il
DIGITAL
RESEARCH®

Concurrent CP/M”

Operating System

System Guide

CORYRIGHY

copyright © 1984 by Digital Resesarch Inc. All
tighta reserved. NWo part of thia publicaticn may be
reproduced, transmitted, transoribed, stored in a
ratrieval system, or transleted into any language cor
computer language, in any form or by any neans,
alackironic, mechanical, wagnetic, optical, chanical,
manupl or otherwise, withou:t the pricr written
parmiselon of Digital Research Inc., Poat Office Box
579, Pacific Grove, California, 93950,

DIBCLAIMER

Dlgltal Reansrch Inc. makes nc repressntetions or
warranties with raspect to tha gontants hareof and
gpacifically digclaims any implied warranties of
mecrghantability or Eltnems Zfor any particular
purposs. Further, bigital Research Inc. reascves
the right to reviss this publication and to make
changes frem time to *ims in the content heraof
without ¢bligation of Digital Research Inc. to
netify any person of guch revision or changas.

TRADEMARKES

CP/M, CP/M-85, and Digital Resaarch and its iogo are
registerad trademarks of Diglial Ressarch Inc. ASM-
86, Consurremt CP/M, ROT-86; MP/M-86, BID-BE6, and
G8X ure trademarks of Digital Reeearch Inc. Intal
is a regintered trademark of Intel Corporation. IBM
i a ragistersd trademark of Intarnational Businasa
Machinea. CompuPro is a reqlitmred tzademark of

Pro, a Godbouyt Company. ME-DOS ls & tradsmark
of Microsof: Carporation.

The Congurrent CP/¥™ Operating System Systenm
Guide was prepared using the Digltel Resesarch
TEX™ Text Formatter and printed in the United Btates
of America.

122232233212 2222 h a2t ittt)]

* First Fdition: Janumry 1984 *
e S T T LI I T I I LI L

Foreword

Concurrent CP/M™ can be configqured as a single or multiple user,
maltltasking, real-time operating system. It igs designed for use
with any digk-baged microcomputer using an Intel® 8086, BOB8, or
compatible microprocessor with a real-time clock. Concurrent CP/M
is modular In design, and can be modifled tc suit the needs of a
particular installation.

Concurrent CB/M alao can aupport many IBM® Personal Computer Disk
Operating 8System (PC DOS) and MB™ -DDS8 programs, Tn additieon, you
can read and write to PC DOS and MS-DOS disks. 1In this manual, the
tecm DOS refersa t6 both PC DOS and MS-DOS.

The Information Iin this manual is arranged in the order needed for
use by the system deszigner. Section ! provides an overview of the
cancurrent CP/M system. Section 2 deacribes how to bulld a
Conourrent CP/M system uslng the GENCCPM utllity. fection 3
contains an overview of the Concurrent CP/M Extended Input/Output
System (XI0S). XICS Character Devices are covered in Section 4, and
Disk Devices in Section S. Section 6 describes speclal character
I/0 Eunctions needed to support DOS programs.

A detailed description of the XIOS Timer Interrupt routine is found
in Section 7. Section 8 deals with debugging the XIOS. Section 9
discuases the bootatrap loader program necessary for loading the
operating system from disk. Segtion 10 treats the utilities that
the QEM must write in order toc have a commercially distributabla
system. BSection ll covere changes to end-user deccumentatlon which
the OEM muat make if certain modifications to Concurrent CP/M are
performed. Appendix A discusses removable media conalderations, and
Appendix B covers graphics implementation.

Many sectiona of thias manual refer tO the example XI0S. There are
two examples provided, One le a aingle user system to run on the
IBM Personal Computer. The other is & multi-user aystem running on
a CompuPro® 86/87 with serial terminals. The single user axample
includes source code for windowing support for a wvideo mapwped
display. However windowing is not required for the system. The
source code For both examples appears on the Concurrent CP/M
distribution disk; we strangly suggest assembling the source files
follawing the inatructions in Bection 2, and referring often to the
assembly llsting whlle reading this manual, Example listings of the
Concurrent CP/M Loader BIOS and Boot Sector gan also be found on the
release disk.

1ii

plgital Research? supports the aser interface and software intecface

to Concurrent CP/M, as described in the Concurrsni CP ratin
Bystem User's Gulde and the Concurrent Op#ratin stem

Programmer's Refarenge Guide., respectively. Digital Resesarch does
naot support any a ticns or modifigations made to Consurrent CP/M
by the OEM or distributor. Tha OEM or Concurrent CP/M diatributor
must alsc Bupport the hardware Interfece (XI08) for a particular
hardware esnvircnment,

The Contcurrent CP/M Syatem Guide is intended for uss by syatem
designers who want tc modify eilther the user or hardware interface
toc Concurrent CP/M. It apgumeq you have already implemented & CP/M-
88% 1.0 Baalo Input/Output System (BIQB), prefesrably on thas target
Concurrent CP/M machine. It algs mssumes you are famillar with
theas four manuals, which document and support Concurrent CP/M:

o The Congurrent CF/M Operating System User's Guide decumenta the
usar'a interfase to Concurrent CF/M, explaining the various
features used to executs applicationa programe and Digical
Regearch uvtility programs.

The Concurxzent cvéu ngrating Syetam Programmer’'s Refarence
Gulde documents the applicetions programmer's intarface to
Ceonpurrent CP/M, explaining the internal file structure and
pysten antry points-~information essantlal Lo create
appligations programs that run in the Concurrent CP/M
snvirenpent,

s The Concurzrent CP/M Operating Syatem Programmer's Dtilities
Guide documents the Digital =Researeh otility programs
programmers usa to write, debug, and verify appllicationg
programs written for thé Concurrent CP/M environment.

s The Congurrent CP/M Oparating System S8ystem ¢uide documents the

internel, hardware—dependent structures of Concurrent CP/M.

Standard terrminclogy 19 used throughout these manuals to reler to
Congurrent CP/M features. For exanple, the names of all Xios
function calls and their associated code routines begin with I0 .
Concurrent CP/M system functione availlable through the logically
invariant softwars interface are called ayatem calls. The names of
all data atructures finternal to the operating system or X108 are
capitalized: for example, XIOS Hemder and Disk Parameter Block.
The Concurrent CP/M eystem data segment 18 referred to as the SYSDAT
area or gimply SYSDAT. The fixed structure at the beglnning of the
SYSDAT area, documented in Section 1.10 of this manual, is called
the S5YSDAT DATA.

iv

Table of Contents

1l System Overview
1.1 Comcurrent CP/M Organlzation . . .+ « & « &+ & « o & 1-3
L.2 Memory LAayout « o o o+ o ¢ » 5 o = v v = = = = « & 1-4
1.3 Bupervisor . . @ 4 v e a0 w1 o4 ‘o me e e e e 1-4
l.4 Real-time Monitor . .« « & & v v 4 & + = ¢ 4 = v = s 1-6
1.5 Memory Management Module . . & « « v « » v « s s &+ 1-8
1.6 Character I/OManager + « « « « s = ¢« « & s« = = = « 1=11
1.7 Basic Disk Operating Byatem « o« ¢« « « » » 1-11
1.8 Extended I/O BYBtemM + + + » + v 3 » + a a 2 = » & &+ 1=13
1.9 Reentrancy inthe XIOB . . .+ + + « + v » « v o« » 4 1-13
1.]10 SYSDAT Segment .« « « ¢ « & & s & » & « = « = & = « 1=14

1.1]1 Resident System ProCeBSE€E . . - + - + « »« » « r « » 1-20

2 Building the XIOS
2.1 GENCCPM Operation . . « &« &+ & « s o 5 o & = o« & « 2-1
2.2 GENCCPM Main Menu . -+ « & & = « « » o « » » o &+ » &« 2-2
2,3 Bystem Parameters Menl « =« + = & s & &+ & « 2-5
2.4 Memory Rllocation Menl . . « + « 2 2 2 2 = & s+ = « 2=10
2.5 GENCCPM REP List Menu . . . « . « « « = =« = = = « « 2=12
2,6 GENCCPM OSLABEL Menu . . + « v « + » 5 = » » + » + 2-13
2.7 GERCCPM Disk Buffering Menu 2-13
2.8 GENCCPM GENSYS Optlon + « + + « ¢« « &« &« + & & « » 1 2-15
2.9 GENCCPM Input Piles . . . « ¢« + 4 ¢« s « o« s s =« & - 2-16

3 XIOE Overview
3.1 XIO8 Header and Parameter Table . . + + o & & « » & 3-1

3.2 INIT EBntry Poidnt . . & & & 4 & 2 &« 4 & a & = = 3-8

5

3.3
1.4
3.5
3.6
3.7
3.8

Table of Contents
(continued)

KIOB BNTRY « + v « v = + = o « 1 « « 4
Converting the CP/M-86 BIOS . . . «

Polled Device8 . . « ¢ o » » o » = & &
Interrupt Devices . « &+ & 2 = = 2 2 4+ «
BDB7 Bxception Handler - . .
X103 Byatem CallB +» + & o o« = 2 » s « »

Charactar Devices

4.1
4.2
4.3
d.4
4.5

Disk
5.1
5.2
5.3
5.4
5.5

5.6
5.7

5.8

Conagle Control Bleek o + 4 4 v ¢ 4 & &
Conmole 1/0 Punctiene . . & & « « « « .

List Pevice Punctione . + v 4 v + v » &

Auxiliary Device Punctions
TO POLL Funckion . . ., + . « + « « =+ &
Devices

Disk I/0 Functione . ., , . . - . « . .
ICPB Data Btruckure s + + « o+ « « = «
Multisector Operations on Ekewed Dipka

DiBk Parameter Head®r « o« v « = s v « =

Disk Parameter Block . . + « = = = . 4 .

5,5,1 Diek Parsaster Blogk Worksheat .

5,5.2 Disk Parameter List workeheet . .

Buffer Contreol BlocX Data Area

Memory Disk Application . + « = « . . .

Multiple Medla Buppert

vl

3-13
3-15
3-15
3-17
2-20

-2
-7
4-13
4-15
4-17

5-1
5-3
516
5-21
5-27

5-35
5-40

S5-41
5~47
5-5%0

10

11

Table of Contents
(continued)

PC-MODE Character I1/0

6.1 Screen I/0 Punctions . « « o 2 + & & 4 s o«
6.2 FEKeyboard Functlons . . « + « = « 2 =« = = = =
€.3 EBquipmeant Check . + « & 4 + s = o a 2 « & = &

5.4PC—HDDEIO_CONIN-....-.-.-.n-a
Xio8 TICK Inmterrupt Eoutine

Dabugging tha XIOS
8.1 Runmning Under CP/M-86 . o . v ¢« « ¢ &+ « o & »

Bootstrap

9.1 Components of Track G on thea IBMPC
9.2 The Bootstrap Process . « . + o« « = 2 = 4 s
9.2 The Loader BDOS and Loader BIOS Function Sets
9.4 Track O Construction . .+ . + ¢+ « v ¢ o 4+ +» &
9.3 Other Bootstrap Methods . . ,

9.6 Orqanization of CCPM.8YS8

OEM Utilitiex

10.1 Bypasaing the BDOS 4« & = =« & & »

10.2 Directory Initialization in the FORMAT Utility

End-user Documsntation . . . - - . . <« - - « .« &

vii

10-1

10-11

11l-1

Appendixes

A Famoveble Media & ¢ v i v 0 0 ke ok e s e A=1

B Graphice Implemsntation « \ + &+ & o « & B-1

Tables, Figures, and Listings

Tablus
1-1. Buperviscr Bystenm Calls . e e v e s s l-a4
1-2., Real-tims Monitor Bystem Calle - e 1-7
1-3. Definitions for Figura 1-3. ., . ., « 4+ + +» » = . 1=10
1-4, HMemory Manegexent Syatem Calls « +» + « « 1-10
~5. Character J/0 Syaten Callm » » » « & « + 1-11
-6. BDOB Bygtem Callsm ¢« . .+ « « « . - 1=12
=7, BYSDAT DATA Data Flelds . . . « + + 4 v » + a + 1-1E
~l. GENCCPM Main Menu Optlone + . . « « + 2=4
-2. Byatem Parametérs Menu Optione -
-1, XIDS Hemder Data Flelds . . o o« « & 45 2 « « & 3-2
-2, XIOB Register Usags 4 « « + .« 3-10
~3, XIDS Punctiona ¢« « « + 4+ 2 2+ « . . 3-11

UImUlIJ'II.I‘IllUlUIUIUIIHG'JI'I.II L Lo K SRt [l el

~1. Consocles Control Block Data Fleld® . . &+ « « + 44
~2, List Contzol Bleck Dats Fialds 4-1%4
~1. Extanded Error Codes s = « 5 o« o s = & 5-4

2. ICPB Data FPlelda a4 2 s 4 s s B-l)
-3. DOE IOPE Data Fields . , . . . s & e « = = « B-l15
-4. Dilek Parametasr Header Data rioldu + s s = 2 s & 5-21
-5. Disk Paramater Block Data Fislde . « « +» « .« . . 5-28
-6, Extended Diak Parametar Block Data Pields . . . 5-32
-7. DBBH and BIM Values ., . . 2 2 « = « = « = « = « » B=-35
-8. EXM Valuea 4 a4 s s & 2 & a4 4 s . « 5-36
-9, Directory Entricu par Bloek Siz@ . « 4« . 4 . . 537
=10, ALO, ALI VAlUGE .+ « &+ « v o = = % s « s« « = s « B5-38
=11, PEH and PRM Valums + &+ = « « « » + s = +» 5=39
=-12. Buffer Control Block Headar Data Fislds 5-42
=13. DIRBCE Data Fields . . ., . . « - 2 « « = = 2 « « B5-43
5-14, DATBCE Data Fields .- 12 5]

viii

§-1.

6-6.
10-1.

Figures

NRORNMNROMBOOMAN R
[N 1 P rna LI T A |
LYy

- P A = e e

]
[EL N o L B o HOD-dMudd -

W en IF-T-#-F-P- w

E-9.

Tables, Figures, and Listings

Alphanumeric Modes . . « .
Graphics Modes . . « .+ + . .
Keyboard Bhift Status . .

D038 Equipment Status Bit Map
Keyboard Scan Codes ., . . .,
Extended Keyboard Codea . .

(continued)

Directory Label Data Fields . ,

Concurrent CP/M Interfacing .
Memory Layout and File Structure

Finding
SYSDAT .

a Process's Memory . . .

L T T N T

SYBDAT DATA .+ . + = + « ¢ 4 =

GENCCPM
GENCCEM
GENCCPM
GENCCPM
GENCCPM
GENCCPM
GENCCPM
GENCCPM
GENCCPM
Typical

Main Mehy + « » 4 . v
Help Function Bcreen 1 .,
Help Function Screen 2

System Parameters Menu .
Memory Allocation Sample

-

Session

RSP List Mgnu Sample Session . .
Operating System Label Menu .

Disk Buffering Sample Session .
8ystem Generation Messages . . .

GENCCPM Command File . .

XIOS Header . + « « ¢« = + « o« =

The CCB

Tahle . . « .

CCB'e For Two Physical Consoles

Consola
The LCB

Control Block Format . .
Table « &

List Control Block (LCB)

- a4 e m

LI BT B
LR T
[T T

Input/Output Parameter Block (IOPB} . .
DOS Input/Dutput Parameter Block (IOPE)
DMA Address Table for Multisector Operations

Disk Parameter Header (DFH) R
DPH Table . . « + ¢ « 2 &« & « =
Disk Parameter Block Format . .

Bxtended Disk Parameter Block Pormat '
Buffer Control Block Header . .
Directory Buffer Contral Block (nIRBCB)

5-10. Data Buffer Control Block (DATBCB) . . .

ix

N

PO R T

P)

6-3
6-3
6-10
6-11
6-12
6~13

10-14

Listings

3-1.
3=2.
3-3.

-1,
Bw=l.
5=3.
S5-4.
LELN
5-§.
5-7.
5“3:
5-9.
5-10.
S-11.

10-1.

Tables, Figures and Listings
(continued)

Dabugging Memory Layosuf . . + 2 & & « &« s a
Debugging CCR/M Under DDY-86 and CP/M-86 . .
Rebugging the XIDH Under SID-86 and CP/M-86

Tracgk O on the IBM PC .+ . &« ¢« « «
Loader Organization ., . . .
Disk Paramster Fleld Initilllzation. . .
Group Leafriptors - CCPM.SYS Header Recurd
CCPM Z2yztem Imags and the CCPM.8YH File .

Concurcent CP/M Disk Layout « + .
Directory Initialixation without Tize Stamps
Dirsctory Label Initialigation ¢« .
Dixectory Initialization With Time Btamps .

X108 Header Definltion P T
XICE Tunction Table .+ « . . v s 4 6 s 2 s o
BOB7 Exception Bandler « « « « & &+

Multissctor Operaticons

ICPE Definitlan . . .
Multissctor Unskewing
DPE Definltion Ve

BELDAK XIOB Funetion
DPRE pefinition T e
Extended DPB Definition
BCH Huader Dafinitien .
DIRBCE Defindtlon . . .
DATBCE Cefinition
Exampls M DIEX Implemsntati

s » 5 # 2 4 « & s =«

n

Disk Utillty Progrmmming Bxample . . .

. & s v = -

8=-2
8~13
a4

9~-1
9-2
9-5
98
9-9

10~12
1G-13
10-13
10-15

3-7
3-12
3-15

5~5
5-13
5-18
5-25
5-36
5-30
5-34
S5-42
5~4d
5-46
5-48

10-3

Section 1
Systern Overview

Concurrent CP/M ia a multitasking, real-time operating system. It
can be configured for one or more user terminala. Each user
terminal can run multiple tasks simultaneoualy on one or more
virtual conaolea. Concurrent CP/M supports extended features, such
as intercommunication and synchronization of independently ruaning
proceases. It iz designed for implementation in a large variety of
hardware envirocnments and as such, you can easlly costomize it %o
fit a2 particular hardware environment and/or user's needs.

Cancurrent CBP/M also supports DOS (PC DOS and MS-DO5) programs and
media. Tha XIDS support for DO5S media is described in Section 5 of
this manual. DOS character I/0 is described in Section 6.

Concurrent CP/M conaiats of three levels aof interface: the user
interface, the logically invariant psoftware intecface, and the
hardware interface. The user interface, which Digital Research
diatributes, is the Regident System Process (RSP} called the
Terminal Message Proceas (TMP). It accepts commands from the uaser
and either performe those commands that are built intoc the TMP, or
passes the command to the operating system via the Command Line
Interpreter (P_CLI). The Command Line Interpreter in the cperating
system kernel either invokes an RSP or lomds a disk file in order to
perform the command.

The logically invariant interface to the operating system consists
of the syatem calls as described in the Concurrent CP/M Operatin
System Programmer's Reference Guide. The leglically invariant
interface alsc connects transient and resident processes with the
hardware interface.

The phyaical interface, or XIOS (extended I/0 system}, commupicates
directly with the particular hardware environment. It is composed
aof a seet of functions that are called by proceasses needing physical
I/0. Sections 3 through €& describe these functions. Figure 1-1
shows the relationships among the three interfaces.

Digital Research distributes Conpurrent CP/M with machine-readable
gource code for both the user and example hardware interfaces. You
can write a custom user and/or hardware interface, and incorporate
them by using the system generation utility, GENCCPM. There are twWo
example XI0Ss supplied with the system. One is written for the IBM
Personal Computer, as a single user system with multiple virtual
consoles. The cther XI0S is written for the CompuPrc 86/87 with
multiple serial terminals. The example XIO0Ss are designed to be
examplea and not commercially distributable systems. Wherever a
choice between clarity and efficiency is necessary, the examples are
written for clarity.

Concurrent CP/M System Guide 1 System Qverview

This section describes the modules pomprising m typical Concurrent
CP/M cperating system, It i» important that you understand this
material before you try to customize the operating system for a
particular application.

User

User Intarface

(oMP)

Invariant
Interface

(8UP RTM MEM CIO BDOS)

Hardware
Interface
{XID8)

:
Hardware Environment

Figure 1-1. Concurrent CP/M Interfacing

Concurrent CP/M System Guide 1.1 Organization

1.1 Concuorrent CP/M Organization

Concurrent CP/M is composed of six basic code modulea. The Real-
time Honitor (RTM) handles process-related functions, including
diapatching, creation, and termination, as well as the Input/Output
eystem atate logic. The Memory module (MEM) manages memory and
handles the Memory Allocate (M_ALLOC} and Memory Free (M FREE)
system calla. The Character I/0 module (CIO) handles all conscle
and list device functions, and the Basic Dilsk Operating System
{(BDO2) manages the file system. These four modules communlcate with
the Sppervis=or (S0P) and the Extended Input/Output System (XI0S8).

The SUP module manages the interaction between transient processes,
auch aBs user programa, and the system meodules. All function calls
go through a common table-driven interface In S8UP. The SUP module
also contains the Program Load (P_LOAD) and Command Line Interpreter
{P_CLI) system calla.

The XIO8 module handles the phyaleal interface to a particular
hardware environment. Any of the Concurrent CP/M logical code
modules gan pall the XIDS to perform specific hardware-depandant
functiona. The names usad in this manual for the XIOS functiona
always begin with IO in ordar to easily distinguish them £rom
Concurrent CP/M operatling aystem calls.

All operating system code modulas, incloding the SUP and XIO5, ghare
a data segment ¢alled the System Data Area (S8YSDAT). The beginning
of SYSDAT is the SYSDAT DATA, a well-defined structure containing
public data used by all system code mcdules. Following this fixed
portion are local deta areas belonging to apecific code modules.
The XI05 area is the last of these code nodule areas. Following the
XIOS8 Area are Table Areas, used for the Proceas Deacriptors, Queue
Deacripters, Syatem Flag Tablea, and other operating syatem tables.
These tables vary in size depending on options chesen during systenm
generation. Bee Section 2, “8ystem Genesration.®

The Resident System Processes (RSPE) occupy the area in memory
immediately following the SYSDAT module. The RSPs you select at
aveatem generation time hecome an integral part of the Concurrent
CP/M operating system. For more information on RSP=s, dee Section
1.11 of this manual, and the Concurrent CP/M Opexating 8yatem
Procgrammer 's Reference Guide.

Concurrent CP/M loads all transient programs into the Transient
Program Area (TPA). The TPA for a given Implementation of
Concurrent CP/M ia determined at aystem generation time.

Concurrent CP/M System Gulda 1.2 HMemory Layout

1.2 Momary Layout

The Concurrent CPF/M operating system areda zan exist anywhere in
mamory exXcept over the interrupt vector area. You define the exact
location of Consurrent CP/M during system genarcation. The GENCCPM
pregram determines the memory locations of the aystem modules that
make up Conourrent CP/M based upcon system genaration parameters and
tha sixe of the modules,

The ¥I03 must reside within SYSDAT. You must write the XICS aAs an
8080 model program, with beth the code and data segment reglaters
get to the beginning of BYSDAT.

Figure 1~2 shows the relationship of the Concurrent CP/M mystem
image to the CCPM.IYE diek file structurs.

1.3 Bupmxivisor

The Cancurrent CP/M Supervisor (3UP) manages the interface between
aystam and transient progeases and the invariant operating system,
All yatem calls 9o through a common table-driven interface in SUP.
The SUPF nmodule also containg system calls that invoke other system

calla, like P_LOAD (Program Lead) and P CLI (Command Line
Interpretar}.

Table 1-1. Suparvispr System Calls

Syatem Call [¥umber Hex
F_PARSE 152 58
P_CHAIN 47 ZF
P _CLI 150 96
P_LOAD 58 1B
P_RPL 151 37
5_BDOSVER 12 o
8_Brod 50 a2
B_QBVER 1E3 Gal
8_SYEDAT 154 9A
§_SERIAL 107 6
T_BECONDS 155 9B

Cconcurrent CP/¥ Systam Gulde 1.3 Supervisor

(top of memory)

l/V\MN"J End of file—w

WAYAN VA Vo W CCEN.5YB
Extra Group
TEA (Used to hold
GENCCPM opticng)
w—End of
0.8, Area
Disk Buffers
-—End of 0.8y
RYFs
CCPM .8Y8
Table Area Data Group
within
X108 GBdk
SYSDAT DATA
L X TOf
BDCS Code Code & Data
Segnent
CIO Code
MEM Code CCPM.8Y8
Code Group
RTM Code
SUP Code
-“—beginning
of 0.5. area
TPA CCPM .3Y3
CMD Format
File Header
MRS A
N WA AT A
{Start of File)
010400H
Interrupt Vectora

0:0000H

¥igure 1-2. Memory Layout and Fils Structore

Cangurrent CF/M Eyetem Guide 1.§ FResl-tims Monitor

l.4 Fsal-tiwme Monitor

The Retl-time Monitor {RTM} is the multitasking kernsl of Concurrant
CP/M. It handles proceas dlgpatching, queus and flag management,
device polling, and syskem timing tasks. It also manages the
logical lnterrupt aysmtem of Concurcent CP/M. The primary function
of the RTM iw transferring the CPFD resoutcs from one process to
ancther, a task sccomplished by the RTM dispatcher. At avary
diespatch oparaticn, the dispatcher stcps the currently running
procass from sxecution and astores its astate in the Proceaa
Depcriptor (FD) and User Data Arsa (UDA) asacciated with that
procesa. The Aispatcher then gelects the higheat-priority procsas
in the ready state and remtores it to executlon, using the data in
itx PD and UDA. A process ig in the ready state if it is walting
for the CPFy resource only. The naw pracess zontinues to execute
until it nesds mn unavailable rasource, a ressurce needed by another
procese becomes avallablie, or an sxternal event, such &8 an
Intercupt, ococurs. At this time the RTM performns another dlaspatoh
cperation, allewing another progees to run.

The Concurrant CP/M RTM dispatchar alae pearforms device polling. A
procaees waltp for a polled device through the RIM DEV_POLL symtan
call,.

Khen a process needs to weit for an interrupt, it lesues a
DBV WAITFLAG aystem call on a logioal interrupt devica. When thea
appropriate interrupt actually occurs, the XIDS calls the
DEV_BETFLAG Aystem call, which wakes up the waiting process. The
interrupt routine then performe & Far Jump to the RTM dispatcher,
which reschedules the interrupted procesa, as well as all cther
repdy processes that are not yet on the Ready List. At this point,
the dispatcher places the process with the highest priority inte
exeguklon. Procesases that are handling interrupts should run at a
battaer pricrity than noninterrupt-depandsent processss (the lower the
pricrity number, the better the priarity) in crder to respond
quiekly te lncoming intarrupts.

The systew alock generates interrupts, clock tizks, typloelly 60
timens per second. This 2llowse Concurrent CP/M to effect process
tina mlicing. Since the cPerating system walty for the tick £lag,
the XIOB TICE Intarrupt routins must sxecute a Conourrent CP/M
DEV_BETFLAG eyectem call st each tigk (see Secticn 7, "XIOS TICK
Intarrupt Routine”}, then perform a Fa? Jump t& the SUP entry point.
At this polnt, processes with egual pricrity are schedulsd for the
CPU resource in round-robin fashion unlesa a better-priority procese
iz on the Ready List. If no process Is ready to use the CPU,
Concurrent CP/M remaine in the dispatchear until an interrupt occurs,
or a polling procese is ready to run.

1-6

Concurrent CP/M System Guide l.4 Real-time Monitor

The RTM aleo handles gueue management. System queues are composed
of two parts: the Queue Descriptor, which contains the queve name
and other parametera, and the Queue Buffer, which can contain a
gpeclfied number of fixed-length messages. Processea read theae
messages from the gueune on a first-in, first-out hasid. A process
can write to or read from a gueue elther conditionally or
pnconditionally. If a process attempts a conditional read from an
empty queun, or & conditional write to a full one, the RTM returns
an error code to the calling process. However, an unconditional
read or write attempt in these situations causes the suspension of
tha process until the overation can be accomplished. Tha kernel
uges this feature to implement mutual exclusion of processes from
serially recsable syatem resources, Such As the disk hardware.

Other functions of the Real-time Maniter are covered in the

Concurrent CP/M Operating System Programmer's Reference Guide under
their individual descriptions.

Table 1-2. Real-time Monitor System Calls

System Call Number Hax
DEV_SETFLAG 133 BS
DEV_WARITFLAG 132 -1
DEV_POLL 131 83
P_ABORT 157 9D
P_CREATE 144 90
P_DELAY 142 -3
F_DISPATCH 142 BE
P_PDADR 154 :1od
FP_PRIORITY 143 91
P_TERM 141 8F
P_TERMCEM 0 00
Q_CREAT 138 Ea
Q_CWRITE 140 8C
Q_DHELETE 136 88
Q_MAKE 134 86
Q_OPEN 135 87
Q_READ 137 89
Q_WRITE 139 BB

Concurrent CF/M System Guide 1.5 Memory Management Module

1.5 Hawory Nansgemant Module

The Memory Management module {MEM) handlss all memory functions,.
Coneureant CP/M mupparte an extended model of memory managemsnt.
Future ralenges of Concurrent CP/M might support differant varsions
of the Memery module depending on clamses of memory manzgement
hardware that become available.

The MEM module Jdescribes memory partitions internally by Memory
Descriptors (MDs). Concurrent CF/M initially places =1l avallable
partitions on the Memory Pree Limt (MPL}. Once MEZM allocates a
partitien (or set of contigusum partitione), i+ takes that partition
off the MFL. and places 1t on the Memcry Allocation List (MAL)}. The
Mamory Allogation List contains descriptions of contiguous arsas of
menicry Known as Memory Allocation Unlity [MAUE). MAUs always contain
cne or more partitiona. The MEM nodule manayer tha space wixhin an
MAU in the following way: when a proceds reguesta eXbra memory, MEM
firat determines if the MAC has snough unuesd space. If it does,
the eXtra memory rejuested comes from the procesa's own partition
Elrat.

A progess can ofly allocate memory from a MAU in which it already
owns memary, ar from a2 new MAU created from the MPL, If one process
sharas memery with another, alther can allocate neaxory from the MAU
that contains the shared memcry msgment. The MEM modules Keeps a
count of how meany processes "own" a particular nemory Begment to
enpure that it bacomea availabie within the MAU only when no
processas own 1t., When all of the menory within an MAQ is free, the
EH nodule fzesg the MAU and returns its nexory partiticns to the
I-ll

If the mymtem for which Conourrent CF/M is being 1lmplemented
contains memory management hardware, the XIOE can protect a
process's meanory when it i# not in context. When the proceags is
entering the operating system, all memory in the pystem should be
rade Read-Write. When a procees is exiting tha operating system,
the process’s menory should be made Read-Writa, the opsrating sayeten
manosry {from COCPMAEG to ENDSEG) made Repd-Only, sand all othar nemory
made nonexistent, Memory protection cen he implemented within the
¥I0E by a routine tha:t inteccepts the INT 224 entry peint for
Concurrent CP/M eystem calls, 2nd Iinterrupt routines that handle
attempted memory protectlon viclatiocna.

Pigure 1-3 shows how t0 fFind a process's memory.

-8

Concurrent CP/M System Guide L.5 Memory Management Mcdule
SYSDAT:68H
RLR
00H . 020 leil K 18H 30H
T T
PD 2 % [MEM)} © AE}
’ |
0oH l) D2H O6H . OBH) DAH
1 T 1
MSD LLHK z} (MAU) o
Next MSD [ALL MSD's pointlng te a common

(0 Lf none)

QUH l ;

02H

O6H

MAU are grouped together}

OAH

START
N

i

Figqure 1-3.

Finding a Procesa's Memory

Concurrent CP/M Bystem Guide 1.5 Memcry Management Module

Yabla 1-3. Definitions for Figuras 1-3.

Data Fiald Explanstion
RLR Ready Liat Rooty polinte to currently
running process.
D Process Descriptor; describss s process.
MEM MEN fiald of Proceas Depcripter.
MED ¥enory Segment Descriptor; describes a

gingle memory allecaticn. A procass wmay
have many of these in a linked 1list. The
MBD liet pointed to by 4the MEM field
depgcribes all the successful memory
allocatione made by the process. Alse,
many MHDG may polnt to the aame MAU. All
MBDm polnting to the same MAU ara grouped
togatherx.

MAT Menory Allocatinn Unit; dedcribes 2
contigueus arem of allocated memory. A
MAU is bullt from one or mere contiguocus
penmory partitions, The BTART and LENGTH
fields are the starting paragraph and
number of parsgraphs, respectively.

Table 1-4, HNewory Management Eystem Calls

Byatem Call | Number Hex

M_ALLOC 128, 129 80, Bl
M_FREE 130 82
JE'_ABB 5d 36
MC ALLFREE 33 3A
WG ALLOG 55 37
MC_ALLOCAES 56 2B
MC_FREE 57 39
MC_MAX 53 35

Wote: The MC_ARS, MC_ALLOC, MC ALLOCABE, MC FREE, MC ALLFREE, and
MC_MAX pystem calls internally execute the M_ ALLOC and M_FREE syatem
calls. They are mupported for compatlbility wlth the CP/M~86 and
MP/M-B6™ operating syatems.

1-10

Ceoncurrent CP/M Syatem Guide 1.6 Character I/0 Manager

1.6 Character I/0 Manager

The Character Input/Output {(CIO) module of Concurrent CB/M handles
all console and list device 170, and interfaces to the XIOS, the PIN
(Physical Input Process) and the VOUT (Victual QUTput proceas).
There i= one PIN for each user terminal, and one VOUT for sach
virtual console in the system. An overview of the CIO is presented
in the Concurrent CP/M Operating System Pragrammer's Raference
Guide, and XI0OS Character Devices are described in Section 4 of this
manual., For detalls of the Conzole Contrel Block (CCBY and List
Control Block (LCB)Y data structures, see Sections 4.1 and 4.3
respectively.

Table 1-5. Character I/0 System Calls

Bystem Call Number Hex
C_ASSIGN 149 95
C_ATTACH 146 92
C_CATTACH 152 OA2
C_DELIMIT 110 6E
C_DETACH 147 93
C_GET 153 99
C_MODE 109 6D
C_RAWIO & 06
C_READ 1 o1
C_READSTR 10 oA
C_SET 148 94
C_STAT 11 0B
C_WRITR 2 02
C_WRITEBLK 111 6F
C_WRITESTR 9 0%
L _ATTACH 132 9E
L_CATTACH 161 OAl
L_DETACH 159 9F
L_GET 164 oAd
L_SET 160 OAD
L_WRITE 5 05
L _WRITEBLK 112 70

1.7 Baaic plek Operating System

The Basic Disk Operating System {BPCS) handles all file systen
functionsg. It is described in detail in the Concurrent CP/M

CE)Erating System Programmer's Reference Gulde, Table 1-6 liats the
encurrent CP/M BDOS system calls.

1-11

Concurrent CP/M Byatem Guide 1.7 Basic Disk Operating Systen

Table l-6. BDOE System Calls

gystem Call Number Hex
DRV ACCESS 38 25
PRV ALLOCVEC 27 1B
DRV_DFE 31 1r
DRV _FLUEH 4B 30
DRV GwT 25 13
DRV _GETIAREL 101 -1
DRY_LOGINVEC 24 18
DRV RESET 37 25
DRV_ROVEC 25 1
DRV_BET 14 0B
DRV_BETLABEL 100 &4
DRV_BETRO 26 1e
DRV_EPACE i€ 1]
¥ _ATTRIB i 1B
¥ _CLOSE 16 10
F_DELETE 19 13
F_DMABRG 51 33
¥_DMAGET 52 4
F_DMAOFP F13 1A
F_ERRMODE 45 b
F_LOCK 42 2A
F_MATE 22 15
F_MULTIBEC i ic
¥ _OPEN 15 o
F_PASSWD 106 A
¥ WEAD 20 14
F_WEADRAND 33 21
F_RANDREC 36 24
¥_REHAME 23 17
¥ _BPIRST 17 11
F BIZE 35 23
F_BNEXT 18 12
F_TIMEDATE 102 g6
¥ _TRONCATE 8% £3
¥_UNLOCK 43 2B
F_USRRMUN 32 a0
¥_WRITE 21 15
F_WRITERAND 34 22
F_WRITEXFCE 103 87
F_WRITEIF in 23
T _GET 105 &3
" BET 104 &8

1-12

Concurrent CP/M System Guide 1.8 Extended I/0 System

1.8 Extended I/0 Bymtem

Tha Extended Input/Output Syastem (XI0S8) handlas the phyaical
interface to Concurrent CP/M. 1t iB aimllar to the CP/M—~B§ BIOS
module, but it ie extended in several waya, By medifying the X108,
you can run Concurrent CP/M in a large variety of different hardware
envizanments. The XI0S recognizes two basic types of 1/0 devices:
character devices and digk deives. Character devicea are devices
that handle one character at a time, while disk devices handle
random blocked I/0 using data blocks sized from one physical disk
gector to the number of physical eectors in 16K bytes. Use of
devices that vary from these two models must be implemented within
the XI08. In thia way, they appear to be atandard Concurrent CB/M
I1/C devices to other aperating system modules through the XI0S
interface., Sectilons 4 through 6 contain detailed descriptions of
the XIOS functions, and the socurce code for twao sample
implementations can be found in machine-readable format on the
Concurtent CP/M QEM release diask.

1.9 Reentrancy in the XIOS

Concurrent CP/M allows multiple processea to use certaln XIDS
funcktliona aimultanesously. The system guarantees that only one
process useg a partlcular physical device at any glven time.
However, some XIOS functions handle more than one physical device,
and thus their interfaces muat be reentrant. An example of this is
the IQ_CONOUT Function. The calling process passgses the virtual
coenaocle number to this function. There can be several processes
using the function, each writing a character to a different virtual
console or character device. However, only one process 1ls actuselly
outputting a character to a given device at any time.

I0_STATLINE can be called more than once. The CLOCK proceas calls
the I0 STATLINE function once per second, and the PIN process will
also call it on screen switches, CTRL~5, CTRL-P, and CTRL-N.

