CP/M MAC MACRO ASSEMBLER

LANGUAGE MANUAL AND
APPLICATIONS GUIDE

Copyright (c) 1977, 1978, 1979, 1980

Digital Research

Post Office Box 579

160 Central Avenue
Pacific Grove, CA 93950
(408) 649-3896

TWX 910 360 5001

All Rights Reserved

Copyright (e) 1977, 1978, 1979, 1980 by Digita
Research. All rights reserved. No part of this
publication may be reproduced, transmitted, trans-
cribed, stored in aretrieval system, or translated into
any language or computer language, in any form or
by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the
prior written permission of Digital Research, Post
Office Box 579, Pacific Grove, California 93950.

This manual istutorial in nature, however, and thus
permission is granted to reproduce or abstract the
example programs shown in enclosed figures for the
purposes of inclusion within the reader's programs.

Disclaimer

Digital Research makes no representations or war-
ranties with respect to the contents hereof and specifi-
caly disclaims any implied warranties of merchant
ability or fitness for any particular purpose. Further,
Digital Research reserves the right to revise this
publication and to make changes from time to time

in the content hereof without obligation of Digital
Research to notify any person of such revision or
changes.

Trademarks

CP/M is aregistered trademark of Digital Research.
MAC is atrademark of Digital Research.

Revision of November 1980

Table of Contents

1 MACRO ASSEMBLER OPERATION UNDER CP/M
2. PROGRAM FORMAT
3 FORMING THE OPERAND

3.1 Labels
3.2. Numeric Constants
3.3. Reserved Words
34. String Constants
3.5. Arithmetic, Logical, and Relational Operators
3.6. Precedence of Operators
4, ASSEMBLER DIRECTIVES
4.1. The ORG Directive
4.2. The END Directive
4.3. The EQU Directive
4.4 The SET Directive
45, The IF, ELSE, and ENDIF Directives
4.6. The DB Directive
47. The DW Directive
4.8. The DS Directive
4.9, The PAGE and TITLE Directives
4.10. A Sample Program using Pseudo Operations
5. OPERATION CODES
5.1 Jumps, Calls, and Returns
5.2. Immediate Operand Instructions
5.3. Increment and Decrement Instructions
5.4, Data Movement Instructions
5.5. Arithmetic Logic Unit Operations
5.6. Control Instructions
6. AN INTRODUCTION TO MACRO FACILITIES
7. INLINE MACROS
7.1, The REPT-ENDM Group
7.2. The IRPC-ENDM Group
7.3. The IRP-ENDM Group
7.4, The EXITM Statement
7.5. The LOCAL Statement
8. DEFINITION AND EVALUATION OF STORED MACROS
8.1. The MACRO-ENDM Group
8.2. Macro Invocation
8.3. Testing Empty Parameters
8.4. Nested Macro Definitions
8.5. Redefinition of Macros
8.6. Recursive Macro Invocation
8.7. Parameter Evaluation Conventions
8.8. The MACLIB Statement
9. APPLICATIONS OF MACROS
9.1. Special Purpose Languages
9.2. Machine Emulation
9.3. Program Control Structures
9.4. Operating Systems Interface

O~N~NOOTO1O1TW

31

36
36
36
40
43
45

48
48
48
51
56
58
60
63
68

69
69
80
104
134

10.

11.

12.

13.

ASSEMBLY PARAMETERS
DEBUGGING MACROS
SYMBOL STORAGE REQUIREMENTS

ERROR MESSAGES

159

162

163

165

Foreword
The CP/M macro assembler, called MAC, reads assembly language statements
from a diskette file and produces a "hex" format object file on the diskette suitable
for processing in the CP/M environment, and is upward compatible from the standard
CP/M non-macro assembler (see the Digital Research manual entitled "CP/M Assembler
(ASM) User's Guide"). The facilities of MAC include assembly of Intel 8080 micro
computer mnemonics, along with assembly-time expressions, conditional assembly, page
formatting features, and a powerful macro processor which is compatible with the
standard Intel definition (MAC implements the mid-1977 revision of Intel's definition,
which is not compatible with previous versions). In addition, MAC will accept most
programs prepared for the Processor Technology Software #1 assembler, normally
requiring only minor modifications.

The macro assembler is supplied on a CP/M non-system diskette, along with a

number of standard library files. The macro assembler requires approximately 12K of
machine code and table space, along with an additional 2.5K of 1/0 buffer space.

Since the BDOS portion of CP/M is coresident with MAC, the minumum usable memory
sizefor MAC is approximately 20K. Any additional memory adds to the available
symbol table area, thus allowing larger programs to be assembled.

Upon receiving the MAC diskette, you should follow the steps given below

(a) Placethe MAC diskette into drive B, with a CP/M system diskettein
drive A. Copy the MAC.COM to drive A from drive B using PIP (see the CP/M
Features and Facilities Guide for PIP operation).

(b) Copy the SAMPLE.ASM program from drive B to drive A using the PIP
program.

(c) Remove the MAC diskette from drive B, and retain the diskette for future
backup (there are a number of "LIB" files which may be useful at alater time).

(d) Type"MAC SAMPLE" to execute the macro assembler (see Figure 1).

The macro assembler should load and print the signon message. Upon completion, the
final program addressis printed, followed by the "use factor" which indicates that the
assembly is complete.

(e) Typethe"SAMPLE.PRN" and "SAMPLE.SYM" files, and compare with
Figure | to ensure that the assembler is executing properly, thus completing the MAC
test.

Thismanual is organized in three major sections. The first section describes

the simple assembler facilities of MAC which involve 8080 mnemonic forms, expressions,
and conditional assembly, similar to the discussion found in the ASM User's Guide. If
you are familiar with ASM, you may wish to skip over the first section, and start

reading Section 6. The second portion of this manual, beginning with Section 6,
describes the MAC macro facilities in some detail. Again, if you are familiar with
macros, you may wish to briefly skim these sections, and refer primarily to the examples
to get the "flavor” of the MAC facility. Section 10 discusses macro applications,

where common macro forms and programming practices are discussed. Again, it is
useful to skim the examples and refer back to the explanations for detailed discussions
of each program.

1
1. MACRO ASSEMBLER OPERATION UNDER CP/M

The user must first prepare a source program containing assembly language

statements using the ED program under CP/M (see the Digital Research manua "CP/M
Context Editor (ED) User's Guide"), and then submit the assembly language file for
processing under MAC. Although the user may specify certain options (described under
"Assembly Parameters'), the usual invocation of MAC issimply

MAC filename

where "filename" corresponds to the assembly language file which was prepared using
ED, with an assumed (and unspecified) file type of . ASM". Upon completion of the
translation process, MAC leaves afile called "filename.HEX" containing the machine
codein Intel hexadecimal format which can subsequently be loaded (see the LOAD
command in the "CP/M Features and Facilities® manual), or tested under the CP/M
debugger (see the "CP/M Dynamic Debugging Tool (DDT) User's Guide"). In addition
to the HEX file, MAC aso prepares afile named "filename.PRN" which contains an
annotated source listing, along with afile called "filename.SYM" which contains a
sorted list of symbols defined in the program.

Figure | provides an example of the output from MAC for a sample assembly

language program which is stored on the diskette under the name SAMPLE.ASM. The
macro sssembler is executed by typing "MAC SAMPLE" followed by a carriage return.
Upon completion, the PRN, SYM, and HEX files will appear as shown in the figure.
The assembler listing file (PRN) includes a 16 column annotation at the left which
shows the values of literals, machine code addresses, and generated machine code.
Note that an equal sign (=) is used to denote literal values (see the EQU directive)

to avoid confusion with machine code addresses. In all cases, output files contain tab
characters (ASCII control-1) wherever possible in order to conserve diskette space. Tab
positions are assumed to be placed at every eight columns of the output line.

2

Source Program (SAMPLE.ASM)
org 100h ;transient program area
bdos equ 0005h ;bdos entry point
wchar equ 2 ;write character function

;enter with ccp's return address in the stack
;write a single character (?) and return

mvi C,wchar ;write character function
mvi e'? :character to write

cal bdos :write the character

ret ;return to the ccp

end 100h ;Start address is 100h

Assembler Listing file (SAMPLE.PRN)

FUNCTION

FUNCTION

0100 ORG 100H ;TRANSIENT PROGRAM AREA

0005 = BDOS EQU 0005H ;BDOSENTRY POINT

0002 = WCHAR EQU 2 'WRITE CHARACTER
ENTER WITH CCPS RETURN ADDRESS IN THE STACK
WRITE A SINGLE CHARACTER (?) AND RETURN

0100 OEOQ2 MVI CWCHAR JWRITE CHARACTER

0102 1E3F MVl E'? ;CHARACTER TOWRITE

0104 CD0500 CALL BDOS JWRITE THE CHARACTER

0107 C9 RET ;RETURN TO THE CCP

0108 END 100H ;START ADDRESS IS 100H

Assembler Sorted Symbol (SAMPLE.SYM)

0005 BDOS 0002 WCHAR

Assembler "Hex" Output file (SAMPLE.HEX)

:080100000E021E3FCDO0500C9EF
:00010000FF

Figure 1. Sample ASM, PRN, SYM, and HEX Filesfrom MAC.

2. PROGRAM FORMAT

A program acceptable as input to the macro assembler consists of a sequence
of statements of the form

line# label operation operand comment

where any or all of the elements may be present in a particular statement. Each
assembly language statement is terminated by a carriage return and line feed (the line
feed isinserted automatically by the ED program when the file is prepared), or with
the character "!I" which is treated as an end of line by the assembler. Thus, multiple
assembly language statements can be written on the same physical line if separated
by exclamation marks.

Statement elements are delimited by a sequence of one or more blank or tab
characters. Tab characters are preferred since the program element alignment is
automatically maintained in the output line at every eighth column, without requiring
extrablanks in the file. This not only conserves source file space, but also reduces
thelisting file size since the tab characters are included in the PRN file. The tab
characters are not actually expanded until the fileis printed or typed at the console.

Theline# is an optional decimal integer value representing the source program

line number, which is allowed on any source line in case the program is prepared with
aline editor which uses line numbers at the beginning of each statement. In an cases,
the optional line# isignored by the assembler.

The label field takes the form
identifier or identifier:

and is optional, except where noted in particular statement types. The identifier is
a sequence of aphanumeric characters (alphabetics, question marks, commercial atsigns,
and numbers) where the first character is alphabetic (including "?", and "@").
Identifiers can be freely used by the programmer to label elements such as program
steps and assembler directives, but cannot exceed 16 charactersin length. All
characters are ignificant in an identifier, except for the embedded dollar sign "$"
which can be used to improve readability of the name. Further, all lower case
alphabetics are treated as if they are upper case in an identifier. Note that the

":" following the identifier in alabel is optional (to maintain compatibility between
the Intel and Processor Technology versions). Thus, the following are all valid
instances of labels

X XY long$name

X? xyl: longer$named$data

XIx2 @123: ?@@abcDEF

Gamma @GAMMA ?ARESWESHERE?
x234$5678%$9012$3456:

The operation field contains an assembler directive (pseudo operation), 8080

machine operation code, or a macro invocation with optional parameters. The pseudo
operations and machine operation codes are described below, while the macro calls are
delayed for later discussion.

4

The operand field of the statement, in general, contains an expression formed

from constant and label operands, with arithmetic, logical, and relational operations
upon these operands. Again, the complete details of properly formed expressions are
given in sections which follow.

The comment field is denoted by aleading ;" character, and contains arbitrary
characters until the next real or logical end of line. These character are read, listed,
and otherwise ignored in the assembly process. In order to maintain compatibility
with other assemblers, MAC also treats statements which begin with a"*" in the first
position as comment lines.

The assembly language program is thus a sequence of statements of the above
form, terminated optionally by an END statement. All statements following the END
are ignored by the assembler.

3. FORMING THE OPERAND

In order to completely describe the operation codes and pseudo operations, it

is necessary to first present the form of the operand field, sinceit is used in nearly
all statements. Expressions in the operand field consist of simple operands (1abels,
constants, and reserved words), combined into properly formed subexpressions by
arithmetic and logical operators. The expression computation is carried out by the
assembler as the assembly proceeds. Each expression produces a 16-bit value during
the assembly. Further, the number of significant digits in the result must not exceed
theintended use. That is, if an expression is to be used in a byte move immediate
(see the MV instruction), the absolute value of the operand must fit within an 8-bit
field. The restrictions on the expression significance are given with the individual
instructions.

3.1. Labels.

As discussed above, alabel is an identifier which occurs on a particular statement.

In general, the label is given avaue determined by the type of statement which it
precedes. If the label occurs on a statement which generates machine code or reserves
memory space (e.g., a MOV instruction or a DS pseudo operation), then the label is
given the value of the program address which it labels. If the label precedes an EQU
or SET, then the label is given the value which results from evaluating the operand
field. In the case of a macro definition, the label is given atext value (i.e., a

sequence of ASCII characters) which is the body of the macro definition. With the
exception of the SET and MACRO pseudo operations, an identifier can label only one
statement.

when a (non-macro) label appears in the operand field, its 16-bit value is
substituted by the assembler. This value can then be combined with other operands
and operators to form the operand field for a particular instruction. When a macro
identifier appears in the operation field of the statement, the text which is stored as
the value of the macro name is substituted in place of the name. In this case, the
operand field of the statement contains "actual parameters' which are substituted for
"dummy parameters' in the body of the macro definition. The exact mechanisms for
definition, invocation, and substitution of macro text are given in later sections.

3.2. Numeric Constants.

A numeric constant is a 16-bit value in one of several number bases. The base,
called the radix of the constant, is denoted by atrailing radix indicator. The radix

indicators are:
B binary constant (base 2)
0 octal constant (base 8)
Q octal constant (base 8)
D decimal constant (base 10)
H hexadecimal constant (base 16)

Qisan aternate radix indicator for octal numbers since the letter O is easily confused
with the digit 0. Any numeric constant which does not terminate with a radix indicator
is assumed to be a decimal constant.

6

A constant is thus composed as a sequence of digits, followed by an optional

radix indicator, where the digits are in the appropriate range for the radix. That is,
binary constants must be composed of 0 and | digits, octal constants can contain digits
intherange O - 7, while decimal constants contain decimal digits. Hexadecimal
constants contain decimal digits as well as hexadecimal digits A through H (corresponding
to the decimal numbers 10 through 15). Note, however, that the leading digit of a
hexadecimal constant must be a decimal digit in order to avoid confusing a hexadecimal
constant with an identifier (aleading O will always suffice). A constant composed in
this manner will produce a binary number which can be contained within a 16-bit
counter, truncated on the right by the assembler. Similar to identifiers, imbedded 11t
symbols are allowed within constants to improve their readability. Finally, the radix
indicator is translated to upper case if alower case letter is encountered. The

following are all valid instances of numeric constants:

1234 1234D 110013 1111$0000$1111$00008B
1234H OFFFEH 33770 33%77%$22Q
33770 Ofe3h 1234d Offffh

3.3. Reserved Words.

There are several reserved character sequences which have predefined meanings
in the operand field of a statement. The names of 8080 registers are given below
which, when encountered, produce the corresponding value.

symbol value symbol value
A 7 B 0
C 1 D 2
E 3 H 4
L 5 M 6
SP 6 PSW 6

Again, lower case names have the same values as their upper case equivaents. Machine
instructions can also be used in the operand field, and result in their internal codes.

In the case of instructions which require operands, where the specific operand becomes
apart of the binary bit pattern of the instruction (e.g., MOV A,B), the value of the
instruction is the bit pattern of the instruction with zeroes in the optional fields. For
example, the statement

LXI HMOV

assembles an LXI H instruction with an operand equal to 40H (which is the value of
the MOV instruction with zeroes as operands).

When the symbol "$" appears in the operand field (not imbedded within identifiers
and numbers), its value becomes the address of the beginning of the current instruction.
For example, the two statements

X: jmp X
and
imp$

both produce a jump instruction to the current location. As an exception, the
symbol at the beginning of alogical line can introduce assembly formatting instructions
(see "assembly parameters").

3.4. String Constants.

String constants represent sequences of graphic ASCII characters, and are

represented by enclosing the characters within apostrophe symbols (). All strings must
be fully contained within the current physical line, with the ", character within strings
treated as an ordinary string character. Each individual string must not exceed 64
charactersin length, otherwise an error is reported. The apostrophe character itself

can be included within a string by representing it as a double apostrophe (the two
keystrokes "), which become a single apostrophe when read by the assembler.

Note that particular operation codes may reguire that the string length be no longer
than one or two characters. The LXI instruction, for example, will accept a character
string operand of one or two characters, while the CPI instruction will accept only a
one character string. The DB instruction, however, allows strings of length zero
through 64 charactersin its list of operands. In the case of single character strings,
the value becomes the 8-bit Ascii code for the character (without case translation),
while two character strings produce a 16-bit value, with the second character as the
low order byte, and the first character as the high order byte. The string constant

'A' for example, is equivalent to 41H, while the two character string 'AB' produces the
16-bit value 4142H. The following strings are valid in various MAC statements:

|A| IABI |ab| |C| nn |§1ewd ||he”0|||

Thereis one specia case which must be considered inside string constants. As
discussed in later sections, the character "&" can be used to cause evaluation of dummy
arguments within macro expansions when they occur inside of string quotes. The exact
details of the substitution process will be given in the discussion of macro definition
and call statements.

3.5. Arithmetic, Logical, and Relational Operators.

The operands described above can be combined in normal algebraic notation

using any combination of properly formed operands, operators, and parenthesized
expression. The operators recognized by MAC in the operand field are given below.

In general, the letters aand b represent operands which are treated as 16-bit unsigned
guantities in the range 0-65535. All arithmetic operators (+, -, *, /, MOD, SHL, and
SHR) produce a 16-bit unsigned arithmetic result, the relational operators (EQ, LT, LE,
GT, GE, and NE) produce atrue (OFFFFH) or false (OOOOH) 16-bit result, and the
logical operators (NOT, AND, OR, and XOR) operate bit-by-bit on their operand(s)
producing a 16-bit result of 16 individua bit operations. The HIGH and LOW functions
alway produce a 16-hit result with a high order byte which is zero.

atb produces the arithmetic sum of aand b, +bisb

a-b produces the arithmetic difference between aand b, -b is 0-b
a*b is the unsigned magnitude multiplication of aby b

alb is the unsigned magnitude division of aby b

aMOD b isthe remainder after division of aby b

a SHL b produces a shifted left by b, with zero right fill

a SHR b produces a shifted right by b, with zero left fill

NOT b isthe bit-by-bit logical inverse of b

aEQ b produces true if aequals b, false otherwise

8
aLT b producestrueif aislessthan b, false otherwise
aLE b producestrueif aislessor equal to b, false otherwise
aGT b produces trueif ais greater than b, false otherwise
a GE b produces trueif ais greater or equal to b, false otherwise
aAND b produces the bitwise logical AND of aand b
a OR b produces the hitwise logical OR of aand b
aXOR b produces the logical exclusive OR of aand b
HIGH bisidentical to b SHR 8 (high order byte of b)
LOW bisidentica to b AND OFFH (low order byte of b)

In general, all computations are performed during the assembly process as 16-bit unsigned
operations, as described above. The resulting expression must fit the operation code
inwhich it is used. For example, the expression used in an ADI (add immediate)
instruction must fit into an 8-bit field, and thus the high order byte must be zero.

If the computed value does not fit the field, the assembler produces a value error for
that statement. As an exception to this rule, 8-bit values which would normally be
considered "negative" are allowed in 8-bit fields under the following conditions: if the
program attempts to fill an 8-bit field with a 16-bit value which has al I'sin the high
order byte, and the "sign bit" is set, then the high order byte is truncated and no

error is reported. This particular condition arises when a negative sign is placed in
front of a constant. The value -2, for example, is defined (and computed) as 0-2

which produces the 16-bit value OFFFEH, where the high order byte (OFFH) contains
extended sign bits which are al I's, while the low order byte (OFEH) has the sign bit
set. Thus, the following instructions do not produce value errorsin MAC:

ADI -1 ADI -1 ADI -127 ADI -128 ADI OFF80H
while the following instructions do produce value errors:
ADI 256 ADI 32768 ADI -129 ADI OFFOH

The specia operator NUL is used in conjunction with macro definition and
expansion operations, and must be the last operator in the operand field, preceding
only asingle operand. The use and effects of the NUL operator are delayed until the
discussion of macros.

Expressions can generally be formed from simple operands such as labels, humeric
constants, string constants, and machine operation codes, or fully enclosed parenthesized
expressions such as.

10+209, 10H+37Q, L1/3, (L2+4)SHR3, (a and 5fh) + 101
((1313) + B) OR (PSW + M), (2 + (2+C)) shr (A-(B + 1)), (HIGH A) SHR 3

where blanks and tabs are ignored between the operators and operands of the expression.
3.6. Precedence of Operators.
As a convenience to the programmer, MAC assumes that operators have a
relative precedence of application which allows expressions to be written without nested

levels of parentheses. The resulting expression has assumed parentheses which are
defined by this relative precedence. The order of application of operatorsin

9
unparenthesized expressions is listed below. Operators listed first have highest prece
dence, and are applied first in an unparenthesized expression. Operators listed last
have lowest precedence, and are applied last. Operators listed on the same line have
equal precedence, and are applied from left to right as they are encountered in an
expression:

MOD SHL SHR

EQLT LEGT GENE
NOT

AND

OR XOR

HIGH LOW

Thus, the expressions shown below are equivalent:

a* b+ cproduces(a* b) +c

a+b* cproducesa+ (b* c)

aMOD b * ¢ SHL d produces U MOD b) c) SHL D

aOR b AND NOT c + d SHL e producesaOR (b AND (NOT (c + (d SHL €))))

Balanced parenthesized subexpressions can always be used to override the assumed
parentheses, and thus the last expression above could be rewritten to force application
of operatorsin a different order as shown below:

(aORb) AND (NOT c) +dSHL e
resulting in the assumed parentheses:
(aOR b) AND (NOT c¢) + (d SHL €))

Note that an unparenthesized expression is well-formed only if the expression which
results from inserting the assumed parentheses is well-formed.

Asanotationa convenience, the following are equivalent:

LT
LE
EQ
NE
GE
GT

10
4. ASSEMBLER DIRECTIVES

Assembler directives are used to set labels to specific values during assembly,

perform conditional assembly, define storage areas, and specify starting addressesin
the program. Each assembler directive is denoted by a pseudo operation which appears
in the operation field of the statement. The acceptable pseudo operations are given
below.

ORG setsthe program or dataorigin

END terminatesthe physical program

EQU performs anumeric "equate"

SET performsanumeric "set" or assignment
IF begins conditional assembly

ELSE isanaternateto apreviousIF

ENDIF marks the end of conditional assembly
DB defines data bytes or strings of data
DW defines words of storage (double bytes)
DS reserves uninitialized storage areas
PAGE definesthe listing page size for output
TITLE enables pages titles and options

In addition to those listed above, there are several pseudo operations which are used

in conjunction with the macro processing facilities. Specifically, the MACRO, EXITM,
ENDM, REPT, IRPC, IRP, LOCAL, and MACLIB operations are reserved words, and
are fully described in separate sections which deal with macro processing. The
non-macro pseudo operations are detailed below.

4.1. The ORG Directive.
The ORG statement takes the form
label ORG expression

where "label" is an optional program label (i.e., an identifier followed by an optional

":"), and "expression” is a 16-bit expression consisting of operands which are defined
previous to the ORG statement. The assembler begins machine code generation at

the location specified in the expression. There can be any number of ORG statements
within a particular program, and there are no checks to ensure that the programmer

is not redefining overlapping memory areas. Note that most programs written for

CP/M begin with an 110RG 100H11 statement which causes machine code generation to
begin at the base of the CP/M transient program area.

If alabel is specified in the ORG statement, then the label takes on the value
given by the expression, which is the next machine code address to assemble. This
label can then be used in the operand field of other statements to represent this
expression.

11
4.2. The END Directive.

The END statement is optional in an assembly language program, but if present
it must be the last statement. All statements following the END are ignored. The
two forms of the END statement are:

label END

label END expression

where the label is optional. If the first form is used, the assembly process stops, and

the default starting address of the program is taken as 0000. Otherwise, the expression
is evaluated and becomes the program starting address. This starting address is included
in the last record of the Intel format machine code "hex" file which results from the
assembly. Thus most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H, which is the beginning of the transient
program area.

4.3. The EQU Directive.

The EQU (equate) statement is used to name synonyms for particular numeric
values. Theformis

label EQU expression

where the label must be present, and must not label any other statement. The
assembler evaluates the expression and assigns this value to the identifier given in the
label field. The identifier is usually a name which describes the value in amore
human-oriented manner. Further, this name can be used throughout the program as

a parameter for certain functions. Suppose, for example, that data received from a
Teletype appears on a particular input port, and data is sent to the Teletype through
the next output port in sequence. The series of equate statements that could be used

to define these ports for a particular hardware environment are shown below.

TTYBASE EQU 10H ;BASETTY PORT
TTYIN EQU TTYBASE ;TTY DATA IN
TTYOUT EQU TTYBASE+ ;TTY DATA OUT
At alater point in the program, the statements which access the Teletype could appear
as.
IN TTYIN ;READ TTY DATATOA
ouT TTYOUT 'WRITE DATA FROM A
making the program more readable than if the absolute 1/0 port addresses had been
used. If the hardware environment is later redefined to start the Teletype communica-
tions ports at 7FH instead of 10H, the first statement need only be changed to:
TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY
and the program can be reassembled without changing any other statements.
4.4. The SET Directive
The SET statement is similar to the EQU, taking the form

label SET expression

12
except that the label, taken as a variable name, can occur on other SET statements
within the program. The expression is evaluated and becomes the current value
associated with the label. Thus, unlike the EQU statement where alabel takeson a
single value throughout the program, the SET statement can be used to assign different
values to a name at different parts of the program. In particular, the SET statement
gives the label avalue which isvalid from the current SET statement to the point
where the label occurs on the next SET statement. The use of SET is similar to the
EQU, except that SET is used more often to control conditional assembly within macros.

4.5. ThelF, ELSE, and ENDIF Directives.

The IF, ELSE, and ENDIF directives define a range of assembly language
statements which are to be included or excluded during the assembly process. The IF
and ENDIF statements alone can be used to bound a group of statements to be
conditionally assembled, as shown below:

IF expression
statement#1
statement#2
Statement#n

ENDIF

Upon encountering the IF statement, the assembler evaluates the expression following
the IF (all operands in the expression must be defined ahead of the IF statement). If
the least significant bit of the expression is | then statement#1 through statement#n
are assembled. If the least significant bit of the expression is zero, then the statements
are listed but not assembled.

Conditional assembly is often used to write a single "generic" program which

includes a number of possible alternative subroutines or program segments, where only
afew of the possible alternatives are to be included in any given assembly. Figures
2aand 2b give an example of such a program. Assume that a console device (either
aTeletype or CRT) is connected to an 8080 microcomputer through 1/0 ports. Due

to the electronic environment, the "current loop™" Teletype is connected through ports
10H and 11H, while the 'IRS-2321' CRT is connected through ports 20H and 21H. The
program continually loops, reading and writing console characters. A single program
is shown which, when the condition is properly set, produces a program which operates
with either a Teletype (TTY is TRUE), or witha CRT (TTY is FALSE), but not both.
Figure 2a shows an assembly for the Teletype environment, while Figure 2b shows the
assembly for a CRT-based system. Note that the leftmost 16 columns are left blank

by the assembler when statements are skipped due to a false condition.

The EL SE statement can be used as an alternative to an |F statement, and must
occur between the IF and ENDIF statements. Theform is;

IF expression
statement#
statement#2

statement#n

13

CP/M MACRO ASSEM 2.0 #001
FFFF = TRUE EQU OFFFFH
0000 = FALSE EQU NOT TRUE
FFFF = TTY EQU TRUE
0010 = TTYBASE EQU 10H
0020 = CRTBASE EQU 20H
IF TTY
TITLE 'Teletype Echo Program'
0010 = CONIN EQU TTYBASE
0011 = CONOUT EQU TTYBASE+
ENDIF
IF NOT TTY
TITLE 'CRT Echo Program'
CONIN EQU CRTBASE
CONOUT EQU CRTBASEH
ENDIF
0000 D1310 ECHO: IN CONIN
0002 D311 OUT CONOUT
0004 C30000 jmp ECHO
0007 END

Figure 2a. Conditional Assembly with TTY "True."

Teletype Echo Program

;DEFINE "TRUE"
;DEFINE "FALSE"

;SET TTY ON

;BASE OF TTY PORTS
;RASE OF CRT PORTS
JASSEMBLE TTY PORTS

;CONSOLE INPUT
;CONSOLE OUT

;ASSEMBLE CRT PORTS
;CONSOLE IN
;CONSOLE OUT

;READ CONSOLE CHARACTER
JWRITE CONSOLE CHARACTER

14

CP/M MACRO ASSEM 2.0 #001 CRT Echo Program
FFFF = TRUE EQU OFFFFH ;DEFINE "TRUE"
0000 = FALSE EQU NOT TRUE ;DEFINE "FALSE"
0000 = TTY EQU FALSE ;SET CRT ON
0010 = TTYBASE EQU 10H ;BASE OF TTY PORTS
0020 = CRTBASE EQU 20H ;BASE OF CRT PORTS
IF TTY ;ASSEMBLE TTY PORTS
TITLE 'Teletype Echo Program'
CONIN EQU TTYBASE ;CONSOLE INPUT
CONOUT EQU TTYBASE+1 ;CONSOLEOUT
ENDIF
IF NOT TTY ;ASSEMBLE CRT PORTS
TITLE 'CRT Echo Program'
0020 = CONIN EQU CRTBASE ;CONSOLE IN
0021 = CONOUT EQU CRTBASE+1 ;CONSOLE OUT
ENDIF
0000 DB20 ECHO: IN CONIN ;READ CONSOLE CHARACTER
0002 D321 OUT CONOUT 'WRITE CONSOLE CHARACTER
0004 C30000 jmp ECHO
0007 END

Figure 2b. Conditional Assembly with TTY "False."

4.6.

15

ELSE
statement#n+
statement#n+2

statement#m
ENDIF

If the expression produces a non-zero (true) value, then statements | through n are
assembled, as before. In this case, however, statements n+l through m are skipped in

the assembly process. When the expression produces a zero value (false), statements

1 through n are skipped, while statements n+1 through m are assembled. As an example,
the conditional assembly shown in Figure 2 could be rewritten as shown in Figure 3a.

Properly balanced IF's, ELSE's, and ENDIF's can be completely contained within the
boundaries of outer encompassing conditional assembly groups. The structure outlined
below shows properly nested IF, ELSE, and ENDIF statements:

IF exp#
group#l

IF exp# 2
group#2

ELSE
group# 3

ENDIF
group#4

ELSE
group#5

IF exp#3
group#6

ENDIF
group#7

ENDIF

where group 1 through 7 are sequences of statements to be conditionally assembled,
and exp#l through exp#3 are expressions which control the conditional assembly. If
exp#l istrue, then group#l and group#4 are always assembled, and groups 5, 6, and
7 will be skipped. Further, if exp#l and exp#2 are both true, then group#2 will also
be included in the assembly, otherwise group#3 will be included. If exp# produces a
false value, groups 1, 2, 3, and 4 will be skipped, and groups 5 and 7 will always be
assembled. If under these circumstances, exp#3 is true then group#6 will also be
included with 5 and 7, otherwise it will be skipped in the assembly. A structure
similar to thisis shown in Figure 3b, where literal true/false values are used to show
conditional assembly selection.

Conditional assembly of this sort can be nested up to eight levels (i.e., there

can be up to eight pending IF's or EL SE's with unresolved ENDIF's at any point in the
assembly), but usually becomes unreadable after two or three levels of nesting. The
nesting level restriction also holds, however, for pending IF's and EL SE's during macro
evaluation. Nesting level overflow will produce an error during assembly.

The DB Directive.

The DB directive allows the programmer to define initialized storage areas in
single precision (byte) format. The statement form is

16

CP/M MACRO ASSEM 2.0 #001 CRT Echo Program
FFFF = TRUE EQU OFFFFH ;DEFINE "TRUE"
0000 = FALSE EQU NOT TRUE ;DEFINE "FALSE"
0000 = TTY EQU FALSE ;SET CRT ON
0010 = TTYBASE EQU 10H ;BASE OF TTY PORTS
0020 = CRTBASE EQU 20H ;BASE OF CRT PORTS
IF TTY ;ASSEMBLE TTY PORTS
TITLE 'Teletype Echo Program'
CONIN EQU TTYBASE ;CONSOLE INPUT
CONOUT EQU TTYBASE+1 ;CONSOLEOUT
ELSE ;ASSEMBLE CRT PORTS
TITLE 'CRT Echo Program'
0020 = CONIN EQU CRTBASE ;CONSOLE IN
0021 = CONOUT EQU CRTBASE+1 ;CONSOLEOUT
ENDIF
0000 DB20 ECHO: IN CONIN ;READ CONSOLE CHARACTER
0002 D321 OUT CONOUT 'WRITE CONSOLE CHARACTER
0004 C30000 jmp ECHO
0007 END

Figure 3a. Conditional Assembly Using "ELSE" for Alternate.

FFFF = TRUE EQU OFFFFH ;DEFINE "TRUE"
0000 = FALSE EQU NOT TRUE ;DEFINE "FALSE"
IF FALSE
MVI Al
IF TRUE
MVI A2
ELSE
MVI A3
ENDIF
MVI A4
ELSE
0000 3EOS MVI A5
IF TRUE
0002 3EO6 MVI A6
ELSE
MVI A7
ENDIF
0004 3EO8 MVI A8
ENDIF
0006 END

Figure 3b. Sample Program using Nested IF, ELSE, and ENDIF

17
label DB effl, ef#2, . . ., efin

where the label is optional, and e#l through e#n are either expressions which produce
8-hit values (the high order eight bits are zero, or the high order nine sign bits are
one's), or are ASCI| strings of length no greater than 64 characters each. Thereis

no practical restriction on the number of expressionsincluded on a single source line.
The expressions are evaluated and pal ced sequentially into the machine code following
the last program address generated by the assembler. String characters are similarly
placed into memory starting with the first character and ending with the last character.
Strings of length greater than two characters cannot be used as operandsin more
complicated expressions (i.e., they must stand al one between the commas). Note that
ASCII characters are dways placed in memory with the high order (parity) bit reset

to zero. Further, recall that there is no translation from lower to upper case within
strings. The optional label can be used to reference the data area throughout the
program. Examples of valid DB statements are:

dataa DB 0,1,2345,6

DB data and Offh, 59377Q, 1+2+3+4
signon: DB 'please type your name:’,cr,If,O

DB 'AB' SHR 8, 'c’, 'DE' AND 7FH

DB HIGH data, LOW (signon GT data)

4.7. The DW Directive.

The DW statement is similar to the DB statement except double precision (two
byte) words of storage are initialized. The form is:

label DW €fl, e#2, . . ., efin

where the label is optional, and el through e#n are expressions which produce 16-bit
values. Note that Ascii strings of length one or two characters are allowed, but
strings longer than two characters are disallowed. In all cases, the data storage is
consistent with the 8080 processor: the least significant byte of the expression is
stored first in memory, followed by the most significant byte. The following DW
statements are examples of properly formed statements:

doub: DW Offefh, doub+4,signon-$,255+255
DW 'a, 5,'AB', 'CD’, doub LT signon

18
4.8. The DS Directive.

The DS statement is used to reserve an area of uninitialized memory, and takes
the form:

label DS expression
where the label is optional. The assembler begins subsequent code generation after

the areareserved by the DS. Thus, the DS statement given above has exactly the
same effect as the statement sequence:

label: EQU $;CURRENT CODE LOC
ORG $+expression ;MOVE PAST AREA

4.9. The PAGE and TITLE Directives.

The PAGE and TITLE pseudo operations give the programmer control over the
output formatting which is sent to the PRN file (or directly to the printer device).
The forms for the PAGE statement are:

PAGE
and
PAGE expression

19

If the PAGE statement stands alone, as in the first case above, the output pageis
gjected to the top of form (i.e., an ASCII control-L (form feed) is sent to the output
file). The form feed is sent after the statement with PAGE has been printed, thus
the PAGE command is often issued directly ahead of major sections of an assembly
language program, such as a group of subroutines, to cause the next statement to
appear at the top of the following printer page.

The second form of the PAGE command is used to specify the output page size.

In this case, the expression which follows the PAGE pseudo operation determines the
number of output lines to be printed on each page. If the expression is zero, there

are no page breaks, and the print file is simply a continuous sequence of annotated
output lines. If the expression is non-zero, then the page size is set to the value of

the expression, and form feeds are issued to cause page gects when this count is
reached for each page. The assembler initially assumes that

PAGE 56

isin effect, thus producing a page ject at the beginning of the listing, and at each
56 line increment.

The TITLE directive takes the form:
TITLE string-constant

where the string-constant is an ASCII string, enclosed in apostrophes, which does not
exceed 64 charactersin length. If a TITLE pseudo operation is given during the
assembly, each page of thelisting file is prefixed with the title line, preceded by a
standard MAC header. The title line thus appears as.

CP/IM MACRO ASSEM n.n #ppp string-constant

where n.n is the MAC version number, ppp is the page number in the listing, and
string-constant is the string given in the TITLE pseudo operation. MAC initially
assumes that the TITLE operation is hot in effect. When specified, the title line,
along with the blank line which follows the title, are not included in the line count
for the page. Normally, no more than one TITLE statement isincluded in a particul ar
program. Similarly, no more than one PAGE statement with the expression option is
normally included.

20

If aTITLE statement isincluded, and the symbol table is being appended to

the PRN file (see "assembly parameters"), then the SYM file also contains the specified
title at the beginning of the symbol listing, with page breaks given by either the

default or specified value of the PAGE statement.

4.10 A Sample Program using Pseudo Operations.

Figure 4 demonstrates the various pseudo operations availablein MAC. The

sample program, called "typer" isintended to operate in the CP/M environment by
performing the simple function of selecting one of three messages for output at the
console. This program is created using the ED program, then assembled using MAC,
and then placed into ".COM" file format using the CP/M LOAD function. Given that
these steps have been accomplished, typer is executed at the console command processor
level of CP/M by typing one of the commands:

typer a
typer b
typer c

to select message A, B, or C for printing. The typer program loads under the CCP,
and jumps to the label START where the 8080 stack isinitialized. The typer program
then printsits 11signon” message, which would appear as.

'typer' version 1.0

The program then retrieves the first character typed at the console following the

command 11typer" which should be one of the letters A, B, or C. If one of these

lettersis not specified, then typer "reboots' the CP/M system to give control back

to the CCP. If avalid letter is provided, typer selects one of the three messages

(MESS@A, MESS@B, or MESS@C) and printsit at the console before returning to CP/M.

Note that the TITLE and PAGE statements are used to produce atitle at the

beginning of each page (form feeds were necessarily suppressed here), with a page size
of 20 lines, excluding thetitle lines. A number of EQU statements are used at the
beginning to improve readability of the program. Note that the exclaim symbol 0) is
used throughout the program to allow several simple assembly language statements on
the same line. Although multiple statements make the program more compact, they
often decrease the overall readability of the source program. Note also that the
program terminates without the END statement, which is only necessary if a starting
address is specified. The END statement is often included, however, to maintain
compatibility with other assemblers.

The DB statements labelled by SIGNON contain simple strings of characters, as

well as expressions which produce single byte values. The DW statement following
TABLE defines the base address of each string (corresponding to A, B, and C). Finally,
the DS statement at the end of the program reserves space for the stack defined

within the typer program.

21

CP/M MACRO ASSEM 2.0 #001 Typer Program
TITLE 'Typer Program'
PAGE 33

;PRINT THE MESSAGE SELECTED BY THE INPUT COMMAND A,B, OR C
000A = VERS EQU 10 ;VERSION NUMBER N.N
0000 = BOOT EQU 0O000H ;REBOOT ENTRY POINT
0005 = BDOS EQU 0005H ;BDOS ENTRY POINT
005C = TFCB EQU 005CH ;DEFAULT FILE CONTROL BLOCK (GET

A,B,ORC)
0002 = WCHAR EQU 2 'WRITE CHARACTER FUNCTION
000D = CR EQU ODH ;CARRIAGE RETURN CHARACTER
000A = LF EQU OAH ;LINE FEED CHARACTER
0010 = STKSIZEQU 16 ;SIZE OF LOCAL STACK (IN DOUBLE
BYTES)

0100 ORG 100H ;ORIGIN AT BASE OF TPA
0100 C31201 jmp START ;JJUMP PAST THE MESSAGE SUBROUTINE

WMESSAGE:

JWRITE THE STRING AT THE ADDRESS GIVEN BY HL UNTIL 00
0103 7EB7CS8 MOV A,M! ORA A! Rz ;RETURN IF AT 00
0106 5FOE02E5 MOV EA! MVI CWCHAR! PUSH H ;READY TO PRINT
010A CDO500E1 CALL BDOS! POPH ;CHARACTER PRINTED, GET NEXT
010E 23C30301 INX H! IMP WMESSAGE

;ENTER HERE FROM THE CCP, RESET TO LOCAL STACK
0112 31C101 LXI SP,STACK ;SET TO LOCAL STACK
0115 213701 LXI H,SIGNON 'WRITE THE MESSAGE
0118 CD0301 CALL WMESSAGE ;TYPER VERSION N.N
011B 3A5D00 LDA TFCB+ ;GET FIRST CHAR TYPED AFTER NAME
011E D641 SuUI '‘A? ;NORMALIZETO0,1,2
0120 FEO3 CPl TABLEN ;COMPARE WITH THE TABLE LENGTH
0122 D20000 JNC BOOT ;REBOOT IF NOT VALID

;COMPUTE INDEX INTO ADDRESS TABLE BASED ON A'SVALUE

Figure 4. 11 Typerll Program Listing (Part A).

CP/M MACRO ASSEM 2.0 #002
0125 5F MOV EA
0126 1600 MVl D,0
0128 214D01 LXI HJABLE
012B 19 DAD D
012C 19 DAD D
012D 5E MOV EM
012E 23 INX H
012F 56 MOV DM
0130 EB XCHG
0131 CD0301 CALL WMESSAGE
0134 C30000 jmp BOOT
;DATA AREAS
SIGNON:
0137 2774797065 DB "typer" version'
0147 312E30 DB
014A ODOAQO DB CRLF, O
TABLE:
014D 5301670182 DW
0003 TABLEN EQU
0153 7468697320 MESS@A: DB
0167 796F752073 MESS@B: DB
0182 7468697320 MESS@C: DB
OlAl DS STKSIZ*2

STACK:

22

Typer Program

;LOW ORDER INDEX

;EXTENDED TO DOUBLE PRECISION
;BASE OF THE TABLE TO INDEX
;SINGLE PRECISION INDEX
;DOUBLE PRECISION INDEX

;LOW ORDERBYTETOE

;HIGH ORDER MESSAGE ADDRESS TO DE
;READY FOR PRINTOUT

'MESSAGE WRITTEN To CONSOLE
;REBOQOT, GO BACK TO CCP LEVEL

VERS/10+'0, "', VERSMOD 10 + '0'

;END OF MESSAGE

;OF MESSAGE BASE ADDRESSES

MESS@A , MESS@B,MESS@C

($TABLE)/2 ;LENGTH OF TABLE
'thisis message a,CR,LF,O

'you selected b thistime',CR,LF,O

'this message comes out for ¢',CR,LF,O
;RESERVES AREA FOR STACK

Figure 4. "Typer" Program Lisitng (Part B).

