® CP/M-86
Operating
System

System Guide

e

Texas Instruments Professional Computer

—

Carver Pt Mo, 2237356 10001

COPYRIGHT

Copyright ® 1981 by Digital Research. All rights reserved. No
part of this publication may be reproduced, transmitted, tran-
scribed, stored in a retrieval system, or translated into any lan-
guage or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Digital Re-
search, Post Office Box 579, Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any partic-
ular purpose. Further, Digital Research reserves the right to
revise this publication and to make changes from time to time
in the content hereof without obligation of Digital Research to
notify any person of such revision or changes.

TRADEMARKS

CP/M-86, CP/M, and CP/NET are registered trademarks of
Digital Research. CP/NET-86, CP/M-80, DDT, DDT-86, LIB,
ASM-86, MP/M, and MP/M-86 are trademarks of Digital
Research. Intel and MCS are registered trademarks of Intel
Corporation. Z80 is a registered trademark of Zilog Inc. Silent
700 is a trademark of Texas Instruments. IBM is a registered
trademark of International Business Machines.

CP/M-86%0perating System System Guide
TI Part No. 2237360-0001
Original Issue: 1 December 1983

Foreword

The CP/M-86 Operating System System Guide presents the
system programming aspects of CP/M-86%, a single-user oper-
ating system for the Intel® 8086 and 8088 16-bit micro-
processors. The discussion assumes that the reader is familiar
with CP/M®, the Digital Research eight-bit operating system.
To clarify specific differences with CP/M-86, this document re-
fers to the eight-bit version of CP/M as CP/M-80™, Elements
common to both systems are simply called CP/M features.

This system guide presents an overview of the conventions of
the CP/M-86 programming interface. It also describes pro-
cedures for adapting CP/M-86 to a custom hardware
environment.

Section 1 gives an overview of CP/M-86 and summarizes the
differences between it and CP/M-80. Section 2 describes the
general execution environment, while Section 3 tells how to
generate command files. Sections 4 and 5 respectively define
the programming interfaces to the Basic Disk Operating Sys-
tem (BDOS) and the Basic Input/Output System (BIOS). Sec-
tion 6 discusses alteration of the BIOS to support custom disk
configurations, and Section 7 describes the loading operation
and the organization of the CP/M-86 system file.

CP/M-86 and CP/M are registered trademarks of Digital Research.
Intel is a registered trademark of Intel Corporation.
CP/M-80 is a trademark of Digital Research.

iifiv

Contents

1

2

CP/M-86 System Overview ... 1-1
General Characteristics of CPIM-86 ...ooovviiiiieeiesiissnnens 1-3
Differences Between CP/M-80 and CP/IM-86 ..o 1-6

Command Setup
and Execution Under CP/M-86 21

It redl e T e e 2-3
CCP Built-In and Transient Commands ..o, 2-3
Transient Program Execution Modelscccceciniinin 2-4
The 5080 Memory Model ... i i, 2-5
The Small Memory Modelocoocivieieii i i eeianne 92-7
The Compact Memory Modelc.covieesneinmssemisisseirens 2-8
Base Page Initializationccveceiicinnieisinssisssssisnens 2-10
Transient Program Load and Exit .oooccvvveeeevieeieivesnreenns 2-12
Command (CMD) File Generation ... 31
a0 0[5 G T BT R e e et i L B0 L e e E P 3-3
Intel e i Ela P Ormat o oeeieesie i e ssas it rats srs i sbbisees 3-3
Operationt afEEN N e Tiasse i eseis sasssacanias 3-5
Operation of LMEMID o i siamsminisins 3-8
Command (CMD) File Formatcccccoiiiiiiiniiinsssnsins 9-9
Basic Disk Operating

System (BDOS) Functions ... 4-1
T At T AT i e e T T e B L e e et 4-3
BDOS Parameters and Function Codescoooeevveeeveennnnn, 4-3
Simple:BEOS Gallal s e 4-6
BDOS File Operations ...ccieeeeiimmessserssmmssssressssssnnsees 4-11
BDOS Memory Management and Load ...oooovvvvevvveeenn, 4-31

A

HEDO QW

Basic I/O System

(BIOS) Organization ... 5-1
Introduetion: & s e e e e 5-3
Organization of the BIOS e 5-3
The BIOS Jump Vector ... 5-4
Simple Peripheral Devices ... 5-6
BIOS Subroutine Entry Points 5-9
BIOS Disk Definition Tables ... 6-1
IAEEOOIICEION coiiiusivnrssrrinsinsimssammmnssrsrrrsssrmrnsnnssssnssssssssnssnmmnnes 6-3
Disk Parameter Table Format ... 6-3
Table Generation Using GENDEF ooeininiinnnnnnnen, 6-10
GENDETF OULDUL ..coviisiommmimaissasentimssmmmssissessses 6-16
CP/M-86 Bootstrap

and Adaptation Procedures 7-1
TRErOAUICLION ioiiiiiriinioisesnranianeriasssbiasanssansprnsssassssanasnannnersntre 7-3
The Cold Start Load Operation ... T-4
Organization of CPM.SYS ... 7-8
Appendixes

Blocking and Deblocking Algorithms

Random Access Sample Program
Listing of the Boot ROM
LDBIOS Listing

BIOS Listing

CBIOS Listing

Index

vi

1

CP/M-86 System Overview

1-1/1-2

GENERAL CHARACTERISTICS OF CP/M-86

CP/M-36 contains all of the facilities of CP/M-80 with addi-
tional features to account for increased processor address space
of up to a megabyte (1,048,576 bytes) of main memory.
CP/M-86 also maintains file compatibility with all previous ver-
sions of CP/M. The file structure of Version 2 of CP/M is used,
allowing as many as sixteen drives with up to eight megabytes
on each drive. Because of this, CP/M-80 and CP/M-88 systems
may exchange files without modifications of the file format.

CP/M-86 resides in the file CPM.SYS, which is loaded into
memory by a cold-start loader during system initialization. The
cold-start loader resides on the first track of the system disk.
CPM.SYS contains three program modules: the Conscle Com-
mand Processor (CCP), the Basic Disk Operating System
(BDOS), and the user-configurable Basic [/O System (BIOS).
The CCF and BDOS portions occupy approximately 10K bytes,
while the size of the B10S varies with the implementation. The
operating system executes in any portion of memory above the
reserved interrupt locations, while the remainder of the address
space is partitioned into as many as eight non-contiguous re-
gions (as defined in a BIOS table), Unlike CP/M-80, the CCP
area cannot be used as a data area subsequent Lo transient pro-
gram load; all CP/M-86 modules remain in memory at all times,
and are not reloaded during a warm start.

NOTE

One K equals 1,024 bytes,

1-3

In a way similar to CP/M-80, CP/M-86 loads and executes
memory image files from disk. Memory image files are pre-
ceded by a header record, defined in this document, which pro-
vides information required for proper program loading and
execution. Memory image files under CP/M-86 are identified by
a CMD file type.

Unlike CP/M-80, CP/M-86 does not use absolute locations for
system entry or default variables. The BDOS entry takes place
through a reserved software interrupt, while entry to the BIOS
is provided by a new BDOS call. Two variables maintained in
low memory under CP/M-80, the default disk number and 1/0O
byte, are placed in the CCP and BIOS, respectively. Depen-
dence upon absolute addresses is minimized in CP/M-86 by
maintaining initial base page values, such as the default FCB
and default command buffer, in the transient program data
area.

Utility programs such as ED, PIP, STAT and SUBMIT
operate in the same manner under both CP/M-86 and CP/M-80.
In its operation, DDT-86™ resembles DDT™ supplied with
CP/M-80. It allows interactive debugging of 8086 and 8088
machine code. Similarly, ASM-86™ allows assembly language
programming and development for the 8086 and 8088 using
Intel-like mnemonics,

The GENCMD (Generate CMD) utility corresponds to the
LOAD program of CP/M-80, and converts the hexadecimal
(hex) files produced by ASM-86 or Intel utilities into memory
image format suitable for execution under CP/M-86. The
LDCOPY (Loader Copy) program replaces SYSGEN, and is
used to copy the cold start loader from a system disk for repli-
cation. A variation of GENCMD, called LMCMD, converts out-
put from the Intel LOCS86 utility into CMD format. Finally,
GENDEF (Generate DISKDET) is provided as an aid in pro-
ducing custom disk parameter tables. ASM-86, GENCMD,
LMCMD, and GENDEF are also supplied in COM file format
for cross-development under CP/M-80.

DT, DOT-86, and ASM-86 are trademarks of Digital Hesearch,

1-4

Several terms used throughout this manual are defined in the

following table:

CP/M-86 Terms

Term
Mibble
Byte
Word
Double Word
Paragraph

Paragraph Boundary

Meaning
4-bit half-byte
8-hit value
16-bit value
32-bit value
16 contiguous bytes

An address divisible evenly

by 16 {low order nibhle 0)

Segment Up to 64K contiguous

bytes
_— Segment Register One of CS, DS, ES, or 858

Ofset 16-hit displacement from a
segment register

Group A segment-register-relative
relocatable program unit

Address The effective memory ad-

dress derived from the com-
position of a segment
register value with an offset
value

A proup consists of segments that are loaded into memory as a

single unit. Since a group may consist of more than 64K bytes,

it is the respomsibility of the application program to manage

segment registers when code or data beyond the first 64K seg-
~— ment is accessed.

1-5

CP/M-86 supports eight program groups: the code, data, stack
and extra groups as well as four auxiliary groups. When a
code, data, stack or extra group is loaded, CP/M-86 sets the re-
spective segment register (CS, DS, SS or ES) to the base of the
group. CP/M-86 can also load four auxiliary groups. A tran-
sient program manages the location of the auxiliary groups us-
ing values stored by CP/M-86 in the user's base page.

DIFFERENCES BETWEEN
CP/M-80 AND CP/M-86

The structure of CP/M-86 is as close to CP/M-80 as possible in
order to provide a familiar programming environment which al-
lows application programs to be transported to the 8086 and
8088 processors with minimum effort. This section points out
the specific differences between CP/M-80 and CP/M-86 in order
to reduce your time in scanning this manual if you are already
familiar with CP/M-80. The terms and concepts presented in
this section are explained in detail throughout this manual, so
you will need to refer to the table of contents to find relevant
sections which provide specific definitions and information.

Due to the nature of the 8086 processor, the fundamental dif-
ference between CP/M-80 and CP/M-86 is found in the manage-
ment of the wvarious relocatable groups. Although CP/M-B0
references absolute memory locations by necessity, CP/M-86
takes advantage of the static relocation capabilities inherent in
the 8086 processor. The operating system itself is usually
loaded directly above the interrupt locations, at location
0400H, and relocatable transient programs load in the best-fit
memory region. However, you can load CP/M-86 into any por-
tion of memory without changing the operating system (for
this reason, there is no MOVCPM utility with CP/M-86), and
transient programs will load and run in any non-reserved
region.

1-6

Three general memory models are presented below: the 5080
Model, the Small Model, and the Compact Model. If you are
converting 8080 programs to CP/M-86, you can use either the
8020 Model or the Small Model, and leave the Compact Model
for a time when your addressing needs increase. You will use
GENCMD, described in Operation of GENCMD, Chapter 3, to
produce an executable program file from a hex file. GENCMD
parameters allow you to specify which memory model your
program requires.

CP/M-86 itself is constructed as an 8080 Model. This means
that all of the segment registers are placed at the base of
CP/M-86, and your customized BIOS is identical, in most re-
spects, to that of CP/M-80 (with changes in instruction mne-
monics, of course). In fact, the only additions are found in the
SETDMAB, GETSEGE, SETIOR, and GETIOB entry points
in the BIOS, Your warm-start subroutine is simpler, since you
are not required to reload the CCP and BDOS under CP/M-86.
One other peint: if you implement the IOBYTE facility, you
will have to define the variable in your BIOS, Taking these
changes into account, you need only perform a simple transla-
tion of your CP/M-80 BIOS into 8086 code in order to imple-
ment yvour 8086 BIOS,

If you have implemented CP/M-80 Version 2, you already have
disk definition tables which will operate properly with
CP/M-86. You may wish to attach different disk drives, or ex-
periment with sector skew factors to increase performance. If
50, you can use the new GENDEF utility which performs the
same function as the DISKDEF macro used by MAC under
CP/M-80. You will find, however, that GENDEF provides you
with more information and checks error conditions better than
the DISKDEF macro.

Although generating a CP/M-86 system is generally easier than
generating a CP/M-80 system, complications arise if you are us-
ing single-density floppy disks. CP/M-86 is too large to fit in
the two-track system area of a single-density disk, so the
bootstrap operation must perform two steps to load CP/M-86:
first the bootstrap must load the cold start loader, then the
cold start loader loads CP/M-86 from a system file. The cold
start loader includes a LDBIOS which is identical to your
CP/M-86 BIOS with the exception of the INIT entry point.
You can simplify the LDBIOS if you wish, because the loader
need not write to the disk. If vou have a double-density disk, or
reserve enough tracks on a single-density disk, you can load
CP/M-86 without a two-step boot.

To make a BDOS system call, use the reserved software inter-
rupt #244, The jump to the BDOS at location 0005 found in
CP/M-80 is not present in CP/M-86. However, the address field
at offset 0006 is present so that programs which size available
memory using this word value will operate without change.
CP/M-80 BDOS functions use certain 8080 registers for entry
parameters and returned values. CP/M-86 BDOS functions use
a table of corresponding 8086 registers. For example, the 8086
registers CH and CL correspond to the 8080 registers B and C.
Look through the list of BDOS function numbers in Chapter 4,
and you will find that functions 0, 27, and 31 have changed
slightly. Several new functions have been added, but they do
not affect existing programs.

One major philosophical difference is that in CP/M-80, all ad-
dresses sent to the BDOS are simply 16-bit values in the range
0000H to OFFFFH, In CP/M-86, however, the addresses are
really just 16-bit offsets from the DS (Data Segment) register
which is set to the base of your data area. If you translate an
existing CP/M-80 program to the CP/M-86 environment, your
data segment will be less than 84K bytes. In this case, the DS
register need not be changed following initial load, and thus all
CP/M-80 addresses become simple DS-relative offsets in
CP/M-86.

1-8

Under CP/M-80, programs terminate in one of three ways: by
returning directly to the CCP, by calling BDOS function 0, or
by transferring control to absolute location 0000H. CP/M-26,
however, supports only the first two methods of program ter-
mination. This has the side effect of not providing the auto-
matie disk system reset following the jump to 0000H which,
instead, is accomplished by entering a CTRL at the CCF level.

You will find many new facilities in CP/M-86 that will simplify
vour programming and expand your application programming
capability. However, we have designed CP/M-86 to make it
easy to get started: in short, if vou are converting from
CP/M-80 to CP/M-86. there will be no major changes heyond
the translation to 8086 machine code. Further programs you
design for CP/M-86 are upward-compatible with MP/M-86™,
the Digital Research multitasking operating system, as well as
CP/NET-86™ which provides a distributed operating system in
a network environment.

MPIM-86 and CP/MET-86 are trademarks of Digital Research,

1-9/1-10

2

Command Setup and
Execution Under CP/M-86

IR 0N e e Tt s s v e s 2-3
CCP Built-In and Transient Commands 2-3
Transient Program Execution Models 2-4
The 8080 Memory Model ..o, 2-5
The Small Memory Modelcoooooevveieicicirecennenes 2-7
The Compact Memory Modelcccccoovoinvininnn. 2-8
Base Page Initialization ..., 2-10
Transient Program Load and Exit ... 2-12

2-1/2-2

INTRODUCTION

This section discusses the operation of the Console Command
Processor (CCP), the format of transient programs, CP/M-B6
memory models, and memory image formats.

CCP BUILT-IN AND TRANSIENT COMMANDS

The operation of the CP/M-86 CCP is similar to that of
CP/M-80. Upon initial cold start, the CP/M sign-on message is
printed, drive A is automatically logged in, and the standard
prompt is issued at the console. CP/M-86 then waits for input
command lines from the console, which may include one of the
following built-in commands:

DIR ERA REN TYPE USER

Note that SAVE is not supported under CP/M-88, since the
equivalent function is performed by DDT-86.

Alternatively, the command line may begin with the name of a
transient program with the assumed file type CMD denoting a
command file, The CMD file type differentiates transient com-
mand files used under CP/M-86 from COM files which operate
under CP/M-8(.

The CCP allows multiple programs to reside in memory,
providing facilities for background tasks. A transient program
such as a debugger may load additional programs for execution
under its own control. Thus, for example, a background printer
spooler could first be loaded, followed by an execution of
DDT-86, DDT-8 may, in turn, load a test program for a de-
bugging session and transfer control to the test program be-
tween hreakpoints. CP/M-86 keeps account of the order in
which programs are loaded and, upon encountering CTRL-C,
discontinues execution of the most recent program activated at
the CCP level. CTRL-C at the DDT-86 command level ahorts
DDT-86 and its test program. A second CTRL-C at the CCP
level aborts the background printer spooler. A third CTRL-C
resets the disk svstem. Note that program abort due to

2-3

CTRL-C does not reset the disk system, as is the case in
CP/M-80. A disk reset does not occur unless the CTRL-C oc-
curs at the CCP command input level with no programs resid-
ing in memory.

When CP/M-86 receives a request to load a transient program
from the CCP or another transient program, it checks the pro-
gram’s memory requirements. If sufficient memory is available,
CP/M-86 assigns the required amount of memory to the pro-
gram and loads the program. Once loaded, the program can re-
guest additional memory from the BDOS for buffer space.
When the program is terminated, CP/M-86 frees both the pro-
gram memory area and any additional buffer space.

TRANSIENT PROGRAM EXECUTION MODELS

The initial values of the segment registers are determined by
one of three memory models used by the transient program and
described in the CMD file header. The three memory models
are summarized in the following table:

CP/M-86 Memory Models

Model Group Relationships
8080 Model Code and Data Groups Overlap
Small Model Independent Code and Data Groups
Compact Model Three or More Independent Groups

The 8080 Model supports programs which are directly trans-
lated from CP/M-80 when code and data areas are intermixed.
The 2080 model consists of one group which contains all the
code, data, and stack areas. Segment registers are initialized to
the starting address of the region containing this group. The
segment registers can, however, be managed by the application
program during execution so that multiple segments within the
code group can be addressed.

o

The Small Model is similar to that defined by Intel, where the
program consists of an independent code group and a data
group. The Small Model is suitable for use by programs taken
from CP/M-20 where code and data is easily separated. Note
again that the code and data groups often consist of, but are
not. restricted to, single 64K byte segments.

The Compact Model occurs when any of the extra, stack, or
auxiliary groups are present in program. Each group may con-
sist of one or more segments, but if any group exceeds one seg-
ment in size, or if auxiliary groups are present, then the
application program must manage its own segment registers
during execution in order to address all code and data areas.

The three models differ primarily in the manner in which seg-
ment registers are initialized upon transient program loading.
The operating system program load function determines the
memory model used by a transient program by examining the
program group usage, as described in the following sections.

THE 8080 MEMORY MODEL

The 8080 Model is assumed when the transient program con-
tains only a code group. In this case, the CS, DS, and ES regis-
ters are initialized to the beginning of the code group, while the
SS and SP registers remain set to a 96-byte stack area in the
CCP. The Instruction Pointer Register (IP) is set to 100H, sim-
ilar to CP/M-80 thus allowing base page values at the begin-
ning of the code group. Following program load, the 8080

2-5

Model appears as shown in the following figure, where low ad-
dresses are shown at the top of the diagram:

551
CCF
S5 + 5P CCP STACK
CS DSIES:
DS+0000H : GASE
PAGE
CS+0100H IP = O0100H
CODE
DATA
2 @ @
CODE
oATA

22847613

The intermixed code and data regions are indistinguishable.
The following base page values, are identical to CP/M-80, allow-
ing simple translation from 8080, 8085, or Z80® code into the
B08E and 8088 environment. The following ASM-86 example
shows how to code an 8080 model transient program.

E80 is o registered trademark of Zilog Incorporated.

2-6

eseg

org 100h
: {code)
endes equ 5
dseg
org offset endcs
. datal
end

THE SMALL MEMORY MODEL

The Small Model is assumed when the transient program con-
tains both a code and data group. (In ASM-86, all code is gen-
erated following a CSEG directive, while data is defined
following a DSEG directive with the origin of the data segment
independent of the code segment.) In this model, CS is set to
the beginning of the code group, the DS and ES are set to the
start of the data group, and the SS and SP registers remain in
the CCP3's stack area as shown in the following figure:

55
CCP
55 + SP: CCP STACHK
L2t [P = 0000H
CODE
DS ES! SASE
PAGE
DS4+01T00H 3
DATA

2284764

The machine code begins at CS + 0000H, the base page values
begin at DS+ 0000H, and the data area starts at DS+ 0100H.

The following ASM-86 example shows how to code a small
model transient program.

cseg
{code)

dseg

org 100h
(data)

end

THE COMPACT MEMORY MODEL

The Compact Model is assumed when code and data groups are
present, along with one or more of the remaining stack, extra,
or auxiliary groups. In this case, the CS, DS, and ES registers
are set to the base addresses of their respective areas. The fol-
lowing figure shows the initial configuration of segment regis-
ters in the Compact Model. The values of the various segment
registers can be programmatically changed during execution by
loading from the initial values placed in base page by the CCP,
thus allowing access to the entire memory space,

2-8

55
coR
55 + 5P CCP STACK
Cs5: IP = DOOOH
CODE
DS ¢ BASE
PAGE
DS+0T00H | BATA
S DATA
224765

If the transient program intends to use the stack group as a
stack area, the 55 and SP registers must be set upon entry.
The SS and SP registers remain in the CCP area, even if a
stack group is defined. Although it may appear that the S5
and SP registers should be set to address the stack group,
there are two contradictions. First, the transient program may
be using the stack group as a data area. In that case, the Far
Call instruction used by the CCP to transfer control to the
transient program could overwrite data in the stack area.
Second, the S5 register would logically be set to the base of the
group, while the SP would be set to the offset of the end of the
group. However, if the stack group exceeds 64K, the address
range from the base to the end of the group exceeds a 16-hit
offset value,

2-9

The following ASM-86 example shows how to code a compact
model transient program.

cseg

: ecade)

dseg

org 100h

; {data)

eseg

: imore data)
sseg

; (stack area)
end

BASE PAGE INITIALIZATION

In a manner similar to CP/M-30, the CP/M-86 base page con-
tains default values and locations initialized by the CCP and
used by the transient program. The base page occupies the re-
gions from offset 0000H through 00FFH relative to the DS
register. The values in the base page for CP/M-86 include those
of CP/M-80, and appear in the same relative positions, as
shown in the following figure:

2-10

Os + 0000
0Os + 0003
DS + 0006 !
05 + 000% ;
DS + 000C:
DS + 000F
Ds + 00312
DS + 0015,
DS + 001B8¢
05 + 001B:
DS + 0O01E.
DS + 0021 2
DS + 00241
DS + 0027
0OS + 002A%
DS + Q020:
DS + 0030
ps + onse:
DS + 005G
DS + DOBO

DS + 01002

RREATGG

LCo LG LC2
BCO BCi M&0
LDO LD LD2
BDO B01 MEH
LEQ LE{ LEZ2
BED BE1 MM
LSO LS5 Ls2
BSO B51 KKK
L¥o LX1 Lx2
BXO BX1 KEH
LXa LX1 Lx2
BXO BX1 KKK
LX0O LX1 Lxz2
BXO BX1 XXX
Lxo L1 Lx2
BX0D BXA1 XX
HOT
CUF!I-!RSI%'IBTLY

DEFAULT FCB

DEFAULT BUFFER

BEGIN USER DATA

2-11

Each hyte is indexed by 0, 1, and 2, corresponding to the
standard Intel storage convention of low, middle, and high-
order (most significant) byte. The value xxx in the preceding
figure marks unused bytes. LC is the last code group location
{24-bits, where the 4 high-order bits equal zero).

In the 8080 Maodel, the low order bytes of LC (LCO and LCI)
never exceed OFFFFH and the high order byte (LCZ) is always
zero. BC is base paragraph address of the code group (16-bits).
LD and BD provide the last position and paragraph base of the
data group. The last position is one byte less than the group
length. It should be noted that bytes LD0 and LD1 appear in
the same relative positions of the base page in both CP/M-80
and CP/M-86, thus easing the program translation task. The
MB80 byte is equal to 1 when the 8080 Memory Model is in use.
LE and BE provide the length and paragraph base of the op-
tional extra group, while LS and BS give the optional stack
group length and base. The bytes marked LX and BX corre-
spond to a set of four optional independent groups which may
he required for programs which execute using the Compact
Memory Model. The initial values for these descriptors are de-
rived from the header record in the memory image file, de-
scribed in the following section.

TRANSIENT PROGRAM LOAD AND EXIT

In a manner similar to CP/M-80, the CCP parses up to two
filenames following the command and places the properly for-
matted FCBs at locations 005CH and 006CH in the base page
relative to the DS register. Under CP/M-80, the default DMA
address is initialized to 0080H in the base page. Due to the
segmented memory of the 8086 and 8088 processors, the DMA
address is divided into two parts: the DMA segment address
and the DMA offset. Therefore, under CP/M-86, the default
DMA base is initialized to the value of DS, and the default
DMA offset is initialized to 0080H. Thus, CP/M-80 and
CP/M-86 operate in the same way: both assume the default
DMA buffer occupies the second half of the base page.

2-12

The CCP transfers control to the transient program through an
8086 Far Call. The transient program may choose to use the
96-byte CCP stack and optionally return directly to the CCP
upon program termination by executing a Far Return. Program
termination also occurs when BDOS function zero is executed.
Note that function zero can terminate a program without re-
moving the program from memory or changing the memory al-
location state (see Simple BDOS Calls in Chapter 4). The
operator may terminate program execution by typing a single
CTRL-C during line edited input, which has the same effect as
the program executing BDOS function zero. Unlike the opera-
tion of CP/M-80, no disk reset oceurs, and the CCP and BDOS
modules are not reloaded from disk upon program termination.

2-13/2-14

3

Command (CMD) File Generation

InteodUe I On s e e e 3-3
Intel Hex Flle EOrDIAL .o setiomiimsmsisemsissesstiion 3-3
Operation of GENCMDcccconninninnenisiinnsnn 3-5
Operation of LMEMIBo i 3-8
Command (CMD) File Formatcc.ccooooivviniennnae 3-9

3-1/3-2

INTRODUCTION

As mentioned previously, two utility programs are provided
with CP/M-86, called GENCMD and LMCMD, which are used
to produce CMD memory image files suitable for execution un-
der CP/M-86. GENCMD accepts Intel 8086 hex format files as
input, while LMCMD reads Intel L-module files output from
the standard Intel LOC86 Object Code Locator utility.
GENCMD is used to process output from the Digital Research
ASM-86 assembler and Intel's OHS86 utility, while LMCMD is
used when Intel-compatible developmental software is available
for generation of programs targeted for CP/M-86 operation.

INTEL 8086 HEX FILE FORMAT

GENCMD input is in Intel hex format, which is produced by
both the Digital Research ASM-86 assembler and the standard
Intel OHE6 utility program (see Intel document #2800639-03
entitled MCS®™86 Software Development Utilities Operating
Instructions for ISIS-II Users). The CMD file produced by
GENCMD contains a header record which defines the memory
model and memory size requirements for loading and executing
the CMD file.

