0
DIGITAL
RESEARCH"

Concurrent CP/M”™

Operating System

Programmer’s
Reference Guide

COPYRIGHT

Copyright ©1984 by Digital Research Inc. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed, stored in a retrieval systsm, or iransiated into
any languege or computer language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, mamnal or otherwise, without the prior written permission of
Digitsl Resesrch, Post Office Box 579, Pacific Grove, California, 93950,

DISCLAIMER

Digital Research makes no representations or warranties with respect to the eontents hereof
and specifically disclaims any implied warranties of merchantability or fitneas for any par-
ticular purpose. Further, Digital Research reserves the right to revise this publication and
o meke changes from time to time in the content hereof without obligation of Digitel Resagrch
to notify any person of such revision or changes.

TRADEMARKS
CP/M apd CP/M-36 are registered trademarks of Digital Research. ASM-86, Concurrent
CP/M, DDT, DDT-36, MF/M, MP/M-86, and PL/T are trademarks of Digital Research. Intel

and MCS are registered trademarks of Inte] Corporation. ISIS-II is a trademark of Intzl
Comporation. TBM i3 a registered trademark of [nternational Business Machines.

The Concurrent CP/M Operating System Programmer's Reference Guide wes printed in the
United States of America.

First Edition: Januery 1984

Foreword

Concurrent CE/M®™ i3 a multi- or single-user operating system targeted specifically for
the Intel® S8086/8088/80 86 family of microprocessors. [t supports muliple CP/M program-
ming environments each implemented on a virtual console. A different task runs concurrently
in each environment.

This menual describes the invariant programming interface to Concurrent CB/M. [t sup-
ports the applications programmer who must create applications programs that run in the
Concurrent CP/M environment.

Section | offers an overview of the entire operating system.
Section 2 describes the structure of the Concurrent CP/M file system.

Section 3 explains the format, structure, and uses of transient commands in the Concurrent
CP/M environment.

Section 4 explains the creation of transient command files in the Concurrent CP/M envi-
ronment.

Section 5 documents the structure and creation of resident system processes or rerident
commend files permanently installed in the Concurrent CP/M environment.

Section 6 describes all the Concurrent CP/M system calls.
Concurrent CP/M is supported and documented through four manuals:

B The Concurrent CPIM Operating System User's Guide {hereinafter cited as Concurrent
CPIM User’s Guide) documents the user’s interface to Cancurrent CP/M, explaining
the various features used to execute applications programs and Digital Research utility
pragrams.

B The Corcurrent CPIM Operating System Programmer's Reference Guide (hereinafter
cited as Concurrent CPIM Programmer's Reference Guide) documents the applications
programmer’s interface to Concurrent CP/M, explaining the internal file structure
and system entry points, information that is essential for creating applications pro-
grams that run in the Concurrent CP/M environmeni.

B ‘The Concurrent CPIM Operating System Programmer’s Uttlitles Gulde (hereinafter
cited a3 Programmer's Ulilities Guide) documents the Digital Research utility pro-
grems that programmers use to write, debug, and verify applications programs written
for the Concurrent CF/M environment.

B The Concurrent CPIM Operating System System Guide (hereinafter cited az Concur-
rent CPIM System Guide) documents the internal, hardware-dependent structures of
Concurrent CP/M.

Table of Contents

1 Concurrent CP/M System Overview

1.4
1.5
1.6
1.7
I8
1.9
1.10
1.1
1.1

1
2

INtPOAICHOM. ..o e e e e ettt rre I-1
Supervisor (SUP) ...ooviiiiiiiiiii i s e e 1-5
Real-time Monitor (RTM)coiiivviiiiiiieree e venvnrsnannmria 1-5
1.3.1 Process Dispatchingoooonviiiniiiiii i 1-5
1.3.2 Queue Management............c.covvivivinmiiinmnnsisniaeeernnns 1-7
i.3.3 System Timing Functions.......... Cereererees viesesireass veeenies 1-B
Memory Module (MEM} e et et 1-9
Basic Disk Operating System (BDOS). v v ivvivinsinsiinsimosrinisa.. 149
Character O Module (CIO)...covvivireiiiininiiiisscnienimessrsnnrii., 1=18
Virtual Console Screen Managermentvvviviviesciissssinansrnnencaee 1-10
Extended Input/Output System (XTOS)vvvvveens Creerernes vrerenaens 1-11
Terminal Message Processes {TMP} vvvvviniervrernns vrreesreserrsrrrnene 1-12
Transient Programs e esr it e P 8)
System Call Calling Conventions......ccvveerernniases TP £ I
SYSTAT: System Status e Vireerirens P C k|

2 The Concurrent CP/M File System

2.1

2.2
2.3
2.4

2.5

1.7
2.8
29
2,10
2,11
2.12
2.13

File Systerm OVEIVIEW - ... cvvviicerineniiinriosstiesanrsiisstsriiientans 2-1
2.1.1 File-access System Calls.......cvevriiieicvinineeneriaiiioncnns 2-2
2,1.2 Drive-related System Callsoovvviieimaiirirann e ernnres 2-3
File Naming Conventions.uuveeeariveanissrisnnsrisiirmensrantersnns 2-5
Disk Drive and File Organization.vvieeieeerannnrineeeaaresnns 28
File Control Black Definition..........c.coovviiiiiriiiiinrcaneeennes 2-9
2.4.1 FCB Initialization and Usageccoovviimnnriioinnnnnnns 2-12
2.4.2 File Amributeso.viivnicinsnions vererrirern Cerrrrersrsrreras 2-14
2.4.3 Interface Attributes Ferverrerertarnsrrnrriens errrrersareses 2-16
User Number COnventons.vvvsvnersreerorsisasessassrersererrrscnns 2-17
Directory Labels and XFCBS.....coocciivivviiiiiiiivieiens s onnnnenans 2-18
File Passwords,.....veeiiniiinsiiie i s ssriscs v srar e an e 222
File Date and Time Stampa: SFCBS vrvvieeeaeaarririrneeaarenernns 2224
File Open Modescooomiiiiiiiaiiie i e e 2-26
File SeOUMtY . .evsnererm i isaar e e marr e e i rine s ennrraans 2-27
Extended File LOCKING. ... ovvevvereneeeesaeresnsineereenerneeeeeeeneees 2-30
Compatibility Attributesooiviiiii i e 2-31
Multisector /O ... oo i e e et e e 2-34

Table of Contents (continued)

2.14 Concurrent File AceSE.....ccveuiiiiiiieiieiarariritraieimnaaieens 2-35
2.15 Fille Byte Cotntgiiiiiiiiiiiieciiia i tetiitr e emvaamnens 2-37
2.16 Record Blocking and Deblocking........cvvveeieiciiiiccniiiaceiianne.n. 2-3%
2.07 Reset, Acceas, and Free Driveociiiiiiiii e 2-39
2.18 BDOS Error Handling.......cooivniiiiiciiii e i e e 243
Transient Commands
3.1 Transient Program Load and BXit.........coo v erreerrras 3-1
3.1,1 Shared Code.,...ovuvienianns ererseaiiniis el beiseeriennranan 32
3.1.3 3027 Exception Handling........cooovviiiiiiiiiniiianninnnn, e 33
3.2 Commend File Bormt, .ooiiiiiciiiniiieessiiiiessiniiiiieseraariaenas 33
3.3 Base Papge Initialization.......oocoiiniinniiiniiiinnnciciniinan 35
34 Parent/Child Relationships.....oocoiiiiiiiiiiiiiiiiniiicinien 3-8
3.5 Direct Video Mapping......c.ooviiiiiiviiiiniiiis e 3-8
Command Flle Genreraiion
4.1 ‘Transisnt Bxecution Modsls ... 41
41,1 TheBOBO Memary Model ... 4-2
4.1.2 The Small Memory Model ... 4.4
4.1.3 The Compact Memory Model ... 4-5
4.2 GENCMD ...t e r et ee et 4.5
4.3 Intel Hexadecimal File Format ... e 4.9
Resident System Process Generation
5.1 Introduction t0 RSPE .. .cvviiiennrieciierenssenontnnrrrrarsrseratrinerenss 5-1
5.2 RSPMemory Models...o.oviieviiicoiiiieniieniiiniccnranuinnncnnnsccns 5-1
5.2.1 BOBD Model RO ..uiviviiiiiviiierivervnnnnsnnrnnsrarsnrinnsiens 52
£.2.2 Small Model RSP ..uvceici i vie v vnramerairenaerasraninan 52
5.3 Multiple Copies 0f REPSoceovinieiiiiiviiirecssninnicnerennencnns 5-3
LT T 0 . o - 53
53.2 Small Model....ooonieieee s aeirr s araiaennan 54
523 Small Model with Shared Code..........ooviviirrecrciaiinenn, o 54
5.4 Creating and Initializing an RSP.........oiiiiiiiiiciii e 54
541 The RSP Header.....coiiimeiiitir i i ereisranarneiannnn 5-7

Table of Contents (continued)

5.4.2 The RSP Process Descriptor..........cviieeesammrreaainnrrennnnes 5-8
543 The RSP User Data AMea......ccovinmmaiarnaiiiaeanrrnrrennns 59
544 The RSP Stack.......co0uneu.s Crrereresnaae ceerrrrrrre cecrsnnne 59
5.4.5 The RSP Command Queus0.0s Prrerediennan TP =
5.4.6 Multiple Processes within an RSP .,,........ P - S [
5.5 Developing and Debugging an RSP Preerveearn - a1 |

6 System Calls
6.1 System Call SUMIMALYoivvnniieiiiiie e rrenr e e eees 613
6.2 Concurrent CP/M System Calls..........covvivemvveninicinnriieeciinnn 6-20
6.2.1 Console I/O System Callsovvvvicmurrirrinsciiarirrere 621
6.2.2 Device Systemn Calls......ccoovvvvrermerviasriiiriiresirinrssans 641
6.2.3 Digk Drive System Calls........covvveemmrrrinrirneacarrarannnees 6-44
6.2.4 File-access System Calls.oovveroe it ien e 6-64
6.2.5 List Device 'O System Calls.....ocvneirceiiiiiniineniinnen, .. 6122
6.2.6 Memory System Calls......oovviiirerrnicaniiiiiiieniinien s 6-128
6.2.7 Process/Program System Calls................ e o 6139
6.2.3 Queuc System Calls fieirerens Crerrreeaas verereens 6-162
6.2.9 System Information System Calls............ o errreeran verenes 8-174

Appendixes

A System Call Summary by Function Number...........oooniiiiiiiinnnann. A-Y
B ASCH and Hexadecimal Conversionsc..ooccvviiiiiiiniininiiennn B-1
C Error Codes.......ccooiniiiiieiiinrr e iiiiieeeesrissassosianisrsstrensisranrses C-i
D ECHO.ABS LISENG.ocoeneveriiireereiitiinierrtneosasernntseisernnnens D-1
E 8087 Exception HandHng ... E-1
Glossary ..., fetr s Cerrraes +. Qlossary-|
11T T P Index-1

Table of Contents (continued)

Tables
1-1. Registers Used by System Calls.............. Crererreesss Cerberrreans 1-13
2-1. File System Calls,........ Crrresernns i tr e Crerrererer s 23
2-2. Valid Filename Delimiters eerriaanetieriae. fererenenine Vv 2-6
2-3. Filetype Convenlionsocvi1aeess . rteerrirteerreees . 27
24, Drive Capacity ..ivvveunins srverias Viereeanns e 28
2-5. FCB Field Definitions Cireres et tsantreetanentonesaoinns reranes . 2-11
2-6. File Attribute Definitions Vit iesraenens Vetianes Cererrerans e 2-15
2-7. BDOS Inwerface Atributes F5” and F6‘ et e Cerrrens 216
2-8. Directory Label Field Definiliona......ooocvcriiiiniciinineiannn 2-19
2-9. XFCB Field Definition® ...coovveiiiririosieiiinnenn Cteereerrea . 221
2-10. PasmordPtonectwnModes N srrare veerrrans 222
2-11, Compatibility Attribute Definitions et rereseraes et . 232
2-12. BDOS Phygical Bf1018,, 0000 viniiinninene . et et . 244
2-13. BDOS Extended Errors,....... e eeans R, Cereeens 245
2-14. BDOS Ertor Codes..uiiiieiiiiinentiiiacanasninenssrsnnn crracrerares 247
2-15. BDOS PhylwaldextendodErmrs 249
32, Group Descriptor Fieldaooooinvvianie B TN Crarennes 34
4.1, Concurrent CP/M Memory Models.......coooiiiii i 41
4.2, Intsl Hex Field Definitionscccoovveeeiiiiiciieiicciiiirecnennn, 4-11
5-1. System Call Categories........... Cherrrrrersesrrieans Crrreseseeean . &2
65-2. Concurrent CP/M Syatem CallS ,..cevviiiceniicinvisniiariiisneceisnann 54
6-3. System Call Summary............. Hr et tasarressereerrasarestraaaaiar e 6-13
64. Data Struciires Index............... etnrrmreneeeeerernrerierrreaeneiararay 618
6-5. CX Error Code Reports ...ccevviiiiniiiioiiiieiniiiiinrnisnseeaenan 6-19
66. ACB Field Defimitlonsciiiiii i e 622
&7. C_RAWIO Calling Values......... b eraae e 6-31
6-8. Console Buffer Field Definitionsoovvviiiiiiiiniii i iiiiiva e 6-34
6-9. C_READSTR Line-editing Cherecters.........occoconieiceniamnnnannes 6-34
6-10. DPB Field Definitions -......c.ociiierriir i eaas 6-49
6-11. PFCB Field Deflnibons.cccooveiieieeiiieeicmicnrie e nneeneas e 6-87
6-12. FCB Initialzabon...........ccocoi i tiric e e e e 6-89
6-13. MCB Field Definitionscooiiiiiiiiiiiniaiia e eceeens creen 6-129
6-14. MPB Field Definitions.cocevimiiiiiiiiiicr i e eecresin e 6-130

513,
616,
6-17.
6-18.
6-19.

6-21.
6-22,
6-23,

A-L.

B-1.
B-2,

1-1.
1-2.

2-1.
22,
2-3.
24,
25,

3-1.
32

41,
42,

Table of Contents (continued)

APB Field Definitions ..ooovviiieiraeie s ireraernirsrnrennneerenarontans
Command Line Buffer Field Definitions..........c..oovieveiiiiiarennnas
PD Field Definitions . .. coeeeirir i varearernrarrriirsnnansesrransssssar
UDA Field Definitions.ovcvveeiieiararresrnnncrserseerenrnnnnnsnses
CPB Field Definitionsccvviiinniorineirineerraraneaananearannns
QFB Pield Definitions ..o e o
QD Field Definitions ... "
SYSDAT Table Dara Fieldscoveiieiiriiiiriiriieiraranemccnenaes ve
TOD Field Definitions . coce.veieiiirataaireanresrerireasssenrannermnnnns ve

System Call Summary by Function Number............ Crrereeirrrrr e

ASCIL S8ymbols. ...
ASCII Conversion Table.ooiviiiiiiii i iiiia e eeaae

Concuwrrent CP/M Error Codes ..oovovvcvvvienvvinennnns i bertiarrearrasares .

Figures

Concurrent CP/M Virtal/Physical Environments ,.........c.ccccovvevvreenn.
Concurrent CP/M Functional Modulesccovvvviiiiiiiiiininnnenes

FCB - File Control Blockcoovviiernviiiiiniessivinessrisineeieioennnnas
Directory Label Format.........vvvuiiisesrinniisssrirsrrrnisrsnieranrasannns
XEFCB - Extended File Control Blockcoovviiviineiinrireriiinnnneeens
Directory Record with SFCB............ e EEe e i it et ra sy
SFCB Subfields.......... Ferreesrtirreenns b e bt aee e rreer et naes
Digk System Resel....oovviiniinenenninsnss Crriesaenes e rrrestresiarieen

CMD File Header FOITOALoivoecveiiniiienaceiearsiininneeaneneeeas
Group Descriptor FOTMAtivvimmiiiiiiie e i ceeees
Concurrent CP/M Base Page VAIBESc..ccvvveereeeneirrrrieiinnannnnns

Initial Program Stackve00i0e et st reia it b aaerrrarreates
Concurrent CP/M 8080 Memory Model P Ut bdr s rrane sttt rrerrrraanarsn

6-140
6-143
6-147
6-152
6-160
6-163
6-169
6-180
6-186

A-l

B-1
B-l

C-1

Table of Contents (continued)

Concurrent CP{M Small Memory Model..............ccvvvevieee
Concurrent CP/M Compast Memory Modelcccocvveenenla
Inte] Hexadetimal File Formatso.ovvneviiiieieiiciiiieaeenneens

Console Buffor Fotmnstciviuiiiem et eiieieeeeenneseeees
Drive, R/O, or Login Vector Structureccovviviiniiiiceennnes
DPB - Disk Parametar Blockcoovvveiiiiiiciciiiieic e iiiireceiiies
Disk Free Space Field Format..............ooiiiiiiiiiiiiiiiiie s
PECB - Parse Filename Control Blockcccocvveevivicinnnnns

. SERIAL Number Formatcoiiiieieeiiiininie i rane s vinennas

6-1.

63.
D-1.
BE-1.

Table of Contents (continued)

Listings
Memory Control Block Definition..............coooveiiiiiiicennnnne 6-129
Memory Parameter Block Definitioncooievviiiiniennnne 6-130
Queue Parameter Block Definition.........cooiiiiiiiiiiiiiiiiceiinins 6-164
O D-I
8087 Exception Handling..........ooooeiiiniiriinaimiiiiie i eaas E-2
sl

Section 1
Concurrent CP/M System Overview

1.1 Introduction

Concurrent CP/M is a multi- or single-user, multitasking operating system that lets you
Tun multiple programs simultanecusly by initieting tasks on two or more terminals or virtual
consales. Applications programs have access to system calls used by Concurrent CP/M 1o
control the multiprogramming environment. As a result, Concusrent CP/M supports extended
features, such as communication among and synchronization of independently running processes,
Figure 1-1 depicts the relationships between applications programs, virtual environments,
wirtual consoles, and the user terminal.

J LOmCAL Of 1 Y ICAL LD STHTEW
- [
f
ANRLICATION [ra——— — fo—
INGBRLU

ARPLICATICH
REXRAM

APPLICATICN
OtA coNEaLE

TERAENAL
a3 ALE

VMTUAL MRTUAL
COMBOLE

a4

HARDGORY
MNTER

Figure 1-1. Concurrent CP/M Virtual/Physical Environments

IR DHGITAL RESEARCHS
1-1

1.1 Hsivorimction Cascwrremt CP/M Prograuaser's Gubis

In the Concurrent CP/M environmsnt there is an important distinction between £ program
ekl & proceds. A progrem is simply e block of code residing somewhere in memory or on
disk; it is essentially static. A process, on the other hand, is a dynamic entity. You can think
of it as e logical machine that executes not only the program code, but also the operating
system roartines necessary to support the program’s functions.

When Congurrent CP/M loads a program, it creates 8 process associated with the loaded
program. Subsequently, it is the process, rather than the program, that obtaing access to the
systemn’s resources, Thus, Concurrent CP/M motitors the process, not the program. This
distinction is a subtle one, but vital to your understending of system operation a & whale.

Processes yunning under Concurrent CPM fall into two caiegories: iransient processss
end Rezident System Processes (RSPs}. Thaneient proceases run programs loaded inte mem-
ory from disk in response to a user cormmand or systern cells rnade by another procass.
Resident Systemn Processes run code that i a part of the operating system itself. RSPs
become an integral part of the operating systemn image during system genération, They are
irmediately available to perforin operating system tasks. For exarnple, the CLOCK process
Is an RSP that mainteins the time of day within the operating system.

The following liat briefly summarizes Concurrent CP/M™ capabilities.

W Interprocess communicetion, synchronization, snd mutnel sxclusion functions are
provided by system quenes.

B A logical interrupt mechanism vsing flegs allows Concurrent CP/M to interfiace with
any physicel interrupt structure.

E Systern timing functions enable processes running under Concurrent CP/M to com-
pute elapsed times, delay execution for specified intervals, and to sccess and set the
current dete and time.

® Shered file system allows multiple programs to access common data files whils
mainteining data integrity.

B Shered code support eliminates program loading of another copy of the same program
e conserves memory space.

m 8087 support takes advantage of fast 8087 math instructions.

B Virtual console handling lets a single user run multiple programs, each in its awn
console environment.

W Real-time process conirol allows communications arxd deta acquisition without loss
af information,

W DIGITAL RESEARCH®
1.2

Comcurrest CP/M Programmer’s Guide L.} Introduction

Functionally, Concurrent CP/M is composed of several distinct modules, as shown in
Figure 1-2.

— B/
(—

|
:

AT
NONTTON

r | i
r] 1
: 'm"mjllolmll :
i ' i
1 1 1
{ [l
] 5 y f
At HARGCORY e %{

Figure 1.2, Concarrent CP/M Functional Modules

B DIGITAL RESEARCH®

1.1 Imiredaciion Conewryeni CP/M Frograssser's Calde

N The Supervisor (SUP)

N The Real-time Monitor (RTM)

B The Memory Management Module (MEM)
B The Character I/'0 Module (CIO)

B The Virual Console Screen Manager

N The Basic Disk Operating System (BDOS)
N The Extended 170 System (XIOS)

N The Terminal Message Processor (TMF)

The SUP module haxdles miscellaneous syatem calls such as retwrming the version number
or the addrees of the Systern Data Area. SUP also calls other system calls when necessary.

The RTM module mozitors the execution of running processes and arbitrates conflicts for
the system's resources.

The MEM moduls zllocates and fress memery npon demand from executing processes.
The CIO moduls handles &1l charactar 10 for console and list devices in the system.

The Virtual Consols Screen Manager extends the CIO to suppost virtual console envi-
ronments.

‘The BDOS is the hardware-independent module thet contains the logioally invarlant portion
of the file systam for Concurrent CP/M. The BDOS fila systam s explained in detai] in
Section 2.

The XI0S is the hardware-dependent madule that defines the interface of Concurrent
CP/M to s spetific hardware environment. See the Concurrent CP/ M System Guide for
an explanation of the XI0S.

When Concurrent CP/M it executing a single program on a single virtual console, its
spesd mpproximates that of CP/M-86. But when multiple processes arc running on several
virtual consoles, the execution of each individual process slows according to the proportion
of /D to CPU resources it requires. A process that performs a larpe amount of O in
proportion to computing exhibits only minor speed degradation. This alao applies to a process
that performs e large amount of computing, but runs concurrently with other processes that
are largely I/O-bound. On the other hand, significant speed degradation occurs where more
than one compute-bound process is running.

EDIGITAL RESEARCH®
4

Comcurrent CP/M Programmer’s Guide 1.2 Sapervisor (SUP)

1.2 Supervisor (SUP)

The Supervisor module (SUP) manages the interface between processes and the operating
systern kernel, It also manages inierna! communication between operating systern modules.
All system calls, whether they originate from = transient process or infernally from another
system module, go through a common table-driven function interface in SUP. SUP also
hendles the P_LOAD (Load Process) and P_CLI (Call Command Line Interpreter) systein
calls,

1.3 Real-time Monitor (RTM)

The Realtime Monitor (RTM) is the real-time multitasking nucleus of Concurrent
CP/M. The RTM performs process dispatching, queue management, flag management,
device polling, and system timing tasks. User programs can also call many of the RTM
system calls used to perform these tasks.

1.3.1 Process Dispatching

Although Concurrent CP/M is a multiprocess operating system, only one process has
access to the CPU resource at any given time. Unless you specifically write a program to
communicate or synchronize execution with other processes, a process is unaware of other
processes competing for system resources.

The primary task of the RTM is to transfer, or dispatch, the CPU rescurce from one
process to another, The RTM module called the Dispatcher performs this task., The RTM
meintains two data structures, the Process Descriptor (PD) and the User Data Area (UDA),
for each process running under Concurrent CP/M. The Dispaicher uses these data structures
to save and restore the current state of each running process.

Each process in the system resides in one of three states: ready, running, or suspended.
A ready process is one that is waiting for the CPU resource only. A running process is one
that the CPU is currently executing. A suspended process is one that is waiting for a system
resource or a specified event, such as the eccurrence of an interropt, an indication that polled
hardware is ready, or the expiration of a delay period.

Any existing process is represented on a system list. The Dispatcher removes a process
from one list and places it on another. The Process Descriptor of the currently runting
process is the first entry on the Ready List. Other processes ready to run are represented on
the Ready List in order of priority. Suspended processes ate on other system lists, depending
on why the processes were suspended.

0 DIGITAL RESEARCH®

1.3 Reaktime Moultor (RTM) Concurrent CP/M Programmer's Guide

A dispatch operstion can be sumnmarized as follows:

1. The Dispatcher suspends the process from execution and stores its current state in
the Process Descriptor and the UDA.

2. The Dispaicher places the process on an appropriate gystem list, depending on why
the Diispeicher was called. For example, if a process is to delay for & certain number
of sysiem ticks, its Process Descriptor is placed on the Deiay List. When 2 process
releases a resource, the process is usually pleced back on the Resdy List. If another
process is weiting for the rescurce, that process is taken off its current system list
and also placed on the Ready List.

3. The highest priority process on the Ready List is chosen for execution. If two or
more processes have the same priority, the process that has waited the longest exscutas
first,

4, The Dispatcher restores the state of the selected process from its Process Descriptor
and UDA, and gives it the CPU resource.

5. The process executes until it needs a busy resource, a resource needed by another
process becomes available, or an interrupt occurs. At this point, a dispatch occurs,
allowing enather process to run.

Only processes on the Ready List are eligible for selection during dispatch. By dafinition,
a process is on the Ready List if it is waiting only for the CFL resouree. Processes waiting
for other system resowces cannot sxecute unt] tw rescurces they require are svaileble.
Concurrent CP/M blocks a process from execution If It {8 waiting for:

N a queus message £o it can complets & Q_READ operation.

® space to bacome available in a queus so it ¢an complete 8 Q_WRITE operation.

W a console or list device to become available.

B a wpecified mumber of system clock ticks before it can be removed from the system
Delay List.

W ap /O event to complete,

These situations ere discusssd in greater detail in the following sections.

A running process not needing a resource and not releasing one runs until an interrupt
causes a dispatch. While not all interrupts cause dispatches, the system clock generates
interrupts every clock tick and forces a dispatch each time. Clock ticks usually oceur 60
limes a second (epproximately every 16.67 milliseconds), and allow time sharing within a
real-time environment.

BDIGTAL RESEARCH®

Concurrent CP/M Programmer's Gulde 1.3 Real-time Monktor (RTM)

Concurrent CP/M is a priority-driven system. This means that during a dispatch, the
operating system gives the CPU resource to the process with the best priority. The Dispatcher
ellots squal shares of the system’s resources to processes with the same priority. With priority
dispatching, the system never passes control ¢ a lower-priority process if there is a higher-
priorily process on the Ready List, Because high-priority, compute-bound processes tend 10
manopolize the CPU resource, it is best to reduce their priority 1o avoid degrading oversll
system performance.

1.3.2 Queve Management

Quenes perform several critical functions for processes running under Concurrent CP/M.
A process can use a queue for commwnicating with another process, synchronizing its
execution with that of another process, and for exclusion of other processes from protected
fysatem regources. A process can meke, open, delete, read from, or write to a queue with
system calls similar to those used to manage disk files.

Each system queue consists of two parts: the queve descriptor, and the queue buffer.
Concurrent CP/M implements these special data structures as memory files that contain
roorn for a specified number of fixed-length messages.

When the Q_MAKE system call creates & queue, this queue is assigned a unique 8-
character name. As the name queuc implies, messages are read from a queue on a first-in,
first-out basis.

A process can read from or write to a quene conditionally or unconditionally. If the queue
is empty when a conditional read is performed, or full when 2 conditional write is performed,
the system returns an error code to the calling process. On the other hand, if a process
attempts an unconditional queue operation in these circumstances, the system suspends it
from execution until the operation becomes possible.

More than one pracess can wait to read or write a queue message from the same queue
at the same time. When these operations become possible, the system restores the highest
priority process first; processes with the same priority are restored on a first-come, first-
served basis.

Mutuai exclusion queues are a special type of queue under Concurrent CP/M. They contain
one message of zero length and their names follow a convention, beginning with the upper-
case letters MX. A mutual exclusion quene acts as a binary semaphore, ensuring that only
Ofle process uses A resource at any time.

@ DIGITAL RESEARCH®

1.3 Real-thwe Monitor (RTM) Concuryent CP/M Proprammer’s Guide

Accesg to a resource protected by 2 motuzl exclusion queve takes place a3 follows:

1. A process issues an unconditional Q_READ call to the MX quene protecting the
resource, thereby suspending itself if the message is not availeble.

2. When the message becomes availeble, the process nccesses the protected resource.
Note that from the time the process issues the uncanditionel read, any other process
ettempling to access the same resource is suspended.

3. The process writes the zero-length message back to the quene when it has finished
using the protectsd resource, thus freeing the resource for other processes.

As an example, the system muts! exclusion quene, MXdisk, ensuves that processes cannot
accesg the file system simnltaneously. Note that the BDOS, not the application softwars,
executes the preceding series of queve calls. Therefore the mutusl exclusion process is

transparent to the programmer, who i only responsible for originating the disk system calls.

Mutral exclusion queuss differ from normal queues in another wey. When a process reads
& meszage from & mutual exclusion queue, the RTM notes the Process Descriptor address
within the Queue Descriptor. This estabiishes the owner of the queus message. If the operating
system ebaorts the process while it owns the mutual sxclosion message, the RTM atomnatically
writes the message back to all mutnal exclusion queues whose meszsages are owned by the
aborted process. This grants other processes access to protected resources owned by the
eborted process.

1.3.3 System Timing Functions

Concurrent CP/M’s timing system calls include keeping the time of day and delaying the
exccntion of a process for a specified period of time. An internel process called CLOCK
provides the time of day for the system, Thig process issues DEY._WATTFLAG system calls
on the system’s one second fiag, Flag 2. When the XIOS Tick Interrupt Handler sets this
fiag, it tnitiares the CLOCK process, which then Increments the internal time and date.

Subsequently, the CLOCK. process makes another DEV_WATTFLAG call and suspends
itseXf until the flag is set again. Concurrent CP/M provides system calls that allow yuu to
set and access the internal date and time, In addition, the fils systsm uses the internal time
and date o record when a file is updated, created, or last accessed.

& DIGITAL RESEARCH®

Concurrent CP/M Programmer's Guide 1.3 Real-time Monftor (RTM)

The P_DELAY system call replaces the typical programmed delay loop for delaying
process éxecution. P_DELAY requires that Flag 1, the system tick flag, be set approximately
every 16.67 milliseconds, or 60 times a second; the XIOS Tick Interrupt Handler also sets
this flag. When a process makes 8 P_DELAY system call, it specifies the mimber of ticks
for which the operating system is to suspend it from execution. The system maintains the
address of the Process Descriptor for the process on &n internal Delay List along with its
current delay tick count. When & DEV_SETFLAG call occurs, setting Flag 1, the tick count
is decremented. When the delay count goes to zero, the sysiem removes the process from
the Delay List and places it on the Ready List.

Note: The length of a tick might vary from installation to installation. For instance, in
Europe, & tick is commonly 20 milliseconds, yielding 50 ticks per second. The description
of the P_DELAY system call in Section 6 describes how to determine the correct number
of ticks to delay 1 second.

1.4 Memory Module (MEM)

Concurrent CP/M supporis an extended, fixed partition model of memory management;
the Memory Module handles all memory management system calls. In practice, the exact
method that the operating system uses to allocate and free memory is transparent to the
application program. Therefore you should take care to write code independent of the memory
management model; use only the Concurrent CP/M specific memory system calls described
in Section 6.

1.5 Basic Disk Operating System (BDOS)

Except for auxiliary device support, Concurrent CP/M BDOS is an upward-compatible
version of the single-tasking CP/M-86 BDOS. It handles file creation and deletion, facilitates
sequentiel or rendom file aceess, and allocates and frees disk space. In most cases, CP/M-86
programs that make BDOS calls for /O can run under Concurrent CP/M without modifi-
cation. Concurrent CP/M's BDOS is extended to provide support for multiple virtual consoles
and list devices. In addition, the file system is extended to provide services required in a
mulidtasking environment. The major extensions to the file system are

B File locking. Files opened under Concurrent CP/M cannot be opened or deleted by
other tasks. This feature prevents accidental conflicts with other tasks.

¥ DIGITAL RESEARCH®

1-9

1.3 Basic Disk Dpersting Syxtam (BDOS) Comcarrest CP/M Frogranassr’y Guide

¥ Shered eccess Io files. As B special option, independent users can open the same file
in ghared or unlocked mode. Concurrent CP/M supports record locking and unlocking
commands for filas opened in this mode and protects files opened in shared mode
from deletion by other tasks.

¥ Degre Stamps. The BDXOS optionally supports twa time and date stamps, one recording
when a file is updated, and the other recording when the file was crested or last
acceased.

B Password Protection. The password protaction feature is optional at either the file or
drive level. The operator or applicarions progrem assigna disk drive passwords, while
application programs can assign file protection passwords in several modes.

M Extended Error Module. Besides the defanlt error mode, Concurrent CP/M has two
optional error-hendling maodes that return an errar code to the calling process in the
avent of an unrecoverable disk error.

1.6 Character I/0 Module (CIO)

The Chamcter IO maodule handles all console and list /0. Under Concurrent CP/M, every
charecter /O device is associated with a dats structure called a Console Control Block (CCB)
or a List Control Block (LCB). These data structures redide in the X108, The CCB contains
the surren: owner, status informetion, line editing varishiss, and the root of & Hnked list of
Procesas Descriptors (PDw) that are waifing for sccess. More than one process oan wait for
access to n single console. These processes are maintained on a linked list of Process
Descriptors in priomity order, The LCBs contain similar information about the list devices.
Ses the Concurrent CPIM System Guide for more information sbout LCBs and CCBs,

1.7 Virtnal Console Screen Mapagement

Virtual console acresn management is coordinated by four separate modules: the CIO,
the FIN (Physical INput) and VOUT (Virtual QUTput) processes, and the XTOS. The line
editing associated with the C_RBADSTR call is performed in the CIO. The PIN process
handles keyboard input for all the virtual consoles; it a1s0 treps end implements the CTRL-C,
CTRL-S, CTRL-Q, CTRL-P, and CTRL-O functions. The YOUT process spools consols
ocutput from processes running on background buffered mode consoles, end handshakes with
the PIN process to display spooled conscle cutpnt when the backgroond console is brought
to the foreground. The XiOS decides which special keys represent the virtual consoles, and
returns a speciel code from IO_CONIN when you request a screen switch. The XIOS also
implements any screen seving and restoring when scresns are switched. See the Concurrent
CPI/M Systermz Guide and the discussion of the ID_SWITCH function.

B DIGITAL RESEARCH®
1-10

Concurrent CP/M Programmer’s Guide 1.7 Virtual Console Screen Management

The PIN process reads the keyboard by directly calling the XIO8 IO_CONIN function,
This is the only place in the operating system IO_CONIN is called. The PIN scans the input
stream from the keyboard for switch screen requests and the special function keystrokes
CTRL-C, CTRL-8, CTRL-Q, CTRL-P, and CTRL-O. All other keyboard input is written
to the VINQ (Virtual Console INput Queue) associated with the foreground virtual console.
The data in the VINQ becomes a type-ahead buffer for each virtual console, and is returned
to the process attached to that console as it performs console input.

When PIN sees o CTRL-C it calls P_ABORT to abort the process attached to the virtnal
censole, flushes the type-ghead buffer in the VINGQ, turns off CTRL-S, and performs a
DRV_RESET call for each logged-in drive. The P_ABORT call succeeds when the Process
Keep flag is not on, saving the Terminel Message Processes (refer to P_CREATE for
information on the process descriptor). The DRY_RESET calls affect only the removable
media drives, as specified in the CKS field of the Disk Parameter Blocks in the XIOS (refer
1o the Concurrent CPiM System Guide for further details on Disk Parametsr Blocks).

CTRL-S stops eny ocutput to the screen. CTRL-S siays set when a virtual console is
switched to the background.

CTRL-O discards any console output to the virtual console. CTRL-O is turned off when
any other key is subsequently pressed, except for the keys representing the virtual consoles.

CTRL-P echoss console output to the default list device specified in the LIST field of the
process descriptor attached to the vartual console. [f the list device is attached to a progess,
a PRINTER BUSY message appears.

All of the above control keys can be disabled by the C_MODE call. When one of the
above control characters is disabled with C_MODE or when the process owning the virtual
console is nsing the C_RAWTO call, the PIN does not act on the control character but instead
wriles it to the VINQ. It is thus possible to read any af the above control characters from
an application program. These contro! keys are discussed in depth in the Concurrens CP/IM
User’s Guide.

1.8 Extended Imput/Qutput System (XIOS)

The XIOS medule is similar to the CP/M-86 Basic Input/Qutput System (BIOS) module,
but it is extended in several ways. Primitive operations, soch as console I/O, are modified
to support multiple virtual consoles. Several new primitive system calls, such as
DEV_POLL, support Concurrent CP/M's additional features, including elimination of wait
leaps for realtime [/O operations.

DIGITAL RESEARCH®

1.9 Termimal Message Prucosses (TMF) Comewrront CP/M Prograssser’s Guids

1.9 Terminal Message Processes (TMP)

The Concurrent CP/M Terminal Message Processes (TMPz) are resideit system processes
that eccept corumand lines from the virtual consoles and call the Comrnand Line Interpreter
{CLI) 10 execute them. The TMP prints the prompt on the virtual congoles.

Each virtual console has an independent TMF defining that congole’s environment, includ-
ing defsult disk, user munber, printer, and console.

1.10 Transient Programs

Under Concurrent CP/M, a transient program is one that i not system-resident. The
systern must load snch programs from disk into availabls memary esch time they execute,
The command file of a transisnt program iz identified by the filetype CMD. When you enter
a command at the console, the operating gystem searches on disk for the appropriate CMD
file, loads it, and initiates it. Concurrent CP/M supports three different execntion models
for transient programs: the 8080 Model, the Smell Model, and the Compact Model.
Sections 4.1.1 through 4.1.3 déscribe these models in datail.

1.11 System Call Calling Conventions
When a Concurrent CP/M process makes a system cell, it loads velues into the registers

shown in Table 1-1 and initiates Interrupt 224 (via the INT 224 instruction), reserved by
the [ntel Corporation for this purpose.

IBDIGITAL RESEARCH®

1-12

Concurrent CP/M Programmer’s Guide 1,11 System Call Calling Conveuiions

Table 1-1. Registers Used by System Calls
ENTRY PARAMETERS

Register CL: System Call Number
DL: Byte Parameter
or
DX: Word Parameter
or
DX: Address - Offset
DS: Address - Segment

RETURN VALUES

Register AL: Byte Return
or
AX: Word Return
ar
AX: Address - Offset
ES: Address - Segment

BX: Sameas AX
CX: Error Code

Concurrent CP/M preserves the contents of registers SI, DI, BE, SP, 88, DS, and CS
through the operating system calls. The ES register is preserved when it is not used to hold
a refurn scgment value. Error codes returned in CX are shown in Table 6-5, CX Error Codes.

1.12 SYSTAT: System Status

The SYSTAT utility is a development tool that shows the internal state of Concurrent
CP/M. SYSTAT describes memory allocation, current processes, system queue activity,
and many informative parameters associated with these systemn data structures. Further-
more, SYSTAT presents twa views: either & static snapshot of system activity, or a
continuous, real-time window into Concurrent CP/M.

B DKJTAL RESEARCH®

1-13

L12 BYBYAT! System Status Concurrant CP/M Programmer's Guide

You can specify SYSTAT in one of two modes. If you know which display you want, you
can specify it in the invocation, using an optioa shown'in the menu below. If you do not
specify an option, select a display from this memu by typing

A>SYSTAT <cr>
The sereen ¢lears and the main mem appears:
¥hioh Option?

H(alp}
M({amory)
O(verview)
P{rocsssss - All}
Q({ueuss)
U{mer Procossea)
C({oneoles)
E(xit)

-

Press the appropriate letter to obtain a display.

When you select Hielp), the HELP file demonstrates the proper syniax and available
options:

Ta usa SYSTAT with ths memu: At the system prompt typs SYSTAT <CR>
To uas SYSTAT wiilout the menu: At the systen prompt iyps the command
STSTAT [option] -or-

SYSTAT [option C} —or-
STSTAT [option C 4]

@IGTAL RESEARCH®

Concurrent CP/M Programmer's Gulde 112 SYSTAT: System Statos

-where-

-> gption =
M(emory) P(rocessss} O{verviev) {(onaoles)
Ulser Processes) Q(ueues) H(elp)

~> { = Contlinuous display
= 1-2 digit= indicating the period,
in seconds, betwesn display refrashes.
Type eny lstier to return to the menu.

The M, P, Q, and U and C options ask you if you prefer e continuous display. If yon
type y, Concurrent CP/M asks for e time intervel, in seconds, and then digplays a real-time
window of information. If you type n, a static snapshot of the requested information appears.
In either case, press any key to return to the menu.

The M(emory) option displays all memory potentially available to you, but it does not
display restricted memory. The partitions are listed in memeory-address order. Length param-
eter is shown in paragraph values.

The O{verview) option displays an overview of the system parameters, as specified at
system generation time. The display is not continuous.

The P(rccess) option displays all system processes and the resources they are using.
The Q(ueues) option displays alt sysiem queues, listing queue readers, writers, and owners.

The U(ser Processes) opticn displays only user-initiated processes in the same format as
the P{rocess) option.

The C{onsoles) option displays console information; that is, background, foreground,
buffered, snspended, purging, CTRL-Q, and s0 on.

The E({xit) option returns you to system level from the menu, as does CTRL-C.

End of Section 1

@ DIGITAL RESEARCH®

Section 2
The Concurrent CP/M File System

2.1 File System Overview

The Basic Disk Operating System (BDOS) file system supports from one to sixteen logical
drives. Each logical drive has two regions: g directory area and a data area. The directory
arca defines the files that exist on the drive and idemtifics the dala srea space that belongs
to eech file. The data arca contains the file data defined by the directory.

The directory arca congists of sixieen logically independent directories. These directories
are identified by user numbers 0 through 15, During execution, a process runs with a system
perameter called the user number set to a single value. The user number specifies the current
active directories for all drives on the system. For example, the Concurrent CP/M DIR
utility displays only files within a directory selected by the current nser number.

The file system automatically sllocates directory and data area space when a process
creates or extends a file, and returns previously allocated space to free space when a process
deletes or truncates a file. If no directory or data space is available for a requested operation,
the BDOS returns an error code to the calling process. The ellocetion and retrieval of
directory and deta space is trensparent to the calling process. As & rezult, you need not he
concerned with directory and drive organization when using the file system calls.

An eight-character filename and a three-character filetype field identify each file in &
directory. Together, these fields must be unique for each file within a directory. However,
files with the same filename and filetype can reside in diffevent user directories without
conflict. Processes can also assign an eight-character peassword to a file to protect it from
unauthorized access.

DIGITAL RESEARCH®

2.1 Fliis System Overview Comcwrrant CP/M Progransse’s Guide

All systern calls that involve fils operetions specify the requesied file by fileneme and
filatype. For some system calls, multiple files can be specified by a technique called ambig-
uone refevence. This techrique uses question merks and asterisks as wildcard characters to
give the file systemn g pattern to match as it searches a directary.

The file system supporis two categories of system cells: file-access system calls and drive-
related system calla. The file-access system calls have mnemonics beginning with F_, and
the drive-related systemn calls have mnemonics beginning with DRV_. The next two sections
introduce the file system calls.

2.1.1 Flle-access System Calls

Most of the file-access system calls can be divided into two groups: system calls that
operate on files within a directory and system calls thet operste on records within a file,
However, the file-acoess category elso includes several miscellaneous functions that either
affect the execution of other file-access system calls or are commonly used with them,

System calls in the first file-access group inclnde calls to search for one or more files,
delete one or more files, rename or truncate a file, set file attributes, askign 2 password to
a file, and compute the size of a file. Also included in this group are system cslls to open
a file, to creais a file, and to close o file,

The second 8le-access group includes syatern calla to read or write records to a file, either
ssquentially or rindomly, by record position. BDOS read end write system calls Gansfer
data in 128-byte units, which is the baeic record size of the file system. This group also
includes system calls to lock and unlock records and thereby ellows multiple processes o
have coordinatad access to records within a commonly accassad file.

Before making read, write, Iock, or unlock system calls for & fils, you must first open or
cregte the file. Creating a file has the side effect of opening the file for record aceess. In
addition, becanse Concurrent CP/M supports three different modes of opening files (Locked,
Unlocked, and Read-Only), there can be other restrictions on system calls in this group that
are related to the apen mode. For example, you cennot write to & file that you have opened
in Read-Only mode.

After a process has opened a file, access 1o the file by oiher processes is restricted until
the file is closed. Again, the exact nature of the restrictions depends on the open mods.
However, in ali cases the file sysiem does not allow a process 1o delete, rename, or change
a file's atiributes if another process has opened the file. Thus, the F_CLOSE systern call
performs two sleps to terminate record access o a file. It permanently records the current
gtatus of the file in the directory and removes the open-file restrictions limiting access to
the file by other processes.

EDIGITAL RESEARCH®

2-2

Concarrent CP/M Programmer’s Guide 2.1 Fie Sysiewa Overview

The miscellancons file-access system callg include calls to set the current user number,
get the DMA sddress, parse an ASCIL file specification and set a default passward. This
group also includes system calls to set the BDOS Multisector Count &nd the BDOS Error
Mode, The BDOS Multisector count determines the mumber of 128-byte records to be
processed by the read, write, lock, and unlock system calls. The Muliisector count can range
from 1 to 128; the default value is one. The BDOS Error Mode determines whether the file
system intercepts certain errors or returns on all errors to the calling process.

2.1.2 Drive-related System Calls

BDOS drive-related system calls select the default drive, compute a drive’s froe space,
interrogate drive status, and assign a directory label to & drive, A drive’s directory label
controls whether the file system enforces file password protection for files in the directory.
It also specifies whether the file system is to perform date end time stamping of files on the
dtive.

This category also includes system calls to resat specified drives and to control whether
other processas can reset particular drives. When & drive is reset, the next aperation on the
drive reactivates it by logging it in. Logging in a drive initializes the drive for directory and
file operations. The purpose of a drive resat call is to prepere for a media change on drives
that support removable media. Under Concurrent CP/M, drive reset calls are conditional.
A process cannot reset a drive if another process has a file open on the drive.

The following teble summarizes the BDOS file system calls.

Table 2-1. File System Calls

Mnemonic Description
DRV_ACCESS Access Drive
DRV_ALLOCVEC Get Drive Allocation Vector
DRY_ALLRESET Reset All Drives
DRY_DPB Get Disk Parameter Block Address
DRV_GET Get Default Drive
DRV _GETLAEEL Get Directory Label
DRY_FLUSH Flush Data Buffers
DRY_FREE Free Drive
DRV_LOGINVEC Return Logged In Vector
DRY_RESET Reset Drive
DRV_ROVEC Retusrn R/O Vector
DRV_SETLABEL Set Directory Label

DIGITAL RESEARCH®

2-3

1.1 File Sysinm Overview

Comcmrrent CP/M Prograwmer’s Gulde

Thble 2-1. (continued)

Mnemonic Deseription
DRV_SET Set (Select) Drive
DRV_SETRO Set Drive To Read-Only
DRY_SPACE Get Free Space On Drive
F_ATTRIB Set File's Attributes
F_CLOSE Close File
F_DELETE Delete File
F_DMASEG Set DMA, Segment
F_.DMAGET Get DMA Addrese
F_DMAOFF Set DMA Offsst
F_ERRMODE Set BDOS Error Mode
LOCK Lock Record In File
F_MAKE Mazke A New File
F_MULTISEC Set BDOS Multisector Count
F_OPEN Open File
F_PARSE Paree Filensme
F_PASSWD Set Defanlt Password
F_RANDREC Return Recoxd Number For File Read-Whits
F_READ Read Record Sequentiaily From File
F_READRAND Read Random Record From File
F_RENAME Rename File
F_SIZE Compute Fils Size
F_SFIRST Directory Search First
F_SNEXT Directory Search Next
F_TIMEDATE Return File Time/Date Stamps Password Mode
F_TRUNCATE Truncate File
F_UNLOCK Unlock Record In File
F_USERNUM Set/Get Directory Usar Number
F_WRITE White Record Sequentiatly Into File
F_WRITERAND Write Random Record Into File
F_WRITEXFCE Write File's XFCB
F_WRITEZF Write Random Record With Zero Fill

24

IDIGITAL RESEARCH®

Concorrent CP/M Progranmer’s Guide 2.1 Flie System. Overview

The following sections contain information on important topics related to the file system.
Read these sections carefully before attempting to use the system calls described individually
in Section 6.

2.2 File Naming Conventions

Under Concurrent CP/M, a file specification consists of four parts: a drive specifier, the
filtenarne feld, the filetype field, and the file password field. Toe general format for & com-
mand line file specification is shown below;

{d:} filename {.typ} {;password}

The drive specifier field specifies the drive where the file is located. The filename and filetype
fields identify the file. The password field specifies the password if a file is password pro-
tected.

The drive, type, end pagsword fields are optional, and delimiters are required only
when specifying their associated fields. The drive specifier can be assigned a letter from A
to P, where the actual drive letters supported on 2 given system are determined by the
X108 implemsantation. When the drive letter is not specified, the current defauit drive is
gssumed.

The filename and password fields can contain one to eight non-delimiter chzracters. The
filetype field can contain one to three non-delimiter characters. All three fields are left justified
and padded with blanks, if necessary. Omitting the oplional type or password fields implies
u field specification of all blanks.

& DIGITAL RESEARCH®

1.2 Fiie Nushy Cowvesifons Couewrent CP/M Prograsses’s Gulde

Under Concwrrent CP/M, the P_CLI systare call interprets ASCII command lines and
loads programa. The P_CLI system call makes F PARSE sysiem calls to parse file specifi-
cations from a command line. F_PARSE recognizes certain ASCII characters as delimiters
when it parses a file specification. Thess characters are shown in Table 2-2.

Table 2-2. Valid Fllename Delimiters

ASCH Hex Equivalen:
mll 000H
space 020H
return 0ODH
tab O09H
: 03AH
. 02EH
; 03BH
= 03DH
) 02CH
[0sBH
1 0SDbH
< 03CH
> 03EH
| 07CH

The F_PARSE system call &lso excludes all control characters from the file specification
felds end translates sll lowercass letters to uppercase.

Avojd using parentheses and the backslash character, \, in the filename and filetype fields
because they are commonly used delimiters, Use aglerisk and question mark chemciers, *
and 7, only to make an ambiguous file reference. When F_PARSE encounters an asterisk in
a filename or filetype field, it pads the remainder of the field with question marks. For
example, a filename of X*.* is parsed to X7?777977.777. The BDOS F_SFIRST, F_SNEXT,
and F_DELETE system calls maich a question mark in the filename or filetype fields to the
corresponding position of any directory entry belonging to the current user number. Thus, a
search operation for X?77?777.777 finds all the files in the current user directory beginning
in X. Most other file-access BDOS system calls trest the presence of a question mark in the
filename or filetype fields as an crror.

I DIGITAL RESEARCH 1
2-6

Concwrrent CP/M Programmer's Goide 2.2 File Naming Conventions

It is not mandatory to follow the file naming conventions of Concurrent CP/M when you
create or rename a file with BDOS system calls directly from an application program. How-
ever, the conventions must be used if the file is to be accessed from a command line, For
example, the P_CLI system call cannot locate a command file in the directory if its filename
or filetype fisld contains a lowercase letter.

As o general rule, the filetype field names the generic category of e particular file, and the

filename field distinguishes individual files within each category. Although they are generally
arbitrary, Table 2-3 lists some of the gensric flletype categories that have been establizhed.

Table 2.3. Filetype Conventions

Filetype Description

A6 8086 Assembler Source
ASM 8080 Assembler Source
BAK Text or Source Back-up
BAS BASIC Source File

C C Source File

CMD 8086 Command File
COM 8080 Command File
CON CCPM Modules

DAT Data File

HEX ASMB0 HEX File
Haoé ASMBE6 HEX File

INT Intermediate File

LIB Library File

L86 Library File

LST List File

PLI PLJ/I Source File

PRL Page Relocatable

REL Relocatable Module
RSP Resident System Process
SER System Page Relocatable
SUB SUBMIT File

5YM Symbal File

5Y8 System File

355 Temporary File

DIGITAL RESEARCH®

27

2.3 Disk Drive xad Flle Orgasization Concarrest CP/M Programser’s Guide

2.3 Disk Drive and File Organizetion

The file system can support up to sixteen logicel drives, identified by the letters A through
P. A logical drive usually corresponds to a physical drive on the system, particularly for
physical drives that support removable medin such as floppy disks. High-capacity hard disks,
howsver, are commonly divided into multiple logicsl drives. If a disk containg system tracks
reserved for the boot loader, these racks precede the tracks of the disk mapped by the Ingical
drive. In this maml, references to drives mean lopical drives, unless explicitly smted otherwise,

The meximum file size supported on a drive is 32 megabytes. The maximum capacity of
e drive is determined by the data block size specified for the drive in the XI0S. The data
block size is the basic unit in which the BDOS ellocates space to flles. Table 2.4 digplays
the relationship between data block size and total drive capacity.

Table 24. Drive Capacity

Data Black Size Muaximum Drive Capacily
1K 256 kilobytes
2K 64 megebytes
4K 128 megabytes
8K 236 megabytes
16K 512 megsahytes

Each drive is divided into two regions: a directory area and a dats area. The directory area
containg from one to aixteen blocks located af the beginning of the drive. The actual number
is sat in the XIOS. Directory entries residing in this area define the files that exist on the
drive. In addition, the directory entries belonging to a file identify the data blocks in the
drive’s dats enea that contain the file’s records. The directory ares is logically subdivided inio
sixteen independent directories identified as user O throngh 15. Each independent directory
shares the actual directory ares on the drive.

W DIGITAL RESEARCH®

Concwrrent CP/M Programmer’s Gulde 2.3 Disk Drive and Flle Organization

Each disk file may consist of a set of up to 262,144 (40000H) 128-byte records. Each
record of a file is ideniified by its position in the file. This position is called the record’s
Random Record Number. If a file is created sequentially, the first record has a position of
zero, while the last record has a position one less than the number of records in the file. Such
a file can be read sequentially, beginning at record zero, or randomly by record position.
Conversely, if a file is created randomly, records are added to the file by specified position.
A file created in this way is called sparse if positions exist within the file where a record has
not been writien.

The BDOS automatically allocates data blocks to a file to contain the file’s records on the
basis of the record positions consumed. Thus, a sparse file that contains two records, one at
position zero, the other at position 262,143, consumes only two data blocks in the data arca.
Sparse files can be created and accessed only randomly, not sequentially. Note that any data
block allecated ta a file is permanently allocated until the file is deleted or truncated. These
are the only mechenisms supported by the BDOS for releasing data blocks belonging to a
file.

Source files under Concurrent CP/M are treated as a sequence of ASCI characters, where
each line of the source file is followed by a catriage return/line-feed sequence, ODH followed
by OAH. Thus, a single 128-byte record could contain several Iines of source text. The end
of an ASCII file is denoted by a CTRL-Z character (LAH), or a real end-of-file, returned by
the BDXQS read system call. Note that these source file conventions are not supported in the
file system directly but are followed by Concurrent CP/M utilities such as TYPE and
ASM-86™. In addition, CTRL-Z characters embedded within ather types of files such as
CMD files do not signal end-of-file.

2.4 File Control Block Definition

The File Control Block (FCB) is a system date siructure that serves as an important channet
for information exchange between a process and BDOS file-access system calls. A process
initializes an FCB to specify the drive location, filename and filetype fields, and other infor-
mation that is required to make a file-access call. For exemple, in an F_OPEN system call,
the FCB specifies the name and location of the file to be opened. In addition, the file system
uses the FCB to maintain the current state and record position of en open file. Some file-
access system calls use special fields within the FCB for invoking options. Other file-access
system calls use the FCB to return data to the calling pragram. All BDOS randorn YO system
<alls require the calling process to specify the Random Record Number in a 3-byte field at
the end of the FCB.

B DIGTAL RESEARCH®
2-9

2.4 File Coumirol Block Defiuiiicm Concnrresd CP/M Programaser’s Gulde

When a process makes a BDOS file-access system call, it passes an FCB address to the
BDOS. This address has two 16-bit components: register DX, which coatains the offset, and
register DS, which containg the segment. The length of the FCB data area depends on the
BDOS system call. For most system calls, the minimum length is 33 bytes. For the
F._READRAND, F_WRITERAND, F_.WRITEZF, F_.LOCK, F_UNLOCK, F_RAND
REC, F_S1ZE, and F_TRUNCATE system calls, the minimum FCB length ig 36 bytes,
¥hen the F_OPEN or F_MAKE system calls open a file in Unlocked mods, the FCB must
be at least 35 bytes long. Figure 2-1 displays the FCB data structure in two formats.

