CP/M Features and Facilities
The CP/M Editor

DIGITAL

RESEARCH TM

CP/M
Operating System

Manud

COPYRIGHT

Copyright C 1976, 1977, 1978, 1979, 1982, and 1983 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted, transcribed, stored in aretrieval
system, or trandated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579, Pacific Grove, California 93950.

This manual is, however, tutoria in nature. Thus, the reader is granted permission to include the
example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or fitness for any particular
purpose. Further, Digital Research reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of Digital Research to notify
any person of such revision or changes.

TRADEMARKS

CP/M and CP/NET are registered trademarks of Digital Research. ASM, DESPOOL, DDT,
LINK-80, MAC, MP/M, PL/1-80 and SID are trademarks of Digital Research. Intel is a
registered trademark of Intel Corporation. Tl Silent 700 is a trademark of Texas Instruments
Incorporated. Zilog and Z80 are registered trademarks of Zilog, Inc.

The CP/M Operating System Manua was printed in the United States of America.

First Edition: 1976
Second Edition: July 1982
Third Edition: September 1983

Table of Contents

1 CP/M Features and Facilities

1.1 Introduction 1-1
12 Functional .. Description, 1-3
1.2.1 Genera Command Structure 1-3

122FleReferences 1-4

13 Switching . DiskSo 1-7
14 Built-in ...Commandsc.iia... 1-7
141ERA ... 1-8

142DIR ... 1-9

143REN 1-10

144SAVE 1-11

145 ... TYPE 1-11

146USER 1-12

1.5 Line Editing and Output Control

1-12
1.6 Transient Commands
1-14

161 STAT | -15
162 ASM 1-22
163 LOAD ... 1-24
164 PIP .. 1-25
165 ED .. 1-35
166 SYSGEN ... o 1-37
167 SUBMIT ... 1-39
168 DUMP ... 1-41
169 MOVCPM ... e 1-42

17 BDOSEIMOrMeSSagescoiiiiiiiiaiiiiiaaenn. 1-44

1.8 Operationof CP/M ontheMDS 1-46

2 ED

21 IntroductiontoED 2-1
211 EDOpeationcciiiiiiiiiiiiiia. 2-1
212 TextTransfer Functions 2-3
2.1.3 Mae-norv Buffer Organization 2-4
214 LinenumbersandED StartUp 2-5
215 Metnorv Buffer Operation 2-7

216 Command SIrinNgscouiiiiiiiinnaann. 2-8

Table of Contents (continued)

2.1.7 Text Search and Alteration 2-11
2.18 SourcelLibraries 2-15
219 Repetitive Command Execution 2-17
2.2 ED Error Conditions 2-18
2.3 Control Characters and Commands 2-19
3 CP/M Assambler
3.1 Introductionc. i 31
3.2 Program Format 3-3
3.3 FormingtheOperand, 34
331 Labds ... 35
3.3.2 NumericConstants 3-5
333 ResarvedWords ... 3-6
334 StringConstants ... 3-7
3.3.5 Arithmetic and Logical Operators 37
3.3.6 Precedenceof Operators 39
3.4 Assembler Directives ... 3-10
341 TheORGDirectiveccvvviivnn... 3-11
342 TheEND Directive ..., 311
343 TheEQU Directivecciian.. 312
344 TheSET Directiveccoiiiiinn... 3-13
3.45 ThelFand ENDIF Directive 3-13
346 TheDBDirectiveccovviiinn... 3-15
347 TheDWDirectiveccoiiiiion... 3-15
348 TheDSDirectiveccciiiiniinn... 3-16
35 OperationCodeso 3-16
351 Jumps, Cdls,andReturns 3-17
3.5.2 Immediate Operand Instructions 3-19
3.5.3 Increment and Decrement Instructions 3-20
3.5.4 DataMovement Instructions 3-21
3.5.5 Arithmetic Logic Unit Operations 3-22
3.5.6 Control Instuctions 3-24
3.6 Error Messages ... 3-24
3.7 ASampleSession ... 3-26

Table of Contents (continued)

4 CP/M Dynamic Debugging Tool

4.1 Introduction
4.2 DDT Commands

42.1 TheA (Assembly) Command

4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.2.12

4.3

The D (Display) Command
The F (Fill) Command
The G (Go) Command
Thel (Input) Command
TheL (List) Command
The M (Move) Command
The R (Read) Command
The S (Set) Command
The T (Trace) Command
The U (Untrace) Command
The X (Examine) Command

Implementation Notes

4.4 A Sample Program

CP/M 2 System Interface

5.1
5.2
5.3
5.4
5.5
5.6

6 CP/M Alteration

Introduction
Operating Svstem Call Conventions

A Sample Flie-to-File Copy Program
A Sample File Dump Utility
A Sample Random Access Program
System Function Summary

6.1 Introduction
6.2 First-level System Regeneration
6.3 Second-level System Generation
6.4 Sample GETSYSand PUTSYSProgram
6.5 Disk Organizationc.coiiiiiiiinennnennn.
6.6 TheBIOSEntry Points,
6.7 ASampleBIOS
6.8 A SampleCold Start Loader

4-1
4-4
4-4

4-5
4-5
4-6
4-7
4-7
4-8
4-8
4-9
4-9
4-10
4-10

4-11
4-12

Table of Contents (continued)

6.9 Resarved LocationsinPageZeroo.o.o.... 6-26
6.10 DiskParameter Tables i, 6-28
6.11 TheDISKDEFMacroLibraryot 6-34
6.12 Sector Blocking and Deblocking 6-39
Appendixes
A TheMDSBasic1/0System(BIOS)coooiun... A-1
B ASkdeta CBIOSo B-1
C A Skeletal GETSYS/IPUTSYSProgram C-1
D TheMDS-800 Cold Start Loader for CPIM 2 D-1
E A Skeletd ColdStart Loaderccoiiiiiinn... E-1
F CP/M Disk Definition Library ... F-I
G Blocking and Deblocking Algorithms — G-1
H GloSSary .o H-1
I CP/IM MESSA0ES ..ottt 1-1
Tables
1-1 Line-editing Control Characterscoii.n. 1-12
1-2 CP/M Transent Commandscuiiiiiniinennnnns 1-14
1-3 PhysSical DeVICES ...t 1-17
1-4 PIPParameterso 1-31
2-1 ED T TextTransfer Commandsccciiiininnnn... 2-3
2-2 EditingCommands 2-8
2-3 LineeditingControlso 2-9
2-4 ErrorMessageSymbols ... 2-18
2-5 ED Control Characters ..., 2-19
26 EDCOMMaNdScoiiiiiiiiii i 2-20
31 Resarved CharaCters ..., 3-6
3-2 Arithmeticand Logical Operationsccoovun... 3-7
3-3 Assambler DIrectives 3-10
34 Jumps Cdls,andReturns i 3-17
3-5 Immediate Operand Instructionsccu.... 3-19

3-6

Increment and Decrement Instructions 3-20

3-7
1-1
39
3-10
4-1
4-2
4-3
5-1
5-2

6-1
6-2

6-4
6-5
6-6
6-7
6-8
6-9
6-10

2-1

2-3
5-1
5-2
6-1
6-2
6-3
6-4
6-5

Table of Contents (continued)

DataMovement Instructions ccoiiiiiina... 321
Arithmetic Logic Unit Operations ccovvun.... 3-22
Error Codes ... 3-24
Brror MEeSSages ... 3-25
Line-editingControls 4-2
DDT Comniatidsccouiiiiii i it 4-2
CPUREQISIEIS it 4-11
CPIM FIlEtypes ... e 5-7
FileControl Block Fields 59
Edit Control Characters, 5-16
Standard Memory SizeValues, 6-3
Common Vauesfor CP/IM Svstei-nso.... 6-8
CP/M Disk Sector Allocation 6-14
IOBYTEFddVauesoiiiiiiiii . 6-18
BIOSENtry POINtSt 6-20
Reserved LocationsinPageZero ..., 6-26
Disk Parameter Headers i, 6-28
BSHandBLM Vaues i, 6-31
EXMVaUes ... 6-32
BLSTabulation, 6-33
Figures
Overal ED Operationcoouuiiiiiiiiinainans 2-2
Memorv Buffer Organizationccoooun... 2-3
Logica Organization of Memory Buffer 2-5
CP/M Memory Organizationcoiiiiinannn... 5-2
FileControl Block Format 5-8
IOBYTEFEdSco i 6-18
Disk Parameter Header Format 6-28
Disk Parameter Header Table 6-29
Disk Parameter Block Format 6-30
ALOand ALl 6-32

Section 1
CP/M Featuresand Facilities

1.1 Introduction

CP/M isamonitor control program for microcomputer system devel opment that uses floppy
disks or Winchester hard disks for backup storage. Using a computer system based on the Intel
8080 microcomputer, CP/M provides an environment for program construction, storage, and
editing, along with assembly and program checkout facilities. CP/M can be easily altered to
execute with any computer configuration that uses a Zilog Z80 or an Intel 8080 Central
Processing Unit (CPU) and has at least 20K bytes of main memory with up to 16 disk drives. A
detailed discussion of the modifications required for any particular hardware environment is
given in Section 6. Although the standard Digital Research version operates on a single-density
Intel MDS 800, several different hardware manufacturers support their own input-output (1/0)
driversfor CP/M.

The CP/M monitor provides rapid access to programs through a comprehensive file management
package. The file subsystem supports a named file structure, allowing dynamic alocation of file
space as well as sequential and random file access. Using thisfile system, alarge number of
programs can be stored in both source and machine executable form.

CP/M 2 is a high-performance, single console operating system that uses table-driven techniques
to alow field reconfiguration to match awide variety of disk capacities. All fundamental file
restrictions are removed, maintaining upward compatibility from previous versions of release 1.

Features of CP/M 2 include field specification of oneto sixteen logical drives, each containing
up to eight megabytes. Any particular file can reach the full drive size with the capability of
expanding to thirty-two megabytes in future releases. The directory size can be field-configured
to contain any reasonable number of entries, and each file is optionally tagged with Read-Only
and system attributes. Users of CP/M 2 are physically separated by user numbers, with facilities
for file copy operations from one user area to another. Powerful relative-record random access
functions are present in CP/M 2 that provide direct access to any of the 65536 records of an
eight-megabyte file.

1-1

CP/M also supports ED, a powerful context editor, ASM, an Intel-compatible assembler, and
DDT, debugger subsystems. Optiona software includes a powerful Intel-compatible macro
assembler, symbolic debugger, along with various high-level languages. When coupled with
CP/M's Console Command Processor (CCP), the resulting facilities equal or exceed similar large
computer facilities.

CP/M islogicaly divided into severa distinct parts:

-BIOS (Basic I/0O System), hardware-dependent
-BDOS (Basic Disk Operating System)

-CCP (Console Command Processor)

-TPA (Transient Program Area)

The BIOS provides the primitive operations necessary to access the disk drives and to interface
standard peripherals: teletype, CRT, paper tape reader/punch, and user-defined peripherals. Y ou
can tailor peripherals for any particular hardware environment by patching this portion of CP/M.
The BDOS provides disk management by controlling one or more disk drives containing
independent file directories. The BDOS implements disk allocation strategies that provide fully
dynamic file construction while minimizing head movement across the disk during access. The
BDOS has entry points that include the following primitive operations, which the program
accesses:

-SEARCH looks for a particular disk file by name.

-OPEN opens afile for further operations.

-CLOSE closes afile after processing.

-RENAME changes the name of a particular file.

-READ reads arecord from a particular file.

-WRITE writes arecord to a particular file.

-SELECT selects a particular disk drive for further operations.

The CCP provides a symbolic interface between your console and the remainder of the CP/M
system. The CCP reads the console device and processes commands, which include listing the
file directory, printing the contents of files, and controlling the operation of transient programs,
such as assemblers, editors, and debuggers. The standard commands that are available in the CCP
arelisted in Section 1.2.1.

The last segment of CP/M isthe area called the Transient Program Area (TPA). The TPA holds
programs that are loaded from the disk under command of the CCP. During program editing, for
example, the TPA holds the CP/M text editor machine code and data areas. Similarly, programs
created under CP/M can be checked out by loading and executing these programs in the TPA.

1-2

1.1 Introduction CP/M Operating System Manual

Any or al of the CP/M component subsystems can be overlaid by an executing program. That is,
once auser's program is loaded into the TPA, the CCP, BDOS, and BIOS areas can be used as
the program's data area. A bootstrap loader is programmatically accessible whenever the BIOS
portion is not overlaid; thus, the user program need only branch to the bootstrap loader at the end
of execution and the complete CP/M monitor is reloaded from disk.

The CP/M operating system is partitioned into distinct modules, including the BIOS portion that
defines the hardware environment in which CP/M is executing. Thus, the standard system is
easily modified to any nonstandard environment by changing the peripheral driversto handle the
custom system.

1.2 Functional Description

Y ou interact with CP/M primarily through the CCP, which reads and interprets commands
entered through the console. In general, the CCP addresses one of several disks that are on-line.
The standard system addresses up to sixteen different disk drives. These disk drives are labeled
A through P. A disk islogged-in if the CCPis currently addressing the disk. To clearly indicate
which disk isthe currently logged disk, the CCP always prompts the operator with the disk name
followed by the symbol >, indicating that the CCP isready for another command. Upon initial
start-up, the CP/M system isloaded from disk A, and the CCP displays the following message:

CP/M VER x.x

where x.x isthe CP/M version number. All CP/M systems are initially set to operate in a 20K
memory space, but can be easily reconfigured to fit any memory size on the host system (see
Section 1.6.9). Following system sign-on, CP/M automatically logsin disk A, prompts you with
the symbol A>, indicating that CP/M is currently addressing disk A, and waits for a command.
The commands are implemented at two levels: built-in commands and transient commands.

1.2.1 General Command Structure

Built-in commands are a part of the CCP program, while transient commands are loaded into the
TPA from disk and executed. The following are built-in commands:

-ERA erases specified files.

-DIR listsfilenames in the directory.

-REN renames the specified file.

-SAVE saves memory contentsin afile.

-TY PE types the contents of afile on the logged disk.

1-3

1.1 Introduction CP/M Operating System Manual

Most of the commands reference a particular file or group of files. The form of afilereferenceis
specified in Section 1.2.2.

1.2.2 File References

A filereference identifies a particular file or group of files on a particular disk attached to CP/M.
These file references are either unambiguous (ufn) or ambiguous (afn). An unambiguousfile
reference uniquely identifies asingle file, while an ambiguous file referenceis satisfied by a
number of different files.

File references consist of two parts: the primary filename and the filetype. Although the filetype
isoptional, it usualy is generic. For example, the filetype ASM is used to denote that thefileis
an assembly language source file, while the primary filename distinguishes each particular source
file. The two names are separated by a period, as shown in the following example:

filenametyp

In this example, filename isthe primary filename of eight characters or less, and typ isthe
filetype of no more than three characters. As mentioned above, the name

filename

isalso allowed and is equivalent to afiletype consisting of three blanks. The characters used in
specifying an unambiguous file reference cannot contain any of the following special characters:

<> ,50=?2 1% () /\

while al alphanumerics and remaining specia characters are alowed.

An ambiguous file reference is used for directory search and pattern matching. The form of an
ambiguous file reference is similar to an unambiguous reference, except the symbol ? can be
interspersed throughout the primary and secondary names. In various commands throughout
CP/M, the ? symbol matches any character of afilename in the ? position. Thus, the ambiguous
reference

X?Z.CM

1-4

1.2 Functional Description CP/M Operating System Manua

matches the following unambiguous filenames
XYZ.COM

and

X3Z.CAM

The wildcard character can also be used in an ambiguous file reference. The * character replaces
all or part of afilename or filetype. Note that

equals the ambiguousfile reference
while

filename.*

and

*.typ

are abbreviations for

filename.??7?

and

respectively. As an example,
A>DIR* *

isinterpreted by the CCP as a command to list the names of all disk filesin the directory. The
following example searches only for afile by the name X.Y:

A>DIR X.Y

1-5

1.2 Functional Description CP/M Operating System Manua

Similarly, the command

A>DIR X?Y.CM

causes a search for all unambiguous filenames on the disk that satisfy this ambiguous reference.
The following file references are valid unambiguous file references:

X

X.Y

XYZ
XYZ.COM
GAMMA
GAMMA.1

As an added convenience, the programmer can generally specify the disk drive name aong with
the filename. In this case, the drive name is given as aletter A through P followed by a colon (©).
The specified drive is then logged-in before the file operation occurs. Thus, the following are
valid file references with disk name prefixes:

AXY
P:XYZ.COM
B:XYZ
B:X.A”M
C.GAMMA
C*.ASM

All aphabetic lower-case lettersin file and drive names are translated to upper-case when they
are processed by the CCP.

1-6

1.2 Functional Description CP/M Operating System Manua

1.3 Switching Disks

The operator can switch the currently logged disk by typing the disk drive name, A through P,
followed by a colon when the CCP iswaiting for console input. The following sequence of
prompts and commands can occur after the CP/M system is loaded from disk

A:

CPIM VER 2.2

A>DIR List al fileson disk A.
A:SAMPLE ASM SAMPLE PRN

A>B: Switch to disk B.

B>DIR *.ASM Listall ASM fileson B.
B:DUMP ASM FILES ASM

B>A: Switch back to A.

1.4 Built-in Commands

Thefile and device reference forms described can now be used to fully specify the structure of
the built-in commands. Assume the following abbreviations in the description below:

ufn unambiguous file reference
afn ambiguousfile reference

Recall that the CCP aways translates |ower-case characters to upper-case charactersinternaly.

Thus, lower-case alphabetics are treated asif they are upper-case in command names and file
references.

1-7

1.3 Switching Disks

CP/M Operating System Manual

1.4.1 ERA Command

Syntax:

ERA afn

The ERA (erase) command removes files from the currently logged-in disk, for example, the disk
name currently prompted by CP/M preceding the >. Thefilesthat are erased are those that satisfy
the ambiguous file reference afn. The following examplesillustrate the use of ERA:

ERA X.Y

ERA X.*

ERA * ASM

ERA X?Y.CM

ERA *.*

ERA B:*.PRN

Thefile named X.Y on the currently logged disk is removed from the disk
directory and the space is returned.

All fileswith primary name X are removed from the current disk.
All files with secondary name ASM are removed from the current disk.

All files on the current disk that satisfy the ambiguous reference X?Y.C?M
are deleted.

Erase al files on the current disk. In this case, the CCP prompts the
console with the message

ALL FILES (Y/N)?

which requiresaY response before files are actually removed.

deleted, independently of the currently logged disk.

1-8

1.4 Built-in Commands CP/M Operating System Manual

1.4.2 DIR Command
ntax:
DIR afn

The DIR (directory) command causes the names of all filesthat satisfy the ambiguous filename
afn to be listed at the console device. As a special case, the command

DIR

liststhe files on the currently logged disk (the command DIR is equivalent to the command DIR
* *). Thefollowing are valid DIR commands:

DIR X.Y
DIR X?Y.CM
DIR??2Y

Similar to other CCP commands, the afn can be preceded by a drive name. The following DIR
commands cause the selected drive to be addressed before the directory search takes place:

DIR B:
DIRB:X.Y
DIRB:*.A”M

If no files on the selected disk satisfy the directory request, the message NO FILE appears at the
console.

1-9

1.4 Built-in Commands CP/M Operating System Manual

1.4.3 REN Command
ntax:
REN ufnl=ufn2

The REN (rename) command allows you to change the names of files on disk. Thefile satisfying
ufn2 is changed to ufnl. The currently logged disk is assumed to contain the file to rename
(ufn2). Y ou can also type aleft-directed arrow instead of the equal sign if the console supports
this graphic character. The following are examples of the REN command:

REN X.Y=Q.R Thefile Q.Rischanged to X.Y.
REN XYZ.COM=XYZ.XXX Thefile XYZ.COM ischanged to XYZ.XXX.

The operator precedes either ufnl or ufn2 (or both) by an optional drive address. If ufnlis
preceded by adrive name, then ufn2 is assumed to exist on the same drive. Similarly, if ufn2is
preceded by a drive name, then ufnl is assumed to exist on the drive aswell. The same drive
must be specified in both casesif both ufnl and ufn2 are preceded by drive names. The following
REN commandsillustrate this format:

REN A:X.ASM=Y.ASM Thefile Y.ASM ischanged to X.ASM on drive A.
REN B:ZAP.BAS=ZOT.BAS Thefile ZOT.BASischanged to ZAP.BAS on drive B.
REN B:A.ASM=B:A.BAK Thefile A.BAK isrenamed to A.ASM on drive B.

If ufnl isalready present, the REN command responds with the error FILE EXISTS and not
perform the change. If ufn2 does not exist on the specified disk, the message NO FILE is printed
at the console.

1-10

1.4 Built-in Commands CP/M Operating System Manual

1.4.4 SAVE Command

Syntax:

SAVE nufn

The SAVE command places n pages (256-byte blocks) onto disk from the TPA and names this
fileufn. In the CP/M distribution system, the TPA starts at 100H (hexadecimal) which isthe
second page of memory. The SAVE command must specify 2 pages of memory if the user's
program occupies the area from 100H through 2FFH. The machine code file can be subsequently
loaded and executed. The following are examples of the SAVE command:

SAVE 3 X.COM Copies 100H through 3FFH to X.COM.

SAVE40Q Copies 100H through 28FFH to Q. Note that 28 is the page
count in 28FFH, and that 28H =2 * 16 + 8 = 40 decimal.

SAVE4 XY Copies 100H through 4FFH to X.Y.

The SAVE command can aso specify adisk drive in the ufn portion of the command, as shown
in the following example:

SAVE 10 B:ZO0T.COM Copies 10 pages, 100H through OAFFH, to thefile
ZOT.COM on drive B.
1.45TYPE Command

Syntax:
TYPE ufn

The TY PE command displays the content of the ASCII source file ufn on the currently logged
disk at the console device. The following are valid TY PE commands:

TYPEX.Y

TYPE X.PLM
TYPE XXX

1-11

1.4 Built-in Commands CP/M Operating System Manual

The TY PE command expands tabs, CTRL-I characters, assuming tab positions are set at every
eighth column. The ufn can aso reference adrive name.

TYPE B:X.PRNThefile X.PRN from drive B is displayed.
1.4.6 USER Command

ntax:
USERnN
The USER command allows maintenance of separate filesin the same directory. In the syntax
line, nisan Integer value in the range 0 to 15. On cold start, the operator is automatically logged
into user area number O, which is compatible with standard CP/M 1 directories. Y ou can issue
the USER command at any time to move to another logical area within the same directory.
Drivesthat are logged-in while addressing one user number are automatically active when the

operator moves to another. A user number issimply a prefix that accesses particular directory
entries on the active disks.

The active user number is maintained until changed by a subsequent USER command, or until a
cold start when user O is again assumed.

1.5 Line Editing and Output Control
The CCP alows certain line-editing functions while typing command lines. The CTRL-key
sequences are obtained by pressing the control and letter keys simultaneously. Further, CCP
command lines are generally up to 255 characters in length; they are not acted upon until the
carriage return key is pressed.

Table 1-1. Line-editing Control Characters

Character Meaning

CTRL-C Reboots CP/M system when pressed at start of line.

CTRL-E Physical end of line; carriage isreturned, but lineis not sent
until the carriage return key is pressed.

CTRL-H Backspaces one character position.

1-12

1.4 Built-in Commands CP/M Operating System Manual

CTRL-I

CTRL-M

CTRL-P

CTRL-R

CTRL-S

CTRL-U

CTRL-X

CTRL-Z

rub/del

Terminates current input (line-feed).

Terminates current input (carriage return).

Copies all subsequent console output to the currently assigned list device
(see Section 1.6.1). Output is sent to the list device and the console device

until the next CTRL-Pis pressed.

Retypes current command line; types a clean line following character
deletion with rubouts.

Stops the consol e output temporarily. Program execution and output
continue when you press any character at the console, for example another
CTRL-S. Thisfeature stops output on high speed consoles, such as CRTSs,
in order to view a segment of output before continuing.

Deletes the entire line typed at the console.

Same as CTRL-U.

Ends input from the console (used in PIP and ED).

Deletes and echoes the last character typed at the console.

1-13

1.5 Line Editing and Output Control CP/M Operating System Manual

1.6 Transent Commands

Transient commands are loaded from the currently logged disk and executed in the TPA. The
transient commands for execution under the CCP are below. Additional functions are easily
defined by the user (see Section 1.6.3).

Table 1-2. CP/M Transient Commands

Command

Function

STAT

ASM

LOAD

DDT

PIP

ED

SY SGEN

SUBMIT

DUMP

Lists the number of bytes of storage remaining on the currently logged disk,

provides statistical information about particular files, and displays or alters device

assignment.

Loads the CP/M assembler and assembl es the specified program from disk.

Loadsthefilein Intel HEX machine code format and produces afile in machine

executable form which can be loaded into the TPA. This loaded program becomes
anew command under the CCP.

L oads the CP/M debugger into TPA and starts execution.

Loads the Periphera Interchange Program for subsequent disk file and peripheral
transfer operations.

L oads and executes the CP/M text editor program.
Creates anew CP/M system disk.
Submits afile of commands for batch processing.

Dumps the contents of afilein hex.

MOV CPM Regenerates the CP/M system for a particular memory size.

1-14

1.6 Transent Commands CP/M Operating System Manual

Transient commands are specified in the same manner as built-in commands, and additional
commands are easily defined by the user. For convenience, the transient command can be
preceded by a drive name which causes the transient to be loaded from the specified drive into
the TPA for execution. Thus, the command

B:STAT

causes CP/M to temporarily log in drive B for the source of the STAT transient, and then return
to the original logged disk for subsequent processing.

1.6.1 STAT Command
ntax:

STAT
STAT "command line"

The STAT command provides general statistical information about file storage and device
assignment. Specia forms of the command line allow the current device assignment to be

examined and altered. The various command lines that can be specified are shown with an
explanation of each form to the right.

STAT If you type an empty command line, the STAT transient cal cul ates the storage
remaining on all active drives, and prints one of the following messages:

d: R'W, SPACE: nnnK
d: R/O, SPACE: nnnK

for each active drive d:, where R/W indicates the drive can be read or written, and
R/O indicates the drive is Read-Only (a drive becomes R/O by explicitly setting it
to Read-Only, as shown below, or by inadvertently changing disks without
performing awarm start). The space remaining on the disk in drived: is
givenin kilobytes by nnn.

STAT d: If adrive nameisgiven, then the drive is selected before the storage is computed.
Thus, the command STAT B: could be issued while logged into drive A, resulting
in the message

BYTES REMAINING ON B: nnnK

1-15

1.6 Transent Commands CP/M Operating System Manual

STAT afn The command line can also specify a set of filesto be scanned by STAT. Thefiles
that satisfy afn are listed in alphabetical order, with storage requirements
for each file under the heading:

RECSBYTES EXT D:FILENAME.TYP
rrrr bbbk ee d:filename.typ

where rrrr is the number of 128-byte records allocated to the file, bbb isthe
number of kilobytes allocated to the file (bbb=rrrr* 128/1024), ee is the number of
16K extensions (ee=bbb/16), d is the drive name containing thefile (A ... P),
filename is the eight-character primary filename, and typ is the three-character
filetype. After listing the individual files, the storage usage is summarized.

STAT d:afn The drive name can be given ahead of the afn. The specified driveisfirst
selected, and the form STAT afn is executed.

STAT d:=R/O Thisform sets the drive given by d to Read-Only, remaining in effect until
the next warm or cold start takes place. When a disk is Read-Only, the message

BDOS ERR ON d: Read-Only

appearsif thereis an attempt to write to the Read-Only disk. CP/M waits until a
key is pressed before performing an automatic warm start, at which time the disk
becomes R/W.

The STAT command allows you to control the physical-to-logical device assignment. See the
IOBY TE function described in Sections 5 and 6. There are four logical periphera devices that
are, at any particular instant, each assigned one of severa physical periphera devices. The
followingisalist of the four logical devices:

- CON: isthe system console device, used by CCP for communication with the
operator.

- RDR: is the paper tape reader device.

- PUN: is the paper tape punch device.

- LST: isthe output list device.

1-16

1.6 Transent Commands CP/M Operating System Manual

The actual devices attached to any particular computer system are driven by subroutinesin the
BIOS portion of CP/M. Thus, the logical RDR: device, for example, could actually be ahigh
speed reader, teletype reader, or cassette tape. To alow some flexibility in device naming and
assignment, severa physical devices are defined in Table 1-3.

Table 1-3. Physical Devices

Device Meaning

TTY: Teletype device (slow speed console)

CRT: Cathode ray tube device (high speed console)

BAT: Batch processing (consoleis current RDR:, output goes to current LST: device)
UCL: User-defined console

PTR: Paper tape reader (high speed reader)

URL1: User-defined reader #1

UR2: User-defined reader #2

PTP: Paper tape punch (high speed punch)
UP1: User-defined punch #1

UP2: User-defined punch #2

LPT: Line printer

ULZL: User-defined list device #1

1-17

1.6 Transent Commands CP/M Operating System Manual

It is emphasized that the physical device names might not actually correspond to devices that the
names imply. That is, you can implement the PTP: device as a cassette write operation. The exact
correspondence and driving subroutine is defined in the BIOS portion of CP/M. In the standard
distribution version of CP/M, these devices correspond to their names on the MDS 800
development system.

The command,
STAT VAL.:
produces a summary of the available status commands, resulting in the output:

Temp R/O Disk d:$R/O

Set Indicator: filename.typ $R/O $R/W $SY S $DIR
Disk Status: DSK: d:DSK

lobyte Assign:

which gives an instant summary of the possible STAT commands and shows the permissible
logical-to-physical device assignments:

CON:=TTY:CRT:BAT:UCI:
RDR:=TTY:PTR:URI:UR2:
PUN:=TTY:PTP.UP1L:UP2:
LST:=TTY:CRT:.LPT:ULI:

Thelogical deviceto the left takes any of the four physical assignments shown to the right. The
current logical-to-physical mapping is displayed by typing the command:

STAT DEV:

This command produces alist of each logical device to the left and the current corresponding
physical device to the right. For example, the list might appear as follows:

CON:=CRT:
RDR:=URI:
PUN:=PTP:
LST:=TTY:

1-18

1.6 Transent Commands CP/M Operating System Manual

The current logical-to-physical device assignment is changed by typing a STAT command of the
form:

STAT Id1=pd1,ld2=pd2,...,|dn=pdn

where |d1 through |dn are logical device names and pd1 through pdn are compatible physical
device names. For example, |d1 and pdl appear on the sameline in the VAL: command shown
above. Thefollowing example showsvalid STAT commands that change the current
logical-to-physical device assignments:

STAT CON:=CRT:
STAT PUN:=TTY:LST:=LPT: RDR:=TTY

The command form,
STAT d:filename.typ $S

where d: is an optional drive name and filename.typ is an unambiguous or ambiguous filename,
produces the following output display format:

Size Recs Bytes Ext Acc

48 48 6K 1R/OA:ED.COM
5 55 12K | R/O (A:PIP.COM)
65536 128 16K 2R/W A:X.DAT

where the $S parameter causes the Size field to be displayed. Without the $S, the Sizefield is
skipped, but the remaining fields are displayed. The Sizefield lists the virtua file size in records,
while the Recs field sums the number of virtual records in each extent. For files constructed
sequentially, the Size and Recsfields are identical. The Bytesfield lists the actual number of
bytes allocated to the corresponding file. The minimum allocation unit is determined at
configuration time; thus, the number of bytes corresponds to the record count plus the remaining
unused space in the last allocated block for sequential files. Random access files are given data
areas only when written, so the Bytes field contains the only accurate alocation figure. In the
case of random access, the Size field gives the logical end-of-file record position and the Recs
field counts the logical records of each extent. Each of these extents, however, can contain
unallocated holes even though they are added into the record count.

1-19

1.6 Transent Commands CP/M Operating System Manual

The Ext field counts the number of physical extents alocated to the file. The Ext count
corresponds to the number of directory entries given to the file. Depending on allocation size,
there can be up to 128K bytes (8 logical extents) directly addressed by a single directory entry. In
aspecia case, there are actually 256K bytes that can be directly addressed by a physical extent.

The Acc fidld givesthe R/O or R/W fileindicator, which you can change using the commands
shown. The four command forms,

STAT d:filename.typ $R/O
STAT d:filename.typ SR/IW
STAT d:filename.typ $SY S
STAT d:filename.typ $DIR

set or reset various permanent file indicators. The R/O indicator places thefile, or set of files, in
a Read-Only status until changed by a subsequent STAT command. The R/O statusis recorded in
the directory with the file so that it remains R/O through intervening cold start operations. The
R/W indicator placesthefile in a permanent Read-Write status. The SY Sindicator attaches the
system indicator to the file, while the DIR command removes the system indicator. The
filename.typ may be ambiguous or unambiguous, but files whose attributes are changed are listed
at the console when the change occurs. The drive name denoted by d: is optional.

1-20

1.6 Transent Commands CP/M Operating System Manual

When afileis marked R/O, subsequent attempts to erase or
write into the file produce the following BDOS message at your
screen:

BDOS Err on d: File R/IO

lists the drive characteristics of the disk named by d: that isin therange A:, B:,...,P.. Thedrive
characteristics are listed in the following format:

d: Drive Characteristics
65536: 128 Byte Record Capacity
8192: Kilobyte Drive Capacity
128: 32 Byte Directory Eritries
0: Checked Directory Eritries
1024: Records/Extent
128: Records/BlocK
58: Sectors/TracK
2: Reserved TracKs

where d: is the selected drive, followed by the total record capacity (65536 is an elght-megabyte
drive), followed by the total capacity listed in kilobytes. The directory sizeislisted next,
followed by the checked entries. The number of checked entriesis usualiv identical to the
directory size for removable media, because this mechanism is used to detect changed media
during CP/M operation without an intervening warm start. For fixed media, the number is usually
zero, because the media are not changed without at least a cold or warm start.

The number of records per extent determines the addressing capacity of each directory entry
(1024 times 128 bytes, or 128K in the previous example). The number of records per block
shows the basic alocation size (in the example, 128 records/block times 128 bytes per record, or
16K bytes per block). The listing is then followed by the number of physical sectors per track and
the number of reserved tracks.

1-21

1.6 Transent Commands CP/M Operating System Manual

For logical drivesthat share the same physical disk, the number of reserved tracks can be quite
large because this mechanism is used to skip lower-numbered disk areas allocated to other
logical disks. The command form

STAT DSK:

produces a drive characteristics table for all currently active drives. The final STAT command
formis

STAT USR:

which produces alist of the user numbers that have files on the currently addressed disk. The
display format is

ActiveUser: 0
ActiveFiles;013

where thefirst line lists the currently addressed user number, as set by the last CCP USER
command, followed by alist of user numbers scanned from the current directory. In this case, the
active user number is O (default at cold start) with three user numbers that have active files on the
current disk. The operator can subsequently examine the directories of the other user numbers by
logging in with USER 1 or USER 3 commands, followed by a DIR command at the CCP level.

1.6.2 ASM Command

Syntax:

ASM ufn

The ASM command loads and executes the CP/M 8080 assembler. The ufn specifies a sourcefile
containing assembly language statements, where the filetype is assumed to be ASM and is not

specified. The following ASM commands are valid:

ASM
ASM GAMMA

The two-pass assembler is automatically executed. Assembly errors that occur during the second
pass are printed at the console.

1-22

1.6 Transent Commands CP/M Operating System Manual

The assembler produces afile:
X.PRN

where X isthe primary name specified in the ASM command. The PRN file contains alisting of
the source program with embedded tab charactersif present in the source program, along with the
machine code generated for each statement and diagnostic error messages, if any. The PRN fileis
listed at the console using the TY PE command, or sent to a peripheral device using PIP (see
Section 1.6.4). Note that the PRN file contains the original source program, augmented by
miscellaneous assembly information in the leftmost 16 columns; for example, program addresses
and hexadecimal machine code. The PRN file serves as a backup for the original sourcefile. If
the source file is accidentally removed or destroyed, the PRN file can be edited by removing the
leftmost 16 characters of each line (see Section 2). Thisis done by issuing a single editor macro
command. The resulting file isidentical to the original source file and can be renamed from PRN
to ASM for subsequent editing and assembly. Thefile

A HEX
is aso produced, which contains 8080 machine language in Intel HEX format suitable for
subsequent loading and execution (see Section 1.6.3). For compl ete details of CP/M's assembly

language program, see Section 3.

The source file for assembly is taken from an aternate disk by prefixing the assembly language
filename by adisk drive name. The command

ASM B:ALPHA

loads the assembler from the currently logged drive and processes the source program
ALPHA.ASM on drive B. The HEX and PRN files are also placed on drive B in this case.

1-23

1.6 Transent Commands CP/M Operating System Manual

1.6.3 LOAD Command
ntax:
LOAD ufn

The LOAD command reads the file ufn, which is assumed to contain HEX format machine code,
and produces a memory image file that can subsequently be executed. The filename ufnis
assumed to be of the form:

X.HEX

and only the filename X need be specified in the command. The LOAD command creates afile
named

X.COM

that marks it as containing machine executable code. Thefileis actually loaded into memory and
executed when the user types the filename X immediately after the prompting character > printed
by the CCP.

Generally, the CCP reads the filename X following the prompting character and looks for a
built-in function name. If no function name is found, the CCP searches the system disk directory
for afile by the name

X.COM

If found, the machine code is loaded into the TPA, and the program executes. Thus, the user need
only LOAD ahex file once; it can be subsequently executed any number of times by typing the
primary name. Thisway, you can invent new commands in the CCP. Initialized disks contain the
transient commands as COM files, which are optionally deleted. The operation takes place on an
aternate drive if the filenameis prefixed by a drive name. Thus,

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and operates on drive B
after execution begins.

1-24

1.6 Transent Commands CP/M Operating System Manual

Note: the BETA.HEX file must contain valid Intel format hexadecimal machine code records
(as produced by the ASM program, for example) that begin at 100H of the TPA. The addressesin
the hex records must be in ascending order; gapsin unfilled memory regions are filled with

zeroes by the LOAD command as the hex records are read. Thus, LOAD must be used only for
creating CP/M standard COM files that operate in the TPA. Programs that occupy regions of
memory other than the TPA are loaded under DDT.

1.6.4PIP

Syntax:

PIP
Pl P destination=source#1,sourcet?,...,sourcetn

PIP isthe CP/M Periphera Interchange Program that implements the basic media conversion
operations necessary to load, print, punch, copy, and combine disk files. The PIP program is
initiated by typing one of the following forms:

PIP
PIP command line

In both cases PIP isloaded into the TPA and executed. In the first form, PIP reads command
lines directly from the console, prompted with the * character, until an empty command lineis
typed (for example, asingle carriage return isissued by the operator). Each successive command
line causes some media conversion to take place according to the rules shown below.

In the second form, the PIP command is equivaent to the first, except that the single command
line given with the PIP command is automatically executed, and PIP terminates immediately with
no further prompting of the console for input command lines. The form of each command lineis

destination=source#1,source#?,...,sourcetn

where destination is the file or peripheral device to receive the data, and sourcetl,...,sourcefn is
aseries of one or more files or devices that are copied from left to right to the destination.

1-25

1.6 Transent Commands CP/M Operating System Manual

When multiple files are given in the command line (for example, n>1), the individual filesare
assumed to contain ASCII characters, with an assumed CP/M end-of-file character (CTRL-Z) at
the end of each file (see the O parameter to override this assumption). Lower-case ASCII
alphabetics are internally translated to upper-case to be consistent with CP/M file and device
name conventions. Finally, the total command line length cannot exceed 255 characters. CTRL-E
can be used to force a physical carriage return for lines that exceed the console width.

The destination and source elements are unambiguous references to CP/M source files with or
without a preceding disk drive name. That is, any file can be referenced with a preceding drive
name (A: through P:) that defines the particular drive where the file can be obtained or stored.
When the drive name is not included, the currently logged disk is assumed. The destination file
can also appear as one or more of the source files; in which case the source file is not altered
until the entire concatenation is complete. If it already exists, the destination file is removed if
the command line is properly formed. It is not removed if an error condition arises. The
following command lines, with explanations to the right, are valid as input to PIP:

X=Y Copiesto file X fromfileY, where X and Y are unambiguous
filenames; Y remains unchanged.

X=Y,Z Concatenatesfiles Y and Z and copiesto file X, with Y and Z
unchanged.

X.ASM=Y ASM,Z.ASM Createsthefile X.ASM from the concatenation of theY and
Z.ASM files.

NEW.ZOT=B:OLD.ZAP Movesacopy of OLD.ZAP from drive B to the currently logged
disk; namesthe file NEW.ZOT.

B:A.U=B:B.V,A:CW,D.X Concatenatesfile B.Y from drive B with C.W from drive A and
D.X from the logged disk; createsthe file A.U on drive B.

1-26

1.6 Transent Commands CP/M Operating System Manual

For convenience, PIP allows abbreviated commands for transferring files between disk drives.
The abbreviated PIP forms are

PIP d:=afn

PIP d1:=d2:afn
PIP ufn=d2:
PIP d1:ufn=d2:

Thefirst form copies al files from the currently logged disk that satisfy the afn to the samefiles
ondrived, whered = A...P. The second form is equivalent to the first, where the source for the
copy isdrive d2 whered2 = A ... P. The third form is equivalent to the command PIP
d1:ufn=d2:ufn which copies the file given by ufn from drive d2 to the file ufn on drive d1. The
fourth form is equivalent to the third, where the source disk is explicitly given by d2.

The source and destination disks must be different in al of these cases. If an afn is specfied, PIP
lists each ufn that satisfiesthe afn asit is being copied. If afile exists by the same name asthe
destination file, it is removed after successful completion of the copy and replaced by the copied
file.

The following PIP commands give examples of valid disk-to-disk copy operations:

B=*.COM Copies al files that have the secondary name COM to drive B from
the current drive.
A:=B:ZAP.* Copiesal filesthat have the primary name ZAP to drive A from
drive B.
ZAP.ASM=B: Same as ZAP.ASM=B:ZAP.ASM
B:ZOT.COM=A: Same as B:ZOT.COM=A:ZOT.COM
B:=GAMMA.BAS Same as B:GAMMA .BAS=GAMMA .BAS

B:=A:GAMMA.BAS Same as B:GAMMA .BASSA:GAMMA.BAS

1-27

1.6 Transent Commands CP/M Operating System Manual

PIP alows reference to physical and logical devices that are attached to the CP/M svstem. The
device names are the same as given under the STAT command, along with a number of specially
named devices. Thefollowing isalist of logical devicesgiven inthe STAT command

CON: (console)
RDR: (reader)
PUN: (punch)
LST: (list)

while the physical devicesare

TTY: (console, reader, punch, or list)
CRT: (console, or list), UCL: (console)
PTR: (reader), URI: (reader), UR2: (reader)
PTP: (punch), UPI: (punch), UP2: (punch)
LPT: (list), ULI: (list)

The BAT: physical deviceis not included, because this assignment is used only to indicate that
the RDR: and LST: devices are used for console input/output.

The RDR, LST, PUN, and CON devices are al defined within the BIOS portion of CP/M, and
are easily altered for any particular 1/0 system. The current physical device mapping is defined
by IOBY TE; see Section 6 for adiscussion of this function. The destination device must be
capable of receiving data, for example, data cannot be sent to the punch, and the source devices
must be capable of generating data, for example, the LST: device cannot be read.

The following list describes additional device names that can be used in PIP commands.

-NUL: sends 40 nulls (ASCII 0s) to the device. This can be issued at the end of punched
output.

-EOF: sends a CP/M end-of-file (ASCII CTRL-Z) to the destination device (sent automatically
at the end of all ASCII datatransfers through PIP).

-INP: isaspecial PIP input source that can be patched into the PIP program. PIP gets the input

data character-by-character, by CALLing location 103H, with data returned in location
109H (parity bit must be zero).

1-28

1.6 Transent Commands CP/M Operating System Manual

-OUT: isaspecia PIP output destination that can be patched into the PIP program. PIP CALLSs
location 106H with datain register C for each character to transmit. Note that locations
109H through 1FFH of the PIP memory image are not used and can be replaced by
special purpose driversusing DDT (see Section 4).

-PRN: isthe same as L ST, except that tabs are expanded at every eighth character position,
lines are numbered, and page gjects are inserted every 60 lineswith an initial gect (same
as using PIP options [t8np]).

File and device names can be interspersed in the PIP commands. In each case, the specific
deviceisread until end-of-file (CTRL-Z for ASCI|I files, and end-of-data for non-ASCII disk
files). Datafrom each device or file are concatenated from left to right until the last data source
has been read.

The destination device or fileiswritten using the data from the source files, and an end-of-file
character, CTRL-Z, is appended to the result for ASCII files. If the destination isadisk file, a
temporary fileis created (3 secondary name) that is changed to the actual filename only on
successful completion of the copy. Files with the extension COM are always assumed to be
non-ASCI|.

The copy operation can be aborted at any time by pressing any key on the keyboard. PIP responds
with the message ABORTED to indicate that the operation has not been completed. If any
operation is aborted, or if an error occurs during processing, PIP removes any pending commands
that were set up while using the SUBMIT command.

PIP performs a specia function if the destination is adisk file with type HEX (an Intel
hex-formatted machine code file), and the source is an external peripheral device, such as a paper
tape reader. In this case, the PIP program checks to ensure that the source file contains a properly
formed hex file, with legal hexadecimal values and checksum records.

When an invalid input record is found, PIP reports an error message at the console and waits for
corrective action. Usually, you can open the reader and rerun a section of the tape (pull the tape
back about 20 inches). When the tape is ready for the reread, a single carriage return is typed at
the console, and PIP attempts another read. If the tape position cannot be properly read, continue
the read by typing areturn following the error message, and enter the record manually with the
ED program after the disk file is constructed.

PIP allows the end-of-file to be entered from the console if the source fileis an RDR: device. In

this case, the PIP program reads the device and monitors the keyboard. If CTRL-Z istyped at the
keyboard, the read operation is terminated normally.

1-29

1.6 Transent Commands CP/M Operating System Manual

The following are valid PIP commands:
PIP LST:=X.PRN

Copies X.PRN to the LST device and terminates the PIP program.
PIP

Starts PIP for a sequence of commands. PIP prompts with *.
*CON:=X.ASM,Y.ASM,Z. ASM

Concatenates three ASM files and copies to the CON device.
*X.HEX=CON:,Y.HEX,PTR:

Creates aHEX file by reading the CON until a CTRL-Z istyped, followed by data
from Y.HEX and PTR until a CTRL-Z is encountered.

PIP PUN:=NUL:,X.ASM,EOF:;,NUL.:

Sends 40 nulls to the punch device; copies the X.ASM file to the punch, followed
by an end-of-file, CTRL-Z, and 40 more null characters.

(carriage return)

A single carriage return stops PIP.
Y ou can also specify one or more PIP parameters, enclosed in left and right square brackets,
separated by zero or more blanks. Each parameter affects the copy operation, and the enclosed
list of parameters must immediately follow the affected file or device. Generdly, each parameter

can be followed by an optional decimal integer value (the S and Q parameters are exceptions).
Table 1-4 describes valid PIP parameters.

1-30

1.6 Transent Commands CP/M Operating System Manual

Parameter

Table 1-4. PIP Parameters

Meaning

B

Dn

Gn

a
following

Blocks mode transfer. Data are buffered by PIP until an ASCII x-off character,
CTRL-S, isreceived from the source device. This alows transfer of datato adisk
file from a continuous reading device, such as a cassette reader. Upon receipt of
the x-off, PIP clears the disk buffers and returns for more input data. The amount
of datathat can be buffered depends on the memory size of the host system. PIP
issues an error message if the buffers overflow.

Deletes characters that extend past column n in the transfer of datato the
destination from the character source. This parameter is generally used to truncate
long lines that are sent to a narrow printer or console device.

Echoes al transfer operations to the console as they are being performed.

Filters form-feeds from thefile. All embedded form-feeds are removed. The P
parameter can be used simultaneously to insert new form-feeds.

Getsfile from user number n (nin the range 0-15).
Transfers HEX data. All data are checked for proper Intel hex file format.
Nonessential characters between hex records are removed during the copy

operation. The console is prompted for corrective action in case errors occur.

Ignores :00 records in the transfer of Intel hex format file. The | parameter
automatically sets the H parameter.

Tranglates upper-case al phabetics to lower-case.
Adds line numbers to each line transferred to the destination, starting at one and
incrementing by 1. Leading zeroes are suppressed, and the number is followed by

colon. If N2 is specified, leading zeroes are included and atab isinserted
the number. Thetab isexpanded if T is set.

1-31

1.6 Transent Commands CP/M Operating System Manual

O
Pn
used,

QSZ

trand ates
specify a

trand ation.

Tn

Transfers non-ASCI1 object files. The normal CP/M end-of-fileisignored.

Includes page gects at every n lineswith aninitial pagegect. If n=1oris
excluded atogether, page g ects occur every 60 lines. If the F parameter is
form-feed suppression takes place before the new page gects are inserted.

Quits copying from the source device or file when the string S, terminated by
CTRL-Z, is encountered.

Reads system files.

Start copying from the source device when the string s, terminated by CTRL-Z, is
encountered. The S and Q parameters can be used to abstract a particular section
of afile, such as asubroutine. The start and quit strings are always included in the
copy operation.

If you specify acommand line after the PIP command keyword, the CCP

strings following the S and Q parameters to uppercase. If you do not
command line, PIP does not perform the automatic upper-case

Expands tabs, CTRL-I characters, to every nth column during the transfer of
characters to the destination from the source.
Trand ates |ower-case al phabetics to upper-case during the copy operation.

Verifies that data have been copied correctly by rereading after the write operation
(the destination must be adisk file).

Writes over R/O files without console interrogation.

Zeros the parity bit on input for each ASCII character.

1-32

1.6 Transent Commands CP/M Operating System Manual

The following examples show valid PIP commands that specify parametersin the file transfer.
PIP X.ASM=B:[V]

Copies X.ASM from drive B to the current drive and verifies that the data were
properly copied.

PIPLPT:=X.ASM[NT8U]

Copies X.ASM to the LPT: device; numbers each line, expands tabs to every
eighth column, and trand ates |ower-case al phabetics to upper-case.

PIP PUN:=X.HEX]I],Y.ZOT[H]
First copies X.HEX to the PUN: device and ignores the trailing :00 record in
X.HEX; continues the transfer of data by reading Y.ZOT, which contains HEX
records, including any :00 records it contains.

PIP X.LIB=Y.ASM[sSUBR1:*zqJMP L3"Z]
Copiesfrom thefile Y.ASM into the file X.LIB. The command starts the copy
when the string SUBR1.: has been found, and quits copying after the string IMP

L3 is encountered.

PIP PRN:=X.ASM[p50]
Sends X.ASM to the LST: device with line numbers, expands tabs to every eighth
column, and elects pages at every 50th line. The assumed parameter list for a PRN

file is nt8p60; p50 overrides the default value.

Under normal operation, PIP does not overwrite afile that is set to a permanent R/O status. If an
attempt is made to overwrite an R/O file, the following prompt appears:

DESTINATION FILE ISR/O, DELETE (Y/N)?
If youtypeY, thefileis overwritten. Otherwise, the following response appears.

** NOT DELETED **

1-33

1.6 Transent Commands CP/M Operating System Manual

Thefiletransfer is skipped, and PIP continues with the next operation in sequence. To avoid the
prompt and response in the case of R/O file overwrite, the command line can include the W
parameter, as shown in this example:

PIP A:=B:*.COM[W]

The W parameter copies al nonsystem files to the A drive from the B drive and overwrites any
R/O filesin the process. If the operation involves several concatenated files, the W parameter
need only be included with the last file in thelist, asin this example:

PIP A.DAT=B.DAT,F-NEW.DAT,G:OLD.DAT[W]

Files with the system attribute can be included in PIP transfersif the R parameter is included;
otherwise, system files are not recognized. For example, the command line:

PIP ED.COM=B:ED.COM[R]

reads the ED.COM file from the B drive, even if it has been marked as an R/O and system file.
The system file attributes are copied, if present.

Downward compatibility with previous versions of CP/M is only maintained if the file does not
exceed one megabyte, no file attributes are set, and the fileis created by user O. If compatibility is
required with nonstandard, for example, double-density versions of 1.4, it might be necessary to
select 1.4 compatibility mode when constructing the internal disk parameter block. See Section 6
and refer to Section 6.10, which describes BIOS differences.

Note:to copy filesinto another user area, PIP.COM must be located in that user area. Use the
following procedure to make a copy of PIP.COM in another user area.

USER O Login user 0.
DDT PIP.COM (note PIP size s) Load PIP to memory.
GO Return to CCP.
USER 3 Login user 3.

SAVE sPIP.COM

In this procedure, sistheintegral number of memory pages, 256- byte segments, occupied by
PIP. The number s can be determined when PIP.COM isloaded under DDT, by referring to the
value under the NEXT display. If, for example, the next available addressis 1D00, then
PIP.COM requires 1C hexadecimal pages, or 1 times 16 + 12 = 28 pages, and the value of sis 28
in the subsequent save. Once PIP is copied in this manner, it can be copied to another disk
belonging to the same user number through normal PIP transfers.

1-34

1.6 Transent Commands CP/M Operating System Manual

1.6.5 ED Command
ntax:
ED ufn

The ED program isthe CP/M system context editor that allows creation and alteration of ASCII
filesin the CP/M environment. Complete details of operation are given in Section 2. ED allows
the operator to create and operate upon source files that are organized as a sequence of ASCII
characters, separated by end-of-line characters (a carriage return/line-feed sequence). Thereisno
practical restriction on line length (no single line can exceed the size of the working memory)

that is defined by the number of characters typed between carriage returns.

The ED program has a number of commands for character string searching, replacement, and
insertion that are useful for creating and correcting programs or text files under CP/M. Although
the CP/M has a limited memory work space area (approximately 5000 charactersin'a 20K CP/M
system), the file size that can be edited is not limited, since data are easily paged through this
work area.

If it does not exist, ED creates the specified source file and opens the file for access. If the source
file does exist, the programmer appends data for editing (see the A command). The appended
data can then be displayed, altered, and written from the work area back to the disk (see the W
command). Particular pointsin the program can be automatically paged and located by context,
allowing easy access to particular portions of alarge file (see the N command).

If you type the following command line:
ED X.ASM
the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data during the ED run. Upon completion of ED, the X.ASM file (original file)
isrenamed to X.BAK, and the edited work fileisrenamed to X.ASM. Thus, the X.BAK file
contains the original unedited file, and the X.ASM file contains the newly edited file. The
operator can aways return to the previous version of afile by removing the most recent version
and renaming the previous version. If the current X.ASM file has been improperly edited, the
following sequence of commands reclaim the backup file.

1-35

1.6 Transent Commands CP/M Operating System Manual

DIR X.*Checksto seethat BAK fileis available.
ERA X.ASMErases most recent version.
REN X.ASM=X.BAKRenamesthe BAK fileto ASM.

Y ou can abort the edit at any point (reboot, power failure, CTRL-C, or CTRL-Q command)
without destroying the original file. In this case, the BAK fileis not created and the origina file
isaways intact.