23
5. OPERATION CODES

operation codes, found in the operation field of the statement, form the principal
components of assembly language programs. In general, MAC accepts all the standard
mnemonics for the Intel 8080 microcomputer, which are given in detail in the Intel
manual "8080 Assembly language Programming Manual." Labels are optional on each
input line and, if included, take the value of the instruction address immediately before
the instruction is issued by the assembler. The individual operators are listed briefly

in the following sections in order to be complete, although it is understood that the
Intel documents should be referenced for exact operator details. In the discussion
which follows, the operation codes are placed into categories for discussion purposes,
followed by a sample assembly which shows the hexadecimal codes produced for each
operation. The following notation is used throughout the discussion:

€3 represents a 3-bit value in the range 0-7, which usually
takes one of the predefined register values A, B, C, D,
H, L, M, SP, or PSW.

€8 represents an 8-bit value in the range 0-255 (recall
that signed 8-bit values are also alowed in the range
-128 through +127)

el6 represents a 16-bit value in the range 0-65535

where €3, €8, and €16 can themselves be formed from an arbitrary combination of
operands and operators in awell-formed expression. In some cases, the operands are
restricted to particular values within the range, such asthe PUSH instruction. These
cases will be noted as they are encountered.

5.1. Jumps, Calls, and Returns.

The jump, call and return instructions alow several different forms, as shown
in Figure 5. In some cases, the condition flags are tested to determine whether or
not the jJump, call, or return is to be taken. The forms are shown below.

JMP el6 JINZ el6 JZ el6
JINC €16 JC el6 JPO el6
JPE el6 JP el6 M el6

The call instructions are;

CALL el6 CNZ €16 CZ el6
CNC el6 CCel6 CPO el6
CPE €16 CPel6 CM el6

The return instructions are:

RET RNZ RZ
RNC RC RPO
RPE RP RM

The restart instruction takes the form:

24

CP/M MACRO ASSEM 2.0 #001 8080 JUMPS, CALLS, AND RETURNS
TITLE '8080 JUMPS, CALLS, AND RETURNS

JJUMPS ALL REQUIRE A 16 BIT OPERAND

0000 C31B00 JMP LI JJUMP UNCONDITIONALLY TO LABEL
0003 C25C00 INZ L1+'Al ;JUMP ON NON ZERO TO LABEL

0006 CA0001 N4 100H ; JUMP ON ZERO CONDITION TO LABEL
0009 D21F00 JNC L1+ ;JJUMP ON NO CARRY TO LABEL

000C DA4142 JC '‘ABI ;JJUMP ON CARRY TO LABEL

000F E21700 JFO $+8 ;JUMP ON PARITY ODD TO LABEL

0012 EAODOO JPE L1/2 JJUMP ON EVEN PARITY TO LABEL
0015 F24100 JP GAMMA ;JJUMP ON POSITIVE RESULT TO LABEL
0018 FAIBOO M LOW LI JJUMP ON MINUSTO LABEL

LI:

;CALL OPERATIONS ALL REQUIRE A 16-BIT OPERAND

001B CD3600 CALL $1 :CALL SUBROUTINE UNCONDITIONALLY
001E C43800 CNZ S1+X :CALL SUBROUTINE IF NON ZERO FLAG
0021 CC0001 cz 100H :CALL SUBROUTINE IF ZERO FLAG
0024 D43A00 CNC S1+4 :CALL SUBROUTINE IF NO CARRY FLAG
0027 DC0000 cC S1MOD 3 :CALL SUBROUTINE IF CARRY FLAG
002A E43200 CPO $+8 :CALL SUBROUTINE IF PARITY ODD
002D EC0900 CPE S1-$:CALL SUBROUTINE IF PARITY EVEN
0030 F44100 CP GAMMA :CALL SUBROUTINE IF POSITIVE
0033 FC4100 CM GAM$SMA :CALL SUBROUTINE IF MINUS FLAG

SK

;PROGRAMMED RESTART (RST) REQUIRES 3-BIT OPERAND
(RST X ISEQUIVALENT TO CALL X*8)

0036 C7 RST O ;"RESTART" TO LOCATION 0
0037 DF RST X+1

;RETURN INSTRUCTIONS HAVE NO OPERAND
0038 C9 RET ;RETURN FROM SUBROUTINE
0039 CO RNZ ;RETURN IF NON ZERO
003A C8 Rz ;RETURN IF ZERO FLAG SET
003B DO RNC ;RETURN IF NO CARRY FLAG
003C D8 RC ;RETURN IF CARRY FLAG SET
003D EO RPO ;RETURN IF PARITY ISODD
OO3E E8 RPE ;RETURN IF PARITY ISEVEN
003F FO RP ;RETURN IF POSITIVE RESULT
0040 F8 RM ;RETURN IF MINUSFLAG SET
0002 X EQU 2

GAMMA:
0041 END

Figure 5. Assembly showing Jumps, Calls, Returns, and Restarts.

25
RST e3

and performs exactly the same function as the instruction "CALL e3*8" except that
it requires only one byte of memory for the instruction.

Figure 5 shows the hexadecimal codes for each instruction, along with a short
comment on each line which describes the function of the instruction.

5.2. Immediate Operand Instructions.

Several instructions are available which load single or double precision registers

or single precision memory cells with constant values, along with instructions which
perform immediate arithmetic or logical operations on the accumulator (register A).
The "move immediate” instruction takes the form:

MVI e3,e8

where €3 is the register to receive the data given by the value €8. The expression
€3 must produces a value corresponding to one of theregisters A, B, C, D, E, H, L,
or the memory location M which is addressed by the HL register pair.

The "accumulator immediate” operations take the form:

ADI €8 ACI €8 SUI e8 SBI €8
ANI e8 XRI e8 ORI e8 CPI €8

where the operation in always performed upon the accumulator using the immediate
data value given by the expression €8.

The "load extended immediate” instructions take the form:

LXI e3,6l6
where €3 designates the register pair to receive the double precision value given by
€l6. The expression €3 must produce a value corresponding to one of the double

precision register pairs B, D, H, or SP.

Figure 6 shows the use of the accumulator immediate operations in an assembly
language program, along with a short comment describing the use of each instruction.

5.3. Increment and Decrement Instructions.
Instructions are provided in the 8080 repetoire for incrementing or decrementing
single and double precision registers. The instruction forms for single precision registers
are:
INR €3 DCR €3
where €3 produces a va ue corresponding to one of theregisters A, B, C, D, H, L, or

M (corresponding to the byte value at the memory location addressed by HL). The
double precision instructions are;

26

CP/M MACRO ASSEM 2.0 #0001 IMMEDIATE OPERAND
INSTRUCTIONS

TITLE 'MMEDIATE OPERAND INSTRUCTIONS
;MV1 USES A REGISTER MIT) OPERAND AND 8-BIT DATA

0000 06FF MVI B,255 :MOVE IMMEDIATE A,B,C,D,EH,L,M
:ALL REMAINING IMMEDIATE OPERATIONS USE A REGISTER
0002 C601 ADI 1 :ADD IMMEDIATE TO A W/O CARRY
0004 CEFF ACI OFFH :ADD IMMEDIATE TO A WITH CARRY
0006 D613 SuUl L1+3 :SUBTRACT FROM A W/O BORROW
(CARRY)
0008 DE10 SBI LOW LI :SUBTRACT FROM A WITH BORROW
(CARRY)
000A E602 ANI $AND 7 :LOGICAL "AND" WITH IMMEDIATE DATA
000C EE3C XRI 1111$00B :LOGICAL "XOR" WITH IMMEDIATE DATA
000E F6FD ORI -3 :LOGICAL "OR" WITH IMMEDIATE DATA
LI:
0010 END

Figure 6. Assembly using Immediate Operand Instructions.

27
CP/M MACRO ASSEM 2.0 #001 INCREMENT AND DECREMENT
INSTRUCTIONS
TITLE 'INCREMENT AND DECREMENT INSTRUCTIONS

;INSTRUCTIONS REQUIRE REGISTER (3-BIT) OPERAND

0000 1C INR E ;BYTE INCREMENT A,B,C,D,EH,L,M
0001 3D DCR A ;BYTE DECREMENT A,B,C,D,EH,L M
0002 33 INX SP ;16-BIT INCREMENT B,D,H,SP

0003 0B DCX B ;16-BIT DECREMENT B,D,H,SP

0004 END

Figure 7. Assembly containing Increment and Decrement Instructions.
INX €3 DCX €3

where €3 must be equivalent to one of the double precision register pairs B, D, H, or SP.
Figure 7 shows a sample assembly language program which uses both single and
double precision increment and decrement operations.

5.4. Data Movement Instructions.

A number of 8080 instructions are placed in this category which move data
from memory to the CPU and from the CPU to memory. A number of register to
register move operations are also included. The single precision "move register”
instruction takes the form:

MOV €3,e31

where €3 and e3l are expressions which each produce one of the single precision
registersA, B, C, D, E, H, L, or M (corresponding to the memory location addressed
by HL). In all cases, the register named by €3 receives the 8-bit value given by the
register expression €3l. The instruction is often read as "move to register 3 from
register €3". The instruction "MOV B,H" would thus be read as "moveto register B
from register H". Note that the instruction MOV M,M is not allowed.

The single precision load and store extended operations take the form:

LDAX €3 STAX €3
where 3 is aregister expression which must produce one of the double precision
register pairs B or D. The 8-bit value in register A is either loaded (LDAX) or stored
(STAX) from/to the memory location addressed by the specified register pair.

The load and store direct instructions operate either upon the A register for

single precision operations, or upon the HL register pair for double precision operations,
and take the forms:

LHLD €6 SHLD €16 LDA el6 STA €16

where €16 is an expression produces the memory address to obtain (LHLD, LDA) or
store (SHLD, STA) the data value.

The stack pop and push instructions perform double precision load and store
operations, with the 8080 stack as the implied memory address. The forms are:

POP €3 PUSH €3
where €3 must evaluate to one of the double precision register pairs PSW, B, D, or H.
The input and output instructions are also found in this category, even though
they receive and send their data to the electronic environment which is external to

the 8080 processor. The input instruction reads data to the A register, while the
output instruction sends data from the A register. In both cases, the data port is

28

CP/M MACRO ASSEM 2.0 #001 DATA/MEMORY/REGISTER MOVE
OPERATIONS

TITLE 'DATA/MEMORY/REGISTER MOVE OPERATIONS
;THE MOV INSTRUCTION REQUIRES TWO REGISTER OPERANDS
;(3-BITS) SELECTED FROM A,B,C,D,E,H, ORM (M,M INVALID)

0000 78 MOV A,13 ;MOVE DATA TO FIRST REGISTER FROM
SECOND

;LOAD/STORE EXTENDED REQUIRE REGISTER PAIR B OR D

0001 A LDAX B ;LOAD ACCUM FROM ADDRESS GIVEN BY

BC
0002 12 STAX D ;STORE ACCUM TO ADDRESS GIVEN BY DE
LOAD/STORE DIRECT REQUIRE MEMORY ADDRESS

0003 2A 1900 LHLD D1 ;LOAD HL DIRECTLY FROM ADDRESS DI

0006 221B00 SHLD D1+2 ;STORE HL DIRECTLY TO ADDRESS D1+2

0009 3A1900 LDA DI ;LOAD THE ACCUMULATOR FROM D1

000C 326400 STA D1SHL?2 ;STORE THE ACCUMULATOR TO D1 SHL 2
;PUSH AND POP REQUIRE PSW OR REGISTER PAIR FROM B,D,H

0O0OF H POP PSW ;LOAD REGISTER PAIR FROM STACK

0010 C5 PUSH B ;STORE REGISTER PAIR TO THE STACK
;INPUT/OUTPUT INSTRUCTIONS REQUIRE 8-BIT PORT NUMBER

0011 D1306 IN X+2 ;READ DATA FROM PORT NUMBER TO A

0013 D3FE OuUT OFEH JWRITE DATA TO THE SPECIFIED PORT
;MISCELLANEOUS REGISTER MOVE OPERATIONS

0015 E3 XTHL ;EXCHANGE TOP OF STACK WITH HL

0016 E9 PCHL ;PC RECEIVES THE HL VALUE

0017 F9 SPHL ;SP RECEIVES THE HL VALUE

0018 EB XCHG ;EXCHANGE DE AND HL
;END OF INSTRUCTION LIST

0019 D1: DS 2 ;DOUBLE WORD TEMPORARY

001B DS 2 ;/ANOTHER TEMPORARY

0004 X EQU 4 ;LITERAL VALUE

0011 END

Figure 8. Assembly Using Various Register/Memory Moves.

given by the data value which follows the instruction:

IN €8

OUT €8

Various instructions are a part of the instruction set which transfer double
precision values between registers and the stack. These instructions are;

XTHL

PCHL SPHL XCHG

Figure 8 lists these instructions in an assembly language program, along with a short
comment on the use of each instruction.

29
5.5. Arithmetic Logic Unit Operations.

A number of instructions are included in the 8080 set which operate between
the accumulator and single precision registers, including operations upon the A register
and carry flag. The accumlator/register instructions are;

ADD €3 ADC €3 SUB €3 SBB €3
ANA €3 XRA e3 ORA €3 CMPe3

where €3 produces a value corresponding to one of the single precision registers A,
BI C9D, E, H, L, or M, wherethe M "register" is the memory location addressed by
the HL register pair.

The accu m ulator /carry operations given below operate upon the A register, or
carry bit, or both.

DAA CMA STC CMC
RLC RRC RAL RAR

The actual function of each instruction is listed in the comment line shown in Figure
0.

The last instruction of this group is the double precision add instruction which
performs a 16-bit addition of aregister pair (B, D, H, or SP) into the 16-bit valuein
the HL register pair, producing the 16-bit (unsigned) sum of the two values which is
placed into the HL register pair. The formis:

DAD €3

5.6. Control Instructions.

The four remaining instructions in the 8080 set are categorized as control
instructions, and take the forms:

HLT DI El NOP

and are used to stop the processor (HLT), enable the interrupt system (EI), disable the
interrupt system (DI), or perform a "no-operation” (NOP).

30

CP/M MACRO ASSEM 2.0 #0001 ARITHMETIC LOGIC UNIT OPERATIONS

0000 80
0001 8D
0002 94
0003 99
0004 Al
0005 AF
0006 BO
0007 BC

0008 09

0009 27

LAST OP

000A 2F

REGISTER

cY

000B 37
000C 3F
000D 07
0OOE OF

00OF 17
0010 1F
0011

TITLE 'ARITHMETIC LOGIC UNIT OPERATIONS

;ASSUME OPERATION WITH ACCUMULATOR AND REGISTER,
s WHICH MUST PRODUCEA, B,C,D, E,H, L, ORM

ADD B ;ADD REGISTER TO A W/O CARRY

ADC L ;ADD TO A WITH CARRY INCLUDED

SuB H ;SUBTRACT FROM A W/O BORROW

SBB B+ ; SUBTRACT FROM A WITH BORROW

ANA C ;LOGICAL "AND" WITH REGISTER

XRA A ;LOGICAL "XOR" WITH REGISTER

ORA B ;LOGICAL "OR" WITH REGISTER

CMP H ;COMPARE REGISTER, SETSFLAGS
;DOUBLE ADD CHANGESHL PAIR ONLY

DAD B ;DOUBLE ADD B,D,H,SPTO HL
;REMAINING OPERATIONS HAVE NO OPERANDS

DAA ;DECIMAL ADJUST REGISTER A USING

CMA ;COMPLEMENT THE BITSOF THE A

STC ;SET THE CARRY FLAGTO|

CMC ;COMPLEMENT THE CARRY FLAG

RLC ;8-BIT ACCUM ROTATE LEFT, AFFECTS CY

RRC ;8-BIT ACCUM ROTATE RIGHT, AFFECTS

RAL ;9-BIT CY/ACCUM ROTATE LEFT

RAR ;9-BIT CY/ACCUM ROTATE RIGHT

END

Figure 9. Assembly Showing ALU Operations.

31
6. AN INTRODUCTION TO MACRO FACILITIES

The fundamental difference between the Digital Research "ASM" and "MAC"
assemblersisthat ASM provides only the fundamental facilities for assembling 8080
operation codes, while MAC includes a powerful macro processing facility. In particular,
MAC implements the industry standard Intel macro definition, which includes the
following pseudo operations.

MACRO definitions allow groups of instructions to be stored and substituted in

the source program, as the macro names are encountered. Definitions and invocations
(macro "calls") can be nested, symbols can be constructed through concatenation (using
the special "&" operator), and locally defined symbols can be created (using the LOCAL
pseudo operation). Macro parameters can be formed to pass arbitrary strings of text

to a specific macro for substitution during expansion. In addition, the MACLIB (macro
library) feature allows the programmer to define a particular set of macros, equates,

and sets for automatic inclusion in a program. A macro library can contain an
instruction set for another central processor, for example, which is not directly supported
by the MAC built-in mnemonics. The macro library may aso include general purpose
input/output macros which are used in various programs which operate in the CP/M
environment to perform peripheral or diskette 1/0 functions.

IRPC, IRP, and REPT pseudo operations provide repetition of source statements
under control of a count or list of characters or items to be substituted each time

the statements are re-read by the assembler. Thisfeatureis particularly useful in
generating groups of assembly language statements with similar structure, such asa
set of file control blocks where only the file type is changed in each statement.

In order to illustrate the power of amacro facility, consider the macro library

shown in Figure 10, which is assumed to reside in a diskette file called 'IMSGLIB.LIB."
This macro library contains macro definitions which have standard instruction sequences
for program startup, message typeout, and program termination. The program shown

in Figure 11 provides an example of the use of this macro library. The assembly

shown in Figure 11 lists both the macro calls and the statements in the macro expansions
which generate machine code. The statements which are marked by '+1 in Figure 11

are generated from the macro calls, while the remaining statements are a part of the
calling program.

As an introduction to MAC features, the macro invocation

ENTCCP 10
in Figure 11 shows a specific expansion of ENTCCP (enter from CCP) which is defined
in the macro library given in Figure 10. The macro call causes MAC to retrieve the
definition (i.e., the text between MACRO and ENDM in Figure 10) and substitute this
text following the macro call in Figure 11. This particular macro performs the following
function: upon entry to the program from the CCP, the stack pointer (SP) is saved
into avariable called "@ENTSP" for later retrieval. The stack pointer is then reset
to alocal areafor the remainder of the program execution. The size of the local
stack is defined by the macro parameter which is named in the macro definition as
SSIZE (see Figure 10), and filled-in at the call with the value 10. The result is that
the ENTCCP macro reserves space for alocal stack of SSIZE=10 double bytes (2*10
bytes) and, after setting up the stack, branches around this reserved area to continue
the program execution.

;SIMPLE MACRO LIBRARY FOR MESSAGE TYPEOUT

REBOOT EOU 0000H ;WARM START ENTRY POINT

TPA EQU 0100H ;TRANSIENT PROGRAM AREA

BDOS EOU 0005H ;SYSTEM ENTRY POINT

TYPE EOU 2 sWRITE CONSOLE CHARACTER FUNCTION
CR EOCU ODH ;CARRIAGE RETURN

LF EQU 0OAH ;LINE FEED

THE CONSOLE

32
;MACRO DEFINITIONS
CHROUT MACRO
MVl CTYPE
CALL BDOS
ENDM
TYPEOUT MACRO
LOCAL PASTSUB
JMP PASTSUB
MSGOUT:

MESSAGE STARTING AT HL 'TIL 00

PRINT

STACK LOCS

MOV EM
MOV AE
ORA A
RZ

INX H

PUSH H
CHROUT

POP H

JMP MSGOUT
PASTSUB:

JWRITE A CONSOLE CHARACTER FROM REGISTER

" TYPE FUNCTION
' ENTER THE BDOS TO WRITE THE CHARACTER

MESSAGE :TYPE THE LITERAL MESSAGE AT
;.JJUMP PAST SUBROUTINE INITIALLY

mTHIS SUBROUTINE ISUSED TO PRINT THE
NEXT CHARACTERTOE

;;TOACCUM TO TEST FOR 00

;=007

'RETURN IF END OF MESSAGE

;:OTHERWISE MOVE TO NEXT CHARACTER AND
:SAVE MESSAGE ADDRESS

;" RECALL MESSAGE ADDRESS
;;FOR ANOTHER CHARACTER

;REDEFINE THE TYPEOUT MACRO AFTER THE FIRST INVOCATION

TYPEOUT
LOCAL TYMSG
LOCAL PASTM
LXI HTYMSG
CALL MSGOUT
JMP PASTM

MACRO

7TMESSAGE
;" LABEL THE LOCAL MESSAGE

;;ADDRESS THE LITERAL MESSAGE
;;CALL THE PREVIOUSLY DEFINED SUBROUTINE

;INCLUDE THE LITERAL MESSAGE AT THISPOINT

TYMSG: DB

' FROM CONSOLE: & 7””MESSAGE',CR,LF,0O

JARRIVE HERE TO CONTINUE THE MAINLINE CODE

PASTM:
TYPEOUT
ENDM

ENDM

ENTCCP MACRO

LOCAL START
LXI HL,0
DAD SP
SHLD @ENTSP
LXI SP,@STACK
jmp START
IF NUL SSIZE
DS 32
ELSE
DS 2*SSIZE
ENDIF
@STACK:
@ENTSP: DS 2
START: ENDM

RETCCP MACRO
LHLD @ENTSP

SPHL

RET

ENDM

<?MESSAGE>

SSIZE

;ENTER PROGRAM FROM CCP, RESERVE 2*SSIZE
;" AROUND THE STACK
;»SPVALUE IN HL

;ENTRY SP
SET TO LOCAL STACK

" DEFAULT 16 LEVEL STACK

;;LOW END OF STACK
;ENTRY SP

;RETURN TO CONSOLE PROCESSOR
;' RELOAD CCP STACK

;; BACK TO THE CCP

33

CP/M MACRO ASSEM 2.0 #001 SAMPLE MESSAGE OUTPUT MACRO
ABORT MACRO ;ABORT THE PROGRAM
JMP REBOOT
ENDM
END ;OF MACRO LIBRARY

Figure 10. A Sample Macro Library.

TITLE SAMPLE MESSAGE OUTPUT MACRO'
MACLIB MSGLIB ;INCLUDE THE MACRO LIBRARY
0100 ORG TPA ;ORIGIN AT THE TRANSIENT AREA
;USE THE MACRO LIBRARY TO TYPE TWO MESSAGES
ENTCCP 10 ;ENTER PROGRAM, RESERVE 10 LEVEL
STACK
0100+210000 LXI H,0
0103+39 DAD SP
0104+222101 SHLD @ENTSP
0107+312101 LXI SP,@STACK
010A+C32301 JMP 720001
010D+ DS 2*10
0121+ @ENTSP: DS 2
TYPEOUT <THIS IS THE FIRST MESSAGE>
0123+C33401 JMP 720002
0126+5E MOV EM
0127+B7 ORA A
0128+C8 RZ
0129+23 INX H
012A+E5 PUSH H
012B+0E02 MVl CTYPE
012D+CD0500 CALL BDOS
0130+El POP H
0131+C32601 JMP MSGOUT
0134+213D0QlI LXI H,?7?20003
0137+CD2601 CALL MSGOUT
013A+C36701 JMP 720004
013D+46524F4D20720003: DB 'FROM CONSOLE: THISIS THE FIRST

MESSAGE',CR,LF,0O
TYPEOUT <THIS IS THE SECOND MESSAGE>

0167+217001 LXI H,?7?20005

016A+CD2601 CALL MSGOUT

016D+C39801 JMP 720006

0170+46524FAD20720005: DB 'FROM CONSOLE: THIS IS THE SECOND

MESSAGE',CR,LF,0O
TYPEOUT <THISISTHE THIRD MESSAGE>

019B+21A401 LXI H,?720007

019E+CD2601 CALL MSGOUT

01A1+C3CEO1 JMP 720008

01A4+46524F4D20720007: DB 'FROM CONSOLE: THISISTHE THIRD
MESSAGE',CR,LF,0O

RETCCP ;RETURN TO THE CONSOLE COMMAND

PROCESSOR

01CE+2A2101 LHLD @ENTSP

01DI+F9 SPHL

01D2+C9 RET

0ID3 END

Figure 11. A Sample Assembly using the MACLIB Facility.

34

Consider also the special macro statements which are used in Figure 10 within

the body of the ENTCCP macro. The "local" statement defines the label START which
is used within the macro body. Generally, each LOCAL statement causes the macro
assembler to construct a unique symbol (starting with "??") each time it is encountered.
Thus, multiple macro calls reference unique labels which do not interfere with one
another. To continue the example, ENTCCP also contains a conditional assembly
statement which uses the "NUL" operator, which is used to test whether a macro
parameter has been supplied or not. In this case, the ENTCCP macro could be invoked

by:
ENTCCP

with no actual parameter, resulting in a default stack size of 32 bytes. If this seems
confusing, don't be concerned at this point because the individual sections which follow
give exact details and examples.

The TYPEOUT macro provides a more complicated example of macro use. Note
that this macro contains a redefinition of itself within the macro body. That is, the
structure of TYPEOUT is:

TYPEOUT MACRO MESSAGE
TYPEOUT MACRO TMESSAGE
ENDM

ENDM

where the outer definition of TYPEOUT completely encloses the inner definition. The
outer definition is active upon the first invocation of TYPEOUT, but upon completion,
the nested inner definition becomes active.

In order to see the use of such anested structure, consider the purpose of the
TYPEOUT macro. Each timeit isinvoked, TYPEOUT prints the message sent as an
actual parameter at the console device. The typeout process, however, can be easily
handled with a short subroutine. Upon the first invocation, we would like to include
the subroutine "inling," and then simply call this subroutine on subsequent invocations
of TYPEOUT. Thus, the outer definition of TYPEOUT defines the utility subroutine,
and then redefines itself so that the subroutine is called, rather than including another
copy of the utility subroutine.

It should be noted that macro definitions are stored in the symbol table area

of the assembler and thus each macro reduces the remaining free space. As aresullt,
MAC dlows "double semicolon" comments which indicate that the comment itself is
to beignored and not stored with the macro. Thus, comments with a single semicolon
are stored with the macro and appear in each expansion while comment with two
preceding semicolons are listed only when the macro is defined.

Figure 11 gives three examples of TYPEOUT invocations, with three messages
which are sent as actual parameters. Note that the LOCAL statement causes a unique
label to be created (?20002) in the place of "PASTSUB", which is used to branch around

35

the utility subroutine which isincluded inline between addresses 0126H and 0133H.
The utility subroutine is then called, followed by another jump around the console
message which is also included inline. Note, however, that subsequent invocations of
TYPEOUT use the previously included utility subroutine to type their messages. Again,
this may seem confusing, but it is worthwhile studying this example before continuing
into the exact details of macro definition and invocation in order to gain some insight
into macro facilities.

It should also be noted that, although the example shown here concentrates all
macro definitions in a separate macro library, it is often the case that macros are
defined in the mainline (LASM) source program. In fact, many programs which use
macros do not use the external macro library facility at all.

There are many applications of macros which will be examined throughout the
remainder of this manual. Specifically, macro facilities can be used to simplify the
programming task by "abstracting” from the primitive assembly language levels. That
is, the programmer can define macros which provide more generalized functions that
are allowed at the pure assembly language level, such as macro languages for a given
applications (see Section 10), improved control facilities, and general purpose operating
systems interfaces. The remainder of this manual first introduces the individual macro
forms, then presents several uses of the macro facilities in realistic applications.

36
7. INLINE MACROS

The simplest macro facilities involve the REPT (repeat), IRPC (indefinite repeat
character), and IRP (indefinite repeat) macro groups. All these forms cause the
assembler to repetively re-read portions of the source program under control of a
counter or list of textual substitutions. These groups are listed below in increasing
order of complexity.

7.1. The REPT-ENDM Group.

The REPT-ENDM group is written as a sequence of assembly language statements
starting with the REPT pseudo operation, and terminated by an ENDM pseudo operation.
Theformis:

label: REPT expression
statement-1
statement-2

statement-n
label: ENDM

where the labels are optional. The expression following the REPT is evaluated as a
16-bit unsigned count of the number of times that the assembler isto read and process
statements 1 through n which are enclosed within the group.

Figure 12 shows an example of the use of the REPT group. In this case the
REPT-ENDM group is used to generate a short table of the byte values 5, 4, 3, 2,

and 1. Upon entry to the REPT, the value of NXTVAL is5 which istaken asthe
repeat count (even though NXTVAL changes within the REPT). Note that the macro
lines which do not generate machine code are not listed in the repetition, while the
lines which do generate code are listed with a"+" sign after the machine code address.
Full macro tracing is optional, however, using assembly parameters, as discussed in a
later section.

In general, if alabel appears on the REPT statement, its value is the first

machine code address which follows. This REPT label is not re-read on each repetition
of the loop. The optional label on the ENDM is re-read on each iteration and thus
constant labels (not generated through concat-enation or with the LOCAL pseudo
operation) will generate phase errorsif the repetion count is greater than 1.

Properly nested macros, including REPT's, can occur within the body of the
REPT-ENDM group. Further, nested conditional assembly statements are also allowed,
with the added feature that conditionals which begin within the repeat group are
automatically terminated upon reaching the end of the macro expansion. Thus, IF and
EL SE pseudo operations are not required to have their corresponding ENDIF when they
begin within the repeat group (although the ENDIF is allowed).

7.2. The IRPC-ENDM Group.

Similar to the REPT group, the IRPC-ENDM group causes the assembler to
re-read a bounded set of statements, taking the form

37
CP/M MACRO ASSEM 2.0 #001 SAMPLE REPT STATEMENT

0100 ORG 100H ;BASE OF TRANSIENT AREA
TITLE 'SAMPLE REPT STATEMENT'
;THIS PROGRAM READS INPUT PORT O AND INDEXESINTO A TABLE
;BASED ON THISVALUE. THE TABLE VALUE ISFETCHED AND SENT
;TOOUTPUT PORT 0

0005 M&XVAL EQU 5 ;LARGEST VALUE TO PROCESS
0100 DB0OO RLOOP: INO ;READ THE PORT VALUE
0102 FEO5 CP1 MAXVAL ;TOO LARGE?
0104 D20001 JNC RLOOP ;IGNORE INPUT IF INVALID
0107 211401 LXI H,TABLE ;/ADDRESS BASE OF TABLE
010A 5F MOV EA ;LOW ORDER INDEX TOE
010B 1600 MVl D,0 ;HIGH ORDER 00 FOR INDEX
010D 19 DAD D ;HL HAS ADDRESS OF ELEMENT
010E 7E MOV AM ;FETCH TABLE VALUE FOR OUTPUT
010F D300 outT O ;SEND TO THE OUTPUT PORT AND LOOP
0111 C30001 jmp RLOOP ;FOR ANOTHER INPUT
00 GENERATE A TABLE OF VALUES MAXVAL,MAXVAL-11
0005 # NXTVAL SET M&XVAL ;START COUNTER AT MAXVAL
TABLE: REPT NXTVAL
DB NXTVAL ;FILL ONE (MORE) ELEMENT
NXTVAL SET NXTVAL-1 " AND DECREMENT FILL VALUE

ENDM
0114+05 DB NXTVAL ;FILL ONE (MORE) ELEMENT
0115+04 DB NXTVAL ;FILL ONE (MORE) ELEMENT
0116+03 DB NXTVAL ;FILL ONE (MORE) ELEMENT
0117+02 DB NXTVAL ;FILL ONE (MORE) ELEMENT
0118+01 DB NXTVAL ;FILL ONE (MORE) ELEMENT
0119 END

Figure 12. A Sample Program Using the REPT Group.

38
label: IRPC identifier character-list
statement-1
statement-2

statement-n
label: ENDM

where the optional labels obey the same conventions as in the REPT-ENDM group.
The "identifier" is any valid assembler name, not including embedded "$" separators,
and "character-list" denotes a string of characters, terminated by a delimiter (space,
tab, end-of-line, or comment).

The IRPC controls the re-read process as follows: the statement sequence is

read once for each character in the character-list. On each repetition, a character

is taken from the character-list and associated with the controlling identifier, starting
with the first and ending with the last character in the list. Thus, an IRPC header

of the form

IRPC ?X,ABCDE

re-reads the statement sequence which follows (to the balancing ENDM) atotal of
five times, once for each character in the list "TABCDE". On the first iteration, the
character "A" is associated with the identifier "9X" and on the fifth iteration the
letter "E" is associated with the controlling identifier.

On each iteration, the macro assembler substitutes any occurrence of the

controlling identifier by the associated character value. Using the above IRPC header,
an occurrence of "9X" in the bounds of the IRPC-ENDM group is replaced by the
character "A" on thefirst iteration, and by "E" on the last iteration.

The programmer can use the controlling identifier to construct new text strings

within the body of the IRPC by using the special "concatenation" operator, denoted

by an ampersand W. Again using the above IRPC header, the macro assember would
replace "LAB&?X" by "LABA" on the first iteration, while "LABE" would be produced
on the final iteration. The concatenation feature is most often used to generate unique
label names on each iteration of the IRPC re-read process.

Note, however, that the controlling identifier is not normally substituted within

string quotes, since the controlling identifier could quite possibly occur as a part of

a quoted message. Thus, the macro assembler performs substitution of the controlling
identifier when it is either preceded and/or followed by the ampersand operator.
Further, recall that all aphabetics outside string quotes are translated to upper case,
while no case translation occurs within string quotes. This requires that the controlling
identifier be not only preceded or followed by the concatenation operator within strings,
but must aso be typed in upper case.

Figure 13 illustrates the use of the IRPC-ENDM group. Figure 13a shows the

original assembly language program, before processing by the macro assembler. Note
that the program is typed in both upper and lower case. Figure 13b shows the output
from the macro assembler, with the lower case aphabetics translated to upper case.
Three IRPC groups are shown in this example. The first IRPC uses the controlling
identifier "reg" to generate a sequence of stack push operations which save the double
precision registers BC, DE, and HL. Again note that the lines generated by this group
are marked by a"+" sign following the machine code address.

39
;construct a data table
;save relevant registers
enter: irpc reg,bdh
push reg ;;save reg

endm
;initialize a partial ascii table
iroc ClAb$?@
data&c: db '&C'
endm
;restore registers
irpc reg,hdb
POP reg ;;recall reg
endm
ret
end

Figure 13a. Origina (LASM) File with IRPC Example.
;CONSTRUCT A DATA TABLE

;SAVE RELEVANT REGISTERS

ENTER: IRPC REG,BDH
PUSH REG ;;SAVEREG
ENDM
0000+C5 PUSH B
0001+D5 PUSH D
0002+E5 PUSH H

;INITIALIZE A PARTIAL ASCII TABLE
IRPC C,J|AB$?@
DATA&C: DB 1&Cl

ENDM
0003+31 DATALI: DB '
0004+41 DATAA: DB ‘A
0005+42 DATAB: DB 'B'
0006+24 DATAS: DB '$
0007+3F DATA? DB '?
0008+40 DATA@: DB '@

;RESTORE REGISTERS
IRPC REG,HDB
POP REG ;;RECALI, REG

ENDM
0009+131 POP H
000A+DI POP D
000B+Cl POP B
000C C9 RET
000D END

Figure 13b. Resulting (.PRN) file with IRPC Example.

40

The second IRPC shown in Figure 13 uses the controlling identifier "C" to

generate a number of single byte constants with corresponding labels. It isimportant
to observe that although the controlling variable was typed in lower case (see Figure
134), it has been translated to upper case during assembly. Further, note that the
string '& C' occurs within the group and, since the controlling variable is enclosed in
string quotes, it must occur next to an ampersand operator and be typed in upper case
for the substitution to occur properly. On each iteration of the IRPC, alabel is
constructed through concatenation, and a"DB" is generated with the corresponding
character from the character-list.

It should be pointed out that substitution of the controlling identifier by its
associated value could cause infinite substitution if the controlling identifier is the
same as the character from the character-list. For this reason, the macro assembler
performs the substitution and then moves aong to read the next segment of the
program, rather than re-reading the substituted text for another possible occurrence
of the controlling identifier. Thus, an IRPC of the form

IRPC CJAC$?@

would produce
DATAC:DB ¢
in place of the DB statement at the label DATAA in Figure 13b.

The last IRPC of Figure 13 is used to restore the previously saved double
precision registers, and performs the exact opposite function from the IPRC at the
beginning of the program.

One specia case does occur, however, when the character-list is empty (i.e.,

when no characters occur following the "identifier," portion of the IRPC header). In
this case, the group of statementsis read once, and any occurrence of the controlling
identifier is deleted when itisread (ie., it is replaced by the "null string").

7.3. The IRP-ENDM Group.

The IRP (indefinite repeat) is similar in function to the IRPC, except that the
controlling identifier can take on a multiple character value. The form of the IRP
group is

label: IRP identifier,'4cl-I,cl-2,...,cl-n-'f
statement-1
statement-2

statement-m
label: ENDM

where the optional 1abels obey the conventions of the REPT and IRPC groups. The
identifier controls the iteration as follows. On the first iteration, the character-list
given by 11cl-111 is substituted for the identifier wherever the identifier occursin the
bounded statement group (statements 1 through m). On the second iteration, cl-2
becomes the value of the controlling identifier. Iteration continues in this manner

41
until the last character-list, denoted by cl-n, is encountered and processed. Substitution
of values for the controlling identifier is subject to the same rules asin the IRPC
(note rules for substitution within strings and concatenation of text using the ampersand
operator "&"). One should also note that controlling identifiers are always ignored
within comments.

Figure 14 gives several examples of IRP groups. The first occurrence of the

IRPin Figure 14 isatypical use of this facility to generate a"jump vector" at the
beginning of a program or subroutine. The IRP assigns label names (INITIAL, GET,
PUT, and FINIS) to the controlling identifier "9LAB" and produces ajump instruction
for each label by re-reading the IRP group, substituting the actual label for the formal
name on each iteration.

The second occurrence of the IRP group in Figure 14 points out substitution
conventions within strings (for both IRPC and IRP groups). The controlling identifier
"IS" takes on the values "A-ROSE" and I'?" on the two iterations of the IRP group,
respectively. Note that the controlling identifier is replaced by the character-listsin
the two cases "&1S" and "IM" inside the string quotes since they are both adjacent

to the ampersand operator. Note further that Ns&" is not replaced because the
controlling identifier is typed in lower case, and there is no automatic translation to
upper case within strings. The occurrences of "IS" within the comments are not
substituted.

The last IRP group shows the effects of an empty character-list. The value of
the controlling identifier becomes the null string of symbols and, in the cases where
"?X" isreplaced, produces the statement

DB

which produces no machine code, and is therefore not listed in the macro expansion.
The three statements

DB 7? DB '?X' DB W

appear in the expansions because the "?2x" is typed in lower case (and thusis not
replaced), the "?X" does not appear next to an ampersand in the string (and is thus
not replaced), while in the last case only one of the double ampersandsis absorbed in
the'& & ?X&" string. In this last case, the two ampersands which surround "?X" are
removed since they occur immediately next to the controlling identifier within the
string.

Recall that substitution rules outside of string quotes and comments is much

less complicated: the controlling identifier is replaced by the current character-list
value whenever it occursin any of the statements within the group. Further, the
ampersand operator can be placed before or after the controlling identifier to cause
the preceding or following text to be concatenated.

The actual forms for the character-lists (cl-1 through cl-n) are more genera

than stated here. In particular, bracket nesting is allowed as well as escape sequences
to allow delimitersto be ignored. The exact details of character-list forms are
discussed in the macro parameter sections.

42

;CREATE A "JUMP VECTOR" USING THE IRP GROUP

IRP 2LAB<INITIAL,GET,PUT,FINIS>
jmp LAB :GENERATE THE NEXT JUMP
ENDM
0000+C30C00 jmp INITIAL
0003+C34300 jmp GET
0006+C34600 jmp PUT
0009+C34900 jimp FINIS
'INDIVIDUAL CASES
INITIAL:
000C 211200 LXI H,CHRS
000F C35100 jmp ENDCASE
CHRS. IRP IS<A-ROSE,?>
DB '&ISisIS&' :ISIS&IS
DB ‘'&ISisn'tis&'
ENDM
0012+412D524F53 DB 'A-ROSEISA-ROSE ;ISIS&IS
0022+412D524F53 DB 'A-ROSEisn'tis&'
0032+3F20495320 DB "is? :ISIS&IS
0038+3F2069736E DB "isn'tis&’
0043C35100 GET: jmp ENDCASE
0046 C35100 PUT: JMP ENDCASE
0049 C35100 jmp ENDCASE
IRP 2X,<>
12X1
DB
12X1
DB
DB WX,
DB &X&l
DB &&X&I
ENDM
12X1
004C+3F78 DB
12X1
004E+3F58 DB
0050+26 DB ‘&
ENDCASE:
0051 C9 RET
0052 END

Figure 14. A Sample Program Using IRP.

43
7.4. The EXITM Statement.

The EXITM pseudo operation can occur within the body of a macro and, upon
encountering the EXITM statement, the macro assembler aborts expansion of the current
macro level. The EXITM pseudo operation occurs in the context

macro-heading
statement-1
label: EXITM

statement-n
ENDM

where the label is optional, and "macro-heading" denotes the REPT, IRPC, or IRP
group heading as described above. The EXITM statement can also be used with the
MACRO group, as discussed in later sections.

In order to be useful, the EXITM statement normally occurs within the scope

of asurrounding conditional assembly operation. If the EXITM occurs in the scope of
afalse conditional test, the statement isignored and macro expansion continues. If

the EXITM occurs within the scope of atrue conditional, the expansion stops at the
point where the EXITM is encountered. Assembly statement processing continues after
the ENDM of the group aborted by the EXITM statement.

Two examples of the EXITM statement are shown in Figure 15. Thisfigure

shows two IRPC's used to generated "DB" statements which do not exceed eight
charactersin length. These IRPC's might occur within the context of another macro
definition, such asin the generation of CP/M file control block (FCB) names. In both
cases, the variable "LEN" is used to count the number of filled characters. If the
count ever reaches eight characters, the EXITM statement is assembled under atrue
condition, and the IRPC stops expansion.

