CBASIC 2
A commercialy oriented, compiler/interpreter BASIC languag facility for CPM (tm) systems.

Vergon 2
November 1981

Digital Researh, Inc.
P. 0. Box 579
Pacific Gove, CA 93950

408-68-3896
All Rights Resered

Copyright (c) 1977, 1978y Digital Research Inc.
All rightsresened.

No patt of this pubication may be repoduced, trarsmitted, transribed, stord in
aretrieval system, or translaed into ary language or computer language, in any for
or by ary means, electronic, mechanical, magnetic, optical, chemical, manual or
othewise, wthout the prior written permisson of Digital Researt Inc., PostOffice
Box 579 Pacfic Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or warrarnies with respect to the
contents hereof and specifcally disclaims any implied warranties or merchartability
or fitness fo any paticular purpose.Further, Digital Researh reseves the right to
revise this publication and to make changes from time totime in the contert hereof
without obligation of Digital Researt to notity any person ofsuch revision or
changes.

TRADEMARKS

CBASIC and MP/M are tragmarksof Digital Reseech
CP/Mis a regstered traémark of Digital Reseech

1. CBASIC

1.1INTRODUCTION

This manual describes wersion two of CBASIC, a comprehensive,
commercially oriented compiler/interprete designed for use with the CP/M
(tm) and MPM-80 operéing systems. CP/M ard MP/M-80 are trademarks of
Digital Researb. CP/M is available on a multitude of 8080, 8085and Z80
microcomputersystems.

In this manual, unless it is stated otherwise, CP/M will be usedto indicate
version 1 or 2 o CP/M or MP/M. There are many derivations of CP/M.
CBASIC sodd also operate with these sysems. CPU will refer to the
microprocessor clpinstalled in the system.

CBASIC hasa variety of extendel feature including thelF ... THEN . ..
ELSEand WHILE constructs and acas to disk fil es. CBASIC also allows the
useof 31 dharacte variable names,andthe free use of comments spacesand
tabs. hese aid in creating programs that are self-documenting and
maintainable.

Vergon two of CBASIC adds inéger variables, multiple line functions,
chaining with common variables, ad additional predefined furctions as well
as obher improvements. Across réerencelister is aso provided.

The CBASIC system consids of three programs. The first program, the
compiler, corverts the usa's souce languag progam into a seaies of coded
operdions that are placed on an intermediate disk file. The secod program,
the rurtime monitor, drectly executes the operdions includalin the
intermediate file. The fina progam, XREF.COM, wil produce a cross
reference listing of all variablesusel in aCBASIC sourceprogram.

To use CBASIC a microcomputer systemusing the CPM operatng sydem
must beavailable. Ths manual assumes a workig knowledge of the foll owing
CP/M dowmentation:

(@) AN INTRODUCTION TO CP/M FEATURES AND FACILITIES

(b)ED: A CONTEXT EDITOR FOR THE CP/MDISK SYSTEM

(c) CP/M INTERFACE GUIDE

Thesemanuals are available from Digital Reseach, PO Box 579, Padic
Grove, Californa.

A newmmer to the field of computers would do well to read an
introductory text on the Basic Language.

The reference ction, chagers 2 through 1Q describs the facilities of the
language. Chapte 11 expandson the use of files. Chapters 12 and 13 describe
operdion of the compiler. Three agppendices follow which list compiler and
runtime error messages &d list key words.

1.2FoRrR CBASIC | PROGRAMMERS

Progammers familiar with verson 1 of CBASIC shouldreview this
manual paying patticular atention to the use of integer variables. Chapte 3
provides defails on using integers in expressons. The sed¢ions corcerning new
staements ard functions shodd be readn detail Chapters 12 and 13 lso
contain much new irformation.

A programthat compiled and executed with verson 1 shodd operate
propely with verson 2. However, an INT file created by the verson 1
compiler will not execute with the verson 2 rutime monitor. The source
programmust be reompiled.

If staements appea not o operaé properly, Digital Reseath Inc. would
appreiate a note Wch includesthe stéement or staements which are causing
the problem along with a desciption of the problem.

1.3PROGRAM | DENTIFICATION NUMBERS

All Digital Reseath language programssign-on with the program name
followed by an idetification number. These numbers are in the following
form:

V.RC

"V" is the version number. This manud descrbes veasion 2 programs. The
"R" is the release number of theprogram. As errors are corrected ina
particular version, new releases are made aailable. The "C" is the
configuration. A zero means that the progranis configured to operag with
standad CP/M version 2 amd MP/M. Other configuratons may be made
available inthe future.

2. General Infor mation

2.1 STATEMENTS

A programconsists of zero or moe properly formed CBASIC staternents
contained n adiskette file. CBASIC source statements are dso called source
code or sorce staements. An END staement, if present,terminates the
program, and any statemerd following the END statement are ignored. An
endof-file on the source file aso terminates the program. Inthis case the END
staement is supplied by CBASIC.

In this manual the tem line,in the contextof aline of source code, means a
string of characters erminaied with a carriage return and linefeed A
staement may span more than one line or mutiple staements may appearon
the ssme line.

The entire ASCII characte set is acceped but mod statements may be
written usng the common 64 characte subset Lower case lettesare
cornverted by the compiler to upper case gcef when they appea in strings or
remarks. A compiler togge, descibed n Chapter 13, will inhibit a
conversion to uppe case.

CBASIC staements are fee-form with the following requirements:

(1) When a staement is not completed on a single Ine, acontinuation
charader(\) mug be used. (To produce the \ characteron Franklin ACE
computers, pres CTRL / or CTRL SHIFT / simultaneously). The statement
can then be continued on the next line. CBASIC keywords, variable names
and string constantsmay not be brokn in the middle and continued on the
next line. A continuation character may not be used in a Data Statement
since it is treatedas a characte within a string corstant. Likewise ba&slash

4

characters within string constants enclosed in quotation marks (see section 3.
1) are not treated as continuation characters.

(2) All characters which follow the continuation character on the same line
are ignored by the compiler.

(3) Multiple statements are allowed on one line but they must be separated
by a colon (). DATA, DEF DIM, and END must be the only statement on a
line; an IF statement must be the first statement on a line. See the REM
statement (section 2.4) for an exception to this rule.
Spaces may precede statements; any number of spaces may appear
wherever one space is permitted. Extra spaces, such asfor indenting

statements to enhance readability, do not increase the size of the intermediate
file created by the compiler.

2.2 NOTATION

All of the CBASIC statements are described in this manual. Each
description includes a synopsis which presents theexal form of the
statement. The following notation is used for theopsis
Keywords and Symbols

All special characters and capitad words represent symbols which have
special neaning in the language. For instance READ, REM and PRINT are
keywords in CBASIC. Appendix C contains a list of all keywords used by
CBASIC.

Angle Brackets < >
Angle brackets enclose an item which is defined in greater detail in the text.
Brackets []

Brackets denote an optional feature.

Braces {}

Braces indicate that the enclosed section may be repeated zero or more times.

2.3 SATEMENT NUMBERS

Statement numbers are optional. They are ignored except when they appear
in a GOTO, GOSUB, ON, or IF statement. In these cases, the statement
number must appear as the label of one and only one statement in the program
Statement numbers do not have to be in sequentiat dfor eample

40 INPUT ITEM
PRINT ITEM
30 GOTO 40

In this program the line number 30 is not required; it is ignored during
compilation. However, the 4ppears in a GOTO s$tamentand thus must be
used as a statement number once and only once in the program. Statement
numbers may contain any number of digits but only the first 31 are considered
significant by the compiler.

An additional feature of CBASIC statement numbering is that any valid
number may be used as a statement numlhes.allows the use of non-integer
statement numbers. It is pdse to write an entire program or subprogram
with statement numbers that are all decimal fractions and range between two
consecutive integers.

Statement numbers can even be in exponential (E) format. This is a
convenient feature when writing procedures that will be included in other
programs because it helps to insure that statemenbers will be unique.

The following are examples of valid CBASIC statement numbers:

1

0

100
100.0
100.213
100E21

The statement numbed0 and 100.0 are treated as different statement
numbers by the compiler. In other words it is the stringhafracters which
determines the statement number aatlthe numeric value.

2.4 REM STATEMENT

[<stmt number>] REM [<string terminatedth CR>]
[<stmt number>] REMARK [<string terminatedth CR>]

A REM statement is ignored by the compiler, and compilation continues
with the statement ftwing the next carriage return. A camtiaion characte

causes the next line to be part of the remark. The REM statement may be used

to document a program. REM statements do not affecizeef the ppgram

that may be compiled or executed. An unlabeled REM statement may follow
any statement on the same line. The statemanber of a emark may be
used ina GOTO, GOSUB, IF, or ON statement.

Examples of REM statements follow:

REM THIS IS A REMARK. This is also a remark tax = 0. 15 * income
rem lowest tax rate

REM this section contains the tax tables for California

The final example shows a REM statement on the same line with another
statement. When using the REM statement in this manner, a colon is optional
between the two statements. In all other cases involving multiple statements on
the same line, the colon must separate the statements. In addition, if the REM

statement is used on the same line with other statements, it must be the last

statement on the line.

2.5 EXECUTING CBASIC PROGRAM

Execution of a CBASIC program consists of three steps. First the source
program must be created on disk. Next the program is compiled by executing
the CBASIC compiler with the name of the sourcegpam provided as a file
name. Finally the intermediate (INT) file created by the compiler is executed

by invoking the runtime progm, again using theodarce program name as a
file name.

The source program will normally be created using a text editor. The
source program must have a file type of BAS. Each line of a source program is
terminated by a carriage return and line feed. The line may be any length,
however, the compiler will only print the first 132 charactersachdine.

When typing source programsentifiers (variable ames, reserved words,
and user-defined function names) may not be abbreviated and must be
separated by a character other than a number or letter. In general, spaces wil
be used to delimitidentifiers. All letters in identifiers are converted to
uppercase unless the conversion is inhibited by compiler toggle D (see Chapter
13).

CBASIC differs from many other basics in its requirement that keywords
and identifiers may not be run together. For instance:

READA
Is not accepted by the CBASIC compiler. The statement must be written
READ A

FORI=JTOIO is a valid CBASIC statement, but it assigns the variable JTO10
to the variable FORI.

The CBASIC compiler is invoked as follows:
CBAS2 <filename> [<disk ref>] [$<toggle> {<toggle>}]

where filename is the name of the source file. A file type of HAB darasd
by the compiler. Compiler toggles, preceded by a dollar sign, may follow the
file name. They are discussed in Chapter 13.

The compiler produces an intermediate file in the CBASIC machine
language. The intermediate file uses the same name as the source program but
of type INT. The INT file is normally placed on the same disk as the source
file. The disk reference is used to specify the drive on which the programmer

desresto have the INT file placed The disk reference is optional; if present it
is of the form A:, B:, etc.

The following command will compile the programINVENTORY.BAS
taking the sour@ from the currently seleded drive, and placethe INT file on
drive B:

CBASZINVENTORY B

If a listing is selected (gction 13.2) the name of the program asit appears
following CBAS2 and ary other characters up tdahe dallar sign or end of the
commandwill appeainthe heading of each page d the listing For instance:

CBAS2 COST ON 7 NOVEMBER 198 $EBF will resultinthe
following headng

CBASIC COMPILATI ON OF COST ON 7/NOVEMBER 1980

The source pogram is normally listed on the console device. Ary error
messages will belisted after the stéement in which the erro was detecte@see
sedion 13.3) If errors are detected dung compilation, the source file mustbe
correced usng the text editor. The compile error message are listed in
appaxdx A. The program is then recompiled If no erors occur dung
compilation, the intermediate file may be executed by typing the command:

CRUNC2 dilename>[TRACE [<InI>[,<In2>]]] [<xcmd>]

The traceoption is describedn chapter 13. Thecommand field (<cmd>) is
usedwith the COMMANDS$ pre-definedfunction discused in chapter 7.

If errors are found during execution, the source program must be corrected
andthen recompiled. Runtime eror messages areeadcribed in appendx B.

3. Forming Expressons

This dhapter discussesthe formation of expresions. First the components
of expressons, corstarts and variables, are describedl'hes elements are then
combined to form expressions. Expressions are a fundamental building block
used in many CBASIC staements.

3.1 SRINGS

A string constant is defined as zero or more vajthanumeric characters
enclosed by quotation marks (). Since a cwdion character is treated as
part of the string, strings defined as constants in dlnece program must be
contained on a sgle line. A carriage return manpt be part of a string.
Embedded quotain marks are entered 8o adjacent quotes.

The following examples demonstrate valid string constants
- 123 -
-July 4, 1979"
"Enter your name please
- - "Look, look," - said Tom"
In the final example the string is:
"Look, look," said Tom
Internally, strings are stored with the length of the string as the first byte.

The characters of the string follow. The length is stored as a binary number
from O to 255.

3.2 NUMBERS

Two types of numeric quantities arepported by CBASIC, Integer and
Real. A real constant may be written in either fixed format or exponentia
notation. In both cases it may contain from 1 to 14 digits, a sign, dedmal
point. In exponential notation the exent is of the form "ssdd", whels®, if
present, is a valid sign (+, -, or blank) and where 'dd' is one or two valid digits.
The sign is the sign of the exponent and should not be confused with the
optional sign of the mantissa.

The numbers range from |.0E-64 to 9.9999999999999E62. Although only

14 significant digits are maintained internally by CBASIC, more digits may be
included in a real constant. Real constants are rounded to 14 significant digits.

10

Red nunbers are stokin eight bytesof memory. The first byte is the sign
and exponent The exponernt is maintained in excess 64 code. The seven
remaining bytes contain a normalized mantis® storal as packed decimal
digits. The hidh order four bits of the rightmost byte is the most signifi@ant
digit of the mantissa.

If acondant does not cdamin an embeddel decma point, Is notin
exponental notation, and ranges from - 32768to + 32767, thecondart is
treated as aninteger. Integer values are stored as sixteen bit two's complement
binary numbers.

Integer constants may aso be expressed ashexadecimal and binary
constants. If the constant is terminatedby the letter H it is hexadecimal. The
letter B terminates abinary constant. The first digit of a hexadecimd constant
must be numeric. For instance 255 in hexadecimal would be OFFH, not FFH.
FFH woul be avalid identifier (see section 3.3).

Binary and hexadecimal constants may nat contin a decimd point. The
value retinedis the sixteen least signiftant bits of the number specified.

In this manual the tem real number ard floating point number will be used
interchangeably. The term numeric will apply to either a real or integer
guantity.

Examplesof valid numbers ae:
1,1.0,-99, 123456.789
1.993, .01, 4E12, 1.77E-9
1.5 E +3is equvalent to 1500. 0
1.5E3is equialent to .0015

lalOH, 1011111 OB OFFFFH

11

3.3 DENTIFIERS

An identifi er begirs with an alphabetic character followed by any number
of dphanumeic charaders @ periods.ldertifiers idenify or name variables
used within aprogram. Only the first 31 charactersare consideral unique,
however the identifier may be dany lengh. If the last claracer in the
identifier isadollar sign, the identifier is of type string. If the identifier endsin
a percet sign, it repreents an integer. Those identifiers not ending with a
dollar sign or perent sign areof type ral.

All lower casdettess appeaing in an identifier areconverted to uppecase
unlesscompiler togde D is sé (Chapte 13). Using periods n identifi ers make
programs more readable. For instance BAD.DEBT% is clearer than
BADDEBT%.

Using identifiers which are longer than two charactes improves program
readhbility without increasing the size of the intermedide file created by the
compiler.

Examples of valid identifiers are:
A, BS$,cl, c1234%
Payrol.Record, NEW.8M.AM
INDEX% FLAG.3%, ®unter%

ANSWERYS file.name$, CUSTOMER. ADDRESS$

3.4V ARIABLES AND SUBSCRIPTE VARIABLES

The general form of a variable is:
<identifier> [(<subsript list>)]
The general form of a subscript listis: <expresson> |, <expression>

The expressons in a subsdpt list must k& numeric. Acces to array
elements is more efficient if integer expressons are used in subscript lists. If

12

the expression isreal, the value is rounded to he neares integer prior to using
the value. If an expressn in a subsdpt list is of type string, an erra occurs.
The subscipt list indicates that the variable is a sulscripted variable and
indicates which element of the array is beng referenced.

Each variable has avalue associated with it at all times duing execution of
a progam. Initially numbess are zero and strings are null strings. A string
variable doe not have a fixed lengh assocated with it. Rather, as diffeent
strings are asgnedto the variable, the storage is dynamically allocaed The
maximum length which may be assgned to a string variable is255 characters.

The identifier used to repraemit a variable may not begin vith FN. Such
identifiers areused to spety userdefined functions (Se chapter 8).

A variable in CBASIC may repregn an integer, red number, or a stng
depardng onthe type d the idertifier.

Examplesof variables are:
X$
PAYMEN
day.of.depait%
The following examplesshow subsciptedvariables:
Y$(1%,] %)
COST(3,5)
POS%(XA X1S%,Y AX1S%)
INCOME(AMT (CLIENT%),CURRENT. MONTH%)
When subscipts are calculated a check is mace to ensure that the element
selected resides in the referenced array. A runtime error occurs if it does not.

The runtime check insures that the location cdculated is included within the
physical storage areaof thearray. It is not neessarily avaid entry.

13

Before a subscripted variable may be refeed in a program, it must be
dimensioned using the DIM statement. The DIM statement specifies the upper
bound of each subscript and allocates storage for the array.

A DIM statement is an executable statement; each agacwill allocate a

new array. If the array contains numeric data the previous array is deleted prior
to allocating space for a new array. If the array is of type string each element
must be set to a null string prior to re-executing the DIM statemeagtin

the maximum amount of storage.

The general form of a DIM statement is:
[<stmt number>] DIM <identifier> (<subsgpt list>)
[,<identifier> (<subscript list>)]
The dimension statement dynamically allocates space for numeticngr s
arrays. Elements of string arrays may be any length up to 255 bytes, and
change in length as they assume different values. Initially numeric arrays are

set to zero and all elements of string arrays are null strings.

An array must be dimensioned explicitly; no default options are provided.
Arrays are stored in row-major order.

The subscript list is used to specify the number of dimensions and the
extent of each dimension of the array being declared. The subscript list may
not contain a reference to theay beingdimensioned.

All subscripts have an implied lowbound of zero.

Examples of DIM statements:

DIM A (10)
DIM ACCOUNT$(100),ADDRESS$(100),NAM$(100)
DIM B%(2, 5, 10), SALES. PERSON%(STAFF. SIZE%)

DIM X(A%(1%),M%,N%)

14

The same identifier may be sedas both a variable and as a subscripted
variable within the sasme progam.

3.5 EXPRESSIONS

Expressions consist of algebraic combinations of function refererces,
variables, castants, aml operators. ey evaluate o an nteger, real, or sting
value. Function references are discussal in chgpter 8.

The hierachy of operabrsis:

1) nested peenthesis

2) -power operator

3)

4) +, concatenation (+ unary +, unary -

5) relational opeators<, <, >, >=,=,<> LT, LE, GT, GE, EQ, NE
6) NOT

7) AND

8) OR,XOR

Arithmetic and relaional operations may be perfamed on either integer or
red numbers.If an integer and rea number are b be combined usng one of
these operatos, the integer value is first convettedto a real number. The
operation is then erformed onthe two rea valuesresulting in areal value.
Thisis referred to & mixed modearithmetic.

Mixed mode operaions ke addtional time to execute and the compiler
generatesmore code A mixed modeexpression will aways evaluate o a real
value.

