il
DIGITAL
RESEARCH"

Concurrent CP/M-86"

Operating System

Programmer’s Utilities Guide

COPYRIGHT

Copyright © 1983 by Digital Research. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any langnage or computer langusge, in any form or by any means, electronic,
mechanical, magnedc, optical, chemical, manual or atherwise, without the prior written
permission of Digital Research, Post Office Box 579, Pecific Grove, California, 93250.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose, Further, Digital Research reserves the right to revise this publi-
cation and to make changes from time to time in the content hereof without obligation
of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered rademark of Digital Research. ASM-B6, Concurrent CP/M-86,
DDT-86, and MAC are trademarks of Digital Research. Incel is a registered trademark
of Intel Corporation. MCS-86 is a trademark of Intel Corporation. Z80 is a registered
wademark of Zilog, Inc. IBM Personal Compurer is a tradename of International
Business Machines.

The Concurrent CP/M-86 Programmer's Utilities Guide was prepared using the
Digital Research TEX Text Formatter and printed in the United States of America,

First Edition: March 1983

Foreword

The Concurrent CPIM-86™ Programmer’s Utilities Guide documents che 8088 and
8086 assembly language instruction set, rules for use of the Digital Research ASM-86™
assembler, and rules for use of the Digital Research dynamicdebuggingtool, DDT-86™.

Section 1 contains an introduction to the Diigital Research assembler, ASM-86, and
the various options that can be used with it. Through one of these options, ASM-86 can
generate 8086 machine cade in cither Intel® or Digital Research format. Appendix A
describes these formats,

Section 2 discusses the elements of ASM-86 assembly langnage. It defines the ASM-86
character set, constants, variables, identifiers, operators, expressions, and statements.

Section 3 describes the ASM-86 housekeeping functions, such as conditional assem-
bly, muitiple source file inclusion, and control of the listing printout format.

Section 4 summarizes the 8086 instruction mnemonics accepted by ASM-86. These
mnemonics are the same as those used by the Intel assembler, except forfour inscrucrions:
the inrasegment short jump, intersegment jump, return, and call instructions. Appendix B
summarizes these differences.

Section 5 discusses the Code-macro facilities of ASM-86, including Code-macro
definition, specifiers, and modifiers, and nine special Code-macro directives. This infor-
mation is also summarnized in Appendix G.

Section 6 discusses DD'T-86, the Dynamic Debugging Tool that allows the user to

test and debug programs in the 8086 environment. The section includes a sample
debugging section.

Concurrent CP/M-86 is supported and documented through four manuais:

B The Concurrent CP/M-86 User's Guide documents the user's interface to Con-
current CP/M-86, explaining the vatious features used to execute applications
programs and Digital Research urility programs.

® The Concurrent CP/M-86 Programmer's Reference Guide documents the appli-
cazions programmer’s interface to Concurrant CP/M-86, explaining the internal
file scructure and system entry points, information essential to create applications
programs that run in the Concurrent CP/M-86 environment.

B The Concurrent CPIM-B6 Programmer’s Utilities Guide documents the Digital
Reseerch utility programs programmers use to write, debug, and verify applica-
tions programs written for the Concurrent CP/M-86 environment.

B The Concurrent CP/M-86 System Guide documents the internal, hardware-
dependent structures of Concurrent CP/M-86.

Table of Contents

1 Introduction to ASM-86

1.1 Assembler Operation it aan 1-1
1.2 Oprional Run-time Paramererso v v v v h w v v 0 n s .14
1.3 Ending ASM-86 i . 1-5
2 Elements of ASM-86 Assembly Language
21 ASM-86CharacterSet+ v v v v v s v v n s e e 2-1
2.2 Tokensand Separatorso i i i e i e 2-1
23 Beimiters e e e e s 2-1
24 CONSIANtE . . . v v v 4 v st o m e n e e e e e e e 2-3
241 NumericComstants v .t v v u v v s s v s s aa 2-3
242 CharacterStrings i i v i i i i e e 24
25 Identifiers i e e e e e e e 2-4
251 Keywords . . 0 00 i i i vt e s e e 2-5
2.5.2 Symbols and Their Atmibutes 2-6
26 OPeratorso v e v v v a0 T 2
2.6.1 OperatorExamples e e 2812
2.6.2 OperatorPrecedence oot a0 1004, 2-14
27 Expressionsc0000 022 e e a s e 216
28 Statementso . v s e s s r s e as 2216
3 Asscmbler Directives
31 Introduction v i i ittt i e e e e 31
3.2 Segment Start Directives O A |
321 TheCSEGDirective . . . v v v v v v v v v v v s ns e r s n s 32
322 TheDSEGDirectve . . . v v v v v o v v 0 s e nun e 32
323 TheSSEGDirective ¢ oo vnunnnns 33
3.2.4 The ESEG Directive , e e e e e e 33
33 TheORGDirsctive . . . v v v it vt 1 s o ar v st sas o nnan 34
34 ThelFand ENDIFDIrectives . . » « v v v v v v o s a0 n e w0 v o n s 34
3.5 TheINCLUDEDIrECHVE . . . -« ¢ 4t t e o v s m e v nn e e s e 3-5
3.6 TheENDDirective . . v . v v v v v v v v vt e oot s e ae s o 3-5
3.7 TheEQUDITECHYE . v v v v v v st e st e e e m e tenm e nnnn 3-5
38 TheDBIDHIECHVE 2 . v v v v v v v m v v n mm e mmae mm e n s wn 3-6
3.9 TheDWDIrechHve . . . « o« & ot 4 @ vt e et s e e s am e o s an 3-7
310 The DD DHrective . . & - &« & 4 v 4 @ v e e m e s e am s m e m s e 3-8

Table of Contents (continued)

311 The REDirective it ot e e e e m e e e e e 3-8
312 The BBDHIECHYE . . v @ v v v o v v v v e e e vt e e nenan 39
313 The RW DIrective . . . & o i i v e et e et e e et e 39
314 The TTTLEDITECHVE . . & v @ v v v v v e v e ottt s e et nne e 3.9
315 The PAGESIZE Directive v i i v i it it e e m e e 3-10
316 The PAGEWIDTHDIrectve . .« . . v v i v et e e e vt n e e 3-10
317 The BJECTDirective - ¢ v v v v a e e e eeaae e 3-10
318 TheSIMFORM Dirachive v v v v v v e v e e e e aa s as 310
319 The NOLIST and LIST Directives = . v v o o v v v m e e vt ™ 311
3.20 The IFLIST and WOIFLIST Directives .+ . . . v 2 v v v 0 v o v v s & 3-11
The ASM-86 Instruction Set
41 Introduction e e e e e e e 41
42 DataTransferInstructions ¢t v it eennn 4-3
4.3 Arichmetic, Logical, and Shift Ingtructions, ., 4-5
44 StringInscrmctons i i i e i e e e e e e 4-10
4.5 Control TraneferInstructions ¢ i v i i b e v o e nn 412
4.6 Processor Controllnstructions ¢ enn 416
47 MpemonicDifferences c .t it i e e .. 4-18
Code-macro Facilities
5.1 Introductionto Code-macros .+ - & & ¢ & v @ v v b b e e e s s e 5-1
52 SPOCHAEIE + . v h e e e 52
53 Modiffers .. . v v i h i i i e e e e e e e e e 54
54 RangeSpecifiess e, 54
5.5 Code-macra Directives - . . v v - v v v v e r e e e, 5-5
5.5, SEGEIX i it et e et et e e 5-5
5.5.2 NOSEGFIXt i ittt nensnnannnanas -5
5.5.3 MODRM @i i et e e e e e 5-6
554 RELBand REL i i i i ittt e n et manaes 57
555 DB, DWandDD i e 3-8
556 DBIT ... i ittt ittt e e et e e m e 5.8

vi

Table of Contents (continued)

& DDT-86
61 DDT-86Operation «curneeenaen.. h e 6-1
6.1.1 StartingDDT-86 it ornmas &-1
6.12 DDT-836 Command Conventions4 000244 6-1
6.1.3 Specifyinga20-BitAddress 6-3
6.14 TerminatingDDT-86 ¢ vivinnnan 6-3
6.1.5 DDT-86OperationwithIntermupts 6-3
62 DDT-86Commandsc0ceeunrnenncas 64
62,1 TheA (Assemble)Command0v00cu. 6-4
6.2.2 TheB (Block Compare)Command &4
6.2.3 TheD (Display) Command ovoveeernnnn. 6-5
6.2.4 TheE (Load for Execution) Command , ,, 6-6
625 TheF(Fill)Command v ottt ntuvrsnnn 6-6
6.2.6 TheG(Go)Command . . . v o v v v v eeesennns 67
6.2.7 'The H (Hexadecimal Math) Command ., 6-8
6.2.8 Thel (Input Command Tail) Command 68
629 TheL(List) Command -« v e rnnnneran 6-8
6210 The M (Move)Command ¢« v o v st v e e v v v 6-9
6.2.11 The QI, QO (Query VO)Commands 6-9
6.2.12 TheR{(Read)Command¢c0rvueren 6-10
6.2.13 TheS(Set)Command 6-11
6.2.14 The SR (Search) Command ,0 6-12
6.2.15 The T(Trace) Command, 6-12
6.2.16 The U{Untrace) Command, 6-13
6217 The V{Value) Command 6-13
6.2.18 The W (Write) Command - . . .« v« v v ee s e ee e 6-14
6.2.19 The X (Examine CPU State}) Command 6-14
63 DefaultSegmentValues, 6-16
6.4 Assembly Language Syntax for Aand L Commands 6-18
65 DDT-865ampleSession, 6-19

vii

T O m ®m g N = o

L]

Appendixes
Starting ASM-86 Cee e . C e e a e A-1
Mnemonic Differences from the Intel Assembler B-1
ASM-86 Hexadecimal Queput Format v v v i s v v v mmsusa c1
Reserved Words s s e serene D-1
ASM-B6Instruction Summary cseoaar st s s mnmanrna E-1
Samplk Program APPF.AB6 0ot e s e e e E1
Code-macro Defiition Svatax . . P s e s e s ee G-
ASM-86ErrorMessage: 000 ’ et s r e e et H-1
DDT-86 Error Messages e e e e st s I1

viii

1-1.
1-2.

2-1.
2-2.
2-3.
24,
1-5,
2-6.

4-1.
4-2.
43,
44,
4-5.
4-5.
4-7.
4-8,
4.9,
4-10.
4-11.

5-1.
5-2.

6-1.

6-3.

Table of Contents (continued)

Tables
Run-time Parameter Summary00 00 a 14
Run-timeParameter Examples« v v v o v v vv a v s a s 0 as 1-5
Separators and Delimiterst 22
Radix Indicators for Constants v v v v v v e v s v v v v v s s 2-3
String Constant Examples it 24
RegisterKeywords0 v v v v 0h o0 0 v r o0 an a0 00 68 2-6
ASM-BEOPpeIators ot n o v v vt as aa s e 2-9
Precedence of Operations in ASM-86 v v v v 215
Operand TypeSymbolso 4-1
FlagRegisterSymbols« . i v v v v et v et i a 0 a s 4-3
DataTransferInstructions v o v v vt vt st a s o a 43
Effects of Arithmetic InstructionsonFlags . . + v - « v v v v v v v v s 4-5
ArithmeticInstructions« ¢ v o v v s v o vt as s a s s 0 00 4-6
Logical and Shift Instructionso it o 4.8
StringInstructions i s i e s 4-10
Prefix INStructions - « v v v v @ 2 0 v v v u e e e 4-12
Control Transfer Instructions v - v v v v v v v v v o 4-13
Processor ControlInstructions - 4-16
Mnemonic Differences v s b i i i e e e 4-18
Code-macro Operand Specifiers oL 3-3
Code-macroOperasnd Modifiers - v v v v v v e v e v v - 3-2
DDT-86 Command Summary -ot o vt v v u s 6-2
Flag Name Abbreviations 6-15
DDT-86 Default Segment Values 6-17

Table of Contents (continued)

‘Tables
A-1. Paramerer TypesandDevices A-1
A-2, Parameter TYPes . . . v v v v it ittt e e e e e e e A2
A3, Device TYPEE . . o+« o o v i i i st s st e e e A-2
A<, InvocationExamples 0o A-3
B-1. MnemonicDifferencest it i B-1
C-1. Hexadecimal RecordConeenrs C1
C-2. Hexadecimal RecordFormats v v v v v v v v ne v e ns C-2
C-3. SegmentRecordTypest iinnn.. C-3
D-1. KeywordsorReservedWords D-1
E-1. ASM-86 InstructionSwmmary E1
H-1. ASM-36 Diagnostic Error Messages H-1
IF1. DDT-36Frror MOSBAEES « + v « o 4 4 « « v 2 a0 0 e v v nvanens i1
Figure
1-1. ASM-86SourceandObjectFiles v v v v v v v v v v vt ... 141
Listing
F-1. Sampie Program APPFABE ¢ .cuir . F-1

Section 1
Introduction to ASM-86

1.1 Asgembler Operation

ASM-86 processes an 8086 assembly language source file in thres passes and produces
three output files, including an 8086 machine langnage file in hexadecimal format. This
object file can be in either Intel or Digital Research hex formats, which are described in
Appendix C. ASM-86 is shipped in two forms: an 8086 cross-assembler designed to run
under CP/M® on the Intel 8080 or the Zilog Z80® based system, and an 8086 assembler
designed to run under Concurrent CP/M-86 on an Intel 8086 or 8088 based system.
ASM-86 typically produces three output files from one input file as shown in Figure 1-1;

- LIST FILE

SOURCE [—»| ASM-B6 - HEX FILE

SYMBOL FILE

filename.AB6 — contains source

filename LST — contains listing

filename H86 — contains assembled program in
hexadecimal format

filename S¥YM — contains all user-defined symbols

Figurc 1-1, ASM-86 Source and Obiject Files

B DIGITAL RESEARCH™

1.1 Assember Operation Concursent CF/M-86 Utilities Guide

Fignre 1-1 also lists ASM-86 hletypes. ASM-86 accepts a source file with any three-
letter extengion, but if the filetype is omitted from the starting command, ASM-86 looks
for the specified fillename with the filetype .A86 in the directory. If the file has a filetype
other than .A86 or has no filetype at all, ASM-86 returns an error message,

The other filetypes listed in Figure 1-1 identify ASM-86 output files. The .LST file
containg the assembly language listing with any error messages. The .H86 file contains
the machine language program in cither Digital Rescarch or Intel hexadecimal format.
The .SYM £le lists any user-defined symbols.

Start ASM-86 by entering a command of the following form:

ASM86 source filespec [§ parameters |

Secrion 1.2 explains the optional parameters. Specify the source file using the follow-
ing form:

[d:] filename [.type]

where
[d:] is an optional valid drive letter specifying the source file’s location.
Not needed if source is on current drive,
filename is a valid CP/M filename of 1 to 8 characters.
[-typel is an optional valid filetype of 1 to 3 characters {usually .A86),

Some examples of valid ASM-86 commands are

AXABMBE B:810588
A>ASMBE BIUDSAR.ABE $FI AA HB PB 58
AXASMEE O:TEST

Note that if you try to assemble an empty source file, ASM-86 generates empry list, hex,
and symbol files.

13 B DIGITAL RESEARCH™

Concurrent CP/M-86 Urilities Goide 1.1 Assember Operation

Once invoked, ASM-86 responds with the message:
CP/M 8086 ASSEMBLER VER x.x

where x.x is the ASM-86 version number, ASM-86 then attempts to open the source
file_ If the file do=s not exist on the designated drive or does not have the correct filetype
as described above, the assemnbler displays the message:

ND FILE

If an invalid parameter is given in the optional parameter list, ASM-86 displays the
message:

PARAMETER ERROR

After opening the source, the assembler creates the output files. Usnally these are
placed on the current disk drive, but they can be redirected by optional parameters or
by a drive specification in the source filename. In the latter case, ASM-86 directs the
output files to the drive specified in the source filename,

Dhuring assembly, ASM-86 halts if an error condition, such as disk full or symbol table
overflow, is detected, When ASM-86 detects an etror in the source file, it places an
error-message line in the listing file in front of the line containing the error. Each error
message has a number and gives a brief explanarion of the error. Appendix H lists
ASM-86 error messages. When the assembly is complete, ASM-86 displays the message:

END OF ASSEMBLY. NUMBER OF ERRORS: n

8 DIGITAL RESEARCH™

1.2 Optional Run-time Parameters Concurrent CP/M-86 Utilitics Guide

1.2 Optional Run-time Parameters
The dollar-sign character, §, flags an optional string of run-time parameters. A param-

cter is a single letter followed by a single-letter device rame specification. Table 1-1 lists
the parameters.

Tablc 1-1. Run-time Parameter Summary

Paramster I To Specify | Valid Arguments
A source file device AB,C,..P
H hex output file device ALRXYZ
P list file device ALPXY,Z
] gymbol file device A..BLX,Y,Z
F format of hex output file LD

All parameters are optional and c¢an be entered in the command line in any order.
Enter the dollar sign only once at the beginning of the parameter string. Spaces can
separate parameters but are not required. No space is parmitted, however, between a
parameter and its device name.

A device name must follow parameters A, H, P, and S. The devices are labeled
ABC, .. .PorX Y, Z
Device names A through P, respectively, specify digsk drives A through P. X specifies
the user console (CON:), Y specifics the line printer (LST:}, and Z suppresses output
{NUL:).
If output is directed to the console, it can be temporarily stopped at any time by

entering a CTRL-S. Restart the output by chtering a second CTRL-S or any other
character.

DIGITAL RESEARCH™

14

Concurrent CP/M-88 Unilities Guide 1.2 Optional Run-time Parametcrs

The F parameter requires either an I or a D argument. When [is specified, ASM-86
produces an object file in Intel hex format. A D argument requests Digital Research hex
format. Appendix C details these formats. If the F parameter is not entered in the
command line, ASM-86 produces Digital Research hex format.

Table 1-2. Run-time Parameter Examples

Command Line l Result

ASMBE IO Assemble file I0.A86, and produce FO.HES6,
1Q.15T, and 10.5YM, all on the defanlt drive.

ASMBB I10.AEM 3 AD 52 Assembile file 10.ASM on device D, and produce
[O.L8T and 10.H86. No symbol filz,

ASMBB 10 & PY BX Assemble file [O.A86, produce IO.H86, route
listing directly to ptinter, and output symbols on
console.

ASMBE I0 $ FD Produce Digital Research hex format,

ASMBS IO S FI Produce Intel hex format.

1.3 Ending ASM-86

You can halt ASM-B6 execution at any time by pressing any key on the console
keyboard. When a key is pressed, ASM-86 responds with the question:

UBER BREAK: DK{Y/N)"?

A Y response stops the azsembly and returns to the operating system. An N response
continues the assembly.

End of Section 1

B DIGITAL RESEARCH™

Section 2
Elements of ASM-86 Assembly Language

21 ASM.-86 Character Set

ASM-86 recognizes a subset of the ASCH character set. The valid characters are the
alphanumerics, special characters, and nonprinting characters shown below:

ABCDEFGHI JKLMNOPQRSTUVWXYZ
abcdefghijklmnopgqrst uvywxysz
01234567829

+—*/=(}[1s7-L, @8
space, tab, carriage returmn, and line-feed

Lower-case lemters are teated as upper-case, except within strings. Only
alphanumerics, special characters, and spaces can appear in a string.

2.2 ‘Tokens and Separators

A token is the smallest meaningful unit of an ASM-86 source program, much as a
word is the smallest meaningful unit of an English composition. Adjacent tokens are
commonly separated by a blank character or space. Any sequence of spaces can appear
wherever a single space is allowed. ASM-86 recognizes horizontal tabs as separators and
interprets them as spaces. Tabs are expanded to spaces in the list file, The tab stops are
at each eighth column.

2.3 Delimiters

Delimiters mark the end of a token and add special meaning to the instruction, as
opposed to separators, which merely mark the end of a token, When a delimiter is
present, separators need not be used, However, using separators after delimiters makes
your program easicr to read.

The following table, Table 2-1, describes ASM-86 separators and delimiters, Some
delimiters are also operators and are explained in greater detail in Section 2.6,

B DIGITAL RESEARCH™

2.3 Delimiters Concurrent CP/M-86 Utilitics Guide
Table 2-1. Scparators and Delimiters
Character I Name I Use
20H space separator
05H tab legalin source files,
expanded in list files
CR carriage return terminate source lines
LF line-feed legal after CR if within
sovrce lines, interpreted
as A space
H semicolon starts comment field
colon identifies alabel,
used in segment override
specification
period forms variables from
numbers
s dollarsign notation for present value
1 oflocation pointer
+ plus arithmetic operator for
addition
- minus arithmetic operator for
subtraction
* asterigk arithmetic operator for
multiplication
!/ slash arithmetic operator for
division
@ “at® sign legal inidentifiers
- underscore legal in identifiers
! exclamation logically terminates a
point statement, allowing
multiple statementson a
singlesourceline
’ apostrophe delimits string constants

2

M DIGITAL RESEARCH™

Concurrent CP/M-86 Utilities Guide 2.4 Constants

2.4 Constants

A constant is a value known at assembly tme that does not change while the assembled
program is executed. A constant can be either an integer or a character string.