The first IRPC generates the entire string "SHORT" since the length of the
character-list is less than eight characters. Each evaluation of "LEN = 81" produces
afase value and the EXITM is skipped. Thus, this IRPC terminates normally by
exhausing the character-list through its five repetitions.

The second IRPC stops generation at the eighth character of the list

"LONGSTRING" when the conditional "LEN EQ 8" produces a true value (note that "="
and "EQ" are equivalent operators), resulting in assembly of the EXITM statement.

The EXITM causes immediate termination of the expansion process.

The second IRPC & so contains a conditional assembly without the balancing
ENDIF. In this case, the ENDIF is not required since the conditional begins within
the macro body. The ENDM serves the dual purpose of terminating unmatched IF's
as well as marking the physical end of the macro body.

0000 #

0000+53
0001+48
0002+4F
0003+52
0004+54

44

; SAMPLE USE OF THE EXITM STATEMENT WITH THE IRPC MACRO

;THE FOLLOWING IRPC FILLS AN AREA OF MEMORY WITH AT MOST
;EIGHT BYTES OF DATA:

LEN

LEN

SET
IRPC
DB
SET

IF
EXITM
ENDIF
ENDM
DB

DB

DB

DB

DB

0 ;INITIALIZELENGTH TO O
N,SHORT
t& Nt
LEN+
LEN=8
;STOP MACRO IF AREA ISFULL

s
'
o
R
T

;THE FOLLOWING MACRO PERFORAMS EXACTLY THE SAME FUNCTIONS AS
;SHOWN ABOVE, BUT ABORTS EXPANSION WHEN LENGTH EXCEEDS 8

0000 #

0005+4C
0006+4F

0007+4E
0008+47

0009+53

000A+54
000B+52
000C+49
000D

LEN

LEN

SET
IRPC
DB
SET
IF
EXITM
ENDM
DB

DB
DB
DB
DB
DB
DB
DB
END

0 JINITIALIZE LENGTH COUNTER
N,LONGSTRING

I&NI

LEN+

LENEQS8

L
o
N’
o
'S
T
R
"

Figure 15. Use of the EXITM statement in Macro Processing.

45
7.5. The LOCAL Statement.

It is often useful to "generate" labels for jumps or data references which are
unigue on each repetition of amacro. This facility is available through the LOCAL
statement, which takes the form

macro-heading
label: LOCAL id-l,id-2,. . .,id-n
ENDM

where the label is optional, "macro-heading” isa REPT, IRPC, or IRP heading as
discussed above (or a MACRO heading as discussed in following sections), and id-1
through id-n represent one or more assembly language identifiers which do not contain
embedded "$" separators. The LOCAL statement must occur within the body of a
macro definition. Although MAC allowsthe LOCAL statement to appear anywhere
within the macro body, it should appear immediately following the macro header to

be compatible with the standard Intel macro facility.

The action of the assembler upon encountering the LOCAL statement is to
create a new name of the form

?2nnnn

for association with each identifier in the LOCAL list, where nnnn is a four digit
decimal value, assigned in ascending order starting at 0001. Whenever one of the
identifiersin the list is encountered, the corresponding created name is substituted in
its place. Substitution occurs according to the same rules as the controlling identifier
in the IRPC and IRP groups.

The user should avoid the use of |abels which begin with the two characters

"??' so that no conflicting names will accidentally occur. Further, symbols which
begin with "??" are not normally included in the sorted symbol list at the end of
assembly (see "assembly parameters’ to override this default). Lastly, atotal of 9999
LOCAL labels can be generated in any assembly, and an overflow error will occur if
more generations are attempted.

Figure 16a shows an example of a program which uses the LOCAL statement

to generate both data references and jump addresses. This program uses the CP/M
disk operating system to print a series of four generated messages, as shown in the
output from the program in Figure 16b. The program begins with "equates” which
define the disk system primary entry point, along with names for the non graphic
ASCII characters CR and LF (carriage return and line feed). The REPT statement
which follows contains a LOCAL statement with the identifiers X and Y which are
used throughout the body of the REPT group. On the first iteration, X's value becomes
2?0001 which is the first generated label, while Y's value becomes ??0002. Note that
the substitution for X and Y within the generated strings follows the rules stated for
controlling identifiersin previous sections. Upon completion, four messages are
generated along with four CALL'sto the PRINT subroutine. At each call to PRINT,
the message address is present in the DE register pair. The subroutine loads the "print
string" function number into register C (C = 9) and calls the disk system to print the
string value.

46

0100 ORG 100H ;BASE OF THE TRANSIENT AREA
0005 = BDOS EQU 5 ;BDOS ENTRY POINT

000D = CR EQU ODH ;CARRIAGE RETURN (ASCII)
000A = LF EQU O0AH ;LINEFEED (ASCII)

;SAMPLE PROGRAM SHOWING THE USE OF 'LOCAL'

REPT 4 :REPEAT GENERATION 4 TIMES
LOCAL X,Y ;:GENERATE TWO LABELS
jmp Y :JUMP PAST THE MESSAGE
X: DB ‘print x=& X, y=& Y',CR,LF,1$1
Y: LXI D,X . READY PRINT STRING
CALL PRINT
ENDM
0100+C31E01 jmp 720002 :JUMP PAST THE MESSAGE
0103+7072696E74 ?720001: DB 'printx=?20001, y=??0002',CR,LF,I$l
011E+110301 ?20002: LXI D,?20001 'READY PRINT STRING
0121+CD9101 CALL PRINT
0124+C34201 jmp 720004 :JUMP PAST THE MESSAGE
0127+7072696E74 ?720003: DB 'print x=770003, y=720004',CR,LF,1$l
0142+112701 ?20004: LXI D,?70003 :READY PRINT STRING
0145+CD9101 CALL PRINT
0148+C36601 jmp 720006 :JUMP PAST THE MESSAGE
014B+7072696E74 ??20005: DB 'print x=7?0005, y=720006',CR,LF,1$l
0166+1141301 ??20006: LXI D,??0005 :READY PRINT STRING
0169+CD9101 CALL PRINT
016C+C38A01 jmp 720008 :JUMP PAST THE MESSAGE
016F+7072696E74 ??20007: DB 'print x=720007, y=7?0008',CR,LF,|$l
018A+116F01 ??20008: LXI D,?20007 :READY PRINT STRING
018D+CD9101 CALL PRINT
0190 C9 RET
0191 OEO9 PRINT: MVI C9
0193 CD0500 CALL BDOS
0196 C9 RET
0197 END

Figure 16a. Assembly Program using the LOCAL Statement.

print x=720001, y=7?70002
print x=720003, y=7?0004
print x=720005, y=7?0006
print x=720007, y=7?0008

Figure 16b. Output from Program of Figure 16a.

47
Upon completion of the program, control returns to the console command
processor (CCP) for further operations. This particular program uses the default stack
which is passed by the CCP (approximately 16 levels are available). Although this
exampleis primarily intended to show operation of the LOCAL statement, the reader
may wish to consult the CP/M Interface Guide to determine BDOS interface conventions
in order to follow this example completely.

48
8. DEFINITION AND EVALUATION OF STORED MACROS

The "stored macro" facility of MAC alows the programmer to name a sequence

of assembly language "prototype" statements for selective inclusion at various places
throughout the assembly process. Macro parameters can be supplied in various forms
at the point of expansion which are substituted as the prototype statement are re-read.
These parameters are generally used to tailor the individual macro expansion for a
particular case.

Although similar in concept to subroutine definition and call, macro processing

is purely textual manipulation at assembly time. That is, macro definitions causes
source text to be saved in the assembler's internal tables, and any particular expansion
involves manipulation and re-reading of the saved text. These concepts will become
clear asthe individual macro forms are discussed.

In general, macro features can be combined in various ways to greatly enhance

the facilities which are available to the programmer. Specifically, the programmer

can easily manipulate generalized data definitions, macros can be defined for generalized
operating systems interface, simplified program control structures can be defined and
non standard instruction sets (such as the Z-80) can be supported. Finally, well designed
macros for a particular application can achieve a measure of machine independence.

All of these notions will be covered in the sections which follow.

8.1. The MACRO-ENDM Group.

The prototype statements for a stored macro are given in the macro body
enclosed by the MACRO and ENDM pseudo operations, taking the general form

machame MACRO d-1,d-2,...,d-n
statement-1
statement-2

statement-m
label: ENDM

where the "macname” is any non conflicting assembly language identifier, d-1 through
d-n constitutes a (possibly empty) list of assembly identifiers without imbedded "$"
separators, and statements-1 through m are the macro prototype statements. The
identifiers denoted by d-1 through d-n are called "dummy parameters’ for this particular
macro and, although they must be unique among themselves, can generally beidentical
to any program identifiers outside the macro body without causing a conflict. The
prototype statements may contain any properly balanced assembly language statements
or groups, including nested REPT's, IRP's, IRPC's, MACRO's and IF's.

The prototype statements are read and stored in the assembler's internal tables

under the name given by "macname,” but are not processed until the macro is expanded.
The expansion process is given in the following section.

As before, the label preceding the ENDM is optional.

8.2. Macro Invocation.

The macro text which is stored through a MACRO-ENDM group can be brought
out for processing through a statement of the form

49
label: macname al,a2,...an

where the label is optional, and macname has previously occurred as the identifier on
aMACRO heading. The "actual parameters' a-1 through a-n are sequences of characters,
separated by commas and terminated by a comment or end of line.

Upon recognition of the macname, the assembler first "pairs-off* each dummy
parameter in the MACRO heading d-1 through d-n) with the actual parameter text

(a-1 through a-n) by associating the first dummy parameter with the first actual
parameter d-1 is paired with a-1), the second dummy is associated with the second
actual, and so forth until the list is exhausted. If more actuas are provided than
dummy parameters then the extras are ignored. If fewer actuals are provided then

the extra dummy parameters are associated with the empty string (i.e., atext string

of zero length). It isimportant to realize at this point that the value of a dummy
parameter is not a numeric value, but is instead a textual value consisting of a sequence
of zero or more ASCI| characters.

After each dummy parameter is assigned an actual textual value, the assembler
re-reads and processes the previously stored prototype statements and substitutes each
occurrence of adummy parameter by its associated actual textual value, according to
the same rules as the controlling identifier in an IRPC or IRP group.

Figures 17 and 18 provide examples of macro definitions and invocations. Figure

17 begins with the definition of three macros, called SAVE, RESTORE, and WCHAR.
The SAVE macro contains prototype statements which save the principal CPU registers
(PUSH PSW, B, D, and H), while the RESTORE macro restores the principal registers
(POPH, D, B, and PSK The WCHAR macro contains the statements necessary to

write a single character at the console using a CP/M BDOS call.

Note that the occurrence of the SAVE macro definition between MACRO and

ENDM causes the assembler to read and save the PUSH's, but does not assemble the
statements into the program. Similarly, the statements between the RESTORE MACRO
and corresponding ENDM are saved, as are the statements between the WCHAR MACRO
and ENDM group. The fact that the assembler is reading the macro definition is

indicated by the blank columns in the leftmost 16 columns of the output listing.

Referring to Figure 17, note that machine code generation starts following the
invocation of the SAVE macro. The prototype statements which were previously stored
are re-read and assembled, with a"+" between the machine code address and the
generated code to indicate that the statements are being recalled and assembled from
amacro definition. Note that the SAVE macro has no dummy parametersin the
definition and thus there are no actual parameters required at the point of invocation.

The invocation of SAVE isimmediately followed by an expansion of the WCHAR
macro. The WCHAR macro, however, has one dummy parameter, called CHR, which
islisted in the macro definition header. This dummy parameter represents the character
to pass to the BDOS for printing. In the first expansion of the WCHAR macro, the
actual parameter "H" becomes the textual value of the dummy parameter CHR. Thus,
the WCHAR macro expands with a substitution of the dummy parameter CHR by the
value H. Note that the use of CHR is within string quotes and thus must be typed

in upper case and preceded by the ampersand operator. Following the reference to
WCHAR, the prototype statements are listed with the "+" sign to indicate that they

are generated by the macro expansion.

0100
0005 =
0002 =

0100+F5
0101+C5
0102+D5
0103+135

0104+0E02
0106+1E48
0108+CD0500

01013+01302
010D+IE49
010F+CD0500

0112+131
0113+D1
0114+Cl
0115+F1
0116 C9
0117

ORG
BDOS
CONOUT

100H

50

EQU
EQU

N o1

SAVE MACRO

PUSH
PUSH
PUSH
PUSH
ENDM

RESTORE
POP
POP
POP
POP
ENDM

WCHAR
MVI
MVI
CALL
ENDM

PSW
B
D
H

MACRO
H

D

B

PSW

MACRO CHR
C,CONOUT
E,'&CHR'
BDOS

;BASE OF TRANSIENT AREA
;BDOS ENTRY POINT
;CHARACTER OUT FUNCTION

;SAVE ALL CPU REGISTERS

;RESTORE ALL REGISTERS

s WRITE CHR TO CONSOLE
;;CHAR OUT FUNCTION
;;CHAR TO SEND

;MAIN PROGRAM STARTS HERE

SAVE

PUSH

PUSH PSW
PUSH B
PUSH D

H

WCHAR H

MVI
MVI
CALL

C,CONOUT
13'H'
BDOS

WCHAR I

MVI
MVI
CALL

C,CONOUT
E'l'
BDOS

RESTORE

POP
POP
POP
POP
RET
END

H
D
B
PSW

;SAVE REGISTERS UPON ENTRY

;SEND 'H' TO CONSOLE

;SEND 'I' TO CONSOLE

;RESTORE CPU REGISTERS

;RETURN TO CCP

Figure 17. Example of Macro Definition and Invocation.

51

The second invocation of WCHAR is similar to the first except that the dummy
parameter CHR is assigned the textual value |, causing generation of aMVI E,'I' for
this case.

After thelisting of the second WCHAR expansion, the RESTORE macro is
invoked, causing generation of the POP statement to restore the register state. The
RESTORE isfollowed by a RET to return to the CCP following the character output.

This particular program thus performs the simple function of saving the registers

upon entry, typing the two characters "HI" at the console, restoring the registers, and
then returns to the Console Command Processor. One should note that the SAVE and
RESTORE macros are used here for illustration, and are not required for interface to
the CCP since all registers are assumed invalid upon return from a user program.
Further, this program uses the CCP's stack throughout, which is only eight levels deep.

Figure 18 shows another macro for printing at the console. In this case, the

PRINT macro uses the operating system call which prints the entire message starting

at aparticular address until the "$" symboal is encountered. The PRINT macro has a
dightly more complicated structure: two dummy parameters must be supplied in the
invocation. The first parameter, called N, isa count of the number of carriage-return
line-feeds to send after the message is printed. The second parameter, called MESSAGE,
is the ASCH string to print which must be passed as a quoted string in the invocation.
The LOCAL statement within the macro generates two labels denoted by PASTM and
MSG. When the macro expands, substitutions will occur for the two dummy parameters
by their associated actual textual values, and for PASTM and MSG by their sequentially
generated label values. The macro definition contains prototype statements which
branch past the message (to PASTM) which is included inline following the label MSG.
The message is padded with N pairs of carrriage-return line-feed sequences, followed
by the "$" which marks the end of the message. The string addressis then sent to

the BDOS for printing at the console.

There are two invocations of the PRINT macro included in Figure 18. The

invocation sends two actual parameters:. the textual value 2 is associated with the
dummy N, followed by a quoted string which is associated with the dummy parameter
MSG. Note that the second actual parameter includes the string quotes as a part of
the textual value. Note aso that the generated message is preceded by ajump
instruction, and followed by N = 2 carriage-return line-feed pairs.

The second invocation of the PRINT macro is similar to the first, except that
the REPT group is executed N = 0 times, resulting in no generations of the carriage
return line-feed pairs.

Similar to Figure 17, the program of Figure 18 uses the Console Command
Processor's eight level stack for the BDOS calls. When the program executes, it types
the two messages, separated by two lines, and returns to the CCP.

8.3. Testing Empty Parameters.
Before continuing the discussion of macro definition and invocation, it is necessary

to discuss a particular operator, called the NUL operator, which is specifically designed
to alowing testing of null parameters (i.e., actual parameters of length zero). The

0100 ORG
0005 = BDOS EQU
0009 = PMSG EQU
000D = CR EQU
000A = LF EQU
PRINT
jmp
MSG: DB
REPT
DB
ENDM
DB
PASTM:
MVI
CALL
ENDM
PRINT
0100+C31E01 jmp
0103+5468652072720002:
0119+0D0A DB
011B+0DOA DB
011D+24
011E+110301 ?20001: LXI
0121+0E09 MVI
0123+CD0500 CALL
PRINT
0126+C34001 jmp
0129+6D61696E6C720004:
013F+24
0140+112901 ?20003: LXI
0143+0E09 MVI
0145+CD0500 CALL
0148 C9 RET

52

100H
5

9
ODH
0AH

MACRO N,MESSAGE

;BASE OF THE TPA
;BDOS ENTRY POINT
;PRINT 'TIL $ FUNCTION
;CARRIAGE RETURN
;LINE FEED

;PRINT MESSAGE, FOLLOWED BY N CRLFS
LOCAL PASTM,MSG

PASTM
MESSAGE
N

CR.LF

I$I

LXI D,MSG
C,PMSG
BDOS

;:JUMP PAST MSG
/INCLUDE TEXT TOWRITE
;" REPEAT CR LF SEQUENCE

;" MESSAGE TERMINATOR
"MESSAGE ADDRESS
;PRINT FUNCTION

2, Therainin Spain goes

770001
DB
CR.LF
CR.LF
DB '$
D,?770002
C,PMSG
BDOS

‘Therain in Spain goes

0,'mainly down the drain.'

770003
DB

DB '$
D,?720004
C,PMSG
BDOS

'mainly down the drain.'

Figure 18. Sample Message Print-out Macro.

53
NUL operator is used in an expression as a unary operator, and produces atrue value
if its argument is of length zero and a false value if the argument has length greater
than zero. Thus, the operator appears in the context of an arithmetic expression as.

... NUL argument

where the ellipses represent an optional prefixing arithmetic expression, and
"argument" is the operand used in the NUL test. Note that the NUL differs from
other operators since it must appear as the last operator in the expression. Thisis
due to the fact that the NUL operator "absorbs' al remaining charactersin the
expression until the following comment or end of lineisfound. Thus, the expression

X GT Y AND NUL XXX

isvalid since NUL absorbs the argument XXX (producing afalse value) in the scan
for the end of line. The expression

X GTY AND NUL

is also valid, however, since the argument following the NUL is empty, thus causing
NUL to return atrue value since the end of line isimmediately encountered in the
scan. Intervening blanks and tabs are ignored in this scanning process. The expression

XGTY AND NUL M+2)

is somewhat deceiving, but nevertheless valid even though it appears asif itisan
unbalanced expression. In this case, the argument following the NUL operator is the
entire sequence of characters"M + Z)" which is absorbed by the NUL operator in
scanning for the end of line. The value of "NUL M + Z)" is"false" since the sequence
is not empty.

Figure 19 gives several examples of the use of NUL in a particular program.

In thefirst case, NUL returns true since there is an empty argument following the
operator. Thus, the "true case” is assembled (as indicated by the machine code to

the left), and the "false case” isignored. Similarly, the second use of NUL in Figure

19 produces a false value since the argument is non-empty. Both uses of NUL, however,
are contrived examples, since NUL isreally only useful within a macro group, as shown
in the definition of the NULMAC macro.

NULMAC consists of a sequence of three conditional tests which demonstrate

the use of NUL in checking empty parameters. In each of the tests, a"DB" is
assembled if the argument is not empty, and skipped otherwise. Six invocations of
NULMAC follow its definition, giving various combinations of empty and non-empty
actual parameters.

In the first case, NULMAC has no actual parameters and thus al dummy
parameters (A, B, and C) are assigned the empty sequence. As aresult, all three
conditional tests produce false results since both A and B are empty, and B&C
concatenates two empty sequences, producing an empty sequence as a result.

The second invocation of NULMAC provides only one actual parameter (XXX)
which is assigned to the dummy parameter A, while B and C are both assigned the

54

IF NUL

0000 7472756520 DB 'true case
ELSE
DB ‘false case
ENDIF
IF NUL XXX
DB 'xxx is null'
ELSE

0009 7878782069 DB 'xxx is not null'
ENDIF

NULMAC MACRO AB,C

IF NOT NUL A

DB '‘a=&A isnot null'

ENDIF

IF NOT NUL B

DB 'b=&B isnot null'

ENDIF

IF NOT NUL B&C

DB 'bc = &B&C isnot null'

ENDM

NULMAC

NULMAC XXX
0017+61203D2058 DB '‘a= XXX isnot null’

NULMAC XXX
0029+62203D2058 DB 'b = XXX isnot null'
003B+6263203D20 DB 'bc = XXX isnot null'

NULMAC XXX, YYY
004F+61203D2058 DB ‘a= XXX isnot null'
0061+6263203D20 DB 'bc=YYY isnot null'

NULMAC WYYY
0075+6263203D20 DB ‘bc=YYY isnot null'

NULMAC vy

NULMAC S
0089+6263203D20 DB 'bc ="" isnot null’
009C END

Figure 19. Sample Program using the NUL Operator.
empty sequence. Thus, only the "DB" for the first conditional test is assembled.

Thethird case is similar to the second, except that the actual parameters for

A and C are omitted. Thus, the second and third conditionals both test "NOT NUL
XXX" which istrue since B has the value XXX, and B& C produces the value XXX as
well.

The fourth invocation of NULMAC skips the actual parameter for B, but supplies
values for both A and C. Thus, the first and third test result in true values, while
the second conditional group is skipped.

The fifth invocation provides an actual parameter only for C. As aresult, only
the third conditional is true, since B& C produces the sequence YY'Y.

The sixth invocation produces exactly the same result as the first, since al
three actual parameters are empty.

The final expansion of NULMAC in Figure 19 shows a specia case of the NUL
operator. The expression

NUL "
(where the two apostrophes are in juxtaposition) produces the value true even though

55

there are two apostrophe symbols on the line following NUL and before the end of
line. Note that the value of A isthe empty string in this case, while the value
assigned to both B and C consists of the two apostrophe characters side-by-side, which
istreated as a quoted string of length zero (even though it is a sequence of two
characters!). Inthislast expansion, the first conditional produces a false value since
A is associated with the empty sequence. The second conditional, however, evaluates
the form

NOT NUL "

which isthe special case of NUL applied to alength zero quoted string (not a length
zero sequence, however). Because of the special treatment of the length zero quoted
string, this expression also produces a false result. The third conditional, however,
must be considered carefully: the original expression in the macro definition takes
the form

NOT NUL B&C

with B and C both associated with the sequence of length two given by two adjacent
apostrophes. Thus, the macro assembler examines

NOT NUL "&"

or, after concatenation,
NOT NUL "™

where the four apostrophes are juxtaposed. Considering only the four adjacent
apostrophes, the macro assembler considers this a quoted string which happens to
contain a single apostrophe, since double apostrophes within strings are always reduced

56

to asingle apostrophe. As aresult, the test produces a true value and the conditional
segment is assembled. If this all seems confusing, that's because it is. Fortunately,
these cases are very specialized, and are included here for completeness. Under normal
circumstances, the NUL operator is used only to test for missing arguments, as shown
in later examples (see Figure 22 for a particular case).

8.4. Nested Macro Definitions.

The MAC assembler allows the programmer to include nested macro definitions,
which take the form

macl MACRO macl-list
mac2 MACRO mac2-list
ENDM
ENDM

where "macl" istheidentifier corresponding to the outer macro, and "mac2" isan
identifier corresponding to an inner nested macro which is wholly contained within the
outer macro. In this case, "macl-list" and "mac2-list" correspond to the dummy
parameter lists for macl and mac2, respectively. As before, labels are allowed on

the ENDM statements.

Recall that the statements contained within a macro definition are "prototype”
statements which are read and stored by the assembler, but not evaluated as assembly
language statements until the macro is expanded. Thus, in the form shown above,

only the macl macro can is available for expansion, since the assembler has stored

but not processed the body of macl which contains the definition of mac2. That is,
mac2 cannot be expanded until macl is first expanded revealing the definition of mac2.

Properly balanced imbedded macros of this form can be nested to any level,
but cannot be referenced until their encompassing macros have themselves been
expanded.

Figure 20 gives a practical example of nested macro definition and expansion.

This particular program writes characters to either the CP/M console device or the
currently assigned list device, according to the value of the LISTDEV flag which is
set for the assembly. If the LISTDEV flag is true, then the assembly sends characters
to the listing device, otherwise the console is used for output. In either case, the
macro OUTPUT is produced which sends a single character to whatever deviceis
selected.

For purposes of illustration, the macro SETIO is used to construct the OUTPUT

macro. Note in Figure 20 that the OUTPUT macro is wholly contained within the

SETIO macro and, as aresult, remains undefined until SETIO expands. Upon encountering
the invocation of SETIO, the macro assembler reads the prototype statements within
SETIO and, in the process, constructs the definition of the OUTPUT macro. Since
LISTDEYV istrue for this assembly, the OUTPUT macro becomes defined as

57

0100 ORG 100H ;BASE OF THE TPA
0000 = FALSE EQU 0O0OOH 'VALUE OF FALSE
FFFF = TRUE EQU NOTFALSE ;VALUE OF TRUE
;LISTDEV ISTRUE IF LIST DEVICE ISUSED
;FOR OUTPUT, AND FALSE IF CONSOLE ISUSED
FFFF = LISTDEV EQU TRUE
0005 = BDOS EQU 5 ;BDOS ENTRY POINT
0002 = CONOUT EQU 2 SWRITE TO CONSOLE
0005 = LISTOUT EQU 5 SWRITETO LIST DEVICE
SETIO MACRO ;SETUP"OUTPUT" MACRO FOR LIST OR
CONSOLE
OUTPUT MACRO CHAR
Mvi E,CHAR ;" READY THE CHARACTER FOR PRINTING
IF LISTDEV
Mvi C,LISTOUT
ELSE
Mvi C,CONOUT
ENDIF
CALL BDOS
ENDM
OUTPUT !
ENDM
SETIO ;SETUP THE 10 SYSTEM
0100+IE2A Mvi E,"*'
0102+0E05 Mvi CLISTOUT
0104+CD0500 CALL BDOS
OUTPUT T
0107+11331 Mvl E'T
0109+01305 MVI CLISTOUT
010B+CD0500 CALL BDOS
OUTPUT ‘2
010E+IE32 Mvl E'2
0110+01305 Mvi C,LISTOUT
0112+CDO500 CALL BDOS
0115C9 RET
0116 END

Figure 20. Sample Program showing a Nested Macro Definition.

OUTPUT
MVI
MVI

CALL
ENDM

MACRO
E,CHAR
CLISTOUT
BDOS

CHAR

Note that the SETIO macro itself uses this newly created OUTPUT macro in its last
prototype statement to print asingle "*" at the selected device.

Following the invocation of SETIO, the invocations of OUTPUT are recognized
since its definition has been entered in the process of reading the prototype statements
of SETIO. These invocations send the characters "1" and "2" to the list device,

respectively.

58
8.5. Redefinition of Macros.

It is often useful to redefine the prototype statements of a particular macro

after theinitial prototype statements have been entered. Thisis often simply a

particular case of the previous section, where the inner nested macro carries the same
name as the encompassing macro definition. Although this feature may seem somewhat
frivolous, there is one particular case where macro redefinition is extremely useful:

if the macro uses a subroutine then the subroutine can be included on the first expansion
and simply called in any remaining expansions. Thus, if the macro is never invoked
then the subroutine is not included in the program.

Figure 21 shows an example of macro redefinition. In this case, the macro

MOVE is defined which isintended to move byte values from a starting "source address"
to atarget "destination address" for a particular number of bytes. The three dummy
parameters denote these three values: SOURCE is the starting address, DEST is the
destination address, and COUNT is the number of bytes to move (a constant in the
range 0-65535). The actions of the MOV E macro, however, are sufficiently complicated
that they should be performed through a subroutine, rather than inline machine code
each time MOVE is expanded.

Examining the structure of MOVE in Figure 21, note that it contains a properly
nested redefinition of MOVE, taking the general form:

MOVE MACRO SOURCE, DEST, COUNT

@MOVE subroutine

MOVE MACRO ?5,?D,”C
cal to @MOVE
ENDM
invocation of MOVE
ENDM

The action of the assembler upon encountering the first invocation of MOVE isto
begin reading the prototype statements. Note, however, that the first expansion of

the MOVE includes the subroutine for the actual move operation, labelled by @MOVE
so that there is no name conflict (with a branch around the subroutine). MOVE then
redefines itself as a sequence of statements which simply call the out-of-line subroutine
each timeit expands. In fact, the last statement of the original MOV E macro is an

0100 ORG 100H :BASE OF TPA
MOVE MACRO SOURCE,DEST,COUNT
:MOVE DATA FROM ADDRESS GIVEN BY 'SOURCE'
:TO ADDRESS GIVEN BY 'DEST' FOR 'COUNT' BYTES
LOCAL PASTSUB ;:LABEL AT END OF SUBROUTINE
jmp PASTSUB »JUMP AROUND INLINE SUBROUTINE
@MOVE: ;:INLINE SUBROUTINE TO PERFORM MOVE

OPERATION
:HL IS SOURCE, DE ISDEST, BC ISCOUNT
MOV AC ;;LOW ORDER COUNT
ORA B ;:ZZERO COUNT?
Rz :.STOP MOVE IF ZERO REMAINDER
MOV AM :GET NEXT SOURCE CHARACTER
STAX D ;:PUT NEXT DEST CHARACTER
INX H ;;ADDRESS FOLLOWING SOURCE
INX D ;;ADDRESS FOLLOWING DEST
DCX B ;;:COUNT=COUNT-1
jmp @MOVE ;;FOR ANOTHER BYTE TO MOVE
PASTSUB:
;ARRIVE HERE ON FIRST INVOCATION - REDEFINE MOVE
MOVE MACRO ?5,7D,”C ;:CHANGE PARM NAMES
LXI H,?S ;;ADDRESS THE SOURCE STRING
LXI D,”D ;;ADDRESS THE DEST STRING
LXI B,”C ;:PREPARE THE COUNT
CALL @MOVE ;:MOVE THE STRING
ENDM
:CONTINUE HERE ON THE FIRST INVOCATION TO USE
:THE REDEFINED MACRO TO PERFORM THE FIRST MOVE
MOVE SOURCE,DEST,COUNT
ENDM
MOVE XI,X2,5;MOVE 5 CHARSFROM X1 TO X2

0100+C30E01 jmp 720001

0103+79 MOV AC

0104+BO ORA B

0105+C8 Rz

0106+7E MOV AM

0107+12 STAX D

0108+23 INX H

0109+13 INX D

010A+0B DCX B

010B+C30301 jmp @MOVE

O010E+ 720001

010E+212701 LXI H,X1

0111+114001 LXI D,X2

0114+010500 LXI B,5

0117+CD0301 CALL @MOVE

MOVE 3000H,/000H,1500H :BIG MOVER

011a+210030 LXI H,3000H

011D+110010 LXI D,1000H

0120+010015 LXI B,1500H

0123+CD0301 CALL @MOVE

0126 C9 RET :RETURN TO THE CCP

0127 6865726520 X1 DB 'here is some data to move'

0140 7878787878 X2 DB XXXxxwe arel’

59

Figure 21. Sample Program showing Macro Redefinition.

60

invocation of the newly defined version. Asindicated by this example, once a macro
has started expansion, it will continue to completion (or until EXITM is assembled),
even if it redefines itself.

It isimportant to note the use of 7S, ?D, and ?C in the above example. The

innermost MOV E macro uses the same segquence of three parameters for the source,
destination, and count. The dummy parameter names must differ, however, since they
would be substituted by their actual valuesif they were the same. Thisis due to the
fact that the inner MOV E macro is wholly contained within the outer macro and thus
parameter substitution takes place irregardliess of the context.

Macro storage is not reclaimed upon redefinition, however, since the macro
assembler performs two passes through the source program and saves any preceding
definitions for the second pass scan.

8.6. Recursive Macro Invocation.

A "recursive" macro x has the property that its prototype statements contain
invocations of macros which, in turn, invoke macros which eventually lead back to an
invocation of x. A particular case of recursion, called "direct recursion,” occurs when
X invokes itself, as shown in the form below:

machame MACRO d-11...d-n
machame al, an
ENDM

Although this form is similar to the embedded macro definition discussed in the previous
section, note that I'macnamell is being expanded within its own definition, rather than
being redefined. Recursion is only useful, however, in the presence of conditional
assembly where various tests are made which prevent infinite recursion. In fact,

recursion is only allowed to sixteen levels before returning to compl ete the expansion

of an earlier level.

Figure 22 shows a situation where (indirect) recursive macro invocation is useful.

The macro WCHAR writes a character to the console device using the general-purpose
operating system macro CBDOS (call BDOS). CBDOS acts as an interface between
the program and the CP/M system by performing the system function given by FUNC,
with optional "information address" INFO. In particular, CBDOS loads the specified
function to register C, then tests to seeif the INFO argument has been supplied (using
the NUL operator). If supplied, INFO isloaded to the DE register pair. After register
setup, the BDOS is called, and the macro has completed its expansion.

Assume, however, that CBDOS has the additional task of inserting a carriage

return line-feed before writing messages in the particular case that operating system
function 9 (write buffer until 1111) has been specified. In this case, CBDOS uses the
WCHAR macro to send the carriage-return line-feed. Note, however, that the WCHAR
macro, in turn, uses CBDOS to send the character resulting in two activations of

CBDOS at the same time. The assembler holds the initial invocation of CBDOS until

the WCHAR macro has completed, then returns to complete the initial CBDOS expansion.

An important observation in the presence of recursion isthat the values of the
dummy parameters are saved at each successive level of recursion, and restored when

61

0100 ORG 100H ;BASE OF TRANSIENT AREA
; SAMPLE PROGRAM SHOWING RECURSIVE MACROS
0005 = BDOS EQU 0005H ;ENTRY TO BDOS
0002 = CONOUT EQU 2 ;CONSOLE CHARACTER OUT
0009 = MSGOUT EQU 9 ;PRINT MESSAGE 'TIL $
000D = CR EQU ODH ;CARRIAGE RETURN
000A = LF EQU 0OAH ;LINE FEED
WCHAR MACRO CHR
sWRITE THE CHARACTER CHR TO CONSOLE
CBDOS CONOUT,CHR ;;CALL BDOS
ENDM
CBDOS MACRO FUNC,INFO
;GENERAL PURPOSE BDOS CALL MACRO
;FUNC ISTHE FUNCTION NUMBER,
;INFO IS THE INFORMATION ADDRESS OR NUL
;CHECK FOR FUNCTION 9, SEND CRLF FIRST IF SO
IF FUNC=MSGOUT
;PRINT CRLF FIRST
WCHAR CR
WCHAR LF
ENDIF
;NOW PERFORM THE FUNCTION
MVI CJUNC
;INCLUDE LXI TO DE IF INFO NOT EMPTY
IF NOT NUL INFO
LXI D,INFO
ENDIF
CALL BDOS
ENDM
WCHAR n' ;SEND "H" TO CONSOLE
0100+0E02 MVI C,CONOUT
0102+116800 LXI D,th'
0105+CD0500 CALL BDOS
WCHAR i’ ;SEND "I" TO CONSOLE
0108+01302 MVI C,CONOUT
010A+116900 LXI D,
010D+CD0500 CALL BDOS
CBDOS MSGOUT,MSGADDR ;SEND MESSAGE
0110+01302 MVI C,CONOUT
0112+110D00 LXI D,CR
0115+CD0500 CALL BDOS
0118+0EQ02 MVI C,CONOUT
011A+110A00 LXI D,LF
011D+CD0500 CALL BDOS
0120+0EQ9 MV1 CMSGOUT
0122+112901 LXI D,MSGADDR
0125+CDO500 CALL BDOS
0128 C9 RET ;TERMINATE PROGRAM
MSGADDR:
0129 616E64206C DB "and lois$
0132 END

Figure 22. Sample Program showing a Recursive Macro.

62

that level of recursion is re-instated. In particular, re-entry into a macro expansion
through recursion does not destroy the values of dummy arguments held by previous
entry levels.

8.7. Parameter Evaluation Conventions.

There are a number of options which the programmer can exercise in the
construction of actual parameters, as well asin the specification of character-lists
for the IRP group. Although an actual parameter is simply a sequence of characters
placed between parameter delimiters, these options allow overrides where delimiter
characters themselves to become a part of the text. In general, a parameter x occurs
in the context:

label: macname<...lx >

where I'macnamell is the name of a previously defined macro, and the preceding label
isoptional. The elipses™ . " represent optional surrounding actual parametersin the
invocation of macname. In the case of an IRP group, the occurrence of a character-list
x would be

label: IRPid9...Ix....

where the label is again optional, and the elipses represent optional surrounding
character-lists for substitution within the IRP group where the controlling identifier

"id" isfound. In either case, the statements could be contained within the scope of

a surrounding macro expansion. Hence, dummy parameter substitution could take place
for the encompassing macro while the actual parameter is being scanned.

The macro assembler follows the steps shown below in forming an actual
parameter or character-list:

(a) leading blanks and tabs (control-I) are removed if they occur in front of x.
After this "deblanking" has occurred,

(b) the leading character of x is examined to determine the type of scan
operation which is to take place;

(c) if the leading character is a string quote (apostrophe), then x becomes the

text up through and including the balancing string quote, using the normal string
scanning rules: double apostrophes within the string are reduced to a single apostrophe,
and upper case dummy parameters adjacent to the ampersand symbol are substituted
by their actual parameter values. Note that the string quotes on either end of the

string are included in the actual parameter text.

(d) If instead the first character is the left broken bracket "<" then the bracket

is removed, and the value of x becomes the sequence of characters up to, but not
including, the balancing right broken bracket ">" which does not become a part of x.
In this case, left and right broken brackets may be nested to any level within x, and
only the outer brackets are removed in the evaluation. Quoted strings within the
brackets are allowed, and substitution within these strings follows the rules stated in
(c) above. Note that left and right brackets within quoted strings become a part of
the string, and are not counted in the bracket nesting within x. Further, the delimiter

63

characters comma, blank, semicolon, tab, and exclaim become a part of x when they
occur within the bracket nesting.

(e) If the leading character is a percent "%", then the sequence of characters

which follows is taken as an expression which is evaluated immediately as a 16-bit
value. Theresulting value is converted to a decimal number and treated as an ASCH
sequence of digits, with left zero suppression (0-65535).

(f) If the leading character is neither a quote nor aleft bracket nor a percent,
the (possibly empty) sequence of characters which follow, up to the next comma, blank,
tab, semicolon, or exclaim symbol, becomes the value of x.

There is one important exception to the above rules: the single character

escape, denoted by an up-arrow, causes the macro assembler to read the immediately
following specia (non alphabetic) character as a part of x without treating the character
as significant. The character which follows the up-arrow, however, must be a blank,
tab, or visible ASCII character. The up-arrow itself can be represented by two up
arrows in succession. |If the up-arrow directly precedes a dummy parameter, then the
up-arrow is removed and the dummy parameter is not replaced by its actual parameter
value. Thus, the up-arrow can be used to prevent evaluation of dummy parameters
within the macro body. Note that the up-arrow has no special significance within
string quotes, and is simply included as a part of the string.

Evaluation of dummy parameters in macro expansions must also be considered,
although this topic has been presented throughout the previous sections. Generally,
the macro assembler evaluates dummy parameters as follows:
(a) If adummy parameter is either preceded or followed by the concatenation
operator "&", then the preceding and/or following "&" operator is removed, the actual
parameter is substituted for the dummy parameter, and the implied delimiter is removed
at the position(s) the ampersand occurs.
(b) Dummy parameters are replaced only once at each occurrence as the
encompassing macro expands. This prevents the "infinite substitution” which would
occur if adummy parameter evaluated to itself.
In summary, parameter evaluation follows these rules:

leading and trailing tabs and blanks are removed

guoted strings are passed with their string quotes intact

nested brackets enclose arbitrary characters with delimiters

aleading percent symbol causes immediate numeric evaluation

an up-arrow passes a specia character as aliteral value

an up-arrow prevents evaluation of a dummy parameter

the"&" operator is removed next to a dummy parameter

dummy parameters are replaced only once at each occurrence
Figures 23, 24, and 25 show examples of macro definitions and invocations which
illustrate these points. In Figure 23, for example, two macros are defined, called
MAM and MAC2, which each have several dummy parameters. In this case, the macro
definitions are headed by "DB" statementsin order to reveal the actual values which

are passed in each case. Thereisasingle (mainline) invocation of MAM with the
actual parameters

64
MACRO PARAMETER EVALUATION

MAC1 MACRO AB,.CD,S

;ENTERING MACRO 1:
DB '‘&A &B &C &D'

DB S
A: NOP
MVl B|l
C&l: NOP
L&A&D: NOP
;LEAVING MACRO 1
ENDM
MAC2 MACRO EFGH,S

;ENTERING MACRO 2:
DB '&E &F &G &H'
DB S
MVl MH
MAC1 EF&M,AH.S
;LEAVING MACRO 2

000F X EQU 15

MAC2 1, X+, 9% X + 1, 'kwote
+ "ENTERING MACRO 2:
0000+492020582B DB I X+116
0009+6B776F 7465 DB 'kwote
000E+3610 MVI M,16
+ MAC1 1,M,1,16,kwote
+ "ENTERING MACRO 1:
0010+49204D 2049 DB '1IM116
0018+6B776F7465 D 'kwote
001D+00 I: NOP
001E+3601 MVI M|
0020+00 I: NOP
0021+00 L116: NOP
+ "LEAVING MACRO 1
+ ENDM
+ "LEAVING MACRO 2
+ ENDM
0022 END

Figure 23. Macro Parameter Evaluation Example.

65
I,, X+1, % X + 1, 'kwote'

which assocates | with E, the null sequence with F, the sequence X+1 with G, the
value 16 with H, and the literal string 'kwote' with S. MAC2 expands, filling the DB
and MV instructions with the substituted values. Before leaving MAC2, MACL is
invoked with the value of E (the sequence I), the concatenation of the dummy argument
F with the sequence M (producing "M" since F's value is null), along with the literal
value A, followed by the value of H (which is 16), and terminated by the value of S
(yielding the string 'kwote). These values are associated with MACI's dummy para-
meters. Upon expanding MAC1, the DB statements are filled-out, followed by the
substitution of A asalabel (producing A'svalue 1). The MVI instruction references
memory since B'svalueis M. Note that the concatenation of C with 1 reducesto a
concatenation of A with 1 since C'svaueis A. The replacement of C by A congtitutes
a substitution of a single occurrence of a dummy parameter, and thus the A whichis
produced is not itself replaced at this point. Finally, the literal value L is concatenated
to the value of A and D to produce the label L116.