If real values areused, be powea opeiator calculates the logaithm of the
number being raised to the power. Since the logarithm of a negative number is
undefined, a warning results when the numbe to the left of the operator is
negative. The absdute value of the negative quantity is used to elculate the
result. The exponert may be either paositive or negative.

If bath values usedwith the powver operatorare either integer mnstants or

integer variables, the resut is calculated by successive multiplication. This
allows anegative integer number to beaised to an integer pover. In the case

15

of integers,if the exponert is negative, theresult iszero. Inall cases, 0" 0is 1
and 0 * X(when X is notequal to 0) is O.

If the exponent is an integer but the base is red, the integer is convertel to
a redl value prior to caculating the resit. Likewise,if the exponent is real but
thebase is an integer quartity, the resul is calculated using real values.

String variables may only be operate on by relational operators and the
concaenation operato. Mixed sting and numeric operations are not
permitted. The mremonic relationad operdors (LT, LE, etc) are
interchangeable with the corresponding algebraic operaors (<, <, etc.).

Example of expressions

amount* tax

cost + werhead pecent
a*b/c(l.2 +xyz)
lastname$ + " "
index% + |

+ first.name$

Rdational operabrs resut in integer values A O isfase am a - 1 is true.
Logical operators NOT, AND, OR, and XOR operate mteger values and
resut in an integer number.If ared vaue is usedwith logical operatorsit is
first converted toan integer.

If a numeic quantity is greater than 32,767 or less than - 32,768, itcannot
be represaeted by a 16hbit two's complement binary number. Logical
operdions onsuch a number will give unpredicéble results.

Resuts of logical opegations

12AND 3 =0 1100B AND 0101B =4
NOT -1 =0 NOT3H =-4
120R 3 =15 OCHORBS5H =13

12 XOR 3 =15 12 XOR 5=9

12.4 XOR 3.2 =15 12.4 XOR 3.7 =8
By using integer expressions for relational tests and logical operations a

subsantial increag in dficiency results.Programs witten in version 1 of
CBASIC shoud be cowerted b use nteger variableswhereever posgole.

16

The following point shodd be understod about numeic constants. If the
string of digits contains no decimal point or endsin a deeimal pant, CBASIC
atempts D storeit as a integer. If the resulting nmber is in the range of
CBASIC integers, it is treated asn integer. If the congant is then required in
an expresion as a red number, a wnverson to a real numbe occurs at
runtime. For ingance:

X=X+1

would causethe integer constant 1. to be conerted to a rd vaue gior to
addirg it to X. This extra converson can be diminated by emtedding the
decima within the number as slown below

X=X+10

In adual practice there is very little difference in executian speedA
similar situation exids in the following gatements

Y% = X% + 1.0

Inthis caséhe X% is canverted to aea number prior to the aldition ot the
real constant. The result is then corverted back to an integer prior to
assgnment to Y%.

In gened, the programme should avad mixed mode expresions wen
paossible, and should not e red constants with integervarnables. Mog whole
numbersused na progam will be stored stintegers. This normally provides
the most efficient execution.

If an overflow occurs during an operation between real values, awarning is
printed and execution continues with the result d the operation set to the
largest rehnumber.

In the ca% of integers no checking for overflow is performed since this
would reduce the efficiency of integer operations. It shoud be understabthat
If the results of an integer operation fall outside the range of integer values, the
cal culated value will be incorrect.

17

3.6 ASSIGNM ENT STATEMENTS

[<stmt numbePp] [LET] <variable> = <expression>

The expresson is evaluated and asgyned to the variable gopeaing on the
left side of the equal sign. The variable and expresion musteither both be of
type string or boh be anumeic type. If the variable and expressionare both

numeric but oneisinteger andthe otheris real, an automatic conversionto the
type of the variable on theleft of the equal signis peformed.

Examples:
100LETA=B+C
X(3,POINTER%) = 7.32* Y + X(2,3)
SALARY = (HOURS.WORKH * RATE) -DEDUCTIONS
date$= month$ + "" + day$ + " " +year$

INDEX% = INDEX% + |
REC. NUMBER =OHF-SET% + NEXTREC%

4. Control Statements
4.1 GOSUBSTATEMENT
[<stmt number] GOSUB <stmt number>
[<stmt number] GO SUB <stmt number>
The location of the next sequertial instruction is saved on the return stack.
Control is then transferred tothe staément labeled with the staément number

following the GCBUB.

Subroutine callsmay not ke nested greatdhan 20 deep.

Examples:

GOSUB 700

18

PRIN "BEFORE TABLE"
GOSUB 200 REM PRINT THE TABLE
PRIN "AFTER TABLE"

STOP

200 REM PRINTTHE TABLE

FOR INDEX% =1 TO TABLE.SIZE%
PRINT TABLE(INDEX%)

NEXT INDEX%

RETURN

4.2 RETURN STATEMENT
[<stmt number] RETURN

The RETURN statement causes the execution of theprogram to return to
the staement that immediately follows the most recently executed subrautine
cdl. Tha is, executioncortinues atthe lacation at the bp of the return
stack. The call may be a GOSUWUB statement, Q. . GCSUB statementor
multiple linefunction call. See Chapter 8 for adiscussian of multiple line
functions. Rder alsotosection 4.12 fa information on the effect of
CHAINING on subrautine linkage.

If a reurnis executedwithout previowsly execuing aGOSUB, ON OSUB,
or multiple line functioncall, a runtime error occurs.

Examples:

500 RETURN
IF ANSWER.VALID% THEN RETURN

4.3 GOTO STATEMENT

[<stmt numbepr] GOTO <stmt number>
[<stmt numbepr] GO TO <stmt numbe>

19

Execution continues at the statement labeled with the statement number
following the GOTO or GO TO. If the statement humbemazhed to is not a
executable statement, execution continues with the next executable statement
after the statement number.

If the statement number to which control is being transfatoed not exist,
an error will result.

Examples:

80 GO TO 35
GOTO 100. 5

4.4 |F STATEMENT

[<stmt number>] IF <expregn> THEN <statement list>
[ELSE <statement list>]
[<stmt number>] IF <expregn> THEN <stmt nuiver>

If the value of the expression is not zero, the statements which make up the
first statement list are executed. Otherwise, the statement list following the
ELSE is executed, if present, or the next sedalestatement following the IF
statement is executed.

In the second form of the IF statement, when the expression is not equal to
zero, an unconditional branch to the statement number occurs. Note that this
form of the IF statement may not have an else clause. This variation is
included in CBASIC for compatibility with previous versions of Basic.

The expression in an IF statement will normally be a logical expression.
That is, it evaluates to either true (- 1) or false (0). However, CBASIC will
accept any numeric expression treating a value other than zero as true. The
expression should be ofpe integer. This will reduce execution time and also
reduce the size of the intermediate file generated by the compiler. If the
expression is real, the value isuinaled and converted to andger. A string
expression will result in an error.

20

A statement list is composed of one or more statement&ichveach pair
of statements is separated by a colon (:). The colon is not required after the
THEN nor is it required before or after the ELSE. It is only used to separate
statements. An IF statement must be the first statement on a line; it may not
follow a colon. In other words IF statements may not be nested.

Examples:
IF ANSWERS$="YES" THEN GOSUB 500
IF DIMENSIONSWANTED% THEN PRINT LENGTH, HEIGHT

IF VALID% THEN \
PRINT MSG$(CURRENT.MSG%):\
GOSUB 200 UPDATE RECORD
GOSUB 210 WRITE RECORD
NO. OF.RECORDS% =NO. OF. RECORDS%+ |
RETURN

IFX>3THENX=0:Y=0:Z2=0

IF YES% = TRUE% THEN PRINT MSG$()
ELSE PRINT MSG$(2)

IF TIME>LIMIT THEN \
PRINT TIME. OUT. MSG$
BAD.RESPONSES% = BAD.RESPONSES% +I
QUESTION% = QUESTIONY%+ |
ELSE\
PRINT THANKS.MSG$:\
GOSUB 1000: ANALYSE RESPONSE
ON RESPONSE% GOSUB
2000, 2010, 2020, 2030, 2040
RETURN

In the examples above, note that the colon is used to separate statements

within a statement list and the backslash (\) is used to continue a statement
onto another line.

21

Since the compiler ignores anything following and on the same line with
the ba&dash, commens may be inserted witlbut using the keyword REM.

4.5 WHILE STATEMENT

[<stmt number] WHILE <expression>

Execution of all satemerd betwee the WHILE staement ard its
correponding WEND is repeaad urtil the value of the expresson is zera If
the value is zen initially the statement between the WHILE and WEND wil
nat be executed. Variables used in the WHILE expression may change during
execution of the loop.

The expression shoud be of typeinteger. This will reduce execution time
and also reduce the size of the intermediate file generagd by the compiler. If
the expression isreal, the value isroundedand then converted to a integer A
string expresion will result in an error.

4.6 WEND STATEMENT

[<stmt number] WEND

A WEND statment denots the end of the closestunmatched WHILE
staement. A WEND staement mug be presn for each WHIL E statement in
a progam.

Branching to a WEND stement is the same & branchng wits
correponding WHILE staement.

Examples:
WHILE - |
PRINT "X"
WEND
WHILE X > Z

PRINT X
X=X-1.0

22

WEND

TIME =0.0
TIME.EXPIRED% = FALSE%
WHILE TIME< LIMIT
TIME=TIME+ 1.0
IF CONSTAT% THEN
RETURN REM ANSWERED IN TIME
WEND
TIME.EXPIRED% = TRUE%
RETURN

WHILE ACCOUNT. IS. ACTIVE%
GOSUB 100 REM ACCUMULATE INTEREST
WEND

WHILE FILE.EXISTS%
WHILE TRUE%
IFARG$ =ACCT$THEN
ACTIVITY % = TRUE%:\
RETURN
IF ARG$ <ACCT$THEN
ACTIVITY % = FALSE%Y:\
RETURN
GOSUB 3000REM READ ACCT$REC
WEND
WEND
ACTIVITY % =FALSE%
RETURN

WHILE TRUE%
INPUT LINE STRING$

IF STRING$ = CONTINUES THEN RETURN
WEND

4.7FOR STATEMENT

[<stmt number] FOR <index> = <expresson> TO <expression> [STEP]
<expression>

23

Execution of all ssatement betwea the FOR statenent and its
correponding NEXT staement is repeatd until the indexing varable, which
Is incremented by the STEP expression after each iteration, reaches theexit
critenia.

If the step expreson is positive, the loop exit citena is m& when the
index excedals the value of the TO expresson. If the ste expression is
negative, the index must beless han the value of the TO expresion for the
exit criteria to be stisfied.

The index must be a unsubscipted vanable. It is initially set to the value
of the first expresion. Both the TO ard STEP expressions ae evaluaed on
each loop; dl variables associated with these expressons may change within
the loop.

Additionally, the index may be changed during execution of the loop. The
type of the index andall expresions shoud bethe same. They may be ether

rea orinteger. If any of the expressons are of type sting, an errar occurs.
Paticular care shoud betaken to insure prope matching d the expression

types.

For instances:
FOR 1% = 1 to DONE

will generate unmecessry code because DONE is real but 1% and 1 are
integers.A moresubtle exampleis:

FOR | = 1. to DONE
Inthiscae | and DONE arered but 1. isaninteger.
There is one situation when a FOR statement that appeas to be valid will
generate a compiler eror "FE". This occurs if the type of the expresson

following the TO is nat the sameas the type of the loop index variable.

For example:

24

FORI=1TO 13 SEP 3
resultsin an error "FE" becaus the ndex variable | is red but the vaue
following the TO is an integer. Changing the index to 1% will eliminate the
error.

If the STEPclauseis omitted, adefaut value of one is assumed. The type
of the STEP expression in this case will be the same as the type of the index.

The stagéments withinaFOR loop ae alwaysexecuted atleastonce.
Examples:
FOR INDEX% =1TO 10
SUM ~ SUM + VECTOR(INDEX%)
NEXT INDEX%
FOR POSTION =MARGIN +TABS TO PAPER.WIDTH STEP TABS
PRINT TAB(POSITION);SET.TAB$
NEXT POSTION
If a step © one is desired,the STEP clause shoutl be omitted. The
execution will be much faste since fewer runtime decks will be made In
addtion, less ntermediate co@is produced.

The speel of execution will also be subtantialy improved if al the
expressions are of typeinteger.

4.8 NEXT STATEMENT

[<stmt number] NEXT [<identifier> (,<idenfifier>)]

A NEXT staement derotes he end of the close$ unmatched FOR
staement. If the optonal identifier is present, i must makch the index varnable
of the FOR stament beirg terminated.

The list of identifiers allows terminating mutiple FOR staements. The
staement numbe of a NEXT staement may appea in an ON or GOTO

25

staement, in which cas execution of the FOR loop continues with the loop
variablesassiming their current values.

The following example of nestedFOR loops shows the use of a list of
identifiers:

FOR 1% =1 TO 10
FOR J% = ITO 20
X(1%, J%) = 1% + J%
NEXT J%, 1%

The final example shows the use of a NEXT statement without an idertifier.

FOR LOOPS% 9 TO ARRAY.SIZE%
GOSUB 200
GOSUB 300

NEXT

4.9 ONSTATEMENT

[<stmt number] ON <expression> GOTO <stmt number> [, <stmt number>]
[<stmt number>] ON <expreson> GO3JB <smt number> [, stmt number>]

The expresson is used to skect the staemert number at whch execution
will continue. If the expression evalates to 1, the first statemen number is
sdected and so foth. In the case of anON . . GOSUB gatemen the address
of the statment following the ON staement is saved on the return stack. A
runtime err@ occurs if the expresson is lessthan one or greaterhan the
number of staement numbes in thelist.

The expresson must be mmeric. A string expressonwill generatean eror.
Integer expressions will improve execution speed If ared value is used, it is
rounded tothe nearest mteger prior to secting the statemert nunber to
branch to.

The keywords GOTO an@OSUB may aternately be coded as GO TO ard
GO 3JB.

26

Examples:
ON 1% GOTO 10, 20, 30
ON J% -1 GO SUB 12.10, 12.20, 12.30, 12.40

WHILE TRUE%
GOSUB 100 REM ENTER PROCESS DESIRED
GOSUB 110 REM TRANSLATE PROCESS TO NUMBER
IF PROCESS. DESIRED% =0 THEN RETURN
IF PROCESS. DESIRED% < 6 THEN
ON PROCESS. DESIRED% GOSUB
1000, \ ADD A RECORD
1010, \ ALTER NAME
1020, \ UPDATE QUANTITY
1030, \ DELETE A RECORD
1040, \ CHANGE COMPANY CODE
1050, \ REM GET PRINTOUT
ELSE GOSUB 400 REM ERROR - RETRY
WEND

4.10 STOP SATEMENT

[<stmt number>] STOP
When a STOP statement is encountered, program éxetetminates. All

open files are closed, the print buffer is emptied and control returns to the host
system. Any number of STOP statements may appear in a program.

A STOP statement is appended to all programs by the compiler.

Examples:
400 STOP

IF STOP.REQUESTED THEN STOP

27

4.11 RANDOMIZE STATEMENT

[<stmt number] RANDOMIZE

The RANDOMIZE statement initializes or seds the random number
generator. The time talen by the operatorto respodto an INPUT statement
(chapter 5) is used to sethe seed. Tis time will vary with each execution of a
program. Therefore, for RANDOMIZE to work oorrectly, it must be preceded
by an INPUT statement.

The confguration 3 runime padkage uses the realtime clock to seal the
rancom number generabr when operaing uncer MP/M.

Examples:
450 RANDOMIZE

RANDOMIZE

4.12 CHAIN STATEMENT

[<stmt number] CHAIN <expression>

The CHAIN Stdement transferscontrol from the progam currently being
executed to the program selected, bythe expresion. The expresson mustbe
of type sting oran error will occur. The expresson mustalso e/aluate to any
unambiguous file name. A file with that name and of type INT must reside on
the speified drive. If no drive is specified the currently loggedin drive is
used In thediscussion on daining the first program execued is the man
program.

The following staement:
CHAIN "B:PAY ROLL"
will cause exeaution to continue with the first staement in the program

PAYROLL. PAYROLL.INT mud resice on drive B. Regardless of the file
type spedied, a typeof INT isforced.

28

The CBASIC runtime monitor mantains fou partitions in memory. They
are desigrated the constart, code, data statemg ard variable areas. he sze
of these aresis deermined by the compiler. If in a chaineal program one or
more of these aress is larger than that correspondingrea in the orginal or
main program, a ruttime error occurs. h othe words the man progam
constant, code data sta#ment, ard variabdes areasnust be adarge or large
than any correspnding area in a progam that is subsegently chained. If this
Is not the casethe pogrammer must use te %CHAIN compiler directiveto
adjust the size of the main progams prtitions. The %CHAIN directive is
discussedn Chaper 12.

In orde to detemine te size of each patition in a program the compiler
produces a tale of thesevaluesafter each compilation. The valuesincludethe
effect of the %CHAIN directive if presert. The %CHAIN directive neel only
be used in the main program The relaionship of partition size between
progranms chaned is not significant.

A CHAIN staement may appea in ary progam. A program may chain
back b the progam which invoked it, to a rew proglam, or toitsdf. If
STOP staement is executed in any progran, execution stops am contol is
returned to CP/M.

Upon execution of a CHAIN staemert the return stad is reset.All open
files are closd ard a restae is performed. Data may be passé from one
programto andgher usng the COMMON statment discussed below.

4.13 COMMON STATEMENT

[<stmt number] COMMON <variable> <variable>

If preent, COMMON sttement must e the first staementsin a program
except that blank linesand REM sttemens may precedeCOMMON
statements. A COMMON statement is a nonexecutable statement and
specifies that the variables listed will be @mmon to the main program and all
programsexecuted througha CHAIN statanent.

If the main program contains COMMON statements, each chained program
must have COMMON statement that match the COMMON statements in the

29

main program. Matching means that there arethe same rumber of variables in
each COMMON statement and, that the type of each variable in the main
program's COMMON statement matches the type of each variable in the
chained program's COMMON statement. Also, dmensioned variables must
have the ssme number osubscrips in each program.

Subscipted variables are spefied by placing the number o subscripts in
parenthesis following the aray name For instance:

COMMON X, Y, A(3), B$(2)

specfiestha X and Y ae nonsubscipted rel variablesandwill be common
to al chained programs.A and 13$ ae arrays vhich may be acessdby all
programs. Ahas three subscipts while B$ has two The COMMON Staement
does noindicatethe size of any sulscript.

The specifcation of an array in a COMMON statement snot, in gened,
the same asthe specifcation in a DIM statement This point mug be clearly
understood.

For example:

COMMON A(3)
might ke usedwith

DIM A (20,30,D)
butif it was usedwith

DIM A(3)
an error woud occur.

Prior to accessing an element in an array in COMMON, the array must be
createl using the DIM statement. Failureto do this will lead to catastrophic
resutd The first programrequiring access to the array shold insure that a
DIM statement is executed specifingthedesired range for each subgript.
Subseuent programs may acces this array with the dat remaining
unchanged through the chaining processif a subgquent progam executes a
DIM statement for this array, the data in the array will be lod. In other words
the array will be re-initialized. However,in thecaseof string arrays, elements
in the array will not be freed frommemory. The progammer shoud set

30

elementsof gring arrays to null strings prior to executing a secorn DIM
statement for the array.

5. Input/Output Statements and Functions

5.1 GENERAL |NFORMATION

This dhapter introduces irput and ouput statenents and funcions. File
accesing statemend are discused in chapte 10; formated printingis
explained inchapter 9.