CR NAME | TYPE EX cs RS RC De-D15 CR RO R1 R2

00H OR F1 F2 F3 F4 F& F& F7.

osH F8 T T2 T3 EX Cs RE RC

10H Do [va] D2 D3 D4 L] [»2-] o7...

18H Dé [+]] D10 D11 D12 13 D14 D18

20H CR RO R1 R2

Figure 2-1. FCB - File Control Block

@ DiGITAL RESEARCH®
2-10

Concurrent CP/M Programmer’s Guide 24 File Conirol Block Definition

The fields in the FCB are defined as follows:

Table 2-5. FCB Fleld Definitions

Field Definitions

DR Drive Code (0-186).

0 = > use default drive for file
1 => auto disk select drive A
2 = > auto disk salect drive B
16 = > auto disk select drive P

Fl...F3 Contain the filename in ASCII uppercase, with high bit = 0. F1', ...,
F8* denote the high-order bit of these positions and are called attribute
bits.

T1,T2.T3 Contain the filetype in ASCII uppercase, with high bit = @, T1’, T2,
and T3" denote the high bit of these positions and are also called
attribute bits.

T1® = 1 => Read-Only file,
T2' = 1 == System file,
T3" = | =2 File has been archived.

EX Contains the current extent number. This field is initialized to O by the
calling process, but it can range from Q to 31 during file I/O.

Ccs Contains the FCB checksum value for open FCBs.

RS Reserved for internal system use

RC Record cound for extent EX. This fizld takes on values from 0 to 255
{values greater than 128 imply a record count of 128).

I DIGITAL RESEARCH®

2-11

2.4 Flls Comirel Block Defmition Concarrent CP/M Programssec's Guide

‘Table 2.5. (continued)
Field Definitions
D0...D1S Normally filled in by Concurrent CP/M and reserved for system use.

Also uged to specify the new filename and filstype with the F_RENAME
system call,

CR Current record to read or wriie in a sequential fils operation. This field
is normally set to zero by the calling process when a file is opened or
created.

RO,R1RZ Optional Rendom Record Number in the range 0-262,143 (D - 3FFFFH).
RO, R1, R2 constitute an 18-bit value with low byte RO, middle byte
R1, and high byte R2.

Note: The 2-byte File ID is returned in bytes R0 and R1 of the FCB when = flle is suc-
cessfully opened in Unlocked mode (refer to Section 2.10).

2.4.1 FCB Iniiialization and Usage

The calling process must initiglize bytes 0 through 11 of the refarenced FCB before
making the following file-access system calls: F_ATTRIB, F_ DELETE, F_MAXKE,
F_OPEN, F_RENAME, F_SFIRST, F_SIZE, F SNEXT, F_-TIMEDATE, F_-TRUN-
CATE, and F_WRITEXFCB. Normally, the DR ficld specified the drive location of the
{ile, and the name and type fields specify the name of the file. You must also set the EX
field of the FCB before calling F. MAKE, FLOPEN, F_SFIRST, and F_WRITEXFCB.
Except for the F.WRITEXFCB system call, you can usually sat this field to zero, Note
that the F_RENAME system call requires the calling process to plece the new filename
and filetype in bytes DI through D11,

The remaining file-aceess calls that use FCBa require an FCB thet has been initialized
by a prior file-access systemn call. For exemple, the E_SNEXT system call expects an FCB
initialized by a prior F_SFIRST call. In addition, the F_LOCK, F_.READ, F_ READ-
RAND, F_.UNLQOCK, F_-WRITERAND, and F_WRITEZF ystcm calls require an
FCB that has basn activated for record operations. Under Concurrent CP/M, only the
F_OPEN and F_MAKE systcm calls can activatzc an FCB.

B DIGITAL RESEARCH®
2-12

Concurrest CP/M Programmer’s Guide 2.4 File Control Block Definition

If you intend to process a file sequentially from the beginning, using the F_READ and
F_WRITE system calls, you must set the CR field to zero befare you make your first read
or write call. [n addition, when you make an F_LOCK, F_READRAND, F_UNLOCK,
F-WRITERAND, or - WRITEZF system call, yau must set bytes RO through R2 of the
FCB 10 the requested Random Record Number. The F-TRUNCATE system call also
requires the FCB random record field to be initialized.

The F_SFIRST, F_SNEXT, and F_DELETE system calls support muitiple or ambiguous
reference. [n general, a question merk in the filename, filetype, or EX fields matches all
values in the corresponding positions of directory entries during & directory search operation.
File directory entries meintained in the directory area of erch disk drive have the same format
as FCBs except for byte (), which contains the file's user number, and bytes 32 through 35,
which are not present. The search system calls, F_SFIRST and E_SNEXT, also recognize
a question mark in the FCB DR field, and, if specified, they return all directory entries on
the disk regardless of user aumber, inciuding empty entri¢s. A directory FCB that begins
with ESH is an empty or erased directory entry.

When the F_OPEN and F_MAKE gystem calls activate an FCB for record operations,
they copy the FCB’s matching directory entry from disk, excluding byte 0, into the FCB in
memory. In addition, these system calls compute and store a checksum value in the CS field
of the BCB. During subsequent record operations on the file, the file system uses this check-
sum field to verify that the FCB has not been modified by the calling process in an illegal
way. Thus, all read, write, lock, and unlock operations on a file must specify a valid activated
FCRB; otherwise, the BDOS returns a checksum error. The BDOS performs this checking to
protect the integrity of the file system. In general, you should not modify bytes 0 through 31
of an open FCB, except to set interface attributes (see Section 2.4.3). Other restrictions
related to activated FCBs are discussed in Section 2. 10.

The BDOS updates the memory copy of the FCB during file processing to maintain the
current pesition within the file. During file write operations, the BDOS also updates the
memory capy of the FCB to record the allocation of data blocks to the file. At the termination
of file processing, the F_CLOSE system call permanently records this information on disk.

Note that the BDOS does not record the data blocks allocated to a file during write
operations in the disk directory until the calling process issues an F_CLOSE call, Therefore,
a process that creates or modifies files must close the files at the termination of file processing.
Otherwise, data might be lost,

DIGITAL RESEARCH®

213

24 Fia Camtrol Block Delmifion Canemrrost CP/M Propasmer's Gulde

24.2 Fiie Attribuies

The high-orcler bits of the FCB filename (F1',....F8') and filetype fields (T1',T2,T3') are
called attribuis bits. Attribute bits are 1-bit Boolesn fields, where 1 indicates on or true, and
0 indicates off or falee. Atiributz bits indicate two kinds of altributes within the file system:
file nitributes and interface attributes. The file attributes are described in this section. Section
2.4.3 describes interfece attributes.

The file atiribute bits, Fi1'....,F4' and T1°, T2', T2, indicate that a fils has a defined
atiribute. These bits are recorded in a file's directory FCBs. File attributes can be st or reset
only by the F_ATTRIB system call. When the F_MAKE system call creates a file, it
initializes ell file attributes to zera. A process can interrogats ‘file attributes in an FCB
activated by the F_OPEN system cell, or in directory FCBs returned by the F_SFIRST and
F_SNEXT system cells,

Note: The file system ignores the file atiribute bits when it attempts to locate a file in the
directory.

1 DIGITAL RESEARCH®
2-14

Cooeurrent CP/M Programmer’s Gulde 2.4 Fike Cowrirol Block Definition

The file system defines file attributes T1°,T2’,and T3’ as follows:

Table 2-6. File Attribute Definitions
Agiribate Definition

T1': Read-Only Attribute

This attribute, if set, prevents write operations to a file.

T2": System Amribute

This attribute, if set, identifies the file as a Concurrent CP/M system
file. The Concurrent CP/M DIR utility does not usually display Sys-
tem files. In addition, user-zero system files can be accessed on a
Read-Only basis from other user numbers.

T3’: Archive Atribute

User-written archive programs use this attribute. When an archive
program copies a file to beck-up storage, it sets the archive attribute
of the copied files. The file system automatically resets the archive
attribute of a directory entry when writing to the directory entry’s
region of a file. An archive program can test this attribute in each of
the file's directory entries using the F_SFIRST and F_SNEXT sys-
temn calls. If all directory entries have the archive attribute set, the
file has not been modified since the previous archive. The Concurrent
CP/M PIP utility supports file archiving,

File attributes F1” through F4' of command files are defined as Compatibility Awributes
under Concurrent CP/M (see Section 2.12), However, for all other files, attributes F1' through
F4' are available for definition by the user,

K DIGITAL RESEARCH?®

2-15

2.4 Fia Costrol Bluck Deiwitine Caoscurrest CP/M Prograsmsers Guadis

24.3 Interface Atiributes

The interface atiributes are FS’, F§', FT', and F8". These attributes cannat be used &s file
attributes. Interface ettributes F5' and Fé' requast options for BDOS file-access system calls.
Table 2-7 lists the F3' arxd F6' attribule dafinitions for the system calls thet define interface
atributes. Mote that the F5' = 0 and F6" = 0 definitions are not listed if their definition
simply implies the absence of the associeted option.

Table 2-7. BDOS Interface Attributes ¥5' and F6

System Call Antribute
F_ATTRIB F5' =] : Muintain extended file lock
F&' = 1 : Set filo byte count
F_CLOSE F5' = 1 : Partlal Close
F6' = 1 : Extend file lock
F_DELETE F5' = 1: Delets file XPCBs only and
maintain extended file Iock
F_ LXK F5' = (: Exclusive Lock
F5' = 1: Shared Lock
E6' = 0 : Lock existing records only
E6' = 1: Lock logical records
F_MAKE F5' = 0 : Open in Locked mode
F5" = 1 : Open in Unlocked mode
F§' = 1: Assign password to file
F_OPEN F5' = 0 : Open in Locked mode
F5" = 1 : Open in Unlocked mode
F& = 0 : Open in mode specified by F5*
F& = 1:Qpen in Read-Only mode
F_RENAME F58 = 1 : Maintain extended fils lock
F_TRUNCATE F5 = 1 : Maintain extended file Jock
F_UNLOCK F5 = 1 : Unlock all locked records

B DIGITAL RESEARCH®

2-16

Concurrent CP/M Programmer’s Guide 2.4 File Control Block Definition

Section 6 details the above interface attribuie definitions for each of the preceding syatem
calls. Note that the BDOS always resets interface atiributes F5' and F6® before returning to
the celling process. Interface attributes F7* and F8' ere reserved for internal use by the file
system.

2.5 User Number Conventions

The Concurrent CP/M user facility divides each drive directory into sixteen logically
independent directories, designated as user 0 throogh user 15. Physicelly, all user directories
share the directory area of a drive. In most other aspects, however, they are independent.
For example, files with the same name can exist on different user numbers of the same drive
with no conflict. However, a single file cannot extend across more than one user number,

Only one user number is active for a specific process at one time. For this process, the
current user number applies to all drives on the syatem. Purthermore, the FCE format does
not contain a field that can override the current user number. As a result, all file and directory
operations reference only directory entties associated with the corrent user number.

However. it Is possible for a process to access files on different user numbers by setting
the user mumber to the file’s user number with the F_USERNUM system call before issving
the BDOS call. However, if a process attempts to read or write to a file under & user number
different from the user number that was active when the file was opened, the file system
returns an FCB checksum error.

When the P_CLI sysiem call initietes a transient process or Resident Systern Process
{described in detail in Section 5), it sets the user number to the default value established by
the process issuing the P_CLI system call. The sending process is usually the TMP. How-
ever, the sending process can be another process, such as a transient program that makes
a P_CHAIN call. A transient process can change its user number by making an
F_USERNUM call. Changing the user number in this way does not affect the command
line user number displayed by the TMP. Thus, when a trensient process that has changed
ils user number terminates, the TMP restores and displays the original user number in the
command line prompt when it regains control.

B DIGITAL RESEARCH®

2-17

2.3 Tler Number Couventions Comesvinst CP/M Prograsssser’s Calde

User O has speciel properties under Concurrent CP/M. The file system eutomatically opens
files listed under user zero but requasted under ancther nser number if the file is not present
uxder the current user oumber, and if the file on user zero has the system sttribute (T2')
set. This convention allows utilities, including overlays and any other commonly accessed
files, to reside on user zero, but remain available o other users. This eliminates the need
to copy commonly used utilities to all user numbers on a directory, and gives the Concurrent
CP/M manager control over which files are directly accessible to the different neer areas.

2.6 Directory Labels and XFCBs

The file systém includes three special types of FCBs: the directory label and the XFCB,
described in this section, and the SFCB, described in detail in Section 2.8,

The directory label specifies for its drive whether password support is to be activated,
and if date and time stamping for files is to be performed. The format of the directory label
is shown below in Figure 2-2,

DR| MName Type |DL|S1|S2 |RC| Password TS1 T52

6o o1.. og... 12 13 14 156 1B... 25. 29..

Figure 2-2, Direciory Label Format

@ DIGITAL RESEARCH®
2-18

Coneurrent CP/M Programmer's Guide 2.6 Directory Labels and XFCBs

Table 2-8. Directory Label Field Definitions

Field Definition
DR drive code (0 -16)
Name directory label narne
Type directory label type
DL directory label data byte

Bit 7 - enable passwerd support

Bit 6 - perform access time stamping

Bit 5 - perform updaie time stamping

Bit 4 - perform create time stamping

Bit 0 - Directory Label exists

(Bit references are right to left, relative to 0)

51,82,RC reserved for sysiem use
Password 8-byte password field (encrypted)
TSI 4-byte creation time stamp field
TS2 4-byte update time stamp field

Only one directory label can exist in a drive’s directory area. The directory label name
and type fields are not used to search for a directory label; they can be used to identify a
disk.

You can use the DRV_SETLABEL system call to create a directory label or update its
fields. This system call can also assign a password to a directory label. The directory label
pessward, if assigned, cannot be circumvented, whereas file password protection on a drive
is an option controlied by the directory label. Thus, access to the directory label password
provides the ability to bypass passward protection on the drive.

3% DIGITAL RESEARCH®

2-19

2.6 Directory Labels and XFCRs Copcigrent CP/M Programmer’s Guide

Note: The file sysiem provides no specific system call to terd the directory label FCB
directly. However, you can read the directory label dats byte dirsctly with the BDOS systzm
call, DRV_GETLABEL. In addition, you can use the BDOS search system calls F_SFIRST
end F_SNEXT to find a directory label. You can identify the directory label by a value of
32 (020H) in byte O of the directory FCB.

The XFCB is an extended FCB that can optionally be associated with 4 file in the directory.
H present, it contains the file's password and password mode. The format of the XFCB is
shown below in Figure 2.3.

T
CR| File Type |PM|S1|S2|RC}| Password RESE{RVED

00 an. 0s. 12 13 14 15 18...... 25 8.

Flgure 2-3. XFCB - Extended File Control Block

SIDIGITAL RESEARCH*

Concurrent CP/M Programmer’s Guide 1.6 Directory Labels end XFCBs

The fields in the XFCB are defined in Table 2-9:

Table 2-9. XFCB Field Definitions

Field Definition
DR drive code (0-16)
File filename field
Type filetype field
PM password mode

Bit 7 - Read mode

Bit 6 - Write mede

Bit 5 - Delete made

{Bit references are right to left, relative to Q)

S1,82,RC reserved for system use
Password 8-byte password field (encrypted)
Reserved 8-byte area reserved for future use

An XFCB can be created only on & drive that hes a directory label, and only if the directory
label enables password protection. For drives in this siate, there are two ways to create an
XFCB far a file: with the F_MAKE system call or the F_WRITEXFCRB system call. The
F_MAKE system call creates an XFCB if the calling process requests that a password be
assigned 10 the created file. The F_WRITEXFCH system cal} creates an XFCB when it is
called to assign a password to an existing file. You can identify an XFCB in the directory by
a value of 16 (QI0H) + N in byte @ of the FCB, where N equals the user number.

@ DIGITAL RESEARCH®

2.7 File Pasrwords Coscarrent CP/M Progravaser’s Guide

2.7 File Passwords

There are two ways to assign passwords to a file: by the F_MAKE system cell or by the
E_WRITEXFCB system call. You can also change a file's password or password mode with
the F_WRITEXPCE system call if you can supply the original pessword. Note that you
cannot chenge a file's password or password mode if password protection for the drive is
disabled by the directory label. However. even if you cannot supply & file's password, you
cen dejete & file's XFCB, thereby removing its password protection, if password protection
is disabied on the drive.

The Concurrent CPM BDOS provides password protection in one of three modes when

pessward support is enable by the directory label. Table 2-10 shows the difference in access
level allowed o BDOS system calls when the password is not supplied.

Thble 2-10. Password Protection Modes

Mode Access Level Allowed Withowt Password
(1) Read Cannot bs read, modified, or deleted.
(2) Write Can be read, but not modified or deleted.
(3) Delete Can be read and modified, but not daleted.

If & file is password protected in Read mode, a process must supply the password to open
the file. Processes cannot write to & fils protected in Write mode without the password. A
file protecied in Delete mode ailows read and write access, but a process must specify the
pesswond to delete or truncate the file, rename the file, or to madify the file's attributes.
Thus, pessword protection in mode 1 implics mode 2 and 3 protection, and mode 2 protection
impliss mode 3 protection. All three modes require the user to specify the password to delets
or truncate the file, rename the file, or to modify the file's attributes.

B DIGITAL RESEARCH®
2-22

Concurrent CP/M Programmer's Guide 2,7 File Passwords

If a process supplies the correct password or the directory label disables password protec-
tion, then eccess to the BDOS system calls is the same as for a file that is not password-
protected. In addition, the ¥_SFIRST and F_SNEXT system calls are not affected by file
passwords, The following BDOS sysiem calls test for passwords.

DRV_SETL.ABEL
F_ATTRIB
F_DELETE
F_OPEN
F_RENAME
F_WRITEXFCB
F_TRUNCATE

The BDOS maintains file passwords in the XFCB and directory label in encrypted form.
To make a BDOS system call for a file that requires a passward, a process must place the
password in the first eight bytes of the current DMA, or make it the default password with
the F_PASSWD system call, before making the system call.

Note: The BDOS maintains the assigned default password for each process. Processes
inhertt the default password of their perent process. You can set a given TMP's default
password using the SET command; all programs loaded by this TMP inherit the same default
password.

@ DIGITAL RESEARCH®

323

1.8 FEe Duiz and Thue Stasups: SFCBa Comcurrest CP/M Progrosesesr’s Guide

2.8 File Date and Time Stamps: SFCBs

The Concurrent CP/M file system uses a special type of directory entry called an SFCB
to record date and time stamps for files. When a directory has been initialized for date and
time stemping, SFCBz reside in every fourth position of the directory. Each SFCB maintains
the date and time stamps for the previous three directory entries, as shown in Figure 24.

FGB 1
FCB 2
FCB 3
21 STAMPS STAMPS STAMPS £
FQR FCB1 FORFCB 2 FOR FCB 3 /Y
BYTE# 0 1 1 3 31 32

Figure 2-4. Directory Record with SFCB

This figure shows a 128-byte directory record containing an SFCB. Directory records have
four directory entries, each 32 bytes long: SFCBs always occupy the last 32-byte entry in
the directory record.

The SFCB itself contains five fields. The first field is a single byte containing the value
021H; this field identifies the SFCB within the directory. The next three fields, called the
SFCB subfields, are each 10 bytes in length and contain the date and time stamps for their
corresponding FCB entries in the directory record. The last byte of the SFCB is reserved for
system use. Figure 2-5 shows the detail of the SFCB subfields.

TIME AND DATE TIME AND DATE MODE

CREATE/ACCESS UPDATE PASSWORD l AESERVED

BYTE# O 4] 9 10

Figure 2-5. SFCB Subfields

& DIGITAL RESEARCH®
2-24

Concirrent CP/M Progranumer’s Guide 2.8 Fiie Date and Time Staanps: SFCBa

An SFCB subfield only contains valid information if its corresponding FCB in the directory
record is an extent zero FCB. This FCB is a file’s first directory entry. For password protected
files, the SFCB subfield also contains the password mode of the file; the password mode field
is zero for files without pessword protection, You can read SFCBs by making F_SFIRST
and F_SNEXT system calls. In addition, you can make an F_TIMEDATE system call to
retrieve the date and time stamps and password mode of a specified file. Refer to the T_GET
system cell definition in Section 6 for the description of the format of a date and time starnp
field.

Concurrent CP/M supports three kinds of file stamping: create, access, and update. Create
stamps record when the file was created, access stzemps record when the file was last opened,
and update stamps record the last time the file was modified. Create and access stamps share
the same field. Ae a result, file access stamps overwrite any create stamps.

The directory label of a properly initialized disk determines the type of date and time
staroping for files on the drive. The INITDIR utility initializes a directory for date and time
staroping by placing an SFCB in every fourth directory entry. Disks not initialized in this
way cannot support date and time stamping. In addition, date and lime stamping is not
performed if the disk’s directory label is absent or does not specify date and time stamping.
or if the disk is Read-Only.

Note that the directory label is also time stamped, but these stamps are not made in an
SFCR; time stamp fields in the [ast eight bytes of the directory label show when it was created
and Jast updated. Access stamping is not supperted for directory labels.

The BDOS file system uses the systern date gnd time when it records a date and time
stamp. This value is maintained in a field in the SYSDAT part of the System Data Segment,
The DATE utility sets the systern time and date (refer to the Concurrens CP/M User’s Guide
for details of using DATE).

DXGATAL RESEARCH®

2-25

1.9 Flle Open Modes Coucurtant CP/M Progrowrsery Gulie

2.9 File Open Modes
The file system provides three different modes for opening files. They are defined below.
Locked Mode

A process can open 4 file in Locked mode only if the file is not currently apened by
another process and the file ia not & Read-Only fil (attribute T1” set). Onee open in
Locked mode, no other process can open the file until it is clored. Thus, if a process
successfully opens & file in Locked mode, that process owns the file until the flle Is closed
or the precess terminates. Files opened in Locked mode support read and write opera-
tions unless the flle is password-protecied in Write mode, and the process issuing the
F_OPEN cali cannat supply the password. In this case the BDOS allows only read
operations Lo the file.

1f a file opened in Locked mode is 8 Read-Only file, the F_OPEN system call automati-
cally changes the open mode to Read-Only mode. Read-Only mode is described belaw.

Note: Locked mode is the Defsult mode for opening files under Concurrent CP/M.
Unlocked Mode

A prociss can open & flle in Unlocked mode if the file is not currently open, or if another
process has slready opened the file in Unlocked mode. This mode allows more then one
process to open the same file, Files opened in Unlocked mode support read and write oper-
ations unless the file is a Read-Only fle (atiribute TL1" sat) or the file is password-protected
in Write mode and the process issving the F_.OPEN call cannot supply the password.

When opening a fils in Unlocked mode, 2 process must reserve 35 bytes in the FCB
becauze the F_OPEN system call returns a 2-byte value called the File ID in the RO and RI
bytes of the FCB. The File ID is a required parameter for the F_LOCK and F_UNLDCK
system calls. These BDOS system calls work cnly for files opsned in Unlocked mode.

Rend-Only Mode
A process can open a file in Read-Only mode if the file is not currently opened by another

process or if another process has opened the file in Read-Only mode. This mode allows more
than on¢ process to open the same file for Read-Only access.

B DIGITAL RESEARCH®

2-26

Comenirrentt CF/M Programmer’s Goide 2.% File Open Modes

The F_QPEN system call performs the following steps for files opened in Locked or Read-
Only mode. IF the current user number is nonzero, and the file to be opened does not exist
under the current user number, the F_OPEN system call searches the user zero directoty for
the file. If the file exists under user zero and has the system atiribute T2’ set, the BDOS
opens the file under user zero. The apen mode is automatically forced 1o Read-Only when
this is done.

The F..OPEN and F.MAKE system calls use FCB inter{ace atribytes F5' and F6' to
specify the open mode. The interface arribute definitions for these functions are listed in
Table 2-7.

Note: The F_MAKE system call does not allow opening the file in Read-Only mode.

2,10 File Security

In general, the security measures implemented in the file sysiem prevent accidental col-
lisions between running processes, It is not possible to provide total security under Coneurrent
CP/M because the file system maintains file allocation information in open FCBs in the user’s
memory region, and Concurrent CP/M does not require memory protection. However, the
file system is designed to ensure that multiple processes can share the same file system without
interfering with each other by

o performing checksum verification of open FCBs.
& monitoring all open files and locked records via the system Lock List.

The BDOS validates the checksum of user FCBs before all 1/ O operations to protect
the integrity of the file system from corrupted FCBs. The F.OPENand F_MAKE system
cells compute and assign checksums to FCBs, The F_READRAND, F_READ,
F_WRITERAND, F_WRITEZF, F-WRITE, F_LOCK, and F_UNLOCK system calls
subsequently verify and recompute the checksums when they change the FCB. The
F_CLOSE system call 2Iso verifies FCB checksurms, Note that FCB verification by these
system calls can be disabled (see Section 2.12), but Concurrent CP/M?s file security is
reduced when this is done. If the BDOS detects an FCB checksum error, it does not
perform the requested command, Instead, it either returns to the calling process with an
error code, or if the system call is F_.CLOSE and the BDOS Errar mede is in the default
state {see Section Z.18), it terminates the calling process with an error message.

DIGITAL RESEARCH®
2-27

2.10 Fhe Secarlty Coucurrest CP/M Programmer’s Guide

Concurrent CF/M uses system data structure, called the Lock List, to manage file opening
and record locking by running processes. Each time a process opens & file or locks & record
successfully, the file system sliocates an entry in the syatem Lock List to record the fact.
The file system uses the following information to

M prevent a process from deleting, truncating, renaming, or updating the attributes of
ancther process’s apen fle.

W prevent a process from opening a file currently opened by another process, unless
both processss open the file in unlocked or Read-Only mode.

W prevent 2 process from resetting a drive on which another process has an open file.

W prevent a process from reading, writing, or locking a record currenily locked by
another process. Refer to Section 2.14 for more information on record locking and
unlocking,

‘The file gysiem only vetifies whether another process has the FCB-epecified file open for the
following file-access system calls: F_OPEN. F_MAKE, F_DELETE, F_RENAME,
F_ATTRIB, and F_TRUNCATE. For file-access system calls that require an open FCB, the
FCB checksum cantrols whether the onlling process can use the FCB. By definition, a valid
FCB checksum implies that the file hes been successfully opened and an entry for the fils
resides in the system Lock List,

The most comimon wey a process relesses a Iock entry for an epen file is by closing the
file. A close operation is permanent if it canses the removal of the file’s open Lock List entry.
The file system invalidates the FCB checksum field on permanent close operations to prevent
continezed open file operations with the FCB.

However, not all close operations are parmanent. For example, if 2 process makes rmltiple
B OPEN or F_MAXKE cslls 10 en open file, & matching mumber of F_CLOSE calls must be
mede before the file system permanently closes the fils. Of course, if you only open a file
once, a single close operation permanently closes the file. In sddition, a process can optionally
meke partiaf E CLOSE calls to & file by seiting interface atiribute F5'. A partial close
operation does not affect the open staie of a flle. In the sbove example, a partial close
operation would not count ageinst an F_OPEN or F_MAKE call. A partiel closs operation
simply upxates the directory to reflect the current state of the file.

Ag g general rule, under Concurrent CP/M a proceas should close files 85 soon s it no
longer needs them, even if it has not modified them. While & process hag a file apen, access
by other processes 1o the file Is restricted. For example, afier a process has opened a file in
Locked mode, the file cannot be opened by other processes until the file is closed or the
process ferminates.

BDIGITAL RESEARCH®
2-28

Concarrent CP/M Progracuner’s Guide 2.10 Fie Security

Furthermaore, space in the system Lock List is limited, If & process atiempts to open a file
and no space remeins in the system Lock List, or if the process exceeds the open file limit,
the BIXOS denies the apen request and usually terminates the calling process. You can change
the way the file system handles this error by making an F_ERRMODE system call. Note
that the size of the sysiem Lock List and the process open file limit are GENCCPM parameters.

There are several other situations where the file system removes open file entries from
the system Lock List for a process. For example, if a process makes an F_DELETE eall
for a file it has open in Locked mode, the file system deletes the file and also purges the
file's entry from the system Loek List. Deleting an open file is not recommended under
Concurrent CP/M but it is supported for files opened in Locked mode to provide
compatibility with software written under earlier relezses of MP/M™ and CP/M®_ The
file system does not allow deletion of 2 file opened in Unlocked ar Read-Only mode.

To ensure that the process does not use the open FCB corresponding io the deleted file,
the file system subsequently checks all open FCBs for the process. Each open FCB is checked
the next time it is used with a file-access sysiem call that requires an open FCB. If 2 Lock
List eniry exists for the file, the BDOS allows the operation to proceed; if not, it indicates
that the file has been purged and the file system returns an FCB checksum error.

The file system performs this verification of a process's open FCBs whenever it purges an
open file entry from the system Lock List. The following list describes these situations:

B A process makes an E_ATTRIB, P_DELETE, F_RENAME, or F_TRUNCATE
systern call io a file it has open in Locked mode. These operations cannot be performed
on a file open in Unlocked or Read-Only mode.

M A process issues a DRV_FREE call for a drive on which it has an open file.

m The BDOS detecis a change in media on a drive that has open files. This is a special
case because a process cannoi coniro| the occurrence of this situation, and because it
can impact more thap one process. Refer to Section 2.17 for more details on this
situation.

Open FCRB verification can affeet petformance becanse each verification operation requires

& directory search operation. In general, you should avoid such situations when creating new
programs for Concurrent CP/M.

B DIGITAL RESEARCH®

2-29

1.11 Exiensled File Locking Comemrent CP/M Prograssser’s Gulde

2,11 Extended File Locking

Extended file locking enables a Concurrent CP/M process to meintain a lock on a file
after the file i8 permanently closed. This facility allows a process {o set the atiributes, delets,
rename, or truncate a file without interference from other processes. In addition, this tech-
nique avoids the problems asecciated with ysing these system calls on open fles (see Section
2.10),

A proceas can elso reopen a file with an exiendéd lock and continue open file processing.
To illustraie how extended file locking might be used, a process can ¢lose an open flle,
renarne the file, reopen the file under its new name, and continue with file operativns without
ever loging the file’s Lock List itern and control over the file,

A process can only specify sxtended file locking for a file it has opened in Locked mode.
To extand & file’s lock, set interface attribute F6' when closing the Ale. The F_CLOSE
system ¢ull interrogates this aftibute only when it is closing a file permanently. Thus,
inwerface stiribute F5', signifying a partial close, must be reset when the F_CLOSE call is
made. In addition, the close operation muit be permanent. If 2 process has opened a file N
times, the F_CLOSE system call ignares the F6' attribute until the file is closed for the Nth
time,

Note thet the access rules for a file with an estended lock are identical to the rules for a
file open in Locked mode. In addition, you cannot extend the lock of a Read-Only file
(attribute T1” set). because a Read-Only file cannot be opened in Locked mode.

To maintain an exicnded file Iock through an F_ATTRIB, F_RENAME, or E_TRUN-
CATE system call, set interface attribute FS* of the referenced FCB when making the call.
The BDOS honors this atiribute only if the file has been closad with an extended lock.
Setting astribute F5* also mainteins an extended file lock for the F_DELETE system call,
but setting this atiribute also changes the nature of the delete operstion to an XFCB-only
delete. If succeseful, all four of these system calle delete a file's extended lock item if they
are called with atiribute F5" reset. However, the extendad lock item is not deleted if they
teturn with an error code.

@ DIGITAL RESEARCH®
2-30

Concurrent CP/M Programmer’s Guide 2.11 Extended Flle Locking

You can maks an F_OPEN call to resume record operations on a file with an extended
lock. Naote that you can also change the open mode when you reopen the file, The following
example illustrates the use of extended locks.

L. Open file EXLOCK.TST in Locked mode.
2. Perform read and write operations on the file EXLOCK.TST using the open FCB.

3. Cloese file EXLOCK.TST with interface attribute F6' set to retain the file's lock
item.

4. Use the F_RENAME system call to change the name of the file to EXLOCK.NEW
with interface attribute F5" set to retain the file’s extended lock item.

5. Reopen the file EXLOCK.NEW in Locked mode.
6. Perform read and write operations on the file EXLOCK.NEW, using the open FCB.

7. Close file EXLOCK.NEW again with interface atiribute F6' set to retain the file's
lock item.

8. Set the Read-Only attribute and release the file's lock item by meking an F_ATTRIB
system call with interface attribute F5' reset.

At this point. the file EXLOCK.NEW becomes available for access by another process,

2.12 Compatibility Attributes

Cotnpatibility attributes provide a mechanism to modify some of the Concurrent CP/M
file security rules for specific command files. Concurrent CP/M includes this facility because
some programs developed under earlier Digital Research operating systems do not run
properly under Concurrent CP/M. Most of the problems encountered by these programs
occur because they were designed for single-tasking operating systems where file security
is not required, For example, a program might close a file and then continue reading and
writing to the file. Under CP/M-86, this does not cause & problem. However, under Con-
current CP/M. the file system intercepts open file operations with a deactivated FCB to
ensure the integrity of the file system. With compatibility attributes, you have a tool for
dealing with these kinds of situations.

You should use compatibility attributes only with exisling programs that run properly
under CP/M or CP/M-86®, Do not use compatibility attributes with new programs you
develop under Concurrent CP/M.

DIGITAL RESEARCH®
231

2.12 Comspatibility Attriowtes Camewrrest CP/M Progressser'’s Gukde

Compatibility attributes are defined as file atributes F1' through F4' of program (CMD)
files. You can use the Concurrent CF/M SET utility to set these file attributes from the
command line. However, setting a command file’s compatibility atiributes has no effect
unless the GENCCPM COMPATMODE option has been selected during system genemation,
if this has been done, the P._CLI systern call interrogates file attributes F1* through F4° of
the command file during program loading and modifies the Concurrent CP/M file security
rules for the loaded program.

The Concurrent CP/M BDOS defines the Compatibility Attributes az shown in Table

=11

Table 2-11. Compatibility Attribute Definitians

Attribute

Definition

Fi*

Muodify the rules for Locked mode.

When a process running with F1' sst opens a file in Locked mode,
it can perform read and write operations to the file as normal, How-
ever, to other processes on the system, it appears ag if the file was
opened in Read-Only maode. Thus, another process runmning with F1°
act can open the zame file in Locked mode and alse perform write
operations to the file. In addition, if 8 process with F1° reset aftempts
to open the file in Locked or Read-Only mode, the open attempt is
allowed but the open mode is forced to Read-Orly. Furthermore,
write operations are not ellowsd when the process has F1° reset.

This compatibility mode is designed to allow multiple copies of the
same program to run concurrently, even though the program might
meke read and write cafls to & common file that it has opened in
Lockad mode. In eddition, this compatibility made allows other pro-
grems not in this compatibility mode to sccess the file oo a Read-
Only basis. Note that record locking is not supported for this modified
open mode. In addition, to be safs, make sll static files such as
program and help files Read-Only if you use this compatibility attribute.

There is an alternative to using this attribute if a program only
makes read calls to the commmon file. By setting the file's Read-
Only attribote, you force the open mode to Read-Only when the
file is opened in Locked mode.

S DIGITAL RESEARCH®

2-32

Concarrent CP/M Programmess Guide 2.12 Compatibitity Attribates

Thable 2-11. (continued)

Attribute Definition

F2' Change F_CLOSE to pattial close.

Processes running with F2' set only make partial F_CLOSE system
calls. This attribute is intended for programs that close a file to update
the directory but continue to use the file. A side effzct of this altribute
is that files opened by a process are not released from the system
Lock List until the process ierminates, When vsing this attribute, it
might be necessary to set the system Lock List perameiers to higher
valuzes when you generate a system with GENCCPM.

F3' Ignore close checksum errors.

This attribule changes the way the F_CLOSE systern call handles
Close Checksum errors. Normally, the file system prints an error
message on the console and terminates the calling process. However,
if this attribute iz set, the F_CLOSE system call ignores the check-
sum error and performs the close operation. This interface attribute
is intended for programs that modify an open FCB before closing a
file.

F4' Disable FCB Checksum verification for read and write operations.

Setting this attribuie also setsatiributes F2'and F¥. This attribute
is intended for programs that modify open FCBs during read and
write operations. Use this attribute very carefully, and only with
software known to work, because it effectively disables Concur-
rent CP/M?s file security.

Use the Concurrent CP/M SET utility to specify the combination of compatibility attribuies
you wanl set in the program’s command file. For example,

A>SET filespec [fl=on]
A>SET filespec [fl=on, f3=on]
A>SET Filespec [f4=on}

DIGITAL RESEARCH®
2-33

112 Compatibility Attributes Concurrent CP/M Programmer's Gulide

If you have a progmm that runs under CP/M or CP/M-86 but does not run properly under
Concurrent CP/M, use the following guidelines to select the proper compatibility attributes
for the program.

B If the program ends with the “File Currently Opened” message when multiple copies
of the program are run, set compatibility attribute F1', or place all common static
files under User O with the SYS and Read-Only attributes set.

W [f the program terminates with the message “Close Checksumn Error™, set compati-
bility attribute F3°,

M [f the program terminates with ag /O ervor, vy running the program with atribuie
F2' set. I the problem persigts, then try attribute F4'. Use artribute F4' only as a last
resort.

2.13 Multisector /O

The BDOS file syatem provides the capability to read or write multiple 128-byte records
in g single BDOS zystem call. This multisector facility can be visualized a3 a BDOS burst
mode, enebling & process to complete mnltipls YO operations without interfersnce from other
running processes. In addition, the BDOS flle system bypasses, when poszible, all inter-
mediate meord buffering during nuitisactor [) operations. Data is ransferred directly between
the calling procees's memory and the drive. The BDOS also informa the X108 when it &
reading or writing multiple phygicel records on a drive. The XIOS can use this information
1o further optimize the 1O operation resulting in even better performance. As a result, the
use of this facility in an application progrem can improve its performance and also enhance
overall system throughput, particularly when performing sequential I/0.

The mumber of records that can be transferred with multisector 1O ranges from | to 128,
This value, called the BDOS Muitizector Counl, can be set by the F_MULTISEC sysiem
call. The P_CLI system cell sate the Multisector Count to 1 when it initiates s transient
program for execution. Note that the greatest potential performence increases are obtained
when the Multisector Count iz sat to 128, Of course, this requires a 16K buffer. The Con-
current CP/M FIP utility performs its sequential O with a Multisector Count of 128,

The Multisector Count determines the mzmber of operations to be performed by the fol-
lowing BDOS gystem calls:

B F_READ and F_WRITE system calls
B F_READRAND, F_WRITERAND, and F_WRITEZF
® F_LOCK and F_UNLOCK

B DKITAL RESEARCH®
2-34

Concarrent CE/M Progranumer's Guide ‘ 2,13 Multinector /0

If the Multisector Count is N, calling one of the abave system calls is equivalent to making
N system calls. With the exception of disk /O errors encountered by the XIOS, if an eror
interrupts a multisector read or write aperation, the file system returns the number of 128-
byte records successfully transferred in register AH. Section 2.14 describes how the Multi-
sector Count effects the F_LOCK and F_UNLOCK system calls.

2.14 Concurrent File Access

Cotcurrent CP/M supports two open modes, Read-Only and Unlocked, which allow con-
currently running processes to access commeon files for record operations. The Read-Only
open mode allows multiple processes to read from a common file, but processes cannot write
fo a file open io this mode. Thus, files remain siatic when they are opened in Read-Only
mode. The Unlocked open mode is more complex because it allows multiple processes to
read and write records to a common file. As a result, Unlocked mode has some important
differences from the other open modes.

‘When a process opens a file in Unlocked mode, the file system returns a 2-byte field catled
the File ID in the RO and R1 bytes of the FCB. The File 1D is a required parameter of
Concurrent CP/M’s record locking system calls, F LOCK and E_UNLOCK, which ate only
supported for files open in Unlocked mode. Note that these system calls return a successiul
error code if they are called for files opened in Locked mode. However, they perform no
action in this case, because, by definition, the calling process has the entire file locked.

The E_LOCK and F_UNLOCK system calls allow a process to establish and release
temporary cwnership 1o particular records within a file. You must set the FCB Random
Record field and place the File 1D in the first two bytes of the current DMA buffer before
making these calls. The file system locks and unlocks records in units of 128 bytes, which
is the standard Concurrent CP/M record size. The number of records locked or unlocked
is conltrolled by the BDOS Multisector Count, which can range from I to 128 (see
Section 2.13). In order to simplify the discussion of record locking and unlocking, the
following paregraphs assume the Multisector Count is one. However, as discussed later in
this section, the more general case of multiple record locking and unlocking is a simple
extension of the single record case.

The F_LOCK system call supports two types of lock operations: exclusive locks and
shared locks. Interface attribute F5" specifies the type of lock. FS™ = 0 requests an exclusive
lock; F5° = | requests a shared lock. If a process locks a record with an exclusive lock,
other processes cannot read, write, or lock the record. The locking process, however, can
access the record with no restrictions. You should use this type of lock when exclusive control
over a record is required.

H DIGITAL RESEARCH®

2.14 Comtarrest Fils Accem Cancarrest CP/M Prograwesers Guaide

If u procase locks a record with a shared lock, other processss cannot write 1o the record
or maks an exclusive lock of the record. However, other processes are allowed to read the
rezort] end make their own shared locks on the recond. No process, including the locking
process, can write to a record with a ahared lock. Shared Jocks are useful when you want to
enaure that a record does not change, but you want to allow other processes to read the recond,

The F_LOCK eysiem call also lets yon change the lock of a record if there is no conflict.
For example, you can convert an exclusive lock into a shaved lock with no restrictions. On
the other hand, a process cannot convert a record's shared lock to an exclusive lock if another
process has A shared lock on the record.

The F_LOCK system call has another option, specified by interface attribute F&*,
which controls whether a record must exist in order to be locked. If you make an
F_LOCK systern call with F6’= 0, the file systemn returns an error code if the epecified
record does not exist within the file. Satting F6' to] requests a logical lock operation.
Logical lock aperations are only limited by the maximum Concurrent CP/M file size of
32 megabytes, which corresponds to & maximum Random Record Number of 262,143.
You can use lagical locks to control extending a shared file.

The F_UNLOCK system call is similar to the F_.LOCK call except that it rernoves locks
instead of creating them. There are few restrictions on unlock operations, Of course a
proossa cen only remove locks that it has mede. The F-UNLOCK syitem ¢all has one
option, controlled by interface attribute F5. If F5'is set to one, the E_.UNLOCK system
call removes ell locks for the file made by the teHing process. Otherwise, it removes the
locks gpecitied by the Random Record field and the BDOS Multisector Count. Note that
the F_CLOSE system call also removes alllacks for a file on permanent close operations.

H the BDOS Multiseetor Count is greater then ong, the F.LOCK and F_TUINLOCK system
calls perform multipie record locking or unlocking. [n general, multiple record locking and
unlocking can be viewed as a sequence of N independent operations, where N equalg the
Multisector Count. However, if an error occurs on any record within the sequence, no locking
or unlocking is performed. Far example, both F_LOCK and F__ UNLOCK perform no action
and return an error code i the sum of the FCB Random Record Number and the BDOS
Multisector Count is greater that 262,144. As another exemple, the F_LOCK system call
alsc returns an error code if another process has an exclusive lock on any record within the
sequence.

B DICITAL RESEARCH®
2-36

Conenrrvent CP/M Programmers Guide 2.14 Concurrent File Access

Whee a process makes an F_LOCK system call, the file system allocates a new entry in
the systemn Lock List to record the lock operation and associate it with the calling process.
A corresponding F_UNLOCK system call removes the locked entry from the list. While the
lock entry exists in the system Lock List, the file system enforces the restrictions implied by
the lock item.

Because each lock item includes a record count field, a multiple lock operation normally
results in the creation of a single new entry. However, if the file systern must split an existing
lock, entry to satisfy the lock operation, an additional entry is required. Similarly, an unlock
operation can require the creation of a new entry if a split is needed. Thus, in the worst case,
a lock aperation can require two new lock entries and an unlock operation ¢an require one.
Note thet lock item splitting can be avoided by locking end unlocking records in consistent
units.

These considerations are important becanse the Lock List s a Timited resource under
Concurrent CP/M. The file system performs no action and returns an error code if insufficient
availeble enlries exist in the system Lock List to satisfy the lock or unlock request. In addition,
the number of lock items a single process is allowed to consume is a8 GENCCPM parameter
esteblished at SYSGEN time. The file system also returns an error code if this limit is
exceeded.

The file system performs several special operations for read and write system calls to a
file apen in Unlocked mode. These operations are required because the file system maintains
the current state of an open file in the calling process’s FCB. When multiple processes have
the same file open, FCBs for the same file exist in each process’s memory. To ensure that all
processes have current information, the file system updates the directory immediately when
an FCB for an unlocked file is changed. In addition, the file system verifies arror situations
such as end-of-file, or reading unwritten data with the directory before returning an error.
As a result, read and write operations are less efficient for files open in Unlocked mode when
compared to equivalent operations for files opened in Locked mode.

2.15 File Byte Counts

Although the logical record size of Concurrent CP/M is restricted to 128 bytes, the file
system does provide a mechanism to store and retrieve a byte count for a file. This facility
can identify Lthe last byte of the last record of a file. The F_SIZE system call returns the
Random Record Number, + 1. of the last record of a file.

DIGITAL RESEARCH®

2.37

215 Fila Byte Counts Conewrent CP/M Programmer's Gulde

The F_ATTRIE system call can sst & file’s byle count. This is an option controlled by
intarface attribute F6'. Conversely, the F_OPEN system call can return a file’s byte count to
the CR field of the FCB. The F_SFIRST and F_SNEXT syatem calls also return a file's byte
count. These system calls return the byte count in the CS field of the FCB returned in the
current DMA buffer,

Note ther the fle system does not aceess or update the byte count value in BDOS read or
write gyetem celle. However, the F_MAKE systern call does set the byte count velue to zero
when it creates g file in the directory.

2.16 Record Blocking and Deblocking

Under Concurrent CP/M, the logical record size for disk 10 is 128 bytes. This is the basic
unit of data transfer between the operating system and running processes. However, on disk,
the record size ia not restricted to 128 bytes. These records, called pirysical records, cen
range from 123 bytes to 4K bytes in size. Record blocking and deblocking is required on
gysicmas that suppart drives with physical record sizes larger than 128 bytes.

The process of building up physical records from 128-byte logical records is called recond
blocking. This process is required in write operations. The reverse process of breaking up
phyzical records into their component 128-byte logical records is called record deblocking.
This procees is required in read operations. Under Concurrent CP/M, record blocking and
deblocking is normelly performed by the BDOS.

Recard deblocking implies a read-ahead operation, For example, if a process reads a logical
record that resides at the beginning of a physical record, the entire physical record is read
into an internel buffer. Subssquent BDOS read calis for the remdining logical records aceess
the buffer instead of the disk. Conversely, record blocking results in the postponement of
physicel write operations but only for data write operations. For exemple, if 2 transient
progrem makes a BDOS write call, the logical record is placed in a buffer equal in size to
the physical record size. The write operation on the physical record buffer is postponed uniil
the buffer is needed in another IO operation. Note that under Concurrent CP/M, direciory

write operations are never postponed.

N DIGITAL RESEARCH®

2-38

Concarrent CP/M Programmer’s Guide 2.16 Record Blocking and Deblocking

Posiponing physicel record write operations has implications for some application pro-
grams. For programs that involve file updsting, it is often critical to gusrantee that the state
of the file an disk parallels the state of the file in memory after an update operation. This is
only an issue on drives where physical write operations are postponed because of record
blocking and deblocking. If the system should crash while a physical buffer is pending. data
would be lost. To prevent this loss of data, the F_FLUSH system call can be called to force
the write of any pending physical buffers associated with the calling process.

Note: The file system discards all pending physical data buffers when a process tarminates.
However, the file system automatically makes an F_FLUSH call in the F..CLOSE system
call. Thus, it is sufficient to make an F_CLOSE system call to ensure that all pending physical
buffers for that file are written to the disk.

2.17 Reset, Access, and Free Drive

The BDOS system calls DRY_ALLRESET, DRV..RESET, DRV_ACCESS, and
DRV_FREE allow a process to control when to reinitialize a drive directory for file operz-
tions. This process of initializing a drive’s directory is called logging-in the drive.

When you start Concurrent CP/M, all drives are initialized to the reset siate. Subsequently,
as processes reference drives, the file system automatically logs them in. Once logged-in, a
drive remains in the logged-in state until it is reset by the DRV_ALLRESET or DRY_RESET
system calls or a media change is detected on the drive. If the drive is reset, the file system
auromatically logs in the drive again the next time a process references it. The file system
logs in a drive immediately when it detects a media change on the drive.

Note that the DRV_ALLRESET and DRV_RESET systemn calls have similar effects except
that the DRV_ALLRESET system call affects all drives on the system. You can specify the
combination of drives to reset with the DRV_RESET systern call.

Logging-in a drive consists of several steps. The most important step is the initialization
of the drive’s allocation vector, The allocation vector records the ellocation and deallocation
of dala blocks to files, as files are created, extended, deleted and truncated. Another function
performed during drive log-in is the initialization of the directory checksumn vector. The file
system uses the checksum vector to detect media changes on a drive. Note that permanent
drives. which do not support media changes. usually do not have checksum vectors.

0 DIGITAL RESEARCH*®

2.39

!
2.17 Reset, Avcems, and Free Drive Concwrent CP/M Programmer's Guide

Under Concurrent CP/M, the DRV_RESET cperation is conditiona!, The file system
cannot resct a drive for & process if enother process hes an open file on the drive. However,
the exact ection taken by & DRV_RESET operation depends on whether the drive to be reset
is permanent or emovable.

Concurrent CP/M determines whether a drive is permanent or removable by intermogating
e bit in the drive's Disk Parameter Block (DPB) in the XIOS. A high-order bit of 1 in the
DPB Checksum Vector Size field designates the drive as permenent. A drive’s Removable
or Nonremovable designation is critical to the reset operation described below.

The BDOS first determines whether there are any files currently open on the drive to be
resei, If there are nore, the reset takes place. If there are open flles, the action teken by the
reset operation depends on whether the drive is removable and whether the drive is Read-
QOnly or Read-Write. Note that only the DRV_SETRO system call can set a drive to Read-
Only. Following log-in, & drive is always Read-Write,

If the drive is a permanent drive and if the drive is not Read-Cmly, the reset operation is
not performed, but a successful result is returned to the calling process.

However, if the drive is removable or set to Read-Only, the file systermn determines whether
other processes have open files on the drive. I they do, then it denies DRV._RESET operation
and returns an error code to the calling process.

If ell the open flles on a removable drive belong to the calling process, the process is said
to own the drive. In this case, the file system performs a gualified reset on the drive and
returns a successfil result. This means that the next time a process accesses this drive, the
BDOS performs the log-in operation only if it detzets & media change on the drive. The logic
flow of the drive reset operation is shown in Figure 2-6.

B DIGITAL RESEARCHY

240

Concurresi CP/M Programmer’s Guide 117 Reset, Access, and Free Drive
YES
COPEN FILES
ON CRIVE? l
NO
DRIVE YES
REMOVABLE?
¥ no
YES
DRIVE R/Q?
l NO
RESET DO NOT RESET OPEN FILES YES
CRIVE DRIVE BELONG TO
ANOTHER
PROCESS"?
¥ NO
GQUALIFIED
RESET
PERFORAMED
CISK DISK
RESET e RESET
SUCCESS DENIED
Figure 2-6. Disk System Resel

If the BDOS detects 2 media change on a drive afier a qualified reset, it purges all open
files on the drive from the system Lock List and subsequently verifies all open FCBs in file
operations for the owning process (refer to Section 2,10 for detzils of FCB verification).

In al! other cases where the BDOS detects a media change on a drive, the file system
purges all open files on the drive from the system Lock List, and flags all processes owning
a purged file for automatic open FCB verification.

@ DIGITAL RESEARCH®

241

217 Reaet, Access, sl Free Drive Cosenrrest CP/M Progromunir’s Guide

Note: If a proctss references a purped file with & BDOS command that requires an open
FCB, the file systerm returns (o the process with an FCB checksum error.

The primery purpose of the drive reset functions is 1o prepare for a media change on &
drive. Becanse a drive reset operation is conditionsad, it allows & process to tzst whether it is
sefe to change digks, Thus, a process should make & successful drive resat call before prompt-
ing the user to change disks. In addition, you should closs all your open files on the drive,
particulerly files you have written to, before prompting the user to change disks. Otherwise,
you might lose date.

The DRV_ACCESS and DRV_FREE system calls perform speciel actions under
Concurrent CP/M. The DRV_ACCESS system call inserts & dummy open file item into the
system Lock List for each specified drive. While that item exists in the systern Lock List,
no other process can reset the drive. The DRY_FREE systemn call purges the Lock List of
all iterns, including open file ilems, belonging to the calling process on the specified drives.
Any subsequent reference to those files by a BDOS system call requiring an open FCB results
in an FCB checksum error refurn.

'The DRV_FREE system cell hes two important side effects. First of all, any pending
blocking/deblocking buffers on B specified drive thet belong to the calling process are dis-
cardad. Secondly, any dita blocks that have been allocated to files thei have not been closed
tre Joat. Be sure to close your files before making this sysism call.

The DRV_SETRO systein call is alao conditional under Concurrent CP/M. The file system
does not allow a process to sef & drive to Read-Only if another process has an open file on
the drive. This applics to both removeble and permanent drives,

A proceas can prevent other processes from resetting ¢ Read-Only drive by opening a file
on the drive or by issning & DRV_ACCESS call for the drive and then making a
DRV_SETRO system ¢all. Executing DRY__SETRO befors the F._OPEN or DRV_ACCESS
call leaves 8 window in which another process could set the drive back 1o Read-Write. While
the open file or dummy item belonging to the process resides in the system Lock List, no
other process can reset the drive to take it out of Read-Only status.

M DIGITAL RESEARCH®
242

Concurrent CP/M Programmer's Guide 2.18 BDOS Error Handling

2.18 BDOS Error Handling

The Concurrent CP/M file system has an extensive ertor handling capability. When an
error is detected, the BDOS responds in one of three ways:

1. It can return to the calling process with return codes in the AX register identifying
the error.

2. It can display an error message on the console and terminate the process.

3. Itcan displey an error message on the console and return an error code to the cealling
process, as in method 1.

The file system hendles the majotity of errors it datects by mathod 1. Two examples of this
kind of error are the “file not found™ error for the E_OPEN system call and the “reading
unwritten data” error for the F_READ call. More serious arrors, such as disk /D errors, are
normelly handled by method 2. Errors in this category, called physicel end extended errors,
can also be reported by methods 1 and 3 under program control.

The BDOS Error mode, which has three states, determines how the file system handles
physical and extended errors. In the defanlt state, the BDOS displays the errar message and
lerminates the calling process (method 2). In Return Error mode, the BDOS returns control
to the calling process with the error identified in the AX register (method 1). In Return and
Display Error mode, the BDOS returns control to the calling process with the error identified
in the AX register and also displays the error message at the console (method 3).

While both return modes protect & process from termination becanse of a physical or
extended error, the Return and Display mode alse allows the calling process to take advantage
of the built-in error reporting of the file system. Physical and extended errors are displayed
on the console in the fellowing format:

CP/M Error on d: error message
BDOS Function = nn File = filename.typ

where d is the name of the drive selected when the error condition occurs; error message
identifies the error; nm is the BDOS function number, and filename.typ identifies the file
specified by the BDOS function. If the BDOS funetion did net involve an FCB, the file
information is omitted.

Tables 2-12 and 2-13 detail BDOS physical and extended error messages.

I DHGITAL RESEARCH®

2-43

2.13 BDOS Error Handling Concwrent CP/M Programmer’s Guide

Table 2-12. BDOS Physical Exrors

Message

Meaning

Disk I/0

The “Disk 10" error results from an error condition returned to the
BDOS from the X10S module. The file system makes XIOS read
and write calls to exscute BDOS file-access system calls. If the XIOS
read or writs routine dstects an ervor, it returns an error cods to the
BDOS, causing this error message.

Invalid Drive

The *Invalid Drive™ error alsc reeults from an error condition returned
to the BDOS from the XIOS module, The BDOS makes an XIOS
Select Disk call before accessing a drive to perform a requested
BDOS function, If the XTOS does not suppoert the selected disk, it
returns an error code resulting in this error.

Read/Only Filse

The BDOS returns the “Raad/Only File” error message when a process
attsmpts to write to a fils with the R/O attribuie set.

Read/Qnly Disk

The BDOS returns the “Read/Only Disk error” message when a
process makes a write operstion to a disk that is in Read-Only status.
A drive can be placed in Read-Only status explicitly with the
DRV_SETRO system call.

244

BDIGITAL RESEARCH®

Concurrent CP/M Programmer’s Guide 1.18 BD0S Error Handling

Tahle 2-13. BDOS Extended Errors

Message Meaning

File Opaned in Read/0Only Mode

The BDOS returns the “File Opened in Read/Only Mode™ error
message when a process attempts to write to a file opened in Read-
Only mode. A process can open a file in Read-Only mode explicitly
by setting FCB interface attribute F6'. In addition, if a process opens
a file in Locked mode, the file system eutomatically forces the open
mode to Read-Only mode when:

B the process opens a file with the Read-Only attribute set.

