 32 plus y. You would type the following in response to RCONFIG’s questions:

Enter byte 1: 27
Enter byte 2: ’=’
Enter byte 3: x+32
Enter byte 4: y+32
Enter byte 5: (return)

 Note that you type a carriage return to stop entering bytes.

B e s u r e t h a t y o u e n t e r t h e r o w a n d c o l u m n n u m b e r s i n t h e o r d e r t h a t y o u r t e r m i n a l e x p e c t s .
M a n y t e r m i n a l s u s e a s e q u e n ce in whi c h t h e r o w a n d c o l u m n n u m b e r s a r e r e v e r s e d f r o m t h e
sequence shown above. If you do make a mistake in the goto x y sequence the screen will not
look at all like it should when you run RED in step 4.

BD Software Page 91

November 1988 BDS C User’s Guide

A S C I I t e r m i n a l s f u r n i s h a m o r e c o m p l e x e x a m p l e . S u c h t e r m i n a l s r e q u i r e t h a t t h e x a n d y
c o o r d i n a t e s b e g i v e n i n “ A S C I I ” n o t a t i o n . F o r e x a m p l e , t o m o v e t o c o l u m n 5 a n d r o w 2 1
something like the following would have to be sent to the screen:

ESC ’C’ ’0’ ’0’ ’5’ ’R’ ’0’ ’2’ ’1’

 The point is that the digits ‘0’ ‘5’ ‘2’ and ‘1’ must be ASCII, not binary. Here is the way to
generate such sequences:

Enter byte 1: 27
Enter byte 2: ’C’
Enter byte 3: ’0’+(x/100)
Enter byte 4: ’0’+(x/10)
Enter byte 5: ’0’+(x%10)
Enter byte 6: ’R’
Enter byte 7: ’0’+(y/100)
Enter byte 8: ’0’+(y/10)
Enter byte 9: ’0’+(y%10)
Enter byte 10: (return)

 A s y o u c a n p r o b a b l y t e l l , y o u a r e i n e f f e c t g e n e r a t i n g t h e A S C I I d i g i t s u s i n g t h e a r i t h m e t i c
operators of the C language. You may use any legal C expression containing only constants or
the variables x and y.

Finally, RCONFIG asks you if you are ready to create two files, RED1.H and RED6.C. If you
answer yes, RCONFIG creates new versions of both files, erasing previous versions of the files if
they exist. If you answer no, R C O N F I G e x i t s w i t h o u t c h a nging the files or making any other
changes.

5.1.2 Compile and link RED

Now that RCONFIG has created the files RED6.C and RED1.H, all of RED’s source files are
ready. It’s time to create RED! All source files must be compiled and the resulting object files
m u s t b e l i n k e d t o g e t h e r t o p r o d u c e a n e x e c u t a b l e v e r s i o n o f R E D . C o m p i l e R E D u s i n g
RED.SUB and link RED using RLINK.SUB.

WARNING: check the submit files before you use them t o m a k e s u r e y o u w i l l h a v e e n o u gh
r o o m o n y o u r d i s k s f o r a n y t e m p o r a r y fi l e s t h a t m i g h t b e n e e d e d C h a n g e t h e s u b m i t fi l e s i f
r e q u i r e d s o t h a t t e m p o r a r y fi l e s w i l l b e w r i t t e n t o s c r a t c h d i s k s h a v i n g e n o u g h f r e e s p a c e o n
them.

W A R N I N G f o r B D S C u s e r s : b e a w a r e t h a t R E D i s j u s t o n t h e v e r g e o f h a v i n g t o o m a n y
functions for the CLINK linker to handle. I recommend using the L2 linker if at all possible. Not
only can L2 handle a large number of functions but L2 produces shorter code. Note that L2 uses
different command-line options than CLINK. Thus, you will have to modify the RLINK.SUB

 file to work with L2.

I f y o u g e t a n e r r o r d u r i n g t h i s s t e p y o u m a y h a v e m a d e a m i s t a k e w h e n y o u t y p e d i n t h e
s e q u e n c e s o f b y t e s f o r y o u r t e r m i n a l ’ s b u i l t - i n f u n c t i o n s . S u c h a n e r r o r w i l l s h o w u p w h e n
compiling RED6.C. Rerun RCONFIG or modify RED6.C directly. Something is wrong with the
files on your disk if you get any other error. Create a new working disk from your master disk
and start again with step 2.

Page 92 BD Software

BDS C User’s Guide RED Text Editor

5.1.3 Test and use RED

You are now ready to run RED. It should clear the screen, draw the prompt line at the top of the
s c r e e n a n d t e l l y o u w h a t v e r s i o n y o u a r e u s i n g . I f t h a t d o e s n ’ t h a p p e n , y o u p r o b a b l y m a d e a
mistake during step 2. Go on to step 5 for help.

I f t h e s c r e e n l o o k s r e a s o n a b l e , y o u a r e r e a d y t o s t a r t l e a r n i n g a b o u t R E D . R u n R E D w h i l e
reading the next chapter. Happy editing!

5.1.4 (Optional) Run STEST

You do not have to do this step, but it s h o u l d h e l p i f R E D d o e s n ’ t d r a w t h e s c r een properly.
Create a working version of STEST by compiling STEST.C and linking the resulting object file
with the object file created from RED6.C. Remember that you must recreate STEST every time
you change RED6.C.

C o m p i l e S T E S T . C u s i n g S T E S T . S U B a n d l i n k S T E S T . C R L w i t h R E D 6 . C D L u s i n g
SLINK.SUB.

N o w r u n S T E S T . I t p r i n t s t e s t p a t t e r n s o n y o u r s c r e e n a n d t e l l s y o u w h a t t h o s e t e s t p a t t e r n s
should look like. If and when a test pattern doesn’t look like it should, STEST tells you what part
of RED6.C is suspect.

Armed with this information, go back to step 2 and rerun RCONFIG. Next, recompile just the
one file RED6.C using RED1.SUB and recreate and run STEST. When that works properly, link
RED as in step 3 and test RED again.

5.1.5 Additional Features for RED Under BDS C v1.6

The additions to RED that the user will notice (above and beyond original RED capabilities as
outlined in the .DOC files) are as follows:

1. If the file PROGERRS.$$$ (gene r a t e d b y C C . C O M u nder the appropriate conditions)
exists when RED is entered, it will print a message on the prompt line. Hit any character
to continue.

2. If the file PROGERRS.$$$ exists and no file was specified on the command line, RED
w i l l a u t o m a t i c a l l y l o a d t h e fi l e n a m e d o n t h e fi r s t l i n e o f t h e P R O G E R R S . $ $ $ fi l e .
Otherwise, the file named on the command line is loaded.

3. Pressing > in edit mode (or ESC > in other modes) displays the error message of the
next line of the error file on the command line. Hit any key to move to the offending
line.

4. Pressing < in edit mode (or ESC < in other modes) displays the previous error message
and move to that line after any key is pressed.

5. RED knows enough to ignore error lines in PROGERRS.$$$ that do not pertain to the
file being edited. However, you can fool RED if y o u c h a n g e t h e c u r r e n t fi l e s n a me
using the “name” command.

BD Software Page 93

November 1988 BDS C User’s Guide

6. RED knows enough to adjust line numbers properly for inserting, deleting, moving and
copying lines.

7. The “cc” command has been added. This will automatically exit RED and will invoke
CC <filename> where <filename> is the name shown on the command line. At present
there are no provisions for additional arguments to CC.

8. With ERR_CMND NOT defined, there are exactly 255 functions in the link. This makes
i t p o s s i b l e t o l i n k r e d w i t h C L I N K . C O M . I f y o u a d d a n y m o r e f u n c t i o n s , o r d e fi n e
ERR_CMND, then RED will contain more than 255 functions and you can only use L2
to link it.

9. If enabled (which it is NOT at present to get under 255 functions, as stated above) the
“ e r r o r s ” c o m m a n d w i l l l i s t t h e fi r s t 2 0 o r s o (d e p e n d i n g o n s c r e e n s i z e) l i n e s o f t h e
PROGERRS.$$$ file.

5.2 Reference Manual

This section tells you how to use RED—it describes RED’s commands and functions, tells how
to use them and explains what to do about warning messages.

Each section discusses a particular activity or task that you do while creating, changing or saving
a document. The table of contents at the beginning of this book will help you locate the correct
section quickly. Consult the index at the end of this chapter to find complete information about a
p a r t i c u l a r c o m m a n d , f u n c t i o n k e y , c o n t r o l k e y , m o d e o r e r r o r m e s s a g e . A l s o , y o u w i l l fi n d a
summary of RED’s operations on the back cover of this manual.

Starting RED

It is time to begin using RED! When RED starts up it does the following:

1. RED clears the screen and prints a welcoming message. This sign-on message tells you
what version of RED you are using and how to print help messages. Help messages are____________
simply reminders of what you can do with RED.

2. RED draws the prompt line at the top of the screen. For now, just notice this top line;__________
we’ll discuss the information on it in a moment.

3. RED puts the cursor just below the prompt line. The cursor is a distinctive character on_____
the screen. (On most video terminals the cursor is shown as a box or underline which
blinks.)

4. RED draws the end-of-file marker on the third line of the screen. This line looks like:_______________

------------ End of File. ------------

 Page 94 BD Software

BDS C User’s Guide RED Text Editor

Initially, most of the screen is blank because RED’s buffer, or internal memory doesn’t contain_____
any information. You can think of the screen as a window into part of this buffer. As you make_______
a d d i t i o n s , c o r r e c t i o n s a n d d e l e t i o n s t o t h e b u f f e r , t h o s e c h a n g e s a p p e a r a u t o m a t i c a l l y o n t h e
screen. The purpose of the end-of-file marker is to make absolutely clear what the buffer does
and does not contain.

Let’s look again at the prompt line. At the far left, you will see that the it says,

line: 1 column: 0

 These two fields indicate which line in the buffer and column on the screen that the cursor is on.
The next field says,

..no file..

 indicating that the buffer does not contain any information from a file.

F i n a l l y , t h e p r o m p t l i n e t e l l s y o u w h a t m o d e R E D i s i n — e i t h e r e d i t m o d e , i n s e r t m o d e o r_____
overtype modes. In most respects, RED works exactly the same regardless of mode; that makes
RED simple to use. However, some details of how RED works change depending on mode; that
makes RED powerful. We’ll see later that not only can you make RED change modes easily, but
y o u c a n h a v e R E D c h a n g e m o d e s a u t o m a t i c a l l y i f y o u s o d e s i r e . T h i s f e a t u r e i s v e r y
important—it allows you to make RED work exactly the way you think it should. We’ll discuss______
modes shortly in complete detail. For the moment, just notice what mode RED is now in.

At your option, you may have RED automatically load a text file into RED’s internal memory
(the buffer) when RED initially starts up. For example, if you had invoked RED as follows:

A>red document.txt

 then RED would have loaded the file document.txt into the buffer already. In that case the screen
would not be blank but instead would show you the first several lines in the file and the prompt
line would “document.txt” instead of “..no file..”

Using Function and Control Keys

The term function key refers to a key on your keyboard that does one and only one action or___________
function. Just about everything you do with RED involves using function keys—they are used to
change modes, to insert or delete lines and characters, to move the cursor, to split and join lines
and to start commands. There is also a “repeat” function key that repeats the previous function.
All function keys can be used in insert, overtype and edit modes and all function keys do the
same thing, regardless of the current mode.

R E D n e e d s t o b e a b l e t o d i s t i n g u i s h f u n c t i o n k e y s f r o m w h a t y o u a r e t y p i n g i n t o t h e b u f f e r .
Thus, function keys must be assigned to control keys on your keyboard. A control key is typed__________
b y h o l d i n g d o w n t h e k e y m a r k e d C T R L o n y o u r k e y b o a r d w h i l e t y p i n g a n o t h e r k e y . F o r
example, you type the “control c key” (abbreviated control-c) by typing the letter c while holding
down the CTRL key.

BD Software Page 95

November 1988 BDS C User’s Guide

A d e c i s i o n w a s m a d e w h e n R E D w a s c r e a t e d (t h a t i s , w h e n t h e C O N F I G p r o g r a m w a s r u n)
w h i c h c o n t r o l k e y i s a s s i g n e d t o e a c h f u n c t i o n k e y . F o r e a c h f u n c t i o n k e y , t h e r e i s a d e f a u l t______
a s s i g n m e n t o f a p a r t i c u l a r c o ntrol key. This is the assignment that is assumed in this chapter .__________
Throughout this chapter, the name of each function key is followed in parenthesis by the control
key assigned to it by default. For example, this chapter refers to the split function key as split
(control-s). So in order to press the split function key you must actually press the control-s key
on your keyboard. Clear?

Changing Modes

I said earlier that RED has three modes: edit mode, insert mode and overtype mode and that all
f u n c t i o n k e y s a c t t h e s a m e r e g a r d l e s s o f m o d e . T h u s , t h e o n l y d i f f e r e n c e b e t w e e n t h e t h r e e
modes is what happens when you type a non-control character. You use three different keys to
switch RED between modes—the enter iNsert (control-n), enter overType (control-t) and enter_________ ____________ ____ _ _
edit (control-e) function keys.___

Besides these three keys which explicitly change from one mode to another, RED can change________
from one mode to another automatically in three situations:___________

1) after every command
2) after inserting new lines and
3) whenever the cursor moves up or down one line.

What RED does initially in these three cases was chosen back when RED was configured (see
Chapter 1), so I can’t be specific about what your copy of RED will do. For the moment, just be
aware of what does happen in each case.

Y o u c a n c h a n g e h o w R E D s w i t c h e s m o d e s u s i n g t h r e e s e t s o f c o m m a n d s : d e f 0 e d i t , d e f 0 i n s ,
d e f 0 o v e r , d e f 1 e d i t , d e f 1 i n s , d e f 1 o v e r , d e f 2 e d i t , d e f 2 i n s , a n d d e f 2 o v e r . (W e h a v e n ’ t d i s c u s s e d
commands yet, so if you are reading this for the first time just realize that how RED switches
between modes isn’t carved in stone.)

For example, to make RED into an “overtype mode editor” just issue the def0over, def1over and
d e f 2 o v e r c o m m a n d s . Y o u ’ l l n e v e r s e e i n s e r t o r e d i t m o d e s a g a i n u n l e s s y o u s w i t c h t o t h e m
e x p l i c i t l y . A s a n o t h e r e x a m p l e , I p r e f e r t o u s e a h y b r i d c o m b i n a t i o n o f e d i t m o d e a n d i n s e r t
mode—I configure RED so it acts as if I had issued def0edit, def1ins and def2edit commands.
Try it. You may like it.

Inserting Characters With Insert and Overtype Modes

In this section we’ll look at insert and overtype modes, leaving edit mode for much later. Let’s
discuss insert mode first, so if RED is not already in insert mode press the enter insert (control-n)
function key. Notice that the prompt line indicates that the mode has changed.

In insert mode, any plain (i.e., non-control) character you type is inserted into the buffer without_______
replacing any other information. Characters to the right of the cursor “move over” to allow room
for the new character. To jump the gun a bit, you can make the cursor move left without erasing
anything by hitting the left (control-l) function key. Try the following: insert a few characters,
move the cursor left once or twice and insert some more characters.

Page 96 BD Software

BDS C User’s Guide RED Text Editor

Overtype mode works just like insert mode except that a character directly under of the cursor is
replaced by what you type, instead of moving to the right. In other words, in overtype mode you
“type over” whatever is already be on the line. Compare overtype mode to insert mode: enter

 overtype mode, type some characters, move the cursor to the left and type some more characters.

Inserting New Lines

You can’t edit much if you are confined to a single line. You end one line and begin another
using the insert down (carriage return or control-m) function key. Try it. The insert up (line feed_________ ________ _
or control-j) function key is a companion key to the insert down key. The insert up key inserts a
blank line above the current line.

The insert up (line feed) and insert down (carriage return) function keys may also cause RED to
shift automatically to a different mode. Which mode RED shifts to after hitting these keys may
be changed at any time using the def1edit, def1ins and def1over commands. For example, the
def1edit command causes RED to shift automatically to edit mode whenever the insert down or
insert up function key is pressed.

Notice that RED will split the line automatically if the cursor reaches the end of screen while you
a r e i n s e r t i n g c h a r a c t e r s . T h i s f e a t u r e i s c a l l e d l i n e w r a p p i n g . T r y i t o u t . N o t i c e a l s o t h a t l i n e____________
wrapping never happens if there are characters to the right of the cursor.

P l a y a r o u n d w i t h R E D r i g h t n o w . S e e w h a t h a p p e n s w h e n y o u i n s e r t n e w l i n e s . D o e s R E D
switch modes? Don’t worry about typos; in the next several sections we’ll see how to deal with
them.

Moving The Cursor

I n o r d e r t o c h a n g e y o u r t e x t , y o u m u s t p o s i t i o n t h e c u r s o r n e a r t h e t e x t t o b e c h a n g e d . T h i s
section tells you how to do that.

The right (control-r) and left (control-l) function keys move the cursor right or left one column.___ ___ _
However, these keys always leave the cursor on the same line. For example, nothing happens if
you hit the left key when the cursor is at the leftmost column of the screen.

The up (control-u) and down (control-d) function keys move the cursor up and down one line__ _____
respectively. The cursor will not move above the first line or below the last line of the file.

The up (control-u) and down (control-d) function keys may also cause RED to shift to a different
mode. Which mode RED will shift to may be changed at any time using the def2edit, def2ins and
d e f 2 o v e r c o m m a n d s . F o r e x a m p l e , t h e d e f 2 i n s c o m m a n d c a u s e s R E D t o s h i f t t o i n s e r t m o d e
whenever the up (control-u) or down (control-d) function key is pressed.

The page up (control-q) and page down (control-p) function keys move the cursor up or down______ _________ _
one page of the file. You need not wait for the screen to be completely redrawn before hitting
another character.

The scroll up (control-w) and scroll down (control-o) function keys scroll the cursor up or down.______ __________ _
Hitting any key interrupts the scrolling.

BD Software Page 97

November 1988 BDS C User’s Guide

T h e w o r d f o r w a r d (c o n t r o l - f) a n d w o r d b a c k w a r d (c o n t r o l - b) f u n c t i o n k e y s m o v e t h e c u r s o r___________ _____________ _
forward or backward one word. A word is any sequence of characters separated by end-of-line,
blank or tabs.

Deleting Characters and Lines

A large part of my writing involves deleting characters and lines: two words forward and one
w o r d (t a k e n) b a c k — t w o s e n t e n c e s w r i t t e n a n d o n e e r a s e d . R E D l e t s y o u d o t h i s w i t h o u t a n y
fuss.

To delete a single character you must first position the cursor either directly over the character or
just to its right. The delete left (control-h or backspace) function key deletes the character to the________
left of the cursor. Nothing happens if the cursor is up against the left edge of the screen. The
delete under (del) function key deletes the character directly under the cursor.__________

Use the delete line (control-z) function key to delete the entire line on which the cursor rests. The_________
screen is redrawn with the line squeezed out.

Undoing Mistakes

S o m e t i m e s R E D l e t s u s w o r k f a s t e r than our thoughts—or maybe our fingers have a m i n d o f
their own. In any case, there is occasionally a need for undoing the “improvements” that have
just been visited upon a line.

The undo (control-x) function key restores a line to what it was when the cursor last moved to____
the line. In other words, the undo function undoes whatever editing or inserting you have done
on the current line. Several words of warning: you can not use the undo (control-x) function key
to restore a line that has been erased with the erase line (control-z) function key. Also, you can
not use the undo (control-x) function key to undo a change once you have moved the cursor to
another line.

Splitting and Joining Lines

Being able to split a line into two pieces or make one line from two is often very handy. For
instance, to edit a line longer than will fit on the screen, you would first split the line, then make
your corrections and finally glue the line back together again.

The split (control-s) function key splits the current line into two pieces. Everything to the left of____
t h e c u r s o r s t a y s r i g h t w h e r e i t i s . A l l o t h e r c h a r a c t e r s a r e m o v e d t o a n e w b l a n k l i n e c r e a t e d
below the original line. The split (control-s) function key acts just like the insert down (carriage
return) function key if the cursor is positioned at the right end of the line.

The glue (control-g) function key combines two lines into one. This key appends the current line____
to the line above it and then deletes the lower line. The new line is allowed to be longer than the
width of the screen.

Page 98 BD Software

BDS C User’s Guide RED Text Editor

Inserting Control Characters

In rare cases, it is desirable to insert control characters into the buffer. This requires a special
function key. The verbatim (control-v) function key enters the next key pressed into the buffer,________
no matter wha t i t i s . F o r e x a m p l e , t o i n s e r t a c o n t r o l - s i n t o a buffer, type control-v control-s.
After you press the verbatim (control-v) function key, but before you press the second key, the
prompt line says ‘verbatim’.

Repeating the Previous Function

The repeat (control-a) function key repeats the last function key, edit mode function or escape_____
sequence. For example, typing control-p control-a is the same as typing control-p twice. As we
will see, using the repeat key can sometimes save you typing.

The repeat key “amplifies” the effect of several functions as shown in this table:

original amplified
function function_____________________

begin line home
end line end page
home page up
end page page down

 For example, typing ESC b ^a ^a is the same as typing ESC b ESC h ^q because the first ^a
 amplifies the begin line function (^b) into the home function (ESC h) and the second ^a amplifies

the home function into the page up function (^q).

Using Commands

Up until now, we have been talking about functions, i.e., operations that can are done by pressing________
a s i n g l e f u n c t i o n k e y . H o w e v e r , f u n c t i o n s a r e n o t a p p r o p r i a t e i n a l l s i t u a t i o n s — t h e y m i g h t
require additional information or they might potentially alter too much work to be safe.

Commands are RED’s way of performing complex or dangerous operations quickly and safely.__________
You start each command with the enter command (control-c) function key. Try this key out now._____________
Notice that the cursor moves to the prompt line. All commands end with a carriage return, and if
y o u t y p e n o t h i n g b u t a c a r r i a g e r e t u r n t h e c o m m a n d i s t e r m i n a t e d . Y o u c a n a l s o e x i t f r o m a
c o m m a n d b y h i t t i n g e i t h e r t h e e n t e r e d i t (c o n t r o l - e) , t h e e n t e r i n s e r t (c o n t r o l - n) o r t h e e n t e r
overtype (control-o) function key. OK, exit the command in one of the ways just mentioned.

If you make a mistake while entering a command, just hit control-h (also known as backspace) to
erase single characters. You may use either upper or lower case for commands.

D e p e n d i n g o n h o w R E D w a s c o n fi g u r e d , R E D m a y s h i f t t o a d i f f e r e n t m o d e a f t e r e a c h
command. At any time, you may change which mode RED will shift to by using the def0edit,
def0ins and def0over commands. For example, the def0over command causes RED to shift to
overtype mode after each command.

BD Software Page 99

November 1988 BDS C User’s Guide

The following several sections discuss RED’s various commands in detail.

Creating, Saving and Loading Files

After you have finished working on your document you must save it on a file. This is a two-step
process: you must name the file and you must actually save your work to that file.

Use the name command to name your file. Just type “name” (you don’t type the double quotes)_____________
f o l l o w e d b y t h e n a m e y o u w a n t y o u r fi l e t o h a v e , f o l l o w e d (a s a l w a y s) b y a c a r r i a g e r e t u r n .
Notice that the prompt line changes to reflect the new file name.

Aside : Y o u r fi l e n a m e c a n h a v e no more than eight letters or digits, followed optionally by a________
period and no more than three more letters. The question mark (?) and asterisk or star (*) are not
allowed in file names. Examples:

legal illegal
names names__________________

abc ???.abc
foo.bar foo.*
letter.doc letter.doc1
12345678.doc 123456789.doc
xy.z x.y.z

 The last step in creating a new file is writing your work to the file. If you don’t do this your work
will be lost, but don’t worry, RED reminds you if you haven’t done so when you try to leave. To
save your work, use the save command. While the save command is in progress, the message_____________
“—saving—” appears on the prompt line. The save command doesn’t take any arguments; your
work is saved to the file named on the prompt line. If you issue the save command when the

 prompt line indicates “..no file..” RED complains saying, “file not named”. Hit any key to clear
this message and continue.

If RED says “file exists” instead of “—saving—” it means that a file already exists on the disk
with the name shown on the prompt line. You now have two choices: you can pick another name
for your file and do the save command over again or you can use the resave command to replace______________
what is already on that file with your present work. (Watch out: the resave commands destroys
the previous contents of the file.) If you use the resave command and the file does not already
e x i s t , R E D g i v e s y o u t h e “ fi l e n o t f o u n d ” m e s s a g e . A s w i t h t h e s a v e c o m m a n d , t h e r e s a v e
command never takes any arguments.

As mentioned earlier, you can load an already existing file (say memo) at the same time you start
RED by typing ‘red memo’. If RED finds the file on the disk, RED loads that file and updates the
prompt line to indicate the name of the file. This is the file name used by the save and resave
commands. (Of course, you can use the name command at any time to change this name.) If the
file is not found the prompt line says “file not found.” As always, hit a carriage return to clear
this warning message.

If you did not give a file name when you started RED, or if you got the “file not found” message,
y o u c a n u s e t h e l o a d c o m m a n d t o l o a d a fi l e i n t o t h e b u f f e r . T h e l o a d c o m m a n d t a k e s o n e_____________

Page 100 BD Software

BDS C User’s Guide RED Text Editor

argument—the name of the file to be loaded. As you would expect, the load command changes
the file name on the prompt line so that the save and resave commands will update the file you
just loaded. Purely as a convenience, RED treats the red command just like the load command.____________
Examples:

load abc.doc
red memo
save
resave

 Unlike some other editors, RED’s load command does not create a file if it does not exist, so you
h a v e n ’ t c r e a t e d a n y u n w a n t e d fi l e i f y o u d o n ’ t g e t t h e n a m e r i g h t . N e i t h e r d o e s t h e l o a d
command change the file name on the prompt line if the file does not exist. This feature makes
the save and resave commands safe to use in almost all circumstances.

The load command replaces whatever is in the buffer by the contents of the file being loaded. For_______
your protection, the load command asks “Buffer not saved, proceed?” if loading the file might
destroy unsaved work. If you answer ‘y’ the load operation begins and whatever is in the buffer
is lost. Otherwise, the load command terminates and you have an opportunity to save your work.

Leaving RED

There are two ways to leave RED. The first is the exit command, which takes no arguments. For____________
your protection, RED asks “Buffer not saved, proceed?” if you issue this command before you
have saved your work. Type ‘y’ to exit anyway or type anything else to cancel the command.

The quit command may or may not be available with your version of RED. If it is available, the____________
q u i t c o m m a n d w o r k s l i k e t h e e x i t c o m m a n d (i t t a k e s n o a r g u m e n t s) , e x c e p t t h a t R E D s a v e s
i n f o r m a t i o n o n y o u r d i s k s o R E D c a n r e l o a d t h e fi l e y o u w e r e w o r k i n g o n q u i c k l y a n d
automatically. When RED is next restarted, it looks for this information to resume editing right
where you left off.

The quit command is nice to have if you do a lot of work with a single file because it saves 99%
of the time it takes to load a file with the load command. However, the quit command does have
some drawbacks. First, the saved information (the work file) takes up space on the disk when
RED is not being used. Second, if the work file is erased, some of your work may be lost. Third,
if you interrupt RED by hitting your computer’s reset key, the work file will not have the proper
file status line. The next time you start RED, RED will complain and you will have to erase the
work file by hand.

Searching for Patterns

As your file becomes longer and longer, it becomes harder and harder to find the parts of it that
y o u w a n t t o c h a n g e . I n s t e a d o f s e a r c h i n g f o r w o r d s o r p h r a s e s y o u r s e l f , R E D c a n d o t h e
searching for you.

In order to do searching, you must specify patterns which tell RED what to look for. A pattern is_______
simply any string of characters ended by a carriage return. Most letters in patterns just stand for
themselves. Examples:

BD Software Page 101

November 1988 BDS C User’s Guide

• The pattern ‘abc’ matches the three letters ‘a’ ‘b’ and ‘c’.

• The pattern ‘12-4’ matches the four characters ‘1’ ‘2’ ‘-’ and ‘4’.

There are three characters which have special meanings within patterns and make patterns more
powerful. A question mark in a pattern matches any character at all. Examples:____________

• The pattern ‘?bc’ matches any ‘bc’ that is not the first character on a line.

• The pattern ‘a?c’ matches an ‘a’ and ‘c’ with exactly one character between them.

• The pattern ‘???’ matches any three characters on the same line.

A leading caret (’^’), i.e., a caret that appears at the start of a pattern, matches the start of a line.___________
Examples:

• The pattern ‘^abc’ matches any line that starts with ‘abc’.

• The pattern ‘^??abc’ matches any line with ‘abc’ starting in column 3.

A caret that does not start a pattern loses its special meaning. Examples:

• The pattern ‘^?^a’ matches any line with a ‘^’ in column 2 followed by an ‘a’.

• The pattern ‘?^’ matches any ‘^’ which is not in column 1.

A trailing dollar sign, i.e., a dollar sign that appears at the end of a pattern, matches the end of a_______________
line. Examples:

• The pattern ‘abc$’ matches any line that ends with ‘abc’.

• The pattern ‘abc??$’ matches any line with exactly two characters after ‘abc’.

A dollar sign that does not conclude a pattern loses its special meaning. Example:

• T h e p a t t e r n ‘ ̂ ? $? ’ m a t c h e s a n y l i n e w i t h ‘ $ ’ i n c o l u m n 2 f o l l o w e d b y s o m e o t h e r
character.

A leading caret and trailing dollar sign may be used in the same pattern. Examples:

• The pattern ‘^abc$’ matches any line that contains only ‘abc’.

• The pattern ‘^?$’ matches any line with exactly one character.

T h e fi n d c o m m a n d p u t s t h e c u r s o r a t t h e s t a r t o f t h e p a t t e r n w h e n t h e p a t t e r n i s f o u n d . Y o u____________
invoke the find command as you would expect: type the enter command (control-c) function key
followed by find <CR>. The prompt line will now ask you for a search mask. This means that___________
you should enter a pattern to search for. Type in the pattern and end it with a carriage return.

The find command will now search from the place where the cursor is, looking for the pattern. If
t h e fi n d c o m m a n d r e a c h e s t h e e n d o f t h e b u f f e r w i t h o u t fi n d i n g a m a t c h t h e s e a r c h “ w r a p s

Page 102 BD Software

BDS C User’s Guide RED Text Editor

around the buffer,” i.e., the search continues from the start of the buffer to the line where the
s e a r c h o r i g i n a l l y c o m m e n c e d . I f t h e fi n d c o m m a n d e v e n t u a l l y m a t c h e s t h e p a t t e r n , R E D w i l l
place the cursor at the start of the pattern. If no match is found, RED will simply put the cursor
back where it was before the find command was invoked.

The findr command works just like the find command except that it searches backwards through_____________
the buffer for a pattern.

The search command searches for a pattern just like the find command, but the search may be______________
continued after a pattern is found. When a match is found, the prompt line will say, “next, exit?”.
If you hit an ‘n’, the search will continue. The search will end if you hit any other key.

T h e c h a n g e c o m m a n d s e a r c h e s f o r a p a t t e r n i n a m a n n e r s i m i l a r t o t h e s e a r c h c o m m a n d , b u t_______________
when a match is found a substitution is made. When you invoke the change command, you will
b e a s k e d f o r a s e a r c h m a s k , j u s t a s w i t h t h e s e a r c h c o m m a n d . N e x t , y o u w i l l b e a s k e d f o r a
change mask. Whenever the pattern specified by the search mask is found, the pattern specified___________
by the change mask is substituted.

C a r e t s a n d d o l l a r s i g n s h a v e n o s p e c i a l s i g n i fi c a n c e i n a c h a n g e m a s k . Q u e s t i o n m a r k s i n a
change mask are replaced by the character that matched the corresponding question mark in the
search mask.

For example, suppose the search mask is ‘a?b?’ and the change mask is ‘A??C’. If the characters
that match the search mask are ‘a+b-’ then ‘a+b-’ would be replaced by ‘A+-C’ because the two
question marks in the change mask would be replaced by ‘+’ and ‘-’ respectively.

T h e c h a n g e c o m m a n d d o e s n o t m a k e a l l c h a n g e s i n t h e b u f f e r a t o n c e . W h e n a m a t c h t h e
substitution is made on the screen and the prompt line asks,

"yes, no, all, exit?"

 The substitution is undone if you reply ‘n’ or ‘e’ and the change command terminates if you say
‘e’. If you reply ‘y’, the change is made and the searching continues. If you say ‘a’, the change is
made and searching continues. However, when you say ‘a’, all changes are made without further__
prompting and no further changes are shown on the screen. Only the line number field on the
prompt line shows that changes are being made.

The find, findr, search and change commands may be stopped at any time by hitting any control
character. This is especially important when using the ‘a’ option of the change command.

The find and findr commands start searching from the current line, but you can change that by
invoking these commands with a line number. Examples:

command search starts at_____________________________
find current line
find 1 line 1
findr 9999 end of buffer

 T h e c h a n g e a n d s e a r c h c o m m a n d s l o o k t h r o u g h t h e e n t i r e b u f f e r f o r t h e p a t t e r n u n l e s s y o u
specify a portion of the buffer to search. Examples:

BD Software Page 103

November 1988 BDS C User’s Guide

command what is searched_____________________________
search every line
search 1 9999 every line
change 70 90 lines 70--90
search 50 lines 50--end
change 90 9999 lines 90--end

 Moving Blocks of Lines

One of the most common editing operations is cutting and pasting. RED has four commands that
make this easy.

The move command moves a block of lines from one place in the buffer to another. The move_____________
command takes three arguments, the first line to move, the last line to move, and the line after
which the lines are to be moved. Only one line is moved if only two line numbers are given.
Examples:

line(s) where
command moved moved______________________________
move 1 2 3 1--2 after line 1
move 1 2 0 1--2 before line 1
move 2 10 2 after line 10

 The copy command works just like the move command except that a copy of the lines is moved_____________
so that the original lines stay where they were. Examples:

line(s) where
command copied copied_______________________________
copy 1 2 3 1--3 after line 3
copy 1 2 0 1--2 before line 1
copy 1 8 1 after line 8

 The extract command copies a block of lines to a file without erasing the block from the buffer.______________
Take care with this command: the file is erased if it already exists. Another caution: integers are
legal file names, so make sure you include the file name. Examples:

file- lines
command name written__

extract abc abc whole file
extract 1 2 1 line 2
extract abc 1 2 abc lines 1--2
extract f 1 9999 f whole file

 The inject command is the companion to the extract command. The inject command adds a file to_____________
the buffer. It does not replace the buffer as does the load command. Examples:

command where injected___________________________________
inject abc after current line
inject abc 0 before line 1
inject abc 9999 at end of file
inject abc 50 after line 50

 Page 104 BD Software

BDS C User’s Guide RED Text Editor

You can use the extract and inject commands to cut and paste between different files. Extract a
block of lines from the first file into a temporary file, load the second file and then inject the lines
from the temporary file into the second file.

Setting Tab Stops

Tab stops effect how tabs are shown on the screen and printed on the printer. RED sets tab stops
e v e r y 8 c o l u m n s t o b e g i n w i t h , b u t t h i s c a n b e c h a n g e d w i t h t h e t a b s c o m m a n d . A f t e r t h i s_____________
command the screen is redrawn so you can see the results of the new tab setting. Examples:

command width of tabs__________________________
tabs 8
tabs 8 8
tabs 4 4

 Enabling and Disabling Line Wrapping

Initially, line wrapping is enabled. Lines are split whenever:

a) the cursor is the last character of the line and
b) the cursor is at the right edge of the screen and
c) a character is inserted.