Figure 24 illustrates the use of bracketed notation, using IRP's (indefinite repeats)
within two macros, caled IRPM1, IRPM2, and IRPM 3. Note that one bracket level
isremoved in the first invocation of IRPM 1, leaving the IRP list with one bracket
level (required in the IRP heading). Similarly, the IRPM2 invocation also eliminates
the outer bracket level, but these brackets are replaced at the IRP heading within
IRPM2. IRPM3 has three distinct dummy parameters which are reconstructed as a
single list at the IRP heading which it contains. IRPM4 shows the effect of passing
parameters through two macro invocation levels by accepting a single parameter X,
which isimmediately passed along to the IRPM 1 macro. Note that the invocation
requires three bracket levels: the first is removed at the invocation of IRPM4, the
second level isremoved at the nested invocation of IRPM1 inside IRPM4, and the
innermost level isrequired at the IRP heading within IRPM 1.

Figure 25 presents various combinations of bracketed actual parameters, quoted
strings, and escape sequences. The MAC1 macro has two parts: the first portion
includes a"DB" statement which shows the value of the first parameter X (if it is

not empty), and the second part produces the value of Y, if not empty. Note that

the first invocation includes a properly nested bracketed sequence for X, and an empty
parameter for Y. The second invocation sends a properly nested bracketed expression
for X which produces an empty value since no characters remain after the brackets
are removed. The second parameter includes a quoted string Cstring of pearls) and

a hexadecimal value which becomes a part of the "DB" in MACL1.

The third invocation of MAC1 passes a bracketed expression, which includes a

quoted string (i.e., the pair of adjacent apostrophes), followed immediately by a sequence
of ASCII characters. Note that the pair of apostrophes are passed intact since they

appear as an empty quoted string. In this case, the value of Y isempty. The

remaining examples show various cases of strings and escape sequences. In particular,
one must take care in passing quoted strings which themselves contain apostrophes,
since a pair of apostrophes is considered a single apostrophe at each evaluation level

in the sequence of macro invocations. Pay particular attention to the use of the

escape character to pass an unevaluated dummy parameter from MAC2 to the MAC1
invocation.

0000+00
0001+00
0002+00

0003+00
0004+00
0005+00

0006+00
0007+00
0008+00

0009+00
000A+00
000B+00
000C

66

IRPM1 MACRO X
;INDEFINITE REPEAT MACRO

Y:

IRP Y, X

NOP

ENDM

ENDM

IRPM1 <<ONE,TWO,THREE>>
ONE: NOP

TWO: NOP

THREE:NOP

IRPM2 MACRO X

Y:

IRP Y ,<X>

NOP

ENDM

ENDM

IRPM2 <FOUR,FIVE,SIX>
FOUR: NOP

FIVE: NOP

SIX: NOP

IRPM3 MACRO X1,X2,X3

Y:

IRPM4

IRP Y, <XI,X2,X3>

NOP

ENDM

ENDM

IRPM3 SEVEN,EIGHT,NINE
SEVEN: NOP
EIGHT: NOP

NINE: NOP

MACRO X

IRPM1 X

ENDM

IRPM4 <<<TEN,ELEVEN,TWELVE>>>
TEN: NOP

ELEVEN: NOP
TWELVE: NOP

END

Figure 24. Parameter Evaluation using Bracketed Notation.

67

; SAMPLE BRACKETED PARAMETERS, WITH ESCAPE CHARACTER

MAC1

0000+3C4C454654

001F+737472696E

0030+412051554F

0046+7269676874

00

0057+6973207468

006B+4845524520
MAC2

X

000A+= 770001
007E+3C
007F+41504152
0083+7768617427

MACRO X,Y
DB '&Xo :(ONE)
IF NUL Y
EXITM
ENDIF
DB Y {(TWO)
ENDM

MAC1 <<LEFT SIDE> MIDDLE <RIGHT SIDE>>

DB '<LEFT SIDE> MIDDLE <RIGHT SIDE>";(ONE)

MAC1 <>.<'string of pearls,34H>

DB 'string of pearls,34H
MAC1 <A QUOTEISA RIGHT?>

DB 'A QUOTE ISA RIGHT?
MAC1 <><'right, but also -->

DB right, but also

MAC1 <isthis',-oconfusing-', 63>
DB 'isthis 0,"'confusing-,63 ;(TWO)
MAC1 <HEREISA ~>AND A 77>
DB 'HEREISA >ANDA ;(ONE)
MACRO APAR,BPAR
LOCAL X
EQU 10
DB APAR
MAC1 "APAR,BPAR
ENDM

MAC2 (X+5)*4,'what"s going on?

EQU 10

DB (?20001+5)*4

DB '‘APAR' ;(ONE)
DB ‘what"s going on? ;(TWO)

Figure 25. Examples of Macro Parameter Evaluation.

It is worthwhile examining the various parameters and their evaluations in Figure
25 to ensure that the rules for evaluation given in this section are consistent.

;(TWO)
;(ONE)

;(TWO)

68
8.8. The MACLIB Statement.

The macro assembler allows the programmer to create and reference "macro
library" files which are external to the mainline program. The form of the macro
library referenceis

MACLIB libname

where "libname" is an identifier which references a particular file "libname.LIB" which
is assumed to exist on the diskette. Macro libraries are in source program form, and
can thus be easily created and modified by the programmer using the CP/M system
editor (ED).

In order to speed-up the assembly process, macro libraries are read only on the
first assembly pass. This places some restrictions on the use of the MACLIB statement,
as listed below:

(a) the statements included in the macro library cannot generate machine code.
For example, comments, EQU's, SET's, and MACRO definitions are allowed, while DB
statements outside macro definitions are not allowed.

(b) Macro libraries are not normally listed with the source program (although
thereis an overriding parameter which can be supplied - see Assembly Parameters).

(c) All MACLIB statements must appear before the mainline program macro
definitions. Generally, the MACLIB statements are placed at the beginning of the
program, followed by the mainline declarations and machine code.

The principal advantage of the MACLIB feature is that the programmer can
predefine macros which enhance the facilities of the assembly language itself. For
example, the additional operations codes of the Zilog Z-80 microprocessor can be
defined in amacro library which is reference in a single statement

MACLIB Z80

which causes the assembler to read the file "Z80.LIB" from the diskette, containing
the necessary macros for Z-80 code generation. These macros can then be referenced
within the program intermixed with the usual 8080 mnemonics.

Normally, the "libname.LI1B" file is assumed to exist on the currently logged

disk drive. The programmer can override this default condition using a special parameter
'/I' when the macro assembler is started which redirects the ".LIB" referencesto a
different diskette (see Assembly Parameters).

Figures 10 and 11 show the use of the macro library facility, asintroduced in
the initial macro discussion. The following sections contain additional examples of the
use of MACLIB in practical applications.

69
9. APPLICATIONS OF MACROS

The MAC assembler provides a powerful tool for microcomputer systems develop

ment through its macro facilities. In order to demonstrate this tool, a number of
applications of macros in the solution of practical problems are described in some

detail in the following sections. Four particular applications areas are considered:

use of macros in implementation of special-purpose languages, emulation of non-standard
machine architectures, implementation of additional control structures, and operating
systems interface macros.

9.1. Specia Purpose Languages.

A wide variety of microcomputer designs can be broadly classed as "controller"
applications. Specifically, the microcomputer is used as the controlling element in
sequencing and decision-making as real-time events are sampled and directed.

Typical applications of this sort include assembly line sensing and control, metal
machine control, data communications and terminal control functions, production in
strumentation and testing, and traffic control systems.

In many cases, application programmers set up the sequence of operations that

the microprocessor is to carry-out in performing its particular task. In order to avoid
unnecesary details, the application programmer is not expected to know how to program
and debug microcomputer assembly language programs.

In this situation, it is useful to define a "language" through macros which suits

the particular application. The application programmer then uses these predefined
macros as the primitive language elements. If properly defined, the application language
is easily programmed, allowing considerable machine independence. That is, an applica
tion program written for a particular microprocessor can be used with another processor
by changing the definitions of the individual macros which implement the primitive
operations. Further, the macro bodies can incorporate debugging facilities for applica
tion development.

In order to illustrate the notion of language definition, consider the following

situation. Hornblower Highway Systems, Inc., produces "turnkey" traffic control systems
for cities throughout the country. Their hardware subsystems consist of various traffic
lights and sensors which are customized for the traffic layout in a particular city.

When Hornblower negotiates a contract, their engineers survey the intersections of the
city, and produce plans which show a configuration of their standard hardware for each
intersection, along with the "algorithms' required for traffic flow at that point.

The standard hardware items which Hornblower manufactures consist of the
following. Central and corner traffic lights which display green, yellow, and red (or
off completely), pushbutton switches for pedestrian cross requests, road "treadles’ for
sensing the presence of an automobile at an intersection, and a central controller box.

The central controller box contains an 8080 microcomputer connected through
external logic to relays which control the lights, and "latches" which holds the sensor
input information. The controller box aso contains atime of day clock, which changes
on an hourly basis from 0 through 23. The 8080 processor in the controller box can

be configured for any particular intersection with up to 1024 bytes of programmable

70
read only memory (PROM) in 256 byte increments. Although random access memory
can be included in the controller box, Hornblower uses only ROM when possible.

Thus, the Hornblower engineers examine the hardware regquirements for each
intersection in the city, and produce a set of hardware configuration plans which
intermix the various standard components. Programs are then written and debugged
which control each intersection, based upon predicted traffic patterns.

The intersection of Easy St. and Maria Ave., for example, controls minimal

traffic and thus consists of a controller box with a single central light. The "algorithm"
for thisintersection isto simply aternate red and green lights between Easy and

Maria, with a"bias" toward Easy St., since traffic along Easy has measured higher in

the past surveys. Thus, the green light along Easy lasts for 20 seconds, while the

green along Marialast only 15 seconds. Given this situation, the application programmer
writes the following program:

;HORNBLOWER HIGHWAY'S SYSTEMS, INC.
INTERSECTION:
'EASY ST.(N-S)/ MARIA AVE. (E-W)

MACLIB INTERSECT ;LOAD MACROS
CYCLE: SETLITE NS,GREEN
SETLITE EW,RED

TIMER 20 SWAIT 20 SECS

CHANGE LIGHTS

SETLITE NS YELLOW
TIMER 3 JWAIT 3 SECS
SETLITE NS,RED
SETLITE EW,GREEN
TIMER 15 JWAIT 15 SECS
CHANGE BACK

SETLITE EW,YELLOW
TIMER 3 JWAIT 3 SECS

RETRY CYCLE

The macro library "INTERSECT. LIB" contains the macro definitions which implement
the "primitive" operations SETLITE and TIMER which set the central traffic light, and
time-out for the specified interval, respectively. Further, the RETRY macro causes

the traffic light to recycle on each light change. Note that the sequence of operations

is easy to write, and is completely machine independent.

Figure 26 gives an example of amacro library for "intersect”" which assumes

the following hardware with an 8080 processor: the central traffic light is controlled
by the 8080 output port 0 (given by "light"), while the time of day clock is read from
port 3 ("clock"). Further, the north-south ("nshits") of the central light are given by
the high order 4 bits of output port 0, while the east-west direction ("ewbits") is
specified in the low order 4 bits of output port 0. When either of these fieldsis set

to 09 19 2, or 3, the light in that direction is turned off, or set to red, yellow, or
green, respectively. Thus, the SETLITE macro in Figure 26 accepts both a direction
(NS or EW), along with a color (OFF, RED, YELLOW, or GREEN), and sets the specified
direction to the appropriate color.

macro library for basic intersection

71
;input/output ports for light and clock
light equ 00h ;traffic light control
clock equ 03h ;24 hour clock (0,1,...,23)

;constants for traffic light control

nshits equ 4 ;north souuth bits
ewbits equ 0 ;east west bits

off equ 0 ;turn light of f

red equ 1 ;value for red light
yellow equ 2 ;value for yellow light
green equ 3 ;green light

setlite macro dir,color
;set light "dir" (ns,ew) to "color" (off,red,yellow,green)

mvi a,color shl dir&bits ;;color readied
out light ;;sent in proper bit position
endm

timer macro seconds
;construct inline time-out loop
local ti,t2,t3 ;;loop entries

mvi d,4* seconds ;;basic loop control
tl: mvi b,250 5250msec* 4 =1 sec
t2: mvi c,182 ;;182 * 5,5usec = Imsec
t3: dec c nlcy =.5usec
jnz t3 ;710 cy = 5.5 usec
dec b ;;count 250,249
jnz t2 ;;loop on b register
dec d ;;basic loop control
jnz t1 ;;loop on d register
;arrive here with approximately "seconds' secs timeout
endm

clock? macro low,high,iftrue
;jump to"iftrue" if clock is between low and high

local iffalse ;;alternate to true case

in clock ;;read real-time clock

if not nul high ;;check high clock

cpi high ;;equal or greater?

jnc iffalse ;;Skip to end if so

endif

cpi low ;:lessthan low value?

jnc iftrue ;:5Kip to label if not
iffalse:

endm

retry macro golabel
;continue execution at "golabel"
jmp golabel
endm

Figure 26. Macro Library for Basic Intersection.

72

The TIMER macro in Figure 26 uses the internal cycle time of the 8080 processor
to construct an inline timing loop, based on the value of SECONDS. Note that this
loop is not generated as a subroutine, since Hornblower prefers not to include RAM
in the controller box (subroutines require return addresses in RAM).

In addition to the basic intersection macro library, Hornblower has also defined

macro libraries for all of the optional hardware components. Figure 27a, for example,
isincluded when the intersection contains treadles in the street to detect automobiles,
while Figure 27b shows the macro library for pedestrian pushbuttons. In the case of
automotive treadles, the sensors are attached to input port 1 (“trinp") of the processor.
The treadles, however, require a "reset" operation which clears the latched value
through output port 1 ("trout") of the controlling 8080 processor. In any particular
intersection, the treadles are numbered clockwise from true north, labelled 0, 1, through
amaximum of 7 treadles. Each sensor and reset position of the treadle ports correspond
to one hit position, numbered from the least to most significant bit. Thus the treadle

#0 sensor is read from bit 0 of port 1, and reset by setting bit O of output port 1.
Similarly, treadle #1 uses bit position 1 of input and output port 1. The TREAD?
macro is invoked to sense the presence of alatched value for treadle "tr* and, if on,

the sensor is reset with control transferring to the label given by "iftrue.11

Figure 27b shows the macro library which processes pedestrian pushbuttons.
Hornblower's hardware is set up to sense the latched pedestrian switches on input port
0 ("ewinp") as asequencel'sand O'sin the least significant positions, corresponding
to the switches at the intersection. Thus, if there are four pedestrian switches, bit
positions 0,1,2, and 3 correspond to these switches. A "1" bit in any of these positions
indicates that the pushbutton has been depressed. Unlike the automotive treadles, the
crosswalk switch latches are al cleared whenever input port O isread. In addition

to these macro libraries, Hornblower has defined several additional libraries which
support optional hardware manufactured by their company.

The intersection of Bumpenram Boulevard and Lullabye Lane presents a somewhat
more complicated situation. Bumpenram Blvd. carries heavy traffic in an E-W direction
to and from the center of town. Lullabye Ln., however, feeds aresidentia portion

of the city, running perpendicular to Bumpenram in a N-S direction. The contracting
city has specified that the traffic control should he biased toward Bumpenram Blvd.

as follows: the traffic light must remain green along Bumpenram until the treadles
along Lullabye detect the presence of automobiles or until the pedestrian switches are
pushed. At that time, the light must change to alow the traffic to move N-S through
Lullabye Ln., allowing al traffic to clear before returning to the major E-W flow
along Bumpenram Blvd. Late night traffic along Bumpenram is not very heavy, so the
city has also specified that the E-W light flashes yellow and and N-S direction flashes
red between the hours of 2 and 5 AM.

The application program created by Hornblower for the Bumpenram Blvd. and
Lullabye Ln. intersection is shown in Figure 28. Each major cycle of the traffic light
enters at "CY CLE" where the time of day is tested. If between 2 and 5, then control
transfersto "NIGHT" where the yellow/red lights are flashed in the appropriate
directions. If not between 2 and 5 AM, the switches and treadles are sampled until
N-Straffic along Lullabye Ln. is sensed. If cross traffic is detected, the lights switch
until all the traffic is through. Sampling also stops if the time of day ever reaches

2 AM.

73
;macro library for street treadles

trinp equ Olh ;treadle input port
trout equ Olh ;treadle output port

tread? macro tr,iftrue
tread?' isinvoked to check if
;treadle given by tr has been sensed.
;if so, the latch is cleared and control
;transfers to the label "iftrue”
locd iffalse ;;in case not set

in trinp ;;read treadle switches

ani 1shltr ;;mask proper bit

jz iffalse ;;skipresetif O

mvi a,| shl tr;;to reset the bit

out trout ;;clear it

jmp iftrue ;;go to true label
iffalse:

endm

Figure 27a. Macro Library for "treadle" Control.

;macro library for pedestrian pushbuttons
cwinp equ 00h ;input port for crosswalk

push? macro iftrue

;"push?' jumpsto label "iftrue" when any one
;of the crosswalk switches is depressed. The
;value has been latched, and reading the port
;clears the latched values

in cwinp ;;read the crosswalk switches
ani (1 shl cwent) - 1 ;;build mask
jnz iftrue ;;any switches set?
;continue on false condition
endm

Figure 27b. Macro Library for Corner Pushbuttons.

0004 =
0000 =
0001 =

0000

000C
0010

0014
001B
0029
0037
003E

0041
0045
0057
005B
005F

0071
007F

008D

0090
00A2

00AS5
00A9
00AD
00BF
00C3
ooc7
00D9

74
;INTERSECTION: BUMPENRAM BLVD / LULLABYE LN.

CWCNT EQU 4 ;SET TO 4 CROSSWALK SWITCHES

LULLO EQU O ;NAME FOR TREADLE ZERO

LULLLT EQU 1 ;NAME FOR TREADLE ONE
MACLIB INTER ;BASIC INTERSECTION
MACLIB TREADLES ;INCLUDE TREADLES
MACLIB BUTTONS ;INCLUDE PUSHBUTTONS

CYCLE: ;ENTER HERE ON EACH MAJOR CYCLE OF THE LIGHT

CLOCK?2,5NIGHT ;SPECIAL FLASHING?

;NOT BETWEEN 2 AND 5 AM

SETLITE NS,RED ;RED LIGHT ON LULLABYE

SETLITE EW,GREEN ;GREEN ON BUMPENRAM

SAMPLE: ;SAMPLE THE BUTTONS AND TREADLES

PUSH? SWITCH ;ANYONE THERE?

TREAD? LULLO,SWITCH ;TREADLE 0?

TREAD? LULLL,SWITCH ;TREADLE 1?

CLOCK? 2,NIGHT JPAST 2 AM?

RETRY SAMPLE ;TRY AGAIN IF NOT

SWITCH:

;SOMEONE ISWAITING, CHANGE LIGHTS

SETLITE EW,YELLOW ; SLOW 'EM DOWN

TIMER 3 JWAIT 3 SECONDS

SETLITE EW,RED ;STOP 'EM

SETLITE NS,GREEN ;LET 'EM GO

TIMER 23 ;FOR AWHILE

DONE?: ;ISALL THE TRAFFIC THROUGH ON LULLABYE?

TREAD? LULLO,NOTDONE ;TREADLE 0?

TREAD? LULL1,NOTDONE ;TREADLE 1?

;NEITHER TREADLE ISSET, CYCLE

RETRY CYCLE ;FOR ANOTHER LOOP

NOTDONE:

TIMER 5 JWAIT 5 SECONDS

RETRY DONE? ;TRY AGAIN

NIGHT: s THISISNIGHTTIME, FLASH LIGHTS

SETLITE EW,OFF ;TURN OFF

SETLITE NS,OFF ;TURN OFF

TIMER 1 SWAIT WITH OFF

SETLITE EW,YELLOW ;TURN TO YELLOW

SETLITE NS,RED ;TURN TO RED

TIMER 1 ;LEAVE ON FOR 1 SEC

RETRY CYCLE ;GO AROUND AGAIN

Figure 28a. Traffic Control Algorithm using "-M" Option.

75
;INTERSECTION: BUMPENRAM BLVD / LULLABYE LN.

0004 = CWCNT EQU 4 ;SET TO 4 CROSSWALK SWITCHES

0000 = LULLO EQU O ;NAME FOR TREADLE ZERO

0001 = LULLLT EQU 1 ;NAME FOR TREADLE ONE
MACLIB INTER ;BASIC INTERSECTION

MACLIB TREADLES ;INCLUDE TREADLES
MACLIB BUTTONS ;INCLUDE PUSHBUTTONS

CYCLE: ;ENTER HERE ON EACH MAJOR CYCLE OF THE LIGHT
CLOCK?2,5NIGHT ;SPECIAL FLASHING?
0000+DBO03
0002+FE05
0004+D20C00
0007+FE02
0009+D2A500
;NOT BETWEEN 2 AND 5 AM
SETLITE NS,RED ;RED LIGHT ON LULLABYE
000C+3E10
000E+D300
SETLITE EW,GREEN ;GREEN ON BUMPENRAM
0010+3E03
0012+D300

SAMPLE: ;SAMPLE THE BUTTONS AND TREADLES
PUSH? SWITCH ;ANYONE THERE?
0014+DB00
0016+E60F
0018+C24100
TREAD? LULLO,SWITCH ;TREADLE 0?
001B+DB01
001D+E601
001F+CA2900
0022+3E01
0024+D301
0026+C34100
TREAD? LULL1,SWITCH ;TREADLE 1?
0029+DB01
002B+E602
002D+CA3700
0030+31302
0032+D301
0034+C34100
CLOCK?2,,NIGHT ;PAST 2 AM?
0037+DBO3
0039+FE02
003B+D2A500
RETRY SAMPLE ;TRY AGAIN IF NOT
003E+C314C0

Figure 28b. Intersection Algorithm with "*M" in Effect.

76
SWITCH:
;SOMEONE ISWAITING, CHANGE LIGHTS
SETLITE EW,YELLOW ;SLOW 'EM DOWN

0041+31302 mvi AYELLOW SHL EWBITS
0043+D300 OUT LIGHT

TIMER 3 SWAIT 3 SECONDS
0045+160C mvi D,4*3

0047+06FA ?20005: MVI 13,250
0049+013136 ?720006: MVI C,182

004B+0D ?720007: DCR C
004C+C241300 INZ 720007
004F+05 DCR B
0050+C24900 INZ 770006
0053+15 DCR D
0054+C24700 INZ 770005

SETLITE EW,RED ;STOP 'EM
0057+3E01 mvi A,RED SHL EWBITS
0059+D300 OUT LIGHT

SETLITE NS,GREEN ;LET 'EM GO
00513+31330 mvi A,GREEN SHL NSBiTs
005D+D300 OUT LIGHT

TIMER 23 ;FOR AWHILE
005F+165C mvi D,4*23

0061+06FA ?20008: MVI 13,250
0063+0EB6 ?720009: MVI C7182

0065+0D 220010: DCR C
0066+C26500 Nz 72010
0069+05 DCR B
006A+C26300 INZ 220009
006D+15 DCR D
006E+C26100 NZ 720008
DONE?;ISALL THE TRAFFIC THROUGH ON LULLABYE?

TREAD? LULLO,NOTDONE "TREADLE 0?
0071+DBOI IN TRINP
0073+E601 ANl 1SHLLULLO
0075+CA7F00 jz 220011
0078+3E01 MVI A,1SHL LULLO
007A+D301 OUT TROUT
007C+C39000 jmp NOTDONE

TREAD? LULL1,NOTDONE "TREADLE 1?
007F+DBO IN TRINP
0081+E602 ANl 1SHL LULL1
0083+CA8D00 jz 220012
0086+31302 mvi Al SHL LULL1
0088+D301 OUT TROUT
008A+C39000 jmp NOTDONE

‘NEITHER TREADLE IS SET, CYCLE

RETRY CYCLE :FOR ANOTHER LOOP

008D+C30000 jmp CYCLE

Figure 28c. Algorithm with Generated Instructions.

77

Figure 28a shows the assembly with ho macro generated lines (controlled by the

"M" parameter - see Assembly Parameters). Although the machine code locations are
shown to the left, no 8080 machine code is listed. Figure 28b shows a segment of

this same program with machine code generation, but no 8080 mnemonics (controlled
by "*M™), while Figure 28c shows another segment with normal macro generation. Note
that Figure 28ais the most readable to the application programmer, while Figures 28b
and 28c would be useful for macro debugging.

It should be noted that the resulting program requires no random access memory

for execution, since all temporary values are maintained in the 8080 registers. Further,
no subroutine calls take place and thus the 8080 stack is not used. Finaly, the program
islessthan 256 bytes, so it can be placed in a single programmable read only memory
chip for a minimum memory/processor configuration.

Macro based languages of this sort can easily incorporate debugging facilities.

In the case of Hornblower, Inc., the principal agorithms are constructed and tested

in the CP/M environment by including debugging traces within each macro. In each
case, adebug "flag" istested and, if true, machine code is generated to trace the
operation at the console, rather than actually executing the input/output calls. Figure
29 shows the modification required to the "INTER.LIB" file to include the debugging
code. Although only the SETLITE macro is shown, similar coding is easily included
for the remaining macros. Figure 29 includes the debug flag at the beginning of the
library (initially set FALSE), aong with the appropriate equates for CP/M system calls.
If the debug flag is set to true by the application programmer, specia trace cals are
included. Note, for example, that the SETLITE macro constructs a message of the
form

DIR changing to COLOR

where "DIR" and "COLOR" are the parameters sent to the macro. If debug remains
false in the application program, this trace code is not assembled.

Figure 30a shows an application program for a particular intersection where the

debug flag is set to TRUE after the macro library isincluded. As aresult, each

macro expansion assembles a call to the CP/M operating system to trace the light

direction and color change, skipping the machine code which will eventually be assembled
to drive the actual Hornblower hardware.

The application programmer then uses CP/M to trace the operation of the

algorithm, which results in the print-out shown in Figure 30b. Each trace line
corresponds to an invocation of SETLITE with a specific direction and color, with the
appropriate wait time between print-outs.

Upon completion of the initial debugging under CP/M, the SET statement in the
application program is removed (the ORG may be removed as well), and the program
is re-assembled. Thistime, the CP/M traces are not included since the debug flag
remains FALSE. As aresult, the actual Hornblower hardware interface is assembled
instead. The newly assembled program is then placed into PROM in the controller
box for that intersection and tested in its target enviroment.

78
;macro library for basic intersection

;global definitions for debug processing
true equ Offffh ;value of true
fdse equ not true;value of false
debug set fdse ;initialy fase

bdos equ 5 ;entry to cp/m bdos
rchar equ 1 ;read character function
wbuff equ 9 ;write buffer function

cr equ Odh ;carriage return

if equ Oah ;line feed

;input/output ports for light and clock
light equ 00h ;traffic light control
clock equ 03h ;24 hour clock (0,1,...,23)

;bit positions for traffic light control

nshits equ 4 ;north souuth bits
ewbits equ 0 ;east west bits
;constant values for the light control

off equ 0 ;turn light of f

red equ 1 ;value for red light
yellow equ 2 ;value for yellow light
green equ 3 ;green light

setlite macro dir,color
;set light given by "dir" to color given by "color"

if debug ;;printinfo at console
loca setmsg,pastmsg
mvi c,wbuff ;;write buffer function
Ixi d,setmsg
call bdos ;;writethe traceinfo
jmp pastmsg
setmsg: db cr,If
db '& DIR changing to & COLOR$
pastmsg:
exitm
endif
mvi a,color shl dir&bits ;;readied
out light ;;sentin proper bit position
endm

(remaining macros are identical to the previous figure,
but each contains trace information similar to "setlite")

Figure 29. Library Segment with Debug Facility.

79

0100 ORG 100H ;READY FOR THE DEBUG RUN
MACLIB INTER ;BASIC MACRO LIBRARY

FFFF # DEBUGSET TRUE ;READY DEBUG TOGGLE

0100 CYCLE: SETLITE NS,RED

0120 SETLITE EW,GREEN

0142 TIMER 10

0154 SETLITE EW,YELLOW

0177 TIMER 2

0189 SETLITE EW,RED

01A9 SETLITE NS,GREEN

01CB TIMER 10

01DD SETLITE NS YELLOW

0200 TIMER 2

0212 RETRY CYCLE

Figure 30a. Sample Intersection Program with Debug.

NS changing to RED

EW changing to GREEN
EW changing to YELLOW
EW changing to RED

NS changing to GREEN
NS changing to YELLOW
NS changing to RED

EW changing to GREEN
EW changing to YELLOW
EW changing to RED

Figure 30b. Debug Trace Printout.
This approach to macro based language facilities provides a simple tool for rapid
development and debugging of programs where high level languages are not available,
but a measure of machine independence is desired. The macros are easy to develop,
and the application programs are simple to write and debug.

80
9.2. Machine Emulation.

A second application of macro processing is found in the "emulation” of a

machine operation code set which is different from the 8080 microprocessor. In
particular, a machine architecture is selected, based upon an existing or fictitious
operation code set, and a macro is written for each "opcode," taking the general form:

op MACRO d-lld-21...1d-n
opcode emulation
ENDM

where "op" isamnemonic instruction in the emulated machine and the dummy
parameters d-1 through d-n represent the optional operands required by "op." The
"macro body" includes 8080 instructions which carry-out the operation on the 8080
microprocessor. That is, the instructions within the macro body perform the same
function as the "op" with its arguments on the emulated machine.

Upon completion of the opcode macro definitions, a program can be written
using these opcodes, which expand to the equivalent 8080 instructions, but perform the
emulated machine operations.

In order to be specific, consider the situation encountered by Nachtflieger
Maschinenwerke, an internationally famous manufacturer and distributor of automated
machining equipment. Though incorporating microprocessors in controlling their equip
ment, Nachtflieger expectsto build a custom LS| processor for their future products.
The processor, called the KDF-10 will be used primarly as an analog sensing and control
element in alarger electronic environment. Asaresult, the KDF-10 word size must
accommodate digital values corresponding to analog signals of up to twelve hits. In
order to allow computations on these twelve bit values, Nachtflieger engineers are
going to alow afull 16-bit word in the KDF-10, along with a number of primitive
operations on these values. Externally, the KDF-10 will provide four analog to digital
(A-D) input "Ports" which can be read by KDF-10 programs, along with four digital to
analog output ports (D-A) which can be written by the program. The KDF-10 will
automatically perform the A-D and D-A conversion at these ports.

Begin forward thinkers, the engineers at Nachtflieger have designed the KDF-10

as a"stack machine," which is similar in concept to the Hewlett-Packard HP-65 hand
held programmable calculator, where data can be loaded to the top of a"stack” of

data elements, automatically "pushing” existing elements deeper onto the stack. Similar
to the Reverse Polish Notation (RPN) of an HP-65, arithmetic on the KDF-10 will be
performed on the topmost stacked elements, automatically absorbing the stacked
operands as the arithmetic is performed. Somewhat simpler than the HP-65, the
designers settle upon the following three-character operation codes for the KDF-10:

SIZn reserves n 16-hit elements as the maximum size of
the KDF-10 operand stack. This operation code
must be provided at the beginning of the program.

81

RDM i Readsthe analog signal from input port i (0,1,2, or 3)
to the top of the stack, automatically pushing any
WRM o Writes the digital value from the top of the stack
to the D-A output port given by o, (0,1,2, or 3).
The value at the stack top is removed.

DUP Thetop of the KDF-10 stack is duplicated.

sum Thetop two elements of the KDF-10 stack are added,
both operands are removed, and the resulting sumis
placed on the top of the stack.

LSRn Performsalogical shift of the topmost stacked element
to theright by n bits (1,2, . . .,15), replacing the
original operand by the shifted result. Note that
L SR n performs a divWion of the topmost stacked
value by the divisor 2.

JMPa Branch directly to the program address given by the
label a.

Since the KDF-10 does not exist (except in the fertile minds of Nachtflieger
engineers), the software designers have decided to use the macro facilites of MAC to
emulate the KDF-10 using the 8080 microcomputer.

Figure 31 shows an example of a program for the KDF-10 which was processed

by MAC using the macro library defined by the Nachtflieger software group. In this
situation, the KDF-10 is connected to four temperature sensors which are attached at
strategic places on the machining equipment. The program continuously reads the four
input values from the A-D ports and computes their average value by summing and
dividing by four. This average value is then sent to D-A output port O whereit is

used to set environmental controls.

Referring to Figure .31, the program begins by reserving a stack of 20 elements,
which is much larger than required for this application (a maximum of four elements
are actualy stacked). The program then cycles following "LOOP," where the values
are read and processed. The four operations RDM 0, RDM 1, RDM 2, and RDM 3
read all four temperature sensors, placing their data values in the stack. The three
SUM operations which follow the read operations perform pairwise addition of the
temperature values, producing a single sum at the top of the stack. Since the average
valueis desired, the LSR 2 operator is applied to the stack top to perform the division
by four. Finally, the resulting average is sent to the D-A port using the WRM 0
operation code. Control then transfers back to LOOP, where the entire operation is
performed again.

Since Nachtflieger designers are emulating KDF-101s using 8080's, they have

created the macro library file, called "STACK.LIB" as shown in Figure 32. A macro
is shown in this figure for each of the KDF-10 opcodes, starting with the SIZ operator.
In this case, the program origin is set (since this must be the first opcode in the
program), and the stack areaisreserved. Note that double words of storage are

82

;AVERAGE THE VALUES WHICH ARE READ FROM ANALOG
;INPUT PORTS, WRITE THE RESULTING VALUE TO ALL
;THE D-A OUTPUT PORTS.

MACLIB STACK ;READ THE STACK MACHINE OPCODES

0000 Siz 20 ;CREATE 20 LEVEL WORKING STACK
012E LOOP. RDM 0 ;READ A-D PORT 0
0132 RDM 1 ;READ A-D PORT 1
0136 RDM 2 ;READ A-D PORT 2
013A RDM 3 ;READ A-D PORT 3

;ALL FOUR VALUES ARE STACKED, ADD THEM UP
013E SUM ;AD3+AD2
0140 sum ;(AD3+AD2)+ADI
0142 SUM ((AD3+AD2)+ADI)+ADO

;SUM ISAT TOP OF THE STACK, DIVIDEBY 4
0144 LSR 2 ;SHIFT RIGHT TWO = DIV BY 4
0152 WRM 0 'WRITE RESULT TO D-A PORT 0
0156 C32E01 JMP LOOP ;GO GET ANOTHER SET OF VALUES

Figure 31. A-D Averaging Program using "Stack Machine."

83

siz macro size

;set "org" and create stack

loca stack ;;label on the stack
org 100h ;;at base of TPA

Ixi sp,stack
jmp stack ;;past stack
ds size*2 ;;double precision

stack: endm

dup macro

;duplicate top of stack
push h
endm

sum macro
;add the top two stack elements

POP d ;;top-1to de
dad d ;;back to hl
endm
Isr macro len
;logical shift right by len
rept len ;;generate inline
xXra a ;;Clear carry
mov ah
rar ;;rotate with high 0
mov h,a
mov al
rar
mov l,a ;;back with high bit
endm
endm

adc0 equ 1080h ;a-d converter O
adcl equ 1082h ;a-d converter 1
adc2 equ 1084h ;a-d converter 2
adc3 equ 1086h ;a-d converter 3
dac0 equ 1090h ;d-aconverter O
dacl equ 1092h ;d-aconverter 1
dac2 equ 1094h ;d-aconverter 2
dac3 equ 1096h ;d-aconverter 3

rdm macro 7
;read a-d converter number "2c"

push h ;;clear the stack
;read from memory mapped input address

lhid adc& 7c

endm

wrm macro 7

:write d-a converter number 119¢"
shid dac& ?c ;;value written
POP h ;;restore stack
endm

Figure 32. "Stack Machine" Opcode Macros.

84

reserved since a 16-bit word size is assumed. The DUP, SUM, and L SR operators
follow the SIZ macro. In each case, the KDF-10's stack top is assumed to bein the
8080's HL register pair. Further, each operation which pushes the KDF-10 stack causes
the element in the 8080 HL pair to be pushed to the 8080 memory area reserved by

the SIZ opcode.

The DUP opcode simply pushes the HL register pair to memory, since the HL

pair is not altered in the 8080 during this operation. In the case of the SUM operator,
it is assumed that the KDF-10 programmer has somehow |oaded two valuesto the
KDF-10 stack. Thus, it must be the case that the HL registers contain the most
recently loaded value, while the 8080 memory stack contains the next-to-most recently
stacked value. The POP D operation loads the second operand to the DE pair in the
8080 CPU, then the topmost value and next to top value are added using the DAD D
operation. The resulting operand goes into the HL register pair, which is necessary

in the KDF-10 emulation, since the top of the KDF-10 stack is located in the 8080's
HL register pair.

The L SR opcode is somewhat more complicated. Since the 8080 does not support
adouble precision (16-bit) right shift of the HL register pair, the values must go
through the accumulator. Thus, the LSR macro contains a REPT loop which generates
inline machine code for each right shift. The inline machine code performs the right
shift by first clearing the carry (XRA A), followed by a high order right shift by one

bit (MOV A,H followed by RAR), then by alow order bit shift (MOV A,L followed by
RAR). Note that an intermediate bit may move from the high order byte to the low
order byte using the carry between high and low order byte shifts.

Referring to Figure 32, the RDM and WRM operation codes are defined by
"memory-mapped" input/output operations. That is, memory locations 1080H through
1087H are intercepted external to the 8080 microprocessor and treated as external

read operations. Thus, aload from location 1080H/1081H to HL istreated asaread
from A-D device 0, rather than from random access memory. This operation is simple
to perform in the KDF-10 emulation, since al program addresses are assumed to be
below 1000H, and thus any 8080 address bus values beyond 1000H must be memory
mapped 1/0. Asaresult, ADCO through ADC3 correspond to the locations where A-D
values 0 through 3 are obtained. Similarly, the D-A output values which are written

to locations 1090H through 1097H are intercepted as memory mapped output values
which are sent to the D-A converters rather than random access memory. The RDM
instruction is emulated by simply performing an LHLD from the appropriate memory
mapped input address (constructed through concatenation of the dummy parameter).
The HL valueisfirst pushed, since the KDF-10 RDM opcode performs this task
automatically, then the new value is loaded into the HL register pair. The WRM
opcode definition is similar, except the value to write is assumed to reside at the top

of the KDF-10 stack (and thus appears in the 8080 HL register pair). Thevalueis
written to the memory mapped output location, and the value is removed from the

HL pair by restoring HL from the 8080 stack.

In order to see the actual code generated by each of these macros, Figure 33

shows the same averaging program as given in Figure 31, except that the generated
8080 instructions are interspersed throughout the listing file (Figure 33 is the usua
output from MAC, while Figure 31 was generated using the parameter "M" which
suppresses generated mnemonics). It is worthwhile cross-referencing Figures 31, 32,
and 33 to ensure that the macro expansion processes are clearly understood.

85
;AVERAGE THE VALUES WHICH ARE READ FROM ANALOG
;INPUT PORTS, WRITE THE RESULTING VALUE TO ALL
;THE D-A OUTPUT PORTS.

MACLIB STACK ;READ THE STACK MACHINE OPCODES
Siz 20 ;CREATE 20 LEVEL WORKING STACK
0100+ ORG 100H
0100+312E01 LXI SP,720001
0103+C32E01 JMP 2720001
0106+ DS 20*2
LOOP: RDM O ;READ A-D PORT 0
012E+E5 PUSH H
012F+2A8010 LHLD ADCO
RDM 1 ;READ A-D PORT 1
0132+E5 PUSH H
0133+2A8210 LHLD ADC1
RDM 2 ;READ A-D PORT 2
0136+E5 PUSH H
0137+2A8410 LHLD ADC2
RDM 3 ;READ A-D PORT 3
013A+E5 PUSH H
013B+2A8610 LHLD ADC3
;ALL FOUR VALUES ARE STACKED, ADD THEM UP
SUM ;AD3+AD2
013E+DI POP D
013F+19 DAD D
sum ;(AD3+AD2)+AD1
0140+DI POP D
0141+19 DAD D
sum ((AD3+AD2)+AD1)+ADO
0142+DI POP D
0143+19 DAD D
;SUM ISAT TOP OF THE STACK, DIVIDEBY 4
LSR 2 ;SHIFT RIGHT TWO = DIV BY 4
0144+AF XRA A
0145+7C MOV AH
0146+1F RAR
0147+67 MOV HA
0148+7D MOV AL
0149+1F RAR
014A+6F MOV LA
014B+AF XRA A
014C+7C MQV AH
014D+IF RAR
014E+67 MOV HA
014F+7D MOV AL
0150+1F RAR
0151+6F MOV LA
WRM 0 JWRITE RESULT TO D-A PORT 0
0152+229010 SHLD DACO
0155+El POP H
0156 C32E01 jmp LOOP ;GO GET ANOTHER SET OF VALUES

Figure 33. Averaging Program with Expanded Macros.

86

A particular problem arose at Nachtflieger MW, however, which had to be

rectified: although programs could be effectively written for the KDF-10 computer
using the 8080 emulation, they could not be effectively debugged. The program of
Figure 33, for example, could be tested under the CP/M debugger (see the CP/M DDT
Users Guide), but required monitoring and tracing at the 8080 machine code level. It
became clear that higher level debugging tools were necessary.

As aresult, Nachtflieger designers added several "pseudo opcodes* which allow
debugging traces. The opcodes can be interspersed in the program, and selectively
enabled and disabled depending upon the debugging needs. In production, all debugging
traces would, of course, be disabled resulting only in absolute port 1/0. The additional
debugging opeodes are listed below.

PRN msg Print the message given by "msg" at the debugging
console whenever the print trace is enabled. The
message must be enclosed in broken brackets.

DMP Print the value of the top element in the KDF-10
stack (in hexadecimal).

TRTt Set machine code trace option to true. Each time
a KDF-10 machine operation is executed, the opcode
is printed, followed by the (approximate) KDF-10
machine code address, followed by the top two
elements of the KDF-10 stack, in the format:

OPC oploc top top,

where OPC is the opcode, oploc is the location, top
isthe top element, and top' is the second to the
top element, al in hexadecimal notation.

TRFt Disable the machine code trace. Only the KDF-10
instructions which physically appear between the TRT
and TRF opcodes are shown in the trace.

TRT p Enable the print/read trace. PRN opcodes which
follow produce output at the debugging console,
and are otherwise treated as comments. Further,
RDM and WRM opcodes prompt and display data
at the debugging console.