2.4.1 Numeric Constants

A nutmeric constant is a 16-bit value in one of séveral bases. The base, called the radix
of the constant, is denated by a trailing radix indicatot. The radix indicatars are shawn

in Table 2-2:

Table 2-2. Radix Indicators for Constants

Indicator Constant Type | Base
B binary 2
0 octal 8
Q octal 3
b decimal 10
H hexadecimal 18

ASM-B6 assumes that any numeric constant not terminated with a radix indicator is
a decimal constant. Radix indicators can be upper- or lower-case,

A constant is thus a sequence of digits followed by an optional radix indicator, where
the digits are in the range for the radix. Binary constants must be composed of 0s and
1s, Octal digits range from 0 to 7; decimal digits range from ¢ to 9, Hexadecimal
constants contain decimal digits and the hexadecimal digits A (10D}, B (11D}, C (12D},
D (13D, E{14D), and F (15D). Mote that the leading character of a hexadecimal constant
must be a decimal digit, so that ASM-86 cannot confuse a hex constant with anidentifier.
The following are valid numeric constants:

1234 12340 11008 11110000111100008
1234H OFFEH 33770 137720
33770 QFE3H 1234d OQffffh

W DIGITAL RESEARCH™
2-3

2.4 Comitants Concurrent CP/M-B6 Utilities Guide

2.4,2 Character Strings

ASM-86 trears an ASCII character string delimited by apostrophes as a string constant.
All instructions accept only one- or two-character constants as valid arguments. [nstruc-
tions treat a one-character string as a 8-bit number. A two-character string is treated as
a 16-bit number with the value of the sacond character in the low-order byte, and the
value of the first character int the high-order byte.

The numeric value of a character is its ASCII code. ASM-86 does not tranglate case
in character strings, so it accepts both upper- and lower-case letters. Note that only
alphanumerics, special characters, and spaces are allowed in strings.

A DB assembler directive is the only ASM-86 statement that can contain strings longer
than two characters. The string cannot exceed 255 bytes. include any apostrophe you
want printed in the string by entering it twice. ASM-86 interprets the two keystrokes ™' as
a single apostrophe. Table 2-3 shows valid strings and haw they appear after processing:

Table 2-3, String Constant Examples

String in Source Text J After Processing by ASM-B6
Jal .
JAbf{Bd! Abn‘cd
f$r 24 4
'ONLY UPPER CAEE ' ONLY URPERCASE
‘enly lLoweraoase”’ gnly louwsr case

2.5 Identificrs

Identifiera are character sequences thar have special symbolic meaning to the assem-
blet. All identifiers in ASM-86 must obey the following rules:

1. 'The first character must be alphaberic (A,...Z, a,...2).

2. Any subsequent characters can be either alphabetic or a numeral {0,1,.....9).
ASM-86 ignores the special characters @ and _ but they are still legal. For
example, a_b becomes ab.

3. Identifiers can be of any length up to the limit of the physical line.

M DIGITAL RESEARCH™

24

Concarrent CP/M-B6 Utilities Guide 2.5 Identifiers

Identifiers are of two types. The first type are keywords that the assembler recognizes
as having predefined meanings. The second type are symbols defined by the user. The
following are all valid identifiers:

NOLIST

WORD

AH

Third_street

How_mre__you_ _taoday
variableBnumbe r@l1234587880

2.5.1 Keywords

A keyword is an identifier that has a predefined meaning to the assembler, Keywords
are reserved; the user cannot define an identifier identical to a keyword, For a complete
list of keywords, sec Appendix D,

ASM-86 recognizes five types of keywords: instructions, directives, operators, regis-
ters, and predefined numbers, 8086 instruction mnocmonic keywords and the actions
they initiate are defined in Section 4. Dicectives are discussed in Section 3. Section 2.6
defines aperators. Table 2-4 lists the ASM-86 keywords that identify 8086 registers,

Three keywords are predefined numbers: BYTE, WORD, and DWORD. The values
of these nunbers are 1,2, and 4, respectively. In addition, a type attribute is associated
with cach of these numbers, The keyword’s type attribute is equal to the keyword’s
numeric value.

B DIGITAL RESEARCH™

25

2.5 Identifiers Concorrent CP/M-86 Utilities Guide

Tablc2-4. Register Keywords

Register Numeric

Symbol Size Value Meaning
AH 1byte 100B Accanmulator-High-Byte
BH 1byte 111B Base-Register-High-Byte
CH 1byte 1018 Count-Register-High-Byte
DPH 1byte 110B Data-Register-High-Byte
AL 1byte 000B Accumulator-Low-Byte
BL 1byre 011B Base-Register-Low-Byte
CL 1byte 001B Count-Register-Low-Byte
DL 1byte 010B Data-Regiscer-Low-Byte
AX 2bytes 000B Accumulator {full word)
BX 2bytes 011B Base-Register (full word)
X 2bytes 0018 Count-Register (full word)
DX 2bytes 010B Daia-Register (full word)
BP 2bytes 1018 Base Pointer
5P 2byies 100B Stack Pointer
SI 2bytes 110B SourceIndex
DI 2bytes 1113 Dertination Irdex
CS 2 bytes 01B Code-Segment-Register
DS 2bytes 118 Data-Segment-Register
1) 2byres 168 Stack-Segment-Register
ES 2bytes 00B Extra-Segment-Register

2.5.2 Symbols and Their Attributes

A symbol is a uger-defined identifier that has attributes specifying the kind of informa-
tion the symbol represents. Symbols fall into three categories:

® variables
u labels
B numbers

B DIGITAL RESEARCH™

Concurrent CP/M-86 Utilities Guide 2.5 Identificrs

Variables

Variables identify data stored at a particular location in memory. All variables have
the following three ateributes:

W Segment tells which segment was being assembled when the variable was defined.

B Offser tells how many bytes there are between the beginning of the segment and
the location of this variable.

B Typetells how many bytes of data are manipulated when this variable is referenced.

A scgment can be a Code Segment, a Data Segment, a Stack Segment, or an Extra
Segment, depending on its contents and the register that contains its starting address.
See Section 3.2. A segment can start at any address divisible by 16. ASM-86 uses this
boundary value as the segment portion of the variable’s definition,

The offset of a variable can be any number between 00H and OFFFFH
(65535 decimal). A variable must have one of the following type atiributes:

m BYTE
N WORD
® DWORD

BYTE specifies a one-byte variable; WORD, a two-byte variable, and DWORD, a
four-byte variable, The DB, DW, and DD directives, respectively, define variables as
these chree types. See Section 3.2.2. For example, a variable is defined when it appears
as the name for a storage directive:

VARIABLE DE O

A variable can also be defined as the name for an EQU directive referencing another
Iabel, as shown below:

YARIABLE EQU ANDTHER_VARIABLE
Labels

Labels identify iocations in memory that contain instruction statements. They are
referenced with jumps or calls. All labels have two attributes: segment and offset.

W DIGITAL RESEARCH™

2.5 Ideatifiers Concurreat CP/M-86 Utilities Guide

Labe] segment and offser arributes are sssentially the same as variable scgment and
offser artributes. In general, a label is defined when it precedes an instruction. A colon,
1, separates the label from the instruction. For example,

LABEL1 ADD AX:BX

A label can also appear as the hame for an EQQU directive referencing another label.
For example,

LABEL EQU ANDTHER_LABEL
Numtbers

Numbers can also be defined as symbols. A number symbol is treated as though you
had explicitly coded the number it represents, For example,

Number__ftive EQU 5
MOV AL +Numbwry_ _fTive

equals
Mov AL +5

Section 2.6 describes operators and their effects on numbers and number symbols.

2.6 COperators

ASM-E6 operators fall into the following categories: arithmetic, logical, and relational
operatars, segment override, variable manipulators, and creators. The following table
defines ASM-86 operators. In this table, a and b represent two elements of the expression.
The validity column defines the type of operands the operator can manipulate, using the
OR bar character | to scparate alternatives.

EDIGITAL RESEARCH™
2-8

Conemrrent CP/M-86 Utilitics Guide 2.6 Operators
Table 2-5. ASM-86 Operators
Syntax Result Validity
Logical Opcrators

a XOR b bit-by-bit fogical EXCLUSIVE a,b = number
OR ofaandb

OR b bit-by-bit logical OR of a a,b = number
and b

a AND b bit-by-bit logical AND of a a,b = number
andb

NOT a logicalinverse ofa: all 0a a = 16-bitnumber
become 1s, 1s become Os

Relational Operators

aEQb returns OFFFFH ifa = b, a, b = unsigned
otherwise 0 nurnber

alTh returns OFFFFH ifa < b, 4,b = unsigned
otherwise 0 number

alEb returns OFFFFHifa <= b, a,b = unsigned
otherwise 0 number

aGTh returns OFFFFH ifa > b, a,b = unsigned
otherwise 0 number

aGEb returns OFFFFHifa >=b 4,b = unsigned
otherwise 0 number

aNEb returns OFFFFH ifa <> b, a,b = unsigned
otherwise) number

EDIGITAL RESEARCH™

29

2.6 Operstons Concurrent CP/M-86 Utilitics Guide
Table 2-§. (continued)
Symtax Result Validity
Arithmetic Operators
a+bhb arithmeticsumofaandb a = variable,
label or number
b = number
a—b arithmetic difference of a = variable,
sandb label or number
b = number
a*hb doss unsigned multiplication a,b = number
ofaandb
al/b doeg unsigned division of a a,b = number
andb
a MOD b recurns remainderof a/b a,b = number
2 SHL b returns the value which a,b = number
results from shifting ato
leftby an amountb
a SHR b returns the value which a,b = number
results from shifting a to
the rightbyanamountb
+a givesa a = number
—a gives0—a a = number
Segment Override
<segreg>: overrides assembler’s choice <segreg> =
<addrexp> of segmentregister. CS, DS, 88
orES
W DIGITAL RESEARCH™

2-10

Concurrent CP/M-86 Unilities Guide

Table 2-5. (continued)

2,6 Operutors

Symtax

Resuelt

Validity

Varisble Manipulators, Creators

SEG a

OFFSET a

TYPE a

LENGTH a

LAST a

aPTR b

creates anumber whosevalue isthe
segment valueof the variable or
label a. The variable or label
mustbedeclared inan absolute
segment (i.e. CSEG 1234H);
otherwise the SEG operatoris
undefined.

creates anumber whose valne
is the offset value of the

variable or label a.

creates a number. [fthe var-
ableaisof type BYTE, WORD

or DWORD, the value of the num-
beris 1,2, or 4, respectively,
creates a number whose value

is thelength attribute of the
variable a. Thelength attribute

is the number of bytes associated
withthe variable.

if LENGTH a> 0,then LAST
a=LENGTH a-1;if LENGTH
a=10,thenLAST 2 =40.

creates virtual variable or label with
typeof aand attributes of b.

creates variable with an offset attri-
bute of a; segment attribute is
current segment.

creates label with offset

equal to current value of

locaton counter; segment
attributeis current segment,

a = label |variable

a = label |variable

a = label | variable

a = label| variable

a = label | variable

a=BYTE|
WORD, | DWORD
b = <addrexp>

a = number

no argument

M DIGITAL RESEARCH™

2.6 Operators Concurrent CP/M-86 Utikities Guide

2.6.1 Opcerator Examples

Logical operators accept only numbers as operands. They perform the Boolean logic
operations AND, OR, XOR, and NOT, For example,

0OFC MASK EQU OFCH

ocBe BIGNBIT EQU 80H
0000 BiBC mMOovV CL +MASK AND EIGNBIT
0002 BGD3 MoV AL » NOT MASK

Relational operarors treat all operands as unsigned numbers. The relational operators
are EQ {eqnal), LT (less than), LE (less than or equal), GT (greater than), GE (greater
than or equal), and NE {nat equal}. Each operator compares two operands and returng
all ones {0FFFFH) if the specified relation is true, and all zeros if it is not. For example,

Q00 A LIMIT1 EQU 10
Q018 LIMITZ ERU 25
L]
L]
0004 BAFFFF MoV AXLIMIT1 LT LIMITZ2
0007 BE00Q0 MoV AXLIMITL GT LIMITZ

Addition and subtraction operators compute the arithmetic sum and difference of two
aperands. The first aperand can be a variable, label, or number, but the second operand
must be & number. When a number is added to a variable or label, the result is a variable
or label, the offset of which is the numeric value of the second operand plus the offset
of the first operand. Subtraction from & variable or label returns a variable or label, the
offset of which is that of first operand decremented by the number sperified in the second
operand. For example,

0002 COUNT EQU 2
000F RIBP1 EQU 5
000A FF FLAG DB OFFH
G008 2ZEAOOBOOC Mav AL 'FLAG+]
000F ZEBACEOFCO MOV CL sFLAG+DISFI1
0014 E303 MOV BL ;DISP1~COUNT

B DIGITAL RESEARCH™

2-12

Concwrrent CP/M-86 Utilitics Guide 2.6 Operators

The multiplication and division operators *, /, MOD, SHL, and SHR accept only
numbers as operands. * and / treat all operands as unsigned numbers. For example,

0016 BESS00 MoV 81.,256/3
0019 B310 MoV BL :G54/4
0as0 BUFFERSIZE EQU BO
01B BBACQOCC MoV AX:BUFFERSIZE * Z

Unary operators accept bath signed and unsigned operators, as shown in the following
example:

001E 8123 MOV CL ++35
0020 BOOY MOV AL 12-~3
0022 BZFA4 Mav DL:-12

When manipulating variables, the assembler decides which segment register to use.
You can override the assembler’s choice by specifying a different register with the
segment override operator. The syntax for the override operator is

<segment register> : <address expression>
where the <segment register™ is CS, DS, 58, or ES. For example,

0024 38BB47ZD mav AX55:WORDBUFFERLEX]
0028 ZBBBOESH00 Mav CX:ES5:ARRAY

A variable manipulator creates a number equal to one attribute of its variable operand.
SEG extracts the variable’s segment value; OFFSET, its offset value; TYPE, its type value
(1, 2, or 4); and LENGTH, the number of bytes associated with the variable, LAST
compares the variable’s LENGTH with 0 and, if greater, then decrements LENGTH by
one, [f LENGTH equals 0, LAST leaves it unchanged. Variable manipulators accept
only variables as operators. For example,

DIGITAL RESEARCH™
2-13

2.6 Operators Concurrent CP/M-86 Utilitiey Guide

1234 DBEG 1234H
002D Q00000000000 WIRDBUFFER DH 0:040
0033 0102030403 BUFFER DB 1:2:3:4:5

*

0038 BBOSOD MOV AX sLENGTH BUFFER
0038 BBOAQO MoV AX sLAST BUFFER
Q03E BEQ10Q0 MOV AXTYPE BUFFER
0041 BEOZ200 MOV AX»TYPE WORCBUFFER
0044 BB341Z Mav AX :BEG BUFFER

The PTR operator creates & virtnal variable or label that is valid only during the
execution of the instruction. It makes no changes to either of its operands, The temporary
symbol has the same Type attribute as the left operator and all other srtributes of the
right operator as shown in the following exampie:

¢044 CBO705 MoV BYTE PTR CBX1. 5
0047 8A07 MOy AL »BYTE FTR L[BXI]
@049 FFo4 ING HORD PTR L5111

The period operator creetes a varigble in the current data segment, The new variable
has a segment attribute equal to the current data segment and an offser amvibute equal
to its operand. The operand of the new variable must be a number. For example,

OC4B AILIQ000 MOy AXs .0
O04E 288BLiE0040 Moy BX:+ ES: .4000H

The dollar-sign operator, §, creates a label with an offset attribute equal to the corrent
value of the location counter. The label’s scgment value is the same as the current
segment. This operator takes no operand. For example,

0GS3 ESFDFF JMP 5
0058 EBFE JHPS $
C038 E9FDZF JHP $+3000H

2.6.2 Operator Precedence

Expressions combine variables, labels, or numbers with operators. ASM-86 allows
several kinds of expressians. See Section 2.7. This section defines the order in which
operations are executed if more than one operator appears in an expression.

8 DIGITAL RESEARCH™
2-14

Concurrent CP/M-88 Utilities Guide 2.6 Operators

ASM-86 evaluares expressions left to right, but operators with higher precedence are
evaluated before operators with lower precedence. When two operators have equal
precedence, the leftmost is evaluated first. Table 2-6 presents ASM-86 operators in order
of increasing precedence.

Parentheses can override rules of precedence. The part of an expression enclosed in

parentheses is evaluared first. [f parentheses are nested, the innermost expressions are
evaluated first. Only five levels of nested parentheses are legal. For example,

13/3+1B/79=5S+2=7
15713+ 18B/8) =15/(3+2) =15/5=13

Table 2-6. Precedence of Operations in ASM-86

Order Operator Type I Operatars
1 Logicsl XOR,0R
2 Logical AND
3 Logical NOT
4 Relational EQ,LT,LE, GT,
GE,NE
5 Addition/subtraction +,—
Multiplication/division * L MOD,SHL,
SHR
7 Unary +,-
Segment override <sepment override>:
9 Variable manipulators, SEG, OFFSET, PTR,
creators TYPE,LENGTH,LAST
10 Parentheses/brackets (%11
11 Petiod and Dollar »$
DIGITAL RESEARCH™

2-15

1.7 Expressions Concurrent CP/M-86 Urilities Guide

2.7 Expressions

ASM-88 allows address, numeric, and bracketed sxpressions. An address expression
evaluates ro a memory address and has three components:

N segment value
N offset value

™ type

Both variables and labels are address expressions. An address expression is not a
number, but its components are numbers. Numbers can be combined with operstors
such as PTR to make an address expression,

A numeric expression evaluates to a nzmber. It doss not contain any variables or
labels, only numbers and operands.

Bracketed expressions specify base- and index-addressing modes. The base registers
are BX and BF, and the index registers arc DI and S1. A bracketed expression can consist
of a base register, an index register, or both a base register and an index register. Use
the + operator between a base register and an index register to specify both base- and
index-register addressing. For example,

MOY AXEEX+DI]
May AX.[511

2.8 Statements

Just as tokens in this assembly language correspond to words in English, statements
are analogous to sentences. A statsment tells ASM-86 what action to perform. Statements
can be instructions or directives. Instructions are tranalated by the assembler into 8086
machine language instructions. Directives are not cranslated into machine code, but
instead direct the assembler to perform certain clerical functions.

Terminate each assembly language statement with a carriage return, CR, and line-feed,
LF, or with an exclamation point, !, ASM-86 treats these as an end-of-line. Multiple
assembly language statements can be written on the same physical line if separated by
exclamation points.

I DIGITAL RESEARCH™

2-1&6

Conrurremt CP/M-86 Utilities Guide 2,8 Swatememts

The ASM-86 instruction set is defined in Section 4. The syntax for an instruction

statement is

[label:] [prefix] mnemonic [operand(s)] [;commaent]

where the fields are defined as

W label
® prefix

H mnemonic

W operands

M comment

B DIGITAL RESEARCEH™

A symbol followed by : defines a label at the current value of the
location counter in the current segment. This field is optional.

Certain machine instructions such as LOCK and REP can prefix
other instructions, This field is optional.

A symbol defined as a machine instruction, cither by the assembler
or by an EQU directive. This field is optional unless preceded by
a prefix instruction. If it is omitted, no operands can be present,
although the other fields can appear, ASM-86 mnemonics are
defined in Section 4.

An instruction mnemonic can require other symbols to represent
operands to the instruction. Instructions can have zero, one, or
two operands.

Any semicolon appearing outside a character string begins a
comment. A comment ends with a carriage return. Comments
improve the readability of programs. This field is optional.

2-17

1.8 Statements Coocurrent CP/M-86 Utilities Guide

ASM-8¢ directives are described in Section 3. The syntax for a directive statement is
[name) directive operand(s) [;comment]

where the fields are defined as

H pame Unlike the label field of an instruction, the name field of a directive
is never terminated with a colon. Directive names are legal only
for DB, DW, DD, RB, RS, RW, and EQU. For DB, DW, DD, and
RS, the name is optional; for EQU, it is required.

m directive One of the directive keywords defined in Section 3.

N operands Analogous to the operands for instruction mnemonics. Some
directives, such as DB, DW, and DD, allow any operand; others
have special reguirements.