W the current user numbet is not zero and the process opens a user
zero file with the SYS ateribute set.

The BDOS also returns this error if a process attempts 1o write toa
file that is password-protected in Write mode, and it did not supply
the cortect password when it opened the file.

File Currently Open

The BDOS returns the “File Currently Open”™ ertor message when
a process attempts to delete, rename, or modify the amributes of 2
file opened by another process. The BDOS also returns this error
when a process attempts to open a file in a mode incompatible with
the mode in which the file was previonsly opened by another process
or by the calling process.

Close Checksum Error

The BDOS returns the “Close Checksum Error” message when the
BDOS detects a checksum error in the FCB pessed o the file system
with an F_CLOSE call.

Password Error

The BDOS retorns the “'Password Error” message when passwords
are required and the file password is not supplied or is incorrect.

B DIGITAL RESEARCH®

245

1.13 BDOB Error Handling Concuyrent CP/M Proyrammer’s Goida

Table 213, {contlnued)

Message Meaning

File Alrendy Exists

The BDOS returns the “File Already Exists” error measage for the
F_MAKE and F_RENAME systern calls when the BDOS defects a
conflict on filename and filetype.

Illegal t in FCB

The BDOS returns the “Illegal ? in FCB" error message when the
BDOS detects a ? chamcter in the filename or filetype of the passed
FCB for the F_ATTRIB, F__OPEN, F_RENAME, F_TIMEDATE,
F_WRITEXFCB, F_TRUNCATE, and F_MAKE system calls.

Open File Limit Excesded

The BDOS returns the “Open File Limit Excesded” error messags
when e process cxcesds the process fils Jock limit specified by
GENCCPM. The F_OPEN, F_MAKE, and DRY._ACCESS system
calls can return this emor.

No Room in System Look List

The BDOS returns the “No Room in System Lock List™ error mes-
sage when no room for new entries exists within the system Lock
List. The E_OPEN, F_MAKE, and DRY_ACCESS system calls
can return this emor.

The following paragraphs describe the error return code conventions of the file system
calls. Most file system calls fall inio three catagaries in regard to return codas; they return
an error code, a directory code, or an error flag. The error conventions let programs written
for CP/M-B6 run without modification.

B DIGITAL RESEARCHS®

Concurrent CP/M Programmer's Gukle

The following BDOS systam calls return a logical error in register AL:

F_LOCK
F_READ

F_READRAND

F_UNLOCK
F_WRITE

FE_WRITERAND

F_WRITEZF

Teble 2-14 lists error code definitions for register AL.

Table 2-14. BDOS Error Codes

Code Definition
00H: Function successful
OIH: Reading unwritten data
No avsilable directory space (Write Sequential)
02H: No available data block
03H: Cannot close current extent
(4H: Seek to unwritten extent
05H: No available directory space
O6H.: Randem record number out of range
* DEH: Record locked by ancther process
(restricted to files opened in Unlocked mode)
09H: Invalid FCB (previous BDOS F_CLOSE system call
rcturned an error code and invalidated the FCB)
OAH: FCB checksum error
* 0BH: Unlocked file unallocated block verify error
w* OCH: Process record lock limit exceeded
** ODH: Invalid File ID
** (OEH: No room in System Lock List
OFFH: Physical error : refer to register AH
* . returned only for files opened in Unlocked mode
** . returned only by the F_LOCK and F_UNLOCK system calls for
files opened in Unlocked mode
DIGITAL RESEARCH®

2,13 BDOS Error Handling

247

118 BDOS Error Handlng Concarrent CP/M Programitier's Guide

For BDOS read and write system calls, the file syatem also sets ragister AH when the returned
error code is & value other then zero or OFFH. In this case, register AH containg the pumber
of 128-byte reconds successfully read or written before the error was encountsred. Note that
register AH can only contain 8 nonzerm value if the calling process has sat the BDOS
Multisector Count to & value other than one; otherwise register AH ia always set to zero. On
successful system calls (Error Code = 0), register AH iz aleo set to zera. If the Error Code
is OFFH, register AH contains a physical error code (see Table 2-15).

The following BDOS gystem calls return a directory code in register AL:

DRY_SETLABEL
F_ATTRIB
E_CLOSE
F_DELETE
F_MAKE
F_OPEN
F_RENAME
F.SIZE
F_SFIRST
F_SNEXT
F_TIMEDATE
F_TRUNCATE
F_WRITEXFCB

The directory code definitions for register AL follow.

00H - 03H : successful function
OFFH : unsuccesaful function

With the exception of the F_SFIRST and F_SNEXT system calls, all functiona in this
category retorn with the directory code set to zero upon a successful return. However, for
these two system calls, a successful directory code identifies the relative starting position of
the directory entry in the calling process's current DMA buffer.

@ DIGITAL RESEARCH®
248

Concurrent CP/M Programmer’s Guide 2.18 BDOS Error Handling

1f & process uses the F_ ERRMODE system call to place the BDOS in Return Exror mode,
the following system calls return an error flag in register AL on physical errors:

DRV_GETLABEL
DRV_ACCESS
DRV_SET
DRV_SPACE
DRV_FLUSH

The error flag definition for register AL follows,

O0H : suceessful function
DFFH : physical error : refer 1o register AH

The BDOS returns nonzero values in register AH to identify a physical or extended error
if the BDOS Error mode is in one of the return modes. Except for system calls that return a
Directory Code, register AL equal to OFFH indicates that register AH identifies the physical
or extended error. For functions thet return a Directory Code, if register AL equals 255, and
register AH is not equal to zaro, register AH identifies the physical or extended error. Table
2-15 shows the physical and extended error codes returned in register AH.

Table 2-15. BDOS Physical and Extended Errors

Code Explaration
01H Disk [/O Error : permanent error
02H Read/Only Disk
3H Read/Only File, File Opened in Read/Only Mode, or File Password Pro-
tected in Write Mode and Correct Password Not Specified
4H Invalid Drive : drive select error
05H File Currently Open in an incompatible mode
06H Close Checksum Error
07H Password Error
08H File Already Exists
¥H Illegal 7 in FCB
0AH Open File Limit Exceeded
O0BH No Room in System Lock List
M DIGITAL RESFARCH®

249

.18 BDOS Eror Handing Concorrent CP/M Programmer's Guide

The following two system calls represent a special cage becmne they refrn an eddress in
register AX.

DRV_ALLOCVYEC
DRV_DBP

When the calling process is in one of the BDOS return errar modes and the BDOS detects
& phyzical error for thesa system calls, it raturns to the calling process with registers AX and
BX set 1o GFFFFH. Otherwise, they return no error code.

Under Concurrent CP/M, the following systern calls also represent a special case.

DRV_ALLRESET
DRV_RESET
DRV_SETRD

These system calls return to the calling process with registars AL and BL set to OFFH if
anothey process has an open file or has made 3 DRV_ACCESS call that prevents the reset or
write protect operation. If the calling process is not in Raturn Error mode, these system calls
also display an error message identifying the process that prevented the requested opetation.

End of Section 2

W DIGITAL RESEARCH®

Section 3
Transient Commands

3.1 Transient Program Load and Exit

A transient program is a file of type CMD that is loaded from disk and regides in memory
only during its operation. A resident system program: is a file of type RSP that is included
in Concurrent CP/M during GENCCPM. Section 4 describes the three system memory models
that determine the initial values of segment registers in trensient processes.

You can initiate a transient process by entering 2 command at a system console. The
console’s TMP (Terminal Message Processor) then calls the Command Line Interpreter system
call (refer to the P_.CLI system call), and passes to it the command line entered by the user.
If the command is not an RSP, then the P_CLI system cal! locates and then loads the proper
CMD file. P_CLI then calls the F_PARSE system call to parse up to two filenames following
the command, and place the properly formatted FCBs at locations 00SCH and 006CH in
the Base Page of the initial Data Segment.

The P_CLI system call initjalizes memory, the Process Descriptor, and the User Data
Area (UDA), and allocates a 96-byle stack area, independent of the program, to contain the
process’s initial stack. If 8087 processing is required (see Section 3.1.2) P_CLI allocates
an additional 96 bytes for the UDA. Concurrent CP/M divides the DMA address into the
DMA segment address and the DMA offset. P_CLI initializes the defanlt DMA segment to
the value of the initial date segment, and the defeult DMA offset to 00S0H.

The P_CLI system call creates the new process with a P_CREATE systemn call and seis
the initial stack so that the process can execute a Far Return insfruction to terminate. A
process also ends when it calls DRY_ALLRESET or P_TERM,

Youcanalsoterminate a process by typing a single CTRL-C during console input. See
C_MODE for details of enabling/disabling CTRL-C., CTRL-C, when typed at the
prempt, forcesa DRV_RESET call for each logged-in drive. This operation only affects
removable media drives.

Note: Additicnal UDA space is allocated for 8087 processing only if the process is inj-
tialized by the P_CLI or P_LQAD system call, Other processes (such as RSPs) that require
8087 processing and do not use P_CLI or P_LOAD must allocate this additional UDA space
themselves,

13 DIGITAL RESEARCH®
ES|

3.1 Trassiext Progrees Lomd smd Exit Concwrront CP/M Prograomsec's Gulde

3.1.1 Shared Code

Concurrent CP/M allows processes to share program code. This capability of sharing
program code avoids unnecessary program loading of 2 code segment already in memory
and conserves memory space since multiple copies of the same program code do not have
to occupy different memory space. During progrem losd of a “shareble™ program code, the
syster allocates the code group separately from the rest of the program. This code group
is maintaiped in memory even after the program bes terminated. Subsequent loading of the
same progrem does not load the code group, but uges the existing one instead. Obviously,
programa written with separatz code and date cen take advantage of this feature,

The sysiem meintaing a shared code group in memory uniil 8 memory requsst or a reset
drive forces its relesse. The system maintaing shared cods groups in memory in Lesst
Recently Usad (LRU) order on the Shared Code List. If 8 memory request is made that
cannot be satisfed, the Jist is draioed, one at & time, until the memory request is satisfied,
ot the Shared Code List is emptied. If a drive is reget, the system purges all code groups
from the Shared Code List loaded from that drive.

A shared code program is flagged by the vaiue 09H inthe G Type field of the Code
Group Descriptor in the CMD file header (see Section 3.2). The user may set this field by
using the CHSET utility (see Cortcurrent CP| M User s Gulde). Note that progrems using
the 8080 memory model cannct be set to shared code.

3.1.2 BOB7 Support

Concurrent CP/M provides optional 8087 support for systems that use the 8087 processor.
This suppart is indicated by the Program Flag, byte 127 {(07FH), of the CMD file header.
Setring bit 6 (bit 0 is least significant bit) of the Program Flag indicates optional 8087
suppart, which means that if the 8087 is presant, the program uses it; otherwise, the program
will emulata it. If bit $ of the Program Flag i set, it indicates that the 8087 must be present
in order far the program to run. If no B087 is present end bit 5 of the Program Flag is set,
the system returns an error when it tries to load the program. The CHSET utility can be
used lo set the program'’s header record for optional or required 087 support.

1f you use the P_CLI or P_LOAD systern call 1o initiate and execute a process, the system
allocetes en extra 9% bytes to the UDA for 8087 support. If you require 8087 support and
de not use the P_CLI or P LOAD system call, you must specificelly allocate this additionat
96 bytes to the UDA, turn on the 8087 flag in the PD, and initialize the CW and SW fields
in the 8087 UDA extension {see description of these fields in Section 6 under the P_CREATE
system call}.

8 DIGITAL, RESEARCH®
3.2

Concurrent CP/M Programmer’s Guide 3.1 Transient Program Lond and Exit

3.1.3 8087 Exception Handling

Although the system provides its own 8087 exception handling routine, the user might
want to write his own 8087 exception handler. Appendix E includes instructions and infor-
mation required by the user to write his own 8087 exception handler, with a sample listing
of an 2087 exception handler routine,

3.2 Command File Format

A CMD file consists of a 128-byte header record followed immediately by the memory
image. The command file header recond is composed of 8 group descripiors (GDs), gach 9
bytes long. Each group descriptor desceribes a portion of the program to be loaded. The
format of the header record is shown in Figure 3-1.

[GDW'GDZIGDSIGDA!IGD&IGDGIGD?lGD&l I

128 BYTES

Figure 3-1. CMD File Header Format

In Figure 3-1, GD 1 through GD 8 represent group desctiptors. Each group descriptor
corresponds to an independently loaded program unit and has the format shown in Fig-
ure 3-2,

Q3H Q5H o7H 08H

0oH D1H
1 LY
rG_TYPEJ G.LENGTH A_BASE I G_MIN l G.MAX I

Figure 3-2. Group Descriptor Format

G_Type determines the group desctiptor type. The valid group descripiors have a G_Type
in the range | through 8. as shown in Table 3-1. All other values are reserved for system
use. For a given CMD file header only a Code Group and one of any other type can be
included.

B DIGITAL RESEARCH®
33

3.2 Cozmmand FRe Formst Comcmrrest CPM Programmer'’s Gulde

If a program uses either the Small or Compact Model, the code group is typically pure;
that is, il is not modified during program axecution.

Table 3-1. Group Descriptors

G_Type Group Type
OlH Code Group (nom-
ghared}
2R Data Group
03H Extra Group
D4H Stack Group
05H Auxiliary Group #1
06H Auxiliary Group #2
O7H Auxiliary Group #3
08H Auxiliary Group #4
09H Code Group {shared)

All remaining values in the group descriptor are given in increments of 16-byte paragrmaph
units with an assnmed low-order 0 nibble to complete the 20-bit address.

Table 3-2. Group Descriptor Fields

Field Descripiion
G_Length Gives the number of paregraphs in the group. Given a G_length
of 0B0H, for exsrnple, the size of the group is 0800H (2048
decimal) bytes.
A_Base Defines the base paragraph address for a nonrelocatable group.
G_Min/G._Max Define the minimum and maximum size of the memory area to
allocats to the group.

HDIGITAL, RESEARCH®
34

Concurrent CP/M Frogrammer's Guide 3.3 Base Page Initislization

The memory model described by a header record is implicitly determined by the group
descriptors (refer to Section 4.1). The 8080 Model is assumed when only a code group is
present, because no independent data group is nemed, The Small Model is assumed when
both a code and data group are present but no edditional group descriptors occur. Otherwise,
the Compact Model is assumed when the CMD file 35 loaded.

3.3 Basc Page Initialization

The Concurrent CP/M Base Page contains default values axl locations initialized by the
P_CLI and P_LOAD system calls and used by the transient process.

The Base Page occupies the regions from offset 0000H through OOFFH relative to the
initial data segment, and contains the values shown in Figure 3-3.

W DIGITAL RESEARCH®

3.3 Ease Prge Initislizntion Comcwrront CP/M Programmser’s Guide
L M H L H
1 2 3 4 5
¥ + + + +
0 CODELENGTH CODE BASE Mao
+ + L +
-] DATALENGTH DATA BABE RESERYED
[EXTRALENGTH EXTRA BASE RESERVED
+ + +
12 STACK LENGTH J STACK BASE RESERVED
18 AUX 1 L AUX 1 RESERVED
} + 1 + +
1E AUX 2 AUX 2 RESERVED
+ + 1 + ;
24 AUX 3 AUX3 RESERVED
+ ¥ + + L
2A AUX 4 AUX 4 RESERVED
+ + + +
a0 BYTES 030H THROUGH D4FH ARE NOT CURRENTLY USED AND
ARE RESERVED FOR FUTURE USE BY DIGITAL RESEARCH
+ +
50 DRIVE PASSWORD 1 ADDR I PiLEN PASSWORD 2 ADDR
+ +
58 P2 LEN RESERVED FQR FUTURE USE
‘ + + + -+
5C DEFAULT FILE NAME1
+ + + + +
EC
DEFAULT FILE NAME2
e CR)[RANDOM RECORD NUMBER {DPT} T
+ + + + +
BO DEFALLT 128-BYTE DMA BUFFER

Figure 3-3. Concurvent CP/M Base Page Values

M DIGITAL RESEARCH®

Concurreni CP/M Programmer’s Galde 3.3 Base Page Initialization

The fields in the Base Page are defined as follows:

B The ME0 byte is a flag indicating whether the 8080 Memory Model was nsed during
loed. The velues of the flag are defined es:

1 = 8080 Model
0 = not BOSO Model
If the 3080 Model is usad, the code length never exceeds OFFFFH.

E The bytes marked Aux 1 through Aux 4 correspond to a set of four optional inde-
pendent groups that might be required for programs that execute using the Compact
Memory Model. The initial values for these descriptors are derived from the header
record in the memory image file.

® Length is stored using the Intel convention: low, middle, and high hytes.

® Base refers to the paragraph address of the beginning of the segment.

® The drive byte identifies the drive from which the transient program was read. 0

designates the default drive, while a value of 1 through 16 identifies drives A through
P.

B Password [Addr (bytes 0051H-D052H) containg the address of the pagsword field of
the first command tail operand in the default DMA buffer at 0080H. The P_CLI
systern call sets this field to O if no password is specified.

& Pl Len (byte D053H) contains the length of the password field for the first command
tail operand. The P_CLI system call sets this to 0 if no password is specified.

B Password 2 Addr (bytes 0054H-0055H) contains the address of the password field of
the second command tail eperand in the defanlt DMA, buffer at 0080H. The P..CLI
sysizm call sets thia field to 0 if no password ig specified.

B P2 Len (byte 0056H) contains the length of the password field for the second command
tail operand. The P_CLI system call sets this field to 0 if ne passward is specified.

A File Namel (bytes 005CH-0067H) is initialized by the P_CL] sysiem call for a
transient program from the first command tail operand of the command line.

B File Name2 (bytzs 006CH-0077H) is initialized by the P_CLI system call for a
transient program from the second command tail operand of the command line.
Note: File Namel can be used as part of a File Control Block (FCB) beginning at
O5CH. To preserve File Name2, copy it to ancther location before using the FCB in
file Q) sysiem calls.

= The CR field {byte 007CH) contains the current record position used in sequential
file operations with the FCB at 05CH.

¥ DICITAL RESEARCH®

3.3 Base Pape Initiaization Concurrent CP/M Programmer’s Refersnce Gulde

W The opional Random Record Number (bytes O0TDH-007FH) is an extension of the
FCB at O5CH, used in random record processing.

N The Default DMA buifer (bytes 0080H-00FFH) conteins the command teil when the
P_CLI system call loads a transient program.

3.4 Parent/Child Reletionships

Under Concurrent CP/M when one process creates another process, there is e parent/child
relationship between them, The child process inherits most of the default velues of the parent
process, This includes the default disk, user number, console, list device, and password. The
child process also inheriis interrupt vectors 0, 1, 2, 4, 224, and 225, which the parent process
initialized.

3.5 Direct Video Mapping

Processet which bypass Concurrent CPfM Character I/ Q system ealls anc use a video
map or screen buffer directly cannot be monitored by the eysitm and continue to display
characters on the s¢reen even when running in the background. Consequently, any scrésn
displaysd by the program in the foreground console ie interapersed with characters
displaysd by the program in the background using direct video mep [/0. To avoid the
screen problems created by using direct video 1/0, set bit 3 of the Program Flag to
indicate to the syrtemn that the process is to be put in sugpend mode whenever it is running
inthe background and may continue running only when it ie awitched to the foreground.
‘The CHSET utllity (see the Concurreni C P M User's Gruide) can be uged to set bit 3 of the
Program Flag.

Noite that bypassing the system Charecter 170 system calls negates the concurrency of a
process, gince the system suspends it from running (if bit 3 of Program Flag is set) unless it
is running in the foreground.

End of Sectiorn 3

@ DIGITAL RESEARCH®
33

Section 4
Command File Generation

4.1 Transient Execution Models

When the program is loaded, the initial values of the segment registers, the instruction
pointer, and the stack pointer are determined by the specific typs of memory mode] used
by the transient process, indicated in the CMD file header record.

There are three memory models, the 8080 model, the Small Model, and the Compact
Model, summarized in Table 4-1.

Table 4-1. Concurrent CF/M Memory Models

Model Group Relationships
2080 Model Code and Data Groups Overlap
Small Model Independent Code and Data Groups
Compact Model Three or More Independent Groups

The 8080 Model supports programs that are directly translated from an 8080 environment
where code and data are intermixed. The 8080 Model consists of one group that contains all
the code, data, and stack areas. Segment registers are initialized to the starting eddress of
the region containing this group. The segment registers can, however, be managed by the
application program during execution so that multiple s=gments in the code group can be
addressed.

The Small Model is similar to that defined by Intel, where the program consists of an

independent code group and a data group. The code end data groups often consist of, but
are not restricted to, single 64K byte segments.

S DICITAL RESEARCH®

41

4.1 Trmwieni Exacotion Modain Coucaxresst CP/M Prograsweec’s Guide

The Compact Mode! occurs when any of the extra, steck, or auxiliary groups are pressnt
in program. Each group can consist of one or more segments, but if eny group exceeds one
segment in gize, or if auxiliary groups are present, then the application program mmust manage
ils own segment registers during execution in order to address all code end data areas.

Theee three madels differ primarily in how the operating eystem initializes the segment
regisiers when it Ioads & transient process, The P_LOAD system call determines the memory
maode] used by a transient program by examining the program group usage, as described in
the following sections.

For all modele, the system initializes an intsrmal 95-byte stack area, The first two words
of thie siack are reserved for the double word return for termination by a RETF (Far Return)
instruction. The initial program stack for all models is shown in Figure 4-1 below.

Far Raturn Addrees Rat Sagment
: . ———
soer Rat Offast
82 BYTES

Figure 4-1. Initdnal Program Stack

The trensient program cap terminate by using the P_TERMCPFM or P_TERM system call
o by executing a RETF (Far Return) insiruction when the 85 and SP still point to the initial

program stack.

4.1 1 The 3050 Memory Model

The 8080 Mode] is assumed when the transient program contains only s code group. In
this case, the Command Line Interpreter (P_CLI} system call initializes the CS$, DS, and ES
registers to the beginning of the code group and sets the S8 and SP registers to a 96-byte
initial stack area that it allocates.

@ DIGITAL RESEARCH®
4-2

Comcerrent CF/M Programmer’s Guide 4,1 Translent Execution Models

Note: The P_CLI system call initializes the stack so thal if the process sxecutes a Far
Return ingtruction, it terminates. Thiz system call sats the Instruction Pointer {IP) Register
to L00H, thus allowing Base Page values at the beginning of the code group. Following
program load, the 8020 Model appears a8 shown in Figure 4-2.

CODE/DATA

CODE/DATA

C8:1P ——3 0100H

BASE PAGE

€8:0,08:0,E8:0 —» 0000H

Figure 4-2. Concurrent CP/M 3080 Memory Model

The intermixed code and data areas are indistingnishable. The Base Page values are described
in Section 3.3. The following ASM-86 example shows how 1o code an 8080 Model transient

assembly language program.

cseg

org 100h

. {code)
endes equ §

dseg

org offset endcs

C (data)

end

DICITAL RESEARCH®
3

4.1 Teamsload Exncmtion Medel Coscwrrest CPM Prograwmer’s Gulde

4.1.2 The Small Memory Model

The Small Mode] is assumed when the transient program contains both & code &nd data
group. (In ASM-86, ell code is generuted following a CSEG directive. Date is defined
following a DSEG directive, with the origin of the Date Segment independent of the Code
Segment.) In this model, the P__CLI system call sets the C5 register to the beginning of the
code group, the IP to O000H, the DS and ES registers to the beginning of the data group,
end the S5 and SP registers to 2 96-byte initial steck area that it initializes. Following progrem
load, the Simall Mode] appesrs as shown in Figure 4-3.

' DATA

. 01004

CODE BASE PAGE
DS:0,E8:0 — ™ DO00H

C8:0,IP:0 = DOOOH

Figure 4-3, Concurrent CP/M Small Memory Modal

The machine code begins at C8 +0000H, the Base Page values begin at DS + 0000H, and
the date area starts at DS + 0100H. The following ASM-36 example shows how to code &
Small Mode] transient assembly language program.

ceeg
. (cods)
dseg
org 100k
. (date)
emnd

EDIGITAL RESEARCH®

Concurrent CP/M Programmer's Guide 4.1 Translent Execution Model

4,1.3 The Compact Memory Model

The Compact Model is assumed when code and data groups are present, along with one
or more of the remaining stack, extra, or auxiliary groups. In this case, the P_CLI gystem
call sets the CS, DS, and ES registers to the base addresses of their respective areas. with
the IP set to 000OH, and the 8§ and SP registers s to a 96-byte stack arca allocated by this
gystem call.

Figure 4-4 shows the initial configuration of the segments in the Compect Model, The
values of the various segment registers can be changed during execution by loading from the
initial values placed in Base Page. This allows access to the entire memory space.

DATA

0100H .
COoDE BASE PAGE DATA
CB.IP
0000H DS:0000H EB:0000H

Figure 4-4. Concurrent CP/M Compact Memory Model

If the assembly language transient program intends to use the stack group as a stack ares,
the S8 and SP registers must be set upon entry. The 85 and SP registers remain in the initial
stack area, even if a stack group is defined.

Although it appears that the 85 and SP registers should be set to address the stack group,
there are two contradictions. First, the assembly langugsge wansient program might be using
the stack group as a data area. In that case, the stack values set by the P_CLI system call to
allow a far return to terminate 2 transient program could overwrite data in the stack area.
Second, the S5 register would logically be set to the base of the group, while the SP would
be set to the offset of the end of the group. However, if the stack group exceeds 64K, the
address range from the base to the end of the group exceeds a 16-bit offset value.

A DIGITAL RESEARCH®
4-5

4.1 Tranglent Execution Models Concurrent CP/M Programmer’s Guids
The following ASM-86 example shows how to code 8 Compact Model assembly lenguage
transient program.
cseg
. (code)
dseg
org 100h
. (data)
cseg
. (mare data)
]
: (stack area)
end
4,2 GENCMD

The GENCMD ufility creates 2 CMD file from an input H86 file. GENCMD does not alter
the original H26 file. The GENCMD invocation has the following form:

GENCMD filenams {parameter-list}
where the filename corresponds to the H86 input file with an assumed and unspecified filetype
of H86. GENCMD accepts optional parameters to specifically identify the 3080 Model and
1o describe memory requirements of each segment group. The GENCMD parameters are

listed following the filename, a5 shown in the command line above where the parameter list
consists of a sequence of keywords (shown below) and values separated by commas or blanks.

8030 CODE DATA EXTRA STACK X! X2 X3 X4
The 8080 keyword forces a single code group so that the P_LOAD system call sets up the
BOB0D Model for execution, ellowing intermixed code and data in a single segment. The form

of this command is

GENCMD filename 8080

M DIGITAL RESEARCH®

Concarrent CP/M Programmer’s Guide 4.2 GENCMD

The remaining keywords follow the filename or the 8080 option and define specific memory
requirements for each segment group, corresponding one-to-one with the segment groups
defined in the previous section. In each case, the values corresponding to each group are
enclosed in square brackets and separated by commas. Each value is e hexadecimal number
representing 8 paragraph address or segment length in peragraph units denoted by hhhh,
prefixed by g single letter that defines each value:

Ahhhh Load the group at absolute location hhkh

Bhhhh The group starts at hhhb in the hex file

Mhhhh The group requires 4 minimum of hhhh * 16 bytes
Xhhhh The group can address a maximum of hhhh * 16 bytes

Generalty, the CMD file header record values are derived directly from the HS6 file and the
paramneters shown abave need not be included. The following situations, however, require
the use of GENCMD parameters,

B The 8080 keyword is included whenever ASM-86 is used in the conversion of 8080
programs to the 8086/8088 environment when code and data are intermixed within a
single 64K segment, regardless of the use of CSEG and DSEG directives in the source
program.

® An absolnte address (a hexadecimal value) must be given for any group that must be
located at an absolute location. This value is not usually specified, as Concurrent
CP/M cannot ensure that the required memory region is available. In that case the
CMD file cannot be loaded.

B The B value is used when GENCMD processes a HEX file produced by Intel's OH86
or 8 simnilar utility program that contains more than one group. The output from OH86
consists of a sequence of data records with no information to identify code, data,
extra, stack, or auxiliary groups. In this case, the B value marks the beginning address
of the group named by the keyword, causing GENCMD to load data following this
address {o the named group (refer to the examples below). Thus, the B value is usually
used to mark the boundary between Code and Data Segments when no segment
information is included in the HEX file. Files produced by ASM-86 do not require
the use of the B value because segment information is included in the H86 file.

B DIGITAL RESEARCH®
47

4.2 GENCMBD Castnrrasi CP/M Propresmmers Gulde

B The minimiim memory value (M value) is inciuded only when the HEX records do
not define the minimum memory requirements for the named group. Generally, the
code group gize is datermined precisely by the data records loaded into the arce. The
total space required for the group is defined by the range between the lowest and
highest data byte addresses. The data group, however, might contain uninitialized
storage ot the end of the group. Thua no daie records are present in the HEX flle thai
define the highest referenced data item. The highest address in the data group can be
defined within the source program by incloding the ASMES directive DB 0 as the
last data item in the essembly language source file. Alternatively, the M value can
be included to allocate the additional spece at the end of the group. Similarly, the
stack, extra, and auxiliary group sizes must be defined using the M value unless the
highest sddresses within the proups are implicitly defined by data records in the HEX
fils.

W The maximum memory size, given by the X value, is generally used when additional
free memory might be needed for such purposes as [0 buffers or symbol tables. If
the data sres size i8 fixed, then the X parameter need not be included. In this case,
the X velue is assumed 10 be the same as the M value. The value XFFFF allocates
the largest memory region available but, if used, the agsembly language transient
program must be eware that a three-byte lenpth field s produced in the Base Page for
this group where the high-order byte might be nonzero. Programs converted directly
from &n BOS0 environment or programs that use a 2-byte pointer to address buffers
should restrict this value to XFFF or less, producing & maximum sllocation length of
OFFFUH bytes.

The fallowing GENCMD command line transforms the file X.H86 into the file X.CMD
with the proper header record:

A>GENCMD x codefad0] date[aX0,xIir]

In this case, the code group is forced to paragraph address 40H or its equivalent, byte address
400H. The date group requires & minimum of 300H bytes, but cen use up to 0FFFOH bytes,
if aveilable.

Assuming a file Y.H86 exists on drive B contzaining Intel HEX records with no interspersed
segment information. the command

A>GENCMD b:y date[b30,m20] extra[bB0] stack[md0] x1[md0]

E DIGITAL RESEARCH®
4-8

Conewrrent CP/M Programmer’s Guolde 4.2 GENCMD

produces the file Y.CMD on drive B by selecting records beginning at address D000H and
less than 0300H for the Code Segment, with records starting at 0300H and less than 0500H
allocated to the Data Segment. The Extra Segment i filled from records beginning at 0500H
and higher, while the Stack and Auxiliary Segment #1 arc uninitialized areas requiring a
minimum of 0400H bytes each, In this example, the data erea requires a minimum of 0200H
bytes. Note sgain that the B value nesd not be included if the Digital Research ASM-86
essembler is used.

4.3 Intel Hexadecimal File Format

GENCMD input must be in Intel hexadecimal file format, produced by bath the Digital
Research ASM-86 assembier and the standard Intel OHB6 utility program. (Refer to Intel
MCS-86 Safrware Development Utilities Operaring Instructions for ISIS-{F® Users, published
by Intel.) The CMD file produced by GENCMD cantains a header record defining the memaory
model and memaory size requirements for loading and executing the CMD file.

An Intel hexadecimal file consists of the traditional sequence of ASCTI records where the
beginning of the record is marked by an ASCII colon, and each subsequent digit position
contains an ASCII hexadecimal digit in the range 0-8 or A-E

There are four kinds of hexadecimal record formats. The Start Address Record
specifies thestarting address of the exccution file. The Extended Address Record specifies
the bits 4-19 of the Segment Base Address, where bits (-3 of the SBA are zero. The Data
Record contains a string of hexadecimal ASClI code that represents a portion of the 8086
memory image. The End-of-File record specifies the end of the abject file.

Figure 4-3 shows the four record formats, their fields, and the contents of these fields.
The fields are defined in Table 4-2,

DB DIGITAL RESEARCH®
49

4,3 Intel Hexadecimal Flic Format Concervent CP/M Prograsssec’s Guide
o4 0000 03 HHHH B
REC MARK REC LEM ZEROCES RECTYPE C-SEG GCHECKSUM
STARTING ADDRESS RECDRD
o2 0000 02 HHHH B
REC MARK REC LEN ZEROEE RECTYPE USBA CHECKSUM
EXTENDED ADDRESS AECORD
HH HHHH 0d DATA B
RECMARK RECLEN LDADDR REC TYPE GHECKSUM
DATA RECORD
00 0000 1] B
REC MARK HRECLEN ZEROE8 RECTYPE CHECKSUM

END OF FILE RECORD

Figure 4-5. Intel Hexadectmal File Formats

410

8 DIGETAL RESEARCH?

Comcurrent CP/M Programmer's Guide

Table 4-2. Intel Hex Field Definitions

4.3 Intel Hexadecimal File Format

Field

Contents

Rec Mark
Rec Len

22108

Ld Addr

Ret Type

C-Seg

USBA

data

= O * #

Specifies start of record
Record Length 00-FF (0-255 in decimal)

Extended Address Record: 0000H
Starting Address Record: 0000H
End-of-File Record: 0000H

Data Recard: SEA offset defining address of byte 0 of data

00
01
02
03

[

Data Record

End-of-File Record
Extended Address Record
Starting Address Record

e

The following are output from ASM-86 only:

81 same as 00, data belongs to Code Segment
82 same as 00, data belongs to Data Segment

83 same as 00, data belongs to Stack Segment
84 same as 00, data belongs to Extra Segment
85 paragraph address for absolute Code Segment
86 paragraph address for absolute Data Segment
37 paragraph address for absolute Stack Segment
88 paragraph address for abselute Extra Segment

Four hexadecimal digits specifying the Code Segment address.
The high-order and low-order digits are the 10th and !3th char-

acters of the record, respectively.

Four hexadecimal digits specifying the Upper Segment Base
Address. The high-order and low-order digits are the 10th and

13th characters of the record, respectively.

Pairs of hexadecimal digits representing the ASCII code for each

data byte. The high-order digit is the first digit of each pair.

1 DIGITAL RESEARCH®

4,3 Inte] Hecadechmal Flile Fornat Cowcurrent CP/M Programmer’s Reference Gulde

Tuble 4-2, {continned)
Field Coments

Checksum Extended Address Record: Checksum of Ree Len, zeros, Ree
Type, and USBA fields.

Starting Address Record: Checksum of Rec Len, zeros, Rec Type,
C-Seg, and IP fields.

Dats Record: Checksum of Rec Len, Ld Addr, Rec Type, and data
ficlds.

End-of-File Record: Containg ASCII code 4645H, checksum of
Rec Len, zeros, and Rec Type fields.

* 35, 86, 87, and 88 are Digital Rescarch Extensions.

All characters preceding the colon for each record are ignored. See MCS®-86 Absolute
Object File Formats, published by Intel, for additional information on hexadecimal file record
format.

End of Sectlon 4

I DKUTAL RESEARCH®

4-12

Section 5
Resident System Process Generation

5.1 Introduction to RSPs

Resident Svstam Processes are programs that become part af the Concurrent CP/M. oper-
ating system. They can be useful in several ways: to creale a turnkey sysiem, autoloading
programs when Concurrent CP/M is booted; to build customized user interfaces or shells at
the consoles, for monitoring hardware not supported in the XIOS; and to avoid disk loading
time for frequently-used commands.

The source cods for the ECHO RSP is included in Apperdix D. Study this listing carefully
while reading this section. The discussion of the P_CREATE ayster call in Section & is
also helpful in understanding RSPs.

Resident System Processes are included in Concurrent CP/M during system generation.
GENCCPM searches the directory for all files with the filetype RSP and prempts the user
to choose whether it is to be included in the generated system file, CCPM.5YS. An RSP
file is created by generating 8 CMD file and renaming it with an RSP filetype. The GENCCFM
progrem is documented in the Concurrent CPIM System Guide.

5.2 RSP Memory Models

Under Concurrent CP/M. there are two basic memary moxels for RSPs. They are similar
to the 8080 Model and the Small Model of transient programs. However, several important
distinctions exist between the transient program and RSP memory models. The RSP has no
equivalent to the Base Page of the transient program’s Data Segment. The RSP is responsible
for its own Process Descriptor (PD) and User Data Area (UDA). The RSP must also allocats
an additional 96 bytes at the end of the User Data Area if BOE7 processing is required, The
system creates and initializes these data structures for the transient programs automatically
at Joad time. RSPs, on the other hand, must initialize these structures within their own Data
Segments (See P_CLI and P_CREATE system calls for PD and UDA descripticns).

Note that Concurrent CP/M does not support compact model RSPs. Extra and Stack
Segments must be part of the Data Segment.

#l DIGITAL RESEARCH®

5.2 RSP Mewsory Model Cowenrresi CP/M Progrsmmer’s Guide

Although there is no Bese Page in an RSP, there i an RSP header that must exist at offsat
00H of the Data Segment. In the 8080 Model, this implics that the RSP header is in the
Code Segment. The RSP header and the associated data structures are discussed in
Section 5.4.

5.2.1 E080 Model RSP

The 8080 Model consists of mixed code and data. When the system gives conirol of the
CPU to an 8080 Model RSP, it initializes the Code, Data, Extra and Stack Segment registers
to the same velue. Use GENCMD with the 28080 option to geperate en 8080 Model RSP
GENCCPM essumes the 8080 Model if the CMD File Header Record of the RSP has a
single Code Group Descriptor and no other Group Descriptors {refer to Section 3.2). When
discussing en 8080 Model RSP, any reference to the Data Segment elso refers to the Code

Segment.
5.2.2 Smell Model RSP

The Small Model R.SP implies saparate Code and Deatn Segments. Before the systam gives
conirol of the CPU to a Small Model RSP, it initializes the Data, Extra end Stack Segment
Registers to the Data Segment address, while the Code Segment register is initialized to the
Code Segmentaddress. There is no guarantee where GENCCPM will place the Code Segment
in memory relative to the Data Segment. The CMD Header Record for this kind of RSP
must have both Data and Code Group Descriptors.

HIGH
MIXED DATA
CODE
DATA DS —a | OF HEADER
coDE
RSP HEADER
C5\ 0§ —w CS. —m -— LOW
8020 MODEL SMALL MODEL

Flgure 5-1. 5080 and Small RSP Models

@ DIGITAL RESEARCH®
52

Coneurrent CP/M Programmer’s Guide 5.3 Mnltiple Copies of RSPs

5.3 Multiple Copies of RSPs

At system generation, GENCCPM cen make up to 255 extra copies of an RSP, such that
each copy generates a separate process running under Concurrent CP/M. GENCCPM accom-
plishes this by making multiple copies of the RSF, and initielizing each to be a separate
RSP. The number of copies made by GENCCPM can be fixed, or dependent on a byre value
in the System Data Area. To determine the number of copies to make, GENCCPM looks
at two fields in the RSP Header. The format of the RSP Header is shown in Figure 5-2.

EYTE: 00H 024 O4H D5H O10H

e

-

LINK SDATVAR NCP RESERVED

i 'y g

Figure 5-2. RSP Header Format

I the SDATVAR field is nonzero, it is used as an offset of a byte value in the System Data
Area, which contains the number of copies to be generated. The offset should indicate a
value that is set by the user during GENCCPM. The TMP RSP uses this feature by placing
the offset af the NVCNS (Number of Virtual Consaoles) field into the SDATVAR field. This
way, 8 TMP is generated for cach System Censole specified by the user. If SDATVAR is 0
then the NCP byte in the RSP header is used as the number of extra copies to make. If both
of these fields in the RSP Header are 0 then no extra copies are made, and only & single
RSP is ereated. The ECHO RSP is an example of the [atter,

If the number of extra copies is determined by GENCCPM to be greater than 0, each
copy of the RSP is given a unique copy number. The copy number is placed in the NCP
field and the ASCIT equivalent is appended to the end of the Process Descriptor NAME field
of each copy. If there is not enough space for the number in the PD NAME, part of the PD
NAME is over written. For the example TMP RSF, GENCCPM makes the specified number
of copies and changes the NAME field in each copy to be TMPG, TMP1, TMP2,..., and
sets the NCP field to 0, 1, 2,..., respectively.

5.3.1 B080 Model

When GENCCPM mzkes copies of an 8080 Model RSF, the C8, DS, ES, and S5 fields
in each copy's User Dala Area are set 1o the paragraph address where the RSP is in memory
after loading,

W DIGITAL RESEARCH®
53

5.3 Multiple Coples of RSP Concurrent CP/M Programmer's Reference Guide

53.2 Small Model

If multiple copies of @ Small Model RSP are to be generated, GENCCPM copies both
the Code and Data Groups of the RSP, if the MEM field of the Process Deseriptor is 0. Ses
the P_CREATE system call for a description of the Process Descriptor format. GENCCPM
sets the UDA fields CS to the Code Segment of the RSP and DS, ES and SS to the Data
Segment of the RSP.

£33 Small Model with Shared Code

i a Small Model RSP has a nonzero MEM feld in its Process Descriptor, the Code
Segment iz assumed to be reentrant. When copies are made of this typs of RSP only the
Data Group is copied. GENCCPM szets the UDA CS field for each copy to the paragraph
address of the ope Code Segment for the RSP’s. The DS, ES, end 8§, in each copied Data
Segment, are sst by GENCCPM to the paragraph sddress of the Data Segment for that
particular copy.

5.4 Creating and Initielizing an RSP

An RSP that is to be¢ invoked from a console, or through the P_CL] system call, must
create & special queue called an RSP Command Queus, Such an RSP is called a Command
RSP. This type of RSP usually performs somo initialization routine and then goes into &
loop. The initialization Toutine consists of creating and opening en RSP Commsand Queus
aa well as changing the priority to the default transient process priorily. (Priority values with
regard to RSPs ere discussed below.}

The first step of the loop reads a message from the RSP Command Queue. The process
thai writes the message to the RSP Command Queue sctivates ihe associated RSP After the
RSP returns from the Q_READ systemn call, it obtains the system resources it needs, such
a8 the calling procesa’ console, Typically, the RSP process is aszigned the console process
by the CLI after the CLI hias succeeded in writing the command tail to the RSP Quene. This
is only true if the RSP Process Descriptor name matches the RSP Command Queue name.
Refer to the P_CLI (Call Command Line Interpreter) system call description for information
ebout how the CLI hendles 2 command.

HDIGITAL RESEARCH®

54

Concurrent CP/M Programmer’s Guide 5.4 Creating and Initializing an RSP

When the RSP completes its activities for the given command, it releases any system
resaurces it has acquired, including the console, and restarts the loop by reading from its
RSP Command Queue. A Command RSP is a single process and is 2 serially reusable
resource; in other words, the RSP acts on one meassage at a time. When several processes
atiempt 1o invoke 8 single Command RSP, they wait as described in the Q_READ and
Q_CREAD system call in Section 6. Refer to these and 10 the Q_WRITE and Q_CWRITE
system calls for further details.

Note: [t is certainly possible io create RSPs that are invoked differently.

The fermat of the RSP Command Queue Message is shown in Figure 5-3.

Byte: DOH O02H... o&2H

PDADDRESS COMMARND TAIL (128 bytas)

Figure 5-3. RSP Command Queue Message

The PDADDRESS is the offset relative to the System Pata Area segment of the Process
Descriptor of the process calling the RSP, A program that wants to invoke an RSP and is
forming an RSP Command Queue Message, can find its Process Descriptor address by
calling the P_PDADR system call. The COMMAND TAIL usually conteins what the TMP
sends to the CLI minus the command name, and is terminated with a zero byte.

When a comumand is entered at 2 console, the TMP performs a P_CLI system call. The
P_CLI system call attempts to open a queug that has the RSP Flag on and has the same
name as the command sent to the CLI. If the Q_OPEN is successful, the P_CLI system
call anempis to assign the calling process’s console to a process with the same name as the
command. The P_CLI system call then creates an RSP Command Queue Message with the
command tail sent to the CLI from the TMP, and writas it to the RSP Command Queue
{refer to the discussion of the P_CLI and Q_WRITE system calls in Section 6}. A transient
program can use a Command RSP in the same menner by writing directly to the appropriate
RSP Commend Queue. An advantage of using the P_CLI system call is that it looks for an
RSP first and only searches on disk for a CMD file if the the RSP is not found.

8 DIGITAL RESEARCH®

3.4 Creaiing and Infitalizing an RSP Concurrent CP/M Programmer's Guide

When an RSP reads an RSP Command Queus Message, it ofien needs information ebout
the calling process, such as which console, list device, drive, or user number to use. f an
RSP is invoked through the P_CLI system call, the RSP iz assigned the calling process’s
corsole, but if the RSP Command Queue is written to dirsctly, the calling process might or
might oot assign ita console to the RSP. A Command RSP cen uss the PD sddress in the
Command RSP Message o find out what the default devices of the calling process are. The
RSP should release any resources it assigns to itself when it is finished.

The beginning of the RSP Data Segment hes & fixed format starting et offset 0. This data
structure is the RSP Header. Nots that in the 8080 Model, the RSP Header is also in the
Code Segment. After the RSP Header is a Process Descriptor starting at offset 010H. A
User Data Area and a stack must alzo be within the Data Segment, with the UDA placed
gt & peragraph boundary relative to the beginning of the Data Segment, If sysiem calls
assuming a default DMA buffer are used, a 128-byte DMA Buffer must also exist, The
DMA OFFSET field in the User Data Area should be et to the eddress of the DMA buffer.
When the process is created by Concurrent CP/M, the DMA SEGMENT field is initialized
to the same value es the DS register. The DMA SEGMENT and OFFSET can also be set
by calling F_DMASEG and F_DMAOFF once the RSP is running. The beginning of the
RSP Data Segment is shown in Figure 5-4.

EDIGITAL RESEARCH®
5-6

Concurrent CP/M Programuner's Gulde 8.4 Creating and Inktislizing an RSP

PROGRAM
DATA
ARD
RSP
STACK

01ADH

Optlonal 8087
UDA extension

O140H

USER
DATA
AREA

DO40H

PROCESS DESCRIPTOR

0310H
oS RSP HEADER 0000H

Figure 54, RSP Data Segment

The RSP Header nust be [ocated at offset zero in the RSP Data Segment, the RSP Process
Descriptor must be at offset 010H, and the RSP User Data Area must begin on an even

paragraph boundary.

5.4.1 The RSP Header

As discissed in Section 5.2, the number of copies made of an RSP is dependent on the
values of the SDATVAR and NCP fields in the RSP Header. If no copies are desired, these
fields must be zero. As a convenience, when Concurrent CP/M creates the RSP process,
the LINK field in the RSP Header is set to the paragraph address of the System Data Area.
The System Data Area can always be obtained by an RSP or {ransient program with the
S_SYSDAT system call.

B DIGITAL RESEARCH®
5-7

5.4 Creaiing and Inkislising an RSP Conmnrent CP/M Programmer's Gulde

54.2 The RSP Process Descriptor

The RSP Process Descriptor should be initialad to zeros, except for the PRIORITY,
FLAGS, NAME, and UDA SEGMENT flelds. The PRIORITY field is usually initialized
10 190. This ie higher than transient programs and ‘TMPs (200 and 198 respectively), but
lower than the INIT process, which has a priority of 1. The description of the P_PRIORITY
symam call in Section 6 containg more information aboul system priority assignments.

Starting an RSP at a priority of 190 ensures that the RSP is sble to create and open &n
RSP Command Quene before it can be invokad through & TMP. RSPs such as ECHO usually
set thelr pricrity to 200 afier creating and opening their RSP Commend Quews and before
atizmpting to read from the quaue.

Note: There are ho guarantees about the order in which the RSP processes are created by
the Concurrent CP/M operating gystemn. If one RSP must run before another, it must have
& kigher priority. Such is the case when one RSP uses & repource created by B second RSP;
the second must run (st leadt during initislization) with a priority higher than the first.

The Process Descriptor SYS and KEEP Flags can be initialized in the RSP Data Segment
(refer to P_CREATE in Section 6 for further flag details). The SYS Flag allows a process
to read end write to and from restricted system queues. This is discusssd below with regand
to RSP Command Queucs. The KEEP flag signals to the opereting system that this process
cannot be terminmied. ‘This flag is necessary if an RSP is not to be terminated when a CTRL-C
is typed on e consle being used by the RSP, The 80R7 flag t=lls the system that a process
is actively using the B0B7 processor.

The NAME field of the RSP's Process Descriptor is 8 bytes long. It is assumed to be left-
Jjustified and padded with blanks on the right. If an RSP Command Queue iz going to be
used to invoke the RSP through the CLI, the PD must have the same uppercase name as
the Command Queus. The UDA field in the Proceas Descriptor must be the offset in para-
grapha of the UDA relative to the RSP data segment. GENCCPM restores the UDA field
in the Process Descripior to the actual UDA paragraph address when the system is generated.

If the PD field name is not the same as the Command Queue, the console is not assigned
to the RSP by the CLIL

EDXGITAL RESEARCH®
58

Concunent CP/M Programmer's Guide 5.4 Crenting and Inltializing an RSP

5.4.3 The RSP User Data Area

The User Data Area must have its SP field set to the offset of a three~word IRET structure,
in the RSP Data Segment. The offset is relative to the beginning of the Data Segment.
The first of the three words is the offset of the code entry point for the RSP, relative to the
beginning of the RSP Code Segment. Concurrent CP/M executes an IRET instruction to
start the RSP using these three words for the IP, CS and Flag registers respectively. The C3
value an the stack is initialized to be the CS field of the UDA, while the Flag value is set
to 0200H (interrupts on). The RSP stack must come immediatsly bafore these three words.

The initis! values of the AX, BX, CX, DX, DI, 51, and BP registers are taken from the
appropriats fields in the UDA.,

The DMA OFESET field should be set to the offset of the DMA buffer in the RSP’s Data
Segment. Except for the SP and DMA OPESET fields, and possibly the AX, BX, CX, DX,
DI, 8I, and BP fields, the remainder of the UDA fields should be initialized to 0. The CS,
DS, ES, and SS fieids are set by GENCCPM as discussed in Section 5.3.

If you include the 8087 extension in the UDA,, you must initialize the CW field (Control
Word) to 03FFH and the SW (Status Word) field to 0 before system generation.

54.4 The RSP Stack

The RSP must reserve space for its stack, which is assumed to lie within the RSP’s Data
Segment. This stack nmst be large enough to accommodate what the RSP code needs, plus
four levels {eight bytes) to handle possible hardware interrupts. We highly recommend that
you reserve more than four exira levels of stack.

The SP field in the RSPs UDA points to the top of this stack; the top contains the three-
word IRET instruction discussed above.

5.4.5 The RSP Command Queue

The RSP Command Queue containg information that determines when it begins
execution, and to which console it isattached. If an RSP is to be racessible froma console
via the TMP, the Command Queue name must be in uppercase. The FLAGS field in the
RSP Command Queue Descriptor must have the RSP bit on. If this flag is not on, the CL]
will not write 2 message to the RSP Command Queue, and instead attempts to load e
transient progrem. The KEEP flag should be set on 1o pratect the RSP QUEUE from
inadvertent use of the Q_DELETE system call.

B DIGITAL RESEARCHY

59

£.4 Creating and Inifialixing au RSP Conowrrent CP/M Programmar’s Gulde

The RESTRICTED figg (refer o the Q_MAKE aystem call in Section §) makes & queue
accessible only by privileged processes. Privikeged processes have the SYS Flag on in their
Proceas Descriptor, IF the RESTRICTED Flag is on in an RSP Command Queue, then only
privileged processes can invoke the related RSP A lowercase letter in the RSP Commuand
Quene name and the RESTRICTED Flag provide two methods of filiering access to an RSP
QUEUE.

The Queus Descriptor of the RSP Command Queus rust have » message length of 131
bytes. The format of this messags is shown ebove. The number of messages iz vsunlly 1.
If the Queue Descriptor is within 64K bytes of the beginning of the System Data Area,
buffer space for the Queue Descriptor must be allocatzd in the RSP, The BUFFER field in
the Queue Descriptor must be the offset of this buffer, relative o the beginning of the RSP's
Dats. Segment. The buffer vizs is the messege langth fimes the number of messages, usually

131 bytes.

Nate: The queue buffer should be before the Queue Descriptor within the RSP Data
Segment.

An RSP can certainly create other quenes besides the RSP Command Queus used with
Commeand RSPs. However, any queue an RSP creates that lies within 64K of the Syst2m
Data Area must have a buffer aree pointed to by the BUFFER fleld in its Quene Descriptor.
To be sade, the buffer should come before the Queus Descriptor in the RSP's Data Ssgrnent.
It i5 assumed the BUFFER field points to & buffer that is slso within 64K of the System
Data Area. If the Queue Descriptor is farther than 64K from the System Data Area, Con-
current CP/M uses buffer space in the System Data Area. Refer to the Q_MAKE system
call in Section 6 for further details.

In order to open the RSP Command Queue and subsequently read from if, & Quaue
Parameter Block and I8 associatsd buffer must be allogated in the RSP's Data Segment.
These structures are treated just e in a trensient process. For any quenss created by an RSP,
it is streaseqd that the queue buffer areas associated with the Quene Descripior and the Queus
Parameter Block are separate, distinet arsas of storage.

5.4.6 Multiple Procemes withia an RSP

An RSP can create child processes by calling the P_CREATE system call. Note that if
the Process Descriptor of the process being created is within 64K bytes of the beginning of
the System Data Area, the PD strucinre is used directly by Concurrent CP/M. Otherwise
the PD structure is copied inlo the PD table in the System Date Arca.

WDIGITAL RESEARCH®
510

Concurrent CP/M Programmer's Guide 5.5 Developing and Debugging an RSP

5.5 Developing and Debugging an RSP

The first RSP you atrernpt should be very simple, on the order of complexity of the ECHO
RSP listed in Appendix D. New RSPs should be developed and debugged as if they were
transient processes, such as Concurrent CP/M CMD utilities, then converted into RSPs.

An RSP dehugging session should proceed [ike an XI0S debugging session: first load
CP/M-86, then invoke DDT-86®, and then bring up Concurrent CP/M. The Concurrent
CP/M System Guide provides more information ebout running Concurrent CP/M under
CP/M-36.

After reading in the CCPM.SYS file under DDT-86, find the RSPSEG field of the System
Data Segment (SYSDAT). The paragraph address of the SYSDAT is found in the A_BASE
field of the Data Group Descriptor in the CCPM.5YS command file header. The CMD header
is described in Section 3.2 and the SYSDAT ara is described in the S_SYSDAT system
call in Section 6. The RSPSEG field contains the paragraph address of the Data Segment
of the first RSP in a linked list of the R8Ps included by GENCCPM.

By using the Display Memory (D) command of DDT-86 to show memory at the segment
RSPSEG, the name of the first RSP can be identified in the RSP's Process Descriptor. The
LINK field in the RSP Header, which will be the first word in the RSPSEG segment, is the
paragraph velue of the next RSP’s Data Segment. A zero in the LINK field means the end
of the list of RSPs, Note that linkage information is lost once Concurrent CP/M is initialized.
The LINK field of the RSP Header contains the System Data Segment once an RSP bhegins
execution. :

Once the RSP to be debugged is located, the initial code entry point cen also be found.
As discussed previously, the SP field in the RSP’s UDA is the offsel from the beginning of
the RSP Data Segment of the three-word IRET structure, The Amt word of the IRET
structure contains the initial value of the [P register when Concurrent CP/M creates the RSP
process. The initial value of the CS register is in the C§ field also in the RSP's UDA. Onee
this is done, you can set break points in the RSP, similar 10 sefting break points in XIOS
system calls.

End of Section 5

B DIGITAL RESEARCH®

Section 6
System Calls

This section degeribes the Concurrent CP/M systam calls in iabular form., It is intended
both as an introduction to the calls and s a refersnce for use during programming. You
should be familier with the marerial in Sectiona 1 through 5 before proceeding.

The first tble, Table &1, describes the categories of Concurrent CP/M system calls and
their general uses. Table 6-2 symmarizes the Concurrent CP/M system calla. Use it as a
quick reference to find the system call you nesd while programming. The systzm calls are
broken down into functional groups. Immediately following is Table 6-3, a cross-reference
showing the system calls in mumerical order. Table 64 is an index providing the page numbers
and figure titles of commonly used data structures. Table 6-5 lists the error codes returned
in register CX.

@ DIGITAL RESEARCH®

6-1

6 System Calls Conewrent CP/M Programmers Guide

Table 6-1. System Call Categories

Category Use

C.- Console Systemn Calls

The Console Systern Calls handle 1/0 operetioas for virtual consoles
on a charecter, string, and line basis, attach and datech consoles from
processes, and return or change the number corresponding to the
default virtual console.

DEV_ Device Sysiem Calls

The Device Sysiem Calls deal with flags and polling in managing
SYStem resources,

DRV... Disk Drive Sysiem Calls

The Digk Drive System Calls manage Concurrent CP/M logieal drives.

F_ File-Access System Calls

The Fik-Access Syatern Calls inchnds calls that opersic on files within
a directory, calls that operate on records within files, and miscalla-
necue system cells related to file I'Q.