The ED program allows the user to edit the source on one disk and create the back-up file on
another disk. Thisform of the ED command is

ED ufn d:

where ufn is the name of thefileto edit on the currently logged disk and d is the name of an
aternate drive. The ED program reads and processes the source file and writes the new file to
drive d using the name ufn. After processing, the original file becomes the back-up file. If the
operator is addressing disk A, the following command is valid.

ED X.ASM B:

This editsthe file X.ASM on drive A, creating the new file X.$$$ on drive B. After a successful
edit, A:X.ASM isrenamed to A:X.BAK, and B:X.$$$ is renamed to B:X.ASM. For
convenience, the currently logged disk becomes drive B at the end of the edit. Notethat if afile
named B:X.ASM exists before the editing begins, the following message appears on the screen:
FILE EXISTS

This message is a precaution against accidentally destroying a source file. Y ou should first erase
the existing file and then restart the edit operation.

1-36

1.6 Transent Commands CP/M Operating System Manual

Similar to other transient commands, editing can take place on a drive different from the
currently logged disk by preceding the source filename by a drive name. The following are
examples of valid edit requests:

ED A:X.ASMEditsthefile X ASM on drive A, with new file and back-up on drive A.

ED B:X.ASM A:Editsthefile X.ASM on drive B to the temporary file X.$$$ on drive A.
After editing, this command changes X.ASM on drive B to X.BAK and changes X.$$$ on drive
A to X.ASM

1.6.6 SYSGEN Command
Syntax:
SY SGEN
The SY SGEN transient command allows generation of an initialized disk containing the CP/M
operating system. The SY SGEN program prompts the console for commands by interacting as
shown.
SY SGEN<cr>
Initiates the SY SGEN program.
SY SGEN VERSION x.x

SY SGEN sign-on message.

SOURCE DRIVE NAME
(OR RETURN TO SKIP)

Respond with the drive name (one of the letters A, B, C, or D) of the disk
containing a CP/M system, usually A. If acopy of CP/M aready existsin memory
due to aMOVCPM command, press only a carriage return. Typing adrive
named causes the response:
SOURCE ON d THEN TYPE RETURN

Place a disk containing the CP/M operating system on drived (disoneof A, B, C,
or D). Answer by pressing a carriage return when ready.

1-37

1.6 Transent Commands CP/M Operating System Manual

FUNCTION COMPLETE
Systemis copied to memory. SY SGEN then prompts with the following:

DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

If adisk isbeing initialized, place the new disk into adrive and answer with the
drive name. Otherwise, press a carriage return and the system reboots from drive
A. Typing drive name d causes SY SGEN to prompt with the following message:

DESTINATION ON d
THEN TYPE RETURN

Place new disk into drive d; press return when ready.
FUNCTION COMPLETE
New disk isinitialized in drive d.

The DESTINATION prompt is repeated until asingle carriage return is pressed at the console, so
that more than one disk can be initialized.

Upon completion of a successful system generation, the new disk contains the operating system,
and only the built-in commands are available. An IBM-compatible disk appearsto CP/M asa
disk with an empty directory; therefore, the operator must copy the appropriate COM files from
an existing CP/M disk to the newly constructed disk using the PIP transient.

Y ou can copy al filesfrom an existing disk by typing the following PIP command:

PIP B:=A:* *[v]

This command copies all filesfrom disk drive A to disk drive B and verifies that each file has
been copied correctly. The name of each fileis displayed at the console as the copy operation
proceeds.

Note that a SY SGEN does not destroy the files that already exist on adisk; it only constructs a

new operating system. If adisk is being used only on drives B through P and will never be the
source of a bootstrap operation on drive A, the SY SGEN need not take place.

1-38

1.6 Transent Commands CP/M Operating System Manual

1.6.7 SUBMIT Command

Syntax:

SUBMIT ufn parm#l ... parm#n

The SUBMIT command allows CP/M commands to be batched for automatic processing. The
ufn given in the SUBMIT command must be the filename of afile that exists on the currently
logged disk, with an assumed file type of SUB. The SUB file contains CP/M prototype
commands with possible parameter substitution. The actual parameters parm#l ... parm#n are
substituted into the prototype commands, and, if no errors occur, the file of substituted
commands are processed sequentially by CP/M.

The prototype command file is created using the ED program, with interspersed $ parameters of
the form:

$1$2$3...5n

corresponding to the number of actual parameters that will be included when the file is submitted
for execution. When the SUBMIT transient is executed, the actual parameters parm#l ... parm#n
are paired with the formal parameters $1 ... $n in the prototype commands. If the numbers of
formal and actual parameters do not correspond, the SUBMIT function is aborted with an error
message at the console. The SUBMIT function creates afile of substituted commands with the
name

$$$.5UB

on the logged disk. When the system reboots, at the termination of the SUBMIT, this command
fileisread by the CCP as a source of input rather than the console. If the SUBMIT function is
performed on any disk other than drive A, the commands are not processed until the disk is
inserted into drive A and the system reboots. Y ou can abort command processing at any time by
pressing the rubout key when the command is read and echoed. In this case, the $$$.SUB fileis
removed and the subsequent commands come from the console. Command processing is also
aborted if the CCP detects an error in any of the commands. Programs that execute under CP/M
can abort processing of command files when error conditions occur by erasing any existing
$$$.SUB file.

To introduce dollar signsinto a SUBMIT file, you can type a $$ which reducesto asingle $

within the command file. An up arrow, /|, precedes an alphabetic character s, which produces a
single CTRL-X character within thefile.

1-39

1.6 Transent Commands CP/M Operating System Manual

The last command in a SUB file can initiate another SUB file, allowing chained batch
commands.

Suppose the file ASMBL.SUB exists on disk and contains the prototype commands:

ASM $1

DIR $1.*

ERA *.BAK
PIP $2:=$1.PRN
ERA $1.PRN

then, you issue the following command:
SUBMIT ASMBL X PRN

The SUBMIT program reads the ASMBL.SUB file, substituting X for al occurrences of $1 and
PRN for al occurrences of $2. Thisresultsin a $$$.SUB file containing the commands:

ASM X

DIR X.*

ERA *.BAK

PIP PRN:=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.
The SUBMIT function can access a SUB file on an alternate drive by preceding the filename by a

drive name. Submitted files are only acted upon when they appear on drive A. Thus, it is possible
to create a submitted file on drive B that is executed at alater time when inserted in drive A.

1-40

1.6 Transent Commands CP/M Operating System Manual

An additional utility program called XSUB extends the power of the SUBMIT facility to include
lineinput to programs as well as the CCP. The XSUB command isincluded as the first line of

the SUBMIT file. When it is executed, XSUB self-relocates directly below the CCP. Al
subsequent SUBMIT command lines are processed by XSUB so that programs that read buffered
console input, BDOS Function 10, receive their input directly from the SUBMIT file. For
example, the file SAVER.SUB can contain the following SUBMIT lines:

XSUB

DDT

| $1.COM

R

GO

SAVE 1 $2.COM

a subsequent SUBMIT command, such as
A:SUBMIT SAVER PIPY
substitutes PIP for $1 and Y for $2 in the command stream. The XSUB program loads, followed
by DDT, which is sent to the command lines PIP.COM, R, and GO, thus returning to the CCP.
The fina command SAVE 1 Y.COM is processed by the CCP.

The XSUB program remains in memory and prints the message
(xsub active)
on each warm start operation to indicate its presence. Subsequent SUBMIT command streams
do not require the XSUB, unless an intervening cold start occurs. Note that XSUB must be
loaded after the optional CP/M DESPOOL utility, if both are to run simultaneously.
1.6.8 DUMP Command

ntax:

DUMP ufn
The DUMP program types the contents of the disk file (ufn) at the console in hexadecimal form.
The file contents are listed sixteen bytes at atime, with the absolute byte address listed to the | eft
of each line in hexadecimal. Long typeouts can be aborted by pressing the rubout key during

printout. The source listing of the DUMP program is given in Section 5 as an example of a
program written for the CP/M environment.

1-41

1.6 Transent Commands CP/M Operating System Manual

1.6.9 MOVCPM Command
ntax:
MOVCPM

The MOV CPM program allows you to reconfigure the CP/M system for any particular memory
size. Two optional parameters can be used to indicate the desired size of the new system and the
disposition of the new system at program termination. If the first parameter is omitted or an * is
given, the MOV CPM program reconfigures the system to its maximum size, based upon the
kilobytes of contigous RAM in the host system (starting at 0000H). If the second parameter is
omitted, the system is executed, but not permanently recorded; if * isgiven, the systemisleftin
memory, ready for a SY SGEN operation. The MOV CPM program relocates a memory image of
CP/M and places thisimage in memory in preparation for a system generation operation. The
followingisalist of MOVCPM command forms:

MOYCPM Relocates and executes CP/M for management of the current memory
configuration (memory is examined for contiguous RAM, starting at
100H). On completion of the relocation, the new system is executed but
not permanently recorded on the disk. The system that is constructed
contains a BIOS for the Intel MDS 800.

MOVCPM n Creates arelocated CP/M system for management of an n kilobyte system
(n must be in the range of 20 to 64), and executes the system as described.

MQYCPM * * Constructs arelocated memory image for the current memory
configuration, but leaves the memory image in memory in preparation for
a SY SGEN operation.

MOYCPM n * Constructs arelocated memory image for an n kilobyte memory system,
and leaves the memory image in preparation for a SY SGEN operation.

1-42

1.6 Transent Commands CP/M Operating System Manual

For example, the command,
MOVCPM * *

constructs anew version of the CP/M system and leaves it in memory, ready for a SY SGEN
operation. The message

READY FOR 'SYSGEN' OR
'SAYE 34 CPMxx.COM'

appears at the console upon completion, where xx is the current memory sizein kilobytes. Y ou
can then type the following sequence:

SY SGEN This starts the system generation.
SOURCE DRIVE NAME Respond with a carriage return to skip the CP/M read (OR
RETURN TO SKIP) operation, because the system is already in memory asa

result of the previous MOV CPM operation.

DESTINATION DRIVE NAME Respond with B to write new system to the disk in drive B.

OR RETURN TO REBOQT) SY SGEN prompts with the following message:
DESTINATION ON B, Place the new disk on drive B and pressthe RETURN key
THEN TYPE RETURN when ready.

If you respond with A rather than B above, the system iswritten to drive A rather than B.
SY SGEN continues to print this prompt:

DESTINATION DRIVE NAME (OR RETURN TO REBOQT)

until you respond with a single carriage return, which stops the SY SGEN program with a system
reboot.

1-43

1.6 Transent Commands CP/M Operating System Manual

Y ou can then go through the reboot process with the old or new disk. Instead of performing the
SY SGEN operation, you can type a command of the form:

SAVE 34 CPMxx.COM
at the completion of the MOV CPM function, where xx isthe value indicated in the SY SGEN
message. The CP/M memory image on the currently logged disk isin aform that can be patched.
Thisis necessary when operating in a nonstandard environment where the BIOS must be altered
for aparticular peripheral device configuration, as described in Section 6.
Thefollowing are valid MOV CPM commands:
MOV CPM 48 Constructs a48K version of CP/M and starts execution.

MOV CPM 48 * Constructs a48K version of CP/M in preparation for permanent
recording; the response is

READY FOR 'SYSGEN' OR
'‘SAVE 34 CPM48.COM'

MOVCPM Constructs a maximum memory version of CP/M and starts
execution.

The newly created system is serialized with the number attached to the original disk and is
subject to the conditions of the Digital Research Software Licensing Agreement.

1.7 BDOSError Messages

There are three error situations that the Basic Disk Operating System intercepts during file
processing. When one of these conditions is detected, the BDOS prints the message:

BDOS ERR ON d: error
where d is the drive name and error is one of the three error messages.
BAD SECTOR

SELECT
READ ONLY

1-44

1.6 Transent Commands CP/M Operating System Manual

The BAD SECTOR message indicates that the disk controller electronics has detected an error
condition in reading or writing the disk. This condition is generally caused by a malfunctioning
disk controller or an extremely worn disk. If you find that CP/M reports this error more than once
amonth, the state of the controller electronics and the condition of the media should be checked.

Y ou can also encounter this condition in reading files generated by a controller produced by a
different manufacturer. Even though controllers claim to be IBM compatible, one often finds
small differencesin recording formats. The MDS-800 controller, for example, requires two bytes
of onesfollowing the data CRC byte, which is not required in the IBM format. As aresult, disks
generated by the Intel MDS can be read by ailmost all other IBM-compatible systems, while disk
files generated on other manufacturers' equipment produce the BAD SECTOR message when
read by the MDS. To recover from this condition, press a CTRL-C to reboot (the safest course),
or areturn, which ignores the bad sector in the file operation.

Note: pressing areturn might destroy disk integrity if the operation is adirectory write. Be sure
you have adequate back-upsin this case.

The SELECT error occurs when there is an attempt to address a drive beyond the range
supported by the BIOS. In this case, the value of d in the error message gives the selected drive.
The system reboots following any input from the console.

The READ ONLY message occurs when thereis an attempt to write to adisk or file that has
been designated as Read-Only in a STAT command or has been set to Read-Only by the BDOS.
Reboot CP/M by using the warm start procedure, CTRL-C, or by performing a cold start
whenever the disks are changed. If a changed disk is to be read but not written, BDOS allows the
disk to be changed without the warm or cold start, but internally marks the drive as Read-Only.
The status of the drive is subsequently changed to Read-Write if awarm or cold start occurs. On
issuing this message, CP/M waits for input from the console. An automatic warm start takes
place following any input.

1-45

1.7 BDOS Error Messages CP/M Operating System Manual

1.8 Operation of CP/M on the MDS

This section gives operating procedures for using CP/M on the Intel MDS microcomputer
development system. Basic knowledge of the MDS hardware and software systems is assumed.

CP/M isinitiated in essentially the same manner as the Intel |SIS operating system. The disk
drives are labeled 0 through 3 on the MDS, corresponding to CP/M drives A through D,
respectively. The CP/M system disk isinserted into drive 0, and the BOOT and RESET switches
are pressed in sequence. The interrupt 2 light should go on at this point. The space bar isthen
pressed on the system console, and the light should go out. If it does not, the user should check
connections and baud rates. The BOOT switch is turned off, and the CP/M sign-on message
should appear at the selected console device, followed by the A> system prompt. Y ou can then
issue the various resident and transient commands.

The CP/M system can be restarted (warm start) at any time by pushing the INT 0 switch on the
front panel. The built-in Intel ROM monitor can be initiated by pushing the INT 7 switch, which
generates an RST 7, except when operating under DDT, in which casethe DDT program gets
control instead.

Diskettes can be removed from the drives at any time, and the system can be shut down during
operation without affecting data integrity. Do not remove a disk and replace it with another
without rebooting the system (cold or warm start) unless the inserted disk is Read-Only.

As aresult of hardware hang-ups or malfunctions, CP/M might print the following message:
BDDS ERR ON d: BAD SECTOR

where d isthe drive that has a permanent error. This error can occur when drive doors are opened
and closed randomly, followed by disk operations, or can be caused by adisk, drive, or controller
failure. Y ou can optionally elect to ignore the error by pressing a single return at the console. The
error might produce a bad data record, requiring reinitialization of up to 128 bytes of data. Y ou
can reboot the CP/M system and try the operation again.

Termination of a CP/M session requires no special action, except that it is necessary to remove

the disks before turning the power off to avoid random transients that often make their way to the
drive electronics.

1-46

1.8 Operation of CP/M on the MDS CP/M Operating System Manual

Y ou should use IBM-compatible disks rather than disks that have previously been used with any
ISIS version. In particular, the ISIS FORMAT operation produces nonstandard sector numbering
throughout the disk. This nonstandard numbering seriously degrades the performance of CP/M,
and causes CP/M to operate noticeably slower than the distribution version. If it becomes
necessary to reformat a disk, which should not be the case for standard disks, a program can be
written under CP/M that causes the MDS 800 controller to reformat with sequential sector
numbering (1-26) on each track.

Generally, IBM-compatible 8-inch disks do not need to be formatted. However, 5 1/4-inch disks
need to be formatted.

End of Section 1

1.8 Operation of CP/M on the MDS CP/M Operating System Manual

Section 2
The CP/M Editor

2.1 Introduction to ED

ED isthe context editor for CP/M, and is used to create and alter CP/M sourcefiles. To start ED,
type a command of the following form:

ED filename
or
ED filename.typ

Generdly, ED reads segments of the source file given by filename or filename.typ into the
central memory, where you edit the file and it is subsequently written back to disk after
aterations. If the source file does not exist before editing, it is created by ED and initialized to
empty. The overall operation of ED is shown in Figure 2-1.

2.1.1 ED Operation

ED operates upon the source file, shown in Figure 2-1 by x.y, and passes all text through a
memory buffer where the text can be viewed or atered. The number of lines that can be
maintained in the memory buffer varies with the line length, but has atotal capacity of about
5000 charactersin a20K CP/M system.

Edited text material iswritten into atemporary work file under your command. Upon termination
of the edit, the memory buffer iswritten to the temporary file, followed by any remaining
(unread) text in the source file. The name of the original fileis changed from x.y to X.BAK so
that the most recent edited source file can be reclaimed if necessary. See the CP/M commands
ERASE and RENAME. The temporary file is then changed from x.$$$ to x.y, which becomes
the resulting edited file.

2-1

O

SOURCE
LIBRARIES
SOURCE APPEND (R) WRITE—™| TEMPORARY

FILE (A) (W) FILE
MYFILE . TEX MYFILE . $$%
L\\,_T_,,// MEMORY

AFTER | E—
EDIT |(a
| INSERT
<b m
NEW
BACKUP
FILE SOURCE
FILE
YFILE . BAK
M MYFILE . TEX

(

Figure 2-1. Overal ED Operation

The memory buffer islogically between the source file and working file, as shown in Figure 2-2.

2.1 Introduction to ED CP/M Operating System Manual

SOURCE FILE MEMORY BUFFER TEMPORARY FILE
1 FIRST LINE 1 FIRST LINE 1 FIRST LINE
2 APPENDED 2 BUFFERED 2 PROCESSED
3 LINES TEXT TEXT
SP - MP» TP =
—-
UNPROCESSED |NEXT FREE NEXT FREE FILE
SOURCE APPEND MEMORY WRITE SPACE
LINES SPACE

SP = SOURCE POINTER
MP = MEMORY POINTER
TP = TEMPORARY POINTER

Figure 2-2. Memory Buffer Organization

2.1.2 Text Transfer Functions

Given that nisan integer value in the range 0 through 65535, several single-letter ED commands
transfer lines of text from the source file through the memory buffer to the temporary (and

eventualy fina) file. Single letter commands are shown in upper-case, but can be typed in either
upper- or lower-case.

Table 2-1. ED Text Transfer Commands

Command Result

nA Appends the next n unprocessed source lines from the source file at SP to the end
of the memory buffer at MP. Increment SP and MP by n. If upper-case trandation
is set (see the U command) and the A command is typed in upper-case, all input
lines will automatically be trandated to upper-case.

nw Writesthe first n lines of the memory buffer to the temporary file free space. Shift
the remaining lines n + 1 through MP to the top of the memory buffer.
Increment TP by n.

2-3

2.1 Introduction to ED CP/M Operating System Manual

E Ends the edit. Copy all buffered text to temporary file and copy al unprocessed
source lines to temporary file. Renamefiles.

H Moves to head of new file by performing automatic E command. The temporary
file becomes the new source file, the memory buffer is emptied, and a new
temporary fileis created. The effect isequivaent to issuing an E
command, followed by areinvocation of ED, using x.y asthe file to edit.

@) Returnsto origina file. The memory buffer is emptied, the temporary fileis
deleted, and the SP isreturned to position 1 of the source file. The effects of the
previous editing commands are thus nullified.

Q Quits edit with no file alterations, returns to CP/M.

There are anumber of special casesto consider. If the integer nis omitted in any ED command
where an integer is allowed, then 1 is assumed. Thus, the commands A and W append one line
and write one line, respectively. In addition, if apound sign #is given in the place of n, then the
integer 65535 is assumed (the largest value for n that is allowed). Because most source files can
be contained entirely in the memory buffer, the command #A is often issued at the beginning of
the edit to read the entire source file to memory. Similarly, the command #W writes the entire
buffer to the temporary file.

Two special forms of the A and W commands are provided as a convenience. The command OA
fills the current memory buffer at least half full, while OW writes lines until the buffer is at |east
half empty. An error isissued if the memory buffer size is exceeded. Y ou can then enter any
command, such as W, that does not increase memory requirements. The remainder of any partial
line read during the overflow will be brought into memory on the next successful append.

2.1.3 Memory Buffer Organization
The memory buffer can be considered a sequence of source lines brought in with the A command

from a source file. The memory buffer has an imaginary character pointer (CP) that moves
throughout the memory buffer under command of the operator.

2-4

2.1 Introduction to ED CP/M Operating System Manual

The memory buffer appears logically as shown in Figure 2-3, where the dashes represent
characters of the source line of indefinite length, terminated by carriage return (<cr>) and
line-feed (<If>) characters, and CP represents the imaginary character pointer. Note that the CPis
always located ahead of the first character of the first line, behind the last character of the last
line, or between two characters. The current line CL is the source line that contains the CP.

MEMORY BUFFER

e T — PR <>
____________ <erR> <Lr>

LNECL | T TS .a ———— <eR> <>

tﬁg ————————— <eR> <LF>

Figure 2-3. Logical Organization of Memory Buffer

2.1.4Line Numbersand ED Start-up

ED produces absolute line number prefixes that are used to reference aline or range of lines. The
absolute line number is displayed at the beginning of each line when ED isin insert mode (see
the | command in Section 2.1.5). Each line number takes the form

nnnnn:

where nnnnn is an absolute line number in the range of 1 to 65535. If the memory buffer is empty
or if the current lineis at the end of the memory buffer, nnnnn appears as 5 blanks.

2-5

2.1 Introduction to ED CP/M Operating System Manual

Y ou can reference an absolute line number by preceding any command by a number followed by
acolon, in the same format as the line number display. In this case, the ED program moves the
current line reference to the absolute line number, if the line exists in the current memory buffer.
The line denoted by the absolute line number must be in the memory buffer (see the A
command). Thus, the command

345:T

isinterpreted as move to absolute 345, and type the line.
Absolute line numbers are produced only during the editing
process and are not recorded with the file. In particular, the

line numbers will change following a deleted or expanded section
of text.

Y ou can aso reference an absolute line number as a backward or forward distance from the
current line by preceding the absolute number by a colon. Thus, the command

:400T

isinterpreted as type from the current line number through the line whose absolute number is
400. Combining the two line reference forms, the command

345::400T

isinterpreted as move to absolute line 345, then type through absolute line 400. Absolute line
references of this sort can precede any of the standard ED commands.

Line numbering is controlled by the V (Verify Line Numbers) command. Line numbering can be
turned off by typing the -V command.

If the file to edit does not exist, ED displays the following message:
NEW FILE
To move text into the memory buffer, you must enter an i command before typing input lines and

terminate each line with a carriage return. A single CTRL-Z character returns ED to command
mode.

2-6

2.1 Introduction to ED CP/M Operating System Manual

2.1.5 Memory Buffer Operation

When ED begins, the memory buffer is empty. Y ou can either append lines from the sourcefile
with the A command, or enter the lines directly from the console with the insert command. The
insert command takes the following form:

ED then accepts any number of input lines. Y ou must terminate each line with a<cr> (the <If >
is supplied automatically). A single CTRL-Z, denoted by an up arrow (T)Z, returns ED to
command mode. The CPis positioned after the last character entered. The following sequence:

| <cr>

NOW IS THE<cr>
TIME FOR<cr>

ALL GOOD MEN<cr>
nZ

leaves the memory buffer as

NOW IS THE<cr><If>
TIME FOR<cr><If>
ALL GOOD MEN<cr> <If>

Generally, ED accepts command lettersin upper- or lower-case. If the command is upper-case,
al input values associated with the command are trandated to upper-case. If the | command is
typed, al input lines are automatically translated internally to upper-case. The lower-case form of
thei command is most often used to allow both upper- and lower-case letters to be entered.

Various commands can be issued that control the CP or display source text in the vicinity of the
CP. The commands shown below with a preceding n indicate that an optional unsigned value can
be specified. When preceded by +-, the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound sign # is replaced by 65535. If an integer nis optional,
but not supplied, then n=1 isassumed. Findly, if aplus sign isoptional, but noneis specified,
then + is assumed.

2-7

2.1 Introduction to ED CP/M Operating System Manual

Table 2-2. Editing Commands

Command

Action

+B

+-nC

+-nL

it to the
stop at the

specified.
+-nT

given,

long

+n

Move CP to beginning of memory buffer if + and to bottom if

Move CP by +-n characters (moving ahead if +), counting the <cr><If> astwo
characters.

Delete n characters ahead of CPif plus and behind CP if minus.

Kill (remove) +-n lines of source text using CP as the current reference. If CPis
not at the beginning of the current line when K isissued, the characters before CP
remain if + is specified, while the characters after CP remain if - isgivenin the
command.

If n =0, move CP to the beginning of the current line, if it is not already there. If n
<> 0, first move the CP to the beginning of the current line and then move
beginning of thelinethat is n lines down (if +) or up (if -). The CPwill

top or bottom of the memory buffer if too largeavalueof nis

If n =0, type the contents of the current line up to CP. If n =1, type the contents
of the current line from CP to the end of the line. If n>1, type the current line
along with n +- 1 lines that follow, if + is specified. Similarly, if n>1and - is
type the previous n lines up to the CP. Any key can be depressed to abort
type-outs.

Equivalent to +-nL T, which moves up or down and typesasingle line.

2.1.6 Command Strings

Any number of commands can be typed contiguously (up to the capacity of the console buffer)
and are executed only after you press the <cr>. Table 2-3 summarizes the CP/M console
line-editing commands used to control the input command line.

2-8

2.1 Introduction to ED CP/M Operating System Manual

Table 2-3. Line-editing Controls

Command Result

CTRL-C Reboots the CP/M system when typed at the start of aline.

CTRL-E Physical end of line: carriageis returned, but lineis not sent until the
carriage return key is depressed.

CTRL-H Backspaces one character position.

CTRL-J Terminates current input (line-feed).

CTRL-M Terminates current input (carriage return).

CTRL-R Retypes current command line: types a clean line character deletion with
rubouts.

CTRL-U Deletes the entire line typed at the console.

CTRL-X Same as CTRL-U.

CTRL-Z Ends input from the console (used in PIP and ED).

rub/del Deletes and echos the last character typed at the console.

2-9

2.1 Introduction to ED

CP/M Operating System Manual

Suppose the memory buffer contains the characters shown in the previous section, with the CP
following the last character of the buffer. In the following example, the command strings on the
left produce the results shown to the right. Use lower-case command |etters to avoid automatic

trandlation of strings to upper-case.

Command String

B2T<cr>

5C0T<cr>

2L-T<cr>

-L#K <cr>

I<cr>

TIME TO<cr>
INSERT<cr>
N7

Move to beginning of the buffer and type two lines:

NOW ISTHE
TIME FOR

Theresult in the memory buffer is

ANOW IS THE<cr><If>
TIME FOR<cr><If>
ALL GOOD MEN<cr><If>

Move CP five characters and type the beginning of the line
NOW 1. The result in the memory buffer is

NOW INS THE<cr><If>

Move two lines down and type the previous line TIME
FOR. The result in the memory buffer is

NOW IS THE<cr><If>
TIME FOR<cr><If>
NALL GOOD MEN<cr><If>

Move up one line, delete 65535 lines that follow. The result
in the memory buffer is

NOW IS THE<cr><If>"

Insert two lines of text with automatic trandation to
upper-case. The result in the memory buffer is

NOW IS THE<cr><If>

TIME TO<cr><If>
INSERT<cr><|f>"

2-10

2.1 Introduction to ED CP/M Operating System Manual

-2L#T<cr> Move up two lines and type 65535 lines ahead of CP NOW
IS THE. Theresult in the memory buffer is

NOW IS THE<cr><If>

ATIME TO<cr><If>
INSERT<cr><If>

<cr> Move down one line and type one line INSERT. The result
in the memory buffer is

NOW IS THE<cr><If>
TIME TO<cr><If>
AINSERT<cr><If>
2.1.7 Text Search and Alteration
ED has a command that |ocates strings within the memory buffer. The command takes the form
nFs<cr>
or
nFs™Z
where s represents the string to match, followed by either a<cr> or CTRL-Z, denoted by *Z. ED
starts at the current position of CP and attempts to match the string. The match is attempted n
times and, if successful, the CP is moved directly after the string. If the n matches are not

successful, the CP is not moved from itsinitial position. Search strings can include CTRL-L,
which isreplaced by the pair of symbols <cr><|f>.

2-11

2.1 Introduction to ED

CP/M Operating System Manual

The following commandsiillustrate the use of the F command:

Command String

Effect

B#T<cr>

FS T<cr>

FIs*Z0TT

Move to the beginning and type the entire buffer. The result
in the memory buffer is

ANOW IS THE<cr><If>
TIME FOR<cr><If>
ALL GOOD MEN<cr><If>

Find the end of the string S T. The result in the memory
bufferis

NOW IS TA"HE<cr><If>

Find the next | and type to the CP; then type the remainder
of the current line ME FOR. The result in the memory
buffer is

NOW IS THE<cr><If>
TI"ME FOR<cr><If>
ALL GOOD MEN<cr><If>

An abbreviated form of the insert command is also alowed, which is often used in conjunction
with the F command to make simple textual changes. Theformis

IshZ

or

|s<cr>

where sisthe string to insert. If the insertion string is terminated by a CTRL-Z, the string is
inserted directly following the CP, and the CP is positioned directly after the string. The action is
the same if the command is followed by a <cr> except that a <cr><If> is automatically inserted
into the text following the string. The following command sequences are examples of the F and |

commands:

2-12

2.1 Introduction to ED

Command String Effect

BITHIS IS Z<cr>

FTIME?Z-4DIPLACE N Z<cr>

3FO"Z-3D5D1
CHANGES\Z<cr>

-8CISOURCE<cr>

CP/M Operating System Manual

Insert THIS IS at the beginning of the text. The result in the
memory buffer is

THISISANOW THE<cr><If>
TIME FOR<cr><If>
ALL GOOD MEN<cr><If>

Find TIME and delete it; then insert PLACE. Theresult in
the memory buffer is

THIS IS NOW THE<cr><If>
PLACE "FOR<cr><If>
ALL GOOD MEN<cr><If>

Find third occurrence of O (that is, the second O in
GOOD), delete previous 3 characters and the subsequent 5
characters; then insert CHANGES. Theresult in the
memory buffer is

THIS IS NOW THE<cr><If>
PLACE FOR<cr><If>
ALL CHANGES <cr><If>

Move back 8 characters and insert the line
SOURCE<cr><If>. The result in the memory buffer is

THISISNOW THE<cr><If>
PLACE FOR<cr><|f>

ALL SOURCE<cr><If>
NCHANGES<cr><|f>

2-13

2.1 Introduction to ED CP/M Operating System Manual

ED aso provides a single command that combines the F and | commands to perform ssimple
string substitutions. The command takes the following form:

nSsihZs2<cr>
or
nSsinzs2hz
and has exactly the same effect as applying the following command string atotal of n times:
Fs1"Z-kDls2<cr>
or
Fs1nrZ-kDls2"z
where k is the length of the string. ED searches the memory buffer starting at the current position
of CP and successively substitutes the second string for the first string untill the end of buffer, or

until the substitution has been performed n times.

As aconvenience, acommand similar to F is provided by ED that automatically appends and
writes lines as the search proceeds. Theformis

nNs<cr>
or
nNs™Z

which searches the entire source file for the nth occurrence of the strings (you should recall that F
failsif the string cannot be found in the current buffer). The operation of the N command is
precisaly the same as F except in the case that the string cannot be found within the current
memory buffer. In this case, the entire memory content is written (that is, an automatic #W is
issued). Input lines are then read until the buffer is at least half full, or the entire sourcefileis
exhausted. The search continues in this manner until the string has been found n times, or until
the source file has been completely transferred to the temporary file.

2-14

2.1 Introduction to ED CP/M Operating System Manual

A fina line editing function, called the Juxtaposition comniand, takes the form
nJsINZs2NZs3<cr>
or
NJSINZs2NZs3M2
with the following action applied n times to the memory buffer: search from the current CP for
the next occurrence of the string S1. If found, insert the string S2, and move CP to follow S2.
Then delete dl characters following CP up to, but not including, the string S3, leaving CP
directly after S2. If S3 cannot be found, then no deletion is made. If the current lineis
NOW IS THE TIME<cr><If>
the command
JWAZWHATAZM <cr>
resultsin
NOW WHAT<cr><If>
Y ou should recall that Al (CTRL-L) represents the pair <cr><If> in search and substitute strings.
The number of characters ED allowsintheF, S, N, and j commandsis limited to 100 symbols.

2.1.8SourcelLibraries

ED aso alowsthe inclusion of source libraries during the editing process with the R command.
The form of thiscommand is

Rfilename™Z
or

Rfilename<cr>

2-15

2.1 Introduction to ED CP/M Operating System Manual

where filename is the primary filename of a source file on the disk with an assumed filetype of
LIB. ED reads the specified file, and places the characters into the memory buffer after CP, ina
manner similar to the | command. Thus, if the command

RMACRO<cr>

isissued by the operator, ED reads from the file MACRO.LIB until the end-of-file and
automatically inserts the characters into the memory buffer.

ED also includes ablock move facility implemented through the X (Transfer) command. The
form

nx
transfers the next n lines from the current line to atemporary file called
X$$$$$$.L1B

which is active only during the editing process. Y ou can reposition the current line reference to
any portion of the source file and transfer lines to the temporary file. The transferred lines
accumulate one after another in thisfile and can be retrieved by ssimply typing

R

whichisthetrivia case of the library read command. In this case, the entire transferred set of
linesisread into the memory buffer. Note that the X command does not remove the transferred
lines from the memory buffer, athough a K command can be used directly after the X, and the R
command does not empty the transferred LIB file. That is, given that a set of lines has been
transferred with the X command, they can be reread any number of times back into the source
file. The command

0),4
is provided to empty the transferred linefile.
Note that upon normal completion of the ED program through Q or E, the temporary LIB fileis

removed. If ED isaborted with a CTRL-C, the LIB file will exist if lines have been transferred,
but will generally be empty (a subsequent ED invocation will erase the temporary file).

2-16

2.1 Introduction to ED CP/M Operating System Manual

2.1.9 Repetitive Command Execution

The macro command M allows you to group ED commands together for repeated evaluation. The
M command takes the following form:

nMCS<cr>

or

nMCSNZ
where CS represents a string of ED commands, not including another M command. ED executes
the command string n timesif n>1. If n=0 or 1, the command string is executed repetitively until
an error condition is encountered (for example, the end of the memory buffer is reached with an

F command).

As an example, the following macro changes all occurrences of GAMMA to DELTA within the
current buffer, and types each line that is changed:

MFGAMMANZ-5DIDELTANZOTT<cr>
or equivalently

MSGAMMANZDELTAMNZOTT<cr>

2-17

2.1 Introduction to ED CP/M Operating System Manual

2.2 ED Error Conditions

On error conditions, ED prints the message BREAK X AT C where X is one of the error
indicators shown in Table 2-4.

Table 2-4. Error Message Symbols

Symbol Meaning

? Unrecognized command.

> Memory buffer full (use one of the commands D, K, N, S, or W to remove
characters); F, N, or S strings too long.

Cannot apply command the number of times specified (for example, in F
command).
@) Cannot open LIB filein R command.

If thereisadisk error, CP/M displays the following message:

BDOS ERR ond: BAD SECTOR

Y ou can choose to ignore the error by pressing RETURN at the console (in this case, the memory
buffer data should be examined to seeif they were incorrectly read), or you can reset the system
with a CTRL-C and reclaim the backup fileif it exists. The file can be reclaimed by first typing
the contents of the BAK fileto ensure that it contains the proper information. For example, type
the following:

TYPE x.BAK

where x isthe file being edited. Then remove the primary file

ERA x.y

and rename the BAK file

REN x.y=x.BAK

Thefile can then be reedited, starting with the previous version.

2-18

2.2 ED Error Conditions

ED aso takes file attributes into account. If you attempt to edit a Read-Only file, the message

** FILE ISREAD/ONLY **

appears at the console. The file can be loaded and examined, but cannot be altered. Y ou must end
the edit session and use STAT to change the file attribute to Riw. If the edited file has the system

attribute set, the following message:

'‘SYSTEM' FILE NOT ACCESSIBLE

isdisplayed and the edit session is aborted. Again, the STAT program can be used to change the

system attribute, if desired.

2.3 Control Charactersand Commands

Table 2-5 summarizes the control characters and commands available in ED.

Table 2-5. ED Control Characters

Control Character Function

CTRL-C

CTRL-E

CTRL-H

CTRL-J

CTRL-L

CTRL-R

CTRL-U

CTRL-X

CTRL-Z

rub/del

System reboot

Physical <cr><If> (not actually entered in command)
Backspace

Logical tab (cols 1, 9, 16,...)

Logical <cr><If> in search and substitute strings
Repeat line

Line delete

Line delete

String terminator

Character delete

2-19

CP/M Operating System Manual

2.2 ED Error Conditions CP/M Operating System Manual

Table 2-6 summarizes the commands used in ED.
Table 2-6. ED Commands

Command Function

nA Append lines

+-B Begin or bottom of buffer

+-nC Move character positions

+-nD Delete characters

E End edit and close files (normal end)
nF Find string

H End edit, close and reopen files

I Insert characters, usei if both upper- and lower-case characters are to be entered.

nJ Place strings in juxtaposition

+-nK Kill lines

+-nL Move down/up lines

nM Macro definition

nN Find next occurrence with autoscan
@) Returnto origina file

+-nP Move and print pages

Q Quit with no file changes

R Read library file

2-20

2.3 Control Characters and Commands CP/M Operating System Manual

Command Function

nS Substitute strings

+-nT Typelines

U Tranglate lower- to upper-case if U, no trandation if -U

\% Verify line numbers, or show remaining free character space

ov A specia case of the V command, OV, prints the memory buffer statisticsin the
form
freeftotal

where free is the number of free bytes in the memory buffer (in decimal) and total
isthe size of the memory buffer

nwW Write lines
nZ Wait (deep) for approximately n seconds
+-n Move and type (+-nLT).

Because of common typographical errors, ED requires several potentially disastrous commands
to be typed as single letters, rather than in composite commands. The following commands:

- E(end)

- H(head)

- O(origina)
- Q(quit)

must be typed as single letter commands.

2-21

2.3 Control Characters and Commands CP/M Operating System Manual

The commands|, J, M, N, R, and S should betyped asi, j, m, n, r, and sif both upper- and
lower-case characters are used in the operation, otherwise all characters are converted to
upper-case. When acommand is entered in upper-case, ED automatically converts the associated
string to upper-case, and vice versa.

End of Section 2

2-22

2.3 Control Characters and Commands CP/M Operating System Manual

Section 3
CP/M Assembler

3.1 Introduction

The CP/M assembler reads assembly-language source files from the disk and produces 8080
machine language in Intel hex format. To start the CP/M assembler, type acommand in one of
the following forms:

ASM filename
ASM filename.parms

In both cases, the assembler assumes there is afile on the disk with the name:

filename ASM

which contains an 8080 assembly-language source file. The first and second forms shown above
differ only in that the second form allows parameters to be passed to the assembler to control
source file access and hex and print file destinations.

In either case, the CP/M assembler loads and prints the message:

CP/M ASSEMBLER VER n.n

where n.n isthe current version number. In the case of the first command, the assembler reads the
source file with assumed filetype ASM and creates two output files

filename. HEX
filename.PRN

The HEX file contains the machine code corresponding to the original program in Intel hex
format, and the PRN file contains an annotated listing showing generated machine code, error
flags, and source lines. If errors occur during trandation, they are listed in the PRN file and at the
console.

The form ASM filename parmsis used to redirect input and output files from their defaults. In
this case, the parms portion of the command is a three-letter group that 'fies the origin of the
source file, the destination of the hex file, and the destination of the print file. The formis
filename.plp2p3
where pl, p2, and p3 are single letters. P1 can be
AB,....P
which designates the disk name that contains the source file. P2 can be
AB,....P
which designates the disk name that will receive the hex file; or, P2 can be
Z
which skips the generation of the hex file.
P3 can be
AB,....P
which designates the disk name that will receive the print file. P3 can also be specified as
X
which places the listing at the console; or
Z
which skips generation of the print file. Thus, the command
ASM X.AAA
indicates that the source, X.HEX and print, X.PRN files are aso to be created on disk A. This
form of the comii.,ind is implied if the assembler isrun from disk A. Given that you are

currently addressing disk A, the above command is the same as

ASM X

3.1 Introduction CP/M Operating System Manual

The command
ASM X.ABX

indicates that the source file isto be taken from disk A, the hex fileisto be placed on disk B, and
thelisting file isto be sent to the console. The command

ASM X.BZZ

takes the source file from disk B and skips the generation of the hex and print files. This
command is useful for fast execution of the assembler to check program syntax.

The source program format is compatible with the Intel 8080 assembler. Macros are not
implemented in ASM; see the optional MAC macro assembler. There are certain extensionsin
the CP/M assembler that make it somewhat easier to use. These extensions are described below.

3.2 Program Format

An assembly-language program acceptable as input to the assembler consists of a sequence of
statements of the form

linet label operation operand ;comment

where any or al of the fields may be present in a particular instance. Each assemblylanguage
statement is terminated with a carriage return and line-feed (the line-feed isinserted
automatically by the ED program), or with the character !, which is treated as an end-of-line by
the assembler. Thus, multiple assembly-language statements can be written on the same physical
line if separated by exclamation point symbols.

The line# is an optional decimal integer value representing the source program line number, and
ASM ignoresthisfield if present.

The label field takes either of the following forms:

identifier
identifier:

Thelabel field is optional, except where noted in particular statement types. The identifier isa
sequence of alphanumeric characters where the first character is aphabetic. Identifiers can be
freely used by the programmer to label elements such as program steps and assembler directives,
but cannot exceed 16 charactersin length. All characters are significant in an identifier, except
for the embedded dollar symbol $, which can be used to improve readability of the name.

Further, all lower-case alphabetics are treated as upper-case. The following are al valid instances
of labels:

3-3

3.1 Introduction CP/M Operating System Manual

X Xy long$name
x: yxl: longer$naned$data:
X1Y2 X1x2 x234$5678%$9012$3456:

The operation field contains either an assembler directive or pseudo operation, or an 8080
machine operation code. The pseudo operations and machine operation codes are described in
Section 3.3.

Generally, the operand field of the statement contains an expression formed out of constants and
labels, along with arithmetic and logical operations on these elements. Again, the complete
details of properly formed expressions are given in Section 3.3.

The comment field contains arbitrary characters following the semicolon symbol untill the next
real or logical end-of-line. These characters are read, listed, and otherwise ignored by the
assembler. The CP/M assembler also treats statements that begin with an * in column one as
comment statements that are listed and ignored in the assembly process.

The assembly-language program is formulated as a sequence of statements of the above form,
terminated by an optional END statement. All statements following the END are ignored by the
assembler.

3.3 Forming the Operand

To describe the operation codes and pseudo operations completely, it is necessary first to present
the form of the operand field, sinceit isused in nearly al statements. Expressionsin the operand
field consist of simple operands, labels, constants, and reserved words, combined in properly
formed subexpressions by arithmetic and logical operators. The expression computation is
carried out by the assembler as the assembly proceeds. Each expression must produce a 16-bit
value during the assembly. Further, the number of significant digitsin the result must not exceed
the intended use. If an expression is to be used in a byte move immediate instruction, the most
significant 8 bits of the expression must be zero. The restriction on the expression significance is
given with the individual instructions.

34

3.2 Program Format CP/M Operating System Manual

3.3.1Labels

A label isan identifier that occurs on a particular statement. In general, the label is given avalue
determined by the type of statement that it precedes. If the label occurs on a statement that
generates machine code or reserves memory space (for example, aMOV instruction or aDS
pseudo operation), the label is given the value of the program address that it labels. If the label
precedes an EQU or SET, the label is given the value that results from evaluating the operand
field. Except for the SET statement, an identifier can label only one statement.

When alabel appearsin the operand field, its value is substituted by the assembler. Thisvaue
can then be combined with other operands and operators to form the operand field for a particular
instruction.

3.3.2 Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called the radix of the
constant, is denoted by atrailing radix indicator. The following are radix indicators:

isabinary constant (base 2).
isaocta constant (base 8).
isaocta constant (base 8).
isadecimal constant (base 10).
isahexadecimal constant (base 16).

TOO0OO0W

Qisan dternate radix indicator for octal numbers because the letter O is easily confused with the
digit 0. Any numeric constant that does not terminate with aradix indicator is adecimal constant.

A constant is composed as a sequence of digits, followed by an optional radix indicator, where
the digits are in the appropriate range for the radix. Binary constants must be composed of 0 and
1 digits, octal constants can contain digitsin the range 0-7, while decimal constants contain
decimal digits. Hexadecimal constants contain decimal digits as well as hexadecimal digits
A(10D), B(11D), C(12D), D(13D), E(14D), and F(15D). Note that the leading digit of a
hexadecimal constant must be a decimal digit to avoid confusing a hexadecimal constant with an
identifier. A leading O will always suffice. A constant composed in this manner must evaluate to
a binary number that can be contained within a 16-bit counter, otherwise it is truncated on the
right by the assembler.

3.3 Forming the Operand CP/M Operating System Manua

Similar to identifiers, embedded $ signs are allowed within constants to improve their
readability. Finally, the radix indicator is trandated to upper-case if alower-case letter is
encountered. The following are all valid instances of numeric constants:

1234 1234D 1100B 1111$0000$1111$0000B

1234H OFFEH 33770 33%77$22Q

33770 0Ofe3nh 1234d Offffh
3.3.3 Reserved Words
There are severa reserved character sequences that have predefined meanings in the operand
field of a statement. The names of 8080 registers are given below. When they are encountered,
they produce the values shown to the right.

Table 3-1. Reserved Characters

Character Value

A 7
B 0
C 1
D 2
E 3
H 4
L 5
M 6
SP 6
PSW 6

Again, lower-case names have the same values as their upper-case equivaents. Machine

instructions can also be used in the operand field; they evaluate to their internal codes. In the case

of instructions that require operands, where the specific operand becomes a part of the binary bit

pattern of the instruction, for example, MOV A,B, the value of the instruction, in this case MOV,

isthe bit pattern of the instruction with zeros in the optional fields, for example, MOV produces
40H.

When the symbol $ occursin the operand field, not embedded within identifiers and numeric

constants, its value becomes the address of the next instruction to generate, not including the
instruction contained within the current logical line.

3-6

3.3 Forming the Operand CP/M Operating System Manua

3.3.4 String Constants

String constants represent sequences of ASCII characters and are represented by enclosing the
characters within apostrophe symbols. All strings must be fully contained within the current
physical line (thus allowing exclamation point symbols within strings) and must not exceed 64
charactersin length. The apostrophe character itself can be included within a string by
representing it as a double apostrophe (the two keystrokes'), which becomes a single apostrophe
when read by the assembler. In most cases, the string length is restricted to either one or two
characters (the DB pseudo operation is an exception), in which case the string becomes an 8- or
16-bit value, respectively. Two-character strings become a 16-bit constant, with the second
character as the low-order byte, and the first character as the high-order byte.

The value of acharacter isits corresponding ASCII code. Thereisno case trandation within
strings; both upper- and lower-case characters can be represented. Y ou should note that only
graphic printing ASCII characters are allowed within strings.

Valid strings: How assembler reads strings:
'‘A"'AB''ab' 'c’ AABac

IR ar
'WallaWallaWash.' WallaWadlaWash
'She said "Hello" to me!' She said "Hello" to me.
'l said "Hello" to her.’ | said "Hello" to her.

3.3.5 Arithmetic and L ogical Operators
The operands described in Section 3.3 can be combined in normal algebraic notation using any
combination of properly formed operands, operators, and parenthesized expressions. The
operators recognized in the operand field are described in Table 3-2.

Table 3-2. Arithmetic and Logical Operators

Operators Meaning

atb unsigned arithmetic sum of aand b

a-b unsigned arithmetic difference between aand b
+b unary plus (produces b)

-b unary minus (identical to O - b)

3.3 Forming the Operand CP/M Operating System Manua

Table 3-2. Arithmetic and Logical Operators (continued)
a*b unsigned magnitude multiplication of aand b
a/ bunsigned magnitude division of aby b
aMOD b remainder after a/ b.

NOT b logical inverse of b (all Os become 1s, 1s become 0s), where b is considered a
16-bit value

aAND b bit-by-bit logical and of aand b

aORDb bit-by-bit logical or of aand b

aXORb bit-by-bit logical exclusive or of aand b

aSHL b thevaue that results from shifting ato the lef by an amount b, with zero fill

aSHRb thevauethat results from shifting ato the right by an amount b, with zero fill
In each case, aand b represent ssimple operands (Iabels, numeric constants, reserved words, and
one- or two-character strings) or fully enclosed parenthesized subexpressions, like those shown
in the following examples:

10+20 10h+37Q L1/3 (L2+4) SHR3

(‘a and 5fh)+O'('B'+B)OR(PSW+M)
(1+(2+c))shr(A-(B+1))

Note that all computations are performed at assembly time as 16-bit unsigned operations. Thus,
-liscomputed as O - 1, which resultsin the value Offffh (that is, all 1s). The resulting expression
must fit the operation code in which it is used. For example, if the expression isused in an ADI
(add immediate) instruction, the high-order 8 bits of the expression must be zero. As aresult, the
operation ADI -1 produces an error message (-1 becomes Offffh, which cannot be represented as
an 8-bit value), while ADI (-1) AND OFFH is accepted by the assembler because the AND
operation zeros the high-order bits of the expression.

3-8

3.3 Forming the Operand CP/M Operating System Manua

3.3.6 Precedence of Operators

As aconvenience to the programmer, ASM assumes that operators have arelative precedence of
application that allows the programmer to write expressions without nested levels of parentheses.
The resulting expression has assumed parentheses that are defined by the relative precedence.
The order of application of operatorsin unparenthesized expressionsis listed below. Operators
listed first have highest precedence (they are applied first in an unparenthesized expression),
while operators listed last have lowest precedence. Operators listed on the same line have equal
precedence, and are applied from left to right as they are encountered in an expression.

* /MOD SHL SHR
-+

NOT

AND

OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler as the fully
parenthesi zed expressions shown to the right.

a*b+c (a*b) +c
atb*c a+ (b*c)
aMOD b*c SHL | ((@MOD b) * ¢) SHL d

aORb ANDNOT c+tdSHLe aOR (b AND (NOT (c + (d SHL €))))
Balanced, parenthesized subexpressions can always be used to override the assumed parentheses;
thus, the last expression above could be rewritten to force application of operatorsin adifferent
order, as shown:
(aORb)AND (NOTc)+dSHL e

This resultsin these assumed parentheses:

(aORb) AND ((NOT ¢) + (d SHL e))

3-9

3.3 Forming the Operand CP/M Operating System Manua

An unparenthesized expression is well-formed only if the expression that results from inserting
the assumed parentheses is well-formed.

3.4 Assembler Directives

Assembler directives are used to set labels to specific values during the assembly, perform
conditional assembly, define storage areas, and specify starting addressesin the program. Each
assembler directive is denoted by a pseudo operation that appears in the operation field of the
line. The acceptable pseudo operations are shown in Table 3-3.

Table 3-3. Assembler Directives

Directive Meaning

ORG set the program or data origin

END end program, optional start address
EQU numeric equate

SET numeric set

IF begin conditional assembly

ENDIF end of conditional assembly

DB define data bytes

DW define data words

DS define data storage area

3-10

3.3 Forming the Operand CP/M Operating System Manua

3.4.1 The ORG Directive
The ORG statement takes the form:
label ORG expression

where label isan optional program identifier and expression is a 16-bit expression, consisting of
operands that are defined before the ORG statement. The assembler begins machine code
generation at the location specified in the expression. There can be any number of ORG
statements within a particular program, and there are no checks to ensure that the programmer is
not defining overlapping memory areas. Note that most programs written for the CP/M system
begin with an ORG statement of the form:

ORG 100H

which causes machine code generation to begin at the base of the CP/M transient program area. If
alabel is specified in the ORG statement, the label is given the value of the expression. This
label can then be used in the operand field of other statements to represent this expression.

3.4.2 The END Directive

The END statement is optional in an assembly-language program, but if it is present it must be
the last statement. All subsequent statements are ignored in the assembly. The END statement
takes the following two forms:

label END

label END expression

where the label is again optional. If the first form is used, the assembly process stops, and the
default starting address of the program is taken as 0000. Otherwise, the expression is evaluated,
and becomes the program starting address. This starting addressis included in the last record of
the Intel-formatted machine code hex file that results from the assembly. Thus, most CP/M
assembly-language programs end with the statement:

END 100H

resulting in the default starting address of 100H (beginning of the transient program areq).

3-11

3.4 Assembler Directives CP/M Operating System Manual

3.4.3The EQU Directive

The EQU (equate) statement is used to set up synonyms for particular numeric values. The EQU
statement takes the form:

label EQU expression

where the label must be present and must not 1abel any other statement. The assembler evaluates
the expression and assigns this value to the identifier given in the label field. The identifier is
usually a name that describes the value in a more human-oriented manner. Further, thisnameis
used throughout the program to place parameters on certain functions. Suppose data received
from ateletype appears on a particular input port, and data is sent to the teletype through the next
output port in sequence. For example, you can use this series of equate statements to define these
ports for a particular hardware environment:

TTYBASE EQU 10H ;BASE PORT NUMBER FORTTY
TTYIN EQU TTYBASE ;TTY DATA IN
TTYOUT EQU TTYBASE+1 ;TTY DATA OUT

At alater point in the program, the statements that access the teletype can appear as follows:

IN TTYIN ;READ TTY DATA TO REG-A

ouT TTYOUT 'WRITEDATA TOTTY FROM REG-A
making the program more readable than if the absolute I/O ports are used. Further, if the
hardware environment is redefined to start the teletype communications ports at 7FH instead of
10H, thefirst statement need only be changed to

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements.

3-12

3.4 Assembler Directives CP/M Operating System Manual

3.4.4The SET Directive
The SET statement is similar to the EQU, taking the form:

label SET expression
except that the label can occur on other SET statements within the program. The expression is
evaluated and becomes the current value associated with the label. Thus, the EQU statement
defines alabel with asingle value, while the SET statement defines avalue that isvalid from the
current SET statement to the point where the label occurs on the next SET statement. The use of
the SET issimilar to the EQU statement, but is used most often in controlling conditional
assembly.
3.4.5ThelF and ENDIF Directives

The IF and ENDIF statements define a range of assembly-language statements that are to be
included or excluded during the assembly process. These statements take on the form:

|F expression
statement# 1

statement#2

statement#n

ENDIF

3-13

3.4 Assembler Directives CP/M Operating System Manual

When encountering the I F statement, the assembler evaluates the expression following the IF. All
operandsin the expression must be defined ahead of the IF statement. If the expression evaluates
to anonzero value, then statement#l through statement#n are assembled. If the expression
evaluates to zero, the statements are listed but not assembled. Conditional assembly is often used
to write a single generic program that includes a number of possible run-time environments, with
only afew specific portions of the program selected for any particular assembly. The following
program segments, for example, might be part of a program that communicates with either a
teletype or a CRT console (but not both) by selecting a particular value for TTY before the
assembly begins.