TRF p Disable the print/read trace. Only the PRN, RDM,
and WRM instructions which physically appear
between TRT and TRF interact with the console.

The convention is also taken that the traces are initially disabled at the beginning of
the program, and must be explicitly enabled with TRT opcodes.

Figure 34 shows the averging program of Figure 31 with interspersed debugging
statements. Note that the opcodes TRT t and TRT p are executed at the beginning

87
;AVERAGING PROGRAM WITH INTERSPERSED DEBUG CODE

MACLIB DSTACK ;READ THE STACK MACHINE
OPCODES

0000 Siz 20 ;CREATE 20 LEVEL WORKING STACK
0103 TRT T ;MACHINE CODE TRACE ON
0103 TRT P ;PRINT TRACE ON
0103 PRN <TRACE FOR AVERAGING PROGRAM>
012E LOOP. RDM 0 ;READ A-D PORT 0
01FO0 DMP JWRITE TOP OF STACK
022C RDM 1 ;READ A-D PORT 1
0267 DMP s WRITE TOP OF STACK
026A RDM 2 ;READ A-D PORT 2
02A5 DMP s WRITE TOP OF STACK
02A8 RDM 3 ;READ A-D PORT 3
02E3 DMP JWRITE TOP OF STACK
02E6 PRN <FOUR VALUESHAVE BEEN READ>

;ALL FOUR VALUES ARE STACKED, ADD THEM UP
0310 sum ;AD3+AD2
0324 DMP 'WRITE FIRST SUM
0327 sum ;(AD3+AD2)+AD1
0338 DMP JWRITE SECOND SUM
033E sum ;((AD3+AD2)+AD1)+ADO
0352 PRN <VALUES HAVE BEEN ADDED>
0378 DMP sWRITE SUM OF VALUES

;SUM ISAT TOP OF THE STACK, DIVIDEBY 4
037B LSR 2 ;SHIFT RIGHT TWO = DIV BY 4
0389 PRN <AVERAGE VALUE CALCULATED>
03131 DMP 'WRITE AVERAGE VALUE
03B4 WRM 0 'WRITE RESULT TO D-A PORT 0
03EE BRN LOOP ;GO GET ANOTHER SET OF VALUES
03F1 XIT ;EMIT EXIT CODE

Fiqure 34. Averaging Program with Debugging Statements.

88

of the program, thus enabling all trace options throughout the execution. The PRN
statement above the LOOP label printstheinitial sign-on, while the DMP statements
after each read operation give the value of the A-D port. Upon completion of the
four element read, the PRN opcode is used to indicate this fact. Each SUM operator
is followed by a DMP opcode which shows the current sum. Finally, the PRN and
DMP opcodes are used to display the final average value which is being sent to D-A
port 0. The "XIT" opcode shown at the end of the program will be introduced in the
paragraphs which follow.

Figure 35 shows the execution of the averaging program under DDT. Note that

the program headings appear at the points in the program where PRN opcodes are
placed. Further, the console is prompted for input in the case of an RDM opcode

(giving the absolute memory mapped input address in decimal), while the WRM instruction
produces a"D-A OUTPUT . ." message which shows the absolute memory mapped
output address as well as the data which iswritten. The opcodes are also traced

showing the opcode mnemonic, address, and top two stacked elements. The "RDM"
trace at the beginning, for example, shows the instruction address HAD, whichisin

the range of the first RDM of Figure 34 (012E and 01EF), and is followed by the two
values 0111 (i.e., the value just read) and C21D ("garbage" value, since only one element
is stacked). Thetraceiseasily followed at the KDF-10 level, showing each value

which is read-in, and the operations performed upon these values. Upon completion

of the debugging process under CP/M, the TRT opcodes are removed and the program

is reassembled, leaving only the 8080 instructions required in the production machine.
Nachtflieger systems engineers then take the resulting program and test its operation

in a hardware environment.

Forward thinking though they were, Nachtflieger engineers quickly realized that

the KDF-10 design had a number of deficiencies due to the paucity of arithmetic
operators and the total absence of conditional branching instructions. Further, there
was no provision for variable storage other than the stack. Thus, the KDF-11 naturally
evolved from the KDF-10, which incorporates these features. In particular, the operation
codes of the KDF-11 include:

DCL vn Declare (i.e., reserve) storage for avariable by
the name v, with optional size n. If nis omitted,
thenn=1isassumed. All DCL opcodes must fol
low the XIT opcode given below.

LITc Loadthevaue of theliteral constant c to the top
of the KDF-11 stack.

VAL v,i,c Load the value of the variable v optionally indexed by
the variable i with the optional constant offset c.
VAL V loadsthe value of V to the top of the stack,
VAL VJloads the value located at the address of
V plus the index value contained in |, while
VAL VJ,3loads the value at location V plus the
index 1, plus the constant index 3. In all cases, the
valueis placed at the top of the KDF-11 stack.

STOv,i,c Similar to the VAL operator, the STO opcode stores
the value obtained from the KDF-11 stack to the

89

ddt aver.hex
DDT VERS 1.4
NEXT PC
0406 0000
-gloo

TRACE FOR AVERAGING PROGRAM
A-D INPUT AT 4224 111

RDM 01AD 0111 C21D

(TOP)= 0111

A-D INPUT AT 4226 222

RDM 0255 0222 0111

(TOP)= 0222

A-D INPUT AT 4228 555

RDm 0293 0555 0222

TOP)= 0555

A-DINPUT AT 4230 444

RDM 021)| 0444 0555

(TOP)= 0444

FOUR VALUES HAVE BEEN READ
SUM 0312 0999 0222

(TOP)= 0999

SUM 0329 0BBB 0111

(TOP)= OBBB

SUM 0340 0CCC C21D
VALUESHAVE BEEN ADDED
(TOP)= 0CCC

AVERAGE VALUE CALCULATED
(TOP)= 0333

D-A OUTPUT AT 4240 0333

WRM 03DC 793B C21D

A-D INPUT AT 4224

Figure 35. Sample Execution of "Average' using DDT.

90

address given by v, plusthe optional index i, plus
the optional constant index given by c¢. Thetop ele-
ment of the KDF-11 stack is removed.

DIF The DIF opcode subtracts the top element of the KDF-11
stack from the next-to-top element of the stack,
and replaces both operands by their difference.

GEQ a The GEQ opcode tests the next to top element
(top") against the top of stack element (top),
and branches to the label given by "a" if top'
is greater than or equal to top. If not, program
control continues to the next opcode in sequence.

BRN a The BRN instruction replaces the IMP instruction
in the KDF-10 architecture to allow complete
separation of the KDF-11 and 8080 machines.

Figures 36a, 36b, 36¢, and 36d give the macro library which was constructed by the
Nachtflieger software group for KDF-11 machine emulation. Note that over half of
the macro library implements trace and debugging functions (Figures 36a and 36b)
while the remaining components implement the KDF-11 opcodes themselves. A brief
description is given below for each major section of this macro library, called
"DSTACK.LIB", before giving an example of its use.

Figure 36a shows the first portion of the macro library. Since this portion of

thelibrary is principally concerned with debugging functions, it begins with CP/M
system calls, function numbers, and equates for non-graphic characters, similar to the
examples given earlier. Although these values are not necessary for operation of the
KDF-11, they are necessary for the debugging functions which operate when the TRT
opcodeisin effect. Following the CP/M equates, the "toggles’ DEBUGT and DEBUGP
are set to false (0 value), which reflect the conditions of the debugging switches given
by TRT and TRF. When DEBUGT is true (1 value), machine operation codes are
traced. Similarly, when DEBUGP is true, PRN, RDM, and WRM operations interact
with the console.

The PRN macro shown in Figure 36a (left), for example, produces an inline
message with acall to CP/M to write the message whenever the DEBUGP toggle is
true; otherwise the PRN produces no generated code.

The UGEN macro which follows PRN in Figure 36ais invoked the first time

that the debugging subroutines are required by trace or print/read opcodes. When

invoked, the UGEN macro produces several inline subroutines which are used throughout
the debugging process. If no trace or print/read functions are invoked during the
assembly, UGEN is not invoked and thus no inline subroutines are included for debugging.
If UGEN isinvoked, the subroutines shown below are included inline;

@CH writesasingle ASCII character to the console

@NB writes asingle haf-byte (nibble) to the console

@HX writesafull hexadecimal byte value at the console

@AD writes afull address (double byte) value with preceding blank
@IN reads a hexadecimal value from the console to HL

;macro library for a zero address machine rrc
rrc

;begin trace/dump utilities ani Ofh ;;mask high nibble
call @nb ;;print high nibble

91

bdos equ 0005h ;System entry POP psw
rchar equ I ;read a character ani Ofh
wchar equ 2 ;write character jmp @Rb ;;print low nibble
whbuff equ 9 ;write buffer
tran equ 100h ;transient program area @ad ;;write address valuein hl
data equ 1100h ;data area push h ;;save value
cr equ Odh ;carriage return mvi a'’ ;;leading blank
If equ Oah ;line feed call @ch ;;ahead of address
POP h ;;high byteto a
debugt set 0 ;ntrace debug set false mov ah
debugp set 0 ;;print debug set false push h ;;copy back to stack
cal @hx ;;write high byte
prn macro pr POP h
;print message 'pr' at console mov al ;:low byte
if debugp ;;print debug on? jmp @hx ;;writelow byte
loca pmsg,msg ;;local message
jmp pmsg ;;around message @in: ;;read hex valueto hl from console
msg: db cr,If ;;return carriage mvi a'' ;;leading space
db '&PR$' ;;literal message call @ch ;;toconsole
pmsg: push h ;;save top element of stack IXi h,0 ;;starting value
Ixi d,msg ;;local message address @inO; push h ;;saveit for char read
mvi c,wbuff ;;write buffer 'til $ mvi c¢,rchar ;;read character function
call bdos ;;printit call bdos ;;read to accumulator
POP h ;;restore top of stack POP h ;;value being built in hl
endif ;;end test debugp Sui ‘0 ;;normalize to binary
endm cpi 10 ;;decimal ?
jc @inl ;carry if 0,1, 9
ugen macro ;may be hexadecimal af
;generate utilities for trace or dump Sui '‘A-'@'-10
local psub cpi 16 ;;athrough f?
jmp psub ;;jump past subroutines rnc ;;return with assumed cr
@ch: ;write character in reg-a @inl: ;;inrange, multiply by 4 and add
mov ea rept 4
mvi c,wchar dad h sshift 4
jmp bdos ;;return thru bdos endm
ora ;;add digit
@nb: ;;write nibblein reg-a mov l,a ;;and replace value
adi 90h jmp @inO ;;for another digit
daa
aci 40h psub:
daa ugen macro
jmp @ch ;;returnthru @ch ;redef to include once
endm
@hx: write hex valuein reg-a ugen ;;generatefirst time
push psw ;;save low byte endm
rrc
rrc end of trace/dump utilities

Figure 36a. Stack Machine Macro Library.

;begin trace(only) utilities

;begin dump(only) utilities

trace macro codemname dmp macro vnamen
;trace macro given by mname, ;dump variable vname for

;at location given by code

local psub

ugen

jmp psub
@tl: ds 2

@t2: ds 2

;n elements (double bytes)

loca psub ;;past subroutines

;;generate utilities ugen ;;gen inline routines
jmp psub ;;past local subroutines
;;temp for reg-1 @dm: ;;dump utility program

;;temp for reg-2 ;de=msq address,c=element count

92

@tr: ;;trace macro call
;bc=code address, de-message
shid @tl ;;store top req
pop h ;;return address
xthi ;reg-2 to too
shid @t2 ;;store to temp
push psw ;;save flags
push b ;;save ret address
mvi c,whuff ;;print buffer func
call bdos ;;print macro name
pop h ;;code address
call @ad ;;printed
[hid @tl ;;top of stack
call @ad ;;printed
Ihid @t2 ;itop-l
call @ad ;;printed
pop psw ;;flags restored
pop d ; ;return address
Ihid @t2 ntop-l jmp
push h ;;restored
push d ;;return address
lhid @tl ;;top of stack
ret
psub: ;;past subroutines

trace macro Cm
;redefined trace, uses ~tr
loca pmsgmsg

jmp pmsq
-nsg; db cr,If ;crlf
db '‘&M$;mac name
pmsq:
IXi b,c ;;code address
IXi d,msq ;;macro name
cal ~tr stotraceit
endm

;back to original macro level
trace codemname

er.dm

trt macro f

;turn on flag "f"

debug& f set 1 ;;orint/trace on
endm

trf macro f

;turn off flag "f"

debug& fset 0 ;;trace/Drint of f

endm

2Ar macro M

;check debug toggle before trace
if debuqt
trace %S,m
endm

;end trace (only) utilities

@dt:

osub:

pmsg: adr AV

;hl=base address to print

push h ;;base address

push b ;;element count

mvi c,wh)uff ;;wRite buffer func
call bdos ;;message written
@dmO: pop b ;;recall count

pop h ;;recall base address
mov ac ;;end of list?
ora a
rz returnif so

der c ;;decrement count

mov ef ;ynext item (Irjw
inx h

mov d,m ;next iterr. (hi-4h)
inx h ;ready for next round

push h ;;save print address
push b ;;save count
xchq ;;data ready
call @ad ;;print item value

@dmO ;;for another value

;;dump top of stack only
prn <(top)=>;;"(TOP)="

push h

call @ad ;-vaueof hl
POP h ;;top restored
ret

dmp macro ,”n

;redefine dump to use @dm utility
loca pmsg'"nsg

;special caseif null parameters

if nul vhame
;dump the top of the stack only
cal @dt
exitm
endif
;otherwise dump variable name
jmp pmsq
msg. db cr,lf ;erlf
db '& V=S ;;message

:hl=address

active set 0 ;Clear active flag
Ixi d,msg ;;messaae to print
if nul 2n ;;uselength 1
mvi cl
else
mvi c,™Mm
endif
call @dm ;-;to perform the dump
endm ;;end of redefinition
dmp vnamen
endm

;end dump (only) utilities,

Figure 36b. Stack Machine Library (Con').

;begin stack machine opcodes

active set 0 ;active register flag
~ave
siz macro size
org tran ;;set to transient area

;create a stack when "xit" encountered

@stk st size ;save for data area
Ixi sp,stack
endm

save macro
;check to ensure "enter" properly set up

if stack ;;isit present?
endif

save macro ;;redefine after initial reference
if active ;;elementinhl
push h save it
endif

active set I ;Set active
endm
save
endm

rest macro

;restore the top element
if not active
POP h ;;recall to hl
endif

active set I ;;mark as active
endm

~lear macro

;;clear the top active element
rest ;;ensure active

active set 0 ;;cleared
endm
2Ar va ;;trace set?
endm

dcl. macro vname,size

;;label the declaration

vname: if nul size
ds 2 ;;one word req'd
dse
ds size*2 ;;double words
endm

lit macro Va

;;load literal value to top of stack
save ;;saveif active
IXi hyval ;;load litera
2Ar lit
endm

93

adr macro base,inx,con
;load address of base., indexed by inx,
;with constant offset given by con

;;push if active
if nul inx&con
IXi h,base ;;address of base
exitm ;;simple address
endif
:must be inx and/or con
if nul inx
IXi h,con*2 ;;constant
dse
Ihid inx ;;index to hi
dad h ;;double precision inx
if not nul con
IXi d,con*2 ;;double const
dad d ;;added to inx
endif ;;-not nul con
endif ;nul inx
Ixi d,base ;;ready to add
dad d ;:baset+inx* 2+con* 2
endm

va macro b,i,c
;;get value of b+i+cto hl
;;check simple case of b only

if nul i&c
save ;;push if active
[hid b ;;load directly
ese
;;adr pushes active registers
adr b,i,c ;;-addressin -ttl
mov em ;;low order byte
inx h
mov dm ;;high order byte
xchg ;:back to hl
endif
sto macro b,i,c
;;store the value of the top of stack
;;leaving the top element active
if nul i&c
rest ;;activate stack
shid b ;;stored directly to b
ese
adr b,i,c
POP d mvalueisinde
mov m,e ;;low byte
inx h
mov m,d ;;high byte
endif
clear ;;mark empty
2Ar sto ;;trace?
endm

Figure 36¢. Stack Machine Library (Con't).

94

sum macro Xit macro
rest ;;restore if saved 2Ar xit ;;trace on?

;add the top two stack elements jmp 0 ;;restart at 0000
POP d ;;top-1to de org data ;;start dataarea
dad d ;;back to hl ds @stk*2 ;;obtained from "siz"
2Ar sum
endm stack: endm

dif macro

;;compute difference between top elements ;;memory mapped i/0 section
rest ;;restore if saved
pop d ;;top-1to de ;;input values which are read as if in memor~
mov ae ;;top-1 low byteto a adc0 equ 1080h ;a-d converter O
sub 1 ;;low order difference adcl equ 1082h ad converter 1
mov |,a ;back to 1 adc2 equ 1084h ;a-d converter 2
mov ad ;;top-1 high byte adc3 equ 1086h ;a-d converter 3
sbb h _high order difference
mov ha ;back toh dac0 equ 1090h ;d-aconverter O

;carry flag may be set upon return dacl equ 1092h ;d-aconverter |
2Ar dif dac2 equ 1094h ;d-aconverter 2
endm dac3 equ 1096h ;d-aconverter 3

Isr macro len rwtrace macro msg,adr

;;logical shift right by len ;;read or write trace with message
rest ;;activate stack ;;given by "msg" to/from "adr"
rept len ;;generate inline prn <msg at adr>
xXra a ;;clear carry endm
mov ah ~dm macro x
rar ;;rotate with high 0
mov ha ;;read a-d converter number "2c"
mov a|l save ;;clear the stack

if debugp ;;stop execution in ddt

rar rwtrace <a-d input >,% adc& ?c

Ul mov l,a ;;back with high bit ugen ;;ensure @in is present

endm

call @in ;valueto hl

endm

shid adc&?c ;;simulate
memory input

ese

geq macro lab ;;read from memory mapped input address

;;jump to lab if (top-1) is greater or [hid adc& 7

;;equal to (top) element. endif
dif ;;compute difference 2Ar rdm ;tracing?
clear ;;Clear active endm
aAr geq
jnc lab ;;no carry if greater wrm macro
jz lab ;;zero if equal ;:write d-a converter number "2c"

;;drop through if neither rest ;;restore stack
endm if debugp ;;trace the output

rwtrace <d-aoutput>,% dac& ?c

dup macro ugen ;;include subroutines

;;duplicate the top element in the stack call @ad ;;writethe value
rest ;;ensure active endif
push h shid dac&?2
2Ar dup 2Ar wrm ;;tracing output?
endm clear ;;remove the value

endm

brn macro addr

;;branch to address
jmp addr
endm

;;end of macro library

95
Figure 36d. Stack Machine Library (Con't).

Upon including these subroutines, UGEN then redefines itself (see lower right of Figure
364a) to an empty macro body so that the subroutines will not be included upon
subsequent invocations of UGEN. This ensures that the inline subroutines will only be
included once, and only if they are required by the debugging macros.

Referring again to Figure 36c, the SIZ macro is similar the opcode defined for

the KDF-10, except that the SIZE of the stack is saved for later declaration in the

data area (see the ' XIT opcode). The SAVE and REST macros are used throughout the
opcode macros to save and restore the HL register pair, based upon the ACTIVE flag.
The CLEAR macro, however, is used to mark the top element of the KDF-11 stack

as deleted.

Continuing with Figure 36c (left), the DCL macro simply sets up the variable

name VNAME as alabel, and follows the label by a DS which reserves the specified
number of double words. The DCL opcodes must all occur at the end of the KDF-11
program, following the XIT opcode.

The LIT opcode is emulated with a macro which first SAV Es the stack top
(possibly generating an HL push). The literal value is then loaded directly into the
HL register pair. Note that the ACTIVE flag is set upon completion of this macro,
since SAVE aways marks HL as active.

The ADR macro in Figure 36¢ (right) is a utility macro which isused in the

VAL, STO, and DMP opcodes to build the address of a particular variable (with optional
variable and constant offsets) in the HL register pair. Based upon the optional
parameters, ADR either loads the base address directly to the HL pair, or constructs

the address using HL and DE for indexing. Thus, the invocations of ADR shown to

the left below produce the machine code to the right below.

ADR X LXI H,X
ADR X|| LHLD |
DAD H
LXI D,X
DAD D
ADR X,I,3 LHLD |
DAD H
LXI D.,6
DAD D
LXI D,X
DAD D
ADRX,,3 LXI H,6
LXI D,X
DAD D

thus leaving the final address for the optionally indexed variable in the HL register
pair. Note that the code within the ADR macro could be improved dightly in the
case that a constant offset is provided. That is, the invocations to the left below
could produce the machine code shown to the right below by redefining the ADR

macro.

96

ADR X,I,3 LHLD |
LXI D, X+6
DAD D

ADRX,,3 LXI H,X+6

It isaworthwhile exercise for the reader at this point to redefine ADR to generate
this improved machine code sequence.

The VAL and STO macros are shown in Figure 36¢ (right) which load a variable
value to the stack, or store the top of stack value to memory, respectively. Note

that ADR is used to construct the address of the variable whenever optional indexing
is specified. Otherwise, an LHLD or SHLD is used to directly access the variable.
Again, dight improvementsin generated code could be obtained when only a constant
offset is provided with no variable index.

Note that the opcodes LIT, VAL, and STO all end with an invocation of the

?TR macro which, as discussed above, checksthe DEBUGT flag. If true, the 7TR
macro invokes TRACE with the machine code address and opcode name for display at
the debugging console. The ?TR macro invocation produces no machine code trace
when DEBUGT isfalse.

Figure 36d contains alisting of the remainder of the "DSTACK.LIB" macro

library. The SUM opcode shown on the left first invokes REST to ensure that the HL
register pair contains the topmost KDF-11 element. The second to top element is
then loaded to the DE pair and added to HL, producing an active KDF-11 element in
HL. Notethat ACTIVE istrue at this point, since REST aways leaves the flag set
to true.

The DIF opcode definition is similar to SUM, except the 8080 accumulator is
used to compute the 16-bit difference between the top two KDF-11 stacked elements.

Referring to Figure 36d (left), the LSR macro defines the KDF-11 logical shift

right operation. The REST macro isfirst invoked to ensure that HL is active, followed
by arepetition of the machine code required to perform a 16-bit right shift of the

HL register pair. In the case of along shift, there will be a considerable amount of
inline machine code for the operation. Thus, it is a useful exercise for the reader to
redefine LSR so that it generates an inline subroutine to perform the shift operation
for values of LEN which are sufficiently large to warrant the subroutine call. Although
this will require a subroutine set up and call, the amount of generated code could be
reduced significantly for programs which make heavy use of the LSR operator.

The GEQ macro follows the LSR definition, and allows conditional branching to

the specified label address. GEQ begins by computing the difference between the top
two elements of the KDF-11 stack which has the side-effect of setting the 8080 carry

bit if the next to top element exceeds the top element in the KDF-11 stack. Note

that the ?TR macro eventually leads to the @TR subroutine where the status flags
(including the carry condition) are saved and restored. Otherwise, GEQ could not
generally count on the condition of the carry flag. Further, the 8080 A register

contains the least significant difference between DE and HL, hence the ORA H produces
azero result if the differenceis zero. To be complete, the KDF-11 should have a

97

complete range of conditional tests, allowing tests for equality (EQL), inequality (NEQ),
less-than (LSS), greater-than (GTR), and less-than-or-equal (LEQ). Although Nachtflieger
designers intend to include these opcodes in the KDF-12, it may be a worthwhile

exercise for the reader to implement these additional macros.

The DUP opcode in Figure 36d (bottom left) first ensures that the HL register
pair is active, then duplicates this value by pushing the HL pair to the 8080 stack,
thus emulating a KDF-11 stack push operation. Note that the HL pair is active at
the end of the DUP macro due to the invocation of REST.

The BRN and XIT macros follow GEQ in Figure 36d. The BRN macro simply
translates to ajump instruction in the 8080 while the XIT is slightly more complicated.
The XIT macro first invokes the ?TR macro to check for machine code tracing. A
"JMP 0" is then emitted corresponding to a system restart in both CP/M and the
emulated KDF-11 machine architecture. The XIT macro then produces an "ORG"
statement which restarts the assembly process in the data area of the emulated
environment (1000H, or 4096 decimal). The areareserved for the stack is then set

up (recall that the SIZ macro saves the value of SIZE), followed by the declaration

of the label "STACK" at the base of this reserved area. Referring back to Figure

36¢ (middle |eft), note that the SAVE macro includes the statement sequence

IF STACK ;;isit present?
ENDIF

which ensures that both the SIZ and XIT macros have been included in the assembly.

If the XIT macro had not been included, then the label "STACK" would not appear
(unless used in the KDF-11 program), and the "IF STACK" test would produce an
undefined operand (U) error. Further, if the XIT operator had been used, but the SIZ

had not, then the statement "DS SIZ* 2" within XIT would produce an undefined operand
message. Although these tests are by no means complete, they will detect the most
COMMON Efrors.

Figure 36d (right) also contains the definitions of both the RDM and WRM

opcodes, based upon the memory mapped input/output addresses defined by ADCO
through ADC3 for the A-D ports, and DACO through DAC3 for the D-A ports. The
RWTRACE (Read/Write Trace) macro is included for tracing the RDM and WRM macros
when DEBUGP is true. The MSG argument corresponds to either "A-D INPUT" for

the RDM opcode, or "D-A OUTPUT" for the WRM opcode. The ADR argument
corresponds to the absolute decimal address where the memory mapped input/output
istaking place. Thus, RWTRACE simply constructs a trace message from its two
argments and passes this message to PRN for display at the debugging console.

The RDM macro reads the port given by the argument "2C" (0,1,2, or 3). The

HL register pair is pushed, if necessary, by the SAVE macro (leaving the active flag

set for the RDM). RDM then generates an invocation of the RWTRACE macro to
produce the trace message. Note that the argument %ADC& ?C produces the numeric
value of one of ADCO, ADC1, ADC2, or ADC3 which isincluded in the trace message.
If the % were omitted, only the name, not the value, of the input port address would

be printed. Following the output message, UGEN isinvoked to ensure that the utility
subroutines have been included inline. The call to @IN allows the programmer to type
a hexadecimal value for the ssmulated A-D input value, which is subsequently stored

to memory and left in the HL register pair (with ACTIVE true). If DEBUGP is hot

98
set, then the RDM macro simply loads the HL register pair from the appropriate
memory mapped input location. Finally, RDM invokes ?TR to check for possible opcode
tracing.

The WRM opcode is similar to the RDM opcode, except that the REST macro

isfirst invoked to ensure that the HL registers contain the top element of the KDF-11
stack. Thisvalueis then displayed at the debugging console if DEBUGP is true, and
then sent to the appropriate memory mapped output location.

One particular application of the emulated KDF-11 machine shows the power

of this particular instruction set. Asasmall part of a machine control system, a
KDF-11 processor monitors the machine tool head motion. Nachtflieger engineers
connect A-D port 0 to a KDF-11 processor which reads the instantaneous velocity of
the tool head at 1 millisecond (ms) intervals. The velocity is provided at the A-D
port in micrometer (um) increments, and the processor is synchronized with the input
so that it halts until the 1 msinterval has elapsed. Nachtflieger engineers also
guarantee that the tool head isin motion for no more than 100 ms before stopping.
Thus, with no variations in velocity, if the tool moved at the constant rate of 256
um/ms over 50 intervals of 1 ms each, the total distance travelled by the tool is

256 um/ms * 50 ms = 1280 um = 1.280 mm

During its travel, however, the instantaneous velocity of the tool head varies

according to the roughness of the cut, wear on the parts, and start/stop intervals.
Nachtflieger uses the data collected during a particular cut to monitor these factors,

and displays machine operator information in both digital and analog forms. A primary
function of the KDF-11 processor in this particular caseis to collect the instantaneous
velocities during a single cut, and hold these values for analysis as the tool returns

to its starting postition. Figure 37 shows a KDF-11 program which includes the data
collection phase, as well as an analysis phase described below.

The data collection phase of Figure 37 occurs between the labels MOVE? and

COMP, while the analysis phase is found between labels COMP and ENDF. Note that
the program is bounded by the SIZ operator at the beginning, along with the XIT
operator at the end, followed by DCL opcodes which reserve data areas. This particular
program also includes debugging PRN, DMP, TRT, and TRF opcodes for checking out
the program.

Referrring to the DCL statements at the end of Figure 37, the "vector" V is

declared with length 100 (double bytes), which will hold the collected velocities, while
| and X are temporary values used during the collection and analysis phase. The
variable TOTAL isaresult produced by the analysis as discussed below.

The program collects data by performing the following steps. Thevariablel is

first initialized to O, corresponding to the first velocity V(O). The program then
examines the A-D input port for the first non-zero velocity, waiting for the tool head
to begin itstravel. When the first non-zero velocity is read, the collection process
proceeds by storing the first value at V(O). Theindex value | isthen moved aong as
dataitems are read, with values placed into VM, V(2), and so-forth, until a zero value
isread, indicating the tool has ended itstravel.

Referring to Figure 37, note that the KDF-11 opcodes listed before the label
MOVE? initialize the index | by loading aliteral O value to the KDF-11 stack, followed

99

032D LIT 0
MACLIB DSTACK ;STACK MACHINE SIMULATION 0330
DUP ;TWO ZEROES
0000 Siz 50 ;50 LEVEL STACK 0331 STO | ;1=0
0103 TRT P ;TURN ON PRN TRACE 0334 STO TOTAL
;TOTA1=0
0103 TRT T ;TURN ON CODE TRACE 0338 GETNXT: PRN
<COMPUTING NEXT INTERVAL>
0103 PRN <COMPUTATION OF TOOL TRAVEL DISTANCE 035F DMP
1
0136 LIT 0 ;JINITIALIZE INDEX 0372 DMP TOTAL
01D3 STO | ;1=0 0339 DMP <V,I>,2
01E8 TRF 11 ;TURN CODE TRACE OFF 03A3 LIT 0
;ZERO AT END
;LOOK FOR STARTING MOT-ION (NON ZERO VALUE) 03A6 VAL VI
;AT END?
MOVE? ;READ A-D CONVERTER FOR NON ZERO 03B3 GEO
ENDF ;0 GEQ X(I)?
01E8 RDM O
0210 STO X ;HOLD TEMPORARILY ;NOT AT END OF INTERVAL,
COMPUTE NEXT TRAPEZO
0213 VAL X ;RELOAD FOR TEST 03CO0 VAL Vi
0216 LIT I ;X GEQ 1 TEST 03CC VAL V'l
V(1),V(1+1)
021A GEQ READ X GEOI? 03DD sum V(D)+V(I+)
0227 BRN MOVE?;RETRY IF NOT 03DF LSR 1
;(V(D+V(1+1))/2
03E6 VAL TOTAL
;READY TOTAL
READ: 03EA sum
:TOTAL=TOTAL+TRAPEZOID
022A PRN <STORE FIRST/NEXT VALUE> 03EC STO TOTAL
;BACK TO SUM
0250 DMP x
029C VAL X ;LOAD FIRST/NEXT VALUE O03EF VAL |
029F STO VI ;STORE TO THE ITH ELEMENTO03F2 LIT 1
02AC VAL | ;INCREMENT | 03F6 sum
02AF LIT 1 03F8 STO |
;BACK TO|
02B3 sum d+1 03FB BRN GETNXT
02B5 STO | =1+
02B8 LIT 0 ;0, FOROGTR X TEST O3FE ENDF: PRN <END OF
COMPUTATION>
02BB VAL X ;ZERO VALUE READ? 0420 DMP TOTAL
02BF GEQ COMP ;COMPUTEDISTANCEIFO 0437 VAL TOTAL
;LOAD FOR D-A OUTPUT
02CcC RDM O ;READ ANOTHER DATA ITEM 043A WRM 0
'WRITE D-A PORT
02F4 STO X ;SAVEIT IN X 0462 XIT
02F7 BRN READ ;TOSTORE AND TEST
;DATA AREA
02FA COMP: PRN <VALUE ARE LOADED> 1164 DCL |
:INDEX
031A DMP V'10 1166 DCL x
;TEMPORARY
;NOW COMPUTE DISTANCE TRAVELLED BY TOOL 1168 DCL V,100
;VELOCITY VECTOR
1230 DCL TOTAL

;TOTAL DISTANCE

100
Figure 37. Program for Tool Travel Computation.

by a store into the variable 1. In order to follow these operations, the TRT P and
TRT T traces are enabled. Note, however, that the TRF T opcode stops the machine
code trace immediately before the MOVE? label.

Following the MOV E? label, A-D port O is read and examined for the first non
zero value. Each time the port isread it is stored into the temporary variable X,
then reloaded and examined for a zero value. Since GEQ is the only comparison
operator in the KDF-11 machine, the test is | greater than or equal to X". Thus,
the branch is taken to READ whenever X is1 or larger.

Upon encountering the READ label, the value X (just read from port 0) is stored
into VW, where | iszero. The value of | isthen incremented by loading | to the top
of the KDF-11 stack, adding 1 (LIT 1, SUM), and then storing the sum back into I.
After inerementing 1, the program proceeds to check the end of the tool travel. X
is loaded to the top of the stack, and the test "0 greater than or equal to X" is
performed. If the condition istrue, control transfers to the label COMP, where the
analysis phase begins. Otherwise, port 0 is read again and the value is stored into
the temporary X. Control then proceeds back to the READ label to store the next
velocity, and test for zero.

Before 100 intervals have elapsed, the RDM 0 produces a zero value which is

stored into X and subsequently stored into VQ), for the current value of 1. Thus, when
control arrives at the label COMP, the instantaneous velocities are stored in V,
terminated by azero. At this point, the analysis of these collected velocities can

take place.

The single function which takes place in the analysis section of Figure 37 is

the computation of the distance travelled by the tool through thisinterval. In particular,
Nachtflieger engineers have determined that it is sufficient to compute the distance
travelled by the tool using the "trapezoidal rule" which approximates the actual distance
by summing the average of each adjacent pair of velocites. The sums are formed as
shown below:

VO+V1 + V1+V2 + ...+ Vn-l+Vn

2 2 2

where nisthe last interval to sum. Thus, for example, if the velocity is constant
at 256 um/ms (which wouldn't occur in practice), then

V1=V2=..=Vn=2569

and the summing formula given above reducesto 256 * n. Given the example above
where n = 50 ms, the above formula produces the value 1.280 mm, as given earlier.
In general, the velocity values will not be constant, hence the numerical integration
given by the trapedzoidal rule is used to obtain an approximation.

The KDF-11 instructions shown in Figure 37 between the COMP and ENDF labels
perform the numeric integration given by the trapedzoidal rule. In general, the
temporary | is used to index through the velocity vector V until the final zero value
isencountered. For each interval, the values of two adjacent velocities are summed
and divided by two. Each result isthen summed into TOTAL, where the values are
accumulated until the final zero velocity is discovered.

101

The opcode sequence immediately following COMP places a zero value at the

top of the KDF-11 stack, then stores this value into both the index | and the accumulating
sum given by TOTAL. Ignoring the trace opcodes, the operations following GETNXT
read the starting point of the next interval to process into the stack, using VAL Vj
(value of V, indexed by 1). If Oisgreater than or equal to this value then the
computation is complete and control goes to the label ENDF. Otherwise, the value

of V(1) isloaded to the KDF-11 stack, followed by the value of V(I+1). The loaded
values are then summed (SUM) and divided by two (LSR 1), producing a value which
remainsin the KDF-11 stack. TOTAL isthen loaded and added to this partial sum
and the result is stored back to TOTAL. Theindex valuel is then incremented to

the next interval and processing continues back at the loop header GETNXT.

Upon processing the final zero velocity, control reaches the ENDF label where

the distance travelled is written to D-A output port zero. The output valueis sent

to external instrumentation which processes the result and displays the distance travelled
in aform which is readable by the tool operator.

Note that'debugging statements have been placed throughout the program which

can be used to trace the program execution. Figure 37 also contains TRT operators
which have enabled trace code generation, and thus this particular program, although
longer than the final production version, can be used to follow execution under CP/M.

Figure 38 shows the execution of the program of Figure 37 under DDT. The

messages printed at the debugging console are aresult of the PRN opcodes distributed
throughout the original program which were enabled through the TRT P opcode. Further,
the machine code trace was only enabled for the interval of two operation codes (LIT

and STO) at the beginning. In order to test this program, simple A-D values were
supplied at the console for the velocities:

V0 =100H, V1=120H, V2 = 100H, V3=80H,V4=0

Upon detecting the final 0 value, the trace of Figure 38 shows the first 10 values of

V (thelast 5 elements are "garbage” values), followed by atrace of the sum operations
for each interval. In each case, the pairs of values which are being added are displayed
(using the DMP opcaode), followed by their summed value, along with the running total.
Upon completion of the distance computation, the value 320H is sent to the D-A output
port and displayed at the-console.

Upon completion of initial checks under CP/M, Nachtflieger programmers remove

the TRT and TRF statements from the KDF-11 program and reassemble producing only
the absol ute input/output instructions required for machine tool control. The resulting
program, which produces much less code than the debugging version, is placed into the
equipment for further testing and evaluation.

Figure 39 is also provided as an example of the listing which is produced when

all machine code operators are traced. Although the source program listing is not
shown, it isidentical to Figure 37 except that the TRF T opcode is removed. Since
the complete trace is quite extensive, only a partial execution is shown in Figure 39.

In summary, Nachtflieger MW has derived several benefits from their emulation
of the KDF series stack machines. First, thereisvery little cost involved in designing

102

DDT INTEG.HEX
DDT VERS 1.4
NEXT PC

0465 0000

-G100

COMPUTATION OF TOOL TRAVEL DISTANCE
LIT 0139 0000 OF77

STO 01D6 0000 0000

A-D INPUT AT 42240

A-D INPUT AT 4224 100
STORE FIRST/NEXT VALUE
X= 0100

A-D INPUT AT 4224 120
STORE FIRST/NEXT VALUE
X= 0120

A-D INPUT AT 4224 100
STORE FIRST/NEXT VALUE
X= 0100

A-D INPUT AT 4224 80

STORE FIRST/NEXT VALUF
X= 0080

A-D INPUT AT 42240

STORE FIRST/NEXT VALUE
X= 0000

VALUE ARE LOADED

V= 0100 0120 0100 0080 0000 3ECO BA11 C1(-0 5EEI 5623
COMPUTING NEXT INTERVAL
I= 0000

TOTAL= 0000

V,I= 0100 0120

COMPUTING NEXT INTERVAL
= 0001

TOTAL= 0110

V,I= 0120 01-00

COMPUTING NEXT INTERVAL
I= 0002

TOTAL= 0220

V,I= 0100 0080

(-)COMPUTING NEXT INTERVAL
I= 0003

TOTAL= 02EO

V,I= 0080 0000

COMPUTING NEXT INTERVAL
I= 0004

TOTAL= 0320

V,I= 0000 3ECO

END OF COMPUTATION
TOTAL= 0320

D-A OUTPUT AT 4240 0320

Figure 38. Sample Execution of "Distance" using DDT.

103
ddt integ.hex
DDT VERS 1.4
NEXT PC
0852 0000
-r,100

COMPUTATION OF TOOL TRAVEL DISTANCE
LIT 026E 0000 CAB1
STO 030B 0000 0000
A-D INPUT AT 1280
RDM[0344 0000 0000
STO 0359 0000 0000
VAL 036E 0000 0000
LIT 0384 0001 0000
DIF 039D FFFF 0000
GEQ 03AF FFFF 0000
A-D INPUT AT 1286
RDM[0344 0006 0000
STO 0359 0006 0000
VAL 036E 0006 0000
LIT 0384 0001 0006
DIF 039D 0005 0000
GEQ 03AF 0005 0000
STORE FIRST/NEXT VALUE
X= 0006

VAL 043F 0006 0000
STO 045E 016F 0000
VAL 0473 0000 0000
LIT 0489 0001. 0000
SUM 049D 0001 0000
STO 04132 0001 0001
VAL 04C7 0006 0001
A-D INPUT AT 1280
RDM 0501 0000 0006
STO 0516 0000 0006
LIT 052B 0001 0006
DIF 0544 0005 0001
GEQ 0556 0005 0001
STORE FIRST/NEXT VALUE
X= 0000

VAL 043F 0000 0001
STO 045E 0171 0001
VAL 0473 0001 0001
LIT 0489 0001 0001
SUM 049D 0002 0001
STO 04132 0002 0002
VAL 04C7 0000 0002
A-D INPUT AT 128
RDM 0501 0000 0000

Figure 39. Partial Listing of "Distance" with Full Trace.

104
and altering their machine architecture. In fact, current prices for 8080 microcomputers
may preclude the custom LSl version of the KDF-? machine. A second advantage of
the KDF emulation is that the KDF programs are highly independent from the host
processor. That is, given that a higher performance or less expensive processor becomes
available to Nachtflieger, the existing programs can be used intact by only changing
the macro definitions for each of the KDF opcodes and reassembling using MAC or
an equivalent macro processor. Lastly, machine emulation through macro defined
operation codes offers a distinct advantage over interpretive approaches since each
opcode trandates to only afew host machine operations. Interpretive execution often
involves ratios of 1000 to 20,000 emulated instructions per host instruction, while
macro based opcodes are often in aratio of lessthan 10to 1. Further, interpretive
processors usually require run-time support consisting of a predefined general-purpose
subroutine package which isincluded for each and every program. Thus, for awide
variety of microcomputer applications, machine emulation through macro defined op
codes offers distinct advantages over alternative approaches.

9.3. Program Control Structures.

Macro facilities can be used to provide program control statements which
resemble those found in many high-level languages. In general, program control
statements allow boolean tests and conditional branching based upon the outcome of

the boolean test. Further, label names which would normally be provided by the
programmer as the destination of a branch are automatically generated for the particular
statement.

In the paragraphs which follow, three typical control statements are presented

which allow simple conditional grouping (WHEN-ENDW), controlled iteration (DO
ENDDO), and case selection (SELECT-ENDSEL). In all three cases, the intention is

to define program control facilities which allow well-structured programming, resulting
in programs which are easier to write, debug, and maintain.

Two libraries are first introduced in order to provide a foundation for further

discussion. The 1/0 library shown in Figure 40 allows simple character input operations
along with full message output. The READ macro accepts a single character from

the console keyboard and stores this character into the variable given by the parameter
"VAR". The WRITE macro shown in Figure 40 takes an ASCH message as a parameter
and sends this message to the console output device preceded by a carriage-return
line-feed sequence. These simple 1/0 macros are stored on the diskette in the file
"SIMPIO.LIB" and are used in the examples which illustrate the control structures.