Since the RXIOS file functiona, I0_SELDSK, IQO_READR, IO WRITE, and
I0 FLUSH are protected by the M¥disk mutual exclusien gueue, only
ane process may acceas them at a time. None of these XIOS
functions, therefore, need to be reentrant,

1-13

Congurcent CP/M System Guide 1.10 SYEDAT Sagment

1.10 BEYBDAT Esgment

The System Datm Arsa (SYSBDAT) is the data ssgment for all modules of
Concurrent CP/M. The SYSDAT seqgnent {8 composed of three main
areas, as shown in Figure 1l~4. The First part is the fixed-format
portion, contalning global Sata used by all modules. This is the
S8YSDAT DATA. It containms aystem variables, including values set by
GENCCPM and pointsrs te the varicus eystem tebles. The Internal
Data portion containa fielde of data belonging to individual
cperating system modulea. The 'XI0S begina at tha ¢nd of this second
area of SYSDAT. The third poktion of BYSDAT is the System Table
Area, which 1a genesrated and {nitiallzed by the GENCCPM system
generation utility. ¢

Figure 1-4 shows tha relatlidnships among the ﬁarious parts of
EYSDAT.

'

Table Area
XIcs
COO0H:
Internal Data
OBOH:
(BYSDAT DATA}
Q00H:

Figure 1-4. SYSDAY

Flgure 1-5 gives the format of the SYSDAT DATA and Jdeacribes its
data flelds.

1-14

Cancurrent CB/M Bystem Guide 1.10 SYSDAT Segment

1]4). 1 SUP ENTRY RESERVED
: ——t —t——t
08H RESERVED
; : : —t : :
108 RESERVED ,
) 4. L L] 1 1
T T T v T T T
18H RESERVED
T T T T L] 1 T
20H RESERVED |
i & 1 1 4
T T T T A T
280 X105 BENTRY X108 INIT
1 1 1 1 1 1
L] T T T Ll 1
30R RESERVED
1 1 1 I i]
T T T T 1] T
38H DISPATCHER PDISP
1 3 1
40H CCPMSEG REPSEG BENDSEQ RESER |NVCNS
. -VED
490 | wLce |WeeB | N_ | s¥s_ MME RESER| DAY
FLAGS | DISK , -VED| FILE
S0H TEMP| TICKS LIL CE!ZB FLAGS
DISK| /BEC
1 I 1
sea | mDUL MPL PUL QUL
t + } t
60H OMAD
} t t t
6BH RLR DLR DRL PLR
(t t t
T0H RESERVED THERDRT QLR MAL
1 1 1 i
T8H VERSION VERNUM CCPMVERNIM TQOD DAY
t
BDH TOD TOD TOD [NCON {NLST |NCIO LCB
_HR | _MIN| _BEC| DEV | DEV | DEV
}
T
8BH OPEM_FILE |LOCK_{OPEN |OWNER 8087 RESERVED
MAX MAX
"y 1 '
i T —T
90H RESERVED
] 1 i 1 1 Il
L] T T T T
98a RESERVED i KPCNS
1)]
L ¥ T
A0E | OFF 8087 |SEG_8087 [SYS_87 OF | SYS B7_SG

Figure 1-5, SYSDAT DATA

1-15

Conturrent CP/N Bystem Guids 1.10 BYBDAT Hsgmanhk

Table 1-7. SYSDAT DATA Data Fieldm

Data Fiald I Bxplanation

80P ENTRY Double-word sddrasas of the Supsrvisor
entry paint for interpmodule communication.
All interna) system calls g9 through thias
antry point.

XI0B ENTRY Double-word sddreas of tha Extended I/0
Syntem entry point for Iintermodule
communication. ALl XIOS functicon cells go
through this entry point.

XIDE INIT Double-word address of the Extended I/0
Bystan Initialization entry point. Bysten
hardware initlalization takes place by a
call through this sntry point.

DISPATCERR Doublewword addreseg of the Dispatchar
antry peint that handles interrupt
returns. Exscuoting a JMPF inetruction to
thiz address is sguivalent to exaecuting an
IRET {Interrupt Return) instruation. The
Diapatcher routine causss a dimepatoh to
ooour and then executes an Interrupt
Return. All reglaters are presarved and
one level of stagk is umed. The address
in this loocation can ba used by XICS
intarrupt handlers ¥or tarmination instesd
of axecuting an IRRT inatruction. Tha
TICK interrupt hendler (I_TICX in the
examples XIO8'a) ends with a Jump Far
{IMPF) to the address in this location.
Upually, interrupt handlere that nakse
DEV_SETFLAG calla and with a jump far to
the address etored in the DISPATCHER
field, Refsr to the sxample XIDE
interrupt routines and Sections 3.5 and
3.5 for more dstalled Information.

rDIBP Double-word address of the Dilepatcher
sntry point that causes a Alspatch to
ocecur with all ragiaters preassrved. Once
the dispatch is done, = RETF Instruction
is axecuted, Executing a JMPF PDIBP is
egquivalent to sxecuting a RETF
inatruction. Thie location should be ueed
as an exit paint whenever tha XID#
releases a reapource that might be wanted
by & walting proceda.

1-16

Concurrent CP/M System Guide 1.10 BSYSDAT Segnent

Table 1-7. {continued)

Data Field I Explanation

CCPMBEG Btarting paragraph of the ocperating system
area. Thie 1s also the Code Segment of
the Supervisor Mpdule.

RSPSEG Paragraph Address of the Firat RSP in a
linked liat of RAP Data Segments. The
firat word of the data azegqment pointa to
the next RSP in the list. Jnce the ayatenm
has been initialized, this field is zero.
Bee the Concurrent CP/M Oparating Syatem
Programmer's Reference Guide section on
debugging RSPs for more Information.

ENDSEG Pirst paragraph beyond the end of the
operating syatem area, including any
buffers conalsting of uninitieslired RAM
allocated to the cperating system by
GENCCFEM. These include the Directory
Haahing, Dlak Data, and XZI0OE ALLOC
buffera, These buffer areas, however, are
not part of the CCPM.SY3 file.

NVCHS Number of wvirtual conmclea, copied from
the XIOS Header by GENCCPM.

NLCB Number of Liat Control Blocks, copied From
the XI0OS Header by GENCCFM,

NCCB Number of Character Control Blocks, copled
from the XIO8 Header by GENCCPM.

NFLAGS Number of syetem flage as specified by
GENCCPM.

8YSDISK Default system disk. The CLI (Command

Line Interpreter) looks on this disk if it
cannot open the commanéd file on the uaser'sa
current default disk. 8Set by GENCCFEM.

MMP Maximum memcory allowed per proceas. Set
during GENOCEM.

DAY FILE Day File opticn. [f this fleld i= OFFH,
the operating eystem displays date and
time information when an RSP or CMD file
is invoked. Bet by GENCCPM.

1-17

Congurrent CP/M System Guide 1.10 SYSDAT Sagment

Table 1-7. (continoed)

Data Field L Explanation

TEME DISK Default temporary dimk. Programs that
create temporary fllee should use this
diek. Set by GERCCPM.

TICKS/SEC The number <f system ticke per sscond,

LuL Locked Unumed Limt., Link list root of
unuaed Look liat itema.

cCB Address of the Character Control Block
Table, copled from the XIO2 Haader by
GENCCEM.,

FLAGE Address of the Flag Tabla.

MDUL Memory Deserlptor Unused Tist, Link list
reot of unumed Mamory Dascriptors.

MFL Memory Frae Limt, Link lint root of free
mamory partitions.

PUL Process Unumsed Liet, TLTink liat reoct of
unused Progess Degoriptors,

QUL Queus OTuused Lidt. Link list root of
unussd Quaues Dagorlptors.

QMAT Queus buffer Memcry Allocation Unit,

FLR Ready List Root. YLinked liat of PDe that

are ready to run.

DLR Delay Liat Root. Linked list of ¥Da that
are delayving for a spacified nunmber of
ayetem ticksa.

DRL Dispatcher Ready List. Temporary holding
place for Pod that have just been made
ready to run,

PLR Poll List Root. Linked list of PDs that
are polling on devices.

THRDRT Thread List Root. Linked 1list of all
current PD& an the systam. The 1liat is
threaded though the THREAD fleld of the PD
ingtead of the LINK fimld.

Concurrent CP/M System Guide

Tabla 1-7. (continued)

Pata Field Explanation

QLR Queue List Root. Linked list of all
System QDa.

MAL Mamory Allocaticon Lists link liat of
active memory allocation unlta., A MAD is=
created from one ar more menoty
partitionsm.

VERSIOR Addreas, relative to CCPMBEG, of ABCII
vergion atring.

VERNUM Congurrent CP/M version nomber (returned
by the 3_BDOSVER system call).

CCPMVERNUM Concurrent CP/M veraion number (aystem
call 163, 8 OSVER}.

TOD_DAY Time of Day. Number of days gince 1 Jan,
1978,

TOD_HR Pime of bDay. Hour of the day.

TOD_MIN Time of Day. Minute of the hour.

TOD_8EC Time of Day. BSecond of the minute,

NCONDEV Number of XIOH consoles, copled freom the
XI0S Header by GENCCPM.

NLSTDEV Number of XIOS list devices, copled from
the XIOS Header hy GENCCPM.

NCIODEV Total number of character devices (NCONDEV
+ NLSTDEV),

LCB Dffsat of the List Contral Block Table,
coplied from the XIDS Header by GENCCPM.

OPEN_FILE Open File Drive Vectaor. Designatea drives

that have open files on them. Each bit of
the word wvalue represents a diak drive:;
the leasat significant bit repregsents Drive
A; and go on through the moat significant
bit, Drive P. Bits which are set indicate
drives containing open f£iles.

1.10 SYSDAT Segment

Congurrent CP/M Bystem Guide 1.10 BYEDAT Segment

Table 1-7. ({(continued]

Data Field l Explanation

LOCK_MAZ Maximum number cof Jlocked records per
progess. Set durlng GENCCFM.

OPEN_MaX Maximum number of cpen Aiakx files per
process. Sat during GENCCPM.

OWNER_8087 Progess currently owning the 8087. Bet to
0 if B0B7 lm not owned. 8Sat to OFFFFH if
no 8087 premsnt.

XPONS Number of physical conaclan.

OFF 8087 Offamt of tha 8087 interrupk vector in low
WmeMOTY,

8BG_8087 Bagment of tha 80B7 interrupt veotor in
low MeRoLY.

BYs B7_OF Offsat of the dafault BOE7 exceptlon
nandler.

8YB_87_8G Segment of the dafmpult 8087 exceptlen
handler.

1.1l 3Rapident System Frocesses

Reeldent System Prorcegsses (R3Pa) are an integral patt of the
Concurrent CP/M operating ayetem. At system generation, the GENCCEM
REP List menu lats you aslect which REPs to include in the operating
system. GENCCPM then places all saslected R8FPs 1n a contiguous mrea
of RAM starting at the snd of BYELDAT. The main advantage of an RBEP
iz that it iz permanently resident within the Operating Bysten Ares,
and does not have to bs loaded from disk whanavar it is needed.

Concurrant CE/M automatically allooates & Progess Descriptor (PD)
and User Dmta Area (ODA) for 2 transient program, but sach REP ie
responsible for the allocation and initlslisation of ite own PO and
UDA., Concurrent CP/M uses the PD and QD mtructures dsclared within
an REP directly if they fall within &4E of the BYBDAT sesgmsnt
addrass. If ocutside 64K, the REP's PD and QD are gopled to a PD o
Qb alloozked from the Process Unused List or the Qusue Unused List.
In elther case the PD and QD of the R3P lie within 64K of the
beginning of the SYSDAT Segment. This allows RSPs to occupy more
arsa than remaine ln the 64K BYSDAT sagmant.

1-20

Concurrent CP/M Bysatem Guide 1.11 Resldent System Processes

Further detalls on the creatlon and uee of RE8Pa can be found in the
Concurrent CP Operating System Programmer's Reference Guide.

End of Section 1

1-21

Section 2
System Generation

The Concurrent CP/M X10B ahould be written as an BDBD model (mixed
code and data) program and origined at locaticon OCODH using the
ASM86 ORG asmsembler diractive. Once you have written or modified
the XIOS aource for a particular hardware configuration, use the
Digital Research assembler ASM-85™ or RASM-BE™ to generate an
XI0H.CON file for use with GEHCCEM:

A>ABMBE XIDH 3 Assemble tha XT0S
A>GENCND XIOE 8080 ; Create XIDS.CMD from XIOS.HBE

A>REN XIOB.OCOW=XIOB.CMPp ; Rename XIOS.CMD to XI0S.CON

Then invoke the GENCCPM program to produce a ayatem image in the
CCPM.8YS file by typing the command:

A>GERCOCPM t generate system image

2.1 GERCCPM Operation

You can generate a Concurrent CP/M system by running the GENCCPM
program under an existing CP/M or Concurrent CP/M system. GENCCPM
builds the CCPM.S5YS file, which is an image of the Concurrent CP/M
operating system. Then you can use DDT-86™ or SID-B6™ to place the
CCPM.8YS file in memory for debugging under CP/M-B6,

GENCCEM allows the ugser to deflne certain hardware-dependent
variahles, the amount of memory to regerve for system data
atructores, the selection and inelusion of Reagident Syetem Processes
in the CCPM.S8YS file, and other ayatem parameters. The first action
GENCCPM performa is to check the current default drive for the files
negessary to construct the operating asystem images

80P.CON Suparvisor Code Module

RTM .CON Real Time Menitor Code Medule
MEM.CON Memory Manager Code Mcdule

CIO.CON Character Input/Output Code Module

BDOS.CON Basic Disk Operating Syatem Code Module

X105.CON Extended Input/Output System Module

SYSDAT.CON SYSDAT DATA and Internal Data modules of
SYSDAT segment

Concurrant CP/M System Guide 2.1 GEKCCPM Operation

» YOUT,.RBP Virtual conadle OUTput protass
@ PIN,RBP Phyaical ksyboard INput process
= TMF,RBP Terminal Massxge Process

w CLCCKR.R8F CLOCE procesas

¢ DIR.RBP DIRegtory procass

s ABCRT.RBP ABORT process

Wote: *.R8PF - Resldent System Proceas file. The VOUT, PIN, TME,
and CLOCK ESFs are required Jor Conpurrent CP/M te run. The RBPs
listed mre all dietribuated with Concurrent CP/M,

If GENCCEM dmes not find trhe precediny .CON P£ilag on the default
drive, 1t printe an error measage on the conacle;

Can't £ind these modules: <PILESPEC>...{<PILESPEC>}

where FILESPEC im the name of the mieming file,

2.2 Main Menu

All of the GENCCPM Main Menu optlens have dafault values. When
genarating a ayetem, GENCCFM nassumem the valua ahown in square
bracketa, ynless you specify another value. Any menu ltem that
requices a yas or no regponee repregents a Boolean value,; and can be
toggled simply by entering the variable. For exampls, entering
VERBOSE in response tc the GENCCPM prompt will change tha state of
the VERBOSBE variable from the default siete, [¥], to the opposite
atate.

In the GEHCCPM Main Menu illustrated in Figure 2-1, all numeric
values are in hexadecimal notation.

*¥% Congurrent CP/M 3.1 GENCCPM Main Manu *>*

help GENCCPM Halp
varboes (Y] Mors Verboss GENCUPM Msesages
destdrlve [A:] CCPM.BYS OQuiput To (Destination) Drive
daletenys [N] Delete {instead of rename) old CCPM.BYS file
sysparams Display/Change Bystem Parameters
REemSry Display/Chanygs Memory Allocatlon Partitiona
dlakbuffers Display/Change Diak BuFfer Allocation
oslabel Display/Change Operating Syatem Label
reps Dieplay/Change RSP TList
genaye I'm £inished changing things, 9o GEN a S8YBtem
Changea?

Flgure 1-1. GENCCPM Hain Menu

2-2

Concurrent CB/M System GQuide 2.2 GENCCPM Main Menu

If you type HELP in response to the CGENCCPM Maln Menu prompt
Changes?, as shown in thie example:

Changes? HELP <gr>

the program prints the following message on the Help Function
Screen:

¥ GENCCPM Help Function #**

EEEEEESSSSSEEETISSTEEIEIITIITSSS

GENCCPM lets you edit and generate a svstem image from
operating system modules on the default 1isk drive. A
detailed explanation of each GENCCPM parameter may be
found in the Concurrent CP/M System Guide, Section 2.

GENCCPM assumes the default values shown within square
brackets. ALl numbers are in Hexedecimal. To change a
parameter, enter the parameter name followed by "=" and
the new value, Type <cr> (carriage c¢2tucn) ta enter the
assignment, You can make multiole assignments if you
separate them by a space. WNo spaces are allowed within
an assignment. Example:

Changes? verbose=N sysdrive=A: openmax=1lA <cr>
Parametetr names may be shirtened to the minimum
combination of latters unijque ko the currently Adisnlayed
meny, Example:

Changes? v=N des=A: del=Y <cr>

Press RETURN to continue...

Figure 2-2. GENCCPM Help Punction Screen 1

Congurrant CP/M Byatem Guide 2,1 GENCCPFM Maln Menu

Sub-menus {the lawt few cptione) are accamped by typing
the sub-meny name followed by Jor>». You May sntaer
multiple sub~ menues, in which cmse each sob—menu will be
digplayed in order. Examplae:

Changes? help sysparams repm <gr?

Britar «<cr» alona to exilt a menu, or w parametar name, "="
and the nev valus L6 asaign a parmmeter. Multiple
apslgrments mEy be antared, ae ln respohse to the Hain
Menu prompt.

Preaps RETURN to continue.

Figure 2-3. GENCCFN Help Function Boreen 2

Table 2-1 describes the remalning GENCCEM Main Menu options.

Table 2-1. CGENCCPM Main Menu Options

Optien I Explanation

VERBOPE The GENCCPH progream mepsangee Are normally
verxbose. However, expsrienced pperatora
might want to lisit them Lh the inteteat
o sfficisncy. Betiing VERBOBE 0 N
{ne) limite the length of GENCCPM
megeages to the absclute minimum.

DESTDRIVE The drive upen which tha generated
CCcPM.8YH file ia to reside. If no
Qestinetion drive is spacified, GENCCFM
apeumas the currently logged drive as
the defaule.

DELETBEYB Delets, ingtead of rename, old CCPM,3YH
file. Normally, GENCCPM renames the
previocus systed file to COPM.OLD before
building the nev system image. By
spacifving DELETESYB=Y¥, you caume
GENCCPM to delats the old file instead.
This ie useful when dimsk space is
limited.

HYAPARAMS Typing BYSPARAME <cx> displays the
GENCCPM Bystem Parametér Menud. -1 1]
Pigure 2-4 and azcoapanying taxt,

2-4

Conclurrent CP/M System Guide 2.2 GENCCPM Main Menu

Table 2-1. (¢continued)

Opticn Explanation

MEMORY Typlng MEMORY <cr> diasplays the GENCCPM
Memory Partition Menu. See Flgure 2-5
and accompanying text.

DISKBUFFERS Typing DISKBUFFERE <pr> displays the
GENCCPM Diak Bnffer Allocation Menu.
See Flgure 2-7 and accompanying text.

OBLABEL Typing OSLABEL <cr> displays the GENCCPM
Operating System Label Menu. See Figure
2-8 and accompanylng text.

REPS yping RBPS <cr> diaplays the GENCCPM REP
Limst Menu, See Figure 2-6 and
accompanying text.

GENEYS Typlng GENSYS8 <er> ilnitiates the
GENeration of the 8YStem file. When
using an Iinput £ile to specify ayatem
parameters, and the GENSYS command s
not the last line in the input file,
GENCCPM goea into interactive mode and
promptas you for any additicnal changes.
8ee Bectlon 2.9, "GENCCPM Input Files,"
for more information.

Hote: To create the CCPM.SYS file you must type Lln the GENSYS
command, or include it in the GENCCPM input file.
2.3 System Parameter= Menu

The GENCMD Svatem Parameters Menu i1s shown in Figure 2-3. You
acoesd this menu by typlng SYSPARAMS in response to the Maln Menu.

Note: All GENCCPM parameter values gre in hexadecimal.

Qoncurrent CE/M Bystem Guide 2.3 Bystem Paranmeters Menu

Diaplays/Change Bystem Paraneters Menu

pyedrive [B:] System Drive
tapdrive [B:] Temporary Flle Drive
emdlogging [N] Command Day/Flile Logging at Congole

compatnode [Y] CP/M FCE Compatibility Mpde
menmax [4000] Maximum Memory per Process (paragraphs)
openwmax {20] Open Filles per Process Maximum
loeckmax [20] Locked Retords par Procens Maximum

oustart [1008] Btarting Paragraph of Oparating Syetem
nopenfilea [40] Wumber of Open File and Locked Record Entries
npdescs [14] Number of Process Descriptora
ngehs [20] Number of Queus Control Blocks
gbufsize [400] Queus Buffer Total Size in bytes
nflage [20] Humber of Systen Flags
Changep?__

Figure 2-4. GENCCPN Byntam Parametars Menu.

Table 2-2. Syatom Pargmaters Menu Optlions

option] Explanation

SYSCRIVE The system drive where Concurcent CF/M
looka for a trztisient program when 1t is
not found on the current default drive,
All the commonly need transient
provesses can thus he placed cn one diak
under Uper Number 0 and are not nesded
on every drive and user number. BS&ée the
Consurrent CR/M Operating Syetam User's
Guide for nformation on how the
oparating systen perfcrms ¥ile seprches,

TMPDRIVE The drive entersd hers 1s used ae the
drive for temporary disk filee, This
sntry can be accessed in the Bystem Data
S8agment by application programs as the
drive on whieh te¢ cteate temporary
filea. The tampocrary drive should be
the fastest drive in the mystem, for
sxample, the M™Memory Diak, if
implamented,

Conzurrent CP/M System Guide 2.3 System Parameters Menu

Table 2-2. (cantinued)

Option Explanation

CMDLOGGING Enteting the response [Y¥] Causes the
generated Concucrrent CP/M Command Line
Interpreter (CLI) to display the current
time and how the command will be
executed.

COMPATMODE CP/M® FCB Compatibility Mode [Y]. When
the default walue [¥] i3 set, the
operating system reccgnizes the
aompatibility attributes. Setting this
parameter t¢ [N] makes the generated
ayatem ignore the ocompatibility
attributes. See the Concurrent CE/M
Operating System Programmer's Referance
&uide, gectian E.EE, "Compatibllity
Attributes," for more information on
this feature.

MEMMA X Maximum Paragrapha Per Process [4000]). A
process may maka Congurrent CP/Y memory
allocations. Tals parameter puts an
upper limit on how much memory any one
process can obtaln., The default shown
here is 256K (40000H) bytaes.

OPENMMAX Maximum Open Files per Process [20].
Thia parameter specifies the maximum
number of Eiles that a single process,
usually one program, can ¢open at any
given time. This number can range from
0 to 255 (OFFH) and mudt be less than or
sgqual to the total open Eilea and locked
records for the aystem. See the
explanation of the NOPENFILES parameter
helow.

LOCEMAX Maximum Locked Records per Process [20].
This parameter specifies the maximum
number of records that a single process,
ugually one program, can lock at any
given time. Thie number can range from
0 to 255 (OFFH} and must be less than or
equal to the total opan files and locked
records £for the ayatem. See the
explanation of the NOPENFILES parametar
in the SYSPARAMS Menu.

Concurrent CF/W Byatem Guida 2.3 Bystem Faramsters Manu

Tuble 2-2. (continued)

Option (Explanation

OBSTART Starting Parmgraph of the opearating
eystem [100B]., The starting paragraph
iz where the CCPMLDR ls to put the
oparating system. Code axpcution starkas
harsa, with the C8 regloter met to thim
value mnd the IP registar set to 8. The
Duta Sagnant Reglster ls sat to the
BYSDAT segment address. When firat

1 bringing up and debugging Concarrent

CP/M undar CP/M-BA, the anmwer to thile

question should be B plus where DDT-BE

running under CP/M-—-86 reade in the flle

using the R command. The DDTEE R

coomand almd can bs uead to read the

CCPM.8YE fila to a specific memory 1

location. After debugging the esyeiem,

you might want ta relooste it to an 1

address more appropriate to your

hardwars gonfiguration. This loagation
haturally depends on where the Boot

Bactor and Loadsr are placed, and how

wuch RAM 4ia& uwed by ROM monitor or

mamory-mapped I/0 devices.

T

NOPENFILES Total Opan Fllee in Syatem [40]. Thia
peramater mpeclflies the total wime of !
the Bystem Lovk Liet, which includes the
totel number cf cpen disk files plum tha
total numbar of locked records for all
the processsas executing under Concurrant
CP/M at any glven time. This number
must be greater than or equal to the
saximum open f£iles pasr procass {tha
OPEMMAE parmmetar above)] and the maxinum
looked reccrda per process (the LOCEMAX
paremetsr above). It is powsible either
to allew emch procese to upe up the
total Syskbem Lock LiB:t mpace, or to
alleow each process to only open a
fraction ¢f the gystem totml. The firat
technigue implies a mitumtion where cone
process tan faorcibly black others
becsuse 1t has consumed 2ll the
available Look limt items.

-3

Concurrent CP/M System Guide 2,3 Bystem Parameters Menu

Tahlae 2-2. {contlnued)

Option I Explanation

NFDESCS Nunmber Of Procese Descriptors [14]. For
each memory partition, at least one
transient program can he loaded and run.
1f transient programs create child
processes, or if RSPE extend past G4K
from the beginning of S3YBDPAT, extra
Proceaa Deacoriptors are needed. When
first bringing up and debugging
Concurrent CP/M, the default for this
parameter pufficeas. After the debug
phase, durlng system tuning, you can use
the Concurrent CP/M SYBTAT Utility to
monitor the number of processes =nd
queves in uae by the aydtem at any time.

NQCBS Numher Of Queue Contrel Blocks [20]. The
number of Queue Control Bloccka should be
the maximum nunber of Jueues that may be
created by translent programa oxr RSPs
outalde of 64k from BYSDAT. The default
value pufflices during initlial aystem
debugging.

QBUFSIZIE 8ize Of Queue Buffer Area in Bytea [4001,
The Quene Buffer Area is space reserved
for Queue Buffers. The size of the
buffer area reguired for a particular
queue iz the message length timea the
number of messzages. The Queue Buffer
Area should be the anticipated maximum
that transient programs will need.
Again, the default value will be
adequate for inltial syatem debugging.
Note that the Queue Buffer Area can be
large enough (up to OFFFFH} to extend
past the SYSDAT 64K boundary.

NFLAGS Size of the flag table [2D0]. Flags are
three-byte semaphores used by interrupt
routinegs. The number of flage needed
depende on the design of the XIOS. More
Information on uaing flaas for interrupt
devices can be found in Section 3 under
"Interrupt Devicesa". Bee also the
Concurrent CP/M Operating System
Programmer's Guide on Dev_flagset,
Dev_flagwt.

Concurrent CP/M Bystem Guide 2.4 Memory Allocatlion Menu

2.4 Nsmory Allocation Manu

The Mamory Allocation Partitions Manu, shown in Figure 2-5, is an
interactive penu. When the menu in Eirsd diaplayed, 1t lists the
gurrant memory partitions. If none have been specified, the list
£leld 1= bliank. Yollowing the list 1is the menu of optione
availmble. You may choose either to ADD to the limk of partitions,
or to DELETE one or sore partiticna, Partition assignments must be
made by specliyving elther ADD or DELETE, followed by an equal mlgn,
the starting addrews and last addresm of the memory region to be
partitioned, and tha size, in paragraphs, of each partition. All
valoes must be in hexsdecimal notation and mspareted by commans. An
asteripk can be umad to delets all memory partitions. The Start and
Last values are paragraph addregeep; multiply them by 16 (10R) to
obtain nbaolute addresbes. Bimilarly, partiticon aizes are in
paragraphs; multiply by 16 (10E} tb obtain size in bytes.

In the eXample balow, &1l defsulf mswmory partitions are firat
deletad (DRLETE=*),. 'Then twdo kindd of memory partitionz are added
to the lipt:; 16X (4000h) partitions frowm address 240030 to 4000:0,
and 32K (80Q0h) partitione from 400419 to §G0010,

Addrasaen Partitions {in paragrapha)
[3 Start Laat Hime Qty
i. 400h §000h 400h 17h

Dlsplny{Changl Nenory Allcocaiion Partitions
D mepory partltion{s)
dllate DELETE mamory partition(s)

Changapg? delete=* add=2400,4000,400 add=40Q00,6000,800

Addreages partitiona
3 Btart Last Bize oty
1. 2400h 4000k 400h 7h
2. 40000 60000 gnoh 4h

Dieplay/change Memory Allocation Partiticna
ARD memory parkition(am)
deletu DELETE memory partition(s)

Changes? <cr>

Figure 2-5. GRNCCPHM Memory Allocation Bample Session

2-10

Concurrent CB/M Byatem Guide 2.4 Memory Allocation Menu

Memory partitione are highly dependent on the particolar hardware
environment, Therefore, you should carafully exXamine the defaulta
that are glven, and change them if they are inapproprilate. The
memory partitiong cannot overlap, nor can they cverlap the cperating
system area. GENCCPM checke and trims memory partitions that
overlap the operating system but doeg not check for partitions that
rafer to nonexistent system memory. GENCCPM does not slze existing
menory hecause the hardware on wihich it i1s running might be
different from the target Concurrent CP/M machine (this might he
done by the XIOS at initimlization time). Error messages are
displayed in case of overlapping or incorrectly sized partitions,
but GENCCPM daes not automatically trim averlapping memcry
partitions, GENCCPM does not allow you to exit the Main Menu or the
Memory Allccaticn Menu if the memory partition list i not valld.

The nature of yocur application dictates how you should specify the
partition boundaries in your system. The zyetem never divides a
single partition among unreiatesd programs. If any given memory
request requires a memory aseament that la larger than the avallable
partitions, the ayatem concatenatea adjolning partitions to form a
aingle contiguous area of memory. The MEM module algorithm that
determines the best fit for a given memory allocation requeast takes
into account the number of partitions that will be uszsed and the
amount of unused space that will be left in the memory reglon. This
allows you to evaluamte the tradeoffs between memory allocaticn
boundary conditions causing internal versus external memory
fragmentation, as described balow.

External memoxy fragmentation gccurs when memeory is allocated In
small amounte. This can lead to a situation where there is plenty
of memory but no contiguous area large enough to load a large
program. Internal fragmentation occura when menmory is divided inte
large partitiona, and loading a small program leaves large amounts
of unused memeory in the partition. In this ¢aze, a large program
can always load 1f a partition is avallable, but the unused areas
within the large partitions cannot be used to load small programs if
all partitions are allocated.

When running GENCCFM you can specify a few large partitione, many
gmall partitions, or any combination of the two. IFf a particular
environment requires running many small programs frequently and
large programs only occasionally, memory should be divided into
spall partitiona. This simulates dynamic memory management as the
partitions bescome smaller. Large programs are able to load as long
as memory has not become too fragmented. If the environment
conaists of running mostly large programs or if the pragrams are run
serially, the large-partition model should be used. The choice is
not trivial and might reguire some experlmentation before a
satiafactory compromise id attained. Typical golutions divide
memory Inte 4K to 16K partitiona.

2-11

Concurrent CP/M Bvaten Guide 2.5 GEWCCPM REP List Menu

1,5 GERCCPN RSP Lisk Manu
The GENCCPM REF (Resident System Process) List Menu 1s shown in

Figure 2-6. The axanple sessaicn illustrates excluding ABORT.REP and
MY.RSP fram the list of REPs to be {ncluded in the systenm,

REPE to ba included arer

PIN.RSF DIR.RSF ABORT.REP TMP.RBP
VOUT.REP CLOCK.REF MY.REP

Display/Change RSP Liat

inelude Include RSFB
axclude Exclude RSPn

Changea?__excludessbort,.rip,my.csp
R8Ps to be included arae;

FIN.REP DIR.REBF VOUT.REP CLOCK. REP
TMP . RSP

Changeg?__ <cr»

Figure 2-6. GEECCPM RSP List Menu Sampls Besalon

The GEMCCPM RS8P List Menu firgt reads the diresctory of the current
dafault disk and liets all .RSF filee present. Regponding to the
GEMCCPM prompt Changes? with sither an include or exclude command
edita the list of REPM to be made part of the coperating system at
systyn generatlon tine. The willdcerd (*)) file specification can be
usad with the include command to automatically include all RSP
files on the disk.

Eote: The PIN, VOUT, and CLOCK RSFa muat be included for Concurrent
CP/M to run.

212

Concurrent CP/M System Guide 2.6 GENCCPM DSLABEL Menu

2.6 GERCCPM OSLABEL Menu

If you type OSLABEL in response to the main menu prompt, as shown in
this example:

Changes? OSLABEL

the following screen menu appear oh your scceehs

Display/Change Operating Syastem Label
Current message ia:
<null>

Add lines tc message. Terminate by entering only RETURN:

Flgure 2-7. GENCCPM Operating System Label Menu

You can type any message at this point. Thls massage is printed on
sach virtual console when the system boots up. Note that if the
measage contalnse a $, GENCCPM accepts it, but it causes the
operating system to terminate the message when it 1s being printed.
This ia because the operating system uses the C_WRITESTR function to
print the message, and § is the default message terminator.

The XIOS might also print its own sign-on message durling the INIT
routine. In this case, the XI0S8 message appears hefore the message
specifiad in the GENCCPM OSLABEL Menu.

2.7 GENCCPM Disk Buffering Menu

Typing DISKBUFPERS in response to the main menu prompk displays the
GENCCPM Disk Buffering Menu. Figure 2-8 shows a sample session:

2-13

Concurcent CP/M Bystem Guide

Drv
Az
Bs
[»H]
D=z
]
M:

Drive

*+% pigk BufFfering Information *+*
Divr ™Max/Proc Data Max/Proc Hash
Bufy Dir Bufe Bufes Dat Buie -ing

77 1] 27 0 yas
7 0 T 0 yes
77] 72 o} yen
7 0 ?? 0 yag
T 0 77 0 yes
27] fized flxed

2.7 GENCCPM Buffering Menu

Spacifiad
Buf Pgphs

72

(x4

7?

T

T

7

Total paragraphs allocated to buffera: @

([cocr> to exit) ? as

Number of directory buffers, or drive t¢ share with? 8

Maximun directory buffers per process [8] 7 &

Number ¢f data hufferuw, or drive to share with? 4
Maximum data buffers per process [4]7 2
Hashing [yes] ? <cor»

prv
s
At

B:

Ct
v F]
E:
M:

*4% pigk Buffering Informatlon &+
Dir Max/Proc Duata Max/Proe Hagh
Bufs Dir Bufs Bufs Dat Bufs -ing

ampE= I hana

8 [} 1 2 yae
P 0 27 0 yes
"7 D 7 0 yeg
27 0 27 0 yegs
P 1] ?? 4] yoE
P 0 fixed fized

Total paragrapha allocataed ko bulferss 200

Lxive

[c¢or>» to exit) ? *:

Spacifiied
Buf Pgphs
EEESRaESteE=

200

e

7

27

2P

7

Numbaer of directory buffers, or deive to mhare with? a:
Number of data buffers, or drive to share with? a:
Hashing [veel ? <gr>

Brv
Al
B:
C:
D:
E:
M:

% pigk Buffering Information *¥*
Dir Max/Proc Data Max/Proc Hagh
Bufa Dir Bufs Bufs Dat Bufs -ing

8 i 4 F yes
shares A: sharep A yen
sharag Aix shareg A: bi-1
ghares A: shares A: yes
shares A: shares A: yes
ahares Ax fixed fixed

Total paragraphs allocated tc buffers: 2C8

prive (<cr» to exit) 7 <cr>»

Flgure 2-8.

Specified
Buf Pgphs

200

GENCCPM Disk Buffering Bampls Session

Concurrent CP/M System Guide 2.7 GENCCPM Buffering Manu

In the sample session shown in Figure 2-8, GENCCPM iz reading the
DPH addressges from the XIOS Header, and calculating the buffer
parameters based upon the data in the DPHa and the answers to its
questions. GENCCPM only asks questions for the relevant fields in
the DPH that you have marked with OFFFFh valuss. See Section 5.4,
"Disk Parameter Header," for a detalled explanaticn of DPE fields
and GEWCCPM table generation., An asterisk can be uged to specify
all drives, in which case GEWCCPM applies your answera to the
following guestiona to all unconfigured drives.

Note that GENCCPM prints out how many bytes of memory muat be
allocated to implement your disk buffering regquests. You should be
aware that disk buffering decisions can spignificently impact the
performance and efficiency of the system being generated. If
minimizing the amount of memory occupied by the syatem 13 an
important conslderation, you can use the Disk Buffering Menu to
gpecify a minimal disk buffer space. We have found, however, that
the amount of Directory Hashing space allocated hag the moat impact
on pgystem performance, followed by the amount of Directory Buffer
epace allocated. As with the trade-~offs in memory partition
allocation discussed above, deciding on the proper ratio of
oparatlng system apace to performance requires pome experimentation.

Note also that if DOS media i= supported, directory hashing space
must be allocated for the BOS file allocatlon table {(FAT). Bee
Section 5.5.1 For information on allocating encugh space for the FAT
and the hash table.

GENCCPM checks to see that the relevant fields in the DPHe are no
longer set to QFFFFH. GENCCPM does not allow you to exit from the
Main Menu until these fields have been set using the Disk Buffering
Menu.

2.8 GENCCPM GEMBYS Option

Finally, specifying the GENSYS option in answer to the main menu
prompt causes GENCCPM to generate the system image on the specified
destination disk drive. During the actual ayatem generatien, the
followling messages print ocut on the screen:

Concurrent {F/K System Guide 2.8 GENCCPM GENGYS Option

Generating new EYS file
Gansrating tables
Appending R8Fd to eystem f£lle
Doing Fixupe
8YB imags load map:
Code mtarts a: GEGGh
Data Btmztis At HHHHh
Tables start at YIIIh
REFs sitart at JJIJJh
X108 Euffers atart at XKKKh
End of OB at LLLLh

Primming memory partitions. New Lilskt:

Addresagn Partitione
{in Paragraphs} Eiza How {only if
] Start Lant (Paraa.) Many nacessary)
1, AMAARL ERBBh IXXXh *h |
2, MMMMh RNNKh 0QOQh vh
v

Wrappling up
A>

Figuxe 2-9. GENCCEM Systen Geoaration Messagen

2.9 GERCCPM Input Files

GENCCPM allows you to input all system gensration commands £rom an
input file. You can also redirect the cdonasle ocutput to a disk
fél.é You usa these GENCCPM features by Invoking it with command of
thn form

GENCOPM <filein >fileocut

where f£ilein i# the name cf the GENCCPM lhput file. MNHote that no
spaces can intervens betwsen the greatar-than or lesa-than sign and
the file mpecification. If this cocndition is not mat, GENCCEM
responde with the mepeage:

REDIRECTION ERROR
The format of the input file is mimilar to a SUBMIT f#ile; each
command is entered on a maparate linm, followed by a carrilage
return, examctly in the order reguired during & manvally operated
GENCCFM massion. The laat conmand can be followed by a carrlage
return and the command:

ASCERSYE

2-16

Conourrent CF/M System Guide 2.9 GENCCPM Tnput Files

to end the command sequence and generate the syatem. If the GENSYS
command {= not present, GENCCPM gueries the console for changes.