An Intel hex file consists of the traditional sequence of ASCII
records in the following format:

22RATEHT

MCS is a registered trademark of Intel Corporation,

3-3

where the beginning of the record is marked by an ASCII
colon, and each subsequent digit position contains an ASCII
hexadecimal digit in the range 0—9 or A —F. The fields are de-
fined in the following table:

Intel Hex Field Delinitions

Field Contents

11 Record Length 00 = FF (0 — 255 in decimal)
aaaa Load Address

tt Record Type:

00 data record, loaded starting at offset
asaa from current base paragraph

01 end of file, cc = FF

02 extended address, aaaa is paragraph
base for subsequent data records

03 start address is aaaa lignored, TP set
according to memaory model in use)

The following are output from ASM-86 only:

81 same as (00, data belongs Lo code segment

52 same az 00, data belongs to data segment

43 same as 00, data belongs to stack segment

A4 same as 00, data belongs to extra segment

85 paragraph address for absolute code
segment

86 paragraph address for absolute data
segment

87 paragraph address for absolute stack
segment

88 paragraph address for absolute extra
segment

d Data Byle

e Check Sum (00 — Sum of Previous Digils)

3-4

OPERATION OF GENCMD

The GENCMD utility is invoked at the CCP level by using the
following syntax:

GENCMD filename parameter-list

where the filename corresponds to the hex input file with an
assumed (and unspecified) file type of H86. GENCMD accepts
optional parameters to specifically identify the 5080 Memory
Model and to describe memory requirements of each segment
group. The GENCMD parameters are listed following the
filename, as shown in the command line above where the
parameter-list consists of a sequence of keywords and values
separated by commas or blanks, The keywords are:

8080 CODE DATA EXTRA STACK X1 X2 X3 X4

The 8080 keyword forces a single code group so that the BDOS
load function sets up the 8080 Memory Model for execution,
thus allowing intermixed code and data within a single seg-
ment. The form of this command is:

GENCMD filename 8080

The remaining keywords follow the filename or the 8080 option
and define specific memory requirements for each segment
group, corresponding one-to-one with the segment groups de-
fined in the previous section. In each case, the values corre-
sponding to each group are enclosed in square brackets and
separated by commas. Each value is a hexadecimal number

representing a paragraph address or segment length in para-
graph units denoted by hhhh, prefixed by a single letter which
defines the meaning of each value, as follows:

Value Meaning

Ahhhh Load the group at absolute location
hhhh

Bhhhh The group starts at hhhh in the hex
file

Mhhhh The group requires a minimum of
hhhh #* 16 bytes

Xhhhh The group can address a maximum of

hhhh * 16 bytes

Generally, the CMD file header values are derived directly from
the hex file, and the parameters shown above need not be in-
cluded. The following situations, however, require the use of
GENCMD parameters.

* The 8080 keyword is included whenever ASM-86 is used
in the conversion of 8080 programs to the B086/8088
environment when code and data are intermixed within a
single 64K segment, regardless of the use of CSEG and
DSEG directives in the source program.

« An absolute address (A value) must be given for any
group which must be located at an absolute location. Nor-
mally, this value is not specified, since CP/M-86 cannot
generally ensure that the required memory region is
available, in which case the CMD file cannot be loaded.

s The B value is used when GENCMD processes a hex file
produced by Intel's OH86, or similar utility program that
contains more than one group. The output from OHS86
consists of a sequence of data records with no information
to identify code, data, extra, stack, or auxiliary groups. In
this case, the B value marks the beginning address of the
group named by the keyword, causing GENCMD to load —

3-6

data following this address to the named group (see the
examples below). Thus, the B value iz normally used to
mark the boundary between code and data segments when
no segment information is included in the hex file. Iiles
produced by ASM-86 do not require the use of the B value
since segment information is included in the hex file.

The minimum memory value (M walue) is included only
when the hex records do not define the minimum memory
requirements for the named group. Generally, the code
group size is determined precisely by the data records
loaded into the area. That is, the total space required for
the group is defined by the range between the lowest and
highest data byte addresses. The data group, however,
may contain uninitialized storage at the end of the group
and thus no data records are present in the hex file which
define the highest referenced data item. The highest ad-
dress in the data group can be defined within the source
program by including a DB 0 as the last data item, Alter-
natively, the M value can be included to allocate the addi-
tional space at the end of the group. Similarly, the stack,
extra, and auxiliary group sizes must be defined using the
M wvalue, unless the highest addresses within the groups
are implicitly defined by data records in the hex file.

The maximum memory size, given by the X wvalue, is
generally used when additional free memory may be
needed for such purposes as I/0 buffers or symbol tables.
If the data area size is fixed, then the X parameter need
not be included. In this case, the X value is assumed to be
the same as the M value. The value XFFFF allocates the
largest memory region available but, if used, the transient
program must he aware that a three-byte length field is
produced in the base page for this group where the high
order byte may be non-zero. Programs converted directly
from CP/M-80 or programs that use a Z-hyte pointer to
address buffers should restrict this value to XFFF or less,
producing a maximum allocation length of 0FFFOH bytes.

3-7

The following GENCMD command line transforms the file
X.H86 into the file X.CMD with the proper header record:

gencmd x code [a40] data[m30,xfff]

In this case, the code group is forced to paragraph address
40H, or equivalently, byte address 400H. The data group re-
quires a minimum of 300H bytes, but can use up to 0FFFOH
bytes, if available.

Assuming that a file Y.H86 exists which contains Intel hex re-
cords with no interspersed segment information, and also as-
suming that this file is on drive B, the command:

genemd b:y data[b30,m20] extra [b50] stack [m40] x1{m40]

produces the file Y.CMD on drive B by selecting records begin-
ning at address 0000H for the code segment, with records
starting at 300H allocated to the data segment. The extra seg-
ment is filled from records beginning at 500H, while the stack
and auxiliary segment #1 are uninitialized areas requiring a
minimum of 400H bytes each. In this example, the data area
requires a minimum of 200H bytes. Note again, that the B
value need not be included if the Digital Research ASM-86 as-
sembler is used.

OPERATION OF LMCMD

The LMCMD utility operates in exactly the same manner as
GENCMD, with the exception that LMCMD accepts an Intel
L-module file as input. The primary advantage of the L-module
format is that the file contains internally coded information
which defines values which would otherwise be required as
parameters to GENCMD, such the beginning address of the
group’s data segment. Currently, however, the only language
processors which use this format are the standard Intel devel-
opment packages, although various independent vendors will
be likely to take advantage of this format in the future.

3-8

COMMAND (CMD) FILE FORMAT

The CMD file produced by GENCMD and LMCMD consists of
the 128-byte header record followed immediately by the mem-
ory image. Under normal circumstances, the format of the
header record is of no consequence to a programmer. For com-
pleteness, however, the various fields of this record are shown
in the following figure:

128 BYTES

GD#1|GDff2 | GD#3 | Go#4 | GDfs—GDén. . .

AUKXKILIARY

22BATGE

In the previous figure, GD#2 through GD#8 represent Group
Descriptors. Each Group Descriptor corresponds to an indepen-
dently-loaded program unit and has the following fields:

a-B1T 16-BIT 16-81T 16-RIT 16—BIT

G- FORM E=LEMGTH A—BASE G-MIN G- MAX

2284777

where G-Form describes the group format, or has the value
zero if no more descriptors follow. If G-Form is non-zero, then
the 8-bit value is parsed as two fields:

G-FORM :
4-BIT A—BIT

X X X X G=TYFE

22B4T7TE

3-9

The G-Type field determines the Group Descriptor type. The
valid Group Descriptors have a G-Type in the range of 1
through 9, as shown in the following table:

Group Descriptors
G-Type Group Type

Code Group

Data Group

Extra Group

Stack Group

Auxiliary Group #1

Auxiliary Group #2

Auxiliary Group #3

Auxiliary Group #4

Shared Code Group
14 Unused, but Reserved

Escape Code for Additional Types

| oo 00 =3 & oo L0 BD

10

e
ohn

All remaining values in the group descriptor are given in incre-
ments of 16-byte paragraph units with an assumed low-order 0
nibble to complete the 20-bit address. G-Length gives the num-
ber of paragraphs in the group. Given a G-length of 0080H, for
example, the size of the group is 00800H = 2048D bytes. A-
Base defines the base paragraph address for a non-relocatable
group while G-Min and G-Max define the minimum and maxi-
mum size of the memory area to allocate to the group. G-Type
9 marks a pure code group for use under MP/M-86 and future
versions of CP/M-86. Presently a Shared Code Group is treated
as a non-shared Program Code Group under CP/M-86.

The memory model described by a header record is implicitly
determined by the Group Descriptors. The 8080 Memory
Model is assumed when only a code group is present, since no
independent data group is named. The Small Model is implied
when both a code and data group are present, but no additional
group descriptors occur. Otherwise, the Compact Model is as-
sumed when the CMD file is loaded,

3-10

4

Basic Disk Operating
System (BDOS) Functions

Introduction . .cicaoiin s s s S 4-3
BDOS Parameters and Function Codes 4-3
SImpletBROSCalls . inniasnnaisnia 4-6
BDOS File Operations ... 4-11
BDOS Memory Management and Load 4-31

4-1/4-2

INTRODUCTION

This section presents the interface conventions which allow
transient program access to CP/M-86 BDOS and BIOS func-
tions. The BDOS calls correspond closely to CP/M-80 Version 2
in order to simplify translation of existing CP/M-80 programs
for operation under CP/M-86. BDOS entry and exit conditions
are described first, followed by a presentation of the individual
BDOS function calls.

BDOS PARAMETERS AND FUNCTION CODES

Entry to the BDOS is accomplished through the 8086 software
interrupt #224, which is reserved by Intel Corporation for use
by CP/M-86 and MP/M-86. The function code is passed in regis-
ter CL with byte parameters in DL and word parameters in
DX, Single byte values are returned in AL, word values in both
AX and BX, and double word values in ES and BX. All seg-
ment registers, except ES, are saved upon entry and restored
upon exit from the BDOS (corresponding to PL/M-86 conven-
tions). The following summarizes input and output parameter
passing:

BDOS Parameter Summary
BDOS Entry Registers

CL Function Code
DL Byte Parameter
DX Word Parameter
DE Data Segment

BDOS Return Registers

Byte value returned in AL

Word value returned in both
AX and BX

Double-word value returned with offset
in BX and segment in ES

4-3

Note that the CP/M-80 BDOS requires an information address
as input to various functions. This address usually provides
buffer or File Control Block information used in the system
call. In CP/M-86, however, the information address is derived
from the current DS register combined with the offset given in
the DX register. That i, the DX register in CP/M-86 performs
the same function as the DE pair in CP/M-80, with the assump-
tion that DS is properly set. This poses no particular problem
for programs which use only a single data segment (as is the
case for programs converted from CP/M-80), but when the data
group exceeds a single segment, you must ensure that the DS
register is set to the segment containing the data area related
to the ecall. It should also be noted that zero values are re-
turned for function calls which are out-of-range.

A list of CP/M-86 calls is given in the following table, with an
asterisk following functions which differ from or are added to
the set of CP/M-80 Version 2 functions.

CP/M-86 BDOS Functions

F# Result

System Resel
Console Oulput
Console Output
Reader Input

Punch Output

List Output

Dhirect Console 1/0
Get I/O Byte

Set I/O Byte

Print String

Read Console Buffer
Get Console Status
Return Version Number
Reset Disk System
Select Disk

Open File

[o

000 =1 Gy On s
*

—_——
[

(SR =y
=L N

4-4

L

CP/M-36 BDOS Functions (Continued)
F# Result

16 Close File

17 Search for First

18 Search for Next

19 Delete File

20 Head Sequential

21 Write Sequential

22 Make File

23 Rename File

24 Return Login Vector

26 Set DMA Address

26 Set DMA Address

27* Get Addr (Alloc)

28 Write Protect Disk

28 Get Addr (R/O Vector)

30 Set File Attributes

31*% Get Addr (Disk Parms)

32 Set/Get User Code

33 Read Random

34 Write Random

35 Compute File Size

36 Set Random Record

37* Reset Drive

40 Write Random with Zero Fill
50% Direct BIOS Call

51* Set DMA Segment Base
52* (et DMA Segment Base
53* Get Max Memory Available
54% (et Max Memory at Abs Location
55% Get Memory Region

56* Get Absolute Memory Region
7% Free memory region

58% Free all memory

59*% Program load

The individual BDOS functions are described in the following
three sections, which cover the simple functions, file opera-
tions, and extended operations for memory management and
program loading.

SIMPLE BDOS CALLS

The first set of BDOS functions covers the range 0 through 12,
and perform simple functions such as system reset and single
character 1/0.

ENTHY RETURM
CL: DoH FUNCTION O
DL ABORT SYSTEM RESET
copE
2264779

The system reset function returns control to the CP/M operat-
ing system at the CCP command level. The abort code in DL
has two possible values: if DL. = 00H, then the currently ac-
tive program is terminated, and control is returned to the CCP.
If DL is a 01H, the program remains in memory, and the mem-
ory allocation state remains unchanged.

ENTRY RETURHN

CL; O1H FUNCTION 1 AL: ASCII CHARACTER

CONSOLE IHPUT

22BATB0

The console input function reads the next character from the
logical console device (CONSOLE) to register AL. Graphic
characters, along with carriage return, line feed, and backspace
(CTRI-H) are echoed to the console. Tab characters (CTRL-T)
are expanded in columns of eight characters, The BDOS does
not return to the calling program until a character has been
typed, thus suspending execution if a character is not ready.

EHTRY RETURMN
CL; O2ZH FUMCTION 2
DL: AsSCILI COMSOLE OUTPUT
CHARACTER

ZZB4781

4-6

The ASCII character from DL is sent to the logical console.
Tab characters expand in columns of eight characters. In addi-
tion, a check is made for start/stop scroll (CTRL-S).

ENTRY RETLRHN

CL; Q3H FUNMCTION 3 AL . ARCII CHARACTER

READER 1NPUT

22H4762

The Reader Input function reads the next character from the
logical reader (READER] into register AL. Control does not re-
turn until the character has been read.

ENTRY RETURM
Ch: 0O4H FUNCTION 4
DL ASCII PUNCH QUTPUT
CHARACTER

2204783

The Punch Output function sends the character from register
DL to the logical punch device (PUNCH].

ENTRY = RETURHN
CLi OSH FUNCTION 5
DL: ASCII LIST OUTFUT
CHARACTER
2284784

The List Output function sends the ASCII character in register
DL to the logical list device (LIST).

ENTRY o RETURMN

QL DoH FUNCTION & AL, CHAR OR STATUS
(MO VALUE)

DL : gEFH {INPUT)
gEEH {STATUS)
CHAR (OUTPUT)

DIRECT
CONSOLE |2

22BATHE

4-7

Direct console 1/ is supported under CP/M-86 for those spe-
cialized applications where unadorned console input and output
is required. Use of this function should, in general, be avoided
since it bypasses all of CP/M-86's normal control character
functions (that is, CTRL-5 and CTRL-P). Programs which per-
form direct 1/O through the BIOS under previous releases of
CP/M-80, however, should be changed to use direct I/O under
the BDOS so that they can be fully supported under future
releases of MP/M™ and CP/M.

Upon entry to function 6, register DL either contains (1) a hex-
adecimal FF, denoting a CONSOLE input request, or (2] a hex-
adecimal FE, denoting a CONSOLE status request, or {3) an
ASCII character to be output to CONSOLE where CONSOLE
is the logical console device. If the input value is FF, then func-
tion & directly calls the BIOS console input primitive. The next
console input character is returned in AL. If the input value is
FE, then function 6 returns AL =00 if no character is ready
and AL =FF otherwise. If the input value in DL is not FE or
FF, then function 6 assumes that DL contains a valid ASCII
character which is sent to the console.

EHNTRY s RETURM

CL: O7H FUNCTION 7 AL: 1/0 BYTE VALUE

GET 1.0 BYTE

2284786

The Get I/0 Byte function returns the current wvalue of
I0OBYTE in register AL. The TOBYTE contains the current as-
signments for the logical devices CONSOLE, READER,
PUNCH, and LIST provided the IOBYTE facility is imple-
mented in the BIOS,

ENTRY s RETURHN i
CL: O8H FUHCTION 8
DL; |0 BYTE SET 10 BYTE
WaLUE

2284787

MP/M is a trademark of Digital Research,

4-8

The Set 1/O Byte function changes the system IOBYTE value
to that given in register DL. This funetion allows transient pro-
gram access to the IOBYTE in order to modify the current as-
signments for the logical devices CONSOLE, READER,
PUNCH, and LIST.

ENTRY RETURM
CL: OSH FUMCTION O
DX STRING PRINT STRING
OFFSET
2284788

The Print String function sends the character string stored in
memory at the location given by DX to the logical console de-
vice (CONSOLE), until a dollar sign (3) is encountered in the
string. Tabs are expanded as in function 2, and checks are
made for start/stop scroll and printer echo.

ENTRY RETURN
—_— -
CL. OAH FUMCTION 10D COME0LE CHARACTERS

DX: BUFFER BREAD
OF FSET CONSOLE BUFFER 1M BUFFER

2ZrRa789

The Read Buffer function reads a line of edited console input
into a buffer addressed by register DX from the logical console
device (CONSOLE). Console input is terminated when either
the input buffer is filled or when a return (CTRL-M) or a line
feed (CTRI-J) character is entered. The input buffer addressed
by DX takes the form:

DX 0 F1 F2 43 44 45 +R +7 +H i ¢ s TH

Mx |Inc et | ez |3 | c4 | cs)ce |c7 L] L] L] s

2284790

4-9

where mx is the maximum number of characters which the
buffer will hold, and nc is the number of characters placed in
the buffer. The characters entered by the operator follow the nc
value. The value mx must be set prior to making a function 10
call and may range in value from 1 to 255. Setting mx to zero
is equivalent to setting mx to one. The value ne is returned to
the user and may range from 0 to mx. If nc < mx, then unini-
tialized positions follow the last character, denoted by two
question marks (?7) in the previous figure. Note that a termi-
nating return or line feed character is not placed in the buffer
and not included in the count ne.

A number of editing control functions are supported during
console input under function 10. These are summarized in

the following table:

Line Editing Controls

Keystroke Result
BACKSPACE Removes and echoes the last character
CTRL-C HKeboots when at the beginning of line
CTRL-E Causes physical end of line
CTRL-H Backspaces one charaeter position
CTRL-J Terminates input line (line feed)
CTRL-M Terminates input line (return)
CTRL-IV Retypes the current line after new line
CTRL-U Removes current. line after new line
CTRL-X Backspaces to beginning of current line

Certain functions which return the carriage to the leftmost
position (such as CTRIL-X) do so only to the column position
where the prompt ended. This convention makes operator data
input and line correction more legible.

ENTRY RETURH

<L DBH FUHNCTION 11 AL CONSOLE STATUS

GET
COMSOLE STATUS

22847491

4-10

The Console Status function checks to see if a character has
been typed at the logical console device (CONSOLE). If a char-
acter is ready, the value 01H is returned in register AL. Other-
wise a D0H value is returned,

ENTRY RETURN

CL: DCH FLUHCTION 12 BX: VERSION MUMBER

RETURM
VERSION HUMBER

2284752

Function 12 provides information which allows version inde-
pendent programming. A two-byte wvalue is returned, with
BH = 00 designating the CP/M release (BH = 01 for MP/M),
and BL = 00 for all releases previous to 2.0, CP/M 2.0 returns
a hexadecimal 20 in register BL, with subsequent version 2 re-
leases in the hexadecimal range of 21 through 2F. To provide
version number compatibility, the initial release of CP/M-86 re-
furns a 2.2,

BDOS File Operations

Functions 12 through 52 are related to disk file operations un-
der CP/M-86. In many of these operations, DX provides the
DS- relative offset to a file control block (FCB). The File Con-
trol Block (FCB) data area consists of a sequence of 33 bytes
for sequential access, or a sequence of 36 bytes in the case that
the file is accessed randomly. The default file control block nor-
mally located at offset 005CH from the DS register can he
used for random access files, since bytes 007DH, 007EH, and
007FH are available for this purpose. Here is the FCB format,
followed by definitions of each of its fields:

DRIFI|F2) ;7 | FR|Ti|T2|Ta| EX|51 | s2|rc Do« |DM| crfro | R1|R2

o0 0 02 ...086 09 7O 70 F2 13 14 15 16 ...31 32 33 34 55
Z2B4ATO

4-11

where;

dr

f1..18

t1,t2,t3

ex

gl

52

rc

dil...dn

Ccr

Drive code (0-16)

0 = = Use defanlt drive for file
1 = > Auto disk select drive A,
2 = = Auto disk select drive B,

16 = = Auto disk select drive P.

Contain the file name in ASCII uppercase,
with high hit=0

Contain the file type in ASCII uppercase,
with high bit=10

t1', t2', and t3’ denote the high bit of these
positions,

tl' = 1 = > Read/Only file,

t2' = 1 = > SYS file, no DIR list

Contains the current extent number, nor-
mally set to 00 by the user, but in range
0 - 31 during file 1/0

Reserved for internal system use

Reserved for internal system use, set to zero
on call to OPEN, MAKE, SEARCH

Record count for extent x, takes on values
from 0 - 128

Filled in by CP/M, reserved for system use
Current record to read or write in a sequen-

tial file operation, nmormally set to zero by
user

412

r),rl,r2 Optional random record number in the range
0-65535, with overflow to 12, r0, rl constitut-
ing a 16-bit value with low byte r0), and high
byte rl

For users of earlier versions of CP/M, it should be noted in
passing that both CP/M Version 2 and CP/M-86 perform direc-
tory operations in a reserved area of memory that does not af-
fect write buffer content, except in the case of Search and
Search Next where the directory record is copied to the current
DM A address.

There are three error situations that the BDOS may encounter
during file processing, initiated as a result of a BDOS File I/O
function call, When one of these conditions is detected, the
BDOS issues the following message to the console:

BEDOS ERR ON x: error

where % is the drive name of the drive selected when the error
condition is detected, and the word error is one of the following
three messages:

BAD SECTOR, SELECT, or R/O

These error situations are trapped by the BDOS, and thus the
executing transient program is temporarily halted when the er-
ror is detected. No indication of the error situation is returned
to the transient program.

The BAD SECTOR error is issued as the result of an error con-
dition returned to the BDOS from the BEIOS module. The
BDOS makes BIOS sector read and write commands as part of
the execution of BDOS file related system calls. If the B1OS
read or write routine detects a hardware error, it returns an er-
ror code to the BDOS resulting in this error message. The oper-
ator may respond to this error in two ways: a CTRL-C
terminates the executing program, while a RETURN instructs
CP/M-86 to ignore the error and allow the program to continue
execution.

4-13

The SELECT error is also issued as the result of an error con-
dition returned to the BDOS from the BIOS module. The
BDOS makes a BIOS disk select call prior to issuing any BIOS
read or write to a particular drive. If the selected drive is not
supported in the BIOS module, it returns an error code to the
BDOS resulting in this error message. CP/M-86 terminates the
currently running program and returns to the command level
of the CCP following any input from the console.

The R/O message occurs when the BDOS receives a command
to write to a drive that is in read-only status, Drives may be
placed in read-only status explicitly as the result of a STAT
command or BDOS function call, or implicitly if the BDOS de-
tects that disk media has been changed without performing a
warm start, The ability to detect changed media is optionally
included in the BIOS, and exists only if a checksum vector is
included for the selected drive. Upon entry of any character at
the keyboard, the transient program is aborted, and control re-
turns to the CCP.

EHNTRY _ RETUREN

cL: aDH FUNMCTION 13

RESET
DISK SYSTEM

2264794

The Reset Disk Function is used to programmatically restore
the file system to a reset state where all disks are set to read/
write (see functions 28 and 29), only disk drive A is selected.
This function can be used, for example, by an application pro-
gram which requires disk changes during operation. Function
37 (Reset Drive) can also be used for this purpose.

EMTRY RETURM
CcL: OEH FUMCTION 14
DL: SELECTED SELECT DISK
Di15K
22847895

The Select Disk function designates the disk drive named in
register DL as the default disk for subsequent file operations,
with DL, = 0 for drive A, 1 for drive B, through 15 corre-
sponding to drive P in a full sixteen-drive system. In addition,
the designated drive is logged-in if it is currently in the reset
state. Logging-in a drive places it in online status which acti-
vates the drive's directory until the next cold start, warm
start, disk system reset, or drive reset operation. FCBs which
specify drive code zero (dr = 00H|} automatically reference the
currently selected default drive. Drive code values between 1
and 16, however, ignore the selected default drive and directly
reference drives A through P.

ENTRY L, RETURM
CL: OFH FUNMCTION 15 AlL: RETURMN CODOE
DX: FCB OPEN FILE
OFFSET

2284796

The Open File operation is used to activate a FCB specifying a
file which currently exists in the disk directory for the cur-
rently active user number. The BDOS scans the disk directory
of the drive specified by byte 0 of the FCB referenced by DX
for a match in positions 1 through 12 of the referenced FCB,
where an ASCII question mark (3FH) matches any directory
character in any of these positions. Normally, no question
marks are included and, further, byte x of the FCB is set to
zero before making the open call.

If a directory element is matched, the relevant directory infor-
mation is copied into bytes d0 through dn of the FCB, thus al-
lowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed un-
til a successful open operation is completed. Further, an FCB
not activated by either an open or make function must not be
used in BDOS read or write commands. Upon return, the open
function returns a directory code with the value 0 through 3 if
the open was successful, or 0FFH (255 decimal) if the file can-
not be found. If question marks occur in the FCB then the first
matching FCB is activated. Note that the current record (er)
must be zeroed by the program if the file is to he accessed
sequentially from the first record.

4-15

EWTRY RETURHM

cL: 10H FUMCTION 16 AL: RETURHK CODE

Ox: CLOSE FILE

FCB
ODFFSET

2284797

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DX has been pre-
viously activated through an open or make funection (see func-
tions 15 and 22), the close function permanently records the
new FCB in the referenced disk directory. The FCB matching
process for the close is identical to the open function. The
directory code returned for a successful close eperation is 0, 1,
2, or 3, while a 0FFH (255 decimal} is returned if the file name
cannot be found in the directory. A file need not be closed if
only read operations have taken place. Tf write operations have
occurred, however, the close operation is necessary to perma-
nently record the new directory information.

ENTRY RETLRHN
cEL: 11H FUMCTION 17 AL: DIRECTORY
CODE
DX: FCB SEARCH
OFFSET FOR FIRST
2284798

Search First scans the directory for a match with the file given
by the FCB addressed by DX. The value 255 (hexadecimal FF}
is returned if the file is not found, otherwise 0, 1, 2, or 3 is re-
turned indicating the file is present. In the case that the file is
found, the buffer at the current DMA address is filled with the
record containing the directory entry, and its relative starting
position is AL * 32 (that is, rotate the AL register left 5 bits).
Although not normally required for application programs, the
directory information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from fl through x matches the corresponding field of
any directory entry on the default or auto-selected disk drive.
If the dr field contains an ASCII question mark, then the auto

4-16

disk select function is disabled, the default disk is searched,
with the search function returning any matched entry, allo-
cated or free, belonging to any user number. This latter func-
tion is not normally used by application programs, but does
allow complete flexibility to scan all current directory values. If
the dr field is not a question mark, the s2 byte is automatically
zeroed.

EMTRY 4 . RETURMN
CL;: 12H FUNCTION 18 AL: DIRECTORY
CODE
SEARCH
FOR HEXT

2284795

The Search Next function is similar to the Search First func-
tion, except that the directory scan continues from the last
matched entry. In a way similar to function 17, function 18 re-
turns the decimal value 255 in A when no more directory items
match. In terms of execution sequence, a function 18 call must
follow either a function 17 or function 18 call with no other in-
tervening BDOS disk related function calls,

ENTRY 4 RETURMN
CL:I 13H FUNCTION 12 AL: RETURM CORE
0X: FCH DELETE FILE
OFFSET

22g4800

The Delete File function removes files which mateh the FCB
addressed by DX. The filename and type may contain ambigu-
ous references (that is, question marks in various positions),
but the drive select code cannot be ambiguous, as in the Search
and Search Next functions. Funection 19 returns a 0FFH (deci-
mal 255) if the referenced file or files cannot be found, other-
wise a value of zero is returned.

ENTRY RETLIRN
CL: 14H FUNCTION 20 AL: RETURH CODE
OxX: Fca READ SEQUEMTIAL
QOFFSET

2284801

4-17

Given that the FCB addressed by DX has been activated
through an open or make function (numbers 15 and 22, the
Read Sequential function reads the next 128 byte record from
the file into memory at the current DMA address. The record
is read from position cr of the extent, and the cr field is auto-
matically incremented to the next record position. If the cr
field overflows then the next logical extent is automatically
opened and the cr field is reset to zero in preparation for the
next read operation. The cr field must be set to zero following
the open call by the user if the intent is to read sequentially
from the beginning of the file. The value 00H is returned in the
AL register if the read operation was successful, while a value
of 01H is returned if no data exists at the next record position
of the file. Normally, the no data situation is encountered at
the end of a file. However, it can also occur if an attempt is
made to read a data block which has not been previously writ-
ten, or an extent which has not been created, These situations
are usually restricted to files created or appended by use of the
BDOS Write Random command (function 34).