The second library used in the control structure examplesis given in Figure 41.
Collectively, these macros define a number of boolean operations which are performed
upon 8-bit operands, providing the basic relational operations on unsigned integer values,
including:

LSS Less Than

LEQ LessThanor Equal To
EQL Equa To

NEQ NotEqua To

GEQ Greater or Equal

GTR Greater Than

105

;macro library for smplei/o

bdos equ 0005h ;bdos entry

conin equ 1 ;console input function
msgout equ 9 ;print message til $

cr equ Odh ;carriage return

if equ Oah ;line feed

reed macro var
;read a single character into var

mvi c¢,conin ;console input function
call bdos ;Character isin a
sta var

endm

write macro msq
;write message to console

local msgl,pmsq

jmp pmsq
msgl: db cr,If ;;leading crlf

db '&MSG' ;;inline message

db '$;;message terminator
pmsg: mvi ¢, msgout ;;print message til

IXi d,msql

call bdos

endm

Fiqure 40. Simple /0 Macro Library.

106

test? macro x,y
;utiltity macro to generate condition codes
if not nul x ;;then load x
Ida X ;;X assumed to be in memory
endif
irpc Ny 11y may be constant operand
tdigq? set '‘&?Y'-'O' ;;first char digit?
exitm ;;stop irpc after first char
endm
if tdig?<=9 17y numeric?
Sui y ;yes, so sub immediate
ese
Ixi hy 17y not numeric
sub m ;350 sub from memory
endm
Iss macro X,y il
;X Issthan y test,

;itransfer to tl (true label) if true,
;;continue if test isfalse

test? Xy ;;5et condition codes
jc tl
endm
legq macro X,Y tl
;X lessthan or equal toy test
Iss XYt
jz tl
endm
eql macro Xyl
X egqual toy test
test? Xy
jz tl
endm
nea macro X,y il
;X not equal to y test
test? Xy
jinz tl
endm
gea macro Xyl
;:X greater than or equal to v test
test? Xy
jnc tl
endm
otr macro Xyl
;X greater than y test
loca fl ;false label
test? Xy
jc fl
der a
jnc tl
fl: endm

Figure 41. Macro Library for Simple Comparison Operations.

107

In al cases, the macros accept three actual parameters, consisting of two data values
involved in thetest (X and Y), along with a program label which receives control if

the boolean test produces atrue value (TL). The first operand X can be alabelled
memory location containing an 8-bit value, and Y can be either alabelled 8-bit location
or aliteral numeric value. If thefirst operand X is not supplied, then the value to

be tested is assumed to exist in the 8080 accumulator when the macro is entered.

Thus, for example, the macro invocation

LSS ALPHABETA,TRUECASE

compares the values stored at the labelled memory locations ALPHA and BETA (defined
by a DS or DB statement), and transfers to the program step labelled by TRUECASE
if ALPHA contains a value less than the value stored at BETA. The invocation

LSS BETA,TRUECASE

issimilar, but compares the contents of the 8080 accumulator with the value stored
at BETA. Finally, the invocation

LSS ALPHA,34TRUECASE
compares ALPHA with the literal value 34 in the relational test.

Note that the macro TEST?is used throughout the macro library to construct
therelational test by first loading the initial operand X, if necessary. The second
operand type is then examined by executing an "IRPC" within the TEST? macro of
Figure 41 which extracts the first character of the'Y operand. Thisfirst character
must be either numeric or alphabetic. If numeric, then the literal value is subtracted
from the accumulator, setting the 8080 condition codes. If the first character of Y

is non-numeric then the value is assumed to reside in memory. In this case, the HL
registers are set to the Y operand and the value at Y is subtracted from the accumulator
value. Inany case, the 8080 condition codes are set as a result of the subtraction
operation. These condition codes are then used in the individual macros to produce
conditional jumps to the destination labels. These macros are collectively stored on
the diskette in afile named "COMPARE.LIB" for use in examples which follow.

Figure 42 shows an example of a program which uses both the SIMPIO and
COMPARE libraries. The purpose of this program is to successively read console
characters and print messages based upon the character which istyped. The program
begins by sending the sign-on message at the label CYCLE. A character is then read
and stored into X using the READ macro. The LSS test is used to determine if
lower-to-upper case tranglation is required (assuming the input is alphabetic). If X is
numerically less than 61H, which is the value of an upper case "A," then control
transfers to the label NOTRAN. Otherwise, the character isloaded to the accumulator,
the "upper case" bit is stripped from the character, and it is replaced in memory.
Following the label NOTRAN, the character is compared with the letters A, B, C, and
D. Ineach case, amessage is typed corresponding to each letter. If one of these

four letters cannot be found, the message at ERROR is typed.

In comparing each letter, the macro NEQ is invoked with the first argument
corresponding to the character typed at the console (X), while the second argument
corresponds to the letter to match. Note that the "%" operator is used in each case

0100

0100
012B

0133

013B 3A1102
013E E65F
0140 321102

0143

014B

0167 C30001
016A

0172

018D C30001
0190

0198

01B3 C30001
01B6

01BE

01D9

01EB C9
01EC

020E C30001
0211

0212

108

ORG 100H
MACLIB SIMPIO ;SIMPLE 10 LIBRARY
MACLIB COMPARE ;COMPARISON OPERATORS
CYCLE: WRITE <TYPE A CHARACTER FROM A TOD >
READ X
;TEST FOR LOWER CASE ALPHABETIC
LSS X,61H,NOTRAN

JARRIVE HERE IF X ISGREATER OR EQUAL TO
;A LOWER CASE A (=61H), TRANSLATE

LDA X

ANI SFH ;CLEAR LOWER CASE BIT

STA X ;STOREBACK TO X
NOTRAN:

;NOW CHECK CASES

NEQ X, %'A',NOTA
WRITE <YOU TYPED AN A>
jmp CYCLE
NOTA: NEQ X, %'B'NOTB
WRITE <YOU TYPED A B>
jmp CYCLE
NEQ X,%'C,NOTC
WRITE <YOU TYPED A C>
jmp CYCLE
NOTC: NEQ X, %'D',ERROR
WRITE <YOU TYPED A D>
WRITE <BYE-!>

NOTB:

RET
ERROR: WRITE <NOT AN A, B, C, OR D>
jmp CYCLE
X: DS 1 ;TEMP FOR CHARACTER
END

Fiqure 42. Single Character Processing using COMPARE.

109
to produce the numeric value of the character. Thisis necessary since the TEST?
macro expects either a number or alabel value in the second argument position. The
program processes characters until al'D" istyped at which time it returns to the
console command processor. The intention here is to show the use of boolean tests
used by the control structure macros which follow.

Figure 42b shows a partial expansion of the macros given in the previous example.
The first message expansion is shown, along with the READ and NEQ macros. The
listing has been abstracted, however, and does not show the macro library statements
or the remainder of the program following the NOTA label.

The macro library shown in Figures 43a and 43b, called NCOMPARE, expands

upon the basic relational macros by alowing a "false branch" option. That is, each
macro accepts four arguments: the X and Y operands, as before, as well as a"true
label" (TQ and "false label" (FL). It is assumed that either the TL or FL will be
supplied in any particular invocation of arelational operator, but not both. If the TL

is supplied, then the branch is taken if the relational operator produces a true result.
Conversdly, if the TL label is absent but the FL label is supplied, then the branch to

FL istaken if the relational operation produces afalse result. Thus, NCOMPARE
expands upon the COMPARE library by allowing all of -the relational operation as well
as their negations. Using the NCOMPARE library, for example, the macro invocation

LSS X,20, FALSELAB

branches to the label FALSELAB if X is not less than the value 20. One should note
that the negation operations are accomplished within the NCOMPARE library by first
testing for anull TL operand and, if empty, the relational operation is reversed by
invoking the appropriate negated macro. For example, the LSS macro in Figure 43a
invokes the GEQ macro, which is equivalent to "not LSS" when the TL argument is
empty and supplies the FL argument to LSS asthe TL label to GEQ. These negated
relational forms will be used within the control structures which are described below.

Figure 44a gives an example of the use of the NCOMPARE library within a
particular program. This program is similar to the previous example, but instead
checks to insure that alphabetic tranglation only occurs within the proper range of
lower case letters. Following the label CY CLE, the character read from the console
is compared with alower case"a" (using the % operation to produce the equivalent
decimal value 97). Since the negated form of GEQ is used here, the label NOTRAN
receives control if X is not greater than or equal to %V. If X is greater than or

equal to "a", program flow continues to the next test in sequence where X is compared
with alower case "z" (%'’ = decimal 122). In this case, the normal form of GTR is
used and thus control transfersto NOTRAN if X is greater than %Izl which is above
the range of lower case alphabetics. If X is between Wa and %I Z', the character is
changed to upper case, as before, by removing the lower case bit and replacing X in
memory. Note that the indentation levels between the GEQ and GTR operations are
included for readability of the program.

Figure 44b shows the GEQ-GTR section of the program of Figure 44awith full
macro trace enabled (see Assembly Parameters). The trace in this figure shows the
transition from GEQ to the LSS operator, substituting the FL label in the place of
the TL label. Again, the macro library statements are not shown, and the listing
following the NOTRAN label is not present.

110

CYCLE: WRITE <TYPE A CHARACTER FROM A TO D >
0100+C32301 jmp 220002
0103+0DOA ?20001: DB CRLF
0105+5459504520 DB 'TYPEA CHARACTERFROM A TO D'
0122+24 DB '§
0123+0E09 7220002 mvi C,MSGOUT
0125+110301 LXI D,?20001
0128+CD0500 CALL BDOS
READ X
012B+0E01 mvi C,CONIN :CONSOLE INPUT FUNCTION
012D+CD0500 CALL BDOS :CHARACTERISIN A
0130+321102 STA X
“TEST FOR LOWER CASE ALPHABETIC
LSS X,61H,NOTRAN
0133+3A1102 LDA X
0136+D661 sui 61H
0138+DA4301 i NOTRAN

JARRIVE HERE IF X ISGREATER OR EQUAL TO
;A LOWER CASE A (=61H), TRANSLATE

013B 3A1102 LDA X
013E E65F ANI SFH ;CLEAR LOWER CASE BIT
0140 321102 STA X ;STOREBACK TO X
NOTRAN:
;NOW CHECK CASES
NEQ X, %'A',NOTA
0143+3A1102 LDA X
0146+D641 Sul 65
0148+C26A01 INZ NOTA
WRITE <YOU TYPED AN A>
014B+C35F01 jmp 770004
014E+0DOA ?770003: DB CR.LF
0150+594F552054 DB 'YOU TYPED AN A’
015E+24 DB '$
015F+0E09 720004: MVl CMSGOUT
0161+114E01 LXI D,?720003
0164+CD0500 CALL BDOS
0167 C30001 jmp CYCLE

NOTA: NEQ X, %'B'NOTB

Fiqure 42b. Partial Trace of Fiq 42awith Macro Generation

111

;macro library for 8-bit comparison operation

test? macro x,y

;utiltity macro to generate condition codes

if not nul x ;;then load x
Ida X ;;X assumed to be in memory
endif
irpc Ny)y may be constant operand
tdig? set &7?Y ,-,0, ;;first char diqit?
exitm ;;stop irpc after first char
endm
if tdig?<=9 11y numeric.
Sui y ;yes, so sub immediate
ese
IXi by 17y not numeric
sub m ;;50 sub from memory
endm
Iss macro X,Y tl.fl
;X Issthan y test,

;if tl is present, assume true test
;if tl is absent, then invert test

tl

leq

if nul tl

geq X,Y fl

ese

test? Xy ;;set condition codes
endm

macro X,Y tl fl

;X less than or equal to y test

if nul tl
geq XY fl
dse

Iss X,y tl
jz tl
endm

Fiqure 43a. Expanded NCOM PARE Comparison Operators.

112

eql macro X,y ,fl
;X equal toy test
if nul tl
neq XY fl
else
test? Xy
jz ti
endm

neq macro X,y ,fl
;X hot equal to y test

if nul tl
eql XY fl
else

test? Xy
jnz tl

endm

oeq macro X,y ,fl
;X greater than or equal toy test

if nul tl
Iss X,Yfl
else

test? Xy
jnc tl
endm

otr macro X,Y tl,fl
;X greater than y test

if nul tl
leq XY, fl
ese
loca dfl ;;false label
test? Xy
ic ofl
der a
jnc tl
ofl: endm

Fiqure 43b. Expanded NCOM PARE Comvarison Operators (Con't).

0100

0100
012B

0133

013B

0147 3AID02
014A EG5F
014C 321D02

014F
0157
0173 C30001
0176
017E
0199 C30001

019C

01A4

01BF C30001
01Cc2

01CA

01E5

01F7 C9
01F8

021A C30001
021D

021E

113

ORG 100H
MACLIB SIMPIO ;SIMPLE 10 LIBRARY
MACLIB NCOMPARE;COMPARISON OPERATORS

CYCLE: WRITE <TYPE A CHARACTER FROM A TOD >
READ X
;TEST FOR LOWER CASE ALPHABETIC

GEQ X,%'d,,NOTRAN ;BRANCH ON FALSE

;X ISGREATER OR EQUAL TO LOWER CASE A

GTR X, %'z ,NOTRAN

LDA X

ANI SFH ;UPPER CASE

STA X ;BACK TO X
NOTRAN:

;NOW CHECK CASES

NEQ X, %'A',NOTA
WRITE <YOU TYPED AN A>
jmp CYCLE

NOTA: NEQ X, %'B'NOTB
WRITE <YOU TYPED A B>
jmp CYCLE

NOTB: NEQ X,%'C',NOTC
WRITE <YOU TYPED A C>
jmp CYCLE

NOTC: NEQ X, %'D',ERROR
WRITE <YOU TYPED A D>
WRITE <BYE-!>

RET

ERROR: WRITE <NOT AN A, B, C, OR D>
jmp CYCLE

X: DS 1 ;TEMP FOR CHARACTER
END

Fiqure 44a. Sample Program using NCOMPARE Library.

114
;TEST FOR LOWER CASE ALPHABETIC

GEQ X,%'4d,NOTRAN ;BRANCH ON FALSE
+ IF NUL

+ LSS X,97,NOTRAN
+ IF NUL NOTRAN
+ GEQ x,97,

+ ELSE

+ TEST? X,97

+ IF NOT NUL X
0133+3AID02 LDA X

+ ENDIF

+ IRPC ?Y,97

+ TDIG? SET '&?Y-0

+ ENDM

0009+# TDIG? SET '9-0

+ EXITM

+ IF TDIG?<=9
0136+D661 sul 97

+ ELSE

+ LXI H,97

+ SUB M

+ ENDM

0138+DA4FOI i NOTRAN

+ ENDM

+ ELSE

+ TEST? X,97
+ INC

+ ENDM

;X ISGREATER OR EQUAL TO LOWER CASE A

GTR X,%Z ,NOTRAN

+ IF NUL NOTRAN

+ LEQ X122,

+ ELSE

+ LOCAL GFL

+ TEST? X,122

+ IF NOT NUL X

013B+3AID02 LDA X

+ ENDIF

+ IRPC ?Y,122

+ TDIG? SET '&?Y-'O

+ EXITM

+ ENDM

0001+# TDIG? SET '1-0

+ EXITM

+ IF TDIG?<=9

013E+D67A sul 122

+ ELSE

+ LXI H,122

+ SUB M

+ ENDM

0140+DA4701 k720003

0143+3D DCR A

0144+D24F0l JNC NOTRAN

+ 220003; ENDM

0147 3A1D02 LDA X

014A E65F ANl 5FH ;UPPER CASE

014C 321D0O2 STA X ‘BACK TO X
NOTRAN:

Figure 44b. Segment of Fig 44awith "+M" Option.

115
Given the SIMPIO and NCOMPARE libraries, it is now possible to define the
first complete control structure, called the WHEN-ENDW group. The form of the
group is:
WHEN condition
statement-1
statement-2

statement-n
ENDW

where "condition" is arelational expression taking one of the forms
id,rel,id id,rel,number rel,id rel,number
and "id" isan identifier, "rel" isarelational operator (LSS, LEQ, EQL, NEQ, GEQ,
GTR), and "number" is aliteral numeric value. Similar in form to the arguments of
theindividual relational operators of the COMPARE library, the last two forms shown
above assume the first argument is present in the 8080 accumulator. The meaning of
the WHEN-ENDW group is as follows: the condition following the WHEN is evaluated
asarelational expression, according to the rules stated with the COMPARE library.
If the condition produces a true result, then statement-1 through statement-n are
executed. Otherwise, control transfers to the statement following the ENDW. Nested
WHEN-ENDW groups are allowed when they take the form:
WHEN . ..
WHEN . ..
WHEN . ..
ENDW
ENDW
ENDW
to arbitrary levels, where the represent interspersed statements. Because of
the simplified implementation, nested parallel WHEN-ENDW groups are disallowed when
they take the form:
WHEN . ..
WHEN . ..
ENDW
WHEN . ..
ENDW

ENDW

116
The implementation of the WHEN-ENDW group is based upon macros which "count"
WHEN-ENDW groups and generate branches and labels at the proper levelsin the
structure.

Figure 45 shows the WHEN macro library, consisting of four macros GENWTST

(generate WHEN test), GENLAB (generate label), WHEN (beginning of WHEN group),

and ENDW (end of WHEN group). These macros, in turn, use the macrosin the
NCOMPARE library shown previously and thus are assumed to exist in the user's

program as aresult of a MACLIB NCOMPARE statement. Label generation is based

upon the WCNT (WHEN count) and WLEV (WHEN level) counters. WCNT is incremented
each time a WHEN is encountered, and WLEV keeps track of the number of WHEN's
which have occurred without corresponding ENDW's.

Upon encountering the first WHEN, the WCNT and WLEV counters are set to

zero, and the WHEN macro is redefined to generate the first WHEN test by invoking
GENWTST, using therelation R, operands X and Y, and WHEN counter WCNT. Note
that the value of WCNT is passed to GENWTST rather than the characters "WCNT"
themselves. Thus, at the first invocation of GENWTST, the dummy argument NUM

has the value 0. The first argument to GENWTST, called TST, correspondsto a
relational operation MSS through GTR) and thus is invoked automatically within the
body of GENWTST, using the negated form of the relational since the TL argument
isempty. Again referring to the body of the GENWTST macro in Figure 45, note

that the last argument, corresponding to the false label of the relational operation, is
the constructed label ENDW& num, where num has the value O initially, and successively
larger values on later invocations. Each time GENWTST isinvoked, it generates a
relational test and a branch on false to a generated label. It isthe responsibility of

the ENDW macro to produce the appropriate balanced label when encountered in the
program.

Referring back to the body of the WHEN macro in Figure 45, the WLEV level
counter is set to the current WCNT, and the WCNT isincremented in preparation for
the next WHEN statement. Similar to nearly all macros which redefine themselves,
the outer macro definition of WHEN invokes the newly created WHEN macro before
exit.

Upon encountering the an ENDW statement in the source program, the ENDW

macro first invokes GENLAB to generate the appropriate ENDW label. The first
argument to GENLAB isthe label prefix ENDW, while the second argument is the
evaluated parameter %WLEV corresponding to the current ENDW label. If only one
WHEN statement had been encountered, for example, the value of WLEV would be
zero, and thus GENLAB would produce the label ENDWO which is the destination of
the earlier branch. generated by an invocation of GENWTST. Following the invocation
of GENLAB, WLEV is decremented to account for the fact that one more destination
label has been resolved.

As an example of the use of WHEN-ENDW, Figure 46a shows a sample program
which resembles the previous character scanning function, but uses the WHEN group
in the place of simple tests and branches. As before, a single character is read from

the console and first tested for possible case conversion. The statement "WHEN
X,GEQ,61H" causes the three statements which follow to be executed when X is greater
than or equal to 61H (lower case "a") and skipped otherwise. Further, the four WHEN
groups which follow each test for the specific characters A, B, C, or D. If an"A"

117
;macro library for "when" construct

;label generators
genwtst macro tst,x,y,num
;generate a"when" test (negated form),
;invoke macro "tst" with parameters
i,y with jJump to endw & num
tst X,Y,,endw& num
endm

genlab macro lab,num
;produce the label "lab" & Isnum"
lab& num:
endm
;"when" macros for start and end

when macro xv,rel,yv
;initialize counters first time
went oset 0 ;;number of whens
when macro X,y
genwtst r,x,y,%went

wlev st went ;;next endw to generate
went set went+l ;;number of "when's
endm
when xv,rel,yv
endm

endw macro
;generate the ending code for a"when"
genlab endw,%wlev

wlev st wlev-1 ;;count current level down
;wlev must not go below 0 (not checked)
endm

Fiqure 45. Macro Library for the WHEN Statement.

118

0100 ORG 100H
MACLIB SIMPIO;SIMPLE 10 LIBRARY
MACLIB NCOMPARE;EXPANDED COMPARE OPS
MACLIB WHEN ;WHEN CONSTRUCT
0100 CYCLE: WRITE <TYPE A CHARACTER FROM A TOD >
0128 READ X
“TEST FOR LOWER CASE ALPHABETIC
0133 WHEN X,GEQ,61H
013B 3A1102 LDA X
013E E65F ANl 5FH ;CLEARLOWER CASEBIT
0140 321102 STA X :STORE BACK TO X
0143 ENDW
‘NOW CHECK CASES
0143 WHEN X,EQL,%A"
014B WRITE <YOU TYPED AN A>
0167 C30001 jmp CYCLE
016A ENDW
016A WHEN X,EQL,%B'
0172 WRITE <YOU TYPED A B>
018D C30001 jmp CYCLE
0190 ENDW
0190 WHEN X,EOL,%C'
0198 WRITE <YOU TYPED A C>
01B3 C30001 jmp CYCLE
01B6 ENDW
01B6 WHEN X,EOL,% D
01BE WRITE <YOU TYPED A D>
01D9 WRITE <BYE-I>
01EB C9 RET
01EC ENDW
01EC WRITE <NOT AN A, B, C, OR D>
020E C30001 jmp CYCLE
0211 X: DS 1 "TEMP FOR CHARACTER

Fiqure 46a. Sample WHEN Program with "-M" in Effect.

119
is typed, the corresponding WHEN group is executed, and control transfers back to the
CY CLE label where another character is read from the console. If theletter D is
typed, the program responds with two messages and returns to the console command
processor.

Figure 46b shows the same program with full macro trace enabled. This particular
portion of the program shows macro processing for the first WHEN-ENDW group only,
although the remaining groups are processed in asimilar fashion. It isaworthwhile
exercise for the reader to determine that the nesting rules for WHEN groups are
properly stated, and that the restriction on nested parallel groupsis, in fact, necessary.

A second control structure, called the DOWHILE-ENDDO group takes the general
form

DOWHILE condition
statement-1
statement-2

statement-n
ENDDO

where the "condition" and nesting rules are identical to the WHEN-ENDW group. The
DOWHILE group is similar in concept to the WHEN group, except that statements 1
through n are executed repetitively as long as the condition remainstrue. That is,

the condition is evaluated when the DOWHILE is encountered in normal program flow.
If the'condition produces a false value, then control transfers to the statement following
the ENDDO. Otherwise, the statements within the group are executed until the ENDDO
is reached. Upon encountering the ENDDO, control transfers back to the DOWHILE
and the condition is evaluated again. Iteration continues through the group until the
condition produces a false vaue.

The macro library for the DOWHILE group is shown in Figure 47. In generdl,

the DOWHILE statement invokes the relational operator macros to produce the proper
seguence of tests and branches. Upon encountering the ENDDO, the proper label and
jump sequence is again generated. Note that the only essentia differencein the
DOWHILE and WHEN groups s that the location of the DOWHILE test must be labelled
and a JMP instruction must be generated to this label at the end of each group.

Referring to Figure 47, GENDTST (generate DOWHILE test), GENDLAB (generate
DOWHILE label), and GENDJIMP (generate DOWHILE jump) are al "label generators'
used in the macros which follow. Similar to the WHEN macro, DOWHILE uses the
counters DOCNT and DOLEV to keep track of the number of DOWHILE groups which
have been encountered along with the current DOWHILE level, corresponding to the
number of unmatched DOWHILE's. The DOWHILE macro first generates the entry
label DTESTN, where n is the DOWHILE count. The conditional test isthen generated,
similar to the WHEN macro, with a branch on false condition to the ENDDn | abel
which will eventually be generated by the ENDDO macro. Finaly, the DOWHILE
macro increments the DOCNT counter in preparation for the next group.

The ENDDO macro in Figure 47 first generates the JIMP instruction back to the
DOWHILE test, using the GENDLAB utility macro, and then produces the ENDDn label
which becomes the target of the jJump on false condition. The form of the expanded
macros for one nested level thus becomes:

120
;TEST FOR LOWER CASE ALPHABETIC
WHEN X,GEQ,61H
0000+# WCNT SET O
WHEN MACRO X,RY
GENWTST R,X,Y ,%WCNT
WLEV SET WCNT
WCNT SET WCNTH
ENDM
WHEN X,GEQ,61H
GENWTST GEQ,X,61H,%WCNT
GEO X,61H,ENDWO
IF NUL
LSS X,61H,ENDWO
IF NUL ENDWO
GEO x,61H,
ELSE
TEST? X,61H
IF NOT NUL X
0133+3A1102 LDA X
ENDIF
IRPC 7?Y,61H
TDIG? SET '&?Y-'O
EXITM
ENDM
0006+4 TDIG? SET 6-'0
+ EXITM
+ IF TDIG?<=9
0136+D661 SuUI 61H
+ ELSE
+ LXI H,61H
+ SUB M
+ ENDM
0138+DA4301 jc ENDWO
ENDM
ELSE
TEST? X,61H
JNC
ENDM
ENDM
00000 WLEV SET WCNT
0001+# WCNT SET WCNTH
+ ENDM
+ ENDM
013B 3A1102 LDA X
013E E65F ANI 5FH ;CLEAR LOWER CASE BIT
0140 321102 STA X ;STORE BACK TO X
ENDW
Fiqure 46b. Partial Listing of Fig. 46awith "+M" Option.

+ 4+ A+ A+

+ + + + +

+ + + 4+ + +

121
;macro library for "dowhile" construct

gendtst macro tst,x,y,num
;generate a"dowhile" test
tst X,Y,,endd& num
endm

gendlab macro lab,num
;;produce the label 1ab & num
;;for dowhile entry or exit
lab& num:

endm

gendjmp macro num

;generate jump to dowhile test
JMP dtest&num
endm

dowhile macro xv,rel,yv
;;initialize counter
docnt set 0 ;number of dowhiles

dowhile macro x,r,y

;;generate the dowhile entry
gendlab dtest,%docnt
generate the conditional test
gendtst r,x,y,%docnt

dolev set docnt ;;next endd to generate
docnt set docnt+l

endm

dowhile xv,rel,yv

endm

enddo macro
;generate the jump to the test

gendjmp %dolev
;generate the end of adowhile
gendlab endd,%dolev
dolev set dolev-1
endm

Figure 47. Macro Library for the DOWHILE Statement.

122

DTESTO:
;conditional jump to ENDDO
DTESTI:
;conditional jump to ENDD1

JMP DTESTI

ENDD1
JMPDTESTO

Figure 48a shows an example of a program which uses the DOWHILE group.

Although this program differs slightly from the previous examples, the principal function
isthe same: a STOP character isfirst read from the console, followed by a group

of statements which repetitively execute in search for the STOP character. Two
DOWHILE groups occur within the program. The first group checks each character
typed M to seeif it matches the STOP character. If not ("DOWHILE X,NEQ,STOP19)
the statements up through the matching ENDDO are processed. If the value of X is

the character A, then the message "YOU TYPED AN A" is sent to the console.
Otherwise, the message "NOT AN A" istyped, followed by a check to seeif the STOP
character was typed. If so, the messages"STOP CHARACTER" and "BYE!" appear at
the console. In this case, control continues through the ENDW's to the ENDDO and
back to the DOWHILE header. In this case, the "DOWHILE X,NEQ,STOP" produces a
false condition, and control transfers to the "XRA A" instruction following the ENDDO.

Referring again to Figure 48a, a second DOWHILE-ENDDO group is executed

which clears the normal CRT screen size of 23 lines. Thisis accomplished by first
setting X to the value zero, followed by a DOWHILE group which checks the condition
"X,LSS,23" which iterates until X reaches the value 23. The WRITE statement within
the DOWHILE group produces only the carriage-return line-feed on each interation,
since the character sequence within the brackets is empty. Following the WRITE
statement, X isincremented by one, thus acting as a line counter. When X reaches

23, the "RET" statement following the matching ENDDO receives control, and the
program terminates by returning to the console processor. Note that the "DB" statement
for X providestheinitial value zero so that the first DOWHILE executes at least one
time.

Figure 48b shows a portion of the program of Figure 48a, with partial macro

trace enabled. Note in particular that this trace does not show the generated |abels

ENDD1 and DTEST1 since no machine code was generated on those lines (the "+M"
assembly parameter would show the labels, however). The locations of these labels

can be derived from the "hex" listing to the left by noting that the "JNC ENDD1"

produces the destination address "O1FF" corresponding to the "RET" statement, while
the"JMP DTEST1" produces the address "01E2" corresponding to the "LDA X" instruction
at the beginning of the DOWHILE group.

The last control structure presented in this section is the SELECT-ENDSEL

group, which corresponds to the Fortran "computed GO-TO," the ALGOL "switch"
statement, and the PL/M "case" statement. The general form of the SELECT group
is

123

0100 ORG 100H
MACLIB SIMPIO ;SIMPLE 10 LIBRARY
MACLIB NCOMPARE;EXPANDED COMPARE OPS
MACLIB WHEN ;WHEN CONSTRUCT
MACLIB DOWHILE ;DOWHILE STATEMENT
0100 WRITE <TYPE THE STOP CHARACTER: >
0127 READ STOP
X =0FOR THE FIRST LOOP
012F DOWHILE X,NEO,STOP :LOOK FOR STOP CHARACTER
0139 WRITE <TYPE A CHARACTER: >
0159 READ X
0161 WHEN X,EQL,%-A
0169 WRITE <YOU TYPED AN A>
0185 ENDW
0185 WHEN X,NEQ,%'A’
018D WRITE <NOT AN A>
01A3 WHEN X,EQL,STOP
01AD WRITE <STOP CHARACTER>
01C9 WRITE <BYE-I>
01DB ENDW
01DB ENDW
01DB ENDDO
;CLEAR THE SCREEN (23 CRLF-S)
01DE AF XRA A
01DF 320002 STA X X=0
01E2 DOWHILE X,LSS,23
01EA WRITE <>
01F8 210002 LXI H,X
01FB 34 INR M X=X+
01FC ENDDO
O1FF C9 RET
0200 00 X: DB 0 EXECUTES "DOWHILE" FIRST TIME
0201 STOP: DS 1 :STOP CHARACTER

Figure 48a. An Example using the DOWHILE Statement.

124

;CLEAR THE SCREEN (23 CRLF'S)

01DE AF XRA A
01DF 320002 STA X :X=0
DOWHILE X,LSS,23
OIE2+3A0002 LDA X
OIE5+D617 i 23
OIE7+D2FF01 INC ENDDI
WRITE <>
Ol[EA+C3F001 jmp 2?0014
OIED+ODOA ?20013: DB CRLF
01EF+24 DB '$
01F0+0E09 ?20014: mvi C,MSGOUT
01F2+11EDO1 LXI D,?20013
01F5+CD0500 CALL BDOS
01F8 210002 LXI HX
01FB 34 INR m X=X+
ENDDO
OIFC+C3E201 jmp DTEST1
OIFF C9 RET

Fiqure 48b. Partial Listing of Fig 48a. with Macro Generation.

125

SELECT id
statement-set-O

SELNEXT
statement-set-1

SELNEXT

SELNEXT
statement-set-n

ENDSEL

where"id" is adatalabel corresponding to an 8-bit value in memory, and statement
set 0 through n denote groups of statement separated by SELNEXT delimiters.

The action of the SELECT-ENDSEL group is as follows: the variable given in

the SELECT statement is taken as a " case" number assumed to be in the range 0
through n. If the value is 0, statement-set-O is executed and, upon completion of the
group, control transfers to the statement following the ENDSEL. If the variable has
the value 1, then statement-set-1 is executed. Similarly, if the variable produces a
value i between 0 and n, then statement-set-i receives control. There can be up to

255 groups of statements within each SELECT-ENDSEL group, and any number of
distinct SELECT-ENDSEL groups. Nested SELECT-ENDSEL groups are not allowed,
however. That is, a SELECT-ENDSEL group cannot occur within a statement-set
enclosed within an encompassing SELECT-ENDSEL group. As a convenience, the
variable following the SELECT can be omitted in which case the current 8080 accumu
lator content is used to select the proper case.

Figures 49a and 49b show the SELECT macro library which implements the
SELECT-ENDSEL group. The general strategy is to count the cases as they occur,
starting with the SELECT, delimited by NEXTSEL, and terminated by ENDSEL. As
the cases occur, a case label is generated which takes the form CASEn@m where n
counts the SELECT-ENDSEL groups, and m is the case number within group n. A
jump instruction is generated at the end of each case to the label ENDSn which marks
the end of the SELECT group number n. Upon encountering the end of the group, a
"select-vector" is generated which contains the address of each case within the group,
headed by the label SELVn, where n is again the group number. Machine code is thus
generated at the SELECT entry which indexes into the select vector, based upon the
SELECT variable, to obtain the proper case address. The first statement within the
case receives control based upon the value obtained from this vector.

The genera form of the machine code generated for the first SELECT group
within a particular program (group n = 0) is:

LDA id
LXI SELVO
(index HL by id, and
load the address to HL)
PCHL
CASEO@O:
statement-set-0
JMP ENDSO
CASEO@I:
statement-set-1
JMP ENDSO

126
;macro library for "select" construct

;label generators

genslxi macro num

;load hlwith address of case list
IXi h,selv&num
endm

gencase macro hum,elt
;generate jmp to end of cases
if eltgto
jmp ends& num ;;past addr list
endif
;generate label for this case
case& numé& @& dt:
endm

genelt macro num,elt

;generate one element of case list
dw case& numé& @& elt
endm

genslab macro num,elts

;generate case list

selv&num:

ecnt set 0 ;;count elements
rept elts ;;generate dw's
genelt num,%ecnt

ecnt set ecnt+l

endm ;;end of dw's
;generate end of caselist label
ends& num;

endm

Fiqure 49a. Macro Library for SELECT Statement.

127

selnext macro
;generate the next case

gencase %cent,%ecnt
;increment the case e ement count
ecnt set ecnt+l

endm

sdlect macro var
;generate case selection code

cent set 0 ;;count "selects’
sdect macro v ;;redefinition of select
;select on v or accumulator contents
if not nul v
Ida \Y ;;load select variable
endif
genslxi %cent ;;generate the Ixi h,selv#
mov ea ;;create double precision
mvi d,0o pvind.epair
dad d ;;single prec index
dad d ;;double vrec index
mov em ;;low order branch addr
inx h ;;to high order byte
mov dm ;;high order branch index
xchq ;;ready branch addressin hl
pchl ;;gone to the proper case
ecnt set 0 ;;element counter reset
endm
;:invoke redefined select the first time
select var
selnext ;;automaticallv select case 0
endm

endsel macro
;end of select, generate case list

gencase %ccnt,%ecnt ;last case
genslab %cent,%ecnt ;caselist
;increment "select" count
cent set cent+
endm

Figure 49b. Library for SELECT Statement (Con't).

128
CASEO@n:
statement-set-n
JMP ENDSO
SELVO:
DW CASEO@0
DW CASEO@I

DwW CASEO@n
ENDSO:

Figure 49a contains the label generators GENSL X (generate SELECT LXI1),
.GENCASE (generate case labels, GENELT (generate select vector element), and
GENSLAB (generate SELECT label). Figure 49b contains the macro definitions for
SELNEXT (select next case), SELECT, and ENDSEL. Referring to Figure 49D, the
SELECT macro begins by zeroing CCNT which counts SELECT-ENDSEL groups and
then redefines itself, similar to the WHEN and DOWHILE macros. The redefined
SELECT macro then generates the select vector indexing operation by loading the
indexing variable, if necessary, and then fetches the specific case address. Note that
no machine code is generated to check that the indexing variable is within the proper
range. The PCHL at the end of this code sequence performs the branch to the selected
case. At the end of the redefined select macro, SELNEXT isinvoked automatically

to delimit the first case in the SELECT group (otherwise SELECT would have to be
followed immediately by SELNEXT in the user program to generate the proper labels.
SELECT also zeroes the ECNT variable which counts the cases until ENDSEL is
encountered.

SELNEXT, shown at the top of Figure 49b, isinvoked by the programmer to

delimit cases. The GENCASE utility macro is invoked which, in turn, generates a

JMP instruction for the previous group, if thisis not group zero, and then produces

the appropriate case entry label. SELNEXT also increments the select element counter
ECNT to account for yet another case.

Upon encountering the ENDSEL, the last macro in Figure 49b, GENCASE is
again invoked to generate the IMP instruction for the last case. GENSLAB then
produces the select vector by first generating the SELVn label, followed by alist of
ECNT DW statements which have the case label addresses as operands.

Figure 50a gives an example of a simple program which uses two SELECT groups.
Thefirst SELECT group executes one of five different MV instructions based upon

the value of X. The second SELECT group assumes that the 8080 accumulator contains
the selector index, and executes one of three different MV instructions. The program
of Figure 50ais used only to illustrate the generated control structures, and does not
itself produce any useful values as output. The sorted symbol table shown at the end

of the listing gives the generated label addresses for the individual cases.

Figure 50b shows a segment of the previous program with generated macro lines.
Note the case selection code following "SELECT X" and the selection vector at the
end of the listing.

Figure 50c gives a more complete trace of the SELECT-ENDSEL group, showing
the actions of the macros as they expand for the second SELECT-ENDSEL group of

129

MACLIB SELECT
0000 SELECT X
0010 3E00 mvi A0
0012 SELNEXT
0015 3E01 mvi Al
0017 SELNEXT
001A 3E02 mvi A2
001C SELNEXT
001F 3E03 mvi A3
0021 SELNEXT
0024 3E04 mvi A4
0026 ENDSEL
0033 SELECT
0040 0600 mvi B,0
0042 SELNEXT
0045 0601 mvi B,
0047 SELNEXT
004A 0602 mvi B,2
004C ENDSEL
0055 X: DS 1

0010 CASEO@0 0015 CASEO@1 001A CASEO@?2 801F CASEO@3 0024 CASEO@4
0029 CASEO@5 0040 CASE1@0O0045 CASEM 004A CASE1@2 004F CASEM
OO33ENDSO O0055ENDS1 0029 SELVO 004F SELV1 0055 X

Figure 50a. Sample Program using SELECT with "-M +S" Options.

0000+3A5500
0003+212900
0006+5F
0007+1600
0009+19
000A+19
000B+5E
000C+23
000D+56
OOOE+EB
000F+E9
0010 3E00

MOV

0012+C33300
0015 3E01

0017+C33300
001A 3E02

001C+C33300
001F 3EO3

0021+C33300
0024 3E04

0026+C33300
0029+1000
002B+1500
002D+IA00
002F+IF00
0031+2400

Fiqure 50b. Segment of Fig 50awith Mnemonics.

130

MACLIB

SELECT X

LDA X

LXI H,SELVO
EA

mvi D,0
DAD D
DAD D
mov E.M
INX H
MOV DM
XCHG
PCHL

mvi A0

SELNEXT

jmp ENDSO

mvi Al

SELNEXT

jmp ENDSO

mvi A2

SELNEXT

jmp ENDSO

mvi A3

SELNEXT

jmp ENDSO

mvi A4

ENDSEL

jmp ENDSO

DW CASEO@O

DW CASEO@I

DW CASEO@2

DW CASEO@3

DW CASEO@4

SELECT

+ + + +

0033+214F00
+

131
SELECT
IF NOT NUL
LDA
ENDIF
GENSLXI %CCNT
LXI H,SELVI
ENDM

(indexing L~e similar to Fig 50b)

0000+#

+ + + 4+ + +

0001+#
+
+

0040 0600

+

+
0042+C35500
+

+

+

0002+#

+

ECNT SET O

GENCASE

IF 0GTO

jmp ENDS1

ENDIF
CASE1@O0:
ENDM
SET
ENDM
ENDM
mvi B,O
SELNEXT
GENCASE %CCNT,%ECNT
IF 1GTO
jmp ENDS1
ENDIF
CASEl@!:
ENDM

SET
ENDM

ECNT ECNT+

ECNT ECNT+1

(remaining cases are similar)

+

+
00000

+ + + + +

004F+4000
+

0001+#

+
0051+4500
+

0002+#

+
0053+4A00
+

0003+#

+

+

+

0002+#

+

Figure 50c. Segment of Fig 50awith "+M" Option.

~N;SL
GENSLAB %CCNT,%ECNT
SELVI:
ECNT SET O
REPT 3
GENELT 1,%ECNT
ECNT SET ECNT+1
ENDM
GENELT [,%ECNT
DW CASE1@0
ENDM
ECNT SET ECNT+1
GENELT [,%ECNT
DwW CASE1@1
ENDM
ECNT SET ECNTH
GENELT [,%ECNT
DwW CASE1@2
ENDM
ECNT SET ECNT4-1
ENDM
ENDSLI:
ENDM
CCNT SET CCNTH
ENDM

%CCNT,%ECNT

132

Figure 50a. The listing has been edited to remove the case selection code, which is
listed in Figure 50b, as well as the code generated for case number 2. Figure 50c
should be cross-referenced with the SELECT macro library given in Figures 49a and
49b if confusion remains as to the actions of these macros.

It is now possible to show a complete program which uses the WHEN, DOWHILE,

and SELECT groups. Figure 51 shows a program which is similar in function to a

more complicated program which interacts with the console in executing single character
input commands. In fact, the two CP/M programs ED and DDT both take this general
form (see the ED and DDT Users Guides for details). That is, asingle letter is used

to select a single action which may correspond to an edit request in the ED program,

or adebug request in DDT. Upon completion of each command, control returns back

to the main loop to accept another single letter command.

The program given in Figure 51 begins by loading the macro definitions for the
SIMPIO, NCOMPARE, WHEN, DOWHILE, and SELECT operations. Severa messages
are then sent to the console device, followed by a single DOWHILE-ENDDO group
which encompasses nearly the entire program. The DOWHILE group is controlled by
the X,NEQ,%'D' test and thus continues to loop while the X character is not the letter

D. On each iteration of the DOWHILE group, asingle letter is read from the console
and converted to upper case, if necessary. In order to ensure that the letter isin

the proper range of values, two WHEN groups follow which convert illegal valuesto

the letter E which will subsequently produce an error response.