The following example 1llustratea the use of the GENOCPM input file.
Agsuming that the input file file specification is GENCCPM.IN, use
the follewing command to invoke GENOCPMy

A>GENCCPM <GENCCPM.IN

Figure 2-10 shows a typical GENCCPM command flle:

VERBOSE=N DESTDRIVE=D:

SY3PARAMS

OSSTART=4000 NPDESCS5=20 QBUFSIZE=4{FF TMPDRIVE=A: CHMDLOGGING=Y
(2] 2

MEMORY

DELETE=*# ADD=2400,4000,400 ADD=4000,6000,800

car>
DISKBUFFERS
A

8

4

4

2

hashing

L] for all remaining drive queaticns
share directory buffersa with A:
share data buffers with A:
haashing oh all drives

Az
A:
hashing
<ars
OSLABEL
Concurrent CP/M Version 1.21 04/15/83
Hardware Configuration:

A: 10 MB Hard Disk

B: 5 MB Hard Disk

C: Single-density Floppy

D: Double-density Floppy

M: Memory Diak

- e m

<or>
GENSYS <C0ry ¢ —=—=———— Only 1f you do not want to he able
te aspecify additicnal changes

Figure 2-10. Typical GCEWCPM Command File

After reading in the command file and optionally accepting any
additiocnal changeg you want to make, GENCCPM builds a system image
in the CCEM.SYS file in the manner described in Section 2.1.

End of Section 2

2-17

Section 3
XI0S Overview

Cancurrent CP/M Version 3.1, as implemented with one of tha example
Xlab's discuased in Section 3.1, 18 configured for operation with
the Compu-Pro with at least two 8-inch floppy disk drives and at
least 128K of RAM, All hardware dependencies are concentrated in
subroutines collectively referred te aa the Extended Input/Output
System, or XIOS. You can modify these subroutines to tailor the
system to almoat any 8086 or BO28 disk-ba=ad cperating environment.
This section provides an ovarview of the XIOS, and variables and
tables referenced within the XIOS.

The following material assumes that you are familiar with the CP/M-
86 BIOS. To use this material fully, refer frequently to the
example XlU8's found 1n source code form on the Concurrent CP/M
diatribution disk.

Note: Programs that depend upon the interface ta the XIOE must
check the version numbar of the operating syatem before trying
direct acceas to the XI08. Future veraions of Concurrent CP/M can
have qjfferent XIOS jnterfaces, including changes to XI0OS function
nurbers and/or parameters pasead to XIOS routines.

The XIOS must fit within the 64K System Pata Segment along with
the SYSDAT and Table Area. Concurrent CP/M accesses the XIOS
through the two entry points INIT and ENTRY at offaet OCDOH and
OCD3H, respactively, in the System Data Segment. The INIT entry
point is for system hardware initialization only. The ENTRY entry
point is for all other XI08 functions. Because all operating system
routines use a Call Far instruction to access the XIOS through these
two entry points, the XIOB function rcoutines must end with a Return
Far instruction. Subsequent sectiona describa the XIOS entry points
and other fixed data fields.

3.1 XIOS Header

The XIOS Header contains wariables that GENCCPM uases when
conatructing the CCPM.S5YE file and that the operating system uses
when executing. Figure 3-1 illustrates the XIOS header.

Concurrent CP/M Eystsm Guida

3.1 X108 Header

COOH IJ MP INI 'f JMP ENTRY SYBDAT
COSH SUPBR'}IOR TICK | TICKS DOOR | RESER-

_sEC VED
Cl10H KPCNS | NVCHB HCCR HNLCH CFB .L|lCB
c18H DPH(A) DPH(B) DPH(C} DPH(D)
Cz0H DPE}() DPHJ(F) DPHI(G) DPHI(H)
c28H pPH(1) DBE(3) DEH(K) DPH{L)
c30H Dpsiun DPH(N) DPH(D) DPH{P)
o38H ALLOC

Figure 3-1. XIOH Hsader

Tabls 3-1. XI0O3 Header Data Fiaslds

Data Field I

Explanaticn

JMP INIT

JMP ENTRY

XICE Initialiretion Point. At system boot, the

Supervisor module sxescutss a4 CALL FAR
inatruction to this loomtion in the XIOS {XICE
Code Esgeent: O0CO0H). This call transfars
control to the XIOF INIT routins, which
initializea the XI08 wmnd hardware, then
oxegutes a RETURN FAR inatruction. Tha JMP
INIT instruction must be present in tha
XIOS_AS€ file. Xor details of the INIT rocutine
usa Esction 3.4, “INIT Eniry Polnt."

XIO& Entry Point. All access te ths XIO8
functions goes through ths XIDA Entry Polnt.
Tha operating wsystem executss a far call
(CALLF) to this location in the XI0S8 (XIOB Cods
Ssgment: CCO3JE) whenaver 1/0 is needed, This
instruction transfars control to the XIOE ENTRY
routine which calls tha appropriata function
within the XIOS. Oonce the Ifunction is
complete, ths ENTRY routina axecutes a return
far (RETF) to the operating system., The RETF
instruction must ba prassnt in the XIOH.AS6
file. For details of the ENTRY routins, #es
Saction 3.3, "X1I0S8 ENTRY."

Concurrent CB/M System Guida ' 3.1 XIOS Header

Table 3-1. {(continued}

Data Fiald I_ Explanation

SYSDAT The segment address pf SYSDAT. It is in the
Code Segment of the XIOS to allow accesa to
data in SYSDAT while in interrupt routines and
othar areas of code where the Data Segment is
unknown. For example, the f£ollowing routine
acceases the currsnt process'a Procass
Deacriptor:

DSEQ
QRG €8H ; point tc RLR field
1 af SYSDAT
RLR RW 1 ; does not generata
; a hex value
CBEG ; of X108
PUBH D8 ; Save XIOS Data
Segment

MOV DS, CS: SYSDAT Move the SYSDAT
mequent addresa
into DS

Move the currant
process's PD
Addraes into BX
and perform
operation. (See
Fig 1-5 for expla-
nation of ELR)
Restors the XIOS
Data Segment

MOV BX,RLR

POP D8

m wE R me Ep m g wp Ry owg We Ry

Thias variable is initialized by GENCCPM.

SUPERVISOR FAR Address (Gouble-word pointer} of the
Supervisor Mcdule eatry polnt. Whenever the
XI0S makes a syatem call, it must access the
operating system through thia entry peoint.
GENCCPM initializes this field., Section 3.8,
"XIO8 Bystem Calls", describes XIOS register
usage and rastrictions.

Coancurrent CF/M Systex Guide 3.1 XIOS Haader

Tabla 3-l. {(continued)

Lata Fileld Explanetion

TICK Sat Tick Flag Boolean. The Timer Interrupt
routine uses this variable to detarsine whathex
the DEV_SETFLAG system call should ba called to
set the TICK FLAG, Initialize this variable to
zero (DOH) In the XIOE.CON file. Conourrent
CP/M sets thie £isld to UFFHE whanaver a
procesa is delaying, The fiald is reset to
zero (QUH) when 211 processes finish delaying.

Sem the Concurrsnt CP/M Operatin% System
Pr?ram.mnr'a Refereance Guide for details on the

and ¥_| systen calls. Saa
Bection 7 of this manual, "XIDE TICK Interrupt
Routine," for more information on the XIOS
usage of TICK,

TICKS_SEC Mumbar of Ticke per Second. This fleld nust be
initimlized in the XIOB.CON file toc be the
number of ticka that maks up ons sacond as
implenantsd by this XIOS., GENCCPM coples this
field into the BSYBDAT DATA. Application
programmara can use TICKE SEC to detsrmine how
many ticks to delay in order to dalay ona
second. See Section 7, “XIOS TICK Interrupt
Foutine," for more information.

DOOR Qlokal Dotr Open Interrupst Flag, This field
nuat be pet to OFFR by the drive dcor cpen
intarrupt handlsr routina if ths XI0S8 detecte
that any drive door has basn opened, The BDOS
checks this fisld befors svery disk opsration
to verify that the nedia is unchanged. If &
door has been opensd, the XIO03 must alsp set
:h: Madia Flag in the DPH associated with tha
rive.

NPCHE Nurber of Fhyaigal Conscles. Initialixe thie
tield to the nueber of physical consoles, or
user terminals connacted to the system. This
number d&oaes not includa extrs I/0 devices.
GENCCPM uper this valus, and creates a PIN
process for sach physical cgonsole, It also
voplea NPCNS into the XPCNS fleld of the SYSDAT
DATA.

NVCHS Humber of Virtual Conscles, Initializs this
fiald to tha numbar cf virtual consolax
supported by the XIOB in the XIQS.CON filae.
GENCCPM cresatea a TMP and a VOUT process for
dach virtual conmcla. GENCCPM copiss NVCNS
into the NVCNE fiald of the EYSDAT DATA.

Concurrent CP/M System Guide 3.1 XI0S Header

Table 3-1. {continued)

Data Field l

Explanation

NCCB

NLCE

CCB

LCB

Number of Logical Consoles. Initialize this
field to the number of virtual conscles plus
the number of character I/0 devices aupported
by the XI0OS. Character I/0 daviges are deviges
accesaed through the console system calls of
Concurrent CP/M (functions whose mnemonic
begins with C_) but whose conscle numbers are
beyond the range of the virtwal consoles.
Applacation programs access the character 1/0
devices by setting thair default console number
to the character 1/0 device's conscle number
and using the regular console system calls of
Conourrent CP/M, See the C SET syatem call as
described in the Concurrent CP{M Operating
Syskem Programmer 's Relference Guide. GENCCPM
coples this Lield 1nte the NOCE fleld of the
SYSDAT DATA,

Nurber of Liat Control Blocks, Initialize this
field i1n the XI0S.CON file to equal the nuwber
of List devices supported by the XIOS, A list
device is an output-only device, typically a
printer. GENCCPM copiea this field i1nto the
NLCE field of the SYSDAT DATA.

ODffoet of the Console Control Bleck Table.
Initialize this field in the XIOS,CON fila to
be the addrees of the CCB Table in the XI0S. &
CCB Entry in the Table must exist for each of
the consoles indicated in NCCE. Each entry in
the CCB Table must he initialized as described
1n Section 4.1, "Console Control Block".
GENCCPM copies this field into the CCEB field of
the SYSDAT DATA.

Offset of the List Control Block, This field is
initialized in the XIOS,CON file to be the
addraess of the LCE Table in the XIOS. There
must be an LCB Entry for each of the liat
devices indicated in NLST. Each entry must be
initi1alized as deszcribed in Saction 4.3, "List
Device Punctions." GENCCPM ceopies this field
into the LCB field of the SYSLAT DATA.

Concurrent CP/M System Guids 3.1 XIO8 Headsr

Table 3~1. (contigned)

Data Fiald L Explanation

DPE(A)-DPH{P) Offsat of initial Disk Paramater Header [DFH)
for drives A through P, respectively., If tha
valua of thie field iw DO0OH, the driva is not
supported by the XI08. GENCCPM uses the DPH
Table o initialize specific fields in the DFHa
when it autcmatically creates BCEe and bufferas.
If the relevant DPH fields are not initialized
ks OFFFFH, GENCCPM mmsumas the BCEs and buffers
are defined by data already initimlizsd in the
XICS.

ALLDC This value is inltialized in the XIDS to the
wize, in paragraphs, of an uninitialized RAM
buffer area to ba reserved for the XIOR by
GENCCPM, When GENMCCPM orastsm the CCOPM,EYE
imaga, 1t etz this £ield in tha CCPM.SYS file
to the etarting parsgraph [ssgrent valus) of
the X108 uninitialised buffer area. This valus
may then be used by ths XIOS for basad or
indexed addressing into the buffer arez.
Typically, the XIQB ussm this buffer area for
the virtual consale sgresn maps, programmeable
function kay buffers, and nondisk-ralated I/0O
buffaring. GENCCPM allacetem this
uninitialized RAM immediately following the
aystem imags and any sysitem diak data or
diractory hashing buffsre. Bechuse the XIOB
buffar area im not included in the CCPM.8YS
file, it can be of any desirad size without
affecting system load time performance. If the
ALLOC field is initialized to eerc in the
XI08.CON file, GENCCPM allogates no buffer RAM
and lesvas ALLOC sat tc xzera in ths systam
inage.

Concurrent CP/M Eystem Guida 3.1 XIOS Header

Idasting 3-1 illustrates the XIOS Header definition:

:ii*iiiiiiiiiiiiiiiiiiiiitiiiti*i*iiiiii*iiiit*ii**ti

3* XIOE Header Definition

’
"ﬁ********ii*it**ti***ti**t*iiiiii*tﬁiiii*iii*iiitit

CBEG
org 0C00h
Jap init sayatem initialization
Jmp entry rxlos entry polint
sysdat dw 0 ;8yedat Segment
suparvisor rw 2
DBEG
arg 0COCh
tick db falsa rtick enable flag
ticks_smec db 60 i# of ticka per second
door db 9] iglebal drive door open
H interrupt flag
revd db] rrederved for operating
raystem uae
npens db 4 snupber of physical consolea
nvens db 8 jnumber of virtual conacles
nach db 8 ;jtotal numbar of ccbs
nlat db 1 ;number of lipt devices
aoh aw offaet cchbl ;offset of the first ccb
lcb dw offset lch0 joffaet of firet lecb
;disk parametar hesder offset table
dph_thl dw offset dphO ;drive A:
dw offsat dphl :B:
Aaw g,0,0 :C1,D: ,E:
dw 0,0,0 ;P:,G:,H:
aw 0,0,0 11:1,0:,K:
aw 0 :Ls
dw offaet dph2 iM:
daw 0,0,0 jM:,0:,P;
alloa dw 0

Listing 3-1. XIOS Header Definition

Concurrent CP/M System Guide 3.4 [INIT Entry Point

3.2 IHIT Entrxy Point

The XIO8 initialization routine entxy poink, INIT, 1= at cfiset
0C00H from the beginning of the XIOS code module, The INIT process
calls the XIOB Initialization routine during aystam fnitializaticn,
Tha saquence of evants from the time CCPM.SYS is lgaded into memory
until the REPs ars created is important for understapding and
Qdebugging the XIOS.

The lcadsar loads CCPM.EYS into mexcry at ths absolute Code Ssgment
location contained in the CCPM.SYS fils Headar, and initializaes ths
B and DS rmgisters to the Bupervisor code ssgmant and thes SYSDAT,
reapactively. At thisg point. the loadar sxscutes a JMPF tg offaet O
of the CCPM,5YS code and begins the initialization code of the
Concurrent CP/M BUF mcdule as damcribed below. When loading
CCPM.EYE unhder DDT-86 or SID-86, use the R command and zet the code
and data segments manually before beginning executlon. You cannot
usa the E command becauss it initislizes the dais segment bass page
to incorrect valums. See Section &, "Debugging the XIDS.*

1. The first step of initialization in ths HUP is to met up the
INIT process. The INLIT procesd performs the reat of aystem
initialigation at a priority equal tc 1.

2. Tha INIT procees calls the initlallizmtion routines of sach of
the other modules with a Far Call instXuction. The firat
instruction of esach gode module 12 assuned to be a JMP
instruction to its initialization routine. The XIOS
lnitialization routine is the lest of theas nxdules called.
Once this call is made, the XIOB initialirstion code i never
used again. Thus, 1t ¢an be logated in a diresctory buifer or
othear uninitialized data arsa,

3. Ag mhown in the sxampls XIOS listing, the ainitialization
routine muet initialize all hardware and intarrupt vectora.
Interrupt 224 is saved by ths HUP modules and restored upon
return from the XI08. Because DDT-86 uneas interrupte 1, 3, and
225, do not initialize them when debugging the X105 with DDT-B&
running under CB/M-86. On each context switch, interrupt
vectora Q, 1, 3, 4, 224, and 225 are saved and reatored ag part
of a proccess's snvironmant.

4. The XIO8 initialization routine can optionally print a message
to tha console befors it exscutes a Par Return (RETF)
instruction upen completion. Note that sach TMP printe out the
string addressed by the VERSION varisble in the SYSDAT DATA.
Thia string can be changed using the OSLABEL Menu in GENCCPM.

5. Upon return from the XIOS, the SUP Initialization routine,

running under the INIT procass, creates soma queues and starts
up the RSPe. Once this is done, the INIT process terminates,

3-8

Concurrent CP/M Systex Guide 3.2 INIT Entry Point

The XIDE INIT routine should initialize all unuased interrupta to
vactor to an interrupt trap routine that praventa apurious
interrupts from vectorlng te an unknown location. The example XI0S5
handles uninitialized interrupts by printing the name of the process
that caused the interrupt followad by an uninitialized interrupt
error nessage. Then the interrupting process is uvnconditionally
terminated.

Concurrent CP/M asaves Interrupt Vector 224 prior to syatem
initialization and restores it following execution of the XIOS INIT
routine. However, it does not store or alter tha Non-Maskable
Interrupt {NMI)} wvector, INT 2. Betting WMI is also the
reaporigibility of the XICS. The example XIOS first inltialixes all
the Interrupt Vectors to the uninitialized interrupt trap, then
initializes specifically used interrupts.

Note: When debugging the XIOE with DDT-86 running under CP/M-86,
do not initialize Interrupt Vectors 1, 3, and 225. The example
XIC8's have a debug flag that is teated by the INIT routine for this
purpose.

3.3 ZIOB ENTRY

All accesags to the XIOS after initialization go through the ENTRY
routine. The entry point for thias routine is at offeet OCO3H £rom
the baginning of the XIOS code module. The operating aystem
accesses the ENTRY routine with a Far Call to the location offmet
0CO3H bytes from the beginning of the SYSDAT Seqgment, When the XIOS
function ig complete, the ENTRY routine returns by executing a Far
Raturn instruction, ae in the axample XI0S's. On sntry, the AL
register containa the function number of the routina being acceased,
and registeras CX and DX contain arguments passed to that routine,
The XIOS must maintain all segment registers through the call. Thia
means that the CS, D3, E3, 58, and 5P raegisters are maintainad by
the functions being called.

Cencurrent CP/M System Guida 3.3 XIOE ENTRY

Table 3-2. XIOE Register Usage

Regletars on Entry

AL = function nuxmber
BX = PC-MODE paramuterx
CX = t.rst parameaisx
DX » gecond parametar
D8 = EYSDAT segment

ESE = Umar Data Area

AH, SI, DI, BP, DX, CX are undafined

Regimters on Return

AX = raturn or XI0B arror cpds
BX = AX

DS = BYSDAT aegment

ES = Uaer Data Area

§1, DI, BPF, DX, CX ara undafined

All XI08 functions, with the exception ©f disk functions, use the
ragister conventions shown abova,

The segnent registsrs (DS and E8) muat be preassrvad through the
ENTRY routine. Howsver, when calling the EUP from within tha XIOS,
the EBS Registar must sgual the UDA of the running process and D8
mat egqual the System Dats Begment. Thus, if the XIOE 1s going to
perfors a string move or other cocds ogming the E8'Register, it nust
praserve EE using the atack ag in the follawing exasplar

push as
acv s8,segment_address
Iep MOVEW

Pop =B

In the axampls XI08's, the XIOE funcllon routines are accessed
throuwgh a funetion table with the function number being the agtual
table entry. Table 3-3 lists the XIDS function numbers and the
corresponding XIOS routines; detalled explanationa of the functiona
appear in the refarenced sections of thims document., Listing 3-2 ia
an example XIOS ENTRY Jump Table.

Concurrent CB/M Syvatem Guide 3.3 XIDS ENTRY

Table 3-3. XIOS Functiona

Function Number XICS Routine
Console Functions -~ Sectlan 4.2
Funection 0 I0_CONST CONSOLE STATUS
Funotion 1 I0_CONIN CONSOLE INPUT
Function 2 ID_CONOUT CONBOLE QUTPUT
Function 7 I0 BWITCH BWITCH SCREEN
Function 8 I0 STATLINE DISPLAY STATUS LINE
List Device Punctions -- Section 4.3
Function 3 IO L3T8T LIST 8TATUS
Function 4 10_L8TOUT LIST OUTPUT
Dther Character Devices -- Section 4.4
Function 5§ I0 AUXIN AUXILIARY INFUT
Function 6 I0_AUXCUT AUXILIARY QUTPUT

Poll Device Function —-— Beaction 4.5

Function 13 10 _PCLL POLL DEVICE

Disk Functions -— Section 5.1

Function 9 I0_SELDER SELECT DISK
Function 10 IO READ READ DISK
Function 11 IO _WRITE WRITE DIBK
Function 12 IO FLUSH FLUSH BUFFERS
Functlion 35 IC_INT13 READ READ DOS DISK
Function 36 IO_INT13 WRITE WRITE DOS DISK
PC Mode Character Functions -- Sectilon &
Function 30 IC_SCREEN GET/SET SCREEN
Function 31 10 _VIDEO VIDED I0
Function 32 IQ_KEYED KEYBOARD MODE
Function 33 10_SHFT SHIFT STATUS
Function 34 I0O_EQCK EQUIPMENT CHECK

3-11

Conecurrvant CB/M

Bystem Guids

3.3 XIoES ENTRY

X108 FUNCTION TABLE

o e

functab dw io _const : 0 - conpols status
daw io_conin t 1 - conegle input
dw io _eonout ; 2 -~ console cutput
dw jo_limstat 1 3 = list status
dw io_liet 7 & — liat output
dw io_auxin : 8 - aux in
dw io_auxout r 6 - aux out
aw ic_mwitch i 7 - awltch scresn
dw io_statline t - dieplay status line
dw io_meldsk i 9 - select disk
dw io_read 110 - read sector
aw io_write t11 - write eactor
dw io_fluahbuf 112 -~ flush bhuffer
daw io_poll 113 - pbll device
dw ic_rat il4 ~ dumwy return
aw io ret ;15 ~ dummy return
dw io_ret ;16 -~ dihwmry raturn
dw io_ret 117 - duwewy retura
dw ig_rat 118 - duumy return
aw io_ret 119 - dummy return
dw io_ret i20 - dummy return
aw io_ret 121 - duemy return
aw io_rat 121 -~ dummy return
dw ig_rat 123 - duxmy return
aw ig _ret 134 - dummy return
aw io rat 135 - dumay return
dw ic ret 126 ~ dummy return
dw io_ret 127 - dumemy return
dw ic_ret 128 - dunmy return
dw ic_rat 129 -~ dunmy return
dw io_ecreen 130 - gat/aat screen wode
dw ic video 131 - video i/0
aw io keybd 132 - kayhoard infg
dw io_ahft ;33 - shift status
dw io_agck 134 - egquipment check
aw lo intld read 135 - read DOS diask
Aaw io intl3 write 136 - wxite DOE disk
P - ——— _—
Listing 3-2. XIOB Function Table

3-12

Concurtrent CP/M System Guide 1.4 cConverting CP/¥-86 BIOS

3.4 Converting the CP/M-86 BIOS

The implerdentation of Concurrent CP/M desgcr ibed below assumes that
you have written and fully debugged a CP/M-86 BIDS on the target
Concurrent CP/M machine. This ja desirable for the following
reasons:

® The implementation of CP/M-86 on the target Concurrent CP/M
machine greatly simplifies debugging the XI08 uaing DDT-86 or
SIip-B6,

® A CP/M-36 or a running Concurrent CP/M system ls required for
the initial generation of the Concurrent CP/M system when uging
GENCCPM.

® You can uge the CP/M-B6 BIOS as a basls for construgtion of the
target Concurrent CP/M XIOS.

Te transform the CP/M-86 BIOB to the Concurrent CP/M XIOCE, you must
make the following principal changesa-. Details of the changes given
in the following list can be found in the referenced sections of
this mannal, and in the example XIOS'a found on the Concurrent CP/M
distribution disk. ©Often 1t 18 easler to start with the example
Concurrent CP/M XIOS8 and replace the hardware-dependent code with
the correasponding drivers from the existing CP/M-86 BIOH. However,
there are several important changes, also outlined bhelow, that you
mist make te the CP/M-86 drivers before they work in the Concurrent
CP/M XICS.

1. Change the BIOS Jump Table to use only the twe XIOS entry
paints, INIT and ENTRY. Concurrent CP/M assumes these entry
points to be wunconditicnal jump instructions to the
correaponding routinee. The INIT routine takes the place of
the CP/M-86 cold atart entry point and is only invoked once, at
avatem initialization time. The ENTRY routine Ia the aingle
entry point indexing into all XI08 functions and replaces the
BIOS Jump Table. Concurrent CP/M accesses the ENTRY routine
with the X108 function number in the AL register. The example
XIOB then uses the value in the AL register aa an index into a
function table to obtaln the addreas of the correaponding
function routine.

2. 2dd a BUP module interface routine to enable the XI08 to
execute Concurrent CP/M aystem calla. The XI0S is within the
operating esystem area and already uses the User Data Area
atackj thersfore, the XIOS cannot make ayatem calls in the
conventicnal manner. See Section 3.8, "XIOS System Calls."

3. Modify the console routines to reflect the IO_CONST, IO CONIN,
IC_CONOUT, I0_LSTST, and I0 LISTOUT specificationa. WNote that
the register conventiona for Concurrent CP/M are different from
CP/M-86 and MP/M-86.

3-13

Concorrent CP/M System Gulda 3.4 Converting CP/M-B& BIOB

4.

10.

1l.

Rawrite the CP/M-86 dlsk routines to conform to the IO } BELDER,
I0_ERAD, ID WRITE, and LU _FLUSH specifications.

Change all polled devicea to use the Conourrent CP/M DEV POLL
mystesm call. Sees Sections 4.%, "I0 POLL Function"; ™ 3.5,
"Poliaed Devicas”; and Hection & of tha Concurrent CE/M
Operating Syastem Frogramwar's Refarshnce Guldse.

Change all interrupt-dziven dJdevige drivers to usmes the
Concurtent CP/M DEV WAITFLAS azd CEV BETFLAG systes ctlls. Has
Bacticne 3.6, "Interrupt Devices"7 7, "XI0E Tick Interrupt
Routine™: and Section & of the Ccmourrlnt CP/M Oparating Systes
Prograxmay's Refersnce Guide.

Changs thae atructure ¢ the Disk Paramster Hesdsr (DFE) and
Disk Parametar Block {DPE) data structures referanced by the
XTOE disk Aariver xoutines. See Bections 5.4, "Disk Paremeter
Haadexr" and 5.5, "Diak Paranmster Block.™

Remove tha Blocking/Deblocking algorlthas from the XI0S disk
drivers. The Concurrant CP/M BDCE now handles tha
blocking/deblocking function. The XIODE still hendlass sesctor
translaticn.

Change the disk routinss to refarsnca the Input/Output
Paramster Bloock (IOFE) on the stack. Sea Section 5.3, "I0FB
Data Btructurs.” Modify the diak driver routine to handle
multisactor raads and writas.

Rawrits the console and list Ariver code to handie wiztual
consoles and, possibly, multiple physicel consoles. Datails of
the v:i.rtl:‘l‘a.l consola syatea are given in Section 4, “Character
Davices.

Izplemant the TICK interrupt routine {sas I_TICK in the exaxple
XI0S's)., Thia routine ie umed for process dispatching,
maintaining the P DEJAY systam oall, and waking up the CIICK
process RSP. Bae Saction 7, "XIOB Tick Interrupt Routine.”

3-14

Concurrent CB/M System Guide 3.5 Polled Devices

3.5 Palled Davices

Polled I/0 device drivers in the CP/M-BF BIOS typically execute a
small compute-bound instruction loop waiting for a ready atatus from
the I/0 device. Thia causes the driver routine to spend a
aignificant portion of CPU execution tinme looping. To allow other
proceasen uge of the CPU'rescurce during hardware wait perioda, the
Concurrent CP/M XIOS must use a system call, DEV_POLL, to place the
polling process on tha Poll List. After the DEV_POLL call, the
dispatcher stopa the process and calls the XIOS IG _POLL function
every disgatch until IO POLL indicates the hardware 1s ready, The
dispatcher then restoras the polling proceas to execution and tha
process returna from the DEV_POLL call. Since the process calling
the DEV_POLL funection does not remain in ready state, the CPU
resourca beconas available to other proceases until the I/0 hardwara
ia raady.

o do polling, a process executing an XICS function ¢alls the
Concurrent CF/M DEV_POLL system call with a poll davice number, The
d:.s_patche: then calls the XIO8 I0_POLL function with the same poll
deviee nuzber. The example XI0S uses the poll device number to
index into a table of poll routine entrxy points, calls the
appropriste pell function and returns the I/0 davice status to the
diapatcher.

3.6 Interrupt Devices

Ag in the case of polled 1/0 devices, an X108 driver handling an
interrupt-driven I/0 device ahould not execute a wait loop or halt
instruction while waiting for an interrupt to oeeur,

The Concurrent CP/M XIOS handles interrupt-driven devices by uaing
DEV WAITFLAG and DEV SETFLAG aystem calls. A process that needs to
wait for an interrupt to occur makes a DEV_WAITFLAG syatem call with
a flag number., The systam stops thia process until the desirad XIOS
interrupt handler routine makes a DEV_SETFLAG eystem call with the
same flag number, The waiting process then continues execution.
The interrupt handler follows the steps outlined helow, axecuting a
far jump (JMPF) to the Dispatcher entry point. The interrupt
handler can also perform an IRET instruction when it is dons.
Howevex, jumping directly to the Dispatoher gives a little faster
response to the process waiting on the flag, ard ie logically
agquivalent to the IRET instruction.

If interrupts are enabled within an interrupt routine, a TICK
interrupt can cause the interrupt handler to be diapatched. This
dispatch could make interrupt regponase time unacceptable. To avold
this situation, 4o not re-enable interrupts within the interrupt
handlers ar only jump ko the dispatcher when not in another
interrupt handler rontine.

Concurrant CP/M Byatan's Gulda 3.€ Interrupt Davicas

Interrupt handlars under Concurrant CP/M Giffer Zrom those in an
808C envirponwent due to machine architectore differancea. Study the
TICE interrypt tandler in tha example XIOCE'm carefully. During
initial debugging, it s not recommpsnded that Interrupts be
implexmentad until after the system works in a pclled environment.
An XIOE interrupt handlar rcutine must perform the following basic
atepme

1. Do a stack switch to a locel steck. The interruptad process
might not have enough stack space for a context save.

2. Bave the ragistar anvironment of the interrupted process, or at
least the registers that will ba used by the interrupt routine.
Usually the reglsters are saved con the local stack established
in step {1) above.

3. Batisfy the interrupting condition. Thia ¢an inglude resetting
the hardwers and perfoarning 2 DEV SETFLAG wysten call to notify
a process that the iInterrupt for which it was waiting has
ocQurread,

4. Reatore tha register environment of the interrupted process.
5. 8witch back to the original stack.

6. Either a Jump Far (JMPF) to the dispatcher or an Interrupt
Raturn {IRET) inastruction muat be szecuted to return from the
interrupt routine. HNote the above dimcussion on which return
mathod +o use Zfor differsnt aituaticna, Usually, when
interzupts are not re-snablied within the interrupt handler, &
Juup Far (IMPF) to the dispatcher is executed ch sach system
tick and after a DEV SETFLAG call is made. Otherwise, if
interrupts are ra-enabled an IRET instruction is executed,

Hotes DEV_BETFLAG is ths only Concurrenkt CP/M system call an
intarrupt routine may call. This is becauves the DEV_SETFLAG call ie
the only aystem call the operating system assuxes has no proceds
context asmociated with 1t. DEV _BETFLAG must enter the operating
svatex through the BUP entry point mt SYEDPAT:0000H =nd cannot use
INT 224.

Concurrent CP/M B8ystam Guide 3.7 8087 Exception Handler

3.7 8087 Exception Handlar

The default for the Concurrent CP/M syastem 18 to provide no support
for the BO87 co processor. Thia section explaine what must be done
to provide support for the 8087 chip. To support the BOB7 the XIDS
initialization code muat initialize some fields in the SYSDAT area.
The XIOS must alao contain a default exception handler to handle any
intexrupts from the 8087. The aystem .8 structurad ec that a
programmer can write an individual exception handler for the B087.

The XIOB initialization code muat first check for the presence of
the 8087 chip by using the FHINIT instruction. If 1t is present.
the fecllowing fialde in SYSDAT mupt ba Eat up:

SEG_BO87,QFF_8087 Must be set to the segment and cffset of
the 8087 interrupt vector.

SYs_B7_S6,

5Ys 87_OF Must be set to the segment and cffaet of
the XIOS default exception handler.

OWNER _8087 Mugt be zet to O te indicate that there

ia an 8087 present in the system. The
Dafault value 18 FFFFH which indicates
no 8087. FFFFH ie put in this field by
the SUP initialization code.)

The 8087 interrupt vector must also be sat to the sagment and offset
of the XIOS default exception handler.

Any exception handler for the BUB7 must perform its functions in a
certain order to guarantee program integrity in a multitasking
environment. The following is an outline of the example default
8087 exception handler. S8ee Listing 3-3 for the code cof the
example.

3-17

Concurrent CP/M System Guida 3.7 8087 Exception Handler

1. Bave the B0E6 environment.

2, Bave the 8087 snvironment.

3. Clear tha 8087 IR (status word).

4. Disabla 8087 intarrupts.

5. Acknowledge the interrupt (hardware dependant}).

§ Lock at the ownar 8087 field, =nd parforx the desired action.
Nota that 8086 interrupis are currently off, Do not parfora
any action that would turn them back on yat. The dafault
excaption handler uses the OWNER 8087 fiwld to terminate the
ProcESE On A AEVEra error.

7. Raptore thas BDS6 environment.

B. Reatora the 8087 anvircnment with clear stztua. This re-
anables the 8087 interrupts.

9, Executa an IRET instruction to return and ra-snabls the BOBE
intarrupts.

If the B087 environment is not restorsd before BO26 intarrupts are
enabled and an interrupt occure (for axample, TICK), a differant
80B7 process can gailn cenkrol of the 8087 and swap in ita 80BY
context., ©On a segcnd interrupt, or con an IRET instruction; the
8086~running process that happensd to ba axssuting the sxcaptlon
handler code will be brought back intc 8086 context and will write
cver the new 8087 context.

All BOB7 procasses are initialired by the system with the address of
the dafault exception handler., 1If a procese wanits Lo use its own
exception handler, it must initlally ovarwrita ths 8087 interrupt
vectar with thas address of ita own sxception handlier. On sach
context gwltch, the BOBY interrupt vector is paved and restored ae
part of the 8087 process's environment.

Thes hardware-depsndent address of the 8087 interrupt vector i1as
provided in the BEG_8087 and OFF B0B7 fielde of the system data
aran.

An individual esxception handler munat follow the aame saguence of
events dapcribad for the default handler. Faillura to do so will
have unpradictable results on the system. If possibla, sake this
default intarrupt handler re—-entrant.

3-18

Concurrent CP/M System Guide

ndpint:

8087 Defamult Exception Handler

L T T L]

push
oy
mov
mov
mnov
nov
push
push
pugh
pugh
push
push
pugh
push
mov
FNSTENV
FWALT
FNCLEX
Xor
FNDISI

moy
aut
mov
out

call

da

da,ayadat
ndp_esxeg.As
ndp Bprag,sp
a8, syadat
ap,offset ndp tos
ax

bx

cx

dx

di

ai

bp

ed
eB8,8ysdat
env_B0B7

ax,ax

al,020h
060h,al
al,020h
058h,al

in_BOBY

bx,ocffset env BOB7
byte ptr 2[bx],0

3.7

-

8087 Exception Handler

This is the example default exception handler.

It ia assumed that if the 8087 programmer has enabled
8087 intarrupts and has Bpecified exception flags in
the control word, then the prograpmar has aleo included
an exception handler to take epecific actione in
response to these gonditions.
This handler ignores non—severe errors (overflow, atc.)
and terminates procesees with severe errors (divide by
zerc, stack violation).

Save current data segment
Get XIOS data segment
stack switch for 8086 env

Bave 8088 registers

Now szave BO8B7 env
Bave 8087 Procesa Info

Clear 80687 interrupt regue:
Disable 8087 interrupts
Send int ack's - 1 for ala
= 1 for master PIC

Check 8087 error condition
if arrcx is severe,

process will abort

clear BOE87 status word
for env restore

Listing 3-3. 8087 Exception Handler

Concurrent CP/M Syetem Guide

POP
POP
pop
pop
Pop
pop
pop
pop
mev
moy
FLDENV
FWAIT
PoR
fret

in_8087:

mov
teat
ju
mov
mav
tast
inz
ar

and_B7:
ret

ez

bp

si

di

dx

cx

bx

ax
ss,ndp_ssreg
ap,ndp $preg
env_B0E7

ds

bx,owner 8087
bx,bx

end 87

gi,offset env BOBY
ax,Btatusw[si]
ax,03ah

end_87
p_flaglbx],080h

Liating 3~3.

3.8 ZXI08 Bystem Calls

- -

L T T S

1.7 8087 Exception Handler

Reatore BOBG env.

Switch to previous stack

Regtore BOB7 environment
with good status
Restore previous data sagment

Get the Process Descriptor

Check if owner has

already terminated

If severe error, terminate

If not, return and gontinue

3A = under/overflow, precision,
and dencrmalized operand

Mupt be gzerc divide or invalid

cperation {(stack error)

Turn on terminate flag

{continuad)

Roptinee in the XI0E cannct make system calle in the conventlonal
manner of executing an INT 224 instruction. The conventional entry
point to the SUP doer a stack ewitch to the User Data Area (UDA) of

the current proce=as.