T h e n o w r a p c o m m a n d d i s a b l e s l i n e w r a p p i n g . W h e n l i n e w r a p p i n g i s d i s a b l e d , n o f u r t h e r________________
insertions are allowed in a line when the cursor reaches the right margin of the screen. If you
want to enable line wrapping again after using the nowrap command, use the wrap command._____________

Listing the Buffer

The list command prints the buffer on your printer. Lines are formatted just as they are on the____________
screen, but the length of the print line, not the width of screen, determines where long lines are
truncated. You can interrupt the listing at any time by hitting any control key. Examples:

command what is listed___________________________
list the current line
list 15 line 15
list 1 9999 the entire buffer
list 400 500 lines 400--500

 Deleting Multiple lines

The clear command erases the whole buffer, while the delete command deletes one or more lines.____________ ______________ _
The clear command will caution you if erasing the buffer might cause work to be lost, but the
delete command does not, so be careful. Examples:

BD Software Page 105

November 1988 BDS C User’s Guide

command what is deleted____________________________
clear the whole file
delete 1 9999 the whole file
delete the current line
delete 25 line 25

 Choosing How RED Switches Modes

A s m e n t i o n e d b e f o r e , R E D w i l l a u t o m a t i c a l l y s w i t c h f r o m o n e m o d e t o a n o t h e r i n t h r e e
situations:

1) after every command
2) after inserting new lines and
3) whenever the cursor moves up or down one line.

You can choose exactly what RED will do in each case. This section tells how.

The def0edit, def0ins and def0over commands determine which mode (edit, insert or overtype)
RED will be in after each command. For example, after the def0edit command is given, RED
will switch to edit mode after each command.

The def1edit, def1ins and def1over commands determine which mode RED will be in after the
insert up (line feed) or insert down (carriage return) function keys are pressed. For example, after
the def1ins command is given, RED will switch to insert mode whenever a new blank line is

 created.

 The def2edit, def2ins and def2over commands determine which mode RED will be in after the
u p (c o n t r o l -u) or down (control-d) function keys are p r e s s e d . F o r e x a m p l e , a f t e r t h e d e f 2 o v e r
command is given, RED will switch to overtype mode whenever the up or down function keys
are pressed.

Edit Mode Functions And Escape Sequences

Edit mode lets you avoid typing so many control keys. In edit mode, typing regular (i.e., non-
c o n t r o l) k e y s m a k e s R E D a c t a s t h o u g h f u n c t i o n k e y s w e r e p r e s s e d . S o m e p e o p l e fi n d u s i n g
normal characters in this way confusing, which is why this section has been left until now. Other
people, myself for instance, think that edit mode is a great convenience.

Escape sequences are an added frill; they are a way of executing edit mode functions without_______________
switching to edit mode. Escape sequences consist of the escape (ESC) function key followed by
an edit mode function. For example, the ‘h’ edit mode function homes the cursor to the top left
corner of the screen. If RED were in insert mode I could home the cursor using the ESC h escape
sequence without having to switch RED to edit mode first. By the way, edit mode commands and
escape sequences may be typed either in upper case or in lower case.

H e r e i s a l i s t o f t h e e d i t m o d e f u n c t i o n s . F o r s i m p l i c i t y ’ s s a k e t h e f u n c t i o n s a r e l i s t e d i n
alphabetical order. Again, each function may be used outside of edit mode by using an escape
sequence.

Page 106 BD Software

BDS C User’s Guide RED Text Editor

The space bar moves the cursor right one column. Nothing happens if the cursor is up against the________
r i g h t e d g e o f t h e s c r e e n . I n o t h e r w o r d s , t h e s p a c e b a r w o r k s e x a c t l y t h e s a m e a s t h e r i g h t
(control-r) function key.

The ‘+’ key moves the cursor down a half a page. The ‘-’ key moves the cursor up a half page._____ ______ _

The b key puts the cursor at the beginning (left hand edge) of the line. This key is amplified by_____
t h e r e p e a t k e y i n t o t h e h o m e f u n c t i o n . F o r e x a m p l e , t y p i n g b ^ a i n e d i t m o d e i s t h e s a m e a s
typing b p. Similarly, typing ESC b ^a in insert mode is the same as typing ESC b ESC p.

The d key causes the cursor to move down rapidly. Type any key to stop the scrolling._____

The e key moves the cursor to the right end of the line. This key is amplified by the repeat key_____
into the end page function. For example, typing e ^a in edit mode does the same thing as typing e
z. Similarly, typing ESC e ^a is the same as typing ESC e ESC z.

The g key moves the cursor to another line. After you type the g the cursor will move to the_____
prompt line. The prompt line will show ‘goto:’ Now type a line number followed by a carriage
return. By the way, there is a g command that works the same way.__________

T h e h key homes the cursor to the top lef t c o r n e r o f t h e s c r e e n . T h i s k e y i s a m p l i fi e d b y t h e_____
repeat key into the page up function. Thus, typing h ^a in edit mode is the same as typing h q.
Similarly, typing ESC h ^a works the same as typing ESC h ESC q.

The k key deletes all characters from the cursor up to but not including the word that starts with a_____
“search character”. Everything from the cursor to the end of the line is deleted if no word starts
with the search character. After you hit the k the prompt line displays ‘kill’. Now type the search
character. If you wish to cancel the k command before specifying the search character, press any
control character. The k command will be stopped and no deletion will be made. If too much text
i s d e l e t e d , u s e t h e u n d o k e y a n d t r y again. Example: Typing k <space> d e l e t e s t h e f o l l o w i n g
word.

The m key moves the cursor to the start of the line in the middle of the screen._____

T h e p k e y m o v e s t h e c u r s o r d o w n o n e p a g e . Y o u d o n ’ t h a v e t o w a i t f o r t h e s c r e e n t o b e_____
completely redrawn before you hit another key. Thus, hitting several p keys is a very fast way to
move short distances. The q key is the companion to the p key. It moves the cursor up one page._____

The s key moves the cursor to the next word that starts with a search character. If no word starts_____
with the search character the cursor is moved to the end of the current line. After you hit the s
k e y , t h e p r o m p t l i n e d i s p l a y s ‘ s e a r c h ’ . N o w t y p e t h e s e a r c h c h a r a c t e r . E x a m p l e : T y p i n g s
<space> moves the cursor right one word.

The u key moves the cursor up rapidly. You stop the scrolling by typing any key._____

The x key replaces the character under the cursor. After you type the x command the prompt line_____
displays ‘eXchange’. Now type the new charact e r . I f y o u h i t a c o n t r o l c h a racter no change is
made and the x command is canceled.

BD Software Page 107

November 1988 BDS C User’s Guide

The z key moves the cursor to the start of the last line on the screen. This key is amplified by the_____
repeat key into the screen down function. For example, typing z ^a in edit mode is the same as
typing z p. Similarly, typing ESC z ^a is the same as typing ESC z ESC p.

What To Do About Error Messages

RED will print a message on the prompt line should anything go amiss. You clear the message
by hitting any key. Usually the message will be a reminder about how to enter a command. For
example, if you forget how to use the move command, just do the move command anyway. RED
will say,

usage: move <block> <n>

 This may jog your memory enough so you won’t have to look up the command in this chapter.

The only serious error you might see is:

write error: disk or directory full??

 This error usually means that RED could not complete a save or resave command because there
was not enough room on the disk. This error is not too serious; you should be able to recover
from this error if you do a save or resave to another disk. But you should never remove the disk_____ _____ _
invoked RED! (That disk contains the work file, which is what you are trying to save.)

More rarely you can see this error when you are making insertions into the buffer. When this
happens, try to save the buffer to a new file on another disk. Once again, do not remove the disk___ ______ _
from which you invoked RED! This may or may not work, depending on whether another disk is
available. Thus, you may lose the work you have done since your last save or resave. Obviously
this is not a pleasant occurrence. You can avoid this problem by making sure that your disk has
enough room to hold your work and by frequently saving your work.

Page 108 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

Chapter 6

CDB: A Debugger for BDS C

Version 1.60
1 October 1986

David Kirkland
3766 Purdue

Houston, Texas 77005
(713) 660-9151 (home)
(713) 229-1101 (office)

Copyright (c) 1982-1986 by David Kirkland

6.1 An Explanation of CDB Components

CDB is an interactive symbolic debugger for programs written for the BD Software C Compiler.
CDB enables a user to set breakpoints in a program, to trace the flow of program execution, and
s y m b o l i c a l l y t o d i s p l a y a n d s e t v a r i a b l e s . I t t h u s p r o v i d e s t h e d e v e l o p e r o f a n a p p l i c a t i o n
program with what I hope is a useful environment for program development and testing.

The debugging package consists of three executable files. The first of these three, L2.COM, is a
linker for object code files in the C relocatable (.CRL) format. L2 prepares a .COM file to be
l o a d e d a n d e x e c u t e d u n d e r t h e c o n t r o l o f t h e o t h e r p a r t s o f t h e d e b u g g i n g p a c k a g e a n d a l s o
prepares a symbol table for the package’s use.

The second element of the package, CDB.COM, is used by the program developer (the “user”) to
invoke the debugger. CDB interprets the command-line arguments entered by the user, prepares
various in-memory data tables, and invokes CDB2.OVL.

CDB2.OVL (CDB2 for short) is the third and final element of the CDB package. CDB2 resides
in high memory immediately below the CP/M BDOS. It loads the program to be debugged (the
“target program”) at the base of the TPA (the CP/M “transient program area,” normally at 0100
h e x) a n d r e m a i n s c o - r e s i d e n t i n m e m o r y w i t h t h e t a r g e t p r o g r a m t h r o u g h o u t t h e d e b u g g i n g
session. Once CDB2 has loaded the target program, it passes control to the main routine in the
target, and execution begins. Whenever the target program (i) enters a function, (ii) returns from
a function, or (iii) encounters the beginning of the compiled code for a C statement, the target
passes control to CDB2, which either returns control to the target or stops target execution and
prompts the user for a debugger command.

BD Software Page 109

November 1988 BDS C User’s Guide

In this document, square brackets [] are used to signify optional elements.

6.2 Constructing the Debugger

Because of various changes that might need to be made to the code of the several components of
the debugger, the package is distributed as source code. This part of the documentation describes
the steps that must be taken to transform the source code into the three executable files L2.COM,
CDB.COM, and CDB2.OVL.

6.2.1 Constructing L2

Because L2 needs no customization, there is no need for each user to prepare his own version.
T h e s t a n d a r d v e r s i o n o f L 2 s u p p l i e d w i t h B D S C o b t a i n s C . C C C a n d D E F F * . C R L f r o m t h e
c u r r e n t l y l o g g e d d i s k d u r i n g a l i n k a g e o p e r a t i o n ; t o c h a n g e t h i s , m o d i f y t h e # d e fi n e f o r t h e
D E F _ D R I V E m a c r o a s d e s c r i b e d i n L 2 . C . I f y o u m a k e c h a n g e s (o r c o r r e c t b u g s) i n L 2 , t h e
procedure for creating L2.COM is described in the appendix entitled “The L2 Linker for BDS
C”.

6.2.2 Constructing CDB2

The distribution disk contains a version of CDB.COM and CDB2.OVL set up for a system with a
BDOS at or above D000. Almost all systems with over 60K of RAM should be able to use this
version as is. However, this version leaves only 31K for the target program and symbol tables; if
your system has its BDOS substantially above D000, you may wish to customize the debugger to
give you more memory for the target program; and if your system has its BDOS below D000,
you must customize to get a working debugger.

6.2.2.1 The CDBCONFG Utility

T o s i m p l i f y t h e c u s t o m i z a t i o n p r o c e s s , a c o n fi g u r a t i o n p r o g r a m c a l l e d C D B C O N F G i s n o w
provided. If CDBCONFG.COM is not on the distribution diskette, you must first compile and
link CDBCONFG.C using cc and either clink or l2 as follows:

cc cdbconfg.c
clink cdbconfg (or) l2 cdbconfg

 Once you have a CDBCONFG.COM, all you need do is type

cdbconfg [bdos]
submit makecdb

 C D B C O N F G c r e a t e s a s u b m i t fi l e c a l l e d MAKECDB.SUB in the current user number o n t h e
currently logged disk that, when submitted, will compile and link CDB.COM and CDB2.OVL.
C DBCONFG also edits the CDB.H file to set t h e # d e fi n e f o r C D B 2 A D D R t o t h e a p p r o p r i a t e
address for the target system.

Page 110 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

I f t h e b d o s o p t i o n i s g i v e n t o C D B C O N F G (a s a h e x n u m b e r w i t h n o l e a d i n g 0 x) , C D B i s
c o n fi g u r e d f o r a s y s t e m w i t h a B D O S b e g i n n i n g a t t h e s p e c i fi e d a d d r e s s . I f n o p a r a m e t e r i s
given, CDBC O N F G u s e s t h e c u r r e n t B D O S l o c a t i o n o f t h e s y s t e m o n which CDBCONFG is
being run.

6.2.2.2 CDB System Description

C D B 2 s i t s i n h i g h m e m o r y , a b o v e t h e t a r g e t p r o g r a m a n d i t s s t a c k b u t b e l o w b o t h C P / M ’ s
BDOS and CDB2’s own stack. The code that makes up CDB2 is a little less than 0x4900 bytes
l o n g ; t h e e x t e r n a l s a r e a b o u t 0 x 0 9 8 0 b y t e s . I h a v e d e c i d e d , a b i t a r b i t r a r i l y b u t a f t e r s o m e
analysis, that the CDB2 stack (which starts immediately below the BDOS) should be allocated
a b o u t 0 x 0 4 8 0 b y t e s . I h o p e t h i s i s c a u t i o u s , b u t b e c a u s e i t i s p o s s i b l e t o c r e a t e c o m p l e x
e x p r e s s i o n s t h a t m u s t b e r e c u r s i v e l y p a r s e d t o d u m p s y m b o l i c a l l y v a r i a b l e c o n t e n t s , I t h i n k
discretion is wise. Adding the numbers up, we get a total of 0x5700 bytes for the code, globals,
and stack for CDB2; thus, CDB2 must start 0x5700 bytes below the start of the BDOS. Because
my BDOS starts at 0xE406, my CDB2 sits at 0x8d00 (and I will use this value in the examples
that follow).

Once you have decided where to put CDB2, you must edit CDB.H and change the #define for
CDB2ADDR to the value you have determined. Below, I will use “CDB2ADDR” to refer to this
value.

Constructing CDB

After changing CDB2ADDR in CDB.H, you are ready to compile the two source files for CDB:

cc cdb.c -e3c00
cc build.c -e3c00
l2 cdb build

 Constructing CDB2

T o c o m p i l e t h e s o u r c e fi l e s f o r C D B 2 , w e n e e d t o k n o w t h e a d d r e s s o f t h e C D B 2 e x t e r n a l s .
Since the externals are placed right after the CDB2 code, we merely add 0x4900 (the size of the
code, given above) to CBD2ADDR. In my case, the result is 0xd600; thus, to compile CDB2 for
my system, I must specify “-ed600” as an option.

CDB2 is composed of seven C source files; to compile them, you must enter:

cc cdb2.c -exxxx
cc atbreak.c -exxxx
cc break.c -exxxx
cc command.c -exxxx
cc print.c -exxxx
cc parse.c -exxxx
cc util.c -exxxx

 Once the C files are compiled, you need to assemble the one assembler source file, DASM.CSM
(see the CASM Appendix for details on the .CSM assembly language format). The sequence for
creating DASM.CRL from DASM.CSM is as follows:

BD Software Page 111

November 1988 BDS C User’s Guide

casm dasm
asm dasm
cload dasm

 To save you this step (especially if you don’t have a compiled version of CASM.COM handy)
the distribution disk contains a pre-assembled DASM.CRL.

T h e fi n a l fi l e t o b e c r e a t e d i s a n e m p t y fi l e c a l l e d N U L L . S Y M , w h i c h L 2 w i l l t r y t o u s e t o
determine the location of all the functions used in the root segment for which CDB2.OVL will be
the overlay segment. Because there is no such root segment, there are no functions, either; but
L2 requires a root name if the –ovl option is used, so we create an empty file to please the linker
by issuing

save 0 null.sym

 Now that all the .CRL files are ready, we are ready to link them. The proper command is

l2 cdb2 dasm atbreak command break
print parse util -ovl null yyyy -wa

 where yyyy should be replaced with the value computed for CDB2ADDR, in hex.

B e f o r e c o n fi g u r i n g t h e d e b u g g e r , y o u m a y w a n t t o e d i t C D B . H a n d c h a n g e t h e # d e fi n e f o r
CDB2_DRIVE; this specifies the drive from which CDB2.OVL will be loaded if the user does
not override the default with the –d option to CDB. You may specify either a drive letter (with or
without the colon), such as “A” or “B:”, a user number prefix, such as “10/”, or a drive letter
w i t h a u s e r n u m b e r p r e fi x , s u c h a s “ 0 / A ” . A s d i s t r i b u t e d , t h e d e f a u l t i s n o d r i v e d e s i g n a t o r ,
which will cause CDB2 to be loaded from the currently logged drive and user area.

One note: It is vital that CDB.COM, CDB2.OVL, and the target .COM file all be linked using the
s a m e C . C C C (t h e r u n - t i m e p a c k a g e) a n d D E F F ? . C R L l i b r a r i e s . T h i s n e e d a r i s e s b e c a u s e
CDB2.OVL uses the runtime package of CDB.COM when CDB2 initializes itself, and then uses
the runtimes from the target once the target is swapped in. If there is a mismatch, at some point
in the startup process the debugger will fail miserably.

Changing the restart number

A s d i s t r i b u t e d , t h e d e b u g g e r p a c k a g e u s e s t h e R S T 6 (r e s t a r t 6) i n s t r u c t i o n t o g e n e r a t e
breakpoints. Whenever the RST 6 instruction is encountered, control is transferred to location
0x0030. In some systems, this area of memory (or the RST 6 instruction itself) may be reserved
f o r o t h e r u s e . I f s o , i t i s n e c e s s a r y t o a s s i g n s o m e o t h e r r e s t a r t n u m b e r t o t h e b r e a k p o i n t
f u n c t i o n . A n y r e s t a r t n u m b e r f r o m o n e t o s e v e n (i n c l u s i v e) m a y b e u s e d ; r e s t a r t z e r o i s n o t
a l l o w e d . T o c h a n g e t h e r e s t a r t n u m b e r , c h a n g e s m u s t b e m a d e t o L 2 . C , C D B . H , a n d
DASM.CSM.

In both L2.C and CDB.H, the #define for RST_NUM should be changed to the restart slot the
user has assigned to the debugger. In DASM.CSM, the “EQU” for RstNum should be changed
to the same value. Note that the value should be specified as a number from 1 to 7.

Page 112 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

Finally, when the target program is compiled (with the –k option) it is necessary to specify the
new restart number. Type –kn, where n is the new restart number, instead of the usual –k.

6.3 How to Invoke the Debugger

In order to use the debugger, the user must first compile and link the target program, and then
invoke the debugger itself. This part describes that process. As an aid to the understanding of
parts III and IV of this document, part VII below is an example of a debugging session.

6.3.1 Compilation: The –K Option of CC

As documented in the BDS C User’s Guide, the –k option is used to cause the compiler to (i)
g e n e r a t e a s y m b o l t a b l e w i t h t h e e x t e n s i o n . C D B a n d (i i) g e n e r a t e r e s t a r t i n s t r u c t i o n s i n t h e
c o m p i l e d c o d e . The user issues the cc command as with any other compile, and adds t h e – k
option. For example:

cc target.c -k

 6.3.2 Linkage: The –D and –S Options of L2

T o l i n k t h e t a r g e t p r o g r a m , t h e u s e r m u s t u s e t h e L 2 p r o v i d e d w i t h t h e p a c k a g e i n s t e a d o f
CLINK. The following L2 options apply to use with CDB:

– d C r e a t e a n o u t p u t m o d u l e t h a t i s c o m p a t i b l e w i t h C D B . T h i s o p t i o n– d
causes L2 to put a restart instruction at the beginning of most functions.
Unless overriden by the –s option, a restart is placed at the beginning of
every function.
e x c e p t t h o s e f u n c t i o n s f r o m D E F F * . C R L t h a t a r e r e f e r e n c e d o n l y b y
functions that are themselves from DEFF*.CRL.

– s CRL files after the –s will be treated as “system” library files. A function– s
i n a s y s t e m l i b r a r y fi l e t h a t i s r e f e r e n c e d o n l y b y a f u n c t i o n f r o m a
system library file will not have an initial restart added by L2, and the
debugger will not trace execution into such a function. If the –s option is
not specified, no files will be treated as system libraries.

– i S p e c i fi e s t h a t t h e c o m m a n d l i n e e n t e r e d i s “ I n c o m p l e t e ” ; t h i s o p t i o n– i
c a u s e s L2 to p r o m p t t h e u s e r t o e n t e r m o r e c o m m a n d l i n e a r g u m e n t s .
Each line entered by the user may end with another “-i”, in which case
the user will again be prompted for more options. Note: the “-i” option
must be the LAST option on the command line to work.

– n Just like the CLINK “-n” option. This option makes the resulting COM– n
file preserve the CP/M CCP at run-time, instead of overwriting the CCP
with the run-time stack. Programs linked with this option return to the
CCP command level without performing a (time-consuming) warm boot.

BD Software Page 113

November 1988 BDS C User’s Guide

For example:

l2 target -d

 Invoking CDB

To invoke the debugger, the user enters the CDB command. The command line is of the form:

cdb target-name [-l [local_cdbs]] [-g [global_cdbs]]
[-d [user/][drive[:]]] [% [target operands]]

 The –l (letter ell) and –g options allow the user to specify the .CDB files from which CDB will
r e a d s y m b o l t a b l e s c o n t a i n i n g i n f o r m a t i o n a b o u t t h e v a r i a b l e s u s e d i n t h e t a r g e t p r o g r a m .
target-name.CDB is used if –l or –g is not specified; although this default is normally adequate, if__________
the target source code is contained in more than one file, the user must provide the names of the
. C D B fi l e s p r o d u c e d f r o m e a c h o f t h e s o u rce files if he wishes to acce s s s y m b o l s d e fi n e d i n
t h e s e fi l e s . O f t e n , a l l t h e g l o b a l s a r e d e fi n e d i n a h e a d e r (. H) fi l e w h i c h i s i n c l u d e d i n e a c h
source file; in such a case, there is no need to use the –g option, only the –l option. With either of
these options, if the user enters a zero instead of the file name CDB will not load any symbol
files for the specified type of symbol (either local or global). If the user enters no argument at all
for either option, CDB will prompt the user to enter file names, one per line, for the symbol files.
A null line terminates the prompt.

T h e “ % ” o p e r a n d a l l o w s t h e u s e r t o s p e c i f y a r g u m e n t s t o t h e t a r g e t p r o g r a m . I f t h e “ % ” i s
f o l l o w e d b y a n y o p e r a n d s , t h e s e a d d i t i o n a l o p e r a n d s w i l l b e p a s s e d d i r e c t l y t o t h e t a r g e t
program; if nothing follows the “%”, the user will be prompted for a command line. (Note to
hackers: CDB does not pass the arguments that follow the “%” by accessing the “argv” passed
to CDB; rather, CDB changes the arguments as they appear in memory at 0x0080, and lets the
target program, via C.CCC, parse this command line.)

The –d option specifies the drive or user number or both from which CDB2.OVL will be loaded;
the default as the package is supplied is the CP/M default drive, but the user can modify this

 default.

 A standard invocation of CDB is:

cdb target

 6.3.3 Summary

To sum this section up, the standard p r o c e d u r e f o r d e b u g g i n g a p r o g r a m n a m e d t a r g et.c is as
follows:

cc target.c -k
l2 target -d
cdb target

 Page 114 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

For a more complex example, assume that FOO.C contains the source for the “MAIN” routine
and other functions, and that BAR.C and LIB.C contain source for other needed functions. Both

 FOO.C and BAR.C contain the same declarations for global variables (both source files #include
t h e h e a d e r fi l e G L O B A L S . H) , w h i l e L I B . C c o n t a i n s t h e u s e r ’ s l i b r a r y f u n c t i o n s t h a t d o n o t
access the global variables. Finally, assume that the user has certain other (already debugged)
functions in STDLIB.CRL. To compile this mess, the user enters

cc foo.c -k

 cc bar.c –k cc lib.c –k]

To compile this, the user enters

cc foo.c -k
cc bar.c -k
cc lib.c -k

 To link it all together to obtain FOO.COM, the user types

l2 foo bar -l lib -s stdlib

 The –s operand tells L2 not to generate function traces into routines included in FOO.COM that
were called only by routines in STDLIB.CRL. To invoke the debugger, the user enters

cdb foo -l foo bar lib

 The –l operand tells CDB that the files FOO.CDB, BAR.C D B , a n d L I B . C D B c o n t a i n symbol
table information put out by CC, and that all local symbol information on these files should be
loaded. Global symbol information from FOO.CDB is loaded.

6.4 Debugging Commands: How to Use the Debugger

This part of the document will discuss various CDB commands, grouped by function.

When the debugger is invoked, it displays the location of CDB2 (i.e., CDB2ADDR), the amount
of space taken up by the local and global symbol tables, and the top of the target stack (i.e., the
highest byte not taken up by CDB2 or its tables). The debugger then passes control to the target
p r o g r a m , w h i c h , a f t e r e x e c u t i n g t h e i n i t i a l i z a t i o n c o d e f r o m C . C C C , i n v o k e s t h e “ M A I N ”
function of the target program. Because a breakpoint is set at the entry to MAIN, control is then
passed back to the user, who is prompted for a command.

6.4.1 Breakpoints

C D B n o r m a l l y a l l o w s t h e t a r g e t p r o g r a m t o e x e c u t e o n e s t a t e m e n t a f t e r a n o t h e r w i t h o u t
i n t e r r u p t i o n . T h e r e a r e t w o w a y s t h e u s e r c a n s t o p t a r g e t e x e c u t i o n ; t h e b r e a k p o i n t a n d t h e
k e y b o a r d i n t e r r u p t . B y s e t t i n g b r e a k p o i n t s t h e u s e r t e l l s C D B t o s t o p i m m e d i a t e l y b e f o r e t h e
target executes a given C statement; by generating a keyboard interrupt, the user tells CDB to
stop target execution before executing any more C statements. To generate a keyboard interrupt,

BD Software Page 115

November 1988 BDS C User’s Guide

the user merely types any character; when CDB sees this character, it will stop execution (note,
however, that if the target program is waiting for input the character types by the user will go to
the target and NOT cause an interrupt).

To set a breakpoint, the user enters the “break” command:

b[reak] [function_name] [statement_number [count]]

 (recall that bracketed characters can be omitted; thus, the “break” command can be entered by
typing “b”, “br”, “bre”, etc., and both function_name and statement_number can be omitted). If
function_name is omitted, the breakpoint is set at the specified statement number of the current
function (that is, the function which is currently being debugged; this function name is shown by
c d b w h e n t a r g e t e x e c u t i o n i s s t o p p e d , a n d c a n b e l i s t e d b y t h e “ l i s t ” c o m m a n d) .
s t a t e m e n t _ n u m b e r t e l l s c d b e x a c t l y w h e r e i n t h e s p e c i fi e d f u n c t i o n t o s e t t h e b r e a k p o i n t .
Statements are numbered by line, with the first line of a function (that is, the function definition
d e fi n i t i o n l i n e o n w h i c h t h e o p e n p a r e n t h e s i s i s f o u n d) b e i n g n u m b e r e d l i n e 1 . I f m u l t i p l e
s t a t e m e n t s a p p e a r o n o n e l i n e , a d e c i m a l n o t a t i o n i s u s e d . T h e fi r s t s t a t e m e n t i n l i n e n i s
numbered n.0, the next n.1, etc. For example, consider the line

a = 5; putchar(’x’); while (*s) s++;

 If this line were the fifth line in a function, then “a = 5;” is numbered 5.0; “putchar(’x’);” is 5.1;
“while (*s)” is 5.2, and “s++;” is 5.3). Whenever no decimal is given, “.0” is assumed. Thus, a
statement number can be defined as

sn := line_number[.statement_number_within_line]

 T o c o m p l i c a t e m a t t e r s a b i t , s o m e t i m e s C C r e a r r a n g e s t h e s o u r c e c o d e o r g e n e r a t e s i t s o w n
statements. When this happens, it becomes difficult for the user to set a breakpoint at the desired
statement. The most important cases in which CC generates these “hidden statements” are: (i) in
the looping constructs (“while”, “for”, “do”), the compiler generates branch instructions from
the bottom of the loop back to the head of the loop; (ii) in the “for” statement, CC moves the
“increment” portion of the statement (i.e., the last of the three statements imbedded in the “for”
statement) to the end of the loop; thus, this statement is not numbered with the rest of the “for”
statement, but with the statement number following the last line of the loop.

A s i d e f r o m t h e n u m b e r i n g l i s t e d a b o v e , t h e r e a r e t w o s p e c i a l s t a t e m e n t n u m b e r s , 0 a n d – 1 .
Statement number 0 is the entrance to a function, and is encountered before any of the code of
the function is executed. Statement number –1 is the return from a function, wherever the return
happens to be, and is encountered after the return is executed (and thus the return value of the
function is available for display). Breakpoints can be set at statement numbers 0 and –1 just as
any other statements.

The count operand allows the user to defer the recognition of a breakpoint. The breakpoint set by
the “break” command does not actually cause cdb to stop executing the target program until the
breakpoint has be encountered count times. The default is 1, which causes a stop the first time
th e s t a t e m e n t i s e n c o u n t e r e d . N o t e t h a t c o u n t c a n n o t b e e n t e r e d u n l e s s a statement number is
given.

Page 116 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

Up to forty breakpoints can be set at one time.

The “reset” command is used to remove a breakpoint. The syntax is

r[eset] [function_name] [statement_number]

 and the defaults are the same as for the “break” command. It is, of course, an error to try to
“reset” a non-breakpoint. The “clear” command can be used to reset ALL breakpoints; the syntax
is

clear

 (no brackets are given; the “clear” command must be typed in full).

The “list breakpoints” command can be used to give a listing of all breakpoints currently set.

6.4.2 Executing code

There are several commands that are used actually to execute the compiled C code. The first of
t h e s e , t h e “ g o ” c o m m a n d , s i m p l y s t a r t s e x e c u t i o n (f r o m w h e r e v e r i t w a s l a s t s t o p p e d) a n d
continues until a breakpoint is encountered or the user types a keyboard interrupt. The command
has no operands.

T o s e e w h i c h s t a t e m e n t s a r e e x e c u t e d b y t h e t a r g e t p r o g r a m , t h e u s e r c a n u s e t h e “ t r a c e ”
command. The command

t[race] [number_of_statements]

 c a u s e s t h e d e b u g g e r t o e x e c u t e n u m b e r _ o f _ s t a t e m e n t s s t a t e m e n t s , e a c h t i m e p r i n t i n g t h e
functio n n a m e a n d s t a tement number of the statement before execution. Execution ends after
number_of_statements have been executed, when a breakpoint is encountered, or at a keyboard
interrupt. The default for number_of_statements is 1.

The “untrace” (also know as “walk”) is similar to the “trace” command, except that the function
names and statement numbers are not displayed as each statement is executed. In other words,

u[ntrace] [number_of_statements]

 causes the debugger to execute number_of_statement statements. As with trace, execution ends
a fter number_of_statements are executed, w h e n a b r e a k p o i n t i s e n c o u n t e r e d , o r a t a k e y b o a r d
interrupt; the default for number_of_statements is 1.

The final command causing target execution is the “run” statement, which cannot be abbreviated.
This statement causes cdb to pass control to the target, and deactivates the debugger altogether;
once “run” is entered, there is no way to get back to the debugger.

6.4.3 Dumping variables

The “dump” command is used to dump the contents of memory. The syntax of the command is

d[ump] [&]expression [multiple] [format]

 BD Software Page 117

November 1988 BDS C User’s Guide

Synonyms for “dump” are “p[rint]” and “,” (a comma).

The “dump” command dumps memory starting at the address specified by expression. Although
the full definition of an expression is given below, the two most common forms of an expression
a r e a s i n g l e v a r i a b l e n a m e (s u c h a s “ i ” , “ f o o ” , o r “ fi l e n a m e ”) a n d a n i n t e g e r i n e i t h e r
h e x a d e c i m a l o r d e c i m a l not a t i o n (s u c h a s 0 x 0 1 0 0 , 4 3 0 0 0 , o r 1 2) . I f a v a r i a b l e n a m e o r o t h e r
s y m b o l i c e x p r e s s i o n i s g i v e n f o r e x p r e s s i o n , c d b w i l l d u m p t h e v a r i a b l e i n t h e f o r m a t
c o r r e s p o n d i n g t o t h e d e c l a r a t i o n o f t h a t v a r i a b l e ; i f t h e v a r i a b l e i s a s t r u c t u r e , c d b w i l l
symbolically dump each element of the structure. However, the user can specify another format
to use, and often does so specify when expression is not a symbolic expression but an integer
address. The allowable formats are

c character
p pointer
i or w integer/word
s string (null terminated array of char)

 and “w” is the default if no format is specified for a non-symbolic expression.

The m u l t i p l e o p t i o n s p e c i fi e s h o w m u c h m e m o r y i s d u m p e d. The “dump” command dumps
multiple occurrences of the specified format; thus

dump 0x0100 10 c

 would dump ten characters, from 0x0100 to 0x010A, while

dump 0x0100 10

 would dump ten words (twenty bytes), from 0x0100 to 0x0114, since “w” is the default format.

The syntax for an expression is as follows:

expression := *expression
primary

primary := integer
identifier
(expression)
primary[expression]
primary.identifier
primary->identifier

 This basically means that any C expression that does not contain a logical or arithmetic operator
is a cdb expression; the expressions can be fairly complex, as in

table[table[1,i],j].name[10]

 To stop an excessively long “dump” command, type any character.

Normally, C scope rules are used for symbolic references. This means that when the debugger
has stopped at a breakpoint in routine “foo”, a reference to a variable “bar” refers to the variable
local to routine “foo” named “bar” if such a variable exists; if no such local variable exists, the

Page 118 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

reference is to the global symbol “bar”. This scope rule makes it impossible for a C function with
a local variable of the same name as a global variable to access the global variable. cdb allows
the user to override the standard scope rule and to specify the global variable by prefixing the
variable name with a backslash (“\”). In the example above, to access the global variable “bar”
from within the function “foo”, the user could type:

dump \foo

 One final use for the “dump” command is finding the address, but not the value, of a symbol. To
do this, th e e x p r e s s i o n i s p r e fi x e d w i t h “ &”, an ampersand, the C “address of” operator. For
example, to determine the address of a variable named table, enter

dump &table

 Complex symbolic expressions can also be used, such as

dump &table[i,j]

 6.4.4 Setting variables

The “set” command is used to store data into memory. The command

s[et] expression value [c]

 will store value into the memory location referred to by expression. Normally, a 16-bit value is
stored; however, if (i) expression is a symbolic expression that refers to a char variable, or (ii)
value is within single quotes, such as ‘#’, or (iii) the “c” option is given, then only an 8-bit value
is stored.

6.4.5 The list command — various items of information

The “list” command is used to access various items of information.

l[ist] List the current function
and statement number

l[ist] a[rguments] List arguments to current
function

l[ist] b[reakpoints] List all breakpoints
l[ist] g[lobals] List all global variables
l[ist] l[ocals] List local variables for

current function
l[ist] m[ap] List linker map of target

program
l[ist] t[raceback] List function trace from

MAIN to current function

 T o s t o p t h e “ l i s t g l o b a l s ” o r “ l i s t l o c a l s ” l i s t i n g o f v a r i a b l e s , t h e u s e r c a n t y p e a n y c h a r a c t e r
(except carriage return). To stop the listing of a large array and skip forward to the next variable,
type carriage return.

BD Software Page 119

November 1988 BDS C User’s Guide

The quit command

T o e n d t h e d e b u g s e s s i o n a n d r e t u r n t o C P / M , t h e “ q u i t ” c o m m a n d i s u s e d . T h i s c o m m a n d
cannot be abbreviated.

6.5 Alphabetical Listing of Debugger Commands

A statement number is defined as

sn := line_number[.statement_number_within_line]

 An expression is defined as

expression := *expression
primary

primary := integer
identifier
(expression)
primary[expression]
primary.identifier
primary->identifier

 b[reak] [function_name] [statement_number [count]]
Set a breakpoint. Defaults:

function_name: current function
statement_number: 0
count: 1

 clear Remove all breakpoints.

d[ump] [&]expression [multiple] [format]
Dump “multiple” items in “format” format. Defaults:

multiple: 1
format: i or format associated with symbol
Synonyms: p[rint] and , (comma).