TRUE EQU OFFFFH ;DEFINE VALUE OF TRUE
FALSE EQU NOT TRUE ;DEFINEVALUE OF FALSE
TTY EQU TRUE ;TRUEIFTTY, FALSE IF CRT
TTYBASE EQU 10H ;BASEOF TTY I/0O PORTS
CRTBASE EQU 20H ;BASE OF CRT I/0 PORTS
IF TTY ;JASSEMBLE RELATIVETO
; TTYBASE

CONIN EQU TTYBASE ;CONSOLE INPUT
CONOUT EQU TTYBASE+1 ;CONSOLE OUTPUT
ENDIF
; IF NOTTTY ;ASSEMBLE RELATIVETO
;CRTBASE
CONIN EQU CRTBASE ;CONSOLE INPUT

CONOUT EQU CRTBASE+1 ;CONSOLE OUTPUT
ENDIF

IN CONIN ;READ CONSOLE DATA
OUT CONTOUT ;WRITE CONSOLE DATA

In this case, the program assembles for an environment where a teletype is connected, based at
port 1 OH. The statement defining TTY can be changed to

TTY EQU FALSE

and, in this case, the program assembles for a CRT based at port 20H.

3-14

3.4 Assembler Directives CP/M Operating System Manual

3.4.6 The DB Directive

The DB directive alows the programmer to define initialized storage areas in singleprecision
byte format. The DB statement takes the form:

label DB etl, ef2, ... , etn

where e#1 through e#n are either expressions that evaluate to 8-bit values (the highorder bit must
be zero) or are ASCII strings of length no greater than 64 characters. There is no practical
restriction on the number of expressions included on asingle source line. The expressions are
evaluated and placed sequentialy into the machine code file following the last program address
generated by the assembler. String characters are similarly placed into memory starting with the
first character and ending with the last character. Strings of length greater than two characters
cannot be used as operands in more complicated expressions.

Note: ASCII characters are dways placed in memory with the parity bit reset (0). Also, thereis
no translation from lower- to upper-case within strings. The optional label can be used to
reference the data area throughout the remainder of the program. The following are examples of
valid DB statements:

data: DB 01,2345
DB dataand Offh,5,377Q,1+2+3+4
sign-on: DB ‘pleasetypeyour name,CR,LF,0

DB 'AB' SHR 8,'C','DE',AND 7FH
3.4.7 The DW Directive

The DW statement is similar to the DB statement except double-precision two-byte words of
storage areinitialized. The DW statement takes the form:

label DW efl, e#2, ..., etn

where el through e#n are expressions that evaluate to 16-bit results. Note that ASCII strings of
one or two characters are allowed, but strings longer than two characters are disallowed. Inall
cases, the data storage is consistent with the 8080 processor; the least significant byte of the
expression is stored first in memory, followed by the most significant byte. The following are
examples of DW statements:

doub: DW Offefh,doub+4,signon-$,255+255
DW 'a,5,'ab','CD',6 shl 8 or Ilb.

3-15

3.4 Assembler Directives CP/M Operating System Manual

3.4.8 The DS Directive
The DS statement is used to reserve an area of uninitialized memory, and takes the form:
label DS expression

where the label is optional. The assembler begins subsequent code generation after the area
reserved by the DS. Thus, the DS statement given above has exactly the same effect as the
following statement:

label: EQU $;LABEL VALUE ISCURRENT CODE LOCATION
ORG $+expresson ;MOVE PAST RESERVED AREA

3.5 Operation Codes

Assembly-language operation codes form the principal part of assembly-language programs and
form the operation field of the instruction. In general, ASM accepts al the standard mnemonics
for the Intel 8080 microcomputer, which are given in detail in the Intel 8080 Assembly Language
Programming Manual. Labels are optiona on each input line. The individual operators are listed
briefly in the following sections for compl eteness, athough the Intel manuals should be
referenced for exact operator details. In Tables 3-4 through 3-8, bit values have the following
meaning:

-e3 represents a 3-bit value in the range 0-7 that can be one of the predefined registers A, B,
C,D,E,H, L, M, SP, or PSW.

-e8 represents an 8-bit value in the range 0-255.

-e16 represents a 16-bit value in the range 0-65535.
These expressions can be formed from an arbitrary combination of operands and operators. In
some cases, the operands are restricted to particular values within the allowable range, such as

the PUSH instruction. These cases are noted as they are encountered.

In the sections that follow, each operation code is listed in its most general form, along with a
specific example, a short explanation, and special restrictions.

3-16

3.4 Assembler Directives CP/M Operating System Manual

3.5.1 Jumps, Calls, and Returns
The Jump, Call, and Return instructions allow severa different forms that test the condition flags
set in the 8080 microcomputer CPU. The forms are shown in Table 3-4.

Table 3-4. Jumps, Calls, and Returns

Bit
Form Vaue Example Meaning

JMP €el6 JMPLI jump unconditionally to label

IJNZ el6 INZL2 jump on nonzero condition to label
JZ el6 JZ100H Jump on zero condition to label
JNC €el6 INCL1+4 jump no carry to label

JC el6 JCL3 Jump on carry to label

JPO el6 JPO $+8 Jump on parity odd to label

JPE el6 JPEL4 Jump on even parity to label

JP el6 JPGAMMA Jump on positive result to label

M el6 IMA1 Jump on minus to label

CALL €16 CALL S1 Cdl subroutine unconditionally
CNZ €16 CNZ S2 Call subroutine on nonzero condition
CZ el6 CZ100H Call subroutine on zero condition
CNC €16 CNCSI+4 Call subroutineif no carry set

CC el6 CCS3 Call subroutine if carry set

CPO el6 CPO $+8 Call subroutineif parity odd

3-17

3.5 Operation Codes CP/M Operating System Manual

Table 3-4. Jumps, Calls, and Returns (continued)

Bit
Form Vaue Example Meaning

CPE el6 CPE# Call subroutine if parity even
CP e16 CPGAMMA Call subroutineif positive result

CM el6 CM bl$c2 Call subroutine if minusflag

RST e3 RSTO Programmed restart, equivalent to CALL 8*€e3, except one byte
cal
RET Return from subroutine
RNZ Return if nonzero flag set
RZ Return if zero flag set
RNC Return if no carry
RC Return if carry flag set
RPO Return if parity isodd
RPE Return if parity iseven
RP Return if positive result
RM Return if minusflagis set

3-18

3.5 Operation Codes CP/M Operating System Manual

3.5.2 Immediate Operand I nstructions

Severd ingtructions are available that load single- or double-precision registers or
single-precision memory cells with constant values, along with instructions that perform
immediate arithmetic or logical operations on the accumulator (register A). Table 3-5 describes
the immediate operand instructions.

Table 3-5. Immediate Operand Instructions

Form with
Bit Vaues Example Meaning

MVI1 e3,e8 MVI B,255 Move immediate datato register A, B, C,D, E, H, L,
or M (memory)

ADI e8 ADI 1 Add immediate operand to A without carry

ACl e8 ACI OFFH Add immediate operand to A with carry

SUI e8 SUIL +3 Subtract from A without borrow (carry)
SBI e8 SBI L AND 11B Subtract from A with borrow (carry)
ANI e8 ANI $AND 7FH Logica and A with immediate data
XRI 8 XRI 1111$0000B Exclusive or A with immediate data
ORI e8 ORI L AND 1+1 Logica or A with immediate data

CPI e8 CPI 'a Compare A with immediate data, same as SUI except
register A not changed.

LXI e3,el6 LXI B, 100H Load extended immediate to register pair. €3 must be
equivalent to B, D, H,or SP.

3-19

3.5 Operation Codes CP/M Operating System Manual

3.5.3 Increment and Decrement Instructions
The 8080 provides instructions for incrementing or decrementing single- and double precision
registers. The instructions are described in Table 3-6.

Table 3-6. Increment and Decrement Instructions

Form with
Bit Value Example Meaning

INR €3 INRE Single-precision increment register. €3 produces one of A,
B,C,D,EH,L,M.

DCR e3 DCRA Single-precision decrement register. €3 produces one of A,
B,C,D,EH,L,M.
INX e3 INX SP Double-precision increment register pair. €3 must be to B,
D, H, or SP.
DCX €3 DCX B Double-precision decrement register pair. €3 must be

equivalent to B, D, H, or SP.

3-20

3.5 Operation Codes

3.5.4 Data M ovement I nstructions

CP/M Operating System Manual

Instructions that move data from memory to the CPU and from CPU to memory are given in the

following table.

Table 3-7. Data Movement Instructions

Form with

Bit Value Example Meaning

MQV e3,e3 MOV A,B

Move data to leftmost element from rightmost
element. e3 producesone of A, B, C, D, E, H, L, or M.
MOV M ,M isdisalowed.

LDAX e3 LDAX B Load register A from computed address. €3 must produce
either B or D.

STAX €3 STAX D

LHLDel6 LHLDL1

SHLD €16~ SHLD L5+x

LDA el6 LDA Gamma

STA el6 STA X3-5

POP €3 POP PSW

PUSH e3 PUSH B

Store register A to computed address. e3 must produce
either B or D.

Load HL direct from location €16. Double-precision load to
HandL.

Store HL direct to location €16. Double-precision store
from H and L to memory.

Load register A from address e16.
Store register A into memory at €l16.

Load register pair from stack, set SP. €3 must produce one
of B, D, H, or PSW.

Store register pair into stack, set SP. €3 must produce on of

B, D, H, or PSW.

3-21

3.5 Operation Codes CP/M Operating System Manual

Table 3-7. (continued)

Form with
Bit Value Example Meaning

IN e8 INO Load register A with data from port e8.
OUT e8 OUT 255 Send data from register A to port e8.
XTHL Exchange data from top of stack with HL.
PCHL Fill program counter with data from HL.
SPHL Fill stack pointer with datafrom HL.

XCHG Exchange DE pair with HL pair.

3.5.5 Arithmetic L ogic Unit Operations

Instructions that act upon the single-precision accumulator to perform arithmetic and logic
operations are given in the following table.

Table 3-8. Arithmetic Logic Unit Operations

Form with
Bit Vaue Example Meaning

ADD e3 ADD B Add register given by €3 to accumulator without carry. €3 must
produceoneof A, B, C, D, E, H, or L.

ADC e3 ADCL Add register to A with carry, e3 as above.
SUB €3 SUBH Subtract reg €3 from A without carry, €3 is defined as above.

SBB e3 SBB 2 Subtract register €3 from A with carry, €3 defined as above.

3-22

3.5 Operation Codes

Form with
Bit Vaue

CP/M Operating System Manual

Table 3-8. (continued)

Example Meaning

ANA €3

XRA €3

ORA e3

CMPe3

DAA

CMA

STC

CMC

RLC

RRC

DAD €3

ANA 1+1

XRA A

ORA B

CMPH

DAD B

Logica and reg with A, €3 as above.
Exclusive or with A, €3 as above.
Logical or with A, €3 defined as above.
Compare register with A, €3 as above.

Decimal adjust register A based upon last arithmetic logic
unit operation.

Complement the bitsin register A.
Set the carry flag to 1.
Complement the carry flag.

Rotate bits |eft, (re)set carry as a side effect. High-order A
bit becomes carry.

Rotate bitsright, (re)set carry as side effect. Low-order A
bit becomes carry.

Rotate carry/A register to left. Carry isinvolved in the
rotate.

Rotate carry/A register to right. Carry isinvolved in the
rotate.

Double-precision add register pair €3 to HL. €3 must
produce B, D, H, or SP.

3-23

3.5 Operation Codes CP/M Operating System Manual

3.5.6 Control Instructions
The four remaining instructions, categorized as control instructions, are the following:

-HLT halts the 8080 processor.

-DI disables the interrupt system.

-El enablesthe interrupt system.

-NOP means no operation.
3.6 Error Messages
When errors occur within the assembly-language program, they are listed as singlecharacter flags
in the leftmost position of the source listing. The line in error is also echoed at the console so that
the source listing need not be examined to determine if errors are present. The error codes are
listed in the following table.

Table 3-9. Error Codes

Error Code Meaning

D Dataerror: element in data statement cannot be placed in the specified data area.
E Expression error: expression isill-formed and cannot be computed at assembly time.
L Labd error: label cannot appear in this context; might be duplicate label.

N Not implemented: features that will appear in future ASM versions. For example, macros
are recognized, but flagged in this version.

O Overflow: expression istoo complicated (too many pending operators) to be computed
and should be smplified.

P Phaseerror: label does not have the same value on two subsequent passes through the
program.

3-24

3.5 Operation Codes CP/M Operating System Manual

Table 3-9. (continued)

Error Code Meaning

R Register error: the value specified as aregister is not compatible with the operation code.
S Syntax error: statement is not properly formed.

Y Vaueerror: operand encountered in expression is improperly formed.

Table 3-10 lists the error messages that are due to terminal error conditions.
Table 3-10. Error Messages

Message Meaning

NO SOURCE FILE PRESENT

Thefile specified in the ASM command does not exist on disk.
NO DIRECTORY SPACE

The disk directory isfull; erasefiles that are not needed and retry.
SOURCE FILE NAME ERROR

Improperly formed ASM filename, for example, It is specified with ?field s.
SOURCE FILE READ ERROR

Source file cannot be read properly by the assembler; execute a TY PE to determine the
point of error.

OUTPUT FILE WRITE ERROR
Output files cannot be written properly; most likely causeisafull disk, erase and retry.
CANNOT CLOSE FILE

Output file cannot be closed; check to seeif disk iswrite protected.

3-25

3.6 Error Messages CP/M Operating System Manual

3.7 A Sample Session

The following sample session shows interaction with the assembler and debugger in the
development of a simple assembly-language program. The arrow represents a carriage return
keystroke.

A>ASM SORT Assemble SORT.ASM

CP/M ASSEMBLER - VER 1.0

0015C Next free address

003H USE FACTOR Percent of table used 00 to ff (hexadecimal)
END OF ASSEMBLY

A>DIR SORT .*

SORT ASM Sourcefile

SORT BAK Back-up from last edit

SORT PRN Print file (contains tab characters)

SORT HEX Machine codefile

A>TYPE SORT.PRN

; SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE START AT
; THE BEGINNING OF THE TRANSIENT PROGRAM AREA

0100 ORG 100H

0100 214601 SORT: LXI H,SW ;ADDRESS SWITCH TOGGLE
0103 3601 MVI M,1 ;SET TO 1 FOR FIRST ITERATION
0105 214701 LXI H,l ;ADDRESS INDEX

0108 3600 MVI M0 ;I=0
' COMPARE | WITH ARRAY SIZE
010A 7E COMPL: MOV AM ;A REGISTER=|
0105 FE09 CPIN-1 ;CY SETIFI<(N-1)
010D FE09 IJNC CONT ;CONTINUE IF I<=(N-2)

; END OF ONE PASS THROUGH DATA

3-26

3.7 A Sample Session CP/M Operating System Manual

0110 214601 LXlI H,SW ;CHECK FOR ZERO SWITCHES
0113 7EB7C2000001 MOV A ,M! OR A!' INZ SORT ; END OF SORT IF SW=0

0118 FF RST 7 ;GO TO DEBUGGER INSTEAD OF REB
© CONTINUE THISPASS
. ADDRESSING I, SO LOAD AV(l) INTO REGISTERS
0119
5F16002148CONT: MOV E,A! MVI D,0! LXU H,AV! DAD D! DAD D
0121 4E792346 MOV C,M! MOV A,C! INX H! MOV B,M
' LOW ORDERBYTEIN A AND C, HIGH ORDER BYTE IN B
: MOV H AND L TO ADDRESS AV(I+1)
0125 23 INX H
: COMPARE VALUE WITH REGS CONTAINING AV (1)
0126 965778230E SUB M! MOV D,A! MOV A,B! INX H! SBB M ; SUBTRACT
. CHECK FOR EQUAL VALUES
012E B2CA3FO1 ORD! JZ INCI ; SKIPIFAV(]) - AV(1+1)
013256702B5E MOD D,M! MOV M,B! DCX H! MOV E,M
0136 712B722B73 MOVM,C! DCX H! MOV M,D! DCX H! MOV M,E
© INCERMENT |
013F 21470134C3INCI: LXI H,I!INR M! IMP COMP
. DATA DEFINITION SECTION
014600 SW: DBO . RESERVE SPACE FOR SWITCH COUNT
0147 I DS1 : SPACE FOR INDEX
0148 050064001EAV: DW 5, 100, 30, 50, 20, 7, 1000, 300, 100, -32767
000A= N EQU ($-AV)/2 ; COMPUTE N INSTEAD OF PRE
015C END

A>TYPE SORT.HEX

3-27

3.7 A Sample Session CP/M Operating System Manual

:10010000214601360121470136007EFE09D 2190140
:100110002146017EB7C20001FF5F16002148011988
:10012000194E792346239657 78239EDA3FO1B2CAA7
:100130003F0156702B5E712B 722B732146013421C7
:070014000470134C3A01006E
:10014800050064001E00320014000700E8032C01BB
:0401580064000180BE

:0000000000000

A>DDT SORT.HEX Start debug run

16k DDT VER 1.0

NEXT PC

015C 0000 Default address (no address on END statement)
-XP

P=0000 100 Change PC to 100

-UFFFF Untrace for 65535 steps

Abort with rubout
C0ZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=100 L XI H,0146*0100
-T10 Trace 10H steps

C0ZOMOEQIO A=01 B=0000 D=0000 H=0146 S=0100 P=100 LXI H, 0146
C0ZOMOEOQIO A=01 B=0000 D=0000 H=0146 S=0100 P=103 MVI M,1
C0ZOMOEQIO A=01 B=0000 D=0000 H=0146 S=0100 P=105 LXI H, 0147
C0ZOMOEOQIO A=01 B=0000 D=0000 H=0147 S=0100 P=108 MVI M, 00
C0ZOMOEQIO A=01 B=0000 D=0000 H=0147 S=0100 P=10A MQV A, M
C0ZOMOEQIO A=00 B=0000 D=0000 H=0147 S=0100 P=10B CPI 09
C1Z0M1EQI0 A=00 B=0000 D=0000 H=0147 S=0100 P=10D JNC 0119
C1Z0M1EOI0 A=00 B=0000 D=0000 H=0147 S=0100 P=110 LXI H, 146
C1Z0M1EQI0 A=00 B=0000 D=0000 H=0146 S=0100 P=113 MOV A, M
C1Z0M1EOQI0 A=00 B=0000 D=0000 H=0146 S=0100 P=114 ORA A
C0ZOMOEQIO A=00 B=0000 D=0000 H=0146 S=0100 P=115 JNZ 0100
C0ZOMOEOQI0 A=00 B=0000 D=0000 H=0146 S=0100 P=100 LXI H, 146
C0ZOMOEQI0 A=00 B=0000 D=0000 H=0146 S=0100 P=103 MVI M, 01
C0ZOMOEQI0 A=00 B=0000 D=0000 H=0146 S=0100 P=104 LXI H, 0147
C0ZOMOEOQI0 A=00 B=0000 D=0000 H=0147 S=0100 P=107 MVI M, 00
C0ZOMOEOQIO A=00 B=0000 D=0000 H=0147 S=0100 P=10A MQV A, M*010B
Stopped at 10BH
-A10D

3-28

3.7 A Sample Session CP/M Operating System Manual

010D JC 119 Changetojump on carry

0110

-Xp

P=010B 100 Reset program counter back to beginning of
program

-T10 Trace execution for 10H steps

C0OZOMOEOI0 A=01 B=0000 D=0000 H=0147 S=0100 P=100 L XI H, 0146
C0ZOMOEOI0 A=01 B=0000 D=0000 H=0146 S=0100 P=103 MVI M,1
C0OZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=105 LXI H, 0147
C0ZOMOEOI0 A=01 B=0000 D=0000 H=0147 S=0100 P=108 MVI M, 00
C0OZOMOEOI0 A=01 B=0000 D=0000 H=0147 S=0100 P=10A MQV A, M
C0ZOMOEOI0 A=00 B=0000 D=0000 H=0147 S=0100 P=10B CPI 09
C1Z0M1EOI0 A=00 B=0000 D=0000 H=0147 S=0100 P=10D JC 0119
C1Z0M1EOI0 A=00 B=0000 D=0000 H=0147 S=0100 P=119 MQV E, A
C1Z0M1EOI0 A=00 B=0000 D=0000 H=0146 S=0100 P=11A MVI D, 00
C1Z0M1EOI0 A=00 B=0000 D=0000 H=0146 S=0100 P=11C LXI H, 0148
C1Z0M 1EO0I0 A=00 B=0000 D=0000 H=0148 S=0100 P=11F DAD D
C0Z0OM 1EO0I0 A=00 B=0000 D=0000 H=0148 S=0100 P=120 DAD D
C0Z0OM 1E0I0 A=00 B=0000 D=0000 H=0148 S=0100 P=121 MOV CM
C0ZOM 1EO0I0 A=00 B=0005 D=0000 H=0148 S=0100 P=122 MQV A,C
C0ZOM 1EO0I0 A=05 B=0005 D=0000 H=0148 S=0100 P=123 INX H
C0ZOM 1EO0I0 A=05 B=0005 D=0000 H=0149 S=0100 P=124 MOV B,M*0125
-L100

0100 LXI H,0146 List some code from 100H
0103 MVI M,01
0105 LXI H,0147
0108 MVI M,00
010A MOV A M
010B CPI 09
010D JC 0119
0110 LXI H,0146
0113 MOV AM
0114 ORA A
0115 JNZ 0100
-L

3-29

3.7 A Sample Session CP/M Operating System Manual

0118 RST 07 List more
0119 MOV EA
011A MVI D,00
011C LXI H,0148
Abort list with rubout
-G,11B Start program from current PC (0125H) and runin real
timeto 11BH

*0127 Stopped with an external interrupt 7 from front panel
-T4 (program was looping indefinitely)
Look at looping program in trace mode,

C0OZOMOEOIO A=38 B=0064 D=0006 H=0156 S=0100 P=127 MOV D,A
COZOMOEOIO A=38 B=0064 D=3806 H=0156 S=0100 P=128 MOV A,B
CO0ZOMOEOIO A=00 B=0064 D=3806 H=0156 S=0100 P=129 INX H
C0OZOMOEOIO A=00 B=0064 D=3806 H=0157 S=0100 P=12A SBB M*012B
-D148

014805000700 1400 1E QO Data are sorted but program does not stop
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 002.D.D..,......

0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
-GO Return to CP/M

A>DDT SORT.HEX Reload the memory image
16k DDT VER 1.0

NEXT PC

015C 0000

-XP

P=0000 100 Set PC to beginning of program
-L10D

010D JNC 0119

0110 LXI H,0146

-Abort list with rubout
-A10D Assemble new opcode

3-30

3.7 A Sample Session CP/M Operating System Manual

010D JC 119

0110

-L100 List starting section of program

0100 LXI H,0146

0103 MVI M,01

0105 LXI H,0147

0108 MVI M,00

-Abort list with rubout

-a103 Change switch initialization to 00

0103 MVI M,0

105

-AC Return to CP/M with CTRL-C (GO works as well)

SAVE 1 SORT.COM Save 1 page (256 pytes, from 100H to 1ffH)
on disk in case there is need to reload later

A>DDT SORT.COM Restart DDT with saved memory image

16K DDT VER 1.0

NEXT PC

0200 0100 COM file dways starts with address 100H

-G Run the program from PC=100H

*0118 Program stop (RST 7) encountered

-D148

0148 0500070014 00 1E QO Data propeerly sorted
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00
2D.D..,.....

0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

-GO Return to CP/M

3-31

3.7 A Sample Session CP/M Operating System Manual

a>ED SORT.ASM Make changes to original program
(the caret,”, indicates a control character)
*N,0MZOTT Find next ,0
MVI M,0 1=0

*- Uponelinein text
LXI H,I ;ADDRESS INDEX

*- Up another line
MVI M,1 ;SET TO1FORFIRST ITERATION

*KT Kill lineand type next line
LXI H,l ;ADDRESS INDEX

*| Insert new line
MVI M,0 :ADDRESS INDEX

*NJINCAZOT
INCHT
CONT ‘CONTINUE IF | <=(N-2)

*-2DICAZOLT
JC CONT :CONTINUEIFI <= (N-2)

*E

A>ASM SORT.AAZ Source=A, HEX todisk A, Skip PRN
CP/M ASSEMBLER - VER 1.0

015C Next adress to assemble

0003H USE FACTOR
END OF ASSEMBLY

3-32

3.7 A Sample Session

A>DDT SORT.HEX Test program changes

16K DDT VER 1.0
NEXT PC

015C 0000

-G100

*0118
-D148
Data sorted
0148 050007001400 1EQO.........
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00

2.D.D..,......
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

End of Section 3

3-33

CP/M Operating System Manual

3.7 A Sample Session CP/M Operating System Manual

Section 4
CP/M Dynamic Debugging Tool

4.1 Introduction

The DDT program allows dynamic interactive testing and debugging of programs generated in
the CP/M environment. Invoke the debugger with a command of one of the following forms:

DDT
DDT filename.HEX
DDT filename.COM

where filename is the name of the program to be loaded and tested. In both cases, the DDT
program is brought into main memory in place of the Console Command Processor (CCP) and
resides directly below the Basic Disk Operating System (BDOS) portion of CP/M. Refer to
Section 5 for standard memory organization. The BDOS starting address, located in the address
field of the IMP instruction at location 5H, is altered to reflect the reduced Transient Program
Area(TPA) size.

The second and third forms of the DDT command perform the same actions as the first, except
there is a subsequent automatic load of the specified HEX or COM file. The action isidentical to
the following sequence of commands:

DDT

Ifilename.HEX or Ifilename.COM

R

where the | and R commands set up and read the specified program to test. See the explanation of
the | and R commands below for exact details.

Upon initiation, DDT prints a sign-on message in the form:
DDT VER m.m

where m.m is the revision number.

Following the sign-on message, DDT prompts you with the hyphen character, -, and waits for
input commands from the console. Y ou can type any of several singlecharacter commands,
followed by a carriage return to execute the command. Each line of input can be line-edited using
the following standard CP/M controls:

Table4-1. Line-editing Controls

Control Result

rubout removes the last character typed

CTRL-U removes the entire line, ready for retyping

CTRL-C reboots system
Any command can be up to 32 charactersin length. An automatic carriage return isinserted as
character 33, where the first character determines the command type. Table 4-2 describesDDT
commands.

Table4-2. DDT Commands

Command
Character Result

A enters assembly-language mnemonics with operands.
D displays memory in hexadecimal and ASCII.

F fills memory with constant data.

G begins execution with optional breakpoints.

I sets up astandard input File Control Block.

L lists memory using assembler mnemonics.

M moves a memory segment from source to destination.

R reads a program for subsequent testing.

4.1 Introduction CP/M Operating System Manual

Table 4-2. (continued)

Command
Character Result

A enters assembly-language mnemonics with operands.
S substitutes memory values.

T traces program execution.
U untraced program monitoring.
X examines and optionally altersthe CPU state.

The command character, in some cases, is followed by zero, one, two, or three hexadecimal
values, which are separated by commas or single blank characters. All DDT numeric output isin
hexadecimal form. The commands are not executed until the carriage return istyped at the end of
the command.

At any point in the debug run, you can stop execution of DDT by using either aCTRL-C or GO
(jump to location 0000H) and save the current memory image by using a SAVE command of the
form:

SAVE n filename. COM

where n isthe number of pages (256 byte blocks) to be saved on disk. The number of blocksis
determined by taking the high-order byte of the address in the TPA and converting this number to
decimal. For example, if the highest address in the TPA is 134H, the number of pagesis 12H or
18 indecimal. Y ou could type a CTRL-C during the debug run, returning to the CCP levdl,
followed by

SAVE 18 X. COM

The memory image is saved as X.COM on the disk and can be directly executed by typing the
name X. If further testing is required, the memory image can be recalled by typing

DDT X.COM

which reloads the previously saved program from location 100H through page 18, 23FFH. The
CPU state is not a part of the COM file; thus, the program must be restarted from the beginning
to test it properly.

4.1 Introduction CP/M Operating System Manual

4.2 DDT Commands

The individual commands are detailed below. In each case, the operator must wait for the hyphen
prompt character before entering the command. If control is passed to a program under test, and
the program has not reached a breakpoint, control can be returned to DDT by executing a RST 7
from the front panel. In the explanation of each command, the command letter is shown in some
cases with numbers separated by commas, the numbers are represented by lower-case letters.
These numbers are always assumed to be in a hexadecimal radix and from oneto four digitsin
length. Longer numbers are automatically truncated on the right.

Many of the commands operate upon a CPU state that corresponds to the program under test. The
CPU state holds the registers of the program being debugged and initially contains zeros for all
registers and flags except for the program counter, P, and stack pointer, S, which default to 100H.
The program counter is subsequently set to the starting address given in the last record of a HEX
fileif afile of thisformisloaded, seethe | and R commands.

4.2.1 The A (Assembly) Command

DDT alows in-line assembly language to be inserted into the current memory image using the A
command, which takes the form:

As

where sis the hexadecimal starting address for the in-line assembly. DDT prompts the console
with the address of the next instruction to fill and reads the console, looking for
assembly-language mnemonics followed by register references and operands in absolute
hexadecimal form. See the Intel 8080 Assembly Language Reference Card for alist of
mnemonics. Each successive load addressis printed before reading the console. The A
command terminates when the first empty lineisinput from the console.

Upon completion of assembly language input, you can review the memory segment using the
DDT disassembler (see the L command).

Note that the assembler/disassembler portion of DDT can be overlaid by the transient program

being tested, in which case the DDT program responds with an error condition when the A and L
commands are used.

4-4

4.2 DDT Commands CP/M Operating System Manua

4.2.2 The D (Display) Command

The D command allows you to view the contents of memory in hexadecimal and ASCII formats.
The D command takes the forms:

D
Ds
Dsf

In the first form, memory is displayed from the current display address, initially 100H, and
continues for 16 display lines. Each display line takes the followng form:

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccecececcececee

where aaaa is the display address in hexadecimal and bb represents data present in memory
starting at aaaa. The ASCII characters starting at aaaa are to the right (represented by the
sequence of character ¢) where nongraphic characters are printed as a period. Y ou should note
that both upper- and lower-case a phabetics are displayed, and will appear as upper-case symbols
on a console device that supports only upper-case. Each display line gives the values of 16 bytes
of data, with thefirst line truncated so that the next line begins at an address that is a multiple of
16.

The second form of the D command is similar to the first, except that the display addressisfirst
Set to address s.

The third form causes the display to continue from address s through addressf. In all cases, the
display addressis set to the first address not displayed in this command, so that a continuing
display can be accomplished by issuing successive D commands with no explicit addresses.
Excessively long displays can be aborted by pressing the return key.

4.2.3 TheF (Fill) Command

The F command takes the form:

Fsf,c

where sisthe starting address, f isthe final address, and c is a hexadecimal byte constant. DDT
stores the constant ¢ at address s, increments the value of s and test against f. If sexceedsf, the

operation terminates, otherwise the operation is repeated. Thus, the fill command can be used to
set amemory block to a specific constant value.

4.2 DDT Commands CP/M Operating System Manua

4.2.4The G (Go) Command

A program is executed using the G command, with up to two optional breakpoint addresses. The
G command takes the forms:

G

Gs
Gsb
Gs,b,c
G,b
G,b,c

The first form executes the program at the current value of the program counter in the current
machine state, with no breakpoints set. The only way to regain control in DDT isthrough a RST
7 execution. The current program counter can be viewed by typing an X or XP command.

The second form is similar to the first, except that the program counter in the current machine
state is set to address s before execution begins.

The third form is the same as the second, except that program execution stops when addressb is
encountered (b must be in the area of the program under test). The instruction at location b is not
executed when the breakpoint is encountered.

Thefourth form isidentical to the third, except that two breakpoints are specified, one at b and
the other at c. Encountering either breakpoint causes execution to stop and both breakpoints are
cleared. The last two forms take the program counter from the current machine state and set one
and two breakpoints, respectively.

Execution continues from the starting address in real-time to the next breakpoint. Thereis no
intervention between the starting address and the break address by DDT. If the program under
test does not reach a breakpoint, control cannot return to DDT without executing a RST 7
instruction. Upon encountering a breakpoint, DDT stops execution and types

*d

4.2 DDT Commands CP/M Operating System Manua

where d is the stop address. The machine state can be examined at this point using the X
(Examine) command. Y ou must specify breakpoints that differ from the program counter address
at the beginning of the G command. Thus, if the current program counter is 1234H, then the
following commands:

G,1234
(400,400

both produce an immediate breakpoint without executing any instructions.
4.25Thel (Input) Command

The | command allows you to insert afilename into the default File Control Block (FCB) at
5CH. The FCB created by CP/M for transient programs is placed at this location (see Section 5).
The default FCB can be used by the program under test asif it had been passed by the CP/M
Console Processor. Note that this filename is aso used by DDT for reading additional HEX and
COM files. The | command takes the forms:

Ifilename
Ifilename.typ

If the second form is used and the filetype is either HEX or COM, subsequent R commands can
be used to read the pure binary or hex format machine code. Section 4.2.8 gives further details.

4.2.6 TheL (List) Command

The L command is used to list assembly-language mnemonics in a particular program region.
The L command takes the forms:

L
Ls
Lsf

Thefirst form lists twelve lines of disassembled machine code from the current list address. The
second form setsthe list address to s and then lists twelve lines of code. The last form lists
disassembled code from sthrough addressf. In al three cases, the list address is set to the next
unlisted location in preparation for a subsequent L command. Upon encountering an execution
breakpoint, the list address is set to the current value of the program counter (Gand T
commands). Again, long typeouts can be aborted by pressing RETURN during the list process.

4.2 DDT Commands CP/M Operating System Manua

4.2.7TheM (Move) Command

The M command allows block movement of program or data areas from one location to another
in memory. The M command takes the form:

Msf.d

where sisthe start address of the move, f is the final address, and d is the destination address.
Dataisfirst removed from sto d, and both addresses are incremented. If s exceedsf, the move
operation stops; otherwise, the move operation is repeated.

4.2.8 TheR (Read) Command

The R command is used in conjunction with the | command to read COM and HEX files from
the disk into the transient program areain preparation for the debug run. The R command takes
theforms:

R
Rb

where b is an optional bias address that is added to each program or data address as It is |oaded.
The load operation must not overwrite any of the system parameters from 000H through OFFH
(that is, the first page of memory). If b is omitted, then b = 0000 is assumed. The R command
requires a previous | command, specifying the name of aHEX or COM file. The load address
for each record is obtained from each individual HEX record, while an assumed |oad address of
100H is used for COM files. Note that any number of R commands can be issued following the |
command to reread the program under test, assuming the tested program does not destroy the
default areaat S5CH. Any file specified with the filetype COM is assumed to contain machine
code in pure binary form (created with the LOAD or SAVE command), and all others are
assumed to contain machine code in Intel hex format (produced, for example, with the ASM
command).

Recall that the command,

DDT filename.typ

which initiates the DDT program, equals to the following commands:
DDT

- Ifilename.typ
-R

4.2 DDT Commands CP/M Operating System Manua

Whenever the R command isissued, DDT responds with either the error indicator ? (file cannot
be opened, or achecksum error occurred in aHEX file) or with aload message. The load
message takes the form:

NEXT PC
nnNN pppp

where nnnn is the next address following the loaded program and pppp is the assumed program
counter (100H for COM files, or taken from the last record if aHEX fileis specified).

4.29The S (Set) Command

The S command alows memory locations to be examined and optionally atered. The S
command takes the form:

Ss

where sisthe hexadecimal starting address for examination and alteration of memory. DDT
responds with a numeric prompt, giving the memory location, along with the data currently held
in memory. If you type a carriage return, the datais not altered. If abyte valueistyped, the value
is stored at the prompted address. In either case, DDT continues to prompt with successive
addresses and values until you type either a period or an invalid input value is detected.

4.2.10 TheT (Trace) Command

The T command allows selective tracing of program execution for 1 to 65535 program steps. The
T command takes the forms:

T
Tn

In the first form, the CPU state is displayed and the next program step is executed. The program
terminates immediately, with the termination address displayed as

*hhhh
where hhhh is the next address to execute. The display address (used in the D command) is set to

thevalue of H and L, and the list address (used in the L command) is set to hhhh. The CPU state
at program termination can then be examined using the X command.

4.2 DDT Commands CP/M Operating System Manua

The second form of the T command is similar to the first, except that execution istraced for n
steps (n is ahexadecimal value) before a program breakpoint occurs. A breakpoint can be forced
in the trace mode by typing a rubout character. The CPU state is displayed before each program
step istaken in trace mode. The format of the display is the same as described in the X command.

Y ou should note that program tracing is discontinued at the CP/M interface and resumes after
return from CP/M to the program under test. Thus, CP/M functions that access 1/0O devices, such
asthedisk drive, runin real-time, avoiding 1/0O timing problems. Programs running in trace mode
execute approximately 500 times slower than real-time because DDT gets control after each user
instruction is executed. Interrupt processing routines can be traced, but commands that use the
breakpoint facility (G, T, and U) accomplish the break using an RST 7 instruction, which means
that the tested program cannot use this interrupt location. Further, the trace mode always runs the
tested program with interrupts enabled, which may cause problems if asynchronous interrupts are
received during tracing.

To get control back to DDT during trace, press RETURN rather than executing an RST 7. This
ensures that the trace for current instruction is completed before interruption.

4.2.11 The U (Untrace) Command

The U command isidentical to the T command, except that intermediate program steps are not
displayed. The untrace mode allows from 1 to 65535 (OFFFFH) steps to be executed in
monitored mode and is used principally to retain control of an executing program while it reaches
steady state conditions. All conditions of the T command apply to the U command.

4.2.12 The X (Examine) Command

The X command allows selective display and alteration of the current CPU state for the program
under test. The X command takes the forms:

X
Xr

wherer isone of the 8080 CPU registerslisted in the following table.

4-10

4.2 DDT Commands CP/M Operating System Manua

Table 4-3. CPU Registers

Register Meaning Vaue
C Carry flag (0/1)
Z Zeroflag (0/1)
M Minusflag (0/1)
E Even parity flag (0/1)
I Interdigit carry (0/1)
A Accumulator (O-FF)
B BC register pair (O-FFFF)
D DE register pair (O-FFFF)
H HL register pair (O-FFFF)
S Stack pointer (O-FFFF)
P Program counter (O-FFFF)

In thefirst case, the CPU register state is displayed in the format:
CfztMfEflf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

wherefisaOor 1 flag value, bb is abyte value, and dddd is a double-byte quantity
corresponding to the register pair. Theinst field contains the disassembled instruction, that
occurs at the location addressed by the CPU state's program counter.

The second form allows display and optional alteration of register values, wherer is one of the
registers given above (C, Z, M, E, I, A, B, D, H, S, or P). In each case, the flag or register value is
first displayed at the console. The DDT program then accepts input from the console. If a
carriage return is typed, the flag or register value is not atered. If avalue in the proper rangeis
typed, the flag or register valueis atered. Y ou should note that BC, DE, and HL are displayed as
register pairs. Thus, you must type the entire register pair when B, C, or the BC pair is altered.

4.3 Implementation Notes

The organization of DDT allows certain nonessential portions to be overlaid to gain alarger
transient program area for debugging large programs. The DDT program consists of two parts:
the DDT nucleus and the assembler/disassembler module. The DDT nucleusisloaded over the
CCP and, athough loaded with the DDT nucleus, the assembl er/disassembler is overlayable
unless used to assemble or disassemble.

4-11

4.2 DDT Commands CP/M Operating System Manua

In particular, the BDOS address at |ocation 6H (address field of the IMP instruction at location
5H) ismodified by DDT to address the base location of the DDT nucleus, which, in turn,
contains a JMP instruction to the BDOS. Thus, programs that use this address field to size
memory see the logical end of memory at the base of the DDT nucleus rather than the base of the
BDOS.

The assembl er/disassembler module resides directly below the DDT nucleusin the transient
program area. If the A, L, T, or X commands are used during the debugging process, the DDT
program again alters the address field at 6H to include this module, further reducing the logical
end of memory. If aprogram loads beyond the beginning of the assembler/disassembler module,
the A and L commands are lost (their use produces a ? in response) and the trace and display (T
and X) commands list the inst field of the display in hexadecimal, rather than as a decoded
instruction.

4.4 A Sample Program
The following example silows an edit, assemble, and debug for asimple program that reads a set

of data values and determines the largest value in the set. The largest value is taken from the
vector and stored into LARGE at the termination of the program.

A>ED SCAN.ASM

*1

ORG 1-00H ;START OF TRANSIENT
;AREA

MVI B, LEN ;LENGTH OF VECTOR TO SCAN
MVI C,O0 ;LARGER_RST VALUE SO FAR

LOOP LXlI H,VECT ;BASE OF VECTOR

LOOP: MOV A, M ;GET VALUE

SuB C ;LARGER VALUE IN C?
JNC NFOUND JJUMP IF LARGER VALUE NOT

;FOUND
; NEW LARGEST VALUE, STOREITTOC
MOV C, A
NFOUND INX H ;TONEXT ELEMENT
DCR B ;MORE TO SCAN?
JNZ LOOP ;FOR ANOTHER

; END OF SCAN, STORE C

4-12

4.3 Implementation Notes

VECT,
LEN
LARGE;

AN

*BOP

LOOP:

NFOUND:

VECT:
LEN
LARGE:

MOV A,C ;GET LARGEST VALUE

STA LARGE

JMP 0 ;REBOOT

TEST DATA

DB 20435,6,15

EQU 4-VECT ;LENGTH

DS 1 ;LARGEST VALUE ON EXIT

END

ORG 100H ' START OF TRANSIENT AREA

MVI B,LEN ;LENGTH OF VECTOR TO SCAN

MVI CO ;LARGEST VALUE SO FAR

LXlI HNVECT ;BASE OF VECTOR

MOV AM ;GET VALUE

SuB C ;LARGER VALUE IN C?

JNC NFOUND JJUMP IF LARGER VALUE NOT
;FOUND

NEW LARGEST VALUE, STOREITTOC

MOV CA

INX H ;TONEXT ELEMENT

DCR B ;MORE TO SCAN?

JNZ LOOP ;FOR ANOTHER

END OF SCAN, STORE C

MOV AC ;GET LARGEST VALUE

STA LARGE

JMP 0 ;REBOOT

TEST DATA

DB 20435,6,15

EQU $VECT ;LENGTH

DS 1 ;LARGEST VALUE ON EXIT

END

*E End of edit

4-13

CP/M Operating System Manua

4.4 A Sample Program CP/M Operating System Manua

A>ASM, SCAN

CP/M ASSEMBLER - VER 1.0

0122

002H USE FACTOR

END OF ASSEMBLY Assembly complete; look at program listing

A>TYPE SCAN PRN
Code address Source program

0100 ORG 100H ;START OF TRANSIENT AREA
0100 0608 MVI B,LEN ;LENGTH OF VECTOR TO SCAN
0102 OEQO MVI C,O ;LARGEST VALUE SO FAR
0104 211901 LXI HVECT ;BASE OF VECTOR
0107 7E LOOP: MOV AM ;GET VALUE
0108 91 SUB C ;LARGER VALUEIN C?
0109 D20DO01 JNC NFOUND JJUMP IF LARGER VALUE NOT
;FOUND
; NEW LARGEST VALUE, STOREITTOC
010C 4F MOV CA
010D 23 NFOUND: INX H ;TONEXT ELEMENT
010E 05 DCR B ;MORE TO SCAN?

010F C20701 JNZ LOOP ;FOR ANOTHER

; END OF SCAN, STORE C

0112 79 MOV A,C ;GET LARGEST VALUE
0113 322101 STA LARGE
0116 C30000 JMPO ;REBOOT
; TEST DATA
0118 0200040305 VECT: DB 2,04,35,6,15
0008 = LEN EQU $-VECT ;LENGTH
0121 LARGE; DS1 ;LARGEST VALUE ON EXIT
0122 END

4-14

4.4 A Sample Program CP/M Operating System Manua

A>DDT SCAN. HEX Start debugger using hex format machine code
DDT VER 1.0
NEXT PC Next instruction
0121 0000 to execute at
-X PC=0

I
COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0000 P=0000 OUT 7F
-XP \ Examine registers before debug run
P=0000 100 Change PC to 100

-X Look at registers again

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=00120 MVI B,08
-L100
PC changed Next instruction
to execute at PC = 100

0100 MVI B,08
0112 MVI C,00
0104 LXI H,0119
0107 MOV AM
0108 SUB C
0109 JNC 010D
010C MOV CA
010D INX H
010E DCR B
010F JNZ 0107
0112 MOV AC

4-15

4.4 A Sample Program CP/M Operating System Manua

0113 STA 0121
0116 JMP 0000

0119 STAX B A little more machine
011A NOP code. Note that pro-
011B INR B ram ends at location
011C INX B 116 witha JMP to
011D DCR B 0000. Remainder of
O11E MVI B,01 listing is assembly of
0120 DCR B data.

0121 LXI D,2200

0124 LXI H,0200

-A116 Enter in-line assembly mode to change the IMP to 0000 into a RST7,
which will cause the program under test to return to DDT if 116H is
ever executed.

0116 RST 7

0117 (Single carriage return stops assemble mode)
-L113 List code at 113H to check that RST 7 was properly inserted.

0113 STA 0121

0116 REST 07 in place of IMP
0117 NOP

0118 NOP

0119 STAX B

011A NOP

011B INR B

011C INX B

-X Look at registers
COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI B,08
-T

Execute Preogram for one stop. Initial CPU state, before is executed

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI B, 08*0102
Automatic breakpoint/

4-16

4.4 A Sample Program CP/M Operating System Manua

Trace one step again (note O8H in B)
COZOMOEOIO A=00 B=0800 D=0000 H=0000 S=0100 P=0102 MVI C,00*0104
-T

Trace again (Register C iscleared)
COZOMEOIO A=00 B=0800 D=0000 H=0000 S=0100 P=0104 LXI H,0119*0107
-T3 Tracethree steps
COZOMOEOIO A=00 B=0800 D=0000 H=0119 S=0100 P=0107 MOV A ,M
COZOMOEOIO A=02 B=0800 D=0000 H=0119 S=0100 P=0100 SUB C
COZOMOEOI1 A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JNC 010D*010D
-D119

Display memory starting at 119H. Automatic breakpoint at 10DH

0119020004 030506 01 . Program data
0120051100222100027EEB 77 1323EBOB 78 B1 ...".. . W #.X.
0130C22701C3032900000000000000000000.....)........
01400000000000000000000000000000000cc.ecn..
01500000 0000000000000 00000000000000cc.ecn..
01600000 0000000000000 00000000000000cc.ecu..
01700000000000000000000000000000000cc.ecu..
01800000 0000000000000 00000000000000cc.ecn.e
01900000 0000000000000 00000000000000cc.ecune
01A00000000000000000000000000000000.................
01BO0O0 0000000000000 000000000000000N............
01CO00000000000000000000000000000000ccneuene
-X

Current CPU state
C0ZOMOEOQI1 A-02 B-0800 D=0000 H=0119 S=0100 P=010D INX H
-T5 Trace5 steps from current CPU state

C0ZOMOEOI1 A-02 B-0800 D=0000 H=0119 S=0100 P=010D INX H
CO0ZOMOEOI1 A-02 B-0800 D=0000 H=011A S=0100 P=010E DCR B
C0O0ZOMOEOI1 A-02 B-0700 D=0000 H=011A S=0100 P=010F JNZ 0107
C0ZOMOEOI1 A-02 B-0700 D=0000 H=011A S=0100 P=0107 MOV A,M
C0O0ZOMOEOI1 A-00 B-0700 D=0000 H=011A S=0100 P=0108 SUB C*0109

U5
Trace without listing intermediate states

C0Z1MOE1I1 A-00 B-0700 D=0000 H=011A S=0100 P=0109 JNC 010D* 0108
-X

4-17

4.4 A Sample Program CP/M Operating System Manua

CPU state at end of U5
COZOMOEL1I1 A=04 B=0600 D=0000 H=001B S=0100 P=0108 SUB C
-G Run program from current PC until completion (in real-time)

*0116 breakpoint at 116H, caused by executing RST 7 in machine code
-X

CPU state at end of program
COZ1MOE1I1 A=00 B=0000 D=0000 H=0121 S=0100 P=0116 RST 07
-XP

Examine and change program counter.
P=0116 100
-X

COZ1MOE1I1 A=00 B=0000 D=0000 H=0121 S=0100 P=0100 MV1 B,-08
-T10

4-18

4.4 A Sample Program CP/M Operating System Manua

Trace 10 (hexadecimal) steps
C0Z1MOE1I1 A-00 B-0800 D=0000 H=0121 S=0100 P=0100 MVI B,08
C0Z1MOE1I1 A-00 B-0000 D=0000 H=0121 S=0100 P=0102 MVI C,00
C0Z1MOE1I1 A-00 B-0800 D=0000 H=0121 S=0100 P=0103 LXI H,0119
C0Z1MOE1I1 A-00 B-0800 D=0000 H=0119 S=0100 P=0107 MOV A M
C0Z1MOE1I1 A-02 B-0800 D=0000 H=0119 S=0100 P=0108 SUB C
C0Z1MOE1I1 A-02 B-0800 D=0000 H=0119 S=0100 P=0109 JNC 010D
C0Z1MOE1I1 A-02 B-0800 D=0000 H=0119 S=0100 P=010D INX H
C0Z1MOE1l1 A-02 B-0800 D=0000 H=011A S=0100 P=010E DCR B
C0Z1MOE1I1 A-02 B-0700 D=0000 H=011A S=0100 P=010F JNZ 0107
C0Z1MOE1l1 A-02 B-0700 D=0000 H=011A S=0100 P=0107 MOV AM
C0Z1MOE1I1 A-00 B-0700 D=0000 H=011A S=0100 P=0108 SUB C
C0Z1MOE1I1 A-00 B-0700 D=0000 H=011A S=0100 P=0109 JNC 010D
CO0Z1MOE1l1 A-00 B-0700 D=0000 H=011A S=0100 P=010D INX H
CO0Z1MOE1l1 A-00 B-0700 D=0000 H=011B S=0100 P=010E DCR B
C0Z1MOE1I1 A-00 B-0600 D=0000 H=011B S=0100 P=010F JNZ 0107
C0Z1MOE1I1 A-00 B-0600 D=0000 H=011B S=0100 P=0107 MOV A,M*0108

Insert a"hot patch” into Program should have moved the

the machine code value from A into C since A>C.
0109 JC 100 to changethe Since this code was not executed,

IJNCto JC it appears that the INC should

have been a JC instruction
010C

Stop DDT so that aversion of
_GO the patched program can be saved

A>SAVE 1 SCAN.COM Program resides on first
page, so save 1 page.
A>DDT SCAN,COM
Restart DDT with the save memory
DDT VER 1.0 Image to continue testing
NEXT PC
0200 0100

4-19

4.4 A Sample Program CP/M Operating System Manua

-L100 List some code

0100 MVI B,08
0102 MVI C,00
0104 LXI H,0119
0107 MOV AM
0108 SUBC
0109 JC 010D Previous patchis present in X.COM
010C MOV CA
010D INXH
010E DCRB
010F JNZ 0107
0112 MOV A,C
-XP

P=0100

-T10

Trace to see how patched version operates. Datais moved from A to C
C0ZOMOEQIO A-00 B-0800 D=0000 H=0000 S=0100 P=0100 MVI B,08
C0ZOMOEQIO A-00 B-0000 D=0000 H=0000 S=0100 P=0102 MVI C,00
C0ZOMOEQIO A-00 B-0800 D=0000 H=0000 S=0100 P=0103 L X1 H,0119
C0ZOMOEQIO A-00 B-0800 D=0000 H=0119 S=0100 P=0107 MOV A M
C0ZOMOEQIO A-02 B-0800 D=0000 H=0119 S=0100 P=0108 SUB C
C0ZOMOEOQI1 A-02 B-0800 D=0000 H=0119 S=0100 P=0109 JC 010D
C0Z1MOE1I1 A-00 B-0800 D=0000 H=0119 S=0100 P=010C MOV CA
C0Z1MOE1I1 A-02 B-0802 D=0000 H=0119 S=0100 P=010D INX H
C0Z1MOE1I1 A-02 B-0802 D=0000 H=011A S=0100 P=010E DCR B
C0Z1MOE1I1 A-02 B-0702 D=0000 H=011A S=0100 P=010F JNZ 0107
C0Z1IMOE1l1 A-02 B-0702 D=0000 H=011A S=0100 P=0107 MOV A,M
C0Z1MOE1I1 A-00 B-0702 D=0000 H=011A S=0100 P=0108 SUB C
C1Z0M1EQI0 A-00 B-0702 D=0000 H=011A S=0100 P=0109 JNC 010D
C1Z0M1EQI0 A-00 B-0702 D=0000 H=011A S=0100 P=010D INX H
C1Z0M1EQIO0 A-00 B-0702 D=0000 H=011B S=0100 P=010E DCR B
C1Z0OMOE1I1 A-00 B-0602 D=0000 H=011B S=0100 P=010F JNZ 0107*0107
-X /

Breakpoint after 16 steps

C1ZOMOE1l1 A=FE B=0602 D=000 H-011B S=0100 P-0107 MOV A .M
-G,108 Run from current PC and breakpoint at 108H

4-20

4.4 A Sample Program CP/M Operating System Manua

*0108
-X
/ Next dataitem

C1ZOMOE1I1 A=04 B=0602 D=0000 H=011B S=0100 P=0108 SUB C
-T

Single step for afew cycles
C1ZOMOE1I1 A=04 B=0602 D=0000 H=011B S=0100 P=0108 SUB C*0109
-T

COZOMOEOI1 A=02 B=0602 D=0000 H=001B S=0100 P=0109 JC 010D*010C
-X

COZOMOEOI1 A=02 B=0602 D=0000 H=001B S=0100 P=010C MQV C,A
-G Run to completion

*0116

-X

COZ1MOE1lI1 A=03 B=0003 D=0000 H=0121 S=0100 P=0117 RST 07
-S121 Look at the value of 'LARGE'

0121 03 Wrong value"

0122 00

0123 22

0124 21

0125 00

0126 02

0127 7E End of the S command

4-21

4.4 A Sample Program CP/M Operating System Manua

-L100

0111 MVI B,08
0102 MVI C,00
0104 LXI H,0119
0107 MOV AM
0108 SuUB C
0109 JC 010D
010C MOV CA
010D INX H
010E JNZ 0107
0112 MOV AC
-L

0113 STA 0121
0116 RST 07
0117 NOP
0118 NOP
0119 STAX B
011A NOP
011A INR B
011B INX B
011D DCR B
011E MVU B,
0120 DCR B
-XP

01

P=0116 100 Reset the PC
T

Single step and watch data values
C0Z1MOE1I1 A-03 B-0003 D=0000 H=0121 S=0100 P=0100 MV B,08*0102
T

C0Z1MOE1LI1 A-03 B-0803 D=0000 H=0121 S=0100 P=0102 MVI C,00* 0104
T

Count set\ /Largest set
C0Z1MOE1I1 A-03 B-0800 D=0000 H=0121 S=0100 P=0104 L XI H,0119* 0107
T

4-22

4.4 A Sample Program CP/M Operating System Manua

/ Base address of data set
C0Z1MOE1I1 A-03 B-0800 D=0000 H=0119 S=0100 P=0107 MOV A,M*0108
-T
/ First dataitem brought to A
C0Z1MOE1l1 A-02 B-0800 D=0000 H=0119 S=0100 P=0108 SUB C*0109
-T

COZOMOEOI 1 A-02 B-0800 D=0000 H=0119 S=0100 P=0109 JC 010D*010C
T

C0ZOMOEOQI1 A-00 B-0800 D=0000 H=0119 S=0100 P=010C MQV C,A*010D
T
/ First data item moved to C correctly
C0ZOMOEOQI1 A-02 B-0802 D=0000 H=0119 S=0100 P=010D INX H*010E
T

COZOMOEOI 1 A-02 B-0802 D=0000 H=011A S=0100 P=010E DCR B* 010F
T

COZOMOEOI 1 A-02 B-0702 D=0000 H=011A S=0100 P=010F JNZ 0107*0107
T

C0ZOMOEOQI1 A-02 B-0702 D=0000 H=011A S=0100 P=0107 MOV A,M*0108
T

/ Second data item brought to A
C0ZOMOEOQI1 A-00 B-0702 D=0000 H=011A S=0100 P=0108 SUB C*0109
T

/ Subtract destroys data value that was loaded!
C1Z0OM1EQIO A-FE B-0702 D=0000 H=011A S=0100 P=0109 JNC 010D* 010D
T

C1Z0M1EOI0 A-FE B-0702 D=0000 H=011A S=0100 P=010D INX H*010E
-L100

4-23

4.4 A Sample Program CP/M Operating System Manua

0111 M™MVI B,08

0102 MVI C,00

0104 LXI H,0119

0107 MOV AM

0108 SuB C <-- This should have been a CMP so that register A
0109 JC 010D would not be destroyed
010C MOV CA

010D INX H

0O10E JNZ 0107

0112 MOV A,C

A108

0108 CPM C Hot pathc at 108H changes SUB to CMP
0109

-GO Stop DDT for SAVE

A>SAVE 1 SCAN.COM Save memory image

DDT VER 1.0

NEVX PC

0200 0100

-XP

P=100

-L116

0116 RST 07

0117 NOP Look at code to seeiif it was properly loaded
0118 NOP (long typeout aborted with rubout)

0119 STAX B
011A NOP

-G,116 Run from 100 to completion

4-24

4.4 A Sample Program

*0116
-XC
Cl

-X

CP/M Operating System Manua

C1Z1IMOE1I1 A=06 B=0006 D=0000 H=0121 S=0100 P=0116 RST 07

-S121 Look at "large" - it appears to be correct.
0121 06

0122 00

0123 22

-GO Stop DDT

A>ED SCAN.ASM Re-edit the source program, and make both changes

*NSUB
*OLT
CTRL-Z SuB C
*SSUBMZCMPMZ0LT
CMP D

*

JNC NFOUND
*SNCNZCMZOLT

JC NFOUND
*E

A>ASM SCAN.AAZ
CP/M ASSEMBLER VER 1.0
0122

002H USE FACTOR
END OF ASSEMBLY

;LARGER VALUE IN C?