L_ List Davice System Calls

The List Device System Calls write chemacters or strings tothe default
list device, attach and detach the default list device from calling

processes, and return or change the number corresponding to the
default list device.

M_ MP/M-86% Memory Management System Calls

The M_ Memory Management System Calls are included for com-
patibility with MP/M-86. These calls allocate and free memory seg-
ments eccording to the MP/M-86 segmentation algorithm.

HDEGITAL RESEARCH®
6-2

Concurrent CP/M Programmer's Guide & System Calls

Table 6-1. (continued)

Category Use

MC_ CP/M-86 Memory Management System Calls

The MC_ Memory Management System Calls allocate and free
memory segments according to the CP/M-86 segmeniation algorithm.

P_ Process/Programn System Calls

The Process/Program System Cells create and terminate processes,
call other precesses, and perform other operations on processes,

Q— Queuve Management System Calls

The Queue Managemeni System Calls create, delete, open, read
from, and write to queues,

S_ System Calls

The System Calls return various types of systems data, such as ver-
sion numbers and addreszes.

T.. Time System Calls

The Time System Calls set the systemn calendar and clock and return
the time from them in hours and minutes or in hours, minutes, and
seconds.

B DIGITAL RESEARCH®
6-3

i System Calle Conewrrent CF/M Programmer’s Guide

Thable &2, Concorrent CP/M Sysiem Calls

Number ;
Dec Hex Mnemonic Definition
Console 'O Systemn Calls

149 95 C_ASSIGN Assign default virual conscle o another
process.

146 92 C_ATTACH Establish ownership of the defanlt vir-
tual couaole to the calling process; sus-
pend process until console becomes
availabie.

162 A2 C_CATTACH Conditionally establith ownerzhip of the
default virtual console by the calling
process; return an error message if the
device iz unavailable.

110 6E C_DELIMIT Set or return current String Output
Delimiter. Used with C_WRITESTR.

147 53 C_DETACH Detach default virtual console from the
calling process.

153 9 C_GET Return the virtual console aumber of
the calling process.

19 6D C_MODE Set or return Console mode.

6 06 C.RAWIO Perform Raw mode L/Q with the defanlt
virtual cansole.

1 01 C_READ Read a character from the dsfault vir-
wal console,

10 DA C_READSTR Read an edited line from the default
virtual conscle.

WDKATAL RESEARCHE

Coneurrent CP/M Programmer’s Gulde 6 System Calls

Table 6-2. (eontinued)

Number . -

Dec Hex Mnemonic Definition

148 04 C_SET Set or chenge the default virtual con-
sale for the calling process.

1L 0B C_STAT Obtain the input status of the default
virtug! console.

2 02 C_WRITE Wite a character to the defanlt virtual
conscle.

LLl 6F C_WRITEBLK Write & specified number (block) of
chemcters to the default virual console.

9 o C_WRITESTR Wile a string o the default virtual con-
sole untii delimiter.

Device System Calls

133 85 DEV_SETFLAG Set a system flag,

132 4 DEV_WAITFLAG Wait for a system flag to be set before
restoring the curnent process.

131 83 DEV_POLL Pell a noninterrupt-driven device.

Disk Drive System Calls

8 22 DRY_ACCESS Indicats access to specified drives.

27 1B DRV_ALLOCVEC Get the address of the disk Allocation
Vector.

13 0D DRY_ALLRESET Reset all disk drives.

31 IF DRV_DPB Return the segment and offset address
of the Disk Parameter Block for the
default disk of the calling process,

1 DIGITAL RESEARCH®

&-5

§ Syatem Calis

Concwrent CP/M Prograoumer's Guids

Table 62. ({conilmued)

Diumb;:x Manemonic Definition

4 3 DRV_FLUSH Write internal pending blocking/
deblocking data buifers to disk.

v 27 DRV_FRER Relinquish access to specified drives.

25 19 DRV_GET Refurn the default drive of the calling
PIOCESE,

101 65 DEV_GETLABEL Return the directory label data byle for
the specified drive.

4 18 DRY_LOGINVEC Return bit mep of logged-in disk drives,

37 25 DRV_RESET Reset the specified drives.

22 1D DRV_ROVEC Return bit map vector of drives set to
Read-Only.

14 O DRV_SET Set default drive of calling process.

00 64 DRV_SETLABEL Create or updste a directory label.

2 IC DRV_SETRO Set the default drive to Read-Only.

46 2E DRV_SPACE Return unallocated space on the spec-
ified drive.

Disk File System Calis

0 IE E_ATTRIB Set file attributes.

16 10 F_CLOSE Close file.

9 13 F_DELETE Delete file.

W DKGITAL RESEARCH®

Concurrent CP/M Programmer’s Guide

& Syatem Call

Table 6-2. (continued)

Di-mb;]:x Mremonic Definition

52 3 F_DMAGET Return segment and offset address of
Direct Memory Address buifer.

2% 1A F_DMAQFF Set the Direct Memory Address offset
address.

51 33 F_DMASEG Set Direct Memory Address buffer seg-
ment address.

45 D F_ERRMODE Set the BDOS Error mode.

2 24 F_LOCK Lock recodd within file opened in
Unlocked mode.

22 16 F_MAKE Creete file.

4 2C F_MULTISEC Set the BDOS Multisector Count.

15 OF F_OPEN Open file for record access.

152 98 F_PARSE Parse an ASCI string and initialize an
FCB.

106 6A F_PASSWD Set the default password.

3 M F_RANDREC Set the Random Record field in the FCB
from the sequential record position.

20 14 F_READ Read record sequentially.

321 F_READRAND Read random record.

23 17 F_RENAME Rename file.

17 H F_SFIRST Search for first matching directory FCB
that matches the specified FCB.

I DIGITAL RESEARCH®

6-7

§ System Calls

Concurrent CP/M Prograntmer’s Gukde

Thble 6-2. {continued)

Number , .

Dec Hex Mnemonic Defirition

a3 23 F_SIZE Return the size of g file.

i8 12 F_SNEXT Scarch for next matching directory FCB
that matches the FCE specified in the
F_SFIRST systzm call.

102 o6 E_TIMEDATE Return file's date and time stamps and
password mode.

99 63 F_TRUNCATE Truncste file to the specified Random
Record Number.

43 2B F_UNLOCK Remove record locks.

32 20 F_USERNUM Set or refurn the defeult user mumber of
the calling process.

21 15 F_WRITE ‘Write recards sequentially.

4 22 F_WRITERAND ‘Write random records.

103 67 F_WRITEXFCB Create or update file's XFCB.

40 2B _WRITEZF ‘Write random records and zero-fill any
previously mellocated dats blocks.

List Device Systermn Calls

158 9E L_ATTACH Esteblish ownerghip of the default list
device by the calling process; suapend
the process until the device is available.

161 Al L_CATTACH Conditionally establish ownership of the
defauht list device by the calling process;
return error code i the deviee is
unavailabls.

&5

I DNGITAL RESEARCH®

Concurrent CP/M Programmer's Gulde § System Calls

Table 6-2. (continued)

Number , .

Dec Hex Mnemonic Definition

159 9F L_DFTACH Relinquish ownership of the default list
device.

164 Ad L_GET Return the default,list device number
of the calling process.

160 AD L_SET Change the default list device for the
celling process.

5 05 L_WRITE Writz & character to the default list
device.

112 70 L_WRITEBLK Write the specified number of charac-
ters (block) to the default list device.

MP/M Compatible Memory Allocation System Calls

128 B8O M_ALLOC Allocate the memory scgment be-
tween the sizes specified in the Mem-

129 81 same as 128 ory Parameter Block to the calling
process,

130 B2 M_FREE Free the specified memory segment.

CP/M Compatible Memory Allocation System Calla

34 36 MC_ABS Allocate the mazimum amount of RAM
gvailable at a specified address.

58 3A MC_ALLFREE Free all memory owned by the calling
process.

35 37 MC_ALLOC Allocate a segment of RAM, as spec-
ified in the Memory Contral Block, to
the calling process.

A DIGITAL RESEARCH®

6-9

Systesn Calls

Tabie 6-2.

Concurrent CP/M Programmer’s Guide

(continued)

Dec

Number
Hex

Mnemonic

Definition

%

57

53

157

47

150

144

i41

142

549

38

39

35

oD

8D

BE

3B

MC_ALLOCAES

MC_FREE

MC_MAX

Process/Program System Calls

P_ABORT

P_CHAIN

P_CLI

P_CREATE

P_DELAY

P_DISPATCH

P_LOAD

Allocate a specified amount of RAM,
as abave, bnt beginning at a specific
address.

Free an area of RAM beginning at a
specified address, and extending to the
end of the previonsly-sllocated mem-
ory erea.

Allocats the maximum amount of RAM
available in the system.

Terminate a procesd specified by neme
of Procesa Descriptor address.

Load, initielize, and jump to the pro-
gram specified in the DMA buffer.

Interpret and exscute the specified
command line by calling Command Line
Interpreter (CLI).

Create & subprocess.

Suspend the calling process for a spec-
ified mumber of gystem clock ticks.

Force a dispatch operation; give up the
CPU resource io the highest priority
process ready to run.

Losd the specified CMD file in mem-

ory; relurn its base page segment
address.

&-10

8 DIGITAL RESEARCH®

Coneurrent CP/M Programmer’s Gulde & System Calls

Table 6-2. (continued)

Number , .

Dec Hex Mnemonic Definition

156 ¢9C P_FDADR Return the address of the Process
Descriptor of the calling process.

145 91 P_PRIORITY Set the priority of the calling process.

151 97 P_RPL Invoke a system call from & Resident
Procedure Library.

143 &R P_TERM ‘Terminate the calling process.

0 00 P_TERMCPM Terminate calling process uncondition-
afly, release all owned resources.

CQueus System Calls

138 8 Q_CREAD Conditionally tead a message from a
system queue; return error code if a
message is nof zvailable.

140 8C Q_CWRITE Conditionally write 2 message to a sys-
fem queue; return an error code if space
is not available.

136 88 Q_DELETE Delsle a system queue.

134 86 Q_MAKE Creals a system queue.

135 87 Q_OPEN Open a system quene for subsequent
guete operations.

137 89 Q_READ Read a message from a system queue;
suspend calling process until message
is available.

B DIGITAL RESEARCH®

6-11

§ Systemt Calls

Concurrent CP/M Progzrammer’s Guide

Thble 6-2. {continued)

Number ..

Dec Hex Mnemonic Definizion

13 &B Q-WRITE Writs a message {o a system quens; sus-
pend calling process until space becomes
gvaileble.

Sysiem System Calls

12 o S_BDOSVER Return BDOS vorsion mumber, CPU and
opetating system type.

5 3 5._BIOS Call specified CPM-86 BIOS cherse- |
ter /O routine.

163 A3 5_OSVER Return type end version number of
Concurrent CP/M.

107 6B S_SERIAL Return the Concurrent CP/M system
serinl nurnber.

154 %A S_SYSDAT Return address of the Sysicm Data Seg-
ment (Sysdat)

Time System Calls

105 &9 T_GET Obtain the system calender and clock,
hours and minutes only.

155 9B T_SECONDS Return current system date and time:
hourz, minutes, ssconds.

104 68 T_SET Set interns] systern calender and clock
fo specified velus.

612

8 DIGITAL RESEARCH®

Concurrent CP/M Programmer’s Guoide 6.1 Systemn Call Summary

6.1 System Call Summary

Thble -3 lists the Concurrent CP/M system cells in summary form, including the param-
ciers & process must pass when calling the system call, and the values the system returns
to the process,

Appendix A lists the Concurrent CP/M system cells by function mumber, and includes all
the information in Thble 6-3,

Table 63, System Call Summary

Mnemonic Dec Hex Pa:a?;:: ars Returned Yalues
C_ASSIGN 149 95 DX = .ACB AX = Rin Code
C_ATTACH 146 92 none none
C_CATTACH 162 A2 none AX = Rtn Code
C_DELIMIT 110 6E DX = OutDelim AL = QOui Delim
C_DETACH 147 93 none none
C_GET 153 99 none AL = con #
C_MOQDE 19 6D DX = Con Mode none

= OFFFFH AX = Con Mode
C_SET 148 94 DL = Console none
C_RAWID 6 6 see def see def
C_READ 1 1 none AL = char
C_READSTR 10 A DX = .Buffer sec defl
C_STAT 11 B none AL = 00/01
C_WRITE 2 2 DL = char none
C_WRITEBLK 111 6F DX = .CHCB none
C_WRITESTR 9 9 DX = .Buffer none
DEV_POLL 131 83 DL = Device none
DEV_SETFLAG 133 B85 DL = Flag AX = Rtn Code
DEV_WAITFLAG 132 84 DL = Flag AX = Rin Code
DRV__ACCESS 38 26 DX = drive Vect none
DRY_ALLOCVEC 27 IB none AX = .Alloc
DRV_ALLRESET 13 D none sce def
DRV_DPB 31 IF none AX = .DPB
DRV_FLUSH 48 30 nong see def

B DIGITAL RESEARCH®

§.1 System Cell Sonssmanry

Comcwrrent CP/M Proprmower’s Guide

Table 63, (continued)

Mnemonic Dec Hex Input Returned Values
Parameters
DRY_FREE 39 27 DX = drive Vact none
DRV_GET 25 10 none AL = Cgr Drive #
DRVY_GETLABEL 101 &5 DX = Drive # Al = Label Data Byte
DRV_LOGINVEC 24 18 none AX = login Vect.
DRY_RESET 37 25 DX = drive Vact Al = Brr Code
DRV_ROVEC 29 iD none AX = R/O Vect.
DRY_SET 14 E DL = Drive # see def
DRV_SETLABEL 100 o4 DX = .FCB Al = Dir Code
DRV_SETRO 28 1C none see def
F_ATTRIB a0 1E DX = .FCB see def
F_CLOSE 16 10 DX = .FCB Al = Dir Code
F_DELETE 19 13 DX = .FCB Al = Dir Code
F_DMAGET 52 34 none AX = DMA Offset
F_IDMAOFF 26 1A DX =.DMA none
F_DMASEG 51 33 DX = .DMA Seg none
F_ERRMODE 45 2D DL = Er Mode none
F_LOCK 42 2A DX =.FCB Al = BEr Code
F_MAKE 22 16 DX = .FCB Al = Dir Code
F_MULTISEC 44 2C DL= # of Records Al = Rin Code
F_QOPFEN 15 B DX = .FCB AL = Dir Code
F_PARSE 152 98 DX = .PECB see def
F_PASSWD 106 6A DX = .Password nons
F_RANDREC 3 24 DX = FCB RO, R1,R2
F_READ 20 14 DX = FCB Al = Er Code
F_READRAND 33 21 DX = _FCB Al = Err Code
F_RENAME 23 17 DX = FCB AL = Dir Code
F_SFIRET 17 11 DX = FCB Al = Dir Code
F_SIZE 5 23 DX = .FCB RO, R1,R2
AL = Dir Code
F_SNEXT 18 12 none AL = Dir Code
F_TIMEDATE 102 66 DX = .XECB ALl = Dir Code
F_TRUNCATE 99 63 DX = _.FCB see def
F_UNLOCK 43 2B DX = FCB AL = Err Code
F_USERNUM 32 20 DL = (FFH (ge) AL = User #
= User # (set} nons

WDIGITAL RESEARCH®

6-14

Copncurrent CP/M Programmer’s Guide

Table 6-3. {continued)

6.1 System Call Summary

Mnemonic Dec Hex Input Returned Values
Parameters
F_WRITE 21 15 DX = .FCB Al = Err Code
F_WRITERAND K 22 DX =.FCB Al = FErr Code
F_WRITEXFCB 103 467 DX = XFCB Al = Dir Code
F_WRITEZF 40 28 DX = \FCB AL = Er Code
L_ATTACH 158 9E none none
L_CATTACH 161 Al none AX = Rtn Code
1.__DETACH 159 9F nome none
1_GET 164 A4 none Al = list #
L_SET 160 A0 DL = List # none
i._WRITE 5 5 DL = char nons
L_WRITEBLK 112 70 DX = .CHCB none
M_ALLOC 128 80
M_ALLOC 12¢ 81 DX = MPB AX = Rin Code
M_FREE 130 82 DX = MPB none
MC_ABSALLOC 56 38 DX = .MCB sge def
MC_ABSMAX 54 3 DX=.MCHB see def
MC_ALLFREE 58 3A npone none
MC_ALLQOC 55 37 DX = .MCB see def
MC_FREE 57 39 DX = MCHB see def
MC._MAX 53 35 DX = .MCB see def
P_ABORT 157 9D DX = .ABP AX = Rin Code
P_CHAIN 47 2F seedef none
P_CLI 150 9% DX = .CLBUF nong
P_CREATE 144 ©0 DX = PD nong
P_DELAY 141 8D DX = #ticks none
P_DISPATCH 142 BE none nong
P_LOAD 59 3B DX =.FCB AX = BP Addr
P_PDADR 156 9C none AX = PD Addr
P_PRIORITY 145 9| DL = Priority none
P_RPL 151 97 DX = .CPB AX = result
P_TERM 143 8F DL = Term.Code AX = R Code
P_TERMCPEM V] Q none AX = Rm Code
¥ DIGITAL RESEARCH®

6-15

6.1 Sysiem Call Burumsnry Camcwrrent CP/M Programsmer’s Gulde

Table &3. (continned)

Mnamornic Dec Hex Input Returned Values
Paramelers

Q_CREAD 133 8A DX =.QFB AX = Rtn Code
Q_CWRITE 140 3C DX =_.QFB AX = Ritn Code
Q-DELETE 136 % DX = _.QFB AX = Rtn Code
Q_-MAKE 134 8 DX=.QD none
Q_DPEN 133 87 DX =_.QPB AX = Rin Code
Q_READ 137 8 DX = .QPB nane
Q-WRITE 139 8B DX = .QFB none
S_BDODSYER 12 C none AX = Version#
5 _BIOS 5% 32 DX=.RD AX = BIDS rim
S_OSVER 163 A3 none AX = Version #
S_SERIAL 107 68 DX = .serlalumb seriglnmb sat
S_SYSDAT 154 YA none AX = Sys Data Addr
T_QET 105 69 DX = .TOD AL = seconds
T_SBECONDS 155 98 DX =.TOD TOD filled in
T_SET 104 68 DX =.TOD none

Note: System calls 3, 4, 7, and 8 are not supported by Concurent CP/M,

W CIGITAL RESEARCH®

&6

Concwrrent CP/M Programmer’s Guide

Conventions used in Table 6-3:

. = Address of

= Number

ACB = Assign Control Block
APB = Abort Parametar Block
Addr = Address

BD = Bios Descriptor

BP = Base Page

Char = ASCII Character
CHCB = Chamcter Control Block
CLBUF = Command Line Buffer
CPB = (all Parnmetar Block
Con = Console

Cur = Current

Delim = Delimiter

Dir = Directory

DMA = Direct Memory Address
Err = Error

FCB = File Control Biock

MCB

Num
Out
PD
PFCB
QD
QFB

Rm
Sys

Vect

nnonnnm 0o enunun

6.1 Systeen Call Summary

Memary Control Block
Memory Perameter Block
Number

Qutput

Process Descriptor

Parse Filename Contro! Block
Queue Descriptor

Quewe Parameter Block
Record

Rewern

System

Termination

Time of Day

Vector

Uppercase mnemonics refer to Data Structures; see the function definition. A . before a
Data Structure means the bye offset of the Data Structure, A Return Code is either 0 for
success or OFFFFH to indicate failure, When the Return Code in AX is OFFFFH, CX is the
Emor Code (see Table 6-5). An error eode returned in AL is specific to the BDOS system

call that was made.

DHGITAL RESEARCH®

617

6.1 Systam Cull Bumssnry Camcurrent CP/M Progravosers Gaide

Table 64. Dafs Stroctures Index

Figure Tule Page
2-1 FCB - File Control Block 2-10
22 Directory Label Format 2-18
2-3 XFCB - Extended File Control Block 2-20
24 Directory Record with SFCB 2-4
2-5 SFCE Subfields 2-24
2-6 Disk Systemn React 241
31 CMD File Header Format 33
32 Group Descriptor Format 33
33 Concurrent CP/M Bazs Page Values 36
4-1 Initial Program Stack 4-2
42 Concurrent CF/M 8030 Memory Model 4-3
4-3 Concurrent CP/M Small Memory Model 44
4-4 Caoncurrent CP/M Compact Memory Model 45
4.5 Inte] Hexadecimal File Formats 4-10
5-1 80B0 and Small RSP Models 52
5.2 RSP Header Formast 53
33 RSP Command Quene Message 55
54 RSP Data Begment 57
6-1 ACB - Assign Control Block 6-21
62 Consale Buffer Format 6-33
%] Drive, R/O, or Login Vector Structure 644
64 DPB - Disk Parameizr Block 6-48
65 Disk Free Space Field Format 6-63
66 PFCB - Parse Filename Control Block £-36
6-7 MCB - Memory Control Bloek 6-128
63 MPB - Memory Parameter Block 6-129
69 MFPR - M_FREE Parametar Block 6-132
610 APE - Abort Parameter Block 6-139

W DIGITAL RESEARCH*
6-18

Concarrent CP/M Programmer's Gulde

Table 6-4. (contlnued)

4.1 System Call Summary

Figure Title Page
611 CLI Command Line Buffer 6-142
612 PD - Process Descriptor 6-146
613 UDA - User Data Area 6-151
6-14 CFB - Call Parameter Block 6159
6-15 QPB - Queue Parameter Block 6-163
6-16 QD - Queue Descriptor 6-168
6-17 BDOS Version Number Format 6-174
6-18 BIOS Descriptor Format 6175
6-19 Operating Systems Version Number Formal 6176
6-20 SERIAL Number Format 6-177
621 SYSDAT Table 6179
622 TOD Time-of-Day Structure 6-185

B DIGITAL RESEARCH®

Table 6-5. CX Error Code Reporis

Dec Hex Error Report
0 00H No error
1 01H System call not implemented
2 0ZH Illegal system call number
3 03H Cannot find memory
4 04H Tllegal flag number
§ 05H Flag overrun
6 06H Flag underrun
7 07H Noe unused Queve Descriptors
8 08H No free queve buffer
9 0SH Cannot find queue

10 DAH Queue n use

12 OCH No free process descriptors
3 0DH No queue access

14 OEH Empty queue

15 OFH Full queue

16 10H CLI queue missing

17 11H No BOB7 in system
18 12H No unused Memory Deseriptors
19 13H Illegal conscle number

6-19

6.1 Systess Call Sevmemary Cesoarveut CP/M Proprassery Gulde

Table &5, (continued)

Dee Hex Error Report
20 14H Na Process Descriplor metch
21 15H No console maich

22 16H Nao CLI process

23 17H Ililegal disk mimber

24 18H Iliegal filaname

25 19H Illegal filetype

26 1AH Character not ready

27 1BH Illege! memory descriptor

28 1CH Bad return from BDOS load
29 1DH Bed return from BDOS read
30 1EH Bad return from BDOS open
31 1FH Null commend

32 204 Not owner of resource

KK] 21H No CSEG in loed file

34 22H Process Descriptor exists on Thread Root
35 23H Could not terminate process
36 24H Cannot attach to process

37 25H Illegel list devios aumber

38 26H Hlegal password

40 28H Exiternal termination occurred
41 29H Fixup error upon load

42 2AH Flag set ignored.

6.2 Concurrent CP/M System Calls
‘This section presents detailed information on the Concurrent CP/M system calls. Read the

enfire section throngh before atternpting to use the system cells in & program, as many of --
them interact with one another.

B DIGITAL RESEARCH®

6-20

Concurrent CP/M Programmer’s Gulde

§.2.1 Console 'O System Calls

C_ASSIGN

C_ASSIGN
Assign Default Console Device
To Another Process
Entry Parameters:
Register CL: 095H (149)
DX: ACB Address - Offset
DS: ACB Address - Segment
Returned Values:
Register AX: 0 if assign "OK"
OFFFFH on Failure
BX: Samess AX
CX: Emor Code
00 | cNs iMATCHi PD
a4) i) NAME

Figure 6-1. ACB - Assign Control Block

I DIGITAL RESEARCH®

621

C_ASSICN Conewrrent CP/M Programmer's Gnide

Table 6. ACH Field Definftions

Field Definitions
CNS Console to assign
MATCH Boolean; if OFFH, the process being assigned the console must heve
the CNS as its default console for & successful Assign. If 0H, no check
is made,
FD Process ID of the process being assigned the console, If this field is

zero, a search is made of the Thread List for a process whose name is
NAME. This fleld must be either zero or & valid Process ID. If this
value is not a valid PD, an error occurs.

NAME 8-byte process name to search for. An error occurs if a process hy this
name does not exiat.

The C_ASSIGN sysiem call directly assigns the specified console to & specified process.
This sysiem cell overrides the normal mechanism of the C_ATTACH and C_DETACH
system calls. The system call returns an error code if & process other than the calling process
owns the console. The system call ignores other procesees waiting to attach to the specified
console, and they continue to wait until the current owner either calls the C_DETACH system
call, or terminates.

Refer to Table 6-5 for a list of arror codes returned in CX.

W DiGITAL RESEARCH®
622

Conctrrent CP/M Programmer’s Guide C_ATTACH

C_ATTACH

Attach Default Console
To Calling Process

Entry Parameters:
Register CL: 092H (146)

The C_ATTACH system call artaches the default console to the calling process. If the
console is already owned by the calling process or if it is not owned by ancther process, the
C_ATTACH system call immediately returns with ownership established and verified. If
annther process owns the console, the calling process waits until the console becomes available.

Refer to Table 6-5 for a list of error codes returned in CX.

@ DIGITAL RESEARCH®
6-23

C_CATTACH Comcarreni CP/M Programsmsey’s Guide

C_CATTACH
Conditionally Attach Default
Console To Calling Process
Entry Parameters:
Register CL: 0AZH (162)
Returned Values:
Register AX: O if attech ‘QK’

OFFFFH on failure
BX: Same as AX
CX: Error Code

The C_CATTACH system cell attaches the defalt console of the calling process only if
the console is currently unattached.

If the consoie is currently aitached fo another process, the system call returns a value of
OFFH indicating that the console could not be attached. The sysiem call returns a valve of 0
to indicate that either the console is already attached to the process or that it was unattached
and & successful sttach operation was made.

Refer to Table 6-5 for a List of error ¢odes returned in CX.

H DIGITAL RESEARCH®
6-24

Concnrrent CP/M Programmer’ Guide

C_DELIMIT

C_DELIMIT

Set Or Return Output Delimiter

Entry Parameters:
Register CL:

DX

DL:

Returned Values:
Register AL:

BL.:

06EH (110)
OFFFFH (get) or
Output Delimiter (set)

Qutput Delimiter or
{no value if s=t)
Same as AL

A program can set or interrogate the current Qutput Delimiter by calling C_DELIMIT. If
register DX = OFFFFH, then the current Dutput Delimiter is returned in register AL. Other-

wise, C_DELIMIT sets the Qutput Delimiter to the value in register DL.

C_DELIMIT sets the string delimiter for C_WRITESTR. When a new process is created,
the defanlt delimiter value is set to a dollar sign, $. The default delimiter is not inherited

from the parent pracess.

W DIGITAL RESEARCH®

6-25

C_DETACH Concwrrent CP/M Programmer’s Gulde

C_DETACH

Detach Default Console
From Calling Process

Entry Parameters:
Repister CL: 093H (147)

Returned Values:
Register AX: 0 if detach "OK’
OFFFFH on failure
BX: Sameeas AX
CX: Error Code

The C_DETACH system call detaches the defan!t console from the calling process. If the
defanlt console is not attached to the celling process, no action is taken. If other processes
are waiting 1o sntech 1o the congole, the process with the highest priority attaches the cansole.
If there is more than on¢ process with the same priority waiting for the console, it is given
to the quene writing processes on a first-come, first-serve basis.

Refer to Table 6-5 for a list of error codes returned in CX.

W DAGITAL RESEARCH®

6-26

Concerrest CP/M Programmec’s Guide

C_GET

Return The Calling Process’s
Defenlt Consale

Entry Parameters:
Register CL:

Returned Values:
Register AL:
BL:

099H (153)

Console number
Same as AL

C_GET

The C_GET system call returns the defanlt console number of the cafling procesa.

8 DIGITAL RESEARCH®

6-27

C_MODE

Concurrent CP/M Programmers Gulde

C_ MODE

Set Or Return Consple mode

Entry Parameters:
Register CL: 06DH (109)
DX: OFFFPH (get) or
Consgole Mode (zet)

Retwrnad Values:
Register AX: Console Mode or
(no valuse)
BX: Same s AX

A process can set or interrogate the Console Mode by calling C_MODE. If register
DX = OFFFFH, then the current Console Mode is retumned in register AX. Otherwise,

C_MODE sets the Console Mode to the value contained in register DX.

6-23

8 DIGITAL RESEARCH®

Cancurrent CP/M Programmer’s Guide C_MODE

The Console Mods is a 16-bit system parameter that determines the ection of certain
Console IO functions. Note that the Conzole Mode bits are numbered from right to left. The
Console Mode is set to zero when a new process created; it is not inherited from its parent.
The definition of the Console Mode is

bit 0 = | - CTRL-C only status for C_STAT.
= (- Normal status for C_STAT.

bit 1 1 - Drisable stop scroll, CTRL-S, start scroll, CTRL-Q), support.

(0 - Enable stop scroll, start scroll support.

I

bit 2 = 1-Raw console output mode. Disables ab expansion for C_WRITE,
C_WRITESTR, and C_WRITEBLEK. Also dissbles printer echo,
CTRL-P, support.

0 - Normal console output mode.

Il

I

bit 3 = | - Disable CTRL-C program termination

0 - Engble CTRL-C program termination

bit 7 Disable CTRL-O console output byte bucket

l-
(0 - Enable CTRL-O console gutput byte bucket

H DIGITAL RESEARCHY

6-29

C_.RAVID Concurrent CP/M Programmaer’s Gulde

C_RAWIO

Perform Direct Console 'O
With Default Console

Entry Parmeters:
Register CL: 06H (6}
DI; (FFH (Input/
Status) or
0FEH (Status) or
OFDH (Inpui) or
Character (Qutput)

Returned Values:
Register AL: (Input/Status}

= OH {No Character)
= Character

(Statug)
= {H - No Character
= OFFH - Ready

(Input)
= Character

({Output)
No return value

Bl: Same as AL

The C_RAWIQ system call allows the calling process to do rew console L0 to its default
console. Concurrent CP/M verifiea that the calling process owns its dafau!t console before
allowing any 1/Q.

A process calls the C_RAWIO system call by passing one of three different values shown
in Table &-7.

H DIGITAL RESEARCH®
6-30

Concwerent CP/M Programmer's Guide C_RAWIO

Table 6-7. C_RAWIO Calling Values

Value Description
OFFH Consale inpat status command (if no character is ready, a O0H is returnad,
else the character is returned).
OFEH Console status command (on return, register AL contains 00H if no

character is ready; otherwise it contains OFFH).

OFDH Console input command (if no character is ready, the calling process

weits until one is typed). lnput characters are not echoed to the screen.
ASCII If the parameter is less than OFDH, C_RAWIO sysiern call assumes
cheracter register DL contains a valid ASCII character and sends it to the console.

The C_RAWIO system call places the calling process in Raw mode. The CTRL-C, CTRL-P,
CTRL-S, and CTRL-O characters are not acted on by the PEN (Physical Input Process) but
are passed on to the calling process when C_RAWIO is used.

Note: If the virtual console is in CRTL~S mode, and the process that owns the virtual
console then performs a C_RAWIO call, the CTRL-S state is reset. Characters read with
C_RAWIO are not echoed on the screen, thus allowing passwords and so forth to be
entered in a sacure manner.

B DIGITAL RESEARCH®
6-31

C_READ Comcmreont CP/M Programener’s Gulde

C_READ

Read A Charecter From
The Default Console

Entry Parsmeters:
Register CL: O1H (1)

Returned Values:
Register Al: Character
BL: Sameas AL

The C_READ syatemn call reads a charactar from the default console of the calling process.
Before aitempting the read, Concurrent CP/M intsrnally verifies the ownership of the console.
If the calling process does not own the consols, it relinguishes the CPU rescurce until the
celling process can attach to the console. Typically, 2 process that is created through the
P_CLI systam cell owns its default console when it begins execution.

C_READ echoes characters read from the coneole, This includes the carriage return, line
feed, and beckspace characters. It expands tab charactars (CTRL-T) in columns of eight
characiers,

C_READ ignores the termination character (CTRL-C) if the calling process cannot ter-
mingte (rafer o the P_TERM system call), C_READ does not return until & character is
typ=d on the console. The system suspends the calling process until a character ie ready.

B DKATAL RESEARCH®
&32

Concurrent CP/M Progratamers Guide C_READSTR

C_READSTR

Read An Edited Line From The
Default Conscle

Eniry Parameters:
Register CL: 0AH (I0)
DX: BUFFER Address - Offact
DS: BUFFER Address - Segment

The C_READSTR system call reads characters from the calling process’s default
console and places them into the specified buffer. The formet of the buffer is shown in
Figure 6-2. C_READSTR petforms line-editing system calls on the line as it is read from
the console; it completes a line and returns upon receiving a terminator character
{carriage return or line feed) from the console or when the meximum number of charae-
tera is reached. As in the C_READ system call, C READSTR echoes all graphic
charecters read from the console. Concurrent CP/M verifies that the calling process owns
its default conscle before allowing 1/0 to begin.

0 1 MAX + 2

&

d -
e -

MAX |NCHAR CHARACTERS ..

b L - —

Figure 6-2. Console Buffer Format

I DHGITAL RESEARCH®

6-33

C_READSTR Concurrent CP/M Programmer'’s Guide

Table 6-8. Console Buffer Field Definition

Field Definition

MaAX Maximmm mumber of characiers thaf can be read into the buffer.
This value must be initislized befors calling the C_READSTR
gystem call.

NCHAR Actual number of characters read into the buffer as filled in by
the C_READSTR gystem cell.

CHARACTERS Actual characters resd from the conzole as filled in by the
C_READSTR system call.

C_READSTR recognizes 8 mumber of special characters used in editing the input line, as
well &5 a sot of apecial characters that actually control the calling process.

Table 6-2. C_READSTR Line-editing Characters
Character Runction

RUB/DEL

Removes the last character from the line and echoes it.

(CTRL-E)

Echoes new line, a carriage retmn (CTRL-M), and a line feed
(CTRL-J), to the scresn but does not affect the line buffer.

BACKSPACE (CTRL-H)

Removes the lest character from the line and backspaces over that
character.

TAB (CTRL-I)

Echoes enough spaces 1o place the next charscter position at a tab
stop. Thb stops are fixed et every eighth character of the physical
line.

W DIGITAL RESEARCH®
6-34

Concwerent CP/M Programmer's Guide C_READSTR

Table 69, (continued)

Character Function

LINE FEED (CTRL-J)

Terminates the input line. The C_READSTR system call does not
echo & terminating character, nor does it place the character in the
line buffer.

RETURN (CTREL-M)

Terminates the input line.

REDRAW (CTRL-R)

Retypes the current line afier echoing e new line.

(CTRL-)

Removes all of the current line from the line buffer, echoes a new
line, and starts all over again.

(CTRL-X)

Removes all of the current line from the line buffer and echoes
enough backspeces to return to the beginning of the line.

{1 DIGITAL RESEARCH®
6-35

C_SET Coucerrent CP/M Prograsssn’s Galde

C_SET

Set The Calling Process's
Default Console

Entry Parameters:
Register CL: 094H (143)
DL: Console Number

Returned Values:
Register AX: 0 if successful
OFFFFH on failure
BX: Sameas AX
CX: Error Code

The C_SET system cal! changes the calling process’s default console to the valus specified.
If the console number specified is not one supported by this particular implementation of
Concurrent CP/M, the system call returns an error code, and does not change the default
console.

Rafer to Table 6-5 for a list of error codes returned in CX.

M CHGITAL RESEARCHS®
6-36

Concurrent CP/M Programmers Guide C_STAT

C_STAT

Obtain The Status Of The
Default Console

Entry Parameters:
Register CL: O0BH {11)

Returned Values:
Register AL: OLH character ready
O0H not ready
BL: Same as AL

The C_STAT system call checks to seg if a character has been typed at the default conscle.
H the calling process is not attached to its defanlt console, the C_STAT system call causes
& dispatch to occur and return 00H (the Not Ready condition).

This system call sets the console io the Nonraw mode, allowing recognition of special
control characters such as the terminate character, CTRL-C. Use C_RAWIO to obtain console
status in Raw mode.

Note: If bit 0 is set in the Console Mode word, using the C_MODE function call,
C_STAT only returns AL = 01H when &8 CTRL-C is typed on the default conaole,

H DIGITAL RESEARCH®

6-37

C_WRITE Concerreat CP/M Programmer's Guide

C_WRITE

Write A Character To The
Defzult Conacle

Entry Parameters:
Register CL: 02H (2)
DI.: ASCH character

The C_WRITE system call writes the specified character 1o the calling process’s default
console. As in the C_READ system call, Concurrent CP/M verifies thet the calling process
owns its defm!t console before performing the operetion. On output, C_WRITE expands
tabs in columns of eight characters.

W DIGITAL RESEARCH®
638

Concurremt CP/M Programmesrs Gulde C_WRITEBLK

C_WRITERLK

Send Specified String To Default Console:

Entry Parameters:
Register CL: 06FH (111)
DX: CHCB Address

C_WRITEBLK sends the character string located by the Character Control Block,
CHCB, addressed in register pair DX to the console. If the Console Mode is in the Default
state C_WRITEBLK expands tab characters, CTRL-I, in columns of eight characters.

The CHCB format is
bytes O - 1 : Offset of cheracter string

byles 2 - 3 : Segment of character string
byles 4 - 5 : Length of character siring to print

I DHGITAL RESEARCH®

6-39

C_WRITESTR Comcurrest CP/M Programmer’s Culde

C_WRITESTR

Print An ASCII String
To The Default Console

Entry Paremeters:
Register CL: 09H (M)
DX: STRING Address - Offset
DS: STRING Address - Segment

The C_WRITESTR system call prints an ASCII siring atarting at the indicated string
address and continning until it reaches & dollar sign (§) cheracter (024H). § is the default
string delimiter, end can be changed by the C_DELIMIT sygtern call. C_WRITESTR writes
this string to the calling procesa’s defanlt consols.

Concurrent CP/M verifies that the calling process owns the coneole before writing the
string. C_WRITESTR sets the console to & Nonraw stats and expands tebs in columns of
eight characters, as does the C_WRITE system call.

Use the C_WRITESTR systam call whenever possible, mather tham the single-cheracter
rystem calls. The CPU overhead involved in handling the fimt cheracter iz the same a5 that
for a gingle-cheracter system call, but subsequent characters require gs little as one-fifth the
CPU overhead.

B DIGITAL RESEARCH®

Concarrent CP/M Programmers Guide DEY_POLL

6.2.2 Device System Calls

DEY_FOLL

Poll A Device

Entry Parameters:
Register CL: 083H (131)
DL: Device Number

Returned Values:
Register AX: 0 onsuccess
OFFFFH on failure
BX: Sameas AX
CX: Error Code

The DEV_POLL system call is used by the XIOS to poll non inferrupt-driven devices, It
should be used whenever the X108 is waiting for a non interrupt event. The calling process
relinquishes the CPU and allows Concurrent CP/M to poll the device at every dispatch. The
X108 conteins rputines for each polling device mumber. These routines are called through
the DEV_POLL system call, and they return whether the device is ready or not. When the
device is ready, DEV_POLL restores the calling process to the RUN siate and returns. Upon
return, the calling process knows the device is ready.

Refer to Table 6-5 for a list of error codes returned in CX.,

B DIGITAL RESEARCH®

DEV_BETFLAG Comcurrest CP/M Programmier's Gukde

DEV_SETFLAG

Set A System Flag

Entry Parameters:
Register C1: 035H (133)
DL: Flag Number

Returned Values:
Register AX: 0 on success
OFFFFH on failure
BX: Samsas AX
CX: Error Code

The DEV_SETFLAG aystem call i used by interrupt routines to notify the system thata
logical intermupt hes occurred.: A process waiting for thie flag is placed back into the RUN
state. If there are no processes weiting, then the next process to wait for this flag returns
successfully without relinquishing the CPU. ‘The system call detacts an error if the flag has
alregdy besn set, end no process has done 8 DEV_WAITFLAG cell to reset it.

Note: If s process waiting for a specific flag to be asi is aboried, the next DEV_SETFLAG
call is ignored and an error code is returned in CX. In this case, the interrupt handler should
continne to set call DEV_SETFLAG until it successfully scts the fiag 1P, and AX = O on
return.

Refar to Teble 6-5 for a list of error codea returned in CX.

H DIGITAL RESEARCH®
642

Concurrent CP/M Programiner’s Guide DEY_WAITFLAG

DEY_WAITFLAG

Wait For A System Flag

Entry Parameters:
Register CL: 084H (132)
DL: Flag Number

Returned Values:
Register AX: 0 on success
OFFFFH on failure
BX: Sameas AX
CX: Error Code

The DEV_WAITFLAG system call is used by a process to wait for an interrupt. The
process relinguishes the CPU until an interrupt routine calls the DEV_SETFLAG system
call, which places the waiting process in the RUN state. When DEV_WAITFLAG returns
to the calling process, the interrupt has occurred, or ae error has occurred. An error occurs
when a process is already waiting for the flag. If the flag was set before DEY_WAITFLAG
wag cafled, the routine returns successfully withovt relinquishing the CPU. This routine is
usually used by the XIOS. The mapping between types of interrupts and flag mumbers is
maintained in the X108, although Concurrent CP/M reserves flags 0, 1, 2, and 3 for system
use.

Refer o Table 6-5 for a list of error codes returned in CX.

B DIGITAL RESEARCH®*

6-43

DEY_WAITFLAG Concugrent CP /M Programmerts Guide

2.3 Disk Drive System Calis

The Drive Vector, Read-Only Yector, nd Login YVeetorzare referenced or returned by
severe]l Concurrent CP/ M Disk Drive system calls. The Drive, RO, or Login Vectoraare
16-bit values apecifying one or more drives, where the least siguificant bit corresponds to
drive A, and the high-order bit corresponds ta the sixteenth drive, labeled P. The format
of the Drive, RO, end Login Vectors is illustrated below:

A1 e s et e e e
DHVPOHMLKJIHGFEDGBAI

o o &

N - & a
" s L4 T g - " g w - T P s T Ll

BIT 1 14 13 12 11 10 @ 8 ? B 5 4 3 2 1 0

Figure &3. Drive, RO, or Login Vector Structare

EDIGITAL RESEARCH®

Comcurrent CP/M Programmes’s Guide DRV-ACCESS

DRV_ACCESS

Access Specified Disk Drives

Entry Parameters:
Register CL: 026H (38)
DX: Drive Vectar

Returned Values:
Register AL: Return Cods
AH: Extended Error
BX: Sameas AX

The DRV_ACCESS aystem call inserts a speciel open file item into the system Lock List
for sach specified drive. While the item exists in the Lock List, the drive cannot be reset by
another process. The calling process passes the drive vector in register DX, The format of
the drive vector is discussed at the beginning of Section 6.2.3.

The DRV_ACCESS zystem call inserts no items if insufficient free space exists in the
Lock List 1o support all the new items or if the mmber of items to be inserted puts the calling
process cver the Lock List open file maximum. If the BDOS Error mode is in the defanlt
mode (refer to the F_ERRMODE system call), the file systemn displays a message at the
console identifying the error and terminates the calling process. Otherwise, DRV_ACCESS
returns to the calling process with register AL set to OFFH and register AH set to one of the
following hexadecimal values.

0OAH - Open File Limit Exceeded
OBH - No Room in systern Lock List

On successful calis, DRV_ACCESS returns with register AL set to 00H.

I DIGITAL RESEARCH®
6-45

DRY_ALLOCYEC Coscurrest CP/M Prograssser’s Gulde

DRV_ALLOCVEC

Get Allocation Yector Address
For The Calling Process’s Default Disk

Entry Purameters:
Register CL: 01BH (27)

Returned Values:
Register AX: ALLOC Address - Offset
BX: Same as AX
ES: ALLOC Address - Segment

Concurrent CF/M maintaing an allocation vector in memory for sach active disk drive,
Sorne programs use the information provided by the allocation vector to determine the amount
of free data space on a drive. Note, however, that the allocation information can be inaccurate
if the drive has been marked Read-Only.

The DRV_ALLOCVYEC system call returns the sddress of the allocation vector for the
currenty selectad drive. If & phyzicel error is encountersd when the BDOS Error mode is in
one of the return modes (refer to the F_ERRMODE gystem call), DRV._ALLOCVEC returns
the value OFFFFH in AX.

You can use the DRV_SPACE system cal! to directly return the number of free 128-byte

records on & drive. The Concurrent CP/M utility, SHOW, finds & drive's free space by using
the DRV_SPACE system call.

WDIGITAL RESEARCH®

Comcurrent CP/M Programmer’s Gulde DRV_ALLRESET

DRV_ALLRESET

Restore All Drives To Reset State

Entry Parameters:

Register CL.: ODH (13)
Returped Values:

Register AL: O if suceessful

OFFH on error
BL: Same as Al.

The DRV_ALLRESET sysiem call restores the file system to a reset state where all the
diak drives are st to Read-Write (refer to the DRY_SETRO and DRV_ROVEC system calls),
the default disk is set to drive A, and the defau]t DMA address is teset to offset 080H relative
o the current DMA segment address. This aystemn cell can be used, for example, by
an application program that requires disk changes during operation. You can also use the
DRV_RESET system call for this purpose.

This system call is conditional under Concurrent CP/M. If enother process has a file open
cn any of the drives to be reser, and the drive is also Read-Onmly or removeble, the
DRV_ALLRESET system call is denied, and none of the specified drives are reset (see
Section 2.17).

Upon return, If the reset operation is successful, DRV_ALLRESET sets registar AL to
COH. Otherwise, it sets ragister AL to OFFH. If the BDOS is not in one of the return error
maodes (refer to the E_ERRMODE system call), the file system displays an error message
at the console identifying the process owning the first open file that cansed the
DRV_ALLRESET to be denied.

B DIGITAL RESEARCH®
6-47

DRV_DPR Coocmrrent CP/M Programmer's Guide

DRV_DPB
Return Address Of Disk Parameter Block
For Calling Process’s Defanlt Disk
Entry Parsmetars:
Register CL: C1FH (31)

Returned Values:

Register AX: DPB Address - Offset

OFFFFH on Physical Error
BX: Samem AX

ES: DFPB Address - Segment

DRY_DPB returns the address of the XI0S-resident Diek Paremeter Block {DPB) for the
currently aclected drive. The calling process can use this address to extract the disk paramater
velues.

If & physical error is encountered when the BDOS Error mode is ane of the Return Erpor
modes (refer to the F_ERRMODE system call), DRY_DFB returns the velue OFFFFH.

The Disk Parameter Block (DPB) contains the parameters that define the actual disk.

0OH 5?1- BSH | BLM | Exm
05H DSM DRM

oeH ALO | ALI oKe

aDH OFF PsH | PRM

Figure 6-4. DFB - Disk Parameter Block

I DIGITAL RESEARCH®

Coneurreni TP/M Programmers Guide DRV_DPB

Table 6-10. DPB Fleld Defintiions

Field

Drefinition

SPT Sectors Per Track

The mumber of Sectors Per Track equals the totel mumber of physical
sectors per track. Physical sactor size is defined by PSH and PRM
described below.

BSH Allocation Block Shift Factor

BLM Ailocation Block Mask

The data allocation block size determines the values of the data
allocetion Block Shift Factor and the allocstion Block Mask. The
Block Shift factor equals the logarithm base two of the block logical
size in 128-byte records, or BSH = LOG2(BLS). The Block Mask
equals the number of 128-byte records in an allocation block minus
1, or BLM = (2**BSH)— L. Refer to the Concurrers CPIM Sysiem
Guide for valid block sizes and BSH and BLM values,

EXM Extent Mask

The date biock allocation size end the mumber of disk allocation
blocks determine the value of the Extent Mask. The Extent Mask
determines the maximum number of 16K extents that can be con-
tained in a directory eatry. It is equal to the maximum number of
16K extents per directory entry minus one. Refer to the Concurren:
CPiM System Guide for EXM values.

DSM Disk Storage Maximum

The Disk Storage Maximum defines the total storage capacity of the
drive. This is aqual to the total number of allocation blocks mimus 1
for the drive. DSM must be less than or equal to 7FFFH. If the disk
uses 1024 byte blocks (BSH =3, BLM =7), DSM must be less than
or equal to OOFFH.

D DIGITAL RESEARCH®

DRY_DPBE

Concurrent CP/M Programmier’s Gulde

Tahle &148. {continued)

Field

Definition

DRM Directory Maximum

The Directory Maximmum defines the tolal number of directory entries
for the drive. This is equal to the total oumber of directory enizies,
mimus 1, that can be kepi on this drive. The directory requires 32
bytes of disk per entry. The maximum direciory allocation is 16
blocks, where the block size is determined by BSH and BLM.

ALD Directory Allocation Vector 0
AL1 Directory Allocation Vector 1

The Directory Allocetion Yectors determing the reserved directory
allocation blocks.

CKS Checksum Vactor Size

The Checksum Vector Size determines the required length of the
directory checksum vactor end the mimber of directory entries that
the BDOS will checksum. The Checksum Vector Size is equal te the
mumber of directory entries divided by 4, or CKS = (DRM+ 1)/4.
If the media is fixed, CKS might be zero, no storage nesds to be
reserved, and the BDOS does not calculate directory checksums for
the drive.

The high-bit of CKS (that is, > = 0BO00H) iz set if the referenced
drive is considered to be a nomremovable media drive. Note that this
madifies the rules for reastting the drive. For mors information, refer
to Section 2.185.

550

B DIGITAL RESEARCH®

Concurrent CP/M Programmer's Gulde DRY_DPR

Table 6-10, {continued)

Field

Definition

OFF Track Offset

The Track Offset is the number of reserved tracks at the beginning
of the disk. OFF is equal to the track rumber on which the directory
starts,

PSH Physical Record Shift Factor

The Physical Record Shift Factor ranges from { to 5, corresponding
to physical record sizes of 128, 256, 512, LK, 2K, or 4K byies. It
is equal to the logarithm base two of the physical record size divided
by 128, or LOG2(secior_size/128).

PRM Physical Record Mask

The Physical Record Mask ranges from O to 31, corresponding to
physical record sizes of 128, 256, 512, 1K, 2K, or 4K bytes. It
is equal to the physical sector size divided by 128 minus 1, or
{sectot. size/128)—1.

For mare information on DPB parameters, refer to the Concurrent
CPiM System Guide, Section 5.4.

T DICITAL RESEARCH®

6-51

DRV_YLUSH Concwrrent CP/M Programmer's Gadde

DRV_FLUSH

Fluzh Write-Deferred Buffers

Entry Parameters:
Register CL: 030H (48)
DI.: Purge Flag

Reiumed Values:
Register Al: Error Flag
AH: Permanent Error
BX: Same sz AX

‘The DRY_FLUSH system call forces the write of any write-pending records contained in
internal blocldng/deblocking buffers. If register DL is se4 to OFFH, DEV_FLUSH also purges
all active deta buffers after performing the writss. Programs that provide write with read
verify support needed to purge internal buffers to ensure that verifying reads actually access
the disk instead of returning date resident in internal date, buffers. The Concurrent CP/M PIP
utility is an example of such & program.

Upon return, the syatem call sets register AL to O0H if the flush operstion is successful.
If a physical error ie encountered, DRY_FLUSH performs different actions depending on
the BDOS Error mode (refer to the F_ ERRMODE syatem call). If the BDOS Error mode is
in the defsnlt mode, the system dispiays & message at the console identifying the error and
terminates the calling proceas. Otherwise, it returns to the calling process with register AL
sat to OFFH and register AH sst to one of the following physical error codes:

01H - Disk I/0 Exror : permanent srror
02H - Read/Qnly Disk

I DIGTAL RESEARCH®
5-52

Concurrent CP/M Programmer's Guide DRY_FREE

DRV_FREE

Free Specified Disk Drives

Entry Parameters;
Register CL: 027H (39)
DX: Drive Vector

The DRV_FREE system call purges the system Lock List of all file and locknd record
items that belong to the calling process on the specified drives. DRV_FREE passes the drive
vector in register DX.

DRV_FREE does not close files associated with purged open file Lock List items, In
eddition, if & process references a purged file with a BDOS system call requiring an open
FCB, the system call returns a checksum error. A file that has been written to should be
closed before making a2 DRV_FREE call to the file’s drive, or data can be Jost, Refer to
Section 2.17 for more information on this system cell.

1 DIGITAL RESEARCH®

6-53

DRY_GET Concarromi CP/M Progreasses's Gulde

DRV_GET

Return The Cailing Process’s Default Drive

Entry Parameters:
Register CL: 019H (25)

Returned Values:
Register AL: Drive Number
BL: Same az AL

The DRV_GET system call returns the calling process™ currently selected default disk
number. The disk numbers range from 0 through L5, corresponding to drives A through P.

I DIGITAL RESEARCH®
6-54

Conemrrent CP/M Programmers Guide DRY_GETLABEL

DRV_GETLABEL

Return Directory Label Data Byte
For The Specified Drive
Entry Parameters:
Register CL.: 065H (101)
DL: Drive
Refurned Values:

Register AL: Direcrory Label Data Byte
AH: Physical Error
BX: SameagAX

The DRV_GETLABEL system call returns the directory label data byte for the specified
drive. The calling process passes the drive number in register DL with O for drive A, 1 for
drive B, continuing through 15 for drive P in a full 16-drive system. The format of the
directory label data byte is shown below:

bit 7 - Require passwords for password protected files
& - Perform access time and date stamping
3 - Perform update time and date stamping
4 - Perform create time and date stamping
0 - Directary label exists on drive

(Bit 0 is the least significant bit)

DRV_GETLABEL returns the directory labe] data byte 1o the calling process in register
AlL. Registar Al equal to 00H indicates that no directory label exists on the specified drive.
If the system call encounters a physical error when the BDOS Error mode is in one of the
return error maxdes (refer to the F.ERRMODE system call), it returns with register Al set
to OFFH and register AH set to one of the following:

D1H - Disk VO Error : permanent error
O4H - Invalid Drive : drive select error

B DIGITAL RESEARCH®

§-55

DRV_LOGINVEC Caomcprrest CP/M Programmer's Guide

DRV_LOGINVEC

Return Bit Map Of Logged-in Disk Drives

Entry Parameters:
Register CL: 018H (24)

Returned VEluss:
Register AX: Login Vector
BX: Sameas AX

The DRV_LOGINVEC system call returns the Login Veclor in register AX, The Login
Vector is a L6-bit value with the least significant bit corresponding to drive A, end the high-
order bii corresponding to the 16th drive, drive P. A 0 bit indicates that the drive is not
logged-in, while a 1 bit indicates the drive is logged in. Refer to the beginning of Section
5.2,3 for & complete deseription of the Login Vector.

B DIGITAL RESEARCH®

Concurrent CP/M Programmers Guide DRV_RESET

DRV_RESET

Reset Specified Disk Drives

Eniry Parameters:
Register CL: 025H (37)
DX: Drive Vector

Returnad Values:
Register AL! Return Code
BL: Same as AL

The DRV_RESET syst=m call is used to programmatically restore specified removable
media drives 1o the reset state (a reset drive is not logged in and is in Read-Write status).
The pessed parameter in register DX is a 16-bit vector of drives 1o be reser, where the lzast
significant bit corresponds to drive A, and the high-order bit corresponds to the sixteenth
drive, labeled P. Bit values of 1 indicate that the specified drive is 10 be reset. Refer to Section
2.17 fot more information regarding the use of this system call.

This system call is conditional under Concurrent CP/M. If another process has a file open
on any of the drives 1o be reset, the DRV_RESET system call is dented, and none of the
drives are reset.

Upen return, if the reset operation is snccessful, DRV_RESET ssts register AL to 00H.
Otherwise, it zets register AH to OFFH. If the BDOS Error mode is not in Return Error mode
(refer to the F_ ERRMODE system call), the system displays an error message at the console,
identifying the process owning the first open file that csused the DRY_RESET request to be
denied.

@ DIGITAL RESEARCH*

6-57

DRY_ROVEC Comemerent CP/M Prograssser’s Gulde

DRV_ROVEC
Return Bit Map Of Read-Only Disks

Entry Parameters:
Register CL: OLDE (29}

Rewrned Valuea:
Register AX: RO Vector
BX: Same as AX

The DRY._ROVBC system call returnx a bit vector indicating which drives have the tsm-
porary Read-Only bit set, The Read-Only bit can only be sst by & DRV_SETRO call.

Note; When the file system detects a change in the madia on 2 drive, it sntomatically logs
in the drive arnd sets it to Reed-Write.

The format of the RO Vector is analogous to thet of the Login Vector. The least significant

bit ¢corresponds to drive A; the most significant bit corresponds to drive P. For a complets
dexcription of the RO Vector, refer to the beginning of this section.