The allowable formats are:

c character
p pointer
i or w integer/word
s string

 g[o] Begin execution.

l[ist] List the current function and statement

Page 120 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

l[ist] a[rguments] List arguments to current function

l[ist] b[reakpoints] List all breakpoints

l[ist] g[lobals] List all global variables

l[ist] l[ocals] List local variables for current function

l[ist] m[ap] List linker map of target program

l[ist] t[raceback] List function trace

quit Return to CP/M.

r[eset] [function_name] [statement_number]
Remove a breakpoint. Defaults:

function_name: current function
statement_number: 0

 run Begin execution, disengage debugger.

s[et] expression value [c]
Store data into memory. Normally, a 16-bit value is stored; however,
i f e x p r e s s i o n i s a s y m b o l i c e x p r e s s i o n t h a t r e f e r s t o a c h a r v a r i a b l e ,
value is within single quotes (such as ‘#’) or the “c” option is given, then
only an 8-bit value is stored.

t[race] [number_of_statements]
Trace execution, listing statements executed. Default: one statement.

u[ntrace] [number_of_statements]
E x e c u t e n u m b e r _ o f _ s t a t e m e n t s t a t e m e n t s . D e f a u l t : o n e s t a t e m e n t .
Synonym: w[alk]

6.6 An Example — A CDB Debugging Session

This section contains a transcript of a debugging session to demonstrate the use of CDB. The
target program, which is contained in the file TARGET.C, is as follows:

/*
* /.C David Kirkland, 20 October 1982
*
* This is a short submit program. It is designed to be used
* when the user wants to batch a few commands, but it’s too
* much trouble to edit a SUB file to do the work. It can be
* used in two forms:
*

BD Software Page 121

November 1988 BDS C User’s Guide

* B>/ command line 1; command line 2; ... command line n
*
* or
*
* B>/
* }command 1
* }command 2
* .
* .
* }command n
* }
*
* In the first form, the / command is entered with arguments.
* group of characters delimited by a semicolon (or the end of
* the line) is treated as a separate command.
*
* In the second form, / is entered without arguments.
* / then prompts with a "}", and the user enters commands, one
* per line. A null line terminates command entry.
* (To enter a null line, enter a singe ^ on the line.)
*
* In either form, control characters can be entered either
* directly or via a sequence beginning with a "^" and followed
* by a letter or one of the characters: [\] ^ _
*
*/

#include <stdio.h>

#define OPEN 15 /* BDOS function codes */
 #define CLOSE 16

#define DELETE 19
#define CREATE 22
#define SET_DMA 26
#define RAND_WRITE 34

 #define COMPUTE_SIZE 35

 struct fcb { /* define fcb format */
 char drivecode;

char fname[8];
char ftype[3];
char extent;
char pad[2];
char rc;
int blk[8];
char cr;
int rand_rec;
char overflow;
};

#define CPMEOF 0x1a
#define MAXBLK 256
#define SUBNAME "A:$$$.SUB"

Page 122 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

struct fcb ffcb;
/* the way a record from the $$$.SUB */

struct subrec { /* file looks: */
char reclen; /* number of characters in command */
char aline[127]; /* command line */
} ;

struct subrec out[128];

storeline(block,line) int block; char *line; {

/* storeline takes the line pointed to by "line" and
* converts it to $$$.SUB representation and stores
* it in out[block].
* This routine handles control characters (the ^
* escape sequence).
*
*/

char *p;
struct subrec *b;
int i, len;

b = out[block];

/* copy line into out.aline, processing control chars */
for (p = b->aline; *p = *line; p++, line++)

if (*line==’^’)
if (’@’ <= toupper(*++line) &&

toupper(*line) <= ’_’)
*p = 0x1f&*line;

else if (*p = *line)
break;

/* set up length byte */
b->reclen = len = strlen(b->aline);
if (len>127) {

printf("Line %d is too long (%d > %d)\n",block,len,127);
bdos(DELETE,ffcb);
exit();
}

/* pad block with CPMEOFs (not needed?) */
for (i=len+2;i<128;i++)

*++p = CPMEOF;
}

main (argc, argv) int argc; char *argv[]; {
char *p, /* points to ; that ended

current command */
 b, / current character in

command */
done; /* loop control */

char line[256], *gets();

BD Software Page 123

November 1988 BDS C User’s Guide

int block; /* index into out array */

block = 0;

if (argc<2) /* prompt user format */
 while (1) {

putchar(’}’);
if (!*gets(line))

break;
storeline(block++, line);
}

else {
/* scan command line in low memory */
b = p = 0x80;
for (done=0; !done; p = b) {

/* skip leading whitespace */
while (isspace(*++b)) p = b;
while (*b && *b!=’;’) b++;
done = !*b;
*b = 0;
storeline(block++, p+1);
}

}

setfcb(ffcb,SUBNAME);
if (255==bdos(OPEN,ffcb) && 255==bdos(CREATE,ffcb)) {

printf("Can’t create %s\n",SUBNAME);
exit();
}

/* find end of $$$.SUB so submits can nest */
bdos(COMPUTE_SIZE,ffcb);

/* write blocks in REVERSE order for CCP */
for(--block; block >= 0; block--) {

bdos(SET_DMA, out[block]);
bdos(RAND_WRITE, ffcb);
ffcb.rand_rec++;
}

/* all done! */
if (255==bdos(CLOSE,ffcb))

printf("Could not close %s\n",SUBNAME);
}

The debugging session follows. Text typed by the user is in boldface.
Note that specific addresses will vary from the numbers appearing here, as
this session was recorded using an eariler release of the compiler package.

----- Start of Session -----

B>

Page 124 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

B>cc target.c -k
BD Software C Compiler v1.xx (part I)

35K Unused
BD Software C Compiler v1.xx (part II)

32K to spare
B>l2 target -d
L2 Linker ver. xxx
Loading TARGET.CRL
Scanning DEFF.CRL
Scanning DEFF2.CRL

Link statistics:
Number of functions: 17
Code ends at: 0x133B
Externals begin at: 0x133B
Externals end at: 0x535F
End of current TPA: 0xE406
Jump table bytes saved: 0x5D
Link space remaining: 26K

B>cdb target
c debugger ver 1.21
top of target stack is 8C94, cdb2 is at 9000
globals use 0160 bytes, locals use 00D9 bytes

break at MAIN 0 [0A54]
>list map

STORELIN 08A1 MAIN 0A51 TOUPPER
0CDA STRLEN 0D11

PRINTF 0D51 ISSPACE
 0D79 ISLOWER

0DAF _SPR2 0DDE
 PUTS 113E _USPR 116A ISDIGIT 120C _GV2 123B
 BDOS 1298 EXIT 12AC GETS 12B2 PUTCHAR

12E6
 SETFCB 1318
 >list args

argc [8C90] = 0001 = 1 ’..’
argv [8C92] = 0863
>break storeline
>l breaks
MAIN -1
STORELIN 0
>go
}dir a:

break at STORELIN 0 [08A4]
>list args
block [8B81] = 0000 = 0 ’..’
line [8B83] = 8B8A
>d *line string
8B8A (len 6): "dir a:"
>trace 5

BD Software Page 125

November 1988 BDS C User’s Guide

trace: STORELIN 15 [08AF]
trace: STORELIN 18 [08CE]
trace: STORELIN 18.1 [08DC]
trace: STORELIN 19 [08F1]

break at STORELIN 27 [096D]
>break 28
>go

break at STORELIN 28 [09A6]
>dump *b
a struct subrec
reclen [135F] = 06 = ’.’
aline a 127 element array of char
1360 [0] 64 69 72 20 61 3a 00 00 00 00 00 00 00 00 00 00 ’dir a:..........’
1370 [16] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ’................’
1380 [32] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ’................’
1390 [48] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ’................’
13A0 [64] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ’................’
13B0 [80] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ’................’
13C0 [96] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ’................’
13D0 [112] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ’...............’
>d len
[8B7B] = 0006 = 6 ’..’
>,b->reclen
[135F] = 06 = ’.’
>b setfcb
>go
}

break at SETFCB 0 [131B]
>list args
first argument address is 8B81
[1] = 133B = 4923, [2] = 0C97 = 3223, [3] =01FE = 510
[4] = 22Ca = 8906, [5] = 0030 = 48, [6] = 7269 = 29289
>t

break at MAIN 33 [0BA1]
>dump ffcb
a struct fcb
drivecod [133B] = 01 = ’.’
fname a 8 element array of char
133C [0] 24 24 24 20 20 20 20 20 ’$$$ ’
ftype a 3 element array of char
1344 [0] 53 55 42 ’SUB’
extent [1347] = 00 = ’.’
pad a 2 element array of char
1348 [0] 00 00 ’..’
rc [134A] = 00 = ’.’
blk a 8 element array of int
134B [0] 0000 0000 0000 0000 = 0 0 0 0 ’........’
1353 [4] 0000 0000 0000 0000 = 0 0 0 0 ’........’
cr [135B] = 00 = ’.’
rand_rec [135C] = 0000 = 0 ’..’

Page 126 BD Software

BDS C User’s Guide The CDB Symbolic C Debugger

overflow [135E] = 00 = ’.’
>t 5

trace: BDOS 0 [129B]
trace: BDOS returning 00FF = 255 = ’..’
trace: BDOS 0 [129B]
trace: BDOS returning 0001 = 1 = ’..’

break at MAIN 39 [0BE6]
>t

break at BDOS 0 [129B]
>t

BDOS returning 00FF = 255 = ’..’
>t

break at MAIN 42 [0BF6]
>go

MAIN returning FF02 = -254 = ’..’
>quit

B>

----- End of Session -----

BD Software Page 127

November 1988 BDS C User’s Guide

Page 128 BD Software

BDS C User’s Guide Tutorials and Tips

Chapter 7

Tutorials and Tips

This chapter contains tutorial material to introduce the BDS C file I/O library (both buffered and
low-level), teach some console I/O interface procedures, and provide some additional operational
notes for the compiler.

7.1 BDS C File I/O Tutorial

7.1.1 Introduction

The library functions provided with BDS C for performing file input/output fall into two major
categories: the raw or low-level I/O functions, and the buffered I/O functions.

The raw functions, typically coded in assembly language for best performance, are an extended
interface to the low-level CP/M BDOS calls that actually perform all file I/O. The quantity of
data transferred during raw I/O calls is always a multiple of one full CP/M logical sector (128
bytes).

The buffered functions, written in C, provide a byte-oriented, sequential file I/O system geared
e s p e c i a l l y f o r fi l t e r - t y p e a p p l i c a t i o n s . T h e y a l l o w t h e u s e r t o r e a d a n d w r i t e d a t a i n w h a t e v e r
sized quantities are most convenient, while invisible mechanisms handle all sector buffering and
actual disk transfers. Thus the buffered I/O functions are usually more convenient to deal with
than the raw functions, but they generate considerable overhead in terms of speed of execution
and consumption of memory space for code and buffer areas.

S i n c e t h e r a w I / O f u n c t i o n s f o r m t h e b u i l d i n g b l o c k s f r o m w h i c h t h e b u f f e r e d f u n c t i o n s a r e
constructed, I’ll present the raw I/O in detail first and then go on to the buffered functions.

7.1.2 The Raw File I/O Functions

All raw I/O functions are characterized by their use of file descriptors to identify the files which
are being operated on. A file descriptor, or fd, is a small integer value that is assigned to a file
when that file is opened or created, and remains associated with the file until it is closed. An fd is
obtained by calling either the open or the creat function. The usage of these functions is:

fd = open(filename,mode);
fd = creat(filename);

 BD Software Page 129

November 1988 BDS C User’s Guide

“Filename” is either a literal string or any expression that evaluates to a pointer to characters.
Open is used to open an already existing file (usually, a file that has some data in it) for reading,
writing or both. creat is used to create a new file and open it for reading and writing. In both
c a s e s , t h e f d i s r e t u r n e d b y t h e c a l l w h e n s u c c e s s f u l . I f s o m e k i n d o f e r r o r o c c u r s a n d t h e
specified file cannot be opened or created, a value of ERROR (-1) is returned instead and the
errno function may be called to find out exactly why the file could not be opened.

A l l o t h e r r a w f u n c t i o n s r e q u i r e a n f d t o s p e c i f y th e fi l e t o b e o p e r a t e d o n (e x c e p t u n l i n k a n d
rename, which take filename pointers). Two very important raw I/O functions, read and write,
transfer data to and from disk in multiples of 128-byte logical sectors. Their typical usage is:

i = read(fd, buffer, nsects);
j = write(fd2, buffer2, nsects2);

 The first call tries to read nsects sectors of data, from the file whose fd is specified, into memory
at location buffer. The second call tries to write nsects2 sectors of data, from memory at location
buffer2, to the disk file whose fd is fd2. Unless an error occurs (as when an illegal fd is given or
an attempt is made to read past the end of a file), read and write should cause an immediate disk
operation to take place. This is one of the main differences between raw and buffered I/O: raw

1 9f u n c t i o n s a l w a y s c a u s e i m m e d i a t e fi l e I / O a c t i v i t y , p r o v i d e d t h e r e q u e s t e d o p e r a t i o n i s
p o s s i b l e , w h i l e b u f f e r e d f u n c t i o n s o n l y a c c e s s t h e d i s k w h e n a b u f f e r e i t h e r fi l l s u p (d u r i n g
writes) or becomes exhausted (during reads).

T h e r e i s a n i n v i s i b l e “ r / w p o i n t e r ” a s s o c i a t e d w i t h e a c h fi l e opened for raw I/O. T h i s p o i n t e r
keeps track of the next sequential sector to be read from or written to the file. Immediately after a
file is opened, the r/w pointer is initialized to 0 (the first sector of the file). It is automatically
incremented, following read and write calls, by the number of successfully transferred sectors.
So, by default, each data transfer picks up from where the previous one left off. The value of a
file’s r/w pointer is returned by the tell function, and may be modified by using the seek function.

To illustrate the use of raw I/O in a program, let’s build a simple utility to make a copy of a file.
The command format for this utility (which we’ll call “copy”) shall be:

A>copy filename newname <cr>

 “Copy” will take the file named by “filename” and create a copy of it named “newname”. Since
this is to be a classy utility, we want full error diagnostics in case something goes wrong (such as
running out of disk space, not being able to find the master file, etc.) This includes checking to
m a k e s u r e t h a t t h e c o r r e c t n u m b e r o f p a r a m e t e r s w e r e t y p e d o n t h e c o m m a n d l i n e . I t i s
s o m e t i m e s c o n v e n i e n t t o s u m m a r i z e a p r o g r a m i n a h a l f - C / h a l f - E n g l i s h p s e u d o c o d e f o r m ,
something like a flowchart but not as boxy. Here is such a summary of the copy program:

19. On most CP/M systems, raw file I/O calls cause the disk drive hardware to go immediately into action. Some systems perform
BIOS sector buffering, though, and may not need to go to the physical disk for each and every raw I/O call.

Page 130 BD Software

BDS C User’s Guide Tutorials and Tips

copy(file1,file2)
{

if (exactly 2 args weren’t given)
complain and abort

if (can’t open file1)
complain and abort

if (can’t create file2)
complain and abort

while (not end of file1)
{

Read a chunk from file1 and write it
if (any error has occurred)

complain and abort
}
close all files;

}

 And here is the actual C program to perform the copy operation:

#include <stdio.h> /* The standard header file */
#define BUFSECTS 64 /* Buffer up to 64 sectors in memory */

int fd1, fd2; /* File descriptors for the two files */
char buffer[BUFSECTS * SECSIZ]; /* The transfer buffer */

main(argc,argv)
int argc; /* Arg count */
char **argv; /* Arg vector */
{

int oksects; /* A temporary variable */

if (argc != 3) /* make sure exactly 2 args were given */
perror("Usage: A>copy file1 file2 <c

/* try to open 1st file; abort o
if ((fd1 = open(argv[1],0)) == ERROR)

perror("Can’t open: %x\n",argv[1]);

/* create 2nd file, abort on err
if ((fd2 = creat(argv[2])) == ERROR)

perror("Can’t create: %s\n",argv[2])

/* Now we’re ready to move the d
while (oksects = read(fd1, buffer, BUFSECTS)) {

if (oksects == ERROR)
perror("Error reading: %s\n",arg

if (write(fd2, buffer, oksects) != o
perror("Error; probably out of d

}
/* Copy is complete. Now close t

close(fd1);
if (close(fd2) == ERROR)

perror("Error closing %s\n",argv[2])
printf("Copy complete\n");

}

perror(format,arg) /* print error message and abort */
{

printf(format, arg); /* print message */
fabort(fd2); /* abort file operations */
exit(); /* return to CP/M */

}

 BD Software Page 131

November 1988 BDS C User’s Guide

Now let’s take a look at the program. First come the declarations: we need a file descriptor for
each file involved in the copying process, and a large array to buffer up the data as chunks of
d i s k fi l e s a r e s h u f fl e d t h r o u g h m e m o r y . T h e s i z e o f t h e b u f f e r i s c o m p u t e d a s t h e s e c t o r s i z e
(S E C S I Z , d e fi n e d i n S T D I O . H) m u l t i p l i e d b y t h e n u m b e r o f s e c t o r s o f b u f f e r i n g d e s i r e d
(BUFSECTS, defined at the top of the program).

In the main function, we first make sure that the correct number of parameters were typed on the
c o m m a n d l i n e . S i n c e t h e “ a r g c ” p a r a m e t e r i s p r o v i d e d f r e e b y t h e r u n - t i m e p a c k a g e t o e v e r y
main program, and is always equal to the number of parameters given PLUS ONE, we test to
make sure it is equal to three (i.e, that two parameters were given). If argc is not equal to three,
we call perror to lodge a complaint and abort the program. Perror interprets its arguments as if
t h e y w e r e t h e fi r s t t w o p a r a m e t e r s t o a p r i n t f c a l l , p e r f o r m s t h e r e q u i r e d p r i n t f c a l l , a b o r t s

20operations on the output file , and exits back to command level.

I f w e m a k e i t p a s t t h e a r g c t e s t , i t i s t i m e t o t r y o p e n i n g fi l e s . T h e n e x t s t a t e m e n t o p e n s t h e
m a s t e r fi l e f o r r e a d i n g , a s s i g n s t h e fi l e d e s c r i p t o r r e turned by open t o t h e v a r i a b l e “ f d 1 ” , a n d
c a u s e s t h e p r o g r a m t o b e a b o r t e d i f o p e n r e t u r n e d a n e r r o r . T h i s c a n a l l b e d o n e a t o n e t i m e
thanks to the power of the C expression evaluator; if you aren’t used to seeing this much happen
in one statement, take a moment to follow the parenthesization carefully. First the call to open is
performed, then the return value from open is assigned to the variable “fd1”, and then a test is
done to see if that value was ERROR. If the value was not equal to ERROR, then the file had
opened correctly and control will pass on to the next if statement; otherwise, the appropriate call
to perror diagnoses the problem and terminates the program. Creation of the output file follows a
similar pattern, again with perror getting called if the attempted file creation returns an ERROR
value.

Having made it through all the preliminaries, it is time to start copying some data (finally!). Each
time through the while loop, we read as much data as we can get (up to BUFSECTS sectors) into
memory from the master file. The read function returns the number of sectors successfully read;
this may range from 0 (indicating an end-of-file condition) up to the number of sectors requested
(in this case, BUFSECTS), with a value of ERROR being returned on disaster (when the disk
drive door pops open or something). Whatever this value may be, it is assigned to “oksects” for
later examination. In the special case when it is equal to zero, indicating EOF, the while loop will
be exited. Otherwise, we enter the loop and attempt to write out the data that was just read in.
First, though, we want to make sure no gross error has occurred; so, a check is performed to see
if ERROR was returned by the read call. If so, it’s Abortsville. Having safely circumnavigated
Abortsville, we call write to dump the data into the output file. If we don’t succeed in writing
exactly the number of sectors we wanted to write, it’s back to Abortsville with an appropriate
error message (most write errors are caused by running out of disk space.) If the write succeeds,
we go back to the top of the loop and try to read some more data. This process continues until all
of the data has been read and written, at which point the read function returns zero and control
falls out of the while loop.

The last thing to do, once the while loop has been left, is to mop up by closing the files; just to be
complete, we check to make sure the output file has closed correctly. And that’s it.

20. This has no effect if called before the file has been opened, as in the case where the wrong number of parameters have been given
and the “argc != 3” test succeeds.

Page 132 BD Software

BDS C User’s Guide Tutorials and Tips

7.1.3 The Buffered File I/O Functions

The raw file I/O functions presented in the last section are most useful when large amounts of
data, p r e f e r a b l y i n e v e n s e c t o r - s i z e d c h u n k s , n eed to be manipulated. The preceding file-copy
p r o g r a m i s a t y p i c a l a p p l i c a t i o n . R a w fi l e I / O r e q u i r e s y o u t o a l w a y s t h i n k i n t e r m s o f
sectors—while this poses no particular problem in, say, the file-copy example, it does add quite a
bit of complexity to shuffling bits and pieces of randomly-sized data.

Consider, for example, the unit known as the text line: a line’s worth of ASCII data may vary in
size anywhere from 1 byte (in the case of a null string, represented by the terminating null only)
up to somewhere around 130 bytes or maybe even more. Some convenient method of reading
and writing these text lines to and from disk files would be a very useful thing for text processing
applications. Ideally we’d like to call a single function, passing it some kind of file descriptor
along with a text line pointer, and have the function write the line of text to the file sequentially
following the last line written. Also, to prevent a time-consuming disk access every time a line is
written, it would be nice to have our function buffer up a number of lines and write them all to
disk at once when the buffer fills up. Analogously there would have to be a function to read a
text-line from a file into memory; here, also, it would greatly improve performance if an invisible
b u f f e r w e r e m a n a g e d b y t h e t e x t - l i n e g r a b b i n g f u n c t i o n s o t h a t d i s k a c t i v i t y i s k e p t t o a

 m i n i m u m . T h e f u n c t i o n s j u s t d e s c r i b e d a r e , i n f a c t , f p u t s a n d f g e t s f r o m t h e s t a n d a r d l i b r a r y .
These are two examples of buffered I/O functions.

T h e s p o t l i g h t i n t h e w o r l d o f b u f f e r e d I / O i s a s t r u c t u r e n a m e d , a p p r o p r i a t e l y , a n I / O b u f f e r .
W i t h i n t h i s s t r u c t u r e i s a l a r g e b u f f e r a r r a y t o s t o r e t h e d a t a b e i n g t r a n s f e r r e d , a n d s e v e r a l
assorted pointers and descriptors to keep track of “what’s happening” in the data array portion of
the buffer. These include a file descriptor to identify the file for raw I/O operations, a pointer into
the data array to tell where the next byte shall be read from or written to, a counter to tell how
m a n y b y t e s o f e i t h e r d a t a o r s p a c e (d e p e n d i n g o n w h e t h e r y o u ’ r e r e a d i n g o r w r i t i n g) a r e l e f t
before it becomes necessary to reload or dump the buffer, and finally a set of bits that remember
things like whether the buffer is being used for input or output (so that the right things happen
when the file is closed). Buffered I/O functions use pointers to these I/O buffers as identification
for the file being operated on, just as the raw file I/O functions use file descriptors.

There are six functions that perform all actual buffered I/O for single bytes of data (characters).
T h e o t h e r b u f f e r e d I / O f u n c t i o n s (s u c h a s f p u t s a n d f g e t s) d o t h e i r j o b s i n t e r m s o f t h e s e s i x
“backbone” functions.

F o r r e a d i n g fi l e s , t h e r e a r e t h e f u n c t i o n s f o p e n , f g e t c , a n d f c l o s e . F o p e n i s c a l l e d t o o p e n a n
existing disk file, identify it by a file pointer variable, and initialize the buffer for receiving data
from the file. i(Fgetc) grabs a single byte (character) from the buffer, making sure to refill the
data array from the disk file whenever the array is found to be empty, and returns a special EOF
value (-1) when the physical end-of-file is reached. Fclose closes the file associated with an I/O
buffer and frees the buffer for use with another file.

For writing files, the functions fopen and fclose mentioned above are used, plus the functions
 f p u t c a n d f fl u s h . F o p e n c r e a t e s a n e w fi l e a n d p r e p a r e s a n a s s o c i a t e d I / O b u f f e r s t r u c t u r e f o r

receiving output. The data is written to the buffer via calls to fputc, one byte at a time; whenever
a n f p u t c c a l l c a u s e s a b u f f e r t o fi l l u p , t h e n t h e b u f f e r i s d u m p e d t o d i s k a n d r e s e t t o a c c e p t
a n o t h e r b a t c h o f d a t a . W h e n a l l the data has been written to a file, fclose wraps t h i n g s u p b y

BD Software Page 133

November 1988 BDS C User’s Guide

c l o s i n g t h e a s s o c i a t e d fi l e . F o r o u t p u t fi l e s , f c l o s e a u t o m a t i c a l l y c a l l s f fl u s h fi r s t t o d u m p o u t
(“flush”) the contents of the not-yet-full I/O buffer to the disk file before the file is closed.

The functions that actually read and write data directly to a file are fgetc and fputc; functions
such as fgets, fputs, fprintf, etc. do their reading and writing in terms of getc and putc.

Careful examination of the STDIO.H header file will reveal that the number of 128-byte sectors
used for buffering is 8, by default, and that this value may be changed by the user for optimal
p e r f o r m a n c e o n d i f f e r e n t s y s t e m s . I f , f o r e x a m p l e , y o u ’ r e u s i n g B D S C o n a C P / M s y s t e m
having a 1024-byte physical sector disk format, then the 1024 bytes of buffering performed by
the buffered I/O functions is probably unnecessary, and changing the buffering from 8 sectors to
1 s e c t o r w o u l d s a v e q u i t e a b i t o f m e m o r y w i t h o u t c a u s i n g a n y s i g n i fi c a n t l o s s i n e x e c u t i o n
speed. On CP/M systems running 8“ standard 128-byte physical sectors, though, the default 1K
buffering scheme really speeds things up.

Let’s look at a simple first example. The following program prints a given text file out on the
console, generating line numbers along the left margin:

/*
PNUM.C: Program to print out a text file with

automatic generation of line numbers
*/

#include <stdio.h>

main(argc,argv)
char **argv;
{

FILE *fp; /* declare I/O pointer */
char linbuf[MAXLINE]; /* temporary line buffer */
int lineno; /* line number variable */

if (argc != 2) { /* make sure file was given */
printf("Usage: A>pnum filename <cr>
exit();

}

if ((fp = fopen(argv[1],"r")) == NULL) {
printf("Can’t open %s\n",argv[1]);
exit();

}

lineno = 1; /* initialize line number */

while (fgets(linbuf, MAXLINE, fp))
printf("%3d: %s",lineno++,linbuf);

fclose(fp);
}

 The declaration of fp provides the I/O buffer pointer for use with fopen, fgets and fclose.

After checking the argument count and opening the specified file for buffered input (and making
sure the file exists), all the real work takes place in one simple while statement. First the fgets
function reads a line of text from the file and places it into the linbuf character array. As long as
the end of file isn’t encountered, fgets will return a non-zero (true) value and the body of the

 while statement will be executed. The body consists of a single call to printf, in which the current

Page 134 BD Software

BDS C User’s Guide Tutorials and Tips

line number is printed out followed by a colon, space, and the current text line. After the value of
lineno is used, it is incremented (by the ++ operator) in preparation for the next iteration. The
r e a d i n g a n d p r i n t i n g c y c l e c o n t i n u e s u n t i l f g e t s r e t u r n s z e r o ; a t t h a t p o i n t t h e w h i l e l o o p i s
abandoned and fclose wraps things up.

For our final example we have the kind of program known as a filter. Generally, a filter reads an
input file, performs some kind of transformation on it, and writes the result out into a new output
file. The transformation might be quite complex (like a C compilation) or it might be as trivial as
the conversion of an input text file to upper case. Since printing costs are pretty high these days,
let’s skip the C compiler example for the time being and take a look at a To-Upper-Case filter
program:

/*
UCASE.C: Program to convert an arbitrary input text

file to upper-case-only.
*/

#include <stdio.h>

main(argc,argv)
char **argv;
{

FILE *ifp, *ofp;
int c;

if (argc != 3) {
printf("Usage: A>ucase <file> <newfi
exit();

}
if ((ifp = fopen(argv[1],"r")) == NULL) {

printf("Can’t open %s\n",argv[1]);
exit();

}
if ((ofp = fopen(argv[2],"w")) == NULL) {

printf("Can’t create %s\n",argv[2]);
exit();

}

while ((c = fgetc(ifp)) != EOF)
if (fputc(toupper(c),ofp) == ERROR)

printf("Write error; disk probab
exit();

}

fclose(ifp);
fclose(ofp);

}

 This time there are two buffered I/O streams to be dealt with: the input file and the output file.
The first task is to check whether the correct number of parameters were given on the command
line. In this case, we expect two parameters: the name of an existing input file, and the name of
the output file to be created. Then fopen is used to open and create the two files for buffered I/O.
If that much succeeds, the main loop is entered and the fun begins.

On each iteration of the loop, a single byte is grabbed from the input file and compared with the
e n d - o f - fi l e v a l u e E O F . N o t e t h a t t h e E O F v a l u e r e t u r n e d b y f g e t c i s – 1 , w h i c h c a n o n l y b e
represented as a 16-bit value because char variables in BDS C cannot take on negative values.

BD Software Page 135

November 1988 BDS C User’s Guide

This is why the variable “c” is declared as an int instead of a char in the above program; if it
were declared as a char, then the sub-expression

(c = fgetc(ifp))

 would result in a value having the type char, and thus could never possibly equal EOF (-1) as
tested for in the program. When fgetc returned EOF in such a case, “c” would end up being equal
to 255 (the char representation of the low order 8 bits of the value EOF). Thus, “c” is declared as
an int so the EOF comparison can make sense.

This is awkward because “c” is used here for holding characters, and it would be nice to have it
d e c l a r e d a s a c h a r a c t e r v a r i a b l e . T h e r e ’ s a c t u a l l y a w a y t o d o i t , a t t h e p r i c e o f c o m p l e t e
g e n e r a l i t y : i f t h e E O F i n t h e c o m p a r i s o n w e r e c h a n g e d t o 2 5 5 , t h e n “ c ” w o u l d h a v e t o b e
declared as a char and the program would work…except when an actual hex FF (decimal 255)
byte is encountered in the input file! Now, while it is a pretty safe bet to assume there aren’t any
h e x F F b y t e s i n y o u r a v e r a g e t e x t fi l e , t h e r e m a y b e e x c e p t i o n s . A l s o , t h e r e ’ s n o l a w s a y i n g
filters can only be written for text files. Consider a program to take a binary file and “unload” it,
creating an Intel-format HEX file. Would we want it to halt when the first hex FF is encountered?
No, the original method is clearly the most general.

After determining that the end-of-file has not been encountered, the body of the while statement
is executed. Here we use toupper to convert the character obtained from fgetc to upper case, and
then we use fputc to write the resulting byte out to the output file. To be neat, errors are checked
for: the program terminates if fputc returns ERROR.

As soon as an end-of-file condition is detected, we use fclose to close the input and output files.
N o t e t h a t f c l o s e a u t o m a t i c a l l y c a l l s f fl u s h f o r t h e o u t p u t fi l e , a n d f fl u s h m a k e s s u r e t h a t t h e
output file is terminated by a CP/M end-of-text-file (0x1A, or Control-Z) character.

For a large-scale example of buffered I/O usage, see CASM.C. Also, take some time to inspect
the files STDIO.H, STDLIB1.C and STDLIB2.C, which contain the sources of all the buffered
I/O functions. STDLIB1.C contains the general byte-oriented portion of the buffered I/O library,
and STDLIB2.C contains the line-oriented and format-conversion functions.

7.2 BDS C Console I/O:
Some Tricks, Clarifications and Examples

7.2.1 Introduction

I n t h i s d o c u m e n t I w i l l a t t e m p t t o r e m o v e s o m e o f t h e m y s t e r y b e h i n d t h e C P / M c o n s o l e
input/output mechanism, and show how to take best advantage of that mechanism from BDS C
programs.

The accent here will be on how to use the bios and bdos library functions for performing console
i n p u t a n d o u t p u t d i r e c t l y v i a C P / M ’ s B I O S a n d B D O S , r e s p e c t i v e l y . O n e r e a s o n f o r g o i n g
directly to CP/M’s BIOS for console I/O, instead of using the getchar/putchar functions supplied
i n t h e s t a n d a r d l i b r a r y , i s t o a v o i d t h e f r u s t r a t i n g u n s o l i c i t e d i n t e r c e p t i o n o f c e r t a i n A S C I I

Page 136 BD Software

BDS C User’s Guide Tutorials and Tips

characters by both the CP/M BDOS and the getchar/putchar functions (which use BDOS calls to
perform their tasks). Some suitable applications are telecommunication programs, games, or any
programs requiring more direct control over the console than the standard getchar and putchar
functions provide.

7.2.2 Elementary Console Interfacing

Let’s take a look at what really happens during console I/O, and how to control it…

The lowest (simplest) level of console-controlling software is in the BIOS (Basic Input/Output
System) section of CP/M. There are three subroutines in the BIOS that deal with reading and

 w r i t i n g r a w c h a r a c t e r s t o t h e c o n s o l e : C O N S T (c h e c k C O N s o l e S T a t u s) , C O N I N (w a i t f o r a
character to be typed on the CONsole, then read it IN), and CONOUT (send the CONsole an
OUTput character to be typed). The way to locate these subroutines from the assembly language
level is rather complicated, so the BDS C library contains the bios function to make it easy to
access the BIOS subroutines from C programs.

B I O S v e c t o r s 2 , 3 a n d 4 a r e u s e d t o c o m m u n i c a t e d i r e c t l y w i t h t h e c o n s o l e d e v i c e . T h e
expression bios(2) specifies a call to the CONST subroutine in the bios, which returns a non-zero
(“true”) value when a character is available at the console, or zero otherwise. To actually read the
character after bios(2) indicates one is ready, or to wait until a character is ready and then read it,
use bios(3) to call the CONIN subroutine and return a character from the console. To directly
write a character c to the console, say bios(4,c) to call CONOUT. Note, though, that the BIOS
subroutines are not aware that C programs represent a carriage-return/linefeed combination by a
single “newline” character (’\n’)…the call bios(4,’\n’) will cause only a single linefeed character
(ASCII decimal value 10) to be printed on the console without a leading carriage-return. When
using direct console I/O you must send both a carriage-return (’\r’) and a newline (’\n’) to the
CONOUT subroutine in order to go to the beginning of a new line on the console output.

Such a sequence would appear as follows:

bios(4,’\r’); /* send carriage-return to CONOUT */
bios(4,’\n’); /* send linefeed to CONOUT */

 Making sure that all console I/O is eventually performed by way of the three BIOS subroutines is
the only way to approach portability of programs between different CP/M systems when total

21control is required over the console device .

 7.2.3 The BDOS and How It Complicates Things

The next higher interface level (above the BIOS) on which console I/O may be performed is the
B D OS (Basic Disk Operating Syst e m) . J u s t a s t h e r e a r e t h e t h r e e b a s i c B I O S s u b r o u t i n e s f o r
i n t e r f a c i n g w i t h t h e c o n s o l e , t h e r e a r e t h r e e s i m i l a r b u t “ h i g h e r l e v e l ” B D O S o p e r a t i o n s f o r
p e r f o r m i n g s i m i l a r t a s k s . T h e s e B D O S f u n c t i o n s , e a c h o f w h i c h h a s i t s o w n c o d e n u m b e r
distinct from its BIOS counterpart, are: Console Input to get a single character from the console

21. Even so there’s no way to know what kind of terminal is being used by another system— so “truly portable” software either makes
some assumptions about the kind of display terminal being used (whether or not it is cursor addressable, how to address the cursor,
etc.) or includes provisions for self-modification to fit whatever type of terminal the end-user happens to have connected to the
system.

BD Software Page 137

November 1988 BDS C User’s Guide

(BDOS function 1), Console Output to write a single character to the console (BDOS function
2), and Get Console Status to determine if there is a character available from the console input
(BDOS function 11). There is also BDOS function 6, named “direct console I/O”, provided as a
direct link to the BIOS console I/O functions. This functions is “yet another way to get not quite
c o m p l e t e c o n t r o l o v er console I/O”, and has only one slight advantage over usi n g B I O S c a l l s
(which I’ll describe later).