B comment Exactly as defined for instrucrion starements,

End of Section 2

W DIGITAL RESRARCH™
218

Section 3
Assembler Directives

3.1 Introduction

Directive statemnents caunse ASM-86 to perform housekeeping functions, such as
assigning portions of code to logical segments, requesting conditional assembly, defining
data items, and specifying listing file formar. General syntax for directive statements
appeass in Section 2.8.

In the sections thar follow, the specific synrax for each divective statement is given
under the heading and before the explanation. These syntax lines use special symbols
10 represent possible arguments and other alternatives. Square brackets, [], enciose
optional arguments.

3.2 Scgment Start Directives

At tun-time, every 3086 memory reference must have a 16-bit segment base value and
a 16-bir offset value. These are combined to produce the 20-bit effactive address needed
by the CPU to physically address the location. The 16-bitsegment base value or boundary
is contained in one of the segment registers C5, DS, 58, or ES. The offset value gives the
offset of the memory reference from the segment boundary. A 16-byte physical segment
is the smallest relocatable unit of memory.

ASM-86 predefines four logical segments: the Code Segment, Dara Segment, Stack
Segment, and Extra Segments, which are addressed respectively by the CS, DS, S§, and
ES registers. Future versions of ASM-86 will support additional segments, such as
multiple data or code segments. All ASM-86 statements must be assigned to one of the
four currently supported segments so that they can be referenced by the CPU. A segment
directive statement, CSEG, DSEG, S5EG, or ESEG, specifies that the statements following
it belong to a specific segment, The statements are then addressed by the cotresponding
scgment register. ASM-86 assigns statements to the specified segment until it encounters
another segment directive.

B DIGITAL RESEARCH™

3.2 Scgment Start Directives Concurrent CP/M-86 Utilities Guide

Instruction statements must be asgigned to the Code Segment. Directive statements
can be assigned to any scgrment. ASM-86 uses these assignments to change from one
segment register to another. For example, when an instruction accesses a memory
variable, ASM-86 must know which segment conrains the variable so ir can generate a
segment-override prefiv byre if necessary.

3.21 The CSEG Directive

Syntax:

CSEG numeric expression
CSEG
CSEG §

This directive tells the assembler that the following statements belong in the Code
Segment. All instruction statements must be assigned to the Code Segment. All directive
statements are legal in the Code Segment.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable, Use the second form when the segment location is not
known at assembly time; the code generated is relocatable. Use the third form to continue
the Code Segment after it has been interrupted by & DSEG, SSEG, or ESEG direcrive.
The continuing Code Segment starts with the same ateributes, such as location and
instruction pointer, as the previous Code Segment.

32,2 The DSEG Directive

Syntax:
DSEG numeric expression
DSEG
DSEG §

This directive specifies that the following statements belong to the Data Segment. The
Data Segiment contains the data allocation directives DB, DW, DD, and RS, but all other
directive statements are also legal. Instruction statements are iflegal in the Data Scgment.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable, Use the second form when the segment location is not
known at assembly time; the code generated is relocatable. Use the third form to continue
the Data Segment after it has been interrupted by a CSEG, SSEG, or ESEG directive.
The continuing Data Segment starts with the same attributes as the previous Data

®egment.

B DIGITAL RESEARCH™

32

Concurrent CP/M-86 Utilities Guide 3.2 Segment Start Directives

3.2.3 The SSEG Directive

Syntax:
SSEG numeric expression
SSEG
5SEG §

The SSEG directive indicates the beginning of source lines for the Stack Segment. Use
the Stack Segment for all stack operations. All directive statements arc legal in the Stack
Sepment, but instruction statements are iflegal.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable. Use the second form when the segment location is not
known at assembly time; the code generated is relocatable, Use the third form to continue
the Stack Segment after it has been interrupted by a CSEG, DSEG, or ESEG directive.
The continving Stack Segment starts with the same attributes as the previous Stack

Segment,

3.2.4 'The ESEG Directive

Syntax;
ESEG numeric expression
ESEG
ESEG §

This directive initiates the Extra Segment. Instruction statements are not legal in this
segment, bur all directive statements are legal.

Use the first form when the location of the segment is known at assembly time; the
code generated is not refocatable. Use the second form when the segment location is not
known at assembly time; the code generated is relocatable, Use the third form to continue
the Extra Segment after it has been interrupted by a DSEG, SSEG, or CSEG directive,
The continuing Extra Segment starts with the same attributes as the previous Extra
Segtaent,

B DIGITAL RESEARCH™

3.3 The ORG Directive Concurrent CP/M-86 Utilities Guide

3.3 The ORG Directive
Syntax:
ORG nnmeric expression
The ORG directive sets the offset of the location counter in the current sggment to
the value specified in the numeric expression. Define all slements of the expression before
the ORG directive beczuse forward references can be ambiguous.
In most segments, 2n ORG directive is unnecessary. If no ORG is included befors the

first instruction or data byte in a segment, assembly begins at location zero relative to
the beginning of the segment. A seginent can have any number of ORG directives.

3.4 The IF and ENINF Directives

Szntax:
¥ numeric expression
source line 1
source line 2
source line n
ENDIF

The [F and ENDIF directives allow a group of soutce lines to be included or excluded
from the assembly. Use conditional directives to assemble several different versions of
a single source program.

When the assembler finds an IF directive, it evaluates the numeric expression following
the IF keyword. If the expression evaluates to a nonzero value, then source line 1 through
source line n arc assembled. If the expression cvaluates to zero, the lines are not
assembled, but are listed unless a NOIFLIST directive is active. All elements in the
numeric expression must be defined before they appear in the IF directive. IF directives
can be nested to a maximom depth of five levels.

@ DIGITAL RESEARCH™
34

Concurrent CP/M-86 Utilities Guide 3.5 The INCLUDE Directive

3.5 The INCLUDE Directive
Syotax:
INCLUDE filespec
This directive includes another ASM-84 file in the source text. For example,
INCLUDE EQUALS.AS86

Use INCLUDE when the source program resides in several different files. INCLUDE
directives cannot be nested; a source file called by an INCLUDE directive cannot contain
another INCLUDE statement. If filespec does not contain a filetype, the filerype is
assumed ro be .A86. If the file specificarion does notinclude a drivespecificadon, ASM-86
assumes that the file resides on the drive containing the source file,

3.6 The END Directive

Syntax:
END

An END directive marks the end of a source file, Any subsequent lines are ignored by
the assembler. END is optional. If not present, ASM-86 processes the source until it
finds an end-of-file character (1AH).

3.7 The EQU Directive

S!ntax:

symbol EQU numeric expression
symbol EQU address expression
symbol EQU register

symbol EQU instruction mnemonic

The EQU, equate, directive assigns values and attributes to user-defined symbols. The
Tequired symbol name cannot terminate with a colon. The symbaol cannot be redefined
by a subsequent EQU or another directive. Any elements used in numeric or address
expressions must be defined before the EQU directive appears.

B DIGITAL RESEARCH™
35

3.7 The EQU Directive Concurrent CP/M-86 Utilities Gride

The first form assigns a numeric value to the symbol. The second assigns a memory
address. The third form essigne a new name to an 8086 register. The fourth form defines
£ new instruction {sub)set, The following are examples of these four forms:

0005 FIVE EQU Z%Z+]
0033 NEXT EQU BUFFER
0001 COUNTER EQU CX
MOVVY EQU May
L}
+
J05D 8BC3 Mauuy AX 8%

3.8 The DB Dircctive
Syntax:

[symbol] DB numeric expression[,numeric expression...]
[symbol] DB string constant].string constsnt...]

The DB directive defines initialized storage areas in byte format, Numeric expressions
are evaluated to 8-bit values and sequentially placed in the hex output file. String
constants are placed in the output file according to the rules defined in Section 2.4.2.
A DB directive is the only ASM-86 statement that accepts a string constant longer than
two bytes. There is no translation from lower- to upper-case within strings. Muldple
expresgions or constants, separated by commas, can be added to the definition, but
cannot exceed the physical line length.

Use an optional symbol to reference the defined data area throughout the program.
The symbol has four attributes: the segment and offset attributes determine the symbol’s
memory reference, the type attribute apecifies single bytes, and the length atrribute tells
the number of bytes (allocation units) reserved.

S DIGITAL RESEARCH™

Concurrent CP/M-86 Utilities Guide 3.8 'The DB Directive

The following statements show DB directives with symbols:

COSF 43502F4D2073 TEXT DB ‘CP/M system’ 0
79737485000

00BB E1 Ah DB ‘a’ + 80H

008C 0102030405 X DB 1+2:3+4.5

G071 DBECCOO Mav CKX:LENGTH TEXT

3.9 ‘The DW Directive

Syntax:

[symbol] DW numeric expression[,mmeric expression...]
[symbol] DW string constant[,string constant...]

The DW directive initializes two-byte words of storage. String constants longer than
two characrers are illegal. Otherwise, DW uses the same procedure as DB to initialize
storage. The following are examples of DW statements:

0074 0000 CNTR D O

0076 B3C1BBC168C1 JMPTAB DW SUBRL :SUBR2 :SUBR3

007C 0100020QQ300 DW 1:2:3:4:5.:8
040003090600

BDIGITAL RESEARCH™

37

3,10 The DD Directive Concurrent CP/M-B6 Utilities Guide

3.10 The DD Directive
Syntax:
[symboll DD numeric expression[,zddress expression...]
The DD directive initializes four bytes of storage. The offset attribute of the address

expression is stored in the two lower bytes; the segment atwribute is stored in the two
upper bytes. Otherwise, DD follows the same procedure as DB, For example,

1234 CBEG 1Z34H

00G0 BCC134128FC1 LONG_JMFTAB QD ROUTL »ROUTZ
3412

0008 72C01341275C1 (+]0 ROUT3 (ROUTA
3412

3.11 The RS Directive
Syntax:
[symbaol] RS numeric expression
The RS ditective allocates storage in memory bur does not initalize it. The numeric

expression gives the number of byres to be reserved. An RS starement does not give 2
byte attribute to the optional symbol. For example,

ooic BUF RS 80
COED RS 4000H
40E0 RS 1

H an RS statement is the last starement in & segmenr, you must follow it with a DB
statement in order for GENCMD 1o allocare the memory space.

@ DIGITAL RESEARCH™

Concurrent CP/M-86 Utilities Guide 3.12 The RB Directive

3.12 The RB Directive
Syntax:
[symbol] RB numeric expression

The RB directive allocares byte srorage in memory without any initalizacion. This
direcrive is identical to the RS directive excepr thar it gives the byte arrribure.

3.13 The RW Directive
Synrax:
[symbol] RW numeric expression

The RW diractive allocates two-byte word starage in memory but doss not initialize
it. The numeric expression gives the number of words to be reserved. For example,

490851 BUFF RH 128
4141 RMW 4000H
c1ai RMW 1

3.14 The TITLE Directive
Syntax:
TITLE string constant
ASM-86 prints the string constant defined by a TITLE directive statement at the top
of each printout page in the listing file. The title character string should not exceed 30
characters. For example,

TITLE ‘CP/M monitor”

If the title is too long, the ASM-86 page number overwrites the title.

@ DIGITAL RESEARCH™
3-9

3.15 Thc PAGESIZE Directive Concurreat CP/M-8¢ Utlities Guide

3.15 The PAGESIZE Directive
PAGESIZE numetic expression
The PAGESIZE directive defines the number of lines to be included on each printout
page. The defanlt page size is 66.

3.16 The PAGEWIDTH Directive
Syntax:
PAGEWIDTH numeric expression
The PAGEWIDTH directive defines the number of columns printed across the page
when the listing file is ouzput. The default page width is 120, unless the listing is routed
directly o the terminal, when the default page width is 78.
3.17 The EJECT Directive
Syntax:
EJECT
The EJECT directive performs s page eject during printout. The EJECT directive itself
is printed on the first line of the next page.

3.18 The SIMFORM Directive
Szntax:
SIMFORM

The SIMFORM directive replaces a form-feed (FF) character in the print fila with the
correct number of line-feeds (LF}. Use this directive when printing out ot a printer unable
ta interpret the form-feed character.

8 DIGITAL RESEARCH™
3-10

Concurrent CP/M-86 Utilities Guide 3.19 The NOLIST and LIST Directives

3.19 The NOLIST and LIST Directives
Syntax:

NOLIST
LIST

The NOLIST directive blocks the printout of the following lines. Restart the listing
with a LIST directive.

3.20 The IFLIST and NOIFLIST Directives
Syntax:

IFLIST
NOIFLIST

The NOIFLIST directive suppresses the printout of the contents of IF-ENDIF blocks
that are not assembled. The IFLIST directive resumes printout of IFFENDIF blocks.

End of Section 3

@ DIGITAL RESEARCH™

311

Section 4
The ASM-86 Instruction Set

4,1 Introduction

The ASM-36 instruction set includes all 8086 machine instrizctions. This section
briefly describes ASM-86 instructions; these descriptions are organized into fanctional
groups. The general syntax for instruction statements is given in Section 2.8.

The following sections define the spedfic syntax and required operand types for each
instruction, without reference to labels or comments. The instruction definitions are
presented in tables for easy reference. For a more detailed description of each instruction,
see Intel’s MCS-86™ Assembly Language Reference Manual. For descriptions of the
instruction bit patterns and operations, sec Intel’s MCS-86 User’s Manual,

The instruction-definition tables present ASM-86 instruction statements as combina-
tions of mnemonics and operands. A mnemonic is a symbaolic representation for an
instruction; its operands are its required parameters. Instructions can take zero, one, ot
two operands. When two operands are specified, the left operand is the instruction’s
destination operand, and the two operands are separated by a comma,

The instruction-definition tables organize ASM-86 instructionsinto functional groups.

In each table, the instructions are listed alphabetically, Table 4-1 shows the symbols
used in the instrucion-definition tables to define operand types.

Tablc 4-1. Operand Type Symbols

Symbol Operand Type
numb any pumeric expression
numb8 any numeric expression which evaluates to an 8-bit number
acc accumufator register, AX or AL
reg any general purpose register, not segment register
reglé a 16-bit general purpose register, not segment register
segreg any segment register: CS, DS, 85, or ES
M DIGITAL RESEARCH™

41

4.1 Introduction Concurrent CP/M-86 Utdlities Guide
Table 4-1. (continoed)

Symbol | Operand Type

mem any ADDRESS expression, with or without base- and/or index-
addressing modes, such as
variable
variable+3
variable[bx]
variable[S]]
variable[BX + 5]
[(BX]
[BP +DI]

simpmem any ADDRESS expresgion WITHOUT base- and index-addressing
modes, such ax
variable
varigble + 4

mem|reg any expression symbolized by reg or mem

mem|reglé any expression symbolized by mem|reg, but must be 16 bits

label any ADDRESS expression that evaluates to 2 label

lab8 any label that is within + 128 bytes distance from the instruction

The 8086 CPU has nine single-bit Flag registers that reflece the state of the CPU. The
user cannot access these registers directly, but the user can test them to determine the
effects of an executed instruction upon an operand or register. The effects of instructions
on Flag registers are also described in the instruction-definition tables, using the symbols
shown in Table 4-2 to represent the nine Flag registers.

#l DIGITAL RESEARCH™

Concurreat CF/M-B6 Utilities Guide

4.1 Introduction

Table 4-2, Flag Register Symbals
Symbol Meaning
AF Auxiliary-Carry-Flag
CF Carry-Flag
DF Direction-Flag
1F Interrupt-Enable-Flag
OF Overflow-Flag
PF Parity-Flag
SF Sign-Flag
TF Trap-Flag
ZF Zero-Flag

4.2 Data Transfer Instructions

There ate four classes of data transfer operations: general purpose, accumulator
specific, addresg-object, and fag. Only SAHF and POPF affect flag settings. Note in
Table4-3 thatif acc = AL, abyteistransferred, butif acc = AX, awordis transferred,

Table 4-3. Data Transfer Instructions

Syntax | Result

N acc,numb8|numb16 Transfer data from input port by numb8 or
numb16 (0-2535) to accumulator.

N ace,DX Ttansfer data from input port given by DX
register (0-0FFFFH) to accumulator.

LAHEF Transfer flags to the AH register.

LDS regi6,mem Transfer the segment part of the memory
address (DWORD variable) to the DS segment
register; transfer the offset part to a general
purpose 16-bit register,

LEA reglé,mem Transfer the offset of the memory address to a
(16-bit) register.

LES regl6,mem Transfer the segment part of the memory
address to the ES segment register; transfer the
offsetpart to a 16-bit general purpose register.

B DIGITAL RESEARCH™

4-3

4.2 Dawm Trwasfer Instructions

Conctrrent CP/M-86 Utiliies Guide

Table 4-3. (comtinued)

Syntax | Result

MOV reg.memjrag Move memory or register to register.

MOV memireg,reg Move register to memory or register.

MOV memireg,numb Move immediate data to memory or register,

MOV segreg memjregls Move memory or register to segment register.

MOV mem|reg16,3cgreg Move segment register to memory or register.

our numb8&/numb16,acc Transfer data from accumulator to output port
(0-255) given by numb8 or numb16.

QuT DX, acc Transfer dat from accumulator to output port
(0-OFFFFH) given by DX register.

POP mem|reglé Move top stack element to memory or register.

POP segreg Move top stack clement to segment rogistor.
Note that CS segment register is not allowed.

POFF Transfer top stack elernent to flags.

PUSH mem|regls Move memory or register to top stack element.

PUSH SCEICE Move segment register to top stack clement.

PUSHF Transfer flags to top stack element.

SAHF Transfer the AH register to flags.

XCHG regmemireg Exchange register and memory ar register,

XCHG mem|reg,reg Exchange memory or register and register.

XLAT memi|reg Perform table lookup translation, table given
by mem|reg, which is always BX. Replaces
AL with AL offset from BX.

B DIGITAL RESEARCH™

Concurrent CP/M-86

Utilities Guide 4.3 Arithmeric, Logical, and Shift Instructions

4.3 Arithmetic, Logical, and Shift Instructions

The 8086 CPU performs the four basic mathematical operations in several different
ways. [t supports both 8-and 16-bit operations and also signed and unsigned arithmetic,

Six of the nine flag bits ave set or cleared by most arithmetic operations to reflect the
result of the operation. Table 4-4 summarizes the effects of arithmetic instructions on
flag bits. Table 4-5 defines arithmetic instructions. Table 4-6 defines logical and shift

instruections.
Table 4-4. Effects of Arithmetic Instructions on Flags
Blag Bit Result

CF set if the operation resulted in a carry out of (from addition) or a
borrow into (from subtraction) the high-order bit of the result.
Otherwise, CF is cleared.

AF set if the operation resulted in a carry out of (from addition) or a
borrow into { from subtraction) the low-order four bits of the resule.
Orherwise, AF is cleared.

ZF setif the result of the operation is zero. Othetwise, ZF iscleared.

Sk set if the result is negative.

PF sct if the modulo 2 sum of the low-order eight bits of che resulr of
the operation is 0 (even parity). Otherwise, PF is cleared (odd
parity).

OF set if the operation resulted in an overflow; the size of the result
exceeded the capacity of its destination.

A DIGITAL RESEARCH™

#.3 Arithmetic, Logical, and Shift Instructions Concurrent CP/M-86 Utilities Guide

Table 4-5. Arithmetic Instructions

Symrgx I Resulr
AAA Adjust unpacked BCD (ASCII) for addition;
adjusts AL,
AAD Adjust unpacked BCD (ASCII) for division;
adjusts AL.
AAM Adjust unpacked BCD (ASCII) for multiplica-
tion; adjusts AX.
AAS Adjust unpacked BCD (ASCI) subtraction;
adjusts AL.
ADC regmem|reg Add (with carry) memory or register to register.
1 ADC mem|reg,reg Add (with carry) register to memory or register, !
|
ADC meml|reg,iumb Add (with carry) immediate data to memory or |
register.
ADD reg,mem|reg Add memory or register to register.
{ ADD mem|reg,reg Add register to memory or register.
ADD mem|reg,numb Add immediate dats to memory or register.
CBW Convert byte in AL to word in AH by sign
extension.
CWD Convert word in AX to double word in DX/AX
by sign exrension.
CMP regmemireg Compare register with memoty or register.
CMP mern|reg,reg Compare memary ot register with register.
CMP mem|reg,numb Compare data constant with memory or
register.
DAA Decimal adjust for addidon; adjusts AL.
DAS Decimal adjust for subtraction; adjusts AL.

M DIGITAL RESEARCH™

Concurrent CP/M-86 Utilities Guide 4.3 Arithmetic, Logical, and Shift Instructions

Table 4-5. (continued)

Syntax Result
DEC mem]reg Subtract 1 from memory or register.
INC mem|reg Add 1 to memory or register.
DIV mem]reg Divide (unsigned) accumulator (AX or AL} by

memory or register. If byte results, AL = guo-
tient, AH = remainder. If word results,
AX = quotient, DX = remainder.