E DIGITAL RESEARCH®

658

Concurrent CP/M Programmer’s Guide DRY_SET

DRV_SET

Set Calling Process's Default Disk

Entry Parametars:
Register CL: OEH (14)
DL: Selected disk

Returned Values:
Register AL: Error Flag
AH: Physical Error
BX: Same as AX

The DRV_SET systern call designates the specified disk drive as the defauit disk for
subsequeat BDOS file operations. Set the DL register to O for drive A, 1 for drive B,
continuing through 15 for drive P. DRV_SET also logs in the designated drive if it is currently
in the resst state. Logging in a drive activates the drive’s directory for file operations.

FCBs that specify drive code zero (DR = 00H) automatically reference the currently
selected defanlt drive. FCBs with drive code values between 1 and 16, however, ignore the
selected defanlt drive and directly reference drives A through P.

Upon return, register AL equal to 00H indicates the select operation was successful. If a
physical error is encountered, DRV_SET performs different actions depending on the BDOS
Brror mode (refer to the F_ERRMODE system call).

If the BDOS Error mode is in the defanlt mode, the system displays a message at the
console, identifying the error and terminates the calling process. Otherwise, DRV_SET
returns to the calling process with register AL set to O0FFH and register AH set to one of the
following physical error codes:

Q1H - Disk IO Error : permanent error
04H - Invalid Drive : drive select error

B DICITAL RESEARCH®

6-59

DRY_SETLABEL Concwrent CP/M Proprammers Guide

DRV_SETLABEL

Create Or Updste A Directory Label

Entry Parameters:
Register CL: O64H (100)
DX: FCB Address - Offect
DS: PCB Address - Segment

Returned Values:
Registar Al: Directary Code
AH: Physical or Extendad Error
BX: Sume s AX

The DRV_SETLABEL system call creates a directory label or updates the existing direc-
tory Iabel for the specified drive. The calling ptoctse passes the eddress of an FCB containing
the pame, type, and extent fields to be assigned to the dircctory label. The name and type
fields of the referenced FCB are aot used to locate the directory label in the directory; they
are simply copied into the updated or created directory label. Byts 12 of the FCB contains
the user's specification of the directory label dat byte.

EDIGITAL RESEARCH®

Concwerent CP/M Programmer's Guide DRV_SETLABEL

The definition of the directory label data byte is

bit 7 - Require passwords for password protected filos
6 - Perform access time and date stamping
§ « Perform update time and dats ataraping
4 - Perform create time and date stamping
0 - Arsign a new password to the directory labe]

(Bit O Is the least gignificant bit)

If the current directory label is password protectad, the coreet password must be placed
in the first 8 bytes of the current DMA or heve been previonsly establishad as the defanlt
password (refer to the B_PASSWD gystem call). If bit O of the directory label data byts is
set to 1, it indicates that 2 new password for the directory label has been placed in the second
eight bytes of the current DMA.

The DRV_SETLABEL system call also requires that the referenced directory contains
SFCBs in order to activate date and time stamping on the drive. If an attempt i3 made to
activate date end time stamping when no SFCBs exist, the DRV_SETLABEL system call
returns en error code and performs no action. The Concurrent CP/M INTTDIR utility ini-
tializes a directory for date and time stamping by placing an SFCB in every fourth entry of
the directary.

Upon return, the DRY_SETLABEL system call returns & directory code in register AL
with the value OOH if the directory label create or update was successful, or OFFH if no space
existed in the referenced directory to create a directory [abel. It also returnz OFFH if date
and time stamping was requested and the referenced directory did not contain SFCBs. Register
AH is set to 00H in all of these cases.

Ii a physical or exiended error is encountered, the DRV_SETLABEL system call performs
different actions depending on the BDOS Brror mode (refer to the F ERRMODE system
call). If the BDXOS Error mode is in the default mode, the file system displays a message at
the console identifying the error and terminates the calling process. Otherwise, the
DRV_SETLAREL system call returns to the calling process with register AL set to OFFH
and register AH set to one of the following physical or extended error codes:

01H - Disk I/Q Error : permanent error
02H - Read-Only Disk
04H - Invalid Drive : drive select error
078 - Password Error

A DIGITAL RESEARCH®

6-61

DRV_SETRO Comemyent CP/M Prograsmary Gulde

DRV_SETRO

Set Defalt Disk To Read-Only

Entry Parameters:
Register CL: O1CH (28)

Returned Values:
Register AL: Return Cods
BL: Sameas AL

The DRV_SETRO system call provides temporary write protection for the currently selected
digk by marking the drive 83 Read-Only. No process can write to a disk that is in the Read-
Unly state. You mmst perform & successful DRV_RESET operation (o restors a Read-Only
drive to the Read-White state (refer to the DRV_ALILRESET and DRY_RESET systern calls).

The DRV_SETRO system call is conditionsl under Concurrent CP/M. If another process
has an open file on the drive, the operation is denjed, and the system call returns the vajue
OFFH to the calling process. Otherwise, it returns a OOH. If the BDOS Error mode is not in
Return Error mode (refer to the F_ERRMODE systern call), the file system dtspleys an error
message at the console, identifying the process owning the first open file that caused the DRV
SETRO request to be denied.

Note that a drive in the Read-Only state cannot be reset by a process if another process
has an open file on the drive.

MIDIGITAL RESEARCH®
6-62

Concurrent CP/M Programmer’s Guide DRY_SPACE

DRV_SPACE

Return Free Disk Space On Specified Drive

Entry Parameters:
Register CL: 02EH (46)
DL: Drive
Returned Values:

Register Al: Error Flag
AH: Physical Error
BX: Sameas AX
First 3 bytzs of DMA Buffer filled in

The DRV_SPACE system call determines the munber of fres sectors (128-byte records)
on the specified drive. The calling procass passes the drive number in register DL, with 0
for drive A, 1 for B, continuing through 15 for drive P DRY_SPACE returns a binary oumber
in the first 3 bytes of the current DMA buffer. This number is returned in the format shown
in Figure 6-5.

£50 F§1 F32

F8D = LOW BYTE
F81 = MIDDLE BYTE
Fs2 = HIGH BYTE

Figure 6-5. Disk Free Space Field Format

Note that the returned free space value might be inaccurate if the drive has been marked
Read-Only.

DIGITAL RESEARCH®
6-63

DRV_SPACE Concorrent CP/M Programmer’s Guide

Upon return, DRY_SPACE sets register AL to 00H, indicafing the operation was suc-
ceseful. However, if the BDOS Error mode is one of the rehirn modes (refer to the
F_ERRMODE sysiem cell}, and a physicel error occurs, it sets register AL to OFFH, and
register AH to one of the following values:

01H - Disk I/ Error : permanent error
04H - Invalid Drive : drive sclect eror
6.2.4 File-Acceas Syrtem Calls

Most file-access system calls reference a File Control Block (FCB). This data structure is
illustrated in Teble 2.1, Refer to Section 2.4 for a comprehentive sxplsnation of the FCB
data structure, its initialization, and usage.

W DIGITAL RESEARCH®

664

Concwrrent CP/M Programmer’s Guide F_ATTRIB

F_ATTRIB

Set The Attribntes Of A Disk File

Entry Parameters:
Register CL: OIEH (30)
DX: FPCB Address - Offsct
DS: PCB Address - Sogment

Retumed Values:
Register AL: Directory Code
BL: Sameas AL

By calling the F_ATTRIB system call, a process can modify a file’s attributes and set its
Inst record byte count. Other BDOS sysiem calls can interrogale these file parameters, but
only F_ATTRIB can change them. The file attributes that can be set or reset by F_ATTRIB
are F1” through F4', Read-Only (T1"), System (T2'), and Archive (T3"). The specified FCB
contains & filename with the appropriate attributes set or reset. The calling process must
ensure that it does not specify an ambiguous filename. Also, if the specified file is password
protectad, the correct password must be placed in the first sight bytes of the current DMA
buffer or have been previonsly establishad as the defanlt password (refer to the F_PASSWD
systam call}.

Interface attribute F5® specifies whether an extanded file lock is to be maintained after the
F_ATTRIB call. Interface sttribute F&6” specifies if the specified file’s byte count is to be set.
The interface attribute definitfons are listed below:

F5'= 0 - Do not maintain an extended file lock (dafault)
F5'= 1 - Maintain an axtended file lock

F6'= 0 - Do not set byte count (defanlt)

F§'= 1 - Set byte count

If F5’ is set and the referenced FCB specifies a file with an extended file lock, the calling
process maintains the lock on the file. Otherwise, the file becomes available io other processes
on the system. Section 2.11 describes extended file locking in detail.

M DIGITAL RESEARCH®

F_ATTRIR Concmrent CP/M Programiner’s Guide

Ii interface atiribute F&' is set, the calling process must sef the CR field of the referenced
FCB 1o the new byte count value. A procsss can access a file's byie count value with the
BDOS F_OFPEN, P__SFIRST, and F_SNEXT systzm calls. File byte counts are described in
section 2.15.

F_ATTRIB seerches the FCB specified dimciory for en entry belonging to the current
user oumber that maiches the FCB apecified name and type fields. The system call then
updetes the directory to contain the selected indicators, am if interface attribute F6" is sat,
the specified byte count value. Note that the Isst record byte count is maintained in the byte
13 of a file's directory FCBs.

File attributes T17, T2’, and T3’ are defined by Concurrent CP/M a3 described in Section
2.4.2, Anributes FL” through F4' of command files are defined as Compatibility Attributes,
as described in Section 2.12. However, for dll other files, attributes F1° through F4* are
available for definition by the user. Antributes F5' through F8' are reserved as Interface
Attributes and cannot be used as file attributes. Interface attributes are described in Section
2.43.

An E_ATTRIB system call is not performed if the referenced PCB specifies a file currently
open for another process. It ix performed, however, if the referenced file is open by the
calling process in Locksd mode. However, the fils's lock entry is purged when this i done
and the file gystem prevents contimied read and write operations on the file. F_ATTRIB doas
not set the attribmtes of a file currently open in Read-Only or Unlocked mode for any procsss.

Making an F_ATTRIB system call for an open fils can edversely affect the performance
of the celling process. For this resson, you should clase an open file before you call the
F_ATTRIB systsm call.

Upen return, E_ATTRIB returns a directory code in register AL with the value O0H if the

system call is successful, or OFFH if the file specified by the referenced FCB is not found.
Register AH is set to O0H in both cases,

IDIGITAL RESEARCH®

6-66

Concurrent CP/M Programmer's Gaide F_ATTRIB

If a physical or extended error is encountered, the F_ATTRIB gystem call performs dif-
ferent actions depending on the BDOS Etrer mode (refer 1o the F_ERRMODE ayster call).
If the BDOS Error mode is in the defanlt mode, the file system displays e message at the
console identifying the error and terminates the process. Otherwise, it returns to the calling
process with register AL set to OFFH and register AH set to ane of the following physical
or extended errofr codas:

O1H - Disk IYO Error : permanent error
02ZH - Read-Only Disk

04H - Invalid Drive : drive select error
O5H - File open by another process
O7H - Password Error

0%H - Tllegal ? in FCB

M3 DiGITAL RESEARCH®
667

F_CLOSE Concuwrrent CP/M Programmer’s Guide

F_CLOSE

Close A Disk File

Enfry Parametars:
Register CL: QI10H {16)
DX: FCB Address - Offsct
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Phyaical or Extended Error
BX: Sameas AX

The F_CLOSE system call performs the inveree cperation of the F_OPEN system call.
The referenced FCB must have been previously activaisd by e successful F_OPEN or
F_MAKE system call. Interface attributes FS° end F6’ specify how the file is to be closed,
es shown belaw:

F§' = 0, F§’ = 0 - Default Cloes

F5' = 0, F&' = 1 - Extend Hile Lock
F5' = 1, F§' = 0 -Partial Close
F5' = 1, F6' = 1-Partial Close

The F_CLOSE aystem cell performs the following steps regardleas of the interface attributs
specification. First, it verifies that the referenced PCB hax 2 valid chacksum. If the checksuim
is invalid, F_CLOSE performs no action and returns &a &rror code.

If the checksum is valid end the referenced FCB caonteins new information because of writs
operations tp the FCB, F_CLOSE permanently records the new information in the divectory.
[f the FCB does not contain new information, the directory update etepis bypassed. However,
F_CLOSE alwuys attempts to locate the FCB’s corresponding entry in the directory and
returs &n error code if the directary entry cannat be found.

If the F_CL.OSE system call successfully performs the shove steps, it performs differsnt
sctions, depending on how the interfice aftributes are set. In defanlt close operations,
F__CLOSE decrements the file’s open count, which is maintained in the file’s system Lock
List entry. If the open count decrements to zero, it indicates that the number of default close
operations for the file matches the mumber of open operations.

W DiGITAL RESEARCH®
668

Concurrent CP/M Programmer’s Guide F_CLOSE

If the open count decrements to zero, F_CLOSE permanently closza the file by performing
the following steps. First of all, it removes the file's item from the system Lock List. If the
FCB is opened in Unlocked mode, it also purges all record locks belanging to the file from
the system Lock List. In addition, F_CLOSE invalidates the FCB's checksum to engure the
referenced FCB is not subsequently used with BDOS system calls that require an open FCB
(for example, - WRITE).

If the open count does not decrement to zera, F_CLOSE simply returns to the calling
process and the file remains open.

For partiel close operations, F_CLOSE does not decrement the file's open count and returns
to the calling process. The flle always remains open following a partial close request.

Closing a file with an extended file lock modifies the way F_CLOSE performs a permanent
close. F_CLOSE only honors an extended lock request on a permanent closs of & file opened
in Locked mode. If these conditions are satisfied, F_CLOSE invalidates the FCB's checksum
but meintains the lock item. Thus, although the file is permanently clossd, other processes
cannot access the file. Section 2.11 describes extended file locking in deteil.

Upon return, the F_CLOSE system call returns a directory code in register AL with the
value OOH if the close operation is successful, or OFFH if the file is not found. Register AH
is set to 0 in both of these cases.

If a physical or extended error is encountered, the F_CLOSE system call performs different
actions depending on the BDOS Error mode (refer to the F ERRMODE system cell). If the
BDOS Error mode is in the default mode, the file system displays a message identfying the
errar Bt the consale and terminates the calling process. Otherwise the F_CLOSE system call
returns to the calling process with register AL set to OFFH and register AH set to one of the
following physical or extended error codes:

O1H - Disk KO Error : permanent error
02H - Read-Cnly Disk

O4H - Invalid Drive : drive select error
06H - Close Checksum Error

B DIGITAL RESEARCH®

669

F_DELETE Concurrent CP/M Programmer’s Gulde

F.DELETE

Delete A Disk File

Entry Parameters:
Register CL: QOI3H (19)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register Al: Directory Code

AH: Physical or Extended Error

BX: Sameas AX

The F_DELETE system call removes files and/or XFCB3 that maich the FCB addressed
in register DX. The filename and filetype fields can conmin wildeard file specifications
(question marks in bytes 1 through 11), bat byte 0 cannot be 8 wildesd as it can be in the
F_SFIRST and F_SNEXT systern calls. Interface attribute FS* specifies the rype of delegs
operation 1o be parformed, as shown below:

F5' = { - Stendard Delete {Default mode)
F§' = | - Delete only XFCB's and maintain an extended file lock.

K any of the files specified by the referenced FCB are password protscted, the correct
password must be placed in the first eight bytes of the current DMA buffer or it must have
been previously estehlished s the default password (refer to the F_PASSWD system call).

For standard delete operations, the F_DELETE system call removes all direciory entries
belonging to files that match the refsrenced FCB. All disk directory and data space owned
by the deleted files is returned to free space end becomes available for allocation to other
files. Directory XFCBs that were owned by the deleted files are also removed from the
directory. If interface attibute F5* of the FCB is set to 1, F_DELETE deletes only the
directory XFCBs matching the referenced FCB.

EDIGITAL RESEARCH®
570

Concurrent CF/M Programmer’s Guide F_DELETE

Note: If eny of the files matching the input FCB specification fail the password check, arc
Read-Only, or are currently open by another process, then F_DELETE deletes no files or
XFCBs. This applies to both types of delete operations.

Interface attribute F5 also specifies whether an extended file lock is to be maintained after
the F_DELETE call. If RS’ is set and the referenced FCB specifies a file with an extended
lock, the calling process maintains the lock on the file. Section 2.11 describes extended file
locking in detail.

A process can delete a file that it currently hes open if the file is opened in locked mode.
However, the BDOS returns a checksum error if the process makes a subsequent reference
to the file with a BDOS system call requiring an open FCB. A process cannot delete files
open in Read-Only or Unlocked mode.

Deleting an open file can adversely affect the performance of the calling process. For this
reason, you should close an open file before you delete it.

Upon return, the F_DELETE system call returns a directory code in ragister AL with the
value OOH if the delete is successful, or 0FFH if no fils matching the refersnced FCB is
found. Regisier AH is set to 0 in both of these cases. If a physical or extended error is
encountered, F_DELETE performs different actions, depending on the BDOS Error mode
(refer to the F_BERRMODE system call).

If the BDOS Error mode is the default mode, the system displays a message identifying
the error at the console and terminates the calling process. Otherwise, it returns to the calling
process with register AL set to OFFH and register AH set to one of the following physical
ar extended error codss:

01H - Disk IO Error : permanent error

02H - Read-Only Disk

03H - Read-Only File

(04H - Invalid Drive : drive select error

(5H - File opened by another process or open in Read-Only or Unlocked mode
07H - Pasaword Error

i§i DIGITAL RESEARCH®

671

F_DMAGET Coscwrrest CP/M Programamer's Gulile

F_DMAGET

Return Address Of Direct
Memory Access Buffer

Entry Perameters:
Register CL: 034H (52)

Returned Values:
Register AX: DMA Offeet
BX: Same gs AX
ES: DMA Segment

F_DMAGET returns the current DMA Base Segment address in ES, with the current
DMA Offset in AX.

B DIGITAL RESEARCH®
672

Cancurrent CP/M Programmer’s Guide F_DMAOFF

F_DMAOFF

Set The Direct Memory Address Offset

Entry Parameters:
Register CL: 01AH (26)
DX: DMA Address - Offzot

DIMA is an acronym for Direct Memory Address, which is often used with disk controllers
that directly access the memory of the computer 1o transfer dats to and from the disk sub-
system, Under Concurrent CP/M, the current DMA is usually defined as the buffer in memory
where a record resides before a disk write and afier & disk read operation, If the BDOS
Multisestor Count is equal to one (refer to the F_MULTISEC system call), the sjze of the
buffer is 128 byies. However, if the BDOS Multisector Count is grealer than one, the size
of the buffer must equal N * 128, where N equals the Multisector Count.

Some BDOS system calls also use the current DMA to pass parameters and 10 teturn
velues. For example, BDOS system calls that check and assign file passwords require that
the passwond be placed in the current DMA Buffer. As another example, DRV_SPACE
refurns its regults in the first 3 bytes of the current DMA. When the current DMA is vsed in
this context, the size of the buffer in memory is determined by the specific requirements of
the system call.

When the P_CLI system call initiates a transient program, it sets the DMA offsat to 080H
and the DMA Segment or Base to its initial Data Segment. DRY_ALLRESET also sets the
DMA offset to 080H. The F_DMAOFF system cell can change this defanlt value to another

address. The DMA address remains at its current value until it is changed by an
FE_DMASEG, F_DMAOFFE, or DRV_ALLRESET call.

DIGITAL RESEARCH®

673

F_DMASEG Concurrest CP/M Prograomers Guide

F_DMASEG

Set Direct Memory Access
Segment Address

Entry Parameters:
Register CL: 033H (51)
DX: DMA Segment Address

F_DMASEG sets the segment value of the current DMA buffer address. The word param-
eter in XX is a paragraph address end is used with the DMA offset value to pecify the 20-
bit address of the DMA buffer. Refer to the F_ _DMAQFF system call for additional information,

Notz that upon initial program loading, the default DMA base ig set to the address of the

user's data segment (the initial value of DS) and the DMA offsst is set to OBOH, which
provides access to the defanlt Buffer in the Base Page.

W DIGITAL RESEARCH®

6T¢

Concurrest CP/M Programmes's Guide F_ERRMODE

F_ERRMODE

Set BDOS Error Mode Fer Error Returns

Entry Parameters:
Register CL: 02DH (45)
DL: BDOS Error mode

The BDOS Error mode is a system parameter maintained for each running process that
determines howi the file system handles physical and extended errors. Physical and extended
errors are described in Section 2.18. The BDOS Error mode hes three states: the defsait
mode, Return Brror mode, and Return and Display mode.

If & physical or exiended error occurs when the BDOS Error mode is in the default mode,
the BDOS displays 2 system message at the console identifying the error and terminates the

calling process.

If a physical or extended error occurs when the BDOS Error mode is in Return Error
made, the BDOS seiz register AL to OFFH, places an error code identifying the physical or
exiended error in register AH, and returns to the calling process.

If a physical or extended error occurs when the BDOS Error mode is in Return and Display
mode, the BDOS displays the system message before returning lo the calling process, and
sets registers AH and AL as in the Return Error mode.

The F_ERRMODE system call setz the BDOS Error mode for the calling process to the
mode specified in register DL, If register DL is sot to OFFH, the mode is set to Return Error
mode. If register DL is set to OFEH, the mode is set to Return and Display mode. If repister
DL is set to any other value. the mode is st to the default mode.

M DIGITAL RESEARCH®

6-75

F.LOCK Concwrent CP/M Programmsr’s Guide

F_LOCK

Lock Records In A Disk File

Entry Parameters:
Register CL: 02AH (42)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returped Values:
Register AL: Error Code
AH: Physieal Brror
BX: Sameas AX

The E_LOCK syztem call allows a process to establish temporary ownership to particular
records within s fils. This system call is only supported for files open in Unlocked mode. If
it is called for a file open in Locked or Read-Only mode, no locking actlon is performed and
a successful repult ja returned. This provides compatibility between Concurrent CP/M and
CPM-86.

The calling process passes the address of ant FCB in which the random record field is filled
with the Random Record Number of the fivat record to be locked. The number of records to
be locked is determined by the BDOS Multisector Count (refer to the F_MULTISEC system
cill). The cutrent DMA must also contain the 2-byte File ID reurned by F_OPEN or
F_MAKE when the referenced FCB was opened. Note that the File ID is only returned by
the F_QOPEN and F_MAKE system call when the Open mods i Unlocked.

Interface atiyibute F3* specifics the type of lock to perform. Interface aitribute F5' specifies
whether records have to exiet in order to be locked. The F_L.OCK interface attribute defi-
pitions are listed below:

F5'= 0 - Exclusive lock {defaulr)

F5'= 1 - Shared lock

F6' = 0 -~ Lock existing records only (defanlt}
F6'= 1 - Lock logical records.

These options are described in deteil in Section 2.14.

W DIGITAL RESEARCHS
676

Coneurrent CP/M Programmer’s Guide F_LOCK

P_LOCK. verifies that a locking conflict with another process does oot exist for each of
the records to be locked, In addition, if F_LOCK is called with, gfiribute F6° reset, it also
verifies that each record number to be locked exists within the specified file. Bath tests are
made before any records are locked,

Most F_LOCK requests require a new entry in the BDOS aystom Lock List, If thero is
insufficient space in the system Lock List to satisfy the lock roquest, or if the process record
lock limit is exceeded, then F_LOCK does not leck any records and returns an error code
to the calling process.

Upon return, the F_LOCK system czll sats register AL to OCH if the lock operation is
successful, Otherwise, register AL contains one of the following error codes:

{1H - Reading unwritien data

03H - Cannot close current extent

04H - Seek to unwritien extent

06H - Random Record Number out of rango

08H - Record locked by another process

OAH - FCB Chacksum Error

OBH - Unlocked file verification error

OCH - Process record lock limit exceeded

ODH - Invalid File ID

OEH - Ne Room in system Lock List
OFFH - Physical error; refer to register AH

The sysiemn ¢all returns eror code 0YH when it accesses a data block that has not been
previously written,

The system call returns error code 03H when it cannot close the current axtent prior to
moving to g New extent.

The sysiem call returns errvor code O4H when it accesses an extent that has not been created,

The systzm call retnrns error code 06H when byte 35 (R2) of the referenced FCB is greater
than 3,

The sysiem call retitrns error code O8H if the specified recond is locked by ancthet pracess
with an incompatible lock type.

M DIGITAL RESEARCH®

677

F_LOCK Cooervrent CP/M Pragrammer’s Gukie

The system call returns error code 0AH if the referenced FCB failed the FCB checksum
test.

The system call returns error cods OBH if the BDOS cannot locate the referenced FCB's
dirsctory eniry when attempting to verify that the FCB contains current information.

The system call returns error code OCH if performing the lock request would require that
the process consume more than the maximum allowed mmber of systern Lock List entries.

The system call returns error code 0DH when an invalid File ID is placed st the beginning
of the current DMA.

The systemn call returns esror code OEH when the systemn Lock List is full and performing
the lock request would require af least one new entry.

The eystem call returng errar code OFFH if a physical error is encountered, and the BDOS
Error mode is either Return Error mode or Return and Display Error mode (refer to the
F_ERRMODE system call). If the Error mode is in the defsult mode, the sysi2m displays &
message at the console identifying the physical error and terminates the calling process,
‘When the system call returns a physical error to the celling process, it is identified by register
AH as shown belaw:

C1H - Disk IO Error : permanent error
04H - Invalid Drive : drive select error

B DIGITAL RESEARCH®
&-78

Concurrent CP/M Programmer’s Guide

F_MAKE

F_MAKE

Create A Disk File

Entry Parameters:
Register CL:

DX:

DS:

016H (22)
FCB Address - Offset
FCB Address - Segment

Returped Values:
Register AL:
AH:

BX:

Directory Code
Physical or Extended Error
Same 8s AX

The F_MAKE system call creates a new directory entry for a file under the current user
rumber, It also creates an XFCRB for the file if the referenced drive has a directory label that
enables password protection on the drive, and the calling process assigns a password to the

file.

The calling process passes the address of the FCB with byte 0 of the FCB specifying the
drive, bytes | through 11 specifying the filenamne and filetype, and byte 12 set to the extent
mimber. Byte 12, the EX field, is usually set to 00H. Byte 32 of the FCB, the CR field, must
be initialized to O0H, before or after the F_MAKE call, if the intent is to write sequentially

from the beginning of the file.

Interface attribute F5' specifies the mode in which the file is o be opened. Interface
attribute F6' specifies whether a password is to be assigned to the crzated file. The interface

attributes are summarized below:

F5* = Q- Dpen in Locked mode (default)
F5* = 1 - Dpen in Unlocked mode

F&' = 0 - Do not assign password (defanlt)
F&6' = 1 - Assign pasaword to created file

E DIGITAL RESEARCH®

6-79

F.MAKE Concwrent CP/M Programser’s Gulde

‘When attribute F5' ia s2t to 1, the cailing process must place the pasaword in the first 8 bytss
of the current DMA buffer and set byts ¢ of the DMA buffer to the password mode. Nots
that B MAKE only interrogstes attribute F§" if the referenced drive’y directory label hes
enabled pessword support. The XFCB Password mode is summarized below:

XFCE Password Mode

Eit 7 - Read mode
Eit 6 - Write mode
Bit 5 - Delais mode

The F_MAKE system call returng with an error code if the referenced FCB names a file
that currently existe in the directory under the current user mumber, [f there is any posaibility
of duplication, an F_DELETE call should precede the E MAKE call.

1f the make file operation is succesaful, it activates the raferenced FCB for record operations
{opens the FCR) and initializes both the directory entry and the referenced FCB to an empty
file. It also computes a checksum and agsigne it to the FCB. BDOS aystern calls that require
an open FCB (for example, F_WRITE) verify that the FCB checksum ia valid before per-
forming their operation. If the file is openad in Unlocked mode, P-MAKE alto sets bytss
RO and R1 in the FCB to a two-byte value called the File ID. The File ID is a required
parameier for the BDOS Lock Record and Unlock Record systm calls. Note that the
F_MAXE system call initializag all £ attribirtes to 0.

The BDOS file system also creates an open file item in the system Lock List to record &
successfil F_MAKE operation. While this item exists, no other process can delete, rentme,
fruncats, or sat the file utiributea of this file.

A creation and/or updste stamp is made for the created file if the referenced drive contains
B directory label that enables crestion and/or updats time and date stamping and the FCB
extent pumber ie squal to 0.

F_MAKE also creates an XFCB for the created file if the referenced drive contains a
direciory label that enabies password protection, interface attributa F&' of the FCB is 1, and
the FCB is an extant zero FCB. In addition, E_MAKE slso assigns the password and password
mode placed in the first nine bytes of the DMA to the XFCB.

Upon return, the F_MAKE system call returns a directory code in register AL with the
value O0H if the make operation is successful, or OFFH if no direciory space is available.
Repister AH is set to 00H in both cases.

M DIGITAL RESEARCH®
6-80

Concurrent CP/M Programmer’s Guide F-MAKE

If & physical or extended error is encountered, the - MAKE system call performs different
gctions depending on the BDOS Error mode (refer to the F_ERRMODE system call). If the
BDOS Error mode iz in the defanit mode, the system displays a message at the console
identifying the error and terminates the calling process, Otberwise, it returns to the calling
process with register Al set to OFFH and register AH aet to one of the following physical
or extended error codes:

(1H - Disk IO Etror : permanent error
02H - Read-Only Disk

04H - Invalid Drive : drive select error
08H - File Already Exists

09H - Illegal ? in FCB

QAH - Open File Limit Excesded

0BH - No Room in system Lock List

B DIGITAL RESEARCH®

6-31

F_MULTISEC Concarrent CP/M Prograrises Gukle

F_MULTISEC

Set BDOS Multisector Count

Entry Parameters:
Register CL: 02CH (44)
DL: Number of Sectors

Returned Values:
Register AL: Return Code
BL: Seme as AL

The F_MULTISEC system call provides logical record blocking under Concyrrent CP/M.
It enables a process to read and write from 1 to 128 logical records of 128 byies at a time
during subsequent BDOS read and write system calls, It also specifics the number of 128-
byte records to be locked or unlockad by the F_LOCK and F. UNLOCK systern cells.

F_MULTISEC eats the Multissctor Count velue for the calling process to the value passed
in register DL. Once set, the specified Multisector Count remains in effect until the call-
ing process makes another F_MULTISEC system call end changes the value. Note that the
P_CLJ system call sets the Multisector Count to one when it initittes a transiznt procsss.

The Multisector Count affects BDOS error reporting for the BDGS read and write system
calls. With the exception of physicel errors, if an error occurs during these system cajls and
the Multisector Count is greater than one, the system returns the mumber of records success-
fully processed in register AH.

Upon return, the system call sets register AL to ODH if the specified value is in the range
of 1 to 128. Otherwise, it sets register AL to OFFH.

B DIGITAL RESEARCH®

6-82

Coneurremt CP/M Programmers Guide F_OPEN

F_OPEN

Open A Disk File

Entry Patameters:
Register CL: OFH (15)
DX: FCB Address - Offsct
DS: FCB Address - Segment

Returned Values:
Regiater AL: Directory Code
AH: Physical or Extended Error
BX: Same g8 AX

The F_OPEN system call activates the FCB for a file thet exists in the disk directory under
the currently active user number or user zeso. The calling process pessas the address of the
FCB, with byte 0 of the FCB specifying the drive, bytes 1 through 11 specifying the filaname
and filetype, and byle 12 specifying the extent. Byte 12 is usually set to zero.

Interface attributes F5' and F6' of the FCB specify the mode in which the file is to he
opened, es shown beiow:

F§' =0Q, Fé = 0 - Open in Locked mode (Default mode)
F5s' =1, F6* = 0 - Open in Unlocked mode
F5' =0or1, F6" = 1 - Open in Reed-Only mode

I

If the file is password protected in Read mode, the correct password must be placed in the
first eight bytes of the current DMA or have been previously established as the default
password (refer to the F_PASSWD system call). If the current record field of the FCB, CR,
is set to OFFH, the F_OPEN system cali returns the byte count of the last racord of the file
in the CR field. The last record byte count for a file can be set using the F_ATTRIB system
call.

Note: The calling process must set the CR field of the FCB to 00H if the file is to be
accessed sequentially from the first record.

DIGITAL RESEARCH®

6-83

F_OPEN Concurrent CP/M Programmer'’s Guide

The F_OPEN system call performs the following steps for files opened in locked or Read-
Only mode. If the ciryent user is nonzero and the fle to be opensd doss not exist under the
current user number, the E_OPEN system call searches user 0 for the file. If the file exists
under user 0 and has the system attribute {T2') set, the fils is opened under user 0. ‘The Open
mode {s sutomnstically zet to Read-Only when this is done.

The F_OPEN system call alsc performs the [ollowing action for files opened in locked
mode. I the file has the Read-Only attribute (T17) ge1, the Dpen mode is 2utomatically set
to Read-Only. Note that Read-Only mode implies thefile can be coneurrently accessed by
other processes if they also apen the file in Read-Only mode.

If the open operzticn is successful, F_OPEN sactivates the user’s FCB for record operations
a8 follows: P_OPEN copies the relevant directory information from the matching directory
FCB into bytes DO throogh D15 of the FCB. It also computes a checksurn and sssigns it to
the RCB. All BDOS system calls that require an open FCB (for example, F._READ) verify
that the FCB checkeum is valid before performing their operation.

If the file is opened in Unlocked mode, the F_OPEN system call seis bytes R0 and R1 of
the FCB to r two-byte value called the File ID. The File D i3 a required perameter for the
F_LOCK and F_LUNLOCK system calls, If the Open mode is forced to Read-Only, E_OPEN
sets interface atribute F8’ to | in the user's FCB. In addition, the system call sets attribute
F?’ to] if the referenced file is pusswond protectsd in Write mode and the correct pasaword
was not passed in the DMA or did not match the defsult password. The BDOS does not
enpport write operations for an activated FCB if interface attribute F7' or F8” is set to 1.

The BDOS file system elso creates an open file jtem in the system Lock List to record a
guccesaful open file operetion. While this item exists, no other process can delete, rename,
or madify the Alls’s atiributes, In addition, this itsm prevent other processes from opening
the file if the fils is opened in Locked mode. 1t also requires that other processes match the
file’s Open mode if the file is opened in Unlockad or Read-Only mode. This itsm remains in
the system Lock List until the file is permanently closad or until the process that opened the
fils terminates.

When the open operation it successful, the F_OPEN system call alzo makes an access
time end date stamp for the opened file when the following conditions are satisfied: the
refersnced drive has a directory label that requests access date and time stamping, the FCB
extent field is equal to zero, and the refercnced drive is Read-Write.,

8 DIGITAL RESEARCH®

Coneurrent CP/M Programmer's Guide F_OPEN

Upon return, F_OPEN returns & directory code in register AL with the value O0H if the
open is successful, or OFFH if the file is not found. Register AH is set to O in both of these
cases. If a physical or extended error is encountered, the F_OPEN system call performs
different actions depending on the BDOS Error mode (refer to the F_ERRMODE system
call). If the BDOS Error mode is in the default mode, the sysiam displays a message iden-
tifying the error at the console and terminates the process. Otherwise, F_OPEN returns to
the calling process with register AL set to OFFH and register AH set to one of the following
physical or extended error codes:

OIH - Disk 'O Error ; permanent errar

04H - Invalid Drive : drive select error

05H - File is open by another process or by the current process in an incompatible
mode

O7H - Password Error

09H - Illegal ? in FCB

0AH - Open File Limit Exceaded

OBH - No Room in system Lock List

W DIGITAL RESEARCHS®
6-85

F_PARSE Conewrent CP/M Programmer'’s Guide

F. PARSE

Parse An ASCII String
And Initialize An FCB

Entry Paremeters.
Register CL: 098H (152)
DX: PECB Address - Offset
DS: PKCB Address - Segment

Retwrned Velues:
Register AX: OFFFFH if error
0 if end of filename string
0 if end of lineaddreas of next item

to parss
BX: Same s AX
CX: Eror Code

FILENAME FCBADR

Figure 6-6. PFCB-Parst Fllename Conirol Block

3 DICITAL RESEARCH®
6-86

Conewrrent CP/M Programmer’s Guide F_PARSE

Table 6-11. PFCB Field Definitions

Field Description
FILENAME Offset of an ASCII file specification ta parse. The offset is relative
to the same Data Segrnent as the PFCB.
FCBADR Offset of a File Control Block to initialize. The offset is relative to
the same Data Segment as the PFCB.

The F_PARSE system call parses an ASCII file specification (FILENAME) and prepares
a File Control Block (FCB), The calling process passes the address of a data structure called
the Parse Filename Control Block, (PFCB) in registers DX &nd DS, The PFCB contains the
ofiset of the ASCI filename string followed by the offset of the target FCB.

F_PARSE assumes the file specification to be in the follawing form
{Dx} FILENAME {.TYP} {;PASSWORD}
where those items enclosed in curly brackets are optional.
The F_PARSE system call parses the first file specification it finds in the input string. First
of all, it eliminates leading blanks and tabs. F_PARSE then assumes the file specification
ends on the first delimiter it encounters that is out of context with the specific field it is

parsing. For instance, if it finds a colan (:), and it is not the second character of the file
specification, the colon delimits the whole file specification.

K DIGITAL RESEARCH®

6-87

F_PARSE Cooenrrent CP/M Programmer'’s Golde

The F._PARSE syatem csll rocognizes the following characters a3 delimiters:

refurn

; (semicolon) - except before password field

= {equal)

< {lees than)

> (greater than)

(period) - except after filename and before filstype
(colon) - except before filename and after drive
{comma)

(verticel bax)

(lefl square bracket)

(right square bracket)

ey — -

If the F_PARSE gystem cell encounters a nongraphic character in the range 1 through 31 not
listed above, it treats the characier a8 an errof.

The F_PARSE system cell initiclizes the specificd FCB 88 shown in Table 6-12.

€88

EDIGITAL RESEARCH®

Concurrent CP/M Programmer’s Guide

F_PARSE

Table 6-12. FCB Inftialization

Byte number

Explanation

byte O

byte 1-8

byte 9-11

byte 12-15

byte 16-23

byte 24-31

The drive field is set to the specified drive, If the drive is not specified,
the default value is used. 0= default, L =A, 2=B, etc.

The name is set to the specified filename. All letters are converted to
uppercase. If the name is not eight characters long, the remaining bytes
in the filename field are padded with blanks. If the filename has an
asterisk (%), all remaining bytes in the filename field are filled in with
question marks (7). The system call returns an error if the filename is
more than eight bytes long.

The type is set to the specified filetype. If no type is specifiad, the type
fleld is initialized to blanks. All letters ere converied to uppercase. If
the type is not three characters long, the remaining bytes in the filetype
field are padded with blanks, If an asterisk is encountered, all remain-
ing bytes are filled in with question marks. The system call returns an
error if the type field is more than 3 bytes long.

Filled in with zeros.

The password field is sei to the specified password. If no password is
specified, this field is initislized to blanks. If the password is not eight
characters long, remaining bytes are padded with blanks. All letters
are converted to uppercase. The system call returns an error if the
password field is more than eight byies long.

Reserved for system use.

If an error occurs, F_PARSE returns OFFFFH in register AX indicating the ertor.

B DIGITAL RESEARCH®

6-85

F_PARSE Conewrsit CP/M Programisers Gulde

On 2 successful parse, the F_PARSE sysiern cull checks the next item in the FLENAME
string. It scans for the first character that follows trailing blanks and tabs, If the character is
& line feed (OAH), a carriage meturn (ODH), or 2 ml] charscter (00H), it returns a 0 indicating
the end of the FILENAME string, If the nedt character i3 a delimiter, it returns the address
of the delimiter. If the pext charscter is not a delimiter, it returns the address of the first
trailing blank or tab,

Ii the . PARSE system call i to be used to parse g subsequent filename in the FILENAME
string, the returned addreas should be advanced over the delimiter before placing it in the
PFCB.

Refer io Thble 6-5 for e list of error codes returned in CX.

BDIGITAL RESEARCHS
&80

Concnrrent CP/M Programmer’s Gukie F_PASSWD

F_PASSWD

Establish A Default Password
For File Access

Entry Parameters:
Register CL: 06AH (106)
DX: Password Address - Offset
DS: Password Address - Segment

The FLPASSWD system call allows a process to specify a password value before a file
protected by the password is accessed. When the file system accesses a password-protecied
fite, it checks the current DMA,, and the default password for the correct value. If either
value matches the file's password, full access to the file i allowed.

Concurrent CP/M maintains a default password for each process running on the system.
A new process inherits its initial default pasgword from its parent, the process creating the
DEW Process.

Note: Changing the defanlt password does not effect other processes currently running on
the system.

To meake an B PASSWD call, the calling process passes the address of an eight-byte field
contajning the password,

B PIGITAL RESEARCH®

6-01

F_RANDREC Cancoryent CP/M Prograssser’s Galie

F_RANDREC

Return The Rendom Record Number Of The
Next Record To Access In A Disk File

Register CL: 024H (36)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values: Random Record Field of FCB Sat

The F_RANDREC system call returns the Random Record Number of the next recond to
be accessed from a file that has been read or written sequentially to a partictilar point, The
systam call returns this valve in the Random Record field, bytes RO, R1, and R2, of the
addressed FCB. The F_RANDREC sysiem call can be useful in two wayi,

First, it iz often necessary to initially read and scan & sequential file to extract the positions
of varicus key ficlds. As esch key is encouniered, F_RANDREC is called to compute the
random record podition for the date corresponding to thia kew, If the dets unit size is 128
bytas, the resulting record number minus onc i3 placed info a table with the key for later
retrievil.

Afier scanning the entire file and tabularizing the keys and their record numbers, you can
move directly to & particular record by performing & random read using the corresponding
Rendom Record Number that was saved sarlier. The scheme is easily genemlized when
variable record lengthe sre invalved, because the program need only store the buffer-relative
byl position slong with the ey and record number in order to find the sxact starting position
of the keyed data gt a Iater time,

F_RANDREC can also be used when switching from a sequentiel read or write {0 & random
repd or write, A file is saquentially accegsed to a particular point in the file, E_RANDREC
ix called to set the record number, and subsequent mndom read and write operations continue
from the next record in the file,

W DIGITAL RESEARCH®
692

Concurrant CP/M Programmer's Guoide F-READ

F_READ

Reed Records Sequentially
From A Disk File

Entry Parameters:
Register CL: 014H 20)
DX: PCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register Al: Error Code
AH: Physicel Brror
BX: Same ps AX

The F_READ system call reads the next 1 to 128 128-byte records from a file into mem-
ory, beginning at the current DMA address. The BDOS Multisector Count (refer to the
F_MULTISEC system call) determines the number of records to bs read. The default is
one record. The addressed FCB must have been previously activated by an F_OPEN or
P_MAKE system call.

F_READ reads each record from the curreat record (CR) field in the FCB, relative to the
current extent, then automatically increments the CR field to the next record position, I the
CR field overfiows, then F_READ automatically opens the next logical extent and resets the
CR field to zero for the next read operation. The calling process must set the CR. field to 00H
following the open call if the intent is to read sequentially from the beginning of the fle,

Upon return, the E_READ system call sets register AL to zero if the mad operation is
successful. Otherwise, register AL contains an error code identifying the error as shown
below:

O1H - Reading unwritten data (end-of-file)

0SH - Record locked by another process

(9H - Invalid FCB

0AH - FCB Checksum Error

O0BH - Unlocked file verification error
OFFH - Physical error; refer to register AH

8 DIGITAL RESEARCH®

693

F_READ Concurrent CP/M Progrumer’s Gudde

The systemn call returne ervor code Q1H if no dats exizts st the next record position of the
file. The po deta situation is usually encountered at the end of a file. However, it can also
occur i you try to read a data block that has not been previously written or an extent that
has not been created. These situations arc usually restricted o files created or appended with
the BDOS random write system calla (F_WRITERAND and F_WRITEZF).

The system cell returns error code 08H if the calling process attempts to read a record
locked by another process with an exclusive lock. This ertor code is only meturned for files
opened 1n Unfocked mode.

The system call returna error code 09H if the FCB is invalidated by a previcus F_CLOSE
systemn call that returned an error.

The system call returns error code 0AH if the referenced FUB failed the FCB checksum
test,

The eystem call returns error code OBH if the BIDOS cannat logate the FCB’s directory
eniry when attempting to verify that the referenced FCB contping current information. The
system call only returns this error foy files opened in Unlocked mode.

The system call returns error code OFFH if a physical error ls encountered and the BDOS
Error mode is in one of the returm modes (refer 1 the F_ ERRMODE system call). If the
Error mode is in the defanlt mode, the file zystem displays o messege at the console identifying
the physical error and terminstes the calling procses. When the system call returns a physical
error to the celling process, it is identfied by register AH a8 shown below:

O1H - Disk IO Error : permanent error
04H - Invalid Drive : drive sslsct error

On all error returns, except for physical error refurns (AL = 255), F_REAT) sets register
AH to the mumber of records successfully read before the error was encouniered. This value
can range from 0 to 127 depending on the current BDOS Multisector Count. It is always set
to zero when the Multisector Count is equal to one.

1 DIGITAL RESEARCH®

6-94

Conewrent CP/M Programmer’s Guide F_READRAND

F_READRAND

Resad Random Records
From A Disk File

Entry Parametets:
Register CL: 021H (33)
DX: FCBE Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Ertor Code
AH: Physical Error
BX: Same as AX

The F_READRAND system call is similar 1o the F_READ systemn cell except that the
read operation takes place at a particular Rendom Record Number, selected by the 24-bit
value constructed from the three-byte, RO, R1, R2, fisld beginning at position 33 of the
FCB. Note thal the sequence of 24 bits is stored with the least significant byte first, RO, the
middle byte next, R1, and the high byte last, R2. The Random Record Number cen renge
from 0 to 262,143, This corresponds to 2 maximmm value of 3 in byte R2.

To read a file with the F_READRAND system call, the calling process must first open the
base extent, extent 0. This ensures that the FCB is properly initialized for subsequent random
access operations. The base extent might or might not contain any allocated data.

The F_READRAND gystem call reads the recard specified by the random record field into
the corrent DMA address. F_READRAND sutomatically sets the FCB extent and current
record number values, EX and CR, but unlike the F_READ system call, it does not advance
the current record number. Thus, a subsequent E_READRAND call rereads the same record.
Afier a random read operation, a file can be accessed sequentially, starting from the current
randomly accessed position. However, the last randomly accessed record is reread or rewritten
when switching from random to sequential mode.

If the BDOS Multisectar count is greater than one (r=fer to the F_MULTISEC system
call), F_ READRAND reads multiple consecutive records into memory beginning at the
current DMA, F_READRAND automatically increments the RO, R1, R2 field of the FCB
to read each record. However, it restores the FCB’s Random Record Number to the first
record’s value upon return to the calling process.

B DIGITAL RESEARCH®
6-95

F_READRAND Concwrrint CP/M Progmmmer's Gulds

Upon return, BE_READRAND sets register AL o 00H if the read operstion is succsssfil.
Ortherwise, register AL conteins one of the following arror codes:

01H - Reading unwriiten data
03H - Cannot close current extent
04H - Seek to unwritten extent
05H - Random Record Number ot of range
D8H - Recard locked by snother process
0AH - FCB Checksum Error
0BH - Unlocked file verification error
OFFH - Physical error; refer 1o vegister AH

The aystem call returns exror code O1H when it accesaes a data block not previously writien.
This may indicats sn end-of-fils (EQF) condition.

The system cail retnms error code 03H when it cannot close the current axtent prior to
moving to & new extent.

‘The system call returns error code 04H when a read random operstion accesses an extsnt
thet bes not been created.

The rystem ca]} returna error cods O6H when byts 38 (R2) of tha referencad FCB ia greater
then 3.

The system call returns error code 08H if the calling process attempts to read a record
locked by snother process with an exclusive lock. This error code is only returned for files
opened in Unlocked mode.

‘The: system call returns error code OAH if the referenced FCB failed the FCB checksum
test.

The syster call returns error code OBH if the BDOS cannot locate the FCB directory

entry when attemnpting to verify that the referenced FCB contains current information. The
system call only returns this error for fikes open in Unlocked mode,

S DIGITAL RESEARCH®

6-56

Coneurrent CP/M Programmer’s Guide F_-READRAND

The system call returng error code OFFH if a physical error is encountersd and the BDOS
Error mode is in one of the retorn modes (refer to the F-BRRMODE syatom call). I the
Error mode is in the default mode, the file system diaplays a message af the console identifying
the physical error and terminates the celling process, When a phyaical error is returned 10
the calling process, it is identified by the four Jow-order bits of register AH as shown below:

OLH - Digk /O Error : permanent error
04H - Invalid Drive : drive select error

On all errar returns except for physical error refumg, AL = 255, F_READRAND sets
register AH to the number of records successfully rsad before the crror was encountered,
This value cen range from 0 to 127 depending on the enrrent BDOS Multiseetor Count. It
15 always set to zero when the Multisector Count 1s equa) to one,

B DIGITAL RESEARCH®

6-97

F_RENAME Concurrnt CP/M Programmer'y Guide

F_RENAME

Rename A Disk File

Register CL: Q17H (23)
DX: FCB Address - Offeet
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Phyzical or Extended Error
BX: Samnsas AX

The F_RENAME sysiem call uses the referenced FCB to change ail directory entries of
the file specified by the drive and filenume in bytes O to 11 of the FCB to the filename

gpecified in bytes 17 through 27.

If the file specificd by the first filename is pessword-protected, the correct password must
be placed in the first eight bytes of the current DMA baffer, or have been previcusly estab-
lished ag the defenlt pasgword (refer to the F_PASSWD system call).

The calling process must alzo ensure that the filenamea specified in the FCB are valid and
unambiguous, end that the new filename does not already exist on the drive. F_ RENAME
uses the drive code at byie 0 of the FCB to selact the drive. The drive code at byte 16 of the

FCB is igoored.

Interface stribuie F5* specifics whether an extanded file lock is to be muintained affer the
F_ATTRIB cxll as shown below:

B5’
Fs!

0 - Do not maintsin &n extended file lock (defanlt)
1 - Mainfain en extended file lock

i

If F5” is sat and the referenced FCB specifies a file with an exiended file lock, the calling
process maintains the lock on the file. Otherwise, the file becomes availeble to other processes
on the system. Section 2.11 describes extended file Jocking in detail.

D DIGITAL RESEARCH®
6-98

Consurrent CP/M Programmer’s Gulde F-RENAME

A process can renparne a file that it has open if te file is open in locked mode. However,
the BDOS returns a checksum error if the process subsequently references the file with a
systemn call requiring an open FCB. A file open in Read-Only or Unlocked mode cannot be
renamed by any process,

Renaming an open file can adversely affect the performance of the calling process. For
thia reason, you should close an open file before you rename it.

Upon return, {he F.RENAME system call returns a directary code in register AL with
the value OOH if the rename is successful, or OFFH if the file named by the first filename in
the FCB is not found. Register AH is set to OOH in both of these cases, If a physical or
extended error is encountered, the F_RENAME system call performs different actions depending
on the BDOS Error mode (refer o the E_ERRMODE system call). If the BDOS Error mode
is in the default mode, the system displays a message at the console identifying the error,
and termipales the process. Otherwise, it returns (o the calling process with register AL set
to OFFH dnd with register AH set to one of the following physical or extended error codes:;

01H - Disk /O Error : permanent error
02H - Read-Only Disk

03H - Read-Only File

04H - Invalid Drive : drive select error
O5H - File open by another process
O7H - Password Error

08H - File Already Exists

0%H - 1llegal ? in FCB

I DIGITAL RESEARCH®

6-99

F_SFIRST Concurrent CP/M Programmisr’s Guide

F_SKFIRST

Find The First File That Maiches
The Specified FCB

Entry Parameters:
Register CL: 011H (17
DX: FCB Address - Offsat
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Phyvical or Extended Error
BX: Seme sz AX

The F_SFIRST system call scans the directory for a match with the referenced FCB. Two
types of zearches can be performed. For standard sesrches, the calling process initializes
bytss O through 12 of the referenced FCB, with byte O specifying the drive directory (o be
gearched, bytes 1 through 11 specifying the file or files to be searched for, and byte 12
specifying the sxisnt. Byte 12 is ususlly set to 00H. An ASCIT question mark (63, or 03FH
hexadecimel) in any of the bytes 1 through 12 matches all entries on the dirsctory in the
corresponding position. This facility, called ambiguous file neference, cen be used to scarch
for multiple fles on the directory, When called in the standand mode, F_SFIRST scans for
the first fils eniry in the specified directory thet matches the FCB end belongs to the current
user number,

The F_SFIRST system call also initinlizes the F.SNEXT system call. After the
F_SFIRST system call has loceted the first dirsctory entry matching the referenced FCB,
F_SNEXT can be called repeafediy to locate all remaining matching entries. In terms of
execution sequence, however, the F_SNEXT call must follow either a F_SFIRST or
F_SNEXT call with no other intervening BDOS file-access system calls.

If byie O of the referenced FCB is set t0 a question mark, F_SFIRST jgnores the remeainder
of the referenced FCB and locates the first directory entry rsiding on the current defauit
drive. All remaining directory entries can be located by making multiple F._SNEXT calls,
This type of search operation is not usvally made by application programs, but it doea provide
complets flexibility to scan all directory entries, Note that this type of ssarch operation must
be performed to access a drive’s directory label.

 DIGITAL RESEARCH®
&-100

Concwrent CP/M Programmer's Guide F_SFIRST

Upon return, the F_SFIRST system call returns g directory code in register AL with the
velue O to 3 if the search is successful, or OFFH if a matching directory entry is not found.
Register AH is set 10 zero in both of these cases. For successful searches, the current DMA
is glso filled with the directory record containing the matching entry, and the relative atarting
position i3 AL * 32. The directory information can be extracied from the buffer et this
position.

If the directory has been initialized for date and time stamping, then an FCB resides in
every fourth directory entry, and successful directory codes are restricied tothe values 0 to
2, For successful searches, if the matching directory record is an extent zero entry, and if
an SFCB resides at offset 96 within the current DMA buffer, then the contents of
(DMA Addreas +95)= 021H, and the SFCB contains the time and date stamp informa-
tion and password mode for the file. This information is located at the relative starting
position of 97 + (AL * 10) within the current DMA, in the {ollowing format:

G- 3: Create or Access Date and Time Stamp Field
4 - 7 Update Date and Time Stamp Field
8 : Password Mode Field

Refer to Section 2.8 for more information about SFCBs.

If a physical error is encountered, the F_SFIRST system call performs different actions
depending on the BDXOS error mode (refer to the B_ERRMODE system cail). If the BDOS
Error mode is in the default mode, the system displays a message identifying the error at the
console and terminates the calling process. Otherwise, it retarns to the calling process with
register AL set to OFFH and register AH set to one of the following physical error codes:

O1H - Disk 10 Error : permanent error
04H - Invelid Drive : drive select error

H DIGITAL RESEARCH®

6-101

F_S[7K Concxrrest CP/M Prograsmer’s Gukde

F_SIZE

Compute The Size Of A Disk File

Entry Parameters:
Regisier CL: 023H (35)
DX: FCB Address - Offset

D8: FCB Address - Segment

Returned Values:
Register AL: Direciory Code
AH: Physical or Extended Error
BX: Semeas AX
Random Record Field of FCB Set

The F_SIZE system call determines the virtual file size. This is the address of the record
immediately following the end of the file. The virtual slze of n file corresponds to the physical
size if the file is written sequentially. If the file is written in mandom mode, gaps might exist
inthe allocetion, and the file rnight contain fewer records than the indiceted size. For example,
if & single record with record mumber 252,143, the Coneurrent CP/M maximum, is written
to & file using the F_WRITERAND sysiem celf, then the virtual size of the file is 262,144
records even though only one data block is actually allocated.

To compute file size, the cailing process pagses the address of an FCB with bytes RO, R1,
erl R2 present. The E_SIZE zystem cell g=is the random record field of the FCB to the
Rendom Record Number + 1 of the last record in the fle. If the R2 byte is set to 04H, and
RO and R1 are both z¢ero, then the file conteins the maximem record count, 262,144,

A process can append data to the end of an existing flle by calling E_SIZE to set the
random record position to the end of file, and then performing a sequence of rendom writes.

Note: The file need not be open in order to use E_SIZE. However, if the file is open in
Locked mode and it has been extended by the calling process, the file must be closed before
F_SIZE is called. Otherwise, F_SIZE returns an incorrect file size. F_STZE returns the
correct size for files open in Unlocked mode and Read-Only mode.

@ DIGITAL RESEARCH®
6-102

Concurrent CP/M Programmer's Guide F_SIZE

Upon return, F_SIZE returns a 00H in register Al if the file specified by the referenced
FCB is found, or a OFFH in register AL if the file is not found. Register AH is set to 00H
in both cass.