Whenever the standard C libra r y f u n c t i o n s g e t c h a r a n d p u t c h a r a r e c a l l e d , they perform their
t a s k s i n t e r m s o f B D O S c a l l s … w h i c h i n t u r n p e r f o r m t h e i r o p e r a t i o n s t h r o u g h B I O S c a l l s ,
leading to some nasty confusion. The BDOS operations do all kinds of things for you that you
may not even be fully aware of. For instance, if the BDOS detects that a control-S character is
present on the console input during a console output call, then everything will stop dead until
a n o t h e r c h a r a c t e r i s t y p e d o n t h e c o n s o l e i n p u t , b e f o r e c o n t r o l i s r e t u r n e d f r o m t h e o r i g i n a l
o u t p u t c a l l . T h i s m a y b e fi n e if you want the ability t o s t o p a n d s t a r t a l o n g p r i n t o u t w i t h o u t
having to code that feature into your C programs, but it causes big trouble if you need to see
every character typed on the console, including control-S. A little bit of thought as to how the
B D O S d o e s i t s s t u f f r e v e a l s s o m e i n t e r e s t i n g f a c t s : s i n c e t h e B D O S m u s t b e a b l e t o d e t e c t
control-S on the console input, it must read the console whenever it sees that a character has been
typed. If the character is not among those requiring special processing, such as control-S, then it
must be saved somewhere internal to the BDOS so that the next “Console Input” call returns the
c h a r a c t e r a s i f n o t h i n g h a p p e n e d . A l s o , t h e B D O S m u s t m a k e s u r e t h a t a n y s u b s e q u e n t c a l l s
made by the user to “Get Console Status” (before any are made to “Console Input”) indicate that
a character is available. This leads to a condition in which a BDOS call might say that a character
is available, but the corresponding BIOS call would NOT, since, physically, the character has
already been gobbled up by the BDOS during a prior interaction with the BIOS.

If this all sounds confusing, bear in mind that it took me several long months of playing with
CP/M and early versions of the compiler before I was able to comprehend what goes on in there.
The library versions of getchar and putchar were designed for an environment where the user
does not need absolute direct control over the console. Since the BDOS already does some nice
things (like control-S processing), I threw in some additional features: automatic conversion of
t h e ‘ \ n ’ c h a r a c t e r t o a C R - L F c o m b i n a t i o n o n o u t p u t , a u t o m a t i c p r o g r a m t e r m i n a t i o n w h e n
c o n t r o l - C i s d e t e c t e d o n i n p u t o r o u t p u t (s o t h a t p r o g r a m s h a v i n g l o n g o r i n fi n i t e u n w a n t e d
printouts may be stopped without resetting the machine, even when no console input operations
are performed), automatic conversion of the carriage-return character to a ‘\n’ on input, etc.

For BDS C v1.6, the new functions iobreak and cmode were added to provide some flexibility to
the getchar and putchar functions. Specifically, the iobreak function allows the selection (under
p r o g r a m c o n t r o l) o f w h e t h e r o r n o t C o n t r o l - C i s d e t e c t e d d u r i n g g e t c h a r a n d p u t c h a r c a l l s .
Calling iobreak(0) causes Control-C’s to be ignored (except when typed as the first character of
a line under line-buffered input mode, due to the way the BDOS operates). Calling iobreak(1)
(or not calling iobreak at all, as iobreak(1) is the default on start-up) causes any Control-C’s

 t y p e d o n t h e c o n s o l e d u r i n g e i t h e r c h a r a c t e r i n p u t o r c h a r a c t e r o u t p u t t o t e r m i n a t e p r o g r a m
execution and return to CP/M command level.

I promised some examples earlier, so let’s get to them. First of all, here is a very rudimentary set
of functions to perform the three basic console operations in terms of the bios function, with no
special conversions or interceptions at all…i.e., nothing like the ‘\n’ —> CR-LF translations:

Page 138 BD Software

BDS C User’s Guide Tutorials and Tips

/*
Ultra-raw console I/O functions:

*/

getchar() /* get a char from the console */
{

return bios(3);
}

kbhit() /* return true (non-zero) if a char is ready */
{

return bios(2);
}

putchar(c) /* write the char c to the console */
char c;
{

bios(4,c);
}

 T h e s e u l t r a - r a w f u n c t i o n s d o n o t h i n g m o r e t h a n p r o v i d e d i r e c t a c c e s s t o t h e B I O S c o n s o l e
s u b r o u t i n e s . T o u s e t h e m i n s t e a d o f t h e s t a n d a r d v e r s i o n s p r o v i d e d i n D E F F 2 . C R L (w h i c h ,
i n c i d e n t a l l y , a r e w r i t t e n i n a s s e m b l y l a n g u a g e a n d a v a i l a b l e i n s o u r c e f o r m w i t h i n
D E F F 2 A . C S M) , s i m p l y c r e a t e a C s o u r c e fi l e c o n t a i n i n g t h e m (o r a n y v a r i a t i o n y o u p l e a s e) ,
compile the file, and link your programs with the resulting CRL file.

Now let’s consider some more sophisticated games that can be played with customized versions
of the console I/O functions. For starters, let’s design a set of direct console I/O functions that
perform newline conversions just like the library versions described earlier, abort execution on
control-C, but ignore control-S/control-Q protocol and throw away any characters typed during
output except control-C, which should cause a return to command level. What we need here are
the skeletal functions given above, plus some extra code to handle the following conditions: a)
conversion of single ‘\n’ characters into two characters, CR and LF, on output; b) conversion of
CR to newline (’\n’) and control-Z to –1 on input; c) automatic echoing of input to the console
output; and d) re-booting on control-C during both input and output. Here are the beasts:

/*
Vanilla console I/O functions without going through BDOS:
Note that ’kbhit’ would be the same as the preceding
raw version)

*/

#define CTRL_C 0x03 /* control-C */
#define CPMEOF 0x1a /* End of File signal (control-Z) */

getchar() /* get a character, hairy version */
{

char c;
if ((c = bios(3)) == CTRL_C) exit(); /* abort on ^C */
if (c == CPMEOF) return -1; /* turn Ctl-Z to -1 */
if (c == ’\r’) { /* if CR typed, then */

putchar(’\r’); /* echo a CR, and set */
c = ’\n’; /* up to echo a LF also */

} /* and return a ’\n’ */
putchar(c); /* echo the char */
return c; /* and return it */

}

 BD Software Page 139

November 1988 BDS C User’s Guide

putchar(c) /* output a character, hairy version */
char c;
{

bios(4,c); /* first output the given char */
if (c == ’\n’) /* if it is a newline, */
bios(4,’\r’); /* then output a CR also */
if (kbhit() && bios(3) == CTRL_C) /* if Ctl-C typed, */

exit(); /* then reboot */
} /* else ignore the input */

 Now, if you want to add control-S processing and a push-back feature (the two are actually quite
related, since you must be able to push back anything except control-S that might be detected
during output), you could add some external “state” to the latest set of functions and keep track
of what you see at the console input. Once this is done, though, what you’d have is much the
same functionality as the original standard library versions of getchar and putchar (which use the
BDOS), and you might as well just use those.

So far, everything I’ve talked about has been in terms of the BIOS, and applies equally to all
CP/ M s y s t e m s . U n f o r t u n a t e l y , t h e r e i s o n e c o n s o l e operation often needed when writing real-
time interactive operations that is not supported by the BIOS, and thus there is no portable way
to implement it under CP/M. What’s missing is a way to ask the BIOS if the console terminal is
ready to accept a character for output. An example of the trouble this omission causes is visible
i n t h e s a m p l e u t i l i t y C M O D E M . C . T h e r e , t h e p r o g r a m m u s t b e a b l e t o r e a d i n p u t f r o m t h e
keyboard at any instant, and cannot afford to become tied up waiting for the terminal when the
amount of data being sent to it has caused it to refuse more characters and thereby to lock up the
program until a character can be sent. Given that the only “kosher” way to send a character to the
console is through the CONOUT BIOS call, and that such a call might at any time tie up the
program for longer than is tolerable, the only recourse is to bypass CONOUT completely and
c o n s t r u c t a c u s t o m i z e d o u t p u t r o u t i n e i n C t h a t c a n b e m o r e s o p h i s t i c a t e d . T h i s i s d o n e i n
CMODEM.C, at the expense of non-portability for the object code; each user must individually
configure his HARDWARE.H header file to define the unique port numbers, bit positions and
polarities of the I/O hardware controlling his console and modem devices. It would have been
much easier if the BIOS contained just one more itty bitty subroutine to test console output status
and modem output status, but life is rough sometimes.

The last several examples have all used the bios function for direct interface to the BIOS console
subroutines. Note that BDOS function number 6 was provided in CP/M 2.x as an alternative to
direct BIOS access, and it can indeed be used in most cases instead of bios calls. I know of both
one advantage and one disadvantage to using BDOS function 6, though. The disadvantage is that
y o u c a n n o t s e n d a h e x a d e c i m a l F F b y t e t o t h e c o n s o l e o u t p u t u s i n g B D O S f u n c t i o n 6 . T h e
a d v a n t a g e , o n t h e o t h e r h a n d , i n v o l v e s a n i n c o m p a t i b i l i t y p r o b l e m b e t w e e n d i f f e r e n t
implementations of CP/M. On some systems, the bios function provided with BDS C will not
w o r k c o r r e c t ly becau s e t h e j m p i n s t r u c t i o n a t t h e s t a r t o f t h e C P / M b a s e p a g e d o e s n o t p o i n t
directly to the warm-boot entry in the BIOS jump-vector table. The bios function assumes that
t h i s i s t h e c a s e , a n d c o m p u t e s t h e a d d r e s s o f t h e b a s e o f t h e B I O S v e c t o r t a b l e o n t h i s
assumption. The significance of all this is that C programs written using the bios function, and
d i s t r i b u t e d i n b i n a r y f o r m t o o t h e r s y s t e m s w h i c h d o n o t c o n f o r m t o t h e b i o s f u n c t i o n ’ s
assumptions about jmp instruction targets, will not work correctly on those systems.

Page 140 BD Software

BDS C User’s Guide Tutorials and Tips

Oh well…I hope this has helped to demystify some of the obscure behavior of the CP/M console
I/O interface. For the low-down on how the library versions of getchar, putchar, etc. really work,
see their source listings in DEFF2A.CSM.

7.3 Some Mistakes Commonly Made By Beginning C Programmers
and Other Things Deserving Clarification

There are several aspects of the C language that tend to cause a great deal of brow-beating when
encountered for the first time. In this section I will try to summarize those sensitive “features” of
C that are constantly being brought to my attention by confused users in their phone calls and
letters.

7.3.1 ‘ = ’ versus ‘ = = ’‘ = ’ ‘ = = ’

The = operator is used for assignment only, while the == operator is used for testing a relational
condition of equality. The two operators have nothing in common except the character used to
represent them, and can cause very frustrating debugging sessions when confused.

A c o m m o n c o n s t r u c t i n C i s t o h a v e a n a s s i g n m e n t o p e r a t i o n i m b e d d e d w i t h i n a l a r g e r
expression, perhaps involving conditionals. This can lead to statements such as:

if ((c = getchar()) == ’\n’)
printf("You typed a newline!\n");

 Here, the beginning C user might interpret the = operation as a conditional test instead of the
assignment expression it actually is. Note also that the precedence of the == operator is higher
than that of the = operator. This fact makes it essential that the assignment operation be explicitly
parenthesized in an expression such as the one above. If the statement were mistakenly written
as:

if (c = getchar() == ’\n’)
...

 then the compiler would treat that expression exactly the same as if it were written:

if (c = (getchar() == ’\n’))
...

 Now consider the following code fragment:

if (!(c = getnext())) {
printf("All done\n");
break;

}

 T h e i f e x p r e s s i o n i n t h i s s t a t e m e n t a s s i g n s t h e r e t u r n v a l u e f r o m t h e g e t n e x t f u n c t i o n t o t h e
variable c, then asks whether or not that return value is zero…if it is zero, it prints “All done!”
a n d b r e a k s o u t o f w h a t e v e r c o n t r o l s t r u c t u r e e n c l o s e s t h e f r a g m e n t . O f c o u r s e , i f a t i r e d
programmer looks at this very quickly, it might seem as if c were being compared to the return
value of getnext…you get the idea.

BD Software Page 141

November 1988 BDS C User’s Guide

7.3.2 Character Constants within Literal Strings

Often it is necessary to imbed non-standard characters inside literal strings. All ASCII characters
and most useful control characters (e.g. newline, carriage-return, formfeed, etc.) are easy enough
to represent in a string, but the more obscure control characters (and all 8-bit characters having
the high-order bit set) must be represented in the following form: a backslash (the ‘\’ character)
followed by the octal form of the value of the character. While C allows the representation of
hexadecimal values by a special prefix notation (e.g., 0x1f) in general expressions, note that this
n o t a t i o n i s n o t a l l o w e d f o r s i n g l e - q u o t e d c h a r a c t e r c o n s t a n t s o r w i t h i n d o u b l e - q u o t e d l i t e r a l
strings. Anytime the backslash-prefix notation is used the digits are presumed to be octal, and
t h e r e f o r e t h e fi r s t n o n - o c t a l d i g i t e n c o u n t e r e d w i l l n o t b e c o n s i d e r e d p a r t o f t h e v a l u e . A s a n
example of the confusion this can cause, consider the following statement:

printf("This is a test. Here is a bell: \08\n");

 What actually is printed for output? If you think a bell (or beep) will sound, look again…the digit
‘8’ is not legal in octal, so the compiler considers the sequence ‘\0’ a complete octal constant
(having the value zero), and leaves the ‘8’ alone to print out on the console. The result of the
above statement would be:

This is a test. Here is a bell: 8

 and an invisible null would be “printed” immediately before the ‘8’. The correct way to get the
desired effect is:

printf("This is a test. Here is a bell: \10\n");

 7.3.3 The Precedence of Assignment Operators

Because there are so many binary operators in C, it is easy to confuse the relative precedence of
the different operators and get very incorrect results when explicit parenthesization is lacking. By
f a r t h e m o s t c o m m o n e x a m p l e i n v o l v e s a s s i g n m e n t o p e r a t o r s u s e d i n c o n j u n c t i o n w i t h o t h e r
binary expression operators. For example, the correct way to assign the return value of function
getc to the variable c, and then compare that value to the symbol CPMEOF, is as follows:

if ((c = getc(fp)) == EOF)
puts("Found EOF\n");

else
puts("No EOF yet...\n");

 When the first line is mistakenly written as follows:

if (c = getc(fp) == EOF)

 the effect is entirely different; because the precedence of the == operator is higher than that of
the = operator, the comparison for equality between the return value of getc and the symbol EOF
will be performed before the assignment to c, and thus c will end up with a logical value of either
0 or 1 depending on the result of the comparison. This, obviously, is not the desired effect. A rule
o f t h u m b i n t h e s e k i n d s o f c a s e s i s : i f a n a s s i g n m e n t e x p r e s s i o n i s p l a c e d w i t h i n a l a r g e r

Page 142 BD Software

BDS C User’s Guide Tutorials and Tips

expression involving other binary operators, isolate the assignment expression in parentheses or
it will probably not do what you want it to.

7.3.4 Array Subscripting

Arrays of length n in C have elements numbered from 0 to n-1. If you declare an array of length
n and attempt to reference an element with a subscript of value n, you’ll actually be referencing
data past the end of that array. This happens most often when a user is thinking in terms of the
BASIC language, where arrays of length x may have both an element number 0 and and element
number x. Note that in C, the most common for-loop construct neatly iterates through n items
numbered 0 through n-1 as follows:

for (i = 0; i < n; i++)
...

 a n d s u c h l o o p s a r e i d e a l f o r i t e r a t i n g t h r o u g h a n a r r a y . I f y o u r e a l l y n e e d t o h a v e a n a r r a y
numbered 1 through n for n items, then you must declare the array to have one more item than
required, leaving the 0-th element unused.

7.3.5 How NOT To Use a Pointer

When a pointer variable is declared in a program, either externally or within a function, it is not
given a value automatically. A pointer is simply a 16-bit variable that is typically used to hold
the address of some other piece of data (to point to it), and must be initialized before being used,
j u s t l i k e a n y v a r i a b l e . T h e p a r t i c u l a r m i s t a k e I s e e m o s t o f t e n i n v o l v e s a s s i g n i n g a v a l u e
indirectly through an uninitialized pointer; e.g, the declaration

char *foo;

 would be later followed by a statement such as

*foo = ’a’;

 before foo is ever assigned any specific value, and unpredictable things would begin to happen.
What the assignment statement above says is “place the character ‘a’ into memory at the location
w h o s e a d d r e s s i s s p e c i fi e d b y t h e v a l u e o f v a r i a b l e f o o . ” I f f o o h a s n e v e r b e e n i n i t i a l i z e d t o
a n y t h i n g , t h e n t h e ‘ a ’ c h a r a c t e r g e t s s t o r e d i n s o m e t o t a l l y r a n d o m l o c a t i o n i n m e m o r y . T h e
correct procedure here would have been to declare a buffer area, assign foo the address of that
area, and then begin assigning data indirectly through foo. For example, the following sequence
places the character ‘a’ at location buffer[0]:

char buffer[50], *foo;
foo = &buffer[0];
...
*foo = ’a’;

 7.3.6 Functions Shouldn’t Return Pointers to Their Automatic Data

As soon as a function returns to its caller, storage that was local to that function (i.e., where all
declared local variables were stored) is de-allocated and made ready for use by the next called
function. A common mistake is to have some function (call it foo) create a piece of text in a local

BD Software Page 143

November 1988 BDS C User’s Guide

b u f f e r a n d r e t u r n a p o i n t e r t o t h a t t e x t … I m m e d i a t e l y u p o n r e t u r n f r o m f o o t h e t e x t a p p e a r s
i n t a c t , b u t l a t e r o n i n t h e c o u r s e o f t h e p r o g r a m (a s t h e s p a c e i n w h i c h t h e s t r i n g r e s i d e s i s
a l l o c a t e d f o r o t h e r f u n c t i o n s ’ l o c a l d a t a f r a m e s) , t h e s t r i n g t u r n s i n t o g a r b a g e . T h e r e a r e t w o
viable solutions to this kind of problem: a) Have foo take a parameter telling it where to put the
string result (in which case the caller must provide a working buffer for foo), or b) Make the
destination string area external. Each method has its own advantages; passing a destination area
o n e a c h c a l l a l l o w s m a n y s u c h r e t u r n e d s t r i n g s t o b e s a v e d s e p a r a t e l y i n d i f f e r e n t a r e a s o f
memory, while an external destination area shortens the calling sequence by requiring one less
parameter to be passed. But whatever you do, do not expect any data that was locally allocated
by a called function to remain valid after that function has returned!!

7.3.7 Understanding Formal Parameters

What is a “formal parameter”, anyway? A formal parameter is one of the arguments (if any) that
a function expects to have passed to it whenever called. All formal parameters are specified at the
beginning of a function’s definition in a parenthesized list immediately following the function

 name. The declarations of a function’s formal parameters must be made immediately after the
p a r e n t h e s i z e d l i s t , b e f o r e t h e fi r s t o p e n - c u r l y b r a c e t h a t m a r k s t h e b e g i n n i n g o f t h e f u n c t i o n
body. Any formal parameters not explicitly declared are assumed to be simple int values. If a
f o r m a l p a r a m e t e r i s a c c i d e n t a l l y d e c l a r e d w i t h i n t h e a c t u a l f u n c t i o n b o d y (i n s i d e t h e c u r l y -
b r a c e s) , t h e c o m p i l e r w i l l c o r r e c t l y d i a g n o s e a “ r e d e c l a r a t i o n ” e r r o r … s i n c e a f t e r t h e f o r m a l
d e c l a r a t i o n s a r e p a s s e d a n d t h e c o m p i l e r b e g i n s p r o c e s s i n g t h e f u n c t i o n b o d y w i t h o u t h a v i n g
seen a declaration for a formal parameter, that formal paramet e r w i l l h a v e b e e n automatically
declared as an int.

Whenever a function call takes place, copies of the values of any formal parameters are passed to
t h e f u n c t i o n . A l l s u c h v a l u e s a r e 1 6 b i t s i n l e n g t h w i t h B D S C v e r s i o n 1 . T h i s m e a n s t h a t
structures, arrays, or any data type not inherently 16 bits in size cannot be directly passed to a
function; pointers to such data types, though, can. Now…what happens when an array name is
passed to a function? There is a special magic mechanism for passing pointers to arrays that can
be confusing, because it is not intuitively obvious from the declaration syntax that a pointer is
actually being passed. For example, consider the following function:

int arraysum(array)
int array[3];
{

return array[0] + array[1] + array[2];
}

 While arraysum may appear to take an array of 3 elements as a formal parameter, in reality only
a pointer to that array is passed. The declaration looks as if an entire array were being passed, but
i f y o u c h a n g e a n y e l e m e n t i n t h e a r r a y h e r e y o u ’ l l b e c h a n g i n g t h a t e l e m e n t f o r t h e c a l l i n g
program also. There is only one copy of the array in existence.

Another tricky point about formal array parameters is that you can actually treat the array name
as a simple pointer variable within the called function (i.e., assign to it the address of another
array and voila! it then becomes the base of that other array…) while such things would not
w o r k (a n d i n d e e d , c a u s e u n p r e d i c t a b l e r e s u l t s) w h e n t h e a r r a y i s a n a c t u a l (n o n - f o r m a l -
parameter) array. The Kernighan & Ritchie book contains an entire chapter on the “duality” of

Page 144 BD Software

BDS C User’s Guide Tutorials and Tips

pointers and arrays; in this mechanism are the most powerful and the most confusing aspects of
C.

7.3.8 Dependence on Parameter Evaluation Order

Function calls should never be written such that varying the order of evaluation of the parameters
in a single call could have an effect on the values of the parameters. An example of such a badly
written call is as follows:

x = 1;
foobar(x++, x++, x);

 The three values passed to the function foobar in this example would end up being 2, 1, 1, not 1,
2 , 3 a s m i g h t b e e x p e c t e d . M o s t C c o m p i l e r s e v a l u a t e f u n c t i o n p a r a m e t e r s i n r e v e r s e o r d e r ,
including BDS C, so that they will end up on the stack in “forward” order and allow functions
l i k e p r i n t f t o p r o c e s s a v a r i a b l e n u m b e r o f p a r a m e t e r s i n a n e f fi c i e n t m a n n e r . T h u s , f u n c t i o n
parameters should never have side effects which change the values of other parameters in the
same list, or in fact even in the same expression.

The lesson here is to be careful not to rely on the order of evaluation when dealing with several
parameters in a function call. If the order is critical and side effects cannot be avoided, then each
parameter should be made into a separate statement with values assigned to temporary variables,
so that the values can be placed in a function call later when all ordered computation is complete.

7.3.9 Function Calls MUST Have Parentheses

If the name of a function is used without an argument list, then the resulting expression evaluates
to the address of the named function…no call is ever made to the function unless the name is
followed by a parenthesized list of parameters, even if the list is null. For example, the following
expression assigns the address of the end of the external data area to the variable i:

i = endext();

 while the following expression assigns the address of the function endext to variable i, but only if
endext has been previously declared:

i = endext;

 Note that if endext has not been previously declared when the latter expression is encountered,
then the compiler will correctly diagnose the “undeclared variable” endext. In the first example,
though, endext is implicitly declared (in context) as a function returning an int.

7.4 Miscellaneous Notes

This section contains a collection of tips and clarifications about both the C language in general
and some of the BDS C Compiler’s quirks.

BD Software Page 145

November 1988 BDS C User’s Guide

• T h e “ C o n s t a n t e x p r e s s i o n ” e v a l u a t i o n m e c h a n i s m , a s d e s c r i b e d i n s e c t i o n 4 . 1 5 ,
i n d i c a t e s h o w B D S C s i m p l i fi e s c e r t a i n e x p r e s s i o n s i n v o l v i n g c o n s t a n t v a l u e s a t
c o m p i l a t i o n t i m e . B e c a u s e c o n s t a n t e x p r e s s i o n s a r e o f t e n u s e d f o r c a l c u l a t i n g t h e
dimensions of arrays and structures, it was decided to have BDS C perform all constant
e x p r e s s i o n s i m p l i fi c a t i o n i n u n s i g n e d a r i t h m e t i c m o d e . B e c a u s e o f t h i s , c e r t a i n
innocent-looking arithmetic expressions written in terms of constant values may yield
unexpected results when the unary minus (negation) operator is used. For example, the
statement

printf("%d\n",-12/5);

 • c a u s e s t h e v a l u e “ 1 3 1 0 4 ” t o b e p r i n t e d a s t h e v a l u e o f “ - 1 2 / 5 ” . T h i s i s b e c a u s e t h e
d i v i s i o n i s p e r f o r m e d i n u n s i g n e d a r i t h m e t i c m o d e ; t h e “ - 1 2 ” i s a c t u a l l y t r e a t e d a s a
value of 65524, which when divided by 5 yields 13104.

• The keywords begin and end may be substituted for left and right curly-braces ({ and }).
T h i s f e a t u r e i s p r o v i d e d s o t h a t u s e r s n o t h a v i n g t h e c u r l y - b r a c e c h a r a c t e r s o n t h e i r
terminals can still use the compiler. Aesthetically, at least in this hacker’s opinion, the
curly-braces produce listings far more readable than begin and end, and should be used
whenever possible.

• Error recovery during compiler operation may not appear especially intelligent in certain
cases. If either CC or CC2 spews out a set of error messages clustered around the same
line or set of lines, then only the first error message in the cluster should be believed.
Chances are that after that error is fixed, the rest will go away.

• The line number given by CC2 in error reports is not always guaranteed to be accurate.
CC does some rearranging of code once in a while; for instance, the increment portion
of a for statement is physically moved down past the statement portion. Thus, if there is
an error in the increment portion that CC is not equipped to detect, then CC2 will detect
it…and report the line number erroneously. Try not to mess up the increment portion of
for statements.

• C e r t a i n t y p e s o f e r r o r s w i l l c a u s e t h e c o m p i l e r t o c e a s e e x e c u t i o n a n d i m m e d i a t e l y
return to the operating system without scanning the rest of the source. This occurs when,
f o r e x a m p l e , m i s m a t c h e d p a r e n t h e s e s o r a m i s s i n g s e m i c o l o n m a n a g e t o c o n f u s e t h e
c o m p i l e r t o t h e p o i n t w h e r e i t c a n n o t r e c o v e r . I n s t e a d o f g u e s s i n g a b o u t w h e r e t h e
proper punctuation should be, it aborts to let you fix the error quickly and try again.

• Note that the argc value passed to a C main function is, by convention, always positive,
and equal to the number of arguments specified plus one.

• The first string in argv, argv[0], is undefined due to CP/M’s not providing the name of
the executing program to transient programs.

• Arguments on the command line are character strings in all cases, not values. To convert
a numeric command line parameter into a value appropriate for assigning to a variable,
something like the atoi function must be used.

Page 146 BD Software

BDS C User’s Guide Tutorials and Tips

• A problem with the “bdos” library function has come up that is rather tricky, since it is
system-dependent: A program that runs correctly under a normal Digital Research CP/M
system might not run under MP/M or SDOS (or who knows how many other systems) if
t h e b d o s f u n c t i o n i s u s e d . A t y p i c a l s y m p t o m o f t h i s p r o b l e m i s t h a t u p o n c h a r a c t e r
output, a character on the keyboard needs to be hit once in order to make each character
of output appear.

To understand the problem, we must first understand exactly how the CPU registers are
supposed to be set after an operating system BDOS call. Normal CP/M behavior (which
the library function bdos had always assumed) is for registers A and L to contain the
low-order byte of the return value, and for registers B and H to contain the high order
byte of a return value (which is zero if the return value is only one byte). The CP/M
interface guide explicitly states that “A == L and B == H upon return in all cases”, and I
figured that just in case CP/M 1.4 or some other system didn’t put the values in H and L
f r o m B a n d A , I ’ d h a v e t h e b d o s f u n c t i o n c o p y r e g i s t e r A i n t o r e g i s t e r L a n d c o p y
register B into register H, to make sure the value is in HL (where the return value must
always be placed by a C library function.)

Not all systems actually follow this convention, though. Under MP/M, H and L always
contain the correct value but B does not! So when B is copied into H, the wrong value
results. Therefore, the way to make bdos work under both CP/M 2.2 and MP/M was to
discontinue copying B and A into H and L, and just assume the value will always be
correctly left in HL by the system. This was done for v1.45, so at least CP/M and MP/M
are taken care of, but…

Under SDOS (and perhaps other systems), register A is sometimes the only register to
c o n t a i n a m e a n i n g f u l r e t u r n v a l u e . F o r e x a m p l e , u p o n r e t u r n f r o m a f u n c t i o n 1 1 c a l l
(interrogate console status), the B, H and L registers were all found to contain garbage.
So if no copying is done in this case, the return value never gets from A to L and the
result is wrong; but if B is copied into H along with A getting copied into L, the result is
still wrong because B contains garbage. Evidently the only way to get function 11 to
work right under SDOS is to have the bdos function copy register A into L and zero out
the H register before returning…but then many other system calls which return values in
H wouldn’t work anymore. And that is the problem: You can please some systems all
the time, but not all systems all the time with only one standard bdos function.

The way I left bdos for v1.5 is so that it works with CP/M and MP/M (i.e., no register
copy i n g i s d o n e a t a l l … H L i s a s s u m e d to contain the correct value). This, of course,
won’t work in all cases under SDOS and perhaps other systems…in those cases, you
need to either use the call and calla functions to perform the BDOS call, or create your
o w n a s s e m b l y - c o d e d v e r s i o n (s) o f t h e b d o s f u n c t i o n (u s i n g C A S M) t o p e r f o r m t h e
c o r r e c t r e g i s t e r m a n i p u l a t i o n s e q u e n c e s f o r y o u r s y s t e m . N o t e t h a t i t m a y t a k e m o r e
than one such function to cover all possible return value register configurations.

• A well-designed C program should always diagnose a command line error by displaying
the command line syntax to the user and aborting. This is generally known as a “Usage”
message; it reminds the user of what is expected on the command line and often saves
everyone who uses the program a lot of time. If there are command line options, they

BD Software Page 147

November 1988 BDS C User’s Guide

should be shown in square brackets. A good practice is to include detailed explanations
of all the options along with the sample command line.

• Although external initializations are not supported by the compiler, some convenience
f u n c t i o n s h a v e b e e n p r o v i d e d t o a l l o w i n i t i a l i z a t i o n o f s i m p l e i n t e g e r a n d c h a r a c t e r
arrays. To set any contiguous set of words to integer values, use the function initw. For
c h a r a c t e r s (s i n g l e - b y t e i n t e g e r s i n t h e r a n g e 0 - 2 5 5) , b u t n o t s t r i n g s , u s e i n i t b . F o r
example, to simulate the UNIX C construct of

int foobar[10] = { 3,0,-2,-5,3,6,9,-23,-14,0 };

 • you can first declare foobar normally by saying

int foobar[10];

 • and then, in the main function, insert the statement

initw(foobar,"3,0,-2,-5,3,6,9,-23,-14,0");

 • The following tidbits should be kept in mind when striving for optimum efficiency:

1. Comments are stripped off a source file dynamically as the file is being read in
from disk; thus, there is no excuse (except maybe laziness) for not documenting
a program adequately.

2. T h e s w i t c h s t a t e m e n t i s m o s t e f fi c i e n t w h e n t h e s w i t c h v a r i a b l e (e . g . x x i n
“switch (xx)…”) is declared as a char. Integer variables are often used to hold
c h a r a c t e r v a l u e s i n t e x t p r o c e s s i n g a p p l i c a t i o n s i n v o l v i n g fi l e I / O ; a s s i g n i n g
such a value to a character variable before large switch constructs could save
memory and speed up execution.

3. The cases in a switch statement are tested in the order of their appearance; thus,
t h e m o s t c o m m o n c a s e s (o r t h e o n e s r e q u i r i n g f a s t e s t r e s p o n s e t i m e) s h o u l d
appear first.

4. For the fastest execution speed possible, CC should be given the –o and –e xxxx
options for compilation. For the shortest possible code length, only the –e xxxx
option should be used with CC.

5. Logical expressions in C evaluate to a numerical value of 0 (if false) or 1 (if
true) whenever their value is actually needed, but may not evaluate to any value
a t a l l w h e n u s e d i n fl o w - o f - c o n t r o l t e s t s . T h i s m e a n s t h a t y o u c a n t a k e
a d v a n t a g e o f t h e n u m e r i c a l r e s u l t s o f l o g i c a l e x p r e s s i o n s i n m a n y s i t u a t i o n s .
Consider the following code fragment, whose purpose is to set the variable x to
1 if a<b, or to 0 if a >= b:

if (a < b) x = 1;
else x = 0;

6. The same operation can be written as

Page 148 BD Software

BDS C User’s Guide Tutorials and Tips

x = (a < b);

7. T h i s t a k e s a d v a n t a g e o f h o w t h e s u b e x p r e s s i o n “ (a < b) ” e v a l u a t e s t o t h e
desired value automatically, and thus avoids the use of two separate assignment
e x p r e s s i o n s , t h e i r a s s o c i a t e d c o n t r ol structure, an d t h e c o n s i d e r a b l e o v e r h e a d
that all entails.

8. A related opportunity for brevity comes up whenever any variable needs to be
t e s t e d f o r e q u a l i t y o r i n e q u a l i t y w i t h z e r o ; s i n c e a n y e x p r e s s i o n m a y b e
considered logically “true” if it evaluates to a non-zero value, the “!= 0” portion
of an expression such as “a != 0” is practically redundant. Statements such as

if (a != 0) printf ("A is non-zero");
or if (a == 0) printf ("A is zero");

9. may just as well be written as

if (a) printf ("A is non-zero");
and if (!a) printf ("A is zero");

10. O f c o u r s e , s u c h a n a b b r e v i a t i o n m a y n o t a l w a y s b e a p p r o p r i a t e t o a g i v e n
situation. If the variable in question is used as a counter of some sort, and is
expected to take on many different values, then saying “a != 0” might be clearer
to the logic of the program. But in cases where the variable is used as a Boolean
fl a g , o r w h e r e a v a l u e o f z e r o i s c o n s i d e r e d s p e c i a l i n s o m e s e n s e , t h e n t h e
shorter forms are clearer and may in fact lead to shorter object code in some
cases.

BD Software Page 149

November 1988 BDS C User’s Guide

Page 150 BD Software

BDS C User’s Guide Auxiliary Programs

Chapter 8

Auxiliary BDS C Package Programs

This chapter describes several of the larger utility programs included with the BDS C package:
t h e C A S M a s s e m b l y l a n g u a g e p r e p r o c e s s o r , t h e L 2 l i n k e r , a n d t h e C M O D E M
telecommunications package.

8.1 The CASM Assembly-language-to-CRL-Format Preprocessor
For BDS C

This section describes the “CASM” assembly language preprocessor system, supplied to allow
t h e c o m b i n a t i o n o f C f u n c t i o n s w i t h a s s e m b l y l a n g u a g e f u n c t i o n s w i t h i n fi n a l o b j e c t (. C O M)

22files.

CASM is a preprocessor that takes, as input, an assembly language source file of type “.CSM”
(mnemonic for C aSseMbly language) in a format very close to the standard assembly language
accepted by the standard CP/M ASM.COM assembler, and writes out an “.ASM” file as output.
This .ASM file must be assembled by ASM.COM, yielding a .HEX file, and this .HEX file is

23finally converted into a .CRL file by using the CLOAD.COM utility.

C A S M o p e r a t e s b y a u t o m a t i c a l l y r e c o g n i z i n g w h i c h a s s e m b l y l a n g u a g e i n s t r u c t i o n s r e q u i r e
relocation parameters, and inserting the appropriate pseudo-operations and extra opcodes into the
“ . A S M ” o u t p u t fi l e s o i t p r o p e r l y a s s e m b l e s d i r e c t l y i n t o C R L f o r m a t . I n a d d i t i o n , s o m e
rudimentary logic checks are performed: doubly-defined and/or undefined labels are detected and
reported, and similarly-named labels in different functions are ALLOWED and converted into
unique names so ASM won’t complain.