DIV mem|reg Divide (signed) accumulator {AX or AL) by
memory or register. Quotient and remainder
stored as in DIV.

IMUL memreg Multiply (signed) memory or register by
accumulator (AX or AL), Yfbyte, results in AH,
AL. If word, results in DX, AX,

MUL mem|reg Multiply {unsigned) memory or register by
accumulator (AX or AL). Results stored as
in IMUL.

NEG mem|reg Two's complement memory or register.

SBB reg,em|reg Subtract (with borrow) memory or register
from register.

SBB mem|reg,reg Subtract {with borrow) register from memory
OF register,

SEB mem|reg.numb Subtract (with borrow) immediate data from
memory or register.

SUB reg,memlreg Subtract memory or register from register.

SUB mem|reg,reg Subtract register from memory or register.

SUB mem|reg numb Subtract data constant from memory or
register.

& DIGITAL RESEARCH™

4-7

4.3 Arithmetic, Logical, and Shift Instructions

Concurrent CP/M-86 UtiliGes Guide

Table 46. Logical and Shift Instractions

Syntax] Result

AND reg.mem|reg Perform bitwise logical AND of a regisrer and
METAOTY Or register.

AND mem|reg,reg Perform bitwise logical AND of memory or
register and register.

AND mem|regnumb Perform bitwise logical AND of memory or
register and data constant,

NOT mem|reg Form one’s complement of memory or register.

OR reg,memireg Perform bitwise fogical OR of a register and
merory or register,

OR mem|reg,reg Perform bitwise logical OR of memaory or regis-
ter and register.

OR memjregnumb Perform bitwise logical OR of memory ragister
and data constant.

RCL merm|reg,1 Rotate memory ot register 1 bit lefr through
carry flag.

RCL mem|reg,CL Rotate memory or register left through carry
flag; number of bits given by CL register.

RCR mem|reg,1 Rotate memory or ragister 1 bit right through
carry flag.

RCR mem|reg,CL. Rotate memory or register right through carry
flag; number of bits given by CL register.

ROL memjreg,1 Rotate memory or register 1 bit loft.

ROL mem|reg, CL Rotate memory or register left; number of bits
given by CL register.

ROR mem|teg,1 Rotate mermnory or register 1 bit right.

ROR mem|reg,CL Rotate memory or register right; number of
bits given by CL register.

SAL memjreg,1 Shift memory ot register 1 bit lefr; shift in
low-order zero bits.

4-8

B DIGTTAL RESEARCH™

Concurrent CP/M-86 Utilities Guide

4.3 Arithmetic, Logical, and Shift Instructions

Table 4-6, (continued)

Result

Shift memory or register left; number of bits
given by CL register; shift in low-order zero
bits.

Shift memory or register 1 bit right; shift
in high-order bits equal to the original high-
order bit.

Shift memory or register right; number of bits
given by CL register; shift in high-order bits
equal to the original high-order bit.

Shift memory or register 1 bit left; shift in
low-order zero bits. Note that SHL is a different
mnemonic for SAL,

Shift memory or register left; number of bits
given by CL register; shift in low-order zero
bits. Nore that SHL is a different mnemonic
for SAL.

Shift memory or register 1 bit right; shift in
high-order zero bits.

Shift memory or register right; number of bits
given by CL register; shift in high-order zero
bits.

Perform bitwise logical AND of a register and
memory or register; set condition flags, but do
not change destination.

Perform bitwise logical AND of memory regis-
ter and register; ser condition flags, but do not
change destination.

Perform bitwise logical AND of memory regis-
ter and data constant; set condition flags, but
do not change destination.

Perform bitwise logical exchusive OR of a regis-
ter and memory or register.

Syntax
SAL mem|reg,CL
SAR memreg,1
SAR mem|reg,CL
SHL mem|reg,1
SHL memijreg,CL
SHR memlreg, 1
SHR memireg,CL
TEST reg,mem|reg
TEST memireg,Teg
TEST mem|reg,numb
XOR reg;memjreg
B DIGITAL RESEARCH™

49

4.3 Aritvnetic, Logical, and Shift Instructions Conturrent CP/M-86 Utilitics Guide

Table 46. (continued)

Syntax | Result
XOR mem|reg,reg Perform bitwise logical exclusive OR of mem-
ory register and register.
XOR mem|reg,numb Perform bitwise logical exclusive OR of mem-
ory register and data constant,

4.4 String Instructions

String instrucrions take zero, one, or two operands. The operands specify only the
'operand type, determining whether the operation is on bytes ot words. If thete ate two
operands, the source operand is addressad by the SI register and the dastinarion oparand
‘is addressed by the D1 register. The DI and SI registers are always used for addressing,
Note that for string operations, destinarion operands addressed by DI must always reside

in the Extre Segment (ES).

‘Fable 4-7. String Instructions

l

Result

Synizx
CMPS memireg,mem|reg
CMPSB
CMPSW

LODS mem|teg
LODSB

LODSW

Subtract source from destination; affect flags,
but do not return result,

An alternate mnemonic for CMPS, which
assumes a byte operand.

An alternate mnemonic for CMPS, which
asmmes a word operand.

Ttansfer a byte or word from the source
operand to the accumulator.

An alternate mnemonic for LODS, which
assumes a byte operand,

An alternate mnemonic for LODS, which
assumes a word operand.

B DIGITAL RESEARCH™

410

Concurrent CP/M-86 Utilities Guide

4.4 String Instrocrions

Table 4-7. (continued)

Resuir

Syntax
MOVS mem|reg,mem|reg
MOVSB

MOVSW

SCAS mem|reg

SCASB

SCASW

STOS memjreg

Move 1 byte (ot word) from source to destina-
tion.

An altemate mnemonic for MOVS, which
assumes a byte operand.

An altemate mnemenic for MOVS, which
assumes a word operand.

Subtract destination operand from accumu-
lator (AX or AL); affect flags, but do not return
resuit.

An alernate mnemonic for SCAS, which
assumes a byte operand.

An aliernate mnemonic for SCAS, which
assumes a word operand.

Transfer a byte or word from accumulator to
the destination operand.

STOSB An alternate mnemonic for STOS which
assumes a byte operand.

STOSW An alternate mnemonic for STOS which
assumes a word operand,

08 DIGITAL RESEARCH™

4-11

4.4 String Instructions Concurrent CP/M-86 Utilitiey Guide

Table 4-8 defines prefixes for etring instructions. A prefix repeats ite string instruction
the number of times contained in the CX register, which is decremenred by 1 for each
ireration. Prefix mnemonics precede the string instruction mnemonicin thestatement line.

Table 4-8. Prefix Ingtructions

Syntax Resnlt

REP Repeatuntil CX register is zero.

REPE Equalto REPZ.

REPNE Equal to REPNZ..

REPNZ Repeat until CX register is zero and zero flag (ZF) is zero.
REPZ Repeat until CX register is zero and zero flag (ZF) is not zero,

4.5 Control Transfer Instructions
There are four classes of control transfer instructions:

m calls, jumps, and returns
m conditional jumps

W jterational control

W interrupts

All control tremsfer instructions cause program execution to continue at some new
location in memoty, possibly in a new code segment. The transfer can be absolute or it
can depend upon a certain condition. Table 4-9 defines control transfer instructions. In
the definitions of conditional jumps, above and below refer to the relationship batwesn
unsigned values. Greater than and less than refer to the relationship between signed
values.

W DIGITAL RESEARCH™

412

Comcurrent CP/M-86 Utilities Guide 4.5 Control Transfer Instructions

Table 4-9. Control Transfer [nstructions
Syntax Resulr

CALL label Push the offset address of the next instruction
on the stack; jump to the target label.

CALL mem|reglé Push the offset address of the next instruction
on the stack; jump to locadon indicated by
contents of specified memory or ragister,

CALLF label Push CS segment register on the stack, push the
offset address of the next instruction on the
stack {after CS), and jump to the target label.

CALLF mem Push C8 register on the stack, push the offser
address of the next instruction on the stack,
and jump to location indicated by contents of
specified double word in memory,

INT numb8 Push the flag registers (as in PUSHF), clear TF
and [F flags, and transfer control with an in-
direct call through any one of the 256 interrupt-
vector clements, Uses three levels of stack.

INTO If OF (the overflow flag) is set, push the flag
registers (as in PUSHF), clear TF and IF flags,
and transfer control with an indirect call
through interrupt-vector element 4 (location
10H). If the OF flag is cleared, no operation
takes place,

IRET Transfer control to the return address saved by
a previous interrupt operation and restore
saved flag registers, as well as CS and IP. Pops
three levels of stack.

JA lab8 Jump if not below or equal or above ((CF or
ZF)=0).
JAE labg Jump if notbelow or above orequal { CF =0},
JB lab8 Jump ifbelow or notabove arequal (CF=1).
JBE labg Jump if below or equal or not above ((CF or
ZF)=1}.
B DIGITAL RESEARCH™

413

4.5 Controf Trsnsfer lortrnctions

Concurrent CP/M-86 Utilities Guide

Table 4-9. (continued)

Syntax [Result

JC lab3 Same as JB.

JCXZ lab8 Jump to target label if CX register is zero,

JE labg Jump if equal or zero (ZF=1).

IG labB Jump if not less or equal or greater {((SF xor
OF ot ZF) =0).

JGE lab8 Jump if not less or greater or equal {(SF xor
OF) =0).

I labg Jump if legs or not greater or equal {{SF xor
OF)=1).

JLE lab8 Jump if less or equal or not greater (((SF xor
OF)orZF) =1).

JMP label Jump to the targer label.

JMP mem|reg16 Jump to locaton indicated by contents of
spetified memory or register,

JMPE label Jump to the target label, possibly in another
code segment.

TMES 1ab3 Jump to the target label within 128 bytes
from instruction.

JNA lab8 Same as JBE.

JNAE labB Same as JB.

JNE lab8 Same as JAE.

JNBE lab8 Same as JA.

JNC lab8 Same as JNB.

JNE lab8 Jump i not equal or not zero (ZF=0).

NG lab8 Same as JLE.

B DIGITAL RESEARCH™

414

Concurrent CP/M-86 Utilities Guide

4.5 Comteol Tranafer Instructions

‘Table 4-9. (continued)

Syntax Result
INGE lab8 Same as JL.
JNL lab8 Same as JGE,
JNLE lab8 Same as JG.
JNO lab8 Jump if not overflow { OF =0,
JNP lzb8 Jump if not parity or parity odd.
JNS lab8 Jump if not sign.
JNZ lab8 Same as JNE.
Jo lab3 Jump if overflow { OF =1).
JP lab3 Jump if parity or parity even { PF=1),
JPE lab8 Same as JP.
JPO lab3 Same as JNP.
Js 1abg Jump if sign (SF=1).
JZ fab8 Same as JE.
LOOP lab8 Decrement CX register by one; jump to target
label if CX is not zero,
LOOPE lab8 Decrement CX register by one, jump 1o target
label if CX is not zero and the ZF flag is set,
Loop while zero or loop while equal,
LOOPNE 1ab8 Decrement CX register by one; jump 1o target
label if CX is not zero and ZF flag is cleared.
Loop while not zero or loop while not equal.
LOOPNZ lab8 Same as LOOPNE.
LOOPZ lab8 Same as LOOPE.
RET Return to the return address pushed by a pre-
vipus CALL instruction; increment stack
pointer by 2.
8 DIGITAL RESEARCH™

4-15

4.5 Conatrol Transfer Instructions

Concurrent CP/M-86 Udlities Guide

Table 4-9. (continued)

Result

Syntax
RET humb
RETF
RETF numb

Return to the addresa pushed by a previous
CALL; increment stack poinger by 2 +numb,
Return to the address pushed by a previous
CALLF instruction; increment stack pointer
by 4.

Return to the address pushed by a previous
CALLF instruction; increment stack pointer by
4+ numb.

4.6 Processor Control Instractions

Processor control instructions manipulate the flag registers, Moreover, some of these
instructions synchronize the 8086 CPU with external hardware.

‘Tabic 4-10. Processor Control Instructions

Syntax | Result

CLC Clear CF flag.

CLD Clear DF flag, causing string instructions to
suto-increment the operand pointers.

CLI Clear IF flag, disabling maskable external
intetrupts.

CMC Complement CF flag.

ESC numb§,mcmireg Do no operation other than compute the cffec-
tive address and place it on the address bus
{ESC is used by the 8087 numetic coprocessor).
numb8 must be in the range 0, 63.

HLT 8086 processor enters halt state until an inter-
rupt is recognized.

416

B DIGITAL RESEARCH™

Concarrent CP/M-86 Utilities Guide

4.6 Processor Conirol Instructions

Table 4-10, (continued)

Syntax Result

LOCK PREFIX instruction; cause the 8086 processor
to assert the buslock signal for the duration of
the operation cansed by the following instruc-
tion. The LOCK prefix instruction can precede
any other instruction. Buslock prevents co-
processors from gaining the bus; this is useful
for shared-resource semaphores.

NOFP No operation is performed,

STC Set CF flag.

STD Sct DF flag, causing string instructions to auto-
decrement the operand pointers,

ST1 Sec IF flag, enabling maskable external
incerrupts.

WAIT Cause the 8086 processor to enter a wait state
if the signal on its TEST pin is not asserted.

M DIGITAL RESEARCH™

417

4.7 Mnemonic Differcnces Concurrent CP/M-86 Utilitics Goide

4.7 Mbpemonic Differences

The CP/M 8086 assembler uses the same instruction moemonics as the Intel 8086

assembler excepe for explicitly specifying far and shorr jumps, calls, and returns. The
following table shows the four diffarences:

Table 4-11. Mnemonic Differences

MnemonicFunction | CPIM | Insel
Intrasegment shortjump: JMPS JMP
Intersegment jurnp: JMPFE JMP
[ntersegment return: RETF RET
[ntersegment call: CALLF CALL

End of Ssction 4

B DIGITAL RESEARCH™
4-18

Section $
Code-macro Facilities

5.1 Infroduction to Code-macros

A macro simplifies using the same block of instructions over and over again throughout
a program. ASM-86 does not support traditional assembly-language macros, but it does
allow you to define your own instructions by using the Code-macro directive. An ASM-86
Code-macro serds a bit stream to the output file, adding a new instruction to the
assembiler.

Like traditional macros, Code-macros are assembled wherever they appear in assembly
language code, but there the similaxity ends. Traditional macros contain assembly
language instructions, but a Code-macro contains only Code-macro directives. Macros
are usually defined in the user’s symbol table; ASM-86 Code-macros are defined in the
assembler’s symbol table.

Because ASM-86 treats a Code-macro as an instruction, you can start Code-macros
by using them as instructions in your program, The example below shows how to start
MAC™, an instruction defined by a Code-macro.

+

4

XCHG BX;WORD3
MAC J8R1 sPARZ
MLUL AX s WORD4A

Note that MAC accepts two operands. When MAC was defined, these two operands
were also classified by type, size, and so on by defining MAC’s formal parameters. The
names of formal parameters are not fixed. They are stand-ins that are replaced by the
names or values supplied as operands when the Code-macro starts. Thus, formal
parameters hold the place and indicate where and how to use the operands.

B DIGITAL RESEARCH™ 51

£.1 Introduction tn Code-macros Concurrent CP/M-86 Utilities Guide

The definition of a Code-macro starts with a line specifying its name and any formal
parameters:

CODEMACRO name [formal parameter list]
where the optional formal parameter list is defined:
formal name : specifier letter [modifier letter][range]

The formal name is not fixed, but represent a place holder, If formal parameter list is
present, the specifier letter is roquired and the modifier letter is optional. Possible
specifiers are A, C, D, E, M, R, §, and X. Possible modifier letters are b, d, w, and sb.
The aesembler ignores case except within strings, but this section shows specifiers in
upper-case and modifiers in lower-casc. Following sections describe specifiers, modifiers,
and the optional range in detail.

The body of the Code-macro describes the bit pattern and formal parameters. Only
the following directives are legal within Code-macros:

SEGFIX
NOSEGFIX
MODRM
RELRB
RELW

DB

DwW

bD

DRIT

These directives are imique to Code-macros. Those that appear to duplicate ASM-86
directives (DB, DW, and DD) bhave different meanings in Code-macro context. These
dirvectives are demailed in later sections. The definition of a Code-macro ends with a line:
EndM

CedeMacro, EndM, and the Code-macro directives are all reserved words. Code-

macro definition syntax is defined in Backus-Naur-like form in Appendix G. The
following examples are 1ypical Code-macro definitions.

B BIGITAL RESEARCH™

Concurrent CP/M-86 Utilities Guide 5.1 Introduction to Code-macros

CodeMaors AAA
g 37H
EndM

CodeMacgro DIV divisor:Eb
SEGFIX divisor

DB BFH
MODRM daivisor
EndHM

CaodaMacra ESC opcade: Db(O:B3)+stre+Eb
SEGFIX s5rc
DBIT 5 [1BH):3 {(opPcode(3))
MODRM oFcode:stre

EndM

5.2 Specifiers

Every formal parameter must have a specifier letter that indicates the type of operand
needed to match the formal parameter. Table 5-1 defines the eight possible specifier
letters.

Table 5-1. Code-macro Operand Specificrs

Letter Operand Type
A Accumulator register, AX or AL,
c Code, a label expression only.
D Data, a number to be used as an immediate valne.
E Effective address, either an M (memory address) or an R (register).
M Mcmory address. This can be either a variable or a bracketed register
cxpression.
R A gencral register only.
) Segment register only.
X A direct memory reference.
B DIGITAL RESEARCH™

5-3

5.3 Modifiers Concurrent CP/M-86 Utilities Guide

5.3 Modifiers

The optional maodifier letter is a further requirement on the operand. The meaning of
the modifier letter depends on the type of the operand. For variables, the modifier requires
the operand to be of type b for byte, w for word, d for double-word, and sb for signed
byte. For numbers, the maodifiers require the number ta be of a certain size: b for —256
to 255 and w for other numbers, Table 5-2 summarizes Code-macro modifiers.

Table 5-2. Code-macro Operand Modifiers

Variables Numbers
Modifier | Type Modifier J Size
b byte b -256 to 253
w word w anything elee
d dword
sb signed
byte

5.4 Range Specifiers

The aptional range is specified in parentheses by one expression, or by two expressions
separated by a comma. The following are valid formars:

(numberh)

(register)
(rumberb,numberb)
{numberb, register)
{register,numberh)
(register,register)

Numberh is 8-bit number, not an address. The following example specifies that the
input port must be idendfied by the DX register:

CodeMacro INdstz:Awsrrart:Ruw(lX)

E DIGITAL RESEARCH™

54

Concurrent CP/M-86 Utilities Guide 5.4 Range Specifiers

The next example specifies that the CL register is to contain the count of rotarion:

CodeMacro ROR dst:Ewscaunt:Rb{(CL?>

The last example specifies that the opcode is to be immediate data and ranges from 0 to
63, inclusive:

CadeMacro ESC oPcodesDb(0OBE3)12dds1Eb

5.5 Code-macro Directives

Code-macro directives define the bit pattern and make further requirements on how
the operand is to be treated. Directives are reserved words. Those that appear to duplicate
assembly language instructions have different meanings in a Code-macro definition.
Only the nine directives defined here are legal in Code-macro definitions.

5.5.1 SEGFIX

If SEGFIX is present, it instructs the assembler to determine whether a segment-over-
ride prefix byte is needed to access a given memory location. If so, it is output as the
first byte of the instruction. If not, no action is taken. SEGFIX takes the form:

SEGFIX formal name

where formal name is the name of a formal parameter that represents the memory

address. Because it represents a memory address, the formal parameter must have one
of the specifiers E, M, or X,

5.5.2 NOSEGFIX

Use NOSEGFIX for operands in instructions that must use the ES register for that
operand. This applies only to the destination operand of these instructions: CMPS,
MOVS, SCAS, and STOS. The form of NOSEGFIX is

NOSEGFIX segreg,formal name

B DIGITAL RESEARCH™

55

5.5 Code-macro Directives Concurrent CP/M-86 Utilities Guide

where segreg is one of the segment registers ES, CS, 85, or DS and formal name is the
name of the memory-addrese formal parameter, which must have a gpecifier E, M, or
X. No code is generated from this directive, but an error check is performed. The
following is an example of NOSEGFIX use:

CodeMacro MOVS si_PtreEwrdi_pPtriEw
NDBEGFIX EBi:di_ptr
SEGFIX #i_mtr
DB DASH

EndM

553 MODRM

This directive instructs the assembler to generate the MODRM byte that follows the
opcode byte in many 8086 instructions. The MODEM byte contains either the indexing
type or the register number to be used in the instruction. It also specifies the register to
be used or gives more information to specify an ingtruction,

The MODRM byte carries the information in three fields, The mod field occupies the
two most significant bite of the byte and combines with the register memory field to
form 32 possible values: 8 registers and 24 indexing modes.