The XIDS ie considered within the operating

system, and a process entering the XI0S 13 already using the UDA

stack, Therefore,

ayatem calls.

3-20

a geparate entry point 1s used for Internal

Concurrent CE/M System Guide 3.8 XI0d System Calle

Location OD03H of the S5UP ccde sagment ies the entry point for
internal syatem calla. Regimster usage for syatem calls through this
entry point is aimllar to the conventicnal entry point. They are as
follawss

Entrys = Syatem call number

Parameter

Segment addreas if DX is an ofifeet to =a
structure

User Data Area

BX = Return

Error Cods

Segment value 1f system call returns
an offaset and segment. Otharwize

ES ig unalterad and eguals the UDAR
upon return.

DX, SI, DI, BP are not prasarved.

Return:

RREE HER

Tegu

Tha only diffarances betwaen tha internal and user antry pecints ara
the CX and ES registers on entry. For the internal call, CH muat
always be 0, ES muat always point to the User Data Area of the
ourrent proneas. The UDA segment addrass can be gbtained through
the following code:

arg 68H
rlr rw 1 ; ready list root
¢ in SYSDAT

org (X108 coda segment)

nov gi.rlr
mov es,10h(Ei]

Note: On entry to the XIOS, ES is equal to the UDA segmant
address. The E5 Register must egual the UDA on return from any XI0S
function called by the XI05 ENTRY routine. Interrupt routines must
raastore ES and any other altered registers to thelr value upon entry
to the routine, befora performing an IRET inatruction or a JMPF to
the dispatcher.

End of Section 3

Section 4
Character Devices

This section describae the XIOS functione neacessary for Character
I/0. Some additlonal functione, deseribed in Section &, are needed
te run DOS programs.

Concurrsnt CP/M treats all serial I/0Q devicea as conaclas. Serial
I/0 devices are divided into two cabagories: virtual conaoclas and
extra I/O devices. Each virtual console ie asmigned to a apecific
physical conacle or user terminal. Associzted with each serial I/O
device (virtual conacle or extra 1/0 device) is a Console Control
Block (CCB). The serial I/0 devices and CCBs are numbered relative
to zero. Each process containes, in its Process Deecriptor, the
number of itp default console. The defanlt conscle can be aithar a
virtual consola or an extra meriaml I/0 device.

Concurrent CP/M can be configured in a number of different ways by
changing the CCB table in the XIOS. It can be configured for one or
more usar terminalas {physical consolea), and extra I/0 devices. The
mmber of virtual conaoles agesigned t¢ each user terminal is et in
the CCB tahle. Up to 256 serial I/0 devices can be implemented,
depending on ths specific application.

The XIOS header definea the sire and location of the CCB table. In
the headexr, the CCB field points to the heginning of the CCB table.
The NCCB field contains the number of entries in the CCB tabla. The
NVCNE field tells how many of the CCBs are virtual consclea. See
*XIQOE Header" in Section 3 for more information.

The XI0S might or might not maintain a buffer containing the screen
contents and cuxsor position for each virtual console, depending on
how the system is to appear to tha user. Kesp in mind that this
buffer can be cvexr 4K bytea per virtual conaole. Practical
considerations of memory epace might reguire keeping the number of
virtual consples reasonably amall 1f buffers are maintainad. Alsc
note that if the user terminals are connected to serial ports, the
time to update the ecreen for a soreen switch can be up to 2
seconds. One sxample XIOS has sight virtuwal consoles, divided among
multiple serial terminals.

Concurrant CP/M Eystem Guidas 4.1 Conscle Control Block

By convention, the first NVCNE serial I/0 devicea are tha virtuel
conacles. The HVCHB paramster is located in the X108 Header. The
XPCNE fileld tells how many user terminale there are. XPCNS smust be
less than or egual to NVCME. XPCNE doee not include extra I/0
Devices. Consolex beyond the last virtual conscle represent cther
serial I/0 davicas, When & process makes a conszcle I1/0 call with a
omsole nusber higher than the last virtual consclae, it refarences
tha Console Contro) Block for the called device number. Thersfore a
CCE for sach aerial I/C device is abeolutely necesaary.

Liast Pevices under Concurrent CP/M mre cutput-only. The XICS must
resaxve and initialirze a Lizt Control Elock for sach list cutput
davice. When a process makes a list device XIDB call, it refsrances
the appropriats LCBE.

4.1 Consols Control Block

A Conaola Control Blotk Table must ba defined in the XIOB. There
must ba one CCB for each virtual console and Character I/0 devics
supported by the X108, as indicatad by tha NCCE variable in the X105
Heander. The tabla must begin at the address indicated by the CCB
variable it tha XIDS Header.

cCcB CCB 0 | (vizrtual coneole 0)
(X108
Beader} .
CCB NVCHS-1 {last virtual conscle)
CCB NMVCNS (first axtra char-

acter I/0 device)

CCE HCCB--1] {last extra char-
acter I1/0 daevica)

Figure 4-1. The CCE Tabla

The number of CCBs used for virtual conscles eguals the NVCNE £ield
in the XIOS Header. Any additional CCB entries are uaed for cother
charactar devicea to be supported by the XIOS, The CCB sntries ara
numbared starting with merc to match their logical console device
nusbers. Thersfora, the last CCB in the CCB Table is the (NCCB-1)th
CCB.

Concurrent CP/M Syatem Guide 4,1 Conscle Control Bleck

Each CCB correaponding to a virtual conaole has savaral fielde which
muet be inltialized, either when tha XIOS is assembled or by thae
XI0S INIT routinas. These fields allow you to choose the
configuration of the virtual conascles. The PC fleld indicatea the
physical console this virtual console ie aseigned to, The VC fleld
is the virtual conscle number. Thie numbsr must be unique within
the ayetem. The LINK field points to the CCB of the next virtual
coneodle asgigned to this physical console. The laat virtual coneols
asdigned to each physical consocle should have the LINK field met to
zoro (DO00H). Fiqure 4-2 shows a diagram of the CCBs for a system
with twe physical conacles, with threa and two wirtual consoles
apasigned respectivly. For CCBs ocutside the virtual console range
corresponding to extra I/0 devices, these flelds must all ba
initialized to zero {00H), except for the PC field. Alao,
initinlize to zerc {DOH) all fielda marked RESERVED in Figure 4-3.

CCE © [PC O 1 vC O

<:-LINK

CCB 1 | FC O | vC 1

I LINK

CCB 2] PC Q] Ve 2

- LINK

CCB 3 l PC 1 I ve 3

F LINK

CCB 4 l BC 1 l Ve 4

- LINK
W‘F

Figure 4-2, CCBs for Two Physical Consoles

Concurreant CP/M Bystan Guide 4.1 <Conmola Control Block

00 OWNER RESERVED .
ash | MIMIC PC ve m:sn:nvan s'réTs
10n | maAxsursizE l 1 :mssz:nv:n 1 J
18h j 1 RESERVED] _r T
20h ' ‘ REBERVED ' '

1

28n LINK RESERVED

Figure 4-3. Consoles Control Elock Format

Teble 4-1. Consoles Coatraol Block Data Flalds

Data Field l Explanation

OWNER Addrass of the Process Dascriptor of the
proceas that ¢yrrantly owns tha virtual consola
or character I/0 davice. This field is ussd by
the XIDE Btatus Line Punction {ID BTATLINE)} to
find the name of the current owner. Initializae
this £field display to zere (Q000H), If the
value in thia fisld is xzearo when Concurrant
CP/M is running, no process owns tha device.

MIMIC This field indicatas which list davice receives
ths characters typéd ©on the virtual consola
when the CTRL-P cowmand is in sffact. MIMIC
nust be initisliced to OFFH. Note that this
ligt device im not necessarily the same as the
default list device indicated in the Process
Dasoriptor whose address is in the OWNEE fiasld
of the CCB. Censidar the folliowing interaction
at the conaole:

Concurrent CB/M Bystem Guide 4,1 Coneole Control Block

Table 4-1. (continued)

Cata Field Explanataion

Adprinter The TMP's PD has a 0 in
1ts LIST field.
Printer Number = O

aArTp Printer echo to list
device 0.
Arprinter 2 The TMP's PD has a 2 in

its LIST field.
Printer Number = 2
Arpip lat:=letter.prn LETTER.PRN 1a asent to
liat device 2 Printer
echo is atill going to
list device 0, echoing
the laet two commands.

The axanple statua Lins
rautine distinguishea
between the default
list device and the
CTRL~P lList device by
displaying

Printar=2

for the default list
devicea, and

“P=Q

after the last cemmand
in the illustration
ahbove,

BC Physical consocle number.

vC Virtual! console nunber. Virtual console
nusbers muat be unigue within the system.

Concurrent CP/M Systam Guida 4.1 Consols Control Block

Table 4-1. (continuwd)

Data Filald Explanaticn

STATE Tha lesat significant bit of this field
indicatea the background mode of the virtual
coneole. The XI0E Etatus Line Punction routine
usss this informaticn to display the background
nods for the currant foreground console. Thia
bit has the following valuass

[+ background Is dynamic
1 background ig buffared

The STATE fisld can ba inltialized to 0 or 1 on
each virtual console to specify ths background
node at system startup, The Cohcurrent CP/M
VCMODE utility allowe tha user to change the
background mcda.

MAXBUFBIZE Tha MAXRUFBIZE field indicates the maximum sira
of the buffer file umed to store characters
whan a background wvirtual conscle ia in
buffered mode. When a virtuml console la
placed in background =mcde by the user, =a
temporary file is coreatad on the temporary
drive, conteining consols cutput sent to tha
virtual console, Theses files are nanmed
VOUTx.$565, where x eguala tha number of tha
aasociatad virtual conacla. The MARBUFSIZE
field is the maximum size to which this file
can grow, IXIf this meaximun ie rsasched, tha
drive is Read-Only, or there is noc mors free
space Oh tha drive, subasguent conscle cutput
causes the background process attached to the
virtual conecle to be stopped. Tha MAXBUFSIZE
paramater is in Kilobytesd and xust be
initialized in the XICE CCB entries. The
Concurrant CP/M VCMODE utility allows thas user
to change thim wvalue. Tha laegal rangs for
MAXEUFSIZE 13 1 to 8191 decimal {(1FFFH).

LINK Addrems of the next TCB assigned to the same
ghysical conscle. Zero (GOODH} if this is the
laat or only virtual console for thie physical
conkdlae.

Cancurrent CP/M System Sulde 4.2 Conacle I/0 Punctlons

£.2 Console I/0 Functions

A major difference batween the Concurrent CP/M XIOS and the CP/M-86
BIOS drivers i3 how they walt for an event to ecccur. In CP/M-86; a
routine typically goea into a hard loap to walt for a change in
statue of a device, or executes a Halt (HLT) instruction to walt for
an interrupt. In Concurrent CP/M, this does not work. It can ba of
gome use, however, during the very early stagesm of dehugging the
XICB.

Bagically, two ways to walt for a hardware event are used in the
¥I08. PFor noninterrupt—driven devicea, use the DEV POLL method.
For interrupt-driven devices, ume the DEV_SETFLAG/DEV_PLAGWAIT
method. These are both ways in which a procesas waiting for an
external event can give up the CPU rescurce, allowing othar
procesmsas to run concurrently. For detailed explanations of the
DEV_POLL, DEV_FLAGWALT and DEV_SETFLAG syatewm callp, a=e Section 6
of the Concorrent CP/M Operating System Programmer's Reference
Guide.

I0 CONBT CONSOLE INPUT S8TATUS

Return the Input Status of the apecified
Serial I/0 Device.

Entry Parameters:
Register AL: O0O0H (0}
DL: Serial I/0 Device Number

Returned Value:
Register AL: OFFH if character ready
0 if no character ready
BL: Same as AL
ES, DB, 88, BP preserved

The IO_CONST routine returns the input status of the specified
char acter I/0 device. This function is only called by the operating
system for console numbers greater than NVCNS-1, in other words,
only for devices which are not wvirtual congalea. If the status
returned is OFFH, then one or more characters are avallable for
input from the specified device.

Congurrent CP/M Bystpw Guldse {.2 Console I/0 Punctions

IO CONIN CORBOLE INPUT

Return a character from khe conacle
kayboard or a serial I/0 device,

Entry Farasmeterns:
Regieter AL: O1F (1)
DL: Berlal I/0 Device Rumber

Reaturned Value:
Register AH: O0O0H if returning
character data
Al: charackter

AH: OFFE if returning a
pwltch soreen request
AL: wirtuoal conscle regqueated

B¥Xt: &same 2@ AX in all casens
ES8, DB, 85, 8F preserved

Bscruae Concursrent CP/M supports the full 8~-bit ABSII character sat,
the parity bit pust be masked off fromw input devices which uase it.
However, it should not be mamked off if valid 8~hit charackers are
being input.

You chooBe the key or combination of keya that represent the virtoal
coneclae by the implementation of IO CONIN. One of the exanple
¥IOB's uses the function keys £l through £3 to represent the virtual
canpales assigned to sach user barminal.

I0_CONIN mumt check for PC-MORE, PC-MODE ias snabled whenever DOS
programs ars running. It ies enabled or disabled by the IO_KEYRD
(Function 32) call. If PC-MODE is snabled; all functicon keys ere
rasnad through to the calling process. If it is dissblad, functicn
keays that do net have an aseociated XICB funcition ars usually
ignorsd on input. Eea Section 6.2 “Kayboard Punctiona® for
inforsation on the 10 KEYBD call.

4-3

Concurrent CP/M Systeam Guide 4,2 Conaole I/0 Functions

I10_coNouT CONSCLE CUuTPUT

Display and/or output a character to the
specified device.

Entry Parameters:
Register AL: 02H (2)
CL: Character to send
DL: Virtual console to gend to

Returned Valua: NCNE

ES, DS, 88, 5P preserved

The XIOE might or might not buffer background virtual conaoles,
depending on the waer interface desired, memory constraints, and
methoda of updating the terminals. This section describes how the
example XIDS's handle virtual consoles.

The example XIOS's buffer all virtual consales. All wirtual
cansoles have a screen image area in RAM. Thils image reflects the
current contents of the sacreen, both characters and attributes,
Each screen image is contained in a aeparate segment.

Each virtual console alsc has a Screen Structure associated with it.
This structure contains the segment acddress cof the screen image, the
curagr logation {(offset in the asegment), and any other information
needed for the screen. This structure can be expanded to support
additional hardware requirements, such as color CRTSs.

For a screan~bpuffared implementation, when a character ia given to
I0_CONOUT, 1t performs the following operations:

l. Look up the screen structure for thig virtual console and get
the segment address of the acreen image.

2. Update the image, including all changes caused by escape
seguences. Thia could involve changes to the characters on the
acreen (clear acreen), the cursor location (home), or the
attributea of the individual characters (inverse video).

3. If this conacle is in the foreground and on a serial terminal,

put the character cut to the physical terminal. Thia requires
looking up the true physical conscle number.

4-9

Congurrent CP/M Bystem Guldae 4.2 Conmole I/0 Funcations

Whan a2 proczesw calle thia function with a davice number higher than
the lest virtual conscle number, the character should ks asnt
directly to the serial device that the CCB reprasants,

Hote that for screen bufferipng it is necessary to buffer 25 lines
when in PC-MODE, but only 24 linss otherwise. The PC-MODE flag is
sot by Function 32, which is describsd in Saction 6.2.

ID SWITCH BWITCH BCEEER

Flace the current virtual console into the
background and the apecified virtual
congole into the foreground.

Entrcy Parametarcs:
Regimter AL: O7E (7)
DL: Virtual Conacle # to
gwltch to

Return Values: NONE
ES, DE, 85, BPF preasrved

When IO BWITCE is called, the XIOE coples the screen lamage in memory
to the physical screen. It must move the cursor on the physical
gorean to the proper position for the new foreground conscle.

IC_BWITCH is responsible for dolng a flagset to reatart a background
proceass that ilg waliing ko go into graphica mode. If the proceas's
fcrasn is to be sawitched into the foreground, do a flagset on the
£lng that was uaed by I0O_SCREEN to flagwait the process. Sae
Bection 6.1 for more information on IO _BCREEN.

I0_BWITCH will be inplemented differently for machines with video
RAM (such as the IBM Personal Computer} and serial terminals. Mor
IBM Personal Computers, the scresn ewitch can be done by doing a
block move from the screen image to the video RAM, and a physical
curacr positioning. A merial terminal muat be updated by aending a
character at a time, with insertion of escape sequences for the
attribute changes.

4-10

Concurrent CP/M Systam Guide 4,2 Console I/0 Functions

Concurrent CP/M cells IO SWITCH only when there la no procass
currently in the XIOS performing conscle output to either the
foraground virtual conscle being switched out, or the background
virtual conaocle being switched into the feraground. Therefore, the
XIOS naver has to update a sgreen while gimultanecusly ewitching it
from foreground to background, or vice verasa.

One of the example I0 SWITCHE routines performe the following
oparationa:

1. Get the screen structure and image aegmeant for the new virtual
conaole.

2, Find the phyaical consocle number for thia virtual console.

3. If this ia a video-mapped conaale, savae the current display by
doing a block move. If it is a serial terminal, clear the
physical screen and home the curaor.

4. If this is a video-mapped dieplay, do a block move of the new
acraen lmage to tha video RAM, and rxs-~poaition the cursor. If
it ie a serial termiaal, pend each character toc the physical
acreen. Cheack each character's attribute byte, and aend any
escapa segquences necessary to dlsplay the characters with the
correct attributea.

I0_STATLINE DISPLAY SBTATUS LIKE

Display specified text on the status line

Entry Paraneters:
Register AL: O8H (8)
CX: if OQOOQQH, econtinue to
update the normal
statua line
if CX = offeet, print
string at DX:CX
if OFFPFFH, resume normal
status line display
Register DL: physical console to diaplay
status line on (if CX = Q)
Register DX: segment addrese of
optional string (if CX <> Q)

Return Values: NONE
ES, D8, S5, EP preservad

Cancurrent CP/M Bystam Guids 4.2 Consoles I/O Functions

When IO STATLINE 1s called with CX = 0, the ncrmal status
information im displayed by IO_STATLINE on the physical conscle
specified in DL, The normal mtatus line typlcally consists of the
foreground virtual conwola number, the stata of the foregzound
vixtual conecle, ths process that owns the foreground wvirtuml
cansols,; the remcvable-media drivaz with open £ilas, whether control
P, B, or 0 ars active, and the default printer numbar. The
I0 STATLINE function in the axaxple XIOS's display soxe of the above
informstion. Usually when 10 STATLIME im called, DL 1s set to the
physical console to display the status line on. Yocu must translats
this to the ourrent (foreground) virtual console befors geiting the
Infermation for the status lina (such as the process owning the
ocnsole). Tha status line can be modified, ezpandad to any sixe, or
displayed in a different area than tha staius line implamented in
the exaxpls XIO6'm. A common addition to the status line im a time-
of-day clock.

A status line is strongly recommended., Howsver, if there are only
24 linea on thae display davice, you might chooss not to implezant a
status line. In this case ID _STATLINE can just return whan called.

The normal status line is updated cunce per second by the CLOCK RSP.
If there is wore than cne ueer teareineml connected to tha system,
this update occurs once per sscond on A round-robin baais among the
Fiysical terminala. Thue, if four terminals ara connected sach onas
is updated every four seccnds by the JLOCK.

Tha oparating systaz also raguests normal status line updates when
scresn switches are mads and when control P, 8 or O change statas.
The XI08 might call I0 BTATLINE from cther routines whan scae velus
displaysd by the mtatiis line changes.

Boter IO STATLINE's re-sntrancy depsnds in part on having separate
buffers for each physical consols.

The 10 STATLINE routine should not display the statua line on a user
terminal that is in graphics moda, It should check the same
variable as IO BCREEN (PFunction 30). IO SCRREN im damcribed in
Section 5.1 "Bcresn I/0 Functions®.

IO STATLINE also should not display on a conscle that ila in PC-MODE.
Check the variable set by Function 32 to saa if a conecle is in PC-
MODE. &Ses Section 6,2 for Informaticon con Function 32.

Moat callae to I0 BTATLINE to update the statum line have DL aet to
the physical terminal that is to ba updated. Whan ID STATLIKE is
callad with CX not aqual to OO0OH or OPFFFFH, than CX is assumed to
ba the hyts affset and DX the paragraph address of an ASCII string
to print on the statue lins. This spacial status line razaina on
the scresn untll ancther special statue line is requested, or
I0 STATLINE is called with CX=0FFFFH. While 2 spescizl status line
is bung displayed, calls to IO BTATLINE with CX=000CH are ignored.
¥Whan I0 BTATLINE function is ecalled with CX=0FFFFH, the normal
status Iins is displayed and subseguant calls with CX=0000H cause
the status line toc bs updated with current information.

4-12

Concurrent CP/M System Guide 4.2 Console I/0 Functions

Whan 10 _STATLINE is called to display a special status .].ine, DL does
not contain the physical coneole numbesr. The physical consele
nunber can be obteinad by the following method:

l. Get the addres= of EYSDAT

2. Laook at the RLR (Ready List Root}. The firat proceas on the
list ia the currant procass.

3. Look at the Process Dascriptor (pointed to by RLR}. Tha p cne
field contains the virtual console numbar of the current
process, Saa the Concurrant CP/M Operating System Programmer's
Refarence Guide for a descripticon of the Process Deacriptor.

4. Look up the CCE for this virtual conscle and find the physical
conaale number in it.

A procees calling IO ETATLINE with a speclal statua line {DXi:CX =
addreas of the ltringT nuat call 10 STATLINE before termination with
Cx=0PFFFFH. Otherwlse the normal status line 1a never shown again.
There 18 nc provision for a process to find out which atatus lins is
baing displayed.

4.3 List Device Functions

A Liat Centrel Black (LCB}, similar to the CCB, must be defined in
the XI08 for sach list output device supported. The number of LCBs
must equal the NLCB variable in the XI0OS Header. The LCB Table
beginz with LCE zerc, and ends with LCB NLCB-1, according to their
logical list device names.

ICB E——— ice a | (LIST DEVICE 0)
{XI1I08
HEADER) .
LCB NLCB-1 | {LAST LIST DEVICE)

Figure 4—4. The LCB Table

4-13

Concurrent CP/M Eystem Guide 4.3 List Devicae Functiona

00H OWNER RESERVETD

02H | RESER- M-
VED SOURCE

Figure 4-5. Ldst Control Block (LCR}

Table 4-2. List Control Block Data Fields

Fiald I Explanation

OWNER Address of the PD of the proceasa that currently
owne the List Device. If no progese currently
owne the list devicse, than OWMER=0D. If
OWHER=OFFFFH, thies list device ie nimicking a
conecle device that is irn CTRL~F mode.

MSOURCE If OWMER=0FFFFH, MSQURCE contains tha nuabar of
tha console device this list davice is
Rimicking; otharwise MSOURCE = QFFH.

Notes MSOURCE muet be initialized to OFFH. All
other LCB fielde must be initialized to O.

I0 LBIST LIBT STATUS

Raturn Liet Outppt Btatunm

Entry Parameters:
Register AL: 03H (3)
DL: Limt Device number

Raturned Value:
Register AL: OFFH if Device Raady
o if Device Not Ready
BL: Sans as AL

E§, D8, 88, EP praesarved

Concurrent CP/M Syatem Guide 4.3 List Device Functions

The I0_LS3TST function returns the output mtatus of the apecified
list device.

10 L8TOUT LIaT oUuTPUT

Output Character to Specified List Device

Entry Parameters:
Regiater AL: O04H (4)
CL: Character
DL: Lizt Device number

Raturned Value: None

ES, DS, S5, 5P preserved

The IO_ISTOUT function sends a character to the specified List
Davice. List device numbers start at 0. It is the responsibility
of the XI)S device driver to zero the parity bit for list devices
that reguire it.

4.4 Aoxiliary Device Functions

These XIOS functionsg are accessible only through the Concurrent CP/M
§_BIOS system call. Software that uses this call can access the AUX:
device by placing the appropriate parameters in the Bios Descriptor,
For further information, see= the Concurrent CP/M Operating System
Programmer's Reference Gulde under the S_BIOS system call.

If you choogse not to implement the AUX%: device then the I0 AUXOUT
Eunction can simply return, while I0 _AUXIN shounld return a gharacter
26 (la®), CTRL-2Z, indicating end of Fila.

Concurrent CP/M Bystem Guide 4.4 Auxiliary Device Functions

I0 AUXIN AUXILIARY INFUT

Input a character from ths Auziliery Device

Entry Paramsters:
Reglstar AL: OSH {5)

Returnad Value:
Register AIL: Charagktar

BES, D8, BB, BF preserved

10_AUXQUT AUXILIARY QUTPUT

Output a character teo the Auxiliary Device

Entry Paramsters:
Reglatar AL: O6H {6&)
CL: Charactar
Returned Valua: HNona

EE, DB, §8, SFP preserved

4-16

Concurrent CP/M System Guide 4,5 I0 _FOLL Puncticn

4.5 I0 POLL Function

10 POLL POLL DEVICE

Poll Hpecified Device and Heturn Status

Entry Parameters;
Register AL:; ODH (11)
DL: Poll Device Number

Returnad Value:
Regigter AL: OFFH If ready
0 1f not ready
BL: Same as AL
E3, D3, 88, BP preserved

The IO POLL function interrogates the status of tha device indlcated
by the pell device number and returns its current etatus. It is
called by the dispatcher.

A process polls a device only 1f the Concurrent CP/M DEV_POLL aystem
call has been made. The poll device number uped as an argument for
the DEV_POLL gsystem call i the same number that the I10_POLL
functicn receives ae a parameter. Typically only the XIOE uges
DEV _POLL. The mapping of poll device numbera to actual physical
devices iz maintained by the XI08. Each polling routine must have a
mnique pecll deavice number. For instance, if the console i=s polled,
it must have different poll device numbers for cansole input and
aonsole ouktput,

The sample XIO8's show the I0 _POLL function taking the poll device
nurber as an index to a table of poll functions. Once the addreas
of the poll routine i3 determined, it is called and the return
values are used directly for the return of the I0_POLL function.

End of Section 4

Section 5
Disk Devices

In Concurrent CP/M, a disk drive is any I/0 device that haas a
dirsctory and ls capable of reading and writing data in 128-byte
logical sectora. The XIO8 can therefore treat a wide varlety of
peripherals ad didk drives 1f desired. The lagical strueture of a
Concarrent CP/M digk drive ia presented in datall ln Section 10,
"ORM Utilitles." CP/M can alao support PC-DOB and ME-DOB diska. The
tarm DOE referms to both PC-DOS and MS-DOS.

Thia sectlon discuasea the Concurrent CP/M XI0B disk functiens,
their input and output parametera, assoclated data atructures, and
calculation of values for the XIOS disk tables.

5.1 Dlsk I/0 Functions

Concurrent CP/M performm Disk I/0 with a =ingle XIOH8 call to tha
I0_READ or IO WRITE functions. Thege functicne reference disk
paTameters contained in an Input/Output Parameter Block (IOPB),
which is Iocated on the stack, to determine which disk drive to
acceas, the number of physical sectors to tranafer, the track and
apctor to read or write, and the DMA offset and segment address
inveolved in the I/C operation. See Section 5.2, “IOPB Data
Btructure.' Prior to each IO READ or IO _WRITE call, the BDCS
initializea the IOPB.

If a physical error occure during an IO _READ or IO_WRITE operation,
the funetion routine should perform several retries (10 is
reconmended) to attempt to recover from the error before returning
an erxor condition to the BDOS.

The Diak I/0 routine interfaces in the Concurrent CP/M XIQS are
quite different from those in the CP/M-B6 BIOS. The SETTRK, BETBEC,
SETDMA, and SETDMAB X108 functions ne longer exist because IO_READ
or IO_WRITE have absarbed their Ffunctions. WBDOT, HOME, SECTRAN,
GETSEGE, GETIOH, and SETIOB are not used by any routines cutside the
1/0 aystem, and so have been dropped. Also, hard loops within the
disx reoutinea must be changed to make elther DEV_POLL or
DEV_WAITFLAG ayvetem calla. See Sections 3.5, "Polled Devices®; 4.5,
"IO_POLL Punction™; and 3.6, “Interrupt Devices.” For initial
debugging, Concurrent CP/M runs with the CP/M-86 BIOS phyaical
sector read and write routines, with the addition of an IOPB-
referencing routine, multisactor read/write capability, and
medification to handle the new DPH and DPB structures. Once the
ayatem runs well, all hard loopa should be changed to either
DEV POLL or DEV WAITFLAG system calls. See alao the discussion in
Sections 3.5 and 3.6 of this manual.

Concurrent CP/M System Guide 5.1 Disk I/0 Functionas

I0_BELDSK SELECT DISK

Salect the apecifled Disk Drive

Entry Paramatars: AL1 09H (9)
CL: Dlek Drive Number
DL: {(blt 0): O if first melect

Return Valuep: AX: offset of DPE if no errer
A¥X: O0O0H 1f invelid drive
BX: Same as AX
ES, DS, BH, BP praserved

The IO_SELDSK function checks lf the specified disk drive 1s valid
and returns the address of the corresponding Disk Parameter Header
1f the dArive ims valld., The apecified disk drive number is 0 for
drive 8, 1 for drive B, up to 15 for drive P. On esch disk malect,
I0_SELDSK must return the offeaet of the melected drive'a Diak
Parameter Header relative to the SYSDAT seqment addrese.

If there i an attempt te select a nonexigtent drive, IO SELDSK
returhy O0H in AL aw en srror indicator. Although X0 SBLUBX nuat
return the Diek Parameter Header (DFHA) address for the specified
drive cn esach call, pomtpene the actual physicel dlsk eelect
operation ontil an I/0 function, ID_READ or ID_WRITE, is performed.
This is dua to the fact that disk select opermtions can take place
without & subrequent disk operation and thue disk accesa might be
substantislly slower using some diak controllers.

IQ_SELDISX muet return a DPH containing the address of the Disk
Parameter Block (DFB). The DPB must be properly formatted to
raflaect the type of media supported by the Belected drive., On a
Eirat time sslect, this function must determine Lf thie diek is a
CP/M dlak, or a DOS disk. For CP/M media, return a ragular DFB.
Far a DO8 disk return an axtended DPFB. See Sectlion 5.5 "biek
Parametar Block"™ for more information on the two DPE formats. Bee
Section 5.8 "Multiple Media Support" for more information on
ganerating a systen that supperts both types of disks.

Concurrent CP/M Sygtem Guide 5.1 Dpisk I/0 Functions

On entry te I0_SELDSK, you can determine whether it is the first
time the zpecifisd disk has been aslected. Regleter DL, bit 0
{least algnlficant bit), is a zero if the drive ha= nct been
previously selected. This informaticn is of Interest in aystems
that read configuration information from the disk to dynamically get
up the agsoclated DPH and DPE. See Section 5.8 "Multiple Media
Bupport®. If Regleter DL, bit @, is a che, IO _SELDSK must return m
polnter to the same DPH as it returned on the initial select.

I0 _READ READ SECTOR

Read gector {3) defined by the ICPB

Entry Parameters: IOPB filled in (on stack)
Regigter AL: O0AH (10)

Return Valuem: AL: 0 {f nc error
1 if phyeical error
0FFHE if media density
has changed

AH; Extended error code

(Tabkle 5-1)

BL: BSame as AL

BH: BSame ag AH
ES, DS, BB, 8P prezerved

The I0 READ Function transfers data from disk to memory according to
the parameters specified in the IOPB. The disk Input/Output
Perameter Block (IOPB}, located on the stack, contains all regquired
parameters, including drive, multisector count, track, sector, DMA
offzet, and DMA asegment, for disk I1/0 operations. S&ee Section 5.2,
"I0PE Data Structure.” If the multisecter count iBs egual to 1, the
X105 mshould attempt a single physical sector read based upon the
parameters in the IOPB. If a physical errer occurd, the read
function should return a 1 in AL and BL, and the appropriate
extended error code in AH and BH. The X108 should attempt several
retries {10 recommended) before glving up and returning an srror
condition.

For disk drivere with awuto density select, ID_READ should
Immediately return O0FFH if the hardware detects a change in media
density. The BDOS then performs an IQ_SELDSK syatem call for that
Arive, reinitializing the drive's parameter tables in order to avoid
wrlting erconeous data to disk.

Concurrsnt CE/M System Guide 5.1 Ciak I/0 Functions

If the multissctor count is greater than 1, the 10 READ routine is
reguired ko read the specifled nusber of physical sectors befors
returning to the BDOB. The IC_READ routine should ettempt to resd
an many phys!.r.:nl ssctors as the specified drive's disk controllar
can handles in ona operation. Additional calls to tha aisk
contrgllar ara raquired when the disk controller cannct tranafer the
ragueasted number of sactors in a single oparation. If a physical
arror oocure during a multissgtor read, the read function ashould
return a 1 in AL mand BL and the appropriate extendad error cods in
AH and BE.

If the disk controller hardware can only read one physical sector at
a time, the XIO8 disk driver must make the nuxber of singlae
physical-sector reads defined by the multissctor count. In any
cama, whan more than one call to the controller is made, the XIOS
nust increment the sector number and add the nuzber of bytes in each
physical sector to the DMA addresa for each succesglve read. If,
during a multisector read, the ssctor numbar eaxcesds ths numbar of
tha last physical sector of the current track, the XIO8 has to
incremsnt the track number and raset the sector number to 0. This
cone:pt is illustrated in Listing 5-1, part of a hard diak driver
routine.

In thie azampla, 1f the xultisectar count is zero, tha routine
raturna with an error. Otherwise, it immediately calla the
raad/writa routine for the prsssnt sector and puts the return code
passed from it in AL. If there is no errozr, the multisector count
is decremented. If the muitisactor count now aguala xere, the read
or write is £inished and the routine returns, If not, the sactor to
raad or write is incremsnted. If, howaver, the aactor nuwbar now
erxceads the nuuber of sactore on a track {MAXSEC), the track numbar
is incremented and the sector number sat to zero. The routine then
performs tha number of reads or writes ranaining to equal the
multimector count, each time adding the size cof a physical sector to
the DMA cffeet pmased to the disk controller hardwarse.

Tabla 5-1. Extendsd Error Codas

Code Mpaning

80H Attachmant failed to respond
401 Seek cperation failad

20H Controllaxr has failed

108 Bad CRC

8H DMA overrun

4H Sector not found

3H Write protsct Aisk error

2H Addreas mark not found

1H Bad command

Concurrent CP/M System Guide 5.1 Disk I/0 Punctions
Listing 5-1 illustrates multisector aperationa:
=***t***ti*iiii**it***********t*t**********t*******t

T commen code for hard diek read and write

’
:*t*iiiitiiiii*itiiiiiiiiiiiiii*i*i*it**************

hd _lo:
push as saave UDA
omp mcnt, O :1f multisector count = O
je ha_err traturn error
haiol:
call ichoat sread/write physical amsctor
nov al,retcede :1get return code
pr al,al 1if not O
inz hd_arr ;raturn error
dec ment ;decresment multisactar count
j= rsturn_rw :if nent = 0 return
mov ax, seoator
inc ax :naxt msactor
cop ax,maxsacl jb sams_trak ;is mector < zax sector
inc track ; no - next track
XOr ax.ax : initialize sector to O
sams trak:
ROV BActor,ax ;save sector #
add dmaoff, eecrls iincrement dma offset by sector size
jmpz hdiol sread/write next sector
hd_err:
mov al,l jreturn with error indieator
raturn rws
~ pop as trestore UDA
rat sreturn with error code in AL

;iii**ti*i****t***********i**********1*!?1'3*!#*!!!*2*

i* IOHOBT performs the physical reads and writes to ™*
* the phyaical disk. *
R T e T T T T T e T e

ichost:

ret

Listing 5-1. Multissctor Opscations

Concurrent CP/M System Guide 5.1 Dizk I/0 Functions

IO_INT13_READ READ DOS SECTOR

Read DOS sector(e} deflned by the IOFB

Entry Parametera: DOS IOPE filled in (on mtack)
Register AL: 23H (35)

Return Values: AL: 0 if no arror
1 if phyaical error
OFPH if medim density
has changed

AH: Extended arror code

{Table 5-1)

Bl.; Hame am AL

BH: EGame ap RH
BES, D&, BS, 8P preserved

IO _INT13 READ emulates DOB's interrupt 13 read dlsk cperation. It
reads a DOS diek as specified by the DOS format IOPB. It im used on
DUS media only. It oparates llke IO_READ axcept for the different
ICPE. The DOE IQPE im defined in Sectien 5,2

Concurrent CB/M 8ystem Guide 5.1 Digk I/0 Functions

I0_WRITE WRITE SECTOR

Write gsector(s) defined by the ICPB

Entry Parameters: IOPB filled in (on atack)
Register AL: OBH (1l1)

Return Values: AL: 0 1f no error
1l if phyaical error
2 1f Read/Only bisk
OFFHE If media density
has changed

AE: Extended errcor code
(Table 5-1)

BL: Same as AL

BH: Same as AH

BS, DS, 55, EP preasesrved

The IO _WRITE function transferz data from memory to disk according
to the parameters apeclfied in the IQPE., This function worka in
much the pame way as the read function, with the addition of a
Read/Only bDiak retuern code. IO WRITE should return this code
when the specified disk controller detects & writs-protected
disk,

Concurrent éP/H Bysten Guide

5.1 Dpisk I/0 Functiona

ID_INT13_WRITE

WRITE DO3 BECTOR

Write DOB sector(a)

defined by the IOPB

Entry Parameters:
Ragleter

Retucn Values:

DoB8
AL:

ALt

AH!

BL:
BH:
BS,

IOPE £filled in {on mtack)

48 (386)

0 if no erxor
L if physical erraor
2 if Read/Only Disk
OFPH if madia density
has changed
Extended error code
{Table 5-1)
Bame as AL
Same ae AH
DB, 88, S8F presarved

IO_INT13_WRITE is similar to IO_WRITE.
It emulates [OS'a intarrupt 13 write

writes to a DOB disk.
function.