The .CSM files prepared as input to CASM.COM must consist of individual assembly language
f u n c t i o n s d e l i m i t e d b y t h e F U N C T I O N a n d E N F U N C p s e u d o - o p s (d e s c r i b e d b e l o w) . E a c h
functions must conform to the calling convention and register allocation rules detailed in Chapter
2.

22. The means provided with pre-1.46 versions of BDS C for creating relocatable object modules (CRL files) from assembly language
p r o g r a m s w a s t h e m a c r o p a c k a g e C M A C . L I B t h a t o p e r a t e d i n c o n j u n c t i o n w i t h D i g i t a l R e s e a r c h ’ s m a c r o a s s e m b l e r
(MAC.COM). That system was inadequate for two reasons: a) MAC.COM, if not already owned, cost about as much as the entire
B D S C p a c k a g e t o p u r c h a s e , a n d b) t h e m a c r o s i n C M A C . L I B w e r e d i f fi c u l t t o u s e . T h i s C A S M p r o c e d u r e r e p l a c e s t h e
CMAC.LIB method.

23. CASM restricts mnemonics in the source file to only 8080 operations recognized by ASM.COM. An alternative package named
ZCASM.COM, contributed to the C User’s Group and available to all members for a nominal media cost, accepts Z80 mnemonics
and works in conjunction with the Microsoft M80 assembler.

BD Software Page 151

November 1988 BDS C User’s Guide

8.1.1 Creating CASM.COM

CASM is supplied in source form only (as C A S M . C) o n t h e B D S C d istribution disk. Before
compiling CASM.C to make an executable version, customize the beginning of the file by setting
t h e d e f a u l t l i b r a r y d r i v e a n d / o r u s er area definitions to conform to y o u r s y s t e m c o n fi g u r a t i o n .
Instructions for compilation and linkage of CASM are given in the comments at the head of the
file.

8.1.2 Command Line Options

– c Enables comment retention on both input and output. By default, CASM– c
strips off all comments from the input file when reading it in, and does
n o t p ut any com m e n t s i n t o t h e a s s e m b l y c o d e a d d e d t o f o r m t h e fi n a l
A S M fi l e . I f – c i s s p e c i fi e d , t h e o r i g i n a l c o m m e n t s a r e p r e s e r v e d a n d
CASM adds its own comments to new sections of code.

– f Flags old CMAC.LIB macro library operators, to help users convert old– f
assembly language source files to the CSM format.

– o name Calls the output file name.ASM. Normally, the output file is named by– o
tacking an .ASM extension onto the filename of the CSM input file.

The files making up the CASM package are as follows:

CASM.C Source file for CASM program.

CLOAD.C R e p l a c e s C P / M ’ s L O A D . C O M , t o b e u s e d f o r c o n v e r t i n g t h e . H E X
output of ASM.COM directly into .CRL format. This program properly
h a n d l e s o u t - o f - s e q u e n c e . H E X d a t a t h a t w o u l d d r a w a n “ I N V E R T E D
L O A D A D D R E S S ” e r r o r f r o m t h e L O A D . C O M u t i l i t y p r o v i d e d w i t h
C P / M . N o t e t h a t w i t h t h e a d d i t i o n o f C L O A D . C , i t i s n o l o n g e r
necessary to enter an explicit SAVE comment to CP/M at the conclusion
of the CASM sequence, as was the case with most pre-v1.51 releases.

CASM.SUB Submit file for performing the entire conversion of a CSM file into CRL
format. For a file named FOO.CSM, you would type:

submit casm foo

 ASM.COM (or MAC.COM)
Standard CP/M utility, for assembling the output of CASM.

There are several pseudo-operations that CASM recognizes as special control commands within
a . C S M fi l e . E a c h p s e u d o - o p s s h o u l d b e i n d e n t e d a t l e a s t o n e c h a r a c t e r a w a y f r o m t h e l e f t
margin, or else CASM will think it is a label. Recognized pseudo-ops are as follows:

FUNCTION <name> Each function must begin with a FUNCTION pseudo-op, where <name>
is the name that will be used for the function in the .CRL file directory.
No oth e r i n f o r m a t i o n s h o u l d a p p e a r o n t h i s l i n e . N o t e that there is no

Page 152 BD Software

BDS C User’s Guide Auxiliary Programs

need to specify a co m p l e t e l i s t o f c o n t a i n e d f u n c t i o n s a t t h e s t a rt of a
.CSM file, as was the case with the old CMAC.LIB method of CRL file
generation.

EXTERNAL <list> If a function calls other C or assembly-coded functions, an EXTERNAL
pseudo-op naming these other functions must follow immediately after
the FUNCTION op. One or more names may appear in the list, and the
list may be spread over as many EXTERNAL lines as necessary. Only
function names may appear in EXTERNAL lines; data names (such as
“ e x t e r n a l ” v a r i a b l e s d e fi n e d i n C p r o g r a m s) c a n n o t b e p l a c e d i n
“external” statements.

ENDFUNC
ENDFUNCTION This op (both forms are equivalent) must appear after the end of the code

for a particular function. The name of the function need not be given as
an operand. The three pseudo-ops just listed are the ONLY pseudo-ops
t h a t n e e d t o a p p e a r a m o n g t h e a s s e m b l y l a n g u a g e i n s t r u c t i o n s o f a
“.CSM” file, and at no time do the assembly instruction themselves need
to be altered for relocation, as was the case with CMAC.LIB.

INCLUDE <filename>
INCLUDE “filename” T h i so p c a u s e s t h e n a m e d fi l e t o b e i n s e r t e d a t t h e c u r r e n t l i n e o f t h e

o u t p u t fi l e . I f t h e fi l e n a m e i s e n c l o s e d i n a n g l e b r a c k e t s (i . e . ,
<filename>) then a default CP/M logical drive is presumed to contain the
named file (the specific default for your system may be customized by
changing the appropriate #define in CASM.C). If the name is enclosed in
quotes, than the current drive is searched. Note that you’ll usually want
to include the file BDS.LIB at the start of your .CSM file, so that names
o f r o u t i n e s i n t h e r u n - t i m e p a c k a g e a r e r e c o g n i z e d b y C A S M a n d n o t
i n t e r p r e t e d a s u n d e fi n e d l o c a l f o r w a r d r e f e r e n c e s … s i n c e C A S M i s a
o n e - p a s s p r e p r o c e s s o r , t h a t w o u l d c a u s e i t t o g e n e r a t e u n d e s i r e d
relocat i o n p a r a m e t e r s f o r i n s t r u c t i o n s h a v i n g r u n - t i m e p a ckage routine
names as operands. Note that the pseudo-op MACLIB is equivalent to
INCLUDE and may be used instead.

The format for a “.CSM” file is as follows:

BD Software Page 153

November 1988 BDS C User’s Guide

;
; Make sure to indent pseudo-ops!
; (Anything starting in column 1 is presumed to be a label)
;

INCLUDE bds.lib

FUNCTION function1
[EXTERNAL needed_func1 [,needed_func2] [,...]]

code for function1
ENDFUNC

FUNCTION function2
[EXTERNAL needed_func1 [,needed_func2] [,...]]

code for function2
ENDFUNC
.
.
.

Additional notes and bugs:

1. If a label appears on an instruction, it must begin in column 1 of the line. If a label does
not begin in column 1, CASM will not recognize it as a label and relocation will not be
handled correctly.

2. Pseudo-ops must not begin in column one, or else they will be mistaken for labels.

3. F o r w a r d r e f e r e n c e s t o E Q U a t e d s y m b o l s i n e x e c u t a b l e i n s t r u c t i o n s a r e n o t a l l o w e d ,
although forward references to relocatable symbols are OK. The reason for this is that
C A S M i s a o n e - p a s s p r e p r o c e s s o r , a n d a n y t i m e a p r e v i o u s l y u n k n o w n s y m b o l i s
encountered in an instruction, CASM assumes that symbol is relocatable and generates a
relocation parameter for the instruction.

4. When a relocatable value needs to be specified in a dw op, then it must be the only value
given in that particular DW statement, or else relocation will not be properly handled. In
other words, only one 16-bit relocatable item is allowed per dw statement.

5. Characters used in symbol names should be restricted to alphanumeric characters; the
d o l l a r s i g n ($) i s a l s o a l l o w e d , b u t m i g h t l e a d t o a c o n fl i c t w i t h l a b e l s g e n e r a t e d b y
CASM.

8.2 The L2 Linker

L2, and this documentation, was originally written by Scott W. Layson for Mark
of the Unicorn, Inc. Thanks go to Scott and Mark of the Unicorn, Inc. for placing
L 2 i n t h e p u b l i c d o m a i n a n d t h u s a l l o w i n g a l l B D S C u s e r s a c c e s s t o t h i s
e x t r e m e l y u s e f u l t o o l . L 2 w a s t h e n m o d i fi e d b y D a v i d K i r k l a n d , m a i n l y f o r
integration with the CDB debugging package. Scott’s original documentation has
been modified by Leor Zolman to reflect the CDB-related extensions.

Page 154 BD Software

BDS C User’s Guide Auxiliary Programs

L2 is an alternative to CLINK for linking BDS C programs. A program linked with CLINK will
have a jump table at the beginning of each function; calls to other functions are made indirectly
through the table. L2 eliminates these jump tables, and adjusts indirect calls through them to go
directly to the target function. Besides making the code imperceptibly faster, this has two real
a d v a n t a g e s : o n e , i t m a k e s t h e c o d e s m a l l e r b y 4 % t o 1 0 % (t h e l a t t e r h a s b e e n o b s e r v e d i n a
program containing many small functions which do little besides call a few other functions), and
it allows SID to display the name of the target function of a call, simplifying debugging.

L2 seems to be complete enough to replace CLINK entirely. Its biggest advantage is that it’s
written in C, so that if you need some feature it doesn’t have, you can just hack it in. However,
its user interface is somewhat different.

A typical command line is

l2 foo bar -l bletch grotz -wa

 Given this command, L2 will load all the functions in FOO.CRL and BAR.CRL (the program
fi l e s) . T h e n i t w i l l s c a n t h e l i b r a r i e s B L E T C H . C R L , G R O T Z . C R L , D E F F . C R L , a n d
D E F F 2 . C R L (i n t h a t o r d e r) f o r f u n c t i o n s t h a t h a v e b e e n r e f e r e n c e d b u t n o t l i n k e d . I f t h e r e
remain unsatisfied references, L2 will display a list of the needed functions and prompt for the
name of a CRL file to scan; it will repeat this process until all references are satisfied (just like
CLINK). Then it will write the resulting code to FOO.COM, display the link statistics, and write
a symbol table (with the link stats appended) to FOO.SYM.

Note the following differences in the option-specification mechanism between L2 and CLINK:

1. L2 option names have varying lengths, while CLINK options all have single-character
names.

2. W h e n L 2 o p t i o n s r e q u i r e a r g u m e n t s , a s p a c e m u s t s e p a r a t e a n o p t i o n n a m e a n d i t s
argument. With CLINK, the spaces are optional. For example, “-m fubar” may not be
written “-mfubar”.

3. L2’s options may not be combined; “-l –w”, for example, may not be abbreviated “-lw”.

Here is a complete description of available command line options:

–f <funcs> R e s e r v e s e n o u g h t a b l e s i z e f o r < f u n c s > f u n c t i o n s . (< f u n c s > i s i n
decimal.) The default is 200. If you often link programs with more than
200 functions, you may wish to change the default — it’s in setup() in
L2.C.

–l CRL file names before the first “-l” on the command line will be treated
a s p r o g r a m fi l e s ; C R L fi l e s a f t e r t h e fi r s t “ - l ” a r e t r e a t e d a s l i b r a r i e s .
Subsequent “-l”s have no effect.

–m <name> < n a m e > b e c o m e s t h e t o p - l e v e l f u n c t i o n . T h i s i s t h e f u n c t i o n i n i t i a l l y
c a l l e d w h e n t h e . C O M fi l e i s r u n ; b y d e f a u l t , o f c o u r s e , i t i s “ m a i n ” .
Note that, unlike with CLINK, the top-level function need not be the first

BD Software Page 155

November 1988 BDS C User’s Guide

function in the first CRL file; it can be anywhere. –m also works with
–ovl (see below).

–ovl <name> <addr> An overlay segment will be built instead of a root segment; the overlay
will be linked to run at base address <addr> (entered in hex). <name> is
t h e n a m e o f t h e r o o t s e g m e n t f o r w h i c h t h e o v e r l a y i s b e i n g b u i l t ;
<name>.SYM, a symbol table produced with either L2 or CLINK, will
be read in *before* the CRL files, to allow overlay functions to call root
functions. The name of the top-level function in the overlay — i.e., the
o n e t h a t g e t s i n v o k e d b y a c a l l t o t h e o v e r l a y b a s e a d d r e s s — i s b y
default not “main”, but rather <firstcrl>, the name of the first CRL file in
the L2 command line. The overlay segment is written to <firstcrl>.OVL.
(See example below.)

–org <addr> This option is used to produce a root segment with base address <addr>,
e.g., for use in generating code for ROM-ing. <addr> is entered in hex,
a nd is the starting address of the code, n o t o f R A M ; t h e d e f a u l t i s , o f
course, 0x100. (To link a program for a nonstandard CP/M, you need a
C.CCC, DEFF. C R L , a n d D E F F 2 . C R L w h i c h have been assembled for
that address. If you are running L2 on a nonstandard CP/M, you should
c h a n g e t h e d e f a u l t o r i g i n i n s e t u p () t o 0 x 4 3 0 0 .) I f y o u a r e u s i n g t h i s
option to generate code for ROM, be sure to use the “-t” option also (see
below).

–t <addr> W o r k s j u s t l i k e t h e C L I N K “ - t ” o p t i o n : s e t s t h e s t a c k p o i n t e r t o t h e
given address at the start of the run-time package. This option MUST
ALWAYS BE USED when “-org” is used to generate code for ROM.
IF “-t” is NOT used, then the first two instructions of the resulting COM
file will be:

lhld origin-100h+6
sphl

 (where “origin” is normally 0x100 or 0x4300) while using “-t” causes the first two instructions to
be:

lxi sp,<addr>
nop

 –w A S I D - c o m p a t i b l e s y m b o l t a b l e i s w r i t t e n t o < fi r s t c r l > . S Y M , w h e r e
<firstcrl> is the name of the first CRL file listed in the command line.
This table is normally produced in address order, not alphabetical order
like CLINK’s; see below for how to change this.

–wa A variation on –w. The link statistics, which are always displayed on
the console at the end of linking, are also appended to the .SYM file. If
the resulting .SYM file is read into SID, SID will complain by issuing its
typical verbose error message “?”, but then will work correctly. The big
advantage of putting the stats at the end of the .SYM file is that one can

Page 156 BD Software

BDS C User’s Guide Auxiliary Programs

subsequently look at that file to see exactly how long the code was and
where the externals started.

–ws A n o t h e r v a r i a t i o n o n – w . T h i s o n e w r i t e s t h e s y m b o l t a b l e t o
<firstcrl>.SYM and the link statistics to <firstcrl>.LNK.

Because L2 is so large, it cannot always link large programs in a single pass. If it runs out of
memory during linking, it will switch automatically to (very slow) two-pass mode. (If it says
“Module won’t fit in memory at all”, you probably have a very large program file. Split it up or
make it a library. If this doesn’t work, you don’t have enough memory to use L2.)

L2 is built from the source files L2.C and CHARIO.C. A typical compilation is

cc l2.c -e5500
cc chario.c

(followed by either)
clink l2 chario (or) l2 l2 chario

 If you want a shorter version of L2.COM, see the definitions of symbolic constants SHORTL2
and OVERLAYS immediately after the initial comments at the start of L2.C. These constants
may be changed to yield several shorter configurations of L2, depending on which features you
want to sacrifice.

8.3 The CMODEM Telecommunications Program

CMODEM is a communications program for transmitting files and connecting to other systems
or networks as an ASCII terminal. The file transmission modes allow sending/receiving either
binary or text files in either MODEM7 or straight-ASCII modes.

A u t h o r ’ s n o t e : “ C M O D E M ” i s a c r o s s b e t w e e n t h e o r i g i n a l B D S T E L N E T
program, Ward Christensen’s MODEM program, its MODEM7 derivative, and a
C version called XMODEM. It is also the result of taking the TELEDIT package
a s d i s t r i b u t e d w i t h p r e v i o u s v e r s i o n s o f B D S C a n d r e m o v i n g t h e t e x t e d i t i n g

24capabilities, since the RED package is now included for that purpose.

Installation

Both the STDIO.H and HARDWARE.H header files should be properly configured for the target
computer configuration before CMODEM is compiled.

The modes selected from the menu are:

24. The author wishes to thank Nigel Harrison for his work on the TELEDIT package

BD Software Page 157

November 1988 BDS C User’s Guide

T: Terminal mode – no text collection
C M O D E M b e h a v e s l i k e a n A S C I I t e r m i n a l . E i g h t - b i t c h a r a c t e r s a r e
sent and received; no parity bits are checked, inserted or removed.
To return to the selection menu the SPECIAL character is typed. The
S P E C I A L c h a r a c t e r o f < c t r l > s h i f t u p a r r o w w a s c h o s e n b e c a u s e i t i s
unlikely to be struck accidentally. To change the SPECIAL character,
recompile it with the desired #define SPECIAL …

X: terminal mode with teXt collection
Same as terminal mode above, except that any text characters received
on the communication link are saved in a text buffer. The tab, newline
a n d f o r m f e e d c h a r a c t e r s a r e a l s o p l a c e d i n t o t h e b u f f e r ; a n y o t h e r
c h a r a c t e r s a r e d i s c a r d e d . W h e n t h e i n t e r n a l t e x t b u f f e r i s w i t h i n 1 0 0 0
characters of being filled, the console bell (alarm) sounds on every 16th
character. When this happens the user should find a convenient time to
suspend communication with the remote station so that the accumulated
t e x t c a n b e s a v e d (fl u s h e d) o n t o d i s k , a s d e s c r i b e d b e l o w , b e f o r e t h e
buffer fills up completely and data is lost.

G: toGgle echo mode (currently set to echo)
Should not be toggled if the user is communicating in full duplex mode
a n d r e c e i v i n g a n e c h o f r o m t h e r e m o t e s t a t i o n , o r t h e u s e r i s i n h a l f
d u p l e x m o d e . U s e t h i s o p t i o n t o t a l k t o a n o t h e r p e r s o n r u n n i n g
C M O D E M , t y p i c a l l y i n b e t w e e n fi l e t r a n s f e r s t o i n f o r m t h e p e r s o n o f
the next file to be transmitted.

F: Flush text collection buffer to text collection file
Flushes the text collection buffer accumulated in text collection mode.
Does not close the file.

U: select CP/M User area
For users who have user areas, others should ignore this command.

V: select CP/M logical driVe
Select any of the disk drives available. The drive selected becomes the
currently logged disk.

D: print Directory for current drive and user area
The current directory may be selected by using the U and V commands.

S: Send a file, MODEM protocol
Prompts for the name of the file to send, then waits for the receiver to
“synch up”.
T h e r e c e i v e r m u s t b e u s i n g t h i s p r o g r a m o r o n e w h i c h u s e s t h e s a m e
MODEM protocol.
Returns to menu after completion, successful or not.

Page 158 BD Software

BDS C User’s Guide Auxiliary Programs

R: Receive a file, MODEM protocol
Prompts for the name of the file to be received, then waits for the sender
t o b e g i n t r a n s m i s s i o n . T h e s e n d e r m u s t b e u s i n g C M O D E M o r a
program that employs the same MODEM protocol.

Q: Quit Quits and returns to command level. If a text file has been accumulated
in X mode, the user is asked whether or not he wants it saved.

SPECIAL: S e n d s t h e S P E C I A L c h a r a c t e r t o t h e c o m m u n i c a t i o n l i n e , s h o u l d t h a t
e v e r b e n e c e s s a r y . T h e S P E C I A L c h a r a c t e r i s d e fi n e d a t c o m p i l a t i o n
time by a #define statement at the top of the CMODEM.C source file.

BD Software Page 159

November 1988 BDS C User’s Guide

Page 160 BD Software

BDS C User’s Guide Auxiliary Libraries

Chapter 9

Auxiliary BDS C Libraries

This chapter describes several utility function libraries provided with the BDS C package.

9.1 BDS C v1.5 Compatibility Library

In order to compile programs written under earlier releases of BDS C (i.e., programs using the
old buffered I/O library) without requiring that the programs be modified to conform to the new
I/O library, the following two files have been provided:

BDSCIO.H
DEFF15.CRL

B D S C I O . H i s t h e o l d s t a n d a r d h e a d e r fi l e (r e p l a c e b y S T D I O . H) , a n d D E F F 1 5 . C R L i s t h e
v 1 . 5 0 a D E F F . C R L fi l e c o n t a i n i n g t h e c o m p i l e d o b j e c t c o d e f o r t h e C - c o d e d p o r t i o n s o f t h e
v1.50a library (the DEFF2.CRL functions are functionally equivalent, so the old version has not
been provided.)

To compile and link a v1.50a source program “TEST.C” with the v1.6 compiler package, place
the two files named above into the current directory with the source file and use the following
procedure (in this example, we’re compiling a source file named test.c):

cc test.c
clink test -f deff15

 9.2 A BCD Function Package For BDS C

Copyright 1983, 1986
By Robert Ward

9.2.1 Description of Files

The bcd floating point package consists of these files:

BD Software Page 161

November 1988 BDS C User’s Guide

MCONFIG.H This is a “header” file which serves the same function for all c files. Any
time the package is changed, this file must be examined and modified as
described in the section on package configuration.

BCD1.CSM
BCD2.CSM These are the source files for the assembly portion of the package. The

fi r s t i s t h e s i n g l e f u n c t i o n F H . A l l t h e r e a l w o r k i s d o n e i n F H . T h e
second file is the interface routines which provide the different calls to
FH. This file includes source for FPADD, FPSUB, etc., but each of these
functions in turn calls FH. BCD2 also contains lcnst, an encapsulating
f u n c t i o n w h i c h “ k n o w s ” s e v e r a l c o n s t a n t s u s e f u l t o t h e t r a n s c e n d e n t a l
functions.

BMATH.C Source code for all functions and routines written in c. Simple functions
(abs, neg, assign) are included here as are input and output formatting
functions.

 DEMO1.C
TSTINV.C
LMATH.C Source code for demonstration programs. A COM file is provided for

DEMO1.

BCD.CRL The complete library of float functions in relocatable form, ready to be
linked to an application program. This file was compiled with precision
s e t a t 1 4 . Y o u m a y m a k e a n a l t e r n a t e v e r s i o n w i t h m o r e o r l e s s
precision by following the instructions in the “configuration” section.

MATH.DOC
MATH.TXT T h i s d o c u m e n t a t i o n i n m a c h i n e r e a d a b l e f o r m . T h e fi r s t i s i n a f o r m

compatible with the C Users’ Group formatter NRO. The second is the
f o r m a t t e d o u t p u t f r o m N R O . M o r e i n f o r m a t i o n o n N R O i s a v a i l a b l e
through the C Users’ Group.

9.2.2 Data Representation

In this package numbers are represented by a normalized fraction of PREC digits (where PREC
may be adjusted by the user) stored as packed binary-coded decimal, an exponent in excess 64
notation and a sign bit. Each number requires PREC/2 + 1 bytes of storage. The fraction will be
stored in the low address PREC/2 bytes, the exponent as the high order seven bits of the high
address byte. The sign is stored as the least significant bit of the high address byte.

The fraction is stored with the least significant two digits in the low address byte. Within each
b y t e o f t h e f r a c t i o n t h e l e a s t s i g n i fi c a n t d i g i t i s i n t h e r i g h t n i b b l e . T h u s w i t h s i x d i g i t s o f
precision the number 1.23456e2 would be stored thus:

Page 162 BD Software

BDS C User’s Guide Auxiliary Libraries

+-----------+
n | 5 6 |

+-----------+
n+1 | 3 4 |

+-----------+
n+2 | 1 2 |

+-----------+
n+3 |1000010 0 | <-- sign bit

+-----------+
^

exponent

 Under BDS C, space for such numbers may be declared simply as an array of char:

char number[PREC/2 +1];

 B e c a u s e t h e f r a c t i o n s a r e m a i n t a i n e d i n n o r m a l i z e d f o r m , t h e s m a l l e s t n u m b e r t h a t c a n b e
represented is 1.0 e-64, regardless of the precision available. The largest number is a normalized
fraction of all nines raised to the 63th power of 10. For twelve digits of precision this is:

9.99999999999 e 63

 Only positive zeros are allowed; zero always has the exponent –1 (7E). Thus you should think of
zero as always being normalized to .0. Several numbers and their hex representation in RAM are
given below.

1.0 -- 00 00 00 00 00 10 80
0.1 -- 00 00 00 00 00 10 7E

normal 0.0 -- 00 00 00 00 00 00 7E
-.1 -- 00 00 00 00 00 10 7F
-.01 - 00 00 00 00 00 10 7D

 9.2.3 Testing For Zero

Since the normalized fractions are never zero in the most significant position unless the entire
number is zero, the quickest way to test for num for zero is:

if (!num[PREC/2-1]) printf("\nNum is zero");

 9.2.4 Rounding and Accuracy

Accuracy and predictable rounding have been primary design objectives during the creation of
this package. All single computations should produce results accurate to one ulp (a five in the
digit just to the right of the least significant digit). Thus the result of a single computation is
always within 5 * 10 ^ (x-PREC) of being exact (where x is the exponent of the result) unless an
error condition has occurred. To avoid loss of accuracy in the rightmost significant digits during
d i v i d e , a d d a n d s u b t r a c t o p e r a t i o n s , r e s u l t s w i t h a t l e a s t P R E C + 2 d i g i t s a r e c o m p u t e d a n d
THEN rounded. Rounding is always delayed until all other steps in the computation have been
completed. Multiply uses all PREC digits of both operands in forming its result, maintaining all
r e s u l t i n g d i g i t s u n t i l t h e r e s u l t i n g f r a c t i o n h a s b e e n n o r m a l i z e d a n d r o u n d e d . T h e p r i m i t i v e
functions “round up”, the kind of rounding most persons consider “natural”.

BD Software Page 163

November 1988 BDS C User’s Guide

In addition to being rounded by the arithmetic functions, results will be rounded by printf if the
precision specified is less than that available in the bcd number. This particular rounding may be
disabled by changing three lines of the function _spr. The lines appear near the labels doe and
dof. There are more complete instructions there.

9.2.5 Error Handling

Overflow, underflow and divide by zero errors are detectable through status flags maintained by
f p a d d , f p d i v , f p m u l t a n d f p d i v . T e s t i n g f o r e r r o r s i s t h e p r o g r a m m e r ’ s r e s p o n s i b i l i t y . T h e
p r o g r a m d e m o 1 i l l u s t r a t e s a n a p p r o a c h u s i n g e r r m () . T h e p r o g r a m m e r m a y c o n s t r u c t m o r e
sophisticated mechanisms using fstat and fpstr. Error status is cleared when the status is checked
by fstat, but not if checked by fpstr.

N o n e o f t h e r o u t i n e s v a l i d a t e i n p u t s ; t h e y a s s u m e t h e y h a v e b e e n g i v e n v a l i d b c d n u m b e r s .
Fprint is particularly sensitive to invalid data.

Underflow and Overflow always result in the least and greatest representable value respectively.
T h e s u b s t i t u t e d r e s u l t w i l l a l w a y s m a t c h t h e e x a c t r e s u l t i n s i g n . D i v i d e b y z e r o s i m i l a r l y
produces the greatest representable value.

The location ERRF in BCD2.CSM is used to store error status. Thus, this location’s value will
c h a n g e d u r i n g e x e c u t i o n e v e n t h o u g h i t i s w ithin the code block. F s t a t a n d r e l a t e d f u n c t i o n s
locate ERRF by “dead reckoning” — they are hardwired with an offset from the entry point to
F H . A n y c h a n g e s t o t h e fi r s t f e w i n s t r u c t i o n s o f F H m u s t b e a c c o m p a n i e d b y a p p r o p r i a t e
a d j u s t m e n t s t o t h e s t a t u s f u n c t i o n s i n B C D 1 . C S M . B C D 2 . C S M g e n e r a t e s a n e r r o r m e s s a g e
during assembly as a reminder. You needn’t attempt to correct the error (the code generated is
correct), just remember to make the necessary adjustments.

9.2.6 The Return Values

A l l a r i t h m e t i c f u n c t i o n s i n t h i s p a c k a g e t a k e p o i n t e r s a s t h e i r i n p u t a r g u m e n t s a n d r e t u r n a
pointer to their result. This allows the programmer to treat each function as if its value were the
v a l u e o f i t s r e s u l t , a t l e a s t w h e n c o m b i n i n g i t w i t h o t h e r f u n c t i o n s . T h i s a l l o w s n e s t i n g o f
computations for an effect similar to polish notation. For example, 2 + 4 * a * c could be written
thus:

fpadd(
fpmult(
fpmult(a,c,result),
atof(temp,"4"),result),

atof(temp,"2"),result);

 T h i s a r r a n g e m e n t c a l l s f o r a p r o g r a m m i n g s t y l e v e r y s i m i l a r t o t h a t u s e d i n t h r e e a d d r e s s
assembly languages. In particular you will often find long sequences of calculations referring to
the same “scratch pad” variable, e.g. result in the sequence above.

Page 164 BD Software

BDS C User’s Guide Auxiliary Libraries

9.2.7 Transportability

Certain practices in drafting code will enhance the ease with which programs may be transported
to other compilers. The primary concern is to somehow “flag” all floating point data structures so
that they may be easily redefined under the new compiler (we will assume you are porting up to a
machine with full C).

The parameterized #define preprocessor directive allows a “poorman’s typedef” which not only
enhances portability, but also improves readability. We suggest you include these definitions:

#define FLOAT(name) char name[PREC/2 + 1]

 Pointers need to be provided separately, e.g.:

#define FLTPT(name) char *name

 With these defines, one would declare space for a number and for a pointer to a number like this:

FLOAT(number);
FLTPT(pointer);

 T o t r a n s p o r t t h e r e s u l t i n g c o d e t o a c o m p i l e r w i t h b u i l t i n fl o a t s , t h e d e c l a r a t i o n s m a y b e
corrected by changing the defines to:

#define FLOAT(name) float name
#define FLTPT(pointer) float *pointer

 If data types have been declared consistently, using this technique, then all that remains is to
create a set of functions (under the new compiler) which look like those in this package. The new
fpadd, for instance, would look like this:

float *fpadd(op, op2, ans)
float *op, *op2, *ans;
{

*ans = *op + *op2;
return ans;

}

 9.2.8 Configuration

You should be warned that ERRF in the function FH is a magic location. If any code changes are
made preceding the appearance of ERRF (changes which would affect its location relative to the
f u n c t i o n e n t r y p o i n t) t h e n t h e a p p r o p r i a t e e q u a t e s m u s t b e c h a n g e d i n B C D 1 . C S M . S e e t h e
section on Error Handling for more information.

BD Software Page 165

November 1988 BDS C User’s Guide

9.2.9 Changing Precision

This is a simple change, so long as your target precision is 4-20 digits. You need to change the
P R E C e q u a t e i n B C D 1 . C S M , B C D 2 . C S M a n d t h e P R E C d e fi n e i n M C O N F I G . H . T h e n
r e a s s e m b l e t h e . c s m fi l e s , r e c o m p i l e m a t h . c a n d b u i l d a n e w C R L fi l e a s d e t a i l e d b e l o w . C
p r o g r a m s u s i n g t h e m a t h p a c k a g e w i l l a l s o n e e d t o b e r e c o m p i l e d , s o t h e c h a n g e i n
MCONFIG.H can be reflected in their CRL image.

9.2.10 Rebuilding BCD.CRL

1. Compile BMATH using

cc bmath

 2. Process BCD1.CSM and BCD2.CSM following the instructions supplied with CASM.

3. You should now have new versions of BMATH.CRL, BCD1.CRL and BCD2.CRL, all
t h a t r e m a i n s i s t o m e r g e t h e m i n t o a s i n g l e r e l o c a t a b l e l i b r a r y . B e g i n b y c o p y i n g
BMATH.CRL to BCD.CRL, thereby creating the base of your new library.

4. Using clib, open BCD, BCD1 and BCD2 and transfer all the files in BCD1 and BCD2,
one at a time, to BCD.

5. List the contents of BCD. In particular, check that each of the functions you meant to
add to it actually appears. Be certain to close BCD before exiting clib or your work will
not be recorded on the disk.

9.2.11 Linking to the BCD Functions

We have deliberately avoided the use of external data in order to make the package’s operation
more transparent to the user. The demonstration programs are good illustrations of the coding

 requirements. These must be the first code lines of any program using the package:

#include "stdio.h"
#include "mconfig.h"

 The math package has no other impact on the compilation process. When you link you must use
this form (to force the loading of the bcd versions of printf and scanf):

clink program bcd <other files and options>

 For example, demo1 is produced by:

cc demo1
clink demo1 bcd

 Page 166 BD Software

BDS C User’s Guide Auxiliary Libraries

9.2.12 BCD Package Function Summary:

int abs(num)
int num; Returns the absolute value of the integer num. Included because some

of the bcd functions require it.

char *assign(dest, source)
char *dest, *source; Copies the floating point number *source to *dest.

char *atof(result, string)
char *result, *string; A c c e p t s a w i d e v a r i e t y o f n u m e r i c r e p r e s e n t a t i o n s i n * s t r i n g a n d

c o n v e r t s t h e m t o a fl o a t i n g p o i n t n u m b e r s t o r e d a t * r e s u l t . R e t u r n s
pointer result. The representation at *string must be null terminated.
Roughly equivalent to a call to scanf with a %f format string, but easier
to use (and somewhat less expensive). MAXLINE in BMATH.C sets the
u p p e r l e n g t h o f t h e s t r i n g a t o f w i l l s c a n . M A X L I N E m a y b e m a d e
arbitrarily large, but larger values will normally just let bugs hide longer.

char *errm() Returns a pointer to an appropriate error message if any error flags have
b e e n s e t s i n c e t h e l a s t c a l l t o e r r m . T h e e r r o r m e s s a g e i s a n u l l -
terminated string of the following form:

<type> {<type>} ERROR

 where <type> is one or more of the following:

DZ -- Attempt to divide by zero
UF -- Exponent underflow
OF -- Exponent overflow

 Errm checks error status flags through a fstat call, thus it also clears the flags, implying that if the
program needs access to error status it should first do an fpstr call and then call errm to print
warnings for the user.

char *exp(x,y,result)
char *x,*y,*result; C o m p u t e s x ̂ y f o r fl o a t i n g p o i n t x a n d y . S t o r e s a n s w e r a t * r e s u l t ,

returns result. Neither x nor y may point at result. Uses the relation:

x^y = lginv(y*log(x))

 See lninv for comments about accuracy.

char *fneg(num,out)
char *num,*out; Performs the operation

*out = *num * (-1)

 by manipulating the sign bit of *out.

char *fpabs(num,result)

BD Software Page 167

November 1988 BDS C User’s Guide

char *num,*result; Constructs the absolute value of *num at *result. Works correctly if num
== result, allowing the call:

abs(num,num)

 to change num to its absolute value. Returns a pointer to result.

char *fpadd(op1, op2, result)
char *op1, *op2, *result;

E x p e c t s fl o a t i n g p o i n t n u m b e r s i n s t r i n g s * o p 1 a n d * o p 2 . I n s e r t s t h e
sum of *op1 and *op2 into the string space at result (result MUST point
to available space). Returns the pointer result. Performs the operation:

*result = *op1 + *op2

 On underflow sets *result to the smallest representable value with the same sign as the actual
 result. On overflow, sets result to the largest representable value with the same sign as the actual

result. When the result has more than PREC digits of precision, it is rounded at the right as
described in the section on rounding.
All arguments are copied to workspace within the function, allowing the same variable to appear
as both operands or as an operand and the result. You are guaranteed that the operands will be
copied before the value at result is changed. Thus

fpadd(op,op,op)

 performs the implicit assignment *op = 2 * (*op). More useful, running totals may be computed
using the form:

fpadd(next, subtotal, subtotal)

 int fpcmp(op1, op2)
char *op1, *op2; Compares the absolute value of the floating point number *op2 to that of

the floating point number *op1. Returns:

1 if op1 < op2
0 if op1 = op2
-1 if op1 > op

 char *fpdiv(dividend, divisor, quotient)
char *dividend, *divisor, *quotient;

Performs the operation:

*quotient = *dividend / *divisor

 Similar in behavior to fpadd (see). Returns the pointer to quotient as its value. Sets the divide by
zero flag and returns the maximum representable value if *divisor==0. Responds to overflow
and underflow conditions in same fashion as does fpadd. Always computes PREC + 2 digits

 i n t e r n a l l y .A l l o w i n g f o r a p o s s i b l e l e a d z e r o , t h i s g u a r a n t e e sP R E C + 1 m e a n i n g f u ld i g i t s ,
yielding enough information for predictable rounding to PREC digits.