The reg field occupies the three next bits following the mod field. It specifies either &
register number or three more bits of opcode information. The meaning of the reg field
is determnined by the opcode byte.

The register memory field occupies the last three bits of the byte. It specifics a register
as the location of an operand or forms a part of the address-mode in combination with
the mod field described above.

For further information on 8086 instructions and their bit patterns, see the Intcl 2085
Assembly Language Programming Manual and the Intel 8086 Family User's Manual.

The forms of MODRM are:

MODEM formal name, formal name
MODRM NUMBER7, formal name

W DIGITAL RESEARCH™
5-6

Concurrent CP/M-86 Utilities Guide 5.5 Code-macro Directives

where NUMBERY7 is a value 0 to 7 inclusive, and formal name is the name of 2 formal
parameter. The following examples show how to use MODRM:

CodeMacro RCR dst:Ewrcount:RbB(CL)

SEGFIX dst
DB CD3H
MODRM 3i:dst
EndM
CodeMacro OR dst:RwssrociEw
SECFIX & IC
DB OBH
MODRM dstisrc
EndM

5.5.4 RELB and RELW

These directives, used in IP-relative branch instructions, instruct the assermnbler to
generate displacement between the end of the instruction and the label supplied as an
operand. RELB generates one byte and RELW two bytes of displacement. The directives
take the following forms:

RELB formal name
RELW formal name

where formal name is the name of a formal parameter with a C (code) specifier. For
cxample,

CodeMacro LOOP elace:zCh

DB QEZ2H
RELB Rlace
EndM
W DIGITAL RESEARCH™

5.5 Code-macro Directives Concurrent CP/M-86 Utilities Guide

5.5.5 DB,DW,and DD

These directives differ from those that occur outside of Code-macros. The forms of
the directives arc

DB formal name | NUMBERB
DW formal name | NUMBERW
DD forral name

where NUMBERS is a single-byte number, NUMBERW is a two-byte number, and
formal name is a name of a formal parametgr, For example,

CodeMacrn XOR dst:EwssrceDb

SECGFIX dst
oB B1H
MODRM Basdst
DU ErD
EndM
5.5.6 DBIT

This directive manipulates bits in combinations of a byte or less. The form is
DBIT fieid description|,field description]
where a field description has two forms:

numbser combination
number (formal name{rshift))

number ranges from 1 to 16 and specifies the number of bits to be set, Combination
specifies the desired bit combination. The total of all the numbers listed in the field
descriptions must not exceed 16, The second form shown above contains formal name,

@ DIGITAL RESEARCH™
53

Concurrent CP/M-86 Utilities Guide 5.5 Code-macro Divectives

a formal parameter name instructing the assembler to put a certain number in the
specified position, This number usually refers to the registor specified in the first line of
the Code-macro, The numbers used in this special case for each register are

Al:
CL:
DL:
BL:
AH:
CH:
DH:
BH:
AX:
CX:
DX:
BX:
Sp:
BP:
SI:
DI:
ES:
Cs:
§65:
DS:

WhRO~-IOnNWMbAWKE OS]0 WU6L.AWBNRD

A rshift, contained in the innermost parentheses specifies a tumber of right shifts,
For example, 0 specifies no shift, 1 shifs right one bit, 2 shifts right two bits, and so
on. The following definition uscs this form:

CodeMacro DEC dstiRw
DBIT S(S8H) ,3{dst{(0))
EndM

S DIGITAL RESEARCH™
5-5

5.5 Coade-macro Directives Concarrent CP/M-86 Utilities Guide

‘The first five bits of the byre have the value 9H, If the remaining bits are zero, the hex
value of the byte will be 48H. If the instruction

DEC oX

iz assembled and DX hes a value of 2H, then 48H + 2H == 4AH, the final value of the
byte for execution. If this sequence had been present in the definition

DBIT 5 (89H) +3{dst (1))

then the register nrumber would have been shifted right once, and the result would had
been 48H + 1H = 49H, which is erronecus.

End of Section §

M DIGITAL RESEARCH™
5-10

Section 6
DDT-86

6.1 DDT-86 Operation

The DDT-B6 progtam allows you to test and debug programs interactively in a
Concurrent CP/M-386 environment, You should be familiar with the 8086 processor,
ASM-86, and the Concurrent CP/M-86 operating system before using DDT-26.

6.1.1 Starting DDT-86
Start DD'T-86 by entering a command in one of the following forms:

DDT86
DDT86 flename

The first command simply loads and execures DDT-86. After displaying its sign-on
message and the prompt characrer (-), DDT-86 is ready to accept operator commands,
The second command is similar to the first, except that after DDT-86 is loaded it loads
the file specified by filename. If the filetype is omitted from the filename, .CMD is
assumed. Note that DDT-86 cannot load a file of type .H86. The second form of the
starting command is equivalent to the sequence:

A»DDTBE
DDTBE x+%
-E filenamne

At this point, the program that was loaded is ready for execution.

6.1.2 DDT-86 Command Conventions

When DD'T-86 is ready to accept a command, it prompts the operator with a hyphen {-).
In pesponse, you can type a command line, or a CTRL-C to end the debugging session.
See Section 6.1.4. A command line can have up to 64 characters and must terminate with
a carriage return. While entering the command, use standard CP/M line-editing funcrions,
such as CTRL-X, CTRL-H, and CTRL-R, to correct typing errors. DDT-86 does not process
the command line untif you enter a carriage return,

0 DIGITAL RESEARCH™
6-1

6.1 DDT-86 Operation Concarrent CP/M-86 Utilities Guide

The first character of each command line determines the command scdon. Table 6.1
summarizes DDT-86 commands. DDT-86 commands are defined individually in
Section 6.2,

Table 6-1. DDT-86 Command Sommary
Action

Enter aszembly language statements.
Compare blocks of memory.

Display memory in hexadecimal and ASCII.
Load program for execution.

Fill memaory block with a copstant.

Begin execution with optional breakpoints,
Hexadecimal arithmetic.

Sctup File Control Block and command tail.
List memory wsing 8086 mnemonics.

Move memory block.

Read 'O port.

Write VO port.

Rrad disk file into memory.

Set memeory to new values.

Search for string.

Trace program execution.

Untraced program monitoring.

Show memory layout of disk file read.

‘Write contents of memory block to disk.
Examine and modify CPU state.

xq<c~l;mwgggr~mnmmuw> g

The command character can be followed by one or more arguments. Thase can be
hexadecimal values, filenames, or other informarion, dapending on the command.
Argnments are separated from each other by commas or spaces. No spaces are allowed
between the command character and the first argument.

B DIGITAL RESEARCH™

6-2

Concurrent CP/M-86 Usilitics Guide 6.1 DDT-86 Operstion

6.1.3 Specifying a 20-Bit Address

Most DDT-86 commands require one or more addresses as operands. Because the
8086 can address up to 1 megabyte of memory, addresses muse be 20-bit yalues. Enter
a 20-bit address as follows:

85§5:0000

where ssss represents an optional 16-bit segment number and ocoo is a 16-bit offset.
DDT-86 combines these values to produce a 20-bit effective address as follows:

§85s0
+ 0000
cees

The optional value ssss can be a 16-bit hexadecimal value or the name of a segment
register, If a segment register name is specified, the value of ssss is the contents of that
register in the user’s CPU state, as indicated by the X command. If omitted, the value
of ssss is a defanlt value appropriate to the command being executed, as described in
Section 6.3.

6.1.4 Terminating DDT-86

Terminate DDT-86 by typing a CTRL-C in response to the hyphen prompt. This
returns control to the CCP. Note that Conecurtent CP/M-86 does not have the SAVE
facility found in CP/M for 8-bit machines, Thus if DDT-86 is used to patch a file, write
the file 1o disk using the W command before exiting DDT-86.

6.1.5 DDT-86 Operation with Interrupts

DDT-86 operates with interrupts enabled or disabled and preserves the interrupt state
of the program being executed under DDT-84. When DDT-86 has control of the CPU,
cither when it starts, or when it regains control from the program being tested, the
condition of the interrupt flag is the same as it was when DDT-86 started, except fora
few critical regions where interrupts are disabled. While the program being tested has
control of the CPU, the user’s CPU state, which can be displayed with the X command,
determines the state of the interrupt flag.

B DIGITAL RESEARCH™

62 DDT-86 Commands Concurrent CP/M-86 Utilities Guide

6.2 DDT-86 Commands

This section defines DDT-86 commands and their arguments. DDT-86 cammands
give you control of program exccution and allow you to display and modify system
memory and the CPU state.

6.2.1 The A (Assemble) Command

The A command assembles 8086 mnemonics directly into memory. The form is
Ag

where & is the 20-bit address where assembly is to start. DDT-86 responds to the A
command by displaying the address of the memory location where assembly is to begin.
At this point the operator enters assernbly langnage statements as described in Section
2.8, When a statement is entered, DDT-86 converts it to binary, places the values in
memory, and displays the address of the next availabls memory location. This process
continues untl you enter a biank line or a line containing only a period.

DDT-86 responds to invalid statements by displaying a question mark ? and redisplay-
ing the current assembly address.

6.2.2 The B (Block Comnpare) Command

The B command compares two blocks of memory and displays any differences on the
screen. The form is

Bsl,f1,52
where 51 is the 20-bit address of the start of the first block; f1 is the offset of the final
byte of the first block, and s2 is the 20-bit sddress of the start of the second block, I
the segment is not specified in 52, the same valuc is used that was used for sl.
Any differences in the two blocks are displayed at the screen in the following form:
sl:olbl s2:02 b2

where sl:01 and s2:02 aere the addresses in the blocks; b1 and b2 are the values at the
indicated addresses. i no differences arc displayed, the blocks are identical.

B DIGITAL RESEARCH™

Concuryent CP/M-86 Utilitics Gnide 6.2 DDT-86 Commands

6.2.3 The D {Display} Command

The D command displays the contents of memory as 8-bit or 16-bit values and in
ASCIIL The forms are

D

Ds
Ds,f
DW
DWs
DWs,f

where 5 is the 20-bit address where the display is to start, and f is the 16-bit offset within
the segment specified in s where the display is to finish.

Memory is displayed on one or more display lines. Each display line shows the values
of up to 16 memory locations. For the first three forms, the display line appears as
foliows:

ssss:oooobbbb.,.bbec. .. c

where ssss is the segment being displayed and oooo is the offset within segment ssss.
The bb's represent the contents of the memory locations in hexadecimal, and the c¢'s
represent the contents of memory in ASCIL. Any nongraphic ASCII characters are
represented by periods,

In response to the first form shown above, DDT-86 displays memory from the current
display address for 12 display lines. The response to the second form is similar to the
first, except that the display address is first set to the 20-bit addrass s. The third form
displays the memory block between locations s and f, The next three forms are analogous
to the first three, except that the contents of memory are displayed as 16-bit values,
rather than 8-bit values, as shown below:

5855:0000 WWWW WWWW ... WWWW OCCC...CC

During a long display, you car abort the D command by typing any character at the
console.

M DIGITAL RESEARCH™
6-5

6.2 DDT-86 Commands Coocurreat CF/M-86 Utilities Guide

6.2.4 TheE (Load for Execution) Command
The E command loads a fils into memory so that a subsequent G, T, or U command
can begin program execution. The E command takes the forms;

E filename
E

where filename is the name of the file to be loaded. If no filetype is specified, .CMD is
assumed, The contents of the user segment regisrers and [P vegister are aleered according
to the information in the header of the file loaded.

An E command releases blocks of memory allocated by previous E or R commands
or by programs executed under DDT-86. Thus only one fil= at time can be loaded for
execution.

'When the load is complete, DDT-86 displays the start and end addresses of each
scgnentin thefile loaded, Usethe V command to redisplay this infonnation at a later time,

If the file does not exist or cannot be snccessfully loaded in the available memory,
DDT-36 issues an error message. Files are cdosed after an E command.

E with no filenaroe frees ¢ll mesnory allocations mede by DDT-86, withoutloading a file.
6.2.5 ‘TheF (Fill) Command

The F command §llg an area of memory with a byte or word constant, The forms are

Fyfb
FWefw

where 8 is a 20-bit starting address of the block to be filled, and f is a 16-bit offset of
the fina] bryte of the black in the segment specified in 5.

In response to the first form, DDT-86 stores the 8-bit value b in locationa s through f.
In the second form, the 16-bit value w is stored in locations s through f in standard form,
low 8 bits first, followed by high 8 hits.

If s is greater than f or the value b is greater than 2355, DDT-86 responds with a

question mark. DDT-86 issucs an error message if the value stored in memory cannot
be read back successfully, indicating faulty or nonexistent RAM at the Jocation indicated.

M DIGITAL RESEARCH™

6-5

Concurrent CP/M-86 Utilitics Guide 6.2 DDT-86 Commands

6.2.6 The G (Go) Command

The G command transfers control to the program heing tested and optionally sets one
or two breskpoints. The forms are

G

Gb1
G,b1,b2
Gs

Gs,b1
Gs,b1,b2

where 3is & 20-bit address where program execution is to start, and b1 and b2 are 20-hit
addresses of breakpoints. If no segment valuc is supplicd for any of these three addresses,
the segment value defaules co the contents of the CS register,

In the first three forms, no starting address is specified, so DDT-86 derives the 20-bit
address from the user’s TS and IP registers. The first form transfers control to your
program without setting any breakpoints, The next two forms set one and two break-
points, respectively, before passing control to your program. The next three forms are
analogous to the first three, except that your C5 and IP registers are first set to s.

Once control has been ransferred to the program under test, it executes in real time
until a breakpoint is encountered. At this point, DDT-86 regains control, clears ail
breakpoints, and indicates the address at which execution of the program under test was
intertupted as follows:

*5885:0000
where ssss corresponds to the CS, and oooo corresponds to the IP where the break

occurred. When a breakpoint returns control to DDT-86, the instruction at the break-
point address has not yet been executed.

B DIGITAL RESEARCH™ o7

6.2 DDT-36 Commands Concurrent CP/M-86 Utlities Guide

6.2.7 'The H (Hexadecinnal Math) Command

The H command cotnputes the sum and difference of rwo 16-bit values. The form is
shown below:

Hab

where a and b are the values the sum and difference of which are being compured.
DDT-86 displays the sum (ssss) and the difference {dddd} truncated 1o 16 bits on the
next line, as shown below!:

ssss dddd

6.2.8 TheI (Input Command Taill} Command

The | command prepares a File Control Block and command tail buffer in DDT-86%
Base Page and copies this information into the Base Page of the last file loaded with the
E command. The I command takes the form:

1 command tail

where command tail is a character string which usually contains one or more filenames.
The firsr filename is parsed ineo the defaule File Conzrol Block at 005CH. The optional
second filename, if specified, is parsed into the second part of the default Fil= Control
Block beginning ar 006CH. The characters in command tail are also copied into the
defanlt command buffer at 0080H. The length of command rail is stored at 0080H,
followed by the character string ending with a binary zero.

If a file has been loaded with the E command, DDT-86 copies the File Control Block
and command buffer from the Base Page of DDT-86 to the Base Page of the program
loaded. The location of DDT-86’s Base Page can be obteined from the 16-bit value at
absolute memory location 0:6. The location of the Basa Page of a program loaded with
the E command is the value displayed for DS upon completion of the program load.

6.2.9 TheL {List) Commuand

The L. command lists the contents of memory in assembly langnage. The forms are

L

Ls
Lsf

W DIGITAL RESEARCH™

Concurrent CP/M-86 Utlities Gunide 6.2 DDT-86 Commands

where s is a 20-bit address where the list is to start, and f is a 16-bit offset within the
segment specified in s where the list is to finish.

The first form lists twelve lines of disassembled machine code from the current list
address. The second form sets the list address to s and then lists twelve lines of code.
The last form lists disassembled code from s through f. In all three cases, the list address
is set to the nexr unlisted locarion in preparation for a subsequent L command. When
DDT-86 regains control from a program being rested (see G, T, and U commands), the
list address is ser ro the current value of the CS and IP regisrers.

Long displays can be abored by typing any key during the list process. Or, enter
CTRL-S to halr the display temporarily.

6.2.10 The M (Move) Command

The M command moves a block of data values from one area of memory to another.
The form is

Ms,id

where s is the 20-bit starting address of the block to be moved, { is the offset of the final
byte to be moved within the segment described by s, and d is the 20-bit address of the
first byte of the area o receive the data. If the segment is not specified in d, the same
value is used that was used for 8. Note that if d is between s and £, part of the block
being moved will be overwritten before it is moved because data is transferred starting
from locarion s.

6.2.11 The QI, QO (Query /O) Commands

The QI and QO commands allow access to any of the 65,536 input/output ports, The
QI command reads data from a port; the QO command writes data to a port. The forms
of the QI command are

QIn
QFWn

where n is the 16-bit port number. In the first case, DD'T-86 displays the 8-bit value read
from port n. In the second case, DDT-86 displays a 16-bit value from port n.

8 DIGITAL RESEARCH™

59

6.2 DDT-86 Commands Concurrent CP/M-86 Utilities Guide

The forms of the QO command are

QOn,¥
QOWn,v

where n is the 1&-bit port number, and v is the value to output. In the first case, the 8-bit
value v is written to port n. [f v is greater than 255, DDT-86 responds with 2 question
mark. In the second case, the 16-bit value v is written to port n.

6.2.12 TheR (Read) Command
The R command reads a file into a contiguous block of memory. The forms are

R filename
R flename,;e

where filename is the name and type of the file to be read, and 5 is the location to which
the file is read. The first form lets DDT-86 determine the memory location into which
the file is read.

The sccond form eells DDT-86 to read the file into the memory segment beginning at
s. This address can have the standard form (ssss:0000). The low-order four bits of & are
assumned to be zero, so DIDT-86 reads files on a paragraph boundary. If the memory at
s is not available, DDT-86 issues the message:

MEMORY REQUEBT DENIED

DDT-B6 reads the file into memory and displays the start and end addresses of the
block of memory occupied by the file. A V command can redisplay this information at
a later time. The defaule displsy pointer {f or subsequent D commands) is set to the start
of the block occupied by the file,

The R command does not free any memory previously allocated by another R or E
command. Thus a oumber of files can be read into memory without overlapping.

1f the file does not exist or there is not enough memory to load the file, DDT-86 issucs
an error message. Files are closed after an R command, even if an error occurs,

B DIGITAL RESEARCH™

6-10

Concurrent CP/M-86 Utilities Guide 6.2 DDT-86 Commands

The following are examples of the R command, followed by a brief explanation.
rddt86. omd Read file DDT86.CMD into memory.
rtest Read file TEST into memory.

rtest 1 1000:0 Readfile TEST into memory,starting
atlocation 1000:0.

6,2.13 'The S {Set) Command
The § command can change the contents of bytes or words of memoty. The forms are

Ss
SWs

where g is the 20-bir address wheve the change is to occur.

DDT-86 displays the memory address and its current contents on the following line,
[n response to the first form, the display is

ssss:0000 bb
In response to the second form, the display is
58§5:0000 WWWW
where bb and wwww are the contents of memory in byte and word formats, respectively.
In response to one of the above displays, the operator can choose to alter the memory
location or to leave it unchanged. If a valid hexadecimal value is entered, the contents

of the hyte or word in memory is replaced with the value. If no value is entered, the

contents of memory are unaffected, and the contents of the next address are displayed.
In either case, DDT-86 continues to display successive memory addresses and values
until either a period or an invalid value is entered.

DIT-86 issues an error message if the value stored in memory cannot be read back
successfully, indicating faulry or nonexistent RAM at the location indicated.

B DIGITAL RESEARCH™
&11

6.2 DDT-86 Commands Concurrent CP/M-86 Uiilities Gmde

6.2.14 The SR (Search) Command

The SR (Search) command searches a block of memory for a given pattern of noumeric
or ASCII values and lists the addresses where the pattern occurs, The form is

SRs.f,pattem

where s is the 20-bit starting address of the block to be searched, f is the offset of the
final address of the block, and pattern i a list of one or more hexadecimal values and/or
ASCII grrings. ASCII strings are enclosed in double quotes and can be any length.
For example,

SRZ00 300" The form" +0d10a

For each occurrence of pattern, DDT-86 displays the 20-bit address of the first byte
of the pattern, in the form:

858810000
If no addreases are listed, pattern was not found.

6.2.15 The T {Trace) Command

The T command traces program exccution for 1 to 0FFFFH program steps. The
forms are

T
Tn
TS
TSn

where n is the number of instrucrions to execute before returning control to the console,

Before an instruction is executed, DDT-86 displays the current CPU state and the
digassembled instruction. In the first rwo forms, the segment registers are not displayed,
allowing the entire CPU state to be displayed on one line. The next two forms are
anslogous o the first two, except thetall the registers are displayed, forcing the diszssem-
bled instruction to be displayed on the next line, as in the X command.