It uaes a DOS IOPR, and

The DDS IOPB ia defined in Section 5.2,

Concurrent CP/M System Guide 5.1 bpiek I/0 Functions

10 _FLUSH FLUSH BUFFERS

Write pending I/0 system buffers to disk

Entry Parameters: Reglster AL: OCH {12)

Returned Value:
Register AL: 0 if No Error

1 1f Physical Brror
2 if Read-Only Disk

AH: Extended error code
{Table 5-1)

BL: BSame as AL

BH: Bame as AH

ES, D3, 85, SFP preserved

The IO _PLUSH function indicates that all blocking/deblocking buffera
or disk-caching buffers used by the I/0 system should be flushed,
written to the disk. This does not include the LRU buffers that are
managaed by the BDOS8. This function is called whenever a process
terminates, a file is closed or a disk drive is reset., The XIDB
muat return the error codes for the I0 PLUSH function in regiater
AX, after 10 recovery attempts as described in the 10 _READ function.

5.2 IOQPB Datp Structure

The purpose of thia and the following sections l= to present the
orgmnization and construction of tablea and data stractures within
the XT08 that define the characterlatics of the Concurrent CP/M disk
Bystem. Since there is no Concurrent CP/M GENDEP utility, you must
code the XIOS DPHs and DPBs by hand, uaslng wvalues calculated from
the information presented below.

Concurzrent CP/H System Guide 5.2 IOPE Deta Etructurs

The disk Input/Output Parmmeter Block {IOPE] contains tha nacessary
data raguirad for the IO0_READ and IO WRITE functiona. I0 . INT13 _READ
and IO INT13 WRITE use a variation of thes IOPE called the D08 IOFB.
It im descriBad at the shd of thim secticn. Thess parnmsters ars
located on the stack, and appear at the example XIOS8 IO READ and
I0 WRITE function entry points as described below. The IOPE sxampls
in this saction assumes that the ENTRY routine calle the read or
writa routinea through only cne leval of indirasticn) therefcrs, the
XIOH haw placed only only cne word on the stack. RAETADR is raasrved
for this local return address to tha ENTRY routine. The XIOS disk
drivexrs may index or modify IOPBE parametiers directly on the stack,
eince they are remcoved by the BDOS when the function call returns.
Typically, the IOPE fields are defined relative to the BP =nd 88
ragistera, The first inatruction of the IC RRAD and IO WRITE
routines sats the BP regisier equal tc the EBP regileter for indexing
into the ICPB. Liasting 5-2 illumtrates thias.

+14 DRV MCKT

+12 'I'R«IB.CK

+10 SECTOR

+8 ".'.HA_:SEG

+6 DMAOFP

+H RETSEG

+2 RBTE)!F == BP value at XIOE EHTRY
P40 R.E'I':!.DR <mm P valua at disk routines

Figure 5-1. Input/Output Paremetsr Block (IOFB)

5-10

Concurrent CP/M System Guide 5.2 IOPB Data Structure

Table 5~2. IOPB Data Fields

Data Field Explanation

DRV Logical Drive Number. The Logical Drive
Number specifies the logical disk drive
on which to perform the IO0_READ or
I0_WRITE function. The drive number may
range from 0 to 15, corresponding to
drives A through P respectively.

MCNT Multigector Count. To transfer logically
cansescutive diskx sectors to or from
contiguoua mamory locationa, tha BDOE
issues an I0_READ or I0_WRITE function
call with the multisector count greatar
than 1. This ailows the XI0& to
transfar multipla sactorm in a single
disk operation. The maxizum value of
the multisector count depsnda on the
physical sector size, ranging from 128
with 128-byte sectors to 4 with 4096-
byte sesctorxs. Thus, the XIOS cgan
transfer up to 16K directly to or from
the DMA addrass in a single opsration.
For a nore complete explanation of
nultiesctor operaticna, along with
axanpla code and suggestions for
implementation within the XIOS, pees
Section 5.3, "Multisector Operations on
Skewed Disks."

TRACK Logical Track Number. The Track Number
defines the loglecal track for the
gpacified drive to asesk,. The BDOS
defines the Track Number relative to 0,
80 for disk hardware which defines track
mambers beginning with a phyasical track
of 1, the XIOS needs to increment ths
track number before passing it to the
disk controller.

Concurrent CP/M System Guide 5.2 IOPE Data Structuras

Table 5~2. (continued}

Data Field Explanation

SECTOR Sector Numbar. The Sector Number drfines
the logical sacter for a read or write
operation on the specified drive. The
ssctor Bize 18 determined by ths
paramatera PSH and PHM defined in the
Diek Parawmeter Block. Ses Secticn 5.5.
The BDOS defines the Sactor Humbar
relative to 0. For disk hardware that
defines sactor numbers beginning with a
physical sector of 1, the XI08 will nead
to increment the secbor nusbar beiora
passing 1t to the disk controller. If
the apecified drive uses a skewed-sactor
format, the XXIOS wmwust kranslate ths
#ector number according to the
translation table specifiad in the Disk
Parammter Header.

DMASEG, DMAOFF DMA Eeyment and Offeset. Ths DMA offamst
and segment define tha address of the
data to transfiar for the read or write
cperaticn, This DMA address may reaide
anywhare in the l-magabyte address space
of the 8086-8088 microprocesasor. If thae
digk controller for the specified drive
can only tranafer data to and from a
restricted addrasa area, the IC_READ and
I0_WRITE functions nust block move the
data between tha DMA addrese and this
regtricted area Lefore a write or
following a read operation.

RETSEG, RETOFF BDOS Return Segment and Offeat. The BDOE
return segment and offset are the Far
Return address from the XIOE to the
BROE.

RETADR Local Return Addrese. The local return
address raturna to tha ENTRY routine in
the example XIGS,

Concurrent CP/M Systsm Guids 5.2

IOPB Data Structure

Limting 5-2 illustratea the IOPB definition, and how the IOPB is

used an the I0 READ and I0 WRITE routines:

pkkkdk ki btk Wk kb bk kb tdd bkt
4

Hid TOEB Definition

i
;tiiit*i*****t**ii******iiiittti

Read and Write diak parameter esguatea

all disk I/O parameters are on the stack
and the stack at these entries appears as

directly on the stack and will be removed

ME wE %A Au % ua e e e e mE R me me mp My me mE ma Ry MA WA A R ey NG WA e g

drivae egu byte ptr 14[bp]
mont equ byte ptr 15(bp]
track equ word ptr 12[bp]
Bector equ word ptr 10[bp]
dmaseg egu word ptr 8[bp]
dmaoff equ word ptr é[bpl

rii*t*iii*t***f*!!!tf******iﬂfi!t**it#*i*1*

by the BDOS after the functieon is complete

At the disk read and write function enkries,

followat

+14 DRV MCNT Drive and Multisasctor count

+12 TRACK Track number

+10 SECTOR Physical sector number
+8 DMA_SEG DMA gsegment
+6 DMA,_OQFF DMA offset
+4 RET SEG BDOS return segment
+2 RET COFF BDOE return offset

8P+0 RET_ADR local ENTRY return addresa

(assumes one level of call
from ENTRY routine)

These paraneters can be indexed and modified

Listing 5-2. IOPB Definition

Concurrent CP/M Bystax Guide 5.2 IOPE Dmta Structure

]ﬁm

IO _READ: t Function ll: Read mector
l—-_ﬂ

; Reads the secter on the current disk, track and
1 sector into the current DMA buffer.

H entry: paraneters on stack

H axitr AL » 0D if no errox occonrrad

H AL = Q)L if an error gccurred

wav bp,sp snat BP for indexing into IOPA

rat

H = —]
ID WRITE: ; Function 12: Write disk
E]
;y Writa the sector in the current DMA buifer
1 to the current dimsk on the currant
t track in the current sector.
T antryr CL = Q - Dafsrred Writams
H 1l - non-deferred writes
2 - daf-wrt lept mack unalloc blk
exit: AL = 00H if no erzor occurrad
= D1H 1f error occurred
= 02H if read only disk

-~

xcv bp,ap ;aet BP for indexing into IOPB

ret

Listing 5-2. (oontioued)

5-14

Concurrant CP/M Bystem Gulde 5.2 IOPB Data Structure

Figure 5-2 phows the DOB IOPE used by YO _INTL3_READ and
I0_INT13 WRITE. It is simlilar to the regular IOPE. The DO3 IQPB
fields are deflned in Table 5-3.

+14 DRV MCNT

+12 TRACK HEAD

+10 SECTOR oo

+8 DMASEG

+6 nm;orr

+4 m:!sm

+2 'nmforr <== P value at XIOS ENTRY
ap+0 RE%ADR <== GF value a} disk routines

Flgure 5-2, DOS Input/Output Parametsr Block (IOFB)

Table 5-3. DOS IOPB Datm Fields

Data Fileld Explanation
TRACK Track or cylinder number. This number
must be in the range 0 - 3%.
BEAD Head number. Thia number must be 0 or 1.
SECTOR Sector number. Thla number must be in

the range 1 - 8.

All other BOS IYOPB data flelds are the
game ag the regular ICPB defined in
Table 5-2.

Concurrent CP/M System Culdas 5.3 Multimector Operaticns

5.3 Multimmctor Operations on Skewesd Disks

Onmany implexentations of oldar Digital Ressarch cperating systams,
disk performance la improved through ssctor skewing. This technigque
legically nopbere the eectore on a track such that thay are not
sequential. An example of thie is the standard Digital Ressarch 8-
inch diek format, where the pectors are skewed by a factor of 6.
Tha following diacusaion jillustrates how to optimize disk
performance on skewed disks with multimactor I/0 reguasks.

Concurrent CP/M-86 supports multiple-sector read and write
cperatione at the X105 level to minimize rataticnal latency on blogk
disk tranafers. You muat implement the multiple-sactor 1/0 facility
in the XIOS by using tha multissctor count passed in the IOPB,

When the disk format uses z skew table to mininize rotational
lateancy for mingle-record tranefers, it is mora diffiecult to
optimize transfer time for muliisector operations. Oune meathod of
doing this {3 to have the XIDS rsad/write functign routine translate
sach loglcal sector number lnto a ghysical sector nuwmhsr. Then it
creates a table of DMA addressss with each sector's DMA addreas
indexad into the table by the physical sector namber.

As a result, the requested sectors are mcrted inte the corder in
which they physically appear on the track., This allows all of the
required gectors on the tragk to be transferred in as few disk
rotations as poasible. The data frox each =ector must be separately
transferred to or from ites proper DMA addrasse. If during a
multisector data tranafsr the seckor numbar excesds the numbar of
the last physical sector of tha current track, the XIDS will have tao
incrapent the track number and rasat the aector numher to 0. It can
then conplete the operation for tha halance of eectors gpecified in
the 10 READ or XQ WRITE function call. Ss& the example accompanying
the I READ function.

SECTOR PHYSICAL ASSOCIATED
INDEXES MA. ADDRESS

00 DMA_ADDR D

01 DMA_ADDR_1

N LDHA_A.DDR_H

Pigure 5-3. DMA Addrews Table for Multisector Oparations

5-16

Concurzrent CP/M System Guide 5.3 Multieector Oparations

If an error occura durlng a multisector tranafer, the XI0S should
return the errar immediately to terminate the read or write BDOS
function call.

In Listing 5—3, common read/write code far an XIOS diak drivaer, the
routine geta the DPH address by calling the I0_SELDSK funciion. It
checks to verify a nongero DPH addrepa, and returns 1f the addresa
is invalid (zerc). Then the disk parameters ars tzken from thae DPH
and DPB and astored in local variables. Once the physical racord
pize is computed from DPB values, the DMA address table can he
initialized. The INITDMATEL routine f£ills the DMA addreas table
with OFFFFH word valuea. The siza of the DMA table equals ons word
greater than the numbar of sectors per track, in case the sectors
index relative to 1 for that particular drive. If the multisectar
count is zero, the routine returne an error, Otherwlse, the sector
nunber is compared to the numbar of sectors per track to datermine
if the track number should be incremented and the pector number sst
to zero. If thia l1s the cass, the sectors for the current track are
transferred, and the DMA addreas table is reinitialized before the
next tracks are raad or written.

The current asector number is moved into AX and a check is made on
the transalation table offaet addresa. I1If this wvalue is zero, no
tranaslation takble exists and translation is not performed; The
gector number ia tranzlated and usad to index into the DMA addreas
table. The current DMA address, incremented by the physical sector
aige 1f a multisector operation, is stored in the table for use by
the RW_SECTS routine, Local values, beginning with i, are
initialized for the various parameters neaded by the disk hardware,
and the disk driver routine is called.

Limting 5-3 illustrates multiasector unakewing:

5=17

Concurrent CP/M System Guide 5.3 Multiaector Operations

:**t******t*t**#!i*t!t**itttt**!t*!!*11**11‘*%:*1*!!‘*
]

*
’

i* DISK 1/0 EQUATES

K

;*tit*****tiiiiiii*iitti*tiititt*i*!tii*iiiii***i*ttt*

xlt equ 0 itranslation teble cffaet in DFH
dpb agu 8 ;disk parameter bleck offeet in DPH
ept Bgu 0 ;sectore per track cffset in DPE
peh equ 15 iphysical phift fmctor cffset in DPB
:tt**t!!!!tttitii!*ti***iititi*ti*i*ti**it*!%**tt*t*t!

.k

thd DISK I1/Q0 CORE AREA

s

;t*ii*tiitii*iitiii*iiiii*iiitiiiiitit!***ti**t**iii**

!
read writa: tunskews and reads or writes multisectoras

ingut:r SI = read or write routine address
output: AX = return cods

Lo

mov ¢l,drive

mov dl,l
call seldek rget DPH addregs
or bx,bx! jnz dak ok icheck if valid
ret_arraor:
eov ul,1 1 return error if not
ret
dek_ok:
mov ax,xlt[bx]
mov x1tbl,ax ;gave translation tabla address

nov bx.dpblbx]

mov ax,sptlibx]

mov MAXBEEC,AX ;save maximun sector per track
v cl, psh(bx]

nov ax,128

ehl ax,cl ;compute phyaical record size
nov aeceiz,ax ; and save it
¢all jnitdmatbl ;initialize dma offset table

cpp ment, D
je zet error

Listing 5-3. Multissctor Unskewing

Concurrent CP/M Bystem Guide

rw_1l:
mav ax,asector

5,3 Multisector Operations

rie eector < max sector/track

cnp ax,maxdec! jb mame trk

oall rw sects
call inTtdmatbl
inc track
XOr axX,ax
nov dector,ax
same trks

nov bx,xlibl

or bx,bx! jz no trans
xlat al

no transs

xor bh,bh

mov bl,al

ghl bx,1

mov ax,dnaoff

mov dmathllbx],ax

add ax,sscalz

nov dmacff,ax

inc sector

dac mcnt

jnz rw 1

rw_sactas
mov al,l
xor bx,bx
Iw_al:
nov di,bx
shl di,1
cmp word ptr dmatbl[di],
je no xw
push bx!l push ail
oV ax, track
mov itrack,ax
mov imector,bl
mov ax,dmatblidi]
mov ldmacff,ax
nov ax,dmnaseqg
mov idmasag,ax
call ai
pop Bili pop bx
or al,all jnz err_ret

no - read/write sectors on track
rainitialire dma offsat table
next track

LT |

;7 initialize sector toc O

rget translation table addrasa
rif xit <> Q
; translate sector number

rsector # Ls uased as the index
1 into the adma offzet table

tmave dma offast in takle
iincrexent dma offaet by the

; physical sector zize

rhaxt sector

;decramant muitissctor count

t1if mont <> 0 store next sector dma

iread/write sectors in dma table

;preset arror code
7initialize mector index

;rcompute index lnto DMA table
Offffh

inop if invalid entry

reave index and routine addraas
iget track # from IDBR

raactor ¥ is index valuae
rget dma offget from table

1get dna segment from IOPR
joall read/writa routina

:restore routine address and index
71f error occurred return

Listing 5-3. (continued)

5-19

Concuzrant CP/M Bystem Guide 5.3 Multigector Qpearations

no rw:

ine bx mext sector index

bx,maxsst 11£f not snd of tabls

Joe rw_sl ; go read/wzite next sector
arr_rati

ret yraturn with error coda in AL
initdmatbls rinitialize DMA offmet table

wov di,pffset dmatbl

oV OX,maxsec tlength = maxseg + 1 gactors may

ing ex ! index relative to O or 1

xov ax,0ff£fh

push es rsave UDA

push dsl pop es

rep Btomw sinitialize table to Df£Efh

pop a8 srastors UDA

rat

riiiiiiiiiiiiti**ittti!!i!itiiiiiiiiii*ttll!itiitt*iii
-k

]

¥ DISK I/0 DATA. AREA

L

?iiiii*iiiiiiiiiii*i!iiiiitiiiiiti*iiif*iiiiiiiiiiit*i

xltbl dw 0 ttrapelation table address
maxxec dw 0 ;jmax #ectors per track
secaly dw 0 1aactor miza

dumathbl xw 50 1dma address table

Listing 5-3. {continoed)

5-20

Concurrant CP/M Bystem Guide 5.4 Disk Parameter Header

5.4 Digk Parameter Header

Each disk drive has an associated Disk Perameatar Header (DPH)
that containas information about ths drive and providez a scratchpad
area for certain Baseic Diak Operating System {(BDOS) operations.

00H XLT 0000 o0 LA 0000
I e
1
08H DPR csv ALV DIRBCE
'l
LOH DATACE TBLSEG

Figure 5-4. Disk Parameter Beader (DPH)

Table 5-4. Diak Parameter Header Data Fields

Field Explanation

XLT Translation Table Address. The Translation
Table Address defines a vector for logical-to-
physical gectoy translation., If there ia no
sector tranelation {(the physical and logical
sector numbers are the same), sat XLT to
0000h. Disk drives with identical =ecktor skew
factors can share the same translation tablea.
This address iz not raferenced by the BDOS and
is only intended for uae by the disgk driver
routines. Usually the translation table
containa one byte per physical aector. If the
disk has more than 256 pectore per track, the
sector translation must consist of two bytes
par physical sector. It is advisabla,
therafore, to keap the numbar of physical
sectors per loglcal track to a reaacnably
small value to keep the translation table from
becoming too large. In the case of diskes with
multiple heads, computa the head nurber £rom
the track addreas rathar than the sector
address .

0000 Sgratch Area. The 5 hytes of zeros are a
acratch area which the BDOS uses to maintain
various parameters associated with the drive.
They muat be initialized to zero by the INIT
routine or the load image.

Concurrent CP/M System Guide 5.4 Disk Parspmeter Headesr

Table 5-4, {continued)

Fileld Explanation

MF Media Flag. The BDOS resets MF to zars when
the drive is logged in. The XIOE must set
this flag to O0FFH if {t detacta that the
cperator has opened the drive door. It mupt
alag set the global door open flag in the XIOB
Hesder at the same time. TIf the flag iz set
to OFFH, the BDOB checks for a medla change
before perforaing the next BDOB f£ile operation
on that driva, HNate that the BDOB only checks
thie flag when firmt making a aystem call and
not during an opaeration. WNormally, thie flag
ig only useefyl in gysteme that mupport docor
open interrupts. If the BDOS determines that
tha drive contmelhs a new diak, the BDOS logm
oat thie drive and resets the MF field o 00H.

Note:r If thie flag i3 uesd, removeble disk
pecformance can be cptimized am if it were a
permanent Arive. Bee the deacription of the
CRE fiﬁ}d in the Bection 5.5, "Diek Parameter
Block.

DPB Disk Parameter Block Addrsss. The DFE fisld
containg the address of a Disk Parameter Block
that describes the characteristics of the disk
drivae, Tha Dimk Paramstar HAlock ltself is
deseribed in Bection 5.5, The DPB must
describe the type of disk {CP/M or DOB). Bee
IO BELDSK in Secktion 5.1, and Section 5.8 for
more information.

[+:1'4 Checksum Vector Address. The Checksum Vector
addrear defines a scratchpad area the syeiem
vees for cheacksumming the dizactory te detect
a medla change. This address wuat be
different for each Diek Parameter Header.
There must be one byte for avery & dirsctory
sntries (or 128 hytes of directory). In other
worde, Length{C8V)} = [DRM/4}+1, (DRM is &2
£ield in the Disk Parameter Blogk defined in
Bectlion 5.5.) If CK8 in the DPB is QQQ00FH or
80008, no atorage is ressrved, and CSV may be
zZaro. Valuas for DRM and CKS are calculated
apg part of the DPR Workgheet. If thiz field
ie initialized to OFFFFHE, GENCCPM will
automatically create the checksum vector and
initialize the CS5V field jin the DPH.

5-22

Concurrent CP/M Byatem Guide 5.4 Dlak Parameter Header

Table S5~4. (continued)

Field Explanation

ALV Allocation Vector Address. The Allccation
Vector address daflnes a gcratchpad area which
the BDO8 uses to keep disk atorage allocation
information. This adfiress must be different
for each DPH. The Allocation Vector must
contaln two bits for every alleocation block
(one byte per 4 allocation blocks] on the
dipk. Or, Length(ALV} = ((DSM/B)+1)t2, The
value of DEM is calculated as part of the DPE
Worksheet. If the C8V fleld is initlalized to
DFFFFH, GENCCPM automatically creates the
Allocation Vector in the SYSDAT Table Area,
and sets the ALV field in the DPE.

DIRBCE Directory Buffar Control Block Header Addreas,
This field containe the ocffmet address of the
DIRBCB Header. The Directory Buffer Control
Block Header containe the direetory buffer
link liat root for thls drive. See Section
5.6, "Buffer Control Block Data Area.™ The
BDOS uses directory buffers for all accesses
of the diak directory. Several DPHS can refer
to the same DIRBCB, or each DFH can reference
an independent DIRHECB. If thi=s field is
DFFFFH, GENCCPM automatically creastee the
DIRBCE Header, DIRBCBa, and the Directory
Buffer for the drive, in the SYSDAT Table
Area. GENCCPFM then Bets the DIRBCB field to
point to the DIRBCB Header.

DATECB Data Buffer Control Block Header Address.
Thies field contains the offset address of the
DATBCE Header. The Data Buffer Control Block
Header containe the data buffer link ilet root
for this drive (see Section 5.6, "Buffer
Control Block Data Area®). The BLOE usesa data
bufferg to hold physical sectors B0 that it
can block and deblock loglcal 128-byte
records. If the physical record size of the
media amsociated with a DPE is 128 bytes, the
DATBCB field of the DPH can be set to 0000H
and no data buffers are allocated. If this
field ia OFFFFH, GENCCPM automatically creates
the DATECE Header and DATBCBs and allccates
space for the Data Bufferz in the area
following the RSPs.

Concurrant CP/M System Guida 5.4 Disk Paramster Hsader

Table S5-4. (continued)

Fisld [Bxplanation

THLSEG Teble Saegment. The Table Ssgment containe the
ascmant address of & table used for directory
hashing with CP/M disks, and as 2 Fille
Allocation Table (FAT) for DOE disks. For
drivee that mupport both media, it must be
largs enough to hold alther sne. If thim
field is mat to OFFFFHE, GENCOPM will
autonatically create the appropriate data
structures following the RSP arsa. Thas mige
of the table is based on the DRM (Directory
Maxiopuw) field in the DPB. For support of
poth medim the DRM fileld must ba est to =
dunmy value when GENCCFM ls run to create the
correct size tabla. &ae Saction 5.5.1 for
information on setting the DRM value. The
BDOE aasuvmez the table offest to be zero.

Hashing is optiomal for CB/M dieks, but the
tabla segoent xust be allocated for DOS media.
Thus for any drive that supports DOS disks,
heshing must be spacified in GEHCCPM. If
dlrsctory haahing is not used [CP/M media only
ussd in this drivel), asat HETBL to =zeroc.
Including a hash table dramatically improvas
disk pericrmence. Each DPH using hashing must
refaresnce & unigus hash tebla. If a hash
tabla is deesired, Length(hash_table) =
4t {DRM+)} bytas. DRM is computed am part of
the DPE Workshest. In othar words, sach entry
in the hash tabla xust hold four byten for
sach directory entry of tha disk. If thiws
field is OFFFFH, GENCCPM will mutomatically
create the appropriate data strugtures
follewing the RSP area.

Mots: The data arean for the Data Buffers and
Hash Tablas are not made part of ths CCPM,BYE
file by GENCCEM.

14

Concurrent CP/M System Guide 5.4 Diask Parameter Header
Listing 5-4 illustratea the DPH definition:

:******iiiii*iiiiii*ii#til**ik!t*t
,i
thd DPH Dafinition

¥
;**********ii****it**t***!i****it#

x1lt agu word ptr O
mE aqu byte ptxr 5
aph agu word ptr 8
cav equ word ptr 10
alv agqu word ptr 12
dirbdb eqo word ptr 14
datbeh egu word ptr 16
thleey eagu word ptr 18
dpbasa egu offset & 1Base of Dizk Paramster Headers
dpal dw xlto 1Translate Table
dh 0,0,0 iBoratch Area
dr Q 1Media Flag
db 0,0 1Scratch Arsa
dw dph0 iDsk Parm Block
dw OFFFFH, OFFFFH :Chack, Alloc Vectors
du DFFFFH ;1Dir Buff Cntrl EBlk
du OFFFFH ;Data Buff Cntrl Blk
duw OFFFFH iTable Segment

Listing 5-4. DPH Definition

5-25

Concurrxent CP/M SBystem Guids 5.4 Diak Parawster Hsader

Given n disk drives, the DPHs can be arranged in a tabhle whose first
row of 20 bytss corresponds to drive 0, with tha last row
corraaponding to drlve n~l. The DPH Tabls has the focllowing formati

For automatlc table ganaration by GENCCEM,
set thess fi-ldlltu D.‘E'}i"rl'lh | |
|

DPH_TEL: Y | Y Y Y

00 | XLT0O | 0000H | 000CH |0000E (DPBOO | CEVO0| ALYOO{DIRIO { DATOO0 | HETOO

QL | XLTO1|0000H | 0O0OCH (00Q0H |PFEQL |CEVO]| ALVO1 | DIR0O | DATOO0|HSTOL

(and so forth)

Figurs 5-5. DPHE Tabla

whare the label DPH_TBL defines the offsat of the DPH Table in the
XI08.

The I0_SELDSK Punction, defined in Baction 5.1, returpnas the offset
of the DPH from tha baginning of the SYSDAT sagmant for the salactad
drive. The segquence of cperationm in Listing 5-5 returns the tablas
offset, with a 0000H returned if the salsated Arive Joes not exiat.

ri-ltl'l‘il‘l!it*i**!‘t*ﬂ'i*l‘il’i"!!*!!****‘l**‘l‘ti‘l’*t

-k *
:

i DISK 10 CODE AREA *
TE *

=i'll‘l'*l*!*'!t**‘A‘*‘l‘**i‘l“l“itl‘i‘****il‘*i*l’****iiiii*

LR

I0_BELDEK: $ FPunction 71 Eslect Dimsk

;-“:H--"

H entry: CL = disk to be malectasd

? DL = OOh if dlek has not bean previcualy selacted
H = 0ih 1f dlek has baen previcusly seslected

; axit: AX = 0 if illegal aisk

H = pffset of DPH relative from

X108 Data Segmeant

Listing 5-5. SELDEK XIOS Functilon

Concurrent CP/M Syatem Gulde 5.4 Disk Paramatar Header

xor bx,bx Gat ready for error

cmp cl, 15 ; Ia it a valid drive
ja =el ret 1 If not just exit
mov Bl,cl
ghl bx,1 Index into the Dph's

mov bx,dph_tbllbx] get DPH addrees from table

in X108 Header

P

or dl,dl Firet time select?
jnz =sl ret No, exit
mov ch, O Yes, sat up DPE
mov 8i,cx
ahl ai,l
call wordptr mal thl[mi]
nel_ret:
mov ax,bx
rat

Listing 5-5. (continued)

Tha Translation Vectors, XLTOO through XLTn-1l, whosa cffsets are
cantained in the DPH Table as shown in Figure 5-5, are located
elsewhere in the X108, and corraspond one-for-one with the logical
sector numbers zero through the sector count-1,

5.5 Disk Parameter Block

The Disk Parameter Block {DPB) contains paramaters that define the
charactaristics of sach disk drive. Tha Disk Paraneter Header (DPH)
pointa to a DPE thereby giving the BDOB necessary information on how
to access a disk. Several DPHs can address the same DPB if their
drive characteristica are identical,

When a drilve supports both CP/M and DOS media, the IO SELDSK routine
nust detexmins the type of media currently in the drive and return a
DPH with a pointer to a DPB with the correct values. The standard
CP/M OPB ia shown in Flgure 5-6. For DOS media, the atandard DPB is
extendsd as shown in Fiqure 5-7, Each field of the standard DPRE is
described in Table 5-5. The axtended DPB is described in Table 5-6.
A worksheet ia Included to help you calculate the values for sach
field.

5-27

Concurrent CP/M System Guide 5.5 Disk Paramatsr Block

00n I SPT BSH ELM EXM DEM DRM. ..
1

OBH ..DRM | ALO | ALl CKB OFF PBH

10H | PRM

Figure 5-6. Disk Paramater Block Format

Table 5-5. Disk Paramater Elock Data Fialds

Fleld Explanation

BPT Bectors Per Track. ‘The nusber of Sectors Per
Track esguala the total number of physical
ssctore per track. Physical sector size is
dafined by POH and PHM.

BSH Allocation Block Shift Factor. Thia value is
Ueed by the EDOSB to eamlly calculate a block
numbar, gilven a logical record number. hy
shifting the record number ESH bits to thea
right. BSH is dstermined by the allocation
block eize chomen for tha disk drivae.

BLM Allooetion Blogk Mask. This valuae is used by
the BDOB tc sasily calculate a2 logical record
pffuat within a given bleck though wsasking a
logical reaord number with BIM. The BLM la
determined by the allopation block sizs.

EXM Extent Mask. The Extent Magk determinas the
mayximuw numbar of 16X logical axtents contained
in a single direqtory entry. It is Qetarmined
by tl}: allocaticn block size and ths nusbar of
blocks.

DEM Risk Etorage Maximum. Thae Disk Storage Mazimpx
dsfinas the total starage capacity cf the diek
drive. Thim eguals the total number of
allocation blocks for thes drive, minus 1. DM
nust be less than or egual to 7FFFH. If the
disk uses 1024-byte blocke (BBH=3, BLM=7) DEM
rust ba lass than or egual to 255.

5-28

Concurrent CP/M System Guide 5.5 Disk Parameter Block

Table 5-5. {vontinoed}

Fiald Bxplanation

DEM Directory Maximunm, The Directory Mazximum
defines tha total number cf dirsctory entriaes
on this disk drive, This equals the total
number of directory entries that can be kept in
the allogmtion blocke ressrvad for the
directory, minus 1. Each dirsctory entry is 32
bytes long. The naximum number of blocks that
can be allocated to the directory is 16, which
determineg the maximum number of directory
antries allowed on the disk drive. At system
generation time DRM must be set ko allow anough
space in TBLSEG for both the hash takble and the
FAT if both CF/M and DOS medim oan be usad in
the drive. Ses Section 5.5.1 “Diak Patrameter
Block Workaheet" for information on how to
calculate the value for system generation.

ALQ, ALL Directory Allocation Vector. The Directory
Allocation Vector 1a a bit map that ig used to
gqulckly initialize the £first 16 bitas of the
Allocation Vector that ia built when a disk
drive is logged in. Each bit, starting with
the high-order bkit of ALQO, reprements an
allocation block belng used for the directory.
ALO and ALl destarmine the amount cf disk space
allccated for the directory.

CKs Checksum Vector Size. The Checksum Vector Size
determinea the reguirad length, in bytes, of
the directory checkaum vector addressed in the
Dilak Parameter Header. Each byte of the
checksumn vector is the checksum of 4 directory
entries or 128 bytes. & checkesum vector is
required for removable media in order to insure
the integrity of the drive, Tha high-ordsr bit
in the CKS fileld indicates a permanent drive
and allowa far better psrformance by delaying
writes. Typically, hard disk systems have the
value BQ00H, indicating no checkaunming and
permanant media. On machines that can detact
the door opsn for removable media, a =spacisl
case occurs whera checksumming ia cnly done
when the Media Flag (MF} byte in the DPH ia set
to OFFH. HNormally, the disk is treated like a
parmanent drive, allowing mora gptimal use. 1In
this case, adding 8000H to the CKS value
indicated a permanent drive with checksumming.

5-29

Concurzent CF/M SBystesm Guide 5.% Diask Paramastar Block

Table 5-5. {(ocontinued)

Field 1 Explanatiaon

QFF Track Offmat. The Track Offsat is the nuxber
of resarved tracks at tha baginning of the
disk. OFF is egual to the Eero-ralative track
numbsr on which the diractory starts. It is
through this fisld that more than one logical
disk drive can be mapped onto 2 single ghysical
drive. Bach logical drive hes a different
Track Cifget and all drives can use the same
physical disk drivars.

PBH Fhysical Record Shift Pactor, The Fhysical
Record Shift Factor is ussd by the BDOE to
guickly calculats the physical record nushar
fron tha logical record numbar. The loglgal
reccrd numbwer is shifted PEH bits ta the right
to calaulata tha physical record.

Notez In thi= contexi, phyeical record and
physlcal sector are squivalent terms.

FRM Phyeical Record Mask. The Fhysical Record Mask
is used by the BEDOB to guickly calculate the
logical racord offsst withirz a physical record
by masking the logical record huwber with thae
PEM valus.

e e LI TR R e
:*

1* DPH Definition

:i
:iiil’**iii*iiiiii‘i!i-i.**ii!ii

apt egu word ptr O
bah ogu bytes ptr 2
blm agu byte ptr 3
arm aqu byts ptr 4
dom agu word ptr 5
drm aqu word ptr 7
all agu byte ptr 9
ail L -] oyte ptr 10
cks egu word ptr 11
off U word ptr 13
pah agu byte ptr 15
Pra agu hyts ptr 16

Listing 5-6. DPE Definition

5-30

Concurrent CB/M System Guide

dpb0 aqu
Aaw
ab
db
db
dw
dw
db
db
dAw
dw
db
db

offaet §

26
3

7

0
242
63
192
0
16
2

a

v}

o e e i

Listing 5-6.

5.5 Diek Parameter Blook

;Disk Parameter Block

1Sectors Per Treck
;Block Bhift
;Block Masask
1Extnt Mask
1Disk Size -~ 1
jDirectory Max
1Allocd

1Allocl

;iCheck Size
10ffeat

1Phys Sec Shift
'Phva Rec Mask

g g e ny

{continued)}

Figure 5~7 ahowm the extandsad DFB; Tahla 5-6 describea ita fislda,

COH EXTFLAG NFATS NFATRECS NCLSTRS
08H CLSIZE FATADD 5PT BSH | BLM
LOH EXM DSM DRM ALD ALL | CKS...
T
18H . «CKS OFF ESH | PHM
Plgure 5~7, Extanded Dizk Paramster Block Format

5-31

Concurrent CP/¥ System Guide 5.% Disk Paramaeter Block

Tables 5-6. Extended Digk Parametar Elock Data Filelds

Field l Explanation

EXTFLAG E¥tended DPFE Flag. The extended TPE flag is
usad to determine the medla format currently in
the drive. TIf EXTPLAG |s eet to OFFFFH the
drive contains DOE media. TFor CP/M media, the
first field in the DPB is SPT (Bectora Par
Track) and the DPB Iis not extended,

NFATS Number of File Allocation Tablea. This ie the
number of file allocation tablea contalned on
the DOS dimsk. Multiple gopies of the FAT can
be kept on the Alak asz a backup If a read or
write error ogours.

NFPATRECS HNumber of Fils Allocation Table Recordm. The
number of physical sectora in the file
allocation table.

NCLSTRS Number of Clusters. The number of cluaters on
the DOB diek. Cluster 2 ie the first data
cluster to be allocated following the
directory, and clueter NCLSTRS - 1 is the last
available cluster on the d4lsk,

CL8IZE Cluster Sixe. The aumber of byres per data
cluster. This must ba & multiple of the
physical sector gize.

FATADD File Allocation Table Addresms. The physical
record number of the firat flle allocation
table on the DDB8 dlek.

SPT Sectords Per Track. Bame as CP/MN (Tabla 5-5).
BSH Allocation Block 8hift Pactor. Bame ag CP/M.

Ueed with BLM and DEM to define media capacity
to CP/M. See Table 5-5.

BLM Allocation Block Mask. Bee BSH.
EXM Extent Mask. Must bdbe zero {00H) for DOS media.
neEM Digk Storage Maximum. Gee BSH,

5-32

Concurrent CP/M System Guids 5.5 Disk Parametsr Block

Table 5-6. (continmed)

Field Explanation

DRM Directory Maximum. The number of entries -~ 1
in the root directory. At system generation
time DRM mpust ba set to allow enocugh mpace in
TBLSEG for both the hash table and the FAT if
both CP/M and DOS media can be used in the
drive. See Section 5.5.1 "Disk Paramster Block
Worksheet" for informatior an how ta calculate
the value for system generation.

ALO, ALL Not used for DOS media.

CKS Checksun Vector Size. Same as CP/M {Table 5-5).

OFF Track Offmet. Same as CP/M (Table 5-5}.

PBE Phyeical Reacord Bhift Faator. Same as CP/M
(Table 5~5].