ENTRY RETURMN
cL: 15H FUMCTION 21 AL RETURN CODE
WRITE
oD¥X: FCB
EECEET SEQUENTIAL
2264802

Given that the FCB addressed by DX has been activated
through an open or make function (numbers 15 and 22), the
Write Sequential function writes the 128 byte data record at
the current DMA address to the file named by the FCB. The
record is placed at position cr of the file, and the cr field is
automatically incremented to the next record position. If the cr
field overflows then the next logical extent is automatically
opened and the cr field is reset to zero in preparation for the
next write operation. Write operations can take place into an
existing file, in which ease newly written records overlay those
which already exist in the file, The cr field must be set to zero
following an open or make call by the user if the intent is to
write sequentially from the beginning of the file. Register AL
= 00H upon return from a successful write operation, while a

4-18

non-zero value indicates an unsuccessful write due to one of the
following conditions:

01 No available directory space — This condition occurs when
the write command attempts to create a new extent that re-
guires a new directory entry and no available directory entries
exist on the selected disk drive.

02 No available data block — This condition is encountered
when the write command attempts to allocate a new data block
to the file and no unallocated data blocks exist on the selected
disk drive.

ENTRY RETLIRH
_—— -
CL: 16H FUNCTION 22 AL: RETURN CODE
oX: FCB MAKE FILE
OFFSET

2284803

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in
the currently referenced disk directory (that is, the one named
explicitly by a non-zero dr code, or the default disk if dr is
zero). The BDOS creates the file and initializes both the direc-
tory and main memory value to an empty file. The programmer
must ensure that no duplicate file names occur, and a preced-
ing delete operation is sufficient if there is any possibility of
duplication. Upon return, register A = 0, 1, 2, or 3 if the oper-
ation was successful and 0FFH (255 decimal) if no more direc-
tory space iz available, The make function has the side-effect of
activating the FCB and thus a subsequent open is not
necessary.

ENTRY] RETURMN
CL: 17H FUNCTION 23 AL: RETURN CODE
DX: FCH E
OFFSET REMAME FILE

2284804

4-19

The Rename function uses the FCB addressed by DX to
change all directory entries of the file specified by the file name
in the first 16 bytes of the FCB to the file name in the second
16 bytes. It is the user's responsibility to insure that the file
names specified are valid CP/M unambiguous file names. The
drive code dr at position 0 is used to select the drive, while the
drive code for the new file name at position 16 of the FCB is
ignored. Upon return, register AL is set to a value of zero if
the rename was successful, and OFFH (255 decimal) if the first
file name could not be found in the directory scan.

ENTRY ARETURM
-— " -
cL: 18H FUNCTION 24 BX: LOGIN VECTOR
BX . LOGIN RETURN LOGIN
VECTOR VECTOR
2284005

The login vector value returned by CP/M-86 is a 16-bit value in
BX. where the least significant bit corresponds to the first
drive A, and the high order bit corresponds to the sixteenth
drive, labelled P. A 0 bit indicates that the drive is not online,
while a 1 bit marks a drive that is actively online due to an ex-
plicit disk drive selection, or an implicit drive select caused by
a file operation which specified a non-zero dr field.

ENTRY RETURM

cL: 19H FUNCTION 25 AL CURRENT DISK

RETURH CURRENHT
O15H

22B4B06

Function 25 returns the currently selected default disk number
in register AL. The disk numbers range from 0 through 15
corresponding to drives A through P.

EMTRY ") RETURM
CL: TAH FUMCTION 28
DX: QhA SET OMA

8FFseT ADDRESS

2284807

4-20

p—

DMA is an acronym for Direct Memory Address, which is of-
ten used in connection with disk controllers which directly ac-
cess the memory of the mainframe computer to transfer data
to and from the disk subsystem. Although many computer sys-
tems use non-DMA access (that is, the data is transferred
through programmed I/0 operations), the DMA address has, in
CP/M, come to mean the address at which the 128 byte data
record resides before a disk write and after a disk read. In the
CP/M-86 environment, the Set DMA function is used to specify
the offset of the read or write buffer from the current DMA
base. Therefore, to specify the DMA address, both a function
26 call and a function 51 call are required. Thus, the DMA ad-
dress becomes the value specified by DX plus the DMA base
value until it is changed by a subsequent Set DMA or set
DMA base function.

ENTRY =9 RETURM
CL: 1BH FUNCTION 27 B¥: ALLOC OFFSET
GET ADDR ES; SEGMENT BASE
(ALLOC)

2284808

An allocation vector is maintained in main memory for each on-
line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of
remaining storage (see the STAT program). Function 27 re-
turns the segment base and the offset address of the allocation
vector for the currently selected disk drive. The allocation in-
formation may, however, be invalid if the selected disk has
been marked read/only.

EHTRY RETURMN

CLI TCH FUHCTION 28

WRITE PROTECT
DISK

224809

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write
to the disk, before the next cold start, warm start, disk system
reset, or drive reset operation produces the following message:

4-21

Bdos Err on d: R/IO

ENTRY RETURHM
CL: 1DH FUNHCTION 29 BX: RO VECTOR
WALUE

GET READDOHLY
VECTOR

2284810

Function 29 returns a bit vector in register BX which indicates
drives which have the temporary read/only bit set. In a manner
similar to function 24, the least significant bit corresponds to
drive A, while the most significant bit corresponds to drive P.
The R/O bit is set either by an explicit call to function 28, or
by the automatic software mechanisms within CP/M-86 which
detect changed disks.

EMTRY - RETURMN
cL: 1EH FUMCTION 30 AL: RETURN CODE
D¥. FCB SET FILE

OFFSET ATTRIBUTES

22a4B11

The Set File Attributes function allows programmatic manipu-
lation of permanent indicators attached to files. In particular,
the R/O, System and Archive attributes (t1', t2', and t3') can
be set or reset. The DX pair addresses a FCB containing a file
name with the appropriate attributes set or reset. It is the
user’s responsibility to insure that an ambiguous file name is
not specified. Function 30 searches the default disk drive direc-
tory area for directory entries that belong to the current user
number and that match the FCB specified name and type
fields. All matching directory entries are updated to contain
the selected indicators. Indicators f1° through f4° are not pres-
ently used, but may be useful for applications programs, since
they are not involved in the matching process during file open
and close operations. Indicators f5' through {8’ are reserved for
future system expansion. The currently assigned attributes are
defined as follows:

t13" The R/O attribute indicates, if set, that the file is
in read/only status. BDOS will not allow write
ecommands to be issued to files in R/O status.

4-22

s

t25" The System attribute is referenced by the CP/M
DIR utility. If set, DIR will not display the file in
a directory display.

t3s": The Archive attribute is reserved but not actually
used by CP/M-86. If set it indicates that the file
has been written to back up storage by a user
written archive program. To implement this
facility, the archive program sets this attribute
when it copies a file to back up storage; any
programs updating or creating files reset this
attribute. Further, the archive program backs up
only those files that have the Archive aitribute
reset. Thus, an automatic back up facility
restricted to modified files can be easily
implemented.

Funetion 30 returns with register AL set to 0fFH (255 decimal)
if the referenced file cannot be found, otherwise a value of zero
is returned.

EMNTRY RETURM
cL: 1FH FUNCTION 31 BX: DPO OFFSET
GET ADDR ES: SEGMEMNT BASE
(DISK PARMS)

Z2B4p12

The offset and the segment base of the BIOS resident disk
parameter block of the currently selected drive are returned in
BX and ES as a result of this function call, This contral block
can be used for either of two purposes. First, the disk parame-
ter values can be extracted for display and space computation
purposes, or transient programs can dynamically change the
values of current disk parameters when the disk environment
changes, if required. Normally, application programs will not
require this facility. The paragraph entitled GENDEF Output,
in Chapter 6, defines the BIOS disk parameter block.

EMTRY RETURN
cL: 2o FUNCTION 32 AL! CURREMT CODE
OR MO VALUE
DL: OFEM(EET) S ET/GET
USER CODE LTI oonE
{SET])
22B4B13

4-23

An application program can change or interrogate the currently
active user number by calling function 32. 1f register DL =
OFFH, then the value of the current user number is returned in
register AL, where the value is in the range 0 to 15. If register
DL is not OFFH, then the current user number is changed to
the value of DL (modulo 16).

ENTRY = RETURN
CL 21H FLUHCTION 33 AL: RETURMN CORDE
DX: FCH
SERsET READ RANODOM

ZZBABT4

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation
takes place at a particular record number, selected by the 24-
bit value constructed from the three byte field following the
FCB (byte positions r0 at 33, rl at 34, and r2 at 35). Note that
the sequence of 24 bits is stored with the least significant byte
first (r0), the middle byte next (rl), and the high byte last (r2).
CP/M does not reference byte r2, except in computing the size
of a file (function 35). Byte r2 must be zero, however, since a
non-zero value indicates overflow past the end of file.

Thus, the r0, rl byte pair is treated as a double-byte, or word
value, which contains the record to read. This value ranges
from 0 to 65535, providing access to any particular record of
any size file. In order to access a file using the Read Random
function, the base extent (extent 0) must first be opened. Al-
though the base extent may or may not contain any allocated
data, this ensures that the FCB is properly initialized for sub-
sequent random access operations. The selected record number
is then stored in the random record field (x0,r1), and the BDOS
is called to read the record. Upon return from the call, register
AL either contains an error code, as listed below, or the value
00 indicating the operation was successful. In the latter case,
the buffer at the current DMA address contains the randomly
accessed record. Note that contrary to the sequential read oper-
ation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record.

4-24

S

Upon each random read operation, the logical extent and cur-
rent record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current ran-
domly accessed position. Note, however, that in this case, the
last randomly read record will be re-read as you switch from

* random mode to sequential read, and the last record will be re-

written as you switch to a sequential write operation. You can,
of course, simply advance the random record position following
each random read or write to obtain the effect of a sequential
/0 operation.

Error codes returned in register AL following a random read
are listed in the following table:

Function 33 (Read Random) Error Codes
Code Meaning

01 Reading unwritten data — This error code is returned
when a random read operation accesses a data block
which has not been previcusly written,

02 {Not returned by the Random Read command)

03 Cannot close current extent — This error code is re-
turned when BIDOS cannot close the current extent
prior to moving to the new extent containing the record
specified by hytes r0, rl of the FCB, This error can be
caused by an overwritten FCB or a read random opera-
tion on an FCB that has not been opened.

04 Seek to unwritten extent — This error code is returned
when a random read operation accesses an extent that
has not been created. This error situation is equivalent

to error 01,
05 Mot returned by the Random Read command)
06 Random record number oul of range — This error code

is returned whenever byvte r2 of the FCB is non-zero.

Normally, non-zero return codes can be treated as missing
data, with zero return codes indicating operation complete.

4-25

ENTRY RETURMN

CL. 22H FUNCTION 34 AL: RETURN CODE
ol FCH W RANDOM
OFFSET gl i
22p4815

The Write Random operation is initiated in a manner similar to
the Read Random call, except that data is written to the disk
from the current DMA address. Further, if the disk extent or
data block which is the target of the write has not yet been al-
located, the allocation is performed before the write operation
continues. As in the Read Random operation, the random re-
cord number is not changed as a result of the write. The logical
extent number and current record positions of the file control
block are set to correspond to the random record which is being
written. Sequential read or write operations can commence fol-
lowing a random write, with the note that the currently ad-
dressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the
random record position following each write to get the effect of
a sequential write operation. In particular, reading or writing
the last record of an extent in random mode does not cause an
automatic extent switch as it does in sequential mode.

In order to access a file using the Write Random function, the
base extent (extent 0) must first be opened. As in the Read
Random function, this ensures that the FCB is properly initial-
ized for subsequent random access operations. If the file is
empty, a Make File function must be issued for the base ex-
tent. Although the base extent may or may not contain any al-
located data, this ensures that the file is properly recorded in
the directory, and is visible in DIR requests.

Upon return from a Write Random call, register AL either con-
tains an error code, as listed in the following table, or the value
00, indicating that the operation was successful.

4-26

Function 34 (WRITE RANDOM) Error Codes

Code Meaning
01 (Not returned by the Random Write command)
02 Mo available data block — This condition is encountered

when the Write Random command attempts to allocate
a new data block to the file and no unallocated data
blocks exist on the selected disk drive.

03 Cannot close current extent — This error code is re-
turned when BDOS cannot close the current extent
prior to moving to the new extent containing the record
specified by bytes r0, rl of the FCB. This error can he
caused by an overwritten FCB or a write random opera-
tion on an FCB that has not been opened.

04 (Mol returned by the Random Write command)

=]
o

Mo available directory space — This condition occurs
when the write command attempts Lo create a new ex-
tent that requires a new directory entry and no avail-
able directory entries exist on the selected disk drive.

(]3] Random record number out of range — This error code
is returned whenever byte r2 of the FCB iz non-zero,

ENTRY o o RETURMN
CL: 23H FUNCTION 35 RANDOM RECORD
S FIELD S5ET

* OFFSET DDMFI_EII'rl'ZEg FILE

2ZB4816

When computing the size of a file, the DX register addresses
an FCB in random mode format (bytes v0, rl, and r2 are pres-
ent]. The FCB contains an unambiguous file name which is
used in the directory scan. Upon return, the random record
bvtes contain the virtual file size which is, in effect, the record
address of the record following the end of the file. If, following
a call to function 35, the high record byte r2 is 01, then the file
contains Che maximum record count 65,536, Otherwise, bytes
r0) and rl constitute a 16-bit value (r0 is the least significant
bvte, as before) which is the file size.

4-27

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end
of file, then performing a sequence of random writes starting at
the preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and holes exist in the allocation, then the file
may in fact contain fewer records than the size indicates. If, for
example, a single record with record number 65535 {CP/M’s
maximum record number) is written to a file using the Write
Random function, then the virtual size of the file is 65536 re-
cords, although only one block of data is actually allocated.

ENTRY RETURM
CLi 24H FUNCTION 3& RANDOM RECORD
FIELD SET
DX: FCB SET RANDOM
OFFSET RECORD
2284817

The Set Random Record function causes the BDOS to auto-
matically produce the random record position of the next re-
cord to be accessed from a file which has been read or written
sequentially to a particular point. The function can be useful in
two ways.

First, it is often necessary to initially read and scan a sequen-
tial file to extract the positions of various key fields. As each
key is encountered, function 36 is called to compute the ran-
dom record position for the data corresponding to this key. If
the data unit size is 128 bytes, the resulting record position
minus one is placed into a table with the key for later retrieval.
After scanning the entire file and tabulating the keys and their
record numbers, you can move instantly to a particular keyed
record by performing a random read using the corresponding
random record number which was saved earlier. The scheme is
easily generalized when variable record lengths are involved,
since the program need only store the buffer-relative byte posi-
tion along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

4-28

A second use of function 36 occurs when switching from a se-
quential read or write to random read or write. A file is sequen-
tially accessed to a particular point in the file, function 36 is
called which sets the record number, and subsequent random
read and write operations continue from the next record in the
file,

ENTRY o RETURHN
CL. 25H FUNCTION 37 AL OOH
DX : DRIVE

YECTOR RESET DRIVE

22B4ETR

The Reset Drive function is used to programmatically restore
specified drives to the reset state (a reset drive is not logged-in
and is in read/write status). The passed parameter in register
DX is a 16 bit vector of drives to be reset, where the least sig-
nificant bit corresponds to the first drive, A, and the high or-
der bit corresponds to the sixteenth drive, labelled P. Bit
values of 1 indicate that the specified drive is to be reset.

In order to maintain compatibility with MP/M™, CP/M returns
a zero value for this function,

EMTRY = RETURM
Y
CL: 28H FUNCTION 40 AL RETURM CORE
DX!: FCR WRITE RANDOM
OFFSET WITH ZERO FILL

2284819

The Write Random With Zero Fill function is similar to the
Write Random function (function 34) with the exception that a
previously unallocated data block is initialized to records filled
with zeros before the record is written. If this function has
been used to create a file, records accessed by a read random

MP/M iz a trademark of Digital Hesearch Ine.

4-29

operation that contain all zeros identify unwritten random re-
cord numbers. Unwritten random records in allocated data
blocks of files created using the Write Random function con-
tain uninitialized data,

ENTRY RETURM
cL; 32H FUNGTION 50
oX: BIOS
DESCRIPTOR B aeel
2284820

Function 50 provides a direct BIOS call and transfers control
through the BDOS to the BIOS. The DX register addresses a
five-hyte memory area containing the BIOS call parameters:

8=BIT 16—-BIT 16-B1T

FUMNC VALLUE(CXK) VALLUE[DX)

2284821

where Fune is a BIOS function number, (see the first table in
Chapter 5) and value (CX) and value (DX) are the 16-bit values
which would normally be passed directly in the CX and DX
registers with the BIOS call. The CX and DX values are loaded
into the 8086 registers before the BIOS call is initiated.

ENTRY RETURN
CLi 33H FUNCTION E1
DX, BASE sSET DMA EASE

ADDRESS

22BABZR

Function 51 sets the hase register for subsequent DMA trans-
fers. The word parameter in DX is a paragraph address and is
used with the DMA offset to specify the address of a 128 byte
buffer area to be used in the disk read and write functions.
Note that upon initial program load, the default DMA base is
set to the address of the user's data segment (the initial value
of DS) and the DMA offset is set to 0080H, which provides
access to the default buffer in the base page.

4-30

e

ENTRY RETURHM

CL: 34H FUNCTION 52 BX{ DMA OFFSET

GET DMA BASE ES: DMA SEGQMENT

22Ba823

Function 52 returns the current DMA Base Segment address
in BS, with the current DMA Offset in DX,

BDOS MEMORY MANAGEMENT AND LOAD

Memory is allocated in two distinet ways under CP/M-86. The
first is through a static allocation map, located within the
BIOS, that defines the physical memory which is available on
the host system. In this way, it is possible to operate CP/M-86
in a memory configuration which is a mixture of up to eight
non-contignous areas of RAM or ROM, along with reserved,
missing, or faulty memory regions. In a simple RAM-based
system with contiguous memory, the static map defines a sin-
gle region, usually starting at the end of the BIOS and extend-
ing to the end of available memaory.

Onee memory is physically mapped in this manner, CP/M-86
performs the second level of dynamic allocation Lo support
transient program loading and execution. CP/M-86 again allows
dynamic alloeation of memory into eight regions. A request for
allocation takes place either implicitly, through a program load
operation, or explicitly through the BDOS calls given in this
section. Programs themselves are loaded in two ways: through
a command entered at the CCP level, or through the BDOS
Program Load operation {function 59). Multiple programs can
be loaded at the CCP level, as long as each program executes a
System Reset (function 0) and remains in memory (DL = 01H).
Multiple programs of this type only receive control by inter-
cepting interrupts, and thus under normal circumstances there
is only one transient program in memory at any given time. If,
however, multiple programs are present in memory, then
CTRL-C characters entered by the operator delete these pro-
grams in the opposite order in which they were loaded no mat-
ter which program is actively reading the console,

4-31

Any given program loaded through a CCP command can, itself,
load additional programs and allocate data areas. Suppose four
regions of memory are allocated in the following order: a pro-
aram is loaded at the CCP level through an operator command.
The CMD file header is read, and the entire memory image con-
sisting of the program and its data is loaded into region A, and
execution begins., This program, in turn, calls the BDOS Pro-
gram Load function (59) to load another program into region B,
and transfers control to the loaded program. The region B pro-
gram then allocates an additional region C, followed by a re-
gion D. The order of allocation is shown in the following figure:

REGION A&

REGION B

REGION C

REGION D

224824

There is a hierarchical ownership of these regions: the program
in A controls all memory from A through D. The program in B
also controls regions B through D. The program in A can re-
lease regions B through D, if desired, and reload yet another
program. DDT-86, for example, operates in this manner by exe-
cuting the Free Memory call (function 57) to release the mem-
ory used by the current program before loading another test
program. Further, the program in B can release regions C and
D if required by the application. It must be noted, however,
that if either A or B terminates by a System HReset (BDOS
function 0 with DL = 00H) then all four regions A through D
are released.

4-32

A transient program may release a portion of a region, allowing
the released portion to be assigned on the next allocation re-
quest. The released portion must, however, be at the beginning
or end of the region. Suppose, for example, the program in re-
glion B above receives 800H paragraphs at paragraph loeation
100H following its first allocation request as shown in the fol-
lowing figure:

1000H:

LENGTH =
BOOOH REGION C

2284825

Suppose further that region D is then allocated. The last 200H
paragraphs in region C can be returned without affecting re-
gion D by releasing the 200H paragraphs beginning at para-
graph base T00H, resulting in the memaory arrangement shown
in the following figure:

1000H:
LENGTH =
GO00H REGION C
LEMGTH = F0O00H.,
2000H
22BAB26

The region beginning at paragraph address T00H is now avail-
able for allocation in the next request. Note that a memory re-
quest will fail if eight memory regions have already been
allocated, Normally, if all program units can reside in a contig-
uous region, the system allocates only one region.

4-33

Memory management functions beginning at 53 reference a
Memory Control Block (MCB), defined in the calling program,
which takes the form:

15—8I1T 16—BIT B-BIT

MCB: M—BASE M—-LENGTH | M—EXT

where M-Base and M-Length are either input or output values
expressed in 16-byte paragraph units, and M-Ext is a returned
byte value, as defined specifically with each function code. An
error condition is normally flagged with a OFFH returned value
in order to match the file error conventions of CP/M.

ENTRY RETURN

CcL: 35H FUNCTION 53 AL RETURN CODE

GET MAX MEM

OxX;: OFFSET
OF MCB

22B48Z6

Function 55 finds the largest available memory region which is
less than or equal to M-Length paragraphs. If successful,
M-Base is set to the base paragraph address of the available
area, and M-Length to the paragraph length. AL has the value
O0FFH upon return if no memory is available, and 00H if the
request was successful, M-Ext is set to 1 if there is additional
memory for allocation, and 0 if no additional memory is avail-
able.

ENTRY RETURN
CL: 3&H FUNCTION 54 AL* RETURMN CODE
DX: OFFSET GET ABS MAX

OF MCH

2284829

Function 54 is used to find the largest possible region at the
absolute paragraph boundary given by M-Base, for a maximum
of M- Length paragraphs. M-Length is set to the actual length
if sucecessful. AL has the value 0OFFH upon return if no mem-
ory is available at the absolute address, and 00H if the request
was successful.

4-34

o

ENTRY w RETURM

CL: 37H FUNCTION ©5 AL RETURHN CODE
Ox. OFFSET ALLOC MEM
OF MCE
2284830

The allocate memory function allocates a memory area accord-
ing to the MCE addressed by DX. The allocation request size
iz obtained from M-Length. Function 55 returns, in the user's
MCB, the base paragraph address of the allocated region. Reg-
ister AL contains a 00H if the request was successful, and a
OFFH if the memory could not be allocated.

EMTRY fr RETURN
cL: 38H FUNCTION 56 AL: RETURN CODE
DM QFFSET ALLOC ADRS MEM
OF McHa
2284831

The allocate absolute memory function allocates a memory area
according to the MCB addressed by DX, The allocation request
size is obtained from M-Length and the absolute base address
from M-Base. Register AL contains a 00H if the request was
successful and a 0FFH if the memory could not be allocated.

EMTRY RETURM
CLi 39H FUHCTION 57
DX i OFFSET FREE MEM

OF MCB

22B4E32

Function 57 is used to release memory areas allocated to the
program. The value of the M-Ext field controls the operation of
this function: if M-Ext = O0FFH then all memory areas allo-
cated by the calling program are released. Otherwise, the mem-
ory area of length M-Length at location M-Base given in the
MCB addressed by DX is released (the M-Ext field should be
set to 00H in this case). As described above, either an entire al-
located region must be released, or the end of a region must be
released: the middle section cannot be returned under CP/M-86.

4-35

ENTRY RETLURM

CL: 3AH FUHCTION GH

FREE ALL MEM

2204833

Function 58 is used to release all memory in the CP/M-86 envi-
ronment (normally used only by the CCP upon initialization).

EMTRY RETURM
CL: 3BH FUNCTION 59 AXI RETURN CODE
BASE PAGE ADDR
D¥: OFFSET PROGRAM LOAD Bx: HASE PAGE ADDR
OF FCa
2REAER4

Function 59 loads a CMD file. Upon entry, register DX con-
tains the DS relative offset of a successfully opened FCB which
names the input CMD file. AX has the value OFFFFH if the
program load was unsuccessful. Otherwise, AX and BX both
contain the paragraph address of the base page belonging to
the loaded program. The base address and segment length of
each segment is stored in the base page. Note that upon pro-
gram load at the CCP level, the DMA base address is initial-
ized to the base page of the loaded program, and the DMA
offset address is initialized to 0050H. However, this is a fune-
tion of the CCP, and a function 59 does not establish a default
DMA address. It is the responsibility of the program which ex-
ecutes function 59 to execute function 51 to set the DMA base
and to function 26 to set the DMA offset before passing con-
trol to the loaded program.

4-36

5

Basic I/0 System
(BIOS) Organization

IntrodEtion ...l S s s 5-3
Organization of the BIOS ..., 5-3
The BIOS Jump Vector .o s 5-4
Simple Peripheral Devices ..., 5-6
BIOS Subroutine Entry Points ..., 5-9

5-1/5-2

INTRODUCTION

The distribution version of CP/M-86 is set up for operation
with the Intel SBC 86/12 microcomputer and an Intel 204 disk-
ette controller. All hardware dependencies are, however, con-
centrated in subroutines which are collectively referred to as
the Basic [/O System, or BIOS. A CP/M-86 systemn implemen-
tor can modify these subroutines, as described below, to tailor
CP/M-86 to fit nearly any 8086 or 8088 operating environment.
This section describes the actions of each BIOS entry point,
and defines variables and tables referenced within the BIOS,
The discussion of Disk Definition Tables is, however, treated
separately in the next section of this manual.

ORGANIZATION OF THE BIOS

The BIOS portion of CP/M-86 resides in the topmost portion of
the operating system (highest addresses), and takes the general
form shown in the following figure:

¢cs ,DS E5 55,

COMSOLE
COMMAMD
PROCESSOR

AMD
BASIC
DISK
OPERATIMNG
SYSTEM

CS + 2500H; Bl1OS JUMP VECTOR

Cs + 253FHI
BIOS ENTRY POINTS

BIOS I

DlsKH
PARAMETER
TABLES

UMINITIALIZED
SCRATCH RAM

2284851

5-3

As described in the following sections, the CCP and BDOS are
supplied with CP/M-86 in hex file form as CPM.H86. In order
to implement CP/M-86 on non-standard hardware, you must
create a BIOS which performs the functions listed below and
concatenate the resulting hex file to the end of the CPM.HE6
file. The GENCMD utility is then used to produce the
CPM.SYS file for subsequent load by the cold start loader. The
cold start loader that loads the CPM.SYS file into memory con-
tains a simplified form of the BIOS, called the LDBIOS
{Loader BIOS). It loads CPM.SYS into memory at the location
defined in the CPM.SYS header (usually 0400H). The procedure
to follow in construction and execution of the cold start loader
and the CP/M-86 Loader is given in a later section.

Appendix D contains a listing of the standard CP/M-86 BIOS
for the Intel SBC 86/12 system using the Intel 204 Controller
Board. Appendix E shows a sample skeletal BIOS, called
CBIOS, that contains the essential elements with the device
drivers removed. You may wish to review these listings in
order to determine the overall structure of the BIOS,

THE BIOS JUMP VECTOR

Entry to the BIOS is through a jump vector located at offset
2500H from the base of the operating system. The jump vector
is a sequence of 21 three-byte jump instructions which transfer
program control to the individual BIOS entry points. Although
some non-essential BIOS subroutines may contain a single re-
turn (RET) instruction, the corresponding jump vector element
must be present in the order shown in the following table. An
example of a BIOS jump vector may be found in Appendix D,
in the standard CP/M-86 BIOS listing.

a-4

Parameters for the individual subroutines in the BIOS are
passed in the CX and DX registers, when required. CX receives
the first parameter; DX is used for a second argument. Return
values are passed in the registers according to type: byte val-
ues are returned in AL. Word values (16 bits) are returned in
BX. Specific parameters and returned values are described with
each subroutine.