B DIGITAL RESEARCET™
&12

Concurrent CP/M-86 Utilities Guide 6.2 DDT-85 Commands

In all of the forms, control transfers to the program under test at the address indicated
by the CS and IP registers, If n is not specified, one instruction is executed. Otherwise,
DDT-86 executes n instructions, displaying the CPU state before each step. A long trace
can be aborted before n steps have been executed by pressing any character at the console.

After a T command, the list address used in the L command is set to the address of
the next instruction to be executed.

Note that DDT-86 does not trace through a BDOS interruprt instrucrion because
DDT-86 itself makes BDOS calls, and the BDOS is not reentrant. Instead, the entire
sequence of insttuctions from the BDOS interrupt through the return from BDOS is
treated as one traced insrruction.

6.2.16 The U (Untrace) Command

The U command is identical to the T command except that the CPU state is displayed
only before the first instruction is executed, rather than before every step. The forms are

1]
Un
Uus
USn

where n is the number of instructions to execute before returning control to the console.
The U command can be aborred before n steps have been executed by pressing any key
at the console.

62.17 The V (Valae) Command

The V command displays information about the last file loaded with the E or R
commands. The form is

v

If the last file was loaded with the E command, the V command displays the start and
end addresses of each of the segments concained in che file. If che last file was read with
the R command, the V command displays the start and end addresses of the block of
memory where the file was read. If neither the R nor E commands have been used,
DDT-86 responds to the V command with a question mark.

B DIGITAL RESEARCH™
6-13

6.2 DDT-35 Commands Concurrent CP/M-86 Utilities Gaide

6.2.18 The W {Write} Command

The W command writes the contents of a contiguous block of memory to disk. The
forms are

W filename
W filename,s,f

where filename is the filename and filstype of the disk file to receive the data, and s and
f are the 20-bir first and last addregses of the block to be written. If the sagment is not
specified in f, DIDT-86 uses the same value that was used for s.

If the first form is used, DDT-86 assumes the & and f values from the last file read with

an R command. If no file was read with an R command, DIDT-86 responds with a
question mark. This fonm is wseful for writing out files after patches have been installed,
assuming the overall kngth of the file is unchanged.

In the second form where s and f are specified as 20-bit addresses, the low four bits
of 3 are assumed to be 0, Thus the block being written must always start on a paragraph
boundary.

If a file by the name specified in the W command already exists, DDT-86 deletes it
before writing a new fle.

62.19 The X (Examine CPU State) Command

The X command allows the operator to examine and alter the CPU state of the
program under test. The forms are

X
Xr
Xf

where r is the name of one of the 8086 CPU registers, and f is the abbreviation of one
of the CPU flags. The firet form displays the CPU state in the format:

AX BX CX...58 ES IP
ingtruction

M DIGITAL RESRARCH™

6-14

Concurrent CP/M-86 Utilities Guide 6.2 DDT-86 Commands

The nine hyphens at the beginning of the line indicate the state of the nine CPU flags.
Hach position can be a hyphen, indicating that the corresponding fag is not set (0), or
a 1-character abbreviation of the flag name, indicating that the flag is set (1). The
abbreviations of the flag names are shown in Table 6-2.

Instruction is the disassembled instruction at the next location to be executed, indicated
by the CS and IP registers.

Table 6-2. Flag Name Abbreviations

Character l Name
O Overflow
D Direction
1 Interrupt Enable
T Trap
s Sign
Z Zero
A Auxiliary Carry
P Parity
C Carty

The second form allows the operator to alter the registers in the CPU state of the
program being tested. The r following the X is the name of one of the 16-bit CPU registers.
DDT-86 responds by displaying the name of the register, followed by its current value.
If a carriage return is typed, the value of the register is not changed. If a valid value is
typed, the contents of the register are changed to that value. In cither case, the next
register is then displayed. This process continues until 2 period or an invalid value is
entered, or until the last register is displayed.

Fhe thizd form allows the operator to alter one of the flags in the CPU state of the
program being tested. DDT-86 responds by displaying the name of the flag, followed
by its current state, If a carriage return is typed, the state of the flag is not changed. I 2
valid value is typed, the state of the flag is changed to that value, Only one flag can be
examined or altered with each Xf command, Set or reset flags by enteringa value of 1 or 0.

After an X command, the typel and type2 segment values are set to the contents of
the CS and DS registers, respectively.

B DIGITAL RESEARCH™
6-15

6.3 Defauolt Segment Values Coocmrent CP/M-86 Utilities Guide

6.3 Default Segment Values

DDT-86 has an internal mechanism that keeps track of the current segment value,
making segment specification an optional part of a DDT-86 command. DDT-86 divides
the command set into two types of commands, according to which segment a command
defaults if no segment velue is specified in the command line.

The first type of command pertaing to the Code Segment: A (Assemble), L (List
Mnemonics), and W (Write). These commands use the internal typel segment value if
no scgment value is specified in the command.

‘When started, DDT-86 sets the typel segment value to 0 and changes it when one of
the following actions is taken:

W When & file i loaded by an E command, DD'T-86 sets the typel segment value
ta the value of the C8 register,

B When a file is read by an R command, DDT-86 sets the typel segment value to
the base segment where the file was read.

W After an X command, the typel and type2 segment values are set to the contents
of the CS and DS registers, respectively.

8 When DDT-86 regaing control from a user program after a G, T or U command,
it pets the rypel segment value to the value of the CS register.

M When a segment value is specified explicitly in an A or L. command, DDT-86
sets the typel segment value to the segment value specified.

The second type of command pertaing to the Data Segment: B (Block Compare},
D (Display), F (Fill), M (Move), S (Set), and SR (Search). These commands use the
internal type2 segment value if no scgment value is specified in the command.

When started, DIYT-86 sets the typel segment value to 0 and changes it when one of
the following actions is taken:

B When a file is loaded by an E command, DDT-86 scts the type2 segment value
to the value of the DS register,

B When a file is read by an R command, DDT-86 sets the type2 segment value to
the base segment where the file was read.

® When an X command changes the value of the DS register, DDT-86 changes the
typel segment value to the new value of the DS register.

B DIGITAL BESEARCH™

6-1¢

Concurrent CP/M-86 Utilities Guide 6.3 Dcfanlt Segment Values

B When DDT-86 regeins contzol from a user program aftera G, T, or U command,
it sets the type2 segment value to the valne of the DS register.

B When a segment value is specified explicitly in a B, D, F, M, §, or SR com-
mand, DDT-86 scts the type2 segiment value to the segment value specified.

When evaluating programs that use identical values in the CS and DS registers, all
DDT-86 commands default to the same segment value unless explicitly overridden.

Note that the G {Go) command does not fall inro either group because it defaults to
the C8 register.

Table 6-3 summarizes DDT-86% default segment values.

Table 6-3. DDT-86 Default Segment Vaiues

Command type-1 type-2
A x
B x
D x
E c c
F x
G < c
H
I
L b4
M x
R ¢ c
S x
SR X
T ¢ c
u C c
v
W x
X ¢ c

x — Use this segment default if none specified; change default if
specified explicitly.

¢ — Change this segment default.

B DIGITAL RESEARCH™
6-17

&4 Syntax Concarrent CP/M-86 Utilities Guide

6.4 Assembly Language Syntax for A and L. Commands

The syntax of the assembly language statements used in the A and 1. commands is
standard 803€ assembly language. Several minor exceptions are listed below.

® DDT-86 assumes that all numeric values entered are hexadecimal.

u Up to three prefixes (LOCK, repear, segment override) can appeas in one state-
ment, but they all must precede the opcode of the statement. Alternarely, 2 prefix
can be entered on a line by itsalf,

m The distinction between byte and word string instructions is made as follows:
byte word

LODSB LODSW
STOSB STOSW
SCASB SCASW
MOVSB MOVSW
CMPSE CMPSW

The mnemonics for near and far control transfer instructions are as follows:
short normal far

JMPS JMP JMFF
CALL CALLF
RET RETF

® If the operand of a CALLF or JMPF instruction is a 20-bit absolute address, it
is entered in the form:

SESBON00

where sass is the segment and oooo is the offsct of the address.

W Operands that could refer either to a byte or word are ambignous and must be
preceded by zither the prefix BYTE or WORD. These prefixes can be abbreviated
BY and WO. For example,

INC BYTE [BP]
NQT WORD £12341]

Failure to supply a prefix when needed results in an error message.

618

@ DIGITAL NESEARCH™

Concurrent CP/M-86 Utilities Guide 6.4 Syntax

B Operands that address memory divectly are enclosed in square brackets to
distinguish them from immediate values, For example,

ADD AX 3 jadd S to register AX
ADD AX :L5] fadd the contents af location 5 ta AX

B The forms of rogister indirect memory operands are
[pointer register]
[index register]
[pointer register + index register]

where the pointer registers are BX and BP, and the index registers are SI and DI
Any of these forms can be preceded by a numeric offset. For example,

ADD BX+[BF+EI]
ADD BX +3[BP+SI1]
ARD BX:1D47[BP+8L 3

6.5 DDT-86 Sample Session

In the following sample session, you interactively debug a simple sort program.
Comments explain the steps involved,

B DIGITAL RESEARCH™

6-19

6.5 DDT-86 Sample Session

Source file of program to test.

APtryee sart.aBg

simrle sort Prodram

Coocurrent CP/M-86 Utilities Guide

sorti
Moy 1.0 finitialize index
L I-1] bxsoffset nlist $bx = base of list
[11] sw 0 felear switech flas
CDMPY
MoV al:[bxts1] Jyet byte from list
1.1 al +1Cbx+6il FcomPATE With next brie
Jaa ined Tdon’t switoh 1f 1norder
Xchy al+1lbx+sil ido first »art af switch
v {bx+gilral Y¢o seoond mart
nav KWl fset switch flay
incis
ina si Yincrement index
omp 51couUng fend pf 1l1st?
Inz oame Sno+ Keep sainy
tesi swil jdone - any switches?
Jnz sort JYeE3» 3Ot SOME MOIE
danet
Jup done iyt here when list ordered
1
demn
ors 100h 1leave sraae for base raye
L]
nlist db d,8+8)R:31 61441
gount [111 affset & - oftsnmt
nlist
sl (1] 0
and
Assemble program.

AdasaBE sart

CP/N 8088 ASSEMBLER VER 1.1

END DF PASS 1

END OF PAES 2

END OF ASSEMBLY . NUMBER OF ERRORE1 O

W DIGITAL RESEARCH™

6-20

Concurrent CP/M-86 Utilities Guide 6.5 DDT-86 Sample Scssion

Type listing file generated by ASM-86.

AdLtyme sart.Isc
CP/M ASMEH 1.1 SOURCE:

ori;
0000 BEDOOO mov
0003 BBQOO1 MoV
000E CBOBDA010O mov
came:
0008 BAROD Maw
000D 3A4001 omr
Q010 7804 dna
0012 BSAOCL xohid
0015 B300O mov
0017 CBOBOBOLD1 mov
in ois
ooiC 48 inc
Q01D B3FEOB cMe
o020 7SEB inz
Q0ZZ FBOB0HCL01 test
0027 7507 inz
dones
Q029 ESFOFF dmp
L]
dsey
ars
¥
B DIGITAL RESEARCH™

gort.ABE PAGE 1

aimple sort Prosram

5140 Yinitialize index
bx:offsetibn=baseof list

nlist

swil 5olearswitoh flas

als[hx+sl]l Boat brie from list
als1Cbx+ai]l Scaupare with next brte
ina Ydon’t switoh it inorder

al:1Cbhx+tail]l §dofirst mart of swltch
[bx+sil.al Vdasecond Fart

1wl jset switchTlas

ai fincremeEnt 1ndex

sirpount tend of Last?

come Ino: Keer Soinyg

SWsl idona - any sultcher?

sart Ives) sart 3oMe MD e

done iset here when 1ist ordered
100h 11eave serace for hase paye

6-21

6.5 DDT-26 Sample Session Concurrent CP/M-86 Utilities Guide

Q100 DIDHOAOEIFOEB niLst db 3+8:44B:31 484441
0401
paoB count LN offset § - affset nlit
Q108 00 W db 0
end

END OF ASSEMELY. NUMBER OF ERRORB:1 O

Type symbol table file gencrated by ASM-86.

AXEPme BCIT HYM

Q000 VARTABLES
0100 NLIST D108 EBW

0000 NUMBERS
0008 COUNT

0000 LABELE
0008 COMP 0028 DONE 001C INCI 0000 SORT

Type hex file generated by ASM-86,
AXtrrs 50rt. K88
1 0400000300000000FB
11B0000B1BEDODDBBE0001CE068080100BACAZA400]1 7604884001 BHDOCE0E0E01ED
t11001BR101AEBIFEOB7YEDBFBOB0OR01017ID7ESFDFFEE
10801008BZ030B0ADE1FORC4010035
100000001FF

Generate CMD file from JHSE file;
Adrenond sort

BYTEB READ 0038
RECORDS WRITTEN 04

Invoke DDT-86 and load SORT.CMD,

AXddtEE sart
DOTEB 1.0
BTART END
CB 047010000 Q470 1Q0ZF
DB 048010000 CA4BOrOLOF

M DIGITAL RESEARCH™

622

Concurrent CP/M-86 Utilities Guide 6.5 DDT-86 Samplc Session

Display initial register values.
-K
AX BX CX¥ DX SF BF SI DI ECB D§ 88 E5 IP
--------- 0000 D000 0000 0000 115E 0000 0000 0000 0470 OABO 0481 DARC HOOD
Moy 81,0000

Disassemble the beginning of the code segment,
-1
047050000 MOY SI.0000
047010003 MDY B¥,0100
0470:0008 MDY BYTE [OLOBI/0C
047010008 MOV AL [BX+GI]
0470:000D LCHP AL01LBK+SL]
047010010 JBE 0OIC
047010012 XCHGE AL +O1CBX+8I]
047010015 MOV CBX+SI1,AL
0470:0017 MOV BYTE [01081,01
04701001C INC SI
047010010 CMP SI.0008
047010020 JNZ 000B

Display the start of the data segment.
-q100,10f
04800100 0308 04 0B IF OB 0401 00000000 QO D0 00 1 veassrsrrasnas

M DIGITAL RESEARCH™
623

&5 DDT-86 Semple Session Coacurrent CP/M-86 Utilitiey Guide

Disazsemble the rest of the code.
-1
0470:0022 TEST BYTE [010B1.01
0A7D:0027 JNZ 000C
047D:0029 JMP 0028
047010020 ADD [BX+S11.AL
DATDI00ZE ADD C[BX+5I1,AL
047010030 DAB
047010041 ADD [BX+BI1.AL
047010033 77?= B
£470:0094 FOP ES
C470:10035 ADD [BX1.CL
¢47010037 AD [EX+BI]:AX
047010038 77= BF

Execute program from IP (=0) setting breakpoint at 29H
-¥Z8

#047010029 Breakpoint encountered.
Display sorted list.
-d100 ,00¢
04HO:0100 OD 0O 0O OO OO 0D 00 0O 00 DO 00 OO0 GO OO0 00 00 suvrssrsassss
Doesn’t look good; reload file
art
BTART END

CE 047D 0000 Q47DIQOZF
DB 048010000 0480:1010F

‘aIme.Shmuucﬁon&

AX BX LCX DX BP BP 81 DI 1P
-——--Z-P- D000 0100 0000 0000 11SE 0000 DOOD DOOO 0000 MOV
-===-Z-P- 0000 0100 0000 0000 115E 0000 0DOO D000 0O0T MOV
-----Z-P- 0Q00 0100 0000 0000 119E 00Q0 0000 DOCO 000E MOV
#0470y 000B

6-24

§1.,0000
BX Q100
BYTE [Q10Q81.,00

DIGITAL RESEARCH™

Comcuerent CP/M-86 Utilities Guide 6.5 DDT-86 Sample Scasion

Trace some more.
-t3
A BX CX DX 5P BP BSI DI IP
———-=Z.F- 0000 0100 0000 0000 119E 0000 0000 0000 0008 MOV
——w--Z-F- 0003 0100 000C 0000 115E 0000 0000 DOOO 0OOD CMP
-=~-8-A-[0003 0100 0DOD DOCO L1SE 000D 0000 0000 D010 JBE
*0470:001C

Displiay unsorted fist
-d100,10¢

AL .[BX+8I1
AL OICBX+8I]
a01L

0480:0100 03 0B 04 O5 1F 08 04 01 00 00 00 DD 00 00 00 00 servsrnsesran

Display next instructions to be executed.
-1
047D1001C INC BI
047010018 CHP 81,0008
047010020 JNZ 000B
047D10022 TEST BYTE [O10B1 01
047010027 JNZ Q000
047010028 JNP 0023
D4701002C ADD [BX+8I3.AL
047D1002E ADD [BX+5I1I.AL
0470:0030 DAS
047010031 ADD [BX+SIT.AL
0470:0033 7?7= 6C
047010034 POP ES

Trace some more
+3 AX BX CX DX BPF BP 81 DI IP
----B-A-C 0003 0100 0000 0000 118E 000Q 0000 0000 001C INC
-------- C 0003 0100 0000 G000 119E 0000 0001 000Q 001D CHF
---~8-APC 0003 0100 0000 0000 119E 0000 0001 0000 00Z0 JNZ
#047D:000B

M DIGITAL RESEARCH™

81
810008
[elele]

6-25

6.5 DDT-86 Sample Session Concurrent CP/M-86 Utilities Guide

Display instructions from current IP.

-1

047050008 MOV AL [BX+EI]
0470310000 CHE AL OILBX+5I]
047010010 JIBE aoic
047010012 XCHG AL +O1LBK+BI]
047D1001F MOV [BX+E8I] AL
047Da0017 MOV BYTE [O10BI:01
Q47D1001C INC 81

0A47De 2010 CHP BI 0003
047010020 JNZ eoon
0a7ns0022 TEBY BYTE [£1081+01
047010027 JUNZ 0000
047030028 JMP o028

-t

AX BX CX DX 8P DBP 51 oL IP
----8~APC 0003 0100 0000 0000 {18E 0000 00061 GO0 QOOR MOV AL+ [BX+EI]
----5-APC QOCH 0100 0000 0000 118E ¢O00 0OCL 000D DOOD CMF AL sDICBX+EI]
--------- 0Q0B 0100 0000 0OCO 119E 0000 G001 H000 DO1D JBE 0010
04700012
.l
047010012 ACHG AL 2O1LBXN+E1]
047D:001% MOV [BX+8IJ.AL
DA7D1005:7 MOV BYTE LOIO8].01
047D:001C INC BI
047p3i001D CMP 51,0008
047D: 0020 JNZ 00Q0B
047D3002Z TEST BYTE LO10B1.01
047010027 JNZ 0000
047020028 JMP 0028
047D:00ZC ADD EBX+E11.AL
047D:00ZE ADD [BX+811.AL
0470190030 DAS
Go until switch has been performed.
X120
#0470e0020
Display list.
-di10G,107
04801010003 0408 0B 1IFOBOA 01 QI Q000000000 0D DD vesrvrarrrreanae
B DIGITAL RESEARCH™

&-26

Concurrent CP/M-86 Utilities Guide

Looks like 4 and 8 were switched okay. (And toggle is true.)

AY BX CX DX 8P BP 48I DI [P

-t

-~---8-APC 0004 0100 Q000 DOCO 119E 0000 G002 0000 0020 JNZ 000B

#047D:000B

Display next instructions.

-1
047D:000B MOV
047010000 CHP
047D:0010 JBE
0470:0012 XCHG
047010015 MOV
047D:0017 MOV
047D1Q01C INC
Qq7D:0010 CMP
047D2Q02%0 JINZ
0470:0022 TEST
04°7Ds 0027 INZ
04700028 JMP

AL/ [BX+8I1]

AL ;01 LBX+8]]
opic
AL:01IBX+811
C[BX+SIT AL
BYTE [01087:01
81

810008

ooon

OYTE [010B]1.,01
0000

0028

Since switch worked, let's reload and check boundary conditions.
~ex0rE
START END
C8 047D10000 047D 100ZF
DS 04800000 0480 :010F

6.5 DDT-86 Sample Session

I DIGITAL RESEARCH™

6-27

6.5 DDT-85 Sample Sextion Concurrent CP/M-86 Utlites Guide

Make it quicker by setting list length to 3. (Could slso have used s47d = 1e
to parch.)