CBASIC piints each charader as it is generated. If the length of the line
being printed exceed the width of a print line, printing continues on the next
line. That is, a carriage return anda linefeed are output. The width of the print
line may be controlled by the user.

Input from the console is real a line at a time instead of a character at a
time. This allows the use to take advantage of the CPM line editing
functions. A control-C enteed from the keyboard may eturn theuser to CP/M
without closing open files.

In this manual consolerefersto the physical device assignedo the CP/M
logical device QON:. Likewisethe list devicerefersto the physical unit
assgned to the CP/M logical device LST:. For more information on logical
and plysical devicesrefer tothe Digital Reseath publication "An
Introduction To CPM Featuresand Facilities. -

5.2 PRINT STATEMENT
[stmt numbep] PRINT <expression> <delim> [<expression> <delim>]

The PRNT statemen outputs the value of each expression to the console
unlessan LPRINTER stdemert (de<xribed below) is in dfect. In the latter case
output is directed to he list devie (seesedion 5.3. If the length of a numeric
item would result in the line width being exceead, the numbe to be printed
begns on the next line. Srings are atput untl the line width is reached and then
the remainderof the sting, if any, is autput onthe next line.

31

The delmiter between expressions may be either a commaor a semicolon.The
comma @uses automaic spacing to the next column that is a mutiple of 20. If
this spacing reallts in aprint position greater than the currently specified
width, printing continues on the next line. A semicolon causes one blank to be
output after a number and no spacng to occurafter a striry.

A arriage return and a linefeal are automatically printed when the erd of a
print staement is encountered ulessthe last expresson is followed by a comma
or a £micolon. These partial lines are not teminated until one of the following
condtions acur:

(1) ancther PRINT whose list does not endin either a comma or semcolon is
executed,

(2) the linewidth is exceeded,

(3) anI-PRINTER or CONSOLE sttement isexecuted, or

(4) the progam executes a stp staement. A PRINT staement with no expression
listwill cause acarriagereturn andalinefeed to be printed.

If execution of a program is terminated due to an error, a cariage return and a
linefeed areutput.

Examples:

PRIN

PRINT AMOUNT.PAID

PRINT QUANTITY, PRICE, QUANTITY * PRICE

PRINT "TODAY'SDATE IS. ";MONTHS$;" ";DAY%;-, ";YEAR%

5.3 LPRINTER STATEMENT

[stmt numbeP] [-PRINTER [WIDTH <expression>]

After execution of the I-PRINTER statement all PRINT statement output,
which would normally be directed to the console will be output on the list device.
The list device is the physical unit currently assignedto LST: by CPM. The
WIDTH clauseis optonal. If presentthe expressian will be used to séthe line
width of the list cevice.

32

If the console's cursor position is not 1, a carriage return and linefeed is output
to the console. In this context the cursor position is the value that would be
returned by the POS function (see sectiah) fust prior to executing the I-
PRINTER statement.

The expression should be of type integer. If it is real, the value is rounded to
an integer. An error occurs if the expression is of type string.

If the width option is not present, the most recently assigned width is used.
Initially the width is set to 132. A width of O will result in an infinite line width,
With a zero width in effect carriage returns and linefeeds are never automatically
output to the printer as a result of exceeding the line width.

Examples:
500 I-PRINTER
IF HARDCOPY. WANTED% THEN I-PRINTER WIDTH 120

LPRINTER WIDTH REQUESTED. WIDTH%

5.4 CONSOLESTATEMENT

[stmt number>] CONSOLE

Execution of the CONSOLE statement restores printed output to the console.
the console is the physcial unit currently assigned to CON: by CP/M.

If the list device print position is not 1, a carriage return and linefeed are
output to the list device.

Examples:
490 CONSOLE
IF END.OF.PAGE% THEN
CONSOLE:

PRINT USING "##,### WORDS THIS PAGE";WORDS%:\
INPUT "INSERT NEW PAGE, THEN CR-;LINE TRASH$:

33

LPRINTER
The width of the console device may beanbedwith the POKE statement
(Chapter 6). The console width is one byte at location 272 base 10 or | | OH. The
new console width will become effective at the next execution of a CONSOLE
statement. The console line width is initiadigt to 90 (5014).
A width of zero (0) results in an infinite width. With a zero width in effect,

carriage returns and linefeeds are never automatically output to the console as a
result of exceeding the line width.

5.5 POS RRE-DEFINED FUNCTION

POS

POS returns the next position to be printed on either the console or the line
printer. This value will range from | to the line width currently in effect.

If a LPRINTER statement is in effect, POS will return the next jpostb be
printed on the printer. Note that POS returns the actual number of characters sent
to the output device. If cursor control characters are transmitted, thejsare
counted evertibugh the cursor is not advaed.
Examples:

PRINT "THE PRINT HEAD IS AT COLUMN: "; POS

IF (WIDTH. LINE - POS) < 15 THEN PRIN

5.6 TAB PRE-DEFINED FUNCTION

TAB (<expression>)

TAB causes the cursor or print head to be positionetsdon specified by
the value of the expression. If the value of the expression is less than or equal to
the current print position, a carriage return and linefeed are output and then the
tab is executed.

34

The TAB function is impemented by outputting blank characters until the
desred pasition is reached. If cursor or printer cortrol characters have been
output, the cursor or pint head could beasitioned incorrectly.

The TAB function may only be sed INPRINT staemernts.

The expresson must be nuraric. If a string expresson is specified, an error
occurs.If the expressonis real, it is first rounded to rainteger. If the expresion
IS greaterthan the current linewidth, an error occurs.

Examples:

PRINT TAB(15);"X

PRINT "THISISCOL. | -;TAB (50); "THIS IS COL. 50"

PRINT TAB(X% + Y%/Z%);"! ";TAB(POS%+ OFFSET%);

PRINT TAB(LEN(STR$(NUMBER)));-*-

5.7 READ STATEMENT

[stmt numbepr] READ <variable> [, <variable>]
A READ staement assgns valuesfrom DATA staemens to the variables.

DATA staements are processedesjuentially as they apper in the program. An
attempt to readgast theend of the last DATA statement prodwcesa runtime error.

Examples:
READ NAMES$,AGE%,EMPLOYER$,SSN
FOR PROD.NO% % TO NO.OEPRODUCTS%

READ PRCDUCT. NAME$(PROD. NO%)
NEXT PROD.NO%

35

5.8 DATA STATEMENT

[stmt numbepr] DATA <constant> [, <congant>]

DATA statements are nonexecutable statements which define string, floaing
point, and integer constants which are assigned ¢ variables using a READ
statement. Any numberof DATA statementsmay occur in a program. They may
be pgacedanywherinthe prgram.

The mnstantsare stored onsecutively in a data area as hey appea in the
program and are nd synax checked by the compiler. Srings may be eiclosal in
guatation marks or optionally delimited by commas.

A DATA stakment must be the only statemem on a line and it may not be
continued with a continuation character. Hovever, al DATA staements in a

programare treateal collectively as a concatenaded list of constant separate by
commas.

Examples:

400 DATA 332.33, 43.0089E5ALGORITHM"

DATA ONE, TWO THREE, 4, 5, 6

Inthe secondexamde ONE, TWO armd THREE are strings.

If a real constant is assgned toan integer variable with a READ staement,the
constant is roundedoff to the integer portion of the red number If the value of
number asgined to an integer is outside the range of CBASIC integers, incorrect

valueswill be asigned. If ared number exceed the lange of real numbers, an
overflow warning @curs and the largest CBASC number is used nits place.

5.9 RESTORESTATEMENT

[stmt numbepr] RESTORE
A RESTQRE staement repasitions the pointer into the daa area s that the

next value readwth a READ staement will be thefirg item in the first DATA
statement.

36

The purposeof a RESTORE staemert is to allow re-reading the constants
contained n DATA staements.

Examples:
500 RESTORE
IF END.OF.DATA% THEN RESTORE

When a CHAIN stdement is executed a ESTORE is perbrmed.

5.10 INPUT STATEMENT

[stmt numbeP] INPUT [<prompt string> ;] <variable> [, <varnable>]

If the plompt string is presentit is intedon the console, otherwise a question
mark is autput. In bothcases allark isthen printed anda line of input datis read
from the console and assgned to the variablesasthey apper in the varialde list.

The \ariables may be ather simple or subscripted string or numeric variables.

At most 255charaders may be entered in respnse to an INPUT statement. If
255 ormore characters are enteredhputing is automatically terminaied and the
first 255 charactersare reéained Additional characterswill be lost The 255
charaders include all chalcters entered in response to an input staement no
matter how many varibles appeain the varnablelist.

All CP/M line edting functions such as ontrol-U and rubout are in effect. A
control-C may temminate the program withoutclosing open fles If a control-Z is
the first character enterad in regponse to an INPUT staement the progranis
terminated inthe ssme manner asfiaSTOP staément had keen executed.

The daa itens entered at the console must be separated by commas and are
terminated by a cariage return. Strings may be enclosead in quottion marks in
which casecommas ad leading blanks may be included in the gring.

The prompt sting mustbe a string constant If it is an expresson or a numeic
constant, an error occurs.

37

If the value entered fa assgnment to an integer is red, the numler enteed is
truncated tothe integer portion of the real number. If the value of a number
assgned b an integer variable is outside the range of integers, an incorrect value
will be assigne If areal number exaeds he range of CBASIC rea numbes, the
larged red numbe is assgnel to the variable, and a warimg is printed on the
console.

If too many or bofew data items are entered a warning is printed on the
console, and he entire line must be rentered.

Examples:
INPUT AMOUNTI, AMOUNT2, AMOUNT3
INPUT "WHAT FILE, PLEASE?";FILE. NAMES$
INPUT "YOUR PHONE NUMBER PLEASE:-, PHONE.N$
INPUT " ";ZIP.CODE%

A special type of INPUT statement is the LINE INPUT. The general form of
this statement is:

[stmt numbeP] INPUT [<prompt string>] LINE <variable>

This statement functions as described above with the following exception.
Only one varialde is permitted following the keyword LNE. It must be d type
string. Any data entered from the console is accepted ashassigned to this
variable. The datas teminatedby a arriagereturn.

A null string may be accepd by responding to an INPUT LINE Statement
with acariagereturn.

An error occurs if the variable specified to recéve the inpu is nat of type
string.

Examples:

INPUT "ENTER ADDRESS';,LINE ADDR$

38

INPUT "TYPE RETURN TO CONTNUE-,LINE DUMMY$

Prompt strings aredirected to the console even when an LPRINTER statement
IS in effect.

5.11 OUT STATEMENT
[stmt numbep] OUT <expression>, <expression>

The low-order eight bits of the second expresion are sent to the CPU output
port séectedby the low-order eightbits of the firstexpresion.

Both arguments must be nuraric; they should bein the rangeof 0 to 255 for
the results to ke meaningful. An error occurs if either expression is of type string.
Redl values areonverted to mtegersprior to performing an OUT instruction.

Examples:

OUT 1,58
OUT FRONT.PANEL%, RESULT%

IE X% > 5THEN OUT 9, ((X*X) - 1.)/2.

OUT TAPE. DRVE. CONTROL. PORT%,REWIND%
OUT PORT%(SELECTED%), ASC("$")

5.12 INPPRE-DEFINED FUNCTION
INP (<expression>)

INP returns the \alue inputfrom the CPU 1/0 port speciifed by the expression.
This function is useful for accessingeripheral devices diredly from the CBASIC
program.

The agument must benumeric. An error occus if it is astring A real vaue

will be rounded tothe nearest mteger For the results o be meanindul, the
argument must ke in the range of 0 to 255.

39

Examples:
PRINT INP(ADDR%)
IF INP (255) > 0 THEN PRINT CHR$(7)
ON INP (INPUT. DEVICE. PORT%) GOSUB
100, 200, 300, 400, 400, 400, 500

5.13 CONSTAT% PRrRE-DEFINED FUNCTION

CONSTAT%

CONSTAT% returns the console status as an integer value. If the console
device is ready, a logical true is returned otherwise a logical false is returned.

Examples:

IF CONSTAT% THEN
GOSUB 100 REM PROCESS OPERATOR INTERRUPT

WHILE NOT CONSTAT%
WEND

5.14 CONCHAR% PRE-DEFINED FUNCTION

CONCHAR%

CONCHAR% reads one character from the condeléce. The value returned
Is an integer. The lower eight bits of the returned value are the binary
representation of the ASCII character input. The higleoeght bits are zero.

Examples:

1% = CONCHAR%

CHAR% =0

IF CONSTAT% THEN
CHAR% = CONCHAR%

IF CHAR% = STOPCHAR% THEN \
RETURN

40

6. Machine Language Linkage Stdements and Functions
6.1 PEEK PREDEFINED FUNCTION
PEEK (<expressor>)
The PEEK function returns the contentsof the memory location given by the
expression. The value returned is an intege ranging from 0 to 255. The memory
location must be withn the addres space of the computer being used for the

results tabe meaningful.

The expresson must be nuraric. An aror occursif a string expressionis
specfied. Red values are roundetb the neaest integer.

Examples:
100 MEMORY% = PEK(I)
FOR INDEX% = | TO PEEK% (BUFFER%)

IN.BUFFERB(IND EX%) = CHR$(PEEK %(BUFFER%+INDEX%))
NEXT INDEX%

6.2 POKE STATEMENT

[<stmt numbepr] POKE <expression>, <expression>

The low-orde eight bits of the s&ond expresion are stored at the memay
addres seleded by the first expression. The first expression mustevaluate to a
valid address for the computerbeng wsed for the resulsto be meaningful.

Both expressons must be numeic. An emror occursif a string expresson is
specfied. Red values are roundetb the neaest integer.

Examples:

750 FOKE 1700,ASC'$")

41

FOR LOC% =1 TO LEN(OUT.MSG$)
POKE MSG.LOC% + LOC%, ASQM1D$(OUT.MSG$,LOC%, 1))
NEXT LOC%

6.3 CALL STATEMENT

[<stmt number>] CALL <expression>

The CALL statement is used to link to a machine language subroutine. The
expression is the address of the subroutgiag referenced. This value must be
within the address space of the computer being used.

Control is returned to the CBASIC program by executing a 8080 RET
instruction. The hardware registers may be altered by the subroutine, and, with the
exception of the stack-pointer, they need not be restored prior to returning.

The expression must be numeric. An error occurs if a string expression is used.
Real values are rounded to the nearest integer.

Examples:
CALL 5H
2000 CALL ANALOGINPUT%
WHILE PEEK(PARAMETER%) <> |
CALL GET.RESPONSE%
WEND
RETURN

Arguments may be passed to machine lgagg subroutines with the POKE
and PEEK instructions.

6.4 SAVEMEM STATEMENT

[<stmt number>] SAVEMEM <constant> , <expression>

42

The SAVEMEM statement reserves space for a machine languagmisne,
and loads the specified file during execution. Only on&/BMEM statement
may appear in a program.

The constant must be an unsigned integer which specifies the number of bytes
of space to reserve for machine language subroutines. The space is reserved in the
topmost (highest) address space of the CP/M transient program area. The
beginning address of the reserved area is calculated by taking the constant
specified in the SAVEMEM statement and subtracting it from the 16 bit address
stored by CP/M at absolute address 6 and 7.

The expression must be of type strargd may specifany valid unambiguous
file name. The selected file is loaded into memory starting with the address
calculated above. Records are read from the file until either an end of file is
encountered or the next record to be read would over-write a location above the
transient program area.

If the constant specifies less than 128 bytes toabeds nothing will be read
in, but the space will still be reserved. If the expression is a null string, space is
saved but no file is loaded.

If a main program has a SAVEMEM statent, any chained program that has
a SAVEMEM statemeninust reserve theameamount of space. Each chained
program may load a new machine language file, or it may use the file loaded by a
previous program. The space reserved by the main program may noteimed
by a subsequent program.

It is the programmers rpensibility to insure that the machidanguage
routines are assembled to execute at the proper address. In addition, it should be
noted that the location at which a program is loaded is dependent upon the size of
the CP/M system being used.

Examples:

SAVEMEM 256, "SEARCH.COM"

SAVEMEM 512, DR$+ "CHECK." + ASSY$ (FN.CPM.SIZE%)

43

6.5 USE OFINTEGERS

Although all the machine language linkage statements will accept either real or
integer values where an expression is required, it is much more efficient to use
integer quantities. The size of the INT file will be reduced, and the program will
execute faster.

Since the largest positive CBASIC integer is 32767, the use of integer
variables to address the upper 32K of memory requires that the desired address be
converted to an appropriate negative im@m Remember that in 2's complement
representation of binary numbers a - 1 is 16 1's. This is most easily overcome by
expressing addresses as either hexidecimal or binary constants. For instance, if a
programmer desires to call an assembly language program at 4800@ld¢oe
following instruction will accomplish this:

CALL 0COOO0H

7. Predefined Functions

This chapter describes predefined functions provided by CBASI@efned
functions are used to build expressions aslagned in sectior3.5. When a
predefined function has arguments, the arguments may be any valid expression
which evaluates to the correct type, either numeric or string.

In general, when a numeric expriessis required, real and eger aguments
may be used interchangeably. However, efficiency is improved by using
expressions as arguments that do not require conversion. In the definitions below,
string arguments are represented by A$, B$, etc, integers by 1%, J% etc, and real
values by X, Y, etc.

Some predefined functions atiscussed in chapters 5 and 6.

7.1 NUMERIC FUNCTIONS

The following functions return numeric values. Arguments, when required,
may be any expression thataluates to either a floating point or integer number.

44

FRE

FRE returns the number of bytes of unused space in the free storage area. The
value returned is a floating point number.

X=FRE

IF FRE < 500.0 THEN GOSUB 10 REM PRINT WARNING

ABS(X)

ABS returns a value that is the absolute value of the argument X. If Xis
greater than or equal to zero the returned value is X, otherwise the returned value
Is -X.

The value returned by ABS is a floating point number. If X is a string an error
occurs. If X is an iteger, it is first conveed to a floating point number.

DISTANCE = ABS(START-FINISH)

IF ABS(DELTA.X) <=LIM THEN STOP

INT(X)
INT returns the integer part of the argument X. The fractional part is truncated.

The value returned is a floating point nloen. If X is a string expression, an
error occurs. If X is an integer, it is first converted to a real value.

TIME = INT(MINUTES + INT(SECONDS)
IF (X/2) - INT(X/2) = 0 THEN PRINT\
"EVEN" ELSE PRINT "ODD"

INT%(X)

45

INT% convertsthe agument X b an integer value. If X is a strirg, an error
will occur. If X is an integer, it is first corverted to a ra value, andthen it is
converted back® aninteger.

J% =INT%(REC.NO)

WIDTH% = DIMEN.1% + NT%(DIMEN.2)

FLOAT(1%)

FLOAT convertsthe agument 1%to a rel value. If 1% is a string, an error
occurs.If 1% is red, it is first converted to an nteger and then it is converted
back to a real number.

AMOUNT FLOAT(COST%)
POSTION SIN(FLOAT(ANG%)* OFFSET

RND

RND generates auniformly distributed random number betwe@ 0 ard 1. The
value retuned is a real nurper.

To awoid identical sequences of random numbers each time a praram is
executed, the RANDOMIZE staement must & used to seethe random nunber
generator.

DIE% = INT%(RND*6.) +1
IF RND > .5THEN
HEADS% TRUE%

ELSE\
TAILS% TRUE%

SGN(X)

46

SGN returns an integer value that represents the agebraic sign of the
argument. It will return - | if X isnegative, O if X is zero, ad + | if X is greater
than zero.