BIOS Jump Vector

Offset Suggested BIOS Description
from Insiruction F#
Beginning

of Bios
2600 H JMP INIT 1] Arrive Here from Cold Boot
2a03H JMP WBOOT 1 Arrive Here for Warm Start
2n06H JMP CONST 2 Check for Console Char Ready
2a09H JMP CONIN 3 Read Console Charecter In
a50CH JMP CONOUT 4 Write Console Character Out
250FH JMP LIST a Write Listing Charactor Gul
2512H JMP PUNCH i Write Char to Punch Devien
2515H JMP READER 7 Read Reader Device
2518H JMP HOME 8 Move to Track 00
251BH JMP SELDSK 9 Select Dhsk Drive
2MIEH JMP SETTRE 10 St Track Number
2521H JMP SETSEC 11 Zot Seetor Number
2524H JMP SETDMA 12 Bet DAMA Offsol Address
252TH JMP READ 13 Read Selected Sector
262AH JMP WRITE 14 Write Selected Sector
252DH JMP LISTST 15 Return Lisc Status
2530H JMP SECTIAN 16 Sector Translate
2553H JMP SETDMAE 17 Set DMA Segment Address
Faa6H JMP GETSEGR 18 Get MEM DESC Table Offset
Z538H JMP GETIOB 19 Gel 10 Mapping Byte
2pICH JMD SETIOR 20 Set. /0 Mapping Byte

There are three major divisions in the BIOS jump table: sys-
tem (relinitialization subroutines, simple character T/0 sub-
routines, and disk 1/0 subroutines.

8-5

SIMPLE PERIPHERAL DEVICES

All simple character I/O operations are assumed to be per-
formed in ASCII, uppercase and lowercase, with high order
(parity bit) set to zero. An end-of-file condition for an input de-
vice is given by an ASCII CTRL-Z (1AH). Peripheral devices
are seen by CP/M-86 as logical devices, and are assigned to
physical devices within the BIOS. Device characteristics are
defined in the following table:

CP/M-86 Logical Device Characteristics
Device Name Characteristics

CONSOLE The principal interactive console which communi-
cates with the operator, accessed through CONST,
CONIN, and CONOUT, Typically, the CONSOLE
iz a device such as a CRT or Teletype.

LIST The principal listing device, if it exists on your
svstem, which is usually a hard-copy device, such
as a printer or Teletype.

PUNCH The principal tape punching device, if it exists,
which is normally a high-speed paper tape punch
or Teletype.

READER The principal tape reading device, such as a
simple optical reader or teletype.

Note that a single peripheral can be assigned as the LIST,
PUNCH, and READER device simultaneously. If no peripheral
device is assigned as the LIST, PUNCH, or READER device,
your CBIOS should give an appropriate error message so that
the system does not hang if the device is accessed by PIP or
some other transient program. Alternately, the PUNCH and
LIST subroutines ean just simply return, and the READER
subroutine can return with a 1AH (CTRL-Z} in register A to
indicate immediate end-of-file.

For added flexibility, you can optionally implement the
IOBYTE function which allows reassignment of physical and
logical devices. The IOBYTE function creates a mapping of
logieal to physical devices which can be altered during CP/M-86
processing (see the STAT command). The definition of the
IOBYTE function corresponds to the Intel standard as follows:
a single location in the BIOS is maintained, called I0BYTE,
which defines the logical to physical device mapping which is in
effect at a particular time. The mapping is performed by split-
ting the IOBYTE into four distinet fields of two bits each,
called the CONSOLE, READER, PUNCH, and LIST fields, as

o shown below:

MOST SIGHIFICANT LEAST SIGHIFICANT
10B8%TE LisT FUMCH READER COMSOLE
BITS 6,7 BITS 4,5 BITS 2.3 BITS 0,1

224636

The value in each field can be in the range 0— 3, defining the
assigned source or destination of each logical device. The val-
ues which can be assigned to each field are given in the follow-
ing table;

IOBYTE Field Definitions

CONSOLE field (bits 0,1)
0 — Console is assigned to the console printer (TTY:)
1 — Console is assigned to the CRT device (CRT:)
9 _ Batch mode: use the READER as the CONSOLE in-
put, and the LIST device as the CONSOLE output
{(BAT:)
3 — User defined console device (UC1:)

READER field (hits 2,3)
0 — READER is the Teletype device (TTY:)
1 — READER is the high-speed reader device {RDT:)
@ _ User defined reader # 1 (UR1:)
4 — User defined reader # 2 (URZ:)

PUNCH field (bits 4,5)
i — PUNCH is the Teletype device (TTY:)
PUNCH is the high speed punch device (PUN:)
User defined punch # 1 (UP1L:}
User defined punch # 2 (UPZ:)

R
(I

LIST field (bits &,7)

— LIST is the Teletype device (TTY:)

1 — LIST is the CRT device (CRT:)

2 — LIST is the line printer device (LI
3 — User defined list device (ULL:)

=

Note again that the implementation of the IOBYTE is op-
tional, and affects only the organization of your CBIOS. No
CP/M-86 utilities use the IOBYTE except for PIP which allows
access to the physical devices, and STAT which allows logical-
physical assignments to be made and displayed. In any case,
you should omit the [OBYTE implementation until your basic
CBIOS is fully implemented and tested, then add the IOBYTE
to increase your facilities,

a-B

BIOS SUBROUTINE ENTRY POINTS

The actions which must take place upon entry to each BIOS
subroutine are given below. It should be noted that disk T/O is
always performed through a sequence of calls on the various
disk access subroutines. These set up the disk number to ac-
cess, the track and sector on a particular disk, and the direct
memory access (DMA) offset and segment addresses involved
in the I/0 operation. After all these parameters have been set
up, a call is made to the READ or WRITE function to perform
the actual I/0 operation. Note that there is often a single call
to SELDSK to select a disk drive, followed by a number of
read or write operations to the selected disk before selecting
another drive for subsequent operations. Similarly, there may
be a call to set the DMA segment base and a call to set the
DMA offset followed by several calls which read or write from
the selected DMA address before the DMA address is changed.
The track and sector subroutines are always called before the
READ or WRITE operations are performed.

The READ and WRITE subroutines should try several times
{10 is standard) before reporting the error condition to the
BDOS. The HOME subroutine may or may not actually per-
form the track 00 seek, depending upon your controller charac-
teristics; the important point is that track 00 has been selected
for the next operation, and is often treated in exactly the same
manner as SETTRK with a parameter of 00.

5-4

BIOS Subroutine Summary
Subroutine Description

INIT This subroutine is called directly by the CP/M-86
loader after the CPM.SYS file has been read into
memnry. The procedure is responsible for any
hardware initialization not performed by the
bootstrap loader, setting initial values for BIOS
variables (including IOBYTE|. printing & sign-on
message, and initializing the interrupt vector to
point to the BDOS offset (0B11H) and base, When
this routine completes, it jumps to the CCP offset
{0H). All segment registers should be initialized at
this time to contain the base of the operating
syatem,

WBOOT Thiz subroutine is called whenever a program
terminates by performing a BDOS function #0
call. Some re-initialization of the hardware or
software may occur here. When this routine
completes, it jumps directly to the warm start
entry point of the CCP (D6H),

CONST Sample the status of the currently assigned
console device and return 0FFH in register AL if
a character is ready to read, and 00H in register
AL if no console characters are ready.

CONIN Read the next console character into register AL,
and set the parity bit (high order bit) to zero. If
no console character is ready, wait until a
charaeter is typed before returning,

5-10

e

BIOS Subroutine Summary (Continued)

Subroutine

coNOouT

LIST

PUNCH

READER

HOME

Deseription

Send the character from register CL to the console
output device, The character is in ASCI1, with high
order parity bit =et to zero. You may want to in-
clude a time-out on a line feed or carriage return. if
vour console device requires some time interval at
the end of the line (such as a T1 Silent 700™ ter-
minal). You ecan, if vou wish, filter out control char-
acters which have undesirable effects on the console
device.

Send the character from register CL to the
currently assigned listing device. The character is
in ASCIT with zero parity,

Send the character from register CL to the
currently assigned punch deviee. The character is
in ASCIT with zero parity.

Read the next character from Lthe currently
assigned reader device into register AL with zero
parity (high order bit must be zerol. An end of file
condition is reported by returning an ASCII
CTRL-Z (1AH]).

Return the disk head of the currently selected
disk to the track 00 position. If your controller
does not have a special feature for finding track
00, vou can translate the call inte a call to
SETTREK with a parameter of 0.

Silent 700 is a Lrademark of Texas Instruments Incorporated.

Subroutine

BIOS Subroutine Summary (Continued)

SELDSKE

Description

Seleet the disk drive given by register CL for
further operations, where register CL contains 0
for drive A, 1 for drive B, and so on up to 15 for
drive P (the standard CP/M-86 distribution
version supports two drives). On each disk select,
SELDSK must return in BX the base address of
the selected drive’s Disk Parameter Header. For
standard floppy disk drives, the content of the
header and associated tables does not change, The
sample BIOS included with CP/M-86 called
CBIOS contains an example program segment
that performs the SELDSK function. If there is
an attempt to select a non-existent drive,
SELDSK returns BX =0000H as an error indica-
tor. Although SELDSK must return the header
address on each call, it is advisable to posipone
the actual physical disk select operation until an
T/0 function (seek, read or write) is performed.
This is due to the fact that disk select operations
may take place without a subsequent disk opera-
tion and thus disk access may be substantially
slower using some disk controllers, On entry to
SELDSK it is possible to determine whether it is
the first time the specified disk has been selected.
Register DL, bit 0 (least significant bit) is a zero if
the drive has not been previously selected. This
information is of interest in systems which read
configuration information from the disk in order
to set up a dynamic disk definition table.

BIOS Subroutine Summary (Continued)

Subroutine

SETTRK

SETSEC

SETDMA

Description

Register CX contains the track number for subse-
quent disk accesses on the currently selected
drive. You can choose to seek the selected track at
this time, or delay the seek until the next read or
write actually occurs, Register CX can take on
values in Lhe range 0 — 76 corresponding to valid
track numbers for standard floppy disk drives,
and 0 — 65535 for non-standard disk subsystems.

Register CX contains the translated sector num-
ber for subsequent disk accesses on the currently
selected drive (see SECTRAN, below). You can
choose to send this information to the controller
at this point, or instead delay sector seleclion
until a read or write operation occurs.

Register CX contains the DMA (disk memory ac-
cess) offset for subsequent read or write opera-
tions. For example, if CX = 80H when SETDMA
iz called, then all subsequent read operations read
Lheir data into 80H through 0FFH offset from the
current DMA segment base, and all subsequent
write operations get their data from that address,
until the next calls to SETDMA and SETDMAB
occur, Mote that the controller need not actually
support direct memory access. If, for example, all
data is received and sent through I/O ports, the
CBIOS which you construct will use the 128 byte
area starting at the selected DMA offset and base
for the memory buffer during the following read
or write operations,

Subroutine

BIOS Subroutine Summary (Continued)

READ

WRITE

LISTST

Description

Assuming the drive has been selected, the track
has been set, the sector has been set, and the
DMA offset and segment base have been speci-
fied, the READ subroutine attempts to read one
sector based upon these parameters, and returns
the following error codes in register AL:

0 no errors occurred
1 non-recoverable error condition oceurred

Currently, CP/M-86 responds only to a zero or
non-zero value as the return code. That is, if the
value in register AL is (0 then CP/M-86 assumes
that the disk operation completed properly. If an
error occurs, however, the CB10S should attempt
at least 10 retries Lo see if the error is recoverable.
When an error is reported the BDOS will print the
message BDOS ERR ON x: BAD SECTOR. The
operator then has the option of typing RETURN
to ignore the error, or CTRL-C to abort.

Write the data from the currently selected DMA
buffer to the currently selected drive, track, and
sector. The data should be marked as non-deleted
data to maintain compatibility with other CP/M
systems. The error codes given in the READ com-
mand are returned in register AL, with error re-
covery attempts as described above.

Return the ready status of the list device. The
value 00 is returned in AL if the list device is not
ready to accept a character, and OFFH if a
character can be sent to the printer.

BIOS Subroutine Summary (Continued)
Subroutine Description

SECTRAN Performs logical to physical sector translation to
improve the overall response of CP/M-86. Stan-
dard CPIM-86 systems are shipped with a skew
factor of 6, where five physical sectors are skipped
between sequential read or write operations. This
skew factor allows enough Lime between sectors
for most programs to load their buffers without
mizsing the next sector. In computer systems that
use fast processors, memory and disk subsysiems,
the skew factor may be changed to improve over-
all response. Note, however, that you should main-
tain a single density IBM® compatible version of
CP/M-86 for information transfer into and out of
your computer svstem, using a skew factor of 6,
In general, SECTREAN receives a logical sector
number in CX. This logical sector numhber may
range from 0 to the number of sectors —1.
SECTRAN also receives a translate table offset in
I3X, The sector number is used as an index into
the translate table, with the resulting physical
sector number in BX. For standard systems, the
tables and indexing code is provided in the CBIOS
and need not be changed. If DX =0000H no trans-
lation takes place, and CX is simply copied to BX
before returning. Otherwise, SECTRAN computes
and returns the translated sector numhber in BX.
Note that SECTRAN is called when no transla-
tion is specified in the Disk Parameter Header,

SETDMAB Register CX contains the segment base for
subsequent DMA read or write operations. The
BIOS will use the 128 byte buffer at the memory
address determined by the DMA base and the
DMA offset during read and write operations,

LBM is a registered trademark of International Business Machines,

5-15

BIOS Subroutine Summary (Continued)

Subroutine

GETSEGE

MRT 2

2284837

Description

Returns the address of the Memory Region Table
(MRT) in BX. The returned value is the offset of
the table relative to the start of the operating
system. The table defines the location and extent
of physical memory which is available for
transient programs.

Memory areas reserved for interrupt vectors and
the CP/M-86 operating system are not included in
the MRT. The Memory Region Table takes the
form:

8—BIT

R—CHNT
R—BASE R-LENGTH
R—HBASE R=LENGTH
R—BASE R-—LENGTH
16—-BIT 16—BIT

where R-Cnt is the number of Memory Region De-
seriptors fequal to n+ 1 in the diagram above),
while R-Base and R-Length give the paragraph
base and length of each physically contiguous area
of memory. Again, the reserved interrupt loca-
tions, normally 0-3FFH, and the CP/M-86 operat-
ing system are not included in this map, because
the map contains regions available to transient
programs. If all memory is contiguous, the R-Cnt
field is 1 and n = (0, with only a single Memory
Region Descriptor which defines the region,

BI10S Subroutine Summary (Continued)

Subroutine

GETIOB

SETIOB

Deseription

Returns the current wvalue of the logical to
physical input/output device byte (IOBYTE) in
AL. This eight-bit value is used to associate
physical devices with CP/M-86's four logical
devices,

Use the wvalue in CL to set the walue of the
IOBYTE stored in the BIOS,

The following section describes the exact layout and construc-
tion of the disk parameter tables referenced by various subrou-
tines in the BIOS.

5-17/5-18

6

BIOS Disk Definition Tables

ERtroduetion: oo s e s 6-3
Disk Parameter Table Format ..o 6-3
Table Generation Using GENDEF 6-10
GENDEF OQutputcconninmnorseaossasssersssrosssssransresses 6-16

6-1/6-2

INTRODUCTION

In a manner similar to CP/M-80, CP/M-86 is a table-driven
operating system with a separate field-configurable Basic /O
System (BIOS). By altering specific subroutines in the BIOS
|presented in the previous chapter), CP/M-86 can be customized
for operation on any RAM-based 8086 or 8088 microprocessor
system.

The purpose of this section is to present the organization and
construction of tables within the BIOS that define the charac-
teristics of a particular disk system used with CP/M-86. These
tables can be either hand-coded or automatically generated
using the GENDEF utility provided with CP/M-86. The ele-
ments of these tables are presented below.

DISK PARAMETER TABLE FORMAT

In general, each disk drive has an associated (16-hyte} disk pa-
rameter header which both contains information about the disk
drive and provides a scratchpad area for certain BDOS opera-
tions. The format of the disk parameter header for each drive is
as follows:

DIEK PARAMETER HEADER

XLT Gooao oo a0 DIRBUF oRBe Csv ALY
168 168 168 1GE 168 1&8 168 168
2304038

6-3

where each element is a word (16-bit) value. The meaning of
each Disk Parameter Header (DPH) element is given in the fol-

lowing tahle:

Disk Parameter Header Elements

Element

XLT

QO

DIRBUF

DPB

C5V

ALY

Description

Offset of the logical to physical translation vee-
tor, if used for this particular drive, or the
value O000H if no sector translation takes place
fi.e, the physical and logical sector numbers are
the same). Disk drives with identical sector
shew factors share the same translate tables,

Scratehpad values for use within the BDOS
{initial value iz unimportant).

Offset of a 128 byte scratchpad, area for direc-
tory operations within BDOS. All DPH's ad-
dress the same seratchpad area.

Offset of a disk parameter block for this drive.
Drives with identical disk characteristics ad-
dress the same disk parameter block.

Offset of a seratchpad area used for software
check for changed disks. This offset is different
for each DPH.

(¥fset of a scratchpad area used by the BDOS
to keep disk storage allocation information.
This offset is different for each DPH.

6-4

Given n disk drives, the DPHs are arranged in a table whose
first row of 16 hytes corresponds to drive 0, with the last row
corresponding to drive n-1. The table thus appears as the

following:
™
oo LT oo | 0000 | o000 | oooo | DIRBUF | OBF 00 | csv oo | ALV on
o1 XLT o oo | ooon | o000 | MRBUF | pAP ot |[Ssv o | ALy 51
m=y XLTn-1 | ooan | o0 | o000 | oiRows | DePn=<1 | CSVn-1 | Akvn—1
Z2EAERD

where the label DPBASE defines the offset of the DPH table
relative to the beginning of the operating system.

A responsibility of the SELDSK subroutine, defined in the pre-
vious section, is to return the offset of the DPH from the be-
ginning of the operating system for the selected drive. The
following sequence of operations returns the table offset, with a
0000H returned if the selected drive does not exist.

-
NDISKS EQU

SELDSK:

4 NUMBER OF DISK DRIVES

;(SELECT DISK N GIVEN BY CL

MOV
CPFM
JNBE

MOV
MOV
MOV
SHL
MOV
ADD
RETURN: RET

BX,0000H :READY FOR ERR
CL,NDISKS ;N BEYOND MAX DISKS?
RETURN ;RETURN IF S0

0 <= N <NDISKS

CH.0 :DOUBLE (N)
BK.G}: BX =N

CL4 ;READY FOR * 16
BX,CL N =N*1§
CX.OFFSET DPBASE

BX.CX :DPBASE -+ N * 16

:BX — .DFH (N}

5-5

The translation vectors (XLT 00 through XLT n-1) are located
elsewhere in the BIOS, and simply correspond one-for-one with
the logical sector numbers zero through the sector count-1. The
Disk Parameter Block (DPB) for each drive is more complex. A
particular DPB, which is addressed by one or more DPHs,
takes the general form:

sSPT BSH BHLM EXM DSM DRM AL Al CES OFF
168 BE [11=] BE 1L 1668 HE BE 148 168
22HARAD

where each is a byte or word value, as shown by the 8b or 16b
indicator below the field. The fields are defined in the following
table:

Disk Parameter Block Fields

Field Definition
SPT The total number of sectors per track
BSH The data allocation block shift factor, determined

by the data block alloeation size

BLM The block mask which is also determined by the
data hlock allocation size

EXM The extent mask, determined by the data block al-
loeation size and the number of disk blocks

DISM Determines the total storage capacity of the disk
drive
DRM Dietermines the total number of directory entries

which can he stored on this drive
ALOALL Determine reserved directory blocks
CKS The size of the directory check vector

OFF The number of reserved tracks at the beginning of
the (logical) disk

6-6

Although these table values are produced automatically by
GENDEF, it is worthwhile reviewing the derivation of each
field so that the values may be cross-checked when necessary.
The values of BEH and BLM determine (implicitly) the data al-
location size BLS, which is not an entry in the disk parameter
block. Given that you have selected a value for BLS, the values
of BSH and BLLM are shown in the following table, with all val-
ues in decimal:

BSH and BLM Values for Selected BLS

BLS BSH BLM
1.024 3 T
2,048 4 15
4,096 4 31
5,192 6 63

16,384 2 127

The value of EXM depends upon both the BLS and whether
the DSM wvalue is less than 256 or greater than 255, as shown
in the following table.

Maximum EXM Values

BLS DSM < 256 DSM = 255

1.024 0 N/A
2,048 1 0
4,096 3 1
5,192 7 3
16,384 15 T

The value of DSM is the maximum data block number sup-
ported by this particular drive, measured in BLS units. The
product BLS times (DSM + 1) is the total number of hytes held
by the drive and, of course, must be within the capacity of the
physical disk, not counting the reserved operating svstem
tracks.

The DRM entry is one less than the total number of directory
entries, which can take on a 16-bit value. The values of ALD
and AL1, however, are determined by DRM. The two values
ALD and AL1 can together be considered a string of 16-hits, as
follows:

ol LT L

oo ©1 02 03 04 D5 068 07 peo9 10 11 12 13 14 18

2zadaAR4dl

where position 00 corresponds to the high order bit of the byte
labeled ALO, and 15 corresponds to the low order bit of the
hyte labeled ALL Each bit position reserves a data block for a
number of directory entries, thus allowing a total of 16 data
blocks to be assigned for directory entries (bits are assigned
starting at 00 and filled to the right until position 15). Each
directory entry occupies 32 bytes, as shown in the following
table:

BLS and Number of Directory Entries

BLS Directory Eniries
1,024 42 times ## hits
2,048 G4 times # hits

4,096 128 times # bits
4,192 256 times # hits
16,384 512 times # bits

Thus, if DEM = 127 (128 directory entries), and BLS = 1024,
then there are 32 directory entries per block, requiring 4 re-
served blocks. In this case, the 4 high order bits of ALO are
set, resulting in the values ALO = 0F0OH and AL1 = 00H.

The CKS value is determined as follows: if the disk drive media
i= removable, then CKS = (DRM +1) /4, where DRM is the
last directory entry number. If the media is fixed, then set
CKS = 0 (no directory records are checked in this case).

-8

Finally, the OFF field determines the number of tracks which
are skipped at the beginning of the physical disk. This value is
automatically added whenever SETTREK is called, and can be
used as a mechanism for skipping reserved operating system
tracks, or for partitioning a large disk into smaller segmented
sections.

To complete the discussion of the DPB, recall that several
DPHs can address the same DPB if their drive characteristics
are identical. Further, the DPB can be dynamically changed
when a new drive is addressed by simply changing the pointer
in the DPH since the BDOS copies the DPB values to a local
area whenever the SELDSK funection is invoked.

Returning back to the DPH for a particular drive, note that
the two address values CSV and ALV remain. Both addresses
reference an area of uninitialized memory following the BIOS.
The areas must be unique for each drive, and the size of each
area is determined by the values in the DPB,

The size of the area addressed by CSV is CKS bvtes, which is
sufficient Lo hold the directory check information for this par-
ticular drive. If CKS = (DRM + 1) /4, then you must reserve
(DRM + 1)/4 bytes for directory check use, If CKS = 0, then
no storage is reserved.

The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular
disk, and is computed as (DSM/8) 4 1.

The BIOS shown in Appendix D demonstrates an instance of
these tables for standard 8-in single-density drives. It may be
useful to examine this program, and compare the tabular val-
ues with the definitions given in the preceding paragraphs.

B-9

TABLE GENERATION USING GENDEF

The GENDEF utility supplied with CP/M-86 greatly simplifies
the table construction process. GENDEF reads a file:

x.DEF

containing the disk definition statements, and produces an out-
put file:

X.IJIB
containing assembly language statements which define the ta-

bles necessary to support a particular drive configuration. The
form of the GENDEF command is:

GENDEF x parameter list
where x has an assumed (and unspecified) filetype of DEF. The
parameter list may contain zero or more of the symbols defined

in the following table;

GENDEF QOptional Parameters

Parameter Effect
a2C Generate Disk Parameter Comments
20 Generate DPBASE OFFSET &
87 Z80, 8080, 8085 Override
$C0Z iAny of the Above)

The C parameter causes GENDEF to produce an accompany-
ing comment line, similar to the output from the STAT DSK:
utility which describes the characteristics of each defined disk.
Normally, the DPBASE is defined as:

DPBASE EQU §

6-10

which requires a MOV CX,OFFSET DPBASE in the SELDSK
subroutine shown above. For convenience, the $0 parameter
produces the definition

DPBASE EQU OFFSET %

allowing a MOV CX,DPBASE in SELDSK, in order to match
your particular programming practices. The 5¥ parameter is
included to override the standard S086/8088 mode in order to
generate tables acceptable for operation with Z80, 8080, and
8085 assemblers.

The disk definition contained within x.DEF is composed with
the CP/M text editor, and consists of disk definition state-
ments identical to those accepted by the DISKDEF macro sup-
plied with CP/M-80 Version 2. A BIOS disk definition consists
of the following sequence of statements:

DISKS n
DISKDEF 0,...
DISKDEF 1,...

DISKDEF n-1

Each statement is placed on a single line, with optional em-
bedded comments between the keywords, numbers, and de-
limiters.

The DISKS statement defines the number of drives to be confi-
gured with yvour system, where n is an integer in the range of 1
through 16. A series of DISKDETF statements then follow
which define the characteristics of each logical disk, 0 through
n-1, corresponding to logical drives A through P. Note that the
DISKS and DISKDEF statements generate the in-line fixed
data tables described in the previous section, and thus must be
placed in a non-executable portion of your BI10D, typically at
the end of your BIOS, before the start of uninitialized RAM.

The ENDEF (End of Diskdef) statement generates the neces-
sary uninitialized RAM areas which are located beyond initial-
ized RAM in your BIOS,

6-11

The form of the DISKDEF statement is
DISKDEF dn,fsc,lsc, |skf],bls,dks dir,cks,ofs, [0]
where:

dn is the logical disk number, 0 to n-1

fsc is the first physical sector number (0 or 1)
lsc is the last sector number
skf is the optional sector skew factor

bls iz the data allocation block size
dks is the disk size in bls units

dir is the number of directory entries

cks is the number of checked directory entries
ofs iz the track offset to logical track 00

[is an optional 1.4 compatibility flag

The value dn is the drive number being defined with this
DISKDEF statement. The fs¢ parameter accounts for differing
sector numbering systems, and is usually 0 or 1. The lsc para-
meter is the last numbered sector on a track. When present,
the skf parameter defines the sector skew factor which is used
to create a sector translation table according to the skew. If
the number of sectors is less than 256, a single-byte table is
created, otherwise each translation table element occupies two
bytes. No translation table is created if the skf parameter is
omitted or equal to 0.

The bls parameter specifies the number of bytes allocated to
each data block, and takes on the wvalues 1024, 2048, 4098,
8192, or 16384, Generally, performance increases with larger
data block sizes because there are fewer directory references.
Also, logically connected data records are physically close on
the disk, Further, each directory entry addresses more data
and the amount of BIOS work space is reduced. The dks para-
meter specifies the total disk size in bls units. That is, if bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000
hytes, If dks is greater than 255, then the block size parameter
bls must be greater than 1024. The value of dir is the total
number of directory entries which may exceed 255, if desired.

p—

The cks parameter determines the number of directory items to
check on each directory scan, and is used internally to detect
changed disks during system operation, where an intervening
cold start or system reset has not occurred (when this situation
is detected, CP/M-86 automatically marks the disk read/only so
that data is not subsequently destroyed). As stated in the pre-
vious section, the value of cks = dir when the media is easily
changed, as is the case with a floppy disk subsystem. If the
disk is permanently mounted, then the value of cks is typically
0, since the probability of changing disks without a restart is
quite low.