;LARGER VALUE IN C?

;JJUMP IF LARGER VALUE NOT FOUND

;JJUMP IF LARGER VALUE NOT FOUND

4-25

4.4 A Sample Program

A>DDT SCAN.HEX
DDT VER1.0
NEXT PC

0121 0000

-L116

-116 JMP 0000
0119 STAX B

011A NOP
011B INR B

-(rubout)

CP/M Operating System Manua

Check to ensureend is till at 116H

-G100,116 Go from beginning with breakpoint at end

*0116 Breakpoint reached
-D121 Look at "LARGE"

0121 060022210002 7e771223ebOb 78 b1 .."l... W #.X.
0130 c2 27 01 c3 03 29 00 00 00 00 00 00 00 00 00 00 ."...)........
0140 00 00 00 00 00 00 00 00 00 00 00 00000000 OO

-(rubout) Aborts long typeout

GO Stop DDT, debug sesssion complete.

End of Section 4

Section 5
CP/M 2 System Interface

5.1 Introduction

This chapter describes CP/M (release 2) system organization including the structure of memory
and system entry points. This section provides the information you need to write programs that
operate under CP/M and that use the peripheral and disk 1/0 facilities of the system.

CP/M islogically divided into four parts, caled the Basic Input/Output System (B1OS), the Basic
Disk Operating System (BDOS), the Console Command Processor (CCP), and the Transient
Program Area (TPA). The BIOS is a hardware-dependent modul e that defines the exact low level
interface with a particular computer system that is necessary for peripheral device I/0O. Although
astandard BIOS is supplied by Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment, see Section 6.

The BIOS and BDOS are logically combined into a single module with a common entry point
and referred to as the FDOS. The CCP is adistinct program that uses the FDOS to provide a
human-oriented interface with the information that is cataloged on the back-up storage device.
The TPA isan area of memory, not used by the FDOS and CCP, where various nonresident
operating system commands and user programs are executed. The lower portion of memory is
reserved for system information and is detailed in later sections. Memory organization of the
CP/M system is shown in Figure 5-1.

5.1 Introduction CP/M Operating System Manual

SRS +
High | I
Memory | FDOS (BDOS+BIOS) |
FBASE: | I
SRS +
I I
| CCP |
CBASE: | |
SRS +
I I
| TPA |
TBASE: | |
SRS +
I I
| SYSTEM PARAMETERS |
BOOT: | I

Figure5-1. CP/M Memory Organization

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and FBASE vary from
version to version and are described fully n Section 6. All standard CP/M versions assume
BOOT=0000H, which is the base of random access memory. The machine code found at location
BOOT performs a system warm start, which loads and initializes the programs and variables
necessary to return control to the CCP. Thus, transient programs need only jump to location
BOOQT to return control to CP/M at the command level. further, the standard versions assume
TBASE=BOOT+0100H, which is normally location 0100H. The principal entry point to the
FDOS s at location BOOT+0005H (normally 0005H) where ajump to BASE isfound. The
addressfield at BOOT+0006H (normally 006H) contains the value of FBASE and can be used to
determine the size of available memory, assuming that the CCP is being overlaid by atransient
program.

5.1 Introduction CP/M Operating System Manual

Transient programs are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each prompt. Each command
line takes one of the following forms:

command
command filel
command filel file2

where command is either a built-in function, such as DIR or TY PE, or the name of atransient
command or program. If the command is a built-in function of CP/M, it is executed immediately.
Otherwise, the CCP searches the currently addressed disk for afile by the name

command.COM

If thefileisfound, it is assumed to be a memory image of a program that executesin the TPA
and thusimplicity originates at TBASE in memory. The CCP loads the COM file from the disk
into memory starting at TBASE and can extend up to CBASE.

If the command is followed by one or two file specifications, the CCP prepares one or two File
Control Block (FCB) names in the system parameter area. These optional FCBs are in the form
necessary to access files through the FDOS and are described in Section 5.2.

The transient program receives control from the CCP and begins execution, using the I/O
facilities of the FDOS. The transient program is called from the CCP. Thus, it can ssimply return
to the CCP upon completion of its processing, or can Jump to BOOT to pass control back to
CP/M. In thefirst case, the transient program must not use memory above CBASE, whilein the
latter case, memory up through FBASE-1 can be used.

The transient program can use the CP/M 1/0O facilities to communicate with the operator's
console and peripheral devices, including the disk subsystem. The I/O system is accessed by
passing afunction number and an information address to CP/M through the FDOS entry point at
BOOT+0005H. In the case of adisk read, for example, the transient program sends the number
corresponding to a disk read, along with the address of an FCB to the CP/M FDOS. The FDOS,
in turn, performs the operation and returns with either a disk read completion indication or an
error number indicating that the disk read was unsuccessful.

5.1 Introduction CP/M Operating System Manual

5.2 Operating System Call Conventions

This section provides detailed information for performing direct operating system calls from user
programs. Many of the functions listed below, however, are accessed more simply through the
I/O macro library provided with the MAC macro assembler and listed in the Digital Research
manual entitled, "Programmer's Utilities Guide for the CP/M Family of Operating Systems.”

CP/M facilities that are available for access by transient programs fall into two genera
categories. simple device I/0O and disk file 1/0O. The ssmple device operations are

- read a consol e character

- write a console character

- read a sequential character
- write a sequential character
- get or set 1/0 status

- print console buffer

- interrogate consol e ready

The following FDOS operations perform disk 1/0:

- disk system reset

- drive selection

- file creation

- fileclose

- directory search

- file delete

- filerename

- random or sequential read
- random or sequential write
- interrogate available disks
- interrogate selected disk

- set DMA address

- set/reset file indicators.

As mentioned above, access to the FDOS functionsis accomplished by passing afunction
number and information address through the primary point at location BOOT+0005H. In general,
the function number is passed in register C with the information address in the double byte pair
DE. Single byte values are returned in register A, with double byte values returned in HL, a zero
value is returned when the function number is out of range. For reasons of compatibility, register
A =L andregister B = H upon return in all cases. Note that the register passing conventions of
CP/M agree with those of the Intel PL/M systems programming language. CP/M functions and
their numbers are listed below.

5-4

5.2 Call Conventions CP/M Operating System Manual

0 System Reset 19 DeleteFile

1 Console Input 20 Read Sequential

2 Console Output 21 Write Sequential

3 Reader Input 22 MakeFile

4 Punch Output 23 RenameFile

5 List Output 24 Return Login Vector
6 Direct Console!l/O 25 Return Current Disk
7 Get1/O Byte 26 Set DMA Address
8 Set /O Byte 27 Get Addr(Alloc)

9 Print String 28 Write Protect Disk
10 Read Console Buffer 29 Get R/O Vector

11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)

13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random

15 OpenFile 34 Write Random

16 CloseFile 35 ComputeFile Size
17 Searchfor First 36 Set Random Record
18 Search for Next 37 Reset Drive

40 Write Random with Zero Fill

Functions 28 and 32 should be avoided in application programs to maintain upward compatibility
with CP/M.

5.2 Call Conventions CP/M Operating System Manual

Upon entry to atransient program, the CCP leaves the stack pointer set to an eight-level stack
areawith the CCP return address pushed onto the stack, leaving seven levels before overflow
occurs. Although this stack is usually not used by atransient program (most transients return to
the CCP through a jump to location 0000H) it is large enough to make CP/M system calls
because the FDOS switches to alocal stack at system entry. For example, the assembly-language
program segment below reads characters continuously until an asterisk is encountered, at which
time control returns to the CCP, assuming a standard CP/M system with BOOT = 0000H.

BDOS EQU 0005H ; STANDARD CP/M ENTRY
CONIN EQU1 ;CONSOLE INPUT FUNCTION
ORG 0100H ;BASE OF TPA
NEXTC: MVI C,CONIN ;READ NEXT CHARACTER
CALL BDOS ;RETURN CHARACTER IN <A>
CPl ™! ;END OF PROCESS ING?
INZ NEXTC ;LOOP IF NOT
RET ;RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing alogical organization that
allows any particular file to contain any number of records from completely emptv to the full
capacity of the drive. Each driveislogicaly distinct with adisk directory and file data area. The
disk filenames are in three parts. the drive select code, the filename (consisting of oneto eight
nonblank characters), and the filetype (consisting of zero to three nonblank characters). The
filetype names the generic category of a particular file, while the filename distinguishes
individual filesin each category. Thefiletypeslisted in Table 5-1 name afew generic categories
that have been established, although they are somewhat arbitrary.

5.2 Call Conventions

Filetype

CP/M Operating System Manual

Table5-1. CP/M Filetypes

Meaning

ASM
PRN
HEX
BAS
INT
COM
PLI
REL
TEX
BAK
SYM
5

Assembler Source
Printer Listing

Hex Machine Code
Basic Source File
Intermediate Code
Command File

PL/I Source File
Relocatable Module
TEX Formatter Source
ED Source Backup
SID Symbol File
Temporary File

Source files are treated as a sequence of ASCII characters, where each line of the sourcefileis
followed by a carriage return, and line-feed sequence (ODH followed by OAH). Thus, one
128-byte CP/M record can contain several lines of sourcetext. The end of an ASCI|I fileis
denoted by a CTRL-Z character (1AH) or areal end-of-file returned by the CP/M read operation.
CTRL-Z characters embedded within machine code files (for example, COM files) are ignored
and the end-of-file condition returned by CP/M is used to terminate read operations.

5.2 Call Conventions CP/M Operating System Manual

Filesin CP/M can be thought of as a sequence of up to 65536 records of 128 bytes each,
numbered from O through 65535, thus alowing a maximum of 8 megabytes per file. Note,
however, that although the records may be considered logically contiguous, they may not be
physically contiguousin the disk dataarea. Internally, al files are divided into 16K byte
segments called logical extents, so that counters are easily maintained as 8-bit values. The
divison into extents is discussed in the paragraphs that follow: however, they are not particularly
significant for the programmer, because each extent is automatically accessed in both sequential
and random access modes.

In the file operations starting with Function 15, DE usually addresses a FCB. Transient programs
often use the default FCB areareserved by CP/M at location BOOT+005CH (normally 005CH)
for simplefile operations. The basic unit of file information is a 128-byte record used for al file
operations. Thus, adefault location for disk I/O is provided by CP/M at location BOOT+0080H
(normally 0080H) whichistheinitial default DMA address. See Function 26.

All directory operations take place in areserved areathat does not affect write buffers as was the
casein release 1, with the exception of Search First and Search Next, where compatibility is
required.

The FCB data area consists of a sequence of 33 bytes for sequential access and a series of 36
bytesin the case when the file is accessed randomly. The default FCB, normally located at
005CH, can be used for random access files, because the three bytes starting at BOOT+007DH
are available for this purpose. Figure 5-2 shows the FCB format with the following fields.

S s e s
IDR|F1|F2|/|F8|T1|T2|T3|EX|S1|S2|RC|DO|//|DN|CRIROJR1|R2]|
S s e s
000102..080910111213141516...31323334 35

Figure 5-2. File Control Block Format

5.2 Call Conventions CP/M Operating System Manual

The following table lists and describes each of the fields in the File Control Block figure.

Table5-2. File Control Block Fields

Field

Definition

dr

f1..f8

t1,t2,t3

ex

sl

rc

do...dn

cr

ro,r1,r2

drive code (0-16)

0 = use default drive for file

1 = auto disk select drive A,

2 = auto disk select drive B,

16 = auto disk select drive P.

contain the filename in ASCII upper-case, with high bit =0

contain the filetype in ASCII upper-case, with high bit = 0. t1', t2', and t3' denote
the bit of these positions,

t1' =1 = >Read-Only file,

t2' =1=>SYSfile, no DIR list

contains the current extent number, normally set to 00 by the user, but in range
0-31 during file 1/0

reserved for internal system use

reserved for internal system use, set to zero on call to OPEN, MAKE, SEARCH
record count for extent ex; takes on values from 0-127

filled in by CP/M; reserved for system use

current record to read or write in a sequential file operation; normally set to zero
by user

optional random record number in the range 0-65535, with overflow to r2, r0, rl
constitute a 16-bit value with low byte r0, and high byterl

5.2 Call Conventions CP/M Operating System Manual

Each file being accessed through CP/M must have a corresponding FCB, which provides the
name and allocation information for all subsequent file operations. When accessing files, it isthe
programmer’'s responsibility to fill the lower 16 bytes of the FCB and initialize the cr field.
Normally, bytes 1 through 11 are set to the ASCII character values for the filename and filetype,
while all other fields are zero.

FCBs are stored in adirectory area of the disk, and are brought into central memory before the
programmer proceeds with file operations (see the OPEN and MAKE functions). The memory
copy of the FCB is updated as file operations take place and later recorded permanently on disk
at the termination of the file operation, (see the CLOSE command).

The CCP constructs the first 16 bytes of two optional FCBs for atransient by scanning the
remainder of the line following the transient name, denoted by filel and file2 in the prototype
command line described above, with unspecified fields set to ASCII blanks. The first FCB is
constructed at location BOOT+005CH and can be used as is for subsequent file operations. The
second FCB occupies the dO ... dn portion of the first FCB and must be moved to another area of
memory before use. If, for example, the following command line is typed:

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME.COM isloaded into the TPA, and the default FCB at BOOT+005CH is
initialized to drive code 2, filename X, and filetype ZOT. The second drive code takes the default
value O, which is placed at BOOT+006CH, with the filename Y placed into location
BOOT+006DH and filetype ZAP located 8 bytes later at BOOT+0075H. All remaining fields
through cr are set to zero. Note again that it is the programmer's responsibility to move this
second filename and filetype to another area, usually a separate file control block, before opening
the file that begins at BOOT+005CH, because the open operation overwrites the second name
and type.

If no filenames are specified in the original command, the fields beginning at BOOT+005DH and

BOOT+006DH contain blanks. In all cases, the CCP trandates |ower-case a phabetics to
upper-case to be consistent with the CP/M file naming conventions.

5-10

5.2 Call Conventions CP/M Operating System Manual

As an added convenience, the default buffer area at location BOOT+0080H isinitialized to the
command line tail typed by the operator following the program name. The first position contains
the number of characters, with the characters themselves following the character count. Given the
above command line, the area beginning at BOOT+0080H isinitialized as follows:

BOOT+0080H:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09+ A+ B+ C+D+E
E"'B"WX"VZ'OT" 'Y V'Z'A"P
where the characters are trandated to upper-case ASCII with uninitialized memory following the
last valid character. Again, it isthe responsibility of the programmer to extract the information
from this buffer before any file operations are performed, unless the default DMA addressis
explicitly changed.

Individual functions are described in detail in the pages that follow.

FUNCTION 0: SYSTEM RESET

Entry Parameters:
Register C: 00H

The System Reset function returns control to the CP/M operating system at the CCP level. The

CCP reinitializes the disk subsystem by selecting and logging-in disk drive A. This function has
exactly the same effect as ajump to location BOOT.

5-11

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 1: CONSOLE INPUT

Entry Parameters:
RegisterC: 01H

Returned Value:
Register A: ASCII Character

The Console Input function reads the next console character to register A. Graphic characters,
along with carriage return, line-feed, and back space (CTRL-H) are echoed to the console. Tab
characters, CTRL-I, move the cursor to the next tab stop. A check is made for start/stop scroll,
CTRL-S, and start/stop printer echo, CTRL-P. The FDOS does not return to the calling program
until a character has been typed, thus suspending execution if a character is not ready.

FUNCTION 2: CONSOLE OUTPUT

Entry Parameters:
Register C: 02H
Register E: ASCII Character

The ASCII character from register E is sent to the console device. Asin Function 1, tabs are
expanded and checks are made for start/stop scroll and printer echo.

5-12

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 3: READER INPUT
Entry Parameters:
Register C: 03H
Returned Value:
Register A: ASCII Character

The Reader Input function reads the next character from the logical reader into register A. See
the IOBY TE definition in Section 6. Control does not return until the character has been read.

FUNCTION 4: PUNCH OUTPUT

Entry Parameters:
Register C: 04H
Register E: ASCII Character

The Punch Output function sends the character from register E to the logical punch device.

5-13

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 5: LIST OUTPUT

Entry Parameters:
Register C: 05H
Register E: ASCII Character

The List Output function sends the ASCII character in register E to the logical listing device.

FUNCTION 6: DIRECT CONSOLE 1/0

Entry Parameters:
Register C: 06H
Register E: OFFH (input) or
char(output)

Returned Vaue: char or status Register A:

Direct Console 1/0 is supported under CP/M for those specialized applications where basic
console input and output are required. Use of this function should, in general, be avoided since it
bypasses al of the CP/M normal control character functions (for example, CTRL-S and
CTRL-P). Programs that perform direct 1/O through the BIOS under previous releases of CP/M,
however, should be changed to use direct 1/O under BDOS so that they can be fully supported
under future releases of MP/M and CP/M.

Upon entry to Function 6, register E either contains hexadecimal FF, denoting a console input
request, or an ASCII character. If the input value is FF, Function 6 returns A = 00 if no character
isready, otherwise A contains the next console input character.

If the input value in E is not FF, Function 6 assumes that E contains avalid ASCII character that
is sent to the console.

Function 6 must not be used in conjunction with other console I/O functions.

5-14

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 7: GET /0BYTE
Entry Parameters:
Register C: 07H
Returned Value:
Register A: 1/0 Byte Value

The Get 1/0 Byte function returns the current value of IOBY TE in register A. See Section 6 for
IOBY TE definition.

FUNCTION 8: SET I/0BYTE

Entry Parameters:
Register C: 08H

Register E: 1/0 Byte Value

The SET 1/0 Byte function changes the IOBY TE value to that given in register E.

FUNCTION 9: PRINT STRING

Entry Parameters:
Register C: 09H

Registers DE: String Address

The Print String function sends the character string stored in memory at the location given by DE
to the console device, until a$ is encountered in the string. Tabs are expanded as in Function 2,
and checks are made for start/stop scroll and printer echo.

FUNCTION10: READ CONSOLE BUFFER
5-15

5.2 Call Conventions CP/M Operating System Manual

Entry Parameters:
Register C: OAH
Registers DE: Buffer Address

Returned Value:
Console Characters in Buffer

The Read Buffer function reads aline of edited console input into a buffer addressed by registers
DE. Console input is terminated when either input buffer overflows or a carriage return or
line-feed istyped. The Read Buffer takes the form:

DE: +0+1+4+2+3+4+5+6+7+8 ... +n
mxncclc2c3c4cbeo6¢7 ... ?7?

where mx is the maximum number of characters that the buffer will hold, 1 to 255, and ncisthe
number of charactersread (set by FDOS upon return) followed by the characters read from the
console. If nc < mx, then uninitialized positions follow the last character, denoted by ??in the
above figure. A number of control functions, summarized in Table 5-3, are recognized during
line editing.

Table 5-3. Edit Control Characters

Character Edit Control Function

rub/del removes and echoes the |ast character
CTRL-C reboots when at the beginning of line
CTRL-E causes physical end of line

CTRL-H backspaces one character position

CTRL-J (line-feed) terminates input line

5-16

5.2 Call Conventions CP/M Operating System Manual

Table 5-3. (continued)

Character Edit Control Function

CTRL-M (return) terminates input line

CTRL-R retypes the current line after new line

CTRL-U removes current line

CTRL-X sameas CTRL-U
The user should also note that certain functions that return the carriage to the leftmost position
(for example, CTRL-X) do so only to the column position where the prompt ended. In earlier

rel eases, the carriage returned to the extreme left margin. This convention makes operator data
input and line correction more legible.

FUNCTION11: GET CONSOLE STATUS

Entry Parameters:
Register C: OBH
Returned Value:
Register A: Console Status

The Console Status function checksto seeif a character has been typed at the console. If a
character isready, the value OFFH isreturned in register A. Otherwise a 00H value is returned.

S5-17

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:
Register C: OCH

Returned Value: Version Number
RegistersHL:

Function 12 provides information that alows version independent programming. A two-byte
valueisreturned, with H = 00 designating the CP/M release (H = 01 for MP/M) and L = 00 for
all releases previousto 2.0. CP/M 2.0 returns a hexadecimal 20 in register L, with subsequent
version 2 releases in the hexadecimal range 21, 22, through 2F. Using Function 12, for example,
the user can write application programs that provide both sequential and random access
functions.

FUNCTION 13: RESET DISK SYSTEM

Entry Parameters:
Register C: ODH

The Reset Disk function is used to programmatically restore the file system to areset state where
all disks are set to Read-Write. See functions 28 and 29, only disk drive A is selected, and the
default DMA addressisreset to BOOT+0080H. This function can be used, for example, by an
application program that requires a disk change without a system reboot.

5-18

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 14: SELECT DISK

Entry Parameters:

Register C: OEH
Register E: Selected Disk

The Select Disk function designates the disk drive named in register E as the default disk for
subsequent file operations, with E = 0 for drive A, 1 for drive B, and so on through 15,
corresponding to drive Pin afull 16 drive system. The driveis placed in an on-line status, which
activatesits directory until the next cold start, warm start, or disk system reset operation. If the
disk medium is changed while it is on-line, the drive automatically goes to a Read-Only statusin
astandard CP/M environment, see Function 28. FCBs that specify drive code zero (dr = O0H)
automatically reference the currently selected default drive. Drive code values between | and 16
ignore the selected default drive and directly reference drives A through P.

FUNCTION 15: OPEN FILE

Entry Parameters:

Register C: OFH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code
The Open File operation is used to activate afile that currently existsin the disk directory for the
currently active user number. The FDOS scans the referenced disk directory for amatch in
positions 1 through 14 of the FCB referenced by DE (byte sl is automatically zeroed) where an

ASCII guestion mark (3FH) matches any directory character in any of these positions. Normally,
no question marks are included, and bytes ex and s2 of the FCB are zero.

5-19

5.2 Call Conventions CP/M Operating System Manual

If adirectory element is matched, the relevant directory information is copied into bytes dO
through dn of FCB, thus allowing access to the files through subsequent read and write
operations. The user should note that an existing file must not be accessed until a successful open
operation is completed. Upon return, the open function returns a directory code with the value 0
through 3 if the open was successful or OFFH (255 decimal) if the file cannot be found. If
guestion marks occur in the FCB, the first matching FCB is activated. Note that the current
record, (cr) must be zeroed by the program if the file is to be accessed sequentially from the first
record.

FUNCTION 16: CLOSE FILE

Entry Parameters:
Register C: 10H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Close File function performs the inverse of the Open File function. Given that the FCB
addressed by DE has been previously activated through an open or make function, the close
function permanently records the new FCB in the reference disk directory see functions 15 and
22. The FCB matching process for the close isidentical to the open function. The directory code
returned for a successful close operationisO, 1, 2, or 3, while a OFFH (255 decimal) is returned if
the filename cannot be found in the directory. A file need not be closed if only read operations
have taken place. If write operations have occurred, the close operation is necessary to record the
new directory information permanently.

5-20

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:
RegisterC: 11H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Search First scans the directory for a match with the file given by the FCB addressed by DE. The
value 255 (hexadecimal FF) isreturned if thefileis not found; otherwise, O, 1, 2, or 3isreturned
indicating the file is present. When thefile is found, the current DMA addressisfilled with the
record containing the directory entry, and the relative starting position is A * 32 (that is, rotate
the A register left 5 bits, or ADD A five times). Although not normally required for application
programs, the directory information can be extracted from the buffer at this position.

An ASCII gquestion mark (63 decimal, 3F hexadecimal) in any position from fl through ex
matches the corresponding field of any directory entry on the default or auto-selected disk drive.
If the dr field contains an ASCII question mark, the auto disk select function is disabled and the
default disk is searched, with the search function returning any matched entry, alocated or free,
belonging to any user number. This latter function is not normally used by application programs,
but it allows complete flexibility to scan all current directory values. If the dr field isnot a
guestion mark, the s2 byte is automatically zeroed.

5-21

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 18: SEARCH FOR NEXT

Entry Parameters:
Register C: 12H

Returned Value:
Register A: Directory Code

The Search Next function is similar to the Search First function, except that the directory scan

continues from the last matched entry. Similar to Function 17, Function 18 returns the decimal
value 255 in A when no more directory items match.

FUNCTION 19: DELETE FILE
Entry Parameters:
Register C: 13H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Déelete File function removes files that match the FCB addressed by DE. The filename and
type may contain ambiguous references (that is, question marks in various positions), but the
drive select code cannot be ambiguous, as in the Search and Search Next functions.

Function 19 returns adecimal 255 if the referenced file or files cannot be found; otherwise, a
value in the range 0 to 3 returned.

5-22

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 20: READ SEQUENTIAL

Entry Parameters:

Register C: 14H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an Open or Make function, the
Read Sequential function reads the next 128-byte record from the file into memory at the current
DMA address. Therecord is read from position cr of the extent, and the cr field is automatically
incremented to the next record position. If the cr field overflows, the next logical extent is
automatically opened and the cr field is reset to zero in preparation for the next read operation.
The value O0H is returned in the A register if the read operation was successful, while a nonzero
valueisreturned if no dataexist at the next record position (for example, end-of-file occurs).

5-23

5.2 Call Conventions CP/M Operating System Manual

FUNCTION21: WRITE SEQUENTIAL

Entry Parameters:
Register C: 15H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an Open or Make function, the
Write Sequential function writes the 128-byte data record at the current DMA addressto thefile
named by the FCB. Therecord is placed at position cr of the file, and the cr field is automatically
incremented to the next record position. If the cr field overflows, the next logical extent is
automatically opened and the cr field isreset to zero in preparation for the next write operation.
Write operations can take place into an existing file, in which case newly written records overlay
those that aready exist inthefile. Register A = 00H upon return from a successful write
operation, while anonzero value indicates an unsuccessful write caused by afull disk.

5-24

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 22: MAKE FILE

Entry Parameters:
Register C: 16H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Make File operation is similar to the Open File operation except that the FCB must name a
file that does not exist in the currently referenced disk directory (that is, the one named explicitly
by a nonzero dr code or the default disk if dr iszero). The FDOS creates the file and initializes
both the directory and main memory value to an empty file. The programmer must ensure that no
duplicate filenames occur, and a preceding delete operation is sufficient if there is any possibility
of duplication. Upon return, register A =0, 1, 2, or 3 if the operation was successful and OFFH
(255 decimal) if no more directory space is available. The Make function has the side effect of
activating the FCB and thus a subsequent open is not necessary.

FUNCTION 23: RENAME FILE
Entry Parameters:
Register C: 17H
Registers DE: FCB Address
Returned Value:
Register A: Directory Code
The Rename function uses the FCB addressed by DE to change all occurrences of the file named
in thefirst 16 bytesto the file named in the second 16 bytes. The drive code dr at postion O is
used to select the drive, while the drive code for the new filename at position 16 of the FCB is

assumed to be zero. Upon return, register A is set to a value between 0 and 3 if the rename was
successful and OFFH (255 decimal) if the first filename could not be found in the directory scan.

5-25

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 24: RETURN LOG-IN VECTOR

Entry Parameters:
Register C: 18H

Returned Value:
RegistersHL: Log-in Vector

Thelog-in vector value returned by CP/M isa16-bit valuein HL, where the least significant bit
of L corresponds to the first drive A and the high-order bit of H corresponds to the sixteenth
drive, labeled P. A 0 bit indicates that the drive is not on-line, whileal bit marks adrivethat is
actively on-line as aresult of an explicit disk drive selection or an implicit drive select caused by
afile operation that specified a nonzero dr field. The user should note that compatibility is
maintained with earlier releases, because registers A and L contain the same values upon return.

FUNCTION 25: RETURN CURRENT DISK
Entry Parameters:
Register C: 19H

Returned Value:
Register A: Current Disk

Function 25 returns the currently selected default disk number in register A. The disk numbers
range from O through 15 corresponding to drives A through P.

5-26

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 26: SET DMA ADDRESS

Entry Parameters:
Register C: 1AH
Registers DE: DMA Address

DMA isan acronym for Direct Memory Address, which is often used in connection with disk
controllers that directly access the memory of the mainframe computer to transfer data to and
from the disk subsystem. Although many computer systems use non-DMA access (that is, the
dataistransferred through programmed 1/O operations), the DMA address has, in CP/M, come to
mean the address at which the 128-byte data record resides before a disk write and after adisk
read. Upon cold start, warm start, or disk system reset, the DMA address is automatically set to
BOOT+0080H. The Set DMA function can be used to change this default value to address
another area of memory where the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA function, cold start, warm
start, or disk system reset.

FUNCTION 27: GET ADDR (ALLOC)

Entry Parameters:
Register C: | BH

Returned Value:
RegistersHL: ALLOC Address

An dlocation vector is maintained in main memory for each on-line disk drive. Various system
programs use the information provided by the allocation vector to determine the amount of
remaining storage (seethe STAT program). Function 27 returns the base address of the allocation
vector for the currently selected disk drive. However, the allocation information might be invalid
if the selected disk has been marked Read-Only. Although this function is not normally used by
application programs, additional details of the allocation vector are found in Section 6.

5-27

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 28: WRITE PROTECT DISK

Entry Parameters:
Register C: | CH

The Write Protect Disk function provides temporary write protection for the currently selected
disk. Any attempt to write to the disk before the next cold or warm start operation produces the

message:

BDOS ERR on d:R/O
FUNCTION 29: GET READ-ONLY VECTOR
Entry Parameters:

Register C: IDH

Returned Value:
RegistersHL: R/O Vector Value

Function 29 returns a bit vector in register pair HL, which indicates drives that have the
temporary Read-Only bit set. Asin Function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is set either by an explicit call
to Function 28 or by the automatic software mechanisms within CP/M that detect changed disks.

5-28

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters:
Register C: 1EH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Set File Attributes function allows programmatic manipulation of permanent indicators
attached to files. In particular, the R/O and System attributes (t1' and t2') can be set or reset. The
DE pair addresses an unambiguous filename with the appropriate attributes set or reset. Function
30 searches for a match and changes the matched directory entry to contain the selected
indicators. Indicators f1' through f4' are not currently used, but may be useful for applications
programs, since they are not involved in the matching process during file open and close
operations. Indicators f5' through f8' and t3' are reserved for future system expansion.

FUNCTION31: GETADDR(DISKPARMYS)

Entry Parameters:
Register C: 1FH

Returned Value:
RegistersHL: DPB Address

The address of the BIOS resident disk parameter block isreturned in HL as aresult of this
function call. This address can be used for either of two purposes. First, the disk parameter values
can be extracted for display and space computation purposes, or transient programs can
dynamically change the values of current disk parameters when the disk environment changes, if
required. Normally, application programs will not require thisfacility.

5-29

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 32: SET/GET USER CODE

Entry Parameters:
Register C: 20H
Register E: OFFH (get) or
User Code (set)

Returned Value:
Register A: Current Code or
(no value)

An application program can change or interrogate the currently active user number by calling
Function 32. If register E = OFFH, the value of the current user number is returned in register A,
where the value isin the range of 0 to 15. If register E is not OFFH, the current user number is
changed to the value of E, modulo 16.

FUNCTION 33: READ RANDOM

Entry Parameters:
RegisterC: 21H

Returned Value:
Register A: Return Code

The Read Random function is similar to the sequential file read operation of previous rel eases,
except that the read operation takes place at a particular record number, selected by the 24-bit
value constructed from the 3-byte field following the FCB (byte positionsr0 at 33, rl at 34, and
r2 at 35). The user should note that the sequence of 24 bitsis stored with least significant byte
first (r0), middle byte next (r1), and high byte last (r2). CP/M does not reference byte r2, except
in computing the size of afile (Function 35). Byte r2 must be zero, however, since a nonzero
value indicates overflow past the end of file.

5-30

5.2 Call Conventions CP/M Operating System Manual

Thus, therQ, rl byte pair is treated as a double-byte, or word value, that contains the record to
read. This value ranges from 0 to 65535, providing access to any particular record of the
8-megabyte file. To process afile using random access, the base extent (extent 0) must first be
opened. Although the base extent might or might not contain any allocated data, this ensures that
thefileis properly recorded in the directory and is visible in DIR requests. The selected record
number is then stored in the random record field (r0, r1), and the BDOS is called to read the
record.

Upon return from the call, register A either contains an error code, as listed below, or the value
00, indicating the operation was successful. In the latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential read operation, the record
number is not advanced. Thus, subsequent random read operations continue to read the same
record.

Upon each random read operation, the logical extent and current record values are automatically
set. Thus, the file can be sequentially read or written, starting from the current randomly accessed
position. However, note that, in this case, the last randomly read record will be reread as one
switches from random mode to sequential read and the last record will be rewritten as one
switches to a sequentia write operation. The user can simply advance the random record position
following each random read or write to obtain the effect of sequential /O operation.

Error codes returned in register A following arandom read are listed below.

01 reading unwritten data

02 (not returned in random mode)
03 cannot close current extent

04 seek to unwritten extent

05 (not returned in read mode)

06 seek Past Physical end of disk

Error codes 01 and 04 occur when a random read operation accesses a data block that has not
been previously written or an extent that has not been created, which are equivalent conditions.
Error code 03 does not normally occur under proper system operation. If it does, it can be cleared
by ssimply rereading or reopening extent zero as long as the disk is not physically write protected.
Error code 06 occurs whenever byte r2 is nonzero under the current 2.0 release. Normally,
nonzero return codes can be treated as missing data, with zero return codes indicating operation
complete.

5-31

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 34: WRITE RANDOM

Entry Parameters:
Register C: 22H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Write Random operation isinitiated similarly to the Read Random call, except that datais
written to the disk from the current DM A address. Further, if the disk extent or data block that is
the target of the write has not yet been allocated, the allocation is performed before the write
operation continues. Asin the Read Random operation, the random record number is not
changed as aresult of the write. The logical extent number and current record positions of the
FCB are set to correspond to the random record that is being written. Again, sequential read or
write operations can begin following a random write, with the notation that the currently
addressed record is either read or rewritten again as the sequential operation begins. Y ou can also
simply advance the random record position following each write to get the effect of a sequential
write operation. Note that reading or writing the last record of an extent in random mode does not
cause an automatic extent switch asit doesin sequential mode.

The error codes returned by arandom write are identical to the random read operation with the

addition of error code 05, which indicates that a new extent cannot be created as aresult of
directory overflow.

5-32

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Vaue:
Random Record Field Set

When computing the size of afile, the DE register pair addresses an FCB in random mode format
(bytesrO, rl, and r2 are present). The FCB contains an unambiguous filename that is used in the
directory scan. Upon return, the random record bytes contain the virtual file size, which is, in
effect, the record address of the record following the end of the file. Following a call to Function
35, if the high record byte r2 is 01, the file contains the maximum record count 65536.
Otherwise, bytesrO and rl constitute a 16-bit value as before (rO is the least significant byte),
whichisthefilesize.

Data can be appended to the end of an existing file by smply calling Function 35 to set the
random record position to the end-of-file and then performing a sequence of random writes
starting at the preset record address.

Thevirtual size of afile corresponds to the physical size when the file is written sequentidly. If
the file was created in random mode and holes exist in the alocation, the file might contain fewer
records than the size indicates. For example, if only the last record of an 8-megabytefileis
written in random mode (that is, record number 65535), the virtual size is 65536 records,
although only one block of datais actually allocated.

5-33

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 36: SET RANDOM RECORD

Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Vaue:
Random Record Field Set

The Set Random Record function causes the BDOS automatically to produce the random record
position from afile that has been read or written sequentially to a particular point. The function
can be useful in two ways.

First, it is often necessary initially to read and scan a sequential file to extract the positions of
various key fields. Aseach key is encountered, Function 36 is called to compute the random
record position for the data corresponding to thiskey. If the data unit sizeis 128 bytes, the
resulting record position is placed into atable with the key for later retrieval. After scanning the
entire file and tabulating the keys and their record numbers, the user can move instantly to a
particular keyed record by performing arandom read, using the corresponding random record
number that was saved earlier. The scheme is easily generalized for variable record lengths,
because the program need only store the buffer-relative byte position along with the key and
record number to find the exact starting position of the keyed data at alater time.

A second use of Function 36 occurs when switching from a sequential read or write over to
random read or write. A fileis sequentially accessed to a particular point in the file, Function 36
is called, which sets the record number, and subsequent random read and write operations
continue from the selected point in thefile.

5-34

5.2 Call Conventions CP/M Operating System Manual

FUNCTION 37: RESET DRIVE

Entry Parameters:

Register C: 25H
Registers DE: Drive Vector

Returned Value:
Register A: 00H

The Reset Drive function allows resetting of specified drives. The passed parameter is a 16-bit
vector of drivesto be reset; the least significant bitisdrive A:.

To maintain compatibility with MP/M, CP/M returns a zero value.

FUNCTION 40: WRITE RANDOM WITH ZERO FILL

Entry Parameters:
Register C: 28H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Write With Zero Fill operation is similar to Function 34, with the exception that a previously
unallocated block isfilled with zeros before the data is written.

5-35

5.2 Call Conventions CP/M Operating System Manual

5.3 A Sample File-to-File Copy Program

The following program provides a relatively simple example of file operations. The program
source file is created as COPY.ASM using the CP/M ED program and then assembled using
ASM or MAC, resulting in a HEX file. The LOAD program is used to produce a COPY.COM
file that executes directly under the CCP. The program begins bv setting the stack pointer to a
local area and proceeds to move the second name from the default area at 006CH to a 33-byte
File Control Block called DFCB. The DFCB is then prepared for file operations by clearing the
current record field. At this point, the source and destination FCBs are ready for processing,
because the SFCB at 005CH is properly set up by the CCP upon entry to the COPY program.
That is, the first name is placed into the default FCB, with the proper fields zeroed, including the
current record field at 007CH. The program continues by opening the source file, deleting any
existing destination file, and creating the destination file. If all this is successful, the program
loops at the label COPY until each record is read from the source file and placed into the
destination file. Upon completion of the data transfer, the destination file is closed and the
program returns to the CCP command level by jumping to BOOT.

; samplefile-to-file copy program

; a the ccp level, the command

; copy ax.y b:u.v

0000 = boot equ 0000h ; System reboot
0005 = bdos equ 0005h ; bdos entry point
005C = fcbl equ 005ch ; first file name
005C = sfcbequ fcbl ; sourcefcb

006C = fcb2 equ 006¢h ; second file name
0080 = douff equ 0080h ; default buffer
0100 = tpa equ 0100h ; beginning of tpa
0009 = printf equ 9 ; print buffer func#
O000F = openf equ 15 ; open file func#
0010 = closef equ 16 ; close file func#
0013 = deletef equ 19 ; delete file func#
0014 = readf equ 20 ; sequential read func#
0015 = writef equ 21 ; sequential write

5-36

5.3 A Sample Copy Program

0016 = makef equ 22; makefile funct#
0100 org tpa ; beginning of tpa
0100 311902 IXi sp,stack ; setlocal stack
0103 OE10 mvi c,16 ; haf anfcb
0105 116C00 Ixi d(fcb2 ;sourceof move
0108 21D901 IXi hdfcb ; destination fcb
010B 1A mfcb: ldax d ; source fcb
010C 13 inx d ; ready next
010D 77 mov m,a ; dest fcb
010E 23 inx h ; ready next
010F OD der ¢ ; count 16...0
0110 C20B01 jnz mfcb ; loop 16 times

; name has been removed, zero cr
0113 AF Xra a ; a=00h
0114 32F901 sta dfcber ;currentrec=0

; source and destination fcb's ready
0117 115C00 Ixi d,sfcb ; sourcefile
011A CD6901 call open ; error if 255
011D 118701 Ixi dnofile ; ready message
0120 3C inr a ; 255 becomes 0
0121 CC6101 cz finis : doneif nofile

; source file open, prep destination
0124 11D901 Ixi d,dfcb ; destination
0127 CD7301 call delete ; remove if present
012A 11D901 Ixi d,dfcb ; destination
012D CD8201 call make ; create thefile
0130 119601 Ixi d,nodir ; ready message
0133 3C inr a ; 255 becomes 0

cz finis ; doneif no dir space

0134 CC6101

; source file open, dest file open
; copy until end of file on source

5-37

CP/M Operating System Manua

5.3 A Sample Copy Program

0137 115C00 copy: Ixi d,sfcb ; source
013A CD7801 call read : read next record
013D B7 ora a ; end of file?
013E C25101 jnz eofile ; skip writeif so
: not end of file, write the record
0141 11D901 Ixi d,dfcb ; destination
0144 CD7DO01 call write ; write the record
0147 11A901 Ixi d,space ; ready message
014A B7 ora a : 00 if write ok
014B C46101 cnz finis ;endif so
014E C33701 jmp copy ;loop until eof
edfile: ; end of file, close destination
0151 11D901 Ixi d,dfcb ; destination
0154 CD6EO1 call close ; 255 if error
0157 21BA01 Ixi h,wrprot ; ready message
015A 3C inr a ; 255 becomes 00
015B CC6101 cz finis ; shouldn't happen

; Copy operation complete, end
015E 11CB01 Ixi d,normal ; ready message

finis: ; write message given in de, reboot

0161 OEQ9 mvi c,printf
0163 CD0500 cal bdos ; write message
0166 C30500 jmp bdos ; reboot system

; system interface subroutines
; (al return directly from bdos)

0169 OEOF open: mvi c,openf
016B C30500 jmp bdos
016E OEl’O close: mvi c,closef
0170 C30500 jmp bdos
01730E13 delete mvi cdeletef
0175 C30500 jmp bdos

5-38

CP/M Operating System Manua

5.3 A Sample Copy Program CP/M Operating System Manua

0178 OE14 read: mvi c,readf
017A C30500 jmp bdos

017D 0Ei5 writee mvi c,writef
017F C30500 jmp bdos

01820E16 make: mvi c,makef
0184 C30500 jmp bdos

; console messages
0187 6E6F20736Fnofile: db 'no sourcefile$
0196 6E6F206469nodir: db 'no directory space$
01A9 6F7574206Fspace: db 'out of dat space$
01BA 7772697465wrprot:db 'write protected?$
01CB 636F707920normal:db ‘copy complete$

; dataareas
01D9 dfch: ds 32 ; destination fcb
01F9 = dfcber: equ dfcb+32 ; current record
01F9 ds 32 : 16 level stack

stack:
0219 end

Note that there are several smplificationsin this particular program. First, there are no checks
for invalid filenames that could contain ambiguous references. This situation could be detected
by scanning the 32-byte default area starting at location 005CH for ASCII question marks. A
check should also be made to ensure that the filenames have been included (check locations
005DH and 006DH for nonblank ASCII characters). Finally, acheck should be made to ensure
that the source and destination filenames are different. Animprovement in speed could be
obtained by buffering more data on each read operation. One could, for example, determine the
size of memory by fetching FBASE from location 0006H and using the entire remaining portion
of memory for adata buffer. In thiscase, the programmer simply resets the DMA addressto the
next successive 128-byte area before each read. Upon writing to the destination file, the DMA
addressisreset to the beginning of the buffer and incremented by 128 bytes to the end as each
record is transferred to the destination file.

5-39

5.3 A Sample Copy Program CP/M Operating System Manua

5.4 A Sample File Dump Utility

The following file dump program is dightly more complex than the smple copy program given
in the previous section. The dump program reads an input file, specified in the CCP command
line, and displays the content of each record in hexadecimal format at the console. Note that the
dump program saves the CCP's stack upon entry, resets the stack to alocal area, and restores the
CCP's stack before returning directly to the CCP. Thus, the dump program does not perform and
warm start at the end of processing.

; FILE DUMP PROGRAM, READS AN INPUT FILE AND PRINTSIN HEX

; COPYRIGHT (C) 1975, 1976, 1977, 1978
; DIGITAL RESEARCH

; BOX 579, PACIFIC GROVE

; CALIFORNIA, 93950

0100 ORG 100H
0005 = BDOS EQU 0005H ;DOSENTRY POINT
0001 = CONS EQU 1 ;READ CONSOLE
0002 = TYPEF EQU 2 ;TYPE FUNCTION
0009 = PRINTFEQU 9 ;BUFFER PRINT ENTRY
000B = BRKF EQU 11 ;BREAK KEY FUNCTION
;(TRUE IF CHAR READY)

000F = OPENF EQU 15 ;FILE OPEN
0014 = READF EQU 20 ;READ FUNCTION
005C = FCB EQU 5CH ;FILE CONTROL BLOCK ADDRESS
0080 = BUFF EQU 80H ;INPUT DISK BUFFER ADDRESS

7 NON GRAPHIC CHARACTERS
000D = CR EQU ODH ;CARRIAGE RETURN
000A = LF EQU OAH ;LINE FEED

; FILECONTROL BLOCK DEFINITIONS
005C = FCBDNEQU FCB+0 ;DISK NAME
005D = FCBFN EQU FCB+1 ;FILE NAME
0065 = FCBFT EQU FCB+9 ;DISK FILE TYPE (3 CHARACTERYS)
0068 = FCBRL EQU FCB+12 ;FILE'S CURRENT REEL NUMBER
006B = FCBRCEQU FCB+15 ;FILE'S RECORD COUNT (0 TO 128)

5-40

5.4 A Sample File Dump Utility CP/M Operating System Manual

007C= FCBCREQU FCB+32 :CURRENT (NEXT) RECORD
'NUMBER (0 TO 127)
007D= FCBLNEQU FCB+33 :FCB LENGTH
. SET UPSTACK
0100 210000 LXI H,0
0103 39 DAD SP
. ENTRY STACK POINTER IN HL FROM THE CCP
0104 221502 SHLD OLDSP
. SET SPTOLOCAL STACK AREA (RESTORED AT FINIS)
0107 315702 LX| SP,STKTOP
. READ AND PRINT SUCCESSIVE BUFFERS
010A CDC101 CALL SETUP 'SET UP INPUT FILE
010D FEFF CPl 255 1255 |F FILE NOT PRESENT

010F C21B01 IJNZ OPENOK ;SKIP IF OPEN IS OK

; FILENOT THERE, GIVE ERROR MESSAGE AND RETURN

0112 11F301 LXl D,OPNMSG
0115 CD9CO01 CALL ERR

0118 C35101 JMP FINIS ;TO RETURN

OPENOK: ;OPEN OPERATION OK, SET BUFFER INDEX TO END

011B 3E80 MVI A,80H
011D 321302 STA [IBP :SET BUFFER POINTER TO 80H
; HL CONTAINS NEXT ADDRESS TO PRINT
0120 210000 LXI H,0 :START WITH 0000
GLOOFP:
0123 E5 PUSH H :SAVE LINE POSITION
0124 CDA201 CALL GNB
0127 E1 POP H 'RECALL LINE POSITION
0128 DA5101 JC FINIS :CARRY SET BY GNB IFEND FILE
012B 47 MOV B,A

; PRINT HEX VALUES
; CHECK FOR LINE FOLD
012C 7D MOV AL

5-41

5.4 A Sample File Dump Utility CP/M Operating System Manual

012D EGOF ANl OFH ;CHECK LOW 4 BITS
012F C24401 JNZ NONUM
; PRINT LINENUMBER

0132 CD7201 CALL CRLF

; CHECK FOR BREAK KEY

0135 CD5901 CALL BREAK
; ACCUM LSB =11F CHARACTER READY
0138 OF RRC ;INTO CARRY
0139 DA5101 JC FINIS ;DON'T PRINT ANY MORE
013C 7C MOV AH
013D CD8FO1 CALL PHEX
0140 7D MOV AL
0141 CD8FO1 CALL PHEX
NONUM:
0144 23 INX H ;TONEXT LINENUMBER
0145 3E20 MVI A
0147 CD6501 CALL PCHAR
014A 78 MOV A,B
014B CD8FO1 CALL PHEX
014E C32301 JMP GLOOP
FINIS:

; END OF DUMP, RETURN TO CCP
7 (NOTE THAT A JMP TO 0000H REBOQTYS)
0151 CD7201 CALL CRLF
0154 2A1502 LHLD OLDSP
0157 F9 SPHL
; STACK POINTER CONTAINS CCP'S STACK LOCATION
0158 C9 RET ;TOTHE CCP

; SUBROUTINES
BREAK: ;CHECK BREAK KEY (ACTUALLY ANY KEY WILL DO)

0159 ESDSC5 PUSH H! PUSH D! PUSH B; ENVIRONMENT SAVED
015C OEOB MVI C,BRKF

5-42

5.4 A Sample File Dump Utility CP/M Operating System Manual

015E CDO0500 CALL BDOS
0161 C1D1E1 POP B! POP D! POP H; ENVIRONMENT RESTORED
0164 C9 RET

PCHAR: ;PRINT A CHARACTER
0165 ESDSC5 PUSH H! PUSH D! PUSH B; SAVED
0168 OEO2 MVI CTYPEF
016A 5F MOV EA
016B CD0500 CALL BDOS
016E C1D1E1 POP B! POP D! POP H; RESTORED
0171 C9 RET

CRLF:
0172 3EOD MVI ACR
0174 CD6501 CALL PCHAR
0177 3EOA MVI ALF
0179 CD6501 CALL PCHAR
017C C9 RET

PNIB: ;PRINT NIBBLE IN REG A
017D EGOF ANl OFH ;LOW 4 BITS
017F FEOA CPl 10
0181 D28901 JNC P10

; LESSTHAN OREQUAL TO9
0184 C630 ADI 'O

JMP PRN

0186 C38B01

; GREATER OR EQUAL TO 10
0189 C637 P10: ADI 'A'-10

018B CD6501 PRN: CALL PCHAR
018E C9 RET
PHEX: ;PRINT HEX CHAR IN REG A
018F F5 PUSH PSW
0190 OF RRC
0191 OF RRC
0192 OF RRC
0193 OF RRC
0194 CD7DO01 CALL PNIB ;PRINT NIBBLE

5-43

5.4 A Sample File Dump Utility

0197 F1

0198 CD7DO01

019B C9
ERR:

019C OEQ09
019E CDO0500

01A1C9 RET

GNB:
01A2 3A1302
01A5 FES8O
01A7 C2B301

01AA CDCEO1
01AD B7
01AE CAB301

01B1 37
01B2 C9

GO:
01B3 5F
01B4 1600
01B6 3C
01B7 321302

01BA 218000
01BD 19

01BE 7E MOV

01BF B7
01CO C9

CP/M Operating System Manual

POP PSW
CALL PNIB
RET

;PRINT ERROR MESSAGE

D,E ADDRESSES MESSAGE ENDING WITH "$"
MVI C,PRINTF ;PRINT BUFFER FUNCTION
CALL BDOS

;GET NEXT BYTE

LDA IBP

CPl 80H

JNZ GO

READ ANOTHER BUFFER

CALL DISKR

ORA A ;ZERO VALUE |IF READ OK

JZ GO ;FORANOTHER BYTE

END OF DATA, RETURN WITH CARRY SET FOR EOF
STC

RET

;READ THEBYTE AT BUFF+REG A

MOV EA ;LSBYTE OF BUFFER INDEX

MVI D,0 ;DOUBLE PRECISION INDEX TO DE
INR A ;INDEX=INDEX+1

STA IBP ;BACK TO MEMORY

POINTER ISINCREMENTED

SAVE THE CURRENT FILE ADDRESS

LXI H,BUFF

DAD D

ABSOLUTE CHARACTER ADDRESSISIN HL
AM

BYTEISIN THE ACCUMULATOR

ORA A ;RESET CARRY BIT

RET

5-44

5.4 A Sample File Dump Utility CP/M Operating System Manual

SETUP:. ;SET UPFILE
; OPEN THE FILE FOR INPUT

01C1 AF XRA A ZERO TO ACCUM

01C2 327C00 STA FCBCR ;CLEAR CURRENT RECORD
01C5 115C00 LXl D,FCB
01C8 OEOF MVI C,OPENF

01CA CDO0500 CALL BDOS

255 IN ACCUM IF OPEN ERROR

01CD C9 RET

DISKR: ;READ DISK FILE RECORD

01CE E5D5C5 PUSH H! PUSH D! PUSH B

01D1 115C00 LXl D,FCB
01D4 OE14 MVI C,READF
01D6 CD0500 CALL BDOS
01D9 C1D1E1 POP B! POP D! POPH
01DC C9 RET
; FIXED MESSAGE AREA
01DD 46494C4520SIGNON: DB 'FILEDUMPVERSION 1.4%
01F3 ODOA4E4F200PNM SG: DB CR,LF'NOINPUT FILE PRESENT ON DISK$
; VARIABLE AREA
0213 IBP: DS 2 INPUT BUFFER POINTER
0215 OLDSP: DS 2 ENTRY SPVALUE FROM CCP
; STACK AREA
0217 DS o4 ;RESERVE 32 LEVEL STACK
STKTOP:
0257 END

5-45

5.4 A Sample File Dump Utility CP/M Operating System Manual

5.5 A Sample Random Access Program

This section concludes with an extensive example of random access operation. The program
listed below performs the simple function of reading or writing random records upon command
from the terminal. When a program has been created, assembled, and placed into afile labeled R
ANDOM.COM, the CCP level command

RANDOM X. DAT

starts the test program. The program looks for afile by the name X . DA T and, if found,
proceeds to prompt the console for input. If not found, the file is created before the prompt is
given. Each prompt takes the form

next command?

and isfollowed by operator input, followed by a carriage return. The input commands take the
form

nWnRQ

where nisan integer value in the range 0 to 65535, and W, R, and Q are simple command
characters corresponding to random write, random read, and quit processing, respectively. If the
W command isissued, the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by a carriage return.
RANDOM then writes the character string into the™', . DA T file at record n. If the R command
isissued, RANDOM reads record number n and displays the string value at the console, If the Q
command isissued, the X . DAT fileis closed, and the program returns to the CCP. Inthe
interest of brevity, the only error messageis

error, try again .