X may be ether integer or real. Integer values of X areconverted to red
numbers.If X is a sting, an error ocurs. SGNaways returnsan integer.

|IF SGN(BALAN CE <> 0 THEN
OUTSTANDINGBAL% = TRUE%

|IF SGN(BALAN CE =- 1 THEN
OVERDRAWN% = TRUE%

ATN(X)
ATN retuns the arcangent of X. Using simple identities other inverse
trigonomdric funcions may be computed from the arctangent. The argumert is
expressed in radians.

The value rdurnedis real. If X is an integer, it is first corverted toa real
number.

X = ATN(RADIANS)
TEMPERATURE = K + N(L%)/ATN(X)
ASIN ATN(X/(SQR(. - X*X)))

ACOS P1/2.- ATN(X/SQR(l - X*X))

COS(X)
COS reurnsthe cosneof X. The agument X is expressd in radians.

Thevalue raurned is real. If X isaninteger, it is first coverted to a real value.

IF COSANGLE) = 00 THEN VERTICAL% = TRUE%
PRINT CONSTANT * COSROTATION)

47

EXP(X)

EXP returns the \alue of the irrational constant "e" raised to the paver given
by X.

The value returned is real. If X is an integer, it is first converted to a real
number.

Y = A * EXP(BX%)

E = EXP(l) REM CONSTANT E = 2.718 ...
LOG(X)

The natural or Napeian logarithm of the argument X is retunedby LOG.

The value rdurnedis real. If X is an integer, it is first corverted toa real
number.

BASE.TEN.LOG = LOG(X)/LOG(IO)
PRINT "LOG OF X IS"; LOG(X)

SIN(X)
SIN retuns the sine of the X. The agument is expressin radians.

The value returned is real. If X is an integer, it is firs converted to a real
number.

FACTOR(Z) = SIN(A - B/C)
IF SIN(ANGLE/(2.0* P1) = 0.0 THEN\
PRINT "HORIZONTAL"

SQR(X)

SQOR redurns the saiare rod of the X. If X is negative, a warningmessge is
printed, andhe sajare rootof the absolut valueof the agument is reurned.

48

The value returned is real. If X is an integer, it is first corverted to a real
number.

HY POT= SQR(SIDEI-2.0)+(SIDE2"20))

PRINT USING \
"THE SQR ROOT OF X |S: ####H##"; SOR(X)

TAN(X)
TAN retuns the tangent of the agument X. X is expressein radians.

The value returned is real. If X is an integer, it is first corverted to a real
number.

POWERFACTOR TAN(PHASE. ANGLE)
QUIRK = TAN(X 3.0 * COY(Y))

7.2 STRING FUNCTIONS

ASC(A$)

ASC returns the ASCII numeric value (in decmal) of the first chaacter of the
string argument. If the length of A$ is zero (nll string), a runtime error wil
occur.

The value rdurned is an integer. If the agument is numeric, an error wil
occur.

IF ASC (DIGIT$)>47 AND ASC(DIGIT$)<58 THEN
PRINT "VALID DIGIT"
OUT TAPE.FORT%, ASQ-*-)

CHR$(1%)

49

CHRS$ returns a one character string consiging o the character whose ASCII
equialent is 1% CHRS$ can be used to send cdrmol characters to an output
device For ingance, the statement "PRINT CHR$(10)" will output a Ine feed to
the console.

The value retumed is a string. If 1% is red, it is first converted to an integer
value.

IF CHR$(INP(IN. PORT®6)) = "A" THEN GOSUB 100

PRINT CHR$(BELL %) REM ring the bell!

LEFT$(AS,1%)

LEFT$ returns a string consiging of the first 1% characters of AS$. If 1% is
greaterthan the length of A$, the entire string will bereturned. If 1% is zerga
null string will be retirned if 1% is negative, aruntime eror will occur.

AS$ must be astring; otherwise an aror will occur. 1% shoudd be nuneric. If
1% is real, it will first beconverted b an integer. If 1% is a string, anerror will
occur.

PRINT LEFT$(INPUT.DATAS,25)
IF LEFT$(IN$, 1) =" Y"THEN GOSUB 400

LEN(AS$)

LEN returnsthe length of A$. Ze is returné if A$is a ndl string.

The value rdurned by LEN is an integer. An eror occurs if the argument is
numeric.

|F LEN(TEMPORARY$) > 25 THEN
TOO.LONG% =TRUE%

FORINDEX% =1TOLEN (OBJECT$)

NUM%(INDEX%) = ASC (MI D$(OBJECTS,|INDEX %, 1))
NEXT INDEX%

50

UCASES$(A$)

UCASES returns a string in which the lower cag charactesin A$ hawe been
translated to uppercas®ther charaders are not atered A$ remains unchanged
unless Ais setequal to UCASE$(AS).

The value rdurnedby UCASESis a string An error ocurs if A$is numeric.
IF UCASEHANSS$)="YES' THEN
RETURN\
ELSE STOP

NAME$ = UCASE(NAMES$)

MATCH (A$,B$,1%)

MATCH returns the position of thefirst occurrence of A$in B$ starthg with
the character pasition given by 1%. A zero will bereturned if no match is found.
The following patern matching features are available:

1) A pound sig (#) will mach any digit (0-9).
2) An exclamation mark (') will match any upper olower casletter.
3) A question mark (?) will matchany character.

4) A baclslash (\) characterserves as an esc@e characte to indicate the
character that follows does not have special meanng. For indancea
guedion mark signifies that any characte is a match unless preceeatd by a
bacldash.

A$ and B$ mustbe strings. An error will occur if either of these argumentsare
numeric. If 1% is real, it will first be cawerted to an integer; if 1% is a string, an
errorwill occur. If 1% is negative or zero, auntime error will occur. When 1% s
greaterthan the length of B$, zeo is raurned. If B$ is a ndl string a0 is always
returned.If B$ is not nul but A$ isnul a 1 will be retirned.

51

Examples:
MATCHC(- is",” Now is the",l) returns 5
MATCH(- ## ", - October 8, 1976 ", 1) returns 12
MATCH(- a?"," character",4) returns 5
MATCH("4"," 123#45",1) returns 4
MATCH(- ABCD ", "ABC ") returns O

Note that the third example returns a 5 instead of a 3 because the starting
position for the match is position 4. In example four the backslash causes the
pound sign to match only another pourghsWithout the bacilash a | would be
returned.

The next example is a more complicated statement using the backslash
MATCH (- \\?", -1# 1\?2#", 1) returns 2
The following program may be used to experiment with the match function.

TRUE% -I

FALSE% O

edit$ = - The number of occurrences is ###"

WHILE TRUE%
INPUT-enter object string" ; LINE object$
INPUT "enter argument string" ; LINE arg$
GOSUB 620
PRINT USING edit$; occurrence%

WEND

620 rem ----- count occurrences ---------
location% = |
occurrence% =0
WHILE TRUE%
location% = MATCH(arg$,object$, location%)
IF location% = 0 THEN RETURN
occurrence% = occurrence% +

52

location% =location% + 1
WEND
END

M ID$(A$, 1%, %)

MIDS$ returns astring consiging of the 3% characters of A$ starting at thel%
charader. If 1% is greaterthan the length of A$, anull stringis returned. If X6 is
greaterthan the length of A$, al the characters from 1% to the end of A$ are
returned. An error occursif either 1% or J%is negative. A runtime error aso
occursif 1% is zep. A zero value of % will returnanul string.

AS$ must be atsing expreson; otherwisean eror will occur. 1% ard J% must
be numeric. If 1% or Pb are real, they will first be conerted to inegers; if either
1% or J% aretsings,an errorwil | occur.

DIGI T$=MID$(0BIECTS,P0D%,1)

DAY $=MID$("MONTUEWEDTHUFRISATSUN", DAY %*3-2,3)

RIGHT$(AS$,1%)

RIGHT$ retuns a string consisting of the 1% rightmost chaactersof AS$. If
1% is negative, a untime errar occurs if 1% is greater than he length of A$, the
entire stingis raurned. If 1% is zero, a dl stringis returned.

A$ must evaluate to a string; otherwise an error will occur. 1% must be
numeric. If 1% is real, it will first be converted to an integer; if 1% is a string, an
error will occur.

IF RIGHT$(ACCOUNT.NO$, 1) = -0 THEN\
TITLEAACCT% =TRUE%

NAMES$ =RIGHT$(NAMES,LEN(NAMES$)-LEN(FIRST.NAMES$))

STR$(X)

53

STRS returns the character string which represents the value of the number X.

If X is a string, an error will occur. If X is an integer, it will be corted to a
real value.

PRINT STR$(NUMBER)
IF LEN(STR$(VALUE))>5 THEN ED$="ttHHH###"

VAL(AS$)

VAL converts A$ into a floating point number. Conversion ontinues until a
character is encountered that is not part of a valid number or until the end of the
string is encountered.

If A$ is a null string or the first nonkank character of A$ is not a +, -, or
digit, zero is returned.

A$ must be a string; otherwise an error will occur.
PRINT ARRAYS$(VAL(IN. STRINGS))

ON VAL(PROG.SEL$) GOSUB 10, 20, 30, 40, 50

COMMAND$

COMMANDS returns a string which contains the CP/M command line
modified as described below. Refer to Digital Research publication "CP/M
Interface Guide" for a discussion of the Command Line.

The name of the program being executed is not included in the string returned
by COMMANDS$. In addition, if the TRACBption is used with CRUN, the word
TRACE and associated line numbers, if present, will not be included. If any of the
following commands are used to execute a CBASIC intermediate file:

CRUN2 PAYROLL NOCHECKS TOTALS

CRUN2 PAYROLL TRACE NOCHECKS TOTALS

54

the COMMANDS$ functionwill return the following string
NOCHECKS TOTALS

Leading blanks are removed. A maximum of 50 characterswill be retained by
the COMMANDS$ function. All alphabetic characters are converted tipper case.

THE COMMANDS$ function may be used d anytime in a progam, as many

timesasdesred, and byany program which is subsequetly loaded bya CHAIN
Statement.

SADD(A$)

SADD returns the addess of the string assignd to the argument A$ The first
byte is the length of the string followed by the charactersin the string. The length
Is stored as ammsignedbinary integer.

Therefore, if the sting is "TOTAL", the SADD function would return the
addres®f a byte ontaining abinary 5 The next byte wouldbean ASCII"T" etc.

The value returned by SADD is an integer. If A$ is nota string, an eror
occurs.When the paameterevaluates to a rilistring, a 2r0 may bereturned.

The SADD function, in conjuncti on with PEEK and POKE, may be usedto
pass a string to anassembly language routine for proaessng.

The following staements will put the addres of STRINGS$ into the address
stored n PARM.LOC%:

POKE PARM.LOC%,SADD(STRING$) AND OFFH
POKE PARM.LOC% + 1,SADD(STRING$)/256

VARPTR (<variable>)

VARPTR returns the peemanen storage locaion assigned to he <variable> by
the runtime monitor.

55

In the case of an unsubscripted numeric quanity, this isthe actual location of
the variable in question. For string varialdes, the value retumed is the addressof a
sixteen-bit pointer tothe referenced string. Because strings are dynamically
allocatedthe actud location of the sting may vary, but the value returned by
VARPTR remains urchanged dung execution of a program. If the variable isin
common, then the locaion retumed by VARPTR will remain unchanged after
chaining.

If the <variable> is subgripted the value returnedby VARPTRis the address
of a pointer tadhe aray dopevector in the free storage area. The array foilows the
dope vedor. The first byte of the dope ector is the numbe of dimensiors.
Following this single byte aren - 1 (nis the number of dimensions) 16 ht offsets

into the arrray. The find 16 bit quantity in the dope vecbor is the number of
entries nthe array. Thearray follows inrow major order.

SIZE(A$)

SIZE retuns the size in blocks of the file specifed by A$. If the file is empty
or does not exid, zero is returned A$ may be any CPM ambkguaus file name.
Digital Research publication "An Introduction to CPM Features and Fecilities"
explainsamhbguousfil e names.

The argument must be a string expression. A numeic value will result in an
error. The SIZE functionreturns an integer.

Examples:
SIZE(" NAMES. BAK")
SIZE(COMPANY$ + DEPT$+".NEW")
SIZE(" B: STPRTRX.
SIZE(" *-)

SIZE(-*.BAS-)

56

The SIZE function returns the numbe of blocks of diskette spa® consumed
by the file or files referredto by the agument. When the operting system
allocatesdiskette spaceota file, it doesso in one block incremerts. A file of 1
charader will occupy a ful block of spa®. This means the SEE function returns
the amountsof spae that has been reserved by the file rather than the size of the
data hatis inthefile.

7.3DISK FUNCTIONS

RENAME(A$,B$)

RENAME is afunction that changes the name of the file specified by B$to
the name given by A$. Renaning a file to aname that already exists prodices a
runtime error.

The RENAME predefined function returns an integer value. A true (- 1) is
returned if the rename is successful and a false (0) is returned in cases where the
rename fails. For instancefase s returned if B$ does not exist.

A file must be closdbefor it is renameal; otherwise, when CBASIC
automatically closesfiles at the end of processing, it will atempt to close the
renamed file under he name withwhich it was opered. Thiswill cause aruntime
error beause the aiginal file name will nolonger exis in the CPM file
direcory.

Both arguments must be of type string. If either A$ or B$ is numeric an error
will occur.

The RENAME function will allow a CBASIC progammer b use the
following backup conwertion

1) The output file is opered with a filetype d '$$$' indicating that it is
temporary.

2) Any file with the same name as the outpu file but with atype 'BAK' is
ddeted.

3) Datais written tothetemporary file as the pogramdoes its pocessing.

57

4) At the end of processing, the program renames any file with the same
filename and filetype as the output file to the same filenamevibiut
the filetype 'BAK'.

5) The program renames the temporary output file to the proper name and
type.

Examples:
DUMMY% = RENAME ("PAYROLL. MST", "PAYROLL.$$$")

IF RENAME (NEWFILES$,OLDFILE$) THEN RETURN

8. User Defined Functions

Functions or subprograms are defined by a programmer when the same
computation is to bperformed in a number of locations within a program. The
required routine is coded as a function ameht eferenced or called from any
location within the program. Theificion may bgrassed values or parameters to
be used in each invocation.

All CBASIC functions return a value. Thus, the function is, in effect, a
reference to a routine which results in a value, either string or numeric. CBASIC
provides two types of functions, single statement and multiple statement.

A function must be defined prior to any reference to the function. That is, the
compiler must encounter the function definition prior to any reference to the
function.

8.1 FUNCTION NAMES

The name of a user definathction must bgin with 'FN' followed by any
combination of numbers, letters and periods. A function name may be any length.
Only the first 31 characters are considered when determining the uniqueness of a
function name. No spaces are allowed between the FN and the remainder of the
name.

58

The type of the function name detemines the type of the value returned by the
function. If the function name ends with a dollar sign, a gring is raurned; if the
name ends with apercert sign an integer is returned. Othewise, a rehvalue is
returned A function name is used to bath define a function and to refererce a
function.

Examples o function names:
FN.THIS.IS.A.VALID .FUNCTION
FN3.14%%

FN.FUNCTIONS$
FNJMES
FN.TRUNCATES$

This function is useful in aprogramthat must dylicate a congruct afile on
disk If theprogramknowsthat it will create afile of a given size, possbly
depenént on the size of its input file, it can first detemine whether or not there is
suficient freespace on the disk before building the new file. For example,
consider aprogam which reads afile named "INPUT" from drive A, processes
the dataand hen writesa file named "OUTPUT" to drive B. Assume the sizeof
"OUTPUT" will be 125% of "INPUT". The following routine will insure that
spa&e isavailable on disk B prior to processing.

70 rem ------ teg for enaugh room -----
size.of.output% = 1.25 * 9ze ("A:INPUT")
free.blo&s%= 241- size('B:*.*")

If free.spae% < sze.d.output% then
enoudh.room% = FALSE% \
elseenough.oom% =TRUE%
return

CP/M spports 24 user a&cessible blocks on single density sysens. The
number of blocksin use,subtractedirom 241, gives the remainng sgace on the
disk.

59

Note that some systems, such as those with double density disk dr ives, may
not provide reults consistent with standard disks.

CBASIC determines the number of blocks in a file by counting the non-zero
bytes in the file control block allocation map.

The body of a multiple statement function consists of any number of CBASIC
statements except that DEF and COMMON statements may not appear in the
body of a function. A multiple statement function may reference itself within the
body of the function but, all local variables retain their most recent definition
when returning from the function.

If a DIM statement appears in a multiple statement function, a new array is
allocated on each execution of the DIM statement. The previous data stored in the
array is lost. Note that the array is global to the entire program.

A value is returned from a multiple statement function by having the name of
the function appear on theft handside of an assignment statement. Anynber
of such assignments may appear in the body of afunction. The most recent
assignment is the value returned by the function.

The function returns when a return statement is executed. Any number of
return statements may be present in the body of a multiple statement function. If
no assignment is made to the function name, the value returned is the last value
assigned to the function name. If no value has been assigned, zero is returned.

The body of a multiple statement function is terminated by a FEND statement.
The general form of an FEND statement is:

[<stmt number>] FEND

Execution of a FEND statement implies that a multiple statement unction was
exited without executing a RETURN statement. In this ase a runtime error occurs.

Examples:
DEF FN.READ.INPUT(INPUT.NO%)
READ # INPUT.NO%; CUSTNO%, AMOUNT

RETURN
FEND

60

8.2FUNCTION DEFINIT IONS

Single staement functions are defined with the DEF datenent whose general
form is:

[<stmt numbePp] DEF <funcion name>[(<dummy arg list>)] = <expression>

The type of the expresson must match the typeof the function name. here
may be nae, or any numberof dummy argunents, andthey may be used freely
within the expression. A dummy argumenis either string or numeic varnable.
When there is more than one argument, they are separatday commas. The type
of the dummy arguments is inde@ndent of the function type.

The dummy arguments ae local to the fundion definition. Variables of the
same name, in other pations of the program, reman unaffeded by the use of the
function. Variables, corstants, ad other functions may also be referenced in the
expresson. Recusive @ls are not permitted.

Examples:

DEF FN25 = RND*25.0
DEF FN. LEFF. JUSTIFY$(A$,LEN%) = LEFI$(A$ + BLNKSS$,LEN%)

DEF FN.HY POT(SIDEI,SIDE2) =\
| SQR(SIDE | *SIDE 1) + (SDE2*SIDE2))

DEF FN.FUEL.USE(MILES)=SPEED*FN.CONST*MILES OVERHEAD
DEFFN.EO3%=FLAGI% OR FLAG2% OR EAG3% OR FLAG4%
DEF FN. INPUT%(PORT%) = NP(PORT%) AND MASK%(PORT%)
A multiple statement function consists of a multiple statement function
definition, a furction body and a FEND staterent. Multiple statenent function

definitions use the followi ngforrn of the DEF statemert:

[<stmt number>] DEKfuncion name>[(<dummy arg list>)]

61

The dummy argument list isidentica to tha descibed for single staement
functions. The patameers are local to the ertire baly of the function.

8.3FUNCTION REFERENCES

A user defined function may be refererced in any expression. The same
number of pamametersmust be spediéd in the call as are defied in the DEF
statement. Paamders may ke anyvalid expresson, but they must match the type
of those specified in the definition. This includes itege andreal paamders. If
the function definition requires an nteger parametr, the value passed to the
function mustbe an integer. The samerule appliesto rea and string parameters.

A function mustbe defined prior to a reference to the function.

Prior to caling the function, the current value of each expression is substituted
for the dummy variable in the definition.