The ofs value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0]
parameter is included when file compatibility is required with
versions of CP/M-80, version 1.4, which have been modified for
higher density disks (typically double density)., This parameter
ensures that no directory compression takes place, which would
cause incompatibilities with these non-standard CP/M 1.4 ver-
sions. Normally, this parameter is not included.

For convenience and economy of table space, the special form
DISKDEF i, i

gives disk i the same characteristics as a previously defined
drive 1. A standard four-drive single density system, which is
compatible with CP/M-80 Version 1.4, and upwardly
compatible with CP/M-80 Version 2 implementations, is defined
using the following statements:

DISKS 4

DISKDEF 0,1,26,6,1024,243,64,64,2
DISKDEF 1,0

DISKDEF 2,0

DISKDEF 3.0

ENDEF

6-13

with all disks having the same parameter values of 26 sectors
per track (numbered 1 through 26), with a skew of 6 between
sequential accesses, 1024 bytes per data block, 243 data blocks
for a total of 243K byte disk capacity, 64 checked directory
entries, and two operating system tracks.

The DISKS statement generates n Disk Parameter Headers
{(DPHs), starting at the DPH table address DPBASE gener-
ated by the statement. Each disk header block contains sixteen
bytes, as described above, and corresponds one-for-one to each
of the defined drives. In the four drive standard system, for
example, the DISKS statement generates a table of the form:

DPBASE EQU &

DPED DWW XLTO,0000H,0000H,0000H. DIRBUF,DPBO,
CSV0,ALVO

DFE1 DW XLTO0,0000H,0000H,0000H,DIRBUF,DPBO,
CSV1,ALV1

DPE2 DW XLT0,0000H,0000I,0000H,DIREUF, DPEQ,
C5V2 ALVZ

DPE3 DW XLT0,0000H,0000H,0000H,DIREUTF, DPEO,
CSV3ALV3

where the DPH lahels are included for reference purposes to
show the beginning table addresses for each drive 0 through 3.
The values contained within the disk parameter header are de-
scribed in detail earlier in this section. The check and allocation
vector addresses are generated by the ENDEF statement for
inclusion in the RAM area following the BIOS code and tables.

G-14

Note that if the skf (skew factor] parameter is omitted (or equal
to 0), the translation table is omitted, and a 0000H value is in-
serted in the XL T position of the disk parameter header for the
disk. In a subsequent call to perform the logical to physical
translation, SECTRAN receives a translation table address of
DX = 0000H, and simply returns the original logical sector
from CX in the BX register. A translate table is constructed
when the skf parameter is present, and the (non-zero) table ad-
dress is placed into the corresponding DPHs. The table shown
below, for example, is constructed when the standard skew fac-
tor skf = 6 is specified in the DISKDEF statement call:

XLT0o EOU OFFSET &
DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF statement, a number of uninitialized
data areas are defined. These data areas need not be a part of
the BIOS which is loaded upon cold start, but must be avail-
able between the BIOS and the end of operating svstem mem-
ory. The size of the uninitialized RAM area is determined by
EQU statements generated by the ENDEF statement. For a
standard four-drive system, the ENDEF statement might
produce:

1C72 = BEGDAT EQU OFFSET %

(data areas)

1DB0 = ENDDAT EQU OFFSET &

013C = DATSIZ EQU OFFSET 5-BEGDAT

which indicates that uninitialized RAM begins at offset
1C72H, ends at 1DBOH-1, and occupies 013CH bytes. You
must ensure that these addresses are free for use after the sys-
tem is loaded.

6-15

After modification, you can use the STAT program to check
your drive characteristics, since STAT uses the disk parameter
block to decode the drive information. The comment included
in the LIB file by the $C parameter to GENCMD will match
the output from STAT. The STAT command form

STAT d: DSK:

decodes the disk parameter block for drive d (d=A, . . P} and
displays the values shown below:

128 Byte Record Capacity
Kilobyte Drive Capacity
32 Byte Directory Entries
Checked Directory Entries
Records/Extent
Records/Block
Sectors/Track

Reserved Tracks

GENDEF OUTPUT

GENDEF produces a listing of the statements included in the
DEF file at the user console (CTRL-P can be used to obtain a
printed listing, if desired). Each source line is numbered, and
any errors are shown below the line in error, with a question
mark (?) beneath the item which caused the condition. The
source errors produced by GENCMD are listed in the following
table, and by errors that can occur when producing input and
cutput files are listed in the table following that.

B-16

GENDEF Source Error Messages

Message Meaning

Bad Val More than 16 disks defined in DISKS statement

Convert. MNumber cannot be converted, must be constant
in binary, octal, decimal, or hexadecimal as in
ASM-86

Delimit Missing delimiter hetwesen parameters

Duplic Duplicate definition for a disk drive

Extra Extra parameters occur at the end of line

Length Keyword or data item is too long

Missing Parameter required in this position

No Disk Referenced disk not previously defined

No Stmt Statement keyword not recognized

Numeric Mumber required in this position

Range Number in this position is out of range

Too Few Mot enough parameters provided

Quote Missing end quote on current line

6-17

GENDEF Input and Output Error Messages

Message Meaning

Cannot Close .LIB File LIB™ file close operation
unsuccessful, uwsually due to
hardware write protect

LIB Disk Full Mo =zpace for LIB file
No Input File present Specified DEF file not found
No .LIB Directory Space Cannot create LIB file due to

too many files on LIB disk

Premature End-of-File End of DEF file encountered
unexpectedly

Given the file TWO.DEF containing the following statements:

disks 2

diskdef 0,1,26.6,2048,256,128,128,2
diskdef 1,1,58.2048,1024 300,0,2
endef

the command:
gencmd two Sc
produces the console output:

DISKDEF Table Generator, Vers 1.0

1 DISKS 2

2 DISKDEF 0,1,58,2048,256,128,128,2
3 DISKDEF 1,1,58,2048,1024,300,0,2
4 ENDEF

No Error(s)

The resulting TWO.LIB file is brought into the following skele-
tal assembly language program, using the ASM-86 INCLUDE
directive. The ASM-26 output listing is truncated on the right,
but can be easily reproduced using GENDEF and ASM-86.

LIB is & trademark of Digital Research.

6-18

annwE®ENIHE DA d DR RBDNDT TN H R RUDN W EE E N EDNE DWW WD DR W

ooon BS

0003
o003 32
ooo7T 00
000B 5B
000F FB
0013 00
0017 00
001BR 5B
001F 9B

0023
0023 1a
0025 04
0026 OF
0027 01
0028 FF
Do2a 7P
002c o
o0zZp Q0
DD2E 20
0n3g 02

a032
0032 01
0036 19
003a L7
0Q3E 15
0042 14
0046 12
004y 1o

0020

0020

03

00
oo
o0
00
00
00
na
0l

0a

oo
og

00
00

07
05
03
(1]
1n
18
16

oo

a0
o0
23
5]
an
oo
4C
1B

[h¥]
[1):]
0o
o8
o0&
04

lt]
00
a0
0o
na
0o

a1

13
11
oF
DE
oc
oA

e
a1

LOSH :

épbase
Adpeld

dpel

®1t0

alsd
cesl

Sample Proaram Including TWOLLI

MOV

INCLUDE

equ

dw
dw
dw
dw
dw
dw
dw
dw

X, 0FFSET DPBASE

TWO.LIRB

DISKS 2

3 ;Base ©
x1t0, 0000k 1Transl
0000k, 0000k iScrate
dirbuf ,dpb0 :Dir Bu
csvl,alvl 1Check,
®1tl,0000hk 1Transl
0000k, 0000hR t18cratc
digbuf,dobl :Nic Bu
csvl alvl theck,

DISKDEF 0,1,26,6,2048,2

Pisk 0 is CP/M 1.4 Sinale Densi

4

094:
212
128:
128:
256
16
26z
21
L%

equ

dw
db
db
db
dw
gw
db
db
aw
dw

aqu

db
db
db
dhb
db
db
db

equ
equ

128 Byte Record Capacit
¥ilobyte Nrive Capacit
37 Wyte Nirectorv Entri
Checked Nirectory Entri
Records / Edtent
Records [/ Block

Sectors / Track
Reserved Tracks

Sackor Skew Factor

offset § sk P
26 iSector
4 :Block
1% tBlock
L iExtnt
255 :Disk B
127 tDirect
192 tAllocD
i sAllocl
32 iTheck
2 OEEset
offset 5 ;Transl
1,7,13,.19

25,5,11,17

23,3.9;15

21,2,8,14

20,26,6,12

18,24,4,10

16,22

32 Al loca
32 iCheck

DISKDEF 1,1,55,,2048,10

Disk 1 is °P/M 1.4 Single MNensi

16

384

128 Bvte Record Camacit

na e muneEmneEnH E LD ®0 W 80N

i Wi w ® W N WM ONR

o04c

oo4c
004E
004F
0050
0osl1
D053
0053
00s6
097
0os9

ik
04
aF
oo

FF
28

Fa

na
02

oooo
ooao

ogon

o0sB

0058
00pE
0oFB
4118
0188

019\
0140

0198

00

00

03
oL

oo

p w4 N wE mE we

dpbl

x=1ltl
alsl
czsl

v
¢
P

‘begdat

dirbuf
alv0
csvl
alyl
csvl
enddat
datsiz

043
004
Q:
128:

58:

aqu
aw
dh
db
db
dw
dw
db
-1-]
dw
dw
equ
2qu
egu

Kilobyke Drive Capacit
32 Byte NDirectory Entri
Checked nNireztorv Entri
Records / Extent
Records / Block

Sectors / Track
Ragervyed Tracks

offset & iDigk P
58 1Sector
4 ;Block

15 tBlock

0 ;Extnt

1023 sMigk 5
299 Nirect
248 th1loal
Q iAllocl
a 1Check

2 iNffset
a Mo Tra
128 1Alloca
a :Check

ENDEF

Uninitialized Scrateh Memory o

agu
[-1
rs
re
o
rs
aqu
equ
db
EWD

aoffser § iStart
124 iNirect
als0o tRlloe
cgel tTheck
alsl tAlloc
cssl tThack
affsetr § 1End of
offset S=begdat :Size o
[+] Marks

6-20

7

CP/M-86 Bootstrap
and Adaptation Procedures

INtroduction ..., 7-3
The Cold Start Load Operationccoovvevrenne... -4
Organization of CPM. SYS ... 7-8

7-1/7-2

INTRODUCTION

This section describes the components of the standard CP/M-86
distribution disk, the operation of each component, and the
procedures to follow in adapting CP/M-86 to non-standard
hardware,

CP/M-86 is distributed on a single-density IBM compatible 8-
inch diskette using a file format which is compatible with all
previous CP/M-80 operating systems. In particular, the first
two tracks are reserved for operating system and bootstrap
programs, while the remainder of the diskette contains diree-
tory information which leads to program and data files.
CP/M-86 is distributed for operation with the Intel SBC 86/12
single-board computer connected to floppy disks through an
Intel 204 Controller. The operation of CP/M-86 on this configu-
ration serves as a model for other 8086 and 8088 environments,
and is presented below.

The principal components of the distribution syvstem are listed
below:

¢ The 86/12 Bootstrap ROM (BOOT ROM)
. The Cold Start Loader (LOADER])
. The CP/IM-86 System (CPM.S5YS)

When installed in the SBC 86/12, the BOOT ROM becomes a
part of the memory address space, beginning at byte location
OFF000H, and receives control when the system reset button is
depressed. In a non-standard environment, the BOOT ROM is
replaced by an equivalent initial loader and, therefore, the
ROM itself is not included with CP/M-86. The BOOT ROM can
be obtained from Digital Research or, alternatively, it can be
programmed from the listing given in Appendix C or directly
from the source file which is included on the distribution disk
as BOOT.A86. The responsibility of the BOOT ROM is to read
the LOADER from the first two system tracks into memory
and pass program control to the LOADER for execution.

7-3

THE COLD START LOAD OPERATION

The LOADER program is a simple version of CP/M-86 that
contains sufficient file processing capability to read CPM.SYS
from the system disk to memory. When LOADER completes
its operation, the CPM.SYS program receives control and pro-
ceeds to process operator input commands.

Both the LOADER and CPM.SYS programs are preceded by
the standard CMD header record. The 128-byte LOADER
header record contains the following single group descriptor.

G—FORM GoLENGTH A-BASE G—RIN G-MAX
1 MR MR DAGQD KEXEXHK | KEXKKAX
aB 168 168 1608 168
22a4742

where G-Form = 1 denotes a code group, x fields are ignored
and A-Base defines the paragraph address where the BOOT
ROM begins filling memory (A-Base is the word value which is
offset three bytes from the beginning of the header). Note that
since only a code group is present, an 8080 memory model is
assumed. Further, although the A-Base defines the base para-
graph address for LOADER (byte address 04000H), the
LOADER can, in fact, be loaded and executed at any para-
graph boundary that does not overlap CP/M-86 or the BOOT
ROM.

=1
'
i

The LOADER itself consists of three parts: the Load CPM pro-
gram (LDCPM), the Loader Basic Disk System (LDBDOS), and
the Loader Basic I/0 System (LDBIOS). Although the
LOADER is setup to initialize CP/M-86 using the Intel #6/12
configuration, the LDBIOS can be field-altered to account for
non-standard hardware using the same entry points deseribed
in a previous section for BIOS modification. The organization
of LOADER is shown in the following figure:

GD#1 O
©S DS ES S5 DOOODH: IMP 1200H I
[LOCEM)
JMPF CPM
DA0OH!:
(LDBDOS)
1200H:
JMP IHIT
JMP SETIOR
IMIT: .. JMP ¢003H
(LBBIOS)
1700H:

2284743

Byte offsets from the base registers are shown at the left of
the diagram. GD#1 is the Group Descriptor for the LOADER
code group described above, followed immediately by a 0 group
terminator. The entire LOADER program is read by the BOOT
ROM, excluding the header record, starting at byte location
04000H as given by the A-Field. Upon completion of the read,
the BOOT ROM passes control to location 04000H where the
LOADER program commences execution. The JMP 1200H in-
struction at the base of LDCPM transfers control to the begin-
ning of the LDBIOS where control then transfers to the INIT
subroutine. The subroutine starting at INIT performs device
initialization, prints a sign-on message, and transfers back to
the LDCPM program at byte offset 0003H. The LDCPM maod-
ule opens the CPM.SYS file, loads the CP/M-86 system into
memory and transfers control to CP/M-86 through the JMPF
CPM instruction at the end of LDCPM execution, thus com-
pleting the cold start sequence.

The files LDCPM.H86 and LDBDOS.H86 are included with
CP/M-86 so that you can append your own modified LDBIOS
in the construction of a customized loader. In fact, BIOS.A86
contains a conditional assembly switch, called loader_ bios,
which, when enabled, produces the distributed LDBIOS, The
INIT subroutine portion of LDBIOS is listed in Appendix C
for reference purposes. To construct a custom LDBIOS, modify
your standard BIOS to start the code at offset 1200H, and
change your initialization subroutine beginning at INIT to per-
form disk and device initialization. Include a JMP to offset
0003H at the end of your INIT subroutine. Use ASM-86 to
assemble yvour LDBIOS.A86 program using the following
command:

ASMBES LDEIOS

to produce the LDBIOS.H86 machine code file. Concatenate
the three LOADER modules using PIP:

PIP LOADER. H86 =
LDCPM.HS6, LDBDOS. H86, LDBIOS. HBE

7-6

to produce the machine code file for the LOADER program.
Although the standard LOADER program ends at offset
1700H, your modified LDBIOS may differ from this last ad-
dress with the restriction that the LOADER must fit within
the first two tracks and not overlap CP/M-86 areas. Generate
the command (CMD) file for LOADER using the GENCMD

utility:
GENCMD LOADER 8080 CODE [A400]

resulting in the file LOADER.CMD with a header record defin-
ing the 8080 Memory Model with an absolute paragraph ad-
dress of 400H, or byte address 4000H. Use DDT to read
LOADER.CMD to location 900H in your 8080 system. Then
use the 8080 utility SYSGEN to copy the loader to the first
two tracks of a disk.

A=DDT
- ILOADER.CMD
— R800

 A> SYSGEN
SOURCE DRIVE NAME (or return to skip) <er>
DESTINATION DRIVE NAME (or return to skip) B

Alternatively, if you have access to an operational CP/M-86
system, the command

LDCOPY LOADER

copies LOADER to the system tracks. You now have a disk-
ette with a LOADER program which incorporates your custom
LDBIOS capable of reading the CPM.SYS file into memory.
For standardization, we assume LOADER executes at location
4000H. LOADER is statically relocatable, however, and its op-
erating address is determined only by the value of A-Base in

the header record.

=1
'
=1

You must, of course, perform the same function as the BOOT
ROM to get LOADER into memory. The boot operation is
usually accomplished in one of two ways. First, you can pro-
gram your own ROM (or PROM] to perform a function similar
to the BOOT ROM when your computer’s reset button is
pushed. As an alternative, most controllers provide a power-on
boot. operation that reads the first disk sector into memory.
This one-sector program, in turn, reads the LOADER from the
remaining sectors and transfers to LOADER upon completion,
thereby performing the same actions as the BOOT ROM.
Either of these alternatives is hardware-specific, so you will
need to be familiar with the operating environment.

ORGANIZATION OF CPM.SYS

The CPM.SYS file, read by the LOADER program, consists of
the CCP, BDOS, and BIOS in CMD file format, with a 128-
byte header record similar to that of the LOADER program:

G=FORM G-LEMGTH A—BAS G—MIN G MAX
1 KA H KKK Q40 KEXKNKX | AXKKAKX
8B 168 168 160 168
2254744

7-8

where, instead, the A-Base load address is paragraph 040H, or
byte address 0400H, immediately following the 5086 interrupt
locations. The entire CPM.SYS file appears on disk as shown in
the following figure:

St GOH# 1 |ﬂ |
(0040 [0) CS DS ES 55 ODOOH®

[CCP AND BDOS)

(Qoda:) 2500H: JMP T
IJMP SETIOH

{BIos)
IMIT, , . JMP O0DDOH

(0040 ;) 2A00H:

2ZB4045

where GD#1 is the Group Descriptor containing the A-Base
value followed by a 0 terminator. The distributed 86/12 BIOS
is listed in Appendix D, with an include statement that reads
the SINGLES.LIB file containing the disk definition tables.

- The SINGLES.LIB file is created by GENDEF using the
SINGLES.DEF statements shown below:

disks 2

diskdef 0,1,26,6,1024,243 64,64,2
diskdef 1,0

endef

The CPM.SYS file is read by the LOADER program beginning
at the address given by A-Base (byte address 0400H), and con-
trol is passed to the INIT entry point at offset address 2500H.
Any additional initialization not performed by LOADER takes
place in the INIT subroutine and, upon completion, INIT exe-
cutes a JMP 0000H to begin execution of the CCP. The actual
load address of CPM.SYS is determined entirely by the address
given in the A-Base field which can be changed if you wish to
execute CP/M-86 in another region of memory. Note that the

- region occupied by the operating system must be excluded
from the BIOS memory region table.

7-9

In a manner similar to the LOADER program, you can modify
the BIOS by altering either the BIOS.A86 or skeletal
CBIOS.AB86 assembly language files which are included on
your source disk. In either case, create a customized BIOS
which includes your specialized /0 drivers, and assemble using
ASM-86:

ASMS86 BIOS

to produce the file BIOS.H86 containing your BIOS machine
code. Concatenate this new BIOS to the CPM.HB86 file on your
distribution disk:

PIP CPMX.H85 = CPM. H86,BIOS.HB6

The resulting CPMX hex file is then converted to CMD file for-
mat by executing:

GENCMD CPMX 8080 CODE [A40]

in order to produce the CMD memory image with A-Base =
40H. Finally, rename the CPMX file using the command:

REN CPM.SYS = CPMX.CMD

and place this file on your 8086 system disk. Now the tailoring
process is complete: you have replaced the BOOT ROM by
either your own customized BOOT ROM, or a one-sector cold
start loader which brings the LOADER program, with your
custom LDBIOS, into memory at byte location 04000H. The
LOADER program, in turn, reads the CPM.SYS file, with your
custom BIOS, into memory at byte location 0400H. Control
transfers to CP/M-86, and vou are up and operating. CF/M-B6
remains in memory until the next cold start operation takes
place.

7-10

You can avoid the two-step bool operation if you construct a
non-standard disk with sufficient space to hold the entire
CPM.SYS file on the system tracks. In this case, the cold start
brings the CP/M-286 memory image into memory at the location
given by A-Base, and control transfers to the INIT entry point
at offset 2500H. Thus, the intermediate LOADER program is
eliminated entirely, although the initialization found in the
LDBIOS must, of course, take place instead within the BI0OS,

Since ASM-86, GENCMD and GENDEF are provided in both
COM and CMD formats, either CP/M-80 or CP/M-86 can be
used to aid the customizing process. If CP/M-80 or CP/M-86 is
not available, but you have minimal editing and debugging
tools, you can write specialized disk I/O routines to read and
write the system tracks, as well as the CPM.SYS file.

The two gystem tracks are simple to access, but the CPM.SYS
file is somewhat more difficult to read. CPM.SYS is the first
file on the disk and thus it appears immediately following the
directory on the diskette. The directory begins on the third
track, and oceupies the first sixteen logical sectors of the disk-
" ette, while the CPM.SYS is found starting at the seventeenth
sector. Sectors are skewed by a factor of six, beginning with
the directory track (the system tracks are sequential), so that
you must load every sixth sector in reading the CPM.SYS file.
Clearly, it is worth the time and effort to use an existing CP/M
system to aid the conversion process.

7-11/7-12

A

Sector Blocking and Deblocking

Upon each call to the BIOS WRITE entry point, the CP/M-86
BDOS includes information that allows effective sector block-
ing and deblocking where the host disk subsystem has a sector
size which is a multiple of the basic 128-byte unit. This appen-
dix presents a general-purpose algorithm that can be included
within your BIOS and that uses the BDOS information to per-
form the operations automatically.

Upon each eall to WRITE, the BDOS provides the following
information in register CL:

normal sector write
write to directory sector
write to the first sector of a new data block

]
2

i w

Condition 0 oceurs whenever the next write operation is into a
previously written area, such as a random mode record update,
when the write iz to other than the first sector of an unallo-
cated block, or when the write is not into the directory area.
Condition 1 occurs when a write into the directory area is per-
formed. Condition 2 occurs when the first record (only) of a
newly allocated data block is written. In most cases, applica-
tion programs read or write multiple 128-byte sectors in se-
quence, and thus there is little overhead involved in either
operation when blocking and deblocking records, since pre-read
operations can be avoided when writing records.

A-l

This appendix lists the blocking and deblocking algorithm in
skeletal form (the file is included on your CP/M-86 disk). Gener-
ally, the algorithms map all CP/M sector read operations onto
the host disk through an intermediate buffer which is the size
of the host disk sector. Throughout the program, values and
variables which relate to the CP/M sector involved in a seek
operation are prefixed by sek, while those related to the host
disk system are prefixed by hst. The equate statements begin-
ning on line 24 of Appendix F define the mapping between
CP/M and the host system, and must be changed if other than
the sample host system is involved.

The SELDSK entry point clears the host buffer flag whenever
a new disk is logged-in. Note that although the SELDSK entry
point computes and returns the Disk Parameter Header ad-
dress, it does not physically select the host disk at this point
(it is selected later at READHST or WRITEHST). Further,
SETTRK, SETSEC, and SETDMA simply store the values,
but do not take any other action at this point. SECTRAN
performs trivial function of returning the physical sector
number.

The principal entry points are READ and WRITE. These sub-
routines take the place of your previous READ and WRITE
operations.

The actual physical read or write takes place at either
WRITEHST or READHST, where all values have heen pre-
pared: hstdsk is the host disk number, hsttrk is the host track
number, and hstsec is the host sector number (which may re-
quire translation to a physical sector number). You must insert
code at this point which performs the full host sector read or
write into, or out of, the buffer at hstbuf of length hstsiz. All
other mapping functions are performed by the algorithms.

A-2

B

Sample Random Access Program

This appendix contains a rather extensive and complete exam-
ple of random access operation. The program listed here per-
forms the simple function of reading or writing random records
upon command from the terminal. Given that the program has
been created, assembled, and placed into a file labelled
RANDOM.CMD, the CCP level command:

RANDOM X.DAT

starts the test program. The program looks for a file by the
name X.DAT (in this particular case) and, if found, proceeds to
prompt the console for input. If not found, the file is created
before the prompt is given. Each prompt takes the form:

next command?

and is followed by operator input, terminated by a carriage re-
turn. The input commands take the form:

nW nR Q

where n is an integer value in the range 0 to 656535, and W, R,
and (0 are simple command characters corresponding to ran-
dom write, random read, and quit processing, respectively, If
the W command is issued, the RANDOM program issues the
prompt

type data:

B-1

The operator then responds by typing from 1 to 27 characters,
followed by a carriage return. RANDOM then writes the char-
acter string into the X.DAT file at record n. If the R command
is issued, RANDOM reads record number n and displays the
string value at the console. If the @ command is issued, the
X.DAT file is closed, and the program returns to the console
command processor. The only error message is:

errar; try again

The program begins with an initialization section where the in-
put file is opened or created, followed by a continuous loop at
the label “ready’” where the individual commands are inter-
preted. The default file control block at offset 005CH and the
default buffer at offset 0080H are used in all disk operations.
The utility subroutines then follow, which contain the principal
input line processor, called reade, This particular program
shows the elements of random access processing, and can be
used as the basis for further program development. In fact,
with some work, this program could evolve into a simple data
base management system.

One could, for example, assume a standard record size of 128
bytes, consisting of arbitrary fields within the record. A pro-
gram, called GETKEY, could be developed which first reads a
sequential file and extracts a specific field defined by the opera-
tor. For example, the command:

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT
and extract the LASTNAME field from each record, starting
at position 10 and ending at character 20. GETKEY builds a
table in memory consisting of each particular LASTNAME
field, along with its 16-bit record number location within the
file. The GETKEY program then sorts this list, and writes a
new file, called LASTNAME.KEY, which is an alphabetical list
of LASTNAME fields with their corresponding record num-
bers. (This list is called an inverted index in information re-
trieval parlance.)

B-2

—

Rename the program shown above as QUERY, and enhance it
a bit so that it reads a sorted key file into memory. The com-
mand line might appear as:

QUERY NAMES DAT LASTNAME. KEY

Instead of reading a number, the QUERY program reads an
alphanumeric string which is a particular key to find in the
NAMES.DAT data base. Since the LASTNAME.KEY list is
sorted, you can find a particular entry quite rapidly by per-
forming a binary search, similar to looking up a name in the
telephone book, That is, starting at both ends of the list, you
examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search.
You'll quickly reach the item you are looking for (in log2in)
steps} where you will find the corresponding record number,
Fetch and display this record at the console, just as we have
done in the program shown above.

At this point you are just getting started. With a little more
work, you can allow a fixed grouping size which differs from
the 128 byte record shown above. This is accomplished by
keeping track of the record number as well as the byte offset
within the record. Knowing the group size, yvou randomly ac-
cess the record containing the proper group, offset to the begin-
ning of the group within the record read sequentially, until the
group size has been exhausted.

Finally, vou can improve QUERY considerably by allowing
Boolean expressions which compute the set of records which
satisfy several relationships, such as a LASTNAME between
HARDY and LAUREL, and an AGE less than 45. Display all
the records which fit this description. Finally, if your lists are
getting too big to fit into memory, randomly access your key
files from the disk as well.

B-3

50 08 -0 R e R

= -
G s
R

par
=

15+
L
17:
1as
19:
-

21:
22z

24
251
26
aTs
26¢
293
31
3Lt
X2z
EEH
14
A5:
i6:
¥
313
392
40
4l:
42:
43
443
451
dE:
ATz
4B
49
50z
51:
5
By
S e
58

coning ey
conout edgu
pstring edu
ratring egu
wersion egu
openf il
clogel equ
rakef equ
readr aqu
wrikter edqu

Truates for

nqu
Bdu

e, e L
o

=1h
pushE
oo
=11
nay,
nov
Moy
push
papf

CE/M-86

mm o mmomm e

moy
eall
cmi
inb
nav
csll
imp

versok:

B corcact
ma
mav
call

.