[f a physical or extended error is sncountered, F_SIZE performs different actions depend-
ing an the BDOS Error mode (refer to the F_ERRMODE system call), [f the BDOS Error
mode is in the default mode, the system displays 2 message at the console identifying the
error and terminates the process. Otherwise, F_SIZE returns to the calling praocess with
register AL set to OFFH and register AH set to one of the following physical or extended
error codes:

01H - Disk O Error : permanent error

04H - Invalid Drive : drive select error
{9 - [Tlega! 7 in FCB

B DIGITAL RESEARCH®

6-103

F_SNEXT Comcwrrend CP/M Progranmaer’s Guide

F_SNEXT

Find A Subsequent File That Maiches
The Specified FCB Of A Previous
F_SFIRST Or F_SNEXT

Entry Perameters:
Register CL: Q12H (13)

Returned Vialues:
Register AL: Directory Code
AH: Physical or Extended Brror
BX: Samess AX

The F_SNEXT systemn cell is identical to F_SPIRST except that the directory scan con-
tinues from the last entry that was matched. F_SNEXT returna a directory code in register
AL, analogous to F_SFIRST.

Note: Inexecution ssquence, 8 F_SNEXT call must follow either an F_SFIRST or nother
F_SNEXT with no other intarvening BDOS file-access system calle.

8 DIGITAL RESEARCH®

5-104

Concnrrent CP/M Programnur’s Gulde

F_TIMEDATE

F_TIMEDATE
Return File Date Stamps
And Pazsword Mode
Entry Parameters:
Register CL: 066H (102)
DX: FCB Address - Offset
DS: FCB Address - Segment
Returned Values:
Register AL: Directory Code
AH: Physical Error
BX: Same as AX

The F_TIMEDATE system call returns the time and date stamp information and password
mode for the specified file in byte 12 and bytes 24 through 31 of the specified FCB. The
calling process passes the address of an FCB in which the drive, filename, and type fields

have been defined.

If F_TIMEDATE is successful, it sets the following fields in the referenced FCB

bytz 12 password mode field

bit 7 - Read mode
bit 6 - Writc mode
bit 5 - Delele mode

Byte 12 equal to 0 indicaies the file has not been assigned a password.

bytz 24 - 27 XFCB Create or Access time stamp field
byte 28 - 31 XFCB Update time stamp field

8l DIGITAL RESEARCH?®

6-105

F_TIMEDATE Concwrrsnt CP/M Progmmmer’s Gulde

Upon return, F_TIMEDATE returng & directory code in repister AL with the valus O0H
if the operation is successful, or OFFH if the specified file is not found. Register AH is sel
to 00H in both of these cases. 1If a physical or extended error is encountered, F_TIMEDATE
performs different actions depending on the BDOS Error mode (refer to the F_ERRMODE
system cell). If the BDOS Error mode is in the defanlt mode, the system displays a mes-
sage at the conmsole identifying the error and terminates the calling process. Otherwise,
F_TIMEDATE returns to the calling procgss with register AL set 10 OFFH and register
AH szt to one of the following physical error codes:

0IH - Disk I/O Error : permanent error

04H - Invalid Drive : drive selact error
09H - llegal 7 in FCB

I DIGITAL RESEARCH®

6-106

Caoncurrent CP/M Programmers Guide F_-TRUNCATE

F_TRUNCATE

Truncate File

Entry Parameters:
Register CL: 063H (99)
DX: FCB Address - Offset

Returned Values:
Register AL: Dfrectory Code
AH: Physical or Extended Brror
BX: Sameas AX

The F_TRUNCATE system call sets the last record of a file to the Rendom Record Number
caontained in the referenced FCB. The calling program passes the address of the FCB in
register DX with byte 0 of the FCB specifying the drive, bytes | throngh 11 specifying the
filename and fletype, and bytes 33 through 35 (RO, R1, and R2) specifying the [ast record
of the file. The last record number is a 24-bit value, stored with the least significant byte first
(R0). the middle byte next (R1), and the high byte last (R2). This value can range from 0 to
262,143 (03FFFFH).

If the file specified by the referenced FCB is password-protected, the correct password
must have been placed in the first eight bytes of the current DMA buffer, or have been
previonsly established as the default password (refer to the FE_PASSWD system call).

Interface attribute F5” specifies whether an extended file lock is to be maintained after the
F_TRUNCATE call, as shown below;

F5' = { - Do not maintain an extended file lock (defeult)
F5 = | - Maintain an extended file lock

If B5' is set and the referenced FCB specifies a file with an extended file lock, the calling
process maintains the lock on the file. Otherwise, the file becomes available to other processes
on the system. Section 2.11 describes extended file locking in deteil.

F_TRUNCATE requires that the Random Record Number field of the referenced FCB

specify a velue less than the current file size. In addition, if the file is sparse, the random
record field mmst specify a region of the file where data exists.

B DIGITAL RESEARCH®

6107

F_TRUNCATE Concarrent CP/M Programmer’s Guide

A process can runcate s file that it currently has open if the file is opened in locked mode,
and the fils has not been extended during the open seasion. However, the BDOS rsturns a
checksum error if the process makes a subsequent referencs to the file with a BDOS systsm
call requiring an open FCB. A process cannot truncate files open in RO or Unlocked mode.

Truncating an open file is noi recommended under Concurrent CP/M. F_TRUNCATE
truncates & file based on the file's state in the direciory. If a process attempix to truncate at a
region of the file that hus been allocated in memory But has not been recorded in the directory,
PF_TRUNCATE returns an error. Even when successful, an open fils buncats can adversely
affect the performance of the calling process. For thess ressons, you should closs an open
fife befors you trumcate it,

After completion, F_TRUNCATE returns a directory code in register AL with the value
QDH if the operation is siwcossful or OFFH if the file is not found or if the record mumber is
invalid. In botk cases register AH is set to D0H.

If a physical or extendsd error is encountered, F - TRUNCATE performs different actiona
depending on the BDOS erxor mode (refer to F_ERRMODE). If the EDOS error mods is
in the defsult mode, a message identifying the error is displayed at the console and the
progrem is terminated. Otherwise, F__TRUNCATE returns to the calling program with reg-
ister AL set to OFFH and register AH set to one of the following physical or extended error
codes:

01H - Disk I/O Error ; permanent error
02H - Read/Only Disgk

03H - Read/Only File

04H - Invalid Drive : drive select error
05H - File Currently Open

OGH - Close Checksum Error

O7H - Password Error

08H - File Already Exisis

09H - Nllsgal 7 in FCB

0AH - Open File Limit Exceeded

0BH - No Room in System Lock List

EAGITAL RESEARCH®

§-108

Concurrent CP/M Progrmmmer's Guide F_UNLOCK

F_UNLOCK

Unlock Recards In A Disk File

Entry Parameters:
Register CL: 02BH (43)
DX: FCB Address - Offset
DS FCPB Address - Segment

Returned Values:
Register Al: Error Code
AH: Physical Error
BX: Same as AX

The F_UNLOCK system call unlocks one or more consecutive records previously locked
by the F_LOCK system call. This system call is only supported for files open in Unlocked
mode. If it is called for a file open in Locked or Read-Only mode, no unlocking action occurs
and a successful result is returned. Record locking and unlocking is described in detsil in
Section 2.14.

The calling process passes the address of an FCB in which the Random Record Field
is filled with the Random Record Number of the first record to be unlocked. The number
of records to be unlocked is determined by the BDOS Multisector Count (refer to the
F_MULTISEC system call). The current DMA muost contain the 2-byte File ID returned by
the F_OPEN or F_MAKE system call when the referenced FCB was opened. Note that the
File ID is only returned by F_OPEN or F._MAKE when the file open mode is Unlocked.

If interface attribute FS’ is set to 1, F.UNLOCK unlocks all locked records belonging to
the calling process. The F_UNLOCK interface attribute definition is listed below:

F5" = 0 - Unlock records specified by Randorn Record Number and BDOS

Multisector Count (default)
F5'= 1 - Unlock all locked records.

B DIGITAL RESEARCHY

6-109

F_UNLOCK Concurant CP/M Prograsnmer's Guide

F_UNLOCK ignores the FCB Random Record field and the RDOS Multisector Count
when F5' is set,

F.UNLOCK does not unlock a record thet is currently locked by another process.
However, the system call does not return an ervor if 8 process attempts to do that, Thus, if
the Multisector Count is greater than one, F_.UNLOCK unlocks all records locked by the
calling process, skipping those records locked by other processes.

Same F_UNLOCK requests require a new entry in the BDOS system Lock List. If there
is insufficient space in the system Lock List to satisfy the F_UNLOCK request, or if the
procesa record Lock List limit is exceeded, then F_UNLOCK does not unlock any records
and retnrns an error cods to the calling process.

Upon return, B UNLOCK seis ragister AL to O0H if the unlock operation wes successful.
Otherwise, register AL contains one of the following error codes:

01H - Reading unwritten data

03H - Cannot cloae current extent

04H - Seek to unwritten extant

D6H - Random Record Mumber cut of range
DAH - FCE Checksum Error

OCH - Process record Lock List limit exceedad
ODH - Invalid File ID

OEH « No room in system Lock List
OFFH - Physical ervor refer to register AH

The system call returns error code O1H when it accesses & data block which hes not been
previoualy written.

The system cell returns error code 03H whea it cannot close the current extent prior to
moving to & rew cxtent.

The system call returns error code 04H when it accesses an extent that has not been created.

The system call returna error code 06H when byte 35 (r2) for « list of the referenced FCB
is greater than 3,

The sysiem call returns error code QAH if the referenced FCB failed the FCB checksum
test,

B DIGITAL RESEARCH®

&-110

Concurrent C¥/M Programmer's Guide F_UNLOCK

The system cell returns error code OCH if performing the unlock request would require
that the process consume more than the maximum allowed mmmber of system Lock List
entries.

The system call returns error code 3DH when en invalid File I is placed at the beginning
of the current DMA,

The system call returns error code 0EH when the system Lock List is full and performing
the unlock request would require gt least onpe nsw entry,

The system call returns error code 0FFH if s physical ermor was encountered and the BDOS
Error mode is ong of the return modes (refer to the F__ERRMODE syatem call). If the Error
mods is the Default mode, the system displeys a message at the console identifying the
physical error and terminates the calling process, When the system call returns a physical
error to the calling process, it is identified by regisier AH as shown below:

01H - Pisk 1/Q Error : permanent error
04H - Invalid Drive : drive select error

B DIGITAL RESEARCH®

6-111

¥F_USERNUM Cacorrest CP/M Progrusessr’s Guide

F_USERNUM

Set Or Return The Calling Process’s
Default User Number

Entry Persmeters:
Register CL: 020H (32)
DL: OFFH to GET User Number
User Number to SET

Returned Values:
Register AL: Current User Number if GET
Bl: Sameas AL

A process can change or interrogats its current defanlt user number by calling
F_USERNUM. If register DL = OFFH, then the system call returns the value of this vser
number in register AL. The value can rangs from { to 0FH. If regiater DL is not OFFH, then
the system call changes the default user number to the velue in DL, modulo G10H (the high
nibble of DL is masked off).

Under Concurrent CP/M, B nsw proosss inharits its initial defenlt usar mmber from its
parent, the process creating the new process. Changing the defmult user number does not
change the user code of the parent. On the other hand, el child processes of the calling
process inherit the new user mumber.

This convention is demonstratsd by the operation of the TMP. When a conunand is typed,
2 new process is creeied with the same vser number s thet of the TMF. If this new process
changes its nser number, the TMP is unaffected. Once the new process terminates, the TMP
displays the same user number in its prompt that it displzyed before the command wes entered
amd the child process was created.

W DIGITAL RESEARCHS
&112

Concurrent CP/M Programmer’s Guids F_WRITE

F_WRITE

Wite Records Sequentially
To A Disk File

Entry Parameters:
Register CL: 015H (21}
DX: PBCB Address - Offsat
DS: PCB Address - Ssgment

Returned Values:
Repister AL: Error Code
AH: Physical Brror
BX: Sameas AX

The F_WRITE system call writes 1 to 128, 128-byte data records beginning at the current
DMA address into the file named by the specified FCB. The BDOS Multisector Count (refer
to the F_MULTISEC system call) determines the number of 128-byte records that are writien.
The default is one record. An F_OPEN or F_MAKE system call must have previously
activated the referenced FCB.

F_WRITE places the record into the file at the position indicated by the CR byts of the
FCB, and then antomatically increments the CR byte to the next record position. If the CR
field overflows, the system call automatically opens or creates the pext logical extent and
resets the CR. fiekd to O0H in preparation for the next write operation. If F.WRITE is used
10 write to an existing file, then the newly written records overlay those already existing in
the file. The calling process must set the CR field to 00H following an F_QOPEN or F-MAKE
system call if the intent is to write sequentially from the beginning of the file.

F_WRITE makes an update date and time stamp for the file if the following conditions
are met: the referenced drive has a directory label that requests update date and time stamping,
and the file has not already been stamped for update by a previous F_MAKE or F_WRITE
system call,

B DIGITAL RESEARCH®
6-113

F_WRITE Coucamrent CP/M Programmer’s Guide

Upon return, the F_WRITE system call ssts regisier AL to O0H if the write operation is
successful, Otherwise, register AL containg an <rror code identifying the error a8 ghown
below:

01H - No aveilable directory space

0ZH - Mo available data block

08H - Record locked by ancther process

09H - Inveitd PCB

0AH - FCB Checksum Error

0BH - Unlocked file verification error
OFFH - Physical error; refer to register AH

The system call returns error code 01H whes it attempts to create a new sxtent that requires
a new directory entry, and no availeble directory entries exigt on the selocied disk drive.

The system call retarns error code 02H when it atternpts to allocate a new data block to
the file, and no unallocated data blocks exist on the selected disk drive,

The system call returns error code 03H if the calling process attempis to write to a record
locked by another process, or a tecord locked by the calling process in shared mode. The
system call returns this error only for files open in Unlocked mode.

The system call returns error code 09H if the FCB is invalidated by a previous F_CLOSE
system call that returned an errar.

The system call returns error code OAH if the referenced FCB failed the FCB checksum
fest.

The system call returns error code OBH if the BDOS cannot locate the FCB’s directory

eniry when attempting to verify that the referenced FCB confains current information. The
system call returns this error only for files open in Unlocked mode.

W DIGITAL RESEARCH®

6114

Conewrrent CP/M Programmer'’s Gulde F_WRITE

The sysiem call returns error code OFFH if n physical error was encountered and ths BDOS
is in Return Error mode or Return end Display Error mode (refer to the F_ERRMODE
system calf). If the Error mode is the Defanlt mode, the system displays a message at the
console identifying the physical error and terminates the calling process. When the system
call returns a physical error to the calling process, it is identifiad by register AH as shown
below:

01H - Disk 10 Error : permanent error
02H - Read/Only Disk
03H - Read/Only File or
File Opened in Read/Only Mode or
File password protected in Write mode
04H - Invelid Drive ; drive select error

On all error returns except for physical error rebwmna (AL = 255), F_WRITE sets register
AH to the number of records successfully written before the error was encountered. This
value can range from 0 to 127, depending on the current BDOS Multisector Count. It is
always set to zero when the Multisector Count is equal to one.

B DIGITAL RESEARCH®
6115

E_.WRITERAND Concwrent CP/M Programmer’s Guide

F_WRITERAND

Write Random Records
To A Disk File

Entry Parametérs:
Register CL: 022H (34)
DX: PCB Address - Dffsct
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code
AH: Phygical Error
BX: Someas AX

The F_WRITERAND system call is analogous to the FE_READRAND system call, except
that data is written to the disk from the current DMA address, If the disk extent and/or daim
block where the data is to be written is not already allocated, the BDOS sutomatically
performs the allocation before the write operation continues,

In order to write io & file using the E_WRITERAND sysiem csll, the calling process must
first open the base extent, extent 0. This ensures that the FCB is properly initialized for
subsequent raxdiom access operations, If the file is cmpty, the ealling process must create the
bese extent with the F_MAKE system call before an F_WRITERAND system call. The base
exiznl might or might not contain date, but it records the file ix the directory so that it can
be displayed by the DIR utility. I a process does not open extent O and allocates data to some
other extent, the file is invisible to the DIR utility.

The F_WRITERAND system call sets the logical extent and current record positions to
corresponid with the random: record being writtea, but does not chengs the Random Record
Number, Thos sequential read or write operations can follow a random write, with the current
record Being reread or rewritten as the calling process switches from mndom to sequentiel
mode,

F_WRITERAND makes an update daie and time stamp for the file if the following con-
ditions sre me1! the referenced drive has a directary label that requests updste date and time
stamping, and the file has not already been stamped for update by & previous F_MAKE or
F_WRITE system call.

B DiGITAL RESEARCH®
6116

Concurrent CP/M Programmer’s Guide F..WRITERAND

If the BDOS Multisector Count is greater than one (refer to the F_MULTISEC system
call), the F_WRITERAND system call writes multiple comsecutive records from memory
beginning at the current DMA address. The system call automatically increments the RO,
R1I, and R2 field of the FCB to write 2ach record. However, It restores the FCB"s Random
Record Number to the first record’s value upon return to the celling process.

Upon return, the F_WRITERAND system call sets register AL v 00H if the write oper-
ation is successful. Otherwise, register AL contains one of the following error codes:

02H - No availeble deta block

03H - Cannot cloge current extent

05H - No evailable directory space

O6H - Random record mumber out of range

08H - Record locked by another proceas

QAH - FCB Checksum Error

OBH - Unlocked file verification errar
OFFH - Physical error refer to register AH

The system call returns error code 02H when it attempts to allocate a new data block to
the file. No unallocated data blocks exist on the selected disk drive.

The system call returns error code 03H when it cannot close the current extent before
moving to a new extent.

The system call returns error code 05H when it attempts to create a new extent that requires
a new directory entry and no available directory entries exist on the salected disk drive.

The system call returns error code O6H when byte 35 (R2) of the refarenced FCB is greater
then 3.

The system call renirns error code O8H if the calling process attempts to write to a record
Jocked by another process, or & recard locked by the calling process in shared mods. The
system call rewrns this error only for files open in Unlocked mode.

The system call returns error code OAH if the referenced FCB failed the FCB checksum
test.

The system call reurns etror code OBH if the BDOS cannot locate the FCB's directory
entry when atlempting to verify that the referenced FCE containa current information, The
system call returns this errot only for files open in Unlocked mode.

B DIGITAL RESEARCH®
’ 6-117

F_WRITERAND Cancurrent CP/M Programmer's Guide

The system call returns error code OFFH if & physical error is encouniered and the BDOS
Error mode is in cne of the return modes (rfer to the F_ERRMODE system call). If the
Error mode is in the default mode, the system displays 4 message ai the conscle identifying
the physical érror and terminates the calling process. When » physical error is returned to
the celling process, it is identified by register AH s shown below:

01H - Disk 10 Error : permanent error
0ZH - Read/Only Disk
03H - Read/QOnly File or
File Opened in Read/Only Mode or
File password protected in Write mode
O4H - Invalid Drive : drive selsct error

On all error returns, except for physical error returns (AL = 255), F_WRITERAND sets
register AH to the mumber of records successfully written before the error was encountered.
This value can range from 0 to 127 depending on the curremt BDOS Multissctor Count. It
is always set to zero when the Multisector Count is equal to one.

H DiGITAL RESEARCH®
6-118

Concurrent CP/M Programmer’s Guaide F_WRITEXFCB

F_WRITEXFCB

Write Extended File Control Block
Of A Disk File

Entry Parameters:
Register CL: 067H (103}
DX: FCB Address - Offsst
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Physical or Extended Error
BX: Same as AX

The F_WRITEXFCRE system call creates 2 new XFCB or updates the existing XFCB for
the specified file. The calling process passes the address of an FCB in which the drive, name,
type, and extent fields have been defined. The FCB extent field, if set, specifies the password
mode and whether a new password is to be assigned to the file, The format of the extent field
byte is shown below:

FCB byte 12 (EX) XFCB password mode

bit 7 - Read mode

bit & - Write mode

bit 5 - Deletz mode

bit 0 - assign new password 1o the file

If the FCB is currently password-protected, the correct password must reside in the first
8 bytes of the current DMA or have been previously established as the default password
(refer to the F_FASSWD system call). If bit 0 is set to 1, the new password must reside in
the second B bytes of the current DMA,

Note: The F_WRITEXFCB system call does not create or update an XFCB if the XFCB

specifies a file open by another process. However, a process cen update or create an XFCB
for a file that it has open in Locked mode,

H DIGITAL RESEARCH®

6-119

F_WRITEFXCR Conewmtent CP/M Programmer’s Guide

Upon return, F-WRITEXFCR returns 2 directory cods in register AL with the value O0H
if the XFCB create or update wes successful. F_WRITEXFCB returns 0FFH in register AL
if no directory label existed on the specifiad drive, or the file specified in the FCB was not
found, or no space existed in the directory to cregte an XFCB, or if the drive is not password
enabled. F_WRITEXFCE also returns FFH if passwords are not enabled by the specified
drive’s directory label. Register AH iz set to 00H in all of these cazes.

If a physical or extanded srTor is sncountered, F_WRITEXPFCB performs different actions
depending on the BDOS Error mode (refer to the F_ ERRMODE gystem call). If the BDOS
Ermor mode is in the defalt mode, the system displays & message at the console identifying
the error end terminates the calling process. Dtherwise, F_WRITEXFCB returns to the
calling process with register AL set to OFFH end register AH set to one of the following
physical or extanded error codes:

01H - Disk YO Error : pernanent error

02H - Read/Only Diak

O4H - Invalid Drive : drive select error

0SH - File open by another process, of open in Read-Only or Unlocked mode
07H - Password Error

09H - Ilegal 7 in FCB

B DIGITAL RESEARCH®
6120

Concmrrent CP/M Programmer's Guide

F_WRITEZF

F_WRITEZF

Write A Random Record To A Disk File
And Prefill New Data Blocks With Zeros

Entry Parameters:
Register CL:

DX

DS:

Returned Values:
Register AL:
AH:

BX:

028H (40)
FCB Addreas - Offset
FCB Address - Segment

Error Code
Physical Error
Same as AX

The F_WRITEZF system call is similar to the F_WRITERAND system call, with
the exception that it fills a previously unallocated deta block with zeros {00H) before writing
the record. If this system call has been used to creste a file, records accessed by an
F_READRAND system call that contain all zeros identify unwritten random records.
Unwritten random records in allocated data blocks of files created using the F_WRITERAND

system call contein uninitialized data.

H DIGITAL RESEARCH®

6-121

L_ATTACH Concerrest CP/M Prograssser’s Guide

6.2.5 Lisxt Device /O Byste Calls

L_ATTACH

Attach The Defandt List Device
To The Calling Process

Entry Parsmeiers:
Register CL.: (9EH (158)

The L__ATTACH sysiem call attaches the default list device of the calling process. If the
liet device i3 alteady attached to some other process, the calling process relinquishes the CPUJ
until the other process deteches fram the liat device. When the list device becomes free, and
the calling process iz the highest priority process waiting for the list device, the attach
operation occure.

Refer to Table 6-5 for o list of error codes raturned in CX.

H DIGITAL RESEARCH®
6-122

Conearvent CP/M Progranunes’s Guide L_CATTACH

L_CATTACH
Conditionally Attach To The
Defanlt List Deviee
Entry Parameters:
Register CL: OAILH {161)
Returned Values:
Register AX: 0 if attach ‘OK’

OFFFFH on faiiure
BX: Same as AX
CX: Error Code

The L._CATTACH system call attaches the defanlt list device of the calling process only
if the list device is currently available.

If the list device is currently aitached to another process, the system cali returns e value
of 0FFH, indicating that the list device could noi be atiached. The system call returns & value
of O0H to indicate that either the list device is already attached to the process, or that it was
unattached, and a successful attach operation was made.

Refer to ‘Thble 6-5 for a list of error codes returned in CX.

i DIGITAL RESEARCH®

6-123

Coscurrent CF/M Progranteeer's Guide

L_DETACH

Detach The Default List Device
From The Calling Process

Eniry Parnmeters:
Register CL:

Returned Values:
Register AX:

BX:
cX:

09FH (159)

0 if detach 'OK’
OFFEFFH on failure
Same az AX
Error Code

The L_DETACH system call detaches the default list device of the calling process. If the
list device is not currently attached, no action takes placs.

Refer to Table 6-3 for a list of error codes returned in CX.

61724

@ DIGITAL RESEARCH®

Concorrent CP/M Prograamner’s Guide

L_GET
Return The Calling Process’s
Befault List Device
Entry Parameters:
Register CL: 0A4H (164)
Returned Velues:

Register AL: List Device Number

EL: Sameas AL

L_GET

The L_GET system cal! returns the dafault list device number of the calling process.

DIGITAL RESEARCH®

6125

Comenrrest CP/M Prograssncys Gulile

L_SET

Set The Calling Process’s
Default List Device

Eniry Poametens:

Register CL:
DL:

Returned Values:
Register CX:

QAOH (160)
List Device Number

Error Code

The L_SBT system call ssts the dafault list device for the calling process.

Refer to Table 6-5 for a list of error codes returned in CX.

6-126

I DIGITAL RESEARCM®

Concurrent CP/M Programmer®s Gukle

L_WRITE

L_WRITE

Write A Character To The
Defanlt List Device

Entry Parameters:

Register CL: O5H (5)
DL: Character

The L WRITE system call writes the specifled character to the default list device of the
calling process. Before writing the character, the system internally calls L. ATTACH to verify
that the calling process owns its default list device.

i DIGITAL RESEARCH®

6-127

L WRITERLK Concwrent CP/M Programmer's Gulds

L_WRITEBLK

Send Specified Character
String to Default List Device

Eniry Peremetars:
Register CL: 070H (112)
DX: CHCB Address

L_WRITEBLK sends the character string specified in the Charscier Control Block (CHCB)
end addreased in register pair DX to the logical lis device, LST:. The CHCB format is

bytes O - 1 ; Oifset of character string
bytes 2 - 3 ; Segment of character string
bytes 4 - 5 Length of charwcter siring to print

6.2.6 Memory System Calls

There are two clagses of Memory System Calls in Concurrent CP/M. The first class
supports the MP/M-88 memory allocation scheme snd conteine two system calls,
M_ALLOC and M_FREE. The sscond clmss contmins six system calls, MC_ARS,
MC_ALLFREE, MC_ALLOC, MC_ALLOCABS, MC_FREE, and MC_MAX. These
system calls support the CP/M-86 memory allocetion scheme.

Note: The CP/M-86 memory calls are also supported nnder MP/M-86.

Many of the Memory system calls use the Memory Control Block (MCB) or the Memory
Perametzr Block (MPB) to pass perametsrs to and from the opereting system. The format,
structure and example programrning equates for these data structures are presented below,
along with exemple [istings.

3
T

EXT

BASE LENGTH

+

Figure 6-7. MCB - Memory Control Block

W DAGTAL RESEARCH®
6-128

Concwrrent CP/M Programmer’s Gulde L_WRITERLK

Thable 6-13. MCE Fldd Definitiona

Field Definition
BASE The Segment Address of the beginning of the: specified memory ssgment,
LENGTH Length of the Memory Segment in paragraphs. The LENGTH fleld is

set to the number of paragraphs wanted.
EXT The EXT field is voused but must be available.

A REFERBREREEEREERALEFRF SRR R LR R SRR RN FE LR BN FEE

*

H
i Wemory Control Blook Definttion

*
;*ili!*i!iliiiiiIlii!I!ii!ii'!iliiiii!i!ililiiilii
nobk_base equ word ptr O
mob_length equ word ptr mob_bame + word
mehoext egu byte ptr mcb_length + word
mab_len equ mcb_ext + byte

Listing 6-1. Memory Confrol Block Definition
START MIN MAX - 0000H - 0000H
Figure 6-8. MFB - Manory Farameter Block
B DICITAL RESEARCH®

6129

F_WRITEBLK Concmrent CP/M Propammer’s Guide
Table 6-14. MPB Fleld Definltions
Field Description
START if non-00H, an sbsolute request at this paragraph
MIN minimum memory needed (paragrephs)
MAX maximm memory wanied {paragraphs)
* 0OO0H these fields must be 00H; they are uasd internally.

rBRRESERRREREERERAERERRERER AR RAGERER RN N

¥
.
L]
.
3
- %
3

Hemory Parameter Block Definition

REREREERNFRERFL R R LR ERERREERREF AR EERR ST RAF AR RERE

»

uph_sgtart
mpb min
Nph_max
mphb_pdadr
mpb._rlags

mpb..len

aqu word pir O

equ word ptr apb_start + word
equ word ptr opb_nmin + word
aqu word ptr mpb_mex + word
equ word pir mph.pdadr + word

&qu mpb_flage + word

; mpb_flags definition

af_load
nf.share
nf_code

equ 00001n
agQu 00002k
aqu 000044

Listing 6-2. Memory Parameter Block Definition

EDIGTAL RESEARCH®

6-130

Concarrent CP/M Programaee’s Guide

M_ALLOC

Allocate A Memory Segment

Entry Parameters:
Register CL:

DX:

DS:

Returned Values:
Register AX:

BX:
CX:

080H or 0B1H (128,129
MPB Address-Offact
MPE Address-Segment
MPE filled in

0 on success
QFFFFH on failure
Same a3 AX

Error Code

MPB_ start filled in

The M_ALLOC system call allows a program to allocate extra memory. A successful
allocation aflocates a contiguous memory segment whose length is at least the MIN and no
more then the MAX mmber of paragraphs specified in the MPB. The START field of the
MFPB is modified to be the starting paragraph of the memory szgment. The MIN and MAX
fields are modified to be the length of the memory segment in paragraphs. Memory Segments
can be explicitly released through the M__FREE system call; Concurrent CP/M also releases
all memory owned by a process at termination.

Note: MIN and MAX fields must be explicitly filled in. The MAX value must be greater

than or equal to the MIN value.

Refer to Table 6-5 for a list of error codes returned in CX.

B DAGTAL RESEARCHS

6131

Comcarrvent CP/M Programsse:'y Guliy

M_FREE
Free A Memory Segment

Entry Parameters:
Register CL.: 082H (130)
DX: MFPB Address - Offast
DS: MFPB Address - Segment

Returned Values:
Register AX: 0 on success
OFFFFH on failure
BX: Same as AX
CX: Error Code

START * QODOH

Flgwre 6-8. MFPB - M_FREE Parameter Block

The M_FREE system call releases memory sterting at the START paragraph to the
end of 8 zingle previously allocated segment that contains the START peragraph. K the
START paragraph is the seme a2 that returned in the MPB of & memory allocation call,

then M__FREE relecsss the whale memory segment, The * 0000H fisld must be initializad
ta zero.

Refer to Table 6-5 for a list of error codes returned in CX.

BDIGITAL RESEARCH®
%132

Concurrent CP/M Programmers Guide

MC_ABSALLOC

MC_ABSALLOC
Allocate A Memory Segment
At A Specified Address
Entry Parameters:
Register CL: 038H (56)
DX: MCEB Address - Offset
DS: MCB Address - Segment
Returned VYalues;
Register AL: 0 on suceess
OFFH on failure
BL: Same as AL
CX: Error Code

The MC_ABSALLOC system call allocates a memory areg that staris at the address
specified by the BASE ficld. The memory arez’s length is specified by the LENGTH field of
the MCB. Upon return, register AL contains a 00H if the request was successful, and a OFFH
if the memory could not be allocated. If the calling process already owns the requested

memory, no error is returned. This assures compatibility with CP/M-86.

Refer to Table 6-5 for a list of error codes returned in CX.

B DIGITAL RESEARCH®.

6-133

MC_ARSMAX

Concurent CP/M Programmer’s Guids

MC_ARBSMAX
Allocate Maximum Memory Available
At A Specified Address
Entry Paramelers:
Register CL: Q36H (54)
DX: MCB Address - Offset
DS: MCE Address - Segment
MCB_base filled in, MCB_length
set to mex number of paragraphs
wanted
Returned Values:
Register AL: 0 on success
OFFH cn failure
BL: Same as AL
CX: Emor Code
MCB_length set to actual nomber
of paregraphe allocated

[n CP/M-86, systemn call 035H does not allocate memory, but under Concurrent CP/M,
this system call allocates memaory, because other processes are competing for common mem-
ory. For compatibility with CP/M-86, MC_ABSALLOQC (system call 56) does not return an

error if there is 8 memory segment allocated at the absoluie acddress.

MC_ABSMAX is used to allocate the largest possible region at the abscluis parsgraph
boundary given by the BASE ficld of the MCB, for a maximum of LENGTH paragraphs. i
the allocation is succassful, the system call sets the LENGTH to the actual length. Upon
return, register AL hes the value OFFH if no memory is available at the absolute addregs,

and O0OH if the request was successful.

Refer to Table 6-5 for & list of error codes returned in CX.

5134

B DIGITAL RESEARCH®

Cancurvest CP/M Programmer’s Guide MC_ALLFREE

MC_ALLFREE

Free All Memory Owned
By The Calling Process

Entry Parameters:
Register CL: 03AH (58)

In the Concurrent CP/M environment, the MC._ALLFREE system call releases all of the
calling process’s memory except the User Data Aree (UUDA). This system call is nseful for
system processes and for subprocesses that share the memory of another process.

Note: This system call should not be used by processes running programs lnaded into the
Trensient Program Areas (TPAs).

H DIGITAL RESEARCH®
6135

MC_ALLOC

Coucurrent CP/M Programmic’s Galde

MC_ALLOC

Allocate A Memary Segment

Entry Perameters:

Register CL:
DX:
DS:

Returned Values:
Register AL:

BL:
CX:

037H (35)

MCB Addrees - Offset
MCB Address - Szgment
MCB_length filled in

0 on success

0FFH on failure
Same as AL

Error Code
MCB_bass filled in

The MC_ALLOC sysiem cell allocates 2 memory area whose size is the LENGTH ﬁel'd
of the MCB, MC_ALLOC returns the base pamagraph address of the allocated region in the
user's MCB, Upon return, register AL conteing a DOH if the request was successful, and a

OFFH. if the memory could not be allecated.

Refer to Table 6-5 for a list of error codes returned in CX.

6136

& DIGITAL RESEARCH®

Concurrent CP/M Programner’s Guide MC_FREE

MC_FREE

Pree A Specified Memory Segment

Entry Parameters:
Register CL: 039H (57)
DX: MCB Address - Offset
DS: MCB Address - Segment
MCB_bass, MCB_ext filied in

Returned Valnes:
Register AL: 0O if successful
OFFH on failure
BL: Sameas AL
CX: Ermor Code

The MC_FREE system call is used to release memory areas allocated o the program.
The value of the EXT field of the MCE controls the operation of this system call. If
EXT = (FFH, then the system call releases all memory ercas allocated by the calling
program, If the EXT field iz 00H, the system call rcleases 1he memory area beginning at
the specified BASE and ending at the end of the previously allocated memory ssgment.

Refer to Teble 6-5 for a list of error codes returned in CX.

8 DIGITAL RESEARCH®

6-137

MC_MAX Cascmront CP/M Prograasser’s Gudie

MC_MAX

Allocate Maximum Memory Availible

Entry Parameters:
Register CL: 035H (33)
DX: MCB Address - Offset
DS: MCB Address - Segrnent

(MCB_length contains maxinim
number of paragrapha wanted)

Retuned VYaluss:
Register AL: 0 on succesy
OFFH on failure
BL: Same ss AL
CX: Ermor Code

{MCB_bass filled in, MCRB length
set ta ectual number of paragraphs
allocated)

[n CP/M-36, eystem cell 035H docz not allocate memory, but under Concurrent CP/M,
this eystem call ellocates memory becsuse other processes are competing for common mer-
ory. For compatibility with CP/M-86, MC_ABSALLQC (sysiem call 56) does not return an
srvor if there is & metory scgment sllocatsd at the absolute addreas,

MC_MAX allocates the largest svailable memory region that is less than or equal to the
LENGTH field of the MCB in paragraphs. If the altocation is successful, the system cxll sats
the BASE to the base paragraph address of the gvailable area and LENGTH to the paragraph
length. Upon return, register AL has the value 0FFH if no memory is aveilable, and O0H if
the requagt was successful The sysiem call sets the EXT to | if there is additionsl memory
for allocation, and O if no additional memory is available.

Refer to Table 6-5 for a list of error codes returned in CX.

I DIGITAL RESEARCHS

6138

Conewrrent CF/M Programmer’s Guide

6.2.7 Process/Program System Calls

P_ABORT

F_ABORT

Terminate A Process
By Name Or PD Addreas

Entry Paramsters:
Register CL:
DX:

0WDH {157
APB Address - Offset

DS: APB Address - Segment
APB filled in
Returned Values:
Register AX: 0 on success
0FFH on failure
BX: Sameas AX
CX: Error Code
[v1) PD TEF\:M CNS | *00H
o8 ’ NAME)
' $ } } +
Figore 6-10. APB - Abort Parameter Block
8 DIGITAL RESEARCHS

6-139

P_ABORT Concront CP/M Frograsmaers Gudde

Table 615, APB Field Definitions
Field Definition
D Process Descriptor offset of the process to be terminated. I this fleld is

zero, & match is atterapied with the NAME and CNS fields 1o find the
process, If this field is nonzero, the NAME and CNS fields are ignored.

TEEM Termination Code, Thiz field cortesponds 1o the términation code of the
F._TERM gystemn call. If the low-order byte of TERM is OFFH,
P_ABORT can abort a specified zysiem process; if the termination
code is not OFFH, the gystem ¢all can only terminste a user procsss. (A
system prooess is identifisd by the SYS fiag in the Proceas Descriptor’s

FLAG field.)
*O0H This fisld i reserved for system use and must be sei to zero.
CNS Default consols of process to be aborted. If the FD field is 0, the

P_ABORT system call scans the Thread List for a PD with the same
NAME and CNS fields s specifled in the APB. P_ABORT only aborts
the first process that it finds. Subsaquent calls must be made to abort all
Processes with the same NAME end CNS.

NAME Name of the process to be aboried. Combined with the CNS fleld, the
NAME field is used to find the process to be aborted. This iz only used
if the PD field iz 0.

The P_ABORT system call permits & process to terminate another specified process. The
calling process passes the address of a data structure called an Abort Parameter Block,
imitinlized ke described above.

If the Process Descriptor address i known, it can be filled in, and the process name and
console can be omitied, Otherwise, the Process Descriptor rddress field should be 2 00H and
tlic procese name and console must be specified. In either case, the calling process must
supply the termination codle, which is the same parameter passed to the P_TERM systemn
call.

Refer to Table 6-5 for & list of error codes returned in CX.

WDIGITAL RESEARCH®

6-140

Concoarent CP/M Programmers Guide P_CHAIN

P_CHAIN

Load, Initialize And Jump
To Specified Program

Eniry Parameters;
Register CL: 02FH (47)
DMA Buffer: Command Line

Returned Values;
Register AX: OFFFFH - Could not find
Command

The P_CHAIN system call provides a means of cheining from one program to the next
without operatot intervention. Although there is no passed parameter for this call, the calling
procass must place a command line terminated by a 0 byte in the defanlt DMA buffer.

Under Cencurrent CP/M, the P_CHAIN syatem call releases the memory of the calling
process before executing the command. The command is processed in the same manner as
the P_CLI system call. If the command warrants the lozding of 2 CMD file and the memory
relessed is large enough for the new program, Concurtent CP/M loads the new program into
the same memoty area as the old program. The new program is run by the same process that
ran the old program. The name of the process is changed to refisct the new program being
un,

Parameter passing between the old and new programs is eccomplished through the use of
disk files, queues, or the command line. The command line is parsed and placed in the Base
Page of the new program in the manner documented in the P_CLI aystem call.

The P_CHAIN system call returns an error if no CMD file is found. If a CMD file is
found, and an error occurs after it is successfully apened, the calling process terminates, as
its memory has been released.

B DHCITAL RESEARCH®
6-141

P_CLI Concwrrent CP/M Programmery Guide

P_CL2

Interpret And Execute Command Line

Entry Parameters:
Register CI: 096H (150)

DX: CLBUF Addiess - Offaat
DS: CLBUF Address - Segment
Returned Values:
Register AX: 0 on success
OFFFFH on emror
CX: Error Codse
o 1 2 3 128 120
t + /7
*00H COMMAND AR *00H
+ + a4

Flgure &11. CLI Command Lin= Buffer

M DAGITAL RESEARCH®
6142

Concurrent CP/M Programmer’s Guids P_CLI

Table §-16. Command Line Buffer Fleld Definitions

Field Definirion
*00H Must be set o zero for system uge.
COMMAND 1~128 ASCII characters terminated with a null charactar.

The P_CLI sysiem call obtains an ASCI command from the Command Line Buffer
(CLBUF) and then executes it. If the calling process is attached to its default virtual console,
the P_CLI system call assigns the virtual consale to either the newly created process, or to
the Resident System Process (RSP) that ects on the command. The calling process must
reattach to its defanlt virtual console before accessing it.

P_CLI calls F_PARSE to parse the command line. If an emror occurs in F_PARSE,
P_CLI refurns to the calling process with the error code set to the same code that
F_PARSE returned.

If there i3 no disk specification for the command, P_CLI tries to open a system queus
with the same name as the command. If the open operation is successful, and the queue is
an RSP-type quene, P_.CLI then writes the command tai? to the RSP queue. If the queue is
full, the system call returns an error code to the calling process. The P_CLI function also
attemnpis o assign the calling process’s virtual console to g process with the same name as
the RSP queue. If the RSP queue cannot be found, the CLI assumes the command is on disk
and continues.

The P_CLI system call opens a file with the filename being the command and the filetype
being CMD. If the commend has an explicit disk specification, and the F_OPEN systemn call
fails, P_CLI returns an error code to the calling process. [there is no disk specification
with the command, P_CLI attempts tc open the command file on the system disk. If the
F_OPEN system call succeeds, P_CLI checks the file to verify the SYSTEM atiribute is
on. This search order is discussed in Section 2.9.1 of the Concurrent CPIM User's Guide. If
this second F_OPEN fails or if the DIR attribute is on, P_CL{ returns an error codes to the
calling process.

Once the P_CLI system call succeeds in opening the command file, it calls the P_LOAD
svstem call. The P_LOAD system call finds, and then loads the file into an appropriate
memory space. If P_LOAD encounters any errors, the P_CLI systern call returns to the
calling process with the error code set by the P_LQAD system call.

@ DIGITAL RESEARCH®
6143

P_CLI Concwryent CP/M Programmer’s Gulde

A auccessful [oad operation establishes the command file in memory with its Base Page
pertially initialized. The P_CLI system call then continyes parsing the command tail to st
up the Base Puge values from 030H to 0FFH.

P_CLIinitializes an vnused Process Descripior from the interns! PD table, a UDA (expanded
UDA if 8087 processing is requived) and u 96-byte stack area. The UDA and stack ere
dynamically allocated from memory, P._CLI then calls the P_CREATE system cell, If
P_CLI encouniers an error in any of thege stepa, it releases all memory segments allocated
for the new command, es well as the Process Descriptor, and then returns with the appro-
priate error code set.

Once the P_CREATE system call returng successfully, the P_CLI syatem call assigns the
calling process’s default viriwal console to the new process end then returns.

The calling process should set its priority 1o fess than the TMP (198) if it wants to attach
to the virtuel console after the created process releases it. Once the calling process has
succeasfully reaitached, it should set its priority back to 200.

Refer to Thkle 6-5 for a list of error codes returned in CX.

B DIGITAL RESEARCH®
6144

Concurrent CP/M Programmer’s Gulde P_CREATE

P_CREATE

Create A Process

Entry Perameters:
Register CL: 090H (144)
DX: PD Address - Offset
DS: PD Address - Segment
PD filled in

Returned Values:
Register AX: 0 on success
OFFFFH on failure
BX: Same ss AX
CX: Ermor Code

The P_CREATE system call allows a process to create a subprocess within its own memeory
area. The child process shares all memory owned by the calling process at the time of the
P_CREATE call. If the Process Descriptor (PD) is outside of the operating system area,
the system copies it into 8 PD from the internal PD Thble. The system call returns an error
code if there are no more voused PDs in the table.

The Uger Data Area (UDA) can be anywhere in memory but is required to be on a pargraph
boundary. The only time the system copics the PD is if it is not within 64k of the System
Data Segment.

Process Descriptors, as well as Quere Descriptors and Queue Buffers, are required to be
within the System Data Segment because they are linked together on various system lists or
are used by more than one process. Because of this, they cennot be in the Transient Process
Area (TPA), where they cannot be protected,

More than one process can be created by a single P CREATE call if the LINK field of
the PD is nonzero. In this case, it is assumed to point to enother PD within the same Data
Segment. After it creates the first process, the system call checks the Process Descriptor’s
LINK field. Using this linked list of PDs, a single P_CREATE call can create multiple

PIOCESSES,

M DIGITAL RESEARCH®

6-145

P_CREATE

Contwrent CP/M Programmer’s Guide

Note: The P_CREATE systems call does not cheek the validity of the PD addresses passad
by the calling process. An invalid PD address can cause Concurrent CP/M 10 crash if no
hardwire memory proiection is availshle on the system.

Refer to Table 6-5 for a list of error codes retirned in CX.

10
18

LINK THREAD STAT | PRIOR FLAG
NAME
UDA .° | DISK | USER | RESERVED MEM
RESERVED PARENT
CNS RESERVED ust |REBER| gpag
E ? VED -
RESERVED
+ + " +
Figure 6-12. PD - Process Descriptor
1B GIGITAL RESEARCH®

§-146

Concurreni CP/M Programmer’s Gukle

P.CREATE

Table 6-17. PD Field Definitions

Field Definition
LINK Link field for insertion on current system Iist. If this field’s initial value
is nonzero, it is assumed to paoint to ancther PD. This field is used to
create more than one process with & single Create Process call.
THREAD Link field for insertion on Thread List. Initialized to be zero (0).
STAT Current Process activity. Initialized to be zero (). Activity codes are
listed below:
00 RUN The process is ready to run, The STAT field is always
in this state when & process is examining its own
Process Descriptor. The PD is on the Ready List.
The currently running proceas is always at the head
of Ready List.
oI POLL The process is pelling a device. The PD is on the
Poll List.
02 DELAY The process is delaying for a specified number of
system ticks. The PD is on the Delay List.
06 Read Queue The process is waiting to read a message from 2
system queue that is empty. The PD is on the Read
Queue List whose roat is in the Queve Deseriptor
of the system queune invalved.
07 Write Queue The process is waiting to write a message 1o a sys-
tem queue whose buffer is full. The PD is on the
Write Queve List, whose root is in the Cueue
Descriptor of the system queue invalved.
DIGITAL RESEARCH®

6-147

P_CREATE

Coacurrstit CP/M Programmaer's Gulde

Table 617. (continued)

Flaid

Defirition

PRIOR

08 FLAGWAIT The process is waiting for a system flag to be set.
The PD is in the fing teble entry of the flag it is
weiting for.

09 CIOWAIT The process is waiting to aitech to 8 chamactar VO
device (console or list) whils another process owns
it. The PD is on CQUEUE list whoss oot is in the
Character Control Block of the device in question.

Current priority. Process scheduling is done based on this field. Typical
user programs run at a priority of 200. 0 is the best priority, and 255 is
the worst priority. The following is & list of pririty assignments need
by most Concurrent CP/M systema. User processes priorities should be
from 200-254,

1 Initialization Process
2-31 Interrupt Handlers
3263 System Processes
64—190 Undefined
191-197 Undefined
198 Terminal Message Process
198 Undefined
200 Default Priority For Trensisnts
201254 User Processes
255 1dle Procezs

Bit field of flags determining run-time cheracteristics of & process. Ini-
tialize ax needed. All undocumented flags are vsed internslly or are
reserved for system use.

0HH SYS System Process. Has privileged access to various
fextures of Concurrent CP/M. This process can only
be terminated if the termination code is OFFH. This
process can access msiricied system queves. This
flag is turned off if the calling process is not a sys-

12m process.

W DIGITAL RESEARCH?®

6148

Concurrent CP/M Programmer’s Gulde P_CREATE

Table 6-17. (continued) '

Field

Definition

NAME

ubA

DISK

USER

MEM

SFLAG

PARENT

002H KEEP This process cannot be terminated. This flag is turned
off if the calling process is not a system process.

004H KERNEL Thig procesy regides within the operating system.
This flag is turned off if the PD is not within the
operating system.

010H TABLE This PD is copied into the PD from the P table.
When this process terminates, the PD is recycled
into the PD table.

8000H 3087 This process is an 8037-running process.

Process Name. Eight bytes, all eight bits of each byte are used for
matching process namea.

Segment eddress of this process™ User Data Area, Initialized 10 be the
mumber of paragraphs from the beginning of the calling process’s Data
Segment. The User Data Area contains process information that is not
needed between processes. It also contains the System Stack of each
process. Refer to the UDA description below.

Current defanlt disk
Current defanlt user number

Root of linked list of Memory Segment Descriptors that are owned by
this process. Initialized to zero, except for reentrant or shared code RSPs.

Second Flag. If bit O of SFLAG (01H) is set, the system suspends this
process whenever it is switched out to the background and runs it only
when it is switched in to the foreground.

Process that created this process. The P_CREATE system call sefs this
value at process creation. The parent field is set to zero if the paremt
terminates before the child.

M DIGITAL RESEARCH®

6-149

P.CREATE

Concurrent CP/M Programmer’s Gulde

Table é-17. {continued)

Field Defnition

CNS Current defaudt console’s number. Initialized to be the default console
mmber.

LIST Current default list device’s number, Initialized to be the default list
device mumber.

RESERYED Reserved for internal use. These ficlds nust be initialized to zero (0).

6150

B DICITAL RESEARCHY

00H
c8H
10H
18H
20H

28H

agH
40H
48H
50H

SBH

FaH

100H

Concurrent CP/M Programmer's Gulde P.CREATE
t ¢ + t t
RESERVED | DMA OFFSET . REGERVED
'l . " RESERVED) [
, ' " RESERVED ' '
' " RESERVED ' '
A::(3::: GJIL(m:r
r.u: s:: as:= 1 nesuf:nv&n
L RESERVED sé HESI%FWED
' IN"Ii 0) ' INT 1
i REs:ERVED IN'I:' 3 T
CINT4 " RESERVED
e s s
: INT24 INT 225 f
. ' . RESERVED
} + t ! . t t o
USER SYSTEM STACK
FFH
ow sw | RESERVED .
j ' Y i ptional
.) , RESE?VED = , : — é?.ﬁ;’a.
} + } } } + }
. . RESERVED . .
15FH

158H

\ HESEFIW'ED

-

+

Figure 6-13. UDA - User Data Area

The Length of the UDA is 256 bytes (352 bytes if 8087 processing is required), and it roust
begin on a paragraph boundary.

B DIGITAL RESEARCH®

6151

P_CREATE Concurrent CP/M Progmmmer’s Gukle

Table 6-18. UDA Fleld Deflaltion
Field Definition

DMA QFFS The initial DMA OFFSET for the new process. The scgment
address of the DMA is assumed to be the same as the initial
Data Segruent (refer to DS below)

AX,BX,CX.DX, The initial register values for the new process. These are typi-
DISI,.BP cally sef to zero,
Sp The injtial stack pointer for the new process. The stack pointer

is relative to the initial Stack Scgment (refer to 88 below}. The
initial stack of the new process muat be initialized with the offset
of the first Instruction to be execuied by the new process. The
word that the stack pointer points to is the initial instraction
pointer. Two words must follow the initinl TP, which is filled in
with the inidal Code Segment (refer to CS below) and the initial
flags. The initial flaga are set to 0200H, which means tat inter-
rupts me on, and all other flage are off. Concurrent CP/M starts
2 new process by executing an Interrupt Retutn ingtruction with
the initial stack.

Note: This stack area is distinct from the User System Stack
at the end of the UDA.

Low Memory
stack area
§s Sp g
0 (C®)

0 (Flags)

Steck Inidalization Area

W DIGITAL RESEARCH®
61352

Concurrent CP/M Programmer's Guide

P_CREATE

Table 6-18. (continued)

Field

Definitian

INTO,INT 1,
INT 3, INT 4

CS8,D§,
ES,S8

INT 224,
INT 225

RESERVED

USER SYSTEM
STACK

CW*

Sw*

The initial interrupt vectors for the first fve interrupt types can
be set by filling in these fields, The first word of each field is
the Instruction Pointer {IP), and the second word is the Code
Segment (CS)} for a list of the interrupt routine that services
these interrupts. Those fields that are zero are initialized to be
the same as the calling processes interrupt vectors, Thess fields
are typically initialized to be 0.

The initial sagment addresses for the new process are taken from
these ficlds, Those fields that are zero are initialized to be the
same as the calling process’s Dala Segment.

Interrupis 224 and 225 are used to communicate with Concur-
rent CP/M by typical programs. These interrupt vectors are
initialized to be the same as the calling process if these values
ars zero. The ebility to change these valucs allows s run-time
systemn to intercept Concurrent CP/M calls that its children make.
‘The suggested protocal is 1o keep INT 225 pointing to the Con-
current CP/M entry point and changing INT 224 to point to an
internal routine. When a child process dees an INT 224, the
internal routine can filter calls to Concurrent CP/M using INT
225 for the actual Cancurrent CP/M call.

All reserved fields are used internally 2nd must be initialized
1o zer0.

This is the siack area used by the process when it is in the
operating system. The SP variable in the UDA should not point
to this area.

Control word for 8087 processor. Processes bypassing the P_
CLI or P_LOAD system call mwst set this word to 03FFH.

Status word for 8087 processor. Processes bypazsing the P_CLI
or P_LOAD system call most sef this word to 0000H.

*Part of optional 8087 Extension. If the BOB7 flag is set in the SFLAG field, this
6-paragmph extension must be included for the 8087 environment.

B DIGITAL RESEARCH®

6-153

P_DELAY Comcsrrent CP/M Progrosssers Gulde

P_DELAY

Delay For Specified
Number Of Systam Ticks

Entry Parameters:
Register CL: O8DH (141)
DX: Number of System Ticks

The P_DELAY syetem call causes the calling process to wait until the specified numbsr
of systern ticks has occurred. The P._DELAY system call avoide the necessity of prograanmed
delay loops. It allows other processes to use the CPU resource while the celling process
weita.

The length of the system tick varies among installations. A typical system tick is 60Hz
(16.67 milliseconds). In Eurcope, 1t is likely to be 50Hz (20 millistconds). The exact length
of the system tick can be obtained by reading the TICKS/SEC value from the System Data
Segment (refer to the §_SYSDAT system call).

There 18 up to one tek of uncertalnty in the exact emount of time delayed, This is due to
the P_DELAY system call being called esynchronously from the actual time bass, The
P_DELAY system cell is guarantced to delay the celling process at least the number of
ticks specifisd. However, when the calling process is rescheduled to run, it might weit quite
a bit longer if there are higher priority processes waiting to run. The P_DELAY system call
ia used primerily by programs that need to wait specific amoumts of time for IO events o
occur- Under these conditions, the calling process usually has e very high priority level. If
B process with & high priority calls the P_DELAY system call, the actual delay is typically
within & system tick of the amount of time wanted.

W DGITAL RESEARCH®

6154

Conearrent CP/M Progranmer’s Gulde P_DISFATCH

P_DISPATCH

Cali Dispatcher

Enwy Paramatets:
Register CL: 08EH (142)

The P_DISPATCH system call forces a reschedule of processes that are waiting to run.
Normally, dispatches accur at every system tick interrupt (usually 60 times a second), and
whenever a process releases a system resource. Dispatching also occurs whenever a process
nesds a system resource that is not currently available. A CPU-bound process runs for no
more then one system tick before a dispatch is forced. The dispatch occurs at the next systzm
tick.

The Concurrent CP/M Dispatcher is priority driven, with round-robin scheduling of equiv-
alent-priority processes. When a process calls the P_DISPATCH system call, it is resched-
tled, so that processes with higher or equivalent priorities are given the CPU before the
calling process obtains it again, The calling process regains control of the CPU resource
when it becomes the highest priority process again.

H DIGITAL RESEARCH®
6-155

P_LOAD Concarreni CP/M Prograsames’s Gultle

P_LOAD
Load A CMD Type File Into Memory

Eniry Parameters:
Register CL: 03BH {(3%)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AX: Base Pags Address
OFFFFH on error
BX: Sameas AX
CX: Error Code

The P_LOAD syster call loads a disk CMD iype file into memory. Upon eniry, register
DX contwins the offset, relative to DS, of a successfully opensd FCB that specifies the CMD
file to load. Upon return, register AX has the value OFFFFH if the progmm load failed.
Otherwise, AX contains the paragraph address of the Base Page belonging to the loaded
program. The peragraph addrezs and length of each group loaded from the CMD file is found
in the Base Page. See Sections 3.2 and 3.3.

Note thet before calling P_LOAD, the calling process must esteblish the DMA address of
where the CMD file is to be loaded. This is accomplished with F_DMASEG and F_DMAOFE

Note: Open the CMD file in Read-Only mode and close it once the load is completed.

Refer 1o Table 6-5 for a list of error codes returned in CX.

W DMGITAL RESEARCHY
6136

Coancarrest CP/M Programimer’s Guide

P_FDADR

P_PDADR

Return The Address Of The

Calling Proc

es5's Process Descriptor

Entry Parameters:

Register CL:

09CH (156)

Refturned Values:

Register AX:
BX:
ES:

PD Address - Offset
Same as AX
PD) Address - Segment

The P_PDADR system call obtains the address of the calling process’s Process Descriptor.
For a description of the format of the Process Descriptor, refer to the P_CREATE system

call.