BRM El;ysica.l Record Mask. Same as CP/M (Table 5-

5-33

Concurcent CP/M Systam CGuide

5,3 Diakx Paraester Block

Listing 5-7 illustrates the extanded DPE definlition:

ri*iiiiiiititti*fit'i*tlt**'*i*

'
i

ri
f*

aXkERRERNERkERER bbbk bt T TR kN
h

extflag
nfata
nfatrecs
ncletrs
claiza
fatadd
apt

bsh
Pl

exna

dmm

drm

nl0

all

cks

cff

pah

pPrm

dpbl

equ
agu
egu
agu
equ
agu
agu
equ
agn
agu
agu
agu
agu
Bsgu
aqu
equ
equ
agu

[{-{F]
aw
dw
daw
dw
dw
dw
dw
db
dk:
1)
dw
dw
abc
[+}+)
dw
dw
ab
ab

word
word
word
ward
ward
word
word
byte
byta
byte
word
word
byts
byta
word
word
byte
byte

offzet
OFFFFh
2

-]

500
1024

Liating

Extendaed DPB Dafinition

ptr ©

ptr 2

RPEr 4

ptr &

ptr 8

ptr 10

ptr 13

ptr 14

ptr 15

ptr 16

ptr 17

ptr 19

pty 21

ptr 22

ptr 23

ptr 25

ptr 27

ptr 28

H +Diak Paramataer Block
rDos media - exiendesd DPB
rNunber of FATE
:Nupber FAT spactora
Number of clusters
rClustar Size
s8actor address of FAT
rSectors Par Track
sBlock Shift
rBlock Mamk
sEztnt Maak
1Disk Bize - 1
1Directory Max
sAliocO
rAllocl
:Check 8ige
1Offsat
;Phys Sec Bhift
sPhys Rac Maak

5-7. Extended DFB Definitiom

5-34

Concurrent CP/M Syatem Guide 5.5 Disk Parameter Block

5.5.1 Disk Parameter Block Workshast

This worksheet ia intended to help you create a Disk Parametar Elock
contalning the epecifications for the particular diak herdware you
ara implementing. After calculating the disk parameterse according
to the directiong glven below, enter the wvalue intc the d4diek
parameter llat following the Worksheet. That way, all the values
you have calculated will be in cne place for 2 convenient reference.
The following steps, which reault in valvea toc be placed in the DPB,
are labeled "fleld in Diak Paramster Block".

In this workeheet, the fields common t0 both DPBs are calculated
firat, then the flelde for the extended (DOS) DPS.

<h> Allocation Block Sixzas

Conecurrent CB/M allocates disk apace in a unit known aa an
allocatiocn block. This is the minimum allocation of diak space
given to a file. This value may be 1024, 2048, 4096, 8192, or
16384 dezsimnl bytes, or 4008, S00H, 1000H, 2000H, or 4000H
bytes, regpectively. Valuea for DOS disks might dlffer from
thie range. Cheosing a large allocation block size allows more
efficlent usage of directory space for large files and allowa a
greater number of diréactory entriea. On the other hand, a
large allocation block size increases the average wasted space
per disk file. This is the allocated disk space beyond the
logical end of a diak file. Alsc, choosing a smaller block
alge increases the size of the allocation vectore because there
le a greater number of smaller blocks on the same size disk.
Several reatrictions on the block alze exist., If the block
glze is 1024 bytes, there cannot be more than 255 blocks
present en a logical drive. In other wordas, 1f the disk is
larger than 256K bytes, it is necepgary to ude at least 2048-
byte blocks.

 BHR Block Shift field in Disk Parameter Block

<C> BILM Block Mask field in Disk Parameter Block
Determine the values of BSH and BLM from the following table
given the valune <A>.

Table 5-7. BSH and BLM Valuesa

<A> BSH BLM
1,024 3 ?
2,048 4 15
4,096 5 31
4,192 6 63
16,384 7 127

5-35

concurrent CP/M Syatem Guide 5.5 Diek Parameter Block

Mote:

<>

<BE>

<H>

<G>

Values for DOB diskas might extend beyond this range.

Total Allocation Blocka

Deteérmine the total number of allocation blocks on the disk
drive. The total avallable space on the drive, in bvtes, is
calculated by multiplying the total number of tracks on the
disk, minus reserved operating system tracks, by the number of
ssctora per track and the physical sector size. This figure is
then divided by the allooation block size determined in <A»>
above., This latter value, rounded down to the nekt lowest
inkeger value, is the Toktal Allocation Blocks Eor the drive.

DEM Disk Size Max field in Disk Parameter Block

The value of DEM eguals the maximum number of allocation blocks
that this particular drive supports, minua 1.

Note: The product (Allocation Blogk Size}*{DBM+1) is the
total number of bytes the drive holdas and muat be within the
capaclity of the physical disk, not counting the reserved
cperating system tracks.

BIM Extent Maak field in Dimk Paraseter Block
Por CP/M, obtaln the value of EXN from the following table,

uging the values of <&> and <E>. (N/A = not mvailable). PFor
005, EXM must be zaero.

Tabla 5-8. BINM Values

<A> IE <E> g If ig greater than or
lesa than 256 agual to 256

1,024 0 N/A

2,048 1 a

4,096 3 1

8,192 7 3

16,384 15 ?

Directory Blocks

petezrmine the number of Allocation Blocks reserved for the
directeory. This value must be between 1 and 16.

Concurrent CP/M Syatem Guide 5.5 Disk Parameter Block

<H>

<I>

<J>

<K>

Directory Entries per Block
From the following table, detarmine the number of directory

entries per Directory Block, given the Allocation Block size,
<h>.

Table 5-9. Directory Entries per Elock Sixze

<A> $ entriesn
1,024 32
2,048 &4
4,096 128
B,192 256
16,384 512

Tatal directory entries

Determine the total number of Directory Entries by multiplying
<@> hy <H>,

DRM Directory Max field in Dimk Parameter Elock

Determine DRM by subtracting 1 from <I». This is the value
that meat be in the DRM field at run time.

The DRM fi=ld is also used by GENCCPM to allocate the hash
table for CP/M or the FAT for DOS. If bath types of media are
allaowed in the drive, DREM muat be set to mllocate the agpace
neejed for the largest of the hash table or the FAT. The value
{I-1) caleculated above will allocate the correct amount of
space for the CP/M haah table. The value to allocate gpace for
the FAT is calculated by:

DRM := (NFATRECS * 2 ™ pSH * 12B) / 4
The valuee for this eguation can be found in <T>, and <P>

calculated below. Set DRM to the largest of the two values for
geystem generation. Set it to I - 1 at run tlme.

ALO, ALL Directory Allocation vector 0, 1
field in Disk Paramester Block
For CP/M disks determine ALO and ALl from the following table,

given the number of Directory Blocks, <G». DOS disks do not
use these flelds.

5-37

Concurrent CP/M Bvatem Gulda 5.5 Dimk Parameter Blook

<L>

<R>

Table 5-10, ALD, ALl Valoss

«G> | ALD ALl <G>{ ALD | ALl
1 80B f0s 9 OFFH E:11):
2 0COH J0E 1Q 0FFE OQCOH
3 DEOH e 1) | 11 or?PE OROH
i DPOE 114}z ¢ 12 OFFE OFOE
5 orBs 00H 13 0FFH JFBE
& orcH 00E 14 0FPE OFCH
7 DFEH 00H 15 0FFE OFFH
B OFFH 00H 16 OFFH OFFH
CX8 Checkmum field in Diek Facrameter Block

Determine the Sixe of the Checkeun Vector. If the digk drive
uedis iz permanent, *han the value should be 8000H. If the
diek Adrive medim im removable, the wvalue should be {({<I>-
1}/8)+1. If the Aiek drive media is removable and the Media
Flag is implementsd {door open can ba detecked through
interrupt), CXB should equal ([(<I>-1})/4)+1}+ BOOOH. Thae
Checkeum Vector should be CK8 bytes long and addramsed in the
DPH.

oy Offamt field in Disk Paruweter Block

The OFF field determines the nuxber of tracks that are skipped
st the beginning ot the physical dimk. The BDOH automatically
2dde this to the value of TRACK in the IOFB and can ba used as
a mechaniem £or skipping reaserved operating asystem traocke, or
for partitioning a large disk intoc smaller logical drives.

8iza of Allocation Vector

In the DPH, the Allocation Vector ig addreseed by the ALV
field. The mize of thig vecter 1s¢ determined by the number of
Allocation Blocks. Each byta in khe vector repremsnts four
blocke, or 8ize of Allocation Vector = ({(<E>/B)+1)*31.

Physical Sector Size

Epacify the FPhysical Ssgtor Bize of the Disk Drive. Nate thmt
the Physical Bector Size mast be grasater than or sgual to 128
i leas than 4096 or the Allocation BElock Sixe, whichaver is
smaller. This value is typically tha apmallest unit that can be
resd or written to the disk. Thies fisld sust be filled in for
PC-MODE.

5-38

Concurrent CP/M System Guide 5.5 Disk Parameter Block

<P> PHE Phyaical record BHift field in Disk Paramster Block
<Q> PRM Physical Record Magk in Disk Parameter Block
Determine the values of PSH and PEM from the following tablas
given the Fhysical Sector 8ize. Thesa fields must be filied in
for PC-MAODE.
Table 5-11. PBH and PRM Valuas
L) 2 PSH | FRM
128 0 0
256 1 1
512 2 3
1024 3 7
2048 4 15
4096 5 31
<R> EXTFLAE DPR Extended Flag
If this is the DPB for a DOS disk, the DPB is an extended DEB
and thia field mu=zt be OFFFFH.
<8> NFATHS Mumher of File Allocation Tablea
This field must be set to the number of flle allacation tables
on the disk currently in the drive.
<T> NFATRECS Number of FAT Records
This field is the number of physical sectors in the file
mllocaticon tabla. Thims value can be calculated from the number
af cluastera <U> and the physical aector size <0» using the
following formula:
«T> := ({<O»>% 1.5 + <0» = 1) / <O»
<> NCLBTRB Humber of Clusters
Thig fleld ias the number of clusters on the 0O5 disk.
<V> CLSIEZE Cluster Size

This field is the number of bytes par clumter. Clusterg are
aimilar to CP/M allocation blocks. 8ee <A> mhove.

Concurrent CF/M Bystsm Guids

<

VATADD

Thie field ie the physical sector numbar of the

allocation tables on the DOS Aisk,

5.5.2 Disk Paranstar List Worksheet

<A

4B»

LCH

<D>

3.1

<F»

[{~1]

<H»

£I>

th

<K»

<L»

L4 H

<H>

Q>

<p>

Allocation Block Bizas

B8H field

BiM field

in

in

Disk Parametar

Dimk Pnraneter

Total Allocution Elocks

DEM field

ExM field

Diractory Elocks

in

in

Diek Paramater

Disk Parameter

Diractory Entrias par Block

Total dirsctory antries

DRM field

ALOL,ALl fielda

CKB fiald

QFF £isld

in

in

in

in

Biee of Allocation

Disk Paramstar

Disk Parametar

Disk Paraxetar

Disk Parampeter

Vector

Physical SBeactor EBize

PSH fiela

in

Diak Parameter

5-40

5.5 Disk Parsmotar Block

File Allocation Tubie Address

Block

Block

Block

Block

Block

Block

Block

Block

Block

first file

—r——t ———

e e

ot ———

Concurrent CP/M System Guida 5.5 Diak Paramater Block

<Q* PRM field in Disk Parameter Block

<R» EXTFLAG field in Extended Disk Paramater Block

¢5» NFATS field in Extended Disk Parametar Block

<T> MNFATRECS figld in Extended Dimk Parmmeter Block

<U» MNCLSTRE field in Extended Diekx Paramater Block

<y¥> CLSIZE field in Extended Diekx Parametar Block
<W> FATADD field in Extended Plak Parameter Block

5.6 Buffer Control Block Data Area

The Buffer Control Blocka (RBCBs) lovata physical rescord buffers for
the BDOS, BCBEs are usually generated automatically by GENCCFM, The
BDOS uaga the BCB to manage the physicgal record buffera during
processlng. More than one Disk Parameter Header {DPH) can specify
the same list of BCBa., The BDOS distinguishes batween two kinds of
B{Ba, directory buffers, raferenced by the DIRBCE field of the DPH,
and data buffers, referenced by DATECE fiald of the DPH.

The DIRBECE and DATECB fields each cantain the offset address of a
Buf fer Control Block Header. The BCB Headar contains the cffset af
the firat BCB in a linked list of BCEs. Each BCB haa a LINK field
containing the addraess of the next BCB in the list, or COO00H if it
is the last BCE, All BCB Headars and BCHs must raaide within the
EYEDAT seqgmant.

BCEBLR l MBRCBP

Figqure 5-8. Buffer Control Block Headsr

5-41

Concurrent CP/M System Guida 5.8 Buffer Control Block

Tabla 5-12, Buffer Coontrol Block Hsader Data Fialds

Fiald 1 Explanation

BCBLR Buffar Control Block Liat Root. The Buffer
Control Block List Root points to the firat
BECE in a linkegd list of BCB'a,

MRCEF Maxinum BCE's per Process. The MBECBP is the
maxigum number of BCB's that tha BDOE can
allocate to any mingle process at one time.
If the number of BCB's reguired by a proceas
is grenter than MBCEF, the BDOE reuses BCR's
previcuasly allocated to this process on a
leaagt-raecently-used {LRU) baals.

Limting 3-8 illustrates the BCE Header definition:

,t**********t***t*****i!itiii
;*

r¥ BCB Header Definiltion

%

I
;*******tt****i*f**t**f******

beble agu word ptr 0O
wbochp agu byte ptr 2
dirbecbh dw dirbch +BCE Liet Head
db 4 :Max # BCB's/Process

P ————— 0 et e al r r d m n d m e w m r

Listing 5-8. BCB Header Definition

Figure 5-9 shows the format of tha Directory Buffar Control Block:

OQH:« DRV RECORD WFLG | BEQR TRACK

N T
DBH: SECTOR BUFQFF LINK PDADPR

Pigure 5~9. Directory Buffer Control Block (DIEBCE)

5-42

Concurrent CP/M Systam Guida 5.6 Buffer Control Bleck

Table 5~13. DIRBCE Data Flelds

Field i Explanation

DRV Logical Drive Number, The Logical Drive Number
identifies the disk drive associated with the
phyaical sector contained in the buffer. The
initial value of the DRV field muat be OFFH, If
DRV = {OFPFh then the BDOS coneidars that the
puffer containe no data and is available for
use,

RECORD Racord Number. The Record Number identifies the
logical record posltion of the current bufifer
for the gpecified driva. The record numbar is
ralative to the beginning af tha logical diak,
where the first racord of the directory ia
logical record number zero.

WFLG Write Pending Flag. The BDOS sets the Write
Pending Flag to OFFH to indicate that the buffer
cantaina unwritten data. When the data are
written to the disk, the BDOS pets the WFLG to
zero to indicate that the buffer is no longer
dirty.

BEQ Sequential Acceas Counter, The BDOS uses the
S8equential Access Counter during blocking and
deblocking to deatect whether the buffer 1s being
accesaed sequentially or randomly. if
sequential access is used, the BDOS allows reuse
of the buffer to avoid c¢onsumption of all
buffers during sequential I/0.

TRACK Logical Track Number. The TRACK ia the logical
track number for the current buffer.

S8ECTOR Physical Sector Number. SECTOR is the logical
pector number for tha current buffer,

BUFOFF Buffer Offset, For DIRBCEs, Lthis field equals
the offset addreas of the buffer within SYSDAT.

LINK Link to next DIRRCB, The Link field contains
the offset addrasa of the next BCB in the linked
liat, or O000H, if this is the last BCB in the
linked liet.

PDADR Process Descriptor Addresa. The BDOS uses the
Proceas Descriptor Address to identify the
process which owns the current buffer.

5-43

Concurrent CP/M System Guidas 5.6 Buffer CTontzol Block

The buffer asascciated with the BCB must ba larga encugh to
accommdata the largest physical racord (equivalent to physical
sector) associated with any DPH raferencing the BCBs. The initial
valua of the DRV field nuat be JFFH. When thas DRV field containm
OFFH, the BDOS coneiders that the buffer gontains no data and is
available for usz. Whan WFLE saguals OFFH, the buffer contains data
that the BDOS has to write tc tha disk befcra the huffer is
avajilable for other data.

Directory BCEe nevar have the BCB WFLG parameter sat to OFFH becausa
directory buffera are always written loomedimtely. The BDOS
postpones only data buffer write opsrations. Thus, only data BCEwm
can have dirty buffers.

The data and directory ECEs must be saparata. This is to ansura
that a buffar with a clear WFLG la available when the BDOS varifies
the directory. If all the buffers contain new data (WFLG set to
OFFH}, tha BDOS has to perform a write befors it can varify that tha
disk media has changed. This could result in data beiny written on
the wrong diak inasdvarterntly., The following lieting {ilustrataes the
DIRBCE definitiocn:

H bbbkt bbbk bbbkt kb kk kit
:i-

® DIRBCB Definition

-tk

!

H drdbdrkk -kt bh bkt bdbh ke kbbb kb ik

arvy agu byte ptr 0

record aqu byte ptr 1

wilg agu byts ptr 4

Bag agu byte ptr 5

track egu word ptr &

sactar egu word pir 8

bufoff egu word ptr 10

link equ word ptr 12

pdedr egu word ptr i4

dirbcht db 0ffh ;jDrive
b 3 tRecord
1] 2 tFanding, Sequence
rw 2 :Track, Bector
dw dirbufo ;Buffer Ofiset
dw dirbebl ;Link
W i tPD Address

~

Listing 5-9. DIRBCE Definitiom

Concurrent CB/M System Guide 5.6 Buffer Control Block

Figure 5-10 ghowa the format of the Data Buffer Control Block
{DATBCB}:

QODH: DRV RECORD WFLG SEQ TRACK

O8H\ SECTOR BUFSEG LINK PDADR

Figure 5-10. Data Buffer Control Block [DATBCR)

The DATBCB is identical to the DIRBCE, excepk for the BUFSEG Fiaslad
dascribed in Table 5-14.

Tabla 5-14. DATBCB Data Fields

Field [Explanation

BUFSEG Buf far Segment. For BCBa desoribing data
buffers, thies fleld equals the segment addreas
of the Data Buffer. The affset addrees of the
buffer is assumed to be r£era, The actual
buffer can be anywhare 1n memary on a paragraph
boundary that ia not in the system TPA.

5~45

Concurrant CP/M System Guide 5.6 Buffer Controcl Block

Listing 5-10 illustrates the DATBCBE definition:

'**it.it!1'***3**!&'*!!**!!'****

P DATECB Definition
-k

H
rii*ii*t*ﬂii*ii**!i****!!***ii**

drv sgu byte ptr 0

record egu byte ptr 1

wilg agu byts ptr 4

aag equ byte ptr 5

track equ word ptr 6

sector agu word ptr 8

bufsayg equ word ptr 10

1ink oqu word ptr 12

pdedr aqu vord ptr 14

datbebl db 0ffh :Drive
rb 3 ;Recezd
rb 2 ;Peanding, Saguence
W 2 ;Track, Sector
dw dirbufd yBuffer Gegment
dwu dirbcbl :Link
rv 1 1PD Addremsa

Llating 5-10. DATBCEB Definition

5-46

Concurrent CR/M Syastem Quide 5.7 Mencry Disk Application

5.7 Memory Disk Application

A memory diak or M diak ia a prime example of the ability of the
Bagle Diax Cperating Bystem to Interface to a wide variety of diak
drives, A memory disk uses an araa of RAM to simulate a small
capacity disk drive, making a very fast temporary disk. The M disk
can be spacified by GENCCPM as the temporary drive. The example
XIC8 implements an M diask for the IBM PC. Thia aesction discuases &
aimilar M disk implamentation as shown in Listing 5-11.

In Listing 5-11, the M disk memory space begins at the 0CO0QH
paragraph boundary and sxtends for 128 Kbytes, through the CDFFFH
paragraph. It ia asaumed the XIOS INIT routins calls the
INIT_M DEK1 code, which initializes the directory area of the M
disk, the firat 16 Kbytea, to OESH,

Both the M diak READ and WRITE routines first call the MDISK CALC:
routine. This coda calculates the paragraph addreas of the current
ssctor in memory, and the number of words of data to read or write,
The number of sectors per track for ths M diak is set to B,
aimplifying the calculation of tha sector address to a simple ahift-
and-add operatien. The multisector count is multiplied by the
length af a aector to give the number of worda to transfer.

The READ M DISK: routine gets the current DMA addreszs from the IOPB
on the atack, and using the parametsrs rasturned by the MDISK CALC:
routine, block-moves the requested data to the DMA buffer. The
WRITE_M DIEK: routine iz similar sxcept for the direction of data
transfer.

A Diek Paramater Block for the M diak, illuatrated at the snd of the
exagpls, is provided for reference. A hash table is provided in
order to increase performance to the maxinum. However, this field
can be set to zero if directory hamhing im not desirable due to
space limitacionas.

Conourrant CP/M Systex Guide 5.7 Memcry Disk Application

Listing 5-11 illustrates an M disk implammntaticn:

addkbk kbbb kk kb kb kb bkt bbbk kbbb bbbtk bbb dhddd
D

H M DISK EQUATES
L L T e T T e e T A e T e

ndirkbase agu 0COQ00h :basa paragraph
;address of mdisk

,illi***ifii**i**i*iii*****i*#***l**ii**tti!**!**iiii*

M DISK INITIALIZATION
.****i**i*ii**tii*i****tiiiitii*iiititttiiiti*i*iiiiii
ln:t _m_dek:

nov ox,mdiekbane

puah &a ! mov es,ox

xor di,di
wov ax,De5e5h seheck if already initielized
cmp eai[dil,ax | je mdisk end
mov ox,2000h tInitializa 16X bytea
rep stos ax ;of M diak directory to OESh's
mdizk_end:
pop &8
ret

khkkdkkkkkhbkbkdtdhr bbbk hk bkt bbbk bbb kbbb

M DISK CODE
L T T T T T I T R E T TR T T e A

IC READ: ; Function 11: Rsad sactor

H Rﬂads tha sactor on the current disk, track anpd
: seactor into the current DMA buffer.

! entry: paramelers on atack

H exits AL = 00 if no error cccurred

1 AL = 0l if an error cccocurred

read_m dek:

call mdigk calc ;calculate byte address

pueh =a ;sava UDA

led 4i,dword ptr dnaoff ;lomd destination DMA address
*or ai,si ;satup source DMA addrese

push ds jsave currant DS

nov ds,bx :load pointer to #sector in memory
rep movew ;exacute meve of 128 bytes....
pop de tthen reatore user DS reglster
pop es jreatgre UDA

XOI ax,ax jreturn with gocd return code
rat

Listing 5-11. Example M disk implemsentation

5-48

Concurrent CP/M Syatam Guide

0_WRITE:

me g ma mg ma wy owe s omp v o e

write m dsk:

5.7 Memory Disk Application

+ Punction 123 Write disk

entryi
1l =
2 -
exit: AL = Q0H
= 01H
= D2H

call ndisk_calc
push as

mov
xar

&g, bx
ai,di

ptish da

lds
ren
pon
pop
xor
ret

rdisk cale:

P

H antrys
i axit:
H

mowv

shl
nov
adad

shl
add

nav
xor
mal
mov
cld
rat

pi,dword ptr
ROVEW

das

&8

ax,ax

bx, track
cl,3

bx,cl

ox, aector
bx,ox
al,3

bx,cl
bx,mdiskbase

cx, 64

al . mcnt
ah,ah
cx
cX,ax

Listing 5-11.

Write tha sector in the current Dma buffer
to the current digk on the curreat

track 1n the current aector.
CL = 0 - Deferred Writesa

nondeferred writas

def-wrt lat sect unalloc blk
if no error cccurred

if error occurred

if read only diek

dmacff

;ealculate byte address
1save UDA
;Batup destination DMA addrasa

jaave user peqment register

11load source DMA addreas

tmove from user to disk in memory
jreatore uaer sagment pointer
;restorae UDA

jreturn no error

IOPB variables on tha atack
BX = mactor paragraph addreas
CX = length in words to tranafer

spickup track number
;times eight for relative
H saector number

iplus sector

tgivas ralative segtor number
;times esight for paragraph

H of asctor start

address of diak
mnemory

words for move
1 amectoxr

in
ngth in
of

plus base
le

L T

rlength * multiasector count

(continued)

5-49

Concurrent CP/M Bystem Guide 5.7 Mamory Diskx Application

’ti*t**!*****tii*************f***f*****t'********t!li*

H M DIBK - DISK PARAMETER BLOCK
PERREEEXEEIENTONS bbb e b F TR a ek bbbttt b kb bk hd s

dpho agu offaet $;Disk Parameter Block

dw 8 :Sectore Per Track

db 3 1Block Shift

db 7 ;Block Magk

ah Q tExtnt Mask

dw 126 rPisk Bize - 1

Aw 31 iDirectory Max

ab 128 1AllaceQ

db o] fAllocl

dw ¢] tChack Siza

dw D tDEfeat

ab [+] ;Phys Sec Shift

db a ;Phys EBec Maak
xlt5 agqu a 1¥o Translate Table
alss equ 16%2 ;Allocation Vecktor Bize
cass agu 0 1Check Vector EBlze
hsab aqu {3z * 4) 1Haah Table Size

f— e et e - ——

~5

Listing 5-11. (coutinned)

5.8 Multiple Media Bupport

Diekx access is controled by a number of data structuras, that
deacribe various parameteras cof the disk. Some of thass parametars
are aet in the code of the XI0S, cthera are filled in by GENCCPM.
when a particular disk drive can have more than one type of disk in
it (for sxemple diffarent dsnsities or CP/M end PC=DOS diaks) apxe
of thass parametars must be set at run btime. This secticon explains
how these parametera are set up, and which cnes must be changed at
run time.

Bach diek drivs iz described by a diak paramster header (DPH) that
givas addresses for several data miructures naeded in using the
disk, incloding the Disk Parameatar Elock (DPB). The DPB describes
the disk in more detail, such as the size of the directory and the
total storage capacity of ths drive. The lnformation in the DPB
will be different 1f a Alfferent density or format disk is used.

Concurrent CP/M System Guide 5.8 Multiples Medis Support

The DPH im locatad by the DPH(A) through DPH(F) pointers in the XIOS
headar. Sas Ssction 3.1 "XIOS Header" for mora information on theas
pointers. The flelds in the DPH can be filled in by hard coding the
values in the X108 or if they are aet to OQFFFFH, GENCCPM will
caloulate and £ill in the values. GENCCPM a2lsmgo allocatea apace for
the neaded buffere and vectors.

If a drive supparts more than ons type of nmedia, the buffers
allocatad mugt be large ancugh to hold the information needed for
any of the poasgible media. Thiz may raquire creating a dummy DFH
and DPB for GENCCEM to usa while allocating the buffera, For DOS
and CP{'H disks, the sams table area (pzinted to by TBLSEG in tha
DPH) is ueed for the hash table (CP/M) and the FAT {(D0OS). The aspace
BENCCPM allocatea for thia ia based on the DRM value in the DPE.
Ssa Section 5.5.1 for inforaation on astting DRM.

Auto Density Support ia the abllity to support different types of
media on the same drivea, Scma floppy disk drives can read many
difZerant disk formats. Auto Density Support enables the XIOS to
determine the dansity of the diaketie when the 10 S8ELDSK function ia
called, and to detact a change in densaity when the IO READ ar
I0 WRITE functicne are called.

To implement Auto Density Support or support for both CP/M and DOS
media, the XIOS8 diak driver must include a DPB for each disk format
axpectad, or rouktines to generate proper DEB values automatically in
real tima. It numst alsc be able to determine the type and format of
the ¢igk when the 10 SELDEK function is called for the first time,
sat the DPH to address the DPB that describes the media, and return
the address of the DPH to the BDOS. If unable to dstermins the
Eormat, the IQ0_SELDSK function can return a zero, indicating that
the nalect operation wae not successful. On all subaegusant
10 SELDSK calls, the XICS must continue to return the addreass of the
sams DPH; a return valus of zero i= only aliowed on the initial
Io_SELDSK call.

Once the IC SELDSK routine has detesrmined the format of the disk,
the IO READ and IO WRITE routines assume this format ias correct
until an error is detected. If an XIOS function encounters an error
ardd deterymines that the media has been changed to another format, it
muat abandon the oparation and return OFFH to the BDOS. This
prompts the BDOS to make another initial IO SBELDSK call to
raeatablish the media typs. XIOS rcutines muat not medify the
drive's DPH or DFE until the 10 SELDBK call is made, This im
because the BDOS can also determine that ths media has changed, and
can make an initial IO SELDSK call even though the XIDS routines
have pot detected any change.

End of Section 5

5-51

Section 6
PC-MODE Character [/O

Thia sactlon deecribee functions that must be implementad in the
XIOS to support PC-MODE. Theas functions smulate msoms of the PC
interrupts, allowing DOS programs to run.

There are seven functions that muat be added to the XIDE to eupport
PC-MODE. These are functions 30 throngh 36. Thies chapter descrlbas
functions 30 through 14, that are u=ed for character I/0. Functione
35 and 36 are for dlsk I/0, and are deacribed in Sectlon 5. Note
that the XIO8 funetion table muat be axtended for theae functiona.
Saa Section 3.3 "XIOE ENTRY" for more information on tha function
table.

Implementing theae functions requires data structures eimilar to
thaee uged In acreen buffering. See Section 4.2 "Console I/0
Functiona"™ for more information on socreen buffering. Screen
buffering ies assumed in the descriptions of all the xoutines in this
chapter.

6.1 BScresn 10 Functions

Function 30, IO _SCREEN either returne the current acresn mode, or
sats tha scresn to a certaln mode. The node tells whether the
screen ip displaying text or graphica, and the agreen size.
Function 31, IO_VIDED, provides functions for getting and setting
the cursor position and attributes, as well as sorolling the soresn
and writing characters. This function emulates 8 of the 16
subfunctions of DGS's interrupt 10.

6-1

Concurrent CF/M Syates Guide 6.1 Screen I/0 Functions

IO SCREEN GET/SET BCREEN

Gat or Sst the Currant Ecreen

Entry Parametsrsi
Ragister ALr LEH (30)
CHi O = Het, 1 = Gat
CLy Mpde if CH = 0 {8et)
DLt Virtual consala numpbar

Returnsd Value;
Register AXs Mode if CH = 1 (Qet)

AY: FFFFH if mode not avpported
[Bet)
FFFEH if bad paramastars
{Bat)
DOO0QH if succesesful (Set)

ES, DB, &8, BP presarved

IO ECREEN can ba called to aither return the currank scrsen mode
(Get) oxr to eet the acreen to a certain mode (Set). Bet is
indicated by a zerc in CH, Get is indicated by a 1 in CH. IO SCREEN
is called to oparats on a virtual conascle, indicatad by DL, The
sample XINS'y keap a record of the mode of each virtual console in
the screen etructure. The screen Mode muet be initlalized to a
nonrero value when the eyaten ie initializad. This function is also
used for GEX support. See Appendix B.

When IO _SCREEN ie callasd to eat the scrasn mgde (CH = 0), CL
contains the mode in the following format:

o T 17]

where y indicates the alphanumeric modes and x indicates graphics
modes. Ejther x or y will have a value, the other will be zero,
The alphanumeric ncdes (values for y) are shown in Table 6-1. Tha
graphics modes (valums for x) are shown in Table 6©-2. The value 1
(general alphanumeric or general graphic mode) comes from the GSX
graphice aysten's GIOS to indicate a mpde awitgh. The GI0S does ite
own hardware initisliization.

6-2

Coneurrant CP/M System Guide 6,1 S§ereen I/0 Functions

If the calling process ia in the background and wante to set its
uoda to graphics, IO _BCREEN must flagwait the procass. The
nur:uponding flagset takes place in the JC_SWITCH routine, whan the
praocess's virtual conacle is switoched to the foraground. For
furxther information on the IO SWITCH routine, @ee Section 4.2
"Console I/0 Punctions™.

Sat should initialize the hardware 1f nascessary.

When IO HCREEN is called with CH = 1 {get) it returns the scressn
mode {from the mcreen atrusturs) in the following format:

CH cL

Cols % Y

where § Cols ims the number of columns on the a#creen, x 18 the
graphice node (Table 6-2), and y is the alphanumeric mods {Table &—

Table 6-1. Alphammeric Modes

Y Value I Meaniag

1 Genaral alphanumeric mode
40 x 25 monochroms
40 x 25 color
80 x 25 monochrone
80 x 25 color
8 Reserved
80 x 25 monochrome card
1% Resgerved

1091 Mpwh

10

Table 6-2. Graphics Modes

X Value Meaning

General graphice mode

320 x 200 color

320 x 200 manochrome

640 x 200 mchochroms
15 Reaervad

P s~

Concurrent CP/M Hystem Guide 6.1 BHecrmen I/0 Functions

10_VICED (runcticn 21) emulates & of the 16 Bubfuncticone of DOE'a
interrupt 10. It will set and read the cursor position, scroll the
scxasn, zet and resd attributes, and write charscters to the ecresn.

I0 _VIDEO VIDED INPUT/OUTPUT

Manipulate the Vidao Screen

Entry Parameters:
Regiater AL: 1FH {31)
BLx Bub Punction
CX: TInput parameter
{ses below)
DX: Input parameter
{aee below)

Returned Value:
Depanda on subfunction. See beslow.
ES, D8, BB, BP preserved

The I0O_VIDED function must implement at leamt 8 of the 16 _
aubfunoticns of DOS's interrupt L0. AlLL 18 can be implementad if
demired, =znd if the hardware aupports them, The § regquired
subfunctions are described below.

EEY CURSBCR POBITION (BL = 1)

entry: CH = row

CL = golumn

DL = yirtual conmole numbar
exite none

This function sets the cursor position to the speclfied row and
column. It updates the cursor poeition in the screen structure for
the specified virtual console. It almo updates the physical acreen
if this virtual console i8 in the foreground.

&4

Concurrent CP/M System Guide 6.1 Screen 1/0 Functions

READ CORSOR POSITION (BL = 3)

entry: DL = virtual consoale number
exlt: AH = row
AL = column

This function returns the current curmor position for the virtuoal
censale from the screen atructure.

SCROLL UP {BL = &)

entry: CX = gegment of parameter structure
DX = ogffset of parameter structure
exlt: none

This function accesses the parameter structure and scrolls up ths
gpacified window on the virtual consale. The window is specified by
giving the row and column of the uppar left and lower right cornezs
of the rectangle. If the number of lines to scroll 153 0, the window
should be cleared. The parameter structura is as follows:

[7] A

23 B RSVD

4: (zow) C (col)

6: (row) D [col)

82 vC

whers: A = number of lines

B = attribute of blank lines
¢ = row, column of upper left
D = row, column of lower right
VC = virtual conscle number

If screen buffering is implemented, ecrolling must take place in the
soreen buffer., If the virtual consale is in the foreground, and the
physical console is a gerial terminal, the dlaplay muat also be
updated. Parameter B containa the attributes desired for the new
blank lines to be added in the window. The methed of displaying the
scrolled window on the physical console depends on the hardware.

Concurrent CP/M Syster Guide §.1 Secresn 1/0 Funetions

SCROLL DOWN (BL = 7)

antry: CX = segment of parameter structure
DX = pffset of parameter structure
axit: nona

This function accesses the paraneter structure and sorolls down the
spacifiad window on the virtuml coneols, simllar to the previous
subfunction. The paramater structure ls as follows:

O A

2 B RBYVD

4t {row) C (col)

-1 (row) D (col)

B: vC

whera: A = numbar of lines

B = attribute of blank lines
C = row, column of upper laft
D = row, column of lowsr right
VC = wirtunl conecles number

Refer to scroll up akove for more information.
READ ATTRIBUTE/CHARACTER (BL = 8)

antry: DRDL = virtual gonscle nunber
oxits AR = attribute
AL = character

This function accesses the scraen structurxe for the virtual conscls
and raturns the character and tha attribute byte for the currsnt
cursor positlion.

In ths example XIOE's, this subfunction invelvea: 1) Using the
virtual consols numbst to lock Up the screen structure. 2) Get tha
scrman buffer addrass and cursor position from the screen structure.
3} Look up the screen buffer, and use the cursor position am an
offast to get the current charactar and attribute byte.

Conourrent CPB/M Syatem Guide 6.1 Sgraen I/0 Functiens

WRITE ATTRIBUTE/CHARACTER (BL = 9}

entry: CX = gsegment of parameter atructure
DX = offaet of parameter structure
exit: nons

Thls function writes a character and an attribute hyte to a soreen
image. The new character mand attribute are written at the current
curpor position, and the cureor positicn moved to the new charavter.
This may involve handling an and of 1line or end of screen condition.
Any number of the same character and attrlibotes can be written by
apecifying the count in CX. If this wirtual consele is in the
foregreund, znd the physical conscle ig a serial terminal, it must
be updated with the new characters and attributes. The parameter
atructure is ag follows:

O: RSVD A
2: REVD B
LE [4
H RESERVED
9: vC
where: A = character
B = attributes
C = number of characters to repeat

VC = yirtunal console number

WRITE CHARACTER (BL = 10)

entry: CX = segment of parameter structure
DX = Qffset of parameter atructure
exit: none

This function Wwrites a character to the screen buffer at the current
cursor posltion, with the same attribute(s] as the previous
character, The character ¢an ba repsated by specifying a count in
8. 1If the virtual conaole is in the foreground, and thes physical
coneole is a merial terminal, it asust aleo be updated. The
parameter structure is as follows:

6=7

Congurrent CP/M System Guide 6.1 B8creen I/0 Functions
Q: RBVD A
2: RESERVED
4: é
62 HESERVED
8 Ve

WRITE SERIAL CHARMCTER

where: A = gharacter
C = number of charactere t¢ repeat
V0 = virtual console number

{BL = 14}

entrys CL = charactex

DL = virtual gonsole number

exit: nene

This function writes a character to the gereen image at the gurrent
curascr position, and to the physical gzreen {f the virtual congole

ia in the foreground.

It functions similarly to write character

(above) but does not allow repsated characters. Thisa is a telatype
write, and does not allow eacape sequences.

Concurrent CP/M Syatem Guids 6.2 Keyboard Functigns

6.2 Keyhoard Functions

Thess twoe functions are used for handling function keys and the
shift statua of the keyboard when running in PC-MODE.

10 KEYBD KEYBOARD MODE

Enable/Disable PC~-MODE

Entry Parameters:
Register AL: 20H (32)
CL: 1 = Enable
2 = Dimakble
DL: Virtual Conscle Number

Raturned Valua!
Register AX: O if OK
FFFFH 1f exrcr
ES, D3, 85, BPF preserved

IO KEYED ia a gignal to tell whether PC-MODE is active or not. When
it i= enablad, the consple is running a PC program, and aeveral
functions must behave differently. These differences have to do
with tha function keys on the kayboard, and the 25th lins on the
Asoreen.