"

- Zamnle Pandom Acceasa Deogram for OPF/W-B6 ¥
.

k]

}1ﬁqfi**tiillIIriifiJiif'l'l'll"'*“ﬁ"“""‘*f"

Y S T Ll il it e R R R R R LR L b

1 jconsele input function
2 joomAole nutouk Function
a rpelnt string until “5°
10 iread conaole buffer

12 rrekurn varsion numher
15 iPile epen Function

1A :clase Function

22 imake file funcelon

33 rread candom

34 swrité random

naft grachic chacacters
0dh scartiage returcn
Oah 1t ine fead

load 5P, ready file for random acoess

spush Flags in O0P stack

ax rcave Elags in AX
idigable intercupts

b, ds iset 5% regiater to base

sk, br raet 55, 5F Wwith latercu

so,offgel stack ; for A0EES

ax jrestore the flaas

inttial releass retucns the File

system vecsion number of 2.2: check is
shewn balow for Qllustration DurpoEas.

cl,varsian

bdos

al, 20h swersion *.0 aor laker?
wver ok

bad wersien, messaze and go back
dx,offaet hadver

print

abark

varsion for random acocoss
clyopent jopen default fou
tu,offeat fob

bdas

561 ini al rerr 255 becomas Zoro

574 jnz ceady

581 3

S0 & sannot aosn £ile, a6 create it

G0y miw zl,makaf

ELl: ROV dx,offser fch

B2z Zall bidog

E¥i inc al rery 255 becomes mero
Edy in=z raady

B5z =

G cannokt create file, directory Full

BT nov dy,offeat nospace

BB zall print

B imp ahort rhack to cop

0z =

Tl ¢ logp bosk ta "ready™ aftor each command

TE: ¢

Ti: roady:

Td: g file 'is ready For oroceassing

T

Ta: call caadcon sread next command
T mi cangec,dx 1aktore input recocdd
T mos ranavf,;0h iclear high byce if sat
T9 emp al1,70" 1quit?

inz ok

E2: = quit procossing, close file

B3 mi ol ,closef

Rds me dx,af Fset fich

B5z call bdos

BE: Ene al rarr 255 becoames 0

871 iz SPrOE JErrOr MeBgAge, TELEY

BB mps abert thack bo cop

BOy

80; ;

9l: ¢ end of guit command, process write

BZ: =

C R

94: notqg:

BB not the qult comsand, random welte?

96 cmp al; W”

a7 inz nokw

98z

LT e this is a random write, fill buffer wntll or
100 oy du,offset datmsg
101y call print pdata prompt
1023 may e, 127 jup ko 127 characters
103+ mowv b, ,of fset buff jdeatination
104: rloop: jread next character to buff

10%5: push ex isave lopp connkrol
1063 push b= mnexk destination
107y call getchr icharacker to AL
1081 pop =24 trestore deskinakbion
105 poo cx srestore counter

110 cRp al, sr jend of 1ine?

end af write

A b s

cmDo

J=

impR
H

i
ranread:

Ay
mowv
call
or
iz
Jmpa

raadnk:
call
™oy
mav
wlaop:

1ods
and
img
ime
wlcopls

puah
cush
=]
ib
call
skipw:

pop

raad was

commanid , PrOcass

P
rancaad
BLEDT

: read candom record

el raadrc
du,offset Feb
bdas

al ,al

readok

arrar

iz ar Loop
3 ok and, store charagtne
mow Byte phr |bxl,al
img b smext o Ti11 1
1 oon F1o0n sAccrEment ©Y .. 10ao EF
2rlonp:
: end of read Yoon; ;tﬁru_ﬂﬂ
BN byte pbc |bx],0n
1
1 write the record to setected recard number
mo ch,writer
mew dw,affset Fcb
eall bidps
af al,at ierror cods garo?
qiw raady :for another cecord
imps EEEOE imessage 1f not

caad

not a write command, read record?

rskio 10 not

rreturn code 007

asicoessful, write ba consgls

celf
&%, 128
af,oftsat buff

al
al,07fh
wloon]
raeady

oK%

af
al,”
skipw
putahr

&i

snew lins
imax’ 128 characters
rnexk to get

next character
smask parley

:far another command if

rsave counter

;save nexk to get
:rqraphic?

jakip autput 1€ not grao
routput characker

B-6

Bpoo X
laoaon whoap sdacremant X and check
MR ready

end of fead command, a¥'l errars end-uc hero

srrarcy
may Az, offset errmsg
call neintg
Jmo raoady

BpGS entry sobrodklne

Int 274 rentey ta BANS {Ff by THT
et
I
abork: reetusn ta OrR
nok cl,d
=all bdaog suse funeelon 0 kooand =

WELLEey subroutinos for consalas ido

fqekchr;
reead next consale charaster ©o a

moy ol conlne
=all bdns
et
pukche:
itwvrikte charazter from a to condole
mo ¢l conout
me a1 .al tcharacter to send
call hdosg i3end chacacker
rekt
H
erlf:
igend carriage return Tine feed
moy al,cr joarrlage rekurn
call putehr
mav al,lr tline fapd
call pukehe
rat
prink:
iprink the buffer addressed by dx umcil &
push A%
zall et LE
Pop dx ined line
maw cl,petring
call bdas rorink the string
rat

readcom:

221
20
2231
224
2282
1261
227
138
229:
230+
231:
232§
233
234+
2382
236¢
237
238z
2391
2404
24%:
2d2:
243:
244
245
Zdb6 1
247
24B ¢
249:
250¢
i51:
2521
253
254
2553
256
25712
258+
FLEE
260
261
ZB2:
2R3:
2641
265:

267
268
269
2702
271
2721
2TaE
274
2751

iread the next cammand line to the conbof

moy dx,nffFast promot
=all Brink spommand?
maw cl.rskcinog
= dx,.0ffs2t conbuf
call bdas sread cemmand Ting
H command line is present, Gcan bt
mov ax, 0 seEaTt with 0000
mi bx,nffsak eenlin
reado: mov A1, Thx] tnext command character
inc bx tta next compand positin
mnoy Ah izera high byee For o add
or d] .41 reheck for and of comman
inz Qqeknum
o
1 nat garo, nemaric?
gEEnum:
sub d1,°0°
emp dl, 10 rcarey if numeric
inh endcd
mow el 10
mul el smulbipy accumalakor by
add ay A pedigie
imps ceadc i+far anather char
andrd 1
1 pnd of read, restore valus in & and return valus
mow dx &% reeturn walue in T
me al,=11hx]
el al, a” scheck for lower case
ink trangl
£at
transl: and al,5fH translate o Upper case
ret
i
+ Tamplate for Page of Nata Graup
T containe dafault PCB and nMA huffec
fAsag
org 0hch
Ech th 33 pdafault File contral bl
ranges W L rrandom record position
ranawE b 1 shigh nrder (overflow) b
huff] 1za sdefault DM¥A buffer
i
: string data area for conscle messages
badyer db “sorry, vou need ep/m version 257
nospacE db *na-directory soaces”
datmaqg db *type data: %7
arrmsq db "error, trv again.$”
prespk b “next command? 57
1
P
' Fixed and variable data area
i

B-8

sonbuE db conlen jlenath of console huffer

ra 1 ireewlting size after reard
= 32 ;1ength 32 buffer
conlen agu offaet § - affset consisz
' re 1 :16 lawe] stack
stack th 1
b n rend byte for GENOMA
end

B-9/B-10

C

Listing of the Boot ROM

Rk E A AR AR AR AR A AN E ARk E R F A A F A AR R Rk R R A A AR AR RN R R R AR AR

* *
* This iz the original BOOT ROM distributed with CP/M *
* for the 3BC B6/12 and 204 Controller. The listing 3
* iz truncated on the right, but can be reproduced by *
* assembling ROM.A86 from the distribution disk. MNote *
% that the distributed source file should alwavs be o
* referenced for the latest version *
* *
* *

AhkF kR IR F R R A FF AT R TR FF R F PR rkE TR AR Rk a kb h kTR d

; ROM bootstrap for CP/M-86 on an iSBCBG/L2
: with the
Intel SB 204 Floppy Disk Controller

Copvright () 1380,1981
Digital Research, Inec.
Box 579, Pacifie Grove

2 California, 93950

:****i**i*t*t-i—*******i****************i***tii
+* This is the BOOT ROM which is initiated *
:* by a svstem reset. First, the ROM moves *
:* a copy of its data area to RAM at loca- x
;% tion 00000H, then initializes the segment*
1* registers and the stack veointer. The *

*

*

#*

=

* yarious peripheral interface chips on the*
* SBC 86712 are initialized. The B251 %
* serial interface is confiqured For a 9600*
* haud asvnchroncus terminal, and £
* terrupt controller is setup for i
* rupts l0H-17H (vectors at 00040%- DDOﬁrP\
and edge-triggered auto-EOI (end of in-
* terrupt) mode with all interrupt levels
* masked-off. MWext, the 5B 204 Diskette
* controller is initialized, and track 1

* sector 1 is read to determine the target
*

*

*

-

*

*

*

*

.

*

*

*

*

paragraph address for LOADER. Finallv,
the LOADER on track 0 sectors 2-26 and
track 1 sectors 1-26 is read into the
target address. Control then transfers
to LOADER. This program resides in two
2716 EPROM” = (2¥ each) at location
OFFO00H on the SBC 8$6/12 CPU board. ROM
0 contains the even memory locations, and®
ROM 1 czontaing the odd addresses. BOOT *
ROM uszes RAM between 00000H and O000FFH i
{absolute) for a scratch area, along with*
*

the sector 1 buffer.
*********t*tii*******i***i***i********v*t**

¥ ok Gk ok % ¥ & 3k * ¥ * * *

C1

00FF
FFOO

00FF

000D
0oo0a

00RO
Q00
00A0
0oal
0ozl
00az
0ond
00aS
00Aa8
D0RT
00a8
00AB
0029
00nn
00AF

2580

noos

o0na
00D&

00D0
oop2
0oo4d
00De

ooco
0ocz2

FROO0

true equ 0ffh

false aqu not true

i

debug equ true

;debug = true indicates bootstran is in same roms

swith 8BC 957 "Execution Vehicle" monitor
;at FE00:0 instead of FF00:0

or
1f

hasell4
fdccom
fdcstat
Fdcparm
fdcrslt
fdcrst
dmacadr
dmaccont
dmacscan
dmacsadr
dmacmode
dmacstat
fdcsel
fdcsegment
reseti04

i
;actual console

baud_rate equ
;jvalue for 8253
baud =L b}
csts aqu
cdata equ
tcho equ
tehl egu
teh2 agu
temd adqu
icpl equ
icp2 equ
¥

IF NOT DRERIG
ROMSEG EQU

ENDIF

IF DREBUG
ROMBEG EOT

ENDIF

equ
edqu

equ
equ
aqu
=g
equ
aqu
agu
aqu
equ
=qu
agu
equ
equ
aqu
equ

13
10

Aigk ports and commands

Nadh
baseZ04+0
basel04+0
bagse204+1
hase204+1
base20442
baze?204+4
base204+5
base204+6
base204+7
hase20443
base204+3
base204+2
bhase204+10
basel204+15

baud rate

3600

baud counter

768/ (baud_rate/100)

ODah ;iR251 status port
0nBh Al data port
onlh ;8253 PIC channel 0

tch0+2 j;ch 1 port
tch0+4 ;ch 2 port

tch0+& ;B253 command port

0coh ;8259a port
0C2h ;R259%9a port

0FFO00d ;normal

;share nrom
OFEQOR

0
L

with SB

FEOC

0000 Bcca
0002 BEDS
0004 BE3FOL
0007 BFOOD2
000A BBOOOD
000D BECO
000F BYEE00
0012 F3nd

0014 BBOOO0O
0017 BEDS
0019 BEDO
0018 BC2A03
001E FC

001F BOL13
0021 E&CO
0023 BOLO

This long jump prom”d in by hand

cseqg OEEEFH ;reset goes to here

TMEF BOTTOM ;boot is at bottom

Ea 00 00 00 FF ;cs = bottom of pro
rpr=-

EVEN PROM 0Dn PROM

778 = EA r8 - 00

JF9 - 00 7F9 - 00

TFA - FF :this is not done i

cseq romseg

First, move our data area into RAM at 0000:0200

WOV
mov
mowv
mowv
mowv
mov
mowv
ren

mov
mov
mov
O
cld

IF

=

ax,cs

As,ax ;point NS to C8 for source
SI,drombegin ;start of data
n1,offset ram start ;offset of destinat

ax, 0

es,ax sdestination segment is 000

¥,data_length show much to move i

movs al,al ;move out of eorom

ax,0n

ds,ax ;data seament now in RAM

§8,ax%

so,stack offset ;initialize stack s
= :clear the directio

0T DEBUG

Now, initialize the console USART and baud rate

moy al,0Eh

out csts,al ;sgive 8251 dummy mode

mov al,40h

cut csts,al ;reset 8251 to accept mode
mov al,4Eh

out csts,al snormal 8 bit asynch mode,
mov al,37h

out csts,al ;enable Tx & Rx

mov al,0Béh

out temd,al ;8253 ch.,2 square wave mode
mov ax,baud

out tch2,al :low of the baud rate

mov al,ah

out tch,al shigh of the baud rate
ENDIF

Setup the 8259 Programmable Interrupt Controller

mow
out
MoV

al,13h
icpl,al ;82592 TCW 1 B086 mode
al,10h

C-3

no2s
00z7
G029
ooze
002p

o0ozr
0031
0033
0035
0037
0039
003¢
003F
0042
0045
0048
004
004w

0051
0054
0057
0059

005
005F

0062
0066
0069

008&C
0067
0072
0075

0078

0o7c

ooB2

0086
oosg
0o8a
oosc
0osr
0020

E6C2
BO1F
BE6C2
BOFF
EG2

EGRT
BOO1
E6A2
RO0OQ
EfAZ
EB1502
EBELO0
BB1BO2
EEDBOO
BB2102
EBD500
BELOO2
EB5800

BR2202
BE0000
BRECO

E8AT00

BEO202
EB4700

8E062N03
BBOOOO
E89700

BEOGO2
E83700
BBOBO2
E83100

8C06E802

C706E6020000

FF2EE602

820F
84co
7476
E30400
43
RYFIFF

out icp2,al 782503 ICW 2 ‘vector R 40-5

mov al,lrh

out icp2,al ;82593 ICw 4 auto WOI mast

mov al,0FFh

out icp2,al ;A259a W 1 mask all leve
;Reszet and iniktialize the i58M 204 Diskette Interfa
restart: ;also come back here on fatal error

out reset204,AL ;reset 1387 204 loaic and

mov AL,1l

out fdcrst,2L ;jgive 8271 FDC

mov al,0

out fdorst, AL ;& reset command

mov BY,offsek specsl

CALT. sendcom jprodgram

mov BX,offset specs2

CALL sendcom 3 Shugart SaA-800 drive

moy BX,0ffset specsd

call sendcom ; characteristics
homer: mov BY,offset home

CTALL execute ;home drive O

mov bx;sectorl j;offset for first sector ™M

mov ax, 0

MoV es5,ax iseqment " " b b

call setup_dma

mov bx,offzet readl
call execute ;get TO S1

mov es,ARS
mov bx,0 ;aet loader load address
call setup dma ;setup PMA to read Toader

mov bx,offset readl

call execute ;read track 0
mov bx,offset readl
call execute sread track 1

mov lean seqment,BS
H setup far jump vector
mov leap offset, 0

H enter LOADER
jmpf dword ptr leap_offset

i

pmsg:
mov al, [BX]
test cl,cl
jz return
call conout
inc BX
imp pmsg

0093
0095
0097
o089
ooaB
oo9n

D09E
00A0
0oaz2
noz4
00n6
00R8

oomn9

00AD

00BO
0084
0oB7
00R9
COBC
00BE
00co
nocs
00cs
o0cy
009

0oce
ooco
ooce

oon3
00D5
00D7

00D9
00nB

00nD
00EO0

E4DR
ARO]
T4TA
BACL
E&DB
g3

E4DA
ABO2Z
T4FR
E408
247F
£3

89180002

E87000

8B1E0002
84701
243F
B9O00O8
3c2c
7208
B930&0
240F
3coc
BOOD
7737

E4An0
22C5
32r174F8

E4Al
2418
7429

3c1o
7513

BB1302
E83D00

conout:

conirn:

i
execute:

Letny:

H
execpol 1

in al,csts
test al,l

jz conout
mav al,cl
out cdata,al
ret

in al,csts
teskt al,2
jz conin

in al,cdata
and al,7%h
ret

;execute
;<B¥> points
;followed by

command string @
to lenath,
Command bvie

BX]

;Followed by lenath-1 oarameter hvt

mov Tastcom,BX
call sendcom
mow BY,lastcom
mov AL, 1IBX]
and AL,3fh

mowv X ,0800h
cmp AL,2ch

jb execpoll
mov rX,8080h
and AL,0fh

cmo AL,Och

mov AL,D

ja return

: ipell
in AL FDCSTAT
and AL,CH

¥or AL,CL !

in AL, fdcrslt
and AL, leh
jz return

cmp al,l0h
jne fatal

mov bx,o0ffset rdstat
call sendcom

JZ execpoll

sremember what it w
stetoy if pot ready
;execute the comman
;now, let”s see wha
;of status ool was
;for that command t
spoint to command =

it »i1) be

;see if interrust &
;else we use "not ¢
sunless . .

ithere isn’t

;any result at all

for hit in b, toggied with ¢

:get result registe
1look only at resul
;zZero means it was

;if other than "NMot

iperform read statu

C-5

00E3
00R5
00E7
00E9
00ED

00FD
00F2
00F4

00F8
0O0FB
00FE
0OFF

nio2

0103
0105
0107
0109
0l0B
010D
0107
D1YL
0113
0115
0117
0119
011B
0llp
011F

0120
0122
0124
0126
0128
0129
012B

01zp
012F
0131

0132
0134
0136

Ednd
ABED
T5FA
BB1E0QDZ
E9BDFF

B400
8BDS
BBOF2702

E8BBFF
E8AOFF
58

E92DFF

L]

BOOD4
E6AS
BOOO
E6AS
B040
E6AS
8CCo
EGAR
8nC4
E6AR
BBC3
E&6R4
Bacd
E6Ad
n3

E4n0
2480
T5FA
BAOF

8a07
E6AD

FECY
T4DL
43

E4A0
2420
T5FA

rd_poll:
in al,fdc_stat
test al,80h
jnz rd_poll
mov bx,last com
imp retry

fatal:
mov ah,0
mov bx,ax

:wait for command n

;recover last atbtem
rand try it over ag

s Eakal epror

;make 16 bits

mov bx,errtbl (BX]
: print appropriate error message

call omsg

call conin

pop ax

imp restart
return:

RET

i

setundma:
mov AL,04h
out dmacmode, AT
mov al,l
out dmaccont,AL
mov AL, 40h
out dmaceont,AL
mov AX,E5

swait for key strik
;discard unused ite
sthen start all ove

jreturn from EXECUT

senable dmac

sset first (dummy)

:foree read data mo

out fdcsegment,Al

mov AL, AH

out fdesegment AL

mov AX,BX

out dmacadr AL
mov AL, AH

out dmacadr,AL
RET

) = e e

endcom:
in AL,fdcstat
and AL,80h
inz sendcom
mov (L, [BX]
inc. BX
mov al, [BX]
out fdecom,AL
parmloop:
dec CL
iz return
inc B¥
parmpoll:
in AL, fdcstat
and AL,20h
inz parmpall

sroutine to send a command string t

;insure command not busy
;get count

ipoint to and fetch command
:send command

ssee if any (more) paramete
ipoint to next parameter

;loop until parm not full

b

0138
013a
013c

8807
E6AL
ESEEFF

013F

0137

0141
0142
0143
0144

0145
0l4s
0147
0148
0149

0142
0148
014cC
014n
014E

014F
0152
0154
0157
015a
015D
0160
0163

0166
01le8
016Aa
0l6c
016E
0170
0172
0174
0176
0178
0172
017c
017E
0180
0laz
0184

0186

026900
016¢C

05350D
0BOBESD
053510
FFFFFF
053518
FFFFFF

4702
4702
4702
4702
5702
6502
Jo002
TF02
8002
A202
B202
€502
D3Nz
4702
4702
4702

mov AL, [RX]
out fdcparm,AL
qmp parmloon

soutout next parameter
;g0 see about another

H
H Tmage of data to be moved to RAM
H

d
clastcom

creadstring

creadtrk0

creadtrkl

chome0
crdstatl
cspecsl
cspecsl
cspecs3

cerrtbl dw

ODOA4ETS6CEC Cerl db

rombegin equ offset §

dw

db
db
db
db

db
db
db
db
db

db
db
db
Aib
db

db
db
db
db
db
db
db
db

offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset

L

0000h ;last command

3 slength

52h :read function code

strack #
;eector #

(=1

53h ;read maltinle
0 skrack 0

2 ;sectors 2

5 ithrough 26

1 sErdek 1
1 ssectors 1
26 sthrough 26

2,69h0,0
1,6ch
5,35h,04h
08h,08h,0e%h
5,35h,10h
255,255,255
5,35h,18h
255,255,255

erd
erl
er?
er3
erd
erh
erb
er?
erB
er9
arh
er®
erC
erd
er®
erf

Null FError 277 ,0

C-7

204572726F72
203F3F00

0186
0186
0136

0136

01z4

0laF

01BE

01cF

0204

0212

ODDA436CHFR3
6B204572726F
7200
0D0A4CE17465
2044404100
0DOA49442043
524320457272
6F7200
0n0A44617461
204352432045
72726F7200
0D0R44726976
65204E6F7420
526561647900
0D0R57726974
652050726F74
65637400
0D0A54726B20
3030204R6FT74
20466F756R64
oo
0DOA5T7726974
652046617567
7400
0DOAS53656374
BF72204E6F74
20466F756E64
00

0188
0186
0186

0225

00E6

0ooo

0200

0200
0202
0206
0208
0210
0213
0215

Cerl
Cer2
Cer3
Cerd

Cerb

ferd
Cer7
Cer8
Cer9

Cerd

CerB

CerC

Cerd
CerR
CerF

dromend

data_ length

i
ram start

lastcom
readl
readl
read2
home
rdstat
specsl

equ cer(
agu cerd
agqu cerl
db er;LE; M loek: Beeae ™, 0 J
T 4
db cr,1f, "Late DMA” 0
dh e 8 Th ERERE T, 0
db ot EE; "hata CRE Brrorn’,0
dab cr,1f, " nrive Not Ready”,0
db or,1F,"Write Protect” ,0
db cr,1f, "Tck 00 Not Found”,0
db er,1f, "Write Fault”,0
db cr,1£, Sector Not Found” ,0
equ cer®
egu cerl
equ cerl bl
egqu offset S
egu dromend-drombegin
reserve space in RAM for data area
(no hex records generated here)
dseg 0
org 0200h
equ s
rw 1 :1last command
rb 4 ;read track 0 secto
rb 5; ;read TO S2-26
rh 5 jread Tl S1-26
4] 3 thome drive 0
rh 2 ;read status
rh a
o

0218
0221
0227
0247
0247
0247
0247
0257
0265
0270
027F
0290
02az2
0282
02c5
0203
0247
0247
0247

02E6
02E8

02FEA
032a

032a

032A
0328
032p
032F
0331

specs?2

-specs3

errthl

erl

erl

er?

erl

erd

erS

eré

er?

er8

erd

erh

erB

erC

erD

erE

erF

leap offset
leap_seament

] 3

w 1a

b length cerd 116
equ erd

adqu erld

egu erl

rb length cerd ;14
th length cerS 711
rh length cer6 $15
b length cer? $17
b length cer® ;18
rh length cer9 116
th length cerd 1.0
th length cerR 714
th length cerC +19
equ erl

equ erl

equ erl

rw J:

W 1;

rw 32 ;local stack
eau offset S;stack from here do

TO0 S1 read in here

equ offset $

th
T™w
rw
W
Tw
end

e]

ABS

is all

we- ‘gare

C-9/C-10

D

LDBIOS Listing

FhER AR AR A A ARk ke kb k kR R kAR FE I F AR LR A

e
*
+
*
#
*
*
*
*
#
*
*

N

e

This the the LDA
am by enabling
sembly switch.
to remove portions
ing which appear

progr

be reproduced hy
provided with CP/

IR R X I R R R R R R R SRR R RS E AR SRS S A A SRR R R R AR

FFFF
oooo

BIOS list

T BIOS

the

deno

truncated on the right, but gan
assembling the BINS.AEG file
M-86)

. derived from the BIODS
"1naﬁﬁr bios" condi-
The listing has been
which are udﬂliCAted
in =
rpd Dnrt101=

te the

% % % ok Hok ®oE b % o

R RS RS R R

.k

(Mot
tabs
widt
Eoie

major

Input/Output System (RINS) for
=R6 Conf red for i3BC 856/12 wi
i3BC 204 F1ﬁnaf Nisk MTontroltler

e: this file contains both embedded
and blanks to ze the list file
h for printing ourposes. You mav wish
xpand the blanks before performing

- editing.)

ok ok o % oW W

®
*

.1*:*********ww*****q**k***k***w***tt**it:***x

Copyright () 1980,;1981
Digital Reseacrch, Inc.
Box 579, Pacific Grove
california, 93950

{Permission is herebv granted to use
or apstract the fellowing program in
the implementation of CB/M, MP/M or
CP/NET for the 8086 or 80838 Micro-
Processor)

equ -1
equ nobt true

CPINET is a registered trademark of Digital Research.

EEFF:
FFFF
00EQ

1200
noo2
0406

1200 E93C00
1203 E%6100

1239 E96400
123C E96400

:***************ii*i****#*ii***ii*******it****

*
;* Loader bios is true if assembling the =
;* LOADER BIOS, otherwise BIOS is for the %
;% 0OPM.SYS file. Blc_list is true if we ¥
:#% have a serial printer attached to BLC8538 *
*
*
*
*

;* Bdos_int is interrupt used for earlier N

;* wersions.