Page 168 BD Software

BDS C User’s Guide Auxiliary Libraries

char *fpmult(op1, op2, product)
char *op1, *op2, *product;

Performs the operation:

*product = *op1 * *op2

 Similar in behavior to fpadd(see). Returns the pointer product as its value. Sets the overflow or
u n d e r fl o w fl a g s a s a p p r o p r i a t e . M a i n t a i n sP R E C + 2 d i g i t s i n t e r n a l l y ,g u a r a n t e e i n gP R E C
meaningful digits after rounding.

int fpstr() Identical to fstat except it does not clear the current error flags. (See fstat
for details.)

char *fpsub(op1, op2, result)
char *op1, *op2, *result;

Identical to fpadd except that the sign of FH’s internal copy of op2 is
changed before the operation proceeds. Performs:

*result = *op1 - *op2

 Affects underflow and overflow flags as described for fpadd. Returns the pointer result.

char *frnd(num, pos, result)
char *num, *result;
int pos; R o u n d s * n u m s o t h a t t h e r e s u l t h a s p o s d i g i t s o f r o u n d e d f r a c t i o n a l

information. For example:

atof(op1,"123.555555555");
frnd(op1,4,op1);

 will produce 123.555600000 in *op1.
If pos lies outside the precision of the representation, the function tries to behave intelligently. If
pos is to the right of the rightmost significant digit, *result will equal *num. If pos is to the left of
the leftmost significant digit, *result will be zero.
Performs correctly if result == num.
WARNING!! Do not confuse this with the function fprnd which is used internally by printf. For
details on fprnd, see the code in BMATH.C.

int fscmp(num1, num2)
char *num1, *num2; C o m p a r e st h e fl o a t i n g p o i n t n u m b e r s * n u m 1 a n d * n u m 2 , r e t u r n i n g a n

integer indicating the following relations:

1 if num1 < num2
0 if num1 = num2
-1 if num1 > num2

 This is the signed version of fpcmp (see).

int fstat() R e t u r n s a n i n t e g e r w h o s e l o w e r b y t e c o n t a i n s t h e c u r r e n t e r r o r fl a g s .
Clears the flags in the process. The error assignments are:

BD Software Page 169

November 1988 BDS C User’s Guide

bit 2: exponent underflow
bit 1: exponent overflow
bit 0: divide by zero

 int ftoi(num)
char *num; Converts the floating point number *num to an integer and returns the

resulting integer. On overflow, returns the least significant sixteen bits
o f t h e t r u e v a l u e . A l w a y s t r u n c a t e s f r a c t i o n a l p o r t i o n s (a s o p p o s e d t o
rounding prior to conversion). Overflow errors are not detected.

char *ftrunc(num,result)
char *num,*result; Constructs a number in result which represents only the whole number

portion of num. Returns result.

char *itof(result, source)
char *result;
int source; Converts the integer source to floating point representation and stores at

*result. Returns result.

char **lcnst() Does nothing more than return a pointer to a table of constants. To print
pi to precision places, use this:

char **const;
const = lcnst();
printf("\n%g",const[17]);

 The other constants and their relative positions:

const[0] = log(2)
for i=1 to 7
const[i] = log(1+(10^(-i)))
const[8] = 0
const[9] = 2/ln(10)
const[10]= 1
const[11]= 5
const[12]= 10
const[13]= 20
const[14]= ln(10)
const[15]= 2
const[16]= log(e)
const[17]= pi

 char *lginv(x,result)
char *x,*result; Constructs the common antilog of x in result (result = 10^x). With 14

digits of precision, accurate to 12 places. May never terminate if true
r e s u l t w o u l d b e l a r g e r o r s m a l l e r t h a n t h e l a r g e s t o r s m a l l e s t
representable values.

char *ln(x, result)
char *x, *result; C o m p u t e st h e n a t u r a l l o g o f t h e a b s o l u t e v a l u e o f x . S t o r e s v a l u e i n

*result, returns result. Uses the relation:

ln(x) = ln(10)*log(x)

 Page 170 BD Software

BDS C User’s Guide Auxiliary Libraries

With fourteen digits of precision, twelve are reliable.

char *lninv(x,result)
char *x,*result; C o m p u t e se ̂ x w h e r e e i s N a p i e r ’ s c o n s t a n t , 2 . 7 1 8 2 8 1 8 … R e t u r n s a

p o i n t e r t o r e s u l t , w h e r e t h e a n s w e r i s s t o r e d . B o t h x a n d r e s u l t a r e
assumed to be floating point numbers. x must point to a different space
than result.
W A R N I N G ! ! ! I f e^x > MAX where MAX is the largest representable
number then the routine may never finish.
This function uses the relation

e^x = lginv(log(e)*x)

 With fourteen digits of precision, twelve are reliable.

char *log(x,result)
char *x,*result; Computes the common (base 10) logarithm of x. Puts value in *result,

returns result. With fourteen digits of precision, 12 are reliable.

int mag(x)
char *x; R e t u r n s a n i n t e g e r c o r r e s p o n d i n g t o t h e m a g n i t u d e (e x p o n e n t) o f t h e

floating point number x.

int printf(format, arglist)
int sprintf(string,format,arglist)
int fprintf(stream,format,arglist)

V e r s i o n s o f t h e s t a n d a r d f o r m a t t e d o u t p u t f u n c t i o n w h i c h s u p p o r t
f , F , e , E , g , G , f o r m a t s i n a d d i t i o n t o t h o s e e x p l a i n e d e l s e w h e r e . S e e t h e
d e m o n s t r a t i o n p r o g r a m s f o r e x a m p l e s . I n g e n e r a l , % f f o r m a t s b c d
numbers as

ddd.pppp

 where ddd is the whole portion of the number and there are precision digits p.
% e formats bcd numbers as% e

d.ppppe+xx

 where there is always one digit d before the decimal point and precision digits p after it. The
exponent will always be printed with a sign and two digits.
% g causes the shortest representation (e or f) to be used and trailing zeros are suppressed. The% g
uppercase forms of each merely cause the e in the exponential form to be printed uppercase.

char *_restlg(x,result)
char *x,*result; This function computes the common log of x for restricted values of x

such that 0 < x < 10. With fourteen digits of precision, 12 are reliable.

char *scale(num, k, result)
char *num, *result;
int k; Performs the operation:

BD Software Page 171

November 1988 BDS C User’s Guide

*result = *num * 1.0ek

 b y m a n i p u l a t i n gt h e e x p o n e n t p o r t i o n o f * n u m . D o e s N O T c h e c k f o r o u t o f r a n g e e r r o r s .
Performs correctly when called with num == result.

int scanf(format, arglist)
int sscanf(string,format,arglist)
int fscanf(stream,format,arglist)

V e r s i o n s o f t h e s t a n d a r d f o r m a t t e d i n p u t r o u t i n e w i t h % f , % g , a n d % e
c o n v e r s i o n s p e c i fi c a t i o n s a d d e d . I n t h e s e r o u t i n e s % f , % g , a n d % e a r e
equivalent.
Returns the number of assignments made. Acceptable forms include:

n (where n is an arbitrarily
long string of digits)

+n
+n.n
+.n
.n
-n
-n.n
-.n
fex (where 64>x>0 and f is one

of the forms above)
fe-x
fe+x
fEx
fE+x
fE-x

 A l s o a c c e p t a b l ea r e t h e a b o v e f o r m s w i t h l e a d i n g b l a n k s . T h e r e m a y N O T b e a n y b l a n k s
embedded in the number.

char *zfl(num,pos)
char *num;
int pos; U s e d i n t e r n a l l y b y f r n d t o z e r o a l l d i g i t s r i g h t o f t h e p o s ’ t h i n t h e

mantissa of *num. Does nothing if called with pos <0 or pos > PREC –
1. Returns num, but unlike other functions it modifies the input *num.

9.3 A Long Integer Package for BDS-C

Rob Shostak
August, 1982

9.3.1 Introduction

This package adds long (32-bit) signed integer capability to BDS C much in the same spirit as
B o b M a t h i a s ’ s fl o a t i n g p o i n t p a c k a g e . A d d i t i o n , s u b t r a c t i o n , m u l t i p l i c a t i o n , d i v i s i o n , a n d
m o d u l u s r o u t i n e s a r e p r o v i d e d a s w e l l a s c o m p a r i s o n , a s s i g n m e n t , a n d v a r i o u s k i n d s o f
conversion.

Page 172 BD Software

BDS C User’s Guide Auxiliary Libraries

Each long integer is stored as an array of four characters. A long integer x is thus declared by:

char x[4];

 The internal representation is two’s complement form, with the sign (most significant) byte as the
first byte of the array. For most purposes, however, you needn’t be concerned with the internal
representation.

Most of the routines that operate on longs take three arguments, the first of which points to where
the result is to be stored, and the other two of which give the operands. For example, given longs
x, y, and z (all declared as char[4]),

ladd(z,x,y)

 computes the sum of x and y and stores it into z, which is returned as the value of the call. Note
that the result argument may legitimately be the same as one (or both) of the operand arguments
(for instance, ladd(x,x,x) does “the right thing”).

T h e p a c k a g e i s w r i t t e n p a r t l y i n C a n d p a r t l y (f o r s p e e d a n d c o m p a c t n e s s) i n 8 0 8 0 a s s e m b l y
language. To use it, simply link LONG.CRL into your program. A description is given below
for each routine.

itol(l,i)
char l[4];
int i;

Stores the long representation of the 16-bit
integer i into l, and returns l.

atol(l,s)
char l[4];
char *s;

Stores the long representation of the Ascii
string s into l, and returns l.
The general form of s is a string of decimal digits,
possibly preceded by a minus sign, and terminated
by any non-digit.

ltoa(s,l)
char *s;
char l[4];

Stores the Ascii representation of long l into
string s, and returns s. The representation
consists of a null-terminated string of Ascii
digits preceded by a minus sign if
l is negative. s must be large enough to receive
the conversion.

BD Software Page 173

November 1988 BDS C User’s Guide

ladd(r,op1,op2)
char r[4];

Stores the sum of longs op1 and op2 into r,
and returns r.
op1 or op2 may be used for r.

lsub(r,op1,op2)
char r[4];
char op1[4],op2[4];

Similar to ladd, but computes op1 – op2.

lmul(r,op1,op2)
char r[4];
char op1[4],op2[4];

Similar to ladd, but computes op1 * op2.

ldiv(r, op1, op2)
char r[4];
char op1[4], op2[4];

Similar to ladd but computes the integer quotient
op1 / op2. If op2 is zero, zero is computed as the
result.

lmod(r, op1, op2)
char r[4];
char op1[4], op2[4];

Similar to ladd but computes op1 mod op2. If op2
is zero, zero is computed as the result.

lcomp(op1,op2)
char op1[4], op2[4];

Compares longs op1 and op2, and returns one of
(the ordinary integers) 1, 0, –1, depending on
whether (op1 > op2), (op1 == op2), or (op1 < op2),
respectively.

lassign(dest,source)
char source[4],dest[4];

Assigns long source to long dest, and returns pointer to dest.

ltou(l)
char l[4];

Converts long l to unsigned (by truncation).

Page 174 BD Software

BDS C User’s Guide Auxiliary Libraries

utol(l,u)
char l[4];
unsigned u;

Stores the long representation of unsigned u into l and returns l.

9.3.2 Implementation Details

M o s t o f t h e w o r k i n the routines above is done b y a s i n g l e 8 0 8 0 a s s e m b l y - l a n g u a g e f u n c t i o n
called long, the source for which is found in the file LONG.CSM (available from the C User’s
G r o u p) . T h e r e m a i n d e r o f t h e p a c k a g e r e s i d e s i n L O N G . C . N o t e t h a t m o s t o f t h e p r i m i t i v e s
described above simply call long, passing it a function code (that tells it what operation is to be
performed) together with the arguments to be manipulated.

The library object file DEFF2.CRL contains the workhorse function long, the source for which is
in DEFF2D.CSM. The source file LONG.C needs to be compiled, yielding LONG.CRL. When
linking programs that use the long integer package, the long library should be included on the
linker command line.

BD Software Page 175

November 1988 BDS C User’s Guide

Page 176 BD Software

BDS C User’s Guide Overlay Management

Appendix A

Dynamic Overlays in C Programs

In order to allow C programs to be longer than physical memory without resorting to the exec
and execl library functions (which may indeed get the job done, but resemble “chain” operations
more than true segmentation tools), a set of capabilities has been built into the CLINK program
to make program segmentation possible. The general idea is to have one copy of a root segment
a l w a y s r e m a i n i n m e m o r y (a t t h e b a s e o f t h e T P A) c o n t a i n i n g t h e C r u n - t i m e p a c k a g e , t h e
“main” C function, and any other functions that more than one overlay segment might need. The
r o o t s e g m e n t c o n t r o l s t h e l o a d i n g o f o v e r l a y s e g m e n t s i n h i g h e r m e m o r y , a n d e a c h o v e r l a y
segment, when loaded into memory somewhere above the root segment, can take advantage of
run-time package entry points within the root segment as well as function entry points in any
lower-level overlay segments (as well as the root segment).

Normally (i.e., when overlays are not being used), the run-time environment of an executing C
program looks something like this:

--
low memory: base+100h: C.CCC run-time utility package (csiz bytes)

ram+csiz: start of program code
... (program code) ...

xxxx-1: end of program code

xxxx: external variable area (y bytes long)
... (external data) ...

xxxx+y: free memory,
available for

storage
allocation

????: as low as the machine stack ever gets
local data, function parameters,

machine stack: intermediate expression results,
etc. etc.

high memory: bdos: machine stack top (grows down)

Memory Map 1

 Note that xxxx is the first location following the program code and y is the amount of memory
needed for external variables.

To incorporate overlays, it must first be decided just where the swapped-in overlay code is to
r e s i d e i n m e m o r y . O n e p o s s i b i l i t y i s t o l o c a t e t h e o v e r l a y s w a p p i n g a r e a b e t w e e n t h e e n d o f

BD Software Page 177

November 1988 BDS C User’s Guide

r o o t s e g m e n t c o d e a n d t h e s t a r t of the external data area. Here is the mod i fi e d m e m o r y m a p ,
accommodating this method of handling overlays:

--
low memory: base+100h: C.CCC run-time package (csiz bytes)

ram+csiz: start of root segment code
... (root segment code) ...

zzzz-1: end of root segment code

zzzz: start of overlay area
... (overlay area) ...

xxxx-1: end of overlay area

xxxx: external variable area (y bytes long)
... (external data) ...

xxxx+y: free memory,
available for

storage
allocation

????: as low as the machine stack ever gets
local data, function parameters,

machine stack: intermediate expression results,
etc. etc.

high memory: bdos: machine stack top (grows down)
--

Memory Map 2

 Note that zzzz is where overlay segments get swapped in, guaranteed that the longest segment
doesn’t reach xxxx.

I t i s a l s o p o s s ible (but not as secure) to put the overlay a r e a a f t e r t h e e x t e r n a l d a t a a r e a . T h e
memory map for this alternative configuration is as follows:

--
low memory: base+100h: C.CCC run-time utility package (csiz bytes)

ram+csiz: start of root segment code
... (root segment code) ...

xxxx-1: end of root segment code

xxxx: external variable area (y bytes long)
... (external data) ...

xxxx+y-1: end of external data area

xxxx+y: start of overlay area (ssss bytes long)
... (overlay area) ...

xxxx+y+ssss-1: end of overlay area

xxxx+y+ssss: <unused memory>

????: as low as the machine stack ever gets
local data, function parameters,

machine stack: intermediate expression results,
etc. etc.

high memory: bdos: machine stack top (grows down)
--

Memory Map 3

 Note that the storage allocation functions (alloc and sbrk) always start obtaining memory from
the area immediately following the end of the externals. If you plan to use the storage allocation

Page 178 BD Software

BDS C User’s Guide Overlay Management

functions (alloc, free, sbrk, rsvstk) in your program under this scheme, remember to initially call
the sbrk function with argument ssss, the size of the overlay area. Otherwise the storage allocator
will begin to allocate memory within the overlay area.

In an attempt to limit diversion for the remainder of this document, I will assume that the original
overlay scheme is being implemented as shown in Memory Map 2.

OK, with the generalities out of the way, let me say something about just how to create “root”
segments and “overlay” segments with BDS C. First of all, we would like all functions defined
w i t h i n t h e r o o t s e g m e n t t o b e a c c e s s i b l e b y t h e o v e r l a y s e g m e n t (s) … t h i s i s a c c o m p l i s h e d b y
causing CLINK to write out a symbol table file containing all function addresses to disk when
the root segment is linked. The –w option to CLINK will do the trick; this symbol table will be
used later when linking the swap-able segments.

When linking the root segment, use the –e option to set the external data area location. Keep in
25mind that there must be enough room below the externals to hold the largest overlay segment at

run time. If the –e option is omitted, CLINK will assume the external data starts immediately
after the end of the root segment code and conflict with the overlay area (thus, –e may only be
omitted when using the second overlay scheme as shown in Memory Map 3).

Within the code of the root segment, then, a swap-able segment is loaded into memory from disk
by saying:

swapin(name,addr); /* read in a segment; don’t run it */

 where addr is the location following the last byte of root segment code. You can find this value
by linking the root once without giving the –e option and reading the –s statistics written to the
console after the linkage.

NOTE: Because CP/M is a sector-oriented operating system, the length of the file loaded into
memory by swapin is always an integral number of 128-byte sectors long. That means that you
should always allow for a little extra space at the end of the overlay segment memory area, up to
127 bytes more than the length of the actual overlay segment code (as displayed by the CLINK
statistics summary).

To actually execute code within the overlay segment, you have to call the appropriate memory
address indirectly using a pointer-to-function variable.

Here is an example. We’ll declare a pointer-to-function variable called ptrfn, swap in a segment
named ovl1 at location 3000h, and call the segment. The sequence would look like this:

int (*ptrfn)(); /* can be whatever type you like */
ptrfn = 0x3000;
...
if (swapin("ovl1",0x3000) != ERROR) /* check for load error */

(*ptrfn)(args...); /* if none, call the segment */
...

25. I’m using the term “below” in the sense that low memory is “below” high memory; graphically, at least in the preceding memory
maps, “below” means toward the top of the page.

BD Software Page 179

November 1988 BDS C User’s Guide

N o t e t h a t t h e o v e r l a y c o d e m i g h t n o t r e t u r n a n y v a l u e a f t e r b e i n g c a l l e d , b u t t h e p o i n t e r - t o -
function must be declared with SOME kind of type. Use int if nothing else comes to mind. When
a s e g m e n t i s i n v o k e d , a s a b o v e , c o n t rol passes to the segment’s “main” function. There is n o
reason at all to require parameters to be of the “argc” and “argv” form; there is nothing special
about a “main” function other than the property it has of getting called first. The “main” function
within the swapped-in segment is the only entry point allowed for the segment.

A s i m p l e s w a p i n f u n c t i o n i s g i v e n i n t h e s t a n d a r d l i b r a r y . I t c a n b e e x p a n d e d t o d e t e c t a n
attempted load over the external data area by comparing the last address loaded with the contents
of location 0115h…if you’ve never done any low-level hackery, you get the value of the 16-bit
address at location 0115h by using indirection on a pointer-to-integer (or –unsigned.) Note that
location 0115h always contains a pointer to the start of the external data area.

Now we know how to do everything except actually create an overlay segment. OK, an overlay
s e g m e n t i s b a s i c a l l y j u s t a n o r m a l C p r o g r a m , h a v i n g a “ m a i n ” f u n c t i o n j u s t l i k e t h e r o o t
segment, except that the C.CC C r u n - t i m e u t i l i t y package is NOT tacked on to the front of an
overlay segment (the C.CCC run-time package in the root segment will be shared by everyone.)
The other difference between an overlay segment and the root segment is the load address; while
the root segment always loads at the base of the TPA, an overlay segment may be made to load
anywhere. Once you’ve compiled the overlay segment, you give a special form of the CLINK
command to link it:

A>clink segment-name -v -l xxxx -y symbol-file [-s ...] <cr>

 segment-name is the name of the CRL file containing the segment, –v indicates to CLINK that an
overlay segment is to be created (so that C.CCC is not attached), and –l xxxx (letter ell followed
by a hex address) indicates the load address for the segment. The –y option yanks in the symbol
file created by the root segment. If this is omitted, then CLINK yanks in fresh copies of functions
like “PRINTF” and “FOPEN”, etc., even if they have already been linked into the root segment.
B y r e a d i n g i n t h e s y m b o l t a b l e f r o m t h e r o o t s e g m e n t , i t i s i n s u r e d t h a t a n y r o u t i n e s a l r e a d y
l i n k e d i n t h e r o o t w i l l b e m a d e a v a i l a b l e t o t h e o v e r l a y s e g m e n t . T h e r o o t s e g m e n t , t h o u g h ,
cannot know about functions belonging to overlay segments through the use of a symbol table.
That would require some kind of mutually referential linking system beyond the scope of this
package. Oh well.

When linking an overlay segment, you might also specify –s to generate a statistics map on the
console, and –w to write out an augmented symbol table containing not only the symbols read in
from the root segment’s symbol file, but also the swap-able segment’s own symbols. This new
symbol file may then be used on another level of swapping, should that be desired.

Time for an example: Let’s say you’ve got a program ROOT.C, which will swap in and execute
S E G 1 . C a n d t h e n o v e r l a y S E G 1 . C w i t h S E G 2 . C . R O O T . C O M l o a d s a t 1 0 0 h a n d e n d s , s a y ,
before 3000h. We’ll load in the segments at 3000h, and set the base of the external data area to
5000h (this assumes neither segment is longer than 2000h.)

The linkage of ROOT would be:

A>clink root -e 5000 -w -s <cr>

 Page 180 BD Software

BDS C User’s Guide Overlay Management

This tells CLINK that ROOT.COM is to be a root segment (since no –v option was given), the
e x t e r n a l s s t a r t a t 5 0 0 0 h , a s y m b o l fi l e c a l l e d R O O T . S Y M i s t o b e w r i t t e n , a n d a s t a t i s t i c s
summary is to be printed to the console.

The linkage of each overlay segment would appear as follows:

A>clink seg1 -v -l 3000 -y root -s -o seg1. <cr>

 This tells CLINK that SEG1.COM is to be an overlay segment (because of –v) to load at location
3000h, the symbol file named ROOT.SYM should be scanned for pre-defined function addresses,
a statistics summary should be printed after the linkage, and the object file is to be written out as
SEG1 (as opposed to SEG1.COM, to avoid accidentally invoking it as a CP/M command.)

BD Software Page 181

November 1988 BDS C User’s Guide

Page 182 BD Software

BDS C User’s Guide Customized Environments

Appendix B

Customizing The Run-Time Environment

B.1 Standard vs. Customized Environments

I n i t s m o s t c o m m o n a n d s i m p l e u s a g e , B D S C p r o d u c e s a t r a n s i e n t c o m m a n d fi l e r e a d y t o
execute in response to a command typed at the Console Command Processor (CCP) under CP/M.
S u c h a c o m m a n d fi l e a l w a y s e x e c u t e s i n r e a d / w r i t e m e m o r y l o c a t e d a t t h e b a s e o f t h e T P A
(t r a n s i e n t p r o g r a m a r e a) a t a d d r e s s 1 0 0 h . U n d e r t h e s e n o r m a l c i r c u m s t a n c e s , t h e r u n - t i m e
package (C.CCC) and its private read/write memory area occupy the first 1500-or-so (decimal)
bytes of the command file, and the compiled code (beginning with the “main” function) follows
immediately thereafter. This scenario may be termed, for the purposes of this appendix, as the
standard run-time environment of a C program.

B.2 Simple Run-Time Package Customization

M o s t o f t h i s a p p e n d i x d e s c r i b e s h o w t o a l t e r t h e r u n - t i m e e n v i r o n m e n t f o r t o t a l l y a r b i t r a r y
system configurations, a procedure that requires the modification of both the run-time package
and much of the machine-coded portions of the library.

There are certain aspects of the standard run-time environment, such as control over whether or
n o t u s e r a r e a s a r e r e c o g n i z e d a t r u n t i m e , t h a t o n l y r e q u i r e m o d i fi c a t i o n o f C . C C C r u n - t i m e
p a c k a g e m o d u l e o p t i o n s (n o t a n y o f t h e l i b r a r y f u n c t i o n s) . T o m a k e o n e o f t h e s e k i n d s o f
changes, just follow these steps:

1. Modify CCC.ASM as required by changing the EQU statements at the top of the file.
Do not make any changes except for those well documented as customizable options.

2. Assemble CCC.ASM with whatever assembler you have handy, yielding CCC.HEX as
the result of the assembly. If you know how to generate a binary image, go ahead and do
so, naming it C.CCC, and skip to the last step.

3. If your assembler outputs a .HEX file, either use LOAD.COM or CLOAD.COM (source
i n C L O A D . C) t o c r e a t e a b i n a r y i m a g e . I f y o u u s e d L O A D , r e n a m e C C C . C O M t o
C.CCC. If you used CLOAD, rename CCC.CRL to C.CCC.

4. Replace your old C.CCC with the new version. You are done.

BD Software Page 183

November 1988 BDS C User’s Guide

B.3 Creating New Customized Environments

In order to generate code that runs at a different location in memory or in ROM (or both), it is
necessary to customize the run - t i m e e n v i r o n m e n t a n d t h e n t o f o l l o w s p e c i a l c o m p i l a t i on and
linkage rules to insure consistency between separately compiled and/or assembled modules of a
program. If any change involving either the insertion, deletion or rearrangement of code is made
t o t h e r u n - t i m e p a c k a g e , t h a t c h a n g e t h e n c o n s t i t u t e s a c u s t o m i z a t i o n o f t h e r u n - t i m e

26environment. Most assembly-language-coded library functions reference the absolute addresses
of code and data i n t h e r u n - t i m e p a ckage; therefore, any customizations made to the run-time
package must be reflected in all the CSM library functions which are to be invoked in the new
customized run-time environment.

T h e g e n e r a l p r o c e d u r e c a n b e o u t l i n e d a s f o l l o w s (d o n ’ t a c t u a l l y t r y a n y t h i n g f r o m j u s t t h i s
outline; detailed instructions will follow later):

1. Customize the CCC.ASM run-time source module as necessary. Change the BDS.LIB
header file to accurately reflect those changes made to CCC.ASM.

2. Re-assemble all needed portions of the CSM function library, using the new BDS.LIB
created above.

3. R e c o m p i l e t h e C - c o d e d p o r t i o n s o f t h e l i b r a r y , m a k i n g s u r e t o u s e a p p r o p r i a t e C C
command-line options to reflect the customized environment.

4. Be careful when assembling and linking modules for the new environment; watch out
especially for mix-ups between standard and customized object files.

H e r e i s a t i p f o r c r e a t i n g c u s t o m i z e d r u n - t i m e e n v i r o n m e n t s : d o i t a l l in a “ u s e r a r e a ” t h a t i s
different than the one where your standard environment files are kept. A good starting point is to
copy all needed source and command files to a new user area, and work in that area exclusively
to both create the customized environment and to develop applications under it. The following
fi l e s a r e a l l n e e d e d a t s o m e p o i n t f o r t h e f o l l o w i n g p r o c e d u r e s : Y o u r f a v o r i t e t e x t e d i t o r ,
CC.COM, CC2.COM, CLINK.COM (or L2.COM), CASM.COM, CASM.SUB, ASM.COM (or
M A C . C O M) , D D T . C O M (o r S I D . C O M) , C L O A D . C O M , C L I B . C O M , C C C . A S M , * . C S M ,
BDS.LIB, STDIO.H, STDLIB*.C.

I M P O R T A N T : I f y o u h a v e c o n fi g u r e d y o u r C C . C O M , C L I N K . C O M ,
CASM.COM or L2.COM command files to search a “default” library disk and/or
user area for common library files, you should “un-do” those configurations when
working with cust o m i z e d r u n - t i m e e n v i r o n m e n t s . T h e b e s t w a y t o d o t h a t is to
have a resident copy of each such command file in your work area configured to
search only the current drive and user area for everything.___ _________ _

A target program may need to run under CP/M or stand alone, in ROM or in RAM, at a different
l o c a t i o n i n m e m o r y , o r w i t h a d i f f e r e n t s e t o f i n i t i a l i z a t i o n s . C h a n g i n g a n y o n e o f t h e s e
characteristics, or in fact making just about any kind of change at all in the run-time package,

26. The CSM files contain the source code, DEFF2.CRL is the assembled object library

Page 184 BD Software

BDS C User’s Guide Customized Environments

produces a new customized environment and requires the re-creation of both the function library
and run-time package object module, collectively to be known as the “run-time library”.

B y d e fi n i t i o n , t h e t e r m “ c u s t o m i z e d e n v i r o n m e n t ” i m p l i e s u n i q u e v a r i a t i o n s f r o m
implementation to implementation. This makes it difficult to describe all the possible variations;
therefore, a general procedure for making a new run-time library will be presented.

Here is the more detailed procedure for customizing the run-time library:

1. Starting with fresh copies of all the files listed above, find CCC.ASM and go to work on
i t w i t h y o u r f a v o r i t e t e x t e d i t o r . A l t e r a l l t h e a p p r o p r i a t e E Q U s t a t e m e n t s a t t h e
beginning of the file to reflect your desired run-time environment. See later sections in
this appendix for details on this step.

2. U s i n g A S M . C O M o r M A C . C O M , a s s e m b l e C C C . A S M y i e l d i n g C C C . H E X a n d
CCC.PRN.

3. Examine CCC.PRN to find out what value was assigned to the label “RAM”, at the start
o f t h e r e a d / w r i t e d a t a a r e a d e c l a r a t i o n s n e a r t h e e n d o f t h e fi l e . If you’ve ch o s e n t h e
“CPM” symbol to be TRUE then the value you are looking for appears in hex along the
left margin of the line which reads “RAM equ $” near the end of the file. Otherwise,
you’ve made “CPM” false and you had to enter the value of “RAM” explicitly in an
EQU statement near the beginning of the source file.

4. H a v i n g d e t e r m i n e d t h e v a l u e o f R A M , e d i t B D S . L I B a n d g i v e t h e s y m b o l s i m i l a r l y
n a m e d “ R A M ” i n t h a t fi l e t h e s a m e e x a c t v a l u e . M a k e s u r e a l l e q u a t e d s y m b o l s i n
BDS.LIB match changes you may have made to CCC.ASM.

5. T e m p o r a r i l y r e n a m e B D S . L I B t o b e B D S . A S M , a n d a s s e m b l e i t t o y i e l d B D S . P R N .
C o m p a r e B D S . P R N t o C C C . P R N , t o m a k e s u r e a l l a d d r e s s e s a n d s y m b o l s m a t c h
perfectly between the two files. If you find a discrepancy, track it down and fix it by
altering either CCC.ASM or BDS.ASM accordingly. When all the values match, rename
BDS.ASM back to BDS.LIB.

6. Convert the CCC.HEX file created back in step 2. into a binary image named C.CCC. If
y o u k n o w h o w t o d o t h i s a l r e a d y , d o i t a n d p r o c e e d t o t h e n e x t s t e p . O t h e r w i s e t h e
following sub-procedure is presented:

a. Compute the ddt <offset> for CCC.HEX by subtracting the origin address of
the run-time package from 100h. For example, if you’ve set the origin symbol
i n C C C . A S M t o 1 0 0 0 h , t h e < o f f s e t > w o u l d be t h e v a l u e o f (1 0 0 h – 1 0 0 0 h) ,
which is F100h.

b. Compute the <size> in 256-byte sectors of the run-time package object code.
G i v e n C C C . P R N , u s e w h i c h e v e r m e t h o d f o r t h i s s t e p y o u f e e l c o m f o r t a b l e
with. If you are not sure of your result, round up. A <size> value too high will
still work correctly, but a value too low will bomb either the linker or the target
program at run time.

c. Perform the following sequence:

BD Software Page 185

November 1988 BDS C User’s Guide

A>ddt
-iccc.hex
r<offset>
^C
A>save <size> c.ccc
A>

where <offset> and <size> are the values computed in steps 1. and 2. You now
have a C.CCC run-time package object module ready for linkage.

7. Create a CSM library source module (or set of modules) containing all the functions you
e x p e c t y o u m i g h t u s e i n t a r g e t p r o g r a m s f o r t h e c u s t o m i z e d e n v i r o n m e n t . N o t e t h a t
s o m e C S M f u n c t i o n s m a y n o t b e u s e f u l f o r a l l e n v i r o n m e n t s ; f o r e x a m p l e , m o s t
f u n c t i o n s i n D E F F 2 C . C S M w o u l d b e u s e l e s s w h e n r u n n i n g u n d e r a n o n - C P / M
environment. Making sure to use the modified BDS.LIB, put each new CSM source file
through the CASM procedure, yielding a new CRL file or set of CRL files. This file (or
set of files) is now ready to be linked with the new C.CCC and target programs.

8. Compile STDLIB1.C and STDLIB2.C with the “-M <origin>” option to CC.COM. The
value of <origin> must be the same as that used in the previous steps of this procedure:
the starting address of the run-time package. You may want to combine STDLIB1.CRL
and STDLIB2.CRL into a new DEFF.CRL, using CLIB.COM. Make sure not to ever
confuse this new DEFF.CRL with the one used in standard environment compilations.

9. T h e r u n - t i m e l i b r a r y e n v i r o n m e n t i s n o w r e a d y t o u s e . W h e n c o m p i l i n g C s o u r c e
p r o g r a m s , u s e t h e C C . C O M – M o p t i o n t o i n f o r m t h e c o m p i l e r o f t h e n e w r u n - t i m e
package <origin> address (if different from 100h).

10. With CLINK, Use the –L, –T and –E options to specify <origin> address, top of r/w
m e m o r y a n d b a s e o f e x t e r n a l d a t a a r e a , r e s p e c t i v e l y , f o r t h e t a r g e t p r o g r a m . T h e L 2
linker uses different option names (-ORG, –T and –E) to specify these same the same
things.

B.4 Making Code Run Without CP/M

When programs are to be placed into read-only memory (ROM), that usually means not under
C P / M a n d o f t e n n o t a t m e m o r y a d d r e s s 1 0 0 h . T h e t e c h n i c a l p r o c e d u r e s d e s c r i b e d a b o v e f o r
building a new run-time package and library all apply here, and a few new rules come into play.

In CCC.ASM, the “CPM” symbol should be equated to FALSE and any other symbols in that
cluster should be altered as needed. The effect of making the “CPM” symbol false is to eliminate
all the CP/M-specific support routines from the run-time package. This will significantly reduce
the size of the run-time package and, therefore, the size of the resulting compiled program (every
b y t e c o u n t s , e s p e c i a l l y w h e n t h e t a r g e t s y s t e m i s R O M - b a s e d) . C e r t a i n c a t e g o r i e s o f l i b r a r y
functions (such as the file I/O ones) will cease to have any meaning under this new configuration,
so be sure to put together your new CSM source libraries carefully.