Examples:
PRINT FN.A(FN.B(X))

IF FN.LEN%("INPUT DATA",X$,Q) <LIMIT% THEN
GOSUB 100

WHILE FN. ALTITUDE(CURR. ALT%) > MINIMUM.SAFE
CURR.ALT% = INP(ALT. PORT%)
WEND

For example:

COMPANY$ = SMITH INC."
PRINT USING -& &"; "THISREPORT ISFOR-,COMPANY$

will output:
THIS REP@RT ISFOR SMIITH INC.

A string may be ight justified within a fixed field using the variable string
field. Thefollowing routine shows how thiswould be doe:

62

FLD.S% 20

BLK$ = 11

PHONES$ "213-355L063"

PRINT USING"#&"; RIGHT$ (BLK$ +PHONES, FLD.S%)

which would output:
213-355-1063

In the above example, since the print list contains only a string expression, the
pound sign is used as a literal character. A pound sign may also indicate a
numeric data field. This is explained in the next section.

9. Formatted Printing

9.1 GENERAL

This chapter describes the PRINT USING statement. PRINT USING allows
specification of printed output using a format string. A format string is composed
of data fields and literal data. Data fields may be numeric or string; any character
in the format string that is not part of a da&dfis a liteal character. The general
form of a PRINT USING statement is:

[<stmt number>] PRINT USING <format string> [<file reference>] <expression list>

A format string may be any stringxpres®n. This allows the format to be
determined during program execution. An error occurs if the format string is
numeric; a runtime error occurs if the expression evaluates to a null string.

The expression list consists of expressions separated by commas or
semicolons. The comma does not cause automatic tabbing as widoebe
unformatted print. Each expression in the list is matched with a iéddiairf the
format string. If there are more expressions than fields in the format string, the
format string is reused starting at the beginning of the string.

While searching the format string for a ddtald, the type of thenext
expression in the list, either string or numeric, determines what data field is used.

63

For instance, if while outputting a sting a numeric dafa field is encounteredthe
characters that make up the numeric daa field will be treated as litera data. If
there is no daa field within the format string of the type requiredan error wil
occur.

A PRINT USING staement without the file reference caugs an outp lineto
be written to either the console or the line printer. The console is selected unless
an I-PRINTER statemenis in effect. If the file reference is preseit, the line is
composed ast woud be if the output was being printed ona list device. The
entire line is then written as a reord in the selectedile. Chapter 10 discuss&in
more detil the use d PRINT USING with disk files.

DEF FN.COUNT%(INDEX [%)
COUNT% =0
FOR 1% = | TO INDEX1%
COUNT% = COUNT% + ARRAY (1%)
NEXT 1%
FN.COUNT% = COUNT%
RETURN
FEND

9.2STRING CHARACTER FIELD

A one characte string dat field is specified with an exclamation point. The
first characterof the next expresson in theprint statementist is output For
example:

FNAMES$ = "Lynn" M.NAME$ ="Marion": LNAM$="Kobi"
PRINT USING F. NAME$, M. NAMES$, L. NAM$

would output:
L. M. Kobi
In this example, theperiod is treated as literal data. Since there are two

expressons in the list, the forma string is reusedwhen procesing the second
expression.

64

9.3FIXED LENGTH STRING FIELDS

A fixed length string data field of more than one paosition is specified by a pair
of slashes (/) separated by zero or more characters. The width of the field is equal
to the number of characters between the dashes, plus two. Any chakecter may be
placeal between the dashes; the® fill charactes areignored.

A string expresson from the print list is left justified in the fixed field, and, if
necessary, palded on the right with blanks. A string, whichis longer than the data
field, is truncated on the right.

For example:

FOR 1$ ="THE PART REQURED IS50....51"
PART.DESCRP$ = "GLOBE VALVE, ANGLE"
PRINT USING FORI$; PART.DESCRP$

will output:
THE PART REQUIRED IS GLOBE VALVE , ANGLE

The use of the periods and numbes between he dashe s makesit easy to
verify that thedata field is 16 characters long. They have had no effect on the
outpuit.

9.4VARIABLE LENGTH STRING FIELDS

A variable length string field is spedied with an ampersand Tis resuls in a
string being output exactly asit is defined.

Astaisk fill of a numeric dat field is accomplished by appending two
astersksto the beginning bthe data field. A floating dollar sign may be obtained
by append ng two dollar signs tothe field in asimilar manrer. Exporential format
may not be used with either asterisk fill or the floating dollar sign. The pair of
astersks or ddlar signs are included in the court of digit positions &ailable for
the field and hey appearin the output only if there is sufficient space for the
number and the asterisk or dollar sign. The ddlar sign is suppressedfithe value
printed is negative.

65

For example:
COST =8742937.56
PRINT USING "**## ###### ## COST, -COST
PRINT USING "$$## #####Ht ## COST, -COST
prints:

**8,742,937.56 8,742,937.56
*$8,742,937.56 8,742,937.56

A number ma be outpu with a trailing 9gn instead d the leading sign if the
last characte in the data feld is a minus sign. When the numberis paositive, a
blank replacesthe minussign in the printed result.

For example:

PRINT USING "### - ##" 10, 10, - 10, - 10
will output:
10 100E-A 10-1(ME-01-

If a minussign is the first character in a numeric data field, the sign positionis
fixed as te next output position. When the number being printed is positive, a
blank is output, otherwise aminus sig isprinted. Tke following example
demondtrates this feature.

PRINT USING ####£10, - 10
which outputs
10 - 10
Any time a nunber will nat fit within a numeric data field without truncating

digits before the decimal pant, a percen sign is pinted followed by the number
inthe sandad format.

66

Numbers may be prited in exponential forniat by apgendng one or more
uparrows to the end of the numeric data field. For example, the following
programsegment:

X =12.345
PRINT USING X, -X

would output:
1.235e Q@ 123E 02

The exponent is adusted so hat all pasitionsrepresanted by the pound sigs are
used.For instance:

PRINT USING 17.987
results in
179.87E-0 1

Four positons are reserved for the exporent regardless of the number of uparrows
used inthe field.

If one or more commas appea embedde& within a nuneic data field, the
number is pinted with commas between goups of three digits befoe the decimal
point. For example:

PRINT USING "## ### 100, 1000, 10000
prints:
100 1,000 10,000

Each comma which appeas in the dat field is included in the width of the
field. Thus, eventhoughonly one commais requiredto obtain enbedded cormas
in the output, it is clearer to place @mmmas in the data field in the positions they
will appearonthe outpu. For ingarnce, the following dat fields will produce the
same results, except that the width of the first field allows only 9 digitsto be
output. Using the second field, 10 digits may be outpLi.

67

If the exponent option is used, commeas are not prirted whencommas occur in
the held, they are treated as poursigns.

9.5NUMERIC DATA FIELDS

A numeic data field is specified by apoundsign (#) to indicate each digit
requred n the resulting number. One deamal point may also be included in the
field. Values are rounded to fihe data ield. Leading zeros arereplaced with
blanks. When the numberis negative, a minus sign is printed to theleft of the
most significant digit. A single zero is printed on the left of the decimal point if
the numbe is less than 1 and aposition is piovided in tke data field The
following example illustrates the use d numeric datafields.

X =123.7546
Y =-21.0
FORS = "#### ### HitHH #AH#11

PRINT USING FORS; X, X, X
PRINT USING FORS$; Y, Y, Y

Execution of the alove program produces the following printout:

123.7546 123.8 124
-21.0000 -210 -21

9.6 ESCAPE CHARACTERS

At times it may be desired to itlude a character as literal dai& which, following
the dove rules, would be pat of a data field. This can be acomplished by
"es@ping' the chamcter. A backslash (\) preceding any character causes the next
character after the bacldash to be treatedas a literal character This allows, for
instance, a pound gn to preede a numbeas shownin the following example.

ITEM.NUMBER = 31
PRINT USING "THE ITEM NUMBER

X=132.71

68

PRINT USING X,X
will output:

% 132.71 132.7

10. Files

10.1 HOW CP/M MAIN TAINS FILES

CBASIC usesthe CP/Mfile acessirg routines to stog and etrieve daa from
diskdte files.This section will provide abrief introduction tothe file organization
employed by CP/M. More detailél information is available in the CP/M maruals.

CP/M maintains adirectay of File Control Blocks (FCB's) on each diskette.
The FCB contains the file name, numberof recordsin the file, and eferencesto
physical locations ocaupied bythe dita on thediskette. CP/M interfaces with the
disk hardware through primitives that are wed bytrarsient programs, includng
CBASIC, to accesfiles ondisk The primitives alow afile to be createl, opened,
closed, red or written. All dat is processgin 128 byte segments. However,
CBASIC maintains all necessey pointers ad buffers data so the user is not
resticted to 128byte records.All CBASIC file accesse are peformedusing
CP/M system calls.

The CBASIC stadments used to acess diskete fileswill now be discussed.
Three stdements are used o activate a file, OPEN, CREATE, and FILE. Once a
fil e has been activated,READ and PRINT staements may accessand writefiles
respetively. An active file may be deactivated with either a CLOSE or DELETE
staement. Chapter 11providesadditiona informationon programmingwith files.

10.2 OPENSTATEMENT

The OPEN staement adivates an existing file for reading or updding. The
general form of an OPEN statement is:

[<stmt number] OPEN <expression> [RECL <expression>]
AS <expression> [BUFF <expression>RECS <expression>]

69

[,<expresion>] RECL <expresson>
AS <expression> [BUFF <expression>RECS <expression>]

For instance:
If random access sto beused with afile, the BUFF expresson, if present,
must evaluate to 1otherwise aruntime error will occur.

Both expressons must benumerc; a string value will cause an error. Real
values are coverted b integers.

Twenty files may be ativeat one time Buffer space fofiles is allocated
dynamically. Therefore storage space may be conserved by opening files asthey
are requirad and closing them when they are no longer needed.

Examples:

555 OPEN'TRANSTIL" AS 9
OPENFILE.NAME$ AS FILE.NO% BUFF 26 RECS 128

OPENWORK. FILE. NAME$(CURRENT. FILE%)
RECL WORK.LENGTH% AS CURRENT.FILE% BUFF BS% RECS 128

10.3 CLOSESTATEMENT

The CLOSE statement deactivates an OPEN file; the fileis no longer available
for input or output operations. The general form of a CLOSE statement is:

[<stmt number] CLOSE <expression> [,<expression>]

Each expression refa's to the idertification number of an active file. Thefile is
closed, the file number is released and all buffer s@ce wsed by the file is
deallocatd. Before the file may be referenced again it mustbe reopeaed. An error
will occur if the specifie file has nopreviowsly beenactivated with a CREATE,
OPEN o FILE staement.

If an IF END staement is currently associaed with the dentification number
for thefile being closed, the IF END will nolonger kein effect.

70

All active files are automatically closed whena STOP statement is executed,
or acontrol-Z is entered in regponse to an INPUT staement. Files arena closed
If acontrol-C is enterel fromthe console, or f a runtime error occurs.

Each expresson must be numeic in the range 1to 20. Red values are
corverted D integers.A string valuewill result in anerror.

The first expression represents the name of a file on diskette. The name may
contain an optional drive reference. If the drive reference is not presen the
currently logged drive is used. e file name must confam to the CP/M format
for unambguousfile names. Lower caseletters useal in fil e names are converted
to upper case.The expression must beof type stiing, an error occursif it is
numeric. The following examges show valid file names:

ACCOUNT.MST
CBASIC.COM
B:INVENTOR.BAK

The thrd example shows aeference to a fie ondrive B.

The diredory onthe sdecteddrive is searched and the namal file is opend. If
the file is not fourd in the directory, it is treatedas if an end o file had been
encounteredduring a read.Seethe IF END staement for information on end of
file procesgng. When a drive referenceis present, it is the programmer’'s
respasibility to insuresuch adriveis available on the system being used.

The AS expresion assigis an identification number to the file being opened.
This value is usdl in future references b the file. Each active file must have a
unique numbe assigned to it. If the expresson is nat betweenl and 20, a runtime
erra occurs. The expresion must benumeic; red values are conerted to
integer. A string value will causean error.

When the optional RECL expression is present,the file will consist of fixed
length records A runtime error acurs if the recad length is negative or zeroA
file may be acessedrandonty or sequenialy when areoord lengh has been
specfied; dhemwise ony sequertial access is allowed. The RECL expresson
must benumeric; real values are cowerted to integer. A string value will cause an
error.

71

The BUFF and RECS epressions are optional If used, they both must be
presat. The expresion following BUFF sgecifies the number of disk sectors
from the sdlectal file to maintain in memory at one time. If the expression is
omitted, a value of one is asumed The expesson following RECS mud be
preset when the BUFF expresson is used but the value of the expresson is
ignored.For possible future use,the value oud be tre size of adisk sector This
is normally 128 bytes.

If an IF END staement is currently associaed with the dentification number
for the file being deleted,the IF END will nolonger ke in effect.

Examples:
DELETE |
DELETE FILE.NO%, OUTPUT.FILE.NO%
1% =0
WHILE 1% < NO.OF.WORKFILES%
1% =1% + 1

DELETEI%
WEND

10.6 IF END S ATEMENT

The IF END statment allows the programmer to proces anend of file
conditionon an ative file. The general form of the IFEND statemernt is

[<stmt numbeP] IF END # <expression> THEN <stmt number>

When an end of file is detected on afile, one of two actionswill take place. If
an |IF END statement has been executed for the file, control is transferrad to the
staement labeled with the staément numbe following the THEN. If no IF END
statment has ben executed, a rutime error occurs.

The IF END staement must be the only statement on aline; it may not follow
a wlon nor be pardf a staement list.

12

Any number & IF END staements may appearin a pogramfor a given file.
The most recently executedIF END isthe onethatwill bein effect. Howeve, if a
DELETE or CLOSE staement is executed, ary |[F END assciated with the
identification numberis no longer efective.

The expresson must be mmeric inthe range 1 to 20Red vaues are converted
to integers.A string value will cause an error.

When a condition exids which results in the transfer of control to the
staement assciated with an IF END staement, the stack is restor@l to the
condition that existed prior to the statement which caused adivation of the IF
END. Thus if the statement which reallted n transfer was in a subroutine, a
return must beexecutedafter proaessng the end of file condition.

Examples:
IF END # 7 THEN 500
IF END#FILE. NO% THEN 100.1

An|IF END staement may be executedprior to assigmng the file numbeto a
file. A subgquent OPEN on a file that does not exst will cause execution to
continue asf an end of file hadbeen encourtered.

In the following example, if the file MASTERDAT doesnotexiston drive 13,
control will be ransferred to sitement 500.5 After a successful OPEN, an end of
file during a readwill cause execution to continuewith setement 500.

IF END #MASTER. FILE. NO% THEN 500.5
OPEN "B:MASTER.DAT" ASMASTERFILE.NO% BUFF6 RECS 128
IF END # MASTER.FILE.NO% THEN 500

An |F END staement may aso be usedwhen writing to a file. | n this case
control is transferred to the staement assaiated with the IF END when an
attempt is made tawrite to the fil e and there is no disk space availabde. Pat of the
recordbeing creded may have been writtento the file. When usig fixed files, the
last recod may be lewritten after additiona speceis freed.

73

10.7 FILE STATEMENT
[<stmt number>] ALE <variable> [(<expesson>)][, <variable> [(<&xpression>)]|

A FILE statement opens afile if it is present on the referenced disk; oherwise
a file with the specified name is created. The variable contains the name of the
file to be accessd. As each file is activated, it is assigned the next unused file
number stating with 1. If all 20 numbers are alegly assgned, an error occurslf
the expresion enclosel in parerheses ispresent,the value of the expressionis
the record length. The recaod length must be nmeric. Real valuesare converted
to integers. A string value will cause an erra. The variable must not be
subscipted aml it must beof type dring. It may not be alitera or an expression,

Examples:
FILE NAME$

FILE FILE.NAMES$(REC. LEN%)

10.8 READ STATEMENT

There aefour formsof the READ satement vinich acces datafrom disk files.
Each of the four statemers will be discussal in tumn, and then some gened
comments about reading fromdisk files will be made. The first two types of the
READ staement acces files in a manrer analogows to usng the INPUT
staement to access data from the consde. The lag two forms are similar to the
INPUT LINE statement.

The general form of the segential read is

[<stmt number] READ # <expresion>; <variable>1 , <variable> 2

The @ove READ staement reads squentidly from the fil e specfied by the
first expression. The file will be read, field by field, into the variables, until every

variable has bea assgned avalue.Fields may be integer, floating pant, or string
values, andhey are alimited by commas.

74

The expresson, which selects the file, must be nmeric. Rel values are
corverted D integer. A string value will cause an eror. In addition, the value
must refer toan adive file. Otherwise, a untime error occurs.

Examples:
READ # 7; STRING$, NUMBER
READ # FILE.MASTER%; NAME$, ADDRESSS$,CITY$STATES
Thegeneral forrn of the next variation of the READ statement is:

[<stmt number>] READ # <exprason>, <expession> [<variable> 1, <vanable> 2]

The secondexpresson selects the recod to beread. A random record
speciied by the second expressnis read from the disk file specified by the first
expresson. The fields inthe record are assignetb the variables in the variable
list. An eror occursif there ae more variables than fields in therecord To use

this form of the read, the file mug have been activated with the RECL option
speciied.

The secondexpression must be numec. If the value is a string, an error will
occur. R vaues areconvertal to integes. The recod number may not be zero;
If it is, aruntime error will occu. The expression is treated as a sixtedit
unsigned binary number. Ths allows recat numbersinthe rangeof 1 to 65,535.

A random readwith no variables specfied will position the file to the selected
record A subsequent sealential readwill accesthe selected record.

Example:

READ # FILE.NO% REC.COUNT%; NAME$, PAY, HOURS TERM.OF.EMPLOY, SSN$

The following two forms of the READ statenent treat files adines of text.
Thegeneral form of the sequential variant is:

[<stmt number] READ # <expresion>; LINE <variable>

This staementr eads squentially all daa from the specified file until a
cariage return followed by aline feed is encounteredAll the data redup tg but

75

nat including, the arriage réurnand line feedis assigned tothe shgle string
variable specified in the READ LINE statement. If the variable isnot of type
string, an error ocurs.

Therandom variant of the READ LINE has the following general form

[<stmt numbeP] READ # <expresion>, <expression> LINE <variable>

The final variation of the READ staement readsthe record speciéd by the
secondexpresson from the file specified the first expresson. Thedat is
assgned to the string variable asdescribed dr the prevous form of the READ
LINE statement.

The READ LINE staement pemits CBASIC to acess record containing
ASCII dat in any format on a line-by-line basis For instarce, ary file created
with the CP/M text editor coldl be read a linat atime. In the following example:

READ # 12 LINE in.gring$

all charadersin the next recod will be ead urtil a carriage return followed by a
line feed isenmuntered.

Additional exampes follow:
READ # 12 ; UNE NEXT. LINE. OF. TEXT$

READ # INPUT.FILE%, RECORD%;LINE NEXT.ONE$

10.9 PRINT STATEMENT

There ae four variations of the PRINT staement which output data ontodisk
files. Each of these will be dscused in this secion. Both sequertial and random
filesmay bewrittenusing the following formsof the PRINT gatemert

[<stmt numbeP] PRINT # <expression> <expression> [, <expression>]

[<stmt numbe>] PRINT # <expression> ,<expression> ;<express on> [, <expression>]

76

The first form of the ARINT statment outputs he next sequential record tothe
file specified by the first expression. Each of the expressionsin the expression list
will be written as a field separatdd by commas. $ring fields will be surrounded
by quotation marks and the last field will be fdlowed by a carriage return and a
line feed.