-nld

0470:0010 omr 5143

0470:0020

Display unsorted list.
-d100
04BCI0100 03 08 04 0B 1F OB 04 &1 0O 00 DO 00 DG 0A 00 Q0 1 v vevirrrrrrrrs
0480r0110000000 Q000 QA OO 00 0A 000000 QO AV 000D sssrsvnunnnnnsny
0A4B0:0120 00 00 00 CO GO OO DOL0 00 OQ 00 9000 2020 20 vavrrerrerrer

Set breakpoint when first 3 elemenits of list should be sorted.

-¥258
#0470 0028

Sce if list is sorted.
-d1p0.20¢
048010100 03 04 05 08 LF OB 0301 00 00 00 00 DO DO 00 G0 reunrasrrasassnn

Interesting, the fourth element seems to have been sorted in.
-¥nort
BTART END
C8 047030000 0470:1002ZF
08 0482000 0ABOIOIOF

Let’s try again with some tracing.
-ald
047010010 omr 51 :3
047D: 0020

8 DIGITAL RESEARCH™

6-28

Concurrent CP/M-B6 Utiliries Guide

AX BX CX DX SP BP 81 DI 1P
----- Z-P- 0006 0100 0000 0000 118E 0000 0003 0000 0QOO MOV
----- Z2-P- 000G 0100 0000 000 1 19E 0000 G000 0000 QON3 MOV
----- Z-P- Q00 0100 000¢ 0000 118E 0Q00 0000 Q00G Q006 MDY
----- Z-F- 0006 0100 0000 0000 L 159E Q00D 000Q 9000 0008 MOV
----- Z-F- 0003 0100 0000 0000 11BE 0000 0000 0000 Q00D CMP
---~B-A-C 0003 0100 0000 0000 11BE Q000 0000 0000 0010 BE
---=-85-A-C 0003 0100 0000 &O00 1 19E Q000 Q0QQ 0000 001L INC
-------- C Q003 0100 00000000 119€ Q000 0001 0C0Q0 Q01D EMP
--~-B-A-C Q003 Q100 0¢00 3000 1 195 0000 00G1 0000 0020 JNZ

*047D2 0008

-1

Qa70:0008 MOV
04700000 CMP
0a70:0010 JBE
047D:0012 XCHG
0470:0015 MOV
Q470:0017 MDYV
0470:0010C INC
Q470:001D CHP
0470:0020 JNZ
Q47010022 TEBT
0470:0027 UNZ
Q47010023 JMF

-t3

AL [BN+EI]

AL 0L TBN+E]I]
[s 1 3H

AL 0LIBX+E]I]
CEX+SI1+AL
BYTE [Q1081.01
81

81,0003

oDab

BYTE [01081.:01
0000

0029

AX BK [CX DX B8P BP 81 DI I[P
----8-A-C00C3 Q100 0000 0000 11BE 0000 Q001 Q000 0008 MOV
~-~~5-A-C 0008 0100 0000 0000 1 18E 0000 CQO1 0000 00CD CMP
--------- 0008 0100 0000 0000 1 13E Q000 0001 Q00D 0010 JBE

047020012

-1

047050012 XCHE
047D:0015 MOV
047030017 MOY
047D:001LC [NC
C470:001D CHP
047D:0020 JNZ
04700022 TEST

@ DIGITAL RESEARCH™

AL,01LBX+EI]
[BX+S11.AL
BYTE [01081,01
SI

§51.,0003

Q008

BYTE [010B1,01

6.5 DDT-86 Sample Seasion

SI:0000

EX 01090
BYTELQ1081 .00
AL s{BX+a]1]

AL +O1EBX+SI]
[+]23 1%

81

81,0003

Q008

AL [BX+BI3
AL 01 CBX+SI1]
001C

6-19

6.5 DDT-B6 Sample Session Concurrent CP/M-86 Utilities Guide

-t3

AKX BX CX DM BP BP 8 DI IP
--------- 0008 D102 0000 DOO0 118E 0000Q 0001 0000 001Z XCHG AL /QLEBX+EI]
--------- 0004 0104 0000 0000 L1BE 0000 0001 0000 0015 MOV [BX+EI] +AL

--------- Q004 010D 0000 QODD 112E Q000 0001 QOCO 0017 MOV BYTEIQI0B]1.,01
#0470 001C

-d100,10¢f
04801010003 02 0BCEB LFOBOA D1 01 Q000000000 D000 vuvsvaresnarrnes

So far, so good.
-3
AX 8X €M DK SF BP SI DI IP
--------- 0004 DI0Q 0000 0000 119E 0000 G001 0000 O0IC INC Bl
--------- 0004 0100 000D 0DOO 11SE 0000 DOOZ OGO DO1D CMP 81,0003
--------- 0004 100 0000 QOO0 1L5E Q0QD Q002 000D 0020 JNZ [1]e 1]
047010000

-1

047010008 MOV AL,LCEX+811
Qavmiobob CMP AL,O1[BX+BII
04700010 JBE o0D1C
047010012 XCHG AL.OILBN+BI]
0470:0017 MOV [AM+8L1.4L
047010017 MOV BYTE [01087.01
047010010 INC BI

047D:001D CMP 81,0003
04700020 JNZ 000B
0A70:002Z TEST 8YTE [01081.01
047027 JNZ 0400
0470300289 JMF 0028

-t3

A BH ©X DA B8P BF &1 DI ik
---=-8-APC 0004 0100 0000 0000 11RE 0000 0002 Q000 0003 MDV AL ([BX+BI1]
----6-APC 0008 0100 0000 0000 118E 0000 0002 0000 QGUD CNP AL OLLBX+BI]
--------- Q008 Q100 DOODC Q000 118E 0000 OHOZ 0000 0010 JBE ooicC
#0470 0012

B DIGITAL RESEARCH™

5-30

Concurrent CP/M-86 Utiliies Guide

Sure enough, it's comparing the third and fourth elements of the list.

Reload program,
-#5art
ETART END

LY 047010000 04701 002F
DB 048019000 04801010F

-1

047030000 MOV
047010003 MOV
047D 000B MOV
047010008 MOV
0470: 000D CHP
047010010 JBE
0470:001Z XCHG
0q701001F MOV
0470:0017 MOV
Q4701001C INC
0470:001D CHP
047010020 JNZ

Patch length.

-zld

81.0000

B¥ 0100

BYTE [Q1081.,00
AL +[BX+BI]

AL +OICBX+5I1
001C

AL +01CBX+511
CBX+BI] AL
BYTE I010B1.01
81

S1.0008

000b

047D:001D cmpr 51 #7

047D: 0020

Try it out,
- 028
*0470:0028

@ DIGITAL RESEARCH™

6.5 DDT-86 Sample Session

6-31

6.5 DDT-B6 Sampic Session Concarrent CF/M-86 Utilitics Guide

See if list is sorted.
-d100,{0f

0480:010001 03 0404 0B DB OB IFOOO0DODOQOO0Q0Q0 vsavresrrerranas

Looks better; let’s install patch in disk file. To do this, we
must read CMD file including header, so we use R command,
-rgori.omd
START END
200010390 2000101FF

First B0h bytes contain header, so code starts at 80h.
-180
20000080 MOV BI.0000
200010083 MOV BX:D100
200010086 MOV BYTE [01081,00
200010088 WOV AL (IBK+E11
2000:0080 CMF AL +D1CBX+EL]
200010080 JBE DOHC
2000310082 XCHG AL +O1CBX+SI]
2000:0085 MOV CBX+B11.AL
200010087 MOV BYTE [01081,01
200010068C I[NC BI _
200010080 CMP ©I,0008
200010040 JNZ OOEB

Install patch,
-ald
Z0004008D cur 8§17

Write file back to diak. {Length of file assumed to be unchanged
since no length specified.)

~uEa Pt oatd

6-32

W DIGITAL RESEARCH™

Concurrent CP/M-86 Utilities Guide 6.5 DDT-86 Sample Session

Reload file,

-psort

START END
CS 0470:0000 0470:002F
DS 04B0:0000 0480:010F

Verify that patch was installed.

Q47D 10000 MOV SI+0000
0470 : 0003 MOV BEX 0100

047D 10008 MOV BYTE [0108] +00
047D:000B MOV AL [BX=SI1]
047D1000D CMP AL 101 (BX=8BI]
Q470:0010 JBE Qo1Lln
047010012 XCHG AL.01[BX=81]
047D :0013 MOV FBX=8I1:AL
047p:0017 MOV BYTE I0108&1 .01
047D:001C INC 81

047010010 CHMP BI 0007
047D : 0020 JINZ ooop

Run it.
-4+28

Still looks good. Ship it!
-d100.10f
0480:0100 01 03 04 04 05 OB 68 IF 00 00 00 00 00 00 00 00 sevvurrerersrses

-¥+28
*047D10029

-d100.:10F
0480:0100 03 08 04 OB IF OB 04 C1 00 GO 00 00 00 00 00 00 ssvutssrres,

-"C
A?

End of Section 6

® DIGTTAL RESEARCH"™
6-33

Appendix A
Starting ASM-86

Command: A>48M88

ASMBE6 filespec [$ parameters |
where
filespec is the 8086 agsembly source file (dxive and filetype are optional).

parameters isaone-letter type followed by a one-letter device from the table below.

Default ﬁlme:
A86
Parameters:
$Td where T = type and d = device
Table A-1. Parameter Types and Devices
TYPES: A H P S F
DEVICES:
A-P b4 X X X
X X X X
Y X X x
Z X X b4
I x
D d
x = valid, d = default
D DIGITAL RESEARCH™

A Starting ASM-85 Concurrent CP/M-86 Utilities Guide

Valid Parameters

Except for the F type, the default device is the current default drive,

Table A-2. Parameter Types

Type | Punction
A controls location of ASSEMBLER source file.
H controls location of HEX fila,
P controls location of PRINT file.
5 controls location of SYMBOL file.
F controls type of hax output FORMAT.
Table A-3. Device T'ypes
Name Meaning
A-P Drives A-P
X console device
Y printer device
y 4 byte bucket
[Intel hex format
D Digital Research hex format

B DIGITAL RESEARCH™

Concurrent CP/M-86 Utilities Guide A Starring ASM-B6

Table A-4. Invocation Examples
Example Rasult

ASMBE 10 Assembles file 10.A86 and produces 10.H86
I0.LST and 10.SYM.

ASMBE I0.ASM $ AD 82 Asgembles file 10.ASM on device D and produces
10.LST and 10.H86. No symbol file.

ASMEBE IO % PY 8X Assembles file 10.A86, produces I0.H86, routes
listing directly to printer, and outputs symbols on
console,

ASMBE 1D $ FD Produces Digital Research hex format.

ASMEE IO %F1 Produces Intel hex format,

End of Appendix A
@ DIGITAL RESEARCH™

Appendix B
Mnemonic Differences from the
Intel Assembler

The CP/M 8086 assemnbler uses the same instrucdon mnemeonics as the Intel 3086
assembler except for explicitly specifying far and short jumps, calls, and retuens. The
following table shows the four differences.

Table B-1, Mnemonic Differences

Mpremonic Function | CP/M I Intel
Intrasegment short jump: JMPS MP
Intersegment jamp: JMPF JMP
Intersegmentreturn: RETF RET
Intersegmentcall; CALLF CALL
End of Appendix B
BDIGITAL RESEARCH™

B-1

Appendix C
ASM-86 Hexadecimal Output Format

ASM:-86 produces machine code in either Intel or Digital Research hexadecimal
format. The Intel format is identical to the formar defined by Intel for the 8086, The
Digital Research format is nearly identical to the Intel format, but Digital adds segment
information to hexadecimal records. Qutpur of either format can be input to the
GENCMD, but the Digital Research format automatically provides segment identifica-
tion. A scgment is the smallest unit of a program that can be relocated.

Table C-1 defines the sequence and contents of bytes in a hexadecimal record. Each
hexadecimal record has one of the four formats shown in Table C-2. An example of a
hexadecimal record is shown below:

Byte number=>01234567 892 ..oirerrenns n
Contents=>:1laaaattddd .. ccCRLF

Table C-1. Hexadecimal Record Contents

Byte l Contents | Symbol
0 record mark :
1-2 tecord length H
36 load address aaaa
7-8 record type tt
9-(n-1) data bytes dd...d
n-(n+1) checksum cc
n+2 carriage remrrn CR
n+3 line-feed LF

H DIGITAL RESEARCH™
C-1

C ASM-86 Onzput Format Concurrent CP/M-86 tilities Guide

Table C-2. Hexadecima! Record Formats

Type Content l Format
00 Datarecord 1l anaa DT <data...>cc
01 End-of-file : 00000001 FF
Extended address
02 mark £02 0000 ST sssscc
03 Starraddress : 04 0000 03 ssssiiii cc
11 => record length - number of data bytes
cc = checksum - sum of all record bytes
aaaa => 16-bitaddress
asss => 18-bitsegmentvalue
it = offsct valucof start address
DT = data record type
ST => scgment address record type

It is in the definition of record type (DT and ST} that Digital Research hexadecimal
format differs from Intel. Intel defines one value each for the data record type and the
segment address type. Digital Research identifies each record with the segment that
containe it, as shown in Table C-3.

B DIGITAL RESEARCH™
C-2

Concurrent CP/M-86 Utilifics Guide C ASM-86 Output Format

Table C-3. Scgment Record Types

Intel Digital
Symbol | Value Value Meaning
bT 00 for data belenging to all BO8 6 segments

81H for data belonging to the CODE segment

82H fordata belonging to the DATA segment

83H for daca belonging ro che STACK segment

84H for data belonging to the EXTRA segment
ST 02 for all segment address records

85H for a CODE absolute segment address

86H foraDATA segmentaddress

87H for aSTACK segment address

88H fora EXTRA segment address

End of Appendix C

W DIGITAL RESEARCH™

C-3

Appendix D

Reserved Words
Table D-1. Keywords or Reserved Words
Predefined Numbers
BYTE WORD DWORD
Operatars
AND LAST MOD OFFSET SHR
EQ LE NE OR TYPE
GE LENGTH NOT SEG XOR
GT LT PTR SHL
Assembler Directives
CODEMACRO EJECT IF NOLIST RS
CSEG END IFLIST ORG RW
DB ENDIF INCLUDE PAGESIZE SIMFORM
DD ENDM LIST PAGEWIDTH SSEG
DSEG ESEG NOIFLIST RB TITLE
DW EQ
Code-macro Directives
DB DD MODRM SEGFIX RELW
DBIT DwWw NOSEGFIX RELB
8086 Registers
AH BL CL DI ES
AL BP CS DL SI
AX BX CcX DS SP
BH CH DH DX 5SS
Instrucion Mnemonics — See Appendix E.
End of Appendix D
DIGITAL RESEARCH™

Appendix E

ASM-86 Instruction Summary
Table E-1. ASM-36 Instruction Summary
Mnemonic I Description | Section
AAA ASCII adjust for Addidon 4.3
AAD ASCII adjust for Division 43
AAM ASCI adjust for Multiplication 4.3
AAS ASCIi adjust for Subtraction 4.3
ADC Add with Carry 4.3
ADD Add 4.3
AND And 4.3
CALL Call (intrasegment) 45
CALLFR Call (intersegment) 4.5
CBW Convert Byt=to Word 4.3
CLC Clear Carry 4.6
CLD ClearDirection 4.6
CLI ClearInrerrupe 4.6
CMC Complement Carry 4.6
CMP Compare 43
CMPS Compare Byte or Word {of string) 4.4
CMPSB Compare Byte of string 4.4
CMPSW Compare Word of string 44
CWD Convert Word to Double Word 43
DAA Decimal Adjust for Addition 4.3
DAS Decimal Adjust for Subtraction 4.3
DEC Decrement 4.3
DIv Divide 43
ESC Escape 4.6
HLT Halt 46
1IDIV Integer Divide 4.3
IMUL Integer Multiply 43
IN Input Byte or Word 4.2
INC Increment 4.3
INT Interrupt 4.5
INTO Interrupt on Overflow 45
IRET Interrupt Return 4.5
8 DIGITAL RESEARCH™

E-1

Concurrent CP/M-86 Utilities Guide

Table E-1. (continned)

Mnemonic l Description Section
JA Jumpon Above 4.5
JAE Jumpon Aboveor Equal 4.5
B Jump onBelow 4.5
JRE Jump onBelow or Equal 4.5
JC Jumpon Carry 4.5
JCXZ Jumpon CX Zero 4.5
JE Jump on Equal 4.5
JG Jump on Greater 4.5
JGE Jump on Greater or Equal 4.5
JL JumponLess 4.5
JLE Jump on Less or Equed 4.5
JMP Jump (intrasegment) 4.5
JMPF Jump (intergegment) 4.5
JMPS Jump (B-bit displacement) 4.5
JNA Jump on Not Above 4.5
JNAE Jump onNot Above or Equal 4.5
JNB Jump on NotEelow 4.5
JNBE Jump or Not Below or Equal 4.5
JNC Jump on Not Carry 4.5
JNE Jump on Not Equal 4.5
ING Jump on Not Greater 4.5
JNGE Jump on Not Greater or Equal 4.5
JNL JumponNot Less 4.5
JNLE Jump onNot Less or Equal 4.5
JNO Jump onNot Qverflow 4.5
NP Jump on Not Parity 4.5
JNS Jump on Not Sign 4.5
JNZ Jump onNot Zero 4.5
Jo Jump on Overflow 4.5
JP Jump on Parity 4.5
JPE Jump on Parity Even 4.5
PO Jump on Parity Odd 45
J5 Jumpon Sign 4.5
IZ Jumpon Zero 4.5
LAHF Load AH with Flags 4.2
LDS Load Pointerinto DS 4.2
LEA LoadEffective Address 4.2
LES Load Pointer into ES 42

@ DIGITAL RESEARCH™

E-2

Concnrrent CF/M-86 Utilitics Guide

Table E-1. (contimmed)

E Dnstroction SumMary

Mremonic Description T Section
LOCK LockBus 4.6
LODS Load Byte or Word {of string) 4.4
LODSB Load Byte of string 4.4
LODSW Load Word of string 4.4
LOOP Loop 4.5
LOOPE Loop While Equal 4.5
LOOPNE Loop While Not Equal 4.5
LOOPNZ Loop While Not Zero 4.5
LOOPZ Loop While Zero 4.5
MOV Move 42
MOVS MoveByte or' Word (of siring) 44
MOVSB MoveByte of sering 4.4
MOVSW Move Word of string 4.4
MUL Multiply 4.3
NEG Negate 43
NOT Not 4.3
OR Or 4.3
ouT Output Byte or Word 4.2
POP Pop 4.2
POPE PopFlags 4.2
PUSH Push 4.2
PUSHE Push Flags 4.2
RCL Rotate through Carry Left 4.3
RCR Rotate through Carry Right 4.3
REP Repeat 4.4
RET Return {intrassgament) 4.5
RETE Return (interzegment) 4.5
ROL RotateLeft 4.3
ROR Rorate Right 4.3
SAHF Store AH into Flags 4.2
SAL Shift Arithmeric Left 4.3
SAR Shift Arithmetic Right 4.3
SBB Subtract with Borrow 4.3
SCAS ScanByte or Word {of string) 4.4
SCASB Scan Byte of string 4.4
SCASW Scan Word of string 4.4
SHL ShiftLeft 4.3
SHR ShiftRight 4.3
M DIGITAL RESEARCH™

E-3

Concurrent CP/M-36 Utlities Guide

Tablec E-1. (comtinued)

Mnemonic] Description r Saction
STC SetCarry 4.6
STD SetDirection 4.6
5TI SetInterrupt 4.6
STOS Store Byte or Word {of string) 44
STOSB Store Byteof string 4.4
STOSW Store Word of string 44
SUB Subtract 4.3
TEST Test 4.3
WAIT Wait 4.6
XCHG Exchange 42
XLAT Translate 4.2
XORrR Exclusive Or 4.3
End of Appendix E
W DIGITAL RESEARCH™

Appendix F

Sample Program APPF.A86

LP/M RBMEB 1,08 AOURCE: APPF.ABB Terminal Input/Dutmut PACE

0000 ES0800
0403 EB1900
Qo0 ESZRQQ

@DIGITAL RESEARCH™

title ‘Tarminal IneutsQutpue”

rafasize 50

rasawidth 78

siuforn

i

lesesea Terminal I/D0 subrdautines #FEesszs
1

The Tollowind subrautines

are inciuded:

CONSTAT - console stetus
CONIN -~ eonsole Lnput
CONOQUT - canstle outPut

Each routine rewuires CONSOLE NUMBER
in the BL register,

ww (] o= um W A B WA AN R S AN me A A e

FEREERERERRRFRF L

¢ Juwp table: =

IS IIZITZIRT TS I3
BES 1 stazt of cods sefwent
Jur_tab:

Jne [T1LI% 1)

Jur eonin

Jne sonout

EYTEINT PITEERT YT TNT S 1)
+ 1/0 mort numbees *
FEEHERERERER RN RARRER AT

Listing F-1. Sample Program APPF.A86

F Sample Program Concurrent CP/M-86 Utilitics Guide
ER/M ABMBB 1.0B SODURCE: APPF.ABRE Taraingl Inmut/Outmut FAGE 2

i
i Tarninal 11
!