Enabling or disabling IO _KEYBD tells IO CONIN (See Section 4.2)
whether to pass function keys to the caller or not. MNormally
(disabled} all function keys not used by the Xi08 (those that do not
have an associated function, such as moreen switch) are ignored on
input. If IO_KEYBD is enabled, IQ CONIN muet pase all 16 bit
function key codes to the caller. See Section 6.4.

Many PC applications use the 25th line of the diaplay. Thus whan
you are in PC-MODE, IO STATLINE muat not diaplay. See section 4.2
for more information on I¢C STATLINE,

This variable can alao be used in the X108 for any other functions
that nead to know if a conaole la in PC-MODE, For example, it could
be used to indicata if 24 or 25 linsa nasd to bs buffered.

Concurrant CP/M Bystam Guids 6.2 Keyboard Functions

IO_SHFT SHIFT BTATUS

Return 8hift Brakusm

Entry Paramsters:
Register Al: 218 (33)
DL Virtual Conagle Number

Raturned Value:
Regimter ALt Shift Btatunm
%8, DA, BB, BP pramerved

I0_BHPFT emulates PC interrupt 16 subfunction 2. It returns a bit
map ehowing the status of certaln keys on the keyboard. The bit map
im ghown in Table §-3.

Table 6-3. EKeyboxrd Bhift Btatus

Bit] Meaning

Inasrt state im sstive

Capg lock state haa been toggled
Hum lock etats ham basn toggled
Scroll lock mtate has been togglaed
Altarnate shif: key depressed
control shift key depresed

Laft shift key deprasmed

Right shift kesy dspressad

O RS L e U DY Y

§-10

Cancurrant CF/M System Guide

6.3 Egquipment Check

.3

Equipment Chack

TO_BEQCK ~ EQUIPMENT CHECK

Return Equipment Statue

Entry Parameters:
Regimter AL: 22H (34)

Returned Value1

Regieter AX: DOB bit map (Table 6-3)
ES, DS, 88, SP preaestved

I0 EQCK emulates DOB's interrupt 11.

It returns a subasst of DO8's

standard hit map that describes the atate of the equipment. Thia
kit map i shown lh Table 6-3.

Table 6-4. DOS Eduipment Status Bit Map
Bit Meanling
14, 15 Number of printers attached
13 Not used
12 Game I/0 attached
11 - 9 Numbar of RS232 cards attached
B Hot used
7, 6 Number of floppy disk drives
5, 4 Initial video moda
3, 2 Planar RAM size
1 Not used
o IPL from Eloppy

6.4 PC-MODE IO COMIN

When a virtual conecle is in PC-MODE (See IO_KEYED in Secticn 6.2)
IO CONIN must return extended codes for certain function keys. Most
characters ars returned as their ASCII code in AL, and thelr acan
The acan codes for all keye are shown in Table 6-5.,
Extended kays are raturnad as a nul (00H) in AL and an extended code
in AH, The extended keys and the value to be returned in AH are
shown in Tabla B-6.

code in AH.

Congurrent CP/M Bystem Guide €.4 PC Mode IO CONIN

Table 6-5. Keybcard Ecan Codos

Key Scan Code Key I Span Code
A 20 Eat 1
B 48 Ctrl 29
c 46 Shift {(left) 42
2] 32 8hift (right) 54
|] 18 Alt 5&
P 33 Capa Laock 58
G 34 Hum Lock &9
H a5 Seroll Lock 70
b 23 Return 28
J 36 Tab 15
K 37 backspaca 14
L 38
M 3g Numeric Keypad:

N 49

Q 24 Homa (7) 71
P 25 cursor up (8} 72
a 16 Pg Up (9} 73
R 19 curaor laft (4) 75
8 31 (5} 76
T 20 cursor right (6} rxi
u 22 Fnd (1) 79
v 47 curscr down {2) 80
W 17 Pgbn (3) 81
X 45 Ine {0) B2
Y 21 Dal (.) 83
Z 44 * (prtBo) 55
1 ({1} 2 - 74
2 (&) 3 + 78
3 (%) 4

4 (8) 5 Function Keysi

5 (%) [

& (") 7 Fl 53
7 (&) 8 Fz 60
8 (*) 9 Fa Bl
9 () 10 F4 62
0o (N i1 F5 &3
-{) 12 Fé 64
= (¥) 13 r7 65
L (f) 26 F8 66
1ih 27 F9 67

r {1} 35 F10 &8
L 40
YTy 41
s (€} 51
. 02) 52
/ (?} 53
\ (D) 54

612

Concurrent CP/M Systam Guida

6.4 PC Mode IO CONIN

Table 6-6. Exterded Keyboard Codes
Character] AH I Function
etrl 3 3 Hul character

o 15 Rpverde tab
Ina 82 Ingert
Del 83 Delete
i 72 Curssr up
&— 75 Cursor left
— 77 Curaser right
| 80 cursor down
home 71 Cuzrgor home
ctrl home 119 Cantrol home
ctrl <— 115 Reverae word
ctrl —> 116 Advance word
Pg Dn 8l Page down
etrl Pg Dn 118 Contrl page down
Pg Op 73 Fage up
ctrl Pg Up 132 Contral page up
End 79 End
etrl End 117 Contral end
ctrl PrtSc 114 Print acreen
Fl 59 Function key F1
F2 a0 Function key F2
F3 61 Function key F3
P4 62 Function key Fid
F5 63 Function key F5
F6 64 Function kay ¥é
B7 65 Function key F7
P8 66 Function key P8
F9 67 Punction key F§
F10 68 Funotion key F10
shift Fl 84 Function key F1l
ahift F2 8BS Function key ¥I12
ghift ¥3 86 Function key F13
shift ¥4 B7 Function key P14
shift #5 B8 Punction key Fl5
shift #6 89 Punction key P16
ghift ¥7 90 Punction key FL?
shift F@ 91 Function key F18
shift F9 92 Punction key FLl9
ahift P10 93 Functicn key F20

6-13

Concurrsnt OF/M Bystem Guide 6.4 PC Mode IO _CONIN

Table 6~6. (continced}

Character 1 AH l Fuanction
ctrl Fl 94 Funiction key F21
ckrl P2 95 Punctlon key F22
gtrl F3 98 Function key F23
otrl Fi 97 Function key ¥24
ctrl F5 98 Function key F15
ctrl Fé L] Function kay ¥26
ctrl ¥7 100 Function key ¥27
ctrl ¥8 101 Function key F28
ctrl F9 102 Function key F219
ctrl Fl0 103 Punctlon key F30
alt Fl 104 Function key F3l
alt F2 105 Fuanction key F32
alt F3 106 Function key F3i3
alt P4 107 Function key Fi4
alt »5 ip8 Funttion key Fi5
alt 76 109 Function key F3&
alt ¥7 110 Function kay ¥37
alt ¥ 111 Function key F38
alt ¥ 112 Function kay ¥39
alt ?10 113 Fanction key Fd0
alt A 30 Alt A

slt B 48 Alt B

alt © 46 Ale C

alt b 3z AlE D

alt E 18 Alt E

alt ¥ 33 Al ¥

alt @ 34 AlE @

alt B 35 Alt H

alt I 23 Alt I

alt J 35 ALt J

alt X 37 Alt K

alt T 38 AlE L

alt M 50 Alt M

alt W 45 Alk N

alt ¢ 24 Al O

alt P 25 Alt P

alt @ 15 AlE Q

alt R 19 Alt R

alt 8 31 Alt 8

alt T 20 Alt T

alt U 22 Alt O

alt Vv 47 Al V

alt w 17 Alt W

alt X 45 Alt X

alt ¥ 21 Alt ¥

alt 2 &4 Alt 2

6-14

Concuxrent CP/M Syatem Guide

6.4 PC Mode IO CONIN

rable 6-6. (continued)
Character l AH [Function
alt 1 120 Alt 1
alt 2 121 Alt 2
alt 3 122 Alt 3
alt 4 123 Alt 4
alt § 124 Alt S
alt 6 125 ALt B
alt 7 126 Alt 7
alt 8 127 ALt B
alt 9 128 Alt 9
alt 0 129 Alt D
alt - 130 Alt ~
alt = 131 Alt =

End of Sectlon 6

6-15

Section 7
XIOS Tick Interrupt Routine

The XIOE muat continually perform twe DEV_SETFLAG system calla.
Once avery syatem tick the system tick Elag must ba set 1f the TICK
Booalean in the XIDE Header is OFFH. Once svery second, the secaond
£lag muat be get. This requirea the XIOS to contaln an interrupt-
driven tick routine that uses a hardware timer to count the time
intervals between aucceaalve ayatem tlcka and seconds.

Tha recommanded tick unit is a period of 16.67 milliasaconds,
corresponding to a frequency of 60 Hz. When operating on 50 Hz
power, use a 320-millisecond perlod. The ayatem tick freguency
daterminee the diepatch rate for compute-bound processas. If the
frequency 1is too high, an exceaaive number of dimpatchea ocours,
areating a slgnificant amount of additcional ayatem overhead. If the
fraquency is tco low, compute-bound processes monopolize the CPU
reacurce for leonger periods.

Concurrent CP/M uses FPlag #2 to maintain the system tima and day in
the TOD structure in SYSDAT. The CLOCK procesa performs a
DEV_WAITFLAG system call on Flag $#2, and thus wakea up once per
aescaond to update ths TOD structure. The CLOCK proocess also calls
the IO STATLIMNE XIO8 function to update the status line once per
mecond. If the ayatem haa more than one phyaical console, one
physical console 1s updated each second. Thua If four phyaical
consoles are connected, each one will be updated once every four
seconds.

The CLOCK process is an RSP and the source code is Jistributed in
the OEM kit. Any functiona needing to be performed on a per-second
basis ecan aimply be added to the CLOCK.RSP.

After performing the DEV_SETFLAG calls descrlbed above, the XIOS
TICK Interrupt routine must parform a Jump Par to the dispatcher
entry point. Thie forces a dispatch to occur and is the mechaniam
by which Concurrent CP/M effects proceas diapatching. The double-~
word polnter to the diaspatcher entry unaed dy the TICE interrupt is
located at 0038H in the S9YSDAT DATA. Flease see Bection 3.6,
"Interrupt Devices," for more information con writing XIOS interrupt
routines.

End of Section 7

Section 8
Debugging the XIOS

Thia secticn suggests a method of debugging Concurrent CB/M,
regquiring CP/M~-86 running on the target machine, and a remote
conacle. Hardware-deapendent debugging techniques {ROM monitor, in-
circuit emulator) availabla to the X108 implemanter can certainly be
ysad but are not described in this manual,

Implement the firet cut of the XIOS using all pelled 1/0 devices,
all interrupte disabled including the asystem TICK, and Interrupt
vVectors 1, 3, and 225, which are used by DODT-8§ and EID-86,
minitlalized. Once the XIDB functiona are implamented as polling
deviced, change them to intercupt-driven I/0 davices and test them
one at a time, The TICK interrupt routine ie usually the laat X108
routine tc be implemented.

The initial system can run without a TICK Ilnterrupt, but haa no way
of forelng CPU-bound taeks to dispatch. However, without the TICK
interrupt, conecle and disk I/0 routines are much =apier to debug.
In fact, 1€ other problems are encountered after the TICK lnterrupt
is implemented, it is often helpful to diaable the effects of the
TICK interrupt to simplify the environment. This is accompliahed by
changing the TICK routine to exscute an IRET instead of jumping to
the dispatcher and not allowing the TICK rouktine to perform flag set
syatem calla.

When a routlne must delay for a specific amount of time, the XIOS
uBually makes a P _DELAY aystem call. An example ia the delay
required after the digk motor is turnad on until the disk reaches
operational speed. Until the TICK interrupt is tmplemented, P_DELAY
cannot be called and an assembly language time-cut loop iz needed.
To improve performance, replace theae time-outs with P DELAY system
calla after the tick routine is implemented and debugged. See the
MOTOR ON: routine in the example XIOS5 for more details.

8.1 Running Under CP/M-86

To debug Conocurrent CP/M under CP/M-86, CP/M-86 must use a console
segparate from the console uasd by Concurrent CP/M. Uaually a
terminal is connected to a gerial port and the console input,
console cutput and conasole status routlnea in the CP/M-86 BIOS are
modified to use the serial port. The serial port thus becomes the
CP/M-36 ccnsole. Load DDT-86 under CP/M-86 using the remote console
and read the CCPM.B8Y8 image Into memory using DDT-86. The
Concurrent CP/M XIOS musat not relnitialize or use the serial port
hardware that CP/M-86 is using.

It is aomewhat difficult to use DDT-B6 to debug an interrupt-driven

virtual console handler. Because the DDT-86 debugger operates with
interrupts left enabled, unpradictable results can occur.

8-1

Concurrent CP/M Syatem Guide 8.1 Running Onder CP/M-86

Valuea in the CP/M-86 BIOS memory segment table must not overlap
memOry rIeéprapented by the Concurrent CP/M memory partitions
allocated by GENCCPM. CP/M~B6, in order to read the Concurrent CP/M
systen image under DDT-86, must have in its segment tablee the area
of RAM that the Concurrent CP/M system is configured to occupy. See
Filgure 8-1,

CCP/M tranpient
program area

defined by

GENRCCPM

CP/M tranelent CCPM,.5YE »CCP/M 0.B. image
area described

.in BIOS DDTEE

CPM.SYS »CP/M 0.8. image

xemory addrees 0: | Interrupt Vectora

Figure 8-1. Debugging Mewory Layout

Any hardware that is shared by both aystems ie usually not
acceagible to CP/M-86 after the Concurrent CP/M initialization code
hap executed., Typically, this prevente you from getting out of DDT-
66 and back to CP/M-86, or executing any dlsk I/0 under DDT-86,

The technique for debugging an X105 with DDT-88 ruaning under CP/M-
86 i3 outljned in the following atapa

1. Run DDT~86 on the CP/M-86 syatenm.

2. Losd the CCPM.E8Y5 fila under DDT-36 using the R command and the
aegrent address of the Concorrant CP/M asystem minue 8 (the
length in paragraphs of the CMD file header}. The segment
addrese is specified to GENCCPM with the OSSTART option. BSet
up the C3 and DS ragistere with the A-BABE values found in the

CMD f£ile Header Record. BSee the Concurrent CP/M Operacing
System Programmer's Reference Guide description of the CMD file
eader.

3. Tha addresses for the XI0S ENTRY and INIT routines can be found
in the BSYSDAT DATA at offsets 2BH for ENTRY and 2CH for INIT.
Thege routines will be at offget OCD3H and OCOOH relative to
the data segment in DS.

4. Bagln executlon of the CCPM.3Y3 file at offset 0000H in the
code gegment. Breakpoints can then be set within the XI08 for
debugging.

Cancurrent CP/M System Guide 8.1 Running Under CP/M~-86

In the following figure, DDT-86 1= invoked under CP/M~86 and the
file CCPM,.AYS ig read into memory atarting at paragraph 1000H. The
OB9TART command in GENCCPM was apecifled with a paragraph addreaa of
L00BH when the CCPM.3Y8 flle was genereted, Using the DDT-B6 D(ump)
command the CMD header of the CCPM.S¥8 file is displayed. Adg shown,
the A-BASE fields are used for the initial C5 and D5 segment
regiater values, The following lines printed by GENCCPM alac show
the initial CS and DS values:

Code starts at 1008
Data starts at 161A

Two G({a) commande with breakpointa are shown, one at the beginning
of the XIOS INIT routine and the other at the beginning of the ENTRY
rautine. These routines can now be astapped through uwsing the the
DPDT-B6 T(race) command. See the Programmer's Utilitles Guide for
morea information on DDT-B6.

A>adtB6

DDTa&

-rccpm.ays,l000:0
START END

1000:0000 1000:ED7F

-dd

1000:0C00 D1 12 06 08 10 12 06 00 G0 02 B9 08 1A 16 B3 08 .v.u.us
S |

-

s 0000 1008
DS G000 l6la -
s8 0051 .
=lds:=cl0
161A:0C00 JMP 1E2E
161a:0C03 JMP 0C3B

—-q,da:0c00 jget a break point at XI0S INIT
*161A:0C00 jthe INIT routine may now be degugged
-g,da:0c03 jeet a break point at XIOS ENTRY
*161A:0C03 sEhe XI08 function being called ia

- 1AL

Figqure 8-2. Debugging CCP/M under DDT-86 and CP/M-86

Concucrent CP/M System Guide B.l Ruaning Under CP/M-86

When using SIB-86 and symbols tc debug the XI0S, extend the CCPM,.3YsS
File to inolude unltialized daia area not in the file, This ensures
the aymbola arm not written over whlle i{n the debugging seszicn.
Agguming the game CCPM.SYS file sag the preceding, use the followlng
commands Lo extend the file.

SIDRE

drccpm.eys,1000:0
START END

10000000 1000:EDTF

{xcs

£s bO0D 1008

D8 000Q l6le

§8 0051 .
1awdd
iﬁlc;ﬂﬂil XEXR $ENDEEEG value from SYSDAT DATA
fwccopm.8sys,1000:0,XxxX:0
i sreleass memory
frocpm.sys,1000:0 treaad in larger file
START END
LdQQ-0000 ¥YYY:ZZ2Z
tet*xion yget XICS,.B¥M file
SYWBDLS
1

Figure 8-3. Dabugging the XIDS Under EID-—8#6 and CP/M-B8&

The precadlng procedure to extend the flle only needs toc be
performed once after the CCPM.BYS file i3 generated by GENCOPM.

End of Bectlon 8

Sectlon ©
Bootstrap Adaptation

This sactlon dAiscusaas the szample beotstrap proosdurs for
Concurrent CP/M on the IBM Personal Computer. This sxample ia
intended to serve as a basis for custonization to 41ffmarent hardware
anvironments.

9.1 Components of Track 0 on tha IBM PC

Bath Conourrent CP/M and CP/M-B86 for tha IBM Personal Conputer
resarve track 0 of the 5-1/4 inch fleppy disk for the bootstrap
routines. The reet of the tracke are resarved for directory and
file data., Track O ia divided into two areas, aector 1 which
contalna the Eaot Sector and sactors 2-8 which contain the Loader.
Figure 9-1 shows the layout of track 0 of » Concurrent CP/M boot
diek for the IBM Parsonal Computer,

Sector 1 Boot Sector
Sesctor 2 Loader
Sector 8 .

Figura 9-1. Track 0 on the IBM PC

The Boot Sactor is brought into memory on reset or power-on by the
IBM PC's BEOM monitor. The Boot Bector then reads in all of track 0
and transfera control to the Loader.

The Laoader is a simpla version of Concurresnt CP/M that contains
sufficient file processing capability to raad the CCPM.8YS filae,
which contalnas the operating system image, from the hoot disk to
namory. When the Loader gomplstes ita operation, the operating
aysten igage recelves control and Concurrent CP/M begine axacution.

Conourrent CP/M Bystem Guide 9.1 Track 0 on the IBM BC

The Loeder consists of three nodules: the Loader BDOS; the Loeader
Proegram, and the Loader BIOS. The Loader BDOS ig an invariant
module used by the Loader Program to open and reed the system image
file from the boot dimk. The Loader Program is a variant module
that opens and reads the CCPM.E8Y5 file, prints the Loader sign-on
message and transfers contiol to the system image. The Loader BIQS
handles the variant disk I/0 fungtione for the Loader BDOB. The
term variant indicates that the mcdule ie implementation-spscific.
The layout of the Loader BDOS, the Loader Program, and the Loader
BIOS is ahown In Flgure 9-2. The three-entry jump table at 0900H is
uged by the Loader BDODS to pass control to the Loader Program and
the I'cadar BIOS.

Note: The Loader for the IBM PC example begins in sector 2 of
track 0, and contlnues up to sactor & smlong with the rest of the
Loader BDOS, the Loader Program and the Loader BIOS.

offaets from
Loader BDOS

Loader BIOS

Loader Program

0909H:
0S0BH: JMP LOADF
0903H: JMP ENTRY
0%00H: JMP INIT

Loader BDOS

DOQDH:

Figure 9-2. Loader Organlization
[Sectors 2 through 8, Track 0 on IBM PC}

2.2 The Bookstrap Proceas

The sequence of events in the IBM PC after power—on is discussed in
this section. Except for the functions that are performed by the
IiM ROM monitor, the following process can be generalized to other
8086/8088 machines.

Concurrent CP/M Syaten Guida 9.2 Tha Bootstrap Proceas

Pirst the RDM monitor reads sector 1, track O on drive A: to memory
lonation DOCO:7CO0H on power-on or reast. The ROM than transfers
control to location 0000:7CO0H by a JMPF (Jjump far) inatruction.
The Boot Sector program uses tha ROM monitor to cheok for at lsast
160K of memory contiquous from 0. The ROM monitor is then used to
read in tha ramainder of track O to memory lecatlon 2600:0000H
(152K). Control ip trangsferred to location 2620:0000H, whigh im the
baginning of the second ssctor of track 0 mnd the baginning of the
Loader, [Bach sector ie 512 bytes, or 20H paragraphe long.) The
aource code for the Boot Sector program can be found in the file
BOOT.ABG on the Concurrent CP/M diatribution disk.

Tha exact location in memory of the Boot Sector and the Loader
dspend on the hardware environment and the sysaten inplementer.
Howewver, the Boot Sector must transfer control to the Loader BDOS
with a GMPF (jump far) instruction, with the C8 register set to
paragreaph addreas of the Loadsr BDOB and tha IP regimtsr ast to O.
Thue the Loader BDOS must be placed on a paragraph boundary. In the
axanple Loader, the Loader BDOS begina sxecution with a CB register
aet to 2620H and the IP regidter sat ta O0000H.

The Loader BDOS gets the DS, 58, and ES regletara agual to the CS
regiatar and sets up é4-laval stack (128 bytes), The threse Loader
wxinlea, the Loader BDOS, Program and BIOS, exacute using an 8080
nxdel (mixed code and data). It ls aasumed that the Loader BDOS,
the Loadar Program and the Loader BIOS will not require asre than &4
lavels of ztack. If thiaz is not true then the Loadar Program and/or
the Laader BIOS must perform a atack awitch when neceesary. The
jump table at 0900H iz an invariant part cof the Loader, though the
destination offaets of the jump Instructions may vary.

Aftar setting up the aegmant regiasters and the atack, the Loadar
BDOS performa a CALLF (call far} to the JMP INIT inatruction at
C8:200H. The INMIT entry ie for the Loader BIOS to perform ahy
hardwara initialization nesdaed to read the CCPM,BYS file, Note that
the Loader BDAOS does not turn interrupte on or off, so if they are
needed by the Loader, they must be turned an by the Boot Sector or
the Loader BIOS, The example Loader BIOS axecutes an STI (Bat
Interrupt Enable Flag) instruction in the Loadsr 3I05 INIT routine.

The Loader BIO8 returhe to the Loader BDOS by executing a RETF
{Return Far)} instruction. The Loader BDOS next initiallzes
interrupt vector 224 {OEOH) and tranafers contrecl to the JMP LOADP
inatruction at 0906H, to estart execution of the Loader Program.

The Loader Program opens and reads the COCPM,.S8YS8 file using the
Ceonourrent CP/M syatem ocalls supportad by the Loadar BDOS. The
Loader Program transfere control to Concurrent CP/M through the
"JMPF CCPM" {Jump Far) inatruction at the end the Loader Progranm,
thus completing the loader sequence. The following sections dlscusa
the organization of the CCPM,8YS file and the memory image of
Congurrent CP/M,

Concurrant CP/M Bystsm Guide 5.3 Loader Function Setwm

9.3 The Loader EBDOB and Loader BIOS Function Heta

The Loader BDOS has 4 minimum set of functlonag required to open the
system image f£ile and transfer it to mencry. These functlionu are
invoked a5 under Concurrant CP/M by axeocuting a INT 224 {Q00RQH) and
are documented in the Concurrent CP/M Progqranmer'e Reference Guide.
The functlons implemented by the Loader BDDB are in the following
liat, Any other funceklon, if called, will return a O0FFFFrh erfror
code in registers AX and BX.

Funcé CL Function Name

14 0Eh Salect Diak

15 OFh Opean Fille

0 14h Read Beguential

26 1ah Set DMA Qffmet

32 20h Sat/Get User Number
44 aCh S8at Multissctor Count
51 33h fet DMA Bagment

Blocking/Deblecking has bean implementad in the Loader EDOE, as wall
as multlsmctor d4gk T/0. This simplifies writing and debugging the
loader BIOB and ixproves the avatem load time. ¥ile LBDOS.HB6
includes the Loader BDOB.

The Loader BIOS must implement the minimum set of functiona reguired
by the Loadar BDOB to read a file.

*unck AL Function Rame
] 098" I0_SBLDEK (selent disk;}
10 bDAR IO _READ (read physical aectors)

Te invoke I0_BELDAR or TO_READ in the Loader BIOS, the Losder BDOS
performs a CALLF (Call Far) instruction to the jump instruction at
ENTRY (0903H).

The Loadar BIQE funciione are implemsnted in the same way as the
corrasponding XIO8 functlons. Therefora the code used for the
Loader BIOS may, with a few exceptions, be a aubmet of the aystem
Xi08 code, Foxr example, the Loader BIOE does not use the
DEV_WAITFLAG or DEV_POLL Concurrent CP/M eystem functiona. Certain
flalds in the Disk Paramster Headers and Disk Parametér Blocke can
be initialized to 0, 28 in Figure 9-3:

Qoncurrent CP/M System Guilde 9.3 Loader Function Seats

Dliak Parameter Header

ooH XLT 0000 g0 | oo | oooo
[l L L

o8 DEB 0000 0000 DIRBCE
1. L

106 | pATBCB 0000

Disk Parameter Block

ooal BRT B | BrM | =xm DSM DRM. .,
L

0B ..oRM | 00 | 00 0000 OF? esH

10E BHM

Figure 9-3. Disk Parameter Field Initialization

The Loader Pragram and Loader BIOS may be written as amparate
modules, or combined in a single medule as in the example Loader.
The size of theee two modules can vary as dictated by the hardware
environment and the preference of the ayatem implementor. The
LOAD.ABEG file contains the Loader Program and the Loader BIDS.
LOAN.A86 appeara on the Concurrent CP/M release diak, and may be
aasembled and liated for reference purposes.

The Loader Program and the Loader BIOS are in a contiguous section
of the Loader to reduce the size of the Loader image. Grouping the
variant code portiond of the Loader into a single module, allowa the
implementation of nonfile-related functlons 1in the most sigze-
efficient manner. The example Loader BIOS implementse the I0_CONOUT
function in addition to I0O_SELDSK and ID_READ. This Loader BIOY can
be expanded tc support keyboard input to allow the Loader Ptogram to
prompt for uaer optiona at boot time. Howevex, the only Loader BIOS
functions inveked by the Loader BDOS are IO_SELDSK and IO_READ, any
other Loader BIOS functions must be invoked directly by the Loader
Program.

9.4 Track 0 Construction

Track 0 for the example IEM PC bootstrap iz constructed wusing the
following procedure: The Boot Sector ia 02000 (512} bytes long and
is assembled with the command:

A>ASMB6 BOOT

This results in the file BOOT.HB6, which becomes a binary CMD file
with the command:

Concurrcent CP/M System Guide 9.4 Track 0 Construction

A>@ENCMp BOOT B080

The LOAD.ABS file, containing the the Loader Program and the Loader
BIOS8, ie gasembled using the command:

A>ASME6 LOAD

The Loader BDOS atarta a 0000H and ends at 0900H. The LOAD module
gtarte at Q09C0H and enda at 0OEOOH. Thia equals the aize of the 7
eactors remaining after the Boot Seqtor. The IBM PG disk format hae
aight 0200BE-bhyte (512-byte) eectors, or 1000H (4K} bytes per track.
Subtracting (200K, the length of the Boot Sector, we get DEQOH. The
LOADER.HBE file, containing the Loader BIOS, Loader Program and
Loader BIOS, {3 constructed using the command:

A>PIP LOADER.HES=LEDOS.HEE ,LOAD .HEE
Next a binary CMD file is created Erom LOADER.HB6 with CGENCHMD!
A>CBMCND LOADER B0BO
This results in the file LOADER.CMD with a header record defining
the 8080 Model. Note thils CMP file ia net directly executable under
any CP/M operating system, but can ke debugged as outlined below.

Next the BOOT.CMDR and LOARER.CMD fllez are combinsed inte a track
image. Uae DDT-BE or 5ID-86 to do thla:

A>DDTEE 1 or S51D86

~rboot.cmd
8TART END ; aaaa ls paragraph where DDT86

amnaz: 0000 aaaa:027P s places BOOT.CMD

-wtrack0D,80,107f 7 create the 4% file, TRACROD, without

;7 A CMD header

—rtrackD) read the 4K TRACKD file intc memory
ETART END

~bbbh: 0000 bbbb: 0FFF TRACX0) starts at paragraph bbbb

~rloader.cmd read LOADER.CMD to another area of
ETART EWD menory

-xxx510000 xx3x30E7F
-mxzex:80,0E7F, bbhb: 0200

LOADER.CMD starts at paragraph zzzz
move the Loader %o where mector 2
atartd in the track image

write the track image to the file
TRACKO

-wtrack0, bbbb: 0, 0Fre

L e e e

The final step 18 to place the contents of TRACKO onto track Q, The
TCOPY example program accomplishes this with the following command:

A>TCOPY TRACKD

Concurrent CP/M System Guide 9.4 Track 0 Construction

8cratoh diakettes should be used for teating the Boot 8ector and
Loader. TCOPY is lnoluded as the source f£lle TCOPY.A86, and needs
toc be modified toc run in hardware environments octher than the IBM
PC, TCOPY only rung under CP/M-836 and cannct be used under
Concuxrent CE/M,

Tha Loader can ba debugged separately from the Boot Seoctor under
DDT-86 or SID-B6, uming the following commands:

A>DDT86 ; or SIDBA
~rloader .cmd
BTART END ; aaaa is paragraph where DDT86
amaa: 0000 aa=asDBR7F ; places the Loader
—~haaaa,8 t Add B paragraphs to skip over CMD
YYYY 2222 ; header, aaam + B = yyyy
~xca
C3 000G vyyy 7 aet 08 for debugging
-1900 7 IP is et %o 0 by DDTA6 or SIDBE

The 1900 command liata the jumpa to INIT, ENTRY and LOADP to verify
the Leoader Program and the Loader BIOS are at the gorrect offsets,
Breakpreints can now be set in the Loader Program and Loader BIOS.
The Boot Sector can be debugged in a similar mannar, but sectors 2
through 8 need to contain the Loader image 1if the JMPF LOADER
instruction iIn the Boot Sector is to be executed.

9.5 Other Bootatrap Methodsa

The preceding three sections outline the operation and steps for
constructing a bootastrap loader for Concurrent CB/M on the IBM PC.
Many departures from this scheme are possible and they depend on the
hardware environment and the goals of the implementor. The Root
Sector can be eliminated {f the system ROM (or ERCM} can read in the
antire Loader at reset. The Loader can oe eliminated 1f the
CCPM.S5Y5 file is placed on syatem track3a and the ROM can read in
these system tracks at reset. However, thia acheme usually requires
too many system tracks to be practical. Alternatively, the Loader
can be placed lnto a PROM and copied to RAM at reset, eliminating
the need for any system tracks. If the Boot Sector and the Loader
are eliminated, any initializaticn normally performed by the two
modules must be performed in the XICB initialization routine.

Congurrent CP/M Bystem Guide 9.6 Organlxaticn of CCPM.BY¥B

9.6 Organixzation of CCEN.EYE

Tha CCPM.SY8 file, generated by GENCCPM and read by the Loader,
conplste of the seven *.CON filea and any included *.RSP files. The
CCPM,.BY8 file im prefixed by a 128-bvte CMD Header Record, which
containe the following two Group Desoriptors:

G-Form G-Length A-Base G-Min G~-Max
01k XREX 1008h xxXxX XxxXXX

T T 1 T
02h x2XX (varles} XEXX XRXX

Yigure 9-4, Group Descriptors — CCPM.AYE Header Record

Ths first Group Reecriptor repressente the 0,8. Code Group of the
CCPM.BYE file and the second represants the Data. The preceding
Code Group Descriptor has an A-Bmse load addrees at paragraph 1008E,
oI “paragraph:byte" addreas of 01008:00008. Tha A-Bawe value in tha
Data Group Desgriptor varies sccording £o the modules ineluded in
thism group by GENCCPM. The load addrese value shown above ie only
an exanple, The CCPN.5YS file can be loaded and executed at any
address vhere there s sufficient memory space. The entire CCPM.SYS
£ile appears on disk ae shown in Figure 9-5.

Concourrent CB/M Syptem Guide 9.6 Organization of CCPM.HYS

Image in Memory Inage in CCPM,.S8YS
{High Memory)

ENDSEG
Diak Buffers
(Bnd of File)
RSPE
({including THP, CLOCK)
RBPBEG --
0.5. Tabla Space
CCPM. 5Y8
DATA
Syaten GROUP
Data XI0S Code and Data
Area
waenmen QOO O H
{XI08)
0.8. Data
XIO0B8
{c9:,D8:) COPM.BYE
0.8. Code CODE
GROUP
OBSER
CCPM.BYS
Low Memory HEADER

(3tart of File)

Figure 9-5. CCPM System Isage and the CCPM.SYS File

The CCPM.SYS flle is read into memory by the Loader beginning at the
addregs givan by Code Group A-Basa (in the example shown abovs,
paragraph addreas 1008H), and control ia pagaed to the Superviaor
INIT function when the Loader Program executes a JMPF instruction
{(Jump Far) to 1008;:0000H. The Supervigor INIT nust be antered with
C8 set to the value found in the A-BASE field of the code Group
Deacriptor, the IP regiaster equal to 0 and the DS reglster equal to
A-BASE value found in the data Group Descriptar,

End of Bection 9

9-9

Section 10
OEM Utllities

A commarclally viable Concurrent CP/M system requires DEM-aupported
capabllitiea, These capabilitiea include methods for formatting
disk and image backupa of diska. Typically, an OEM suppliea the
following utllities:

a Disk Formatting Utility (FORMAT.CHD)
e Dlsk Copy Dtility {(DCOPY.CMD)

These utilities are naually hardware-specific and elthar make direct
XI03 calla or go directly to the hardware.

10.1 Bypassing the BDOS

When special OEM utilities bypasm the BDOA by making direct XIDE
calls or golng directly to the hardware, several programming
precauticna are necessary to prevent cenflicta due ta the Concurrcent
CP/M multitasking environment. The following steps muat be taken to
prevent other processes from accessing the disk system:

1., Warn the user. This program bypasaes the operating aystem. No
other programs should be running while this program is baing
uzed.

2. Cheak for Version 2 or 3.1 of Concurrent CP/M through tha
& OSVER function. Tha following stepa are specific to thase
varaions of Concurrent CP/M. They do not work in previous
Digital Research operating aystems, nor are they guaranteed to
work in future Digital Rasearch operating systens.

3. 8et the process prlority to 150 or better through the
P_PRIORITY function. If another program i3 running on a
background consocle, it cannot obtain the CPU resource while
this program needs it.

4. Set the P KEEP flag in the Proceas Deacriptor te prevent
termination of the operation without proper cleanup.

5. Make sure the program is running in the foreground and that the
congole ig in DYNAMIC mode. Then lock the congole into the
foreground by setting the WOSWITCH flag in the CCB. This
preventa the user from initiating a program on another virtual
c¢onaole while this program is running in the backgcound,
Becausa the file ayatem is locked,; a program cannoct load from
disgk.

6. Make sure there are no open files in the system. Thia also
detecta background virtoal conscles in BOFFERED mpde.

10-1

Conourrent CP/M System Guide 10.1 Bypassing the BDOS

10.
11.
1z.

13.
14,

Lock the BDOB by reading the MXdisk quens measaga.

You can now safely perform the FORMAT and DCOPY operatlions on
the Aigk system, indepandent of the BDOS.

Once the operations are complete, allew the diek system to be
reset by setting the login seguence number in each affected DPH
to 0. When the disk system is rasei, these drives are reset
even if they are permanent. The login seguence Eleld is 06h
bytes from the beginning of the DPH.

Release the BDOS by writing the MXdisk queue message.

Repet the Disk Bystem with the DRV _ALLRESET function.

Unlock the console system allowing conecle switching by
unsetting the NOBWITCH blt of the CCB_FLAG field in the CCB.

Reset the P_KEEF flag in the Process Deecriptor.

Terminate.

Listing 10-1 illuetrates these steps and shows how to make direct
RIC8 calls to access the disk systam. The routines corresponding to
the steps are labsled for crose~reference purposes.

10-2

Cancurrant CP/M System Guide - 10,1 Bypasaing the BDOS

PAGENIDTH 80

H
’i******iitliiii***i**iiii*iiiii***fiiii**i*t**ti***ii

P PEYSICAL.ABE
«k

;* Sample Program Illustrating Direct Calls to

3k the plak Routinea Iin the XIOSH.

’I

P This program will lock the conacle and diak

¥ aystema, read a physical sactor intec memory

r and gracefully terminate.

*
:t********iit**ti*****ti**ttt*t**tt***tttr***#a*tt*att
true equ OEfFfh
falae egu o]
cr equ 0ah
1£ equ Oah
ecpnlns equ 224
cepmver2 aqu Ql420d

3} XIDB functionm

io seldsk egu Q9h
io _read egu 0ah
io_write equ 0bh

: BYSDAT Offaeta

gy xentry agqu 028h
sy_nvens equ 047h
py_ccb -equ 054h
eBy_openfile equ 088h

;7 Process Descriptor
p flag agqu word ptr 06h
Pp_uda equ word ptr 010h
pE_keap equ 00002h

3 Console Control Block
och_size edqu 02ch
cch _gtate equ word ptr Oeh
cf_boEfered equ 00001h
cf_hackground equ 0oo02h
cf_noawitch edqu 00008h

Listing 10-1. Disk Utility Progrmming Example

10-3

Concurrent CP/M Eyster Guida 10,1 Bypassing the BDOS

; Digk Parameter Headaer
dph_lseqg aqu byte ptr Q6h

; drvvec bits

drivea equ 00001h
driveb aqu 00002h
drivec equ 00004h

3 Rtk drkdb bbb kbbbt k kb Rtk kAR ANRE RN TN A

'L
i

1% CODE SEGMENT

e
;

:iiiiﬁii‘liiiﬁl’tlt#*R*********t****III*’*!!*‘I‘I]‘*]{****

CSEG
ORG 0

Switch Stacke to make sure we have enough.
This is done with interrupts off.