The expressonfollowing the poundsign must ke numeric. A rea value will be
cornverted toan integer. A string value will cause an eror. In addition the value
must refer to an adive fil ; otherwise a runtime error will occur.

The secod form of the PRINT stadement outputs a raadom record spcified by
the second expressin to the disk fil e specifiedby the first expresion. The same
forma as described abovs used. Thefile mug have been opened with afixed
recod length. An eror occus if there is insufficient space in the record for al the
data.

The secondexpresson must be numec. If the value is a strirg, an emror will
occur. R vaues areconvertal to integes. The recod number may not be zero;
if it is, aruntime error will occur. The expression is treated as adeen bit
unsigned binary number. Ths allows recat numbersinthe angeof 1 to 65,535.

Examples:

PRINT # 3;"JONES, BILL"

PRINT #FILE.NO%; NAME$, ADDR$, SALARY

PRINT #Y %,EMPLNO%; EMPL.NM (EMPLNO%),HOURS EMPLNO%)
PRINT # 10, 55; BATE

Both forms of the PRNT staement discussel above produce fileswhich may
be rea using the READ statement discussel in section 10.8 All valuesoutput to
the fil e are ddimited with commas or a carriage return line feed par. In addition
all strings are encloseal in quaation marks. If the data mus be output in a specific
format, such as when a repot isbeing producel for late printing, the PRINT
USING statement may be used with disk files. This type of the PRINT statement
takes on the following general forms:

[<stmt number>] PRINT USING <expession> # <expresson> ;< xpression> [, <expresson> |

[<stmt number>] PRINT USING <expession> # <expresson> , <expresson> <expesson> |,
<expresson>]

77

These staments write data to fies using the formatted printing options
specfied in the expresion following the USING. Formatting options are
descibed n Chaper 9 and arethe same as thos for console output. The first
form is for sequential access and the second is used with random access. Records
are delmited with acarriage eturn followedby aline feed.

The expressonfollowing USING must beof type string. An error occursif the
expresson is numeic. If the string is a nul string, a runtime error occurs.The
expressons following the pound sig must follow the same rules as for
unformatted pmting to files.

The PRNT USING statementvith diskfiles gives the pogrammer the same
extensive facilities for formatting daa that the WBING clause pemitswhen
printing to theconsole or list device. Numbers may be formated with commas
and deimal points; asteisksand allar signsmay be floated Recordscontining
embeddedquaation marks or commasmay also be written to a disk file with the
PRINT USING statement.

For example:

centswanted%= TRUE%

edtl$ = "SSH# HiH H'

edt2$ = "$S## Hit'

if cents.wanted% then

edtb=edt1$

elseedit$ = alit2$

print using"The ... &....costs- + edt$;
#file.no%; product$, price

If this procedue is executedthe result onfile will be:
The -X-RAY MACHINE" costs $91,327.44crlf

The use of two adjaent quaation marks in the sting constart resultsin a
singe quotation mark being outputto the file.

10.10APPENDING TOA FILE

78

A file may be appended to by reading seqiaigtuntil the end-of file is
detected with IF END, and then printing additional records.

An example of appending to a file is shown below:

true% = -l

if end # 3 then 200 rem process file fmind
open "master" as 3 buff fre/128 - | recs 128
if end # 3 then 100 rem eof on procékes
while true%

read # 3; dummy

wend

100 print # 3; "this added to end"

stop

200 print "file not found"

stop

This process may be made morea@ént if the file was built with the RECL
option specified. The SIZE predefin&dction is used to find the numer of
blocks in the file. Thaumber of bytes in the file is calculated and then the
number of records is determined. A random read is executed to this record and
then the file is read until an end of file is detected. The following multiple line
function will perform this:

DEF FN. GET. TO. END%(FILE. NAMES$,REC. SIZE%,FILE. NUM%)
FN.GET.TO.END% = FALSE%

FILE.SIZE% = SIZE(FILE.NAMES$)

IF FILE. SIZE% = 0 THEN \ REM FALSE IF NO FILE
RETURN\

ELSE FN.GET.TO.END% = TRUE%

IF END # FILE.NUM% THEN 100

READ # FILE.NUM%, (FILE.SIZE% * 1024) /REC.SIZE%;
WHILE TRUE%

READ # FILE.NUM%; DUMMY

WEND

100 RETURN

FEND

Except for the case of adding to the end of a file, sequential reading and
printing should not be intermixed.

79

10.11RE-INITIALIZING THE DISK SYSTEM

If it bedmes necessary to change diskettes during execution of a CBASIC
program, CP/M must begiven an oppatunity to re-initialize its intemal diskette
usage map to accomnodae the diskéte being insered. If this is notdone, valid
data may beoverwritten.

Diskettesshould rever be clanged while any files are openlf afile has been
written to and not closed and then an INITIALIZE statement is executed, all the
new daa could be lost. This means that user prograns must close all active files
beforeexecuting an INITIALIZE staement.

The INITIALIZE staement will re-initialize the disk usage mapsfor all disks
inseted inb logged-in drives. The general forin of the INITIALIZE staement is:

[<stmt numbePp] INITIALIZE

The dive sdected prior to executing an INITIALIZE stadement remains
selected dter the initialization is compete.

Insurethat diskete changes i@ complete pior to executing the INITIALIZE
statement.

Examples:

10 INITIALIZE
INITIALIZE

The INITIALIZE staement is equvalent to the CALL 264 providel in verson
| of CBASIC.

11. Programming With Files

11.1FILE FACILITIES

The facilities availableto the CBASIC user for accessing diskette filesare
extremely verstile, providing different file organizations ard accesing methods.

80

The emphases of this chapter will be on the pactical organizaion of files and the
way inwhich they are accessed.

11.2FiILE ORGANIZATION

Theorganiztion of afile describes the way it is represented othe diskette.
All data written to files by CBASIC is in character brinat using the ASCII code.
The contents of both string and numeric variables are written as ther
representative ASCII characters, not as binary daa. This pemits the use of both
resgdent andtransient CP/M @ommandswith CBASIC data files.

Charaderswithin CBASIC daa files ae organizd as ahierarchy. The lowest
level of the hierarchy is called a field. Groups of fieldsform records, and a file
consistsof one or more records.

A field can contain either string or numeric data. A string field is surrounded
by quotation maiks. A numeric field isnever enclosed by quotes, ard it may
contain any valid number as descebt in Chepter 3. Fields are separatl from one
andher by either conmas or a cariage return followed by aline feed.

CBASIC offers two file orgnizations, streamand fixed. Thesetechngues are
compaible to provide maeflexibility for the programmer.

11.3STREAM ORGANIZATION

When it is desired to sterdata sequeatially, itemby item, sream organization
Is used. Accesing is performed on a grict fied by field bass. There is no
restriction on the values or lengths of data that may be written; each item of data
takes ony asmuch room asneedel for data ad ddimiters. In othe words there is
no palding.

A portion of astreamfil e containing only string fields may look like this:
“first field", "second field",crIf

“third"," 126.8",crlf
11xxx123yyy,crlf

81

There are six fields in the above examge. The fourth field is a null string. The
following example shows a fe which contains both numeric and sting data

"JohrY, 798642764 California'crlf
"Tom Jones", 1234.56, 'owa"crlf

CBASIC will read files in which strings are not endosed in quotation marks.
In this case commeas serve as the delimiters. Thereforg no commas may be
includedwithin the sting, but a quaation mark embedded in the string would be
treated ascharactr in thestring. Strings written to files by CBASIC will always
be enclosedin quotes An attemptto write astring that contains a quotation mark
to a flewill resut in aruntime error.

The PRNT USING statement does not nsertdelimiters between fields each
recordwill beterminaed by acarriage return followed by dine feed.

11.4F1XED ORGANIZATION

Fixed aganization of filesprovides a logical gructuring of the data that
pertains to a speéic application.

A file is defined to be of fixedorganization if the recod length option is used
with the CREATE, OPEN or FILE stakments. Each individual itemof data in
fixed filesis written as asingle field delimited by a comma, as with stream
organization, but with theadded onceptof afixedsize recod. A record is always
delimited by a carriage réurn andaline feed.

One record is written each time any PRNT statemernt is exeuted Each record
always contains the number of bytes specified by the RECL paamder regardless
of the numbe or size of the component fields This implies that, while a given
field may be any length, the combined length of all fieldsin the recod mug be
less than the record length by at least two bytesto allow room for the carriage
return and line feed The lastfield in a reord is ot followed by acomma.

For example:
CREATE file.name$ RECL 25 ASfile.no%

a$ = "oe"
b$ ="recordone"

82

c$=-3
d$ = ...

e$ ="five"

f$ = - abc 123def"

PRINT #file.no%; a$,b$
PRINT #file.no%:; c$,d$,e$
PRINT #file.no%; f

produces te followingfile:
"one" "record one" crlf
-3 ... "five" crif

| | abc 123df - crif

The recorddelimiters carriage eturn ard line feed (crlf), alays occupy the
last two byes of the recordand must be included ithe specified recod length. In
the above example the linefeed is in the 25th position of each record The space
betwea the record ddimiter and the lad valid field is padded with blanks.

A fixed file READ staement will dways aacess a newrecod each time itis
used For example:

|F END #file.no% THEN 100
WHILE TRUE%
READ #file.ndo; field$
PRINT fiel
WEND
100 STOP

Using the daa fromthe previous exanple, the following will be prirted
console:

One
3
abd23def

The fixed organization of files implies a wdl-defined structureto the accessed
data. e procesing programcan decide tle meaning of a given field by its

83

relative position in a record, raher than by the value of the data itself. This
provides sawvigsin procesing time andprogramming effort.

Files tha are aganized as iked provide fast and easy acaessto theindvidual
fields within each recod becaus al fields can beaadin at one time. Fixed files
may be reorganized by sating on akey within eah record.In addition, fixed files
permit random accessas desabed below.

Because CBASIC reads eachecord on afiedd by field bags, itis
recommendedthat each record onagiven file contain the samenumberof fields.
If there is no infamation tofill a speific field in a record,either azero @ null
string shodd be writen into the field. Thiswill allow, for example, the fifth field
of a sdestransection file to represent the amaunt of the sale even if some or all
of thefirst four fields are not used in a particular transaction.

Sometimesit is neassary to insure that a given field stars at the same relative
postion within a record. Usially there will be some fields of fixed length and
some fieldsof variabde lengh. Numeic fields will always fall into the latter
category unless the range of numbers is restricted String fields, however, can
always ke made to beof fixed length by padling them with blanks.

For example:
string$ =left$(string$ + ",20)
This will dways produce afield tha is 20 c haradersin length. By use of the

STRS, function, numbers can be conerted to stimgs and then padded, thus
allowing unredricted numeric data to bef fixed length.

11.5FILE ACCESSING METHODS

An acacess metlod descrbes the order in which data is read from or written to a
file. CBASIC supports two acess methodssequentiad and random. Either access
method may be used onfiles that are orgaized as fixed Only sequentiad may be
used on astream organizd file.

11.6 SEQUENTIAL ACCESS

84

In seqientially accesad files here is one field of concern, the "next" field.
The progam cannot backtraclor skip alead, it must poceed ore field at a time.

A procedue to seqientially access aile andwrite it to the consokis shown
bdow. The file containsthe following reords:

"first field", "second field", "third"crlf
"11", -5-,-xxx123yyy-alf

The required staments are:

OPEN file.name$ asifle.no%
WHILE TRUE%

READ #file.ndo; field$
PRINT field

WEND

Theoutput onthe console would be:

first field
secondield
third

5
xxxI123yyy

The fourth line on the console is blank because the fird field in the second
recod is a nul string.

While reading data from a file sequentialy, the READ statement will consider
a field completedwhen it encounterseither acomma o a arriage reéurn. Within
the guotation marks of astring field it is permissible to have any character except
a quotaion mark.

When accesing a stream file, every field on the tile will be rea onae and
none will be «kipped.It ispossble to red in more than one field with a single
read steement.

For example:

85

WHILE TRUE%
READ #file.no%; fielda$,field
PRINT fielda$, field

WEND

would print the following on theconsole (using the file from therevious
example):

first field second feld
third

5 xxx|123yyy

The same field organization is used when writing a stream file. Each variable
specified in the PRINT statement produces a single field in the file. Whenmore
than one variable isoutput in asingle PRINT statement, the correponding fields
will bedelimited by commas. The last field written by each PRINT statement will
be delimted by acarriage return and line feedinstead of a comma.

For example:

a$= "rumberone

b$ = "two"
c$=-3-
d$= ...

e$ ="five"

f$ = "variable six"

PRINT #file.no%; a$,b$
PRINT #file.no%; c$
PRINT #file.no%; d$,e$,f

will put the following data n the file referencedy file.no%
"numberone","two"crlf
-3-alf
1411, "five", "variable siX' crlf

On files that are read or mtten using the strean organization, it does not
matter which field delimiter is used. The crlf assume significance when

86

accessing files with fixed organization or when using the READ LINE statement
described below.

When using the CP/M TYPE command to display a CBASIC file, the carriage
return and line feed result in the output from each separate PRINT statement
appearing on a separate line.

11.7 RaNDOM ACCESS

In random access the program is not limited to accessing the next record or
field. Any record on the file is as accessible as any other. Each record, or position
where a record may be placedyeferenced by its rel@e record number. Each
record may contain multiple fields.

Randomly accessed files must use the fixed organization. CBASIC locates
each record on a randomly accessed file by taking the relative record number
specified in the programubtracting one from the number, and multiplying it by
the length of a record. The result is the byte displacement of the record measured
from the beginning of the file. If the records were of varying length, the
displacementould not be calculated in this manner.

Normally random access files will be created sequentially and then read or
updated using random access. An examle of this type of processing is an
employee file for a small business. If the business has twenty employees, each
would be assigned a number ranging from 1 to 20. Each employee might have a
record on file with fields containing their name, social security number, and rate
of pay. The twenty records would be placed on the file in employee number order
using the sequential access method with a fixed organization. Then, when an
application program needed the dataeamployee number 12, a random read
would be issued forelative record number 12 and the proper data would be
retrieved. The following program would access the file described above:

TRUE% = -
OPEN "employee. mst" RECL 50 AS 3
IF END # 3 THEN 500.1
WHILE TRUE% rem loop until eo
INPUT "enter employee numbegmploy.no%
READ # 3, employ.no%; na e$,ssn$,pay
PRINT USING -&'s pay rate is ###.##", name$, pay

87

WEND
500.1 STOP

To summarize, the READ staement usal with a stream organized file will
always access the next availablefield regardless of the field length or which
delimiter is used.In a fixed organkation file, each READ statement will access
the next record. A recad is delimited by a carnage retum and a line feedPRINT
statements function in asimilar mamer.

11.8SPECIAL FEATURES

The PRINT USING statemencan be sedto write data to files aswell asto
the console or prnter. Its use and the format of its outpu is the same when
writing to a file asit is when writing to the console. If the file is fixed, the single
field written by each execution of the PRINT USING staement will be padded
with blanks to the specified reord length. The PRINT USING is well suited to
text procesgng applications.

The following examples eemondrate tle PRINT USING staement with fil es.
PRINT USING -&-;#TEXT. FILE. NO,LINE. OF.TEXT$

PRINT USING "SPEED=##### ### RH"; #OUT.FILE, TIME;
VELOCITY(TIME)

EDI$="&

ED2$ = - $$, ###. ##

PRINT USING EDI$+ED2$+EDI$+ED2$;#17, TRANS.NO~
"PRINCIPAL: ",PRIN, "INTEREST: -,INTR

PRINT USING- &";#PRINTER. FILE;- - REM BLANK LINE
PRINT USING -/2345-;#WORK.FILE,REL.RECNO;SCRT. KEY$
IN$ = -X

WHILE IN$< >

INPUT "ENTER DATA";LINE IN$
PRINT USING 5....0....5.... 0.3"; #4IN$

88

WEND
CLOSE #TEMP.FILE

The READ LINE statement allows a file to be accessed as though there was
one field per record. Any commas or quotes will be read as part of the data. Only
a carriage return and line feed will be treated as the delimiter. In effect there is no
field structure in a file accessed with the READ LINE.

For example, if the following file exists:

- field one ", - two 3 four-crlf
14 five", "six -crlf

and the following statements are executed

READ #file.n0%; LINE string$
PRINT string$

the data printed on the console would be
“field one","two","3 four"
This should be compared with the following statements

READ # file.no%; string$
PRINT string$

which would output:
field one

All quotation marks and commas are considered part of the data, but the data
does not include either the carriage return or the line feed.

12. Compiler Directives

89

12.1 DRECTIVE FORMAT

Directives are used to control the action of the compiler. Except for the END
statement, all directives begin with a percent sign. The percent sign must be in
column one. There may not be a line number preceding the percent sign.

If characters on the same line following the directive are not a part of the
directive, they are ignored by the compiler.

12.2 LISTING CONTROL DIRECTIVES

%LIST

%NOLIST

%PAGE <constant>

%EJECT

The %LIST and %NOLIST directives allow listing only selected portions of a
program while it is being compiled. The listing control directives may be placed
anywhere in a source program and may be used as many times as desired.

%LIST sets toggle B (chapter 13) on while %NOLIST resetgleoB. In
addition, output to the disk and printer is controlled by the %LIST and %NOLIST
directives.

The %PAGE directive sets the length of a page output to the printer. The
constant must be an unsigned integer. If it is negative or zero, an error occurs.
Initially the page length is set at 64.

As many %PAGE directives as desired may appear in a program. An error
occurs if no constant is present.

90

The %EJECT directive positions the listings direcied to the piinter and the
disk to the top of the next page. This is performed by outputtiing a formfeed
charader.

%INCLUDE <f ilename>

The %INCLUDE directive caugs the compiler to compile the file, specified in
the include stagment, into the urce immediately following the %INCLUDE
directive. The file name may contain adrive refererte, and must be of type BAS.
Included staements will be indicatal in listings with an equa sign (=) following
the CBASIC assigned statement number Includes may be nested six deep, but
they may not include themselves. For example:

%INCLUDE b:r eadin

will includethe file READIN.BAS from drive B.

Since the filesincorporaed with %I NCLUDE directives & of type BAS they
may be compiled separatly. It is easier to debug large progams if they are
composedof small, indvidually tested, rotines.

The %INCLUDE directive allows the progammer to buil a library of
common routines. This reduces programming time. System standards, sch as /0
port assgnments, can be put in includedroutines. If the programs ae moved from
one system to andher, the include mwutine is changed, ardthe programs
recompiled

Commonly usal proceduressuch & seardies, validation routines or input
routines, are @ndidatesfor include files.If many progams in a system acass the
same file, all file acaess comnands, such asREAD, PRINT, or OPEN can be set
up as separat include files. If the file definition need to be changd, it can be
macde in one common file instead of severad application programs. It is
patticularly valuable to codethese outines @ multiple line functions.

It shoud be noted th&a programsegment may compile without errors when
compiled separadly, but when combined with other routines conpiler errors may
occur. Theseerrors should be mdictable and will usually result from using the
same line number in more than one module.

91

12.4 %CHAIN DIRECTIVE

%CHAIN <constant>, <constant>, <contstant>, <constant>

The %CHAIN directive is used to set the size of the main program's constant,
code, data, and variable areahisTis required when chang to insure that a
program chained wilhot overwrite a portion of the data area being passed by the
previous program. The compiléorces each of the four areas to be at least as
large as the respective constant in the %CHAIN directive.