QoLo instatl e9u 10k I inrut status rart
11 indatal .y 11k foinmut sore
0011 sutdatal L1 11h I outrut part
0001 ruadyinmaskl L1 Qih § ineus rendy sk
0002 raadvoutmaskl [L1] erd} ! tutrui ready mask
1
' Tarminal 21
]
aolz instatZ (L1} 12h § ineut status Foré
0013 Indata2 LL1] 1dh ¥ inruy POt
0013 outdata? .y 13h } outeut rort
4004 rasdvinnask? [L11] 04k I inrut ready mask
Q00R roadroutmask2 amy REh | outeut roady mank
1
H HHERRRETARE
§ + CONETAT *
i FHERFRREDET
i
] Entrryr BL - raf ¢ terminal no
! Etitt AL - r#y = O It not Faady
i Offh If readr
)
constat!
0008 SJERIFQO rush by ! sall okterminal
constatl:
opoD E2 rush dx
Q00E BBODO mov dh0 } read status rort
0010 BA1? mov d)sinstatustab CBXI
aolzZ EC in alsdx
Q013 224708 and nlsraxdyinmxsktad [bal
0DLE 7402 Jz constatout
0018 BOFF moy als0fth

Listing F-1. {comtinned}

B DIGITAL RESEARCH™

Caoncurrene CP/M-86 Utilities Guide F Sample Program

CP/M AOWEE 1,08 BOURCE: RPPF,ABE Terminal Imrut/Outrut PAGE 3

001A SAIBOACOCE

001F S3EBZBOOC
0023 EBEIFF
Q028 74FB
00z8 52

0029 pEOC
J0Z8 8A¥TO2
00ZE EC

002F 287F
0031 JASBECS

Q034 S3EB1A00
0038 52

Q039 50

903A BEQOD
Q03C BAL7

Q03E EC

H DIGITAL RESEARCH™

constatouts:
por dx | mow b [ar aleal ! oret

EAREREEAS
% CONIN =
EETRRREEY

Entryr BL « raf - tarminal no
Exits AL - rax z rend ocharagter

panint mosh bx ! oell acktarminal |
poninle oxll ponstatl f test status
Jz peninl
rush dx I read oharuatar
uov dk.0Q
wov dlsindatatab LBX]
in al ydx
and al7th f atreie muritr bt
rom dx | momP bx | ret

W
CONOUT »
HHHEE

Entzv: BE - raf ; terminzl no
AL - resd - character to mrint

onout: rush bx | call okterminal
rush dx
mush ax
mov dh 0 T test status
mav dlsinstatustab [BX]
ponoutls
m al »dx

Listing F-1. (continued)

F Sample Program Concurrent CP/M-86 Utlities Guide

CP/M ABMEE 1.0B BOURCE: APPF.A8E Tutminal Ineut/Dutrut PAGE 4
003F 224708 and alsreadvoutmnsktab [BX]
Q042 74FA Jz conoutl
o044 38 POP AX 1 write bvte
0043 8A¥704 mav dlsoutdutatubd [BX]
004E EE out dxsl
Q04R TASBCI For R | mpr bx | red
LI I T Lt L LT
+ OKTERWINAL +
L L a

Entrye BL - ref = terminal ne

Kterminali

004C QADE [} bl:bl
QOZE 7404 Jz o araer
0030 B8OFBO3 omp blilandth inntstiustsb + 1
Q0¥3 T30 JRn wrrar
0055 FECB dec bl
Q0%7 B700 woy bRiD
00%8 C3 ret
1
00%a SBSBCI srrozc mar bx | mop bx ! ret 1 do nothing
1
SAERARREELEENER pnd of oode sEdment EERRRRBENSHEENH
L]
] ERETEEEARERANETS
L] * Rata seFmant +
¥ FREEFFRERANRERES
¥
dsey
} HERRRRREERRNAREERELERRALE
} * Data for evaoh terminal »
] LILIEE I EITE SR LT A Y P

Ligting F-1. (continued)

8 DIGITAL RESEARCH™
F4

Concurrent CP/M-86 Utilities Guide

CP/M ABMEA 1,08 A0URCE: APPF.AGB

oo 1012
ooz 11139
poda 1113
Q00E QL04
Q008 0208

instatustap db
indatatab &h
autdatasab db

readrinwnakink db
readyoutmapktap db
§

F Sample Program

Terwinal Inrut/Dutrut FRGE 5

instatlsinntuc?
indatalindatnZ

putdatal joutdatn2
readvinmankl rreadyinnask2
raadvousuanklrreadyoutnask

FRRERAREREREXRINE and of f11n RFRFEEREREFERDRRLRE4ED

and

END DF AYBEMBLY, NUMBER OF ERRORS: 0O

I DKGITAL RESEARCH™

Listing P-1, {continued)

End of Appendix F

F-5

Appendix G
Code-macro Definition Syntax

<codemacro> 1= CODEMACROQ <name>> [<formal$hst>]
<list$ofSmacro$directives>]
ENDM

<name>> :: = [IDENTIFIER
<formal$list> :: = <parameterfdescr™>[{, <parameter§descr>}]

<parameter§descr> ;1= <form$name>:<specifier§letrer>
<modificr§letter>[(<range>})]

<specifier$letter> ::= A|C[D|E|M|R|S|X
<modifier$letter>> ;:= b | w| d | sb

<range>> :: = <single$range>|<double$range>
<single$range> :: = REGISTER | NUMBERB

<donble$range> ::= NUMBERB,NUMBERB | NUMBERE,REGISTER |
REGISTER,NUMBERB | REGISTER, REGISTER

<list§of$macro$directives> 11 = <macro§directive>
{<‘macro$directive>}

<macro$directive> 1= <db> | <dw> | <dd> | <segfix>|
<noseghix> | <modrm> | <relb>>
| <relw> | <dbit>

B DIGITAL RESEARCH™

G-1

G Code-macro Syntax Concurrent CP/M-88 Utilities Gaide

<db> ::= DB NUMBERB | DB <form$name>
<dw> ::= DW NUMBERW | DW <form$name>>
<dd> ;;= DD <form$name>

<segfix>> 11 = SEGFIX <form$name>
<noseghix> :: = NOSEGFIX <form$name>

<modrm> ::= MODRM NUMBER7,<form$name> |
MODRM <formSname>>, <form¥name>

<relb> :: = RELB <form$name>
<relw> ::= RELW <form$name>>
<dbic> 1= DBIT <field§descr>{, <field$descr>>}

<field$deser>> ;: = NUMBER15 { NUMBERB) |
NUMBER1S { <form$name> { NUMBERE))

<form$name> ;; = IDENTIFIER

NUMBERSB is B bits

NUMBERW is 16 bits

NUMBER?7 are the values 0, 1,.., 7
NUMBER1S are the values 0, 1,. ., 15

End of Appendix G

B DIGITAL RESEARCH™

G-2

Appendix H
ASM-86 Error Messages

ASM-86 produces two types of error messages: fatal errors and diagnostics. Fatal
errors oceut when ASM-36 s unable ro continue assembling. Diagnostics messages
report problems with the syntax and semantics of the program being assembled. The
following messeges indicare fatal errors ASM-86 encounters during assembly:

NO FILE

DIBKETTE FULL
DIRECTORY FULL
OISKETTE READ ERRGR
CANNDT CLOSE

SYMBOL TABLE OVERFLOW
PARAMETER ERRDR

ASM-86 reports semantic and syntax errors by placing a numbered ASCII message in
front of the erroneous source line, If there is more than one error in the line, only the
first one is reported, Table H-1 summatizes ASM-86 diagnostic error messages.

Table H-1. ASM-86 Diagnostic Error Messages

Number Meaning
0 ILLEGAL FIRST ITEM
1 MISSING PSEUDO INSTRUCTION
2 ILLEGAL PSEUDO INSTRUCTION
3 DOUBLEDEFINED VARIABLE
4 DOUBLE DEFINED LABEL
5 UNDEFINED INSTRUCTION
6 GARBAGE AT END OF LINE - IGNORED
7 OPERANDS MISMATCH INSTRUCTION
8 ILLEGAL INSTRUCTION OPERANDS

M DIGITAL RESEARCH™

H ASM-BS Error Mesiages

Concarrent CP/M-86 Utilities Guida

Table H-1, ({continued)

Number |

Meaning

9
10
1
12
13
14
15

16

17
18
13
20

21
22
23

24

MISSING INSTRUCTION

UNDEFINED ELEMENT OF EXPRESSION
ILLEGAL PSEUDO OPERAND

NESTED IF ILLEGAL - IF IGNORED
ILLEGAL IF OPERAND - IF IGNORED
NO MATCHING IF FOR ENDIF

SYMBOL ILLEGALLY FORWARD REFERENCED -
NEGLECTED

DOUBLE DEFINED 5YMBOL - TREATED AS
UNDEFINED

INSTRUCTION NOT IN CODE SEGMENT

FILE NAME SYNTAX ERROR

NESTED INCLUDE NOT ALLOWED

ILLEGAL EXPRESSION ELEMENT

MISSING TYPE INFORMATION IN OPERAND(S)
LABEL OUT OF RANGE

MISSING SEGMENT INFORMATION IN
OPERAND

ERROR IN CODEMACRO BUILDING

End of Appendix H

8 DIGITAL RESEARCH™

H-2

Appendix I

DDT-86 Error Messages

Table I-1.

DDT-86 Error Mesiages

Error Message

Meaning

AMBIGUOUS DPERAND

CANNDT CLOSE

D15 READ ERRDR

DIEK WRITE ERRDR

INSUFFICIENT MEMORY

MEMGRY REQUEST DENIED

An awempt was made to assemble a command
with an ambiguous operand. Precede the operand
with the prefix BYTE or WORD.

The disk file written by a W command cannot be
closed. This is a fatal error that terminates
DDT-86 execution, Take approptiate action after
checking to sce if the correct disk is in the drive
and that the disk is not write-protected.

The disk file specified in an R command could not
be read properly. This is usually the result of an

unexpected end-of-file. Correct the problem by
regenerating the H86 file.

A disk write operation could not be successfully
performed during a W command, probably due
to a full disk. Erase files or obtain a disk with
greater capacity.

There is not enough memory to load the file
specified in an R or E command,

A request for memory during an R command
could not be fulfilled. Up to eight blocks of
memaory can be allocated at a given time,

B DIGITAL RESEARCH™

I-1

1 DDT-86 Ecror Messages Concurrent CP/M-86 Utilities Guide

Table I-1. (continued)

Error Message l Meaning

ND FILE The file specified in an R or E command could not
be found on the disk.

ND SPACE There is no space in the directory for the file being
written by a W command.

YERIFY ERROR AT s 10 ‘The value placed in memory by a Fill, Set, Mave,

or Assemble command could not be read back
correctly, indicating bad RAM or attermpting to
write o ROM or nonexistent memory at the
indicated locadion.

End of Appendix I

W DIGITAL RESEARCH™

Index

“at” sign, 2-2
20-Bit Address

specification of in DD'T-86, 6-3
8036 Registers, D-1

A

A (Assemble) Command (DDT-86),
6-4, 6-16, 6-18

AAA, 4-6

AAD, 4-6

AAM, 4-6

AAS, 4-6

ADC, 46

ADD, 4-6

address conventions in ASM-86, 3-1

address expression, 2-16

allocadng storage, 3-3

alphanumerics, 2-1

AND, 4-8

apostrophe, I-2

arithmetic instructions, 4-3

arithmetic operators, 2-8, 2-10

ASCII character set, 2-1

ASM-86 character set, 2-1

ASM-86 error messages, 1-3, H-1

ASM-86 filetypes, 1-2

ASM-86 instruction set, 4-1, E-1

ASM-86 opcrators, 2-8

ASM-26 output files, 1-1

asgembler direcrives, D-1

assembler aperation, 1-1

assembly langnage source file, 1-1

assembly language statements, 2-16

assembly langnage syntax, 6-18

asterisk, 2-2

B

B {Block Compare} Command
(DDT-86), 64

BDOS interrupt instruction, 6-13

binary constant, 2-3

bracketed expressions, 2-16

BYTE, 2-5, 2-7, 6-18

C

CALL, 4-13

carriage return, 2-2

CBW, 4-6

character string, 2-3

CLC, 416

CLD, 4-16

CL], 416

CMC, 416

CMP, 4-6

CMPS, 4-10

Code Segment, 2-7, 3-2, 6-16

code-macro directives, 5-1, 5-2,
5-5,D-1

CodeMacro directive, 5-2

colon, 2-2

conditional assembly, 3-4

console output, 1-4

constants, 2-3

control transfer instructions, 4-13

creation of output files, 1-3

CSEG directive, 3-2

CWD, 4-6

W DIGITAL RESEARCH™

Index-1

D

D (Display) Command (DDT-86),
65, 617

DAA, 46

DAS, 4-6

data allocation directives
(ASM-86), 3-2

data scgment, 2-7, 3-1, 3-2, 6-16

data transfer instructions, 4-3

DB directive (ASM-86), 2-7, 3-8

DB directive (code-macro), 5-B

DBIT directive, 5-3

DD directive (ASM-86), 2-7, 3-8

DD directive (code-macro), 5-8

DDT-86 command summary, 6-2

DDT-86 error messages, I-1

DDT-86 operation, 6-1, 6-3

DOT-36

termination of, 6-3

DEC, 4-7

defaulr segment values, 6-16, 6-17

delimiters, 2-1

devics rame, 1-4

device types (ASM-86), A-2

DI register, 4-10

diagnostic error messages, H-1

Digital Research hex formar, 1-2, C-1

directive statement, 2-18, 3-1

directives (ASM-86), 2-16

DIV, 4-7

dollar-sign character §, 1-4, 2-2

dollar-sign operator, 2-14

DSEG Directive (ASM-86), 3-2

DW Directive (ASM-86), 2-7, 3-7

DW directive {Code-Macra), 5-8

DWORD, 2-§, 2-7

E

E (Load for Execution) Command
(DDT-86), 6-6, &-16

effective address, 3-1

EJECT directive, 3-10

END directive, 3-5

end-of-line, 2-16

ENDIF directive, 3-4

Ending ASM-86, 1-5

EodM directive, 5-2

EQ, 2-9

EQU directive (ASM-86), 2-7, 3-5

error condition, 1-3

ESC, 416

ESEG Directive (ASM-26), 3-3

exclamation point, 2-2

expressions, 2-16

extra segment (ES), 2-7, 3-1,
3-3, 410

F

F (Fill) Command (DDT-86),
6-6, 6-17

F parameter, 1-5

faral ervor, H-1

file name extensions, 1-2

flag bits, 4-2, 4-5

Flag Name Abbreviadons, 6-15

flag registers, 4-2

formal parameters, 5-1

G
G (Go) Command (DDT-86),

6-7, &-17
GT, 2-9

Index-2

B DIGITAL RESEARCH™

H

H (Hexadecimal Math) Command
(DDT-86), 6-8

hexadecimal format, 1-1

HLT, 415

I

I {input Command Tail) Command
(DDT-86}, 6-8

identifiers, 2-4

IDIV, 47

IF Directive, (ASM-86), 34

IFLIST, 3-11

IMUL, 4-7

N, 4-3

INC, 47

INCLUDE Directive, (ASM-86), 3-5

initialized storage, 3-6

instruction statement, 2-16, 2-17, 3-2

INT, 413

Iutel hex format, 1-5

INTOQ, 4-13

invalid parameter, 1-3

invocation examples (ASM-86), A-3

invoking ASM-86, 1-2

IRET, 4-13

J

JA, 413
1B, 4-13
JCXZ, 414
JE, 4-14
1G, 4-14
JL, 4-14
JLE, 4-14
IMP, 4-14

M DIGITAL RESEARCH™

TNA, 4-14
JNB, 4-14
INE, 4-15
NG, 4-15
INL, 415
JNO, 415
NP, 4-15
JNS, 4-15
INZ, 415
JO, 415
1P, 15
J5, 415
1Z, +15

K

keywords, 2-5, 25, D-1

L

L (List) Command (DDT-86}, -8,
6-16, 6-18

labels, 2-7, 2-17

LAHF, 4-3

LDS5, 4-3

LE, 2-3

LEA, 4-3

LES, 4-3

line-feed, 2-2

LIST, 3-11

location counter, 3-4

LOCK, 417

LODS, 410

Jogical instructions, 4-5

logical operators, 2-8, 2-9

logical segments, 3-1

LOOP, 415

LT, 2-9

Index-3

M

M (Move) Command (DDT-86),
6-9, 6-17

MAC, 5-1

macros, 5-1

minus, 2-2

mnemonic, 2-17

mnemonic differences, 4-18

mnemonic differences from the Iniel
assembler, B~1

mnemonics, 4-1

mod field, 5-6

modifiers, 54

MODRM directive (code-macto), 5-6

MOV, 44

MOVS, 4-11

MUL, 4-7

N

name field, 2-18

NEG, 4-7

NOIFLIST, 3-11

NOLIST, 3-11

nonprinting characters, 2-1
NOT, 4.8

number symbols, 2-8
numbers, 2-8

numeric constants, 2-3
numeric expreasions, 2-16

O

offset, 2-7
offset value, 3-1
operands, 4-1

operator precedence, 2-14

operators, 2-8

optional run-time parameters,
13,14

OR, 4-8

order of operations, 2-14

ORG Directive {ASM-86), 3.4

OouUT, 44

output fles, 1-1, 1-2

P

PAGESIZE directive (ASM-86), 3-10

PAGEWIDTH directive
{ASM-86), 3-10

parameter list, 1-3

parametet types (ASM-86), A-2

period, 2.2

period operator, 2-14

plus, 2-2

POP, 44

predefined numbers, 2-5

prefix, 2-17, 4-11

Prefix instructions, 2-17, 4-12

prefix mnemonics, 4-11

printer output, 1-§

PTR operator, 2-14

PUSH, 44

Q

QI and QO (Query /O) Commands
{DDT-86), 6-2

Tndex—4

B DIGITAL RESEARCH™

R

R (Read) Command (DDT-§6),
6-10, 6-16

radix indicators, 2-3

range specifiers (code-macro}, 5-4

BB directive (ASM-86), 3-9

RCL, 4-8

RCR, 4-8

regisier memory field, 5-6

registers, 2-§

relational operators, 2-8, 2-10

RELR directive (code-macrc), 5-7

RELW directive (code-macro), 5-7

REP, 4-12

reserved words, D-1

ROL, 4-8

ROR, 4-8

RS directive (ASM-86), 3-8

ran-time options, 1-4

rn-time parameters, 1-4

RW directive (ASM-86), 3-9

§

5 {Set) Command (DDT-88),
6-11, 6-17

SAHE, 4-4

SAL, 4-8,4-9

SAR, 4-9

SBR, 4.7

SCAS, 4-11

SEGFIX directive (code-macro), 5-5

segment, 2-7

segment base values, 3-1

segment directive statement, 3-1

segmene override, 2-8, 2-10, 2-13

segment record types, C-3

segrnent start directives 3-1

semicolon, 2-2
separators, 2-1

shift instructions, 4-5
SHL, 49

SHR, 49

51 register, 4-10

SIMFORM directive (ASM-86), 3-10

slash, 2-2

space, 2-2

special characters, 2-1

specifiers, 5-3

SR (Search) Command
(DDT-86), 6-12

S8EG Directive, 3-3

stack segment, 2-7, 3-1, 3-3

starting ASM-86, 1-2, A-1

starting DDT-86, 6-1

statements, 2-16

STC, 4-17

STD, 4-17

STI, 4-17

STOS, 4-11

string constant, 2-4

string operations, 4-10

SUB, 4-7

symbol table, 5-1

symbols, 2-4, 2-6, 3-§

T

T (Trace) Command (DDT-86),
6-12, 6-16

tabs, 2-1

TEST, 4-9

TITLE directive (ASM-86), 3-9

tokens, 2-1

type, 2-7

typel segment value, 6-16

B DIGITAL RESEARCH™

Index-5

U

U {Untrace) Command (DDT-86),
6-13, 6-16

unary operators, 2-13
underscore, 2-2

v

Y {Value) Command (DDT-86), 6-13
variable manipulators, 2-8, 2-10, 2-13

variables, 2-7

w

W (Write) Command (DDT-86),
6-14, 6-15

WAIT, 4-17

WORD, 2-5, 2-7, 6-18

X

X (Examine CPU State) Command
(DDT-86), 6-14, 6-16

XCHG, 4-4

XLAT, 44

[ndex-6

W DIGITAL RESEARCH™