Following the WHEN tests in Figure 51, the character must be in the range 'A'
through 'E'. Before indexing into the SELECT group, this value is "normalized” to the
absolute value 0 through 4 corresponding to each of the possible values. The SELECT
statement uses the value in the accumulator to select one of the five cases, producing
the appropriate response to the letters A through D, or an error response for the last
case. Upon completion of the SELECT group, control returns to the DOWHILE where
the last character typed istested against the letter D. If X is not equal to the letter

D, the iteration continues. Otherwise, the DOWHILE completes and control returns
to the console processor.

The control structures presented in this section are representative of the forms

which can be implemented. Additional facilities, such as the controlled iteration found

in Fortran DO loops, or Algol FOR loops can be implemented using essentially the

same techniques used for the WHEN and D-OWHILE. Further, subroutine parameter
mechanisms which pass actual values to subroutines for assignment to formal parameters
can aso be defined with macro libraries. Note also that it would be relatively easy

to include control structures for the stack machine given in the previous section, thus
allowing machine independent programming of control structures as well as arithmetic
operations.

133

0100 ORG 100H ;BEGINNING OF TPA
MACLIB SIMPIO;SIMPLE READ/WRITE.
MACLIB NCOMPARE;COMPARISON OPS
MACLIB WHEN ;"WHEN" CONSTRUCT
MACLIB DOWHILE ;"DOWHILE" CONSTRUCT
MACLIB SELECT ;"SELECT" CONSTRUCT

;USING THE CCP'S STACK, READ INPUT
;CHARACTERS, UNTIL A Z ISTYPED

0100 WRITE <SAMPLE CONTROL STRUCTURES>
0127 WRITE <TYPE SINGLE CHARACTERS FROM>
0150 WRITE <A TOD, It'I'LL STOP ON D>
0174 DOWHILE X,NEQ,%-D
017C WRITE <TYPE A CHARACTER: >
019C READ X
01A4 WHEN X,GEQ,%'A’
01AC 3ABFO2EGSF LDA X!'ANI 05FH! STA X ;CONV CASE
01B4 ENDW
01B4 WHEN X,LSS,%-A
01BC 3E4532BF02 MVI A'E'l STA X ;SET TO ERROR
01cl ENDW
01cl WHEN X,GTR,%-E
01CC 3E4532BF02 MVI A'E'l STA X ;SET TO ERROR
oDl ENDW
0IDI 3ABF02D641 LDA X! SUI'A" ;NORMALIZE TO 0-4
01D6 SELECT ;BASED ON X IN ACCUM
01E3 WRITE <YOU SELECTED CASE A>
0204 SELNEXT
0207 WRITE <YOU SELECTED CASE B>
0228 SELNEXT
022B WRITE <YOU SELECTED CASE C>
024C SELNEXT
024F WRITE <YOU SELECTED CASE D>
0270 WRITE <SO I'M GOING BACK!>
0290 SELNEXT
0293 WRITE <BAD CHARACTER>
02AE ENDSEL
02BB ENDDO
02BE C9 RET ;BACK TO CCP
;DATA AREA
02BF 00 X: DB 0 ;X=00 INITIALLY

Figure 51. Program using WHEN, DOWHILE, and SELECT.

134
9.4. Operating Systems I nterface.

In a general-purpose computing environment, macros are often used to provide
systematic and simplified mechanisms for programmatic access to operating system
functions. Throughout this document, the examples have shown various low-level calls
to the CP/M operating system which implement function such as single character input,
single character output, and full message output. In each case, the macros simplify

the operations by performing the low-level register set-ups and calls which perform

the function.

The purpose of this section is to introduce more comprehensive operating system
interface macros, and specifically show a sample macro library which allows simplified
diskette file operations for sequential "stream" input/output operations. The principal
macros of this library which alow file access are listed below:

FILE - set up anamed file for subsequent disk operations
GET - read asingle character from a specific data source
PUT - send acharacter to a specific data destination
FINIS - terminate file access for a specific group of files
ERASE - remove a specific diskette file

DIRECT - search for a specific file on the diskette
RENAME - rename a specific diskette file

Before introducing the macro library which performs these functions, the operation of
each macro is described, followed by a simple example.

The FILE operation takes the form:
FILE modefileid,diskname filename,filetype,buffsize buffaddr

where the individual parameters of the FILE macro describe a particular file to be
accessed in the program. The parameter values for the FILE macro are:

mode - infile (input file),
- outfile (output file),
- setfile (set up file name for ancillary functions),

fileid - fileidentifier for internal reference throughout
the program

diskname - disk drivename (A, B) containing the file
being accessed, or empty if the default driveis

being used

filename - the (up to eight character) file name of the diskette
file being accessed; if "1" or "2" is specified, then
the first or second default file name is used,
respectively

filetype - the (up to three character) file type of the file being

accessed; if "1" or "2" has been specified for the
filename parameter and an empty filetypeis given,

135
then the file type is taken from the selected default
file name, otherwise the type is set to blanks

buffsize - the size (in bytes) of the buffer area used for this
file; the value is rounded down to an integral
multiple of the diskette sector size; if the rounding
produces aresult which istoo small, or if the para
meter is empty, then only one sector is buffered.

buffaddr - the address of the buffer areato be used during
accesses to thisfile; if empty, then the buffer
address is assigned automatically
The FILE statement

FILE INFILE, ZOT, A, NAMES, DAT

for example, sets up the file "NAMES.DAT" on diskette drive A for subsequent access.
Internal to the program, this file will be referenced by the name ZOT. Further, the
buffer address is assigned automatically, and the buffer size is set to one sector
(normally 128 bytes). In general, larger buffers are useful in minimizing rotational
delay on the diskette due to "missed sectors' during the file operations. If the
"NAMES.DAT" file does not exist, an error message is sent to the console, and the
program is aborted. An output file can be created using the statement

FILE OUTFILE,ZAPB,ADDRESSDAT,1000

for example, which creates the file "ADDRESS.DAT" on drive B for subsequent output,
referenced internally by the name ZAP. In this case, the buffer sizeis set to 1000

bytes (rounded down to 7 * 128 = 896 bytes), and the base address of the buffer is

set automatically. The sample programs show alternative FILE options.

The GET macro invocation takes the form
GET device
where "device" specifies a. smple peripheral or a diskette file defined by a previously

executed FILE statement. The GET statement reads one byte of data into the 8086
accumulator from the specified device. The possible device names are;

key - console keyboard input
rdr - reader device
fileid - previoudy defined file identifier given in a FILE statement

The following GET invocations perform the functions shown to the right below.

GET KEY - read one keyboard character

GET RDR - read one reader character (see CP/M Interface and
Alteration Guides for READER entry point definition)

GET zOT - read one character from the file given by the in-

ternal name ZOT (i.e., the NAMES.DAT fileif the
above FILE statement bad been executed)

136

The end of data can be detected in two ways: if the file contains character data,

the end of fileis detected by comparing the individual characters with the standard
CP/M end of file mark which is a control-Z (hexadecimal 1AH). The GET function
also returns with the 8080 zero flag set to true if areal end of fileis encountered

so that pure binary files can be read to the end of data.

The PUT macro performs the opposite function from the GET macro. The PUT
invocation~ takes the form:

PUT device

where "device" specifies a simple output peripheral or a diskette file defined previously
using the FILE macro. The possible device names are

con - console display device

pun - system punch device

Ist - system listing device

fileid - previously defined output file identifier

The following PUT invocations perform the functions shown to the rigbt below:

PUT CON - write the accumulator character to the console
PUT PUN - write the accumulator character to the punch
PUT LST - write the accumulator character to the list device
PUT ZAP - write the accumulator character to the file

whose internal nameis ZAP (i.e., the ADDRESS.DAT
file in the above example)

Note that the character in the accumulator is preserved during the invocation so that
it may be involved in further tests or macro invocations following the PUT statement.

The FINIS statement is used to close afile or set of files upon completion of

file access. In the case of an output file, the internal buffers are written to disk,
and the file name is permanently recorded on the diskette for future access. The
form of the FINIS invocation is

FINIS filelist

where "filelist" is a single internal name which appeared previously in afile statement,
or alist of such file names enclosed within broken left and right brackets, and separated
by commas. Although it is not necessary to close input files with the FINIS statement,

it is good practice, since the file close operation may be required on future versions

of the macro library. An example of the FINIS statement is:

FINIS ZAP - write all buffers for the ZAP file, and record the

file in the diskette directory; in the above example,
the ADDRESS.DAT fileis closed.

The ERASE macro allows programmatic removal of a diskette file given by the
specified file identifier defined in a previous FILE statement. If the file identifier is
not used in a GET or PUT statement, then the FILE statement can have the mode

137

"setfile”" which requires less program space than an "infile" or "outfile" parameter.
Specific cases of the ERASE statement will be given in the examples which follow.
In the simple case

ERASE ZOT

however, the file NAMES.DAT would be removed from the diskette, given the previous
FILE statement which defines ZOT.

The DIRECT macro is used to search for a specific file on the diskette. Similar

to the ERASE macro, the file identifier must be previously given in a FILE statement
using one of the three possible file modes. The DIRECT invocation sets the 8080 zero
flag to falseif thefile is present on the diskette. In both the ERASE and DIRECT
macros, the file identifiers can reference file names and types with embedded "?"
characters, similar to the normal CP/M "DIR" command, where the question mark will
match any character in the file names being scanned. The macro invocation

DIRECT ZAP

for example, returns anon-zero flag if the file ADDRESS.DAT is present, and a zero
flag if thefileis not present, given the original FILE statement involving the ZAP
file identifier.

The RENAME macro takes the form
RENAME newfileoldfile

where "newfile" and "oldfile" are file identifiers which have appeared in previous FILE
statements. The rename macro changes the file name given by newfile to the file

name given by oldfile. Similar to the ERASE and DIRECT macros, the file identifiers
"newfile" and "oldfile" must appear in previously executed FILE statements, but may
have a mode of "setfile" if they are not used in GET or PUT macros. If the drive

names for the oldfile and newfile differ, then the drive name of the newfile is assumed.
The sequence of macro invocations

FINIS ZAP ;,CLOSE"ZAP'
ERASE ZzOT ;,REMOVE"ZOT"
RENAME ZOT,ZAP ;CHANGE NAMES

for example, first closes the ADDRESS.DAT file on drive B, then erasesthe NAMES.DAT
file on drive A. The RENAME macro then changes the ADDRESS.DAT fileto the
name NAMES.DAT fileon drive A.

Figure 52 shows the use of the FILE, GET, PUT, and FINIS macros in aworking
program. The purpose of this program isto read an input file, specified at the console
command processor level asthefirst file name, and translate each lower case aphabetic
character to upper case. The output is sent to the file given as the second parameter

at the command level. Given that this program has been assembled, loaded, and stored
as"CASE.COM" on the diskette, atypical execution would be

CASE LOWER.DAT UPPER.DAT

0100

0000 =
005F =

0100 317003

2000 =
0103

2000 =
01EC

02EA
02ED FEIA
02EF CA0CO3

02F2 FE61
02F4 DAFEQ2
02F7 FE7B
02F9 D2FEO2

02FC EG5F
02FE

0306

0309 C3EA02

030C
034D C30000
0350

BUFFERS:
1270
0370

138
ORG 100H
;COPY FILE1TOFILE 2, CONVERT
; TO UPPER CASE DURING THE COPY
;AND ECHO TRANSACTION TO CONSOLE

MACLIB SEQIO ;SEQUENTIAL I/OLIB
BOOT EQU 0000H ;SYSTEM REBOOT
UCASE EQU 5FH ;UPPER CASE BITS
LXI SP,STACK
;DEFINE SOURCE FILE:
;JINFILE= INPUT FILE
;SOURCE = INTERNAL NAME
J(NUL) = DEFAULT DISK
1 = FIRST DEFAULT NAME
J(NUL) = FIRST DEFAULT TYPE

BUFFER SIZE

FILE INFILE,SOURCE,,,,2000
;DEFINE DESTINATION FILE:
;OUTFILE = OUTPUT FILE
;DEST = INTERNAL NAME
J(NUL) = DEFAULT DISK
;2 = SECOND DEFAULT NAME
J(NUL) = SECOND DEFAULT TYPE
BUFFER SIZE

FILE OUTFILEDEST,,2,,2000

;READ SOURCE FILE, TRANSLATE, WRITE DEST

CYCLE: GET SOURCE
CPI EOF ;END OF FILE?
jz ENDCOPY ;SKIPTO END IF SO

;NOT END OF FILE, CONVERT TO UPPER CASE

CPI) :BELOW LOWER CASE "A"?
jc NOCONV :SKIPIF SO
CPI 7'+ :BELOW LOWER CASE *Z7"?
JNC NOCONV :SKIPIF ABOVE
:MASK OUT LOWER CASE ALPHA BITS
ANI UCASE
NOCONV: PUT CON ;WRITE TO CONSOLE
PUT DEST ;ANDTO DESTINATION FILE
jmp CYCLE ;FOR ANOTHER CHARACTER
ENDCOPY:
FINIS DEST ;END OF OUTPUT
jmp BOOT ;BACK TO CCP
DS 32 :16 LEVEL STACK
STACK:
MEMSIZE EQU BUFFERS+@NXTB :PROGRAM SIZE
END

Figure 52. Lower to Upper Case Conversion Program.

139

which causes the CASE.COM file to be loaded and executed in the transient program
area. Before execution, the console command processor passes LOWER.DAT asthe
first default file name, and UPPER.DAT as the second file name (see the CP/M
Interface Guide for exact details). Referring to Figure 52, the CASE program begins
by intializing the stack pointer to alocal stack areain preparation for subsequent
subroutine calls which occur within the various macros in the SEQIO macro library.
Thefirst default file name is then taken as the SOURCE file, as defined in the first
FILE macro. The second FILE statement assigns the second default file name as an
output file with the internal name DEST. In both cases, the FILE statements open
the respective files and initialize the buffer areas consisting of 2000 bytes (rounded
down to amultiple of the sector size). Note that if the UPPER.DAT file already
exists, the second file statement removes the existing file and creates a new UPPER.DAT
file before continuing. In either case, the appropriate error messages will appear at
the console if the files cannot be accessed or created in the FILE statements.

The CASE program's main loop is shown in Figure 52 between the CY CLE and
ENDCOPY labels. Each successive character is read from the SOURCE file (in this
case, LOWER.DAT) and tested to see if the character isin the range of alower case
"a' to lower case"z". If in this range, the character is changed to upper case. At

the NOCONV labdl, the (possibly trandated) character in the accumulator is sent to
the console device using the "PUT CON" macro and then sent to the DEST file (in
this case, UPPER.DAT). Looping continues back to the CY CLE label where another
character is read and trandlated. Since the data file is assumed to consist of a stream
of Ascii characters, the end of file is detected when a control-Z is encountered. When
this character is found, control transfers to the label ENDCOPY where the DEST file
is closed using the FINIS macro. Again note that errorsin writing or closing the
DEST filewill produce an error message at the console, and the program execution
will be aborted immediately. Upon completion of the program, control is returned to
the console processor through a system reboot (JIMP BOOT).

The SEQIO library macros assume that al file buffers are located at the end

of the user's program, as shown in Figure 52. In particular, the label BUFFERS must
appear asthe last 1abel in the user's program, and becomes the base of the buffers

alocated automatically in the FILE statements. The actual memory requirements for

the program can be determined using an 11EQU11 as shown in Figure 52, with a statement
of theform

MEMSIZE EQU BUFFERS+@NXTB

which produces the equated value 1270H at the left of the listing. In this particular
case, the memory area beyond 1270H is not used by the program.

The macro library for SEQIO is shown in Figures 53a, 53b, 53¢, 53d, and 53e,
which constitute the most comprehensive macro library shown in this manual. The
particular macro library contains an instance of nearly every macro facility available
in MAC, and thusit is useful to read and understand the operations contained in the
listing. The discussion below of SEQIO outlines the general functions of each macro,
but it is left to the reader to investigate the exact operation of the library.

The SEQIO segment shown in Figures 53a and 53b contain generally useful
equates and utility macros. The label FILERR at the beginning becomes the destination
of transfers upon encountering a file operation error and, since thisisa SET statement,

140
;sequentid filei/o library

filerr set 0000h ;reboot after error
@bdos equ 0005h ;bdos entry point
@tfcb equ 605¢ch ;default file control block
@tbuf equ 0080h ;default buffer address
;bdos functions
@msgy equ 9 ;send message
@opn equ 15 ;file open
@cCISs equ 16 fileclose
@dir equ 17 ;directory search
@del equ 19 filedelete
@frd equ 20 ;file read operation
@fwr equ 21 ;file write operation
@mak equ 22 file make
@ren equ 23 file rename
@dma equ 26 ;set dma address
@sect equ 128 ;sector size
eof equ lah ;end of file
or equ QOdh ;carriage return
if equ Oah ;linefeed
tab equ 0%h ;horizontd tab
@key equ 1 ;keyboard
@con equ 2 ;console display
@rdr equ 3 ;reader
@pun equ 4 ;punch
@Ilst equ 5 ;list device
;keywords for *file" macro
infile equ 1 ;input file
outfile equ 2 ;outputfile
setfile equ 3 ;setup name only
;the following macros define simple sequential
;file operations:
fillnam macro fcc
;fill the file nameftype given by fc for c characters
@cnt set C ;;max length
irpc cfc ;+fill ech character
;may be end of count or nul name
if @cnt=0 or nul ?c
exitm
endif
db &FC ;+fill one more
@cnt set @cnt-1 ;;decrement max length
endm ;»of irpc c
;pad remainder
rept @cnt ;;@cnt is remainder
db ;;pad one more blank
endm ;;of rept
endm

filldef macro fcb, X, An - W
fill the file name from the default fcb
;for length 2In (9 or 12)

local psub
jmp vsub ;;jump past the subroutine
@def: ;this subroutine fills from the tfch (+16)
mov am ;:0€t next character to a
stax d ;:storeto fch area
inx h
inx d
der c ;;count length down to O
jnz @def
ret
;end of fill subroutine
psub:
filldef macro 2cb, 7,2
Ixi h,@tfcb+? ;;either @tfcb or @tfcb+16
Ixi d,”fcb
mvi cA ;length =9,12
cal @def
endm
filldef fcb, 1, 2An
endm
fillnxt macro
;initidize buffer and device numbers
@nxtb set 0 ;:next buffer location
@nxtd set @Ist+ ;:next device number
fillnxt macro ;;cancle macro after 1st use
endm

endm

141

fillfcb macro fid,dn,fn,ft,bsba
fill thefile control block with disk name
fidisaninternal name for thefile,
;dnisthe drive name (a,b..), or blank
fnisthefile name, or blank
;ftisthefiletype
;bsisthe buffer size
;baisthe buffer address

local pfcb

;set up thefile control block for thefile
;look for filename- 1 or 2

@c set 1 ;;assume true to begin with
irpc ,fn ;;look through characters of name
if not (&2C'-'l'or '&2C' - '2)
@c set 0 ;:clearif not 1 or 2
endm
;@cistrueif fn=1or 2 at this point
if @c sthenfn=1or2
fill from default area
if nul ft type specified?
@c set 12 ;;both name and type
else
@c set 9 ;;name only
endif
filldef fcb&fid,(fn-1)*16,@c ;;to select thefch
jmp pfcb ;;past fcb definition 0
ds @c ;:space for drivel/filename/type
fillnam ft,12-@c ;;seriesof db's
else
jmp pfcb ;;past initialized fch
if nul dn 0
db 0 ;;use default driveif nameis zero
else
db ‘& DN-'A'Hl ;;use specified drive
endif
fillnam fn,8 ;+fill file name
;now generate the file type with padded blanks
fillnam ft,3 ;;and three character type
endif
fcb&fid equ $-12 ;;beginning of the fcb
db 0 ;;extent field 00 for setfile
;now define the 3 byte field, and disk map
ds 20 3X.x,re,dmO ... dmi5,cr fields
if fid&typ<-2 ;;infoutfile
;generate constants for infile/outfile U
fillnxt ;;@nxtb-0 on first call
if bs+O<@sect
;bs not supplied, or too small
@bs set @sect ;;default to one sector
else
;compute even buffer address LO
@bs set (bs/@sect)* @sect
endif
;now define buffer base address
if nul ba
;use next address after @nxtb
fid& buf set bufferst@nxtb
;count past this buffer
@nxtb set @nxtb+@bs
else
fid& buf set ba
endif
;fid&buf is buffer address
fid&adr:
dw fid& buf
fid&siz equ @bs ;iliteral size
fid&len:
dw @bs ;buffer size
fid&ptr:
ds 2 ;setininfile/outfile
;set device number
@&fid set @nxtd ;:next device
@nxtd set @nxtd+
endif ;;of fid&typ<=2 test

pfch: endm

142

file macro md,fid,dn,fn,ft,bsba
;create file using mode md:
iinfile 1 input file
;outfile 2 output file
;setfile 3 setup fcb
;(seefillfcb for remaining parameters)
local psub,msg,pmsg
local pnd,eod,eob,pnc

;construct the file control block

fid&typ equ md ;:set mode for later ref's
fillfcb fid,dn,fn,ft,bsba
if md-3 ;:setup fcb only, so exit
exitm
endif

file control block and related parameters
;are created inline, now create io function

jmp psub ;;past inline subroutine
if ma-| ;iinput file
get&fid:
else
put&fid:
push psw ;;save output character
endif
Ihid fid&len ;:;load current buffer length
xchg ;;deislengthl-4
Ihid fid&ptr ;;load next to get/put to hl
mov al ;;compute cur-len
sub e
mov ah
sbb d ;;carry if next<length
jc pnc ;;carry if len gtr current
;end of buffer, fill/empty buffers
Ixi hO
shid fid&ptr ;;clear next to get/put
pnd:
;process next disk sector:
xchg ;ifidfiptr to de
Ihid fid&len ;;do not exceed length

;deisnext to fill/empty, hl ismax len

mov ae ;;compute next-len
sub 1 ;;to get carry if more
mov ad
sbb h stofill
jnc eob
;carry gen'ed, hence more to fill/empty
Ihid fid&adr ;;base of buffers
dad d ;:hlis next buffer addr
xchg
mvi c@dma ;;set dmaaddress
call @bdos ;;dmaaddressis set
Ixi d,fch&fid ;;fcb addressto de
if md-| ;;read buffer function
mvi c,@frd ;+fileread function
else
mvi c,@fwr ;;filewrite function
endif
call @bdos ;rdiwr to/from dma address
ora a ;;check return code
jnz eod ;;end of file/disk?
;not end of file/disk, increment length
Ixi d,@sect ;,sector size
lhid fid&ptr ;;next to fill
dad d
shid fid&ptr ;,back to memory
jmp pnd ;;process another sector
eod:
;end of file/disk encountered
if md-| sinput file
Ihid fid&ptr ;;length of buffer
shid fid&len ;;reset length
else
fatal error, end of disk
local emsq
mvi c,@msy ;;write the error
Ixi d.emsq
call @bdos ;;error to console
pop psw ;;remove stacked character
jmp filerr ;;usually reboots
emsg: db crlf
db ‘disk full: &FID'
db

endif

143

eob:
;end of buffer, reset dmaand pointer
Ixi d,@tbuf
mvi c,@dma
cal @bdos
Ixi hO
shid fia&ptr ;;next to get
pnc:
;process the next character
xchg ;;index to get/put in de
Ihid fid&adr ;;base of buffer
dad d ;;address of charin hl
xchg ;,address of'char in de
if md-1 -,;input processing differs 0
lhid fid&len ;;for eof check
mov al ;;0000?
ora h
mvi a,eof ;:end of file?
rz zeroflagif so
Idax d ;:next char in accum
else
;store next character from accumulator
pop psw ;»recall saved char
stax d ;;character in buffer
endif
Ihid fid&ptr ;;index to get/put
inx h
shid fid& ptr ;;pointer updated
;return with non zero flag if get
ret
psub: ;;past inline subroutine
Xra a ;;zeroto acc
sta fchb&fid+12 ;;clear extent
sta fcb&fid+32 ;;clear cur rec
Ixi hfid&siz ;buffersize
shid fid&len ;set buff len
if md-| input file
shid fid&ptr ;;cause immediate read
mvi c,@opn ;;open file function
else ;;output file
Ixi h,@ ;;set next to fill
shid fid& ptr ;;pointer initialized
mvi c,@del
Ixi d,fcb&fid ;;deletefile
cal @bdos ;-,to clear exigting file
mvi c,@mak ;;create anew file
endif
;now open (if input), or make (if output)
Ixi d,fcb& fid
cal @bdos ;;open/make ok?
inr a ;:255 becomes 00
inz pmsy
mvi c,@msy ;:print message function
Ixi d,msgy ;;error message
cal @bdos ;;printed at console
jmp filerr ;to restart
Msg: db crlf
if md=I ;;input message
db 'no &FID file
else
db ‘no dir space: &FID'
endif
db '$
pmsg;:

endm

144

new,old

;renamefile given by 'old" to "new"

psub,reno

;include the rename subroutine once

jmp psub

;;rename subroutine, hl is address of
;;old fcb, deis address of new fcb

finis macro fid
;;close the file(s) given by fid rename macro
irp * <fid>
;:skip al but output files local
if A&typ=2
local eob?,peof,msg,pmsy
swriteall partidly filled buffers @rens:
eob?: ;;arewe at the end of abuffer?
Ihid A&ptr ;inext tofill
mov al ;;on buffer boundary?
ani (@sect-1) and Offh
jnz peof ;;put eof if not 00 renO:
if @sect>255
;:check high order byte aso
mov ah
ani (@sect-1) shr 8
jnz peof ;;put eof if not 00
endif :
;;arrive hereif end of buffer, set length pop d
;;and write one more byte to clear buffs mvi
shid X&len ;:set to shorter length
peof: mvi a,eof ;:write another eof
push psw ;:save zero flag psub:
cal put&
pop psw ;;recall zeroflag
jnz eob? ;;non zero if more
;;buffers have been written, closefile cal
mvi c,@cls
Ixi dfch& ;;ready for cal rename
call @bdos
inr a ;:255 if err becomes 00
jnz pmey
;;file cannot be closed
mvi c,@msy
Ixi d,msg
call @bdos
jmp pmsy ;;error message printed
msa: db crlf
db cannot close & F
db '$
pmsg:
endif
endm ;;of theirp
endm
erase macro fid
;;delete the file(s) given by fid
irp * <fid>
mvi c,@del
Ixi d,fch&
call @bdos
endm ;;of theirp
endm
endm
direct macro fid
;;perform directory search for file
;:sets zero flag if not present
Ixi djc&fid
mvi c,@dir
call @bdos
inr a ;00if not present
endm

push h ;;save for rename
Ixi b.16 :b=0@.c=16
dad b ;hl = old fch+16
Idax d ;;new fcb name
mov ma ;toold fcb+16
inx d ;;next new char
inx h ;next fcb char
der c ;;count down from 16
jnz renO

;;old namein first half, new in second half
;;recall base of old name

c,@ren ;;rename function
cal @bdos
ret ;;rename complete
rename macro n,o ;;redefine rename
Ixi h,fcb& o ;;0ld fcb address
Ixi d,fcb&n ;;new fcb address
@rens ;;rename subroutine
endm
new,old
endm
get macro dev
;;read character from device
if @&dev <= @Ist
;:simple input
mvi c,@&dev
cal @bdos
else
cal get&dev
endm
put macro dev
;:write character from accum to device
if @&dev <= @Ist
;;simple output
push psw ;:save character
mvi c,@&dev ;;write char function
mov ea
cal @bdos ;write character
pop psw
else
cal put& dev

Figure 53e. Sequential File /0 Library (Con't).

;;ready for output

;;restore for testing

145

may be changed in the user's program to "trap" error conditions rather than rebooting.
The use of FILERR is apparent throughout the macro library.

The equates which follow define the usual BDOS entry points and functions,

along with the diskette sector size (@SECT), and specia non-graphic characters (EOF,
CR, LF, and TAB). The equates for @KEY through @LST are used in the GET and
PUT macros to determine the source or destination device. The INFILE, OUTFILE,
and SETFILE equates are used in the FILE macro as mnemonics for the file mode
attribute.

Referring again to Figure 53a, FILLNAM is a utility macro which isused in the
construction of afile control block. In particular, it accepts afile name or file type
along with afield size and builds a sequence of DBIs which fill the name or type field
with padded blanks. FILLDEF is again a utility macro similar to FILLNAM, but fills
the file control block name or type field from the default file control block at @TFCB
or @TFCB+16. FILLDEF isinvoked to extract either the default file name (first 8
characters) or default file type (following 3 character field). Note that the FILLDEF
macro constructs an inline subroutine to perform the data move operation the first

time it isinvoked and calls the inline subroutine (@DEF) upon subsequent invocations.

The last macro definition shown in Figure 53ais FILLNXT which isused to

initialize two assembly time variables: @NXTB and @NXTD. @NXT13 is used to count
the accumulated size of buffers asthey are automatically alocated in the FILE

statement, while @NXTD is used to count filesin the FILE macro for later reference

in GET and PUT statements. They are included within a macro so that they will be
properly initialized in the two successive passes of the macro assembler. FILLNXT
isinvoked by the FILE macro where the expansion initializes @NXT13 and @NXTD.
Note that FILLNXT then redefinesitself as an empty macro so that subsequent FILE
invocations do not reset the two counters.

A major utility macro, called FILLFCB, is shown in Figure 53b. The primary
purpose of this macro is to construct afile control block in the CP/M standard format,
where FID isthefileidentifier, DN is the disk name, FN is the file name, FT isthe
file type, BSisthe buffer size, and BA is the buffer address, as described in the FILE
statement above. Recall that some of these parameters may be empty, causing default
conditions to be selected. The FILLFCB macro begins by searching for a"I", or a"2"
as the FN parameter, indicating that either default name 1 or 2 isto be selected for
thefile. Note that the IRPC loop involving ?C will result in avalue of 1 for @C if
either FN=1 or FN=2, and avalue of O for @C if FN isnot 1 or 2. The FILLFCB
macro then selects either the default name, or the user specified name along with the
default or user specified drive number. The equate for FCB& FID then produces the
address of the file control block for the file identifier followed by "DB O" for the
extent field and "DS 20" for the remainder of the file control block. The reader may
wish to cross-reference the file control block format shown in the CP/M Interface
Guide for exact formats.

The remainder of the FILLFCB macro, shown in the lower half of Figure 53b,

is devoted to storage allocation for buffer areas. The @BS variable is set to the

buffer size after rounding and size checks. FID& BUF then becomes the address of

the file's buffer area, and FID& ADR labels a"DW" containing this literal value.

FID& SIZ becomes the literal size of the buffer, and FID&LEN labels a"DW" containing
the literal size. FID&PTR is aso alocated as a double byte which will subsequently
hold the buffer index to the next character to get or put in the file. All of these

values will be used in the file operations which occur later.

146

The principal file access macro, called FILE, is shown in Figure 53c, and is

used to set up the file control block, buffers, and access subroutines for a particular

file. Similar to the FILLFCB macro, the parameters FID, DN, FN, FT, BS, and BA
describe the particular characteristics of afile. The MD parameter, however, is

present to indicate the file mode and must have the value 1, 2, or 3. The FILE macro
begins by assigning the mode value to FID& TY P so that subsequent macros can determine
the type of access for thisfile. The FILLFCB macro is then invoked to construct

the file control block for this macro, and sets generally useful parameters for thefile,

as discussed above. The FILE macro then generates either the label GET&FID or
PUT&FID for input and output files, respectively, followed by a subroutine which GET's
asingle character or PUT's asingle character for thisfile.

In general, the GET& FID reads a single character from the input buffer and,

when the input buffer is exhausted, fills the buffer area again in preparation for
following GET operations. Upon detecting areal end of file, the EOF character is
returned with the zero flag set. Similarly, the PUT& FID subroutine generated for
output files stores the accumulator character into the output buffer at the next

character position and, when the buffer is full, writes the sequence of sectors and
returns to accept more output characters. In the case of an output error, the appropriate
message is printed, and control transfers to FILERR which usually remains at 0000H,
causing a system rebaoot.

The generated code which follows the label PSUB in Figure 53d is used to

initialize the file pointers to the proper positions for file access. The file extent and
next record fields of the file control blocks are zeroed for both input and output files.
In the case of an input file, the buffer index variable FID& PTR is set to the end of
the buffer, causing an immediate read operation when the first character isread. In
the case of an output file, the FID& PTR is set to zero, indicating that the next
position to fill isthe first character of the output buffer. If the fileisan output

file, any duplicate files are erased, and a new fileis created. In both cases, thefile
is opened upon completion of the FILE operation, and the buffer pointers are set for
the next GET or PUT invocation. Note that the FILE statement is "executable" in
the sense that it must occur ahead of the GET or PUT statements for the file, and
performs its function each time control passes tbrough the FIL E machine code.

The FINIS, ERASE, DIRECT, RENAME, GET, and PUT macros are shown in
Figure 53e. The FINIS macro, shown on the left, serves to empty the output buffers
and close the file for output. Input files are skipped since no actions need take place
to close an input file. The main purpose of the FINIS macro isto fill the remaining
buffer segment (one sector size) with EOF's, then write the partialy filled buffers.

The ERASE macro accepts afile identifier or list of fileidentifiers and

successively callsthe BDOS to erase each file, while the DIRECT macro searches only
for asinglefile given by thefile identifier FID. In the case of the DIRECT macro,

the non-zero flag is set if the file exists. No prechecks are made to seeif the file
exists before the ERA SE operation takes place, although erasing a non-existant file is
of no consequence. The DIRECT macro can, of course, be used to check if afile
exists before the ERASE is executed if deemed necessary by the programmer.

147

The RENAME macro shown in Figure 53e (right) allows afile to be renamed

by accepting two file identifiers, denoted by NEW and OLD. Thesefile identifiers
must correspond to the FCB names created by FILLFCB in an earlier FILE invocation,
and has the effect of renaming the OLD file to-the NEW file name. Thisis accomplished
within the RENAME macro through an inline subroutine, called @RENS, which is
included the first time the RENAME macro isinvoked. The inline subroutine moves
the new file control block information (first 16 bytes) into the second half of the old
file name in the form required for a rename operation under CP/M (see the CP/M
Interface Guide). The BDOS is then called to perform the rename function. Note
again that there is no check to ensure the old file exists before the rename takes

place.

The GET and PUT macros shown in Figure 53e are similar in structure: both

accept adevice or fileidentifier as the formal parameter DEV, and perform the
corresponding input or output function on that device. If the deviceisasimple

peripheral, the BDOS is called directly to perform the input or output function. If

instead, the device name was created by a FILE macro, the corresponding GET& FID

or PUT&FID subroutine is called to accomplish the input or output operation. Note

that the accumulator is preserved (PUSH PSW) upon output to a simple periphera

within the PUT macro, while the save/restore sequence is performed within the PUT& FID
subroutine if the destination is a diskette file.

Figures 54a, 54b, and 54c show the full expansion of a segment of the case

conversion program of Figure 52 (using the "+M" assembly parameter). Figure 54a
shows the invocation of FILE, followed by FILLFCB, again followed by FILLDEF. The
@DEF subroutine is included inline, and the FILLDEF macro is redefined to exclude
the subroutine. Upon completion of the FCB construction, the file parameters are
generated, as shown in Figure 54b, along with the beginning of the GETSOURCE
subroutine. Note that the conditional assembly ignores the portions of this FILE macro
expansion which are related to output files while including the machine code for the
input SOURCE file. In each case, the "&FID" labels result in names with the prefix

or suffix "SOURCE" in order to associate the generated 1abels with this particular
internal name. Figure 54c contains the end of the PUTSOURCE subroutine, followed
by the machine code which initializes the file control block fields and buffer pointer.
Upon completion of the FILE macro, the SOURCE file is ready for access. In particular,
each call to GETSOURCE reads one more character into the accumulator. Dueto

the length of the expanded macro form, the remainder of the case translation program
is not shown.

In order to illustrate the facilities of the SEQIO macro library, two additional

programs are given. Thefirst, called PRINT, formats the output from the macro
assembler for printing on the system line printer. The second, called MERGE, performs
a simple merge operation on two diskette files.

The PRINT program, shown in Figure 55, is executed under the console command
processor by typing

PRINT filename
where "filename" is the name of a previously assembled program. PRINT assumes that

thereisa"PRN" file on the diskette, and possibly a"SYM" file on the same diskette
drive. The PRN fileisfirst printed, with aform feed at the top of each 56 line

0001+=

+
0001+#
+

+ 4+ +++++ o+

Q
=]
=]
(@]
i
H*

+ 4+ + + +

0103+C30FOl
+

0106+7E
0107+12
0108+23
0109+13
010A+0D
010B+C20601
010E+C9

+

+ 4+ + + + +

+
010F+215C00
0112+111D01
0115+0E0C
0117+CDO0601
+

+
011A+C34401
011D+
0000+#

+

+H++++ A A+ o+

+

011D+=
0129+00
012A+

148

FILE INFILE,SOURCE,,|,,2000
LOCAL PSUB,MSG,PMSG
LOCAL PND,EOD,EOB,PNC
SOURCETYPEQU INFILE
FILLFCB SOURCE,,l,,2000,
LOCAL PFCB
@cC SET 1
IRPC 2C,|
IF NOT (&?C'='1'OR'&?C' ='2)
@cC SET 0
ENDM
IF NOT (1'="1"OR'1'='2)
@cC SET 0
ENDM
IF @C
IF NUL
@cC SET 12
ELSE
@cC SET 9
ENDIF
FILLDEF FCBSOURCE,(1-1)*16,@C
LOCAL PSUB
jmp 220009
@DEF:
mov AM
STAX D
INX H
INX D
DCR C
INZ @DEF
RET
220009:
FILLDEF MACRO ?7FCB,?F,7L
LXI H,@TFCB+7F
LXI D,?FCB
mvi C2L
CALL @DEF
ENDM

FILLDEF FCBSOURCE,(1-1)*16,@C

LXI H,@TFCB+(I-1)*16
LXI D,FCBSOURCE
mvi c,@C
CALL @DEF
ENDM
ENDM
jmp 220008
DS @cC

@CNT SET 12-@C
IRPC FC,
IF @CNT=0 OR NUL ?FC
EXITM
ENDIF
DB '&FC

@CNT SET @CNT-1
ENDM
IF @CNT=0 OR NUL
EXITM
REPT @CNT
DB 0
ENDM
ENDM
ELSE
jmp ?77Bon
IF NUL
DB 0
ELSE
DB - A+
ENDIF
FILLNAM 1,8
FILLNAM3
ENDIF
FCBSOURCE EQU $-12
DB 0
DS 20

+
+
0000+#
0006+#
+

780+#

++ O+ + + + +

0370+#
0780+f
+

+

+

+
013E+7003
0780+=

+
0140+8007
+

0142+
0006+#
0007+#

+

144+C3B401

+++++O+ + + +

+
0147+2A4001
014A+EB
014B+2A4201
014E+7D
014F+93
0150+7C
0151+9A
0152+DA9DO01
0155+210000
0158+224201
+

015B+EB
015C+2A4001
015F+7B
0160+95
0161+7A
0162+9C

0163+D28F01
0166+2A3E01
0169+19
016A+EB
016B+0E1A
016D+CD0500
0170+111D01
+

0173+0E14

+

+

+
0175+CD0500
0178+B7
0179+C28901
017C+118000
017F+2A4201
0182+19
0183+224201
0186+C35B01

IF

FILLNXT

@NXTB SET
@NXTD SET
FILLNXT MACRO
ENDM
ENDM
IF
@BSs SET

@BS SET
ENDIF
IF
SOURCEBUF
@NXTB SET
ELSE
SOURCEBUF
ENDIF
SOURCEADR
DW
SOURCESIZ
SOURCELEN
DW
SOURCEPTR:
DS
@SOURCE
@NXTD SET
ENDIF
ENDM
IF
EXITM
ENDIF
imp
IF
GETSOURCE
ELSE
PUTSOURCE
PUSH
ENDIF
LHLD
XCHG
LHLD
mov
suB
mov
SBB
jc
LXI
SHLD

2?0008:

220004
XCHG
LHLD
mov
SUB
Mov

SBB
INC
LHLD
DAD
XCHG
mvi
CALL
LXI

IF

mvi
ELSE
mvi
ENDIF
CALL

INZ
LXI
LHLD
DAD
SHLD

imp

149

SOURCETYP<=2

0
@LSTH

2000+0<@SECT
@SECT

ELSE

(2000/@SECT)* @SECT

NUL
SET BUFFERS+@NXTB
@NXTB+@BS

SET

SOURCEBUF
EQU @BS

@BSs

2
SET @NXTD
@NXTD+

0

INFILE=3

2720001
INFILE=I

PSW
SOURCELEN

SOURCEPTR
AL

E

AH

D

220007 O
H,O
SOURCEPTR

SOURCELEN
AE

L

AD

H

2?0006
SOURCEADR
D

C,@DMA
@BDOS
D,FCBSOURCE
INFILE=I
C,@FRD

C.@FWR

@BDOS

A

2?0005
D,@SECT
SOURCEPTR
D
SOURCEPTR
270004

+ 2?0005:

+
0189+2A4201

018C+224001
+

EMSG:

+ 4+ ++ o+

+ 2?0006:

018F+118000
0192+0E1A
0194+CD0500
0197+210000
019A+224201

+ 2?20007:

019D+EB
019E+2A3EQI
0lAI+19
O0lA2+EB

+
0IA3+2A4001
01A6+7D
0lA7+B4
OIA8+3EIA
01AA+C8
01AB+1A

+

+

+

+
01AC+2A4201

01AF+23
01B0+224201
0IB3+C9

+ 2?20001:

0IB4+AF

01B5+322901
0IB8+323D01
01BB+218007

01BE+224001
+
01C1+224201
0IC4+0EOF

+

+ 4+ + + + +

+
0IC6+111D01
01C9+CD0500
01CC+3C
0ICD+C2ECOl
01D0+0E09
OlD2+11DBol
01D5+CD0500
01D8+C30000
01DB+0D0A

+
0IDD+6E6F20534F
+

+

+

01EB+24

+ 2?0003:

+

2?20002:

IF
LHLD
SHLD
ELSE
LOCAL
mvi
LXI
CALL
POP
Jmp
DB
DB

ENDIF

LXI
mvi
CALL
LXI
SHLD

XCHG
LHLD
DAD

XCHG

LHLD
mov
ORA
mvi

LDAX
ELSE

STAX
ENDIF
LHLD
INX

SHLD
RET

XHLD

SHLD
mvi

ENDIF
DB

ENDM

150

INFILE-1
SOURCEPTR
SOURCELEN

EMSG

C.@MSG
D,EMSG

@BDOS

PSW

FILERR

CRLF

'disk full: SOURCE'

D,@TBUF
C,@DMA
@BDOS

H,O
SOURCEPTR

SOURCEADR
D

0

INFILE=I
SOURCELEN
AL

H

AEOCF E

D

PSW
D

SOURCEPTR

H
SOURCEPTR

A
FCBSOURCE+12
FCBSOURCE+32
H,SOURCESIZ

SOURCELEN
INFILE=I
SOURCEPTR
C,@OPN

H,0
SOURCEPTR
C,@DEL
D,FCBSOURCE
@BDOS
C.@MAK

D,FCBSOURCE
@BDOS

A

270003
C,@MSG
D,??0002
@BDOS
FILERR

CR,LF
INFILE=I

' no SOURCE file

' no dir space: SOURCE'

'$

151

page. If the SYM fileexists, it isalso printed using the same formatting. If the
files are sucessfully printed, they are both erased from the diskette.