Each constant must be an unsigned positive integer. The first constant is the
size of the area reserved for real constants. The second constant is the size of the
code area. The third constant is the area used to store value from data statements.
The final constant is the size of the area used to store variables.

The constants may be expressed as hexadecimal numbers by appending the
letter H to the number. Ifthe areato be reserved is greater than 32,767 the
constant must be written as a hexadecimal number.

The values to use in the %CHAIN directive are determined by compiling each
of the programs to be chained together and using the largest value of each area.
The compiler lists the size of each area at the end of a compilation. For instance,
if three programs are to be chained and the CODE SIZE for the programs are 789,
1578, and 4917 bytes, the sad constant in the %CHAIN directive would be
4917.

The %CHAIN directive is only required in the main or first program executed.
For more information refer to the discussion on the CHAIN statement.

12.5 ENDSTATEMENT

< line number> END
An END statement indicates the end of the source program. It is optional and,

If present, it terminates reading of the source program. Any statements following
the END statement are ignored.

92

An END statement may not begn with a perent sign. It need not begin in
column one, bu it must bethe first staementon theline.

A branchto an END statement is equivalent to executing a STOP statement.
Examples:

500 END
END

13. Operationd Considerations

13.1SYSTEM REQUIREMENTS

CBASIC operats with any CP/M basel floppy dsk system having at least
24K bytes of memar. In order to make the best use of the power and flexibility
of CBASIC, adwlfloppy disk system and & least 48K of memay is
recommended. If CBASIC is executed n a g/stem smaller than 24K a CP/M
LOAD ERROR may occur.

CBASIC will operate with CP/M version 2and MP/M systems. A special

configuration of the runtime padkage is available to take full advantage of the
advanced featuesof CP/M version 2 and MP/M.

13.2 CBASICCOMPILE -TIME TOGGLES

Compiler toggles are a sesof switches that can be set wdn compiling a
program. The toggles are s& by typing a ddlar-sign ($) followed by the letter
desigations of the desirel toggdes, startirg one space or mag after the program
name. Togglesnay only be sefor the compiler.

Examplesof the use d compiler toggles are

CBAS2 ACCOUNT3 $BGF

B:CBAS2 ACOMPARE $GEC

93

CBAS2PAYROLL $B
CBAS2 BNALIDATE $E

Togde B suppressesthe listing of the progam on the console during
compilation.

If an error is detectedthe errar mesage is printed even if toggle B is set.
Togde B does nosffect listing totheprinter (togde F)or disk file (ibggle G).

Initially togde B is off.

Togde C supresseghe gereration of an INT file. Since the first compilation
of alarge program is likely to have errors, ths togde will rovide an initial syntax
checkwithout he overhead of writing the intermediate file.

Togde Cis initially off.

Togde D suppressesandation of lowe ca® letters to upper casefFor
example, if toggle D is on, 'AMOUNT" will not refe to the same variable as
‘amount'.

If togde D is set, dlkeywords must becapitalized.
Initially togdle D is df.

Togde Eis useful when debuggig programns. If this togge is set it will causethe
runtime program to accompany any error messages with the CBASIC line number
in which the error occurred. Togde E will increa® the size of theresultant INT
file, andtherefore, should na be ugd with debugged progams. Toggle E must be
set in ordefor the TRACE option (sction 13.4) to kin effect.

Initially togde E is dff.

Togde F will causethe compiled outpu listing to beprinted on the system list
device, inaddition to the system console. This provides a hardcopy of the
compiled progam. Even if the B togde is set,a complete listing is provided if
togde F is set.Eadt page of the listing has a title printed and the ages are
numbered.Formfeeds ag used toadvance tothe bp of a pege.

94

Initially togde F is off.

Togde Gwill causethe compiled output listing tobewrittento a diskfile. The
file containing the compiled listing has the same name as the @urce file, and a
type of LST. If togdes G ad B are specified, oglerrors will be output atthe
console but a dsk file of the complete pogram will be praluced.

Normally the disk listing will be placed on the same drive as the souce file.
The operatomay select anather drive by specifying the desired drive, enclosed in
parenthesis, following the G t@ge as sbwn below:

CBAS2 BTAX $G(A))

Initially togdle G is df.

13.3COMPILER OUTPUT

CBASIC does nat require that each staement of a program be assgned a
staement number. The only staements that must be given a satenent numtler are
those hat have control passdto them by the GOTO, GOSUB, ON orlF
staements. During compilation, CBASIC assigs a seqiential number to each
line independent of the staement number which may be wsed bythe programmer.
The CBASIC asgnedline numbe is the ae referred to in error mesages (if
togde E is spedied) and when using the TRACE option. The line nunber takes
one of three forms:

n:orn*orn=

where n is the numbe assigned.In most casea the colon () will follow the
number. The equal sign (=) is printed when the staement has seen real in from a
disk file witha %INCLUDE directive. Theasterisk (*) is used when the statement
contains a use assgned stéement number thatis nd referenced anywherein the
program.

For example:
1. print "start"

2: name$ = "FRBD"
3: 10 gosub 40 rem print name

95

4: stop

5!

6: %include printrtn rem rtn to print
7:40 rem ----- rtn to print —--------
8: print name$

9: retun

10: END

Inthe example, staement 3 has an asteisk because the '10' is not referenced at
ary place in the progam. This can be useful during debugging or to help
understand large progams written in other dialects of BASIC. When Adl
unreferenced line numbes are removed, it is easer to see the logic of the
program.

When an error is detected the compiler prints a two letter error code the line

number the error occurred in and the position of the error relative to the begnning of
the source line. The position assumes tab dharacters have been expanded.

13.4 TRACE

CRUNZ2 <ilename>[TRACE [<InI> [,<In2>]

The TRACE option is used for run-time debugging. t will print the line
number of each staemert asit is executed. The output is directe to the console
even when a LPRINTER staement is in effect. The line numberprinted is the
number assgned b eadch statement by the compiler. Consder the following
program:

AMOUNT =12.13
TIME = 45.0
PRINT TIME* AMOUNT
Inthe éove program was ompiled using the foll owing command:
CBAS2 TESTS$E

and then executed with the trace option

CRUNZ2 TEST TRACE 1,3

96

the foll owing ouput would be poduced

AT LINE 0001
AT LINE 0002
AT LINE 0003
545.85

The TRACE option functions only if the toggle E has beenset on during
compilation of the program

The first number (<Inl>) is used to spefty the line numler where the trace is
to begn. The seond number(<In2>) specifies where the trace is to stop. If no
line rumbers ae included in the command, the entire program is tracel; if only
the first line nunber is present, tracing startsat this line numberand continuesfor
all line numbersgreaterthan the first number <In | >.

13.5CR0OSS REFERENCE L ISTER

In addition to CBAS2.COM and CRUN2.COMa utility program XREFCOM
Is supplied with version 2 of CBASIC. XREF produces a disk fil e which contains
an alphabetzed list of all identifi ers used ina CBASIC progam. The usage of the
identifier (function, paraneter, or global) isprovided as well asalist of eachline
in which that identifier is used. The listing places al functions first with
parameters ad local variables assaated with a function immediately following
the function. The functions are in alphabetical order. The otput isnomally
directal to the same disk asthe sourcefile. The file crested hasthe same nane as
the CBASIC source fieand isof type XRF. The standal outpu is 132 coumns
wide. The following command isused 6 invoke XREF

XREF <filename> [disk ref] [$<togdesy ['<title>]

The filename must be a&CBASIC sourcgrogram with a filetype of
BAS. Thedisk referenceis optional and spediesthe disk onwhich to
placethe coss referencefile. If thediskreferene is not present, the
listing is placed on the samedrive asthe sourcelt is specifed as A:,
B: etc.For example:

XREF PAYROLL A:

97

will put the crossreference listing for PAYROLL.BAS on drive A. At least one
blank must separate the filename ard the disk reference

Togdesmay be wsedto alter the standard output d XREF. At leastone blank
must separatéhe dbllar sign from the portion of the commard line to the left. The
togdes bllow the dallar sign. They may be either lower or upper cas letters. A,
B, C, D,E, F, and G arevalid togges Any other charactes following the dllar
sign, andbefore thetitle field or end of the mmmand line, are ignored.

The A toggle cause alisting to be output to the list device as well as b a disk
file.

The B toggle supressesutput to the disk. If only the B togglke is speified, no
output is prodwced.

The C toggle suppresses the outputto the disk and pen-nitoutput to the list
device.The C t@gde hasthe same effect as spegying both the A and B toggles.

The D togglecausethe output to be poduced aghty columns wide instead of
using 132 olumns.

The E togde pioduces ouput with only the identifiers and their usage. No line
numbers ae printed. The E toggle might beused to hép document a program.
The progammer would wiite the use of each identifier onthe listing provided by
XREF. Also the file creaed by XREF coud be edted and made nto a large
remark with comments periining to each variade name By induding this file
with the sour@ program,additional documentation would be provided.

The F togde allows the use to change the defaut page lengh of 60 lines per
page. Thedesired numberof lines per page is enclosed in parenthesis and mug
follow the F. Theremay be ro imbeddel blanks.Formfeed characters are used to
postion the printer and arelaoplaceal in disk files.

The G toggle sppresss printing of the heading linesand suppresse all
formfeeds. Tis toggk might be used when building adisk file which will then be
printedby auser utility.

The H toggle sippresses translaion of lower case letters to upper caserhis
allows using XREF with programs compiled with compiler togde D.

98

The following command: XREF GL $CD

produces a cross reference listing on the list device. The listing is 80 columns
wide.

XREF ACCT$REC B: $EAH40)
creates a disk file on drive B ard a listing on the list device of all the identifiers
ard their usage. No line numbers wold be provided. Rges are Imited to 40
lines.

Theoptional title field must be the last field inthe command line. All
charadersfollowing the first apostophe on the commard line up to the second
apostrehe, or until the end of the command line, becanme the title. The title is
printed on the heading line of each pge of output. The title is truncated to thirty

charadersif the listing is 132 columns wide and to terty chaecters if the D
togde is spedfied.

The following command demonstrateshe useof the title field:

XREF NAMESB: $AD 'verson2: 1 AUG 78

Appendix A
COMPILER ERRORS

NO SOURCE FILE: <filename>.BAS

The compiler coutl not locae a source file on the specfied disk.This file was
used in eitherthe CBAS 2command or a%INCLUDE directive.

OUT OF DISK SPACE

The compiler hasrun out of disk space wihe attempting to write either the
INT file or the LST file.

99

OUT OF DIRECTORY SPACE

The compiler hasrun out of directory entries while attempting to creag or
extend either the INT file or the LST file.

DISK ERROR
A disk effor occurred while trying to reador write to adisk file. This message

may vary slightly in form depending on the operting system being used Sees
your CP/M documentation for the exact meaning of this messge.

PROGRAM CONTAINS nUNMATCHED FOR STATEMENT(S)

There are n FOR staements for which a NEXT could not be found.
PROGRAM CONTAINS n UNMATCHED WHILE STATE MENT(S)

There ae n WHILE statemens for whicha WEND cold not befound.

PROGRAM CONTAINS UNMATCHED DEF STATEMENT

A multiple line function wasnaot terminatedwith a FEND statement This may
causeother erorsinthe program.

WARNING INVALID CHARACTER IGNORED

Thepreviousline contained aninvalid character. The character is ignored by
the compiler. A question mark is printed nits place.

INCLUDE NESTING TOO DEEP NEAR LINE

Aninclude staément near line n in the source progam exceed the maximum
level of neding of include files.

100

Other errors detected during compilation cause a 2 letter error code to be
printed with the line number and position of the error. The error message
normally follows the line in which the error occurred.

The possible error codes are:

BF

A branch nto a multiple line function from outside the function was
attempted.

BN
An invalid numeric constant was encountered.

CF
Common statemembust be in the first line.

Cl

An invalid file name was detected in a %INCLUDE directive. The file nhame
may not contain a ?, *, or: (except as part of a disk reference where a colon may
be the second character of the name).

CS

A COMMON statement, which was not the first statement in a program, was
detected. Only a compiler directive such as %CHAIN, a REMARK statement, or
blank lines may proceed a COMMON statement.

CcVv

An improper defition of a subscripted variable in a common statement.
Possibly the subscript count is not a constant or there is more than one constant.
Only one constant may appear in parenthesis. It specifies the number of subscripts
in the array being defined.

101

DL

The same line number was used on two different lines. Other compiler errors
may cause a DL error message to be printed even if duplicate line numbers do not
exist. Errors such as not deifig functions prior to use and, in some cases, if the
DIM statement does not proceedr&ferences to an array, a DL error wébkult.

DP

A variable dimensioned by a DIM statement was fresty defined. It either
appears in another DIM statement or was used as a simple variable.

FA

A function name appears on the left side of an assignment statement but is not
within that function. In other wadls, the only function name that may appear to
the left of an equal sign is the name of the function currently being compiled.

FD
The same function name is used in a second DEF statement.

FE

A mixed mode expression exists in a FOR statement which the compiler can
not correct. Probably the expression following the TO is of a different type than
the index.

FI

An expression which is a subscripted numeric variable is being used as a FOR
loop index.

FN
A function reference contains an incorrect number of parameters.

FP

A function reference parametgpe does not match the parameter type used in
the function's DEF statement.

102

FU

A function has been referenced before it has been defined, or tke function was
never defined.

IE

An expression used immediately following an IF evaluatesto type string. Only
type rumeric is pemitted.

IF

A variable wsed ina FILE statement is of type numeic where
type strirgis required.

IP

An inputprompt string was not sirrounded by quotes. Aubscripted varigble
was rdéerencedbefare it was dimensioned.

IT

An invalid compiler directive was encountered. A parameter required by the
directive may beout of range a missing. Orthe directive may be misspelled.

LU
A variable defined as aarray in a DEF staement is usal without subscripts.

MC

The same variable is defined more than oncein a COMMON statement. Each
variable may only appeain one COMMON statement.

MF

An expression evaluates to type string when anexpresson of type numec is
required.

103

MM

Aninvalid mixed moe has been detected. Mosikely variabes of type string
and type numeric are combinedin the same expresson.

NIS
A numeric expression was used where a string expression is required.

ND

A FEND staement wasencounteredwvithout acorresponding DEF staement.
This eror could ethe result of animprope DEF staement.

NI

A variable referenced by a NEXT statement does not match the variable
referencedby the as®ciated FOR statement.

NU
A NEXT statement occurs without an asscciated FOR statement.

OF

A branch out of a multiple line function from inside he function was
attempted.

0]0)

More than 40 QN staements were usad in the progam CBASIC has an
arbitrary limit of 40 ON statemerts in a single program. Natify Digital Research
If this limit causes problems.

PM

A DEF staement appearedvithin a mutiple line function. Functions may not
be nested.

104

RF
multiple line furction may notcall itself.

SD

secondSAVEMEM statement was encountered.A program may have only
one SAVEMEM staement.

SE

The source lir containad a syntax error This means that a statement is not
propely formed or a keyword is misspelled.

SF

A SAVEMEM staement uses arexpressia of type numeric to specifythe file
to be loaded.The expresion must be a string. Rsibly the quaation marks were
left off a String constart.

SN

A subscipted variable contains a incorred number of subscipts, or a
variable in a DIM stdement has ben usel previously with a different nmber of
dimensions.

SO

The staément is too complex to compile. It shoud be simplified. Consider
making the expresion into two @ more expressons. ReasesendDigital Research
a opy of the source stement.

TO

Symbol table overflow hasoccurred. This mears that the program istoo large
for the g/stem being used. The progam must be snplified or the amount of
available memory increased.Smaler variable names reduces the amount of
symbol table space used. Digital Research is interested in beinginformed if
programsgenerate thiserror.

105

UL

line numberthat does not ast has ben referenced.
string has leenterminded by acarriagereturn raher than by quotes.

VO

Variable names are too long for one staement. This shodd not namally
ocaur! If it does please send acopy of the source st@emert to Digital Resegch.
Reducing the length of variable names and reducing the complexity of the
expresson within the staement may eliminate the error.

WE
The epressionimmediately following aWHILE statement is notnumeric.

WN

WHILE stadements ae nestelto a deph greate than 12. BASIC ha an
arbitrary limit of 12 for nesting of WHIL E satements.

WU
A WEND staement occuried without an as®ciated WHIL E statement.

Appendix B

RUN-TIM E ERRORS

NO INTERMEDIAT E FILE

A file name wasnat specifiedwith the CRUN2command, @ no file of type
INT with the specified fil e name wasfoundonthe disk specified.

IMPROPER INPUT - REENTER

This messge occurs when the fields entered from the console do nat match
the fields spedied in the INPUT statement This canoccur when field types do

106

not matd or the number of fidds ertered isdifferent from the number & fields
speciied Following this messege all values requed by theinput statement must
be reentered.

Other errors detectedausa 2 letter codéo be printed. If the coce is preceded
by the word WARNING, execution continues. If the cock is precededy the word
ERROR, execution terminates.|f an error occurs with a code onsisting of an
astersk followed by a letter such as *R' the rurtime paclkage has failed. Please
natify Digital Reseath of the circumstance unde whichthe err@ occurred.

Thepaossible codes are listed below:

WARNING CODES

DZ

A numberwas divided by zero. Theresut is set b the largeg valid CBASIC
number.

FL

A field length greagr than 255 bytes was encountezd during a READ LINE.
The first 255 charaders d the record ae retained; the other characers are
ignored.

LN

The argument given in the LOG function was zero or negative. The value of
the agument is returned.

NE

A negative numbe was specfied beforethe raise © a power operato(). The
absolte value of the pamametr is usedin the caculation. When using red
variables a postive number may be raised to a negtive power, but a negative
number may not beraised to a power.

107

OF

A calculation using real variables prodiwced an overflow. Theresut is set to
the larged valid CBASIC red number. Overflow is nd detectedwith integer
anthmetic.

SQ
A negative numbe was specfied in the SQR nction. The alsolute value is
used.

ERROR CODES

AC
The sting argument in an ASC functionevaluated to a nulstring.

AE

An atempt was made to acess a array element bdore the arrgy DIM
statement had been executed.

BN

The value following the BUFF option in an OPEN or CREATE staement is
lessthan 1 or greagér than 52.

CC

A chained program's code ama is larger than the main program's code area.
Usea %CHAIN directive in the main progam to adjustthe sze of the coa@ area.

CD

A chained program's daa areais larger than the main progam's dat area.Use
a % CHAINdirective in the main program to agustthe size of the data area.

108

CE

The file being closed could not be found in the directotys Tauld occur if
the file name had been changed with the RENAME function.

CF

A chained program's constant area is larger than the main program’s constant
area. Use a %CHAIN directive in the main program to adjust the size of the
constant area.

CP

A chained program's variable storage area is larger than the main program's
variable storage area. Use a WHAIN directive in the main program to adjust the
size of the variable storage area.

CS

A chained program reserved a different amount of memory with a SAVEMEM
statement than the main program.

CuU
A CLOSE statement specified a file number that was not active.

DF

An OPEN or CREATE was specified with a file number that was already
active.

DU
A DELETE statement specified a file number that was not active.

DW

An error occurred while writing to a file for which no IF END Statement has
been executed. This may occur when either the directory or the diglk is

109

EF

A read pasthe end of file occuried on afile for which no IF END statement
hadbeen executed.

ER

An atempt was made ¢ write a reord of length greater than he maximum

record size gpedfied in the OPEN, CREATE or FILE gatement for thisfile
number.

FR
An attempt was made to rerame a file to an existing file name.

FU
An attempt was made to readr writeto afile that wasnat active.