Page 186 BD Software

BDS C User’s Guide Customized Environments

T h e r e a r e t h r e e i m p o r t a n t a d d r e s s a t t r i b u t e s o f t h e r u n - t i m e e n v i r o n m e n t t h a t m e r i t c l o s e
e x a m i n a t i o n . T h e y a r e : 1) t h e o r i g i n a d d r e s s o f t h e p r o g r a m , 2) t h e o r i g i n o f t h e r u n - t i m e
p a c k a g e s c r a t c h p a d R A M a r e a , a n d 3) t h e e x i t a d d r e s s w h e r e c o n t r o l i s p a s s e d f o l l o w i n g
p r o g r a m t e r m i n a t i o n (i f e v e r) . T h e s y m b o l n a m e s f o r t h e s e t h r e e a d d r e s s e s a r e , r e s p e c t i v e l y ,
“ O R I G I N ” , “ C P M ” a n d “ E X I T A D ” . W h e n t h e “ C P M ” s y m b o l i s T R U E , t h e s e v a l u e s a r e a l l
c o m p u t e d a u t o m a t i c a l l y i n t h e r u n - t i m e p a c k a g e s o u r c e b e c a u s e o f t h e k n o w n n a t u r e o f t h e
C P / M e n v i r o n m e n t . O n c e “ C P M ” h a s b e e n m a d e F A L S E , h o w e v e r , t h e s e v a l u e s m u s t b e
e x p l i c i t l y s e t b y t h e u s e r . T h e s e c t i o n o f c o d e i n C C C . A S M w h e r e t h e s e v a l u e s a r e e n t e r e d
appears as follows:

IF NOT CPM ;fill in the appropriate values...
ORIGIN: EQU NEWBASE

;Address at which programs are to run
RAM: EQU WHATEVER ;run-time package scratch pad RAM area
EXITAD:

EQU WHENDONE ;where to go when done executing
ENDIF

All three of these equates should be configured to reflect the desired run-time environment. Note
that the value of “ORIGIN” must be used as the argument to the “-M” option of CC.COM when
compiling C source code for this environment, and also used as argument to the “-L” option of
CLINK.COM (or “-ORG” of L2.COM) during linkage.

A Note About RAM areas:

There are two distinct RAM areas occupying any particular BDS C run-time environment. They
are the “stack area” and the “run-time package scratch pad area”.

The stack area is where all local (“automatic”) data storage is allocated and where intermediate
v a l u e s a n d f u n c t i o n p a r a m e t e r s a r e p u s h e d / p o p p e d . T h e a d d r e s s o f t h e s t a c k a r e a m u s t b e
s p e c i fi e d b y u s e o f t h e – t C L I N K o p t i o n f o r n o n - C P / M e n v i r o n m e n t s . T h e s t a n d a r d v a l u e t o
supply for the stack area is the address of the byte following the last (highest) byte of the run-
time environment’s RAM area (since the stack grows down, never using its initial location).

T h e “ o t h e r ” R A M a r e a i s t h e r u n - t i m e p a c k a g e s c r a t c h p a d a r e a , a s s p e c i fi e d b y t h e “ R A M ”
symbol in the discussion above. This refers to a relatively small area of memory needed by the
r u n - t i m e r o u t i n e s f o r t e m p o r a r y s t o r a g e a n d m i s c e l l a n e o u s d i r t y h a c k s r e q u i r i n g R A M . T h i s
value should be set to the first (lowest) location in the run-time environment’s RAM area. After
you assemble the run-time package, examine the PRN file for the address where the scratch pad
area ends, and make sure there is enough room between that address and the end of the RAM
area to accommodate the stack in its “worst” case of nested storage allocation. See Chapter 2 for
a discussion of how much space the stack can take up.

This concludes our nitty-gritty discussion on customizing BDS C for non-standard environments.
While it may take you several iterations of the procedure to become completely familiarized with
it, the resulting compactness of code and high degree of environmental control should make for
efficient, well-tailored applications.

BD Software Page 187

November 1988 BDS C User’s Guide

Page 188 BD Software

BDS C User’s Guide Update History

Appendix C

BDS C Evolution: A Version-By-Version Update Summary

C.1 Changes for BDS C v1.6

Library Changes

N o w b u f f e r e d I / O i s K & R c o m p a t i b l e , b a s i c a l l y . N o d o u b t t h e r e w i l l b e m o r e t w e a k i n g
necessary.

T h e f o l l o w i n g f u n c t i o n s h a v e b e e n c h a n g e d f o r v 1 . 6 . T h a t i s , t h e y h a v e t h e s a m e n a m e a s
functions in previous releases, but their operation and/or parameter specifications have changed.
Be very careful with any programs that use these functions!

FILE *fopen(filename,mode)
char *filename, *mode; Old format: fopen(filename, buffer)

Note: fcreat is GONE.
Returns NULL on error, not –1 !!
modes: “r”, “w”, “a”, “rb”, “wb”, “ab” (b means binary; default is text
mode)

int fgets(buf, maxlenth, fp)
char *buf;
int maxlength;
FILE *fp; Old format: fgets(buf, fp)

Note: not changing from the old format can be HAZARDOUS!

int getchar() N o w w o r k s i n e i t h e r s i n g l e - c h a r o r l i n e - b u f f e r e d m o d e (s e e c m o d e ()
b e l o w) . D e f a u l t i s s i n g l e - c h a r m o d e f o r c o m p a t i b i l i t y w i t h p r e v i o u s
versions.
Must NOT be used if the compiled program is going into ROM!!

int getc(fp)
FILE *fp; Now differentiates between text mode and binary mode. In text mode,

C R ’ s a r e i g n o r e d o n i n p u t ; a l l t e x t fi l e s a r e p r e s u m e d t o h a v e L F ’ s
following CR’s.
See also fgetc below.

int putc(c, fp)
char c;

BD Software Page 189

November 1988 BDS C User’s Guide

FILE *fp; Now differentiates between text mode and binary mode. In text mode,
CR’s are ignored (nothing written), and LF’s (’\n’) automatically write
both CR and LF to the output file.
See also fputc below.

The following functions are new for v1.6:

int cmode(mode)
int mode; Sets getchar() character mode as follows:

mode 0: line buffered chars
mode 1: single chars (default)

 C a l l i n g w i t h m o d e 0 c l e a r s t h e i n t e r n a lb u f f e r o f a n y u n s a m p l e dc h a r a c t e r sf r o m p r e v i o u s l y
active line bufferedinput.

int fgetc(fp)
Same as getc() (renamed for compatibility) int fputc(c, fp)
Same as putc() (renamed for compatibility)

int fread(buf, size, count, fp)
char *buf;
unsigned size, count;
FILE *fp; Read (size * count) bytes from buffered input file.

int fwrite(buf, size, count, fp)
Write size*count bytes to buffered output file.

VOID clearerr(fp) Clear errors in buffered I/O stream.

int feof(fp) TRUE if eof encountered on buffered I/O stream.

int ferror(fp) TRUE if error occurred on buffered I/O stream.

int hseek(fd, hoffset, offset, origin)
BYTE hoffset;

unsigned offset;
A l l o w s 2 4 - b i t r a n d o m r e c o r d n u m b e r f o r M P / M , T U R B O - D O S , e t c ;
hoffset is high-order byte of 24-bit random record number. Otherwise,
like seek().
N o t e : D o n o t u s e o r i g i n v a l u e o f 2 (r e l a t i v e t o E O F) i f fi l e h a s b e e n
WRITTEN to since being opened.

int htell(fd) Returns high-order byte of random record number associated with file.
Use tell(fd) to get low-order word.

initptr(str_tab, str1, str2, … , NULL)
char *str_tab[], str1, str2, …

Initialize string table

Page 190 BD Software

BDS C User’s Guide Update History

int memcmp(ptr1, ptr2, length)
char *ptr1, *ptr2;
unsigned length; Returns TRUE if the two sections of memory match perfectly. FAST.

putdec(n) P r i n t s d e c i m a l v a l u e o n c o n s o l e . S a v e s s p a c e i f p r i n t f i s n ’ t n e e d e d
for anything else.

T h e S t a n d a rd header file is now STDIO.H, which should always be includ e d i n a l l p r o g r a m s ,
p e r i o d . T h e s t o r a g e a l l o c a t i o n d a t a (f o r a l l o c / f r e e) i s a l w a y s d e c l a r e d , b e c a u s e t h e n e w I / O
library uses it to obtain buffer storage for standard file I/O.

IMPORTANT: Since the new buffered I/O uses alloc/free to obtain storage, it is imperative that
a l l a p p l i c a t i o n s o b t a i n m e m o r y b y u s i n g e i t h e r s b r k o r a l l o c / f r e e . D o N O T u s e t h e e n d e x t ()
function to obtain a scratch workspace address! The best way to get the largest possible chuck of
memory is to call alloc() with decreasing size parameters until it doesn’t return NULL. For an
example on how to do this, see what I’ve done with L2.C.

FOPEN takes the standard parameters “r”, “w” and “a”. Text mode is assumed by default, so
 ^Z’s are understood and written appropriately. For binary mode, “rb”, “wb” and “ab” must be

used. The value returned by FOPEN upon error is now NULL, not ERROR! *** Watch out for
this one! ***

P R I N T F / S C A N F h a v e b e e n b e e f e d u p . S C A N F i s s u p p o s e d t o d o e v e r y t h i n g r i g h t , i n c l u d i n g
p a r t i a l l i n e s . M o d s t o p r i n t f / s c a n f w e r e c o n t r i b u t e d b y D a n G r a y s o n , U r b a n a , I l l . , (2 1 7)
367-6384.

S T D L I B 1 . C , S T D L I B 2 . C a n d S T D L I B 3 . C c o n t a i n n e w C - c o d e d l i b r a r y s o u r c e s . T h e s e t h r e e
fi l e s n o w c o m p r i s e D E F F . C R L . S T D L I B 1 . C c o n t a i n s b u f f e r e d I / O ; S T D L I B 2 . C c o n t a i n s t h e
p r i n t f / s c a n f f a m i l i e s a n d s o m e o t h e r a s s o r t e d d i s k I / O s t u f f ; S T D L I B 3 . C c o n t a i n s t h e p i d d l y
remaining stuff.

Run-Time Package

T h e C . C C C r u n - t i m e p a c k a g e h a s b e e n g e n e r a l i z e d s o t h a t M 8 0 / L 8 0 m a y b e a l s o u s e d t o
reassemble the source file (CCC.ASM). See comments in CCC.ASM for instructions on how to
use M80/L80 instead of ASM or MAC.

Restart vector optimization hacks incorporated. See below.

Compiler

Error detection and diagnosis beefed up. Standard error reporting format is now

Filename: line_no: Error message

 I.e., no more “include @xxxx: yyyy: Error message”.

BD Software Page 191

November 1988 BDS C User’s Guide

The compiler can be configured to write errors to a disk file recognized by the companion RED
screen editor. RED is now included in source form with BDS C. If RED is invoked while a BDS
C e r r o r fi l e i s p r e s e n t i n t h e c u r r e n t w o r k i n g d i r e c t o r y , R E D w i l l a u t o m a t i c a l l y c a l l u p t h e
appropriate source files as named in the error file, and allow editing of the source file at the point
at which the errors occurred.

A n e w c o d e o p t i m i z a t i o n s c h e m e h a s b e e n i n t r o d u c e d . I f t h e t a r g e t s y s t e m h a s a n y i n t e r r u p t
vectors available for use by the object program at run time, then any such interrupt vectors may
be “given” to the object program and thus make it shorter. This is accomplished by generating a
customized run-time package module with the appropriate initializations for each interrupt vector
t h a t i s t o b e u s e d , t h e n u s i n g t h e n e w c o m p i l e r o p t i o n “ - z ” f ollowed by t h e n u m b e r s o f e a c h
interrupt vector to be used (e.g., “-z12345” to use rst1 through rst5). If the compiled code is then
linked with the special version of the run-time package, substantial code reduction is achieved
o n c e o v e r a l l p r o g r a m s ize passes the break - e v e n p o i n t s e t b y t h e a d d i t i o n a l r u n - t i m e p a c k a g e
initialization overhead. This might typically be at about the 3-4K point. Note that the run-time
package is set up to allow the easy selection of up to seven restart vectors (rst1-rst7) by toggling
t h e a s s o c i a t e d E Q U s t a t e m e n t s . S i n c e r s t 6 i s o f t e n u s e d b y C D B , a n d r s t 7 i s o f t e n u s e d b y
DDT/SID, it is not recommended that these vectors be used unless the code reduction is needed
v e r y b a d l y . O F C O U R S E , I F A T A R G E T S Y S T E M U S E S I N T E R R U P T - D R I V E N I / O O F
ANY KIND, THOSE INTERRUPT VECTORS NEEDED FOR I/O MUST NOT BE USED BY
AN OBJECT PROGRAM. BE CAREFUL!

Utilities

T h e R E D S c r e e n E d i t o r h a s b e e n a d d e d t o t h e p a c k a g e . P r o v i d e d i n s o u r c e f o r m , t h i s e d i t o r
interfaces with the compiler for convenient program syntax correction. CC can be configured (or
told on the command line) to write out an error file (PROGERRS.$$$) containing a record of all
syntax errors found in the recent compilation. When RED is invoked, it looks immediately for
this special error file. If found, then RED loads up the C source file in which the errors were
f o u n d , a l o n g w i t h t h e e r r o r fi l e i t s e l f , a n d t h e u s e r m a y w a l k t h r o u g h t h e e r r o r s b y s i n g l e
k e y s t r o k e c o m m a n d s , m a k i n g c o r r e c t i o n s o n t h e fl y . M a n y t h a n k s t o E d w a r d K . R e a m f o r
making RED available for inclusion with BDS C, and for enhancing the editor to interface so
nicely with the compiler.

A BDS C Configuration program, CCONFIG.C, has been included to walk the user through the
various compiler/linker configuration options. In previous releases, these options could only be
c h a n g e d b y e x p l i c i t l y a l t e r i n g b y t e s o f d a t a within the CC.COM and CLINK.COM comm a n d
files, using DDT or SID. The new CCONFIG program also tries to be as explanatory as possible
about the various configuration options. Note that there are several new configuration options for
v 1 . 6 , i n c l u d i n g R E D e r r o r - fi l e o u t p u t c o n t r o l , C D B r e s t a r t v e c t o r s e l e c t i o n a n d o t h e r u s e f u l
customizing features.

A nice BCD floating point package, written by Robert Ward, replaces “simple 4-banger” floating
p o i n t l i b r a r y a s a s t a n d a r d p a r t o f t h e B D S C p a c k a g e . T h i s n e w p a c k a g e i s e v o l v e d f r o m
“Money Math”.

L2 has been updated to work with the new buffered file I/O. Since BDS C’s buffered file I/O is
only used for writing out the .SYM file, I made that entire mechanism conditionally compiled.
The #define SYMFILE definition may be made FALSE to create a shorter version of L2.COM.

Page 192 BD Software

BDS C User’s Guide Update History

CASM has been improved to handle n-level nested includes, and it has been updated to work
with the new buffered I/O. Note: The buggy NCASM.C is no longer. I just couldn’t figure out
what Kevin Kenny was trying to do with his conditional assembly processing, so I gutted all that
out of the program. I’d still like to find the guy, though, so if ANYBODY KNOWS HOW I CAN
REACH KEVIN KENNY, PLEASE LET ME KNOW!!!!!!!

T h e C D B d e b u g g e r p a c k a g e n o w i n c l u d e s a c o n fi g u r a t i o n u t i l i t y , C D B C O N F G , t o a i d i n
customizing the CDB utility for individual systems.

T h e C P . C fi l e c o p y i n g u t i l i t y , s u p p l i e d a s a s a m p l e s o u r c e p r o g r a m , h a s b e e n g i v e n a n e w
“verify” option. CP now also allows wild-card user a r e a p r e fi x e s , d u e t o e nhancements in the
WILDEXP.C utility. See CP.C for detailed usage.

The WILDEXP.C wild-card expansion utility has been expanded to allow disk drive and user
area specifiers on wild card designations. A wild-card user area specifiers searches through all
user areas between 0 and 15 (you can make it search 0-31 by modifying the source), but this
takes a little while to do.

A new sample program called DI.C has been provided. This is a simple file comparator utility for
quick verification of the equality of (or minor disparity between) two versions of a file.

C.2 Changes for BDS C v1.5

This appendix describes the most significant changes made to each major update of BDS C, in
reverse order of release. First the features new to v1.5 are described, then the features added to
v1.4. Unless you have just updated from a pre-1.50 version of the package, you probably don’t
need to read this appendix.

N O T E : V e r s i o n s 1 . 5 a n d l a t e r o f t h e B D S C C o m p i l e r r e q u i r e v e r s i o n 2 . x (o r
higher) of the CP/M operating system. In order to take full advantage of CP/M 2.x
I / O m e c h a n i s m s w i t h o u t i n t r o d u c ing really painful configura t i o n c o m p l i c a t i o n s ,
compatibility with CP/M 1.4 (or earlier versions) has been sacrificed. Users who
c a n n o t u p g r a d e t h e i r C P / M ’ s t o v e r s i o n 2 . x m u s t g o o n u s i n g v 1 . 4 6 o f t h e
compiler.

New Command Line Options:

• CC (formerly named CC1) now takes the option –k, to activate the Kirkland debugger
mechanism. This makes CC write out a special symbol table file for later use by David
K i r k l a n d ’ s C d e b u g g e r p a c k a g e , a n d c a u s e s t h e c o m p i l e r t o g e n e r a t e s p e c i a l c o d e
sequences to allow the debugger to monitor program execution and handle breakpoints
at arbitrary points in the code. The debugger package is not included on the standard
d i s t r i b u t i o n d i s k , b u t i s a v a i l a b l e f o r n o m i n a l c o s t - o f - m e d i a f r o m t h e B D S C U s e r ’ s
Group .

• If CC is given a filename without an extension, and the file as named does not exist, CC
now will try adding “.C” to the filename and opening it that way.

BD Software Page 193

November 1988 BDS C User’s Guide

• CLINK now takes a new option –n, which causes the resulting COM file to not perform
a warm-boot after it i s fi n i s h e d e x e c u t i n g . This option has the same effect as v1.46’s
NOBOOT.C program (which is no longer needed when using CLINK, but is provided
for use with the optional L2 linker available from the BDS C User’s Group). Note that
when –n is used, there is approximately 2K less user memory available during object
code execution because the CCP is not overwritten.

• Another new CLINK option, –z, inhibits the clearing of all external data to zero during
run-time initialization. If –z is not used, then all external data in programs linked under
v 1 . 5 0 i s a u t o m a t i c a l l y z e r o e d b e f o r e c o n t r o l i s p a s s e d t o t h e “ m a i n ” f u n c t i o n a t r u n -
time.

New Library File Searching Capabilities:

Both the compiler and linker (CC and CLINK) now have the ability to search for library files in a
default CP/M drive and user area, sometimes in addition to the currently-logged drive and user
area. If the user configures CC and CLINK as described in the configuration section below, then
C C w i l l k n o w t o s e a r c h a d e f a u l t d i r e c t o r y f o r i n c l u d e d fi l e s n a m e d i n a n g l e b r a c k e t s , a n d
C L I N K w i l l k n o w t o s e a r c h a d e f a u l t d i r e c t o r y f o r t h e r u n - t i m e p a c k a g e m o d u l e a n d l i b r a r y
object files. Also, if a CRL file is named on the CLINK command line and CLINK cannot find
that file in the current drive and user area, then the default area (as configured) will be searched
for that file.

Other New CC Features:

The filename given as argument to the #include preprocessor directive may contain an optional
u s e r - a r e a p r e fi x i n a d d i t i o n t o t h e o p t i o n a l l o g i c a l d i s k - d r i v e d e s i g n a t o r . T h e f o r m a t f o r t h e
filename is the same as the format of C library function filename parameters, as described below
in the “Low-Level File I/O” subsection.

Other New CLINK Features:

• CLINK now accepts user area prefixes on CRL filenames given on the command line
(except for the main CRL file, which must be in the current user area.) If an explicit disk
drive and/or user area specification is given on the CRL filename to CLINK, then the
d e f a u l t d r i v e a n d u s e r a r e a (a s c o n fi g u r e d b y t h e u s e r) w i l l n o t b e s e a r c h e d
automatically. Application: if an explicit user area is given for a new test version of a
C R L fi l e , a n d a s i m i l a r l y n a m e d C R L fi l e e x i s t s i n t h e d e f a u l t l i b r a r y a r e a , t h e n t h e
version in the default area will not be used if the explicitly named one cannot be found.

• CLINK now automatically loads all functions, by default, from each CRL file named on
the command line in a linkage. The –f option is now reversed in sense from previous
versions; i.e., when –f appears on a CLINK command line, then all subsequently named
CRL files are scanned (only previously referenced functions are linked) while all CRL
files named before the –f flag are loaded (every function in the file, whether it has been
p r e v i o u s l y r e f e r e n c e d o r n o t , i s l i n k e d) . T h i s m a k e s t h e g e n e r a l f o r m a t o f a C L I N K
command line be:

Page 194 BD Software

BDS C User’s Guide Update History

A>clink <main file> [<other prog files>] [-f <lib files>] <cr>

 • Other options may be interspersed in the command line, of course.

• CLINK will now automatically print out warning messages when the code and external
data areas overlap and when the external data area ends above the base of the BDOS on
t h e d e v e l o p m e n t s y s t e m . T h e s e c o n d i t i o n s u s u a l l y i n d i c a t e a n e r r o r o f s o m e k i n d ;
nevertheless, the linkage will be completed and the user may decide whether or not to
reconfigure the external data area for future compilations/linkages.

New Low-Level File I/O Features:

• All the low-level file I/O now uses the CP/M 2.2x random-record read and write calls.
Therefore, files may be up to 8 megabytes in length instead of only up to 256K bytes as
w i t h p r e - 1 . 5 0 r e l e a s e s . T h e e x p l i c i t r a n d o m - r e c o r d fi l e I / O f u n c t i o n s s u p p l i e d i n
previous versions (rread, rwrite, rseek, rtell, rsrec and rcfsiz) are no longer included,
s i n c e t h e i r f u n c t i o n a l i t y h a s b e e n i n c o r p o r a t e d i n t o t h e n e w v e r s i o n s o f t h e s t a n d a r d
library functions read, write, seek and tell.

• The “seek” function may be given an origin code of 2, meaning to seek relative to the
end of the file. Note that the offset must be negative to make sense in this case, since the
o r i g i n i s a t t h e e n d o f t h e fi l e a n d t h e o f f s e t v a l u e i s a d d e d t o t h e o r i g i n v a l u e . F o r
example, the following call seeks to the next-to-last sector in the file:

seek(fd, -2, 2); /* seek to 2nd sector from EOF */

 • U s e r n u m b e r p r e fi x e s a r e n o w a c c e p t e d w h e r e v e r a fi l e n a m e a r g u m e n t i s c a l l e d f o r .
Such a prefix consists of a decimal number between 0 and 31, followed immediately by
a slash (/) character and then the filename (with or without an optional disk designator).
This causes the file I/O mechanism to switch into the user area associated with each file
for the duration of any I/O operation involving that file, then switch back to the current
user area when done. Any filename may now take either an explicit disk designator, an
e x p l i c i t u s e r a r e a , o r b o t h . I f b o t h a r e g i v e n , t h e n t h e u s e r a r e a s p e c i fi c a t i o n m u s t
precede the disk designator. Here is an example:

if (open("0/A:DATABASE.DAT",2) == ERROR)
exit(puts("Can’t open the database, turkey."));

 • Note that this allows programs in separate user areas to access a common data file kept
on one particular drive and user area, instead of having a separate copy of the data file
for each user area that requires it. If you are running the “ZCPR” public-domain CCP
r e p l a c e m e n t p r o g r a m f o r C P / M , o r a n y s h e l l (s u c h a s “ M i c r o S h e l l ”) t h a t s e a r c h e s
s p e c i a l d r i v e s a n d u s e r a r e a s f o r c o m m a n d fi l e s , t h e n t h a t f e a t u r e c o m b i n e d w i t h t h e
u s e r - a r e a e n h a n c e m e n t s t o t h e fi l e I / O l i b r a r y a l l o w a v e r y e f fi c i ent utilizatio n o f t h e
CP/M filesystem.

• T h e r e a r e s o m e n e w f u n c t i o n s t h a t p r o v i d e b e t t e r d i a g n o s i s o f e r r o r s c a u s e d b y l o w -
level file I/O calls. Whenever a call such as open, read or write returns a value of –1
(ERROR), the errno function may be called to return a more detailed error description

BD Software Page 195

November 1988 BDS C User’s Guide

code explaining exactly what went wrong. The errmsg function may be used to return a
pointer to a string corresponding to the error value returned by errno. A typical usage of
these functions is as follows:

i = read(fd, buffer, 20); /* try to read 20 sectors */
if (i == ERROR) /* if an error occurred...*/

printf("Read error: %s ", errmsg(errno()));
...

 Miscellaneous New Features:

• The entire external data area is now cleared to zero by the run-time initializor before
c o n t r o l i s t r a n s f e r r e d t o t h e m a i n f u n c t i o n f o r p r o g r a m e x e c u t i o n . T h i s m e a n s t h a t
p r o g r a m s w h i c h u s e t h e s t o r a g e a l l o c a t o r n e e d n o l o n g e r e x p l i c i t l y c l e a r t h e _ a l l o c p
variable before using the allocator.

• The external data declarations for the storage allocation functions alloc and free have
b e e n p e r m a n e n t l y e n a b l e d , s o t h a t i t i s n o l o n g e r n e c e s s a r y t o g o i n t o t h e S T D I O . H
h e a d e r fi l e a n d b o t h e r w i t h c o m m e n t i n g / u n c o m m e n t i n g t h e v a r i a b l e d e c l a r a t i o n s i n
order to get alloc and free to work.

Incompatibilities With Earlier Versions:

1. When the #include preprocessor directive is given a filename enclosed in angle brackets
(# i n c l u d e < fi l e n a m e >) , t h e n t h e d e f a u l t d r i v e a n d u s e r a r e a (a s d e s c r i b e d i n t h e
configuration section below) is presumed to contain the named file. A filename enclosed
i n d o u b l e q u o t e s (# i n c l u d e “ fi l e name”) i s p r e s u m e d t o r e s i d e o n t h e c u r r e n t l y - l o g g e d
drive and user area, as in previous versions, unless the filename contains an explicit user
area and/or disk designator.

2. BDS C v1.5 may only be used with version 2.0 or later of the CP/M operating system;
CP/M 1.4 is no longer supported.

3. T h e r u n - t i m e p a c k a g e h a s b e e n m o d i fi e d , c a u s i n g i n c o m p a t i b i l i t y w i t h C R L fi l e s
g e n e r a t e d b y p r e v i o u s v e r s i o n s o f t h e c o m p i l e r . I n o r d e r t o b e u s e d w i t h v e r s i o n 1 . 5
components, a CRL file must have been generated by version 1.5 of the compiler. Old
CRL files should be discarded.

4. C L I N K n o w l o a d s a l l f u n c t i o n s f r o m a l l n a m e d C R L fi l e s b y d e f a u l t , r e g a r d l e s s o f
whether or not they have been referenced by previously loaded functions in a linkage.
The CLINK option –f now operates identically to the L2 linker’s –l option.

5. The hardware related defined constants from previous versions of the STDIO.H header
fi l e h a v e b e e n r e m o v e d f r o m t h a t fi l e a n d p l a c e d i n t o a n e w h e a d e r fi l e n a m e d
H ARDWARE.H, so that system-dependent parameters are kept separa t e f r o m g e n e r a l
ones. The console and modem port definition sections have been changed into a more
general form to allow for both status-driven and memory-mapped I/O ports.

Page 196 BD Software

BDS C User’s Guide Update History

6. T h e g e t l i n e f u n c t i o n n o l o n g e r i n c l u d e s a t r a i l i n g n e w l i n e c h a r a c t e r a s p a r t o f t h e
collected line of input text. Like gets, lines input through getline are terminated by only
a single NULL character.

C.3 Changes For BDS C v1.4

There has been a hefty amount of revision, expansion and clean-up applied to the package since
v 1 . 3 . A g o o d p o r t i o n o f t h e c h a n g e s w e r e m a d e i n r e s p o n s e t o u s e r f e e d b a c k , w h i l e o t h e r s
(m a i n l y i n t e r n a l c o d e g e n eration optimizations) resulted from the author’s dis s a t i s f a c t i o n w i t h
the early version’s performance.

Library Sources Included:

The assembly language sources for the BDS C run-time package (CCC.ASM —> C.CCC) and
all non-C-coded library functions (DEFF2?.CSM —> DEFF2.CRL) are now included with the
p a c k a g e , s o t h a t t h e y m a y b e c u s t o m i z e d b y t h e u s e r f o r n o n - C P / M e n v i r o n m e n t s . T h e n e w
compiler and linker each accept an expanded command line option repertoire allowing both the
code origin and r/w memory data area to be specified explicitly, so that generated code can be
p l a c e d i n t o R O M . T h e r u n - t i m e p a c k a g e m a y b e c o n fi g u r e d f o r n o n - C P / M e n v i r o n m e n t s b y
c u s t o m i z i n g a s i m p l e s e r i e s o f E Q U s t a t e m e n t s , a n d n e w s p e c i a l - p u r p o s e a s s e m b l y l a n g u a g e
l i b r a r y f u n c t i o n s m a y b e e a s i l y g e n e r a t e d w i t h t h e h e l p o f t h e C A S M a s s e m b l y - l a n g u a g e
preprocessor program included with BDS C as standard equipment.

Better Buffered I/O:

The buffered I/O library can now be easily customized to use any number of sectors for internal
d i s k b u f f e r i n g . A g e n e r a l p u r p o s e s t a n d a r d h e a d e r fi l e , S T D I O . H , c o n t r o l s t h e b u f f e r i n g
m e c h a n i s m a n d a l s o p r o v i d e s a s t a n d a r d n o m e n c l a t u r e f o r s o m e o f t h e c o n s t a n t v a l u e s m o s t
commonly used in C programs. All users should carefully examine STDIO.H, become intimate
with its contents, and use the symbols defined there in place of many of the numeric constants
p r e v i o u s l y a b u n d a n t i n e a r l y s a m p l e p r o g r a m s . F o r e x a m p l e , t h e s y m b o l E R R O R i s m o r e
illuminating than when it is written as –1.

Directed I/O and Pipes:

F o r U n i x e n t h u s i a s t s , a n a u x i l i a r y f u n c t i o n p a c k a g e (w r i t t e n i n C) n a m e d “ D I O . C ” h a s b e e n
included to permit I/O redirection and pipes a la Unix. If you do not need this capability, then it
isn’t there to take up space; if you do need it, then you simply add a few special statements to
your program and specify DIO to CLINK at linkage time, then use a subset of the standard Unix
redirection syntax on the CP/M command line.

One Stack is Better Than Two:

A s i n g l e r u n - t i m e s t a c k c o n fi g u r a t i o n h a s r e p l a c e d t h e t w o - s t a c k h o r r o r u s e d i n t h e e a r l i e s t
releases. Function parameters are now passed on the stack, and local storage allocation also takes
place on the stack. This leaves all of memory between the end of the externals (which still sit
right on top of the program code) and the stack (in high memory) free for generalized storage

BD Software Page 197

November 1988 BDS C User’s Guide

allocation; several new library functions (alloc, free, rsvstk, and sbrk) have been provided for
 that purpose.

Better Code Quality:

Last but not least, the code generator has been taught some optimization tricks. The length of
generated code has shrunk by 25% (on average) and execution time has been cut by about 20%
over version 1.32. Part of this cut in code bulk is due to the new CC option –e, which allows an
a b s o l u t e a d d r e s s f o r t h e e x t e r n a l d a t a a r e a t o b e s p e c i fi e d a t c o m p i l e t i m e . T h i s e n a b l e s t h e
compiler to generate absolute load and store instructions (using the lhld and shld 8080/Z80 ops)
for external variables.

Incompatibilities With Pre-v1.4 Versions:

Because the run-time package has been totally reorganized for release v1.4, CRL files produced
by earlier versions of the compiler will not run when linked in with modules produced by the
n e w p a c k a g e . T h e r e f o r e a l l p r o g r a m s s h o u l d b e r e c o m p i l e d w i t h t h e c u r r e n t v e r s i o n , a n d o l d
CRL files should be thrown away. There are also a few source incompatibilities that require a bit
of massaging to be done to old source files. These are:

1. The statement

#include <stdio.h>

 2. must be inserted into all programs that use buffered file I/O, and should be inserted into
all other programs so that the symbolic constants defined in STDIO.H can be used.

3. Comments now nest; i.e., for each and every “begin comment” sequence (/*) there must
a p p e a r a m a t c h i n g “ c l o s e c o m m e n t ” s e q u e n c e (* /) b e f o r e t h e c o m m e n t w i l l b e
considered terminated by the compiler. This means that you can no longer comment out
a line of code that already contains a comment by inserting /* at the start of the line;
instead, a good practice would be to insert /* above the line to be commented out, and
to insert */ following the line. Although complete comment nesting is something that
UNIX C doesn’t support, I feel it is important to have the ability to comment out large
sections of code by simply inserting comment delimiters above and below the section.
Otherwise, any comments within such a block of code have to be removed first.

F o r v 1 . 4 , t h e r u n - t i m e package comes configured to support up to eight open files a t a n y o n e
time, but previous versions have accepted up to sixteen. To allow more than eight open files, the
“NFCBS EQU 8” statement in the run-time package source (CCC.ASM) must be appropriately
c h a n g e d a n d t h e fi l e r e - a s s e m b l e d . S e e C h a p t e r 2 f o r d e t a i l s o n c u s t o m i z i n g t h e r u n - t i m e
package.

Page 198 BD Software

BDS C User’s Guide Error Messages

Appendix D

Error Messages Explained

D.1 CC Error Messages

For the duration of this document, the term directory will be used to denote some
arbitrary CP/M logical drive and user area combination.

F i l e I / O E r r o r sF i l e I / O E r r o r s

Close error_________
Disk drive door open? If not, you’ve got some strange kind of hardware
problem.

Error on file output…disk full?_________________________
If not, check the hardware.

Can’t find CC2.COM; writing CCI file to disk_____________________________________
There are two directories where CC searches to try and find CC2.COM.
One of them is always the current directory, and the other depends on
whether or not the –a option is used with CC. If so, then the directory
sp e c i fi e d i n t h e o p t i o n is searched; otherwise, the default directory (as
d e fi n e d i n t h e c o n fi g u r a t i o n s e c t i o n o f C h a p t e r 1) i s s e a r c h e d . T h i s
message is printed if CC2.COM cannot be found in the two directories
searched.

Disk read error_____________
Time to format some new floppies?

Cannot open: <filename>______________________
T h e s p e c i fi e d fi l e c a n n o t b e f o u n d . I f t h e u s e r h a s c o n fi g u r e d C C t o
search a specific directory for #include files enclosed in angle brackets,
then a user number, slash, and disk designator will be printed preceding
the filename in this error message. If CC has not been configured, then
o n l y a d i s k d e s i g n a t o r w i l l a p p e a r . S i n c e a u s e r n u m b e r p r e fi x i s n o t
allowed on the CC command line, the top level source file must always
be in the current user area when CC is invoked, although it may be on a
different logical drive.

BD Software Page 199

November 1988 BDS C User’s Guide

O v e r fl o w C o n d i t i o n sO v e r fl o w C o n d i t i o n s

Sorry; out of memory The source file is too big to fit into memory. Either get more memory, in__________________
case that is possible, or break the source file into smaller pieces.

Out of symbol table space; specify more…___________________________________
Use the –r option to reserve symbol table space for CC. Or, break the
source file into smaller pieces.

Too many functions (63 max)________________________
A s i n g l e B D S C s o u r c e fi l e m a y o n l y c o n t a i n u p t o 6 3 f u n c t i o n
d e fi n i t i o n s . P r o g r a m s h a v i n g m o r e t h a n t h i s m a n y f u n c t i o n s m u s t b e
split into separate source files.

String too long (or missing quote)____________________________
Usually, this error is caused by missing double-quotes around character
s t r i n g s . I f a s t r i n g l o o k s p r o p e r l y d e l i m i t e d , c h e c k t o m a k e s u r e y o u
h a v e n ’ t t r i e d t o i n c l u d e a d o u b l e q u o t e c h a r a c t e r w i t h i n t h e s t r i n g
without escaping the double quote (preceding it with a backslash).

Too many cases (200 max per switch)_______________________________
Self-explanatory.

#include files nested too deep________________________
This can happen if you try to have recursive includes.

String overflow; call BDS_____________________
This is a preprocessor string table overflow caused by having too many
very long identifier names in #define directives. It should only happen
for VERY big programs. A special version of the compiler with larger
s t r i n g s p a c e a l l o c a t i o n s m a y b e o b t a i n e d b y s e n d i n g a S A S D (s e l f -
a d d r e s s e d s t a m p e d d i s k) t o B D S o f t w a r e a l o n g w i t h s o m e k i n d o f
proof-of-purchase of the BDS C package.