;*

=********ti********t*********i*******t**i****

loader_bios equ true

ble list equ true

bdos_int equ 224 ;reserved BDOS Interrupt
IF not loader bios

i |

a3l |
ENDIF ;not loader_bios
iF loader bios

; |

bios_code equ 1200k ;start of LDBIOS

cep offset equ 0003h ;base of CPMLORDER

bdos_ofst equ 0406h ;stripped BDOS entry

: 1
ENDIF sloader_bios
czeq o
org cepoffset

ccp:
orqg bios code

:*i*********i*********ii*ti*#***titi**k***ii**
- *
;% BIOS Jump Vector for Individual Routines *
» F *
H

;**i**i*****ii*********i*******ii*i***t*ti#***

jmp INIT :Enter from BOOT ROM or LOADER
imp WBOOT sArrive here from BDOS call O
jmp GETIOBF jreturn I/0 map byte (IOBYTE)
jmp SETIDBF ;set I/0 map byte (IOBYTE)

Ak 4
1241
1243
1245

1247
1z24n

1248
124C
1247

1251
1257
1258

125¢
125F
1262
1264

1267

BCCB
BEDO
8EDS
BECO

BCA91le
FC

18
BHEOOOO
BEDE

C70680020604
BCOEBZ03
1r

BB1514
E85A00
B10O0O

E99CED

E99FED

shkkEkhkhkkdhd ek dhkhkhh bk d bk d b hd b b it b d b e ehrhdhd

i

;* *

3* INIT Entry Point, Differs for LDBIOS and *

;* BIOS, according to "Loader Bios" wvalue i

. == *

H Fhkhkdkhkhtdhkhrhhhddhbhhddrd kbt T drdrardiohth

TNIT: ;print signon message and initialize hardwa
mov ax,cs swe entered with a JMPF zo
mov S5 ,ax ; M5: as the initial wvalue
mov ds,ax B < NS,
mav es,ax x and ES:

juse loecal stack during initialization
mov so,o0ffset stkbhase
cld ;set forward direction

IF not loader bios

;Phis ig a BIOS for the LOADER

push ds 1s5ave data segment
mov ax,0
mov ds,ax ;point to segment zero

;BDOS interrupt offset
mov bdos offset,bdos_ofst

mov bdos_segment,CS ;bdos interrupt segment

pop ds ;restore data segment

ENDIF ;loader bios

mov bx,offset signon

call pmsg sprint signon message

mov cl,0 :default to dr A: on coldst

jmp ccp ;jump to cold start entry o
WBOOT: Jmp ccp+6 ;direct entry to CCP at com

LF not loader bios

ENDIF ;not loader_bios

D-3

126A

L2

1273

127D

1288

1291

1292

1 el

129D
129F

E4DA

&3

EBFAFTF

E4DA

E80700

c3

2441

c3

BO1A
c3

;ii****i*f**ii**ti*ii*t**+**t***tit*k*ti***ti*

-
o CP/M Character I/0 Interface Routines -
;*# console is Usart (i8251a) on isBC RE/12 *
g at ports DB/DA *
*
£ 3

;***i*****itii**kti***i***t*t**t*t**wi***ii**

CONST: ;console status
in al,csts

const_ret:

ret ;Receiver Data Available

CONIN: ;console input
call const

CONOUT = ;console output
in al,csts

LISTOUT: -1ist device output

call LISTST

ENDIF ible_list
ret
LISTST: :poll list status

1w ble_list

in al,lsts

ENDIF 1blc_list
ret

DUNCH: ;not implemented in this configuration
READER:

mov al,lah

et sreturn EOF for now

12a0
1242

1243

12a4
12a6

12a7

12ca

1300
1304

1305
1309

130a

1311
Y315

1316
1313

131E
131

BOOO
c3

3

2400
£3

EBCIFF

BBOOOO

CB06311500

BBOE3115
c3

880E3215
c3

8BDY

8890E2A15
c3

890E2C15
5]

BE3815
c3

GETIOBF:

mov al,0 ;TTY: For consistency

ref ; TOBYTE not implemented
SETIOBF:

ret tiobyte not implemented
o =h of e

and al,0
ek ireturn zero in AL and flag

; Routine to get and echo a ¢onszole character
: and shift it to upper case

uconecho:
call CONIN ;aet a console character

I.l********ii—iitii*i***!**i*t******!***k********

s * *
3 ¥ pisk Input/Output Routines »
:*‘ *
;*****i‘****************‘*'k**k****************

SELDSK: tselect disk given by register CL
mov bx,0000h

HOMF, & ;move selected disk to home position (Track
mov trk,0 rset disk ifo to track zero

SETTRK: ;set track address given by X
mov trk.,cl ;we only use B bits of trac
ret

SETSEC: ;set sector number given by ex
mov sect,cl ;we only use 8 bits of sect
et

SECTEAN: ;translate sector CX using table at [DX]
mov bx,cx

SETDMA: ;set DMA offset given by CX
mov Ama_adr,CX
ret

SETDMAB: ;set DMA segment given by CX
mov dma_sed,CX
ret

GETSEGT: jreturn address of physical memory table
mov bx,offset seg_ table
ret

D-5

T S STt TR E s s R R R R S Attt

*
* *
;* A1l disk T/0 parameters are setun: the *
:* Read and Write entry points transfer one *
* szector of 128 bytes to/from the current *
*+ ©MA address using the current disk drive *
- *
*

kk kR A AR PR A AR AR kR R AR AR AR E R AR AR AR R F R AR AR ER

READ:
131F BO12 mov al,1l2h shasic read sector command
1321 EBOZ jmps r_w_common

WRITE:
1323 BOOA mov al,0ah ic write sector command

r_w_common :
1325 BBZF1S mov bx,offset io_com ;peint to command stri

:**wx**tt*i*++9********zwrt******k*k*******it*

. ® *
H

3 * Nata Areas &
. ® *

i
;*******zt*******kk**k*************w*******ztt

1415 data_ offset equ offset S
dseqg
orq data_offset ;contiauous with co
v loader_bios
‘| |
1415 0DOADDOA signon db criVEser L E
1419 43502r4D2D38 db “cp/M-B6 Version 2.27,cr,1f,0
362056657273
696FHE20322R
320n0A00

TINDIE ;loader_bios

IF not loader bios

ENDIF ;not loader_bios

142F 0D02486F6D65 bad _hom db er,1f, Home Error”,cr,1f,0
include singles.lib jread in disk definitio
; NISKS 2

= 1541

=1le6d 00

1869
16A9

1649 00

0000

dpbase

loc_ stk
stkbase

-
L
*
*
*

H
¥

equ 5 :Base of nisk Param

db 0 ;Marks End of Modul

rw 32 ;local stack for initialization
equ offset $

db 0 ;£i11 last address for GENCMD

kdkkdkdhkhkhr kb hhbhkbhhThbhhbhktddddbdrddrhdddn

e

Dummy Nata Section *
*

L T RS E TR AR SRR RS S RS R R R R R B R

dseq 0 ;absolute low memory
orq 0 ; (interrupt wvectors)
END

D-7/D-8

E

BIOS Listing

e s T e R Rt

*
*
*
*
*
*
*
*
*
*
*
*
*

This iz the CP/M-86 BIOS, derived from the BIODS
program by disabling the "loader_bios" condi-
tional assembly switch. The listing has been
truncated on the right, but can be reproduced
by assembling the BIOS.AB6 file provided with

CP/M=-86.

with the Intel SBC 86/12 with the SBC 204 con-
Use this BIOS, or the skeletal CBIOS
listed in Appendix E, as the basis for a cus-

tomized implementation of CP/M-86.

provided with CP/M-86)

troller.

This BIOS

allows CP/M-86 operation

T T T

T I T TS S E T ST LA E RS S SRR A R R R R RS bk

FFEF
0ooo

;*****#********i*ii**i*******tt*ii********!tii

%
i
- %
V
i

*
*
*
*
*
*
*
*
*

Basic Input/Output System (BINS) for
CP/M-B6 Confiqured for iSBC 86/12 with
the iSBC 204 Floppy Disk Controller

[Hote: this file contains both embedded
tabs and blanks to minimize the list file

* % ¥ F ¥ % F

width for printing purposes. You may wish*

to expand the blanks before performing
major editing.)

Copyright (€) 1980,1981
Digital Research, Inc.

Box 579, Pacific Grove

California, 93950

(Permission is hereby granted to use
or abstract the following program in
the implementation of CP/M, MP/M or
CP/NET for the B086 or 8088 Micro-

processor)

true equ -1
false equ not true

*
*

FEARAARRAR I AR AR AT R R Ak kb d Ak FEFAd 22 ehbd

sk kA dE kA b A bk h ke ke ke kk kA hF kkkkkFEE T
*

* Loader bios is true if assembling the *
LOADER BIDS, otherwise BIOS is for the ®
CPM.SYES File. Ble list is true if we =
have a serial printer attached to BLCB538 *
Bdo= int is interrupt used for earlier 5
*
*
*

)
;*
.k
H

.k
i

.
P .
;¥ versions.
-

H
R

0000 loader_bios equ false
FFFF bic list egu true
00E0 bdos_int equ 224 ;reserved BNOS Interrcunt
T not loader_bios
& [
2500 bios_code equ 2500h
oooo ccp_offset equ 0000h
0B06 bdos_ofst egu 0BOGh ;BNOS entry point

BNDIF ;not loader_bios

IF loader_bios
: |
bios_code egu 1200h ;start of LDRIOS
cep offset equ 0003h ;base of CPMLOADER
bdos ofst equ 0406h ;strivped BDOS entrv
ENDIF iloader bios
oopn cets egqu O0DAh ;18251 status port
00pa cdata equ 0DA&h 5 " sdata port
IP ble list
Tl
0041 lats equ 41h ;2651 Wo. 0 on BLCB538 stat
0040 ldata equ 40h § " o it L data
0060 blc_reset equ 60h j;reset selected USARTS on B

ENDIF sblc. List

?********t-k*****t**t***i**t************t*i*i**

T *
1 ¥ Intel iSBC 204 nisk Controller Ports =
+® *

H
:****************i'i"i*i***************i*it*ii*t

0020

00a0
0ozo
00nl
0oal
00A2
00n4
0o0as
0026
00a7
00RE
00aR
aoa9
00a3
00AF

oooa

000D
000a

2500
2503
2506
2509
250C
250F
2512
2515
2518
251B
2518
2521
2524
2027
252R
252D
2530
2533
2536
2539
253C

E93C00
E%98400
E99000
E99600
E%9n00
E9AS00
E9B700
ESB400
ESFFO0
ESDBOO
E90E01
ES1001
E91901
E22401
E92501
E99100
E20601
E90FO01
E91101
E89300
E99300

base204

£dc_com
fdc stat
£dc_parm
fdec_rsit
5dc:rst
dmac_adr
dmae_cont
dmac_scan

dmae

sadr

dmac_mode
dmac_stat
fdec_zel
fdc_segment
reset 204

max_retries

=15
1f

cep:

cseq
org

org

equ Dalh +8Br204 assigned ad

equ base204+0 :B271 PN out comma

equ base204+0 :B8271 in status

equ base204+1 ;8271 out parameter

equ base204+1 1B271 in result

equ base2(4+2 ;8271 out rceset

agu base204+4 ;8257 OMA base addr

equ base204+5 +B8257 out control

equ base204+6 ;8257 out scan cont

equ base204+7 38257 out scan addr

egu base204+8 ;8257 out mode

equ base204+8 ;8257 in status

equ base204+9 $FDC select port (n

equ base204+10 ;segment address re

agu base204+15 ;reset entire inter

egu 10 imax retries on dis
ibefore perm error

equ 0Odh scarriage reburn

equ Oah ;line feed

cepoffset

hiog_code

:*i#**i**********!***!tiii****i********i**t***

¥
7

+ &
i

*

+* BIOS Jumn Vector for Individual Routines *
*

:*****i—*************1G*ik****i*********it*ii**

imp
amp
amp
jmp
imp
e
imp
Jmp
imp
me
imp
qmp
Jjmo
jme
imp
jmp
jmo
jmp
imp
imp
imp

INIT
WBOOT
CONST
CONIN
rONOUT
LISTOUT
BUNCH
READER
HOME
SELDSK
SETTRE
SETSEC
SETDMA
READ
WRITE
LISTST
SECTRAN
SETDMAB
GETSEGT
GETICBF
SETICEF

1Enter from BOOT ROM or LOADER
;Arrive here from BROS call 0
;return console kevboard status
;return console keyboard char
jwrite char to console device
swrite character to list device
:write character to punch device
;return char from reader device
smove to trk 00 on cur sel drive
rselect disk for next rd/fwrite
:set track for next rd/write
iset sector for next rd/write
:set offset for user buff (DMA)
;tead a 128 bvte sector

swrite a 12B byte sector

;return list status

;xlate logical->physical sector
:set seg basze for buff (DMA)
:return offset of Mem Desc Table
sreturn I/0 map byte (INBYTE)
;set 1/0 map byte (IOBYTE)

E-3

253F
2541
2543
2545

2547
254n

2548
2540
2547
2551

2553
2559
255D
23560
2563
2566

2568
256E

256F
2571
2573
2575
25717
2579
2578
257D

BCCS
8EDO
8EDE
8ECO

BrE429
o

LB
BA0000
8EDS8
8ECO

r70600008N25
8COE0D200
BF0400
BEOOOO
BIFEDL

T3A5

C7068003060B
1F

BOFF
E660
BO4E
E642
BO3E
E642
BO37
E643

:!Q!t’k\k*i**i*****ikkk*k********k**ii‘******!***
:* *
:* INIT Entry Point, Differs for LDEIOS and: &
*
*

*
B e s e T s R s R S RSS2 s R Rt

* BINS, according to "Loader Bios" value

INIT: :print signon message and initialize hardwa
mov ax,cs ;we entered with a .JTMPF 50
mov s5,ax ©S: as the initial value

mov ds,ax S,

mov £5,aX and FS:

;use local stack during initialization
moyv sp,affset stkbase

eld ;set forward direction

TF not loader_bios

; Mhis is a BINS for the CPM.SYS file.
: Betyp all interrupt vectors in low
; memorv to address trao

push ds ;save the NS register
mov ax,0

mov ds,ax

mov es,ax :set RS and NS to zero

;setup interrupt 0 to address trao routine
mov int0 offset,offset int_trap
mov int0 segment,”S

mov di, 4
mov si,0 ;then propadate
mov ox,510 ;trap vector to

rep movs ax,ax ;all 256 interruonts
;BDOS offset to proper interrupt

mov bdos_offset,bdos ofst

pop ds :restore the NS register

************i’*i‘*****i‘**i‘***i**k*w*!i—*****ki*fx
* *
* Mational "BLC B538" Channel 0 for a serial®
* 9500 baud printer - this board uses 8 Sig-*
* petics 2651 Usarts which have on-chio baud®*
* rate generators, £
* *
*******\!t*i*tti********i**i*t*******i**t*****

mov al,0FFh

out blc_reset,al ;reset all usarts on 8538
mov al ,4Eh

out 1ldata+2,al :set usart 0 in asvnc 8 bit
mov al,3Eh

out ldata+2,al ;set usart 0 to 9600 baud
mov al,37h

out ldata+3,al jenable Tx/Rx, and set up R

E-4

257F
2582
2585
2587

258A

258D
25BE
2590
2592
2595
2598

2599
2598
259D
259F

25a1

BB4427
E86600
B100

E276DA

E979DA

FA
8ccs
BEDS
BB7927
E85300
F4

E4Da
2402
7402
0CFF

c3

ENDIF snot loader bios

IF loader bios

;This is a BIOS for the LOADER

push ds
mov ax,0
mov ds,ax

;save data segment

;point to segment zero

;BDOS interrupt offset
mov bdos_offset,bdos_ofst
mov bdos_segment,CS ;bdos interrupt segment

pop ds

rrestore data segment

ENDIF ;loader_bhios

mov hx,offset signon

call pmsg
mov ¢l,0
imp cep

WBOOT: Jjmp ccp+b

;print signon message
;default to dr A: on coldst
;jump to cold start entry o

;direct entry to CCP at com

1F not loader_ biocs

;
int trap:
eli
MmOV ax,cs
mov ds,ax

;block interrupts

sget our data segment

mov bx,offset int trp

call pmsg
hlt

jhardstop

ENDIF ;not loader_bhios

:t*t*ti****t*****i"k*i‘**#*****************i**t*

e CP/M Character I/0 Interface Routines

7% at ports D8/DA

*

*

T Console is Usart (i825la} on ISBC 8AR/12 *
*

&

*

ISR SRS ST RIS R SRR AR AR S R LR RS
i

CONST: ;console status

in al,csts
and al,2
jz const_ret
or al,255
const_ret:
= et

jreturn non-zero if RDA

;Receiver Data Available

25A2
2525
25A7
25n9
25AB

25AC
25AE
25B0
25B2
2584
25B6

2587
25BA
25BC
25BE

25C0

25C1
2503
25C5
25C7
25C9

25cC
25CE

25CF
25D1

EBF4FF
T4FR
E4DB
2477
=3

E4DA
2401
T4FA
BACL
E6ND8
c3

E80700
T4FB
BACL
E640

c3

E441
2481
3csl
T50A
OCFF

c3

BO1A
c3

BOOO
c3

CONIN: ;console inout
call const

iz CONMIN ;wait for RDA
in al,cdata
and al,7fh sread data and remove varit
ret
COMOUT + ;console output —r
in al,csts
and al,l ;get console status
jz CONOOT ;walt for TBE
mov al,cl
out cdata,al iTransmitter Buffer Empty
ret ;then return data
LISTOUT : ’ i1ist device output
IF blc list

call LISTST

jz LISTOUT :wait for printer not buswy
mov al,cl
cut ldata,al +send char to TI B10
: |
ENDIF ible Tist
ret
LISTST: ;poll list status
IF blc_list
: |
in al,lsts o
and al,21lh :+look at both TxRDY and DTR =
cme al,B81lh
inz zero ret ;either false, printer is b
or al, 255 sboth true, LPT is ready
i |
ENDIF ;blc_list
ret

PUNCH: ;jnot implemented in this configuration
READER:
mav al,lah

ret ;return BOF for now
GETIOBF:

mov al,0 1TTY: for consistency

ret 1 I0BYTE not implemented

25n2

2503
25n5

25D6
25p9
25DR
2500
25DF
25E0
25E2
25E4
25E6
2588

25FA

25EB
25ED
25EF
25F1
25F3
2576
25P7

25F9
25FC
25FF
25601
2603
2606
2608
2602

260D
260F
2611

c3

2400
€3

EBCIFF
50
anca
E8CDFP
58
icel
7206
3CTA
7702
2020

O3

BAOT
B840
7428
Bar8
E8BGFF

EBF2

BREO0OO
BOF302
7318
BO8O
80F900
7502
BO40
AZ6928

B500
8BDY
B104

SETIORF:
ret

zero rek:
and al,l
ret

;iobyte not implemented

jreturn

i Routine to get and echo a console character
; and shift it to upper case

uconecho:
call CONIN
push ax

zern in AL and flag

;get a console character

mov cl,al ;save and

call coNepnT

DoOp ax ;echo to console

cmp al,”a

ib uret iless than "a” is ok

eme al, 2"

ja uret ;@reater than “z° ig ok

sub al,”a”-"Aa" ;else shift to caps
uret;

ret
: utility subroutine to print messaqes
pmsg:

mov al, [BX] ;get next char from message

test al,al

jz return ;if zero return

mov CL,AL

call CONOUT ;Print it

inc BX

jmps pmsg snext character and loon
F******itt*w**i**i**i*i***************+1iti*ti
:* *
ol Disk Input/Mutput Routines i
= *
;tiit******i*ii**t**********ii*i**kiiiit**&*!*
SELDSK : ;select disk giwven by register CL

mov bx,0000h

cmp cl,2

jnb return

mov al, 80h

cmp cl,0

jne sell

mov al, 40h
sell: ° mov sel_mask,al

mov ch,0
mov bx,cx
mov cl,4

;this BIOS only supports 2
jreturn w/ 0000 in BX if ba

sdrive 1 if not zero
;elae
;Eave
;now,

FREY4

drive is 0
drive select mask

we need disk paramete

word (CL)

2613
2615

2619

261
261T
2622
2625
2627
2623
262D

262F
2633

2634
2638

2639
2638
263D
263F

2640
2644

2645
2649

264n
264D

264E
2650

D3E3
g1c3iczs

{o:t

CE6066C2800
BB6E2S
E833500
7472
BEGA2T
EBBEFF
EBREB

880E6C28
23

880E6D28
c3

8BDY
03DA
BALF
€3

890E6528
c3

890E6728
c3

BB7328
c3

B012
EBO2

return:
ret

HOME : smove selected disk to home position (Track
mov trk,0 sset disk i/o to track zero

shl bl smultiply drive code * 16
:create offset from hisk Parameter Base
add bx,offset dp_base

mov bx,offset hom_com
call execute

jz return ;home drive and return i€ O
mov bx,offset bad_hom ;else print

call pmsg ;"Home Frror"

jmps home rand retrv

SETTRK: ;set track address given by CX

mov trk,cl jwe only use B bits of trac

ret

SETSEC: ;set sector number given by ox

mov sect,cl ;we only use 8 bits of sect

ret

SECTRAN: ;translate sector CX using table at [DX]

mov bx,cx

add bx,dx ;add sector to tran table a
mov bl, [bx] ;get logical sector
ret

SETNMA: ;set DMA offset given by CX

mov dma_adr,CX
ret

SETDOMAB: ;set DMA segment given by CX

i
GETSEGT :

mov dma_seg,CX
ret

mov bx,offset seq_table
tet

:**'k***'i******i"iiir*******ii*i****iit*******i**

.k *
H
;* A1l disk I/0 parameters are setup: the ¥
;* Read and Write entry points transfer one *
:* sector of 128 bytes to/from the current ¥
;* DMA address using the current disk drive *
- *
J:**itii***********i*i*****i*i*************tii*
READ:
mov al,l2h 1basic read sector command
imps r_w_common
WRITE:

;return address of physical memory table

E-8

2652

2654
2657

2654

265E

2663
2667

26628
266E
2671
2674
2676
2678
2678
267D
267F
2681

2683
2685
2687
2689

268B
268D
268F

2691
2693
2695
2699

2698

BOOA

BEGAZS
884701

891E6328

C60662280A

8BLE6328
E8B900

8B1E6328
BA4701
BS0O0O08
3c2c
T20B
B98080
240F
Jeoe
BOOO
7736

E4R20
22C5
32cl
T4F8

E4al
241w
7428

e
7425
FEOE6228
7508

B400

mov al,0ah

r _W_common:

i

execute:

mov bx,offset i
mov byte ptr 1
fall into execu

;jexecute comm
[BX] points to

i
= followe

:basic write sector command

o_com j;point to command stri
BX],al ;put command into str
te and return

and string.
length,
d by Command byte,

followed bv length-1 parameter hyte

mov last_com,BX

outer_retry:

EeEER

;allow some ret
mov rtry_ent,ma

mov BX,last_com
call send com
check status po

mowv
mov

BY,last _com
al,1[bxT
mov cx,0800hR
cme al,2ch

ib exec poll
mov cx,8080h
and al,0fh

cmp al,0ch

mov al,0

ja exec_exit

exec_poll:

dr_rdy:

in al,fde_stat
and al,ch

xor al,cl

iz exec poll

in al,fdc_rslt
and al,leh
jz exec_exit

cmp al,l0h

je dr_ nrdy

: then we just
dec rtry ent
inz retry

retries do not
hard error

mov ah,0

;save command address for ¢

rving
X _retries

stransmit command to 18271

11

;get command op code

rmask if it will be "int re
ol BE
;else we use

it is an interrupt t
"not command b

;unless there isn”t

= any result

Well For bits in CHy

i toggled with bits in CL

sread status

; 1isolate what we want to
;and loop until it is done

iOperation complete,
; see if result code indica

:no error, then exit
jsome type of error occurre

;was it a not ready drive ?
;ho,

retry read or write
7 up to 10 times

recover from the

269D
269F
26A3
2606
26A8
26RB
26AD
26AF
26B1
26B3
26B5
2687

26B9

26BA
26BD
26BF
26C2
26C4
26C7

26CA
260D
26CF

26D1
26D3

26m4

26D7
2609
26DE
26ED

26E2
26E5

26E8
26EA
26EC
26EE
26F0

8BDS8
BROF9127
E845FF
E4D8
E82BFF
3c43
7425
3C52
74AB
3C49
741n
OCFF

3

E81a00
T5R4
EB1500
759F
BB0228
E821FF

EB0A00
T4FB
EB92

2400
c3

E9B3FE

B640
F606622880
7502
B604

BE7128
E80B0D

E4a0
A880
T5FA
E4Al
B4CH

mov bx,ax :make error code 16 bits
mov bx,erctbl[BY]

call pmsg ;print appropriate message
in al,cdata ;flush usart receiver buffe
call uconecho :read upper case console ch
emp al, C”

ie whoot 1 ;cancel

cmp al, R”

je outer_retry jretry 10 more times

emp al "I

Je sliret :ignore error

OF AlG255 :set code for permanent err

exec_exit:

dr_nrdy:

whoot_1:

The

i

ret

shere to wait for drive ready
call test ready

inz retry ;if it"s ready now we are 4
call test ready
inz retry ;if not ready twice in row,

mov bx,offset nrdymsg
call pmsg ;"Drive Not Ready"

call test ready

iz nrdy0l ;now loop until drive ready
Jjmps retry ;then go retry without decr
and al,0

ret sreturn with ne error code

;can”’t make it w/ a short 1
imp WBOOT

i*******i*i****fii*****i**i*****i—***i*i*****

18271 requires a read status command

¥*

* *
* *
* to reset a drive-not-ready after the ~
* drive becomes ready &
* *
* *

B R e R s st R RIS LAt L b E bt

test_ready:

nrdy2:

dr_poll:

mov dh, 40h ;proper mask if dr 1

test sel mask,80h

inz nrdy2

mov dh, 04h imask for dr 0 status bit

mov bx,offset rds_com
call send_com

in al,fdc_stat j;get status word
test al,B0h

jnz dr_poll ;wait for not command busy
in al,fdc_rslt ;get "special result"
test al,dh :look at bit for this drive

E-10

2738 E4n0 in al,fdc stat

273a ABZ20 test al,20h ;test "parameter register £
273C 75Fa inz parm_poll :idle until parm reg not fu
273E 8A07 mov al, [B¥]

2740 E6AL out fdc_parm,al ;send next parameter

2742 EBEF jmps parm_loop ;go see if there are more »

:*****i*******i**i*ti*****ii*ti***ii*i*ii*ti**

£ *
e Data Areas x
& *

Bai i s i et E R R e R R R

2744 data_offset equ offset $
dseg
org data offset ;contiquous with co
I loader bios
] |
signon 4 e e b e o)
db “CP/M-86 Version 2.2 ,cr,1f,0
| |
ENDIF ;1oader_bios
IF not loader_bios
2 |
2744 ODOAODOA signon db (o o b ET) i b
2748 202053797374 db * S8ystem Generated - 11 Jan Bl7,c¢
656D204765RE
657261746564
20202p203131
204A616E2038
310D0200
| |
ENDIF ;hot loader bios
276A ODORA4BEFSD6S bad_hom db cr;1f, Home Brror”,cr,;1€,0
204572726772
onoand
2779 ODOA496ET465 int_trp db cr,1f, Interrupt Trap Halt”,cr,1£,0
727275707420
547261702048
616CT740D0OR00
2791 BLl27B127B127 errtbl dw er0,erl,er2,erd
B127
2799 C127D127DE27 dw erd,er5,erf,er?
EF27
27a1 022816282828 dw erB,er9,erh,erB
3p28
2789 4D28BL127B127 dw erC,erD,erE,erF

E-11

27B1

B127

0D0R4ETS6CEC
204572728F72
203F3F00

2781
2781
27B1

2701

27m

27DE

27ER

2802

2816

2828

283D

284D

ODOR436CHEFEI
6R204572726F
72203200
ODORACHLT 465
204440412030
00
0nOrA49442043
524320457272
6F72203200
O0n0R44617461
204352432045
72726F72203R
00
0DOR44726976
65204E6FT7420
526561647920
3800
ODOA5T7726974
652050726F74
656374203200
ODOR54726B20
3030204E6FT74
20466F756E64
20300
0D0AS7726974
65204661756C
74203A00
0DOA53656374
6FT72204E6F74
20466F756E64
203n00

2781
27B1
27B1
2802

2862
2863
2865
2867
2869

2862
2868
286C

00
0000
nooo
0000
40

03
0o
0o

erQ db
erl equ
{5 74 egu
erd egu
erd db
erh db
eré db
er? db
erB db
er9 db
erd db
erB db
erc db
erD equ
erE equ
erF edu
nrdymsg egu
rtry_cnt db
last_com dw
dma_adr dw
dma_seg dw
sel_mask db
= Vari
io_com db 3
rd wr db 0
trk db 0

cr»1f, "Null Error 277 ,0

erl
erl
erl

er,1f, ’Clock Brror 7,0

et JAE;TLate DMAI =70

er,1¥,7ID CRC Error :7,0

er,1f,"Nata CRC Error :”,0

er,1f,"Drive Not Ready :7,0

cr,1f, Write Protect :7,0

cr,1f,”Tcrk 00 Mot Found :°,0

er,1f, "Write Pault :7,0

cr,1f, Sector Not Found :",0

erd
er0
erl
erf

0 ;disk error retry counter

0 ;address of last command string
0 1dma offset stored here

0 rdma segment stored here

40h 3select mask, 40h or BOh
ous command strings for iB271
ilength

;jread/write function code
;track #

E-12

26F2

26F3
26F5
26F7

26F9
26FC
26FE
2700
2702

2704
2706
2708

2708
270c
270E
2710
2712
2714
2716
2:7:19
2718
271p
271F
2722
2724
2726

2728
272n
2728
272D
2731

2733
2735
2737

c3

E4a0
AB3B0
T5TA

8A4701
L,)
7504
B140
EBOE

3coa
7520
B180O

BOO4
E6AS
BOOO
E6AS
8aC1
E6AS
al6528
E6R4
BACAH
E6And
Al6728
E6AR
8ACd
E6AA

BAO0F

43

BAD7
0AD66928
E6AD

FECY
7482
43

ret

kEkE kA kkkd

*

*

*

%

* The DMA
faile 5 2
d*

*

AFr kb ik d

send_com:

Send_com sends a command and parameter
te the i8271: 38X addresses parameters.
ed

jreturn status of ready
AR R R A S S RS2 s R R R SRS S SSEER 3
s

*

*
controller is also initializ *
is a read or write &
-

*

ER R A S22 2SR R R R AR R R RS

in al,fdc_stat
test al,B80h tinsure command not busy

inz

send_com ;loon until ready

;see if we have to initialize for a DMA ope

mov al,l[bx] sget command byte

cmp al,l2h

ine write maybe ;if not a read it could be

mov cl,40h

jmes init_dma :is a read command, go set
write mavbe;

cmp al,0ah

jne dma_exit ;leave NMA alone if not rea

mov ¢l,80h ;we have write, not read

it dma:

(CL
mov
out
mow
out
mov
out
mowv
out
mov
out
mov
out
mowv
out
dma_exit:
mov
inc
mov

ni
we have a read or write operation, setup PMA contr

contains proper direction bit)

al,04h

dmac_mode,al ;enable dmac

al,on

dmac_ceont,al ;send first byte to con
al,cl

dmac_cont,al sload direction register
ax,dma_adr

dmac_adr,al ;send low byte of DMA
al,ah

dmac_adr,al :send high byte

ax,dmz_seg

fdc_segment,al ;send low bvte of segmen
zl,ah

fdc_segment,al ;then high segment addre

cl, [BX1 ;get count
BY
al, [BX] ;get command

or al,sel mask ;merge command and drives co

out £dc_com,al ;send command byte
parm_loop: T

dec cl

iz exec_exit yno (more) parameters, retu

inc BX ;point to (next) parameter

Darm_poll:

E-13

286D 00

2B6E 022900
2871 012¢

2873 02

2874 DFO2
2876 2105
2878 0020
287a 0020

287C

=287C AB280000
=2880 00000000
=2884 C5289c28
=2888 64294529
=288C AB280000
=2890 00000000
=2894 5289028
=2898 93297429
= 2883C

=289C 1a00
=289E 03

=289F 07

=2BAD 00

=28A1 F200
=28a3 3F00
=28a5 C0

=28a6 00

=28a7 1000
=28a9 0200

= 28AB

=28AB 01070D13
=28aAF 19050B11
=28B3 1703090F
=28B7 1502080E
=28BE 141a060C
12180402
1016
001F

0010

283C
001F
0010
28AB

T Y T [R [1 |

2BCS

sect

hom com db 2,29h,0

db 0

rdg_com db 1,2ch

i

;sector #

shome drive command
;read status command

System Memory Segment Table

gegtable db 2

dpbase
dpel

dpel

x1t0

als0
css0

dpbl
alsl
essl
XLl

fopt]

egdat

dw tpa_s
dw tpa 1
dw 2000h
dw 2000h

include

equ
dw
db
dab
db
Aw
dw
db
db
dw
dw
equ
db
db
Ab
db
db
db
db
egu
equ

agqu
equ
equ
equ

Uninitia
equ

;2 segments

eq s11st seg starts after BIOS
en ;and extends to 08000
:5econd is 20000 -
:3FFFF (128K}
singles.lib ;read in disk definitio

DISKS 2

5 :Base of Disk Param
®1¢0,0000h ;Translate Table
0000h,0000h 1Scratch Area
dirbuf,dobl :Dir Buff, Parm RBlo
csvi,alvl :Check, Alloc Vecto
x1t1,0000h iTranslate Table
0000h, 00000 ;Scratch Area
dirbuf ,dpbl :Dir Buff, Parm Blo
cevl,alvl ;Check,; Allnc Vecto
DISEDEF 0,1,26,6,1024,243,64,64,2

offget S :Nizk Parameter Rlo
26 ;%ectors Per Track
3 18lock Shift

7 1Block Mask

0 ;Extnt Mask

242 ;Misk Size = 1

63 ;Directorv Max

Ik 2 1Alloch

0 :Allocl

16 :Check Size

2 ‘DEfset

offset $;Translate Table

3 iy e e et .