8 DEGITAL RESEARCH®

6-157

P_PRIORITY Coscarrent CP/M Programmsa-’y Guide

P_FRIORITY

Set The Priority OF
The Calling Process

Entry Parameters:
Register CL: (91H [145)
DL: Prority

The P_FRIORITY system call sets the priority of the calling process to the specified value.
This system call is useful in siwations where a process needs to have s high priority during
an initielization phase, but afterwerds ¢an run at a lower priority.

‘The best or highest priority is O0H, while the worst or Jowest priority is OFFH. Transient
processes are initialized to run at C3H (200 decimal) by the P_CLI system call.

B DIGITAL RESEARCH®
6-158

Concurrent CP/M Programmer’s Guide P_RPL

P_RPL

Resident Procedure Library

Entry Parameters:
Register CL: 097H (151)
DX: CPB Address-Offsst
DS: CPB Address - Segment

Returned Values:
Register AX: 01H if RPL not found
RPL return parameter
BX: gameas AX
CX: Error Code

ES: RPL retrn sagment if addr

t—t—t + bt —— 4
NAME

[QUSRS VY IS SR GU— e —
PARAM I
+

Figure 6-14, CPE - Call Parameter Block

B DAGITAL RESEARCHE

6-139

P_RPL Concwrrent CF/M Programmars Guide

Tublie 619, CPPE Fisid Defluitions

Field Deftnition
NAME Name of Resident Procedure, eight ASCII characters
PARAM Parameter to send to the Resident Procedurs

P_RPL permits a procsss to call a system call in an optional Resident Procedure Library
(RPL).

P_RPL opens a eystem queus with the specified neme. If te Q_OPEN system call suc-
ceeds, P_RPL checks the queue [o verify that it ig an RPL-type quene. I either the Q_QPEN
fails, or if it is not an RPL-type queve, P_RPL retums 1o the calling procees with an error
colle,

P_RPL reads & message from the queus that cantains the address of the specified system
cell. It then places the PARAM field of the CPB in register DX, and places the calling
process's Date Segment addrees in register DS, P_RPL performs & Far Call instruction to
the eddress it obtaing from the queue message. Upon return from the RPL, the aystem call
copies the BX register to the AX register and then returng to the celling process.

Note: The P_RPL system call does not write the address of the Resident Procedurs back
to the queue. The Resident Procedure itself must do this. If the Resident Procedure is to be
reentrant, it must write the message into the queue upon entry. If it is to be serially reusable,
the procedure must write the message just before returning.

Refer to Thble 6-5 for a list of error codes returned in CX.

IR DIGITAL RESEARCH®
6160

Concorrest CP/M Propramwer’s Guide P_TERM

P_TERM
Terminate Calling Process
Entry Perameters:
Register CL: CO8FH (143)
DL: Term Code
Returned Values:
Register AX: OFFFFH on failure
BX. Same as AX
CX: Error Code

The P_TERM system call terminates the calling process. If the termination code is not
OFFH, the system call can only terminate & user process. If the fermination code is 0FFH,
the system call can terminate the calling process even though the process’s SYSTEM flag is
on. P_TERM cannot terminate a process with the KEEP flag on. If the terminstion ix
successful, the system call releases the mutual exclusion quenes owned by the process. It
also relenses all memory segments owned by the process, and returns the Process Deseriptor
to the PD table,

A process can own ane or more of the following resonrces: memory segments, consales,
printers, mutual exclusion messeges, and system Lock List entries that record open files and
locked records. When a process tetminates and releases its resources, these resotirces become
available to other processes on the system. For example, if a terminating process releases 2
system console, the console is usually given back to the console’s TMP. This occurs when
the TMP is the highest priority process waiting for the console.

If the systern call renirns to the celling process, the P_TERM call has failed for one of

two reasons. Either the process has the KEEP fiag on, or it has the SYSTEM flag on, and
the termination code is nat OFFH.

I DICITAL RESEARCH®

6-161

P_TERMCPM

Concorrent CF/M Programmer’s Gulde

P_TERMCPM

Eniry Parameters:
Register CL:

Returned Values:
Regisier AX:
BX:
CX:

00H (D)

OFFFFH on frilure
Sazme as AX
Error Code

The P_TERMCPM system call terminates the calling process, releasing ell system resources

owned by the process.

P_TERMCPM is implemented internally by calling P_ TERM with the termination code

set 1o O0H.

Under CP/M-B5, the P_TERMCPM aystem call has a further argument that allows a
process not to releass its memory, This argument places a piece of code into memory that
bocomes an interface for later programs. Concurrent CP/M does pot include this option.
Memory ssgments are not recovered by {he system until all processes thet own the memory

segment bave released it.

Refer 10 Table 6-5 for a list of returned error codes.

6162

R DIGITAL RESEARCH®

Concurrent CP/M Programmer's Guide P_TERMCPM

6.2.8 Queue Bystem Calls

Queue system calls under Concurrent CP/M use the Queue Parameter Block data structure
to pass parameters to and from the operating system. Listing 6-3 shows the structure of the
Queue Paremeter Block and the equates far its fields.

+ + +
* 0000H I QUEUEID 1 * DOOOH I BUFFER

+

+

NAME

+ + + + + + +

Figure 6-15. QFPB - Quenc Parameter Block

Table 6-20. QPB Field Definitions

Field Description
QUEUEID Queue number field; filled in by a Q_OPEN operation
* DOODH Reserved for internal use: must be initislized to zero
BUFFER Offset address of Quene Message Buffer
NAME Name of Queue for Q_OPEN operation
B DIGITAL RESEARCH®

6-163

P_TERMCPM Concurrent CP/M Programmer’s Guide

R AL 2 iR LIl Al LAl Al Rl i d I I 2l ot gttt s Rl

L=
[

ME ME ME we W ome e e be e v wE wE
LI N E B B BN B N N N B B
[=]

[+

QFE — Queus Parameter Block Definition

DODOH gususid OOOOH buffer

nama

gqueusid - Queus ID, address of QD
buffer - addrese to read/write into/from
nage - name of gqueue {(for cpsn only)

EXIIIIIIIIIL SIS RS TR AL SIS LSS YII LS L YL 2

-

apb 0 agqu word ptr 0

apb_queueid equ word ptr gpb.D + word
gph.buffer aqu word ptr gpb_gqueueld + 4
4ph.nane equ byts pir gpb_buffer <+ word
gpb_len 6qu qpb.nems <+ gnamsiz
qnageiz syu. 2

Listing 6-3. Quene Parmmeter Block Definition

61864

B DIGITAL RESEARCH®

Concwrent CP/M Programmer’s Guide

Q_CREAD

Q_CREAD
Conditionally Read A Message
From A System Quene
Entry Parameters:
Register CL: 08AH (138)
DX: QPB Address - Offset
DS: QPB Address - Segment
QPB_queneid filled in by previous
Q_OPEN
QPB_bufTer set to message buffer
offset
Returned Values:
Register AX: 0O onsuccess
OFFFFH on failure
BX: Sameas AX
CX: Error Code message in buffer

The Q_CREAD systern call is analogous to the Q_READ system call, but it returns an
error code if there are not enough messages 1o read, instead of waiting for anather process

to write to the queue.

Refer to Table 6-5 for a list of error codes returned in CX.

8 DIGITAL RESEARCH®

6-165

Q_CWRITE

Concarrent CP/M Progrummser's Gwide

Q-CWRITE

Conditionally Write A Message
To A System Queuve

Eniry Parameters:
Register CL:

DX:

DS:

Returned Values:
Register AX:

BX:
CX:

OSCH (140)

QPB Address - Offset

QPB Address - Segment
QPB._queueid filled in by previous
Q_CPEN

QPB_bufTer set to message buffer
offset message in current DMA
buffer

0 on success
OFFFFH on failure
Same as AX

Error Code

The Q_CWRITE system cell is analogous to the Q_WRITE systom call, but it returns an
arror code if there is not enough system queue buffer space for the message lo be wrilten,

nstead of weiting for enother process to read from the queue.

Refer to Table 6-5 for a list of error codes returned in CX,

=166

B DIGITAL RESEARCH®

Concnrrest CP/M Programmer’s Guide

Q_DELETE

Q_DELETE
Delete A System Quene
Entry Parameters:
Register CL: 088H (136)
DX: QPB Address - Offset
DS: QFB Address - Segment
QPB_queueid filled in by a
previous Q_OPEN call
Returned Values:
Register AX: 0 on success
OFFFFH on failure
BX: SameasAX
C¥X: Emor Code

The Q_DELETE systam call remaves a system queue from the system, The gystem returng
error codes if the queue cannot be deleted or if the queue has not been opened ptior o the

Q_DELETE call.

Refer to Table 6-5 for a list of error codes returned in CX.

M DIGITAL RESEARCH®

6-167

Q_MAKE

Conewrrent CP/M Programmer’s Gulde

Q-MAKE

Make A System Queue

Entry Parameters:
Register CL:
DX:

OB6H (134)
QD Address - Offsst

BS: QD Address - Segment
QD filled in
Returned Values:
Register AX: C on success
OFFFFH on failure
BX: Sameas AX
CX: Error Code
+ 4 + 3 + +
* DDDOH * D0OCH 1 FLAGS NAME . .
- + + +
... NAME MSQLEN
+ + + +
NMSQ@s * DOOOH I * DODOH * 0000H
+ + + }
* DDOOH BUFFER I
+ +
Figure 6-16. QD - Quene Descriptor
B DIGITAL RESEARCH®

6163

Concurrent CP /M Programmer’s Gulde Q_MAKE

Table 6-21. Quene Descriptor Field Definitions

Field

Definition

FLAGS

NAME

MSGLEN

NMSGS

BUFFER

* DOOOH

Queue Flags, The bits are defined as follows

00 H - Mutual exclusion queus
0002H - Cannot be deleted

0004H - Restricted to system processes
0008H - RSP message queue

0010H - Used internally

0020H - RPL address queve

0040H - Used internally

0080H - Used internally

Remaining flags reserved for future uase

8-byte quene name. All § bics of each charscter are matched on a
Q-.OPEN call,

Number of bytes in each Jogical message

Maximum number of Jogical messages to be supported. If the mumber
of messages written 10 the queue equals this maximum, no more mes-
sages arc allowed until 2 message is read.

Address of the quene buffer. This buffer nust be (NMSGS * MSGLEN)
bytes long. The address is an offset relative to the DS register. This
field is unused if the QD resides outside of the System Data Segment,
Typically this field is O if the queue is being created by a transient
program. RSPs that create quenss must initialize this field to point 10
a buffer, The Data Segment of an RSP’s quene is considered part of
the System Data Segment unless it is beyond 64k of the beginning of
the Sysiem Data Segment,

For internal use. Must be injtialized to zero.

B DIGITAL RESEARCH®

6-169

QMARKE Concwmrent CP/M Programmer's Guide

Every system quene under Concurrent CP/M Ie associated with 4 Queus Descriptor that
resides within the Concmrent CP/M Systemn Dath Segment. In the Q_MAKE system call,
the calling process passzs the address of a Quene Deseriptor. If this Queue Descriptor is
within the Concurrent CP/M Systemn Data Segment, the system uses it directly for the System
Quene. If the Quene Descriptor is outside of the System Data Sagment, the system obiains
2 Quene Descriptor from an Internal Queus Descriptor table, If there are no unused Queue
Descriptors in the internal table, the systern call returns an error code.

Refer to Table 6-5 for a list of error codes returned in CX.

The buffer for a system queue must also reaide within the System Data Area. For non-
00H length buffers, resident buifers are used directly. The system obains a buffer from the
Queus Buffer Area if the buffer doss not reside within the System Data Segment. The size
of the buffer is calculaed from the NMSGS and MSGLEN fields. The gystem call returns
an cror code if there is not enough umsed buffer srea Isfi 10 accommodate this new buffer.

All system queues must have unique names. The system call returns an error code if &
syslem queuve already exists by the given name,

Under Concurrent CP/M, all system queues mmust be explicitly opened (refer to the
Q_OPEN system call) before being used o read or writs messages or to delete the queue.

S DIGITAL RESEARCHS
&1

Comestrent CP/M Programaners Galde

Q_OPEN
Open A System Queue
Entry Parameters:
Regisier CL: 087H {135)
DX: QPB Address - Offset
DS: QPR Address - Segment
QPB_name filled in
Returned Values:
Register AX: 0 on success
OFFFFH on failure
BX: Sameas AX
CX: Error Code

QPB_queueid filled in

Q_OPEN

All system gueues under Concurrent CP/M must be explicitly opened before a read, write,
or delete operation can be done. The Q_OPEN system call examines each existing system
queue and attempts to match the name in the QPBE with the name of a system queue. All
eight bytes of the name must match for a suceessful open. All bits of each byte are examined.
If the open operation is successful, the Q_OPEN system call modifies the Queue ID Field
of the QPB. Once the the queue is opened, subsequent reads, writes, or a delete are allowed.

Refer to Table 6-5 for a list of error codes returned in CX.

B DRATAL RESEARCH®

6-171

Q-_READ Cosconrent CP/M Proprassmer’s Gulde

Q_READ
Read A Message From A System Queus

Bntry Parameters:
Register CL: 08B9H {137)

DX: QPB Address - Offset

DS: QFB Address - Segment
QPB_queueid filled in by previous
Q_OPEN
QPB_bufier set to message buffer
offset

Returned Values:
Register AX: 0 on success
OFFEFH on failue
BX: Sameas AX
CX: FError Code meseage in buffer

The Q_READ sysiomn call roads & message from a sysiem queune that was previousty
opened by the calling process. The system call meturns an sror code if the queue wae not
previously opened or if the system queuc has been deleted since the Q_OPEN call. If there
arc nol enough messages to read from the queus, the calling process waits until another
process writes into the queus before returning.

Refer to Thble 6-5 for a list of error codes returoed in CX.

W DIGITAL RESEARCH®
8172

Conceryest CP/M Progranimer’s Guide Q._WRITE

Q_WRITE

Write A Message To A System Queue

Entry Parameters:
Register CL: 08BH (139)
DX: QPB Address - Offset
DS: QPB Address - Segment
QPB._gqueued filled in by previous

Q_OPEN
QPB_buffer set to message buifer
offset
Returned Values:
Register AX: 0 on success

OFFFFH on failure

BX: Samsas AX

CX: Error Code

The Q_WRITE system call writes a message to e syztem queue that was previcusly opened
by the calling process. The system call returns an error code if the quene was not previously
opened or if the system queue has been deleted since the Q_OPEN call. If there is not enough
buffer space in the queue, the calling process waits until another process resds from the
queue before writing to the queue and returning.

Refer 10 Table 6-5 for a list of error codes returned in CX.

8 DIGITAL RESEARCH®
6173

S_BDOSYER Concarreni CPM Progprmsseers Gulde

6.2.9 System Information System Calls

S_EDOSVER

Return BDOS Version Number

Entry Parameters:
Register CL: OCH (12)

Returned Values:
Register AL: 31 (BDOS Version 3.1)
AH: 14 (Concurrent CP/M)
BX: Samesas AX

The S_BDOSVER system call returns the BDOS file system version number, aflowing
version-independent programming.

AL High Nibble = BDOS Yersion Number
AL Low Nibble = BDOS Ravision Lavsl
AHM High Nibbis = GPU Typa

Q= 5080
1= 3088

AH Low Nibblg = O8 Typa

0= GP/M 2 = CP/M w/nstwarking
1=MP/M 3 = MP/M w/networking
4 = Concurrent GP/M 8 = Consurrant CP/M
5,7 to E = Resarved w/networking

Figure 6-17. BDOS Version Number Format

) DIGITAL RESEARCH®
5174

Coarurrent CP/M Programmer’s Gulde
S_BIOS
Call BIOS Character Routine
Eniry Parameters:
Register CL.: 032H (50)
DX: BIOS Desc. Addr. - Offset
DS: BIOS Desc. Addr, - Segment
Returned Values:
Repgister AX: BIOS Return
BX: Same as AX
N + +
FUNG 1 CX I DX
+ +

Figure 6-18. BIOS Descriptor ¥ormat

The S_BIOS zystem call is provided under Concurrent CP/M for compatibility with pro-
grams generated under CP/M-86 that use this system call (Function 50). Under Concurrent
CP/M, only routines that interface with character devices are supported. ‘The arguments to
character routines such as CONIN and LIST must be converted to those appropriate for the
Conenrrent CP/M X10S. Refer to the Concurrent CPIM System Guide for further information

about the XI0S.

Note: Calls to the XIOS Console Status, Input, end Output system calls do not go to the
X108 if the referenced device is a virtual console.

B DIGITAL RESEARCHS

6-175

Concwrrest CP/M Programmser’s Guide

S_0OSVER

Return The Version Of Current
Concurrent CP/M System

Entry Paramsters:
Register CL: 0A3H (163)

Returned Values:

Register AX: Version Number (01431H)
BX: Samees AX
CX: Error Cods

The 3_.OSVER system call provides information that allows version-independent pro-
gramming. The system call returns a two-byte value, with AH set to 014H for Concurrent
CPM, and Al set to the Concurrent CP/M version level. The AH register contains a value
sct 1o the type of operating gystem. A velue of 01431H indicates Concurrent CP/M 3.1.

Refer to Table 6-5 for a list of error codes returned in CX.

AL High Nibble = Congurrent GP/M-28 Yersion Numbar
AL Low Nibbla = Gencurrant GP/M Revialon Level

AH High Kibtie = GPU Typs

0= 8080
1= 50§8

AH Low Nibbly = OS Typs

0= CF/M 2= CP/M w/natworking
1= MP/M 3= MP/M w/nstworking
4 = Concurrent CP/M &= Concurrant CP/M
5,7 10 & = Resmrvad w/natworking

Figure 6-19. Operating Systemn Yersion Number Format

& DIGATAL RESEARCH®
5176

Coneurrent CP'M Programumer’s Guide B_SERIAL

S_SERTAL

Return Current System’s
Serial Number

Enfry Parameiers:
Register CL: 06BH (107)
DX: SERIAL Address - Offset
DS: SERIAL Address - Segment

Returned Values:
SERIAL filled in

[o)==]2

Figure 6-20. SERIAL Number Format

S_SERIAL returns the Concurrent CP/M serial number to the addressed, six-byte SERIAL
field as a six-byte ASCII mumeral.

@ DIGITAL RESEARCHS®
6-177

S_SYSDAT

Concurrent CP/M Progmmmer’s Guide

S_SYSDAT

Return Address Of The
System Dats Segment

Entry Parameters:
Register CL:

Returned Values:
Register AX:
BX:

ES:

09AH (154)

Sysdat Address - Offset
Same 83 AX
Syedat Addrces - Segment

The 8_SYSDAT system call returna the address of the Sysiem Data Segment of the calling
process. The System Data Segment contains all Process Descriptors, Queue Descriptors, the

rools of system lists, and other internal deta that Concurrent CP/M uses.

Figure 6-21, illusirates the SYSDAT Table and its ficlds.

6174

@ DIGITAL RESEARCH®

00H
ogH
104
18H
20H

28H

38H

A0H

48H

50H

58H
a0H
68H
70H
18H
E0H

g8H

BOH

8BH

ADH

Concwrent CP/M Programmer’s Gulde S_SYSDAT
+ + + + + +
SUP ENTRY RESERVED
+ + + ; + ;
RESERVED
+ + + + - + +
RESERVED
+ : + + + + +
RESERVED
+ T + + + + +
RESERVED

» * L 3 L o + o m———
X109 ENTRY XIO5 INIT
+ * + + ¥
RESERVED
+ ¥ + + + ¢
DISPATCHER POISP
CCPMSEG ASPSEG gNose@ | RESER|NVONS
-VED
N~ | 8YS- X RESER| DAY
NLCB | NCCB | 1 4as| misk MMP VED| FILE
+ 1
TEMF | TICKS
ok | /8EC LUL ccR FLAGS
-l- * + +
MDUL MFL PUL ouL
+ + + +
QMAL
+ " + L
RLR DLR DRL PLR
+ + + +
RESERVED THRORT OLR MAL
+ + + +
VERSION VEANLM CCPMYERNUM | TOD_DAY
b
Ton | TOD | TOD | NCON | MLST| NCIO LCE
HR{ wn| _sec| oev| vev| oev
OPEN_FILE | LOCK_1OPEN_| ~whER 8887 | RESERVED
max] max
RESERVED
RESERVED XPCNS
OFF_g087 SEG_B087 RESERVED
Figure 6-21. SYSDAT Table

B DHGITAL RESEARCH®

6179

S SYSDAT Concwrent CP/M Progmmmer's Gulde

Table 6-22. SYEDAT Tible Data Fiekis

Firld Explanarion
SUP ENTRY Double-word address of the Supervisor eniry point for inter-
module communication. All infernal system calls go through
thig entry point.
X108 ENTRY Double-word address of the Extendad 'O Systern entry point
for intermodules communication. All XIOS function calls go
through this entry point.

XIOS INTT Double-word address of the Extended /0 Syster Initialization
. eniry point. System hardware initlalization takes plage by &
call throuph this entry point.

DISPATCHER Double-word address of the Dispatcher entry point that handles
interrupt returns. Executing 8 Far Jump to this address is equiv-
alent to executing an [nterrupt Return instruction. The Dis-
patcher routine cmuses a dispatch to occur and then executes
an Interrupt Return. All registers are preserved and one level
of stack is used. This locetion should be used as an exit point
by all XI0S interrupt hendlers that use the DEY_SETELAG
system call.

PDISP Double-word sddress of the Dispatcher entry point that causes
a dispatch to occur with all registers preserved. Once the dig-
paich is done, a RETF instruction is executed. Executing a
IMPF PDISP is aquivalent to executing a RETF instruction.
This location should be used 88 an exit point whenever the
XIOS releases & nesource thet might be wented by a waiting
process.

CCPMSEG Starting pamgraph of the operating sysiem aren. This is also
the Code Segment of the Supervisor Module,

RSPSEG Paragraph Address of the first RSP in a linked list of RSP Data
Segments. The first word of the dete sepment points to the next
RSP in the list. Once the system has besn initialized, this field
is zero,

W DKGITAL RESEARCH®

6-180

Concurrent CP/M Programmer’s Guide S_SYSDAT

Table 6-22. (continued)
Field Explanation

ENDSEG First paragraph beyond the end of the operating system area,
including any buifers consisting of uninitialized RAM allo-
cated to the aperating system by GENCCPM, These include
the Directory Hashing, Disk Data and X108 ALLOC buffers.
These buffer areas, however, are net part of the CCPM.SYS

file.

NVCNS Number of virtual consolez, copied from the XIOS Header by
GENCCPM.

NLCB Number of List Contral Blocks, copied from the X10OS Header
by GENCCPM.

NCCB Number of Character Control Blocks, copied from the XIOS
Header by GENCCFM.

NFLAGS Number of system flags as specified during GENCCPM,

SYSDISK Default system disk. The CLI looks on this disk if it cannot
open the command file on the user’s current default disk. Sst
during GENCCPM.

MMP Maximum memory allowed per process, Set during GENCCPM,

DAY FILE Day File option. If this field is OFFH, the operating system

displays file logging information on system consoles at each
command. Set during GENCCPM.

TEMP DISK Default temporary disk. Programs that create lemporary files
should use this disk. Set during GENCCPM.

TICKS/SEC The number of gystem ticks per second.

LUL Link Iist root of unused Lock List items.

CCB Address of the Character Control Block Table, copied from the
XIOS Header by GENCCEM.

& DIGITAL RESEARCH®

6-181

S_SYSDAT Conewrrent CP/M Programmer Guide
Table 625, (continued)
Field Explanarion

FLAGS Address of the Flag Teble.

MDUL Link lizt root of upused Memary Descripiors.

MFL Link list root of fres mermory partitions.

PUL Link list root of unused Process Descriptors.

QUL Link list root of unused Queue Descriptors.

QMALU Quaue Buffer Mamory Allocation Usit.

RLR Ready List Root. Linked lisi of PDs (hat are ready to rum.

DLR Delay List Root. Link list of PDs that are delaying for a spec-
ified number of system ticks.

DRL Dispatcher Ready List. Temporery holding place for PDs that
have just been made ready to o

PLR Poll List Root. Linked list of PDs that are polling an devices.

THRDRT Thread List Root. Linked list of all current PDs on the system.
The list is threaded through the THREAD field of the PD
instaad of the LINK fiald.

QLR Quaue List Root. Linked list of all $ystem QDs.

MAL Link 1ist of active memory ellocation units. A MAU is created
from one or more memory partitions.

VERSION Address, relative to CCPMSEQ, of version string.

VERNUM Concurrent CP/M version number (system call 12,
S_BDOSVER).

CCPMVERNUM Concurrent CE/M version oumber (system call 163, S_OSVER).

6-182

B DIGITAL RESEARCH®

Concurrent CP/M Programmer’s Guide S_SYSDAT

Table 6-22. (continued)

Field Explanation

TOD_DAY Time-cf-Day. Number of days since 12/31/77.

TOD_HR Time-of-Day. Hour of the day.

TOD_MIN Time-of-Day. Mimuts of the hour.

TOD_SEC Time-of-Day. Second of the minute.

NCONDEY Number of XTOS consoles, copied from the XIOS Header by
GENCCPM.

NLSTDEV Number of XIOS list devices, copied from the XIOS Header
by GENCCFM.

NCIODEV Total mumber of character devices (NCONDEY + NLSTDEV).

LCB Offset of the List Control Block Table, copied from the XIOS
Header by GENCCPM.

OPEN_FILE Open File Drive Vector. Designates drives that have open files
on them. Each bit of the word value represents a digk drive;
the least significant bit represents Drive A, and so on through
the most significent bit, Drive P. Bits which are set indicate
drives containing open files.

LOCK_MAX Maximum number of locked records per process. Set during
GENCCPM.

OPEN_MAX Maximum number of open disk files per process. Set during
GENCCPM.

OWNER_B087 Specifies 8087 information. If set to OFFFFH, the system
assurnes there is no B087 in the system. If set to 0, there i5 an
£087 but no one owns it. If set to any other value, the system
assumes that this valve is the PD offset of the 8087 current
process.

B DIGITAL RESEARCH®

6-183

S_SBYSDAT Conemrent CP/M Programmers Guide

Table 622. (continuad)

Field Explanation
XPCNS Specifies the number of physical consoles.
OFF_g087 OfTset of the hardware-dependent 8087 interrupi vector. If you

supply your own 3037 exception handler routine, store the
offset of your exception handler routine at this offset nddresa.

SEG_8087 Segment address of the hgrdware-dependent R037 interrupt
vectar. If you supply your own 8087 excaption handlar routine,
store the segment address of your exception handler routine at
this segment address.

HBIGITAL RESEARCH®

& 184

Concurreni CP/M Programmer’s Guide

T_GET

Get System Time And Date

B DiGITAL RESEARCH®

Entry Parameters:
Register CL: 069H (105)
DX: TOD Address - Offset
DS: TOD Address - Segment
Returned Values:
Register AL: Seconds
TOD filled in
{Days, Hours and Minutes only)
[
DAY HOUR | MIN I SEC
+

Figure 6-22. TOD - Time-of-Day Structure

T_-GET

6-185

T-GET Concurrent CP/M Programmer’s Guide

Thbie 6~23. Time-of-Duy Field Definitions

Field Definition

DAY The number of days since 12/31/77. The day is stored as a 16-bit imager.

HOUR The current hoar of the current day. The hour is represented as a 24 hour
clock in 2 binary coded decimal (BCD) digits.

MIN The current minute of the current hour. The minnte is stored as 2 BCD
digits.

SEC The current second of the current minute. The second is stored as 2 BCD
digits.

The T_GET systern call obtaing the system internel time and date. The calling proceas
passes the eddress of a four-byte daia structure that receives the time and date values. This
systern call ig equivalent to the T_SECONPS system call, except that it does not return the
SECONDS field of the internal time.

H DIGITAL RESEARCH®
6136

T_SECONDS

Comcuxrrent CP/M Programmer’s Guide
T_SECONDS
Get Current System Time And Day
Entry Parameters:
Register CL: 09BH (155}
DX: TOD Address - Offset
DS: TOD Address - Segment
Returned Values:
TOD filled in
{Days, Hours, Mimites, and Seconds)

The T_SECONDS system call returns the current encoded time and date {including sec-
onds) in the TOD structure passed by the calling process.

B DIGITAL RESEARCH®

6-147

T_SET Concarrest CP/M Programsser’s Galde

T_SET

Sct System Time And Date

Entry Parnmeters:
Register CL: 068H (104)
DX: TOD Address - Offset
DS: TOD Address - Segment

The T_SET system call sets the systemn internal time and date. The calling process passes
the address of a 4-byte structure containing the time and date specification.

The dats iz represented g5 a 16-bit luteger with day 1 corresponding to January 1, 1978,
The time is represented s two bytes hours and minutes stored s bwo BCD digits.

Under Concurrent CP/M, this system call also sets the second field of the system time and
date to 00H.

End of Section 6

B DKGITAL RESEARCH®

6-188

Appendix A
System Call Summary by
Function Number

This appendix lists the Coneurrent CP/M system calls by function number including the
pArameters 4 process rmust pass when calling the function, and the values the function returns
to the process.

Table A-1. Sysiem Call Summary by Fonction Number
Dec Hex Mnremonic Input Parameters Returned Values
0 0 P_TERMCPFM none AX = Rin Code
1 l C_READ none AL = char
2 2 C_WRITE DL = char none
5 5 L_WRITE DL = char none
] 6 C_RAWIO see def see def
9 9 C_WRITESTR DX = .Buffer nons
10 A C_READSTR DX = .Buffer ses def
11 B C_STAT none AL = I if ready

= 0 if not ready

12 C S_BDOSYER none AX = Version#
13 D DRY_ALLRESET none see def
14 E DRY_SET AL = Drive # see def
15 F F_OPEN DX = .FCB AL = Dir Code
16 10 F_CLOSE DX = .FCB AL = Dir Code
17 11 F_SFIRST DX = .FCB AL = Dir Cxe
18 12 F_SNEXT none AL = Dir Code
19 13 F_DELETE DX = .FCB AL = Dir Code
20 14 F_READ DX = .FCB AL = Err Code
21 15 F_WRITE DX = .FCB AL = Err Code
22 16 F_MAKE DX = .FCB AL = Dir Code
23 17 F_RENAME DX = .FCB AL = Dir Code
24 18 DRV_LOGINVEC none AX = Login Vect.
25 9 DRY_GET none Al = Cur Drive
26 1A F_DMAOQFF DX = .DMA none
27 IB DRV_ALLOCVEC none ES:AX = Alloc Addr

¥ DIGITAL RESEARCH®

A-l

A Syttem Call Sommary

Concurrent CP/M Programmers Guide

Table A-1. (continued)

Dec Hex Mnemonic Input Parameters Returned Values
23 iC DRV_SETRQ none seg def
29 ID DRV_ROVEC none AX = RO Vect,
3¢ IE F_ATTRIB DX = .FCB see def
3 IF DRV_DPB none ES:AX = DPB Addr
32 20 F_USERNUM DL = QFFH (ger) Al = User #

= User ¥ (s¢t) none
a3 21 F_READRAND DX = .FCB Al = Err Code
4 22 F_WRITERAND DX = .FCB AL = Err Code
35 23 F_SIZE DX = .FCB RO, R1, R2

AL = Dir Code

36 24 F_RANDREC DX = .FCB RO, R]1, R2
a7 25 DRV._RESET DX = drive Vect AL = Err Code
33 26 DRV_ACCESS DX = drive Vect none
a9 27 DRV_FREE DX = drive Vect none
40 28 F_WRITEZF DX = FCB AL = Err Code
42 2A FLOCK DX = FCB AL = Err Code
43 2B F_UNLOCK DX = _FCB AL = Err Code
44 2C F_MULTISEC DL= # of Records AL = Rm Code
45 2D F_ERRMODE DL = Error Mods none
46 2E DRV_SFACE DL = Drive # soe def
47 2F P_CHAIN see def none
48 30 DRV_FLUSH none gez def
50 32 S_BIOS DX = .BD AX = BIOSEm
51 33 F_DMASEG DX = .DMA Seg none
52 k) F_DMAGET nong ES:AX = DMA Addr
53 35 MC_MAX DX = MCB see def
54 36 MC_ABSMAX DX = MCB poe def
55 37 MC_ALLOC DX = MCB see def
56 38 MC_ABSALLCC DX = MCB see def
57 39 MC_FREE DX = MCB seg def
58 3A MC_ALLFREE none none
59 3B P_LOAD DX = .FCB AX = BP Addr
99 63 F_TRUNCATE DX = .FCB see def
100 64 DRY_SETLABEL DX = .FCB Al = Dir Code
101 65 DRV_GETLABEL DX = Drive # AL = Label Datg Byte
102 66 F_TIMEDATE DX = XFCB AL = Dir Cods
103 67 F_WRITEXFCB DX = XFCB AL = Dir Code
104 68 T_SET DX = TQD none

I DIGITAL RESEARCH®

A-2

Concurrent CP/M Programmer’s Guide

Table A-1. (continued)

A System Call Summary

Dec Hex Mnemonic Inpur Parameters Returned Volues
10 &9 T_GET DX = .TOD AL = geconds
106 6A F_PASSWD DX = .Password none
107 6B S_SERIAL DX = _serial# serial #
109 &b C_MODE DX = Con Mode none

= OFFFFH AX = Con Mode
11 6E C_DELIMIT DL = Out Delim none

= OFFFFH AL = Cut Delim
111 &F C_WRITEBLK DX = .CHCB none
12 0 L_WRITEBLK DX = .CHCB nons
128 &0 M_ALLOC DX = .MPB AX = Rm Code
120 81 M_ALLOC Same as above Seme as above
130 82 M_FREE DX = .MPB none
131 B3 DEV_POLL DL. = Device none
132 &4 DEV_WAITFLAG DL = Flag AX = Rtn Code
133 85 DEV_SETFLAG DL = Flag AX = Rin Code
134 B4 Q_MAKE DX = .QD none
135 &7 Q_OPEN DX = .QFB AX = Rin Code
136 88 Q_DELETE DX = .QFB AX = Rin Code
137 89 Q_READ DX = .QPB none
138 S8A Q_CREAD DX = .QFB AX = R Code
139 8B Q_WRITE DX = .QPB
140 8C Q_CWRITE DX = .QFB AX = Rtn Code
141 8D P_DELAY DX = #ticks none
142 B8E P_DISPATCH none none
143 8F P_TERM DL = Term. Code AX = Ritn Code
44 90 P_CREATE DX = .PD none
145 9 P_PRIORITY DL = Prority nene
146 02 C_ATTACH none nong
147 43 C_DETACH none none
148 94 C_SET DL = Console none
149 95 C_ASSIGN DX = .ACB AX = Rin Code
150 96 P_CLI DX = .CLBUF none
151 97 P_RPL DX = .CPB AX = result
152 98 F_PARSE DX = .PFCB see def
153 99 C_GET none AL = con #
154 9A S_SYSDAT none ES:AX = Sys Data Addr
155 9B T_SECONDS DX = .TOD TOD filled in
156 9oC P_PDADR none ES:AX = PD Addr

it DIGITAL RESFARCH®

A-3

A Systern Call SEummary

Concwrrent CP/M Progmmmer’s Gulde

Table A-1. {continued)

Dee Hex Mnemonic Input Parameters Returned Values
157 9D P_ABORT DX = ,ABP AX = Rin Code
158 98 L ATTACH none none
159 9F L_DETACH none none
160 A0 L. SET DL = List # none
161 Al L_CATTACH none AX = Rin Code
162 A2 C_CATTACH none AX = Rin Code
162 A3 S_OSVER none AX = Version #
164 A4 L _GET nonse AL = List #
B DIGITAL RESEARCH®

A4

Comcurrest CP/M Prograsuner’s Guide A System Call Summary

Conventions used in Appendix A:
. = Address of
= Number

ACB = Assign Control Block
Addr = Address

BD = Rios Descriptor
BP = Bass Page
Char = ASCII Charecter

CHCB = Character Control Block
CLBUF = Command Line Buffer

Con = Cpnsole

CPB = Call Parameter Block
Cur = Current

Delim = Delimiter

Dir = Directory

DMA = Dircct Memory Address
Err = Error

FCB = File Control Block

MCB = Memory Control Block
MPB = Memory Parameter Block
Num = Number

Out = Output
FD = Process Descriptor
PECB = Parse Filename Control Block
QD = Queue Descriptor
QPBE = Queue Parameter Block
Rec = Record
Rin = Refurn
Sys = System
Term. = Termination
TOD = Time of Day
Vect = Vector
End of Appendix A
n DIGITAL RESEARCH®

A-§

Appendix B
ASCII and Hexadecimal Conversions

This appendiz contains tables of the ASCII symbols, including their binary, decimal, and
hexedacime] convergions,

Table B-1. ASCII Symbois

Symbol Mzaning Symbol Meaning
ACK acknowledge Fs file separator
BEL bell GS group separator
BS backspace HT horizontal tabulalion
CAN cancel LF line feed
CR carriage return NAK negative ackpowledge
DC device control NUL null
DEL delete RS record separgtor
DLE data link escape St shift in
EM end of medium 80 shift out
ENQ enquiry SOH start of heading
EOT end of transmiszion Sp space
ESC escape STX start of text
ETB end of transmission SUB substitute
ETX end of text SYN synchronous idle
FF form feed Us unit separstor

vT vertical tabulation

Thable B-2. ASCI Conversion Table

Binary Decimal Hexadecimal ASCH

0000000 000 00 NUL

0000001 001 01 SOH (CTRL-A)
0000010 002 0z STX (CTKL-B)
0000011 003 a3 ETX (CTRL-C)
0000100 004 o4 EQOT (CTRL-D}
0000101 005 as ENQ (CTRL-E)

B DIGITAL RESEARCHE

B-1

B ASCH and Hexadecioan! Conversiom

Table B-2. (contimed)

Concurrent CF/iVl Programmer's Gulde

Binary Decimal Hexadecimal ASCIt
0000110 006 06 ACK (CTRL-F)
0000111 oG7 Q7 BEL (CTRL-G}
0001000 0c8 08 BS {CTRL-H)
0001001 009 09 HT (CTRL-I)
0001010 010 0A LF (CTRL-I
0001011 011 0B ¥T (CTRL-K)
0001100 012 oC FF {CTRIL-L)
0001101 013 oD CR (CTRL-M)
0001110 014 0E 50 (CTRL-N)
0001111 015 OF 51 (CTRL-0)
0010000 0l6 10 DLE (CTRL-F)
0010001 017 11 DC1 (CTRL-Q)
0010010 018 12 DC2 (CTRL-R)
0010011 019 13 DC3 (CTRL-8}
0010100 0z0 14 DC4 (CTRL-T}
0010101 021 15 NAK (CTRL-1)
0010110 022 186 SYN (CTRL-V)
0010111 023 17 ETE (CTRL-W)
0011000 024 13 CAN (CTRL-X)
0011001 a2s 19 EM (CTRL-Y)
0311010 026 1A SUB (CTRL-Z)
0011011 027 1B ESC (CTRL-[)
DOL1100 028 1C FS (CTRL-)
0011101 Q20 1D GS (CTRL-])
0011110 030 1E RS (CTRL-*)
0011111 Q31 1F us (CTRL-.)
0100000 032 20 (SPACE)

0100001 033 21 !
0100010 034 22 "
0100011 Q35 23 #
0100100 036 24 5
0100101 037 25 %
0100110 038 26 &
0100111 039 27 '
D1Q1000 040 23 {
0101001 041 29)
0101010 042 2A b
0101011 043 2B +
i DIGITAL RESEARCH®

B-2

Congurreni CP/M Programmer's Guide B ASCII and Hexadeelmal Conversions

Table B-2, (continued)

Binary Decimal Hexadecimal ASCH
Q101100 044 2C)
Q101101 045 2D -
Q101110 046 2B .
0101111 047 2F /
0110000 048 30 0
0110001 049 3 1
0110010 050 32 2
0110011 051 33 3
0110100 052 H 4
0110101 053 35 5
0110110 054 36 6
0110111 055 37 7
0111000 056 38 3
6111001 057 39 9
CL11010 058 3A :
oL11011 059 3B :
0111100 060 C <
011111 061 D =
O111110 062 3E >
O111111 063 3F ?
1000000 064 40 @
1000001 065 41 A
1000010 066 42 B
1000011 067 43 C
1000100 068 44 D
1000101 069 45 E
1000110 070 46 F
1000111 071 47 G
1001000 072 43 H
1001001 073 49 I
1001010 074 4A, J
1001011 075 4B K
1001100 076 4C L
1001101 077 4D M
1001110 078 4E N
1001111 079 4F 0
1010000 080 50 P

3. DIGITAL RESEARCH®

B-3

B ASCII and Hexadecimal Conversions Conecurrent CP/M Programmer’s Guids

Table B-2. (contineed)

Binary Decimal Hexodrcimal ASCIH
1010001 081 51 Q
1010010 082 2 R
1010011 083 53 3
1010100 084 54 T
1010101 08s 55 U
1010110 086 56 Y
1010111 087 57 W
1011000 088 58 X \
1011001 089 59 Y
1011010 090 3A z
1011011 091 5B [
1011100 092 5C \
1011101 093 5D 1
1011110 094 5E A
1011111 095 5F <
110000C 096 60 !
1100001 097 61 &
1100010 (008 62 b
1106011 059 e) c
1100100 100 64 d
1100101 101 65 3
1100110 102 66 f
1100111 103 67 E
1101000 104 68 k
1101001 105 69 i
1101010 106 6A j
1101011 107 6B k
1101100 108 6C 1
1101101 109 6D m
1101110 110 6E n
1101111 111 6F o
1110000 112 70 P
1110001 113 71 q
1110010 114 72 r
1110011 115 73 [
1110100 116 4 t
1110101 117 75 u

WDHKRTAL RESEARCH®

B4

Cancurrent CP/M Programmers Guide B ASCII and Hexadeeimal Conversions

Table B-2. (continued)

Binary Decimal Hexadecimal ASCl
1110110 118 76 v
1110111 119 7 w
1111000 120 78 x
1111001 121 79 y
1111010 122 TA z
1111011 123 7B {
1111100 124 1c |
1111101 125 D }
1111110 126 TE ~
1111111 127 7F DEL

End of Appendix B
M DNGITAL RESEARCH®

B-5

Appendix C
Error Codes

Table C-1. Concurrent CP/M Ervor Codes

Code #

Definttion

NOOOO-Ihb R WN

[Ep—

13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30

NO ERROR

FUNCTION NOT IMPLEMENTED

ILLEGAL FUNCTION NUMEER

CAN'T FIND MEMORY

ILLEGAL SYSTEM FLAG NUMBER

FLAG OVERRUN

FLAG UNDERRUN

NO UNUSED QUEUE DESCRIFTORS LEFT IN QD TAELE
NO UNUSED QUEUE BUFFER AREA LEFT
CAN'T FIND QUEUE

QUELE IN USE

NO UNUSED PROCESS DESCRIPTORS LEFT IN PROCESS
DESCRIPTOR TABLE

QUEUE ACCESS DENIED

EMFTY QUEUE ~

FULL QUEUE

CLI QUEUE MISSING

NO 8087 IN SYSTEM

NGO UNUSED MEMORY DESCRIPTORS LEFT IN
MEMORY DESCRIPTOR TABLE

ILLEGAL CONSOLE NUMBER

CAN'T FIND PROCESS DESCRIPTOR BY NAME
CONSOLE DOES NOT MATCH

NO CLI PROCESS

ILLEGAL DISK NUMBER

ILLEGAL FILE NAME

ILLEGAL FILE TYPE

CHARACTER NOT READY

[LLEGAL MEMORY DESCRIPTCR

BAD LOAD

BAD READ

BAD OPEN

DHGITAL RESEARCH®

C-1

C Emror Codes Concurrent CP/M Prograssser’s Guide

Table C-1. (continned)

Code # Definition
)| NULL COMMAND
32 NOT OWNER
33 NO CODE SEGMENT IN LOAD FILE
M ACTIVE FROCESS DESCRIFTOR
35 CAN'T TERMINATE
36 CAN'T ATYACH
37 ILLEGAL LIST DEVICE NUMBER
38 ILLEGAL PASSWORD
40 EXTERNAL TERMINATION OCCURRED
41 FIXUP ERROR UPON LOAD
42 FLAG SET IGNORED
End of Appendix C

B DIGITAL RESEARCH®

e ma oma ma

Appendix D
ECHO.A86 Listing

Listing D-1, ECHO.AB6

ECHD ~ Residenti System Process
Print Commend tail {o consols

; DEFINITIONS
copmint equ 224 ;oapn entry interrupt
¢ _writestr equ 9 ;print string
¢ _detach equ 147 ;detach console
¢ set equ 148 ;get defauli conacls
q_meke equ 134 ;create guene
g open aqu 135 ;open queus
q read aqu 137 iread queue
q write equ 139 iarite queus
p priority aqu 145 ;s8t priority
pdlen equ 43 ;length of Process

; Dascriptor
p cna equ byte pir 020h ;defauiti ¢ns
p disk squ byte ptr 012h ;dafault disk
p user 8qu byte ptr 013h ;dafault ussr
p list equ byte ptr 024h ;default list
ps_run squ 0 :PD run status
pf_keep equ. 2 ;FD nokill flag
rsp iop aqu 0 ;rep offeet
rap pd aqu 010h :FD offset
rap uda 8qu D40h ;UDA olfset
rsp_boitom equ 140h ;end rsp header
qf_rsp aqu 0Bh ;queue RSP flag
B DIGITAL RESEARCH®

D1

D ECHO.ABE Lhsting Concurrent CP/M Programmer's Gulde

copm:

axin:

loop:

Listing D.1. {continued)

GODE SEGMENT

CSEG
org 0

int ocpmint
ret

;create ECHO quaus
pov cl,q maks | mov dx,of’mat qd
cell oopa

;open ECHO queua
mov cl,q open | mov dx,offset gpb
call oopa

;88t priority to normal
wov cl,p priority | mov dx, 200
cell oopa

;E8 pointe to SYSDAT
Ky am, sdatseg

;foravar

;read omdiail from qusus
mov cl,q reed | mov dx,offset gqph
oall copa

;apt default valvea from PD
mov bx, pdedr
aov dl,ee:p disk[kx] :p disk=0-15
inc dl | mov disk,di ;make disk=1-16
nov dl,es:p user[kx]
¥ov user,dl
mov dl,es:p list[bx]
mov list.dl”
mov d1,as:p cnBlbx]
mov console,dl

I DIGITAL RESEARCH®

D-2

Cancurrent CP/M Programmer’s Guide

Listing D-1, (continned)

;88t default console
; moy dl,console
mov ¢1,C SET ! call cocpa

;scan omdtall and look for '§' or 0.

;when found, replace w/ or,1f,'§’

lee bx,cmdtail [wov gl,'$' | mov ah,D

mov dx,bx ! add dx,131
nextehar:

cmp bx,dx | j& endomd

cmp [bx],al ! je endemd

cmp [bx],2h [je endomd

ing bx ! jops nextchar

endend:

zov byta ptr [bx], 13

mov byte ptr 1[bx],10

nov byie ptr 2fbx],'§'

;write command tail

lea dx,cmdtail ! mov cl,C WRITESTR
call ccpm -
:defach consola
mov dl,consocle
mey ¢l,c detach ! call copm
Tdone, get next command

jzps laop
; DATA SECMENT
T DIGITAL RESEARCH®

D ECHQ.A86 Listing

D-3

D ECHO.ABé Lhting

sdstasg

org

rsp_tup

dvw

Concurrent CP/M Propramner's Guide

dr
dv

org rep_pd

BEIIERBSENEER

Listing D~1. (continued)
0,0,0
0,0,0
0.0
0.0 ; 1ink, thread
pa Tun ; statue
150 ; priority
pf kasp ; flegs
'ECHO ! : neme
offset uda/i0h : ude seg
0,0 ; disk,u=er
0,0 + logd dsk,usr
0 H 1]
0,0 3 dvract,valt
0.0
]
0 ; console
0,0,0
0 ; list
0,0,0
0,6,0,0

D-4

HDIGITAL RESEARCH®

Concurrent CF/M Programmer’s Guide D ECHO.A86 Liating

Listing D-1. (continued)
Org rap uda
uda dw 6,oftset dma,0,0 ;0
dw 0.0,0,0
dw 0,0,0,0 ;10h
daw 0.0,0,0
dw 0,0,0,0 :20h
dw 0,0,0,0
dw 0,0,cffsel stack tos,0 :3dh
av 0,0,0,0 -
dw 0,0,0,0 140k
dw 0,0,0,0
dw 0,0,0,0 H-i
dv ¢,0,0,0
dw 0,0,0,0 1 60b
OTE rp_bntto
gbof by 131 ; Queue buffer
qd dw 0 ;link
ab 0.0 inet,org
dw qf rep ; flaga
db VECHO ' i hans
dw 131 ymsglen
dw 1 s nSER
dw 0,0 H R
dw 0.0 ihegent, msgout

dw offset gbuf ybuffer addr.

i DIGITAL RESEARCH®

D ECHO.ASS Liaiing

ataok

stu:h_tus

pdadr
cmdtail

apb

consala
,disk
;UBAT
;list

end

rb

dr
dw
dy
dw
dw
dw
dw
dw

bo -}
db

db
dw
dw
dw

db
db
db

Coocurrent CP/M Programmiér’s Guide

Listing D-1. {continued)

128

Cecoch,Oceech, Docech
Oocech,Occcch,Ocacch
Occech,Ocooch, Ocooch
Occceh,Occech, Docech
Ocaoch, focech, Docech

uffset main
0
0

1
129
13.10,'¢§

0.0

0

1

offaet pdadr
'"ECHO d

[~ = N -

; start offset
; start meg
; init flegs

; QPFB Buffer
3 gtarta here

‘ISt ke zera
:queue ID

; NBSEs
;beffer eddr.
;nass to open

End of Appendix D

D-6

WDIGITAL RESEARCH®

Appendix E
8087 Exception Handling

This appendix includes an example of an 8087 intarrupt handling routine to demongirate
the requirsments for using the 8087 processor. Refer to Intel’s iAPX 56,88 User's Manual
for e description of BO87 exception handling in the section on “ 8087 Numeric Data Processor™,

In order to guarentee the data integrity for each 8087 process in the multitasking envi-
ronment, any user-defined exception handler must adkere lo 8 minimum sequance of steps
within the exception handler;

1,
2

e

Save the 58086 environment of the 8086-running process.

Save the environment of the 8087-running process. The OWNER_8087 field in
SYSDAT will contain the offset of the 8087-running process (sc¢ description of
SYSDAT in Section § with the S_SYSDAT system call}.

Clear the 8087 interrupt request bit in the status word.

. Disable the 8087 interrupts.

5. Clear the PIC interrupt (this instruction is hardware-dependent).

H DNGITAL RESEARCH®

. At this peint, you might want to modify the 8087 environment image saved in step

2 abova.

. Befare enabling the 8086 interrupts, restare the 8087 environment with its status

word's interrupt request bit cleared. I the environment is not restored before 8086
intestupts are enabled, and an interrupt occurs (Mike a tick), a different 8087 process
cen gein control of the 8087 and swep in its B087 context. On a second interrupt,
or on an IRET instruction, the 8086-running process that happened to be executing
the exception hantller code is brought back into 8086 context and writes over the
new 8087 context.

The user program, which uses its own exception handler, must replace the system’s
interrupt vector with its own. Once this is done, the system swaps this vector into
mermory every time the program comes back into 8087 conizxt. The address of the
interrupt vector is in the SYSDAT table at offset AOH (the description of the SYSDAT
Table is included in the description of the S_SYSDAT system call in Section 6).

The default exception handler aborts those 8037 programs that have enabled 8087
interrupts and that generate a severe error (such as stack underrun, divide by zero,
and so forth). Any other errors are ignored by the default exception handler.

E-i

E 3087 Exception Handling Coucurrent CP/M Programmer's Guide

Listing E-1. 8087 Exception Handling

; 8087 ipterrupt routine

This sxceptlion handier iz non-specific and
1s moeni ms an exsmple

default. It la assumed that if the 8087
programmer hes sunabled BOBY

interrupts and hes specified excepilon flags
in the control word, then

the programmer has also lncluded an
exCeption handler io tmka

gpocific motions within the progrem
bafora continuing in the 8087,

This handler will ignore non-mevars

srrora (ovarflov,etc) and will

terpinate processes with asevere errors
{divide by zsro,stack violation).

E-2

¥ DIGITAL RESEARCH®

Concmrent CP'/M Programmer’s Guide E 3087 Exception Handling

Listing E-1. (comtinued)

push ds : SAVE CURRENT DATA SECMENT

mav ds, sysdat ; GET XI0S DATA SEGMENT

mov ndp ssrag,as ; DO STACK SWITCH FDR 8086 ENVIRONMENT
mav ndp spreg,sp ; SAVE

movy 88,sSysdat
mov 8p,offset ndp tos ; SAVE THE BOBS REGISTERS
push ex! push bx ~
pueh ox! push dx
push 41! push si
push bp! push es
nov as,syedat

PNSTENY env BO8T

HOR SAVE THE 8087 ENVIRONMENT
SAVE B0BY PROCESS INFO

~e

FYAIT

FNCLEX ; CLEAR ITS INT REQUEST RIT

Xar ax,ix

FNDISI ; DISABLE ITS INTERRUPTS

mov al,020k ; SEND 2 INTERRUPT ACKNOWLEDGES - 1 FOR
out 0680h,al ; ONE FOR MASTER PIC., ONE FOR SLAVE
mevy al,020h

put 058h,al ; IN 8087 WILL CHECK THE 8087 ERROR
call in 8087 : CONDITION. IF ERROR IS SEVERE., IT

; NO CHANGES.

i WILL ABORT, ELSE IT WILL RETURN WITH
: CLEAR ITS STATUS WORD FOR ENV RESTORE

mov bx,offset env BDEY
mov byte ptr 2[bx],0
pop esl pop bp ; RESTCRE THE BO86 ENVIRONMENT
pop Eil pop di

pop dx! pop ¢x

pop bx! pop ax

SWITCH BACK TQ PREVIOUS STACK

mov 88, ndp sareg
mov sp,ndp Spreg
FLDENV eav 8087
FRAIT

pap ds ; RESTORE PREVIQUS DATA SEGMENT
irat

RESTORE 8087 ENV WITH GOOD STATUS

B DIGITAL RESEARCH®

E-3

E 087 Exceplion Handling Concurrent CP/M Programmer's Gulde

Listing E-1. (continued)

—

in BQBT:
; entry: D3 = SYSDAT

; Only user—specified srror conditlons generate
; laterrupts from the 208T.

mov bx, owner 8087

tast bx,bx

Jz ond 87

mov Bi, offset env BOBY
mov ax, statumw[ai]

GET THE PROCESS DESCRIPTOR

CHECK IF OWNER HAS ALREADY
TERMINATED

IF IT'3 A SEVERE ERROR, TERMINATE

IF NOT SEVERE,RETURN & CONTINVE
3A = UMDER/OVERFLOW, PRECISION,
AND DENORMALTZED QPERAND
NOT 3A = ZERD DIVIDE OR INVALID
QPERATION (STACK ERROR)

test ax,032h
Jnz and_‘B‘F
or p flsg[bx],080h

end_ﬂ'? :
ret

End of Appendix E

B DAGITAL RESEARCH®

E-4

Glossary

Base Page: Memory region between 0000H and 0100H relative to the beginning of the
Data Segment used fo hold system parameters. Base Page serves primarily as an’ interface
region between user programs. Note that in the 8080 Model, the code and dats are intermixed
in the code segment.

BCD: Acronym for Binary Coded Decimal. Representation of decimal numbers using
binary digits. Ses Table B-2 for representations of ASCII codes.

BDOS: Basic Disk Opereting System (BDOS). The BDOS manages the Concurrent
CP/M file structure and executes most of the Concurrent CB/M system calls.

block: Basic unit of disk space allocation under Concurrent CP/M, Each disk drive has a
fixed block size (BLS) defined in its disk Parameter Block in the X108, The block size can
be 1K, 2K, 4K, 8K, or 16K of conseculive bytes, Blocks are numbered relative to zero on
a disk. Blocks are not shared between files.

Boolean: Variable that can have only two values; usually interpreted as true/false or
on/off.

Checksum Vector {(CSV): Contiguous data area in the XIOS with one byte for each
directary sector to be checked, that is, CKS byles. A Checksum Vector is initialized and
meintained for each logged-in drive. Bach directory access by the system results in &
checksum calculation that is compared with that in the Checksum Vector. If there is a
discrepency, the drive is set to Read-Only status. This prevents the user from inadvertently
switching disks without logging in the new disk with 2 CTRL-C. If not logged in, the new
disk is treated the same as the old one, and you can destroy data on it if you write to it.

CI0O: Character [/O (CI0) Medule. The CIO module handles all character [0 to and from
consoles and list devices.

CLI: Command Line Interpreter. The P_CLI system call interprets the command requested

in a command line and performs the system calls needed to cpen a process, load the command
file, and execute the code.