P r e p r o c e s s o r E r r o r sP r e p r o c e s s o r E r r o r s

Warning: Ignoring unknown preprocessor directive__
If an unsupported preprocessor directive is encountered, this warning is
printed. Currently, this is the only non-fatal diagnostic message.

EOF found when expecting #endif____________________________
Conditional compilation improperly delimited.

Not in a conditional block_____________________
This appears when something like #endif is encountered, when there was
no previous #if, #ifdef or #ifndef.

Conditional expr bad or beyond implemented subset__
CC only allows a subset of operators to be used in the #if preprocessor
directive. See chapter 4 for a summary of the #if expression syntax.

Page 200 BD Software

BDS C User’s Guide Error Messages

Bad parameter list element______________________
B a d i d e n t i fi e r p r e s e n t i n t h e f o r m a l p a r a m e t e r l i s t o f a f u n c t i o n
definition.

Missing parameter list T h e i d e n t i fi e r f r o m a p a r a m e t e r i z e d # d e fi n e a p p e a r s w i t h o u t i t s__________________
parameters.

Parameter mismatch T h ei d e n t i fi e r f r o m a p a r a m e t e r i z e d # d e fi n e i s u s e d w i t h a d i f f e r e n t_________________
number of parameters than in its definition.

Missing legal identifier An identifier is expected in an expression but none appears.___________________

S y n t a x E r r o r sS y n t a x E r r o r s

Unclosed comment in: <filename>____________________________
Usually an accurate diagnostic. If you get this message and have no clue
to where the unclosed comment begins, try giving the –p option to CC
and check the text immediately preceding the point where the code just
seems to “cut off” at the end of the printout. That’s probably the location
of an unclosed comment, since all the subsequent text (that disappeared)
would have been considered part of the comment and stripped from the
source file before the printout.

Encountered EOF unexpectedly (check curly-brace balance)___
C h e c k f o r u n c l o s e d c o m m e n t s , a n d u n c l o s e d c u r l y - b r a c e s . T h e U s e r ’ s
Group program LCHECK.C may be used to check curly-brace nesting
levels.

Unmatched right brace Either a left brace is missing, or there is an extraneous right brace.___________________

Illegal external statement_____________________
This is usually caused by too many right braces in a function, causing
the compiler to detect the end of a function definition prematurely.

Function definition not external__________________________
T h i s h a p p e n s w h e n s o m e t h i n g t h a t l o o k s l i k e a f u n c t i o n d e fi n i t i o n i s
encountered within another active function definition. Probably it is just
a missing semicolon after a function call, or a similar typo.

Missing semicolon________________
You can usually believe this message; keep in mind, though, that the line
number given here always points to the beginning of the statement that
t h e c o m p i l e r t h i n k s i s u n t e r m i n a t e d . I n a m u l t i - l e v e l n e s t e d c o n t r o l
s t r u c t u r e (s u c h a s i f … e l s e o r i f … i f) , t h e m i s s i n g s e m i c o l o n m i g h t b e
several physical lines lower in the code than claimed by the line number
appearing in the error report.

Expecting ((__________
Typically encountered after the while, if or switch keywords.

BD Software Page 201

November 1988 BDS C User’s Guide

Unmatched left parenthesis______________________
This is another type of error that is usually detected, but might generate
other less useful messages in certain cases.

I’m totally confused. Check your control structure!___
This might be caused by extraneous characters or very erroneous curly-
brace nesting.

Illegal { encountered externally{ _________________________ _
Possibly caused by mismatched curly braces.

Mismatched control structure________________________
Another variation on the unequal curly brace nesting theme.

Expecting w h i l ew h i l e______________
Is a do…while statement missing its while?

Illegal b r e a k or c o n t i n u eb r e a k c o n t i n u e_____________________
b r e a k s t a t e m e n t sa r e o n l y a l l o w e d i n s i d e l o o p s a n d s w i t c h c o n s t r u c t s .
continue statements are only allowed inside loops.

Bad f o r syntaxf o r ____________ _
 S e l f - e x p l a n a t o r y ; c h e c k f o r t h e c o r r e c t n u m b e r (2) o f s e m i c o l o n s a n d

their placement.

Expecting { in s w i t c h statement{ s w i t c h __________________________ _
 T h e e x p r e s s i o n p o r t i o n o f a s w i t c h s t a t e m e n t m u s t b e f o l l o w e d b y

compound statement in curly-braces.

Bad c a s e constant E a c h c a s e c o n s t a n tm u s t b e e i t h e r a n a b s o l u t e c o n s t a n t o r a s i m p l ec a s e ______________ _
 constant expression (symbolic constants are acceptable, of course).

Illegal statement T h i se r r o r i s d r a w n w h e n , f o r e x a m p l e , a c a s e o r d e f a u l t s t a t e m e n t i s______________
found outside of a switch construct.

Syntax error__________
I t t a k e s s o m e t h i n g t o t a l l y u n i n t e l l i g i b l e t o d r a w t h i s e r r o r , s u c h a s a
m i s s i n g l e f t d o u b l e q u o t e b e f o r e a c h a r a c t e r s t r i n g . A n e x t r a n e o u s
character in the file may also do it.

Bad constant S o m e e x p r e s s i o n s m u s t b e c o n s t a n t e x p r e s s i o n s , s u c h a s s w i t c h___________
expressions and the values used for case constants.

Bad octal digit____________
If a numeric octal constant beginning with a zero contains the digits 8 or
9, this error is drawn.

Bad decimal digit This happens when a decimal constant contains bad characters, or else_______________
the user forgot to precede a hex constant with the sequence 0x.

Page 202 BD Software

BDS C User’s Guide Error Messages

Curly-braces mismatched somewhere in this definition__
This is a rather useful feature of the compiler: if the source text has too
m a n y l e f t c u r l y - b r a c e s , t h i s e r r o r w i l l p o i n t t o t h e b e g i n n i n g o f t h e
function or data definition in which the first detected mismatch occurred.

D e c l a r a t i o n E r r o r sD e c l a r a t i o n E r r o r s

Undeclared identifier: <name>_________________________
This might be a real identifier that just wasn’t declared, or a misspelling
of an identifier.

Bad declaration syntax Usually the compiler thinks it’s processing a data declaration as soon as___________________
it sees a type designator (such as char or int). This error is drawn if the
r e s t o f t h e s t a t e m e n t c o n t a i n i n g t h a t k e y w o r d d o e s n o t r e s e m b l e a
declaration.

 Need explicit dimension size________________________
An omitted dimension size in array declarations is only permitted when
t h e a r r a y i s a f o r m a l p a r a m e t e r t o a f u n c t i o n . I f s u c h a n a r r a y i s t w o
dimensional, then only the first dimension may be omitted.

Too many dimensions BDS C allows only up to two dimensions per array variable.__________________

Bad dimension value Dimensions in array declarations must be given as constants or constant_________________
expressions.

Redeclaration of: <name>_____________________
Aside from actually writing multiple conflicting declarations for a single
variable, another way to draw this error is to declare a formal parameter
o f a f u n c t i o n i n s i d e t h e b o d y o f t h e f u n c t i o n i n s t e a d o f i m m e d i a t e l y
b e f o r e t h e b o d y . N o t e t h a t f o r m a l p a r a m e t e r s a r e a u t o m a t i c a l l y g i v e n
t y p e i n t i f n o t d e c l a r e d b e f o r e t h e b o d y o f t h e f u n c t i o n ; t h e r e f o r e , a
s u b s e q u e n t d e c l a r a t i o n o f t h e f o r m a l p a r a m e t e r i d e n t i fi e r a s a l o c a l
variable in the body of the function constitutes a redeclaration.

Expecting { in struct or union def{ __________________________ _
Self-explanatory.

Illegal structure or union id______________________
T h i s e r r o r i s d r a w n w h e n t h e i d e n t i fi e r a p p e a r i n g i n t h e s t r u c t u r e t a g
position of a structure declaration was previously declared as something
other than a structure tag.

Attribute mismatch from previous declaration_____________________________________
T h e e l e m e n t s i n a s t r u c t u r e d e c l a r a t i o n m a y b e r e u s e d w i t h i n o t h e r
structures providing their major attributes (type and offset) are identical
within each structure type. This error appears when a structure element
name is re-used with different attributes.

BD Software Page 203

November 1988 BDS C User’s Guide

Declaration too complex____________________
T h i s e r r o r i s c a u s e d b y t o o m a n y l e v e l s o f i n d i r e c t i o n , o r t o o m a n y
parentheses for the compiler to handle.

Missing from formal parameter list: <name>____________________________________
This happens when a declaration of a formal parameter appears before a
f u n c t i o n b o d y , b u t n o s u c h p a r a m e t e r i s p r e s e n t i n t h e p a r a m e t e r l i s t
following the function name.

Bad parameter list syntax_____________________
S o m e t h i n g o t h e r t h a n a c o m m a - d e l i m i t e d l i s t o f i d e n t i fi e r s i n t h e
parameter list of a function definition draws this error.

M i s c e l l a n e o u s e r r o r sM i s c e l l a n e o u s e r r o r s

<text>: option error________________
If CC detects some badly formed command line option, it will print the
text it couldn’t understand along with this message. Check the command
l i n e o p t i o n d e s c r i p t i o n s i n C h a p t e r 1 t o m a k e s u r e y o u ’ r e g i v i n g t h e
correct forms.

Compilation aborted by control-C____________________________
If the user types control-C on the console during a compilation, then this
message gets printed and control is returned to command level. Note that
console polling may be disabled by special configuration of CC.COM as
described in the configuration section of Chapter 1. This may be required
for certain interrupt-driven systems to allow type-ahead during compiler
execution.

Can’t have more than one default:____________________________
T h i s i s p r i n t e d i f m o r e t h a n o n e d e f a u l t : c l a u s ee x i s t s w i t h i n a s i n g l e
switch construct.

Illegal colon C o l o n s (o t h e r t h a n i n l i t e r a l s t r i n g s) a r e o n l y a l l o w e d a s p a r t o f t h e___________
ternary operator, or following a label, case or default.

Undefined label used_________________
Label references (allowed only in goto statements) must refer to a label
local to the current function definition.

Duplicate label_____________
A particular identifier may only be used for one label per function.

D.2 CC2 Error Messages

Note: some of the file I/O errors printed by CC2 are the same or very similar to
the messages listed above for CC, so they will not be repeated in this section.

Page 204 BD Software

BDS C User’s Guide Error Messages

F i l e I / O , S y n t a x , O v e r fl o w a n d O t h e r M i s c e l l a n e o u s E r r o r sF i l e I / O , S y n t a x , O v e r fl o w a n d O t h e r M i s c e l l a n e o u s E r r o r s

Can’t create CRL file No more directory slots on the output drive?__________________

CRL Dir overflow: break up source file________________________________
There are only 512 bytes of directory space allocated for each CRL file.
It is possible to overflow the directory space for a single source file by
having too many functions defined that contain 8 or more characters in
their names (only the first 8 characters of each name are actually stored
i n t h e d i r e c t o r y .) E i t h e r s h o r t e n y o u r f u n c t i o n n a m e s , o r r e d u c e t h e
number of functions per source file.

Internal error: garbage in file or bug in C_________________________________
If this happens during CC2, it is probably a compiler bug. Please contact
BD Software for assistance.

Illegal statement Something totally weird was encountered.______________

Missing { in function def.{ ____________________ _
 U s u a l l y, whatev e r d r a w s t h i s e r r o r i s n o t r e a l l y t h e s t a r t o f a f u n c t i o n

definition, but for some reason the compiler thinks that the previous (or
current) function has been terminated and another is beginning. Check
for too many right curly-braces in the program.

Missing semicolon Missing semicolons after expression statements will usually be detected________________
and diagnosed correctly.

Sorry, out of memory. Break it up!____________________________
The file is too large. Usually, if a file gets through CC then it will also
make it through CC2, although there are exceptions.

The function <foo> is too complex; break it up a bit__
There are certain internal tables that cannot handle too big a function.
R a t h e r t h a n r e q u i r e t h e u s e r t o s e t a b u n c h o f c o n f u s i n g p a r a m e t e r s
t e l l i n g t h e c o m p i l e r h o w m u ch space to reserve for various ta b l e s a n d
lists, I decided to set most table sizes constant and allow for fairly hefty
f u n c t i o n s … b u t o n l y u p t o a p o i n t . P r o p e r l y s t r u c t u r e d C p r o g r a m s
shouldn’t draw this message.

Sub-expression too deeply nested___________________________
The most common cause of this error is a multiple assignment statement
t h a t g o e s o n f o r e v e r . T h e s o l u t i o n i s s i m p l y t o b r e a k t h e l i n e u p i n t o
smaller chunks.

Compilation aborted by control-C____________________________
Unless the appropriate CC configuration byte is customized to zero by
the user (see the Configuration section in Chapter 1), typing control-C
o n t h e s y s t e m c o n s o l e d e v i c e w i l l t e r m i n a t e a c o m p i l a t i o n , p r i n t t h i s
message and immediately return to command level.

BD Software Page 205

November 1988 BDS C User’s Guide

E r r o r s i n E x p r e s s i o n sE r r o r s i n E x p r e s s i o n s

Lvalue required A no b j e c t i s r e q u i r e d t h a t c a n h a v e i t s a d d r e s s t a k e n , o r t h a t m u s t b e_____________
legal on the left of an assignment operator.

Lvalue needed with ++ or – – operator_______________________________
Only simple variables can be auto-incremented or auto-decremented.

Bad left operand in assignment expression__________________________________
I f t h e e x p r e s s i o n o n t h e l e f t o f a n a s s i g n m e n t o p e r a t o r c a n n o t h a v e a
value assigned to it, this error is drawn. For example, a character array is
not an lvalue, although it may be subscripted to produce a legal lvalue.

Mismatched parenthesis An expression following a left parenthesis is terminated by a matching____________________
right parenthesis.

Mismatched square brackets_______________________
A subscript following a left square bracket is not immediately followed
by a matching right square bracket.

Bad expression This is the general “I give up” message printed when an expression (or_____________
what is supposed to be an expression) does not make any sense to the
compiler. That does not necessarily mean that the error is obvious, but
usually it is.

Bad function name________________
T h i s i s p r i n t e d w h e n t h e c o m p i l e r s e e s a n i d e n t i fi e r f o l l o w e d
immediately by a left parenthesis, and the identifier has been previously
declared as something other than a function name.

Bad arg to unary operator_____________________
T h e o p e r a n d o f a u n a r y o p e r a t o r i s n o t o f a p p r o p r i a t e t y p e f o r t h a t
operator.

Expecting : Did you intend to write a ?: expression and forget to include the colon?:__________

Bad subscript I s a n a r r a y s u b s c r i p t o f t h e p r o p e r t y p e f o r a p o i n t e r a r i t h m e t i c___________
operation? For example, a subscript in an array expression cannot be a
pointer.

Bad array base Y o ua r e a t t e m p t i n g t o s u b s c r i p t s o m e t h i n g t h a t c a n n o t b e s u bs c r i p t e d .____________
O n e p o s s i b i l i t y : a r e y o u a t t e m p t i n g t o s u b s c r i p t t h e a r g v f o r m a l
parameter in your main function without having declared argv correctly?

Bad structure or union specification_____________________________
T h e e x p r e s s i o n t o t h e l e f t o f t h e . (p e r i o d) o p e r a t o r i s n o t a l e g a l
structure or union base.

Page 206 BD Software

BDS C User’s Guide Error Messages

Bad type in binary operation_______________________
Certain types of variables cannot appear together in a binary operation;
f o r e x a m p le, you canno t a d d t w o p o i n t e r s (a l t h o u g h y o u m a y s u b t r a c t
them, yielding a result scaled by the size of the objects begin pointed to),
or perform most bit-wise and obscure operations on non-simple-variable
objects.

Bad structure or union member_________________________
The expression to the right of a . (period) or —> operator is not a valid
structure or union element.

Bad use of member name_____________________
T h e i d e n t i fi e r s d e c l a r e d a s m e m b e r s o f a s t r u c t u r e o r u n i o n c a n n o t b e
used outside of a structure or union operation.

Illegal indirection A ta t t e m p t i s b e i n g m a d e t o o p e r a t e o n s o m e o b j e c t a s i f i t w e r e a_______________
pointer, when the object is not a pointer.

Encountered EOF unexpectedly__________________________
This is either a bad syntax error or a sign of file damage. Badly matched
curly-braces might also be responsible, although the present version of
the compiler will usually be more specific about those kinds of errors.

Bad argument list S o m e t h i n gi l l e g a l w a s f o u n d i n t h e p a r a m e t e r l i s t f o r a f u n c t i o n c a l l ,_______________
such as a semicolon or other keyword not legal in an expression.

Missing or misplaced (An expression in parentheses was expected, such as following the while(___________________
keyword, and no left parenthesis was found.

Missing or misplaced) An expression which began with a left parenthesis was not followed by a)___________________
closing right parenthesis. This might be due to an extraneous character in
the middle of the expression.

D.3 CLINK Error Messages

Note: many of the possible file I/O errors printed by CLINK are self-explanatory;
only the ones requiring some comment are shown here.

No user area prefix allowed on main filename_____________________________________
U s e r a r e a p r e fi x e s a r e a l l o w e d o n a l l fi l e n a m e s e x c e p t t h e fi r s t o n t h e
CLINK command line.

Dir full No more directory space in which to create a new output file.______

Error writing: <filename>_____________________
Probably out of data space on the disk.

BD Software Page 207

November 1988 BDS C User’s Guide

Can’t close: <filename> Hardware error?____________________

No main function in <filename>__________________________
The first CRL file named on the CLINK command line must contain the
main function for the program you are linking. Note that the L2 linker
(available from the User’s Group) does not have this restriction.

Missing function(s): <list-of-names>______________________________
The named functions were not found in the files listed on the command
l i n e o r i n t h e s t a n d a r d l i b r a r y fi l e s. If you used the –f option to c a u s e
fi l e s t o b e s c a n n e d i n s t e a d o f l o a d e d , i t ’ s p o s s i b l e s o m e of t h e n a m e d
functions were present but not loaded because no previous functions had
r e f e r e n c e d t h e m . I n t h i s c a s e , s i m p l y r e - s c a n t h e fi l e s c o n t a i n i n g t h e
missing functions.

Warning! Externals extend into the BDOS!___________________________________
T h i s i s p r i n t e d w h e n t h e e n d i n g a d d r e s s o f t h e e x t e r n a l d a t a a r e a i s
g r e a t e r t h a n t h e b a s e o f t h e B D O S o n t h e s y s t e m b e i n g u s e d f o r
compilation. If the code is to be run in another environment where there
won’t be any conflict, this message may be ignored. But don’t try to run
the program on the system where linkage drew this message…

Warning! Externals overlap code!____________________________
This is printed when the starting address of the external data area is less
or equal to the last code address of the program. Usually it means the
e x t e r n a l s w e r e p l a c e d t o o l o w w i t h t h e – e o p t i o n . I f y o u a r e c r e a t i n g
c o d e f o r a c u s t o m i z e d e n v i r o n m e n t w h e r e t h e c o d e r e s i d e s a b o v e t h e
externals, just ignore the message.

Out of memory N o te n o u g h m e m o r y t o p e r f o r m t h e l i n k a g e . T r y u s i n g t h e L 2 l i n k e r ,_____________
which can link programs up to about 8K larger than CLINK can.

Bad symbols A s y m b o l fi l e b e i n g r e a d i n v i a u s e o f t h e – y o p t i o n c o n t a i n s b a d l y___________
formatted entries.

Ref table overflow T h e f o r w a r d - r e f e r e n c e t a b l e r a n o u t o f s p a c e . U s e t h e – r o p t i o n t o_______________
r e s e r v e m o r e s p a c e . U s a g e i s “ - r x x x x ” , w h e r e x x x x i s g i v e n i n
hexadecimal. 600 is the default; try 800 or A00, etc., until the error goes
away.

SYM file symbol already defined: <symbol>____________________________________
A symbol being read in via use of the –y option is identical to a function
a l r e a d y l o a d e d a n d d e fi n e d . T h e o r i g i n a l v a l u e i s k e p t , s i n c e t h a t
f u n c t i o n h a s a l r e a d y b e e n l o a d e d a n d / o r d e fi n e d , a n d t h e n e w o n e i s
thrown away.

Ignoring duplicate function: <name>______________________________
A function in a CRL file being loaded has a name identical to a function
a l r e a d y l o a d e d f r o m a p r e v i o u s file. The orig i n a l i s k e p t , a n d t h e n e w
version is ignored.

Page 208 BD Software

Sorry; 255 funcs maximum______________________
CLINK can only handle up to 255 functions in a single linkage. If you
need to link a larger number of functions, obtain the L2 linker from the
BDS C User’s Group.

Index

&& operator 86 C Reference Manual 75
|| operator 86 C User’s Group 3
_allocp 196 call 46
.CCI file 14 calla 46
.CCI files 16, 17 case conversion 60
#define 85, 87 CASM 29
#if 85 CASM.SUB batch file 152
#include 9, 13, 85, 88, 196, 198 CASM Utility 151

CC 7, 13, 193A CC2 7, 17
aborting compilation 14, 17 CC.COM 186
aborting linkage 18 CCC.ASM 11, 36, 184, 197
abs 46 CCI files 7
alloc 51, 84, 196 CCONFIG.COM 8
append to string 60 CCP 10
argc 26, 146 cdb debugger 193
argc & argv 13 CDB restart vector control 11
arghak 36 cfsize 67
argv 26 chaining 49
ASM assembler 151 chaining with parameter passing
atoi 62 50
auto-loading CC2 14 character processing 59
auto-loading of CC2 17 clearerr 72

CLIB 22B CLIB commands 22
BCD Function Package 161 CLINK 18, 43, 193, 194
BCD package 161 CLINK.COM 186
BD Software’s address 1, 27 CLINK debug mode 18
bdos 44, 146 CLINK interactive mode 18
BDS C User’s Group 193 CLOAD utility 152
BDS.LIB 37, 184 close 65
BDSCIO.H 161 closing files 72
begin 77 cmode 55
bios 44 CMODEM 157
biosh 44 codend 51
block memory assignment 48 command line parameters 26
block memory comparison 48 Comment nesting 14
block move 48 comment nesting 76
blocks 77, 83 comments 198
Buffered I/O 197 concatenation 60
buffered I/O 63, 69 conditional compilation 85, 88

configuration 7C Console polling 9
C.CCC 15, 183, 197 console switch register 44

constant expressions 86, 145 external definitions 83
control-Z 55, 70 externs 51
CP/M 4, 196 Fcreat 64

fabort 67creating CRL files 24
fcb 68CRL directory 22, 29
fcbaddr 68CRL Files 22
fclose 72CRL files 151
feof 72CRL format 29
ferror 72CSM files 43, 184
fetch routines 35csw 44
fflush 72curly-brace substitutes 77
fgetc 70customized environments 183
fgets 73

D file control block 68
DDT 185 File I/O 195
debugger 109 file I/O 63
debugging 37 Filenames 63
declarations 79, 87 floating point (BCD)function
Default Library Area 9 package 161
default library area 18 floating point package 161
DEFF15.CRL 161 fopen 69
DEFF.CRL 12 for statement 83, 146
DEFF.CRL and DEFF2.CRL 43 formatted output 58
DEFF files 9, 18, 197 forward reference table 20
delete file 67 fprintf 73
DIO.C 197 fputc 70
Directed I/O 197 fputs 73
disk buffering 12 fread 71
disk designator 18, 63 free 52, 84, 196
division by zero 78 fscanf 73

function entry protocol 33E function modules 30
end 77 fwrite 71
endext 33, 51

GEOF 55, 70
errmsg 68, 196 get file size 67
errno 68, 195 getc 70
error handling 64, 68 getchar 55
error messages 199 getline 56
error recovery 146 gets 57
exec 49 getw 70
exec functions 19 Hexecl 49

HARDWARE.H 12, 157, 196execution speed 16, 17
hardware.h 12execv 50
hseek 66exit 44
htell 67external data 33

External data area 30 Iexternal data area 19, 30, 77, 84
identifier name restrictions 76external data boundary locations
index 6251
initb 62, 148external data initialization 21
initialization 62external data starting location 14

initializers 82 O
initptr 63 oflow 67
initw 62, 148 open 64
inp 45 opening files 64, 70
iobreak 55 Optimization 15
isalpha 59 Optimization control byte 10
isdigit 59 order of evaluation 86
islower 59 outp 45
isspace 60 overflow 64, 67
isupper 59 overlap of code and data 15

overlay loading 51K
overlays 20, 21, 177kbhit 56

keywords 76 P
parity bits 10L
pause 46L2 110 peek 45labels 83 pipes 197language restrictions 75 pointers to arrays 81library file searching 43 poke 45library source organization 36 port-driven I/O 45list of needed functions 31 preprocessor directives 87listing CRL file contents 23 printf 57load address 19 printing source file 15loading library files 19 putc 70loading library functions 18 putchar 56loading overlays 51 puts 56logical connective operators 79 putw 71long integer package 172

longjmp 53 Q
lprintf 58 qsort 49
M R
M80 assembler 151 rand 47
ma1toh 36 random number generation 47,
machine code subroutines 46 48
main function 30 raw I/O 63, 64
max 46 re-entrant code 35
max no. of open files 198 read 65
maximum CRL file size 22 RED editor 89
memcmp 48 RED error file control 10
MicroShell 195 RED error file output 15
min 46 ref table overflow 20
movmem 48 register designator 79
MP/M 26, 65 relocation parameters 32

rename 67N
reserving symbol table space 15NFCBS run-time package option Restart optimization 1612 ROM-based applications 184NOBOOT 194 ROM-ing code 19nrand 47 ROM preparations 183NSECTS 12 royalties 4
RSTNUM 11

RSTNUM run-time package swapin 50, 179
option 11 switch statement 83

rsvstk 53 symbol table file 20
run-time package origin address system requirements 5

15 Trun-time package RST
TELED 12optimization 12
tell 66

S time delays (sleep) 46
sbrk 52 tolower 60
scanf 58 topofmem 33, 51
scanning library files 19 toupper 60
seek 66, 195 transferring functions between
setfcb 68 CRL files 23
setjmp 53 type specifiers 79
setmem 48 Ushift operators 79

unary operators 86sign extension 78
ungetc 70sizeof 79, 86
ungetch 56sleep 46
Unix 4sorting function 49
unlink 67source function limits 16
USAREA run-time packagesource text 13

option 11sprintf 60
user area prefix 18, 63srand 46
User area recognition 11srand1 47
User Areas 9, 195sscanf 60
user areas 10stack 32, 197
USERST 11stack initialization 20
USERST run-time packagestack safety margin size 53

option 11stack utilization 32
STDIO.H 196, 197 Vstdio.h 12, 26

variable scope 77STDIO.H“ 198
STDLIB*.C 186 Wstorage allocation 52, 196, 197

warm boot 32storage classes 75, 77, 79
warm boot inhibition 20strcat 60
Warm boots 10strcmp 60
write 65strcpy 60

string comparison 60 Ystring copy 61
yank symbols 20string length 61

string processing 59 Z
stripping parity 10 ZCASM utility 151strlen 61 ZCPR 195structure and union declarations ZOPTn run-time package option82

12Submit Files 9, 16, 26

Contents

Chapter 1 Introduction 1
1.1 Hello There . 1
1.2 Quick Start . 1
1.3 Support . 3
1.4 No Royalties, Of course! . 4
1.5 Objectives and Limitations . 4
1.6 System Requirements . 5
1.7 Potential System Incompatibilities . 5

1.7.1 Systems with a Non-Standard User Number Range 5
1.7.2 CDB and Your System’s Restart Vectors . 6
1.7.3 BDOS and BIOS Calls On Some CP/M “Look-Alike” Systems . . 6

1.8 How to Use The Compiler . 7
1.8.1 The Commands and Primary Data Files . 7
1.8.2 Configuration . 7

1.8.2.1 Compiling CCONFIG.C . 8
1.8.2.2 CC and CLINK configuration . 8
1.8.2.3 CC2 Configuration . 11
1.8.2.4 Run-Time Package Options . 11
1.8.2.5 STDIO.H and HARDWARE.H Configuration 12

1.8.3 A Sample Compilation . 13
1.8.4 CC — The Parser . 13
1.8.5 CC2 — The Code Generator . 17
1.8.6 CLINK — The C Linker . 18
1.8.7 CLIB — The C Librarian . 22

1.9 CP/M “Submit” Files . 26
1.10 Operational Caveats . 26
1.11 Last Words . 27

Chapter 2 The CRL Function Format and Other Low-Level Mechanisms 29
 2.1 Introduction . 29

2.2 The CRL Format in Detail . 29
2.2.1 CRL Directories . 29
2.2.2 External Data Area Origin and Size Specifications 30
2.2.3 Function Modules . 30

2.2.3.1 List of Needed Functions . 31
2.2.3.2 Length of Body . 31
2.2.3.3 Body . 31
2.2.3.4 Relocation Parameters . 32

2.3 Register Allocation and Function Calling Conventions 32

i

2.3.1 The Stack . 32
2.3.1.1 The Stack Pointer . 32
2.3.1.2 How Much Space Does the Stack Take Up? 32

2.3.2 External Data . 33
2.3.3 Function Entry and Exit Protocols . 33

2.4 Re-entrant Coding . 35
2.5 Helpful Run-Time Subroutines Available in C.CCC (See CCC.ASM) . 35

2.5.1 Local and External Fetch Routines . 35
2.5.2 Formal Parameter Fetches . 36
2.5.3 Arithmetic and Logical Subroutines . 36
2.5.4 System Source Files . 36

2.6 Debugging Object Command Files Under CP/M 37
2.6.1 Loading Programs and Setting Breakpoints 37
2.6.2 Tracing Execution and Dumping the Values of Variables 39
2.6.3 A Sample SID Debugging Session . 39

Chapter 3 The BDS C Standard Library on CP/M: A Function Summary 43
 3.1 General Purpose Functions . 43

3.2 Character Input/Output . 54
3.3 Character and String Processing . 59
3.4 File I/O . 63

3.4.1 Introduction to BDS C File I/O Functions 63
3.4.2 Filenames . 63

3.4.2.1 The Disk Designator Prefix . 63
3.4.2.2 The User Area Prefix . 63

3.4.3 Error Handling . 64
3.4.3.1 The Errno/Errmsg Functions . 64
3.4.3.2 Random-Record Overflow . 64

3.4.4 The Raw File I/O Functions . 64
3.4.5 The Buffered File I/O Functions . 69

Chapter 4 Notes to APPENDIX A of “The C Programming Language” 75
 4.1 Introduction . 75

4.2 Notes to Appendix A . 76

Chapter 5 The RED Screen Editor 89
5.1 How To Install RED . 89

5.1.1 Run the Configuration Program . 89
5.1.1.1 Setting Defaults . 90
5.1.1.2 Selecting Control Keys . 91
5.1.1.3 Describing Your Terminal . 91

5.1.2 Compile and link RED . 92
5.1.3 Test and use RED . 93
5.1.4 (Optional) Run STEST . 93
5.1.5 Additional Features for RED Under BDS C v1.6 93

5.2 Reference Manual . 94
Starting RED . 94
Using Function and Control Keys . 95
Changing Modes . 96

ii

Inserting Characters With Insert and Overtype Modes 96
Inserting New Lines . 97
Moving The Cursor . 97
Deleting Characters and Lines . 98
Undoing Mistakes . 98
Splitting and Joining Lines . 98
Inserting Control Characters . 99
Repeating the Previous Function . 99
Using Commands . 99
Creating, Saving and Loading Files . 100
Leaving RED . 101
Searching for Patterns . 101
Moving Blocks of Lines . 104
Setting Tab Stops . 105
Enabling and Disabling Line Wrapping . 105
Listing the Buffer . 105
Deleting Multiple lines . 105
Choosing How RED Switches Modes . 106
Edit Mode Functions And Escape Sequences . 106
What To Do About Error Messages . 108

Chapter 6 CDB: A Debugger for BDS C 109
6.1 An Explanation of CDB Components . 109
6.2 Constructing the Debugger . 110

6.2.1 Constructing L2 . 110
6.2.2 Constructing CDB2 . 110

6.2.2.1 The CDBCONFG Utility . 110
6.2.2.2 CDB System Description . 111

Constructing CDB . 111
Constructing CDB2 . 111
Changing the restart number . 112

6.3 How to Invoke the Debugger . 113
6.3.1 Compilation: The –K Option of CC . 113
6.3.2 Linkage: The –D and –S Options of L2 113
Invoking CDB . 114
6.3.3 Summary . 114

6.4 Debugging Commands: How to Use the Debugger 115
6.4.1 Breakpoints . 115
6.4.2 Executing code . 117
6.4.3 Dumping variables . 117
6.4.4 Setting variables . 119
6.4.5 The list command — various items of information 119
The quit command . 120

6.5 Alphabetical Listing of Debugger Commands 120
6.6 An Example — A CDB Debugging Session . 121

Chapter 7 Tutorials and Tips 129
7.1 BDS C File I/O Tutorial . 129

7.1.1 Introduction . 129

iii

7.1.2 The Raw File I/O Functions . 129
7.1.3 The Buffered File I/O Functions . 133

7.2 BDS C Console I/O: Some Tricks, Clarifications and Examples 136
7.2.1 Introduction . 136
7.2.2 Elementary Console Interfacing . 137
7.2.3 The BDOS and How It Complicates Things 137

7.3 Some Mistakes Commonly Made By Beginning C Programmers and
Other Things Deserving Clarification . 141
7.3.1 ‘=’ versus ‘==’ . 141
7.3.2 Character Constants within Literal Strings 142
7.3.3 The Precedence of Assignment Operators 142
7.3.4 Array Subscripting . 143
7.3.5 How NOT To Use a Pointer . 143
7.3.6 Functions Shouldn’t Return Pointers to Their Automatic Data . 143
7.3.7 Understanding Formal Parameters . 144
7.3.8 Dependence on Parameter Evaluation Order 145
7.3.9 Function Calls MUST Have Parentheses 145

7.4 Miscellaneous Notes . 145

Chapter 8 Auxiliary BDS C Package Programs 151
8.1 The CASM Assembly-language-to-CRL-Format Preprocessor For BDS

C . 151
8.1.1 Creating CASM.COM . 152
8.1.2 Command Line Options . 152

8.2 The L2 Linker . 154
8.3 The CMODEM Telecommunications Program 157

Installation . 157

Chapter 9 Auxiliary BDS C Libraries 161
9.1 BDS C v1.5 Compatibility Library . 161
9.2 A BCD Function Package For BDS C . 161

9.2.1 Description of Files . 161
9.2.2 Data Representation . 162
9.2.3 Testing For Zero . 163
9.2.4 Rounding and Accuracy . 163
9.2.5 Error Handling . 164
9.2.6 The Return Values . 164
9.2.7 Transportability . 165
9.2.8 Configuration . 165
9.2.9 Changing Precision . 166
9.2.10 Rebuilding BCD.CRL . 166
9.2.11 Linking to the BCD Functions . 166
9.2.12 BCD Package Function Summary: . 167

9.3 A Long Integer Package for BDS-C . 172
9.3.1 Introduction . 172
9.3.2 Implementation Details . 175

Appendix A Dynamic Overlays in C Programs 177

iv

Appendix B Customizing The Run-Time Environment 183
B.1 Standard vs. Customized Environments . 183
B.2 Simple Run-Time Package Customization . 183
B.3 Creating New Customized Environments . 184
B.4 Making Code Run Without CP/M . 186

Appendix C BDS C Evolution: A Version-By-Version Update Summary 189
 C.1 Changes for BDS C v1.6 . 189

Library Changes . 189
Run-Time Package . 191
Compiler . 191
Utilities . 192

C.2 Changes for BDS C v1.5 . 193
C.3 Changes For BDS C v1.4 . 197

Appendix D Error Messages Explained 199
D.1 CC Error Messages . 199

File I/O Errors . 199
Overflow Conditions . 200
Preprocessor Errors . 200
Syntax Errors . 201
Declaration Errors . 203
Miscellaneous errors . 204

D.2 CC2 Error Messages . 204
File I/O, Syntax, Overflow and Other Miscellaneous Errors 205
Errors in Expressions . 206

D.3 CLINK Error Messages . 207

Index 211

v