The program begins with an initialization section where the input file is opened or created,
followed by a continuous loop at the label ready where the individual commands are interpreted.
The DFBC at 005CH and the default buffer at 0080H are used in all disk operations. The utility
subroutines then follow, which contain the principal input line processor, called readc. This
particular program shows the elements of random access processing, and can be used as the basis
for further program development.

5-46

5.5 A Sample Random Access Program CP/M Operating System Manua

Sample Random Access Program for CP/M 2.0

0100 org 100h ; base of tpa
0000 = reboot equ 0000h ; System reboot
0005 = bdos equ 0005h ; bdos entry point
0001 = coninp equ 1 ; console input function
0002 = conout equ 2 ; console output function
0009 = pstring equ 9 ; print string function
000A = rstring equ 10 ; read console buffer
000C = verson equ 12 ; retrun version nmber
O000F = openf equ 15 ; file open function
0010 = closef equ 16 ; close function
0016 = makef equ 22 ; make file function
0021 = reedr equ 33 ; read random
0022 = writer equ 34 ; write random
005C = fcb equ 005ch ; default file control block
007D = ranrec equ fcb+33 ; random record position
007F = ranovf equ fcb+35 ; high order (overflow)

; byte
0080 = buff equ 0080h ; buffer address
000D = cr equ Odh ; carriage return
000A = If equ 0Oah ; line feed

; load sp, set-up file for random access

0100 31B702 IXi sp,stack
X version 2.0
0103 OEOC mvi cyversion
0105 CDO0500 cal bdos
0108 FE20 cpi 20h ; version 2.0 or better?
010A D21601 jnc versok

; bad version, message and go back

5-47

5.5 A Sample Random Access Program CP/M Operating System Manua

010D 111502 IXi d,badver
0110 CDD501 cal print
0113 C30000 jmp reboot
versok:
; correct version for random access
0116 OEOF mvi c,openf ; open default fcb
0118 115C00 Ixi dfcb
011B CD0500 cal bdos
011E 3C inra ; err 255 becomes zero
011F C23701 jnz ready
; cannot open file, so create it
0122 OE16 mvi ¢,makef
0124 115C00 Ixi dfcb
0127 CD0500 call bdos
012A 3C inr a ; err 255 becomes zero
012B C23701 jnz ready
; cannot create file, directory full
012E 113402 Ixi d,nospace
0131 CDD501 cal print
0134 C30000 jmp reboot ; back tp CCP

; loop back to ready after each read command

ready:

; fileisready for processing
0137 CDEQO1 cal readcom; read next command
013A 227D00 shld ranrec ; storeinput record #
013D 217F00 Ixi h,ranovf
0140 3600 mvi m,0 ;clear highbyteif set
0142 FE51 cpi 'Q ; Quit?
0144 C25601 jnz notq

; quit processing, closefile
0147 OE10 mvi c,closef
0149 115C00 Ixi dfcb
014C CDO0500 call bdos

5-48

5.5 A Sample Random Access Program CP/M Operating System Manua

014F 3C inr a ; err 255 becomes 0
0150 CAB401 jz error ; error message, retry
0153 C30000 jmp reboot ; back to ccp

; end of command, process write

notaq:

; not the quit command, random write?
0156 114702 Ixi d,datmsg
0159 CDD501 call print ; data prompt
015C OE7F mvi ¢, 127 ; upto 127 characters
015E 218000 IXi h,buff ; destination

rloop: ;read next character to buff
0161 C5 push b ; save counter
0162 E5 push h ; next destination
0163 CDBDO01 call getchr ; charactertoa
0166 E1 pop h ; restore counter
0167 C1 pop b ; resore next to fill
0168 FEOD cpi cr ; end of line?
016A CA7301 jz erloop

; not end, store character
016D 77 mov m,a
016E 23 inx h ; next to fill
016F OD der ¢ ; counter goes down
0170 C26101 jnz rloop ;end of buffer?

erloop:

; end of read loop, store 00
0173 3600 mvi m,0

; write the record to selected record number
0175 OE22 mvi c,writer
0177 115C00 Ixi d,(fcb
017A CDO0500 call bdos
017D B7 ora a ; error code zero?
017E C2B401 jnz error ; message if not
0181 C33701 jmp ready ; for another record

5-49

5.5 A Sample Random Access Program

CP/M Operating System Manua

; end of write command, process read

notw:
; not a write command, read record?
0184 FE52 cpi 'R
0186 C2B401 jnz error ; Skip if not
; read random record
0189 OE21 mvi c,readr
018B 115C00 Ixi dfcb
018E CDO0500 call bdos
0191 B7 ora a ; return code 00?
0192 C2B401 jnz error
; read was successful, write to console
0195 CDCAO01 cal crif ; new line
0198 OE80 mvi ¢,128 ; max 128 characters
019A 218000 Ixi h,buff ; next to get
wloop:
019D 7E mov am ; next character
019E 23 inx h ; next to get
019F E6G7F ani 7fh ; mask parity
01A1 CA3701 jz ready ;for another command if 00
01A4 C5 push b ; save counter
01A5 E5 push h ; save next to get
01A6 FE20 cpi ; graphic?
01A8 D4C301 cnc putchr ; skip output if not
01AB E1 pop h
0l1ACC1 pop b
01AD OD der c ; count=count-1
01AE C29D01 jnz wloop
01B1 C33701 jmp ready
; end of read command, al errors end up here
error:
01B4 115402 Ixi d,errmsg
01B7 CDD501 cal print
01BA C33701 jmp ready

5-50

5.5 A Sample Random Access Program CP/M Operating System Manua

getchr:
; read next console character to a
01BD OEO1 mvi c¢,coninp
01BF CD0500 cal bdos
01C2 C9 ret
putchr;
; write character from ato console
01C3 OEQ2 mvi c,conout
01C5 5F mov ea ;chartosend
01C6 CD0500 call bdos ;sendchar
01C9 C9 ret
crif:
; send carriage return, line feed
01CA 3EOD mvi acr ;carriagereturn
01CC CDC301 cal putchr
01CF 3EOA mvi alf ; linefeed
01D1 CDC301 call putchr
01D4 C9 ret
print:
; print the buffer addressed by de until $
01D5 D5 push d
01D6 CDCAO1 cal crlf
01D9 D1 pop d ; new line
01DA OEQ9 mvi c,pstring
01DC CD0500 call bdos ; printthe string
01DF C9 ret
readcom:
; read the next command line to the conbuf
01E0 116602 Ixi d,prompt
01E3 CDD501 call print ; command?
01E6 OEOA mvi c,rstring
01E8 117502 Ixi d,conbuf
01EB CDO0500 cal bdos
; command lineis present, scan it
O1EE 210000 Ixi h,0 ; start with 0000
01F1 117702 Ixi d,conlin ; command line

5-51

5.5 A Sample Random Access Program

CP/M Operating System Manua

01F4 1A readc. dax d ; hext command character
01F5 13 inx d ; to next command position
01F6 B7 ora a ; cannot be end of command
01F7 C8 rz
X not zero, numeric?
01F8 D630 sui 'O
01FA FEOA cpi 10 ; carry if numeric
01FC D20D02 jnc endrd
; add-in next digit
01FF 29 dad h %2
0200 49 mov ¢l
0201 44 mov b,h :bc-vaue* 2
0202 29 dad h %4
0203 09 dad b :*2+*8=*10
0204 85 add |
0205 6F mov |,a
0206 D2F401 jnc readc ; for another char
0209 24 inr h : overflow
020A C3F401 jmp readc ; for another char
endrd:
X end of read, restorevaluein a
020D C630 adi 0 ; command
020F FE61 cpi 'a ; trand ate case?
0211 D8 rc
X lower case, mask lower case bits
0212 E65F ani 101$1111b

0214 C9 ret

; string data area

0215 736F727279badver: db
0234 6E6F206469n0space:db
0247 7479706520datmsg: db

'sorry, you need cp/m version 2$
'no directory space$'
'type datas: $

5-52

5.5 A Sample Random Access Program CP/M Operating System Manua

0254 6572726F72errmsg: db ‘error, try again.$
0266 6E65787420prompt: db 'next command? $

: fixed and variable data area

027521 conbuf: db conlen ;length of console buffer

0276 consz ds 1 ; resulting size after read
0277 conlin: ds 32 ; length 32 buffer
0021 = conlen equ $-consiz
0297 ds 32
stack:
02B7 end

Magjor improvements could be made to this particular program to enhance its operation. In fact,
with some work, this program could evolve into a ssimple data base management system. One
could, for example, assume a standard record size of 128 bytes, consisting to arbitrary fields
within the record. A program, called GETKEY, could be developed that first reads a sequential
file and extracts a specific field defined by the operator. For example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract the LASTNAME
field from each record, starting in position 10 and ending at character 20. GETKEY builds atable
in memory consisting of each particular LASTNAME field, along with its 16-bit record number
location within thefile. The GETKEY program then sortsthislist and writes anew file, called
LASTNAME.KEY, which isan aphabetical list of LASTNAME fields with their corresponding
record numbers. Thislist iscaled an inverted index in information retrieval parlance.

If the programmer were to rename the program shown above as QUERY and modify it so that it
reads a sorted key file into memory, the command line might appear as

QUERY NAMES.DAT LASTNAME.KEY

5-53

5.5 A Sample Random Access Program CP/M Operating System Manual

Instead of reading a number, the QUERY program reads an aphanumeric string that is a
particular key to findinthe NAMES.D A T database. Becausesthe LASTNAME.KE
Y list is sorted, one can find a particular entry rapidly by performing a binary search, similar to

looking up a name in the telephone book. Starting at both ends of the list, one examines the
entry halfway in between and, if not matched, splits either the upper half or the lower half for the
next search. You will quickly reach the item you are looking for and find the corresponding

record number. You should fetch and display this record at the console, 'ust as was done in the
program shown above.

With some more work, you can alow a fixed grouping size that differs from the 128-byte
record shown above. This is accomplished by keeping track of the record number and the byte
offset within the record. Knowing the group size, you randomly access the record containing the
proper group, offset to the beginning of the group within the record read sequentialy until the
group size has been exhausted.

Findly, you can improve QUERY considerably by allowing boolean expressions, which
compute the set of records that satisfy several relationships, suichasalL A ST NAME between
HARDY and LAUREL and an AGE lower than 45. Display al the records that fit this
description. Finaly, if your lists are getting too big to fit into memory, randomly access key files
from the disk as well.

5.6 System Function Summary

Function Function Input Output
Number Name

Decimal Hex

0 0 System Reset C= O0OO0H none

I 1 Console Input C = 01H A = ASCII char

2 2 Console Output E = cha none

3 3 Reader Input A = ASCII char

4 4 Punch Output E = cha none

5 5 List Output E = char none

6 6 Direct Consolel/O C = 06H A = char or status

E = OFFH (input) or (no value)

OFEH (status) or
char (output)

7 7 Getl/OByte none A =1/0 bytevalue

5.5 A Sample Random Access Program

Function
Number

8
9
10

11
12
13
14
15
16
17

18
19
20
21
22
23
24
25

26
27

28
29

30
31

32

33

> © ™

MTmMmOoOOW™

10
11

12
13
14
15
16
17
18

19

1B

1C
1D

1E
1F

20

21

CP/M Operating System Manua

Function Input Output

Name

Set 1/0 Byte E =1/0O byte none

Print String DE = Buffer Address none

Read Console String DE = Buffer Console
characters
in Buffer

Get Console Status none A = 00/non zero

Return Version # none HL: Version #

Reset Disk System none none

Seelct Disk E=Disk # none

Open File DE = FCB address FF if not found

CloseFile DE =FCB address FFif not found

Search For First DE =FCB address A = Directory
Code

ASearch For Next none A = Directory
Code

Delete File DE=FCB address A =none

Read Sequential DE = FCB address A = Error Code

Write Sequential DE = FCB Address A= =Error Code

MakeFile DE=FCB address A =FFif noDIR
Space

RenameFile DE=FCB address A =FFif not
found

Return Login Vector none HL =Login
Vector*

Return Current Disk none A = Current Disk
Number

Set DMA Address DE =DMA address none

Get ADDR (ALLOC) none HL =ALLOC
address*

Write Protect Disk none none

Get Read/only Vector none HL =ALLOC
address*

Set File Attributes DE =FCB address A =none

Get ADDR (Disk Parms) none HL = DPB
address

Set/Get User Code E = OFFH for Get User Number

E = 00 to OFH for Set
Read Random DE =FCB address A =none

5-55

5.5 System Function Summary
Function Function
Number Name
34 22 Write Random
35 23 Compute File Slze
36 24 Set Random Record
37 25 Reset Drive
38 26 Access Drive
39 27 Free Drive
40 28 Write Random w/Fill

*Note that A=L, and B=H upon return.

End of Section 5

5-56

CP/M Operating System Manual

Input

DE = FCB address
DE = FCB address
DE = FCB address
DE = Drive Vector
not supported

not supported

DE =FCB

Output

A = error Code
ro, rl, r2

ro, rl, r2
A=0

A = error code

5.5 System Function Summary CP/M Operating System Manual

Section 6
CP/M 2 Alteration

6.1 Introduction

The standard CP/M system assumes operation on an Intel MDS-800 microcomputer devel opment
system, but is designed so you can alter a specific set of subroutines that define the hardware
operating environment.

Although standard CP/M 2 is configured for single-density floppy disks, field ateration features
allow adaptation to awide variety of disk subsystems from single drive minidisks to
high-capacity, hard disk systems. To simplify the following adaptation process, it is assumed that
CP/M 2 isfirst configured for single-density floppy disks where minimal editing and debugging
tools are available. If an earlier version of CP/M is available, the customizing processis eased
considerably. In thislatter case, you might want to review the system generation process and skip
to later sections that discuss system ateration for nonstandard disk systems.

To achieve device independence, CP/M is separated into three distinct modules:
-BIOSisthe Basic I/0 System, which is environment dependent.

-BDOS isthe Basic Disk Operating System, which is not dependent upon the hardware
configuration.

-CCP is the Console Command Processor, which uses the BDOS.

Of these modules, only the BIOS is dependent upon the particular hardware. Y ou can patch the
distribution version of CP/M to provide anew BIOS that provides a customized interface
between the remaining CP/M modules and the hardware system. This document provides a
step-by-step procedure for patching a new BIOS into CP/M.

All disk-dependent portions of CP/M 2 are placed into a BIOS, aresident disk parameter block,
which is either hand coded or produced automatically using the disk definition macro library
provided with CP/M 2. The end user need only specify the maximum number of active disks, the
starting and ending sector numbers, the data all ocation size, the maximum extent of the logical
disk, directory sizeinformation, and reserved track values. The macros use thisinformation to
generate the appropriate tables and table references for use during CP/M 2 operation. Deblocking
information is provided, which aids in assembly or disassembly of sector sizesthat are multiples
of the fundamental 128-byte data unit, and the system alteration manual includes general purpose
subroutines that use the deblocking information to take advantage of larger sector sizes. Use of
these subroutines, together with the table-drive data access algorithms, makes CP/M 2 a
universal data management system.

6.1 Introduction CP/M Operating System Manual

File expansion is achieved by providing up to 512 logical file extents, where each logical extent
contains 16K bytes of data. CP/M 2 is structured, however, so that as much as 128K bytes of
data are addressed by a single physical extent, corresponding to asingle directory entry,
iuaintaining compatibility with previous versions while taking advantage of directory space.

If CP/M isbeing tailored to a computer system for the first time, the new BIOS requires some
simple software development and testing. The standard BIOS islisted in Appendix A and can be
used as amodel for the customized package. A skeletal version of the BIOS given in Appendix B
can serve asthe basis for amodified BIOS.

In addition to the BIOS, you must write a simple memory loader, called GETSY S, which brings
the operating system into memory. To patch the new BIOS into CP/M, you must write the
reverse of GETSY S, called PUTSY S, which places an altered version of CP/M back onto the
disk. PUTSY S can be derived from GETSY S by changing the disk read commands into disk
write commands. Sample skeletal GETSY S and PUTSY S programs are described in Section 6.4
and listed in Appendix C.

To make the CP/M system load automatically, you must also supply acold start loader, similar to
the one provided with CP/M, listed in Appendixes A and D. A skeletal form of a cold start loader
isgiven in Appendix E, which serves as amode for the loader.

6.1 Introduction CP/M Operating System Manual

6.2 First-level System Regeneration

The procedure to patch the CP/M system is given below. Address references in each step are
shown with H denoting the hexadecimal radix, and are given for a20K CP/M system. For larger
CP/M systems, abiasis added to each address that is shown with a+b following it, wherebis
egual to the memory size-20K. Vauesfor b in various standard memory sizes arelisted in Table
6-1.

Table 6-1. Standard Memory Size Vaues

Memory Size Vaue

24K: b=24K - 20K = 4K = 1000H

32K: b=32K - 20K = 12K = 3000H
40K: b =40K - 20K = 20K = 5000H
48K: b =48K - 20K = 28K = 7000H
56K: b =56K - 20K = 36K = 9000H
62K: b=62K - 20K = 42K = A800H
64K: b =64K - 20K = 44K = BOOOH

Note that the standard distribution version of CP/M is set for operation within a 20K CP/M
system. Therefore, you must first bring up the 20K CP/M system, then configure it for actual
memory size (see Section 6.3).

Follow these steps to patch your CP/M system:

1. Read Section 6.4 and write a GETSY S program that reads the first two tracks of a disk
into memory. The program from the disk must be loaded starting at location 3380H.
GETSY Siscoded to start at location 100H (base of the TPA) as shown in Appendix C.

2 Test the GETSY S program by reading a blank disk into memory, and check to see that

the datahas been read properly and that the disk has not been altered in any way by the
GETSY S program.

6-3

6.2 First-level Regeneration CP/M Operating System Manua

3. Runthe GETSY S program using an initialized CP/M disk to seeif GETSY S loads CP/M
starting at 3380H (the operating system actually starts 128 bytes |later at 3400H).

4, Read Section 6.4 and write the PUTSY S program. This writes memory starting at 3380H
back onto the first two tracks of the disk. The PUTSY S program should be located at
200H, as shown in Appendix C.

5. Testthe PUTSY S program using ablank, uninitialized disk by writing a portion of
memory to the first two tracks; clear memory and read it back using GETSY S.
Test PUTSY S completely, because this program will be used to alter CP/M on disk.

6. Study Sections 6.5, 6.6, and 6.7 along with the distribution version of the BIOS givenin
Appendix A and write asimple version that performs a similar function for the
customized environment. Use the program given in Appendix B asamodel. Call thisnew

BIOS by name CBIOS (customized BIOS). Implement only the primitive disk
operationson a single drive and simple consol e input/output functionsin this
phase.

7. Test CBIOS completely to ensure that it properly performs console character 1/0 and disk
reads and writes. Be careful to ensure that no disk write operations occur during read
operations and check that the proper track and sectors are addressed on all reads and
writes. Failure to make these checks might cause destruction of theinitialized CP/M
system after it is patched.

8. Referring to Table 6-3 in Section 6.5, note that the BIOS is placed between locations
4A00H and 4FFFH. Read the CP/M system using GETSY S and replace the BIOS
segment by the CBIOS developed in step 6 and tested in step 7. This replacement is done
in memory.

9. UsePUTSY Sto place the patched memory image of CP/M onto the first two tracks of a
blank disk for testing.

10. Use GETSY Sto bring the copied memory image from the test disk back into memory at
3380H and check to ensure that it has |oaded back properly (clear memory, 1 if possible,
before the load). Upon successful load, branch to the cold start code at location 4A 00H.
The cold start routine initializes page zero, then jumps to the CCP at location 3400H,
which calls the BDOS, which calls the CBIOS. The CCP asks the CBIOS to read sixteen
sectors on track 2, and CP/M types A>, the system prompt.

If difficulties are encountered, use whatever debug facilities are available to trace and
breakpoint the CBIOS.

6-4

6.2 First-level Regeneration CP/M Operating System Manua

11.

prompt

12.

13.

14.

15.

16.

Digital

17.

must
and

Upon completion of step 10, CP/M has prompted the console for acommand input. To

test the disk write operation, type

SAVE 1 X.COM

All commands must be followed by a carriage return. CP/M responds with another
after several disk accesses:

A>

If it does not, debug the disk write functions and retry.

Test the directory command by typing

DIR

CP/M responds with

A:X COM

Test the erase command by typing

ERA X.COM

CP/M responds with the A prompt. Thisis now an operational system that only requiresa
bootstrap loader to function completely.

Write a bootstrap loader that is similar to GETSY S and place it on track O, sector 1, using
PUTSY S (again using the test disk, not the distribution disk). See Sections 6.5 and 6.8 for
more information on the bootstrap operation.

Retest the new test disk with the bootstrap loader installed by executing steps 11, 12, and
13. Upon completion of these tests, type a CTRL-C. The system executes a warm start,
which reboots the system, and types the A prompt.

At this point, thereis probably a good version of the customized CP/M system on the test
disk. Use GETSY Sto load CP/M from the test disk. Remove the test disk, place the
distribution disk, or alegal copy, into the drive, and use PUTSY Sto replace the
distribution version with the customized version. Do not make this replacement if you are
unsure of the patch because this step destroys the system that was obtained from
Research.

Load the modified CP/M system and test it by typing
DIR

CP/M responds with alist of files that are provided on the initialized disk. Thefile
DDT.COM isthe memory image for the debugger. Note that from now on, you
always reboot the CP/M system (CTRL-C is sufficient) when the disk is removed
replaced by another disk, unless the new disk isto be Read-Only.

6.2 First-level Regeneration CP/M Operating System Manua

18. Load and test the debugger by typing
DDT
See Section 4 for operating procedures.

19. Before making further CBIOS modifications, practice using the editor (see Section 2),
and assembler (see Section 3). Recode and test the GETSY S, PUTSY' S, and CBIOS
programs using ED, ASM, and DDT. Code and test a COPY program that does a
sector-to-sector copy from one disk to another to obtain back-up copies of the original
disk. Read the CP/M Licensing Agreement specifying legal responsibilities when copying
the CP/M system. Place the following copyright notice:

Copyright (c), 1983
Digital Research

on each copy that is made with the COPY program.

20. Modify the CBIOS to include the extra functions for punches, readers, and sign-on

messages, and add the facilities for additional disk drives, if desired. These changes can
be made with the GETSY S and PUTSY S programs or by referring to the
regeneration process in Section 6.3.

Y ou should now have a good copy of the customized CP/M system. Although the CBIOS
portion of CP/M belongs to the user, the modified version cannot be legally copied.

It should be noted that the system remains file-compatible with all other CP/M systems
(assuming media compatibility) which allows transfer of nonproprietary software between CP/M
users.

6.3 Second-level System Generation

Once the system is running, the next step is to configure CP/M for the desired memory size.
Usually, amemory image isfirst produced with the MOV CPM program (system relocator) and
then placed into anamed disk file. The disk file can then be loaded, examined, patched, and
replaced using the debugger and the system generation program (refer to Section 1).

The CBIOS and BOOT are modified using ED and assembled using ASM, producing files called

CBIOS.HEX and BOOT.HEX, which contain the code for CBIOS and BOQOT in Intel hex
format.

6-6

6.2 First-level Regeneration CP/M Operating System Manua

To get the memory image of CP/M into the TPA configured for the desired memorv size, type
the command:

MOVCPM xx*

where xx isthe memory size in decimal K bytes, for example, 32 for 32K. The responseis as
follows:

CONSTRUCTING xxK CP/M VERS 2.0
READY FOR "SYSGEN" OR
"SAVE 34 CPMxx.COM"

Animage of CP/M inthe TPA isconfigured for the requested memory size. The memory image
is at location 0900H through 227FH, that is, the BOOT is at 0900H, the CCP is at 980H, the
BDOS starts at 1180H, and the BIOS is at 1F80H. Note that the memory image has the standard
MDS-800 BIOS and BOOT on it. It isnow necessary to save the memory image in afile so that
you can patch the CBIOS and CBOOQOT into it:

SAVE 34 CPMxx.COM

The memory image created by the MOV CPM program is offset by a negative bias so that it loads
into the free area of the TPA, and thus does not interfere with the operation of CP/M in higher
memory. This memory image can be subsequently loaded under DDT and examined or changed
in preparation for a new generation of the system. DDT isloaded with the memory image by

typing:
DDT CPMxx.COM Loads DDT, then reads the CP/M image.
DDT should respond with the following:

NEXT PC
2300 0100
- (The DDT prompt)

Y ou can then give the display and disassembly commands to examine portions of the memory
image between 900H and 227FH. Note, however, that to find any particular address within the
memory image, you must apply the negative bias to the CP/M address to find the actual address.
Track 00, sector 01, isloaded to location 900H (the user should find the cold start loader at 900H
to 97FH); track 00, sector 02, isloaded into 980H (thisis the base of the CCP); and so on
through the entire CP/M system load. In a 20K system, for example, the CCP resides at the CP/M
address 3400H, but is placed into memory at 980H by the SY SGEN program. Thus, the negative
bias, denoted by n, satisfies

6.3 Second-level Regeneration CP/M Operating System Manua

3400H + n = 980H, or n = 980H - 3400H
Assuming two's complement arithmetic, n = D580H, which can be checked by
3400H+D580H = 10980H = 0980H (ignoring high-order overflow).
Note that for larger systems, n satisfies

(3400H + b) + n = 980H, or
n = 980H - (3400H + b), or
n=D580H - b

The vaue of nfor common CP/M systemsis given below.
Table 6-2. Common Vaues for CP/M Systems

Memory Size BIASb Negative Offset n
20K 0O000OH D580H - 0000H = D580H
24K 1000H D580H - 1000H = C580H
32K 3000H D580H - 3000H = A580H
40K 5000H D580H - 5000H = 8580H
48K 7000H D580H - 7000H = 6580H
56K 9000H D580H - 9000H = 4580H
62K A800H D580H - ABOOH = 2D80H
64K BOOOH D580H - BOOOH = 2580H

6-8

6.3 Second-level Regeneration CP/M Operating System Manua

If you want to locate the address x within the memory image loaded under DDT in a 20K
systei-n, first type

Hx,n Hexadecimal sum and difference

and DDT responds with the value of x + n (sum) and x - n (difference). The first number printed
by DDT isthe actual memory address in the image where the data or code islocated. For
example, the following DDT command:

H3400,D580

produces 980H as the sum, which is where the CCP islocated in the memory image under DDT.
Type the L command to disassemble portions of the BIOS located at (4A00H + b) - n, which,
when one uses the H command, produces an actual address of 1F80H. The disassembly
command would thus be as follows:

L1F80

It is now necessary to patch in the CBOOT and CBIOS routines. The BOOT resides at location
0900H in the memory image. If the actual load address is n, then to calculate the bias (in), type
the command:

H900,n Subtract load address from target address.

The second number typed by DDT in response to the command is the desired bias (in). For
example, if the BOOT executes at 0080H, the command

H900,80
produces
0980 0880 Sum and differencein hex.

Therefore, the biasin would be 0880H. To read-in the BOOT, give the command:

ICBOOT.HEX Input file CBOOT.HEX
Then
Rm Read CBOOT with abias of in (= 900H - n).

6-9

6.3 Second-level Regeneration CP/M Operating System Manua

Examine the CBOOT with
L 900

Y ou are now ready to replace the CBIOS by examining the areaat 1F80H, where the original
version of the CBIOS resides, and then typing

ICBIOS.HEX Ready the hex file for loading.

Assume that the CBIOS is being integrated into a 20K CP/M system and thus originates at
location 4A00H. To locate the CBIOS properly in the memory image under DDT, you must
apply the negative bias n for a 20K system when loading the hex file. Thisisaccomplished by

typing
RD580 Read the file with bias D580H.

Upon compl etion of the read, reexamine the area where the CBI1OS has been loaded (use an
L 1F80 command) to ensure that it is properly loaded. When you are satisfied that the change has
been made, return from DDT using a CTRL-C or, GO command.

SY SGEN is used to replace the patched memory image back onto a disk (you use atest disk until
sure of the patch) as shown in the following interaction:

SY SGEN Start the SY SGEN program.

SYSGEN VERSION 2.0 Sign-on message from SY SGEN.

SOURCE DRIVE NAME Respond with a carriage return to skip the

(OR RETURN TO SKIP) CP/M read operation because the system is
already in memory.

DESTINATION DRIVE NAME Respond with B to write the new system

(OR RETURN TO REBOQT) tothedisk in drive B.

DESTINATION ON B Place a scratch disk in drive B, then press

THEN TYPE RETURN RETURN.

FUNCTION COMPLETE
DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

6-10

6.3 Second-level Regeneration CP/M Operating System Manua

Place the scratch disk in drive A, then perform a cold start to bring up the newlyconfigured CP/M
system.

The new CP/M system is then tested and the Digital Research copyright notice is placed on the
disk, as specified in the Licensing Agreement:

Copyright (c), 1979
Digital Research

6.4 Sample GETSY S and PUTSY S Programs
The following program provides a framework for the GETSY S and PUTSY S programs
referenced in Sections 6.1 and 6.2. To read and write the specific sectors, you must insert the

READSEC and WRITESEC subroutines.

; GETSYS PROGRAM -- READ TRACKSOAND 1 TO MEMORY AT 3380H
; REGISTER USE

CA (SCRATCH REGISTER)

‘B TRACK COUNT (O, 1)

. C SECTOR COUNT (1,2,...,26)

. DE (SCRATCH REGISTER PAIR)

- HL LOAD ADDRESS

. SP SET TO STACK ADDRESS

START: LX| SP,3380H ; SET STACK POINTER TO SCRATCH

. AREA

LX| H,3380H : SET BASE LOAD ADDRESS
MVI B,0 : START WITH TRACK 0

RDTRK: - READ NEXT TRACK (INITIALLY 0)
MVI C,1 . READ STARTING WITH SECTOR 1

6-11

6.4 Sample GETSY Sand PUTSY S CP/M Operating System Manual

RDSEC: ; READ NEXT SECTOR
CALL RDSEC ; USER SUPPLIED SUBROUTINE
LXIl D,128 ; MOVE LOAD ADDRESS TO NEXT 1/2
; PAGE
DAD D ; HL = HL + 128
INR C ; SECTOR=SECTOR + 1
MOV AC ; CHECK FOR END OF TRACK
CPl 27
JC RDSEC ; CARRY GENERATED IF SECTOR <27

; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK

INR B

MOV AB ; TEST FOR LAST TRACK

CPl 2

JC RDTRK ; CARRY GENERATED IF TRACK <2

; USER SUPPLIED SUBROUTINE TO READ THE DISK
READSEC:

; ENTERWITH TRACK NUMBER IN REGISTER B,

; SECTOR NUMBER IN REGISTER C,

; AND ADDRESSTO FILL IN HL

PUSH B ; SAVE B AND C REGISTERS
PUSH H ; SAVE HL REGISTERS

kkhkhkkkhhkkkhkhhkkhkkhhkhkhhkhkkhkhhkhkhhkhkhhkhkhkhhkhkhhkhkhhkhkkhkhkkhkkkk*x*%x

PERFORM DISK READ AT THISPOINT, BRANCH TO
LABEL "START" IF AN ERROR OCCURS

kkhkhkkkhhkkkhkhhkkhkkhhkhkhhkhkkhkhhkhkhhkhkhhkhkkhkhhkhkhhkhkhhkhkkhkhkkhkkkk*x*%x

POP H ; RECOVER HL

POP B ; RECOVER B AND C REGISTERS
RET ; BACK TO MAIN PROGRAM

END START

Listing 6-1. GETSY S Program

6-12

6.4 Sample GETSY Sand PUTSY S CP/M Operating System Manual

This program is assembled and listed in Appendix B for reference purposes, with an assumed
origin of 100H. The hexadecimal operation codes that are listed on the left might be useful if the
program has to be entered through the panel switches.

The PUTSY S program can be constructed from GETSY S by changing only afew operationsin
the GETSY S program given above, as shown in Appendix C. The register pair HL becomesthe
dump address, next address to write, and operations on these registers do not change within the
program. The READSEC subroutine is replaced by a WRITESEC subroutine, which performs
the opposite function; data from address HL is written to the track given by register B and sector
given by register C. It is often useful to combine GETSY S and PUTSY Sinto a single program
during the test and development phase, as shown in Appendix C.

6.5 Disk Organization

The sector alocation for the standard distribution version of CP/M is given here for reference
purposes. The first sector contains an optional software boot section (see the table on the
following page). Disk controllers are often set up to bring track O, sector 1, into memory at a
specific location, often location 0000H. The program in this sector, called BOOT, hasthe
responsibility of bringing the remaining sectorsinto memory starting at location 3400H + b. If

the controller does not have a built-in sector load, the program in track 0, sector 1 can be ignored.
In this case, load the program from track O, sector 2, to location 3400H + b.

As an example, the Intel MDS-800 hardware cold start loader brings track 0O, sector 1, into

absol ute address 3000H. Upon loading this sector, control transfers to location 3000H, where the
bootstrap operation commences by loading the remainder of track 0 and all of track 1 into
memory, starting at 3400H + b. Note that this bootstrap loader is of little usein anon-MDS
environment, although it is useful to examine it because some of the boot actions will have to be
duplicated in the user's cold start loader.

6-13

6.5 Disk Organization

Track Sector Page #

Memory Address

CP/M Operating System Manua

Table 6-3. CP/M Disk Sector Allocation

CP/M Module name

00
00

00
00

01

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

18

(boot address) Cold Start L oader

3400H + b
3480H + b
3500H + b
3580H + b
3600H + b
3680H + b
3700H + b
3780H +b
3800H + b
3880H + b
3900H + b
3980H + b
3A00H + b
3A80H + b
3BOOH + b
3B80H + b
3CO0H + b
3C80H + b
3DO0H + b
3D80H + b
3EOOH + b
3E80H + b
3FOOH + b
3F80H + b
4000H + b
4080H + b
4100H + b
4180H + b
4200H + b
4280H + b
4300H + b
4380H + b
4400H + b
4480H + b
4500H + b
4580H + b
4600H + b
4680H + b
4700H + b
4780H + b

CCP

CCP
BDOS

6.5 Disk Organization CP/M Operating System Manual

Table 6-3. CP/M Disk Sector Allocation

Track Sector Page # Memory Address CP/M Module name

16 20 4800H + b

17 ' 4880H + b

18 21 4900H + b
01 19 4980H + b BDOS
07 20 22 4A00H + b BIOS
' 21 4A80H + b

22 23 4BOOH + b

23 ' 4B80H + b

24 24 4CO0H + b
01 25 4C80H + b BIOS
01 26 25 4DO0H + b BIOS
02-76 01-26 (directory and data)

6.6 The BIOS Entry Points

The entry points into the BIOS from the cold start loader and BDOS are detailed below. Entry to
the BIOS is through ajump vector located at 4A00H + b, as shown below. See Appendixes A
and B. The jump vector is a sequence of 17 jump instructions that send program control to the
individual BIOS subroutines. The BIOS subroutines might be empty for certain functions (they
might contain asingle RET operation) during reconfiguration of CP/M, but the entries must be
present in the jump vector.

The jump vector at 4A00H + b takes the form shown below, where the individual jump addresses
are given to the left:

4A00H+b JMP BOOT ;ARRIVE HERE FROM COLD START LOAD
4A03H+b JMPWBOOT ;ARRIVE HERE FOR WARM START
4A06H+b JMP CONST ;CHECK FOR CONSOLE CHAR READY

6-15

6.6 BIOS Entry Points

4A09H+b

4A0CH+b

4A0FH+b

4A12H+b

4A15H+b

4A18H+Db

4A1BH+b

4A1EH+b

4A21H+b

4A24H+b

4A27H+b

4A2AH+Db

4A2DH+b

4A30H+b

CP/M Operating System Manual

JMP CONIN ;READ CONSOLE CHARACTERIN

JMP CONOUT 'WRITE CONSOLE CHARACTER OUT

JMP LIST 'WRITE LISTING CHARACTER OUT

JMP PUNCH 'WRITE CHARACTER TO PUNCH DEVICE
JMP READER ;READ READER DEVICE

JMP HOME ;MOVE TO TRACK 00 ON SELECTED DISK
JMP SELDSK ;SELECT DISK DRIVE

JMP SETTRK ;SET TRACK NUMBER

JMP SETSEC ;SET SECTOR NUMBER

JMP SETDMA ;SET DMA ADDRESS

JMP READ ;READ SELECTED SECTOR

JMPWRITE 'WRITE SELECTED SECTOR

JMP LISTST ;RETURN LIST STATUS

JMP SECTRAN ;SECTOR TRANSLATE SUBROUTINE

Listing 6-2. BIOS Entry Points

Each jump address corresponds to a particular subroutine that performs the specific function, as
outlined below. There are three major divisionsin the jump table: the system reinitialization,
which results from calls on BOOT and WBOOT; simple character 1/0O, performed by callson
CONST, CONIN, CONOUT, LIST, PUNCH, READER, and LISTST; and disk 1/0O, performed
by callson HOME, SELDSK, SETTRK, SETSEC, SETDMA, READ, WRITE, and SECTRAN.

6-16

6.6 BIOS Entry Points CP/M Operating System Manual

All smple character I/O operations are assumed to be performed in ASCII, upper- and
lower-case, with high-order (parity bit) set to zero. An end-of-file condition for an input deviceis
given by an ASCII CTRL-Z (1AH). Peripheral devices are seen by CP/M aslogical devices and
are assigned to physical devices within the BIOS.

To operate, the BDOS needs only the CONST, CONIN, and CONOUT subroutines. LIST,
PUNCH, and READER can be used by PIP, but not the BDOS. Further, the LISTST entry is
currently used only by DESPOOL, the print spooling utility. Thus, theinitial version of CBIOS
can have empty subroutines for the remaining ASCII devices.

The following list describes the characteristics of each
device.

-CONSOLE isthe principal interactive console that communicates with the operator and
it is accessed through CONST, CONIN, and CONOUT. Typically, the CONSOLE isa
device such asa CRT or teletype.

-LIST isthe principal listing device. If it exists on the user's system, it isusually a
hard-copy device, such as a printer or teletype.

-PUNCH isthe principal tape punching device. If it exists, it is normally a high-speed
paper tape punch or teletype.

-READER isthe principal tape reading device, such asasimple optical reader or teletype.

A single peripheral can be assigned asthe LIST, PUNCH, and READER device simultaneoudly.
If no peripheral deviceisassigned asthe LIST, PUNCH, or READER device, the CBIOS gives
an appropriate error message so that the system does not hang if the device is accessed by PIP or
some other user program. Alternately, the PUNCH and LIST routines can)'ust simply return,
and the READER routine can return with a1 AH (CTRL-Z) in register A to indicate immediate
end-of-file.

For added flexibility, you can optionally implement the IOBY TE function, which alows

reassignment of physical devices. The IOBY TE function creates a mapping of logical-to-physical
devices that can be altered during CP/M processing, see the STAT command in Section 1.6.1.

6-17

6.6 BIOS Entry Points CP/M Operating System Manual

The definition of the IOBY TE function corresponds to the Intel standard as follows: asingle
location in memory, currently location 0003H, is maintained, called IOBY TE, which defines the
logical-to-physical device mapping that isin effect at a particular time. The mapping is
performed by splitting the IOBY TE into four distinct fields of two bits each, called the
CONSOLE, READER, PUNCH, and LIST fields, as shown in the following figure.

MOST SIGNIFICANT LEAST SIGNIFICANT
IOBYTEAT 003H LIST PUNCH READER CONSOLE

BITS 6,7 BITS4,5 BITS2,3 BITSO0,1

Figure6-1. IOBYTE Fields

The value in each field can be in the range 0-3, defining the assigned source or destination of
each logical device. Table 6-4 gives the values that can be assigned to each field.

Table 6-4. IOBYTE Field Values

Value Meaning

CONSOLE field (bits 0,1)

0 console is assigned to the console printer device (TTY:)
1 console is assigned to the CRT device (CRT:)
2 batch mode: use the READER as the CONSOLE input, and the LIST device as
the CONSOLE output (BAT:)
3 user-defined console device (UCI:)
READER field (bits 2,3)
0 READER istheteletype device (TTY:)
1 READER isthe high speed reader device (PTR:)
2 user-defined reader #1 (URL:)
3 user-defined reader #2 (UR2:)

6-18

6.6 BIOS Entry Points CP/M Operating System Manual

Table 6-4. (continued)

Value Meaning

PUNCH field (bits 4,5)

PUNCH istheteletype device (TTY:)

PUNCH isthe high speed punch device (PTP:)
user-defined punch #1 (UPI:)

user-defined punch #2 (UP2:)

WNPFO

LIST field (bits 6,7)

LIST isthe teletype device (TTY:)
LIST isthe CRT device (CRT:)
LIST istheline printer device (LPT:)
user-defined list device (UL1:)

WNPFO

The implementation of the IOBY TE is optional and effects only the organization of the CBIOS.
No CP/M systems use the IOBY TE (although they tolerate the existence of the IOBY TE at
location 0003H) except for PIP, which allows access to the physical devices, and STAT, which
allows logical-physical assignments to be made or displayed. For more information see Section
1. In any casethe IOBY TE implementation should be omitted until the basic CBIOS isfully
implemented and tested; then you should add the IOBY TE to increase the facilities.

Disk 1/0 is dways performed through a sequence of calls on the various disk access subroutines
that set up the disk number to access, the track and sector on a particular disk, and the Direct
Memory Access (DMA) address involved in the I/O operation. After all these parameters have
been set up, acal is made to the READ or WRITE function to perform the actual 1/0 operation.

Thereisoften asingle call to SELDSK to select adisk drive, followed by a number of read or
write operations to the selected disk before selecting another drive for subsequent operations.
Similarly, there might be asingle call to set the DMA address, followed by severa calls that read
or write from the selected DMA address before the DMA addressis changed. The track and
sector subroutines are always called before the READ or WRITE operations are performed.

6-19

6.6 BIOS Entry Points CP/M Operating System Manual

The READ and WRITE routines should perform several retries (10 is standard) before reporting
the error condition to the BDOS. If the error condition is returned to the BDOS, it reports the
error to the user. The HOME subroutine might or might not actually perform the track 00 seek,
depending upon controller characteristics; the important point is that track 00 has been selected
for the next operation and is often treated in exactly the same manner as SETTRK with a
parameter of 00.

The following table describes the exact responsibilities of each BIOS entry point subroutine.

Table 6-5. BIOS Entry Points

Entry Point Function

BOOT The BOOT entry point gets control from the cold start loader and is
responsible for basic system initialization, including sending asign-on
message, which can be omitted in thefirst version. If the IOBYTE

function isimplemented, it must be set at this point. The various system
parameters that are set by the WBOOT entry point must be initialized,
and control is transferred to the CCP at 3400 + b for further processing.
Note that register C must be set to zero to select drive A.

WBOOT The WBOOT entry point gets control when awarm start occurs. A warm

start is performed whenever a user program branches to location 0000H, or
when the CPU isreset from the front panel. The CP/M system must be
loaded from the first two tracks of drive A up to, but not including, the
BIOS, or CBIOS, if the user has completed the patch. System parameters
must beinitialized asfollows:

location 0,1,2 Set to IMP WBOOT for warm starts
(O00H: IMP 4A03H + b)

location 3 Set initial value of IOBYTE, if implemented in the
CBIOS

location 4 High nibble = current user no; low nibble current
drive

6-20

6.6 BIOS Entry Points CP/M Operating System Manual

Table 6-5. (continued)

Entry Point Function
location 5,6,7 Set to IMP BDOS, which isthe primary entry point
to CP/M for transient programs. (0005H: IMP
3C06H + b)

Refer to Section 6.9 for complete details of page zero use. Upon
completion of the initialization, the WBOOT program must branch to the
CCP at 3400H + b to restart the system. Upon entry to the CCP, register C
IS set to the drive to select after system initialization. The WBOOQOT routine
should read location 4 in memory, verify that isalegal drive, and passit to
the CCPinregister C.

CONST Y ou should sample the status of the currently assigned console device and
return OFFH inregister A if acharacter isready to read and OOH in register
A if no console characters are ready.

CONIN The next console character isread into register A, and the parity bit is set,
high-order bit, to zero. If no console character isready, wait until a
character istyped before returning.

CONOUT The character is sent from register C to the console output device. The
character isin ASCII, with high-order parity bit set to zero. Y ou might
want to include atime-out on aline-feed or carriage return, if the console
device requires sometime interval at the end of theline (suchasaT]

Silent 700 terminal). You can filter out control characters that cause the console
deviceto react in astrange way (CTRL-Z causes the Lear-Siegler terminal
to clear the screen, for example).

LIST The character is sent from register C to the currently assigned listing
device. The character isin ASCII with zero parity bit.

PUNCH The character is sent from register C to the currently assigned punch
device. The character isin ASCII with zero parity.

READER The next character is read from the currently assigned reader device into

register A with zero parity (high-order bit must be zero); an end-of-file
condition is reported by returning an ASCIl CTRL-Z(1AH).

6-21

6.6 BIOS Entry Points CP/M Operating System Manual

Entry Point

Table 6-5. (continued)

Function

HOME

SELDSK

SETTRK

the
to seek

next read or write

therange 0-76

The disk head of the currently selected disk (initially disk A) ismoved to
the track 00 position. If the controller allows access to the track O flag
from the drive, the head is stepped until the track O flag is detected. If the
controller does not support this feature, the HOME call istranslated into a
call to SETTRK with a parameter of O.

The disk drive given by register C is selected for further operations, where
register C contains O for drive A, 1 for drive B, and so on up to 15 for
drive P (the standard CP/M distribution version supports four drives). On
each disk select, SELDSK must return in HL the base address of a 16-byte
area, called the Disk Parameter Header, described in Section 6.10. For
standard floppy disk drives, the contents of the header and associated
tables do not change; thus, the program segment included in the sample
CBIOS performs this operation automatically.

If thereis an attempt to select a nonexistent drive, SELDSK returns HL =
0000H as an error indicator. Although SELDSK must return the header
address on each cdll, it is advisable to postpone the physical disk select
operation until an I/O function (seek, read, or write) is actually performed,
because disk selects often occur without ultimately performing any disk
1/O, , and many controllers unload the head of the current disk before
selecting the new drive. This causes an excessive amount of noise and disk
wear. The least significant bit of register E iszero if thisisthe first
occurrence of the drive select since the last cold or warm start.

Register BC contains the track number for subsequent disk accesses on the
currently selected drive. The sector number in BC isthe same as
number returned from the SECTRAN entry point. Y ou can choose

the selected track at thistime or delay the seek until the
actually occurs. Register BC can take on valuesin
corresponding to valid track numbers for

standard floppy disk drives and 0-65535 for nonstandard disk

subsystems.

6-22

6.6 BIOS Entry Points CP/M Operating System Manual

Entry Point

Table 6-5. (continued)

Function

SETSEC

SETDMA

initial

READ

Register BC contains the sector number, 1 through 26, for subsequent disk
accesses on the currently selected drive. The sector number in BC isthe
same as the number returned from the SECTRAN entry point. Y ou can
choose to send this information to the controller at this point or delay
sector selection until aread or write operation occurs.

Register BC contains the DMA (Disk Memory Access) address for
subsequent read or write operations. For example, if B = 00H and C = 80H
when SETDMA is called, all subsequent read operations read their data
into 80H through OFFH and all subsequent write operations get their data
from 80H through OFFH, until the next call to SETDMA occurs. The
DMA addressis assumed to be 80H. The controller need not actually
support Direct Memory Access. If, for example, all datatransfers are
through 1/0 ports, the CBIOS that is constructed uses the 128byte area
starting at the selected DMA address for the memory buffer during the
subsequent read or write operations.

Assuming the drive has been selected, the track has been set, and

the DMA address has been specified, the READ subroutine attempts to
read eone sector based upon these parameters and returns the following
error codesin register A:

0 no errorsoccurred
1 nonrecoverable error condition occurred

Currently, CP/M responds only to a zero or nonzero value as the return
code. That is, if thevaluein register A is0, CP/M assumes that the disk
operation was completed properly. |F an error occurs the CBIOS should
attempt at least 10 retries to see if the error is recoverable. When an error
is reported the BDOS prints the message BDOS ERR ON x: BAD
SECTOR. The operator then has the option of pressing a carriage return to

ignore the error, or CTRL-C to abort.

6-23

6.6 BIOS Entry Points CP/M Operating System Manual

Table 6-5. (continued)

Entry Point Function

WRITE Data is written from the currently selected DMA address to the currently
selected drive, track, and sector. For floppy disks, the data should be
marked as nondel eted data to maintain compatibility with other CP/M
systems. The error codes given in the READ command are returned in
register A, with error recovery attempts as described above.

LISTST Y ou return the ready status of the list device used by the DESPOOL
program to improve console response during its operation. The value 00 is
returned in A if the list device is not ready to accept a character and OFFH
if acharacter can be sent to the printer. A 00 value should be returned if
LIST statusis not implemented.

SECTRAN Logical-to-physical sector trandation is performed to improve the overall
response of CP/M. Standard CP/M systems are shipped with a skew factor
of 6, where six physical sectors are skipped between each logical read
operation. This skew factor alows enough time between sectors for most
programs to load their buffers without missing the next sector. In

particular computer systems that use fast processors, memory, and disk
subsystems, the skew factor might be changed to improve overall
response. However, the user should maintain a single-density
IBM-compatible version of CP/M for information transfer into and out
of the computer system, using a skew factor of 6.

In general, SECTRAN receives alogical sector number relativeto zero in
BC and atrandate table address in DE. The sector number is used as an
index into the trandate table, with the resulting physical sector number in
HL. For standard systems, the table and indexing code is provided in the
CBIOS and need not be changed.

6-24

6.6 BIOS Entry Points CP/M Operating System Manual

6.7 A Sample BIOS

The program shown in Appendix B can serve as abasisfor your first BIOS. The smplest
functions are assumed in this BIOS, so that you can enter it through afront panel, if absolutely
necessary. Y ou must alter and insert code into the subroutines for CONST, CONIN, CONOUT,
READ, WRITE, and WAITIO subroutines. Storage is reserved for user-supplied code in these
regions. The scratch areareserved in page zero (see Section 6.9) for the BIOS isused in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print the initial sign-on message and
perform better error recovery. The subroutinesfor LIST, PUNCH, and READER can befilled
out and the IOBY TE function can be implemented.

6.8 A Sample Cold Start L oader

The program shown in Appendix E can serve as a basis for a cold start loader. The disk read
function must be supplied by the user, and the program must be loaded somehow starting at
location 0000. Space is reserved for the patch code so that the total amount of storage required
for the cold start loader is 128 bytes.

Eventually, you might want to get this loader onto the first disk sector (track O, sector 1) and
cause the controller to load it into memory automatically upon system start up. Alternatively, the
cold start loader can be placed into ROM, and above the CP/M system. Inthiscasg, it is
necessary to originate the program at a higher address and key in ajump instruction at system
start up that branches to the loader. Subsequent warm starts do not require this key-in operation,
because the entry point WBOOT gets control, thus bringing the system in from disk
automatically. The skeletal cold start loader has minimal error recovery, which might be
enhanced in later versions.

6-25

6.7 A Sample BIOS CP/M Operating System Manual

6.9 Reserved L ocationsin Page Zero
Main memory page zero, between locations OH and OFFH, contains several segments of code and
datathat are used during CP/M processing. The code and data areas are given in the following
table.

Table 6-6. Reserved Locationsin Page Zero

Locations Contents

0000H-0002H Contains a jump instruction to the warm start entry location 4A03H+b.
This allows a simple programmed restart (JMP 0000H) or manual restart
from the front panel.

0003H-0003H Containsthe Intel standard IOBY TE is optionally included in the user's
CBIOS (refer to Section 6.6).

0004H-0004H Current default drive number (0=A,...,15=P).

0005H-0007H Contains a jump instruction to the BDOS and serves two purposes. JIMP
0005H provides the primary entry point to the BDOS, as described in
Section 5, and LHL D 0006H brings the address field of the instruction to
the HL register pair. Thisvaue is the lowest address in memory used by
CP/M, assuming the CCPis being overlaid. The DDT program changes

the address field to reflect the reduced memory size in debug mode.

0008H-0027H Interrupt locations | through 5 not used.

0030H-0037H Interrupt location 6 (not currently used) is reserved.

0038H-003AH Restart 7; contains ajump instruction into the DDT or SID program when
running in debug mode for programmed breakpoints, but is not otherwise
used by CP/M.

003BH-003FH Not currently used; reserved.

6-26

6.9 Reserved Locations in Page Zero CP/M Operating System Manual

Locations

Table 6-6. (continued)

Contents

0040H-004FH

0050H-005BH

005CH-007CH

007DH-007FH

0080H-00FFH

A 16-byte areareserved for scratch by CBIOS, but is not used for any
purpose in the distribution version of CP/M.

Not currently used; reserved.
Default File Control Block produced for atransient program by the CCP.
Optional default random record position.

Default 128-byte disk buffer, also filled with the command line when a
transient is loaded under the CCP.

Thisinformation is set up for normal operation under the CP/M system, but can be overwritten
by atransient program if the BDOS facilities are not required by the transient.

If, for example, a particular program performs only simple I/O and must begin execution at
location O, it can first be loaded into the TPA, using normal CP/M facilities, with a small
memory move program that gets control when loaded. The memory move program must get
control from location 0100H, which is the assumed beginning of all transient programs. The
move program can then proceed to the entire memory image down to location 0 and pass control
to the starting address of the memory load.