25,5, 11,17

23 350015

21,2,8,14

20266, 12

18,24,4,10

16,22

31 ;Allocation Vector
16 1Check Vector Size
NISKDER 1,0

dphl ;Bquivalent Paramet
als0 ;8ame Allocation Ve
css0 :5ame Checksum Vect
x1t0 ;Same Translate Tab
ENDEF

lized Scratch Memory Follows:
offset § +Start of Scratch A

E-14

2984 00

0000

0000
0002

0004

0380
0382

dirhuf s 128 ;Directory Buffer

alvi rs als0 ;Alloc Vector

c=vl rs cssl ;Check Vector

alvl rs alsl ;Allogc Vector

csvl rs ocssl :Check Vector

enddat equ of fset S ;Bnd of Scratch Are

datsiz egu offset S$-beadat ;S8ize of Sgratch Ar
db 4] ;Marks ®nd of Modul

loc_stk rw 32 ;local stack for initialization
stkbase equ offset §

lastoff equ offset 5
tpa_seg egu (lastoff+0400h+15) / 16
tpa_len equ 0800h - tpa_seqg

db 0 ;€111 last address for GENCMD
;***iii*ti*i*ti*t*ti**ti*ii*ti*i***i**********
:* *
s Tummy Data Section o
;* &
:i*i*t**k**t****#ii******t**i*i**ti*****.******
dseg 0 ;absolute low memory
oryg 0 ;{interrupt vectors)
int0_offset W 1
intd segment rw 1
H pad to svstem call vector
W 2* {bdos int-1}
bdos offset rw 1
bdos_ seqment rw 1
END

E-15/E-16

F

CBIOS Listing

FRERRFEEF AR AT R AT XA EREE I AT A ER A A b ek drhh kb okt

FlhaE 9 ehE
* vou can use as the basis for a customized
* for non-standard hardware. The essential por-
* tions of the BIOS remain, with "rs" statements
* marking the routines to be inserted.

#*

*

R e SR E R e e R R A TR

FFFE
oooo0
000D
onon

0000
00ED

2500
0000
0BO6

listing of the skeletal CBRINS which
RIDS

*
*
*
*
*
*
*
*

s R RS R s R R R R

P

i+* This Customized BIOS adapts CP/M-86 to *
;+* the folleowing hardware configuration *
i Processor: -
e Brand: %
3 X Controller: %
=* *
- *
i

;¥ Programmer : *
e Revisions : x
* *
;i**ii*i**i*{r***i—***aw****tt*‘!t*i*********i—**z
true equ -1

false equ not true

cr equ 0dh ;carciage return

1f equ Oah ;line feed
;*l********i—*************f‘i‘***********’*******
:f *
;* Loader bios is true if assembling the o
;+* LOADER BIDS, otherwise BIOS is for the *
;* CPM.SYS file. ¥
i *
;ii*i***i**************tii******-}:********1****

loader bios equ false

bdos int equ 224 ;reserved BNOS interrupt

IF not loader_bios

;

il [

bios_ceode egqu 2500h

ccp_offset equ 0000h

bdos_ofst equ OBO6h ;3DOS entrv point

2500
2503
2506
2509
250C
250F
2512
2515
2518
2518
2518
2521
2524
2527
2528
2520
2530
2533
2536
2539
2530

253F

F93C00
E97900
E98500
E98p00
299200
E92200
E9R500
E9BDOO
E9F600
E9DIDO
E90101
E90301
E90CO01
E91701
E94701
E9BF00
E9F900
E90201
E90401
E9A400
E9AS00

BCCH

ENDIF jnot loader_bios

I¥ loader bios
‘| |
bios_ceode equ 1200h ;start of TLDBIOS
ccp_offset egqu 0003h ;base of CPMLOADER
b?os_ofst equ 0406h ;stripoed BNDOS entrY

BHNDIT iloader _bios

cseq

org ccooffset
ceps

org bios code

shkFkk Ak r kA r Ak kAR kA Tk kAR AR kA KRR AT I AT R TR
* *

* BIOS Jump Vector for Individual Routines *
* *
*

EhkkkkAEkkrdhEFE A A bk FER R A TR AR bk ki dhhd

jmo INIT sFnter from BOOT ROM or LOADER
jmp WBOOT ;Arrive here from BDOS call O
jmp CONST ;jreturn console Keyboard status
jmp CONIN ;return console keyboard char
jmp CONOUT ;write char to console device
jmp LISTOUT swrite character to list device
jmp PINCH jwrite character to punch device
imp READFR jreturn char from reader device
jmp HOME smove to trk 00 on‘cur sel drive
jmp SELDSK ;select disk for next rd/write
jmp SETTRK ;set track for next rdfwrite

jmp SETSEC sset sector for next rd/write
Jmp SETDMA :set offzet for user buff (DMA)
jmp READ ;read a 128 byte sector

jmp WRITE ;write a 128 byte sector

jmp LISTST ;return list statos

dmp SECTRAN ;xlate logical-»physical sector
qmp SETDMAR :set seg base for buff (DMA)

jmg GETSEGT ;return of fset of Mem Desc Table
imp GETIOBF ;return I1/0 map byte (IOBYTE)
jmp SETIOBF ;set 1/0 map byte (IOBYTE)
;*************#**********i**iiti*i*i********tt
T *
i
1* INIT Entry Point, Differs for LDBIOS and *
1* BIDS, according to "Loader_Bios" value i
. *

T
:i*i"i*****iii'k*i****'k**i******’k****tii***ti***

INIT: iprint signon message and initialize hardwa
mov ax,cs iwe entered with a JMPF =o

2541
2543

2545

2547
254a

2548
2540
2551
2554
2556

2558
255E
2562
2565
2568
256B

256D
2573

BEDO
8ED8
8ECO

BC5928
FC

1E
C606AT2600
BE0O0OO
8ED8

8ECO

C70600008225
BCOED200
BF0400
BEQOOO
BIFEOL

F3n5

C70680030608

1P

mov SS5,ax :C5: as the initial value o
mav dAs,ax iNS:,

mov es,ax ;and ES:

ruse local stack during initialization

mov sp,offset stkhase

cld ;set forward direction

IF not loader_bios

; This is a BIOS for the CPM.SYS Eile.
; Setup all interrupt vectors in low
; memory to address trap

push ds ;save the DS register
mov IOBYTE,Q ;clear IOBYTE
mov ax,0

mov ds,ax

mov 25,8% ;set ES and NS to zero
;setup interrupt 0 to address trap routine
mov int0_offset,offset int_trap

mov int0_segment,CS

mov di,4
mov si,0 ;then propagate

mov ¢x,510 ;trap vector to

rep movs ax,ax jall 256 intercupts
sBDOS pffset to proper interrupt

mov bdos offset,bdos ofst

pop ds jrestore the NS reagister

(additional CP/M-86 initialization)

ENDIF ;not loader_bios

IF loader bios

;This is a BIOS for the LOADER

push ds ;save data segment

moy ax,0

mov ds,ax ;point to segment zero
;BDOS interrupt offset

mov bdos_offset, bdos ofst

mov bdos_segment,CS ;bdos interrupt segment
(additional LOADER initialization)

pop ds ;restore data segment

2574 BBB12g
2577 E86F00
257A B10O

257C E981DA

ENDIF iloader bios

mov bx,offset signon

call pmsg ;print signon message
mov ¢l,0 jdefault to dr A: on coldst
jmp ccp jjump to cold start entrv o

25TF

2582
2583
2585
2587
258a
258D

2588
2598

2589
IHYC
2598
25A8

2529
2583

2584
25BE

25BF
2509

25CA
2504

25D5
25DF

25E0

E2B84DA

FA
s0cc8
BREDE
BED126
E85C00
F4

€3

E8F2FF
T4FB

o]

£3

23

=3

23

c3

AQAT26

WBNOT: Jmp ccp+6 sdirect entry to OCP at

IF not loader_bios

int_trap:

¢li iBPlock interrupts
mov ax,cs

mov ds,ax jaet our data segment
mov bx,offset int_trp

call pmsq

hlt ;hardsteop

ENDIF ;not loader_bios

PHER AR RN F R R AR A AR IR R kR R AR

.k *
i P /M Character I/0 Interface Routines e
s *
i

:*********i—****kl!************k*i IR RS S L5 R R TR

CONST: ;console status
s 10 ST T=1inY
ret
CONIN: ;conscle input
call CONST
jz COWIN iwait for RDA
£s 10 ol o R
ret
CONOUT ¢ ;console output
rs 10 s(fill-in)
ret ;then return data
LISTOUT ;list device outout
s 10 FIEITT=in)
ret
LISTST: ;poll Iist status
rs 10 s {fill-in)
ret
PUNCH: ;write punch device
s 10 il R (e
ret
READER:
rs 10 s(€il1l—in)
ret
GETIOBF:

mov al,IOBYTE

25E3

25E4
25EB

2589
25EB
25ED
25EF
25F1
2574
25F5

€3

BBOEAT26
c3

8R07
84C0
7421
anCE
E8B5FF
43
EBF2

oooz2

2587
25FB
25FE
2601
2603
2605
2607
2609
2608
260
2610

2611
2617
2621

2622
2626

2627
2628

262C
2628
2630
2632

B880EAB26
BBOOOO
BOF902
730D
B500
BEDY
B104
D3E3
B9F126
03p9
okl

C706R9260000

c3

B90ERI26
c3

B890EAB26
c3

8BD2
03pa
BALF
c3

reg
SETIOBF:

mov IOBYTE,cl 1set iobyte

ret riobyte not implemented
pmsg:

mov al, [BY] ;get next char from message

test al,al

jz return ;if zero return

mov CL,AL

=all CoNnUT Spring Ik

inc BX

Jjmps pmsg snext character and loop
:***********i*i*****irt*ti*ttiii***i*t**i****i*
;* *
p Nisk Input/Output Routines *
. ¥ *

=**1********1******#****ii**iﬁii****fi**i*tii*

SELDSK : ;select disk given by register 1L
ndisks edu 2 j;number of disks (up to 16)
mov disk,cl ;save digk number
mov bx,0000h jready for error return
cmp cl,ndisks sn beyond max disks?
jnb return ireturn if so
mov ch,0 ;double (n)
mov bx,cx sbx = n
mov cl,4 ;jready for *16
shl bx,cl :n=n * 16
mov cx,offset dpbase
add bx,cx sdpbase + n * 16
return: ret ;bx = .dph
HOME : jmove selected disk to home position (Track
mov trk,0 rset disk i/o to track zere
rs 10 ;(Eill-in)
ret

SETTRK: ;set track address given by CX
mov trk,CX
ret

SETSEC: jset sector number given by cx
mov sect,0%
ret

SECTRAN: ;translate sector CX using table at [DX]
mov bx,cx

add bx,dx ;add sector to tran table a
mov bl, [bx] jget logical sector
ret

SETDMA: ;set DMA offset given by NX

F-5

2633
2637

2638
263C

263D
2640

2641
2673

2674
2636

890EAD26
€3

890RAF26
23

BBEB26
f£2

g2

c3

26A7

2647
26A8
26A9
26AB
26AD
26RF

00
o0
oooo
o0ooo
0000
n0ooo

mov dma_adr,”X
ret

SETDMABR: ;set DMA segment given by 70X
mov dma_seq,CX
ret

GETSEGT: sreturn address of physical memory table
mov bx,offset seg_table

et

;*1**************iti*i‘*#*****i*******#********

P *
% A1l disk I/0 parameters are setup: #
3 NISEK is disk number (SELDSK) *
e TRK is track number [(SETTRK) *
il SECT is sector number (SETSEC) *

g DMA _ADR is the DMA offset (SETIMA) *

% DMA SEG 1is the DMA segment [SETNMAB) *

:+* READ reads the selected sector to the NMA*

1* address, and WRITE writes the data from *

:* the DMA address to the selected sector *

:* (return 00 if successful, 01 if perm errl*
g

+®

B S S T TN RS E e P S PR S R A e

READ:
rs 50 +fill-in
ret

WRITE:
e 50 s (Eil1=iny
ret

:**i’***********tiii*********i*********i*t*****

:t *
[Data Areas =
:* *
:*****i********i’**i*****ii**i***#***-&*i******w
data_offset equ offset ¥

dseg

org data_offzet ;contiguous with co
IOBYTE db Q
disk db 0 :disk number
trk dw 0 strack number
sect aw 0 ;jsector number
dma_adr dw 0 ;DMA offset from DS
dma_seg dw 0 1TMA Base Segment

IF loader_bios
: H| S
signon db (ch 27 B o S B

26B1
26B5

26CE

26D1
26D3

26E6

26E8
26E9
26EB
26ED
26EF

26F1
=26F5
=2bF9
26FD
=2701
=2705
2709
270D

wuuunu

2711
=2713
=2714
=2715
=2716
=2718
=271A
=271B

0D0ADDOA
537973748560
2047656E6572
617465642030
302F30302F30
30

0noaoo

0DOA
496774657272
757074205472
61702048616C
T4

0noA

02

ce02
305
0020
0020

26F1

20270000
ooagooooo
3p271127
D927BA27
20270000
oooooooo
3a271127
0828E927

2711

1200
03
07
00
F200
3F00
co
00

signon ib e R EREL R
db ‘System fGenerated 007007007
db ey EyD
g
e e
BNER ;nok 1pader bios
int_trp db erLf
db “Interrupt Trav Halt”
db o i
- Svstem Memory Segment Table

segtable dh 2

dw tpa_seg
dw tpa len
dw 2000h
dw 2000h

12 seqgments

yand

to 02000

;second 1s 20000 -
s AFFPFR (1L28K)

:1st seg starts after BIOS
extends

include singles.lib ;read in disk definitis

i

dpbase egu
dpel dw
dw
dw
dw
dpel dw
dw
dw
dw
dpb0 egu
dw
db
db
db
dw
Aw
db
db

DISKS 2

3
%1£0,0000h
0000k ,0000h
dirbuf,dph0
csv0,alv0
x1t1,0000h
0000h ,0000h
dirbuf,dpbl
esvl,alvl

DISKDEF 0,1,26,6

offset $
26

3

-

0

242

63

192

0

:Base of Disk Param
;Translate Table

;Scratch Area

:Dir Buff, Parm Blo
;Check, Alloc Vecto
;Translate Table

sScratch Area
sPic Buff,
:1Check,

Parm Blo
Alloc Vecto

,1024,243 ,64,64,2
1Disk Parameter 2lo
tSectors Per Track

;Block Shift
:Block Mask
:Extnt Mask
sDisk Size — 1
;Ditectory Max
Allocd
1Allocl

F-1

o

nmnn

unonon

271c 1000
271 0200
2720
2720 01070D13
2724 19050R11
2728 1703090F
272C 1502080%
2730 141p060C
2734 1218040A
2738 101s
001F
0nl1o0

27
00lFR
0010
2720

2818
00DE
2818 00

2819
2859
2859
02C6

053a
2859 00

0000

0ooo
o002

0004

0380
0382

dw 16 ;Check Size

dw 2 sDffset
w1t0 edqu offset § ;Tranzlate Table

db 1 T#I319

db 2935, 11,07

db 23 3,59,15

db 21,2,8,14

dhb 20,26,6,12

db 18,24,4,10

db 16,22 G
als0 equ 31 jAllocation Vector
css0 equ ls ;Check Vector Size
H NISKDRR 1,0
dnbl aqu Aob0 tFquivalent Paramat
alsl equ alsd :8ame Allocation Ve
cssl equ ess0 ;Same Checksum Vect
x1tl equ x1t0 ;Same Translate Tab
$ ENDEF
+ fininitialized Scratch Memory Follows:
begdat equ offset § tStart of Scratch A
dirbuf s 128 iNirectory Ruffer
alvQ rs als0 jAlloec Vector
esv0 rs css ;Check WVector
alvl rs alsl tAlloc Vector
csvl £s cssl :Check Vector
enddat equ offset § :End of Scratch Are
datsiz equ offset 5-begdat ;Size of Scratch Ar

db 0 sMarks End of Modul
loc stk rw 32 ;local stack for initialization
stkbase equ offset 3§
lastoff equ offset S
tpa_seg equ (lastoff+0400h+15) / 16
tpa_len equ 0800h - tpa_ seg

db 0 ;Fi11l last address for GENCMD
;***********t*i*t**A‘******i**i***i—ii‘**t&tii**i
- *
i Dummy Data Section *
. % *
;i*i*i*#********w**t****i*i*k**k**t***ti—*****i

dseg 0 jabsolute low memory

org 0 ; (interrupt vectors)
int0 offset W 1
int0 segment W 1
i pad to svstem call vector

rw 2% (bdos_int-1)
bdos offset rw 3
bdos segment W 1

- END

S

Title Page
A

Allocate absolute MEMOTYcocvvevrrerirnnrrininiccninssebbissbiiasiriis 4-35
AllOCALE ITIBITIOTY wvvvrrrrrerrisssssrssssrrnerrrissessissssssesassrnsensrsnssssssssns 4-35
B

B S G DA E et i 8 Wi isvesosss siha possspaasad oA a9 e RS 1-4
BIOIE: i me i e sty s i v v s R o S e T i E-1
TR e o L R L e e e S s 1-8
BootstrapROM: s nias il nn i s 7-3
C

BB, o R R e 5-4, F-1
Glosediles . . ninnli s TR e 4-16
e e L R T 1-4, 3-3
Cold start IOBAETcooveeeiivinierriesserrsssrrsssssrssssesessssnsmsses 1-8, 5-4, 7-23
Compact MeraorTEIHodR] ..o mesimmmismsinsssenss s 2-8, 3-10
o PO bE EE S R s it it st kit s st sl 4-27
R e PP 5-10
NI T o oo o e e o e T R S AR N 5-11
ConSCIE NPT s e s s i e R 4-8
Console:oubpibi i samindiiitn s it 4-6
Consalarshatus oanrisiinniiananmnsnmsianmniags 4-10
O B e s s s L R a-10
Converting 8080 programs to CP/M-B6 ..o 1-7, 4-3
Cross development toolscooooiiiiiciier e et 1-4
D

D B D O sy s v by b e i 55 ki G-8, B-12, 6-13
INBlAbO TS oo rvryoin s e T w44 s R i L DS 10 4-17
BitecteBEORIEAllN . o it s L 4-30
TirectzeonsolasEID: oo prusnnmnmen: 2ain et s 4-7
Ditectory:entrIes: dniis s b i s s s 5-8

Index-1

Disledefinition:tables: i naiinm i iinitn s 1-7, 6-3

gl paramster bloEke: L. Gt SRR 6-6
Disk parameter header ... 5-12, 6-3
DIMA DUffer ..oovvccvreeecirrssseiissesrirssseassnsmnssanes 2-12, 4-21, 7-9, 5-14
F

TEARTERNE: s vecs s eason i v iy D oL e L oo e A e Y o e A 2.8, 2-13
File cordral IOk i irmimmyiessiinses s mamade dfs it padss sovess 4-11
FilesatrnlObuIre: covssses e dims e v et s s G ke b 1-3
Freoqnomony: = i inaimlnnaiiinm e 4-35
Froe allimeiiory: con . it sinnnimnsnnimiinnnms 4-36
G

[T BT B P U 1-4, 1-7, 3-3, 3-6-3-8
4 1 B T] A e SO O L PP 1-4
Get address of disk parameter blockcovmiiiiiciiniiiiniiens 4-21
Get allocation vector Address ... 4-21
FAL I ETE oo cunisice fn v T o (TR E Sntig 4-31
At T DA R ity ch s antoo oo i i P e e O e ke £ FE R 4-8
Gl MK INOTEOET: 5ican s is i i e s fe v s b vav s R rasaas i vios 4-34
B O R U S O B e T T A T TG T e 2 e 4-23
Get readlonly vector: ..iia i suiiiaiiiEiasiniiniiian. 4-22
R B e e e e R e B L R e s 517
GRS E R ... e R L RS 5-16
CHEOELLI N eak 1 nenssssenmmnres T b e L L e e B S e e 1-5
H

L A B R S O s o s s imvinians soussswansn nnunsens s penp e rosmsdncmnss s Smeppil M ULHE 3-4
BTN (i be s v s e s S s s i S sSSP e S Latt) 5-11
I

TN s e e P e e e o b 5-10
b e e i s e 3-6-3-7
L R e e L L e R 58
L

Lermodule fOrmial ..o ciiieisscesesssse s s erre e e eesmmmana e s 3-8
T T BN o icina st e e das b s e s s s v e). ey 1-4
] e B o o R e oy o 5-11
List 0ubDUL ..ooiiiaimmmimimmmsnn s s ssianinassssn s 4-7

Index-2

B e e R e S S B e P b oy P i L b h-14

T L e A R e e ol o 3-8
Logical to physical sector translation ... 515
M

NI it e e RS, il S hE 4-19
Memory region table §-16
TR S TRREIOTS v s comnn duse b4 bomss s B s dinsnmasi s b i 5B FemRE 0 1-3
0

CESE s s e e e e e e i 1-5
ol iR R R R R e 4-15
P

PR st s e e 4-8
BeoEramload G e e e R 4-36
e R e e T T P 5-11
POrich OUEDUE ooereceeeerscsmsissssssssmsnnessssssssnsnssnssesssmsnssssns nsmssmes sos 47
"

T T 2 Ty B-1
BB ALY cicuirmmviies ety So s vimeso s RS e ok e R 5-14
Read:bufferasrisnnmnnnunnis snmman mininaings 4-9
Beadrirandony s s s i i i e 4-24
Read:sequential wooiamsmiinnnianiiansnniamaacinnni 4-17
R R e A St s e i s B-11
Read e D e i A 4-7
Release all MOIMOEY: ..ceecrrensissssscmmmsiasassansons sasmassansnss ssbssssmpsnsss 4-36
Release MBMOIY .eeciceneriiesirenenriassnsinesssiassnsasesssasassssanses 4-35
T T Lo E L L s o s P Y {80 4-19
Reserved software INEEFTUDPL covvcvirivineermisseiissermrmsssrsisness 1-4, 4-3
Reget O e i s e T s e e e e S R 4-14
Basabdriyve i naTnian 4-29
Return:current.disk -coccaiianinamaamiannaaimninm 4-20)
Heturms b e ey B OO s e s i R 4-20
Retiorn version nimber: iiiiiiiiiiniiiiinnaiiang 4-11
5

Search for firstococcocvcmans s cerrss e s seans s rres s sns s ressss s 4-16
SearCh FOr TAETE .. yiersereranstrsenn s ssrnrtases s nsnmssssnnr e ssnssansnsmnsrans uss 4-17

Index-3

Sector blocking and deblocking ..., A-1

] 0 G L7 (e ey P e e S P e e T 5-15
BEETNENE ..ooeiiceneciiiisbinisss banssasthiasssdthessss soiuinsssii sdaion simabinenanis 1-5
Segment group memory requiremMents ..., 3-5
Segment register change ..., 2-8
Segment register initialization ..., 2-4
e L L Ny T+ ooyt T 5-12
T N e v Loy 4-14
SRt IONA AOYERE i iinssermssassiasssrisest vpssisgesats s ovas fhammas i serisy 4-20
o B T B e e 4-30
SotiTile: athrTDTtes ooy s b i s i s e e 4-22
Sat 10 hyteinininmaiianiimmmimrisissn ol 4-8
Set random ot L s S 4-28
SETDMA: & e G R TR A R 5-13
SETRRIAT .l i i s v i imsssasias sisvied s ot 5-15
BETIODB:ciiovcrsssnsniennmnnanmnssromnss saisssnisa ibimtansssan sosaisihbrosssisiins 8-17
k=3O H] T G S et foee e NI b R e B 5-13
RS T 48 oy o By S e ey ey e e (R T 5-13
Small mieriory Model’ ... ismmeaiiimeaieneasms 2.7, 3-10
System reset ..o 1-9, 2-3, 2-4, 2-13, 4-6, 4-34, 6-13
T

T analabion: VEChOrS it eine s sbia s sbrbassiianibrnannsiinssanses G-6
u

Utility program operation ..., 1-4
W

VIS (=) e Sl il s e e Y 5-10
T] e e | 5-14
s tEr 13 K e B £y ity Oy I ey o 4-26
Write random with zero fill .. 4-29
Write protect disk ... 4-21
Write sequential ... e 4-18
8080 memory model ... 1-7, 2-12, 3-10

Index-4