BDICITAL RESEARCH®

Glossary-1

Glossary Concurrent CP/M Programmer's Guide

CMD: Fileiype for Concurrent CF/M command files. These are mechine languege oblect
modules ready 10 be loaded and executed. Any file with this type can be executed by simply
typing the flleneme afiter the drive prompt. For sxample, the program PIE.CMD cen be
executed by simply typing PIP.

comrnmnd: Set of instructions that are execuled when the command name is typed after
the syatem prompi. These instructions can be built in the Concurrent CP/M system or can
reside on disk as a file of typs CMD. Concurrent CP/M commands consist of three parts:
the command name, the command tail, and e carriage return.

cousole: Primary 1D device used by Concurrent CP/M. The console umally consists of
a CRT screen for displaying output and a keyboard for input.

contral charseter: Nonprinting ASCII charscter produced on the console by holding down
the CTRL (CONTROL) key while striking the character key, CTRL-H means hold down
CTRL and press H. Control cheracters are sometimes indicated using the up-arraw symibol
{*), g0 (CTRL-H can be represented ax *H. Certain control characiery ere treated as special
commands by Concurrent CP/M.

Defantt Buffer: 128-byte buffer maintained at 0080H in the Base Page. When the CLI
losds 8 CMD file, it initializes this buffer to the command tail, that is, eny characters typed
sfter tha CMD file npme. The first byte & O08JH contains the langth of the command tail
while the command t=il itself begins at 0081H. A binary zero terminates the command tail
velue. The 1 command under DDT™ initializes this buffer in the zame way as the CLI.

Default FCB: One of two FCBs maintsined at 005CH and 006CH in the Base Page. The
P_CLI system call initializes the first defauit FCB from the first delimited field in the
commank tafl and initielizes the secomi defeult FCB from the next feld in the command
tail.

dellmiters: ASCII charscters used to separale constituent parts of a e specification. The
P_CLI systam call recognizes certiln delimiter charactsrs a8 : . = ; <> _' biank, and
carriage return. Several Concurrent CP/M commands aleo treat 5 [] () . and $ ag delimiter
characters. If is advisable to evoid the use of delimiter cheracters and lowercase characters
in filenames,

directory: Portion of & disk containing entries for each file or the dizk and locations of
the blocks elloceted o the files. Each file directory entry is in the form of a 32-bytz FCB,
afthough one file can have several entries, depending ou its size. The maximum number of
directory entries supported is specified in the drive’s Disk Parameter Block.

BDIGTAL RESEARCHE

Glossery-2

Concurrent CP/M Programmet's Guide Glossary

directory entry: 32-byts entry associated with each disk file. A file can have more than
one direciory entry associated with it. There are four directory entries per directory sector.
Directory entries can also be referred to as directory FCBs,

disk, diskette: Magnetic mediz used for mass storage of data in the computer system. The
term disk can refar to a diskette, 2 removable cartridge disk, or & fixed hard disk.

Disk Parameter Block (DFB): Table residing in the XIOS that defines the characteristics
of a drive in the disk subsystem used with Concurrent €£P/M. The address of the DPB iz in
the Disk Parameter Header at DPbase + OAH. Drives with the same characteristics can use
the same DPB. However, each logical drive must have its own Disk Parameter Header and
DPB. The address of the drive's Disk Perameter Header must be returned in registers HL
when the BDOS cells the SELDSK entry point in the X103, DRV_DPB returns the DFB
address.

Disk Parameter Header {DPH): 16-byte area in the XIOS containing information about
the disk drive and 2 scratchpad area for certain BDOS operations. See the Concurrent
CPiM System Guide for further detaila.

extent (EX): 16K consecutive bytes in a file. Extents are numbered from 0 to 31. One
extent can contain 1, 2, 4, 8, or 16 blocks. EX is the extent number field of an FCB and
iz B one-byte field at FCB + 12, where FCB labels the first byie in the FCB. Depending
on the Block Size (BLS) and the maximum data Block Number (DSM), a directory entry
contains 1, 2, 4, 8, or 16 extents. The EX field is usually set to O by the user, but centains
the current extent number during file /O. The term “Extent Folding™ describes directory
entries containing more than one extent. In CP/M vemsion 1.4, each FCB conteined only
one extent.

FCB: See File Control Block.

flle: Collection of data containing from zero to 242,144 records. Each record contains 128
bytes and can contain either binary or ASCII data. Files consist of one or more 16K extents,
with 128 records per extent.

Flle Control Block (FCB): Thirty-six consecutive bytes maintained and updated by system
calls for file 1/O. The FCB fields are described in Section 2.4,

hex file format: Absolute output of ASMS6 for the Intel 8086. A HEX file contains a

sequence of absolute records, which give a load address and byte values to be stored starting
at the load address [refer to Section 4.3).

BiDIGITAL RESEARCH®

Glossary-3

Glossary Concurrent CF/M Programmer's Guide

/D: Acronym for Input/Output operstions or routines handling the input and output of
date in the computer system.

logical drive: Logically distinct region of a physical drive. A physical drive can be
divided into one or more logicel drives, and designa ted with specific drive refersnces (auch
asa:orf:). Thus,at the user interface, it appears that there are several disks in the system.

MEM: Memory Module. The Memory Module handles all memory ma.nagr.:mnt calls by
methods transperent to your applications program.

parse: Separate a command line into ita syntactic parts.

queue: Data structure used by the fils system to keep track system information, such as
processes ready to run, locked files, and resources currently in use by processes. Processes
aleo use quenes to communicate with one another. The BDOS system calls creats and maintain
quenes.

Read-Only: Condition in which a logical disk drive can be read but not written to. A
drive can be set o Read-Only stetus by using the SET utility. This protects the user from
switching disks without sxecuting a digk reset. Files can also be set to Read-Only status
with the SET utility or the¢ F_ATTRIB systern call. Read-Only i3 often sbbreviated ps
RIQ.

record: Smallest unit of deta in a disk flle thet can be read or written. A record consisis
of 128 consecutive byles whose byte displacement in a file is the produet of the Record
Number timea 128, A 128-byte record in a file occupiss one 128-byte sector on the diskette.
X the blocking and deblocking algorithm is used, several records can occupy each disk
aector.

resntrani code: Cocde that can be usad by one procese while another is glready executing
it. Reentrant code must not be self-modifying; it must be pure code that does net contain
date. The data for reentrant code can be kept in a separate data area or placed on the stack.

RSP: Reserved Systermn Process. An RSP is a Concurrent CP/M utility included within
Concurrent CP/M during the execution of GENCCPM.

RTM: Real Time Monitor. The RTM is the nucleus of Concurrent CP/M., managing queues
and flags, polling devices, and dispatching and suspending processes. Application programs
gain eccess 10 RTM functions through system calls.

8 DIGITAL RESEARCH®
Glossary-4

Concurrent CP/M Programmer's Gulde Glossary

sector: Unit of data read from and written to the disk by the X108, The sector size is
dependent on the disk drive hardware and is nsuelly a power of iwo, such as 256, 512,
1024, or 2048 bytes, These disk sectors are referred to a3 Host Sectors.

source file: ASCI text file usually created with a text editor that is an input file to a
program, such asg a compiler, assembler, or a text formatter.

gack: Reserved area of memory where the processor saves the return address when it
receives a Call instruction. When the processar encounters 2 Return instruction, it restores
the current address on the stack to the Instruction Pointer. Datg such as the conienis of the
registers can elso be saved on the stack on a first-in-last-out basis. The Push instruction
places data on the stack and the Pop instruction removes it. B0B6 stacks are 16 bits wide;
instructions operating on the stack add and remove steck items one word at a time. An item
is pushed onta the stack by decrementing the stack pointer (8F) by 2 and writing the item
at the SP eddress. In other words, the steck grows downward in memory.

SUP: The Supervisor (SUF) manages communications between processes and the opersting
systern kernel, and between other operating system medules. All system calls are intercepted
by the SUR.

track: Concentric ring on the disk; the standard IBM single density disks have 77 tracks.
Each track consists of a fixed number of numbered sectors. Tracks are mumbered from 0 to
one less than the number of tracks on the disk. Data on the disk media is accessed by
combinations of track and sector numbers.

TMP: Terminal Message Processes. The TMPs are Resident Sysiem Processes that inter-
cept command lines from the virtual consoles, check for errors, and pass on executable
requests to the CLL The TMP prints the prompi and some sysiem error messages on your
console. Each virtual console has an independent TMP heading defining the console’s envi-
ronment, including the default disk, user number, printer, and console.

tramsieni command file: File of type .CMD stored on disk. Such files muist be loaded
into the system cach time they are executed, and therefore execuie mere slowly than Resident
System Processes (RSPs), which are an integral part of the operating system and execute
rapidly. Tramsient commands are created with the GENCMD utility; RSPs are incheded in
the operating system during execution of GENCCPM.

user: Logically distinet subdivision of the directory. Each directory cen be divided into
16 user munbers,

B DICITAL RESEARCH®
Glogsary-3

Glossary Concurremt CP/M Programmer's Guide

wildcard: A ? or * character. The BDOS directory szarch calls matehes ? with any single
character and * with multiple characters. Refer to the ¥ SFIRST and F_SNEXT system
calls for further details.

X108: Extended IO System. In Concurrent CP/M, the BDXOS is the invariant file-handling
system, which operates independent of the hardware implementstion. The XIOS is the
customizable /O interface configured for your hardware system by the system manufacturer.
The X108 is similar to the BIOS in CP/M &nd CF/M-86, but it hes been extended to implement
virtual consoles and associnted features.

Erd of Glossary

8 DIGITAL RESEARCH®
Glossary-6

8080 and Small RSP Modeis, 5-2
8080 keyword, 4-5
2080 Memory Model, [-12, 3-8, 3-7,
4-1, 4-3, 5-2, 56
exception handling, 3-3
8087 Flag
PD, 5-8
pracessor, 3-2
support, 1-2, 3-2
96-byte initiel stack, 3-1
file rcference, 2-7

A

ebsolutc address, 4-7
ACB—Aseign Control Block
{Figure 6-1), 621

access stamp, 2-24, 6-84
address

Flag Table, 6-86

maximum, 4-7

PD, 6157

queue buffer, 6-149

System Data Segment, 6-178

version string, 6-182
Ahhhh parameter 4-7
ALD, 650
ALl 630
Allocation Block Mask, 6-49
Allocation Block Shift Factor, 6-49
allocgtion vector, 2-39, 646
ambiguous reference, 2-6, 6-16
APB—Abort Parameter Block

(Figure 6-10), 6-139

Arthive, 6-65

atrribute, 2-13

Index

ASM-86 utility, 29
aaterisk, 2-6
attribute bits, 2-11, 2~14
attribute
compatibility, 2-31
file, 2-14
interface, 2-14
interface F5§, 2-30
interface F&’, 2-30
AX
UDA field, 6-152
A_Base, 34, 5-11

B

B value, 4-7
background, 1-10
bhackslash, 2-6
backapace, 6-32
BACKSPACE, 6-34
base extent, 6-11, 6-116
Base Page Initinlization, 3-5
Base Page, 4-3, 6-141, &-144
Compact Model, 4-5
initial Data Segment, 3-1
Small Model, 4-4
BASE
MCB, 6129
Basic Disk Operating System, 14,
-9, 2-1
BDOS, 14
BDOS Error Codes, 247
BDOS Error mode, 645, 675
BDOS file system, 2-1
BDOS Multisector Count, 6113
BDOS physical errors, 2-44

BDIGITAL RESEARCH®

Index-!

BDOS revision level, 6-174
BDOS Yersion Number Format
{Figure 6-17), 5-174
BDOS
Concurrent CP/M, 19
tingle-tasking CP/M-86, 1-¢
Bhhhh parameter, 4-7
BIOS, 1-F1
BIOS Descriptor Format
(Figure 6-18), 6-173
bit map, 6-56
BLM, 549
blocking/deblocking, 2-38, 6-52
BP
UDA field, 6152
BSH, 649
BUFFER flald, 5-10
pize, 5-10, 6-73
BUFFER
QD fieid, 6-169
QPB field, 5-163
buffers
disk dats, 518!
HIO8 ALLOC, 6-181
burst made, 2-34
BX
UDA field, 6-152
byts eount, 2.37, 2-38, 6-65, 6-83

c

C option
SYSTAT, 1-14
C{onsale) option, 1-15
C(onsoles) opticn
SYSTAT, 1-14
C-Seg, 4-11
Call Perameter Block, §-159
carriage return, 2-9, §-32, 6-33, 6-34,
&90

CCB, 1-10
SYSDAT field, 6-181
CCPM.BYS file, 5-11, 6-180
CCPMBSEQG, 6-182
SYSDAT field, 6-179
CCPMVERNUM
SYSDAT ficld, 6-182
Character Control Block, [-10, 6-39,
6-128, &-148, 6-130, 6-181
charecter device, 6-175, 6-183
Character 1/O Module, [4, 1-10
CHARACTERS
C_READSTR, &34
CHCB format, 6-39, 6-128
checksum, 211, 2-17, 2-27, 2-33, 4-12,
6-68, 6-80, 6-84
Checkrum Yector Size, 6-50
Checkaum Vector Size fisld
DPB, 2-40
checksum verification, 2-27
disgble, 2-33
child process, 5-10
CI0, 14, 1-10
CIOWAIT
Activity code, &-148
CKS, &30
CKS fiald
Diak Parameter Block, 1-11
CLBUF, 6-143
CLL, 1-11, 6181
CL] Commeand Line Buffer
(Figure &-11), 6-142
CLI
handling R8Ps, 54
CLOCEK, 1-8
CLOCK process, 1-2, 1-8
clock ticks, L&
Close Checksum error, 2-33, 245
CMD, 1-12
CMD filetyps, 6-143

@ DIGITAL RESEARCH®

Index-2

CMD file, 2-9, 4-1, 4-8, 5-5, 6141,
&156
CMD File Header Format
(Figure 3-1), 3-3
CNS
APB field, 6-140
C_ASSIGN system call, 6-22
PD field, & 150
Code Grovp Descripior, 3-2, 5-2
Code Segment, 3-2, 6152, 6-153
Supervisor, 6-180
Command Line Buffer, 5-143
Command Line Interpreter, |-11, 3-1
Commend RSP, 54, 55, 56
COMMAND TAIL
RSP Command Queue Message,
5-5
COMMAND
CLI Commeand Line Buffer, 6-142
Compact Memory Model, 3-5, 4-5
Compact Model, 1-12, 4-2, 45
compalibility attribute, 2-15, 2-31
definition, 2-32, 2-33
COMPATMODE ocption
GENCCPM, 2-32
compute file size, 2-2
Concurrent CP/M Compact Memory
Madel (Figure 4-4), 4-5
Concurrent CP/M Functional
Modules {Figure 1-2}, 1-3
Concurrent CP/M Virtual/ Physical
Enviranments (Figure 1-1), 1-1
Concurrent CP/M Base Page Values
(Figure 3-3), 3-6
concurrent file access, 2-35
conditional queue write, 6-166
canditional reed
queue, -7
conditional write
queue, 1-7
CONIN, 6-39, 6175

HDIGITAL RESEARCH®

CONOQUT:, 639
consale, 1-11

. Console Buffer Format (Figure 6-2),

6-33
console 17O, 1-10
Console [/ O System Calls, 64, 621
console
input, 6-131, 6-175
mode, 6-39
number, 6-36
number of X108, 6-183
number of SYSDAT, 6184
Quiput, 6-175
status, 631, 6-175
gystem calls, 6-2
virtugl, 6-181
contiguous memory segment, 6-131
Continous display option
SYSTAT, I-14, I-15
control characters, 2-6
Countro] Word
UDA 8087 extension, 6-153
copy number
RSP, 53
CP/M Compatible Memory
Allocation System Calls, &9
CP/M-86 campatibility, 6-175
CP/M-86 memory allocation schemes,
6128
CPB, 6-160
CPB—Call Parameter Block
{Figure 6-14), 6-159
CPV type, 6-174, 6-176
CR byte, 6-113
CR field, 3-7, 6-79, 683, 6-84, 693,
6-96
CR field of FCB, 6-66
CR field
FCB, 2-12, 2-38
CS, 6-153

Index-3

CS field
FCB, 2.11, 238
CS register
Small Model, 44
C8S
UDA fisld, 6-153
CSEG dirsctive
ASM-E6, 4-4
CTRL-C, 110, 1-15, 5-8, 6-3!, 6-32,
637
disable, 6-2%
enable, 6-29
CTRL-E, 634
CTRIL-H, 634
CTRL-I, &32, 634, 6-39
CTRL-], 634, 635
CTRL-M, 634, 635
CTRL-O, 1-10, 1-11, 6-31
disable, 6-2%
eneble, 5-29
CTRL-P, I-14, 1-11, 629, 631
CTRL-Q, 1-10
disable, 628
eneble, 6-29
CTRL-R, 6-38
CTRL-S, 1-10, 1-11, 631
disable, 6-23
ensble, 6-29
CTRL-U, 6-35
CTRL-X, 6-35
CTRL-Z at EQF, 2.9
current DM A, 661, 691, 694, 6-101
current DMA address, 6113
current DM A buffer, 6107
Current Qutput Delimiter, 6-25
current processes, 1-13
current record field, 6-93
FCB, 2-12
current record position, 3-7
current user number, 2-17, 6-149
current process activity, 6-147

Cw

UDA B087 extension, 6-153
CX Error Code Reports, 619
CX error codes, 1-13
CX

UDA field, 6-152
C_ASBIGN system call, 5-22
C_ATTACH system call, 522, 6-23
C_CATTACH system call, 6-24
C_DELIMIT system cell, 625, 6-40
C_DETACH gystem call, 622, 6-26
C_GET system call, 627
C_MODE, I, 637
C_MODE csall, 1-11
C_MODE system call, 6-28
C_RAWID, 6-37
C_RAWIO call, 1-11
C_RAWIO sysiem cell, 65-30
C_READ gystem czll, 6-32, 6-33, 6-38
C_READSTR call, 1-10
C_READSTR gystem call, 6-33
C_SET systam cell, 636
C_STAT, &9
C_STAT system call, 6-37
C.WRITE, 629
C_WRITE system call, 6-38
C_WRITEBLK, 6-29
C_WRITEBLK system ¢all, 639
C_WRITESTR, &25, 529
C_WRITESTR system call, 640

D

D0-D15 field
FCB, 2-12
date arcs, 2-1, 2-8
data block size, 2-8
Data Group Deseriptor, 5-2, 5-11
Data Record, 49, 4-10
Data Segment, 5-1

Index-4

& DIGITAL RESEARCH®

Data Structures Index, 6-18
date and time, 1-2
date and Gme stamps, 2-3, 2-18, 2-24,
661
DATE wiility, 2-25
Day file aption, 6-181
DAY FILE
SYSDAT field, 6-181
DAY
TOD field, 6-185
days
number of, 6183, 6-185
DDT-86, 5-11
Default Close, 668
default console, 6-26, 6-27, &150
C_ATTACH, 623
C_CATTACH, 6-24
default disk, 1-11, 647, 6-54, 659,
& 149
default DMA base, 6-74
default DM A buffar, 3-8, 6-141
default drive, 2-3, 2-53, 3-7
default error moda, 1-10, 2-43
default list device, 6-122, 6-123, 6-124,
6-126, 6-127
dafault list device number, 6-125,
6-150
defaullt mode
BDOS Error mode, 6-75
Locked mode, 2-26
password, 2-3, 2-23, 6-91, 6-107
TMP, 2-23
Deley List, 1-6,1-9, 6-147, 6-182
DELAY
Activity code, 6-147
Delete mode, 2-22
delimiters, 2-6, 5-88B
Device System Calls, 6-2, 6-5, 6-41
DEV_POLL system call, I-11, 641
DEV_SETFLAG, 6-42, 643, 6-180
DEV_WAITFLAG, |-8, 642, 6-43

BODICITAL RESEARCH®

DI
UDA field, 6-152
DIR attribute, 6143
DIR wtility, 2-1, 2-15
Direct Memory Addreas, 6-73
direct video mapping, 3-8
Directory Allocation Vector 0, 6-50
directory area, 2-1
code, 2-46, 248, 617
code definitions, 2-48
entry, 6-79
lebel, 2.3, 2-18, 2-19, 2-20, 655,
§-60, 6-113
directory label data byte, 2-1%, 2-20,
&-55, 6-60
Directory Label Format (Figure 2-2),
2-18
Directory Maximum. 6-50
Directory Record with SFCB
(Figure 2-4), 2-24
directory space, 2-1
directory write aperetions, 2-38
Disk Data buffers, 6~181
disk directory area, 2-8
disk drive organization, 2-8
Disk Drive System Calls, 6-2, 6-5,
&-44
Disk File System Calls, 6-7
Disk Free Space Field Format
(Figure 6-5), 6-563
Disk L/O error, 2-44
Disk Parameter Block, 1-11, 240,
648, 649
Disk Reset, 6-51
Disk Storage Maximum, 6-50
Disk System Reset (Figure 2-6), 2-4(
DISK
DP field, 6-149
disk
temporary, 6-181

Index-5

Dispatcher, 1-5
Dispateher entry point, 6-180
Dispaicher Ready List, 6-182
DISPATCHER
SYSDAT field, &180
DL fisid
directory label, 2-19
DIR
SYSDAT field, 6-182
DMA address, 2-3, 3-1, 6-156
DMA bass, 3-1
DMA Buffer, 56, 5-9, 6-73
DMA QOFFS
UDA field, 6-152
DMA offeet, 3-1, 5-72, 6-152
DMA
default address, 647
DPB, 2-40, 648
DPB—Disk Parameter Block
(Figure 6-4), 6-48
DR FCB field, 659
DR field
directory label, 2-19
FCB, 2-11
XFCB, 2-21
Drive Code
FCB, 2-11
drive code
XFCB, 2-21
drive
direciory label, 6-101
field, 6-89
reset, 2-39, 241
specifier, 2-5
status, 2-2, 2-1
Drive Vector, 6-44
Drive
RO, or Login Yector Structure
(Figure 6-3), &-44
DRL
SYSDAT field, 6-182

DRM, 6.50
DRV, 2-2
DRV_ACCESS system call, 2-39,
2-42, 645
DRV_ACCESS call, 2-42
DRY_ALLOCVEC system call, 546
DRV_ALLRESET, 3-1, 673
DRV_ALLRESET system call, 2-39,
647, 5-62
DRV_DPB system call, 848
DRV_FLUSH systern call, 6-52
DRV_FREE, 2-29
DRV_FREE system call, 2-39, 242,
633
DRV_GET system call, 6-54
DEV_GETLABEL system call, 2-20
6535
DRV_LOGINYEC system call, 6-56
DRY_RESET, 240, 3-1
DRV_RESET call, 1-11
DRV_RESET operetion, 2-40, 6-62
DRV_RESET system call, 2-39, 6-57
DRV_ROVEC system call, 6-47, 6-58
DRV_SET system call, 659
DRVY_SETLABEL system czll, 2-19,
6-60
DRV_SETRO system call, 2-40, 242,
244, 547, 558, 6-62
DRV._SPACE, 673
DRV_SPACE system call, 646, 6-54
DS and ES registers
Small Model, 44
DS
UDA field, &153
DSEG directive, 4-4
DSM, 6-50
DX
UDA field, 6-152

lndex-6

& DIGITAL RESEARCH®

E F

E(xit) optian, 1-15 F1’ compatibility attribute, 2-32
SYSTAT, 1-14 F1~Fg, 2-15
ECHO, 58 F1-F4 competibility attributes, 2-32
ECHO RSP, 51, &3, 511 F1-F4 file attribute, 6-55
ENDSEG F1-F§, 2-14
SYSDAT field, 618! F1-Fg field
EOF, 612 FCB, 2-11
EQF (CTRL-Z), 29 F2Z' compatibility attribute, 2-33
error codes, 1-13, 245, 2-47 FJ3 attributes, 2-36
error flag, 2-47, 2-49 F3* compatibility attribute, 2-33
error handling, 2-43 F4’ compatibility attribute, 2-33
Error mode, 2-3, 2-43 F%, 2-17
ES F5 interface ettribute, 2-30, 2-35,
UDA field, 6-153 6-65, 668
EX field, 679 F57 interface attribute, 5-70
FCB, 2-11 F5 interface attribute, 6-76, 6-79, &
exception handling 107, 6111
8087, &-184 F5 interface eteribmte, 2-36
exclusive lock, 6-76 F5-F8’, 2-16
exclusive locks, 2-35 F5-F8’ attribute, 6-66
exit point, 6180 Fe’, 2-17
EXM, 6-49 F&’ interface attribute, 2-27, 2-30,
EXT 236, 2-38, 6-65, 6-68, 6-83
MCB, 6129 F7, 2-17
Extended Address Record, 4-9, 4-10 Py, 2-17
extended error codes, 2-49 Far Jump instruetion
Extended Error Module, 1-10 Far Return, 3-1, 42, 4-3
extended errors, 2-43, 2-45, 2-46 FCB, 2.5, 6-11, 664

extended file lock, 2-30, 6-15, 6-107
Extended [O System, 14
Extended [0 System entry point,
6-120
Extended [nput/Output System, 1-1]
extent, 6-93
Extent Mask, 649
extent number
FCB, 2-11
Extra Segments. 5-1

HDIGITAL RESEARCH®

Index-7

FCB—File Control Block
{Figure 2-1), 2-10
checksum, 2-29
checksum verification, 2-33
drive code, 6-59
extent number, 680
format, 2-17
initialization, 2-12
length, 2-18
usage, 2-12
verification, 2-41
ECB
File Namel, 3-7
File Neme2, 3-7
FCBADR
PFCB, 687
file access, 2-35
concurreni, 2-35
shared, 1-10
File Already Exists error, 2-46
file mitributes, 2-14, 6-85
file byte counts, 2-37
File Control Block, 29, 6-64
File Currently Open error, 2-45
File field
XFCB, 2-21
file header
CMD, 3-2
Filt 1D, 2-12, 2-26, 2-35, 6-76, 6-80,
5-B4, 6-109
File lock, 6-14
extended. 6-65, 6-68
file locking, 1-9
extended, 2-30
file logging informetion, 6~181
file open modes, 2-26
File Opened in Read/Only Made
error, 2-45

file
organization, 2-8
recurity, 227
size, 2-8
specification, 2-5
pystem, 2-1, 2-18, 2-37
gystem calls, 2-3, 24
File-Access System Callg, 6-2, 6-64
filename, 2-1, &89
field, 2-1, 2-5
file nize,
maximum, 2-8
filetype, 2-1, 689
FCB, 2-11
filetype conventions, 2-7
filetype field, 2-5, 26, 2-11
XFCB, 221
Flag 1
tick flag, 1-9
Fleg 2
second flag, 1-8
FLAG field
PD, 6-140
flag 1P, 642
flag numbers, 643
Flag Table
address, 6182
FLAG
PD field, 6-14%
flag
Process Keep, 1-11
SYS, 6-140
flags O
1, 2,and 3, 643
FLAGS [izld, 58, 59
flags
initial, 6-152
FLAGS
QD field, 6-169
flags
queue, 6-169

Index-8

[DIGITAL RESEARCH®

FLAGS

SYSDAT field, 6-182

FLAGWAIT

Activity code, 6-149

flush buffers, 2-39
Function 0, & 162
Function 1, 6-32
Function 2, 638
Function 5, 6127
Function 6, 6-30
Function 9, 640
Function 10, 6-33
Function L1, 6-37
Function 12, 6-174
Function 13, 6-47
Function [4, 6-59
Function 15, §-83
Function 16, 6-68
Function [7, 6100
Function 18, 6-104
Function 19, 6-70
Funection 20, 6-93
Function 21, 6-113
Funetion 22, 6-79
Funetion 23, 698
Function 24, 6-56
Function 285, 6-54
Function 26, 6-73
Function 27, 6-46
Functian 28, 6-62
Funclion 29, 6-58
Function 30, 6-65
Function 31, 6-48
Function 32, 6112
Function 33, 6-95
Function 34, 6-116
Funetion 35, 5-102
Function 36, 6-92
Function 37, 6-57
Function 38, 6-45
Function 39, 6-53

MDIGITAL RESEARCH®

Function 40, 6-121
Function 42, 6-76
Function 43, 6-109
Function 44, 6-82
Function 435, 6-75
Function 46, 6-63
Function 47, 6-141
Function 48, §-52
Function 50, 6-175
Function 51, 6-74
Function 52, 672
Function 53, 6-138
Function 54, 6-134
Function 55, 6136
Function 56, 6-133
Funetion 57, 6137
Funetion 58, 135
Function 59, 6-156
Function 99, 6107
Functian 100, 660
Function 101, 6-55
Functian 102, 6-103
Function 103, 6-1 (9
Function 104, 6-[88
Function 105, 6-185
Function 106, 6-91
Function 107, 6-177
Function 109, 6-28
Function 110, 6-25
Funetion 11, 639
Function 112, 6-128
Function 128, 6-13]
Function 129, 6-131
Funetion 130, 6132
Function 131, 6-41
Function 132, 6-43
Function 131}, 642
Function 134, 6-168
Funetion 135, 6-171
Function 36, 6-167
Function 137, 6-172

Index-9

Function 138, 6-155

Funetion 139, 6-173

Function 140, 6-1566

Function 141, 6154

Function 142, 6-155

Functlion 143, 6-161

Function 144, 6-145

Function 145, 6-158

Function 146, 6-23

Funeciion 147, 6-26

Functlen 148, 6-36

Function 149, 621

Function 150, 6-142

Function 151, 6-159

Function 152, 6-86

Function 153, 6-27

Function 154, 6-178

Function 1535, 6-187

Function 156, 6157

Function 157, 6139

Function 138, 6-122

Functicn 159, 6-124

Function 160, 6-126

Funciion 161, 6~123

Function 162, 6-24

Function 163, 6-176. 6-182

Function 164, 6-125

F ’ interface attribute, 6-76

F.,h22

F_ATTRIB aystem cell, 2-14, 2-30,
231, 2-18, &85, 5-83, 698

F_CLOSE system call, 2-30, 2-33,
2-39, 6-68

F_DELETE system call, 2-30, 670,
6-30

F_DMAGET system call, 6-73

F_DMAOFF, 6156

F_DMAQFF sysiem call, 5-6, 6-74,
675

F_DMASEG, 6-73, 6-156

F_DMASEG system cell, 5-5, 6-74

F_ERRMODE system call, 2-29, 249,
645, &75

F_FLUSH system call, 2-39

E_LOCK, 2-35

F_LOCK sysiem call, 2-26, 2-34, 2-36,
676, 582

F_MAKE, 676

F-MAKE system call, 2-[0, 2-14,
2-21, 2-22, 2-27, 2-3§, 679, 693,
&113

F_MULTISEC system call, 2-34, 6-82,
693, 695, 6113

E_OPEN, 676

F_OPEN cell, 2-26

FE_OPEN system call, 2-8, 2-10, 2-14,
2-26, 2-27, 2-31, 2-38, 6-66, 6-83,
693, 6-109, 6-113, 6143

F_PARSE system call, 2-6, 3-1, 6-87,
6143

F_PASSWD, &98

F_PASSWD systemn call, 2-23, 6-61,
6-55, 691, 6107

F_RANDREC aystem call, 592

F_READ system call, 2-34, £-93

F_READRAND sysiem call, 2-34,
6-9§

F_RENAME system c¢all, 2-12, 2-30,
231, 698

F_SFIRST system call, 2-14, 2-15,
2-20, 2-23, 2-25, 2.38, 6-66, 6-70,
6100

F_S{ZE system call, 6-102

F_SNEXT system call, 2.14, 2-15,
220, 2-23, 2.2%, 2-38, 6-66, 6-70,
6-100, 6-104

F_TIMEDATE system call, 2-25,
6105

F_TRUNCATE system call, 2-30,
6107

F_UNLOCK, 2-35

Index-10

i DIGITAL RESEARCH®

F-UNLOCK system call, 2-26, 2-34,
2-35, 2-36, 2-37, 6-34, 6-109

F_USERNUM system call, 2-17,
6112

F_WRITE sysiem call, 2-34, 6-113

F-WRITERAND system call, 2-34,
6-94, 6-102, 6-116

F.WRITEXFCB system call, 2-21,
2-22, 6119

F-WRITEZF system call, 2-34, 6-94,
6121

G

G_Farm, 3-3

G_Type field, 3.2

GENCCPM, 2-29, 3.1, 5-1, 5.3, 5-11,
&-181

GENCMD, 4-6, 4-9, 5.2

Eeneric category, 2-7

Group Descriptor, 3-3

Group Descriptor Format
(Figure 3-2), 3-3

G_Length, 34

G_Max, 34

G_Min, 34

H

HB6 filetype, 46
Hard Disk, 6-51
hardware initialization, 6-180
Header Record, 3-3
CMD file, 4-1, 4-7
header
RSP, 5-2
HEX file, 4-5, 4-7
highest priority process, 1-6
hour of day, 6-186

8 DIGITAL RESEARCH®

HOUR
TOD field, 6-186

Mlegal ? in FCB error, 2-46
independent group, 3-7
initial flags, 6-152
initia] stack area, 4-2
initial stack
3080 model, 4-2
initial velues
Instruction pointer, 4-1
segment registers, 4-1
stack pointer, 4-1
initialization
hardware, 6-180
initinlize directory, 2-39
Instruction Pointer, 4-3, 6-153
INT 0, 6-153
INT |, 6-[53
INT 3, 6153
INT 4, 6-153
INT 224, 1-12, 6-153
INT 225, 6-133
Inte]l hexadecimal file format, 4-8
Intel utilities, 4-7
Intel
small model, 4-1
interface attribute
F¥, 668, 6-70, 6-83
F&', 6-70, 6-83
F7', 6-84
F3’, 6-34
interface attributes, 2-14, 2-16, 2-27,
665
Interrupt Return instruction, 6-152,
180
interrupt returns, 6-180
interrupt vectors, 6-153

[ndex-11

interrupt

logical, 1-2

physical, I-2

types, 6-43
interrupts enabled, 59
luvelid Drive error, 2-44
10_CQONIN

X108, 1-10
1P, 6-153
1P flag, 6-42
1P register, 4-3

Small Model, 4.4
1P

instruction pointer, 6-152
IRET instruction, 5-9
IRET structure, 5-11

J

JMPF PDISP instruction, 6-180

K

KEEP Flag, 5-8
KEEP flag, 5-9, 6-149, 6-16]
KERNEL flag, 6-149

L

label

directary, 2-18
last record byte count, 6-65
last record number, 6-107
LCB, 1-1D

SYSDAT field, 6-183
Ld Addr, 4-11
Least Recently Used arder, 3-2

LENGTH
MCB, 6129
line feed, 2-9, 6-12, 6-33, 6-34, 6-50
line-editing, 33, &34
LINK {icld, 6-146, 6-182
RSP header, &7, 511
Link list root, 6-181
Link list
memory allecation units, 6-182
LINK
PD field, 6147
LIST, 6.175
Liat Control Bleck, 1-10, 6-181, 6-183
list davice, [-11, 6-122, §-123, 6-124,
6126, 6127
List Device I/ O System Calls, 6-122
List Device System Calls, 6-2, 6-8
list devices
number of X108, 5182
List field
process descriptor, I-11
list 1/Q, 1-10
LIST
PD fisld, 6-150
lock existing records only, 6-76
Lock List, 2-27, 2-28, 2-29, 2-30, 2-33,
2-37, 2-41, 242, 545, 6-53, 6-77,
531, 5-B5, 6110, 6-161, 6-181
lock logical recorde, 6-76
lock operations, 2-36, 2-37
Locked, 2-2
Locked mode, 2-26, 2-30, 6-19, 6-80,
683
locked records
maximum number, 6-183
locks
exclusive, 2-35
shared, 2-35
LOCK_MAX
SYSDAT ficld, 6183
log-in drive, 2-3

Index-12

¥ DIGITAL RESEARCH®

log-in operation, 2-39
logged-in, 2-39
logical console, 6-37, 6-39
logical drives, 2-8
logical exient, 6-113
logical interrupi, 1-2, 6-42
logical list deviee, 6-128
logical message, 6-169
logical record size, 2-37
Login Vector, 6-44, 6-56
lowerrase, 2-6, 2-7
LRU, 3-2
LST:, 6-128
LUL

SYSDAT field, 6181
[LATTACH, 6127
L_ATTACH system call, 6-122
L_CATTACH system call, 6123
L_DETACH system call, §-124
[_GET systern call, 6-125
L_SET systern call, 6-126
L_-WRITE system call, 6-127
L_WRITEBLK system call, 6128

M

M wvalue, 4-8
M30 byte, 3-7
machine code

Small Model, 4-4
make system queue, 5168
MAL

SYSDAT field, 6182
MATCH

C_ASSIGN system call, 6-22
MAX number of paragraphs, 6-131
MAX

C_READSTR, 6-34

MPB, &130

ERRGITAL RESEARCH®

MCB—Memory Control Block
(Figure &7), 6128
MC_ABSALLOC system call, 6-133
MC_ABSMAX aystem call, 5134
MC_ALLFREE system ¢all, 6-135
MC_ALLOC system cal}, 6-136
MC_FREE swstem call, &137
MC_MAX system call, 6138
MDUL
SYSDAT field, 61382
media change, 2-3, 2-28, 2-39, 2-40,
2-41, 2-42
media
nonremavable, 550
MEM, 14, 1-2
MEM feld
Procesy Desceriptor, 5-4
MEM
DP ficld, 6-149
memory, 3-7
memory zllocation, 1-13
Memory Allocation System Calls
MP/M Compatible, 69
CP}M Competible, 69
memoary allocation units, 6-182
Memoary Control Block, 6-128
Definition, 6129
Memory Descriptors
unused, 6-182
Memory Management System Calls,
62, 63
Memory Management Module, 14
memery model, 4-1
RSP, 5-1
Memory Module, 19
Memory Parameter Block Definition,
6-130
memory partitions
frae, 6182
memory protection, 6146
Memory Segment Descriptars, 6-149

Index~13

Memory System Calls, 6-128
memory
absoluts, 6134
initialization, 3-1
largest available region, 6-138
maximum per process, 5181
message
[ength, 5-10, 6169
maximum number, 6-16%
zero-length, 1-8
MFL
SYSDAT field, 6182
MFPB—M_FREE Parameter Block
{Figure 69}, 6-132
Mhhhh parameter, 4.7
MIN length, 6-131
MIN
MPB, 5130
TOD field, 6-1B5
minimum memory value, 4-8
minimum mémory requirement, 4-7
minute of hour, 6~1B3, 6-185
MMP
SYSDAT field, 6-181
modes
file open, 2-26
MP/M Compatible Memory
Allccation System Calls, 58
MP/M-86 memory allocation scheme,
6128
MPB—Memory Parameter Block
{Figure 6-8), 6129
MSGLEN
QD field, 5169
multi-user, 1-1
multiple programs, 1-2
Multisector count, 2-3, 2-34, 2-35,
2-36, &12, 6-13, 673, 676, 6-82,
693, 6-117, 6-118
Multisector [/0, 2-34
mutual exclusion gueues, 1-7, 1-8

MX queue, 1-8

MXdisk, -8

M_ALLOC system call, 6-131
M_FREE sysiem call, 6131, 6-132

N

NAME field, 5-8
directory label, 2-19
APE field, 6-140
CPB field, 6-160
C_ATTACH, 623
DP field, 6-149
PD, 53
QD field, 6169
QPB field, 6-163
queue, 6-169
RSP PD, 58

NCCB
SYSDAT field, 6-181

NCHAR
C_READSTR, 6-34

NCIODEY
SYSDAT field, 6183

NCONDEY
SYSDAT field, 6-183

NCP byt
field, 53
RSP header, 5-3

networking interfaces, 1-5

NFLAGS
SYSDAT field, 6181

NLCB
SYSDAT ficld, 6181

NLSTDEV
SYSDAT ficld, 6183

NMSGS
QD field, 6-159

no data. 6-94

Index-i14

i DIGITAL RESEARCH®

No Room in System Lock List errar,
246

non-8080 model, 3-7

noninterrupt-driven devices, 6-41

Nonremaveble Media Drives, 6-50

null character, 6-90

NYCNS

SYSDAT field, 6181
NVCNS field, 5-3

0

OFF, 6-50
OFF_%087

SYSDAT, 6184
OHS6 utility, 4-9
one secand flag

Flag 2, I-8
open disk files

maximum number, 6183
open file, 2-2
Open File Drive Vector, 6-183
Open File Limit Exceeded error, 2-46
open mode, 2-2, 2-26
open verification, 2-29
OPEN_FILE

SYSDAT field, 6-183
OPEN_MAX

SYSDAT field, 6-183
Operating Systern Version Number

Farmat (Figure 6-19), 6-176

OS type, 6174, 6-176
0s versian, 6-176
Output Delimiter, 6-25

P

Pl Len, 3-7
P2 Len, 3-7
PARAM field
CPB, 6-1&0
PARAM
CPB field, 6160
parameter passing, 6~140
PARENT
PD field, 6-149
parent/child relationship, 3-8
parentheses, 2-6
parse file specification, 2-3
Parse Filename Control Block, 6-86
partial close, 2-30, 2-33, 6-68
password, 2-1, 2-2, 3-7, 6-61, 6-65,
478, 6-98
default, 2-3, 2-23
length, 3-7
mode, 679, 6~105
password error, 2-45
password Feld, 2-5, 6-89
directory label, 2-19
Password Ticld
XFCB, 2-21
password protection, 1-10, 2-3, 2-22,
6-80
password support, 2-18
PD, 1-5, S5-I
PD—Process Descriptor
{Figure 6-12), 5-145
PD address, 6157
PD 1able, 6-145, 6-149, 6-161
P

owner APB (ield, 6-140
queue message, 1-8 C_ASSIGN, 6-22
OWNER_8087 PDADDRESS
SYSDAT, 6183 RSP Command Queue Message,
5-5
WINGITAL RESEARCH®

Index-15

PDISP

SYSDAT field, 6-180
permanent drive, 2-39, 240, 242
PFCB—Perse Filename Control

Block (Figure 6-6), 5-86

Physical end Extended Errors, 2-49
physical error, 2-43, 248, 2-50
Physical Input Process, [-10, 6-31
physicel interrupt, 1-2
Physical Record Mask, 6-50
Physical Record Shift Factor, 6-50
physical records, 2-38
PIN, L-10, I-11, 6-31
PIP utility, 2-15, 2-34
PLR

SYSDAT field, &-i82
PM fieki

XFCB, 2-21
Poll List, 6-147
POLL

Activity cods, 6-147

List Root, 6182
printer, 111,

echo, 6-29
priority

highest, 6-158

lowest, 6-158

transient process, 5-4, 6-158
PRIORITY field, 5-3
PRM, 649, 6-51
process, 1-2, 2-28, 2-35
Process Descriptor, 1-5, 5-1, 6-144,

6-145, 6-146, 6-161, 6-178

address, 1-8, 6-140, 6-157
Process Descripior

initialization, 3-1

unused, 6182
Process 1D

C_ASSIGN, 622
Process Keep [lag, 1-11

process name, 5149
aborted, 1-8
priotity, 6-154
privileged, 5-10
register values, 6-132
resources, 6-161
scheduling, 6-i48
Process/ Program System Cells, 6-3,
611
program, 1-2
Program Flag
CMD header record, 3-2
PSH, 6-49, 651
PUL
SYSDAT field, 6-182
P_ABORT, I-11
P_ABORT svatem call, 6-140
P_CHAIN eystem call, 2-17, §-141
P_CLI system call, 1-5, 2-6,2-7, 2-17,
2-32, 31, 42, 43, 44, 45, 54,
55, 56, 632 673, 682, 6-143,
6-144
P.CREATE, 6-145
P_CREATE system cail, 3-1, 5-1, 5-4,
58, 5-10, 6-146, 6-149, 6-157
P_DELAY gystem call, 1-9, &134
P_DISPATCH system call, 6155
P_LOAD system call, 1.5, 3.5, 4.2,
4-b, 6-143, 6156
P_PDADR system call, 5-5, 6-157
P_PRIORITY system call, 5-8, 6158
P_RPL sysiem call, 6-160
P_TERM, 31, 42, 6-162
P_TERM system call, 632, 6-140,
6141, 6-161
P_TERMCPM, 4-2
P_.TERMCPM system call, 6-162
P_TERMCPM
CP/ M-85, 6-162

Index-16

8 DIGITAL RESEARCH®

Q

QD—Queue Descriptor (Figure 6-16),
6-168
QLR
SYSDAT field, 6-182
QMAU
SYSDAT field, 6-182
QPB, 6-171
QFB-- Queue Paremeter Block
(Figure 6-15), 6-163
qualified reset, 2-40
question mark, 2-6
queue buffer, 1-7, 6-145, 6~169
queue descriptor, 1-7, 1-8; 6-147,
6-168
unused, 6-182
queue flags, 6-169
ID Field, 6171
List Root, 6-182
Management, 1-7
Management System Calls, 6.3
message, 1-6, 1-7
Meassage Buffer, 6-163
name, 1-7, 6163, 6-16%
Parameter Block, 5-10, 6-163
System Calls, 6-12, 6-163
QUEUID
QPB field, 6-163
QUL
SYSDAT field, 6-182
Q_CREAD system call, 5-5, 6-165
Q_CWRITE sysiem call, 5-5, 6-166
Q-DELETE system call, 5-9, 6-[67
Q_MAKE system call, 1-7, 5-10, 6-168
Q_OPEN, 5-5, 6-163
Q_OPEN call, 6172, 6-173
Q_OPEN system call, 6160, 6-170,
6171
Q_READ, 1-6

Q_READ system call, 5-5, 6-165,
6172
unconditional, 1-8
Q_WRITE, 1-6 ¢
Q_WRITE system call, 55, 6166,
6-173

R

R/ O drive test, 242
R/ O Vector, 658
RO
Rl fisld, File ID, 6-80
RI,R2Z field, 618
R1,R2 field, FCB, 2-12
R1,R2 fields, 92
random, 2-2
read, 2-9, 6-12

‘Random Record Ficld, 2-36

FCB, 2-35
Random Record Number, 2-¢, 2-37,
3-8, 6-76, 692, 696, 6-102, 6-109,
6-111, 6117
FCB, 2-12
raw console output, 629
mode, 6-31
RC field
FCRB, 2-11
XFCB, 221
read message, 6172
read mode, 2-22, 6-80, 6-105
Read Queue List, 6-147
read record, 2-2, 6-93

B [NGITAL RESEARCY®

Index-17

Read-Only, 2.2, 2-4D, 6-65
mode, 2-26
attribute, 2-15, 2-26
ettribute T, 634
attribute 11, 2-15
drive, 6-62
file, 2-11, 6-76
mode, 2-15, 6-83
Vector, G-dd
Read-Writs, 2.40
Read-Write, 6-47
Read-Write state, 6-62
Read/ Ouly Disk error, 2-44
File error, 244
Ready List, 1-5, 16, 1-7, 1-9, 6-147
Ready List Root, 6182
teady process, 1-5
Real-time Monitor, 14, 1-§
real-lime process control, 1-2
window, 1-13
Rec Len, 4-11
Rec Mark, 4-11
Rec Type, 411
recond blocking, 2-38, 6-82
record cournt
file, 2-9
firet, 29
locking, 2-28, 2-356
physical, 2-38
sizz, 2-2, 2-37
unlocking, 2-36
REDRAW, 6-35
reentraint, 5-149, 6-160
recnirant RSP, 54
register AL, 247
register contents preserved, 1-13
regieter initialization, 5-8, 5-9
removable drive, 2-40, 2-42
reset
drive, 2-39
Resident Procedure Library, 6-160

resident aystem process, 1-2, 3-1, 5-1,
6.143
resources
process, 6-161
RESTRICTED flag, 5.10
RETF instruction, 4-2, 6180
RETURN, 63§
Return and Display Error mode, 2-43
Return and Display mods
BDOS Error mode, 675
return codes, 247
Return Error mode, 243, 2-49
BDOS Error mode, 6-75
Revision Level, 6-176
RLR
SYSDAT field, 6-182
roots of system lists, 6-178
round-robin scheduling, 6-155
RPL, 6160
RS field
FCB, 2-11
RSP, 1-2, &143
bit, 59
CMD Header Record, 52
ECHO, 51
first, 6181
mrultiple copies, 5-3
shared code, 54
%080 Model, 5-2, 5-3
Small Model, 5-2, 5-4
RSP Command Queue, 5-4, 5-5, 5-6,
59

Index-18

W DIGITAL RESEARCH®

RSP Command Quecue Message
(Figure 5-3), 5-5
Data Segment (Figure 5-4), 5-7,
&180
Flag, 55
header, 52, 53, 56, 57
Header Format (Figure 5-2), 53
memory models, 5-1
Process Descriptor, 54, 58
queue, §-143
stack, 59
typ‘n 3-t
UD4, 56, 57
RSPSEG field, 5-11
RSPSEG
SYSDAT field, 6-180
RTM, 14, 1-5 |-8
RUB/DEL, 6-34
RUN siate, 6-41
RUN
Activity cade, 6147
running process, 1-1, 1-5

5

Sl
S2 fields, directory label, 2-19
52 fields, XFCB, 2-21
screen switch, 1-10, 1-11
SDATVAR field
RSP header, 5-3
SEC
TOD field, 6-186
second flag, 1-8
secand of minute, 6-183, 6-186
seconds, 6-187
Sectors Per Track, 649
security
file, 2-27
segment addresses, 6-153

¥R DIGITAL RESEARCH®

Segment Base Address, 4-9
segment register initinlization, 4-2
SEG_8087
SYSDAT, 6-184
scquential, 2-2
access, 6-12
[/O processing, 2-14
read, 2-9
write, 6-79
serizl number, 6177
SERIAL Numbsr Format
(Figure 620, 6-177
SET command, 2-23
SET utility, 2-32, 2-33
SFCB, 2-18, 2-24, 6-17
SFCB Subfields (Figure 2-5), 2-24
SFCBs, 6-61
shared code, 1-2, 3-2
file access, 1-10
file systemn, 1-2
List, 3-2
REPs, 6-149
locks, 2-35, 677
Sl
UDA field, 6-152
single-user, 1-1
size
physical records, 2-38
record, 2-2, 2-37
Small Memory Model, 3-5, 4-4
Small Model, 1-12, 4-2
source files, 2-9
SP field
UDA, 5-9, &152
sparse file, 29
SPT, 6-49
S8 and SP registers
Small Model. 44
UDA field. 6-153
stack area. 6-144
stack pointer, 6152

Index-19

Stack Segment, %1, 6-152
stack
RSP, 59
start address, 4-7, 4-9
START field, 6-131
START paragraph, 6-132
MPE, 6-130
STAT
PD field, 6-147
ptawe
reset, 2-39
Sietus Word
UDA 3087 extension, 6153
string delimiter, 6-40
SUP, 14, 1.5
SUP ENTRY
SYSDAT field, 6-18¢
Supervisor, 1.4, 1.5
Code Ssgment, 6-180
entry point, 6180
suspended process, 1-5
5w
UDA 8087 extension, 6-153
switch screen, 1-11
synchronization, 1-2
SYS Flag, 3-8
SYS flag, 6-140, 5148
SYSDAT Table {Figure 6-21), 6-179
SYSDAT, 2-25, 511
H(elp} option, !-i4
M(emory) option, 1-14, 1-15
SYSDAT field, 6-181
SYSDISK
SYSTAT, 1-14
Qfverview) option, 1-15
P{rocess) option, 1-15
Qfueues) option, 1-15
U(ser Processes) option, 1-15
Sysiem, 6-65
system attribute, 2-15
SYSTEM attribute, 6-143

system attribute t2', 6-84
systern calls 3, &1, 6-18, 6-21
conventions, 1-12
systern call register initialization, 1-13
System Call summary, 6-14
System Data Area, 5-7, 5-10
System Data Segment, 5-11, 6-145,
&170
eddress, 6173
system disk, 6-143
default, 6-181
System file, 2-11
ugar-zerno, 2-15
SYSTEM flag, 6-161
gyatemn
flags, 6-181
generation, 3-1
lists, 1.5, 1-&
process, 6-148
processes, 12
queus, 1-2, 1-13, 6-170
Status, 1-14
System Calls, 6-3, 613
ticks, 6-162, 6155
ticks per second, 6181
time and date, 6-185
timing, 1-8, [-¢
tracks, 2-8
S_BDOSVER, 6-182
S BDOSVYER system call, 6-174
S_BIOS system call, 6-175
S_OSVER, 6182
8 OSVER rystem call, 6-176
S_SERIAL system call, 6-177
S_SYSDAT system call, 5-7, 6-178

Index-20

B DIGITA), RESEARCH®

T

TI, 2-15
T1 attribute, 2-26
TI-T%, 2-14, 6-65
FCB, 2-1]
T2, 2-15, 2-18
T3, 2-15
TAB, 635, 690
characiers, 632
expansion, 6-29, 638, 6-39
TABLE flag, 6-149
TEMP DISK
SYSDAT field, &181
TERM
APB field, 6-139
Terminal Message Processes, I-11
Terminal Message Processor, 14, 3-1
termination
character, §-32, 6-33
code, 6-139, 6-161, 6-162
THRDRT
SYSDAT field, 6182
THREAD
field, 6-182
list, 6-22, 6-139, 6-147
List Root, 6-182
PD field, 6-147
tick flag, 1-9
Tick Interrupt Handler
XIOS, 1-8, 19
TICKS/SEC
SYSDAT field, 6-181
time and date, [-2, 1-8, 6-105, 6-185,
6-187
time of day, [.8
time stamp
directory label, 2-25
Time System Calls, 6-3, &13
timing functions, -2

[BDIGITAL RESEARCH®

TMP, 1-4, 1-11, 2-17, 3-1, 5-5, 59,
&-112, 6-i61
priority, 6-144
RSP, 5.3
TOD—Time-~of-Day Structure
(Figure 6-22), 6-1B5
TOD_DAY
SYSDAT fiald, 6-183
TOD_HR
SYSDAT field, 6183
TOD.MIN
SYSDAT fiald, 6183
TOD_SEC
SYSDAT field, 6-183
TPA, 6-145
Track Offset, 651
Transient Execution Models, 4-1
Process Area, 6-145
processes, 1-2, 1-5
program, 1-12, 3-1
truncale file, 21, 2-2
TSI feld
directory label, 2-19
TS2 field
directory Iebel, 2-19
type field
directory label, 2-19
XFCB, 2-21
TYPE utility, 2-9
T_GET system call, 2-25, 6-186
T_SECONDS sysiem call, 6-187
T_SET system call, 6-188

u

UDA, 1-5, 1-6, 5-1, §-13§, 6-144,
6-145

UDA—User Data Area (Figure §-23),
6-151

UDA SEGMENT field, 5-8

Index-2]

UDA
BO87, 3.1, 32
initialization, 3-1
PD field, 6-149
REPs, 5-1
unallocated data block, 6-121
unconditional read
queue, 1-7
unlock operations, 2-36
records, 6-111
imlocked, 2-2
mode, 1-10, 2-12, 2-26, 2.35, 2-37,
679, 6-82
unused Process Descriptors, 6-182
unused Queue Descriptors, 6182
unused Memory Descriptors, 6-182
unwritien random records, 6-121
update date and time stamp, 6-17,
6114
update stamp, 6-80
field, 2-19
tims stamp, 2-24
Upper Seginent Base Address, 412
USBA, 412
User 0, 2-18, 6-83
user attributes, 2-15
User Data Aree, 1-5, 31, 5-1, 6135,
6-145, 6-149, 6-151
RSP, 58
user defanlt disk, &6-181
directorizs, 2-17
number, 1-11, 2-1, 2-3, 6-82
number conventions, 2-17
terminal, 1-1
zero, 6-82
user processes priorities, 6-148
User System Stack, 6-152
USER SYSTEM STACK
UDA field, 6153
USER
PD field. 6149

user-zero system [iles, 2-15

\4

VERNUM
SYSDAT field, 6-132
version number, 6-174, 62182
yersion string address, 6-182
version
08, 6176
YERSION
SYSDAT fleld, 6182
VINQ, 1-11
virtual consaolz, 1.1, 1-2, 6175, 6~181]
Virtual Contole Input Queue, 1-11
Yirtual Console Screen Management,
1-10
Yirtual Console Scresn Manager, 14
virtual environments, 1-1
virtus!} [ile size, 6-18
Yirtual QUTput processes, [-10
YOUuT, i1-10

W

wildeard file specifications, 6-70
window
real-time, 1-13
write dala records, 6113
write, 6173
wrile mode, 2-22, 6-80, 6-105
Queue List, 6-147
record, 2-2
sequential, 679
zeroes, 6-121

@ DIGITAL RESEARCH®

Index-22

X

X value, 4-8
XFCB, 2-18, 2-20, 6-79, 6-81
Exiended File Control Block
(Figure 2-3), 2-20
Create or access time stamp field,
6-105
password mode, §119
Update time stamp field, 6-105
Xhhhh paremeter, 4-7
X108, [4, 1-10, 1-11, 641, 643,
6175
ALLOC buffers, 6~181
ENTRY, 6-180
Hegder, 6-181
X108 INIT, 6-180
X108 Initialization entry point, 6~180
XPCNS
SYSDAT, 6184

Z

Zeroes, 4-11

BFDIGITAL RESEARCH®

Index-23