If the BIOS is overwritten or if location 0, containing the warm start entry point, is overwritten,
the operator must bring the CP/M system back into memory with a cold start sequence.

6-27

6.9 Reserved Locations in Page Zero CP/M Operating System Manual

6.10 Disk Parameter Tables

Tables areincluded in the BIOS that describe the particular characteristics of the disk subsystem
used with CP/M. These tables can be either hand-coded, as shown in the sample CBIOSin
Appendix B, or automatically generated using the DISKDEF macro library, as shown in
Appendix F. The purpose here isto describe the elements of these tables.

In general, each disk drive has an associated (16-byte) disk parameter header that contains
information about the disk drive and provides a scratch pad areafor certain BDOS operations.
The format of the disk parameter header for each drive is shown in Figure 6-2, where each
element isaword (16-bit) value.

DISK PARAMETER HEADER

S — S — N S— N — N S N N N +
| XLT | 0000 | 0000 | 0000 IDIRBUF|DPB |CSV | ALV |
S — S — N — N N S N N N +

16B 16B 16B 16B 16B 16B 16B 16B
Figure 6-2. Disk Parameter Header Format
The meaning of each Disk Parameter Header (DPH) element isdetailed in Table 6-7.
Table 6-7. Disk Parameter Headers

Disk Parameter
Header Meaning

XLTAddress of the logical-to-physical trandation vector, if used for this particular drive, or
the value O000H if no sector trandlation takes place (that is, the physical and logical sector
numbers are the same). Disk drives with identical sector skew factors share the same trandate
tables.

0000 Scratch pad values for use within the BDOS, initial value is unimportant.

DIRBUF Address of a128-byte scratch pad areafor directory operations within
BDOS. All DPHs address the same scratch pad area.

6-28

6.10 Disk Parameter Tables CP/M Operating System Manua

Table 6-7. (continued)

Disk Parameter
Header Meaning
DPB Address of adisk parameter block for this drive. Drives withidentical disk
characteristics address the same disk parameter block.
csv Address of ascratch pad area used for software check for changed disks.
This address is different for each DPH.
ALV Address of ascratch pad area used by the BDOS to keep disk storage

alocation information. This addressis different for each DPH.

Given n disk drives, the DPHs are arranged in atable whose first row of 16 bytes corresponds to
drive O, with the last row corresponding to drive n-1. In the following figure the label DPBASE
defines the base address of the DPH table.

DPBASE:
00 XLTO000000 0000 0000 DIRBUF DBPO0O CSV00 ALV0O
01 XLTO010000 0000 0000 DIRBUF DBPO1CSV01 ALVO1
(AND SO ON THROUGH)
n-1 XLTn-10000 0000 0000 DIRBUF DBPn-1CSVn-1ALVn-1

Figure 6-3. Disk Parameter Header Table

6-29

6.10 Disk Parameter Tables CP/M Operating System Manua

A responsibility of the SELDSK subroutine is to return the base address of the DPH for the
selected drive. The following sequence of operations returns the table address, with a 0000H
returned if the selected drive does not exist.

NDISKS EQU 4 :‘NUMBER OF DISK DRIVES
SELDSK: 'SELECT DISK GIYEN BY BC
LX| H,0000H :ERROR CODE

MOV A,C ‘DRIVE OK?

CPl NDISKS :CY IF SO
RNC 'RET IF ERROR
:NO ERROR, CONTINUE

MOV L,C :LOW(DISK)
MOV H,B :HIGH(DISK)
DAD H

DAD H 4

DAD H *8

DAD H *16

LX| D,DPBASE ;FIRST DP
DAD D :DPH(DISK)
RET

The trandation vectors, XLTOO through XLTn-1, are located elsewhere in the BIOS, and ssimply
correspond one-for-one with the logical sector numbers zero through the sector count 1. The Disk
Parameter Block (DPB) for each driveis more complex. As shown in Figure 6-4, particular DPB,
that is addressed by one or more DPHS, takes the general form:

R S S S S S S S S S S S
|SPT|BSH|BLM|EXM|DSM|DRM|ALOJAL 1|CK S|OFF|
R S S S S S S S S S S S

16B 8B 8B 8B 16B 16B 8B 8B 16B 16B
Figure 6-4. Disk Parameter Block Format

where each is a byte or word value, as shown by the 8b or 16b indicator below the field.

6-30

6.10 Disk Parameter Tables CP/M Operating System Manua

The following field abbreviations are used in Figure 6-4:

-SPT isthe total number of sectors per track.

-BSH Is the data allocation block shift factor, determined by the data block allocation
size.

-BLM is the data allocation block mask (2[BSH-1]).

-EXM Is the extent mask, determined by the data block allocation size and the number of

disk blocks.
-DSM determines the total storage capacity of the disk drive.
-DRM determines the total number of directory entries that can be stored on this drive.

-ALO, AL1 determine reserved directory blocks.
-CKS isthe size of the directory check vector.
-OFF is the number of reserved tracks at the beginning of the (logical) disk.
The values of BSH and BLM determine the data allocation size BL'S, which is not an entry in the
DPB. Given that the designer has selected avalue for BLS, the values of BSH and BLM are
shown in Table 6-8.
Table 6-8. BSH and BLM Vaues

BLS BSH BLM

1,024 3 7

2,048 4 15
4,096 5 31
8,192 6 63
16,384 7 127

where all values are in decimal. The value of EXM depends upon both the BLS and whether the
DSM valueislessthan 256 or greater than 255, as shown in Table 6-9.

6-31

6.10 Disk Parameter Tables CP/M Operating System Manua

Table 6-9. EXM Values

EXM values
BLS DSM<256 DSM>255

1,024 O N/A
2048 1 0
4,09 3 1
8,192 7 3
16,384 15 7

The value of DSM is the maximum data block number supported by this particular drive,
measured in BLS units. The product (DSM + 1) isthe total number of bytes held by the drive and
must be within the capacity of the physical disk, not counting the reserved operating system
tracks.

The DRM entry is the one less than the total number of directory entries that can take on a 16-bit

value. The values of ALO and AL 1, however, are determined by DRM. ThevaluesALO and AL1
can together be considered a string of 16-bits, as shown in Figure 6-5.

[E— P I J— — Y. I [— |
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Figure 6-5. ALOand AL1

6-32

6.10 Disk Parameter Tables CP/M Operating System Manua

Position 00 corresponds to the high-order bit of the byte labeled ALO and 15 corresponds to the
low-order bit of the byte labeled AL 1. Each bit position reserves a data block for number of
directory entries, thus allowing atotal of 16 data blocksto be assigned for directory entries (bits
are assigned starting at 00 and filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following tabulation:

Table 6-10. BLS Tabulation

BLS Directory Entries

1,024 32 times # bits
2,048 64 times # bits
4,096 128 times # bits

8,192 256 times # bits
16,384 512 times # bits

Thus, if DRM = 127 (128 directory entries) and BLS = 1024, there are 32 directory entries per
block, requiring 4 reserved blocks. In this case, the 4 high-order bits of ALO are set, resulting in
the values ALO = OFOH and AL1 = O0OH.

The CKSvaueisdetermined asfollows: if the disk drive mediais removable, then CKS =
(DRM + 1)/4, where DRM isthelast directory entry number. If the media are fixed, then set
CKS =0 (no directory records are checked in this case).

Finally, the OFF field determines the number of tracks that are skipped at the beginning of the
physical disk. Thisvalue isautomatically added whenever SETTRK iscalled and can be used as
amechanism for skipping reserved operating system tracks or for partitioning alarge disk into
smaller segmented sections.

To complete the discussion of the DPB, severa DPHSs can address the same DPB if their drive
characteristics areidentical. Further, the DPB can be dynamically changed when anew driveis
addressed by simply changing the pointer in the DPH; because the BDOS copies the DPB values
to alocal areawhenever the SELDSK function is invoked.

Returning back to DPH for a particular drive, the two address values CSV and ALV remain.

Both addresses reference an area of uninitialized memory following the BIOS. The areas must be
unique for each drive, and the size of each areais determined by the valuesin the DPB.

6-33

6.10 Disk Parameter Tables CP/M Operating System Manua

The size of the area addressed by CSV is CK S bytes, which is sufficient to hold the directory
check information for this particular drive. If CKS= (DRM + 1)/4, you must reserve (DRM +
1)/4 bytes for directory check use. If CKS = 0, no storage is reserved.

The size of the area addressed by ALV is determined by the maximum number of data blocks
allowed for this particular disk and is computed as (DSM/8) + 1.

The CBIOS shown in Appendix B demonstrates an instance of these tables for standard 8-inch,
single-density drives. It might be useful to examine this program and compare the tabular values
with the definitions given above.

6.11 The DISKDEF Macro Library

A macro library called DISKDEF (shown in Appendix F), greatly smplifiesthe table
construction process. Y ou must have access to the MAC macro assembler, of course, to use the
DISKDEF facility, while the macro library isincluded with all CP/M 2 distribution disks.

A BIOS disk definition consists of the following sequence of macro statements:

MACLIB DISKDEF

DISKS n
DISKDEF O.. ..
DISKDEF 1,...

DISKDEF n-1
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file, on the same disk as the BIOS, into
MAC'sinternal tables. The DISKS macro call follows, which specifies the number of drivesto

be configured with the user's system, where nis an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow that define the characteristics of each logical disk, O through n
- 1, corresponding to logical drives A through P. The DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section and thus must be placed in a
nonexecutabl e portion of the BIOS, typically directly following the BIOS jump vector.

6-34

6.10 Disk Parameter Tables CP/M Operating System Manua

The remaining portion of the BIOS is defined following the DISKDEF macros, with the ENDEF
macro call immediately preceding the END statement. The ENDEF (End of Diskdef) macro
generates the necessary uninitialized RAM areas that are located in memory above the BIOS.

The DISKDEF macro call takes the form:
DISKDEF dn,fsc,Isc,[skf],bls dks,dir,cks,ofs,[O]

where
-dnisthelogical disk number, 0ton- 1.
-fscisthefirst physical sector number (O or 1).
-Iscisthe last sector number.
-skf isthe optional sector skew factor.
-blsisthe data allocation block size.
-dksisthe number of blocks on the disk.
-dir isthe number of directory entries.
-cksisthe number of checked directory entries.
-ofsisthe track offset to logical track 00.
-[0] isan optional 1.4 compatibility flag.

The vaue dn is the drive number being defined with this DISK DEF macro invocation. The fsc
parameter accounts for differing sector numbering systems and isusually 0to 1. Thelscisthe
last numbered sector on atrack. When present, the skf parameter defines the sector skew factor,
which is used to create a sector tranglation table according to the skew.

If the number of sectorsislessthan 256, a single-byte table is created, otherwise each trandlation
table element occupies two bytes. No trandation table is created if the skf parameter is omitted,
or equal to 0.

The bls parameter specifies the number of bytes alocated to each data block, and takes on the
values 1024, 2048, 4096, 8192, or 16384. Generally, performance increases with larger data
block sizes because there are fewer directory references, and logically connected data records are
physically close on the disk. Further, each directory entry addresses more data and the
Bl1OS-resident RAM space is reduced.

The dks parameter specifiesthe total disk sizein blsunits. That is, if the bls = 2048 and dks =
1000, the total disk capacity is 2,048,000 bytes. If dksis greater than 255, the block size
parameter bls must be greater than 1024. The value of dir is the total number of directory entries
that might exceed 255, if desired.

6-35

6.11 The DISKDEF Macro Library CP/M Operating System Manual

The cks parameter determines the number of directory itemsto check on each directory scan and
isused internally to detect changed disks during system operation, where an intervening cold or
warm start has not occurred. When this situation is detected, CP/M automatically marks the disk
Read-Only so that data is not subsequently destroyed.

As stated in the previous section, the value of cks = dir when the medium is easily changed, asis
the case with afloppy disk subsystem. If the disk is permanently mounted, the value of cksis
typically 0, because the probability of changing disks without arestart islow.

The of s value determines the number of tracks to skip when this particular drive is addressed,
which can be used to reserve additional operating system space or to ssmulate severa logical
drives on asingle large capacity physical drive. Findly, the [0] parameter isincluded when file
compatibility isrequired with versions of 1.4 that have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory record, as was the case for
previous versions. Normally, this parameter is not included.

For convenience and economy of table space, the special form:
DISKDEF i,

givesdisk i the same characteristics as a previoudly defined drive j. A standard fourdrive,
single-density system, which is compatible with version 1.4, is defined using the following macro
invocations:

DISKS 4

DISKDEF 0,1,26,6,1024,243,64,2
DISKDEF 1,0

DISKDEF 2,0

DISKDEF 3,0

with all disks having the same parameter values of 26 sectors per track, numbered 1 through 26,
with 6 sectors skipped between each access, 1024 bytes per data block, 243 data blocks for a total
of 243K-byte disk capacity, 64 checked directory entries, and two operating system tracks.

6-36

6.11 The DISKDEF Macro Library CP/M Operating System Manual

The DISKS macro generates n DPHS, starting at the DPH table address DPBA SE generated by
the macro. Each disk header block contains sixteen bytes, as described above, and correspond
one-for-one to each of the defined drives. In the four-drive standard system, for example, the
DISKS macro generates atable of the form:

DPBASE EQU $
DPEO: DW XL T0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALVO
DPE1: DW XL T0,0000H,0000H,0000H,DIRBUF,DPBO,CSV1,ALV1
DPE2: DW XL T0,0000H,0000H,0000H,DIRBUF,DPBO,CSV2,ALV 2
DPE3: DW XL T0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPH labels are included for reference purposes to show the beginning table addresses
for each drive O through 3. The values contained within the DPH are described in detail in the
previous section. The check and allocation vector addresses are generated by the ENDEF macro
in the RAM area following the BIOS code and tables.

Note that if the skf (skew factor) parameter is omitted, or equal to O, the trandation tableis
omitted and a 0000H value isinserted in the XLT position of the DPH for the disk. Ina
subsequent call to perform the logical-to-physical trandation, SECTRAN receives atrandation
table address of DE = 0000H and simply returns the original logical sector from BC in the HL
register pair.

A trandate table is constructed when the skf parameter is present, and the (nonzero) table address
is placed into the corresponding DPHS. The following, for example, is constructed when the
standard skew factor skf = 6 is specified in the DISKDEF macro call:

XLTO: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

6-37

6.11 The DISKDEF Macro Library CP/M Operating System Manual

Following the ENDEF macro call, anumber of uninitialized data areas are defined. These data
areas need not be a part of the BIOS that is loaded upon cold start, but must be available between
the BIOS and the end of memory. The size of the uninitialized RAM areais determined by EQU
statements generated by the ENDEF macro. For a standard four-drive system, the ENDEF macro
might produce the following EQU statement:

4CT72 = BEGDAT EQU $ (data areas)
4DBO = ENDDAT EQU $
013C = DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends at 4ADBOH-1, and
occupies 013CH bytes. Y ou must ensure that these addresses are free for use after the systemis
loaded.

After modification, you can use the STAT program to check drive characteristics, because STAT
uses the disk parameter block to decode the drive information. A STAT command of the form:

STAT D:DSK:
decodes the disk parameter block for drived (d = A,...,P) and displays the following values:

r: 128-byte record capacity
k: kilobyte drive capacity

d: 32-byte directory entries
c: checked directory entries
e: records/extent

b: records/block

S: sectors/track

t: reserved tracks

6-38

6.11 The DISKDEF Macro Library CP/M Operating System Manual

Three examples of DISKDEF macro invocations are shown below with corresponding STAT
parameter values. The last example produces afull 8-megabyte system.

DISKDEF 0,1,58,,2048,256,128,128,2
r=4096, k=512, d=128, c=128, e=256, b=16, s=58, t=2

DISKDEF 0,1,58,,2048,1024,300,0,2
r=16348, k=2048, d=300, c=0, e=128, b=16, s=58, t=2

DISKDEF 0,1,58,,16348,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

6.12 Sector Blocking and Deblocking

Upon each call to BIOS WRITE entry point, the CP/M BDOS includes information that allows
effective sector blocking and deblocking where the host disk subsystem has a sector sizethat isa
multiple of the basic 128-byte unit. The purpose here is to present a general-purpose algorithm
that can be included within the BIOS and that uses the BDOS information to perform the
operations automatically.

On each call to WRITE, the BDOS provides the following information in register C:

0 = (normal sector write)
1 = (writeto directory sector)
2 = (write to thefirst sector of a new data block)

Condition 0 occurs whenever the next write operation isinto a previously written area, such asa
random mode record update; when the write is to other than the first sector of an unallocated
block; or when the write is not into the directory area. Condition 1 occurs when awrite into the
directory areais performed. Condition 2 occurs when the first record (only) of a newly allocated
data block iswritten. In most cases, application programs read or write multiple 128-byte sectors
in sequence; thus, there islittle overhead involved in either operation when blocking and
deblocking records, because preread operations can be avoided when writing records.

6-39

6.11 The DISKDEF Macro Library CP/M Operating System Manual

Appendix G lists the blocking and deblocking agorithmsin skeletal form; thisfileisincluded on
your CP/M disk. Generally, the algorithms map all CP/M sector read operations onto the host
disk through an intermediate buffer that is the size of the host disk sector. Throughout the
program, values and variables that relate to the CP/M sector involved in a seek operation are
prefixed by sek, while those related to the host disk system are prefixed by hst. The equate
statements beginning on line 29 of Appendix G define the mapping between CP/M and the host
system, and must be changed if other than the sample host system isinvolved.

The entry points BOOT and WBOOT must contain the initialization code starting on line 57,
while the SELDSK entry point must be augmented by the code starting on line 65. Note that
although the SELDSK entry point computes and returns the Disk Parameter Header address, it
does not physically select the host disk at thispoint (it is selected later at READHST or
WRITEHST). Further, SETTRK and SETMA simply store the values, but do not take any other
action at thispoint. SECTRAN performs atrivia function of returning the physical sector
number.

The principal entry points are READ and WRITE, starting on lines 110 and 125, respectively.
These subroutines take the place of your previous READ and WRITE operations.

The actual physical read or write takes place at either WRITEHST or READHST, where all
values have been prepared: hstdsk is the host disk number, hsttrk is the host track number, and
hstsec is the host sector number, which may require trandation to physical sector number. Y ou
must insert code at this point that performs the full sector read or write into or out of the buffer at
hstbuf of length hstsiz. All other mapping functions are performed by the algorithms.

This particular algorithm was tested using an 80-megabyte hard disk unit that was originally
configured for 128-byte sectors, producing approximately 35 megabytes of formatted storage.
When configured for 512-byte host sectors, usable storage increased to 57 megabytes, with a
corresponding 400% improvement in overall response. In this situation, there is no apparent
overhead involved in deblocking sectors, with the advantage that user programs still maintain
128-byte sectors. Thisis primarily because of the information provided by the BDOS, which
eliminates the necessity for preread operations.

End of Section 6

6-40

6.11 The DISKDEF Macro Library

0016 =

FFFF =
0000 =
0000 =

0000 =

1600 =

1600

0000 =
0806 =
1600 =
002C =
0002 =

0004 =

0080 =
000A =

CP/M Operating System Manual

MDS-800 I/O DRIVERS FOR CP/IM 2.2
(FOUR DRIVE SINGLE DENSITY VERSION)

VERSION 2.2 FEBRUARY, 1980

VERS EQU 22 ;VERSION 2.2

COPYRIGHT (C) 1980
DIGITAL RESEARCH

BOX 579, PACIFIC GROVE
CALIFORNIA, 93950

TRUE EQU OFFFFH 'VALUE OF "TRUE"
FALSE EQU NOT TRUE ;"FALSE"
TEST EQU FALSE :TRUE IF TEST BIOS
IF TEST
BIAS EQU 03400H :BASE OF CCPIN TEST SYSTEM
ENDIF
IF NOT TEST
BIAS EQU 0O000OH :GENERATE RELOCATABLE CP/M
:SYSTEM
ENDIF
PATCH EQU 1600H
ORG PATCH
CPMB EQU $-PATCH :BASE OF CPM CONSOLE PROCESSOR
BDOS EQU 806H+CPMB ;BASIC DOS (RESIDENT PORTION)
CPML EQU $-CPMB ;LENGTH (IN BYTES) OF CPM SYSTEM
NSECTS EQU CPML/128 ;NUMBER OF SECTORSTO LOAD
OFFSETEQU 2 :NUMBER OF DISK TRACKSUSED BY
:CPIM
CDISK EQU 0004H :ADDRESS OF LAST LOGGED DISK ON
‘WARM START
BUFF EQU 0080H ;DEFAULT BUFFER ADDRESS
RETRY EQU 10 :MAX RETRIES ON DISK 1/0O BEFORE ERROR

PERFORM FOLLOWING FUNCTIONS
BOOT COLD START
WBOOT WARM START (SAVE I/OBYTE)
(BOOT AND WBOOT ARE THE SAME FOR MDYS)
CONST CONSOLE STATUS

REG-A =00 IF NO CHARACTER READY

A-1

Appendix A : The MDS-800 BIOS

REG-A = FF IF CHARACTER READY
CONIN CONSOLE CHARACTER IN (RESULT IN REG-A)
CONOUT CONSOLE CHARACTER OUT (CHAR IN REG-C)
LIST LIST OUT (CHAR IN REG-C)

; PUNCH PUNCH OUT (CHAR IN REG-C)
; READER PAPER TAPE READER IN (RESULT TO REG-A)
; HOME MOVE TO TRACK 00

(THE FOLLOWING CALLS SET-UP THE 10 PARAMETER BLOCK FOR
THE
MDS, WHICH ISUSED TO PERFORM SUBSEQUENT READS AND

CP/M Operating System Manua

WRITES)
. SELDSK SELECT DISK GIVEN BY REG-C (0,1,2...)
© SETTRK SET TRACK ADDRESS (0,...76) FOR SUBSEQUENT
: READ/WRITE
. SETSEC SET SECTOR ADDRESS (1,...,26) FOR SUBSEQUENT
: READ/WRITE
. SETDMA SET SUBSEQUENT DMA ADDRESS (INITIALLY 80H)

i (READ AND WRITE ASSUME PREVIOUS CALLSTO SET UPTHE IO
; PARAMETERYS)

; READ
;. WRITE

READ TRACK/SECTOR TO PRESET DMA ADDRESS
WRITE TRACK/SECTOR FROM PRESET DMA ADDRESS

1600 C3B316

JUMP VECTOR FOR INDIVIUAL ROUTINES

JMP BOOT
1603 C3C316 WBOOTE: JMP WBOOT
1606 C36117 JMP CONST
1609 C36417 JMP CONIN
160C C36A17 JMP CONOUT
160F C36D17 JMP LIST
1612 C37217 JMP PUNCH
1615 C37517 JMP READER
1618 C37817 JMP HOME
161B C37D17 JMP SELDSK
161E C3A717 JMP SETTRK
1621 C3AC17 JMP SETSEC
1624 C3BB17 JMP SETDMA
1627 C3C117 JMP READ
162A C3CA17 JMP WRITE
162D C37017 JMP LISTST ;LIST STATUS
1630 C3B117 JMP SECTRAN
MACLIB DISKDEF ;LOAD THE DISK DEFINITION

A-2

;LIBRARY

Appendix A : The MDS-800 BIOS CP/M Operating System Manua

DISKS4 ;FOUR DISKS
1633+= DPBASE EQU $;BASE OF DISK PARAMETER BLOCKS
1633+82160000 DPEQ: DW XLTO,0000H ;TRANSLATE TABLE
1637+00000000 DW 0000H,0000H ;SCRATCH AREA
163B+6E187316 DW DIRBUF,DPBO ;DIR BUFF,PARM BLOCK
163F+0D19EE18 DW CSVOALVO ;CHECK, ALLOCVECTORS
1643+82160000 DPE1: DW XLT1,0000H ;TRANSLATE TABLE
1647+00000000 DW 0000H,0000H ;SCRATCH AREA
164B+6E187316 DW DIRBUF,DPB1 ;DIR BUFF,PARM BLOCK
164F+3C191D19 DW CSV1ALV1 ;CHECK, ALLOCVECTORS
1653+82160000 DPE2: DW XLT2,0000H ;TRANSLATE TABLE
1657+00000000 DW 0000H,0000H ;SCRATCH AREA
165B+6E187316 DW DIRBUF,DPB2 ;DIR BUFF,PARM BLOCK
165F+6B194C19 DW CSV2ALV2 ;CHECK, ALLOCVECTORS
1663+82160000 DPE3: DW XLT3,0000H ;TRANSLATE TABLE
1667+00000000 DW 0000H,0000H ;SCRATCH AREA
166B+6E187316 DW DIRBUF,DPB3 ;DIR BUFF,PARM BLOCK
166F+9A197B19 DW CSV3ALV3 ;CHECK, ALLOCVECTORS
DISKDEF 0,1,26,6,1024,243,64,64,O0FFSET
1673+= DPBO EQU $;DISK PARM BLOCK
1673+1A00 DW 26 ;SEC PER TRACK
1675+03 DB 3 ;BLOCK SHIFT
1676+07 DB 7 ;BLOCK MASK
1677+00 DB 0 JEXTNT MASK
1678+F200 DW 242 ;DISK SIZE-1
167A+3F00 DW 63 ;DIRECTORY MAX
167C+CO DB 192 ;ALLOCO
167D+00 DB O ;ALLOC1
167E+1000 DW 16 ;CHECK SIZE
1680+0200 Dw 2 ;OFFSET
1682+= XLTO EQU $;TRANSLATE TABLE
1682+01 DB 1
1683+07 DB 7
1684+0D DB 13
1685+13 DB 19
1686+19 DB 25
1687+05 DB 5
1688+0B DB 11
1689+11 DB 17
168A+17 DB 283
168B+03 DB 3
168C+09 DB 9
168D+0F DB 15
168E+15 DB 21
168F+02 DB 2

A-3

Appendix A : The MDS-800 BIOS

1690+08
1691+0E
1692+14
1693+1A
1694+06
1695+0C
1696+12
1697+18
1698+04
1699+0A
169A+10
169B+16

1673+=
001F+=
0010+=
1682+=

1673+=
001F+=
0010+=
1682+=

1673+=
001F+=
0010+=

1682+=

O00FD =
00FC =
00F3 =
007E =

DB

DB

DB

DISKDEF

DPB1
ALS1
CSS1
XLT1

DPB2
ALS2
CSS2
XLT2

DPB3
ALS3
CSS3
XLT3

EQU

EQU
EQU
EQU
EQU

DB 8

14

DB 20

DB 26

DB 6

12

DB 18

DB 24

DB 4

DB 10

DB 16

22

1,0

EQU DPBO
EQU ALSO
EQU CSS0
EQU XLTO
DISKDEF
EQU DPBO
EQU ALSO
EQU CSS0

CP/M Operating System Manua

;EQUIVALENT PARAMETERS
;'SAME ALLOCATION VECTOR SIZE
;'SAME CHECKSUM VECTOR SIZE
;'SAME TRANSLATE TABLE

2,0

;EQUIVALENT PARAMETERS
;SAME ALLOCATION VECTOR SIZE
; SAME CHECKSUM VECTOR SIZE

XLTO ;SAME TRANSLATE TABLE
DISKDEF
DPBO ;EQUIVALENT PARAMETERS
ALSO ;SAME ALLOCATION VECTOR SIZE
CSS0 ;SAME CHECKSUM VECTOR SIZE
XLTO ;SAME TRANSLATE TABLE
ENDEF OCCURS AT END OF ASSEMBLY

3,0

END OF CONTROLLER - INDEPENDENT CODE, THE REMAINING
SUBROUTINES
ARE TAILORED TO THE PARTICULAR OPERATING ENVIRONMENT,

AND MUST

BE ALTERED FOR ANY SYSTEM WHICH DIFFERS FROM THE INTEL

MDS.

THE FOLLOWING CODE ASSUMES THE MDS MONITOR EXISTSAT
OF800H
AND USES THE 1/0 SUBROUTINES WITHIN THE MONITOR

WE ALSO ASSUME THE MDS SYSTEM HAS FOUR DISK DRIVES
REVRTEQU OFDH ;INTERRUPT REVERT PORT

INTC EQU OFCH ;INTERRUPT MASK PORT

;INTERRUPT CONTROL PORT

ICON EQU OF3H
INTE EQU 0111$1110B ;ENABLE RST O(WARM BOOT), RST 7

A-4

Appendix A : The MDS-800 BIOS CP/M Operating System Manua

:(MONITOR)
' MDSMONITOR EQUATES
F800= MONSOEQU OF800H :MDSMONITOR
FFOF= RMONS0 EQU OFFOFH 'RESTART MONS0 (BOOT ERROR)
F803= Cl EQU OF803H :CONSOLE CHARACTER TO REG-A
F806= R EQU OF806H 'READER IN TO REG-A
F809= CO EQU OF809H :CONSOLE CHAR FROM C TO
:CONSOLE OUT
FBOC= PO EQU OF80CH :PUNCH CHAR FROM C TO PUNCH DEVICE
FSOF= LO EQU OF80FH :LIST FROM C TO LIST DEVICE
F812= CSTS EQU OF812H ;CONSOLE STATUS 00/FF TO
'REGISTER A

; DISK PORTSAND COMMANDS

0078 = BASE EQU 78H ;BASE OF DISK COMMAND 10 PORTS
0078 = DSTAT EQU BASE ;DISK STATUS (INPUT)

0079 = RTYPE EQU BASE+1 ;RESULT TYPE (INPUT)

007B = RBYTEEQU BASE+3 ;RESULT BYTE (INPUT)

0079 = ILOW EQU BASE+1 ;IOPB LOW ADDRESS (OUTPUT)
007A = IHIGH EQU BASE+2 ;IOPB HIGH ADDRESS (OUTPUT)
0004 = READF EQU 4H ;READ FUNCTION

0006 = WRITF EQU 6H 'WRITE FUNCTION

0003 = RECAL EQU 3H ;RECALIBRATE DRIVE

0004 = IORDY EQU 4H ;I/O FINISHED MASK

000D = CR EQU ODH ;CARRIAGE RETURN

000A = LF EQU OAH ;LINE FEED

SIGNON: ;SIGNON MESSAGE: XXK CP/M VERSY.Y
169C ODOAOA DB CR,LFLF

IF TEST
DB 32 ;32K EXAMPLE BIOS
ENDIF
IF NOT TEST
169F 3030 DB '00 ;MEMORY SIZE FILLED BY RELOCATOR
ENDIF
16A16B2043502F DB 'k CP/IM vers'
16AD 322E32 DB VERS10+0,."VERSMOD 10+'0'

16B0 ODOAQO DB CR,LFO0

BOOT: ;PRINT SIGNON MESSAGE AND GO TO CCP

7 (NOTE: MDSBOOQOT INITIALIZED IOBYTE AT 0003H)
16B3 310001 LXI SP,BUFF+80H

A-5

Appendix A : The MDS-800 BIOS

16B6 219C16 LXl H,SIGNON
16B9 CDD317 CALL PRMSG ;PRINT MESSAGE
16BC AF XRA A ;CLEAR ACCUMULATOR
16BD 320400 STA CDISK ;SET INITIALLY TODISK A
16C0 C30F17 JMP GOCPM ;GO TO CP/M
WBOOT:; LOADER ON TRACK 0, SECTOR 1, WHICH WILL BE SKIPPED FOR
WARM
; READ CP/M FROM DISK - ASSUMING THERE ISA 128 BYTE COLD
START
; START.
16C3 318000 LXlI SP,BUFF ;USING DMA - THUS 80 THRU FF
;AVAILABLE FOR STACK
16C6 OEOA MVI C,RETRY 'MAX RETRIES
16C8 C5 PUSH B
WBOOTO: ;ENTER HERE ON ERROR RETRIES
16C9 010000 LX!I B,CPMB ;SET DMA ADDRESS TO START OF
;DISK SYSTEM
16CC CDBB17 CALL SETDMA
16CF OEOO MVI C,0 ;BOOT FROM DRIVE 0
16D1 CD7D17 CALL SELDSK
16D4 OEOO MVI C,0
16D6 CDA717 CALL SETTRK ;START WITH TRACK O
16D9 OEO02 MVI C2 ;START READING SECTOR 2

16DB CDAC17

CALL SETSEC

; READ SECTORS, COUNT NSECTSTO ZERO

16DE C1

16DF 062C
RDSEC:

16E1 C5

16E2 CDC117

16E5 C24917

16E8 2A6C18

16EB 118000

16EE 19

16EF 44

16F0 4D

16F1 CDBB17

16F4 3A6B18

16F7 FE1A

16F9 DAO517

POP B ;10-ERROR COUNT
MVI B,NSECTS
;READ NEXT SECTOR

PUSH B ;SAVE SECTOR COUNT

CALL READ

JNZ BOOTERR ;RETRY IF ERRORS OCCUR
LHLD IOD ;INCREMENT DMA ADDRESS
LXlI D,128 ;SECTOR SIZE

DAD D ;INCREMENTED DMA ADDRESSIN HL
MOV BH

MOV C,L ;READY FOR CALL TO SET DMA
CALL SETDMA

LDA 10S ;SECTOR NUMBER JUST READ
CPl 26 ;READ LAST SECTOR?

JC RD1

A-6

CP/M Operating System Manua

Appendix A : The MDS-800 BIOS CP/M Operating System Manua

; MUST BE SECTOR 26, ZERO AND GO TO NEXT TRACK

16FC 3A6A18 LDA 10T ;GET TRACK TO REGISTER A
16FF 3C INR A

1700 4F MOV CA ;READY FOR CALL

1701 CDA717 CALL SETTRK

1704 AF XRA A ;CLEAR SECTOR NUMBER
1705 3C RD1: INR A ;TONEXT SECTOR

1706 4F MOV CA ;READY FOR CALL

1707 CDAC17 CALL SETSEC

170A C1 POP B ;RECALL SECTOR COUNT
170B 05 DCR B ;DONE?

170C C2E116 JNZ RDSEC
; DONEWITH THE LOAD, RESET DEFAULT BUFFER ADDRESS
GOCPM: ;(ENTER HERE FROM COLD START BOQT)
7 ENABLE RSTO AND RST7

170F F3 Dl

1710 3E12 MVI A,12H ;INITIALIZE COMMAND
1712 D3FD OUT REVRT

1714 AF XRA A

1715 D3FC OUT INTC ;CLEARED

1717 3EVE MVI A/INTE ;RSTO AND RST7 BITSON
1719 D3FC OUT INTC

171B AF XRA A

171C D3F3 OUT ICON ;INTERRUPT CONTROL
; SET DEFAULT BUFFER ADDRESS TO 80H

171E 018000 LXI B,BUFF

1721 CDBB17 CALL SETDMA

; RESET MONITOR ENTRY POINTS

1724 3EC3 MVI AJIMP
1726 320000 STA O
1729 210316 LXl HWBOOTE
172C 220100 SHLD 1 ;JJMP WBOOT AT LOCATION 00
172F 320500 STA 5
1732 210608 LX!I H,BDOS
1735 220600 SHLD 6 ;JJMP BDOS AT LOCATION 5
IF NOT TEST
1738 323800 STA 7*8 JJMPTO MON80 (MAY HAVE BEEN
;CHANGED BY DDT)
173B 2100F8 LXI H,MONS80
173E 223900 SHLD 7*8+1
ENDIF

i LEAVEIOBYTE SET

A-7

Appendix A : The MDS-800 BIOS CP/M Operating System Manua

; PREVIOUSLY SELECTED DISK WAS B, SEND PARAMETER TO CPM

1741 3A0400 LDA CDISK ;LAST LOGGED DISK NUMBER
1744 4F MOV CA ;SEND TOCCPTO LOGIT IN
1745 FB El

1746 C30000 JMP CPMB
; ERROR CONDITION OCCURRED, PRINT MESSAGE AND RETRY
BOOTERR:

1749 C1 POP B ;RECALL COUNTS

174A 0D DCR C

174B CA5217 NVA BOOTERO
; TRY AGAIN

174E C5 PUSH B

174F C3C916 JMP WBOQOTO

BOOTERQO:
; OTHERWISE TOO MANY RETRIES
1752 215B17 LXl H,BOOTMSG
1755 CDD317 CALL PRMSG
1758 C30FFF JMP RMONS80 ;MDS HARDWARE MONITOR

BOOTMSG:
175B 3F626F6F74 DB '?boot',0

CONST: ;CONSOLE STATUSTO REG-A
7 (EXACTLY THE SAME ASMDSCALL)

1761 C312F8 JMP CSTS
CONIN: ;CONSOLE CHARACTER TO REG-A
1764 CDO3F8 CALL CI
1767 EG7F ANl 7FH ;REMOVE PARITY BIT

1769 C9 RET

CONOUT: ;CONSOLE CHARACTER FROM C TO CONSOLE OUT
176A C309F8 JMP CO

LIST: ;LIST DEVICE OUT

7 (EXACTLY THE SAMEASMDSCALL)
176D C30FF8 JMP LO
LISTST:
;RETURN LIST STATUS
1770 AF XRA A
1771 C9 RET ;ALWAYSNOT READY

A-8

Appendix A : The MDS-800 BIOS CP/M Operating System Manua

PUNCH: ;PUNCH DEVICE OUT
7 (EXACTLY THE SAME ASMDSCALL)
1772 C30CF8 JMP PO

READER: ;READER CHARACTERIN TO REG-A
7 (EXACTLY THE SAME ASMDSCALL)
1775 C306F8 JMP RI

HOME: ;MOVETOHOME POSITION
7 TREAT ASTRACK 00 SEEK

1778 OEOO MVI C,0
177A C3A717 JMP SETTRK
SELDSK: ;SELECT DISK GIVEN BY REGISTER C
177D 210000 LX! H,0000H ;RETURN 0000 IF ERROR
1780 79 MOV AC
1781 FEO4 CPl NDISKS ;TOO LARGE?
1783 DO RNC ;LEAVE HL = 0000
1784 E602 ANl 10B ;00 00 FOR DRIVE 0,1 AND 10 10 FOR
;DRIVE 2,3
1786 326618 STA DBANK ;TO SELECT DRIVE BANK
1789 79 MOV A,C ;00, 01, 10, 11
178A E601 ANI 1B ;MDSHASO,1 AT 78, 2,3 AT 88
178C B7 ORA A ;RESULT 007?
178D CA9217 Z SETDRIVE
1790 3E30 MVI A,00110000B ;SELECTSDRIVE 1IN BANK
SETDRIVE:
1792 47 MOV BA ;SAVE THE FUNCTION
1793 216818 LXlI H,IOF ;IO FUNCTION
1796 7E MOV AM
1797 EGCF ANl 11001111B ;MASK OUT DISK NUMBER
1799 BO ORA B ;MASK IN NEW DISK NUMBER
179A 77 MOV M,A ;SAVE IT IN |OPB
179B 69 MOV L,C
179C 2600 MVI H,0 ;HL=DISK NUMBER
179E 29 DAD H *2
179F 29 DAD H x4
17A0 29 DAD H *8
17A1 29 DAD H ;*16
17A2 113316 LX!I D,DPBASE
17A5 19 DAD D ;HL=DISK HEADER TABLE ADDRESS

17A6 C9 RET

A-9

Appendix A : The MDS-800 BIOS CP/M Operating System Manua

SETTRK: ;SET TRACK ADDRESS GIVEN BY C

17A7 216A18 LXI H,I0T
1I7AA 71 MOV M,C

17AB C9 RET

SETSEC: ;SET SECTOR NUMBER GIVEN BY C

17AC 216B18 LXlI H,I0S

17AF 71 MOV M,C

17B0 C9 RET
SECTRAN:

;TRANSLATE SECTOR BC USING TABLE AT DE
17B1 0600 MVI B,0 ;DOUBLE PRECISION SECTOR NUMBERIN BC
17B3 EB XCHG ;TRANSLATE TABLE ADDRESS TO HL
17B4 09 DAD B ;TRANSLATE(SECTOR) ADDRESS
1/B57E MOV AM ;TRANSLATED SECTORNUMBERTOA
17B6 326B18 STA 10S
17B9 6F MOV LA ;RETURN SECTOR NUMBER IN L

17BA C9 RET

SETDMA: ;SET DMA ADDRESS GIVEN BY REGSB,C

17BB 69 MOV L,C
17BC 60 MOV H,B
17BD 226C18 SHLD 10D
17C0 C9 RET
READ: ;READ NEXT DISK RECORD (ASSUMING DISK/TRK/SEC/DMA
SET)
17C1 OE04 MVI CREADF :SET TOREAD FUNCTION
17C3 CDE017 CALL SETFUNC
17C6 CDFO17 CALL WAITIO :PERFORM READ FUNCTION
17C9 C9 RET ‘MAY HAVE ERROR SET IN REG-A
WRITE: :DISK WRITE FUNCTION
17CA 0E06 MVI CWRITF
17CC CDEO17 CALL SETFUNC :SET TO WRITE FUNCTION
17CF CDF017 CALL WAITIO
17D2 C9 RET ‘MAY HAVE ERROR SET
© UTILITY SUBROUTINES
PRMSG: ;PRINT MESSAGE AT H,L TOO
17D3 7E MOV AM
17D4 B7 ORA A :ZERO?

A-10

Appendix A : The MDS-800 BIOS CP/M Operating System Manua

17D5 C8 RZ
; MORETOPRINT

17D6 E5 PUSH H

17/D7 4F MOV CA

17D8 CD6A17 CALL CONOUT

1/DB E1 POP H

17DC 23 INX H

17DD C3D317 JMP PRMSG
SETFUNC:

; SET FUNCTION FOR NEXT 1/0 (COMMAND IN REG-C)

17E0 216818 LXl H,IOF ;IO FUNCTION ADDRESS

17E3 7E MOV AM ;GET IT TOACCUMULATOR FOR MASKING

17E4 EGF8 ANl 11111000B ;REMOVE PREVIOUS COMMAND

17E6 B1 ORA C ;SET TO NEW COMMAND

17E7 77 MOV M,A ;REPLACED IN 10PB
; THEMDS-800 CONTROLLER REQUIRES DISK BANK BIT IN SECTOR

BYTE
; MASK THE BIT FROM THE CURRENT 1I/O FUNCTION

17E8 E620 ANI 00100000B ;MASK THE DISK SELECT BIT

17EA 216B18 LXI H,I0S ;/ADDRESS THE SECTOR SELECT BYTE

17ED B6 ORA M ;SELECT PROPER DISK BANK

17/EE 77 MOV M,A ;SET DISK SELECT BIT ON/OFF

17EF C9 RET
WAITIO:

17F0 OEOA MVI C,RETRY ;MAX RETRIES BEFORE PERM ERROR
REWAIT:
; START THE I/O FUNCTION AND WAIT FOR COMPLETION

17F2 CD3F18 CALL INTYPE ;IN RTYPE

17F5 CD4C18 CALL INBYTE ;CLEARS THE CONTROLLER

17F8 3A6618 LDA DBANK ;SET BANK FLAGS

17/FB B7 ORA A ;ZERO IF DRIVE 0,1 AND NZ IF 2,3

17FC 3E67 MVI A,10PB AND OFFH ;LOW ADDRESS FOR IOPB

17FE 0618 MVI B,IOPB SHR 8 ;HIGH ADDRESS FOR 10PB

1800 C20B18 JNZ |I0ODR1;DRIVE BANK 1?

1803 D379 OuUT ILOW ;LOW ADDRESS TO CONTROLLER

1805 78 MOV A,B

1806 D37A OUT IHIGH ;HIGH ADDRESS

1808 C31018 JMP WAITO ;TOWAIT FOR COMPLETE
IODR1: ;DRIVEBANK 1

180B D389 OUT ILOW+10H ;88 FOR DRIVE BANK 10

180D 78 MOV A,B

A-11

Appendix A : The MDS-800 BIOS CP/M Operating System Manua

180E D38A OUT IHIGH+10H
1810 CD5918 WAITO: CALL INSTAT 'WAIT FOR COMPLETION
1813 E604 ANl IORDY ;READY?
1815 CA1018 Iz WAITO

; CHECK IO COMPLETION OK
1818 CD3F18 CALL INTYPE ;MUST BE IO COMPLETE (00)
UNLINKED

; OOUNLINKED I/O COMPLETE, O01LINKED I/O COMPLETE (NOT USED)
; 10DISK STATUS CHANGED 11 (NOT USED)

181B FEO2 CPl 10B ;READY STATUS CHANGE?

181D CA3218 NVA WREADY
; MUST BEOOIN THE ACCUMULATOR

1820 B7 ORA A

1821 C23818 INZ WERROR ;SOME OTHER CONDITION, RETRY

; CHECK I/O ERRORBITS

1824 CD4C18 CALL INBYTE

1827 17 RAL

1828 DA3218 JC WREADY ;UNIT NOT READY

182B 1F RAR

182C EGFE ANl 11111110B ;ANY OTHER ERRORS? (DELETED DATA OK)

182E C23818 JNZ WERROR
7 READ ORWRITE ISOK, ACCUMULATOR CONTAINS ZERO
1831 C9 RET

WREADY: ;NOT READY, TREAT AS ERROR FOR NOW
1832 CD4C18 CALL INBYTE ;CLEARRESULT BYTE
1835 C33818 JMP TRYCOUNT

WERROR: ;RETURN HARDWARE MALFUNCTION (CRC, TRACK, SEEK,
;ETC.)

; THEMDSCONTROLLER HASRETURNED A BIT IN EACH POSITION

; OF THE ACCUMULATOR, CORRESPONDING TO THE CONDITIONS:

- DELETED DATA (ACCEPTED AS OK ABOVE)

- CRC ERROR

- SEEK ERROR

- ADDRESS ERROR (HARDWARE MALFUNCTION)

- DATA OVER/UNDER FLOW (HARDWARE MALFUNCTION)

- WRITE PROTECT (TREATED ASNOT READY)

- WRITE ERROR (HARDWARE MALFUNCTION)

- NOT READY

~No o~ WNEO

A-12

Appendix A : The MDS-800 BIOS CP/M Operating System Manua

7 (ACCUMULATORBITSARENUMBERED 76543210)

; ITMAY BEUSEFUL TOFILTER OUT THE VARIOUS CONDITIONS,

; BUT WEWILL GET A PERMANENT ERROR MESSAGE IFIT ISNOT

; RECOVERABLE. IN ANY CASE, THE NOT READY CONDITION IS

7 TREATED ASA SEPARATE CONDITION FOR LATER IMPROVEMENT
TRYCOUNT:

7 REGISTER C CONTAINS RETRY COUNT, DECREMENT 'TIL ZERO
1838 0D DCR C
1839 C2F217 INZ REWAIT ;FOR ANOTHER TRY

; CANNOT RECOVER FROM ERROR
183C 3EO1 MVI A, 1 ;ERROR CODE

183E C9 RET
7 INTYPE, INBYTE, INSTAT READ DRIVE BANK 00 OR 10
183F 3A6618 INTYPE: LDA DBANK

1842 B7 ORA A

1843 C24918 INZ INTYP1 ;SKIPTO BANK 10
1846 DB79 IN RTYPE

1848 C9 RET

1849DB89 INTYP1: IN RTYPE+10H ;78 FOR 0,1 88 FOR 2,3
184B C9 RET

184C 3A6618 INBYTE: LDA DBANK

184F B7 ORA A

1850 C25618 JNZ INBYT1

1853 DB7B IN RBYTE

1855 C9 RET

1856 DB8B INBYT1: IN RBY TE+10H
1858 C9 RET

1859 3A6618 INSTAT: LDA DBANK
185C B7 ORA A

185D C26318 JNZ INSTA1l

1860 DB78 IN DSTAT

1862 C9 RET

1863 DB88 INSTAL: IN DSTAT+10H

1865 C9 RET

; DATA AREAS (MUST BE IN RAM)
1866 00 DBANK: DB O ;DISK BANK 00 IF DRIVEQ,1
; 10IFDRIVE 2,3

A-13

Appendix A : The MDS-800 BIOS CP/M Operating System Manua

|OPB: |0 PARAMETER BLOCK
1867 80 DB 80H :NORMAL I/O OPERATION
186804 IOF: DB READF :lO FUNCTION, INITIAL READ
186901 ION: DB 1 :‘NUMBER OF SECTORS TO READ
186A02 IOT: DB OFFSET "TRACK NUMBER
186B01 10S; DB 1 :SECTOR NUMBER
186C 8000 IOD: DW BUFF ;10 ADDRESS

© DEFINE RAM AREAS FOR BDOS OPERATION

ENDEF

186E+= BEGDAT EQU $
186E+ DIRBUF; DS 128 :DIRECTORY ACCESSBUFFER
18EE+ ALVO: DS 31
190D+ CSV0: DS 16
191D+ ALV1 DS 31
193C+ CSV1l: DS 16
194C+ ALV2: DS 31
196B+ CSV2: DS 16
197B+ ALV3: DS 31
199A+ CSV3: DS 16
19AA+= ENDDAT EQU $
013C+= DATSIZ EQU $BEGDAT
19AA END

A-14

Appendix A : The MDS-800 BIOS CP/M Operating System Manua

) skeletal chiosfor first level of CP/M 2.0 alteration

msize equ 20 ;cp/m version memory size in kilobytes
; "bias' is address offset from 3400h for memory systems
; than 16k (referred to as'b" throughout the text)

bias equ (msize-20)*1024
ccp equ 3400htbias ;baseof ccp
bdos equ ccp+806h ;base of bdos
bios equ ccp+l1l600h ;base of bios
cdisk equ 0004h ;current disk number O=a,... 15=p
iobyte equ 0003h ;intel i/o byte
org bios ;origin of this program
nsects equ ($-ccp)/128 ;warm start sector count

; jump vector for individual subroutines
jmp boot ;cold start

whboote: jmp whboot ;warm start
jmp const ;console status
jmp conin ;console character in
jmp conout ;console character out
jmp st list character out
jmp punch ;punch character out
jmp reader ;reader character out
jmp home ;move head to home position
jmp seldsk ;select disk
jmp settrk ;set track number
jmp setsec ;set sector number
jmp setdma;set dma address
jmp read ;readdisk
mp write ;writedisk
jmp listst ;returnlist status
jmp sectran;sector translate

: fixed data tables for four-drive standard
; ibm-compatible 8" disks
; disk Parameter header for disk 00
dpbase: dw trans, 0000h

dw 0000h, 0000h

dw dirbf, dpblk

dw chk00, al0o

B-1

Appendix B : A Sekleta CBIOS

disk parameter header for disk 01
dw trans, 0000h
dw 0000h, 0000h
dw dirbf, dpblk
dw chk01, alo1

disk parameter header for disk 02
dw trans, 0000h
dw 0000h, 0000h
dw dirbf, dpblk
dw chk02, al02

disk parameter header for disk 03
dw trans, 0000h
dw 0000h, 0000h
dw dirbf, dpblk
dw chk03, al03

sector tranglate vector

trans: db 1, 7,13,19 ;sectors 1, 2, 3, 4

db 25, 5,11,17 ;sectors 5, 6, 7, 6

db 23, 3, 9,15
db 21, 2, 8,14
db 20, 26, 6,12
db 18, 24, 4, 10

;sectors 9, 10, 11, 12
:sectors 13, 14, 15, 16
:sectors 17, 18, 19, 20
:sectors 21, 22, 23, 24

db 16, 22 ;sectors 25, 26
dpblk: ;disk parameter block, common to al disks

dw 26 ;sectors per track

db 3 ;block shift factor

db 7 ;block mask

db 0 ;null mask

dw 242 disk size-1

dw 63 ;directory max

db 192 ;alocO

db 0 ;aloc1

dw 16 ;:check size

dw 2 ;track offset

end of fixed tables

individual subroutines to perform each function

boot: ;smplest caseisto just perform parameter initialization

Xra a ;zero in the accum

sta iobyte ;Clear the iobyte

sta cdisk ;select disk zero

jmp gocpm ;initialize and go to cp/m

B-2

CP/M Operating System Manua

Appendix B : A Sekletal CBIOS CP/M Operating System Manua

whboot: ;simplest case isto read the disk until all sectors |loaded

Ixi sp, 80h ;use space below buffer for stack
mvi ¢0O :select disk O

cadl sddsk

cdl home ;9o to track 00

mvi b, nsects ;b counts * of sectorsto load
mvi ¢0O :c has the current track number
mvi d,2 :d has the next sector to read

; note that we begin by reading track 0O, sector 2 since sector 1
; contains the cold start loader, which is skipped in awarm start

Ixi h, ccp ;base of cp/m (initial load point)
loadl: ;load one more sector

push b ;save sector count, current track

push d ;save next sector to read

push h ;save dma address

mov c,d ;get sector address to register C

cal setsec ;set sector address from register C

pop b ;recall dmaaddressto b, C

push b ;replace on stack for later recall

cdl setdma ;set dmaaddressfrom b, C

X drive set to O, track set, sector set, dma address set

cdl read
cpi 00h ;any errors?
jnz whboot ;retry the entire boot if an error occurs

; no error, move to next sector

pop h ;recall dma address

Ixi d, 128 ;dma=dma+128

dad d ;new dmaaddressisinh, |

pop d ;recall sector address

pop b ;recall number of sectors remaining, and current trk
der b ;sectors=sectors-1

jZ gocpm ;transfer to cp/m if all have been loaded

; more sectorsremain to load, check for track change

inr d

mov ad ;sector=277, if so, change tracks
cpi 27

jc loadl ;carry generated if sector<27

; end of current track, go to next track
mvi d1 ;begin with first sector of next track

B-3

Appendix B : A Sekletal CBIOS CP/M Operating System Manua

inr o ‘track=track+1

; save register state, and change tracks

push b

push d

push h

cal settrk ;track address set from register ¢
pop h

pop d

pop b

jmp loadl ;for another sector

; end of load operation, set parameters and go to cp/m

gocpm:
mvi a 0c3h ;c3isajmp instruction
sa O ;for jmp to wboot
Ixi h, wboote ;whboot entry point
shid 1 ;set addressfield for jmp at O
sa 5 ;for jmp to bdos
Ixi h, bdos ;bdos entry point
shid 6 ;address field of Jump at 5 to bdos
Ixi b, 80h ;default dma addressis 80h
cdl setdma
e ;enable the interrupt system
Ida cdisk ;get current disk number
mov ¢, a ;send to the ccp
jmp ccp ;go to cp/m for further processing

; simplei/o handlers (must befilled in by user)
; in each case, the entry point is provided, with space reserved
; to insert your own code

const: ;console status, return Offh if character ready, O0h if not

ds 10h ;space for status subroutine
mvi a, 00h
ret

conin: ;console character into register a

ds 10h ;space for input routine
ani 7fh ;Strip parity bit
ret

B-4

Appendix B : A Sekletal CBIOS CP/M Operating System Manua

conout: ;console character output from register ¢
mov ac ;get to accumulator
ds 10h ;space for output routine
ret

list: ;list character from register ¢
mov ac ;Character to register a
ret :null subroutine

listst: ;return list status (O if not ready, 1 if ready)
Xxra a ;0 isaways ok to return
ret

punch: ;punch character fromregister C

mov ac ;Character to register a
ret :null subroutine

reader: ;reader character into register afrom reader device

mvi a, lah ;enter end of file for now (replace later)
ani 7fh ;remember to strip parity bit
ret