0ld B0BS's and BOBE&'s will allow an
interrupt between SB and BPF setiing.

EYRETRE

pushf | pop bx

¢ll

mav ax,ds | mov Bg,ax
wav Bp,offset tos
push bz | popf

7 Step 1. - Warn the uaar.
mov dx,warning |l call c_writebuf
3 Step 2. - Check for Concurrent CP/M V3.1
call a_omver
and ax,0fffCh
cup ax,ccpmver? | je good_vermion
Jmp bad versicn
good_varaion:

! Step 3 - 8et priority to 150

mav dl,150
<all p prlority ;priority = 150
call get_oavalues ;get OS values

Listing 10-1. (continuea)

10-4

Concurcent CP/M System Guide 10.1 Bypaseing the BDDS

} Step 4 - Bet the P _REEP flag in PD
call no_terminate ;set p_keep flag
; Btep 5 - Lock the conaole

call lock_con :lock coneoles

t Atep 6 and 7 - Leck the BPOS,
i make sure there are no open filea

call lock_disk 11ock bdoa

{ Step 8 ~ Perform the Operation

call operation ;1do operatlon
imp terminate tterminate
aperation:

B ot Yt el et

rl

;7 Do our disk operationas. If we make changea to a
3 disk,; make sure to set the appropriate bit in the
3 drvvac varlable to force the BDOE to reinitlalize
; the drive. In this example are only golng to

1 read a physical sector from diak.

;7 Lete read Track 2 Becter 2 of drive B
t with DMA set to sectorbuf

; Betup for Direct I0 READ call with

; IOPB on Stack.

mov ax,ds raave for DMA aeq
push es | puah ds

mov ed,udaseqg

mov da,syadat

mov ch,l smacnt = 1

mov cl,l] push cx ;drive = B

nov ox,2 | push ox strack = 2

nov cx,2 ! push cx 1sacteor = 2

push ax ;sDMA Seg = Qur D3
mov cx,cffset sectorbuf

push cx yDMA Ofst

mov ax.lo_read
¢+ do the read

callf dword ptr .sy xentry
add sp,10
pop da | pop es
onp 21,0 | je muccesns

mov dx,offaet phyaerr

call ¢ _writebuf

Listing 10-1. ({continued)

10-5

Concurrent CP/M Syxtem Guide 10,1 Bypassing the BDROS

BLCCESa:
: force = keyatroke to allow teatlng
y of locking mechanlaaa
jmp c_read

get osvalues:

; Get System Data Area Hegnent
push es
call s asyadat
mov ayedat.es

; Gat Process Descriptor Address
call p_pdadr
nov pdaddr,bx

1 Get Usar Data Area Begment for
1 XIOS calle

mov ax,es1p_uda(bx]

mov udasey,ax

pop ed
ret

no_terminate:

S s et e e e e

mov b, pdaddyr

pueh de | mov da,sysdat
or p Elag([bx],pf keep
pop ds

rat

lock_disk:

7 Lock the BOOS. Ko BROS calle will ke allowed in
f the system until we unlock it.

1get currently logged in drives
yfor later rewet

call drv_loginvec

mov drvvec,ax
jread mrdisk guele message

mov dx,offset mxdlskapb | call g _open

mov dx,offeet mxdlskgpb | call g read
jturn on bdoelock flag for
yterminate

mev bdoslook, true

Listing 1D-1. {continned)

10-6

Concurrent CP/M Syatem Gulde 10.1 Bypeasasing the BDOS

jverify no open filea. This will
;jalaso check background conaolea in
sbuffered mode since they have open
t1files whan activs.

push ds | mov da,syadat

erp word ptr .sy openfile,0

pop da

je lckb
jError, open filag

jmp openf
1ckb: ret

bdas_unlock:

g A et ot A g e

¢+ make sure BPOH reinitializes them internally.

jreget all loggedin Arivea as well
tas drivea we have played with.
®Or CX,CX
mov ax,drvvec
reasetd: cmp cx,16 | je rdone
tast ax,l | Jz nextdrv
7 we have a logged in deive,
7 get DPH address from XIOB
pueh cx | push ax
pugh eg | push ds
mov e, udsaseg
mov ds,syadat
mov ax,lo seldsk
mov 4dx,0
' callf dword ptr .sy xentry
t+ if lagal drive, set
1 login gequence # to 0.

iret: cop bx,0 1 je nodisk
mov dph_lseq[bx] .0
nodiak: pop da] pop &R

pop ax | pop Cx
jtry anather drive
nextdrv: ine ox
ahr ax,l
jmpa resetd
r all drives can be resat,
: write mxdisk gquasue message
; reset all drives
rdene: mov dx,offset mxdiskdgpb
call q write
jup drv_resetall

Listing 10-1. (continued)

10-7

Concurrent CP/M Syvatem Guide 10.1 Bypassing the BDOB

lock _con:

t Lock the coneole system

call getccbadr
mov bx,ccbadr
push ds | mov da,sysdat
pushf | cli
' make sure our conscle is
} foreground, dynamic
cmp cch state([bx] ,0 | je foreg
popf | pop ds
Jmp in_back

foreq:

; set coneole to NOSWITCH

or ccbh_state[bx],cf_noswltch

popf | pop ds
 turn on conleck flag for
1 terminate

mov oconlock, true

ret

con unlock:

r
: Set console to switchable,

mov bx,cchadr
push ds | mov ds,sysdat
and ccb_state[bx],not cf_noswitgh

pop ds
ret

getcchadr:

= mmr——

t Calculate the CCB address for this conacle.

call c_getnum

xor ah,ah

mov cx,c0b Bize | mul cx
push de | mov dse,syadat
add ax,.sy_ccb

pop da

aov cchadr,ax

rek

bad veraion:
mov dx,coffset wrong_version

jmps errout

Listing 10-1l. (continued)

Concurrent CPF/M System Guide 10.1 MBypaseing the BDOB

in_back:

-

mov dx,offset in background
impe errout

apent
! mev dx,offset openfiles
arraut:
call ¢ writebuf
terminata:
P
7 Step $,10,11 Clean up the File syatem
cmp bdoslock,false | je tfl
call bdoea unlock
} Step 11 - Unlock tha console aystem
t01: omp conlock,falas | Je t02

call con_unlock

3 Step 13 - Unaet the P_KERP flag ln PD
t02: mov bx,pdaddr

push da ! mov da,sysdat

and p_flag[bxz],not pf keep

pon ds

3 5tep 14 ~ Terminate

jmp p_termcpm

% o e s b

C_getnum: mov ©l,153 | jmpa copm
o_reads mov el,l I jmpes ccpm
c_writebuf: mov cl,9 | jops ccpm
drv_lcginvec: mov cl,24 | imps ccpm
drv_rasetall: mav cl,13 | jmpe ccpm
P_pdadr: mov ©l,156 | jmpas ccopm
P_pricrity: mov ¢l,145 | jmpa copm
p_termepm: mov c¢l,0 1 Jjmpe copm
g_open: mov ¢l,135 | jmps copnm
q_read: mov 1,137 | jmps ccpm
g write: mov cl,139 | jmpe copm
B_OBvVar: mov ¢1.163 | jmpa ccpm
8_sysadat: mov cl,154 | jmps ccpm
ccpm: int ccpmint

ret

Listing 10-1. {continued)

10-9

Cencurrant CP/H Byatem Guide 10.1 pBypaseinyg the BDOB

R EI LA P eIt B S A L I R LTI b AL AT LR L L E L
*

P DATA SEGMENT

1*
'*****t*l‘***l****ﬂitiii*ii!*!*!!*flfﬂ**********#ti‘*t**

DBEG

ORG blooH
sysdat aw 0
pdaddr dw 0
udamsag dw 1}
gcbadr dw 0
drvvec dw 1]
bdoelock db falae
canlook db falpe
nxdiskgpb dw a,0,0,0

dab 'M¥disk '
t ERRQR MESSAGES

warning db TPHYEICAL: This program !
db "bypasses the operating !
db 'system, ',0r.1f
db 'Make aure no other '
db Tprogrameg are running.'
db or,l1£,'8’
in_background db 'PHYSICAL: muat ba runm '
db in the faregqround, in'
db ! DYNAMIC mode.',cr,.l£,'3!
wrong_vereion dh 'PHYSICANL: rune only on !
db Concurrent CP/M Vermion 2°
db cr,1£,'§'
ppen_£iles db '"PEYBICAL: cannct run'
db 'while there are open files.'
db cr,if
db VIf wny virtusl econooles ara’
db ' in BUFFERED mode, "' ,or.1f
ab ‘Upa the VCMODE D command tof
db ' mat a virtual coneBble to !
db TDYNAMIC mode.',cr,l1f,'§"'
physerr -1+ "Physical Error on Read.'
ab er,1lf,'§’
gectorbof rb 1024

bisting 10-1l. (continued)

10-10

Ceoncurrent CP/M Syatem Guldes 10.1 Bypaagsing the BDDS

; Lota of Stack. Bottom prefilled with Occh
1 {INT 3 inatruetion} to see 1f we are

{ overrunning the atack. Also if we

} accidently execute it under DDTEE,

t a breakpeint occoursa.

oW 0CCeCH , 0CCCCH , 0CCCCH
Dw 0CCCCH, 0CCCCH , 0CCCCH
oW 0CCCCH, 0CCCCH , 0CCCCH
oW 0CCCCH, 0CCCeH, 0CCCCH
oW 0CCCCH, 0CCCCH , DCCCCH
oW QCQCCH, QCCCCH , 0CCCCH
bW 0CCCCH, 0CCCCH, 0CCCCE
D 0cCcCCH, 0cccCH, 0CCeCH
RN 0lo0H
toa Dw occecH ; DN at end of DATA 8EG

} to make Bure HEX i8
) gene;ataed.

BND 1 End of PHYSICAL.ABS

Liating 10-1l. (continued)

10.2 Directory Initialization in the TORMAT Utility

Tha FORMAT utility initiallzes £resh disk media for use with
Cancurrant CP/M. It im wriltten by the OEM and packaged with
Concurtent CP/M as a system utility., The physical formatting of a
diek 1ia hardware-dependent and therefore is not diacussed here.
Thie section discuasses Initialization of the directory area of a new
diek.

The PORMAT program can initialize the directory with or without time
and date atamping enabled. This can be a vaer optlon in the FORMAT
program. If time and date stamps are naot initimlized. the user gan
indefendenhly enable this feature through the INITDIR and BSET
utiiities.

It is highly recommended that the OEM supports the advanced featurea
of Concurrent CP/M including time and date stamping in the FORMAT
program. This allewa the user to use these Ceatures in thelr
defanlt diak format. OQtherwipe, the user nust firat learn that date
stamps are pcesible and then must use the INITDIR and BET utilities
to allow the use of this feature. If the disk directory ia too
cloge to being f£full, the INITDIR program will not allow the
regtructuring of the directory that ie negessary to include SPCB'e.

10-11

Concurrent CP/M Evatam Guide 10.2 Directory Initisligatien

The coat of anabling the time and date mtamp featurs on a glven disk
is 25% of its total dirsctory space. This apaca 1le used to stora
the time and date lnformation in special directory sntries called
SFCBa. For time and date stemping, every fourth directery sntry
uust be an BFCB. Each S8FCB is logically an extension of the
previcus three dirsctory entriee. Thia methed of atoring date-stamp
information aliows efficient update of date stamps since all of ths
dirsctory information for = given files resides within = eingle 128-
byte loglcal diesk rescord.

A disk wunder Concurzant CP/M is divided into three ateas, the
resexved tracks, tha dlrectory area and the data area. The size of
the directory and reserved azead 14 determined by tha Diskx Paramseter
Bloek, described in Bection 5.5. The data azea starts on the first
diskx allocation block boundary following the dirsctory area.

Reserved Tracks

Directory Area

Data Area

Figure 10-1. Concurrent CB/M Disk Layout

Tha raaerved area and the data area 4o not nead to be initialired to
any partigular valua before usee as a Concurrent CP/M disk. The
dirsctory area, on the other hand, must he initialized to indicate
that no files are on the disk. Also, as dimscusssd balow, tha FORMAT
progrek can reserve spaces for tiee and date information and
initialize the disk to enables this featura.

The directory aree is divided intoc 32-byte atructurss callasd
Ddrectory Entries. The first byte of a Directory Entry dstermines
the typs amdl usage of that entry. For the purposes of directory
initialization, thers are thraa types of Diractory Entrigs that are
of concern: the unused Diragtory Entry, the EFCE Directory Entry
and tha Dirsctory Iambal.

A Jdisk Qdirectory initialirzed without time and date stampa has only
the unused type of Dirsctory Entry. Ao unusad Dirsctory Entry is
irdicated by a OE5H in ita firat byte. The remaining 21 bytes in a
Dirsctory Entry are undefined and can be any valuas.

ig-1z2

Concurrent CP/M Syatem Guide 10,2 Directory Initialization

oH 1H 20H

entry D undefined
1
2

n O0ESH J undefined

Plgure 10-2. Directory Initialization without Time Stamps

A disk directory initlalized to enable time and date atamps nust
have SFCR's ma every fourth Directery Entry. An SFCB ha=z a Q3lH in
the firat byte and all other bytes nust be 0H. Also a directory
label must be included in the directory. This 1s usually the firat
Diractory Entry on the disk. The directory label must be
initiallzed aas shown in Figure 10-3.

;T OCE ODE OEH OFH 108
lﬁzﬂﬂ I WAME é 2 i DATA[ao0H I 00H I 00H I

1o 11H 12H 13H 14H 15H 16H 17H 18H

20H 2080 204 201 20H l 20H 20H I 20H

188 19H 1Al 1BH 1CH 1DH 1ER 1FH 20H
[00l [00 | 00H [00r [00H J 00H | 00A | 00H |

Figure 10-3. Directory Label Initializatian

10-13

Concurrant CP/M Systam Guids 10.2 Directory Initialization

Table 10-1. Directory Label Data Flalds
rield] Explanaticn

NAME An 11 byte fisld containing an ABCII name for the
arive. vUnused bytexz ahould ba initialized +o
blanks (20H).

DATA A bit field that tells the BEDO8 general
characteristice of files on the dizk. The DATA
field can assume the following values:

@ 0508 enmbles date of last modification and date
of last access to be updated when approprlate.

e 030H enables date of last modification and date
of creation to be updated whan appropriate.

The FORMAT program should ask the ueser for the nzme of the dlsk and
whether to use the date of last acceas or the data of creation for
file® on this dipk, The date of lagt modification should alwaye be
umed. If the DATA field is 0H or if the Directory Label doas not
exigk, the time and date featurea is not snablied. The DATA Fiald
muegt ba OB if SFCB'm are not initializsd In ths directory.

10-14

Concurrant CP/M Syatem Guide 10.2 Directory Initialization

0H 18 20H
entry 0 02080 HAME,DATA (Directory Label)
1 OESH undefined (Unused)
2 0ESH undefined (Unuaed)
3 021H NULLS {BPCB)
4 OESH undefined (Unused)
5 O0B5E undefined (Dnusad)
6 QESH undefined (Dnusad)
7 Q021F NULLS {B¥CR)
e e T T L L W R W N e Ta T
T N Y ¥ o W P N W W WV VLW
0ESH undefined (Unumed)
0ESH undefined (Unosad)
DEEH undefined (Unused)
n 021K NULLS (8¥CB)

Figure 10-4. Directory Initialization wWith Time Stamps

BEnd of S8ection 10

10-15

Section 11
End-user Documentation

OEMs must ba mware that the documentatlon supplied by Digital
Reasarch for tha deneric release of Concurrent CP/M deacribes only
the examples XI08 Iimplementation. If the CEM decides to change,
enhanoe, or eliminate a function which impacts the Conourrent CR/M
operator interface, he mumt alse issue dogumentation deperibing the
new implementation. This is best done by purchasing reorint righte
te the Concurrent CP/M pystem publicationa, rewriting them to
reflect the changes, and distributing them along with the OFM-
modifled system.

One area thet ias highly susceptible to medification by the OEM is
the 8tatus Line X102 function. Depending upon the implementation,
it might be deairable to display different, more, or even no atatus
paramnaters. The decumentation supplied with Concurcent CB/M,
however, ampumes that the Statua Line function 1 implementad
axactly like the example XIOF presented herein.

Another area which the OEM might want to change 1z the default login
diak. At syatem boot time, the default system diask aa speclfied in
the syatem GENCCFM mesgion is automatically logged-Iin end displayed
in the Firat system prompt. However, a startup command file,
BTARTUP.N, where N iz the Virtual Conscle number, can be implemented
far each virtual Conasole. Thia £1le can switeh the default logged-
in diak drive to any drive desired, However, the Concurrent C'Pgu
Cperating System User's Guide apsume=s that the prompt will show the
syatem disk. For more Information on startup £iles, s=mee the

Concurrent CP/M Operating Syatem Daer's Guide and the Concurrent
CP/M Operating System Programmer's Referepce Guide.

The Concurrent CP/M aystem prompt is aimilar to the CP/M 3 prompt in
that the User MNumber ia not displayed for User 0. If the uaer
changes to a higher Uaer Wumber, then the User Number is dieplayed
an the firet character of the prompt, for example 5A>. If the OEM
wanta to change this, or any other functlon of the user Interface,
such ags Implementing Programmable Functicon Keys, he can rawrite the

TMP module gource code ingluded with the ayetem. HAowever,
decumenting these changes is entirely the OEM's reaponaibility.

End of Section 11

11-1

Appendix A
Removable Medla

All dAilak drivea are classified under Concurrent CP/M aas having
aither parmanent or removable madia. Removable-madia 4z ives support
medins change=a; permanent drives do not. B8etting the high-order bit
of the CKS field of the drive's DFB marks the drive as a permanent-
madia drive. See Section 5.5, "Disk Parameter Block.™

The PBDOS file myntem makes two important &iatincticne beatween
permanent and removable-media drives. If a drive !s permanent, the
BEDOS always accepts the contents of physical recard buffers as
valid. It alao accepts the results of haah table aearchea en the
drive,

EDpOS handling of removable-media édrives ls more complax, Becauge
the disk medla can be changed ar any time, the 3DOS diacards
directory buffers before performing most syatem calls involving
directory searchee. By rereading the dAisk directory, the BDOE8 can
detect media changes, Whan the BDOS reade a directery record, it
computes a checkaum for the record and compares 1t to tha current
value in the Arive's checksum vector. If the valuea do not mateh,
the BDOS assumes the nedia haa been changed, aborts the ayatem call
routine, and returns an error code to the calling proceas.
Bimilarly, the BDOS nmust verify an unsuccessful hash table aesarch
for a removable-medis drive by accessing the directory. The point
to note ls that the BDOS can only detect a madia change by reading
the directory.

Becauge of the frequent necessity of dlrectory access on removable~-
media Arives, there ia a conaiderable performance overhead on theae
drives compared to permanent Arivea. Another diaadvantage is that,
aince the BDOS can detect media removal anly by a directory access,
inadvertantly changing media during a disk write operation results
in writing erronecus data onto the dlak,

1£, hewever, the disk drive and controller hardware can generate an
interrupt when the drive door is opened, another option for
preventing media change erreors hecomes available. By using the
following procedure, the performance penalty for remcvable-media
drives is practically eliminated,

l. Mark the drive as permanent by aetting the value of the CK8
field in the drive's DPE to 8000H plus the total number of
directory entries divided by 4. For example, you would set the
CEKS for = diak with 96 directory entries to 8018H.

2, Write a Door Open Interrupt routine that sets the DOOR field in
the XIOS Header and the DPH Media FPlag for any drive mignalling
an open door condition.

Concurrent CP/M Syatem Guide A Rexovabla Media

The BDOS checke the XIOS Header DOOR flag on entry to all disk-
related XI0S function calls. If the DOOR flag ie not set, the BDOS
aamumes that the removable medla has not been shanged. If the DOOR
flag ie set (OFFH), the BDOS checks the Media Flag in the DPH of
each corrently logged-in drive. It then reads the entire directory
of the drive to determine whether the mediaz has been changed hefore
performing any operations on the drive. The BDOS alac temporarily
reclasdifies the drive ag a removable-media drive, and discards all
directory buffers tc force all asubseguent directory-related
cperations to mccesms the drive.

In summary, using the DOOR and Media Flag facilitles with removable-
media drives offers two imporkant benefite., ®irst, performance of
removable-pedia drives is enhanced. Second, the integrity of the
dipsk eystem i3 greatly improved because changing media can at no
time reault in & write error.

End of Appendix A

A-2

Appendix B
Graphics Implementation

Conourrent CP/M can aupport graphics on any virtual console agaigned
to a physiocal console that haes graphica capabllitiea. Support ie
provided in the operating syetem for GEX, that has its own saparate
I/0 aystem, GIOH. The CIOE doss ita own hardware initializmation to
put & physical ¢onsole in graphics mode. A graphies procesa that is
in graphica mods can not run on a background ccnacle, because thle
would ceume the foreground conecls teo change to graphice mode.
Aleo, whenever the foreground console ia lnitialized for graphica,
you cannot gwiteh the acreen to ancther virtual conaole. The
following points need to be kept in mind when writing an XIOB for a
syetem that will support araphics.

® I0_SCREEN (Function 30) will be called by the GIOS when it
wants to change a virtual console to graphics or alphanumeric
mode. If the virtual console im in the background and graphics
Ls reguested, IQ_SCREEN muat flagwalt the process. If the
virtual console 12 in the foreground, change the screen mode
and allow the progess to continue. You must regerye at least
one flag for each virtwual console for this purpose. See
Section 6.1 “Screen I/0 Functiona"™ for more information on
I0_ACREEN.

e I0_BWITCH (Functlon 7) muat flagset any procesa that was
flagwaited by IO SCREEN when its virtuoal conacle 1 switched to
the fareground. When a foreground conacle is in graphica moda,
IO _SWITCH will not be called, because PIN calls Function 30
{get), ignoring the switch key if the =screen 1= in graphics
mode. Thus while a graphice procesa is runnlng in graphlca
mode in the foreground, it is not possible to swltch mscreena,
Por more Informaticn on IO_SWITCH see Sactiaon 4.2 "Console I/0
Functione".

e IC STATLINE (Punction 8) must not display the status line on a
conaole that is in graphics mode. Thi=z can be done by checking
the pame varizble in the sgreen structure that Function 30
returns as the screan mods. For more Iinformation on
IO _STATLINE @ee Section 4.2 "Conaole I/0 Functionse®.

End of Appendix B

B-1

Index

A

ABORT,REP, 2-2

Allocatian Vector Addraps,
ALV, 5-23

Auto denaity support, 5-50
Auxiliary input, 4-15
Auxiliary output, 4-16

5-23

Backgreund mode, 4~6

Bamic Dimk Oparating Bystam,
1-3, 1~11

BpO8, 1~3, l~11

BDOS ayatem callm, l-11

BDOS.CON, 2~2

BIOA Conversion to XICH, 3-14

BIOB Jump Tmble, 3-13

Elocking/Deblocking Buffera,
58

Blocking/Dehlocking

Changas from CP/M-B6, 3-14
breakpoints, 8-2
Bypassing the BDOS, 10-1

[

CCB, 1-18, 4-1, 4-2

CCB initialiration, 4-3

OCB tabla, 4-1

CCPM.BYS, 2-1, 3-8, 8-2

CCPM.8YS Header Record, 9-8

CCPMLDR, 3~8

CCPMBEG, 1-17

CCEMVERNUM, 1-~19

Charactar Contrel Blook,
1-1L

Character I/0, 4-1, 6-1

Character I/0 Manager, 1-11

Character I/0 Moduls, 1-3

Checksum Vector Addreaa, 5-22

clo, 1-3

CIO module, 1-11

CIO system calls, 1-11

CIO.CON, 2-2

Cloogk, 3~14

CLOCK.R3P, 2-2

CLS1ZE, 5-32

CMD £file Header, 8-2

CMDIOGGING, 2-7

COMPATMODE, 2-7
coN filem, 2-2
Cancurrent CB/M Organization,
1-3
Concurrant CP/M
faatyres, 1l-1
lavels of interfmcing, 1-1
System Ovarviaw, 1-1
XIo8, 1-1
Conaole Control Block, 4-1, 4-2
Conmale input, 4-8
Conaola input atatue, #4-=7
Console output, 4-%
Coneala ewitching keys, 4-8
consoles, 4-1
cev, 5-22
CTRL-0, 1-13
CTRL~P, 1-13, 4-4
CTRL~8, 1-13

D

Data Buffar Control Block
Eeadar Addresa, 5-23

DATBCB, 5-23

DAY FILE, 1-17

Device Polling, 1-6

Davice polling, 4-16

Dav flagmat, 2-9

DEV_ FLAGWAIT, 4-7

Dey_flagwt, 2-9

DEV_POLL, 4-7, 4-16

DEV_ POLL ayatem call, 1-6

DEV_SETFLAG, 4~7

DEV_SETFLAG syatem call, 1-6

DEV WAITFLAG system call, 1-6

DIR. RSP, 2-2

DIRCE, 5~23

Directory Buffer Control Bleck
Address, 5-23

Directory buffer space, 2-15

Directory hashing, 2-13

Dirsctory hashing spaca, 2-15

Digk buffering, 2-15

Diak definition tablea, 5-9

Disk Errors, 5-17

Disk I/0 Functiona, 5-1

Disk I/0Q

Multisectar, 5-11

Disk Parameter Block Address,

5=-22

Index-1

Disk Parameter Block Worksheet.
5-35

Dlsx Parametar Haadsr,
5-2, 5-21

disk performance tradecffs,
2-15

Dispatcher, 1-&

DISPATCHER,; 1-1b

Blaplay status line, 4-11

DLR, 1-18

DMAOFF, 5-12

DMABEG, b-12

D08 disk errore, 5-4

DOS diske, 5-1

Dot DPE, 5-31

DoOS IDPR, 5-15

DO8 asctor read, 5-6

DOS mector wrlte, 5-B

DPE, 5-22

DPEB Workmheet, 5-35

DPE

Changes from CP/M~B&, 3-14

DPBASE, 5-26

DPPH, 5-21

DPH and GERCCPM, 2-15

DPH Tabla, 5-26

BPE

Changes frow CP/M-B6, 3-14
DRL, 1-18
DRV, 3-11

ENDSEG, 1-17

ENTRY, 3-9, B-2

Eguipment check, 6-11

Error Handling

Diak I/0, 5-17

Externded disk errora, 5-4

Extended DFRB, 5-31

Exterded I/O Eystenm, 1-13

Extanded Input/Output Eystem,
1-3

axtarnal memory fragmentation,
2-11

EXTFLAG, 5-32

F

Far Call, 3-8B

Far Return, 3-8

FAT, 5-24

FATADD, 5-32

File Allocaticn Table, 5-24
fixed-partition memery, 1-8

FLAGS, 1-18, 2-5, 2-9
Flagzat, 2-9

Flagwait, 2-9

FLUSH BUFFERS, 5-9
Fragmentation memory, 2-ll

G

GENCCPM, 1-1, 1-14, 1-21, 2-1

GENCCPM Boolean valued, 2-2

GENCCPM coonand file
example, 2-17

GENCCPM dsfaults, 2-2

GENCCPM DELETESYS command, 2-4

GENCCPM DESTDRIVE command, i-4

GENCCPM Diak Buffaring Menu,
2-13

GERCCPM Disk Puffering Sample
Sasaion, 2-14

GEHCCPM DISKBUFFERS Menu
conmand, 2-5

GEHCCPM error messages,
3-2 ’ 2-.].1

BENCCPM GENEYE command, 2-15

GENCCPM GENSYS Option, 2-15

GENCCPM HELF, 2-2

GENCCPM Help Functicn Bcraens,
24

GENCCPM Input Flles, 2-16

GEMCCPM Main Menu, 2-2

GENCCEM Main Menu opticna, 2-4

GEHCCP?OHnnnry Allocaticn Menu,
2—

GENCCPM Mamory Allocation
Sampla Sassion, 2-10

GENCCPM MEMORY Manu command, 2-5

GENCCPM memory partiticns, 2-11

GENCCPM Operation, 2-1

GENCCPM OSBLABEL Menu, 2-13

GENCCPN OBLABEL Menu coxmand,
2-5

GENCCPM cutput redirsction,
2-16

GENCCPM prompt, 2-2

GENCCPM RSF List Menu, 2-12

GENCCPM RSP List Manu Sampie
Samsion, 2-12

GENCCFM RSF Msnu, 1-20

GENCCPM REFs Menu command, 2-3

GENCCFM GYSPARAMS Menu conmand,
2-4

GEHCCPM Byetem Gensratlon
Messagen, 2-1&

GENCCFM System Parametars Menu,
2-5

Index-2

GEMCCPM VERBOSE command, 2-~4
GENMDEF , 5-9

Gat/pat Hcreen, 6-2

Gat/Sat Scresn Mods, 6-1
graphica implementation, B~1

H

Hardware interfaoe, L-1
Hagh Table Segment, 5-24

I

INIT, 3-8, B-2
Intarnal memory fra.gmanta.t:i.on,
2-11
Internal ayatem calls, 3-21L
Interrupt 10, 6-1, 6-4
Interrup: 11, 6-11
Intarrupt 13, 5-6
Interrupt 16, 6-10
Intarrupt 2-24, 3-9
Interrupt Handler, 3-16
Interrupt—driven devicea, 3-15
Intarrupt—driven Davicas
Changes from CP/M-86, 3-14
Intarrupt-driven I/0, 8-1
Interrupta
spurious, 3-9
IOPH, 5-4, 5-~10
Changes from CP/M-86, 3-14
DOs, 5-15
10 , 1-3
I0_AUXIN, 4~-15
10 _AUZOUT, 4-16
I0TCONIN, 4-8, 6-9
IO COMOUT, 4-9
IO CONWBT, 4-7
I0 EQCK, 5-l11
ID FLUSH, 1-13, 5-7
10 IHTJ.EI_RBAD, 5-86
I0_INT13 WRITE, 5-8
I0 KEYBD, 4-B, 6-9
I0 LSTOUT, 4-15
10 LSTST, 4-14, 4-15
I0 POLL, 4~16
I0 READ, 1-13, 5-4
IO SCREEN, 4-10, 6-2, B-1
I0_BELDSK, 1-13, 5-2
I0 BHFT, 6-10
IQ0 STATLINE, 1-13, 4-4, 4-6&,
T 4~11, 4-~13, &-9, R-1
I0 SWITCH, 4-10, 13-1
I0_VIDEC, 6-4
I0_WRITE, 1-13, 5-7

!

f

.4
Keyboard mnoda, 6-9
L

LCB, 1-19, 4-2, 4-13

LINK, 4-6

List Control Block, 4-Z, 4~13

List devices, 4-2

Liast output, 4-15

LIar OUTPUT, 4-15

Liat scatus, 4-14

LIBT STATUS, 4~15

Lockad recardm, 2-7

LOCKMAX, 2-7

LOCKSEE, 1-18

LOCK_MAX, 1-20

Logleally invariant interface,
1-1

M disk, 5-47

M driva, 5-47

MAL, 1-18

MANBUFBIZE, 4~6

MDUL, 1-18B

Medla Flag, 5-22

Medlia type zelaction, 5-3

MEM, 1~3, 1-8

MEM module, 1-2, 2-11

MEM,CON, 2-2

MEMMAX, 2-7

Memory allocation, 2~l11

Mamory allocation dafaulte,
2-11

Memory Allocation Liet (MAL),
1-8

Memory Allocation Unit (MAU),
1-8

Memory Descriptor (MD), 1-8

Memory disk. 5-47

Memory fragmentation tradecffs,
2-11

Mamory Free List (MFL), 1-8

Memory Layout, 1-4

Mamory management, 1-8

Memory mappad 1/0, 4-10

Memory Mcdule, 1-3

Memory partitions, 2-10, 2-11

MF, 5-22

MFL, 1-18

MIMIC, 4-4

MMP, 1-17

Indax-3

MBCHT, 5-11 Folled 1/0, B8-1

MEOURCE, 4-14 Frocees Rescriptor, 1-6, 1-21,
Multiple media support, 5-50 4=l
Muitiple-sector disk I/0, 5-4 PUL, 1-18

Multimsecter Count, 5-11
Multizector Zisk 1/0
Changes from CP/M-B6, 3-14

MXdisk guewa, 1-13 QBUFSIZE, 2-9
QLR, 1-19
N GMal, 1-18
Qusue Contrgl Block: 2-%9
NCCB, 1-17 Quaus
HCCB field, 4-1 Mutual exclusion, 1-13
NCICDEV, 1-19 MXdiek, 1-~13
NCLETRS, 5-32 Queuaa, 1-7
NCCMDEY, 1-19 Conditional read/write, 1-7
NFATRECE, 5-32 Unocnditional read/write, 1-7
NFATS, 5-32 QUL, 1-18
NFLAGS, 1-17, 2-9
HLCB, 1-17 R
NLETDEV, 1-19
MOPENFILEE, 2-8 Read attribute/character, 6-6
NFDESCE, 2-9 Raead curscr position, 6-5
NGBS, 2~-9 Rand DB sactor, 5-6
NVCHB, 1-17 READ SECTOR, 5-4
NVCNE fisld, 4-1 Real-time Monitor, 1-3, 1-6
Real-Tims Monitor, 4-16
[+] Resntrant XI08 aopda, 1-13
Registar usagas, 3-10
UFF_ 8087, 1.20 Ragidsnt Bystem Froceas,
Opan Tiles, 2-7 1-31, 2-1
CPENMAX, 2-7 Rasldant Bystes Procasses,
CPEN _FILE, 1-19 1-3, 1-20
OPEN_MAX, 1-20 RLR, 1-18
Cparating Byastem Azea, l-4 RSP, 1-3. 1-20
QESTART, 2-B REP Data Structures, 1-20
OWNER, 4-4, 4-14 RSP files, 2-2
OWNER 8087, 1-20 REP
PD and UDA, 1-20
B ralative to SYSDAT, 1-20
REPSEG, 1-17
Partitions RTM, 1-3, 1-&

EEROIY, 2-11 RTM process echeduling, 1-6
PC, 4-5 RTM {usua nanagement, 1-7
PC-MODE, 4-8, &-1, 6-9 RTM system calls, 1-7
PDIBP, 1-16 RTM.CON, 2-2
Phyeical console number, 4-5
Physical conesolas, 4-1 [~
PIN.RSP, 2-2
PLR, 1~18 Screen buffering, 4-1, 4-9
POLL DEVICE, 4-16 gcorean buffering, 4-10
Foll Device Number, 4-1& Ecrean Mode, E-]

Polliscd Device Changes from Scraan mode, &-2
CP/M-86, 3-14 Screen structure, 4-9
Polled devices, 3-15 Scroll down, €-6

Index-¢

Scroll up, 65
SECTOR, 5-12
Sector Pranslation

Changes from CP/M-B6, 3-14

SEG_8087, 1-20

SELDSK DPRBASE Address Return

Function, 5-27
SELECT DISE, 5-2
Semaphores, 2-9
Serial I/0, 4-10
Barial I/D davices, 4-1
8at cursor position, 6-4
Shared coda, 1-8
&hift gtatuas, 6-10
Skew Tabia, 5-16
Spurious interrupts, 3-9
BTATE, 4-&

Btatus line, 4—4, 4-6, 4-11
updating, 4-12
suUp, 1-4
8UP ENTRY, 1-16
SUF Module, 1-3
BUP syastem calls, l-4
SUP.CON, 2-2
Bupervieor Module, 1-4
Bwitoch aoraen, 4-10
SYSDAT, 1-3, 1-21, 5-2
SYSDAT DATA, 1-13
SYSDAT sagument, L-14
SYSDAT Table Area, 1-3
SYSDAT.COM, 2~2
8YSDISK, 1-17
SYSDRIVE, 2-6
System callg
P_CLI.I l-—-3
P _LOAD, 1-3
Syatam Clock, 3-14
Syatem configuration, 4-1
System Datm Axea, 1-3, 1-14
System Tabla Area, 1l-l4
BYS 87 OF, I1-20

T

TEMP DIBK, 1-18

Terminal Megaage Frocess, 1l-1

THRORT, 1-18
TICKS/8EC, 1-18
MR, 1-~1
THMP.REP, 2-2
TMPDRIVE, 2-6
TOD_DAY, 1-19
TOD HR, 1-19
TOD_MIN, 1-1%

TOD_SEC, 1-19

TPA, 1-3

TRACK, 5-11

Transient Frogram Area, 1-3
Tranalation Tabla, 5-21

U

UDA, 1-21

Unintialized interrupts, 3-9
Unumed interrupts, 3-9

Umer Data Area, 1-21

User ilntasrfaces, 1-1

v

Vcr 4"‘5

VERBOSE, 2~2

VERNUM, 1-19

VERSION, 1-19

Video input/output, 6-4
vidac i0, 6-1

Virtual console number, 4-5
Virtual conaples, 4-1
VOUT.RSP, 2-2

Workpheat
DPB, 5-35
Write attxibute/character, €-7
Write character, &-7
WRITE DIBK, 5-7
Write DOE sector, 5-8
Write aserial character, 6-8

X

X108, 1-3, 1-13

XI08 Bulld System Requirements,
3-13

¥IOS§ Bullding fram oP/M-B6 BIOE,
3-13

X108 Clock, 3-14

X108 Data Area, 1-4, 1-14

XI0DS ENTRY, l-16, 3-9

XIOE Entry Points, 3-13

X108 Function namea, 1-3

XIO0S INIT, 1-16

XIDS Interrupt-driven Devices,
3-15

XT08 Liat Device Tunctions,
4-13

Xi08 Segment Address, l-4

Index-5

X108
8080 Model, 1-4
debugging, B8-1
rasantrant code, 1-13
ralationship to CCPM.SYS
£ile, 1-4
apurious interrupt handling,
3-9
XIoe ,CON, 2-2
XLT, 5-21
XPCHNS, 1-20, 4-2

Index-6

NOTES