Referring to Figure 55, the PRINT program begins by saving the console

processor's stack, with the intention of returning directly to the CCP, without a system
reboot. Theinput printer file isthen defined with a FILE statement which specifies
the internal name PRINT, and obtains the file name from the console command line.
The file type, however, is set to PRN in this case. After performing an initial page
gject, the program loops between the PRCY C (print cycle) and ENDPR (end print)
labels by successively reading characters from the PRINT source, and writing to the
printer through the LISTING subroutine. On detecting an end of file character, control
transfers to the ENDPR label where the PRN file is erased from the diskette.

As shown on the left of Figure 55, the program then checks for the presence

of the SYM file by invoking the FILE macro with a SETFILE mode. This creates the
proper file control block for the input file with type SY M, but does not create buffers
nor does it open the file for access. Following the FILE macro, the DIRECT statement
performs a directory search and, if the fileis not present, control transfersto the
ENDLST (end listing) label where execution terminates.

If the SYM file exists, the program proceeds to perform another page gect,

and then opens the SYM file for access. It should be noted that the third FILE macro
(Figure 55, left) accesses the SYM file using the internal name SYMBOL, but shares
the buffer areas of the PRINT file. Thisis possible since the PRINT file has been
erased at this point in the program and thus the buffers are available for use.

If the SYM fileis present, the program loops between the SY CY LE (symbol

cycle) and ENDSY (end symbol) labels where characters are read from the SY MBOL

file and again sent to the printer through the LISTING subroutine. Upon detecting

the end of file, control passesto the ENDSY label where the SYM fileisremoved

from the diskette. If no errors occur, control eventually reaches the ENDLST label

where the printer page is gjected. The entry stack pointer is then retrieved from

OLDSP, and control returns to the console command processor, thus completing execution
of the PRINT program.

The next program, called MERGE, is somewhat more complicated. The purpose
of the MERGE program is to accept two file names as input, taking the general
command form

MERGE filename

where "filename" is the name of a master file, with assumed file type of MAS, as

well as an update name with assumed file type UPD. The files consist of text files
with varying length records, starting with a six character numeric "sequence number"
followed by textual material, and terminated with a carriage-return line-feed sequence.
The lines of information in the master and update files are assumed to be in ascending
numeric order according to their sequence numbers. The purpose of the MERGE
program isto read these two files and "shuffle" the records together to form a new

file consisting of numerically ascending sequence numbered lines.

Upon completion of the merge operation, the newly merged file becomes the
new master file: update records are properly interspersed within the new master file

152
;UTILITY SUBROUTINES

LISTOUT :
;SEND A SINGLE CHARACTER TO THE PRINTER
0100 ORG 100H 0344 PUT LST
MACLIB SEQIO ;SEQUENTIAL 1/0LIB 034C 21D203 LXI
H,CHARC ;CHARACTER COUNTER
;PRINT THE X.PRN AND X.SYM FILESON THE 034F 34 INR M
JINCREMENT POSITION
;LINE PRINTER WITH PAGE FORMATTING. 0350 C9 RET
0ooC = FF EQU OCH ;FORM FEED LISTING:
0038 - MAXLINE EQU 56 'MAX LINES PER PAGE 'WRITE
CHARACTER FROM REG-A TO LIST DEVICE
0351 FEOC CPI FF

;FORM FEED?

;SAVE THE ENTRY STACK POINTER 0353 C25F03 INZ LISTO
0100 210000 LXI H,0 0356 AF XRA A

;CLEARLINE COUNT
0103 39 DAD SP ;ENTRY SPTOHL 0357 32D103 STA LIN&C,
0104 22CF03 SHLD OLDSP ;SAVEENTRY SP 035A 32D203 STA CHARC

CLEAR TAB POSITION
0107 31CF03 LXI SP,STACK;SET TO LOCAL STACK 035D 3E0C MVI A FF

;RESTORE FORM FEED

035F FEOA LISTO: CPI LF

;END OF LINE?
010A FILE INFILE,PRINT,,|,PRN,1000 0361 C27403 INZ LIST1

;READ THE PRINT FILE UNTIL END OF FILE 0364 AF XRA A

;CLEAR TAB POSITION
01F2 CD8A03 CALL EJECT ;TOPOFPACE 0365 32D263 STA CHARC
01F5 PRCYC: GET PRINT 0368 21D103 LXI H,LINEC

;LINE COUNTER
01F8 FEIA CPI EOF 036B 34 INR M

JINCREMENTED
01FA CA0302 jz ENDPR ;SKIPIFEND FILE 036C 7E MOV AM

;CHECK FOR END OF PAGE
01FD C05103 CALL LISTING ;WRITE TOLISTING DEV 036D FE38 CPl MAXLINE

;LINE OVERFLOW?

0200 C3F501 jmp PRCYC 036F D8 RC
;RETURN IF NOT
ENDPR: ;END OF PRINT FILE, DELETEIT 0370 3600 MVI M'0 CLEAR
LINEC
0203 ERASE PRINT 0372 3E0C MVI A FF
;SEND PAGE EJECT
0374 FEQ9 LISTI: CPI TAB

;TAB CHARACTER?

;CHECK FOR THE OPTIONAL SYM FILE 0376 C28703 INZ LIST2
020B FILE SETFILE,SYMCHK,,I,SYM ;FEED BLANKS TO NEXT
TAB POSITION
023A DIRECT SYMCHK ;ISIT THERE? 0379 3E20 TABOUT: MVI A
0243 CA3C03 jz ENDLST ;SKIPSYMBOL IF SO 037B CD4403 CALL LISTOUT

037E 3AD203 LDA CHARC

;CHARACTER POSITION

;SYMBOL FILE ISPRESENT, PAGE EJECT 0381 E607 ANI ™

;MOD 8
0246 CDBAO3 CALL EJECT ;TO TOP OF PAGE 0383 C27903 INZ TABOUT

;FOR ANOTHER BLANK
0249 FILE INFILE,SYMBOL,,|,SYMtIBOO,PRINTBUF ;ON CHARACTER
BOUNDARY
0386 C9 RET
SYCYCLE: LIST2: ;SIMPLE CHARACTER
0326 GET SYMBOL 0387 C34403 jmp

LISTOUT ;PRINT AND RETURN
0329 FEIA CPI EOF
032B CA3403 jz ENDSY ;SKIPTO END ON EOF EJECT: ;PERFORM PAGE
EJECT
032E CD5103 CALL LISTING ;SEND TO PRINTER 038A 3EOC MVI A FF

;FORM FEED
0331 C32603 jmp SYCYCLE ;FOR ANOTHER CHAR 038C C34403 jmp

LISTOUT
0334 ENDSY: ERASE SYMBOL ;ERASE SYM FILE ;DATA AREAS
030F DS 64 ;32 LEVEL STACK

ENDLST: ;END OF LISTING - EJECT AND RETURN STACK:
033C CDBAO3 CALL EJECT 03CF OLDSP. DS 2

;ENTRY STACK POINTER
033F 2ACF03 LHLD OLDSP ;ENTRY STACK POINTER 03D1 LINEC: DS 1

;LINE COUNTER
0342 F9 SPHL ;RESTORE STACK POINTER 03D2 CHARC: DS 1

;CHARACTER COUNTER
0343 C9 RET ;TO CCP
BUFFERS: 03D3 END

153
Figure 55. Program for Line Printer Page Formatting.

according to numeric order, and any update record which matches a master record
resultsin replacement of the master record by the update record. Upon successful
completion of the merge operation, the original master file is renamed to have the
extension MBK (master back-up), the original update file is renamed to the type UBK
(update back-up), and the newly created file becomes the new MAS file. In thisway,
the operator can return to the backup filesin case of error so that the source data

is not destroyed.

The MERGE program is shown in Figures 56a, 56b, and 56c. Utility subroutines

are listed first in Figure 56a, including the DIGIT subroutine which tests for valid
decimal digits in sequence numbers. The IRPC which follows the DIGIT subroutine
generates two distinct subroutines, called READU and READM for reading the update
and master files, respectively. The generation of these two subroutines has been
suppressed in the listing (see the $+PRINT and $-PRINT inline parameters) to keep the
listing short. In general, these two READ subroutines fill their respective sequence
number buffers from the input source so that the merge operation can take place

based upon the current sequence number values. Upon detecting an end of file, the
seguence number is set to OFFH as a signal that the input source has been exhausted.

The utility subroutines shown in Figure 56b include SEQERR, WRITESEQ, and
COMPARE. The SEQERR subroutine reports an error condition when a non numeric
character is detected in the sequence number field. Although the error reporting is
somewhat spartan, sequence errors are easily found using the TY PE command on the
master or update file. The WRITESEQ subroutine sends the buffered sequence number
addressed by HL to the new file. WRITESEQ is called whenever the source for the
next record has been determined. The COMPARE subroutine is used to determine the
next source record (master or update) by comparing the buffered sequence numbers
from left to right while they are equal. 1f a mismatch occurs in the sequence number
scan, COMPARE returns with the carry flag and zero flag set to indicate which file
holds the next source record.

Execution of the MERGE program begins following the START label in Figure
56b where the update, master, and new files are defined. The UFILE and MFILE
sources are defined with the same buffer sizes (as determined by the earlier USIZE
and MSIZE equates). Both take their primary name from the default value specified
at the CCP level by the operator. The new fileis created as atemporary, with name
TEMP and type $$3, but will be altered upon completion of the program to become
the master file.

The merge operation proceeds in Figure 56b as follows. First the READU and
READM subroutines are called to fill the sequence number buffers. The loop between
MERGE and ENDMERGE in Figure 56c¢ is then repetitively executed until the merge
is complete. On each iteration of this loop, the COMPARE subroutine is called to
compare the buffered sequence numbers. If the update sequence number is smaller
than the master sequence number, it is moved to the new file and datais copied from
the update file to the new file until the end of the current record is encountered.

Upon completion of the copy operation, the READU subroutine is called again to refill
the update sequence number buffer.

If the COMPARE subroutine instead detects equal sequence numbers, control
transfers to the SAME label in Figure 56¢ where master record is deleted. Alternatively,
the COMPARE subroutine will cause control to transfer to the MASLOW label when

154

0100 ORG 100H

;FILE MERGE PROGRAM

MACLIB SEQIO ;SEQUENTIAL FILE 1/0

0000 = BOOT EQU 0O00H ;SYSTEM REBOOT
0006 = SEQSIZ EQU 6 ;SIZE OF THE SEQUENCE #S
03E8 = USIZE EQU 1000 ;UPDATE BUFFER SIZE
03E8 = MSIZE EQU USIZE ;MASTER BUFFER SIZE
07D0 = NSIZE EQU USIZE+MSIZE ;NEW BUFF SIZE
0100 31EC05 LXI SP,STACK
0103 C3C801 jmp START ; TO PERFORM THE MERGE

UTILITY SUBROUTINES

DIGIT: ;TEST ACCUMULATOR FOR VALID DIGIT
;RETURN WITH CARRY SET IF INVALID
0106 FE30 CPl ‘0
0108 D8 RC ;CARRY IFBELOW 0
0109 FE3A CPI '9+1 ;CARRY IF BELOW 10
010B 3F CcMC ;NO CARRY IF BELOW 10
010C C9 RET
;ERROR MESSAGES FOR READU AND READM
SEQERRU:
010D 7570646174 DB ' update seq error',O
SEQERRM:
011E 6D61737465 DB " master seq error',0
;GENERATE READU AND READM SUBROUTINES
IRPC 72F,UM
;INLINE SEQUENCE NUMBER BUFFER
& SEQ:DB 0 ;TO START PROCESSING
DS SEQSIZ-1 ;REMAINING SPACE FOR SEQ#
READ& 7F:
LXI H,”F& SEQ ;SEQUENCE BUFFER
mov AM ISIT FF (END FILE)?
INR A ;FF BECOMES 00
RZ ;SKIP THE READ
;READ THE SEQUENCE NUMBER PORTION
MVI C,SEQSIZ ;SIZE OF SEQUENCE #
RD& & O:
PUSH H ;SAVE NEXT TOFILL
PUSH B ;SAVE NUMBER COUNT
GET ?F&FILE ;READ THE FILE
POP B ;RECALL COUNT
POP H JRECALL NEXT FILL
CPl EOF :END FILE?
jz EOF& 7F
CALL DIGIT ;ASCII DIGIT?
LXI D,SEQERR&?F ;ERROR MESSAGE
jc SEQERR ;SEQUENCE ERROR
;NO SEQUENCE ERROR, FILL NEXT DIGIT POSITION
mov M,A
INX H iNEXT TOFILL
DCR C ;COUNT=COUNT-1
INZ RD& & O ;FOR ANOTHER DIGIT
RET ;END OF FILL
EOF& 7F: ;END OF FILE, SET SEQ# TO OFFH
MVI A,OFFH
STA P& SEQ ;SEQ# SET TO FF
RET
ENDM

Figure 56a. File Merge Program.

018F 1A
0190 B7
0191 CA0000

0194 D5
0195

019D D1
019E 13
019F C38FO0l

01A2 OEO6
01A4 7E
01A523
01A6 ES
01A7 C5
01A8
01AB C1
O01ACEl
01AD 0D
01AE C2A401
01B1C9

01B2 112F0I
01B5 215F0I
01B8 OE06
01BA 1A
018B BE
01BC D8
01BD CO

01BE FEFF
01COoC8
01C113
01C2 23

01C3 0D
01C4 C2BAO1
01C7 C9

01C8

02B0O

038C

047D CD3501
0480 CD6501

NERGE:

0483 CDB201
0486 CAADO4
0489 D2C804

048C 212F0I
048F CDA201

155

SEQERR:
"WRITE ERROR MESSAGE FROM (DE) TIL 00
LDAX D
ORA A
iz BOOT
:OTHERWISE, MORE TO PRINT
PUSH D
PUT CON "WRITE TO CONSOLE
POP D
INK D
jmp SEQERR :FOR MORE CHARS

WRITESEQ:
JWRITE THE SEQUENCE NUMBER GIVEN BY HL
;TOTHE NEW FILE

mvi C,SEQSIZ ;SIZE OF SEQ#
WRITO: MOV AM
INX H JNEXT TO GET
PUSH H ;SAVE NEXT ADDR
PUSH B ;SAVE COUNT
PUT NEW JWRITE TO NEW
POP B JRECALL COUNT
POP H JRECALL ADDRESS
DCR C ;COUNT=COUNT-1
JINZ WRITO ;FOR ANOTHER CHAR
RET

;COMPARE THE UPDATE SEQUENCE NUMBER WITH
;THE MASTER SEQUENCE NUMBER, SET:
;CARRY |IF UPDATE < MASTER
,ZERO IF UPDATE = MASTER
;-ZERO |IF UPDATE > MASTER
COMPARE:
LXI D,USEQ ;UPDATE SEQ#
LXI H,MSEQ;MASTER SEQ#

MVI C,SEQSIZ ;SEQUENCE SIZE
CLOOP. LDAX D ;UPDATE DIGIT
CMP M JUPDATE-MASTER
RC ;CARRY IF LESS
RNZ JNZERO IF GTR
;ITEMS ARE THE SAME, CHECK FOR OFFH
CH OFFH ;END OF FILE
RZ ;BOTH ARE OFFH
INX D ;NEXT UPDATE
INX H iNEXT MASTER
DCR C ;COUNT DOWN
JINZ CLOOP ;FOR ANOTHERDIGIT
RET ,ZERO FLAG IF EQUAL
;MAIN PROGRAM STARTS HERE
START:
JUPDATE FILE, WITH ASSUMED UPD TYPE
FILE INFILE,UFILE,,|,UPD,USIZE
;MASTER FILE, WITH ASSUMED TYPE MAX
FILE INFILE,MFILE,|,MASMSIZE

;NEW FILE, TEMP.$$$ (RENAMED UPON EOF'S)

FILE OUTFILE,NEW, TEMP,$$$,NSIZE
CALL READU ;INITIALIZE UPDATE RECORD
CALL READM ;INITIALIZE MASTER RECORD

;MAIN MERGING LOOP
CALL COMPARE ;CARRY SET IF UPDATE<MASTER
jz SAME ;ZERO IF IDENTICAL SEQ#
JNC MASLOW ;MASTER LOW?
;UPDATE SEQUENCE NUMBER IS LOW
LXI H,USEQ ;COPY SEQUENCE NUMBER
CALL WRITESEQ;WRITE THE SEQUENCE #

Figure 56b. File Merge Program (Con't).

0492

0495 F5

0496

0499 F1

049A FEOA
049C CAAT04
049F FE1A
04A1 CAAT04
04A4 C39204
04A7 CD3501
04AA C38304

04AD 3A5F01
04BO FEFF
04B2 CAE904

04B5

04B8 FE1A
04BA CAC204
04BD FEOA
04BF C2B504
04C2 CD6501
04C5 C38304

04C8 215F0I
04CB CDA201
04CE

04DI F5

04D2

04D5 F1

04D6 FEOA
04D8 CAE304
04DB FE1A
04DD CAE304
04EO C3CE04

04E3 CD6501
04E6 C38304

04E9

0529
0558

0560

0580
05AF

05B7

05C0
05C9 C30000

05CC

146C
05EC

156

ULOOP: :UPDATE RECORD TO NEW FILE
GET UFILE ;CHARACTERTOA
PUSH PSW SAVEIT
PUT NEW ;OUTPUT TONEW FILE
POP PSW ;RECALL CHARACTER
CPl LF :LINE FEED?
iz ENDUP
CPl EOF
iz ENDUP
jmp ULOOP ;CYCLE IFNOT END REC
ENDUP. CALL READU :READ ANOTHER SEQ#
jmp MERGE ;FOR ANOTHER RECORD
SAME: :SEQUENCE NUMBERS ARE IDENTICAL
LDA MSEQ ;CHECK FOR OFFH
CPL OFFH
iz ENDMERGE
:NOT THE SAME, DELETE MASTER RECORD
DELMAS: GET MFILE
CPl EOF ;END OF FILE?
iz GETMAS :GET SEQ# FF
CPl LF
INZ DELMAS :FOR ANOTHER CHAR
GETMAS: CALL READM ;TO NEXT RECORD
jmp MERGE ;FOR ANOTHER
MASLOW: :MASTER SEQUENCE NUMBER IS LOW
LXI HMSEQ
CALL WRITESEQ;SEQUENCE NUMBER
MLOOP:GET MFILE
PUSH PSW ;SAVE MASTER CHARACTER
PUT NEW
POP PSW ;LFOREOF?
CPl LF
iz ENDMS
CPl EOF
iz ENDMS
jmp MLOOP ;MORE TO COPY
ENDMS: CALL READM ;READ NEW SEQ NUMBER
jmp MERGE ;TO MERGE ANOTHER
ENDMERGE:

;CLOSE ALL FILES FOR RENAMING

FINIS

<UFILE,MFILE,NEW>

;OLD MASTER FILE FOR ERASE/RENAME

FILE

SETFILE,OLDMAS, |, MBK

ERASE OLDMAS

;RENAME

RENAME

MASTER TO MBK
OLDMASMFILE

;OLD UPDATE FILE FOR ERASE/RENAME

FILE SETFILE,OLDUPD,,|,UBK
ERASE OLDUPD
;RENAME UPDATE TO UBK
RENAME OLDUPD,UFILE
;RENAME NEW TO MASTER FILE
RENAME MFILE,NEW
jmp BOOT
DS 32 ;16 LEVEL STACK
STACK:
;BUFFER AREA
BUFFERS:
MEMSIZE EQU BUFFERS+@NXTB ;END OF MEMORY
END

Figure 56c¢. File Merge Program (Con't).

157

the master sequence number is low. In this case, the master sequence number and
data record are copied to the new file in exactly the same manner as an update
record.

Upon completion of the merge operation (end of file detected in both the update

and master files), control transfers to the ENDMERGE label where the files are closed
and renamed. Following the FINIS statement, the previous MBK file (possibly from
an earlier execution) is erased so that the current master WAS) can be renamed to

the master backup (MBK). Similarly, any previous UBK fileis erased, and the current
update file is renamed to become the new UBK file. Finally, the new file (TEMP.$$$)
is renamed to become the new master file (MAS) before execution is stopped.

Figure 57 shows an example of the files which are involved in atypical merge
operation. In this application, the sequence numbers control the ordering of alist of
names which is updated periodically. The NAMES.MASfileisthe original master,
which will be updated by merging the NAMES.UPD file, also shown in the figure. The
merge operation isinitiated by typing

MERGE NAMES
and, upon completion, produces the new NAMES.MAS shown to the right in Figure 57.

The SEQIO library istypica of the interface one can construct to provide a

higher-level interface between assembly language programs and their operating environ
ment. Although the library shown here performs only simple sequential file input/output,
one can construct more comprehesive libraries for random access based upon this

library.

NAMESMAS

000100 ABERCROMBIE, SIDNEY
000200 CARLSBAD, YOLANDA
000300 EGGBERT, EBENIZER
000400 GRAVELPAUGH, HORTENSE
000500 ISENEARS, IGNATZ

000600 KRABNATZ, TILLY

000700 MILLYWATZ, RICARDO
000800 OPFATZ, ADOLPHO

000900 QUAGMIRE, DONALD
001000 TWITSWEET, LADNER
001090 VERANDA, VERONICA
001100 WILLOWANDER, PRATNEY
001200 Y UPPGANDER, MANNY
000620 LAMBAA, WILLY

000700 MILLYWATZ, RICARDO
000710 NEEBEND, ASTRID

000800 OPFATZ, ADOLPHO

000820 PRATTWITZ, HEADY
000900 QUAGMIRE, DONALD

NAMES.UPD

000930 RUBBLEMEYER, RUNYON
000960 SWIGSTITTS# ULYSSIS
001000 TWITSWEET, LADNER
000110 BERNSWEIGER, ALFRED
000200 CRUENCE, CLARENCE
000210 DENNINGSKI, HUBERT
000330 FINKLESTEIN, FRANK
000410 HILLSENFIELDS, RANDOLPH
000540 JOLLYFELLOW, JUNE
000620 LAMBAA, WILLY

000710 NEEBEND, ASTRID
000820 PRATTWITZ, HEADY
000930 RUBBLEMEYER, RUNYON
000960 SWIGSTITTS, ULYSSIS
001010 UMPLANDER, XAVIER
001110 XYLOPH, ERHARDT
001210 ZEPLIPPS, EGGERWORTZ

Figure 57. Sample MERGE Disk Files.

158

000410

new NAMESMAS

000100 ABERCROMBIE, SIDNEY
000110 BERNSWEIGER, ALFRED
000200 CRUENCE, CLARENCE
000210 DENNINGSKI, HUBERT
000300 EGGBERT, EBENIZER
000330 FINKLESTEIN, FRANK
000400 GRAVELPAUGH, HORTENSE
HILLSENF ELDS, RANDOLPH
000500 ISENEARS, IGNATZ
000540 JOLLYFELLOW, JUNE
000600 KRABNATZ, TILLY

001010 UMPLANDER, XAVIER
001090 VERANDA, VERONICA
001100 WILLOWANDER, PRATNEY
001110 XYLOPH, ERHARDT
001200 YUPPGANDER, MANNY
001210 ZEPLIPPS, EGGERWORTZ

159
10. ASSEMBLY PARAMETERS

Assembly parameters can be included when the assembly begins to control various
assembler functions. In general, the macro assembler isinitiated with the name of
the source file, followed by the assembly parameters, indicated by a preceding dollar
symbol "$". The parameters are indicated by single controls which dencte particular
functions. The letter or digit shown to the left below corresponds to the function

shown to the right.
A controls the source disk for the ASM file
H controls the destination of the HEX machine code file
L controls the source disk for the LIB files (see MACLIB)
M controls MACRO listingsin the PRN file
P controls the destination of the PRN file containing the listing
Q controls the listing of LOCAL symbols
S controls the generation and destination of the SYM file
I

controls pass 1 listing

Any or al of the above parameters can be included. In the case of the A, H,

L, and S parameters, they are followed by the drive name to obtain or receive the
data, where the drives are labelled A, B, . . ., Z. By convention, the X disk
corresponds to the user's console, the P disk corresponds to the system line printer
(logical LIST device), and the Z disk corresponds to a null file which is not recorded.
The following is avalid assembly parameter list following the MAC command and
source file name

$PB AA HB SX

which directs the PRN file to disk B, reads the ASM file from disk A, directs the
.HEX fileto the B disk, and sends the SYM file to the user's console. Blanks are
optional between parameter specifications.

The parametersL, S, M, Q, and 1 can be preceded by either + or - symbols
which enable or disable their respective functions. These functions are listed bel ow

+L list the input lines read from the macro library (see MACLIB)
-L suppress listing of the macro library (default value)

+S append the SYM to the end of the PRN output

-S suppress the generation of the sorted symbol table

+M list al macro lines as they are processed during assembly
-M suppress all macro lines as they are read during assembly
*M list only "hex" generated by macro expansions

+Q list al LOCAL symbolsin the symbol list

-Q suppress al LOCAL symbolsin the symbol list

+1 produce a listing file on the first pass (for macro debugging)
-1 suppress listing on pass 1 (default)

The following is an example of avalid assembly parameter list which uses a
number of the parameter specifications given above:

$PB+S-M HB

160

In this case, the PRN fileis sent to disk B with the symbol list appended (no SYM
fileis created), all macro generations are suppressed, and the HEX fileis sent to
disk B with the PRN file.

Note that the M parameter can be optionally preceded by the "*" symbol which

causes the assembler to list only macro generations which produce machine code, and
is used to suppress the listing of the instructions which are produced (i.e., al positions
beyond the hex fields are not listed). Under normal operation, the macro assembler
lists only generations which produce machine code, along with the generated line.

Given that disk d isthe currently logged drive, the macro assembler defaults

these parameters as follows: the ASM and LIB files are assumed to originate on

drive d, the HEX, PRN, and SYM files are sent to drive d, a symbol table is generated
with LOCAL symbols suppressed (i.e., all symbols beginning with "??" are not listed),
and macro lines which generate machine code are listed. Note, however, that the
filename following the MAC command can be preceded by a drive name, in which case
the P parameter overrides the drive name, if supplied. Whenever a parameter is
repeated in the assembly parameter specification, the last value is aways assumed.
Valid assembly statements are shown below, assuming the file to be assembled is called
"sample."

MAC sample $PX+S-M

assembl es the file sample. ASM with listing to the console, symbols at the console, and
no listing of generated macros.

MAC A:sample $+S-m+q

assembles sample. ASM from disk A, creating sample.PRN (with appended symbols) on
the currently logged drive, suppressing generated macros, and listing symbols which
begin with the characters "??" in addition to the normally listed symbols.

MAC sample

assembles sample ASM from the currently logged drive, creating sample.PRN along
with sample.SYM (containing the symbol table) and sample.HEX which holds the Intel
format "hex" filein ASCII form.

MAC sample $AB HA PB +Q +S+L *M

assembles the sample ASM file from drive B, produces the file sasmple.HEX on drive
A, with the sample.PRN file on drive B. The symbol table includes ?? symbols, the
symbol tableis placed at the end of the PRN file on drive B, the LIB files are listed
with the PRN file as the LIB files are read, and the instructions which correspond

to generated macro lines are not included (although generated machine code is listed).

In addition to the parameters shown above, the programmer can intersperse

controls throughout the assembly language source or library files. Interspersed controls
are denoted by a"$" in the first column of the input line, where the form shown to

the left below corresponds to the action given to the right.

161

$-PRINT stops the output listing by discarding formatted lines
$+PRINT enables the output printing when previously disabled
$MACRO disables generated macro lines, asin "-M" above
$+MACRO enables full macro trace, asin"+M" above
$*MACRO enables partial macro trace, asin "*M" above

Since MAC alows each line to be optionally prefixed by aline number, the "$" control
can be included directly following this line number, if desired.

162
11. DEBUGGING MACROS

In completing the discussion of the macro assembler, it is worthwhile considering
common debugging practices used in developing macros and macro libraries. One
technique, called "iterative improvement,” is often used in the design of programs, and
is most useful in building macros. The basic idea of iterative improvement isthat a
small portion of the overall macro set is first implemented and tested before continuing
to more complicated macros. In this way, errors can be isolated at each step asthe
macro evolve. Further, if errors occur in the macro generations after a small portion

of the macro set has been improved, it is most likely the case that the error is being
caused by the macros which were changed.

In the case of the Hornblower Highway System macro libraries, for example,

iterative improvement was used to evolved the final macro library. In particular, only

the simplest macros were first implemented, including the SETLITE, TIMER, and RETRY
macros (see Section 10.1). Debugging facilities were then added to these macros so

that the programs could be traced at the console. Upon successful testing of the

basic macro facilities, the PUSH?, CLOCK?, and TREAD? macros where individually
written, added, and tested, resulting in the final macro library.

At each step, the programmer can use the various assembly parameters to

control the debugging information. If the macro generations are not producing the
proper machine code, it may be necessary to obtain afull trace, using the "+M" option
when MAC is started. If the program produces too much output with the full trace
enabled, the programmer can use the "$+MACRO" and "$-MACRQO" commands inter
spersed throughout the assembly language source program, resulting in fun macro
generation traces only in the regions selected for debugging consideration.

If macro generation errors are caused by macro libraries, the programmer can
usethe"+L" parameter when MAC is started to cause the libraries to be included in
thelisting asthey are read.

Asafina consideration, it may be necessary to enable the first pass listing of

the assembly language using the "+"1 parameter. In this case, MAC will list the
program asit is being read on the first pass as well as the second pass. Note,
however, that the listing will contain spurious error messages on this pass which may
disappear on the second pass. The principa purpose of the first pass listing parameter
isto alow the programmer to view the macro generations on the two successive
expansion passes to ensure that the assembler is processing the program in the same
way in both cases.

If a particular macro expands improperly, and the source of the error is not

evident after examining various traces, it may be necessary to remove the offending
macro from the program and create an isolated smaller test case where the error is
reproduced. Full traces can then be examined to determine the source of the error
and, after fixing the macro, it can be replaced in the larger program and retested.

163
12. SYMBOL STORAGE REQUIREMENTS

The maximum program size which can be assembled by MAC is determined only

by the symbol table storage requirements for the program. The symbol table itself
occupies the region above the macro assembler in memory, up to the base of the
CP/M operating system. Thus, the size of the symbol table depends upon the size of
the current MAC version (approximately 12K program and data, plus 2.5K for 1/0
buffers) and the size of -the user's CP/M configuration. In any case, the symbol table
sizeis dynamically determined by MAC upon startup, and fills as symbols are en
countered. In order to provide some insight regarding storage requirements, the basic
item size for identifiers and macros is given below.

A name used as a program label, data label, or variable in a SET or EQUATE
requi res

N=L+5

bytes, where L isthe length of the identifier name. Thus, the statement
PORTVAL EQU 37FH

makes an entry into the symbol table which occupies
N =7+5=12 bytes

of symbol table space. Recall that LOCAL symbols take the form ?2nnnn which
generates a name of length L = 6.

Macro storage is somewhat more complicated to compute. The general form
is given by

M=L+7+H+T

where L isthe macro name length, H is the parameter header storage requirement,
and T is the macro text storage requirement, computed as

H=P1+P2+...+Pn+n

where P. isthe length of the i th parameter name. Thetext length T is the number

of characters in the macro body, including tab and end of line characters. Reserved
symbols, however, are reduced to a single byte, instead of their multi-character
representations. The jump, call, and return on condition operators, however, require
their full character representations. Comments starting with double semicolon are not
included in the character count. In fact, the comment line is "backscanned" to remove
preceding tab or blank charactersin this case. For example, the macro

LOADRMACRO REG,ALPHA ;FILL REGISTER crlf
MVI REG,|I&ALPHAI ;;DATA crlf
ENDM crlf

contains a macro header, followed by two macro lines, where each line is written with
tab characters (rather than spaces) and terminated by carriage-return line-feeds (crlf1s).

164

In this case, the macro name length (LOADR) isfive characters (L = 5), and
the parameter name lengths are three characters (REG) and five characters (ALPHA),
resulting in the parameter header storage requirement of

H=P1+P2+2=3+5+2=10bytes

The first macro line contains a leading tab (one byte), the MV1 instruction (reduced
to one byte), another tab character (one byte), the operands REG,|& ALPHA, (twelve
characters), and the end of line (two characters) for atota of seventeen bytes. Note
that the comment, with the preceding tab, is removed from the line. The second line
contains atab (one byte), ENDM (one byte), and end of line (two characters) for a
total of four bytes. Summing the textual characters, thetotal is T = 21 bytes. As
aresult, the total macro storage for LOADP is

M=L+7+H+T=5+7+10+ 21 = 43 bytes

No permanent storage is required for REPT's, IRPC's, or IRP's, although temporary
storage in the symbol table is used while the groups are actively iterating. In particular,
the characters contained within the group bounds (from the header to the corresponding
ENDM) are stored in the symbol table in their literal form, with no reduction of
reserved symbols to single bytes. Upon completion of the iteration, the storage is
returned for other purposes. Similarly, active parameters for macro expansions require
temporary storage in the symbol table which is returned upon completion of the macro
expansion.

In any case, a symbol table overflow message will result if the total amount

of free symbol table space is used up. As mentioned previously, the user can regenerate
the CP/M system, up to the maximum memory space of the 8080 processor, to increase
the symbol table area. Note that the "percentage" of symbol table utilization is always
printed at the console at the end of the assembly. The form of the printout is

OhhH USE FACTOR

where hh is a hexadecimal value in the range 00 to FF, where 00 results from a near
empty table, and FF is produced for a nearly full table. The value 080H, for example,
is printed when the symbol table is half full. The programmer should keep note of
the use factor as a particular program is Oleveloped in order to guage the relative
amount of free space as the program is enhanced.

In many of the examples shown in this manual, macros include inline subroutines
which are generated at the first invocation and called upon subseguent invocations (see
the TYPEOUT macro in Figure 10, for example). These subroutines can be included

in the mainline program to reduce symbol table storage requirements, if necessary.

In this case, the subroutines are assumed to exist when the macro is invoked the first
time, and thus are not generated by the macro.

165
13. ERROR MESSAGES

When errors occur within the assembly language program, they are listed as

single character flags in the leftmost position of the source listing. Thelinein error
is also echoed at the console so that the source listing need not be examined to
determineif errors are present. The single character error codes are:

B Balance error: macro doesn't terminate properly, or conditional assembly
operation isill-formed.

C Comma error: expression was encountered, but not delimited properly
from the next item by a comma.

D Data error: element in a data statement (DB or DW) cannot be placed
in the specified data area.

E Expression error: expression is ill-formed and cannot be computed at
assembly time.

I Invalid character error: anon graphic character has been found in the
line (not a carriage return, line feed, tab, or end of file); re-edit the file, delete the
line with the | error, and retype the line.

L Label error: label cannot appear in this context (may be a duplicate
label).
M Macro overflow error: internal macro expansion table overflow; may be

due to too many nested invocations or infinite recursion.

N Not implemented error: features which will appear in future MAC versions
(e.g., relocation) are recognized, but flagged in this version.

O Overflow error: expression istoo complicated (i.e., too many pending
operators), string istoo long, or too many successive substitutions of a formal parameter
by its actual value in a macro expansion. This error will also occur if the number

of LOCAL labels exceeds 9999.

P Phase error: label does not have the same value on two subsequent passes
through the program, or the order of macro definition differs between two successive
passes, may be dueto MACLIB which follows a mainline macro (if so, move the
MACLIB to the top of the program).

R Register error: the value specified as aregister is not compatible with

the operation code.

S Syntax error: the fields of this statement are ill-formed and cannot be
processed properly; may be due to invalid characters or delimiters which are out of
place.

U Undefined Symbol: alabel operand in this statement has not been defined

elsewhere in the program.

Vv Value error: operand encountered in an expression isimproperly formed;
may be due to delimiter out of place or non-numeric operand.

166
Severa error messages are printed at the console indicating terminal error
conditions which abort the MAC execution. Whenever possible, the disk drive name,
followed by the relevant file name is printed with the message.

NO SOURCE FILE PRESENT: The source program file ((ASM) following the
MAC command cannot be found on the specified diskette. Use the DIR command in
the CCP to locate the sourcefile.

NO DIRECTORY SPACE: The diskette directory isfull. Usethe ERA command
of the CCP to remove files which you do not need. There are often superfluous HEX,
.PRN, and SYM files which can be removed.

SOURCE FILE NAME ERROR: The form of the source file nameisinvalid, or
not specified. The command form must be:

MAC filename $assembly parameters

where the "filename" is the (up to eight character) primary name of the sourcefile,
with an assumed file type of ". ASM" (which is not specified).

SOURCE FILE READ ERROR: The source file cannot be read properIN by the
macro assembler. Use the CCP TY PE command to display the file contents at the
console.

OUTPUT FILE WRITE ERROR: An output file cannot be written properly,
probably due to afull diskette. Asin the directory full error above, use the CCP
commands to erase unnecessary files from the diskette.

CANNOT CLOSE FILE: An output file cannot be closed. The diskette may be
write protected.

UNBALANCED MACRO LIBRARY: A MACRO definition was started within a
macro library, but the end of file was found in the library before the balancing ENDM
was encountered. Examine the macro library using the TY PE command of the CCP,
or use the "+L" assembly parameter, to ensure that the library is properly balanced.

INVALID PARAMETER: Aninvalid assembly parameter was found in the input
line. The assembly parameters are printed at the console up to the point of the error.

Appendix

8080 CPU INSTRUCTIONS IN OPERATION CODE SEQUENCE

OP MNEMONIC
CODE

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
16
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A

NOP
LX1B,D16
STAX B
INX B
INR 8
DCRB
MVI B,D8
RLC

DAD B
LDAX B
DCX B
INRC
DCRC
MVI C,D8
RRC

LXI D,D16
STAX D
INX D
INRD
DCRD
MVI D,D8
RAL

DAD D
LDAX D
DCX D
INRE
DCRE
MVI E,D8
RAR

LXI H,D16
SHLD Adr
INXH
INRH
DCRH
MVI H,D8
DAA
DADH
LHLD Adr

2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
a4
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55

OP MNEMONIC

CODE
DCX H
INR L
DCRL
MVI L,D8
CMA
LX1 SP,D16
STA Adr
INX SP
INRM
DCRM
MVI D8
STC
DAD SP
LDA Adr
DCX SP
INR A
DCRA
MVI A,D8
CcMC
MQV B,B
MQV B,C
MQV B,D
MQV B,E
MQV B,H
MQV B,L
MQV B,M
MOV BA
MOV C,B
MOV C,C
MOV C,D
MQV C,E
MQV CH
MOQV C,L
MQV CM
MOV CA
MQV D,B
MQV D,C
MQV D,D
MOV D,E
MOV D,H
MOQV D,L

56
57
58
59
5A
5B
5C
SD
SE
SF
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
TA
7B
7C
7D
TE
TF

MOV DM
MOV DA
MOV E,B
MOV E,C
MOV E,D
MOV E,E
MOV EH
MOV E,L
MOV EM
MOV EA
MOV H,B
MOV H,C
MOV H,D
MOV H.E
MOV HH
MOV H,L
MOV HM
MOV HA
MOV L,B
MOV L,C
MOV L,D
MOV L,E
MOV LH
MOV L,L
MOV LM
MOV LA
MOV M,B
MOV M,C
MOV M,D
MOV M,E
MOV M H
MOV M,L
HLT

MOV M,A
MOV A,B
MOV A,C
MOV AD
MOV A.E
MOV AH
MOV A,L
MOV AM
MOV A A

80 ADD B

D8 = constant, or logical/arithmetic expression

Adr = 16-bit address.

that evaluates to an 8 bit data quantity.

167

OP MNEMONIC

CODE

81 ADD C
82 ADDD
83 ADDE
84 ADDH
85 ADD L
86 ADD M
87 ADD A
88 ADCB
89 ADCC
8A ADCD
8B ADCE
8C ADCH
8D ADCL
8E ADCM
8F ADCA
90 SUB 6
91 SUBC
92 SUBD
93 SUBE
94 SUBH
95 SUB L
96 SUB M
97 SUB A
98 SBB B
99 SBB C
9A SBBD
9B SBBE
9C SBBH
9D SBBL
9E SBBM
9F SBB A
A0 ANA B
Al ANAC
A2 ANAD
A3 ANA E
A4 ANA H
A5 ANA L
A6 ANA M
A7 ANA A
AB XRA B
A9 XRA C
AA XRA D
AB XRA E

AC XRAH
AD XRA L
AE XRA M
AF XRA A
BO ORA B
B1 ORAC
B2 ORA D
B3 ORA E
B4 ORAH
B5 ORA L
B6 ORA M
67 ORA A
B8 CMPB
B9 CMPC
BA CMPD
BB CMPE
BC CMPH
BD CMPL
BE CMPM
BF CMPA
CO0 RNZ
Cl POPB
C2 INZ Adr
C3 JMP Adr
C4 CNZ Adr
C5 PUSHB
C6 ADI D8
C7 RSTO
C8 Rz

C9 RET Adr
CA XZ

CB ---

CC CZ Adr

CD CALL Adr

CE ACI D8
CF RST 1
DO RNC

D1 POPD
D2 INC Adr
D3 OUT D8
D4 CNC Adr
D5 PUSH D
D6 SUI D8

OP MNEMONIC
CODE

D7 RST 2
D8 RC

D9 ---

DA JC Adr
DB IN D8
DC CCAdr
DD ---

DE SBI D8
DF RST 3
EO RPO

El POPH
E2 JPO Adr
E3 XTHL
E4 CPO Adr
ES PUSHH
E6 ANI D8
E7 RST 4
E8 RPE

E9 PCHL
EA JPE Adr
EB XCHG
EC CPE Adr
ED
EE
EF
FO

XRI D8
RST 5
RP

F1 POP PSW
F2 JP Adr
F3 DI

F4 CP Adr
F5 PUSH PSW
F6 ORI D8
F7 RST 6
F8 RM

F9 SPHL
FA JM Adr
FB El

FC CM Adr
FD --

FE CPl D8
FF RST 7

D16 = constant, or logical/arithmetic expression
that evaluatesto a 16 hit data quantity.

Reproduced with Permission from Intel Corporation, Santa Clara, CA.

168