X i/o driversfor the disk follow
; for now, we will simply store the parameters away for use
X intheread and write subroutines

home: ;moveto thetrack 00 position of current drive
; trandate this call into a settrk call with Parameter 00

mvi ¢ 0 :select track O
call settrk
ret :we will moveto 00 on first read/write

seldsk: ;select disk given by register ¢

Ixi h, 0000h ;error return code
mov acC
sta diskno
cpi 4 ;must be between 0 and 3
rnc ;no carry if 4, 5,...
; disk number isin the proper range
ds 10 ;space for disk select
; compute proper disk Parameter header address
I[da diskno

B-5

Appendix B : A Sekletal CBIOS CP/M Operating System Manua

mov |,a ;I=disk number 0, 1, 2, 3
mvi hO ;high order zero

dad h *2

dad h *4

dad h *8

dad h ;*16 (size of each header)
Ixi d, dpbase

dad O ;hl=,dpbase (diskno* 16)
ret

settrk: ;set track given by register ¢

mov a,cC

sta track

ds 10h ;space for track select
ret

setsec: ;set sector given by register ¢

mov a,cC
sta sector
ds 10h ;space for sector select
ret
sectran:
;trand ate the sector given by bc using the
;trandate table given by de
xchg ;hl=.trans
dad b ;hl=.trans (sector)
mov I, m ;|=trans (sector)
mvi , 0 ;hl=trans (sector)
ret :withvaluein hl
setdma: ;set - dmaaddress given by registersb and ¢
mov I,c ;low order address
mov h,b ;high order address
shid dmaad ;save the address
ds 10h ;space for setting the dma address
ret

read: ;perform read operation (usually thisissimilar to write
; so we will allow space to set up read command, then use
; common code in write)
ds 10h ;set up read command
jmp waitio ;to perform the actual i/o

B-6

Appendix B : A Sekletal CBIOS CP/M Operating System Manua

write: ;perform awrite operation
ds 10h ;set up write command

wa|t|o ;enter here from read and write to perform the actual i/o
; operation. return a 00h in register aif the operation completes
; properly, and Olh if an error occurs during the read or write

; in this case, we have saved the disk number in 'diskno’ (0, 1)
; the track number in 'track’ (0-76)

; the sector number in 'sector’ (1-26)

; the dma address in 'dmaad' (0-65535)

ds 256 ;space reserved for i/o drivers
mvi a1l ;error condition
ret ;replaced when filled-in

; the remainder of the chiosisreserved uninitialized

; data area, and does not need to be a Part of the

; system memory image (the space must be available,
; however, between"begdat”" and"enddat").

track: ds

2 ;two bytes for expansion
sector: ds 2 ;two bytes for expansion
dmaad: ds 2 ;direct memory address
diskno: ds 1 ;disk number 0-15
; scratch ram area for bdos use
begdat equ $;beginning of data area
dirbf: ds 128 ;scratch directory area
aloo: ds 31 ;alocation vector 0
alol: ds 31 :allocation vector 1
aloz: ds 31 :allocation vector 2
alo3: ds 31 ;alocation vector 3
chk0o0: ds 16 :check vector O
chkO1: ds 16 ;check vector 1
chk02: ds 16 :check vector 2
chk03: ds 16 :check vector 3
enddat equ $;end of dataarea
datsiz equ $-begdat; ;size of data area

end

B-7

Appendix B :

A Sekletal CBIOS CP/M Operating System Manua

COMBINED GETSYSAND PUTSY S PROGRAMS FROM

; SEC6.4
; START THE PROGRAMS AT THE BASE OF THE TPA
0100 ORG 0100H
0014 = MSIZE EQU 20 :SIZE OF CP/M IN KBYTES
"BIAS' ISTHE AMOUNT TO ADD TO ADDRESSES FOR > 20K
; (REFERRED TO AS'B" THROUGHOUT THE TEXT)
0000 = BIAS EQU (MSIZE-20)*1024
3400 = CCP EQU 3400H+BIAS
3C00 = BDOS EQU CCP+0800H
4A00 = BIOS EQU CCP+1600H
; GETSYSPROGRAMSTRACKSOAND 1 TOMEMORY AT 3880H + BIAS
; REGISTER USAGE
C A (SCRATCH REGISTER)
; B TRACK COUNT (0...76)
; C SECTOR COUNT (1...26)
; D.E (SCRATCH REGISTER PAIR)
; H,L LOAD ADDRESS
; SP SET TO TRACK ADDRESS
GSTART: ;START OF GETSYS
0100 318033 LXlI SP,CCP-0080H :CONVENIENT PLACE
0103 218033 LXlI H,CCP-0080H;SET INITIAL LOAD
0106 0600 MVI B,0 :START WITH TRACK
RD$TRK: :READ NEXT TRACK
0108 OEO1 MVI C1 :EACH TRACK START
RDS$SEC:
010A CDO0003 CALL READS$SEC ;GET THE NEXT SECTOR
010D 118000 LXl D,128 :OFFSET BY ONE SECTOR
0110 19 DAD D - (HL=HL+128)
0111 0C INR C ‘NEXT SECTOR
0112 79 MOV A,C :FETCH SECTOR NUMBER
0113 FE1B CPI 27 :AND SEE IF LAST
0115 DAOAO1 JC RDSEC <, DO ONE MORE
:ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
0118 04 INR B 'TRACK = TRACK+1
011978 MOV A,B :CHECK FOR LAST
011A FEO2 CPI 2 ‘TRACK =27
011C DA0801 JC RD$TRK <, DOANOTHER

C-1

Appendix C : A Skeletal GETSY S/PUTSY S Program

;ARRIVE HERE AT END OF LOAD, HALT FOR LACK OF ANYTHING
;BETTER

011F FB El
0120 76 HLT

; PUTSYSPROGRAM, PLACESMEMORY IMAGE

7 STARTING AT

; 3880H + BIASBACK TOTRACKSOAND 1

7 START THISPROGRAM AT THE NEXT PAGE BOUNDARY

0200 ORG ($+0100H) AND OFFOOH
PUTS$SYS:
0200 318033 LXI SP,CCP-0080H :CONVENIENT PLACE
0203 218033 LX! H,CCP-0080H :START OF DUMP
0206 0600 MVI B,0 :START WITH TRACK
WRS$TRK:
0208 0605 MVI B,L START WITH SECTOR
WRS$SEC:
020A CD0004 CALL WRITE$SEC ;WRITE ONE SECTOR
020D 118000 LXI D,128 LENGTH OF EACH
021019 DAD D ‘<HL>=<HL> + 128
0211 0C INR C 1 <C>=<C>+1
0212 79 MOV AC :SEE IF
0213 FE1B CPI 27 :PAST END OF TRACK
0215 DAOAO2 JC WRS$SEC :NO, DO ANOTHER

;ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK

0218 04 INR B ' TRACK = TRACK+1

0219 78 MOV A,B SEE IF

021A FEQO2 CPl 2 ;LAST TRACK

021C DA0802 JC WR$TRK ;NO, DO ANOTHER

; DONEWITH PUTSYS, HALT FOR LACK OF ANYTHING

; BETTER
021F FB El
0220 76 HLT

;USER SUPPLIED SUBROUTINES FOR SECTOR READ AND WRITE

© MOVE TO NEXT PAGE BOUNDARY
0300 ORG ($+0100H) AND OFFOOH

C-2

CP/M Operating System Manual

Appendix C : A Skeletal GETSY S/PUTSY S Program CP/M Operating System Manual

READS$SEC:
:READ THE NEXT SECTOR
:-TRACK IN ,
:SECTOR IN <C>
:DMAADDR IN<HL>

0300 C5 PUSH B
0301 ES PUSH H

;USER DEFINED READ OPERATION GOES HERE

0302 DS o4
0342 E1 POP H
0343 C1 POP B
0344 C9 RET
0400 ORG ($+100H) AND OFFOOH ;ANOTHER PAGE
; BOUNDARY
WRITES$SEC:

; SAME PARAMETERS AS READS$SEC

0400 C5 PUSH B
0401 ES PUSH H

;USER DEFINED WRITE OPERATION GOES HERE

0402 DS o4
0442 E1 POP H
0443 C1 POP B
0444 C9 RET

;END OF GETSY S/IPUTSY S PROGRAM

0445 END

C-3

Appendix C : A Skeletal GETSY S/PUTSY S Program

title 'mds cold start loader at 3000n'

mds-800 cold start loader for cp/m 2.0

version 2.0 august, 1979

fdse equ
true equ
testing equ

if
equ
endif
if
equ
endif
equ
equ
equ
equ
equ

bias

bias

cpmb
bdos
bdose
boot
rboot

org

bdod
ntrks
bdoss
bdoso
bdosl

equ
equ
equ
equ
equ

mon80 equ
rmon80equ
base equ
rtype equ
rbyte equ
reset equ

dstat
ilow
ihigh
bsw
reca
readf
stack

equ
equ
equ
equ
equ
equ
equ

0
not false
fase

testing
03400h

not testing
0000h

bias
806h+bias
1880h+hias
1600h+hias
boot+3

03000h

bdose-cpmb
2

bdosl/128
25
bdoss-bdoso

0f800h
Offofh
078h
base+1
base+3
baset+7

base
baset+1
base+2
Offh
3h

4h
100h

;if true, then go to mon80 on errors

;base of dosload
;entry to dosfor cals
;end of dos load

;cold start entry point
;warm start entry point

:loaded down from hardware boot at 3000H

:number of tracksto read

:number of sectorsin dos

:number of bdos sectors on track O
:number of sectorson track 1

;intel monitor base

:restart location for mon80
;'base’ used by controller
;result type

;result byte

;reset controller

;disk status port

;low iopb address

;high iopb address

:boot switch

;recalibrate selected drive
:disk read function

;use end of boot for stack

D-1

CP/M Operating System Manual

Appendix D : MDS-800 Cold Start L oader

rstart:

Ixi sp,stack; ;in case of call to mon80
; clear disk status

in rtype

in rbyte
; check if boot switch is off
coldstart:

in bsw

ani 02h :switch on?

jnz coldstart
X clear the controller

out reset ;logic cleared
mvi b,ntrks ;number of tracksto read
IXi h,iopbo
start:
; read first/next track into cpmb
mov a|l
out ilow
mov ah
out ihigh
waito: in dstat
ani 4
jZ waito

X check disk status

in rtype

ani 11b

cpi 2

if testing

cnc rmon80 ;go to monitor if 11 or 10

endif

if not testing

jnc rstart ;retry the load

endif

in rbyte ;1/0 complete, check status
; if not ready, then go to mon80

ral

cc rmon80 ;not ready bit set

D-2

CP/M Operating System Manual

Appendix D : MDS-800 Cold Start L oader

iopbo:

iopbl

iopbl:

IXi

dad
der
jnz

11110b

testing
rmon80

not testing
rstart

d,iopbl

start

;restore

CP/M Operating System Manual

:overrun/addr err/seek/cre/xxxx

;g0 to monitor

;retry the load

;length of iopb
;addressing next iopb
;count down tracks

jmp to boot to print initial message, and set up jmps

jmp

boot

parameter blocks

db
db
db
db
db
dw

equ

db
db
db
db
db
dw

end

80h
readf
bdoso
0

2

cpmb
$-iopbo

80h
readf
bdosl
1

1

;iocw, no update

:read function

;*sectorsto read on track O
;track O

:start with sector 2 on track 0
;start at base of bdos

:sectors to read on track 1
‘track 1
:sector 1

cpmb+bdoso* 128 ;base of second read

D-3

Appendix D : MDS-800 Cold Start Loader CP/M Operating System Manual

;THISISA SAMPLE COLD START LOADER, WHICH, WHEN
;MODIFIED

;RESIDES ON TRACK 00, SECTOR 01 (THE FIRST SECTOR ON THE
;DISKETTE), WE ASSUME THAT THE CONTROLLER HAS LOADED
;THISSECTOR INTO MEMORY UPON SYSTEM START-UP (THIS
;PROGRAM CAN BE KEYED-IN, OR CAN EXIST IN READ-ONLY
;MEMORY

;BEYOND THE ADDRESS SPACE OF THE CP/M VERSION YOU ARE
;RUNNING). THE COLD START LOADER BRINGS THE CP/M SYSTEM
;INTO MEMORY AT"LOADP"' (3400H +"BIAS"). IN A 20K

;MEMORY SYSTEM, THE VALUE OF'BIAS" IS000H, WITH

;LARGE

;VALUES FOR INCREASED MEMORY SIZES (SEE SECTION 2).
JAFTER

;LOADING THE CP/M SYSTEM, THE COLD START LOADER
;BRANCHES

;TOTHE "BOOT" ENTRY POINT OF THE BIOS, WHICH BEGINS AT

; "BIOS" +"BIAS". THE COLD START LOADER ISNOT USED UN-
;TIL THE SYSTEM IS POWERED UP AGAIN, ASLONG ASTHE BIOS
;ISNOT OVERWRITTEN. THE ORIGIN ISASSUMED AT 0000H, AND
;MUST BE CHANGED IF THE CONTROLLER BRINGS THE COLD START
;LOADER INTO ANOTHER AREA, OR IF A READ-ONLY MEMORY

:AREA
ISUSED.
0000 ORG 0 :BASE OF RAM IN
:CP/M
0014 = MSIZE EQU 20 :MIN MEM SIZE IN
:KBYTES
0000 = BIAS EQU (MSIZE-20)*1024 ;OFFSET FROM 20K
:SYSTEM
3400 = CCP EQU 3400H+BIAS ;BASE OF THE CCP
4A00 = BIOS EQU CCP+1600H ;BASE OF THE BIOS
0300 = BIOSL EQU 0300H :LENGTH OF THE BIOS
4A00 = BOOT EQU BIOS
1900 = SIZE EQU BIOS+BIOSL-CCP ;SIZE OF CP/M
:SYSTEM
0032 = SECTS EQU SIZE/128 # OF SECTORSTO LOAD

; BEGIN THE LOAD OPERATION

COLD:
0000 010200 LXlI B,2 :B=0, C=SECTOR 2
0003 1632 MVI D,SECTS :D=# SECTORS TO
:LOAD
0005 210034 LXlI H,CCP :BASE TRANSFER

E-1

Appendix E : A Skeletal Cold Start L oader

;/ADDRESS
LSECT: ;LOAD THE NEXT SECTOR

7 INSERT INLINE CODE AT THISPOINT TO

; READ ONE 128 BY TE SECTOR FROM THE

7 TRACK GIVEN IN REGISTER B, SECTOR

; GIVEN IN REGISTER C,

7 INTO THE ADDRESS GIVEN BY <HL>

;BRANCH TO LOCATION "COLD" IF A READ ERROR OCCURS

; USER SUPPLIED READ OPERATION GOES
; HERE...

0008 C36B00 JMP PAST$PATCH ;REMOVE THIS

000B

006B 15

'WHEN PATCHED
DS 60H

PASTSPATCH:
;GO TO NEXT SECTOR IF LOAD ISINCOMPLETE
DCR D ;SECTS=SECTS1

006C CAQO4A JZ BOOT ;HEAD. FOR THE BIOS

; MORE SECTORSTO LOAD

'WE AREN'T USING A STACK, SO USE <SP> AS SCRATCH
;REGISTER
; TOHOLD THE LOAD ADDRESS INCREMENT

006F 318000 LXlI SP,128 ;128 BY TES PER

0072 39
0073 0C
0074 79

:SECTOR
DAD SP <HL>=<HL>+ 128
INR C :SECTOR=SECTOR + 1
MOV A,C

0075 FE1B CPl 27 ;LAST SECTOR OF

;TRACK?

0077 DAO800 JC LSECT ;NO, GO READ

;ANOTHER
;END OF TRACK, INCREMENT TO NEXT TRACK

E-2

CP/M Operating System Manual

Appendix E : A Skeletal Cold Start Loader CP/M Operating System Manual

007A OEO1 MVI C1 ;SECTOR =1

007C 04 INR B ;TRACK =TRACK +1

007D C30800 JMP LSECT ;FOR ANOTHER GROUP
0080 END ;OF BOOT LOADER

E-3

Appendix E : A Skeletal Cold Start Loader CP/M Operating System Manual

CP/M 2.0 disk re-definition library

Copyright (c) 1979
Digital Research
Box 579

Pacific Grove, CA
93950

CP/M logical disk drives are defined using the
macros given below, where the sequence of calls
IS

disks n
diskdef parameter-list-0
diskdef parameter-list-1

diskdef parameter-list-n
endef

where n isthe number of logical disk drives attached
to the CP/M system, and parameter-list-i defines the
characteristics of theith drive (i=0,1,...,n-1)

each parameter-list-i takesthe form
dn,fsc,Isc,[skf],bls,dks,dir,cks,ofs,[O]

where

dn isthe disk number 0,1,...,n-1

fsc isthefirst sector number (usualy O or 1)

Isc isthe last sector number on atrack

skf isoptional "skew factor" for sector translate

bls isthedatablock size (1024,2048,...,16384)

dks isthedisk sizein blsincrements (word)

dir isthe number of directory elements (word)

cks isthe number of dir elementsto checksum

ofs isthe number of tracksto skip (word)

[O] isan optional 0 which forces 16K /directory entry

for convenience, the form

dn,dm
defines disk dn as having the same characteristics as
aprevioudy defined disk dm.

astandard four drive CP/M system is defined by
disks 4
diskdef 0,1,26,6,1024,243,64,64,2

F-1

Appendix F : CP/M Disk Definition Library

dsk set 0
rept 3
set dsk+1
diskdef %dsk,0
endm
endef

dsk

the value of "begdat" at the end of assembly definesthe
beginning of the uninitialize ram area above the bios,
while the value of "enddat" defines the next location
following the end of the data area. the size of this
areais given by the value of "datsiz" at the end of the
assembly. note that the allocation vector will be quite
largeif alarge disk size is defined with asmall block
size.

Ejskhdr macro dn
defineasingle disk header list

dpe&dn: dw xIt&dn,0000h ;trandatetable
dw 0000h,0000h ;scratch area
dw dirbuf,dpb&dn;dir buff,parm block
dw csv&dn,avé&dn :check, alloc vectors
endm
disks macro nd
i define nd disks
ndisks set nd ;;for later reference
dpbaseequ $;base of disk parameter blocks
generate the nd elements
dsknxt set 0
rept nd
dskhdr %odsknxt
dsknxt set dsknxt+1
endm
endm

apbhdr macro dn
dpb& dn equ $
endm

;disk parm block

ddb macro data,comment
" define adb statement
db data

endm

comment

CP/M Operating System Manual

Appendix F : CP/M Disk Definition Library

ddw

gcd

gcdm
gcdn
gedr

gcadx
gedr

gcdm
gcdn

macro data,comment

define a dw statement

dw data comment
endm

macro m,n
greatest common divisor of m,n
produces value gcdn as result

(used in sector trandlate table generation)

set m ;;variablefor m
set n ;variablefor n
set 0 mvariablefor r
rept 65535

set gcdm/gedn

set gcdm - gedx* gedn

if gedr=0

exitm

endif

set gcdn

set gcdr

endm

endm

diskdef macro dn,fsc,|sc,skf,bls,dks,dir,cks,ofs k16

dpb&dn equ dpb&fsc ;equivalent parameters

as&dnequ ads&fsc ;same allocation vector size
css&dnequ css&fsc ;same checksum vector size
xlt&dnequ xlt&fsc ;same trandate table

else
secmax set Isc-(fsc) ;;sectors 0...secmax

generate the set statements for later tables
if nul Isc
current disk dn same as previous fsc

sectors set secmax+1;;number of sectors
als&dnset (dks)/8;;size of allocation vector

if ((dks) mod 8) ne 0

als&dn set ads&dn+1

endif
css& dnset (cks)/4 ;;number of checksum elements
" generate the block shift value
blkval set bls/128;;number of sectors/block
blkshf set 0 ;;countsright O'sin blkval
blkmsk set 0 ;;fillswith 1'sfrom right

rept 16 ;;once for each bit position

if blkval=1

F-3

CP/M Operating System Manual

Appendix F : CP/M Disk Definition Library CP/M Operating System Manual

exitm
endif
- otherwise, high order 1 not found yet
blkshf set blkshf+1
blkmsk set (blkmsk shl 1) or 1
blkval set blkval/2
endm
generate the extent mask byte
blkval set bls/1024 ;;number of kilobytes/block
extmsk set 0 ;ofill fromright with 1's
rept 16
if blkval=1
exitm
endif
- otherwise more to shift
extmsk set (extmsk shl 1) or 1
blkval set blkval/2
endm
may be double byte alocation
if (dks) > 256
extmsk set (extmsk shr 1)
endif
may be optional [0] in last position
if not nul k16
extmsk set k16

endif

now generate directory reservation bit vector
dirrem set dir ;;# remaining to process
dirbks set bls/32 ;;number of entries per block
dirblk set 0 ;»fill with 1's on each loop

rept 16

if dirrem=0

exitm

endif

not complete, iterate once again
- shift right and add 1 high order bit
dirblk set (dirblk shr 1) or 8000h

if dirrem > dirbks
dirrem set dirrem-dirbks
dse
dirrem set 0
endif
endm

dpbhdr dn ;;generate equ $
ddw %sectors,<;sec per track>

Appendix F : CP/M Disk Definition Library

ddb %blkshf,<;block shift>
ddb %blkmsk,<;block mask>
ddb %extmsk,<;extnt mask>
ddw %(dks)-1,<;disk size-1>
ddw %(dir)-1,<;directory max>
ddb %dirblk shr 8,<;allocO>
ddb %dirblk and Offh,<;allocl>
ddw %(cks)/4,<;check size>
ddw %ofs<;offset>
- generate the trandate table, if requested

if nul skf
xlt&dnequ O ;no xlate table
else
if skf=0
xlt&dnequ O ;no xlate table
else
" generate the trand ate table
nxtsec set 0 ;;next sector to fill
nxtbas set 0 ;;moves by one on overflow

gced Yosectors,skf
" gcdn = ged(sectors,skew)
neltst set sectorg/gedn
" neltst is number of elements to generate
" before we overlap previous elements
nelts set neltst ;;counter

xlt&dnequ $;trandlate table
rept sectors;;once for each sector
if sectors < 256
ddb %nxtsect+(fsc)
else
ddw %nxtsec+(fsc)
endif
nxtsec set nxtsec+(skf)
if nxtsec >= sectors
nxtsec set nxtsec-sectors
endif
nelts set nelts-1
if nelts=0

nxtbas set nxtbas+1
nxtsec set nxtbas
nelts set neltst
endif
endm
endif ;;end of nul fac test
endif ;;end of nul blstest

CP/M Operating System Manual

Appendix F : CP/M Disk Definition Library

endm

aefds macro lab,space
lab: ds space
endm

ids macro Ib,dn,va
defds |b&dn,%val&dn
endm

endef macro
" generate the necessary ram data areas
begdat equ $
dirbuf: ds 128 ;directory access buffer
dsknxt set 0
rept ndisks ;;oncefor each disk
Ids av,%dsknxt,als
Ids csv,%dsknxt,css
dsknxt set dsknxt+1
endm
enddat equ $
datsiz equ $-begdat
" db O at this point forces hex record
endm

CP/M Operating System Manual

Appendix F : CP/M Disk Definition Library CP/M Operating System Manual

0800 =
0200 =
0014 =
0004 =
0050 =
0003 =

0002 =

0000 =
0001 =
0002 =

rkkkhkkkhhkkkhkkhhkkkhhhkkhkhhkhkhhhkhkhhkhkhhhkhkhhkhkhhhkhkhhkhkkhhhkkhkhkkkhkkk%*x
’

;* SECTOR DEBLOCKING ALGORITHMSFOR CP/M 20 *

’
rkkkhkkkhhkkkhkkhhkkkhhhkkhkhhkhkhhhkkhkhhkhkhhhkhkhhkhkkhhhkhkhhkhkhhhkkhkhkkkhkkki%x*x
’

; UTILITY MACRO TO COMPUTE SECTOR MASK
SMASK MACRO HBLK
;7 COMPUTE LOG2(HBLK), RETURN @X ASRESULT
o (2** @X =HBLK ON RETURN)
@Y SET HBLK
@XSET O
;5 COUNT RIGHT SHIFTSOF @Y UNTIL =1
REPT 8
IF @Yy =1
EXITM
ENDIF
;v @Y ISNOT 1, SHIFT RIGHT ONE POSITION
@Y SET @Y SHR1
@XSET @X+1

ENDM
ENDM
;**
3 *
x CP/M TO HOST DISK CONSTANTS *
3 *
-;**
BLKSIZEQU 2048 ;CP/IM ALLOCATION SIZE
HSTSIZEQU 512 ;HOST DISK SECTOR SIZE
HSTSPTEQU 20 ;HOST DISK SECTORS/TRK
HSTBLK EQU HSTSIZ/128 ;CP/IM SECTS/HOST BUFF
CPMSPT EQU HSTBLK * HSTSPT ;CP/M SECTORS/TRACK
SECMSK EQU HSTBLK-1 ;SECTORMASK
SMASK HSTBLK ;COMPUTE SECTOR MASK
SECSHFEQU @X :LOG2(HSTBLK)
;**
3 *
* BDOS CONSTANTSON ENTRY TOWRITE *
3 *
-;**
WRALLEQU O SWRITETO ALLOCATED
WRDIREQU 1 'WRITE TO DIRECTORY
WRUALEQU 2 'WRITE TO UNALLOCATED

G-1

Appendix G : Blocking and Deblocking Algorithms

CP/M Operating System Manual

rkkkkkkhhkkkhkkhhkkhkkhhhkkhkhhkhkhhhkhkhhkhkhhhkkhkhhkhkkhhhkhkhhkhkkhhhkkhkhkkkhkkki%x*x

“k
1

*

;* THEBDOSENTRY POINTS GIVEN BELOW SHOW THE *

* CODEWHICH ISRELEVANT TO DEBLOC *
0000 = WRALLEQU O 'WRITETO ALLOCATED
0001 = WRDIREQU 1 WRITE ;
; DISKDEF MACRO, OR HAND CODED TABLES GO HERE
0000 = DPBASE EQU $;DISK PARAM BLOCK BASE
BOOT:
WBOOT:
;ENTER HERE ON SYSTEM BOOT TO INITIALIZE
0000 AF XRA A ;0TOACCUMULATOR
0001 326A01 STA HSTACT ;HOST BUFFER INACTIVE
0004 326C01 STA UNACNT ;CLEAR UNALLOC COUNT
0007 C9 RET
HOME:
;HOME THE SELECTED DISK
HOME:
0008 3A6B01 LDA HSTWRT ;CHECK FOR PENDING WRITE
000B B7 ORA A
000C C21200 JNZ HOMED
0O0F 326A01 STA HSTACT ;CLEAR HOST ACTIVE FLAG
HOMED:
0012 C9 RET
SELDSK:
;SELECT DISK
0013 79 MOV A,C ;SELECTED DISK NUMBER
0014 326101 STA SEKDSK ;SEEK DISK NUMBER
0017 6F MOV LA ;DISK NUMBER TO HL
0018 2600 MVI H,0
REPT 4 sMULTIPLY BY 16
DAD H
ENDM
001A+29 DAD H
001B+29 DAD H
001C+29 DAD H
001D+29 DAD H
001E 110000 LXl D,DPBASE ;BASE OF PARM BLOCK
0021 19 DAD D ;HL=.DPB(CURDSK)
0022 C9 RET

G-2

Appendix G : Blocking and Deblocking Algorithms CP/M Operating System Manual

SETTRK:

;SET TRACK GIVEN BY REGISTERSBC
0023 60 MOV H,B
0024 69 MOV L,C
0025 226201 SHLD SEKTRK ;TRACK TO SEEK
0028 C9 RET
SETSEC:
;SET SECTOR GIVEN BY REGISTER C
0029 79 MOV AC
002A 326401 STA SEKSEC ;SECTOR TO SEEK
002D C9 RET
SETDMA:
;SET DMA ADDRESS GIVEN BY BC
002E 60 MOV H,B
002F 69 MOV L,C
0030 227501 SHLD DMAADR
0033 C9 RET
SECTRAN:
;TRANSLATE SECTOR NUMBER BC
0034 60 MOV H,B
0035 69 MOV L,C
0036 C9 RET

;* THE READ ENTRY POINT TAKESTHE PLACEOF *
;* THE PREVIOUS BIOS DEFINTION FOR READ. *
*

-k
’

rkkhkkhkkkhhkkkhkhhkkkhhhkkhkhhkhkhhhkhkhhkhkhhkkhkhhkhkkhhhkhkhhkhkhhhkhkhkkkhkkk%x*x
’

READ:
;READ THE SELECTED CP/M SECTOR

0037 AF XRA A
0038 326C01 STA UNACNT
003B 3E01 MVI Al
003D 327301 STA READOP ;READ OPERATION
0040 327201 STA RSFLAG ;MUST READ DATA
0043 3E02 MVI AWRUAL
0045 327401 STA WRTYPE ;TREAT ASUNALLOC

0048 C3B600 JMP RWOPER ; TO PERFORM THE READ

rkkhkkhkkkhhkkkhkhhkkkhhhkkhkhhkhkhhhkhkhhkhkhhkkhkhhkhkkhhhkhkhhkhkkhhhkkhkhkkkhkkk%x*x
’

G-3

Appendix G : Blocking and Deblocking Algorithms

CP/M Operating System Manual

* THEWRITE ENTRY POINT TAKESTHE PLACEOF *
;* THE PREVIOUS BIOS DEFINTION FOR WRITE. *
WRITE:
'WRITE THE SELECTED CP/M SECTOR
004B AF XRA A ;0TOACCUMULATOR
004C 327301 STA READOP ;NOT A READ OPERATION
004F 79 MOV A,C WRITETYPEINC
0050 327401 STA WRTYPE
0053 FEO2 CPl WRUAL 'WRITE UNALLOCATED?
0055 C26F00 JNZ CHKUNA ;CHECK FOR UNALLOC
7 WRITETOUNALLOCATED, SET PARAMETERS
0058 3E10 MVI ABLKSIZ/128 sNEXT UNALLOC RECS
005A 326C01 STA UNACNT
005D 3A6101 LDA SEKDSK ;DISK TO SEEK
0060 326D01 STA UNADSK ;UNADSK = SEKDSK
0063 2A6201 LHLD SEKTRK
0066 226E01 SHLD UNATRK JUNATRK = SECTRK
0069 3A6401 LDA SEKSEC
006C 327001 STA UNASEC ;UNASEC = SEKSEC
CHKUNA:
;CHECK FOR WRITE TO UNALLOCATED SECTOR
006F 3A6C01 LDA UNACNT ;ANY UNALLOC REMAIN?
0072 B7 ORA A
0073 CAAEQOOQ JZ ALLOC ;SKIPIF NOT
; MORE UNALLOCATED RECORDS REMAIN
0076 3D DCR A JUNACNT = UNACNT-1
0077 326C01 STA UNACNT
007A 3A6101 LDA SEKDSK ' SAME DISK?
007D 216D01 LXlI H,UNADSK
0080 BE CMP M ; SEKDSK = UNADSK?
0081 C2AEQ00 JNZ ALLOC ' SKIPIF NOT
; DISKSARE THE SAME
0084 216E01 LXI HUNATRK
0087 CD5301 CALL SEKTRKCMP ; SEKTRK = UNATRK?
008A C2AEO0 JNZ ALLOC ' SKIPIF NOT
; TRACKSARE THE SAME
008D 3A6401 LDA SEKSEC ;SAME SECTOR?

G-4

Appendix G : Blocking and Deblocking Algorithms

0090 217001 LXlI H,UNASEC
0093 BE CMP M
JNZ ALLOC

0094 C2AEQ00

CP/M Operating System Manual

;SEKSEC = UNASEC?

' SKIPIF NOT

; MATCH, MOVE TO NEXT SECTOR FOR FUTURE REF

0097 34 INR M ;UNASEC = UNASEC+1
0098 7E MOV AM ;END OF TRACK?
0099 FES0 CPl CPMSPT ;COUNT CP/M SECTORS
009B DAA700 JC NOOVF ;SKIP IF NO OVERFLOW
7 OVERFLOW TO NEXT TRACK
O09E 3600 MVI M,0 ;UNASEC =0
00AO 2A6EO01 LHLD UNATRK
00A3 23 INX H
00A4 226E01 SHLD UNATRK ;UNATRK = UNATRK+1
NOOQOVF:
;MATCH FOUND, MARK ASUNNECESSARY READ
00A7 AF XRA A ;0 TOACCUMULATOR
00AS8 327201 STA RSFLAG ;RSFLAG=0
0OAB C3B600 JMP RWOPER ;TO PERFORM THE WRITE
ALLOC:
;NOT AN UNALLOCATED RECORD, REQUIRES PRE-READ
O0OAE AF XRA A ;0TOACCUM
00AF 326C01 STA UNACNT JUNACNT =0
00B2 3C INR A ;1 TOACCUM
00B3 327201 STA RSFLAG JRSFLAG =1

;* COMMON CODE FOR READ AND WRITE FOLLOWS *

3 *
)

ckkhkkkkkhhkkkhkkhhkkkhhhkkhkhhkhkhhhkkhkhhkhkhhkhkhkhhkhkkhhhkhkhhkhkkhhhkhkhkkkhkkk%x*x
’

RWOPER:
;ENTER HERE TO PERFORM THE READ/WRITE
00B6 AF XRA A ZERO TO ACCUM
00B7 327101 STA ERFLAG ;NO ERRORS (YET)
O0OBA 3A6401 LDA SEKSEC ;COMPUTE HOST SECTOR
REPT SECSHF
ORA A ;CARRY =0
RAR 'SHIFT RIGHT
ENDM
00BD+B7 ORA A ;CARRY =0
OOBE+1F RAR ;SHIFT RIGHT

G-5

Appendix G : Blocking and Deblocking Algorithms CP/M Operating System Manual

00OBF+B7 ORA A ;CARRY =0

00CO+1F RAR ;SHIFT RIGHT

00C1 326901 STA SEKHST ;HOST SECTOR TO SEEK
; ACTIVEHOST SECTOR?

00C4 216A01 LXlI HHSTACT ;HOST ACTIVEFLAG

00C7 7E MOV AM

00C8 3601 MVl M1 ;ALWAYSBECOMES 1

00CA B7 ORA A 'WASIT ALREADY?

00CB CAF200 JZ FILHST ;FILL HOST IF NOT
; HOST BUFFER ACTIVE, SAME AS SEEK BUFFER?

00CE 3A6101 LDA SEKDSK

00D1 216501 LXl HHSTDSK ;SAME DISK?

00D4 BE CMP M ;SEKDSK = HSTDSK?

00D5 C2EBOO JNZ NOMATCH
;. SAMEDISK, SAME TRACK?
00D8 216601 LXl HHSTTRK
00DB CD5301 CALL SEKTRKCMP ;SEKTRK = HSTTRK?
OODE C2EBOO JNZ NOMATCH

;. SAMEDISK, SAME TRACK, SAME BUFFER?

OOE1 3A6901 LDA SEKHST
OOE4 216801 LXlI HMHSTSEC ;SEKHST =HSTSEC?
OOE7 BE CMP M
0OE8 CAOFO1 JZ MATCH SKIPIFMATCH
NOMATCH:
;PROPER DISK, BUT NOT CORRECT SECTOR
00OEB 3A6B01 LDA HSTWRT ;HOST WRITTEN?
OOEE B7 ORA A
OOEF C45F01 CNZ WRITEHST ;CLEARHOST BUFF
FILHST:
;MAY HAVE TO FILL THE HOST BUFFER
00F2 3A6101 LDA SEKDSK
00F5 326501 STA HSTDSK
O0F8 2A6201 LHLD SEKTRK
00FB 226601 SHLD HSTTRK
OOFE 3A6901 LDA SEKHST
0101 326801 STA HSTSEC
0104 3A7201 LDA RSFLAG ;NEED TO READ?
0107 B7 ORA A
0108 C46001 CNZ READHST YES, IF1

G-6

Appendix G : Blocking and Deblocking Algorithms

010B AF XRA A ;0TOACCUM

CP/M Operating System Manual

;NO PENDING WRITE

;MASK BUFFER NUMBER
;LEAST SIGNIF BITS

010C 326B01 STA HSTWRT
MATCH:
;COPY DATA TO OR FROM BUFFER

010F 3A6401 LDA SEKSEC

0112 E603 ANl SECMSK

0114 6F MOV LA ;READY TO SHIFT

0115 2600 MVI H,0 ;DOUBLE COUNT
REPT 7 'SHIFT LEFT 7
DAD H
ENDM

0117+29 DAD H

0118+29 DAD H

0119+29 DAD H

011A+29 DAD H

011B+29 DAD H
011C+29 DAD H

011D+29 DAD H

; HL HASRELATIVE HOST BUFFER ADDRESS
011E 117701 LXl D,HSTBUF
0121 19 DAD D ;HL = HOST ADDRESS
0122 EB XCHG ;NOW IN DE
0123 2A7501 LHLD DMAADR ;GET/PUT CP/M DATA
0126 OE80 MVI C,128 ;LENGTH OF MOVE
0128 3A7301 LDA READOP 'WHICH WAY?
012B B7 ORA A
012C C23501 JNZ RWMOVE ;SKIPIF READ

7 WRITE OPERATION, MARK AND SWITCH DIRECTION
012F 3E01 MVI Al
0131 326B01 STA HSTWRT JHSTWRT =1
0134 EB XCHG ;SOURCE/DEST SWAP

RWMOVE:

;CINITIALLY 128, DE IS SOURCE, HL ISDEST

0135 1A LDAX D ;SOURCE CHARACTER
0136 13 INX D
0137 77 MOV M,A ;TO DEST
0138 23 INX H
0139 0D DCR C ;LOOP 128 TIMES

013A C23501 JNZ RWMOVE

; DATA HASBEEN MOVED TO/FROM HOST BUFFER

013D 3A7401 LDA WRTYPE

G-7

SWRITE TYPE

Appendix G : Blocking and Deblocking Algorithms

CP/M Operating System Manual

0140 FEO1 CPl WRDIR ;TO DIRECTORY ?
0142 3A7101 LDA ERFLAG ;IN CASE OF ERRORS
0145 CO RNZ ;NO FURTHER PROCESSING
; CLEAR HOST BUFFER FOR DIRECTORY WRITE
0146 B7 ORA A ;ERRORS?
0147 CO RNZ ;SKIPIF SO
0148 AF XRA A ;0TOACCUM
0149 326B01 STA HSTWRT ;BUFFER WRITTEN
014C CD5F01 CALL WRITEHST
014F 3A7101 LDA ERFLAG
0152 C9 RET
-’*"k***
’;"k *
¥ UTILITY SUBROUTINE FOR 16-BIT COMPARE *
-k *
;’***
SEKTRKCMP:
;HL = .UNATRK OR .HSTTRK, COMPARE WITH SEKTRK
0153 EB XCHG
0154 216201 LXlI H,SEKTRK
0157 1A LDAX D ;LOW BYTE COMPARE
0158 BE CMP M ' SAME?
0159 CO RNZ ;RETURN IF NOT
; LOW BYTESEQUAL, TEST HIGH 1S
015A 13 INX D
015B 23 INX H
015C 1A LDAX D
015D BE CMP M ' SETSFLAGS
015E C9 RET
-’*"k***
’;"k *
* WRITEHST PERFORMS THE PHYSICAL WRITETO *
;* THEHOST DISK, READHST READSTHE PHYSICAL *
* DISK. *
-k *
;’***
WRITEHST:
;HSTDSK = HOST DISK #, HSTTRK = HOST TRACK #,
;HSTSEC = HOST SECT # WRITE"HSTSIZ" BYTES
;FROM HSTBUF AND RETURN ERROR FLAG IN ERFLAG.
;RETURN ERFLAG NON-ZERO IF ERROR
015F C9 RET

G-8

Appendix G : Blocking and Deblocking Algorithms CP/M Operating System Manual

READHST:
;HSTDSK = HOST DISK #, HSTTRK = HOST TRACK #,
;HSTSEC = HOST SECT #. READ "HSTSIZ" BYTES
;INTO HSTBUF AND RETURN ERROR FLAG IN ERFLAG.
0160 C9 RET

rkkkhkkkhhkkkhkhhkkkhhhkkhkhhkhkhhhkhkhhkhkhhhkhkhhkhkkhhhkhkhhkhkkhhhkkhkhkkkhkkk%x*x
’

3 *

* UNITIALIZED RAM DATA AREAS *

3 *

-;**
0161 SEKDSK: DS 1 ;SEEK DISK NUMBER
0162 SEKTRK: DS 2 ;SEEK TRACK NUMBER
0164 SEKSEC: DS 1 ;SEEK SECTOR NUMBER
0165 HSTDSK: DS 1 ;HOST DISK NUMBER
0166 HSTTRK: DS 2 ;HOST TRACK NUMBER
0168 HSTSEC: DS 1 ;HOST SECTOR NUMBER
0169 SEKHST: DS 1 ;SEEK SHR SECSHF
016A HSTACT: DS 1 ;HOST ACTIVE FLAG
016B HSTWRT: DS 1 ;HOST WRITTEN FLAG
016C UNACNT: DS 1 ;UNALLOC REC CNT
016D UNADSK: DS 1 ;LAST UNALLOC DISK
016E UNATRK: DS 2 ;LAST UNALLOC TRACK
0170 UNASEC: DS 1 ;LAST UNALLOC SECTOR
0171 ERFLAG: DS 1 ;ERROR REPORTING
0172 RSFLAG: DS 1 ;READ SECTOR FLAG
0173 READORP: DS 1 ;11F READ OPERATION
0174 WRTY PE: DS 1 'WRITE OPERATION TY PE
0175 DMAADR: DS 2 ;LAST DMA ADDRESS
0177 HSTBUF: DS HSTSIZ ;HOST BUFFER

;**

3 *

;* THE ENDEF MACRO INVOCATION GOES HERE *

3 *

-;**
0377 END

G-9

Appendix G : Blocking and Deblocking Algorithms CP/M Operating System Manual

Appendix H
Glossary

address: Number representing the location of a byte in memory. Within CP/M there are two
kinds of addresses: logical and physical. A physical address refers to an absolute and unique
location within the computer's memory space. A logical address refers to the offset or
displacement of a byte in relation to a base location. A standard CP/M program is loaded at
address 0100H, the base value; the first instruction of a program has a physical address of 0100H
and arelative address or offset of OH.

allocation vector (ALV): An alocation vector is maintained in the BIOS for each logged-in disk
drive. A vector consists of a string of bits, one for each block on the drive. The bit corresponding
to aparticular block is set to one when the block has been allocated and to zero otherwise. The
first two bytes of this vector are initialized with the bytes ALO and AL 1 on, thus allocating the
directory blocks. CP/M Function 27 returns the allocation vector address.

ALO, AL 1: Two bytesin the disk parameter block that reserve data blocks for the directory.
These two bytes are copied into the first two bytes of the allocation vector when adrive islogged
in. See allocation vector.

ALV: See dlocation vector.

ambiguous filename: Filename that contains either of the CP/M wildcard characters, ? or *, in
the primary filename, filetype, or both. When you replace characters in afilename with these
wildcard characters, you create an ambiguous filename and can easily reference more than one
CP/M filein asingle command line.

American Standard Codefor Information I nterchange: See ASCII.

applications program: Program designed to solve a specific problem. Typical applications
programs are business accounting packages, word processing (editing) programs and mailing list
programs.

archive attribute: File attribute controlled by the high-order bit of the t3 byte (FCB + 11) ina
directory element. Thisattributeis set if the file has been archived.

argument: Symbol, usually aletter, indicating a place into which you can substitute a number,
letter, or name to give an appropriate meaning to the formulain question.

ASCII: American Standard Code for Information Interchange. ASCII is a standard set of
seven-bit numeric character codes used to represent characters in memory. Each character
requires one byte of memory with the high-order bit usually set to zero. Characters can be
numbers, letters, and symbols. An ASCII file can be intelligibly displayed on the video screen or
printed on paper.

H-1

Appendix H : Glossary CP/M Operating System Manual

assembler: Program that trand ates assembly language into the binary machine code. Assembly
language is ssmply a set of mnemonics used to designate the instruction set of the CPU. See
ASM in Section 3 of this manual.

back-up: Copy of adisk or file made for safekeeping, or the creation of the duplicate disk or file.
Basic Disk Operating System: See BDOS.

BDOS: Basic Disk Operating System. The BDOS module of the CP/M operating systemprovides
an interface for auser program to the operating. Thisinterfaceisin the form of a set of function
calls which may be made to the BDOS through calls to location 0005H in page zero. The user
program specifies the number of the desired function in register C. User programs running under
CP/M should use BDOS functions for all 1/O operations to remain compatible with other CP/M
systems and future releases. The BDOS normally resides in high memory directly below the
BIOS.

bias: Address value which when added to the origin address

of your BIOS module produces IF80H, the address of the BIOS
modulein the MOV CPM image. There is also abias value that

when added to the BOOT module origin produces 0900H, the address
of the BOOT module in the MOV CPM image. Y ou mu'st use these
bias values with the R command under DDT or SID" when you patch
a CP/M system. If you do not, the patched system may fall to
function.

binary: Base 2 numbering system. A binary digit can have one of two values. 0 or 1. Binary
numbers are used in computers because the hardware can most easily exhibit two states: off and
on. Generally, abit in memory represents one binary digit.

Basic | nput/Output System: See BIOS.

BIOS: Basic Input/Output System. The BIOS is the only hardware-dependent module of the
CP/M system. It provides the BDOS with a set of primitive I/O operations. The BIOS is an
assembly language module usually written by the user, hardware manufacturer, or independent
software vendor, and is the key to CP/M's portability. The BIOS interfaces the CP/M system to
its hardware environment through a standardized jump table at the front of the BIOS routine and
through a set of disk parameter tables which define the disk environment. Thus, the BIOS
provides CP/M with acompletely table-driven 1/O system.

BIOS base: Lowest address of the BIOS module in memory, that by definition must be the first
entry point in the BIOS jump table.

bit: Switch in memory that can be set to on (1) or off (0). Bitsare grouped into bytes, eight bits
to abyte, which isthe smallest directly addressable unit in an Intel 8080 or Zilog Z80. By
common convention, the bitsin a byte are numbered from right, O for the low-order bit, to left, 7

H-2

Appendix H : Glossary CP/M Operating System Manual

for the high-order bit. Bit values are often represented in hexadecimal notation by grouping the
bits from the low-order bit in groups of four. Each group of four bits can have avalue from 0 to
15 and thus can easily be represented by one hexadecimal digit.

BLM: See block mask.

block: Basic unit of disk space alocation. Each disk drive has afixed block size (BLS) defined
initsdisk parameter block in the BIOS. A block can consist of 1K, 2K, 4K, 8K, or 16K
consecutive bytes. Blocks are numbered relative to zero so that each block is unique and has a
byte displacement in afile equal to the block number times the block size.

block mask (BLM): Byte value in the disk parameter block at DPB + 3. The block mask is
always one less than the number of 128 byte sectorsthat are in one block. Note that BLM = (2 **
BSH) - 1.

block shift (BSH): Byte parameter in the disk parameter block at DPB + 2. Block shift and block
mask (BLM) values are determined by the block size (BLS). Note that BLM = (2 ** BSH) - 1.

blocking & deblocking algorithm: In some disk subsystems the disk sector sizeislarger than
128 bytes, usually 256, 512, 1024, or 2048 bytes. When the host sector sizeis larger than 128
bytes, host sectors must be buffered in memory and the 128-byte CP/M sectors must be blocked
and deblocked by adding an additional module, the blocking and deblocking algorithm, between
the BIOS disk I/0 routines and the actual disk 1/0. The host sector size must be an even multiple
of 128 bytes for the algorithm to work correctly. The blocking and deblocking algorithm allows
the BDOS and BIOS to function exactly asif the entire disk consisted only of 128-byte sectors,
asin the standard CP/M installation.

BLS: Block size in bytes. See block.

boot: Process of loading an operating system into memory. A boot program isasmall piece of
code that is automatically executed when you power-up or reset your computer. The boot
program loads the rest of the operating system into memory in amanner similar to a person
pulling himself up by his own bootstraps. This process is sometimes called a cold boot or cold
start. Bootstrap pocedures vary from system to system. The boot program must be customized
for the memory size and hardware environment that the operating system manages. Typically,
the boot resides on the first sector of the system tracks on your system disk. When executed, the
boot loads the remaining sectors of the system tracks into high memory at the location for which
the CP/M system has been configured. Finally, the boot transfers execution to the boot entry
point in the BIOS jump table so that the system can initialize itself. In this case, the boot
program should be placed at 900H in the SY SGEN image. Alternatively, the boot program may
be located in ROM.

bootstrap: See boot.

BSH: See block shift.

H-3

Appendix H : Glossary CP/M Operating System Manual

BTREE: General purpose file access method that has become the standard organization for
indexesin large data base systems. BTREE provides near optimum performance over the full
range of file operations, such asinsertion, deletion, search, and search next.

buffer: Area of memory that temporarily stores data during the transfer of information.

built-in commands: Commands that permanently reside in memory. They respond quickly
because they are not accessed from a disk.

byte: Unit of memory or disk storage containing eight bits. A byte can represent a binary
number between 0 and 255, and is the smallest unit of memory that can be addressed directly in
8-hit CPUs such asthe Intel 8080 or Zilog Z80.

CCP: Console Command Processor. The CCP is amodule of the CP/M operating system. Itis
loaded directly below the BDOS module and interprets and executes commands typed by the
console user. Usually these commands are programs that the CCP loads and calls. Upon
completion, acommand program may return control to the CCP if it has not overwritten it. If it
has, the program can reload the CCP into memory by awarm boot operation initiated by either a
jump to zero, BDOS system reset (Function 0), or acold boot. Except for itslocation in high
memory, the CCP works like any other standard CP/M program; that is, it makes only BDOS
function callsfor its I/O operations.

CCP base: Lowest address of the CCP module in memory. This term sometimes refers to the
base of the CP/M system in memory, as the CCP is normally the lowest CP/M module in high
memory.

checksum vector (CSV): Contiguous data area in the BIOS, with one byte for each directory
sector to be checked, that is, CKS bytes. See CKS. A checksum vector isinitialized and
maintained for each logged-in drive. Each directory access by the system results in a checksum
calculation that is compared with the one in the checksum vector. If there is a discrepancy, the
driveis set to Read-Only status. This feature prevents the user from inadvertently switching disks
without logging in the new disk. If the new disk is not logged-in, it is treated the same as the old
one, and dataon it might be destroyed if writing is done.

CK'S: Number of directory records to be checked summed on directory accesses. Thisisa
parameter in the disk parameter block located in the BIOS. If the value of CKSis zero, then no
directory records are checked. CKSis aso aparameter in the diskdef macro library, whereitis
the actual number of directory elements to be checked rather than the number of directory
records.

cold boot: See boot. Cold boot aso refers to ajump to the boot entry. point in the BIOS jump
table.

COM: Filetype for aCP/M command file. See command file.

H-4

Appendix H : Glossary CP/M Operating System Manual

command: CP/M command line. In general, a CP/M command line has three parts: the
command keyword, command tail, and a carriage return. To execute acommand, enter a CP/M
command line directly after the CP/M prompt at the console and press the carriage return or enter

key.

command file: Executable program file of filetype COM. A command file is amachine language
object module ready to be loaded and executed at the absolute address of 0100H. To execute a
command file, enter its primary filename as the command keyword in a CP/M command line.

command keyword: Name that identifiesa CP/M command, usually the primary filename of a
file of type COM, or abuilt-in command. The command keyword precedes the command tail and
the carriage return in the command line.

command syntax: Statement that defines the correct way to enter acommand. The correct
structure generally includes the command keyword, the command tail, and a carriage return. A
syntax line usually contains symbols that you should replace with actual values when you enter
the command.

command tail: Part of acommand that follows the command keyword in the command line. The
command tail can include a drive specification, afilename and filetype, and options or

parameters. Some commands do not require acommand tail.

CON: Mnemonic that represents the CP/M console device. For example, the CP/M command
PIP CON:=TEST.SUB displaysthe file TEST.SUB on the console device. The explanation of the
STAT command tells how to assign the logical device CON: to various physical devices. See
console.

concatenate: Name of the PIP operation that copies two or more separate filesinto one new file
in the specified sequence.

concurrency: Execution of two processes or operations simultaneously.

CONIN: BIOS entry point to aroutine that reads a character from the console device.
CONOUT: BIOS entry point to a routine that sends a character to the console device.

console: Primary input/output device. The console consists of alisting device, such as a screen or
teletype, and a keyboard through which the user communicates with the operating system or
applications program.

Console Command Processor: See CCP.

CONST: BIOS entry point to aroutine that returns the status of the console device.

H-5

Appendix H : Glossary CP/M Operating System Manual

control character: Nonprinting character combination. CP/M interprets some control characters
as simple commands such as line editing functions. To enter a control character, hold down the
CONTROL key and strike the specified character key.

Control Program for Microcomputers. See CP/M.

CP/M: Control Program for Microcomputers. An operating system that manages computer
resources and provides a standard systems interface to software written for alarge variety of
mi croprocessor-based computer systems.

CP/M 1.4 compatibility: For aCP/M 2 system to be able to read correctly single-density disks
produced under a CP/M 1.4 system, the extent mask must be zero and the block size 1K. Thisis
because under CP/M 2 an FCB may contain more than one extent. The number of extents that
may be contained by an FCB isEXM + 1. Theissueis of CP/M 1.4 compatibility aso concerns
random file I/O. To perform random file 1/O under CP/M 1.4, you must maintain an FCB for
each extent of the file. This scheme isupward compatible with CP/M 2 for files not exceeding
512K bytes, the largest file size supported under CP/M 1.4. If you wish to implement random 1/0O
for fileslarger than 512K bytes under CP/M 2, you must use the random read and random write
functions, BDOS functions 33, 34, and 36. In this case, only one FCB isused, and if CP/M 1.4
compatiblity is required, the program must use the return version number function, BDOS
Function 12, to determine which method to employ.

CP/M prompt: Characters that indicate that CP/M is ready to execute your next command. The
CP/M prompt consists of an upper-case letter, A-P, followed by a> character; for example, A>.
The letter designates which driveis currently logged in as the default drive. CP/M will search
this drive for the command file specified, unless the command is a built-in command or prefaced
by a select drive command: for example, B:STAT.

CP/NET: Digital Research network operating system enabling microcomputers to obtain access
to common resources via a network. CP/NET consists of MP/M masters and CP/M slaveswith a
network interface between them.

CSV: See checksum vector.

cursor: One-character symbol that can appear anywhere on the console screen. The cursor
indicates the position where the next keystroke at the console will have an effect.

data file: File containing information that will be processed by a program.
deblocking: See blocking & deblocking algorithm.
default: Currently selected disk drive and user number. Any command that does not specify a

disk drive or auser number references the default disk drive and user number. When CP/M is
first invoked, the default disk driveisdrive A, and the default user number is 0.