IF

A file name wasinvalid. Most likely aninvalid character was faud in the file
name. A coon may never appear imbeddein the name properQuedion marks

and astasksmay only appeain ambiguous fil e names.This error will also result
if the fil e name was a nlli string.

IR
A recordnumter of zem was specified.

v

An attempt was made toexecue an INT file created by a version 1 compiler.
To use CRUN aprogran must be reompled using the verson 2compiler,

CBASZ2. This error will also rault from attempting to execute an INT file which
IS empty.

IX

A FEND staement was encounteredorior to exeauting a RETURN statement.
All multiple line functions mustexit with aRETURN statemert.

110

Anerror occurred whle creating or extending a file beausethe disk directory
was ful.

MP
The thrd paametea in a MATCH functionwas zeraoor negative.

NC

Source progam contains a red congant outsice the range of CBASIC real
numbers.

NF

The file numberspecifiedwas less than 1 or greater than 20, a a file staement
was e&ecutedwhen 20 files were already active.

NM
There was insufficient memory to load the program.

NN

An atempt was mack to print a number with a PRINT USING statement but
there was not aumeric datfield inthe USING string.

NS

An attempt was madeto print a string with a PRINT USING statement but
there was not a shgfield inthe USING string.

OD

A READ staement was executedbut there are no DATA statemenss in the
programor all daaitemsin all DATA statemernts have already been read.

111

OE

An attempt was made ® OPEN a fil e tha didn't exist and for which no
END statement had been executed prior to exeauting the OPEN statement.

Ol

The expresson specifie in an ON ... GOSUB or an ON... GOTO statement
evaluated to a numberless than | or greater than the numberof line numbers
contained n the staement.

ONI

Theprogram ran out of memay during execution. S pace may be conserved by
closing files when they are ro longer neeed and by sdting grings © a null string
when they are no longer required. Also by not usng DATA statements, but rather
reading the constant mformation from a file, space wil be saved. Large arrays
may bedimensionedwith smaller sub<ripts when thearray is nolonger required.

QE
An atempt wasmade © PRINT a string contining a quatation mark to a file.
Quatation markscan only bewritten to files when using the PRINT USING
option of the PRINT statemen.

RB

Randm accesswas attemptd to a file ectivated with the BUFF option
specifying mordhan one buffer.

RE
An attempt was made to readast the end of aecord in afixed file.

RF

A recursive function call was attempted rec ursion is not suppartedin
CBASIC.

112

RG
A RETURN ocurred for which there was no GGUB.

RU
A random read orprint wasattemptedto other than a fixed file.

SB

An array subscipt was used which exceead the bourdaries for which the
array was deined.

SL
A concatenation opelation resulted in astring of more han 255 bytes.

SO

The file specifiedin a SAVEMEM staement coutl not be locatedon the
referenced disk. The expresion specifying the file name must include the typeif
one is presentA typeof COM is nat forced.

SS

The second pameter of a MID$ function was zero b negative, or the last
pameterof a LEFTS$, RIGHTS$, or MID$ was egdive.

TL

A TAB staement contained a paraster less than 1 or greate than the current
line width.

UN

A PRINT USING staement was executedwith a nul edit string or an escape
char (\) was he last daracterin an edit string.

113

WR

An attempt was made to write to a file after it had been read, but before it had
been read to the end of the file.

Appendix C

KEY WORDS
ABS AND AS ASC ATN
BUFF CALL CHAIN CHR$ CLOSE
COMMANDS$ COMMON CONCHAR% CONSOLE CONSTAT%
COS CREATE DATA DEF DELETE
DIM ELSE END EQ EXP
FEND FILE FLOAT FOR FRE
GE GO GOSUB GOTO GT
IF INITIALIZE INP INPUT INT
INT% LE LEFTS$ LEN LET
LINE LOG LPRINTER LT MATCH
MID$ NE NEXT NOT ON
OPEN OR ouT PEEK POKE
POS PRIN RANDOMIZE READ RECL
RECS REM REMARK RENAME RESTORE
RETURN RIGHTS$ RND SADD SAVEMEM
SGN SIN SIZE SOR STEP
STOP STR$ SUB TAB TAN
THEN TO UCASE$ USING VA
VARPTR WEND WHILE WIDTH XOR

114

TABLE OF CONTENTS

L. B A .. e e a—a——— 2
i N0 =10 51U 04 1 (0] N RO 2
1.2 FOR CBASIC | PROGRAMMERS. ...ttt e ee e et e et e e e e e aeamenanenn 3
1.3PROGRAM IDENTIFICATION NUMBERS. .. .uitei et ee e e e eneaeneens 3

2. GENERAL INFORMATIO N oo ettt ee e e ean 4
P Y I B = Y= LS TP 4
A \\ [0 N [P 5
2.3STATEMEN NUMBERScitieiett ettt ettt aee e e e e e e e e e e e e enenemreeeaeaeanenanenannn 6
2.4 REMSTATEMEN . ouiniiiee e eee e e et eeeeaeaeeeneaeaeeneneneneneneneeeeneneneaidd
2.5 EXECUTING CBASIC FROGRAM ..ueie et e amame e 7

3. FORMING EXP RESSIONS ... et e e e e 9
B ST RINGS . .ot e e ————— 10
B2 N UMBERS. . .t ete ettt ettt et ae e e e et e e e e e et e e e e e e —n—————— .10
IR 1] = N 1= 1= = ISP 12
3.4V ARIABLESAND SUBSCRIPTED VARIABLES. ...cueie ittt aeaeaeaeens 12
R I = = =S S (0] N ST 15
3.0 ASSIGNMENT ST AT EMENT S .ttt ettt e et e e eeamea e e e e aeaeeeeeeernen e saeamrnenenenenn 18

4, CONTROL STATEMENT S .o et e e e an 18
4.1 GO RIB ST ATEMENT ettt ettt et e et e e e e e e e e e e e e e ee e e aeeeaeaeenenenanns 18
4.2 RETURNS ST ATEMENT ..ttt ettt ettt et e ee e e e e e e e e e e e e e e et e e amame e e e e e eenenens 19
N C1O B KO S N = Y = L PP 19
i e Ny I =Y = N L PP 20
F R e L Y N o =Y 1 = P 22
4.6 WEND S STATEMEN ..oniiie ittt et e e e eme e e e e e e e enans 22
T FOR ST ATEMENT ..ttt et e e ettt et e e e e e e e e eeama e e e e e e ee e anenennn 23
B N E X T ST AT EMENT ettt ettt et e e e e et et e et e e e e e e e e aman e e e e eaeaeae e some 25
i N O N Sy N = Y[PP 26
. L0 ST O ST AT EMENT . uetetee ettt ettt e e e e e e e e e e e e e e e e enrmea e e e ee e rnenenenans 27
4.11 RANDOMIZE ST ATEMENT . ettt ettt e e e e e e e et e e e e enenenn 28
4. 12 CHAIN ST A TEMENT ettt et e e e et e e e e e e et e e e aeamen e e e enenenens 28
4,13 COMMON ST ATEMENT -+ttt ettt et et et e e e e e e e e e et e e a e e e emame e e en e e en e 29

5. INPUT/OUTPUT STATEMENTSAND FUNCTIONS ... 31
5.1 GENERAL INFORMATION .. e ettt ettt et et ee e ee e e e e e e e e e aeee e a e e e e e ameme e e e e e e eneme 31
IV o = LA IS Y N = = L T 31
D B L P RINT ER ST ATEMENT ettt ettt ettt et et e e e e e e e e eneaenmm 32

D4 CONSOLE ST ATEMENT . .ttt e e e et e e e e e e ame e eaeaeaeaeamn 33

5.5 POSPRE-DEFINED FUNCTION . euitiiitiiiteie e eevee et e e e s ee s eas e emsme e eneen 34
5.6 TAB PRE-DEFINED FUNCTION ..uuiuitiiiitiiiieeteeeteiaemeaseeasesssensanenssnenssnsnensensn 34
.7 READ ST ATEMENT aititittit ettt et e e eamr et e e et e s e e s e ea s e ea s e amreasanensensnsensnsums 35
TR I B AN I NS Y N I == N 36
5.0 RESTORE STATEMENT .tuttititet et eae e eaeeire e sa e s s easaeasensss e en e ssrenssrenem 36
.10 INPU T ST ATEMENT 1ttiuiteitit ittt et ea s eneera e ea e eaeasea s ea s essrnsnrasensasessrensans 37
TR R RO 1O Iy 17y == 39
5.12 INPPRE-DEFINED FUNCTION ...ucuitiiiitiieiiit et emeaseeaseesseneaeensanenssnsnensensn 39
5.13 CONSTATYPRE-DEFINED FUNCTION ...cuitinieinieeneiese e imneeeaeensasenseens s d 40
5.14 CONCGHARY PRE-DEFINED FUNCTION ...uuiuitiiitiie e ee e e e e s ea e 40
6. MACHINE LANGUAGE LINKAGE STAT EMENTS AND FUNCTION S..41
6.1 PHEK PREDEFINED FUNCTION ... cuitiiit it ieete et emsaseeasensssenssnenssnssssnsnensensn 41
B.2 P OKEST ATEMENT uitttititte ittt et eea e rmsea e easeass e sasea s saseamreassensenenrensnssumd 41
CIRC I 07 N I Sy 7y =/ = 42
0.4 SAVEMEM STATEMENT .ottt ee e eme e ee s eas s ea s e ea s e s s emesaseneaenm 42
(SRR LS =0 i N 1 =] = 2 7 |

7.2 STRING FUN CT ION S .ottt ettt ettt ettt e eee e e et e e e e e e e e e e e e e enrm e e e e e e enrneneen e o s 49
ASTAD) .ottt ettt ettt ettt ettt ettt r ettt 49
CHREIYD) et e ettt et et e e et e et et et e e et e e et e e e et et e e et ee et e e et et e e et en s en e 49
LEFTHASB 1 D6) vt eee ettt ettt et e e et et e et e e e e e et eeee e ee e e et e s st et ee e e et ee et ena e e et s s e 50
LENGAD) .ottt ettt et e ettt et et ettt ettt ettt ettt et et et ettt ettt en e 50
UCASESBAD) ..ottt ettt ettt e ettt et ettt ettt 51
IMATCH (AB,BB,196).... ettt ettt et e e e et e e et et et e e ettt s e et e e s e et et s e e et en s e 51
IVHIDB(AB, 196,J96) ...ttt e et e e et e e et e et et et et e e e e e e e et ee et e e et en st eeeeean 53
RIGHTB(AB,19) ..ottt eee et e et et e et e e e et et e e et ee et ee e et e et et e eeeee e e e seeten s e st eeenenee et eeen e 53
STREX) ettt ettt e e et e ettt et ettt ettt et ettt et e ettt e et e ettt 53
VAL(AD) oottt ettt ee ettt ettt ettt ettt e ettt 54
COMMANDS ... ee et e e et e e e e e e et e s et e e ee e e e et e e e s e e et e e e s et et e s eme e e s e s es e e es e e es e e es et e s e e ees e e s eree o 54
SADD(AD) ..ottt ettt ettt ettt ettt e ettt ettt ettt ee et 55
VARPTR (SVAITADIES) ...ceeiiiiie ittt ettt e e s sttt e e s s e b et bbb et e e e e sabb bt e e e e e enebeemeen 55

SIZEAD) .ottt ettt ettt ettt ettt et ettt e ettt ee e e 56

7.3DISK FUNCTIONS......cutiiiiiiiiiiiiiiiii it 57
RENAME(AB,BE) ...ttt eee et eeeee et e et evee et et et e et ee et e e e e eree e st ee et e e e e e et en e s seeseeeeeeeeenn 57

8. USER DEFINED FUNCTIONS.58
B L FUNCTION NAMES .. ee ettt e e et et e e et e e e e e e e am e e e e e e e e eneneamm 58
B.2 FUNCTION DEFINITIONS . ettt ettt ettt e e e e e e e e e e e e e eeanrmeaeaeneaeanenann 61
B.3FUNCTION REFERBENCES. ettt ettt e et e e e e e e e e e e e e envmeaeee e aeanenenn 62
9. FORMATTE D PRINTIN G .o ettt aeaee e e m 63
L I 1 =N = TP .63
9.2 STRING CHARACTER FIELD .. vttt e et e e e e e e 64
O.3 HXED LENGTH STRING FIELDS ... neieeeee ettt eaeaeenens .65
9.4V ARIABLE LENGTH STRING FIELDS. ... e ettt et et 65
O NUMERIC DAT A FIELD S .. eiiieee ettt e eveee e e e e enenena 68

O .0 ESCAPE CHARA CTERS. ..ttt ettt ettt et et e et e e e e e e e e e ettt e e emema e e e e e enenenens 68
O T ot | I S R 69
10.1HOW CP/MMAINTAINS FILES. ..ottt e et et e e e e emnam 69
J0.2 O P EINST ATEMENT ..ttt ettt et e e et e e e e e e e e e e e e e e anenans 69
10.3 QL O S E ST ATEMENT ..ttt ettt et e e e e e e eermeee e ee e ananenennn 70
LO. 0 F END ST ATEMENT . neitet ettt ettt et e e e e e e ee e e eermeaeaeae e enenenannn 72
KO A S I Y N =Y = N L PR 74
10.8 READ STATEMEN ittt ettt e e e et e e e e e e e e e e e e e e e e ans 74
F0.9 P RINT S AT EMENT ettt ittt ettt e e et e e e e e e e e e e eeraea s e reeeeneeanenenenennn 76
10.20 APPENDING TO FILE o uiuiiiiiei et et et e e e e e e e enea s 78
10.11RE-INITIALIZING THE DISK SYSTEM ..uoniniieiei i eeaeaeaeneaean 80
11. PROGRAMMING WITH FILE S 80
I I = I 7 N o B 1 R 80
L11.2 HLE ORGANIZATION ..ttt et eeee et eeaee e e ae e e e ae e e eeee s e ra s e reeneeeeanenanenennn 81
11.3STREAM ORGANIZATION .. ettt e e e e e aeaee e et e e e e e e e e e ae e e e eaeaean e 81
11.4 FEXED ORGANIZATION 1 .ueueetee ettt e e aee e et et e e e e e e e e e e eneaeaeaens 82
11.5 HLE ACCESSING IMETHODS. . ..ueueneee et ettt eeaee e et e e e e e e e e enenens 84
RIS (0 8 = N AN o 1 = S T 84

i A TN N 510 Y Y ANl =i TP 87

L B P ECIAL FEATURES. ...ttt ettt et e e et e e e e e et e e e e e e e am e e e e e e e e e e 88
12. COMPILER DIREC TIVE S....cooe e e ee e e 89
L2, L DI RECTIVE FORM AT ettt ettt et et e e e e e e e e e e eaeaes 90
12.2 LISTING CONTROL DIRECTIVES. .. ettt e e e e ae e ee e e e ee e emamnaam 90
o) I 90

BN (O] PO PP PO PPPPPPPP PP 90

1 A €] o701 7= o TR .90
= =1 E SRR 90
N[O MU 5] R {1151 0 T= 10 1 1= PR TUPRRR 91
0 N[O MU B = o N (=T= U [TR 91
12.4 GOCHAIN D IRECTIVE. ..ttt et et e e e m e e e eens 92
L2.5 END ST AT EMENT ..ttt et e e et e et e e e ettt e e e e e e e e ame e e eeeenene e e e 92
13. OPERATIONAL CONSIDERATION S .o 93
13.1SYSTEM REQUIREMENTS. . tuiuituittnetenesinessmesseasssessessssnsssensssrmessesssensm 93
13.2 (BASIC COMPILE-TIME TOGGLES.....uiuteiieeee e eeeeeeeaeeeae e e eeeeeeenenenennn 93
RCRCI 00 Y =N = = O U 1 = U 1 AP 95
BT I = N O PP 96
13.5CROSS REFERBNCE LISTER. .. ceiettt ettt et et e e e e e e e e e e e e e amame e e ananan 97
AP P EIN D X A e e e e e e e e ————— .99
COMPILER ERRORS ettt ettt e e e ettt e e e e e e e e e aeaeees 99
NO SOURCE FILE: <filENAMES.BAS.......eeeeeeeee oo ee et e e e e e e et et e e e e e et eee e et et eeeee e eseneeeesees e 99
(oUW @ = 0113 S =7 N =R 99
(oUW =)= =lon 0] =3 ' 7Y N 100
DT = (=T = SRR 100
PROGRAM CONTAINSN UNMATCHED FOR SATEMENT(S . vveeeeeeeeeeeeeeeeeee et ee o 100
PROGRAM CONTAINS | UNMATGHED DEF STATEMENT ..ot ee e e e 100
WARNING IN\ALID CHARACTER IGNOREDveeteeeeeeeeeeeee oo eeeeeee e et eeee e e et eeee e e e eseeeeseeeeneesseee e 100
INCLUDE NESTING TOO DEEP NEARLINE N ..ottt e e et eeeee e e eeeeee s e e s e eeeeeeeenenensaaees 100
=SS 101
N TSR 101
3 =SOSR 101
L3 FT SRRSO 101
[0TSRSO 101
oY 25O 101
) SRR 102
) =TSSR 102
A ettt ettt ettt ettt e ettt ettt et ettt e et ettt 102
= YRS 102
I ettt ee ettt e ettt ettt e et ettt e ettt e et ee et et e ettt e et et e et et ee e e et r e 102

L oot ee et e ee ettt et ettt e e et et e et e ettt et ettt e e ettt e e e ettt e et et et e e et et e et eeene 102
N ettt et ettt ettt et e ettt e et et e e et et e et et e et et et e et et e e et et e e r et r e 102
=] RS R 102
=SS 103
L ettt ettt et et ee et ettt ettt e ettt et e e et ettt e ettt e ettt et et e et et e et et et et e et et ee e r et 103
=TSSR 103
=TSSR 103

1 TSSOSO 103
L TSR 103
VI ettt ettt ettt ettt e e et e ettt e et et et etee et et et e e et et et et et e e et et e e e et nner e, 103
=SS 103
Y SO 104
TSRS 104
N[XSS 104
N et e e et ee et e ettt et et e e et et e e e et et et ee e e et et et et et et et et et et et e et et et et e et et et et aeene 104
N TSP 104

O oo e e e et ettt et e nmnmn ettt 111
O oo e e e e e et et er a2 m———— ettt 112
Ol e e et e ettt r e ran ettt r e 112
ON L oot e oo e oo e oot e e e s et e ettt e et e et s s et e emeeee et e et e ereeer e 112
QO oot oot oottt et etet ettt ettt et ———— ettt ettt 112
RB et e oo e e et e e eer oot ettt e e e ee ettt e e eren s earemnane s e e s et er et en e 112
RE oo eee oo ee e ettt et e e eer oottt oot e e e er et et or e earemnane s e s et er et ee e 112
RE oo e e e e oottt et e e oot r et e e et e et e s a2 ———— ettt rener s 112
R G oottt ee et e e ettt oottt e oottt ee e e e emamn et e et e et 113
RU oo et ee oo e e et e oo ettt ot e et e et m————— et o1 r et 113
OB et et et oottt e e .113
St et e oot e oot et eee oot e er s emeanemn et e st e e eren 113
S0 e e e e ettt .113
S e e et e et ee oot et enmmennn ettt er e 113
T oot e et ettt oot e e et et eee et e am et et e et et e .113
UN oot ee e ee oo e e et e e e e e et e e et et et e ettt e e et et e e et e nmnmnm et e et e er e 113
MVR oo e e ettt e et e e ettt e e e ee e et e et e rn e et e et e et r et en et 114
YA = = A1 D]) G O TR

A ATL0] =15 S PR

120

121