H-6

Appendix H : Glossary CP/M Operating System Manual

default buffer: Default 128-byte buffer maintained at 0080H in page zero. When the CCP loads
aCOM file, this buffer isinitialized to the command tall; that is, any characters typed after the
COM file name are loaded into the buffer. The first byte at 0080H contains the length of the
command tall, while the command tail itself begins at 0081H. The command tail is terminated by
abyte containing a binary zero value. The | command under DDT and SID initializes this buffer
in the same way as the CCP.

default FCB: Two default FCBs are maintained by the CCP at 005CH and 006CH in page zero.
Thefirst default FCB isinitialized from the first deimited field in the command tail. The second
default FCB isinitialized from the next fidld in the command tail.

delimiter: Specia characters that separate different itemsin a command line; for example, a
colon separates the drive specification from the filename. The CCP recognizes the following
charactersasdelimiters. . : =; <> -, blank, and carriage return. Several CP/M commands also
treat the following as delimiter characters: , [] () $. It is advisable to avoid the use of delimiter
characters and lower-case charactersin CP/M filenames.

DIR: Parameter in the diskdef macro library that specifies the number of directory elements on
the drive.

DIR attribute: File attribute. A file with the DIR attribute can be displayed by a DIR command.
The file can be accessed from the default user number and drive only.

DIRBUF: 128-byte scratchpad areafor directory operations, usually located at the end of the
BIOS. DIRBUF is used by the BDOS during its directory operations. DIRBUF also refers to the
two-byte address of this scratchpad buffer in the disk parameter header at DPbase + 8 bytes.

directory: Portion of adisk that contains entries for each file on the disk. In response to the DIR
command, CP/M displays the filenames stored in the directory. The directory also contains the
locations of the blocks allocated to the files. Each file directory element isin the form of a
32-byte FCB, although one file can have several elements, depending on its size. The maximum
number of directory elements supported is specified by the drive's disk parameter block value for
DRM.

directory element: Data structure. Each file on a disk has one or more 32-byte directory
elements associated with it. There are four directory elements per directory sector. Directory
elements can also be referred to as directory FCBs.

directory entry: File entry displayed by the DIR command. Sometimesthisterm refersto a
physical directory element.

disk, diskette: Magnetic media used for mass storage in acomputer system. Programs and data
are recorded on the disk in the same way music can be recorded on cassette tape. The CP/M
operating system must be initially loaded from disk when the computer isturned on. Diskette
refersto smaller capacity removable floppy diskettes, while disk may refer to either a diskette,

H-7

Appendix H : Glossary CP/M Operating System Manual

removable cartridge disk, or fixed hard disk. Hard disk capacities range from five to severd
hundred megabytes of storage.

diskdef macro library: Library of code that when used with MAC, the Digital Research macro
assembler, creates disk definition tables such asthe DPB and DPH automatically.

disk drive: Peripheral device that reads and writes information on disk. CP/M assigns a letter to
each drive under its control. For example, CP/M may refer to the drivesin afour-drive system as
A,B,C,andD.

disk parameter block (DPB): Data structure referenced by one or more disk parameter headers.
The disk parameter block defines disk characteristicsin the fields listed below:

SPT isthetotal number of sectors per track.

BSH isthe data allocation block shift factor.

BLM isthe data allocation block mask.

EXM isthe extent mask determined by BLS and DSM.
DSM is the maximum data block number.

DRM is the maximum number of directory entries-1.
ALO reserves directory blocks.

AL1 reserves directory blocks.

CKSisthe number of directory sectors check summed.
OFF isthe number of reserved system tracks.

The address of the disk parameter block islocated in the disk parameter header at DPbase +
OAH. CP/M Function 31 returns the DPB address. Drives with the same characteristics can use
the same disk parameter header, and thus the same DPB. However, drives with different
characteristics must each have their own disk parameter header and disk parameter blocks. When
the BDOS calls the SELDSK entry point in the BIOS, SELDSK must return the address of the
drive's disk parameter header in register HL.

disk parameter header (DPH): Data structure that contains information about the disk drive
and provides a scratchpad area for certain BDOS operations. The disk parameter header contains
six bytes of scratchpad areafor the BDOS, and the following five 2-byte parameters:

XLT isthe sector trandation table address.
DIRBUF isthe directory buffer address.
DPB isthe disk parameter block address.
CSV isthe checksum vector address.

ALYV isthe dlocation vector address.

Given n disk drives, the disk parameter headers are arranged in a table whose first row of 16
bytes corresponds to drive O, with the last row corresponding to driven - 1.

DKS: Parameter in the diskdef macro library specifying the number of data blocks on the drive.

H-8

Appendix H : Glossary CP/M Operating System Manual

DMA: Direct Memory Access. DMA isamethod of transferring datafrom the disk into memory
directly. In aCP/M system, the BDOS calls the BIOS entry point READ to read a sector from the
disk into the currently selected DMA address. The DMA address must be the address of a
128-byte buffer in memory, either the default buffer at 0080H in page zero, or a user-assigned
buffer in the TPA. Similarly, the BDOS calls the BIOS entry point WRITE to write the record at
the current DMA address to the disk.

DN: Parameter in the diskdef macro library specifying the logical drive number.
DPB: See disk parameter block.
DPH: See disk parameter header.

DRM: 2-byte parameter in the disk parameter block at DPB + 7. DRM is one less than the total
number of directory entries allowed for the drive. Thisvalueisrelated to DPB bytes ALO and
AL1, which allocates up to 16 blocks for directory entries.

DSM: 2-byte parameter of the disk parameter block at DPB + 5. DSM is the maximum data
block number supported by the drive. The product BLS times (DSM + 1) is the total number of
bytes held by the drive. This must not exceed the capacity of the physical disk less the reserved
system tracks.

editor: Utility program that creates and modifies text files. An editor can be used for creation of
documents or creation of code for computer programs. The CP/M editor isinvoked by typing the
command ED next to the system prompt on the console.

EX: Extent number field in an FCB. See extent.

executable: Ready to be run by the computer. Executable code is a series of instructions that can
be carried out by the computer. For example, the computer cannot execute names and addresses,
but it can execute a program that prints all those names and addresses on mailing labels.

execute a program: Start the processing of executable code.
EXM: See extent mask.

extent: 16K consecutive bytesin afile. Extents are numbered from O to 31. One extent can
contain 1, 2, 4, 8, or 16 blocks. EX isthe extent number field of an FCB and is a one-byte field
at FCB + 12, where FCB labelsthe first byte in the FCB. Depending on the block size (BLS) and
the maximum data block number (DSM), an FCB can contain 1, 2, 4, 8, or 16 extents. The EX
field isnormally set to O by the user but contains the current extent number during file 1/0. The
term FCB folding describes FCBs containing more than one extent. In CP/M version 1.4, each
FCB contained only one extent. Users attempting to perform random record I/O and maintain

H-9

Appendix H : Glossary CP/M Operating System Manual

CP/M 1.4 compatiblity should be aware of the implications of this difference. See CP/M 1.4
compatibility.

extent mask (EXM): A byte parameter in the disk parameter block located at DPB + 3. The
value of EXM is determined by the block size (BLS) and whether the maximum data block
number (DSM) exceeds 255. There are EXM + 1 extents per directory FCB.

FCB: SeeFile Control Block.

file: Collection of characters, instructions, or data that can be referenced by a unique identifier.
Files are usually stored on various types of media, such as disk, or magnetic tape. A CP/M fileis
identified by afile specification and resides on disk as a collection of from zero to 65,536
records. Each record is 128 bytes and can contain either binary or ASCII data. Binary files
contain bytes of datathat can vary in value from OH to OFFH. ASCI| files contain sequences of
character codes delineated by a carriage return and line-feed combination; normally byte values
range from OH to 7FH. The directory maps the file as a series of physical blocks. Although files
are defined as a sequence of consecutive logical records, these records can not residein
consecutive sectors on the disk. See also block, directory, extent, record, and sector.

File Control Block (FCB): Structure used for accessing files on disk. Contains the drive,
filename, filetype, and other information describing afile to be accessed or created on the disk. A
file control block consists of 36 consecutive bytes specified by the user for file I/O functions.
FCB can also refer to adirectory element in the directory portion of the allocated disk space.
These contain the same first 32 bytes of the FCB, but lack the current record and random record
number bytes.

filename: Name assigned to afile. A filename can include a primary filename of oneto eight
characters; afiletype of zero to three characters. A period separates the primary filename from
the filetype.

file specification: Uniquefileidentifier. A complete CP/M file specification includes a disk
drive specification followed by acolon, d:, a primary filename of one to eight characters, a
period, and afiletype of zero to three characters. For example, b:example.tex is acomplete
CP/M file specification.

filetype: Extension to afilename. A filetype can be from zero to three characters and must be
separated from the primary filename by a period. A filetype can tell something about thefile.
Some programs require that files to be processed have specific filetypes.

floppy disk: Flexible magnetic disk used to store information. Floppy disks comein 5 1/4- and
8-inch diameters.

FSC: Parameter in the diskdef macro library specifying the first physical sector number. This
parameter is used to determine SPT and build XLT.

H-10

Appendix H : Glossary CP/M Operating System Manual

hard disk: Rigid, platter-like, magnetic disk sealed in a container. A hard disk stores more
information than afloppy disk.

hardwar e: Physica components of a computer.

hexadecimal notation: Notation for base 16 values using the decimal digits and letters A, B, C,
D, E, and F to represent the 16 digits. Hexadecimal notation is often used to refer to binary
numbers. A binary number can be easily expressed as a hexadecimal value by taking the bitsin
groups of 4, starting with the least significant bit, and expressing each group as a hexadecimal
digit, O-F. Thus the bit value 1011 becomes OBH and 10110101 becomes OB5H.

hex file: ASCII-printable representation of a command, machine language, file.

hex file format: Absolute output of ASM and MAC for the Intel 8080 isahex format file,
containing a sequence of absolute records that give aload address and byte values to be stored,
starting at the load address.

HOME: BIOS entry point which sets the disk head of the currently selected drive to the track
zero position.

host: Physical characteristics of ahard disk drivein a system using the blocking and deblocking
algorithm. The term, host, hel ps distinguish physical hardware characteristics from CP/M's
logical characteristics. For example, CP/M sectors are dways 128 bytes, although the host sector
Size can be amultiple of 128 bytes.

input: Data going into the computer, usually from an operator typing at the terminal or by a
program reading from the disk.

input/output: Seel/O.

interface: Object that allows two independent systems to communicate with each other, as an
interface between hardware and software in a microcomputer.

1/O: Abbreviation for input/output. Usually refers to input/output operations or routines handling
the input and output of data in the computer system.

IOBYTE: A one-bytefield in page zero, currently at location 0003H, that can support a
logical-to-physical device mapping for 1/0. However, itsimplementation in your BIOS s purely
optiona and might or might not be supported in agiven CP/M system. The IOBY TE iseasily set
using the command:

STAT <logica device> = <physical device>

The CP/M logical devicesare CON:, RDR:, PUN:, and LST:; each of these can be assigned to
one of four physical devices. The IOBY TE can be initialized by the BOOT entry point of the

H-11

Appendix H : Glossary CP/M Operating System Manual

BI1OS and interpreted by the BIOS 1/0O entry points CONST, CONIN, CONOUT, LIST, PUNCH,
and READER. Depending on the setting of the IOBY TE, different 1/O drivers can be selected by
the BIOS. For example, setting LST:=TTY: might cause LIST output to be directed to a seria
port, while setting LST:=LPT: causes LIST output to be directed to a parallel port.

K: Abbreviation for kilobyte. See kilobyte.

keyword: See command keyword.

kilobyte (K): 1024 bytes or 0400H bytes of memory. Thisisa standard unit of memory. For
example, the Intel 8080 supports up to 64K of memory address space or 65,536 bytes. 1024
kilobytes equal one megabyte, or over one million bytes.

linker: Utility program used to combine relocatabl e object modules into an absolute file ready
for execution. For example, LINK-80(TM) creates either a COM or PRL file from relocatable
REL files, such as those produced by PL/1-80(TM).

LIST: A BIOS entry point to aroutine that sends a character to the list device, usually a printer.
list device: Device such as a printer onto which data can be listed or printed.

LISTST: BIOS entry point to aroutine that returns the ready status of the list device.

loader: Utility program that brings an absol ute program image into memory ready for execution
under the operating system, or a utility used to make such an image. For example, LOAD
prepares an absolute COM file from the assembler hex file output that is ready to be executed
under CP/M.

logged in: Made known to the operating system, in reference to drives. A drive islogged in when
it is selected by the user or an executing process. It remains selected or logged in until you
change disksin afloppy disk drive or enter CTRL-C at the command level, or until aBDOS
Function O is executed.

logical: Representation of something that might or might not be the same in its actual physica
form. For example, ahard disk can occupy one physical drive, yet you can divide the available
storage on it to appear to the user asif it werein severa different drives. These apparent drives
arethelogical drives.

logical sector: See sector.

logical-to-physical sector trandation table: See XLT.

L SC: Diskdef macro library parameter specifying the last physical sector number.

H-12

Appendix H : Glossary CP/M Operating System Manual

LST: Logica CP/M list device, usualy aprinter. The CP/M list device is an output-only device
referenced through the LIST and LISTST entry points of the BIOS. The STAT command allows
assignment of LST: to one of the physical devices: TTY:, CRT:, LPT:, or UL1:, provided these
devices and the IOBY TE are implemented in the LIST and LISTST entry points of your CP/M
BIOS module. The CP/NET command NETWORK allows assignment of LST: to alist device on
anetwork master. For example, PIP LST:=TEST.SUB printsthe file TEST.SUB on the list
device.

macr o assembler: Assembler code trandator providing macro processing facilities. Macro
definitions allow groups of instructions to be stored and substituted in the source program as the
macro names are encountered. Definitions and invocations can be nested and macro parameters
can be formed to pass arbitrary strings of text to a specific macro for substitution during
expansion.

megabyte: Over one million bytes; 1024 kilobytes. See byte, and kilobyte.

microprocessor: Silicon chip that isthe central processing unit (CPU) of the microcomputer.
The Intel 8080 and the Zilog Z80 are microprocessors commonly used in CP/M systems.

MOVCPM image: Memory image of the CP/M system created by MOV CPM. Thisimage can
be saved as adisk file using the SAVE command or placed on the system tracks using the

SY SGEN command without specifying a source drive. Thisimage varies, depending on the
presence of a one-sector or two-sector boot. If the boot is less than 128 bytes (one sector), the
boot begins at 0900H, the CP/M system at 0980H, and the BIOS at 1F80H. Otherwise, the boot
isat 0900H, the CP/M system at 1000H, and the BIOS at 2000H. In a CP/M 1.4 system with a
one-sector boot, the addresses are the same as for the CP/M 2 system-except that the BIOS
begins at 1E80H instead of 1F80H.

MP/M: Multi-Programming Monitor control program. A microcomputer operating system
supporting multi-terminal access with multi-programming at each terminal.

multi-programming: The capability of initiating and executing more than one program at a
time. These programs, usually called processes, are time-shared, each receiving adice of CPU
time on around-robin basis. See concurrency.

nibble: One half of abyte, usualy the high-order or low-order 4 bitsin a byte.

OFF: Two-byte parameter in the disk parameter block at DPB + 13 bytes. This value specifies
the number of reserved system tracks. The disk directory beginsin the first sector of track OFF.

OFS: Diskdef macro library parameter specifying the number of reserved system tracks. See
OFF.

oper ating system: Collection of programs that supervises the execution of other programs and
the management of computer resources. An operating system provides an orderly input/output

H-13

Appendix H : Glossary CP/M Operating System Manual

environment between the computer and its peripheral devices. It enables user-written programs to
execute safely. An operating system standardizes the use of computer resources for the programs
running under it.

option: One of many parameters that can be part of acommand tall. Use options to specify
additional conditions for acommand's execution.

output: Datathat is sent to the console, disk, or printer.

page: 256 consecutive bytesin memory beginning on a page boundary, whose base addressisa
multiple of 256 (100H) bytes. In hex notation, pages always begin at an address with aleast
significant byte of zero.

pagerelocatable program: See PRL.

page zer o: Memory region between 0000H and 0100H used to hold critical system parameters.
Page zero functions primarily as an interface region between user programs and the CP/M BDOS
module. Note that in non-standard systems this region is the base page of the system and
represents the first 256 bytes of memory used by the CP/M system and user programs running
under it.

parameter: Vauein the command tail that provides additional information for the command.
Technically, a parameter is arequired element of a command.

peripheral devices: Devices external to the CPU. For example, terminals, printers, and disk
drives are common periphera devices that are not part of the processor but are used in
conjunction with it.

physical: Characteristic of computer components, generaly hardware, that actually exist. In
programs, physical components can be represented by logical components.

primary filename: First 8 characters of afilename. The primary filename is a unique name that
helps the user identify the file contents. A primary filename contains one to eight characters and
can include any letter or number and some special characters. The primary filename follows the
optional drive specification and precedes the optional filetype.

PRL : Page relocatable program. A page relocatable program is stored on disk with a PRL
filetype. Page relocatable programs are easily relocated to any page boundary and thus are
suitable for execution in a nonbanked MP/M system.

program: Series of coded Instructions that performs specific tasks when executed by a

computer. A program can be written in a processor-specific language or a high-level language
that can be implemented on a number of different processors.

H-14

Appendix H : Glossary CP/M Operating System Manual

prompt: Any characters displayed on the video screen to help the user decide what the next
appropriate action is. A system prompt is a special prompt displayed by the operating system.
The aphabetic character indicates the default drive. Some applications programs have their own
special prompts. See CP/M prompt.

PUN: Logica CP/M punch device. The punch device is an output-only device accessed through
the PUNCH entry point of the BIOS. In certain implementations, PUN: can be a serial device
such as a modem.

PUNCH: BIOS entry point to aroutine that sends a character to the punch device.

RDR: Logical CP/M reader device. The reader deviceis an input-only device accessed through
the READER entry point in the BIOS. See PUN:.

READ: Entry point in the BIOS to aroutine that reads 128 bytes from the currently selected
drive, track, and sector into the current DMA address.

READER: Entry point to aroutine in the BIOS that reads the next character from the currently
assigned reader device.

Read-Only (R/O): Attribute that can be assigned to a disk file or adisk drive. When assigned to
afile, the Read-Only attribute allows you to read from that file but not write to it. When assigned
to adrive, the Read-Only attribute allows you to read any file on the disk, but prevents you from
adding anew file, erasing or changing afile, renaming afile, or writing on the disk. The STAT
command can set afile or adrive to Read-Only. Every file and driveis either Read-Only or
Read-Write. The default setting for drives and files is Read-Write, but an error in resetting the
disk or changing media automatically sets the drive to Read-Only until the error is corrected. See
also ROM.

Read-Write (R/W): Attribute that can be assigned to adisk file or adisk drive. The Read-Write
attribute allows you to read from and write to a specific Read-Write file or to any file on a disk
that isin adrive set to Read-Write. A file or drive can be set to either Read-Only or Read-Write.

record: Group of bytesin afile. A physical record consists of 128 bytes and is the basic unit of

data transfer between the operating system and the application program. A logical record might
vary in length and is used to represent a unit of information. Two 64-byte employee records can
be stored in one 128-byte physical record. Records are grouped together to form afile.

recursive procedure: Code that can call itself during execution.
reentrant procedure: Code that can be called by one process while another is already executing
it. Thus, reentrant code can be shared between different users. Reentrant procedures must not be

self-modifying; that is, they must be pure code and not contain data. The data for reentrant
procedures can be kept in a separate data area or placed on the stack.

H-15

Appendix H : Glossary CP/M Operating System Manual

restart (RST): One-byte call instruction usually used during interrupt sequences and for
debugger break pointing. There are eight restart locations, RST 0 through RST 7, whose
addresses are given by the product of 8 times the restart number.

R/O: See Read-Only.

ROM : Read-Only memory. This memory can be read but not written and so is suitable for code
and preinitialized data areas only.

RST: Seerestart.
R/W: See Read-Write.

sector: InaCP/M system, a sector is always 128 consecutive bytes. A sector isthe basic unit of
data read and written on the disk by the BIOS. A sector can be one 128-byte record in afile or a
sector of the directory. The BDOS aways requests alogical sector number between 0 and
(SPT-1). Thisistypically trandated into a physical sector by the BIOS entry point SECTRAN. In
some disk subsystems, the disk sector sizeislarger than 128 bytes, usually a power of two, such
as 256, 512, 1024, or 2048 bytes. These disk sectors are always referred to as host sectorsin
CP/M documentation and should not be confused with other references to sectors, in which cases
the CP/M 128-byte sectors should be assumed. When the host sector size islarger than 128 bytes,
host sectors must be buffered in memory and the 128-byte CP/M sectors must be blocked and
deblocked from them. This can be done by adding an additional module, the blocking and
deblocking algorithm, between the BIOS disk 1/O routines and the actual disk I/O.

sectors per track (SPT): A two-byte parameter in the disk parameter block at DPB + 0. The
BDOS makes calls to the BIOS entry point SECTRAN with logical sector numbers ranging
between 0 and (SPT - 1) in register BC.

SECTRAN: Entry point to aroutinein the BIOS that performslogical-to-physical sector
tranglation for the BDOS.

SELDSK: Entry point to aroutine in the BIOS that sets the currently selected drive.
SETDMA: Entry point to aroutinein the BIOS that sets the currently selected DMA address.
The DMA addressis the address of a 128-byte buffer region in memory that is used to transfer
datato and from the disk in subsequent reads and writes.

SETSEC: Entry point to aroutine in the BIOS that sets the currently selected sector.
SETTRK: Entry point to aroutine in the BIOS that sets the currently selected track.

skew factor: Factor that defines the logical-to-physical sector number trandation in XLT.

Logical sector numbers are used by the BDOS and range between 0 and (SPT - 1). Datais
written in consecutive logical 128-byte sectors grouped in data blocks. The number of sectors

H-16

Appendix H : Glossary CP/M Operating System Manual

per block is given by BLS/128. Physical sectors on the disk media are also numbered
consecutively. If the physical sector sizeis aso 128 bytes, a one-to-one relationship exists
between logical and physical sectors. The logical-to-physical trandation table (XL T) mapsthis
relationship, and a skew factor istypically used in generating the table entries. For instance, if the
skew factor is6, XLT will be:

Logica: 0123456... 25
Physical: 1 7131925 511 22

The skew factor allowstime for program processing without missing the next sector. Otherwise,
the system must wait for an entire disk revolution before reading the next logical sector. The
skew factor can be varied, depending on hardware speed and application processing overhead.
Note that no sector trandation is done when the physical sectors are larger than 128 bytes, as
sector deblocking is donein this case. See also sector, SKF, and XLT.

SKF: A diskdef macro library parameter specifying the skew factor to be used in building XLT.
If SKF iszero, no trandlation table is generated and the XL T byte in the DPH will be 0000H.

softwar e: Programs that contain machine-readable instructions, as opposed to hard-ware, which
isthe actual physical components of a computer.

sour cefile: ASCII text file usually created with an editor that is an input file to a system
program, such as alanguage translator or text formatter.

SP: Stack pointer. See stack.

spooling: Process of accumulating printer output in afile while the printer isbusy. Thefileis
printed when the printer becomes free; a program does not have to wait for the slow printing
process.

SPT: See sectors per track.

stack: Reserved area of memory where the processor saves the return address when a call
instruction is received. When areturn instruction is encountered, the processor restores the
current address on the stack to the program counter. Data such as the contents of the registers can
also be saved on the stack. The push instruction places data on the stack and the pop instruction
removesit. Anitem is pushed onto the stack by decrementing the stack pointer (SP) by 2 and
writing the item at the SP address. In other words, the stack grows downward in memory.
syntax: Format for entering a given command.

SYS: See system attribute.

H-17

Appendix H : Glossary CP/M Operating System Manual

SY SGEN image: Memory image of the CP/M system created by SY SGEN when a destination
drive is not specified. Thisisthe same asthe MOV CPM image that can beread by SYSGEN if a
source driveis not specified. See MOV CPM image.

system attribute (SYS): File attribute. Y ou can give afile the system attribute by using the SYS
option inthe STAT command or by using the set file attributes function, BDOS Function 12. A
file with the SY S attribute is not displayed in response to a DIR command. If you give afile with
user number O the SY S attribute, you can read and execute that file from any user number on the
same drive. Use this feature to make your commonly used programs available under any user
number.

system prompt: Symbol displayed by the operating system indicating that the system is ready to
receive input. See prompt and CP/M prompt.

system tracks. Tracks reserved on the disk for the CP/M system. The number of system tracks
is specified by the parameter OFF in the disk parameter block (DPB). The system tracks for a
drive always precede its data tracks. The command SY SGEN copies the CP/M system from the
system tracks to memory, and vice versa. The standard SY SGEN utility copies 26 sectors from
track 0 and 26 sectors from track 1. When the system tracks contain additional sectors or tracks
to be copied, a customized SY SGEN must be used.

terminal: See console.

TPA: Transient Program Area. Areain memory where user programs run and store data. This
areaisaregion of memory beginning at 0100H and extending to the base of the CP/M systemin
high memory. The first module of the CP/M system is the CCP, which can be overwritten by a
user program. If so, the TPA is extended to the base of the CP/M BDOS module. If the CCPis
overwritten, the user program must terminate with either a system reset (Function 0) call or a
jump to location zero in page zero. The address of the base of the CP/M BDOS is stored in
location 0006H in page zero least significant byte first.

track: Dataon the disk mediais accessed by combination of track and sector numbers. Tracks
form concentric rings on the disk; the standard IBM single-density disks have 77 tracks. Each
track consists of afixed number of numbered sectors. Tracks are numbered from zero to one less
than the number of tracks on the disk.

Transient Program Area: See TPA.

upward compatible: Term meaning that a program created for the previously released operating
system, or compiler, runs under the newly released version of the same operating system.

USER: Term used in CP/M and MP/M systems to distinguish distinct regions of the directory.

H-18

Appendix H : Glossary CP/M Operating System Manual

user number: Number assigned to filesin the disk directory so that different users need only
deal with their own files and have their own directories, even though they are all working from
the same disk. In CP/M, files can be divided into 16 user groups.

utility: Tool. Program that enables the user to perform certain operations, such as copying files,
erasing files, and editing files. The utilities are created for the convenience of programmers and
users.

vector: Location in memory. An entry point into the operating system used for making system
calls or interrupt handling.

warm start: Program termination by ajump to the warm start vector at location 0000H, a system
reset (BDOS Function 0), or a CTRL-C typed at the keyboard. A warm start reinitializes the disk
subsystem and returns control to the CP/M operating system at the CCP level. The warm start
vector issimply ajump to the WBOOT entry point in the BIOS.

WBOOT: Entry point to aroutine in the BIOS used when awarm start occurs. A warm start is
performed when a user program branches to location 0000H, when the CPU is reset from the
front panel, or when the user types CTRL-C. The CCP and BDOS are reloaded from the system
tracks of drive A.

wildcard characters: Special characters that match certain specified items. In CP/M there are
two wildcard characters: ? and *. The ? can be substituted for any single character in afilename,
and the * can be substituted for the primary filename, the filetype, or both. By placing wildcard
charactersin filenames, the user creates an ambiguous filename and can quickly reference one or
morefiles.

word: 16-bit or two-byte value, such as an address value. Although the Intel 8080 is an 8-bit
CPU, addresses occupy two bytes and are called word values.

WRITE: Entry point to aroutine in the BIOS that writes the record at the currently selected
DMA address to the currently selected drive, track, and sector.

XLT: Logical-to-physical sector tranglation table located in the BIOS. SECTRAN uses XLT to
perform logical-to-physical sector number tranglation. XL T also refers to the two-byte addressin
the disk parameter header at DPBASE + 0. If this parameter is zero, no sector trandation takes
place. Otherwise this parameter is the address of the tranglation table.

ZERO PAGE: See page zero.

End of Appendix H

H-19

Appendix H : Glossary CP/M Operating System Manual

Appendix |
CP/M Error Messages

Messages come from several different sources. CP/M displays error messages when there are
errors in calls to the Basic Disk Operating System (BDOS). CP/M also displays messages when
there are errors in command lines. Each utility supplied with CP/M has its own set of messages.
The following lists CP/M messages and utility messages. One might see messages other than
those listed here if one is running an application program. Check the application program's
documentation for explanations of those messages.

Tablel-1. CP/MErrorM essages

Message Meaning

DDT. This message has four possible meanings:

DDT does not understand the assembly language instruction.
The file cannot be opened.
A checksum error occurred in aHEX file.
- The assembler/disassembler was overlayed.

ABORTED
PIP. You stopped a PIP operation by pressing akey.

ASM Error Messages

D Dataerror: data statement element cannot be placed in specified data area.
E Expression error: expression cannot be evaluated during assembly.
L Label error: label cannot appear in this context (might be

duplicate label).

Appendix | : CP/M Error Messages CP/M Operating System Manual

Message

Table 1-1. (continued)
Meaning

Not implemented: unimplemented features, such as macros,
are trapped.

Overflow: expression istoo complex to evaluate.

Phase error: label value changes on two passes through
assembly.

Register error: the value specified as aregister isincompati-

ble with the code.

Syntax error: improperly formed expression.

Undefined label: label used does not exist.

Valueerror: impr_operly formed operand encountered in an
expression.

BAD DELIMITER

STAT. Check command line for typing errors.

Bad Load

CCP error message, or SAVE error message.

Bdos Err On d:

Basic Disk Operating System error on the designated drive: CP/M replaces d: with
the drive specification of the drive where the error occurred. This message is
followed by one of the four phrases in the situations described below.

Appendix | : CP/M Error Messages CP/M Operating System Manual

Table 1-1. (continued)
Message Meaning
Bdos Err On d: Bad Sector

This message appears when CP/M finds no disk in the drive, when the disk is

improperly formatted, when the drive latch is open, or when power to the drive is
off. Check for one of these situations and try again. This could also indicate a
hardware problem or aworn or improperly formatted disk. Press TC to terminate
the program and return to CP/M, or press RETURN to ignore the error.

Bdos Err On d: File R/O

You tried to erase, rename, or set file attributes on a Read-Only file. The file
should first be set to Read-Write (R[W) with the command: STAT filespec $R/W.

Bdos Err On d: R/O

Drive has been assigned Read-Only status with a STAT command, or the disk in
the drive has been changed without being initialized with a TC. CP/M terminates
the current program as soon as you press any key.

Bdos Err on d: Select

CP/M received a command line specifying a nonexistent drive. CP/M terminates
the current program as soon as you press any key. Press RETURN or CTRL-C to
recover.

Break "x" at c

ED. "x" is one of the symbols described below and c¢ is the command letter being
executed when the error occurred.

Search faillure. ED cannot find the string specifiedinanF, S, or N
command.

? Unrecognized command letter c. ED does not recognize the indicated
command letter, or an E, H, Q, or 0 command is not alone on its command
line.

Appendix | : CP/M Error Messages CP/M Operating System Manual

Table I-1. (continued)
Message Meaning
- Thefile specified in an R command cannot be found.

> Buffer full. ED cannot put any more charactersin the memory buffer, or the
string specified inan F, N, or S command istoo long.

E Command aborted. A keystroke at the console aborted command execution.

F Disk or directory full. Thiserror isfollowed by either the disk or directory
full message. Refer to the recovery procedures listed under these messages.

CANNOT CLOSE DESTINATION FILE--{filespec}

PIP. An output file cannot be closed. Y ou should take appropriate
action after checking to see if the correct disk is in the drive and that the disk is
not write-protected.

Cannot close, RIO
CANNOT CLOSE FILES

CP/M cannot write to the file. This usually occurs because the disk is
write-protected.

ASM. An output file cannot be closed. Thisis afata error that terminates ASM
execution. Check to see that the disk is in the drive, and that the disk is not
write-protected.

DDT. The disk file written by a W command cannot be closed. This is a fatal
error that terminates DDT execution. Check if the correct disk is in the drive and
that the disk is not write-protected.

SUBMIT. This error can occur during SUBMIT file processing. Check if the
correct system disk isin the A drive and that the disk is not write-protected. The
SUBMIT job can be restarted after rebooting CP/M.

Appendix | : CP/M Error Messages CP/M Operating System Manual

Table 1-1. (continued)
Message Meaning

CANNOT READ
PIP. PIP cannot read the specified source. Reader cannot be implemented.
CANNOT WRITE

PIP. The destination specified in the PIP command isillegal. Y ou probably
specified an input device as a destination.

Checksum error

PIP. A HEX record checksum error was encountered. The HEX record that
produced the error must be corrected, probably by recreating the HEX file.

CHECKSUM ERROR
LOAD ADDRESS hhhh
ERROR ADDRESS hhhh
BYTES READ:
hhhh:

LOAD. Filecontainsincorrect data. Regenerate HEX file from the source.
Command Buffer Overflow

SUBMIT. The SUBMIT buffer allows up to 2048 charactersin the input file.
Command too long

SUBMIT. A command inthe SUBMIT file cannot exceed 125 characters.
\CORRECT ERROR, TYPE RETURN OR CTRL-Z

PIP. A HEX record checksum was encountered during the transfer of aHEX file.

The HEX file with the checksum error should be corrected, probably by recreating
the HEX file.

Appendix | : CP/M Error Messages CP/M Operating System Manual

Table 1-1. (continued)

Message Meaning

DESTINATION ISR/O, DELETE (Y/N)?
PIP. The destination file specified in a PIP command already exists and it is
Read-Only. If you type Y, the destination file is deleted before the file copy is
done.

Directory full
ED. There is not enough directory space for the file being written to the
destination disk. You can use the OXfilespec command to erase any unnecessary

files on the disk without leaving the editor.

SUBMIT. Thereis not enough directory space to write the $$$.SUB file used for
processing SUBMITS. Erase somefilesor select anew disk and retry.

Disk full
ED. Thereis not enough disk space for the output file. Thiserror can occur on the
W, E, H, or X commands. If it occurs with X command, you can repeat the
command prefixing the filename with adifferent drive.

DISK READ ERROR--{ filespec}
PIP. The input disk file specified in a PIP command cannot be read properly.

This is usually the result of an unexpected end-of-file. Correct the problem in
your file.

Appendix | : CP/M Error Messages CP/M Operating System Manual

Table 1-1. (continued)

Message Meaning

DISK WRITE ERROR--{ filespec}
DDT. A disk write operation cannot be successfully performed during a W
command, probably due to a full disk. You should either erase some unnecessary
files or get another disk with more space.
PIP. A disk write operation cannot be successfully performed during a PIP
command, probably due to a full disk. You should either erase some unnecessary

files or get another disk with more space and execute PIP again.

SUBMIT. The SUBMIT program cannot write the $$$.SUB file to the disk.
Erase somefiles, or select anew disk and try again.

ERROR: BAD PARAMETER

PIP. You entered an illega parameter in a PIP command. Retype the entry
correctly.

ERROR: CANNOT OPEN SOURCE, LOAD ADDRESS hhhh

LOAD. Displayed if LOAD cannot find the specified file or if no filename is
specified.

ERROR: CANNOT CLOSE FILE, LOAD ADDRESS hhhh

LOAD. Caused by an error code returned by a BDOS function call. Disk might
be write-protected.

ERROR: CANNOT OPEN SOURCE, LOAD ADDRESS hhhh
LOAD. Cannot find sourcefile. Check disk directory.
ERROR: DISK READ, LOAD ADDRESS hhhh

LOAD. Caused by an error code returned by a BDOS function call.

Appendix | : CP/M Error Messages CP/M Operating System Manual

Table 1-1. (continued)
Message Meaning
ERROR: DISK WRITE, LOAD ADDRESS hhhh
LOAD. Destination disk isfull.
ERROR: INVERTED LOAD ADDRESS, LOAD ADDRESS hhhh

LOAD. The address of a record was too far from the address of the
previously-processed record. Thisisan internal limitation of LOAD, but it can be

circumvented. Use DDT to read the HEX file into memory, then use a SAVE
command to store the memory image file on disk.

ERROR: NO MORE DIRECTORY SPACE, LOAD ADDRESS hhhh
LOAD. Disk directory isfull.
Error on line nnn message

SUBMIT. The SUBMIT program displays its messages in the format shown
above, where nnn represents the line number of the SUBMIT file. Refer to the
message following the line number.

FILE ERROR

ED. Disk or directory is full, and ED cannot write anything more on the disk.
This is a fatal error, so make sure there is enough space on the disk to hold a
second copy of the file before invoking ED.

FILE EXISTS

You have asked CP/M to create or rename a file using a file specification that is
aready assigned to another file. Either delete the existing file or use another file
specification.

REN. The new name specified is the name of a file that already exists. You
cannot rename a file with the name of an existing file. 1f you want to replace an
existing file with a newer version of the same file, either rename or erase the
existing file, or use the PIP utility.

Appendix | : CP/M Error Messages CP/M Operating System Manual

Table 1-1. (continued)

Message Meaning

Fileexists, eraseit
ED. The destination filename already exists when you are placing the destination
file on adifferent disk than the source. It should be erased or another disk
selected to receive the output file.

** FILE ISREAD/ONLY **

ED. Thefile specified in the command to invoke ED has the ReadOnly attribute.
Ed can read the file so that the user can examine it, but ED cannot change a
Read-Only file.

File Not Found

CP/M cannot find the specified file. Check that you have entered the correct drive
specification or that you have the correct disk in the drive.

ED. ED cannot find the specified file. Check that you have entered the correct
drive specification or that you have the correct disk in the drive.

STAT. STAT cannot find the specified file. The message might appear if you
omit the drive specification. Check to seeif the correct disk isin the drive.

FILE NOT FOUND-{ filespec}
PIP. Aninput file that you have specified does not exist.
Filename required
ED. Y ou typed the ED command without a filename. Reenter the ED command
followed by the name of the file you want to edit or create.
hhhh??=dd
DDT. The??indicates DDT does not know how to represent the hexadecimal

value dd encountered at address hhhh in 8080 assembly language. dd is not an
8080 machine instruction opcode.

Appendix | : CP/M Error Messages CP/M Operating System Manual

Table 1-1. (continued)
Message Meaning
Insufficient memory

DDT. There is not enough memory to load the file specified in an R or E
command.

Invalid Assignment

STAT. You specified an invalid drive or file assgnment, or misspelled a device
name. Thiserror message might be followed by alist of the valid file assgnments
that can follow a filename. If an invalid drive assignment was attempted the
message Use: d: = RO is displayed, showing the proper syntax for drive
assignments.

Invalid control character
SUBMIT. The only valid control charactersinthe SUBMIT files of the type SUB
are M A through ™ Z. Note that in a SUBMIT file the control character is
represented by typing the circumflex, ', not by pressing the control key.

INVALID DIGIT--{ filespec}
PIP. Aninvalid HEX digit has been encountered while reading a HEX file. The
HEX file with the invalid HEX digit should be corrected, probably by recreating
the HEX file.

Invalid Disk Assignment

STAT. Might appear if you follow the drive specification with anything except =
R/O.

INV)ALID DISK SELECT
CP/M received a command line specifying a nonexistent drive, or the disk in the

drive is improperly formatted. CP/M terminates the current program as soon as
you press any key.

[-10

Appendix | : CP/M Error Messages CP/M Operating System Manual

Table 1-1. (continued)
Message Meaning
INVALID DRIVENAME (UseA, B, C, or D)

SYSGEN. SYSGEN recognizes only drives A, 5, C, and D as valid destinations
for system generation.

Invalid File Indicator
STAT. Appearsif you do not specify RO, RW, DIR, or SYS.
INVALID FORMAT

PIP. The format of your PIP command isillegal. See the description of the PIP
command.

INVALID HEXDIGIT
LOAD ADDRESS hhhh
ERROR ADDRESS hhhh
BYTES READ:
hhhh
LOAD. File containsincorrect HEX digit.
INVALID MEMORY SIZE
MOVCPM. Specify avalue lessthan 64K or your computer's actual memory size.

INVALID SEPARATOR

PIP. You have placed an invalid character for a separator between two input
filenames.

INVALID USER NUMBER

PIP. You have specified a user number greater than 15. User numbers are in the
range O to 15.

[-11

Appendix | : CP/M Error Messages CP/M Operating System Manual

Table 1-1. (continued)
Message Meaning
n? USER. Y ou specified anumber greater than fifteen for a user area number. For
example, if you type USER 18<cr>, the screen displays 187?.
NO DIRECTORY SPACE

ASM. Thedisk directory isfull. Erase some filesto make room for PRN and
HEX files. Thedirectory can usually hold only 64 filenames.

NO DIRECTORY SPACE-{ filespec}
PIP. Thereisnot enough directory space for the output file. Y ou should either
erase some unnecessary files or get another disk with more directory space and
execute PIP again.

NO FILE--{filespec}
DIR, ERA, REN, PIP. CP/M cannot find the specified file, or no files exist.
ASM. Theindicated source or include file cannot be found on the indicated drive.
DDT. Thefile specified in an R or E command cannot be found on the disk.

NO INPUT FILE PRESENT ON DISK
DUMP. Thefile you requested does not exist.

No memory

There is not enough (buffer?) memory available for loading the program specified.

[-12

Appendix | : CP/M Error Messages CP/M Operating System Manual

Table 1-1. (continued)
Message Meaning
NO SOURCE FILE ON DISK

SYSGEN. SYSGEN cannot find CP/M either inCP/M x x. C0M form or on
the system tracks of the source disk.

NO SOURCE FILE PRESENT

ASM. The assembler cannot find the file you specified. Either you mistyped the
file specification in your command line, or the filetypeis not ASM.

NO SPACE
SAVE. Too many files are aready on the disk, or no room is left on the disk to
save the information.
No SUB file Present
SUBMIT. For SUBMIT to operate properly, you must create afile with filetype
of SUB. The SUB file contains usual CP/M commands. Use one command per
line.

NOT A CHARACTER SOURCE

PIP. The source specified in your PIP command isillegal. Y ou have probably
specified an output device as a source.

** NOT DELETED **
PIP. PIP did not delete the file, which might have had the R/O attribute.
NOT FOUND

PIP. PIP cannot find the specified file.

1-13

Appendix | : CP/M Error Messages CP/M Operating System Manual

Table I-1. (continued)
Message Meaning
OUTPUT FILE WRITE ERROR
ASM. You specified awrite-protected disk as the destination for the PRN and
HEX files, or the disk has no space left. Correct the problem before assembling
your program.

Parameter error

SUBMIT. Within the SUBMIT file of type sub, valid parameters are $0 through
$9.

PARAMETER ERROR, TYPE RETURN TO IGNORE

SYSGEN. If you press RETURN, SY SGEN proceeds without processing the
invalid parameter.

QUIT NOT FOUND
PIP. The string argument to a Q parameter was not found in your input file.
Read error

TYPE. An error occurred when reading the file specified in the type command.
Check the disk and try again. The STAT filespec command can diagnose trouble.

READER STOPPING
PIP. Reader operation interrupted.
Record Too Long
PIP. PIP cannot process arecord longer than 128 bytes.
Requires CP/M 2.0 or later

XSUB. XSUB requiresthe facilities of CP/M 2.0 or newer version.

[-14

Appendix | : CP/M Error Messages CP/M Operating System Manual

Table 1-1. (continued)
Message Meaning
Requires CP/M 2.0 or new for operation

PIP. Thisversion of PIP requires the facilities of CP/M 2.0 or newer version.

START NOT FOUND

PIP. The string argument to an S parameter cannot be found in the sourcefile.

SOURCE FILE INCOMPLETE

SYSGEN. SY SGEN cannot use your CP/M sourcefile.

SOURCE FILE NAME ERROR

ASM. When you assemble a file, you cannot use the wildcard characters" and ?
inthefilename. Only onefile can be assembled at atime.

SOURCE FILE READ ERROR

ASM. The assembler cannot understand the information in the file containing the
assembly-language program. Portions of another file might have been written
over your assembly-language file, or information was not properly saved on the
disk. Use the TYPE command to locate the error. Assembly-language files
contain the letters, symbols, and numbers that appear on your keyboard. If your

screen displays unrecognizable output or behaves strangely, you have found where
computer instructions have crept into your file.

SYNCHRONIZATION ERROR

MOVCPM. The MOVCPM ttility is being used with the wrong CP/M system.

"SYSTEM" FILE NOT ACCESSIBLE

You tried to access afile set to SY Swith the STAT command.

[-15

Appendix | : CP/M Error Messages CP/M Operating System Manual

Table 1-1. (continued)
Message Meaning
** TOO MANY' FILES **

STAT. Thereis not enough memory for STAT to sort the files specified, or more
than 512 files were specified.

UNEXPECTED END OF HEX FILE--{filespec}
PIP. An end-of-file was encountered prior to a termination HEX record. The
HEX file without a termination record should be corrected, probably by recreating
the HEX file.

Unrecognized Destination
PIP. Check command line for valid destination.

Use: STAT d:=RO

STAT . An invalid STAT drive command was given. The only valid drive
assignment in STAT isSTAT d: = RO.

VERIFY ERROR:--{filespec}
PIP. When copying with the V' option, PIP found a difference when rereading the
data just written and comparing it to the data in its memory buffer. Usually this
indicates afailure of either the destination disk or drive.

WRONG CP/M VERSION (REQUIRES 2.0)

XSUB ACTIVE
SUBMIT. XSUB has been invoked.

XSUB ALREADY PRESENT

SUBMIT. XSUB isalready active in memory.

I-16

Appendix | : CP/M Error Messages CP/M Operating System Manual
Table 1-1. (continued)
Message Meaning

Y our Input?

If CP/M cannot find the command you specified, it returns the command name
you entered followed by a question mark. Check that you have typed the
command line correctly, or that the command you requested exists as a COM file

on the default or specified disk.

End of Appendix |

[-17

Appendix | : CP/M Error Messages

A

Absolute line number, 2-5

2-7, 2-10, 2-20, Access mode, 1-19

afn (ambiguousfile reference), 1-4, 1-7

Allocation vector, 5-27

Ambiguousfile reference (afn), 1-4, 1-7

ASM, 1-22, 3-1

Assembler, 1-22, 3-1

Assembl er/disassembler module
(DDT), 4-11

Assembler errors, 3-24

Assembly language mnemonicsin
DDT, 4-4, 4-7

Assembly language program, 3-3

Assembly language statement, 3-3

Automatic command processing, 1-39

B

Base, 3-5

Basic Disk Operating System (BDOYS),
1-2,5-1,6-1

Basic 1/0 System (BIOS), 1-2,5-1, 6-1

BDOS (Basic Disk Operating System),
1-2,5-1,6-1

Binary constants, 3-5

BIOS (Basic 1/0 System), 1-2, 5-1, 6-1

BIOS disk definition, 6-34

BI1OS subroutines, 6-15

Block move command, 4-8

bls parameter, 6-35

BOOT, 5-2, 6-13, 6-20

BOOT entry point, 6-20

Break point, 4-4, 4-6

Built-in commands, 1-3

CP/M Operating System Manual

Casetrandation, 1-6, 1-7, 1-31, 1-32 1-33,
2-21, 2-22, 3-7,5-10, 5-11

CCP (Console Command Processor),
1-2,4-1,5-1,6-1

CCP Stack, 5-6

Character pointer, 2-4

cks parameter, 6-35
Close File function, 5-20

Code and data areas, 6-26

Cold start loader, 6-13, 20, 25
Command, 1-3

Command line, 5-3

Comment field, 3-4
Compute File Size function, 5-33
Condition flags, 3-17, 4-11
Conditional assembly, 3-14
CONIN, 6-21
CONOUT, 6-21
CONSOLE, 6-18
Console Command Processor (CCP),
1-2,4-1,5-1,6-1

Console Input function, 5-12

Console Output function, 5-12
CONST, 6-21

Constant, 3-5

Control characters, 2-19
Control functions, 1-13
CTRL-Z character, 5-7
Copy files, 1-25
CPU state, 4-3, 4-4
cr (carriage return), 2-10
Createfiles, 1-35
Create system disk, 1-37
Creating COM files, 1-24
Currently logged disk, 1-3, 1-7, 1-15, 1-36

Index-1

I ndex

D

Dataallocation size, 6-31

Data block number, 6-32

DB statement, 3-15

DDT commands, 4-4, 6-9

DDT nucleus, 4-11

DDT prompt, 4-2

DDT sign-on message, 4-1

Decimal constant, 3-5

Default FCB, 4-7

Delete File function, 5-22

DESPOOL, 6-17

Device assignment, 1-16

DIR, 1-9

DIR attribute, 1-20

dir parameter, 6-35

Direct console 1/0 function, 5-14

Direct Memory Address, 5-27

Directory, 1-9

Directory code, 5-19, 5-20, 5-21, 5-22,
5-23, 5-24, 5-25

Disassembler, 4-4,11

Disk attributes, 1-15

Disk drive name, 1-6, 7

Disk 1/0 functions, 5-17-5-35

Disk parameter block, 6-30

Disk parameter header, 6-28

Disk parameter table, 6-28

Disk statistics, 1-15

Disk-to-disk copy, 1-27

DISKDEF macro, 6-34

Diskette format, 1-47

DISKS macro, 6-34

Display filecontents, 1-11

dks parameter, 6-35

DMA, 5-27

DMA address, 5-8

dn parameter, 6-35

DPBASE, 6-29

CP/M Operating System Manual

Drive characteristics, 1-21
Drive select code, 5-9
Drive specification, 1-7
DS statement, 3-16
DUMP, 1-41 5-40

DW statement, 3-15

E

ED, 1-35, 2-1-2-22, 6-6

ED commands, 2-8,19

ED errors, 2-18

Edit command line, 1-1 2

8080 CPU registers, 4-10

8080 registers, 3-6

end-of-file, 1-28, 5-7

END statement, 3-4, 3-11
EMDEF macro, 6-35

ENDIF statement, 3-13

EQU statement, 3-12

ERA, 1-8

Erasefiles, 1-8

Error messages, 1-44, 2-18, 3-24

Expression, 3-4

Extents, 1-19

F

FBASE, 5-2

FCB, 5-8,5-9

FCB format, 5-8, 5-9
FDOS (operations), 5-1, 5-4
File attributes, | - 20

File compatibility, 1-35

File control block (FCB), 5-8, 5-9
File expansion, 6-2

File extent, 5-8
Fileindicators, 1-20

File names, 1-4

Index-2

I ndex

Filereference, 1-4

File statistics, 1-15, 1-19
Filetvpe, 5-6

Find command, 2-11

fsc parameter, 6-35

G

Get ADDR (Alloc) function, 5-27

Get ADDR (Disk Parms) function, 5-29
5-16

Get Console Status, 5- 17

Get 1/0 Byte function, 5-15

Get Read/Qiily Vector function, 5-28
GETSYS, 6-3,6-11

H

Hexadecimal constaiit, 3-5
HOME subroutine, 6-20, 22

6-35

|dentifier, 3-3, 3-5

|F statement, 3-13

Initialized storage areas, 3-15
In-line assembly language, 4-4
Insert mode, 2-7

Insert String, 2-12

IOBY TE function, 6-17-6-19

J

jump vector, 6-15
juxtaposition command, 2-15

CP/M Operating System Manual

K

Key fields, 5-34

Label field, 3-3

Labels, 3-3, 3-4, 3-16

Library read command, 2-16
Line-edit'ng control characters, 2-9, 4-2,

Line-editing functions, |- 12

Line numbers, 2-5

LIST, 6-17, 6-21

List Output function, 5-14

LISTST, 6-24

LOAD, 1-24

Loggedin,1-3

Logical devices, 1-16, 1-28, 6-17
Logical extents, 5-8

Logical-phvsical assignments, 1-18, 6-19

Logical to physical device mapping, 6-18

Logical to physical sector translation 6-24,

|sc parameter, 6-35

M

Macro command, 2-17
Make File function, 5-25
Memory buffer, 2-1-2-7
Memory image, 4-3, 6-6, 6-7
Memory size, 1-42, 6-3, 6-8
MOVCPM, 1-42,6-7

Index-3

I ndex

N

Negative bias, 6-7

O

[0] parameter, 6-35

Octal constant, 3-5

of s parameter, 6-35
On-line status, 5-19

Open Filefunction, 5-19
Operand field, 3-4, 3-6
Operation field, 3-4, 3-16
Operators, 3-9, 3-16
ORG directive, 3-11

P

Page zero, 6-26

Patching the CP/M system, 6-3

Peripheral devices, 6-17

Physical devices, 1-17, 6-17

Physical filesize, 5-33

Physical to logical device assignment,
1-18, 6-19

PIP devices, 1-28

PIP parameters, 1-31

Print String function, 5-15

PRN file, 3-1

Program counter,4-4,4-6, 4-7, 4-11

Program tracing, 4-9

Prompt, 1-3

Pseudo-operation, 3-10

PUNCH, 6-17, 6-21

Punch Output function, 5-13

PUTSYS, 6-4, 6-11

CP/M Operating System Manual

Radix indicators, 3-5
Random access, 5-31, 5-32, 5-46
Random record number, 5-32
READ, 6-23
Read Console Buffer function, 5-16
Read only, 1-20
Read/only status, 1-20
Read random error codes, 5-31
Read Random function, 5-30
READ routine, 6-20
Read Sequential function, 5-23
Read/write, 1-20
READER, 6-18,21
Reader Input function, 5-13
REN, 1-10
Rename file function, 5-25
Reset Disk function, 5-18
Reset Drive function, 5-35
Reset state, 5-18
Return Current Disk function, 5-26
Return Log-in Vector function, 5-26
Return Version Number function, 5-18
R/0, 1-20
R/O attribute, 5-29

R/O bit, 5-28

R/W, 1-20

S

SAVE, 1-11

SAVE command, 4-3

Search for First function, 5-21
Search for Next function, 5-22
Search strings, 2-11

Sector allocation, 6-13

Index-4

I ndex

SECTRAN, 6-2

SELDSK, 6-19, 6-22, 6-30
Select Disk function, 5-19
Sequential access, 5-8

Set DMA address function, 5-27
Set File Attributes function, 5-29
Set/Get User Code function, 5-30
Set 1/0 Bvte function, 5-15

Set Random Record function, 5-34
SET statement, 3-13

SETDMA, 6-23

SETSEC, 6-23

SETTRK, 6-22

Simple character 1/0, 6-17
Sizein records, 1-19

skf parameter, 6-35, 6-37
Sourcefiles, 5-7

Stack pointer, 5-6

STAT, 1-15, 6-17,6-38

Stop console output, 1-13

String substitutions, 2-14
SUBMIT, 1-39

SY S attribute, 1-20

SYSGEN, 1-37, 6-10

System attribute, 2-19, 5-29
Svstem parameters, 6-20

System (re)Inltlallzation, 6-16
System Reset function, 5-11

T

Testing and debugging of programs, 41
Text transfer commands, 2-3

TPA (Transient Program Area), 1-2, 51
Trace mode, 4-10

Transient commands, 1-3, 1-14
Transient Program Area (TPA), 1-2, 5-1

CP/M Operating System Manual

Trandate table, 6-37
Trandlation vectors, 6-30
TYPE, 1-11

U

ufn, 1-4, 1-7

Unambiguous file reference, 1-4, 1-7
Uninitialized memory, 3-16

Untrace mode, 4-10

USER, 1-12

USER numbers, 1-12, 1-22, 5-30

Vv

Verify line numbers command, 2-6, 21
Version independent programming, 5-18
Virtua file size, 5-33

\W

Warm start, 5-2, 6-20

WBOQOT entry point, 6-20
Write routine, 6-24
Write Sequential function, 5-24
WRITE, 6-24
Write Protect Disk function, 5-28
Write random error codes, 5-32
Write Random function, 5-32

Write Random with Zero Fill function, 5-35

X

XSUB, 1-41

Index-5

